code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
``` import sys import datetime import time import re import os # To add path so that we can import zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook from zeno_etl_libs.helper.parameter.job_parameter import parameter env = "prod" notebook_file = "\\scripts\\ipc-pmf\\ipc_pmf.ipynb" parameters = { "env": "prod", "email_to":"[email protected]", "debug_mode":"Y" } os.environ['env'] = 'dev' args = parameter.get_params(job_id=171) reset_stores = args["reset_stores"] batch_size = 4 store_batch_split = [reset_stores[i:i+batch_size] for i in range(0, len(reset_stores), batch_size)] os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) for batch_stores in store_batch_split: run_batch = store_batch_split.index(batch_stores) + 1 tot_batch = len(store_batch_split) # add to parameters parameters["run_batch"] = run_batch parameters["tot_batch"] = tot_batch parameters["batch_stores"] = batch_stores if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=7200, in_vpc=True, instance_type="ml.c5.4xlarge", env=env, check_completion_status=False ) # instances: # ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_ipc_pmf.ipynb
run_ipc_pmf.ipynb
``` !pip uninstall zeno_etl_libs import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\tweets\\zeno-tweets.ipynb" parameters = { "env": env, "full_run":0 } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, instance_type="ml.m5.large", env=env ) !aws s3 cp s3://sagemaker-ap-south-1-921939243643/papermill_output/zeno-tweets-2022-06-24-12-54-23.ipynb . ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_zeno_tweets.ipynb
run_zeno_tweets.ipynb
``` import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\new-stores-ss-main\\new_stores_ss_main.ipynb" parameters = { "env": "prod", "email_to":"[email protected]", "debug_mode":"Y" } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, env=env ) # if env == "dev": # import papermill as pm # pm.execute_notebook( # input_path=input_file, # output_path=f"{output_path}/{result}", # parameters=parameters # ) # elif env in ("stage", "prod"): # run_notebook.run_notebook( # image=f"{env}-notebook-runner", # notebook=input_file, # output=output_path, # parameters=parameters, # timeout_in_sec=7200, # in_vpc=True, # env=env, # instance_type="ml.c5.9xlarge" # ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_new_stores_ss_main.ipynb
run_new_stores_ss_main.ipynb
``` !pip uninstall zeno_etl_libs import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\playstore-review\\playstore-reviews-analysis.ipynb" parameters = { "env": env, "full_run":1 } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, instance_type="ml.m5.large", env=env ) !aws s3 cp s3://sagemaker-ap-south-1-921939243643/papermill_output/playstore-reviews-analysis-2022-07-20-13-06-31.ipynb . ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_playstore_reviews_analysis.ipynb
run_playstore_reviews_analysis.ipynb
``` import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = 'prod' notebook_file = "\\scripts\\drug-std-info\\drug_std_info.ipynb" parameters = { "env": "prod", "email_to":"[email protected]", "debug_mode":"Y" } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, env=env, instance_type="ml.c5.9xlarge" ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_drug_std_info.ipynb
run_drug_std_info.ipynb
``` """main wrapper for IPC safety stock reset""" import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = 'stage' notebook_file = "/stage-scripts/Demo/Demo.ipynb" parameters = { "f_name":"Ram", "l_name":"Babu" } os.environ['env'] = env base = "/".join(os.getcwd().split("/")[:-2]) input_file = base + notebook_file output_path = base + "/run/logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600 ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run.ipynb
run.ipynb
``` import sys import datetime import time import re import os # To add path so that we can import zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook from zeno_etl_libs.helper.parameter.job_parameter import parameter env = "prod" notebook_file = "\\scripts\\ipc2-ss-main\\ipc2_ss_main.ipynb" parameters = { "env": "prod", "email_to":"[email protected]", "debug_mode":"Y" } os.environ['env'] = 'dev' args = parameter.get_params(job_id=140) reset_stores = args["reset_stores"] batch_size = 4 store_batch_split = [reset_stores[i:i+batch_size] for i in range(0, len(reset_stores), batch_size)] os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) for batch_stores in store_batch_split: run_batch = store_batch_split.index(batch_stores) + 1 tot_batch = len(store_batch_split) # add to parameters parameters["run_batch"] = run_batch parameters["tot_batch"] = tot_batch parameters["batch_stores"] = batch_stores if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, instance_type="ml.c5.2xlarge", env=env, check_completion_status=False ) # instances: # ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_ipc2_ss_main.ipynb
run_ipc2_ss_main.ipynb
``` import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\ipc-ss-main\\ipc_ss_main.ipynb" parameters = { "env": "prod", "email_to":"[email protected]", "debug_mode":"Y" } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=7200, in_vpc=True, instance_type="ml.c5.2xlarge", env=env ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_ipc_ss_main.ipynb
run_ipc_ss_main.ipynb
``` !pip uninstall zeno_etl_libs import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\playstore-review\\playstore-patients-batch-process.ipynb" parameters = { "env": env, "full_run":1, "email_to":"NA" } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, instance_type="ml.m5.large", env=env ) !aws s3 cp s3://sagemaker-ap-south-1-921939243643/papermill_output/playstore-patients-batch-process-2022-08-02-07-45-06.ipynb . ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_playstore_patients.ipynb
run_playstore_patients.ipynb
``` import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "/scripts/warehouse/wh_forecast_reset.ipynb" parameters = { "env": env } os.environ['env'] = env base = "/".join(os.getcwd().split("/")[:-2]) input_file = base + notebook_file output_path = base + "/run//logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=7200, in_vpc=True, env=env, instance_type="ml.c5.9xlarge" ) # if env == "dev": # import papermill as pm # pm.execute_notebook( # input_path=input_file, # output_path=f"{output_path}/{result}", # parameters=parameters # ) # elif env in ("stage", "prod"): # run_notebook.run_notebook( # image=f"{env}-notebook-runner", # notebook=input_file, # output=output_path, # parameters=parameters, # timeout_in_sec=7200, # in_vpc=True, # env=env, # instance_type="ml.c5.9xlarge" # ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_wh_forecast_reset.ipynb
run_wh_forecast_reset.ipynb
``` !pip uninstall zeno_etl_libs import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" os.environ['env'] = env notebook_file = "/scripts/playstore-review/playstore-patients-batch-process.ipynb" parameters = { "env":env, "full_run": 1, "email_to": "NA", "batch_size": 25 } base = "/".join(os.getcwd().split("/")[:-2]) input_file = base + notebook_file output_path = base + "/run/logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, instance_type="ml.m5.large", env=env ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_playstore_patients_batch.ipynb
run_playstore_patients_batch.ipynb
``` """main wrapper for IPC safety stock reset""" import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = 'stage' notebook_file = "/scripts/experiments/demo.ipynb" parameters = { "f_name":"Ram", "l_name":"Babu" } os.environ['env'] = env base = "/".join(os.getcwd().split("/")[:-2]) input_file = base + notebook_file output_path = base + "/run/logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600 ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/.ipynb_checkpoints/run-checkpoint.ipynb
run-checkpoint.ipynb
set -ue module_name="glue-jobs" env=$1 echo "========================[ Build: $module_name ]=========================" src_base_path=$(find $CODEBUILD_SRC_DIR/$module_name/ -iname src -type d) ml_src_base_path=$(find $CODEBUILD_SRC_DIR/sagemaker-jobs/ -iname src -type d) templates_base_path=$(find $CODEBUILD_SRC_DIR/$module_name/ -iname templates -type d) artifacts_base_path="s3://aws-$env-glue-assets-921939243643-ap-south-1/artifact/$module_name" ml_artifact_base_path="s3://aws-$env-glue-assets-921939243643-ap-south-1/artifact/sagemaker-jobs" # Packing with dependencies yum install gcc-c++ python3-devel unixODBC-devel -y ln -s /usr/libexec/gcc/x86_64-amazon-linux/7.2.1/cc1plus /usr/bin/ python3.6 -m pip install --upgrade pip # creation of folder for extra dependencies mkdir $src_base_path/etl_libs/ #mkdir $src_base_path/etl_libs/google/ mkdir $src_base_path/etl_libs/regex/ mkdir $src_base_path/zeno_etl_libs/ echo "========================[ Packaging etl libs ]=========================" cp $CODEBUILD_SRC_DIR/etl_libs/setup.py $src_base_path/etl_libs/setup.py #cp -R $CODEBUILD_SRC_DIR/extra_dependency/google/* $src_base_path/etl_libs/google #cp -R $CODEBUILD_SRC_DIR/extra_dependency/regex/* $src_base_path/etl_libs/regex python3.6 -m pip install -r $CODEBUILD_SRC_DIR/requirements.txt --target $src_base_path/etl_libs/ cd $src_base_path/etl_libs/ #python3.6 -m pip install https://aws-stage-glue-assets-921939243643-ap-south-1.s3.ap-south-1.amazonaws.com/artifact/glue-jobs/src/regex-2022.4.24-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl python3.6 setup.py bdist_egg cp ./dist/etl_pkg-0.0.6-py3.6.egg $src_base_path/ cd .. rm -rf $src_base_path/etl_libs/ echo "========================[ Packaging Zeno etl libs ]=========================" mkdir $src_base_path/zeno_etl_libs/zeno_etl_libs echo "copying files from zeno_etl_libs" cp -R $CODEBUILD_SRC_DIR/zeno_etl_libs/* $src_base_path/zeno_etl_libs/zeno_etl_libs cp $CODEBUILD_SRC_DIR/zeno_etl_libs/setup.py $src_base_path/zeno_etl_libs cd $src_base_path/zeno_etl_libs/ python3.6 setup.py bdist_egg cp ./dist/zeno_etl_pkg-0.0.6-py3.6.egg $src_base_path/ cd .. rm -rf $src_base_path/zeno_etl_libs/ echo "========================[ Sagemaker Deployment ]=========================" #aws codebuild delete-project --name create-sagemaker-container-$env-notebook-runner #python $CODEBUILD_SRC_DIR/setup.py sdist bdist_wheel #nohup twine upload dist/* --verbose -u kuldeepsingh -p bEmham-6sonke-forcex & #pip install zeno-etl-libs #pip install https://github.com/aws-samples/sagemaker-run-notebook/releases/download/v0.20.0/sagemaker_run_notebook-0.20.0.tar.gz #cp $CODEBUILD_SRC_DIR/extra_dependency/Dockerfile /root/.pyenv/versions/3.9.5/lib/python3.9/site-packages/sagemaker_run_notebook/container #nohup run-notebook create-container $env-notebook-runner --requirements $CODEBUILD_SRC_DIR/requirements-ml.txt --no-logs & echo "========================[ Syncing artifacts ]=========================" # Upload templates to artifacts-bucket echo "Syncing the artifacts" aws s3 sync $templates_base_path/ $artifacts_base_path/templates/ aws s3 sync $src_base_path/ $artifacts_base_path/src/ aws s3 sync $ml_src_base_path/ $ml_artifact_base_path echo "Build.sh completed"
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/build.sh
build.sh
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "delivery-tracking-metadata" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "delivery-status", "assigned-to", "assigned-to-id", "dispatcher", "receiver", "delivered-at", "completed-at", "vendor-bill-number", "no-of-deliveries", "scheduled-at", "assigned-at" ) select "patient-store-order-id" as "id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta',GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", "delivery-status" as "delivery-status" , "assigned-to" as "assigned-to", "assigned-to-id" as "assigned-to_id", "dispatcher" , "receiver" , "delivered-at" as "delivered-at" , "completed-at" as "completed-at", "vendor-bill-number" as "vendor-bill-number", "no-of-deliveries", "scheduled-at", "assigned-at" from ( select "patient-store-order-id", "delivery-status" , "assigned-to" , "assigned-to-id" , "dispatcher" , "vendor-bill-number", "receiver" , "delivered-at" , "completed-at", row_number () over (partition by "patient-store-order-id" order by "delivered-at" desc) as row_num, dense_rank () over (partition by "patient-store-order-id" order by "delivered-at" ) as "no-of-deliveries", dt."schedule-at" as "scheduled-at", dt."created-at" as "assigned-at" from "prod2-generico"."delivery-tracking" dt inner join "prod2-generico"."patients-store-orders" pso on pso.id = dt."patient-store-order-id" where pso."bill-id" is not null and pso."order-type" = 'delivery') d1 where d1.row_num = 1; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."delivery-tracking-metadata"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/delivery-tracking/delivery-tracking.py
delivery-tracking.py
import argparse import os import sys sys.path.append('../../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from dateutil.relativedelta import relativedelta import pandas as pd import numpy as np import datetime from dateutil.tz import gettz from zeno_etl_libs.db.db import DB, PostGreWrite from zeno_etl_libs.helper import helper parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-bs', '--batch_size', default=10000, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env batch_size = args.batch_size os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() # PostGre pg = PostGreWrite() pg.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'generic-affinity' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # ============================================================================= # Retrieve recent patient entries # ============================================================================= mdate =""" select max(date(last_visit)) as max_date from generic_affinity ga ; """ mdate1 =""" select max("last-visit"::date) as max_date from "prod2-generico"."generic-affinity"; """ m_date = pd.read_sql_query(mdate, pg.connection) m_date1 = rs_db.get_df(mdate1) m_date = m_date.append(m_date1) max_date = m_date['max_date'].min() if pd.isna(max_date)==False: date1 = max_date else: date1= '2017-05-13' date1= datetime.datetime.strptime(date1, '%Y-%m-%d') date1 = date1.strftime('%Y-%m-%d') mquery = f""" (select "patient-id" from "prod2-generico"."sales" where "created-date" >= '{date1}' and "created-date" < CURRENT_DATE group by "patient-id") """ # ============================================================================= # patient level bill count # ============================================================================= gb = f""" select s1."patient-id" , count(distinct case when s1."type" = 'generic' and s1."bill-flag" = 'gross' then s1."bill-id" end ) as "generic_bill_count", count(distinct case when s1."bill-flag" = 'gross' then s1."bill-id" end) as gross_bill_count from "prod2-generico".sales s1 inner join {mquery} s2 on s1."patient-id" = s2."patient-id" where date(s1."created-at")< CURRENT_DATE group by s1."patient-id" """ p_bills=rs_db.get_df(gb) logger.info("Data: patient level bill count fetched successfully") p_bills.columns = [c.replace('-', '_') for c in p_bills.columns] p_bills[['generic_bill_count', 'gross_bill_count']].fillna(0, inplace=True) p_bills['generic_bill_pct'] = (p_bills['generic_bill_count'] / (p_bills['gross_bill_count'])) * 100 # ============================================================================= # patient level substitution # ============================================================================= subs = f""" select s1."patient-id" , s1."substitution-status" , sum(s1."quantity") as quantity from "prod2-generico"."sales" s1 inner join {mquery} s2 on s2."patient-id" = s1."patient-id" where s1."bill-flag" = 'gross' and s1."type" = 'generic' and date(s1."created-at")<CURRENT_DATE group by s1."patient-id", s1."substitution-status" """ p_subs=rs_db.get_df(subs) p_subs.columns = [c.replace('-', '_') for c in p_subs.columns] logger.info(f"p_subs: {len(p_subs)}") p_subs['quantity'].fillna(0, inplace=True) p_subs1 = pd.pivot_table( p_subs, values='quantity', index=['patient_id'], columns=['substitution_status']).reset_index() p_subs1.columns = [c.replace('-', '_') for c in p_subs1.columns] p_subs1.fillna(0, inplace=True) col_list=[] act_col=['substituted','not_substituted','not_in_inventory','generic_unavailable'] for i in act_col: if i not in p_subs1.columns: p_subs1[i]=0 p_subs1['subs_pct'] = (p_subs1['substituted'] / (p_subs1['substituted'] + p_subs1['not_substituted'])) * 100 metadata = pd.merge(right=p_subs1, left=p_bills, on=['patient_id'], how='left') # ============================================================================= # patient level return % # ============================================================================= ret = f""" select s1."patient-id" , count(distinct case when s1."type" = 'generic' and s1."bill-flag" = 'return' then s1."bill-id" end ) as "generic_return_bill_count", count(distinct case when s1."bill-flag" = 'return' then s1."bill-id" end) as "gross_return_bill" from "prod2-generico".sales s1 inner join {mquery} s2 on s2."patient-id" = s1."patient-id" where date(s1."created-at")< CURRENT_DATE group by s1."patient-id" """ p_return=rs_db.get_df(ret) logger.info(f"p_return: {len(p_return)}") p_return.columns = [c.replace('-', '_') for c in p_return.columns] p_return[['generic_return_bill_count', 'gross_return_bill']].fillna(0, inplace=True) p_return['return_pct'] = ((p_return['generic_return_bill_count']) / (p_return['gross_return_bill'])) * 100 p_return['not_return_pct'] = 100 - p_return['return_pct'] metadata = pd.merge(left=metadata, right=p_return, on=['patient_id'], how='left') metadata['not_return_pct'].fillna(100, inplace=True) # ============================================================================= # patient level recency # ============================================================================= rec = f""" select s1."patient-id" , max(s1."created-at") as "last_visit" from "prod2-generico".sales s1 inner join {mquery} s2 on s2."patient-id" = s1."patient-id" where s1."bill-flag" = 'gross' and date(s1."created-at")<CURRENT_DATE group by s1."patient-id" """ p_recency=rs_db.get_df(rec) logger.info(f"p_recency: {len(p_recency)}") p_recency.columns = [c.replace('-', '_') for c in p_recency.columns] prev_date = (datetime.datetime.today() + relativedelta(days=-1)) p_recency['last_visit'] = pd.to_datetime(p_recency['last_visit'], format="%y-%m-%d") p_recency['prev_date'] = prev_date p_recency['prev_date'] = pd.to_datetime(p_recency['prev_date'], format="%y-%m-%d") p_recency['num_months'] = (p_recency['prev_date'] - p_recency['last_visit']) / np.timedelta64(1, 'M') conditions = [ ( (p_recency['num_months'] <= 3) ), ( (p_recency['num_months'] > 3) & (p_recency['num_months'] <= 6) ), ( (p_recency['num_months'] > 6) & (p_recency['num_months'] <= 12) ), ( (p_recency['num_months'] > 12) ) ] choices = [100, 75, 50, 25] p_recency['recency_pct'] = np.select(conditions, choices, default=0) p_recency['recency_pct'].fillna(0, inplace=True) metadata = pd.merge(left=metadata, right=p_recency, on=['patient_id'], how='left') # ============================================================================= # patient level generic recency # ============================================================================= gen_rec = f""" select s1."patient-id" , max(s1."created-at") as "last_generic_visit" from "prod2-generico".sales s1 inner join {mquery} s2 on s2."patient-id" = s1."patient-id" where s1."bill-flag" = 'gross' and s1."type" ='generic' and date(s1."created-at")<CURRENT_DATE group by s1."patient-id" """ p_grecency=rs_db.get_df(gen_rec) logger.info(f"p_grecency: {len(p_grecency)}") p_grecency.columns = [c.replace('-', '_') for c in p_grecency.columns] p_grecency['last_generic_visit'] = pd.to_datetime(p_grecency['last_generic_visit'], format="%y-%m-%d") p_grecency['g_prev_date'] = prev_date p_grecency['g_prev_date'] = pd.to_datetime(p_grecency['g_prev_date'], format="%y-%m-%d") p_grecency['g_num_months'] = ((p_grecency['g_prev_date'] - p_grecency['last_generic_visit']) / np.timedelta64(1, 'M')) conditions = [ ( (p_grecency['g_num_months'] <= 3) ), ( (p_grecency['g_num_months'] > 3) & (p_grecency['g_num_months'] <= 6) ), ( (p_grecency['g_num_months'] > 6) & (p_grecency['g_num_months'] <= 12) ), ( (p_grecency['g_num_months'] > 12) ) ] choices = [100, 75, 50, 25] p_grecency['gen_recency_pct'] = np.select(conditions, choices, default=0) p_grecency.drop('g_prev_date', axis='columns', inplace=True) p_grecency['gen_recency_pct'].fillna(0, inplace=True) metadata = pd.merge(left=metadata, right=p_grecency, on=['patient_id'], how='left') metadata.fillna(0, inplace=True) metadata['generic_likelihood'] = ((metadata['generic_bill_pct'] + metadata['gen_recency_pct'] + metadata['subs_pct'] + metadata['not_return_pct'] + metadata['recency_pct']) / (5)) conditions = [ ( (metadata['generic_likelihood'] >= 80) ), ( (metadata['generic_likelihood'] < 80) & (metadata['generic_likelihood'] >= 60) ), ( (metadata['generic_likelihood'] < 60) & (metadata['generic_likelihood'] >= 50) ), ( (metadata['generic_likelihood'] < 50) & (metadata['generic_likelihood'] >= 25) ), ( (metadata['generic_likelihood'] < 25) ) ] choices = [5, 4, 3, 2, 1] metadata['generic_affinity_score'] = np.select(conditions, choices, default=3) generic_affinity = metadata logger.info('length of generic_affinity is :' + str(len(generic_affinity))) generic_affinity.columns = [c.replace('_', '-') for c in generic_affinity.columns] generic_affinity['refreshed-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S') generic_affinity['refreshed-at'] = pd.to_datetime(generic_affinity['refreshed-at'], format="%Y-%m-%d %H:%M:%S") generic_affinity = generic_affinity[generic_affinity['gross-bill-count'] > 0] generic_affinity = generic_affinity[['patient-id' , 'gross-bill-count', 'generic-bill-count', 'generic-bill-pct' , 'generic-unavailable', 'not-in-inventory', 'not-substituted' , 'substituted', 'subs-pct', 'gross-return-bill', 'generic-return-bill-count' , 'return-pct', 'not-return-pct', 'last-visit', 'prev-date' , 'num-months', 'recency-pct', 'last-generic-visit', 'g-num-months' , 'gen-recency-pct', 'generic-likelihood', 'generic-affinity-score', 'refreshed-at']] generic_affinity.columns = [c.replace('-', '_') for c in generic_affinity.columns] table_update = f"{table_name}-update".replace("-", "_") # Write to PostGre query = f''' DELETE FROM {table_update}''' pg.engine.execute(query) generic_affinity[['patient_id']].to_sql( name=table_update, con=pg.engine, if_exists='append', chunksize=500, method='multi', index=False) main_table = table_name.replace("-", "_") query = f''' DELETE FROM {main_table} m1 using (select patient_id from {table_update}) m2 where m1.patient_id = m2.patient_id''' pg.engine.execute(query) generic_affinity= generic_affinity.sort_values(by='last_visit',ascending=True) total_insert = 0 for ga_df in helper.batch(generic_affinity, batch_size): ga_df.to_sql(name=main_table, con=pg.engine, if_exists='append', chunksize=500, method='multi', index=False) total_insert += ga_df.shape[0] logger.info(f"Postgres DB write completed: {total_insert}") # Write to Redshift Also generic_affinity.columns = [c.replace('_', '-') for c in generic_affinity.columns] generic_affinity['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S') generic_affinity['created-by'] = 'etl-automation' generic_affinity['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S') generic_affinity['updated-by'] = 'etl-automation' truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where date("last-visit")>= '{date1}' ''' rs_db.execute(truncate_query) total_insert1 = 0 for ga_df1 in helper.batch(generic_affinity, batch_size): s3.write_df_to_db(df=ga_df1[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) total_insert1 += ga_df1.shape[0] logger.info(f"Redshift DB write completed: {total_insert}") # Closing the DB Connection rs_db.close_connection() pg.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/generic-affinity/generic-affinity.py
generic-affinity.py
import argparse import sys sys.path.append('../../../..') import os from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "composition-activation" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "created-by", "created-at", "updated-by", "updated-at", "store-id", "composition-master-id", "system-first-inv-date", "system-first-bill-date", "store-first-inv-date", "store-first-bill-date") select 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta', GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", c."store-id" as "store-id", d."composition-master-id" as "composition-master-id", max(y.system_first_inv_date) as "system-first-inv-date", max(y.system_first_bill_date) as "system-first-bill-date", MIN(c."created-at") as "store-first-inv-date", MIN(b."created-at") as "store-first-bill-date" from "prod2-generico"."inventory-1" c left join "prod2-generico"."bill-items-1" a on c."id" = a."inventory-id" left join "prod2-generico"."bills-1" b on b."id" = a."bill-id" left join "prod2-generico"."drugs" d on d."id" = c."drug-id" left join ( select d."composition-master-id", MIN(b."created-at") as "system_first_bill_date", MIN(c."created-at") as "system_first_inv_date" from "prod2-generico"."inventory-1" c left join "prod2-generico"."bill-items-1" a on c."id" = a."inventory-id" left join "prod2-generico"."bills-1" b on b."id" = a."bill-id" left join "prod2-generico"."drugs" d on d."id" = c."drug-id" where d."composition-master-id" is not null and d."company-id" = 6984 group by d."composition-master-id" ) as y on d."composition-master-id" = y."composition-master-id" where d."composition-master-id" is not null and d."company-id" = 6984 group by c."store-id", d."composition-master-id" """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."composition-activation"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/composition-activation/composition_activation.py
composition_activation.py
import argparse import os import sys from datetime import datetime as dt from datetime import timedelta import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.email.email import Email parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() read_schema = 'prod2-generico' report_date = dt.now().date() # Fetching earn and burn data for past one week members_q = f""" SELECT * FROM "{read_schema}"."member-details" WHERE DATE("created-at") <= '{str(report_date)}' ; """ subscription_q = f""" SELECT * FROM "{read_schema}"."subscriptions-meta" WHERE DATE("created-at") <= '{str(report_date)}'; """ subs_sku_q = f""" SELECT "subscription-meta-id", COUNT(DISTINCT "drug-id") "sku-count", AVG(quantity) as "q-per-sku", MAX(DATE("created-at")) AS "created-at" FROM "{read_schema}"."subscriptions" WHERE DATE("created-at") <= '{str(report_date)}' GROUP BY "subscription-meta-id"; """ subs_amount_q = f""" SELECT s."subscription-meta-id", SUM(s.quantity * T2.rate) "sub-amount", MAX(DATE(s."created-at")) AS "created-at" FROM "{read_schema}"."subscriptions" s LEFT JOIN "{read_schema}"."subscriptions-meta" sm ON s."subscription-meta-id" = sm.id LEFT JOIN ( SELECT * FROM ( SELECT "store-id", "drug-id", "selling-rate" rate, RANK() OVER( PARTITION BY "store-id", "drug-id" ORDER BY i."created-at" DESC) AS RRank FROM "{read_schema}"."inventory-1" i )T WHERE RRank = 1) T2 ON s."drug-id" = T2."drug-id" AND sm."preferred-store-id" = T2."store-id" WHERE DATE(s."created-at") <= '{str(report_date)}' GROUP BY s."subscription-meta-id"; """ calling_q = f""" SELECT cd."call-date", COUNT(cd.id) "call-attempt", SUM(T.connected) "call-connected" FROM "{read_schema}"."calling-dashboard" cd LEFT JOIN ( SELECT "calling-dashboard-id", (CASE WHEN SUM(CASE WHEN (connected = 1) OR (("call-recording-url" is not null) AND ("call-recording-url" != '')) THEN 1 ELSE 0 END) > 0 THEN 1 ELSE 0 END) connected FROM "{read_schema}"."calling-history" ch GROUP BY "calling-dashboard-id") T ON cd.id = T."calling-dashboard-id" WHERE cd."campaign-id" = 34 AND cd.status = 'closed' AND cd."call-date" <= '{str(report_date)}' GROUP BY cd."call-date" ;""" members = rs_db.get_df(members_q) subscription = rs_db.get_df(subscription_q) subs_sku = rs_db.get_df(subs_sku_q) subs_amount = rs_db.get_df(subs_amount_q) calling = rs_db.get_df(calling_q) # date format conversion members['created-at'] = pd.to_datetime(members['created-at']).dt.date subscription['created-at'] = pd.to_datetime(subscription['created-at']).dt.date subs_sku['created-at'] = pd.to_datetime(subs_sku['created-at']).dt.date subs_amount['created-at'] = pd.to_datetime(subs_amount['created-at']).dt.date # Previous Day p_date = report_date - timedelta(days=1) call_attempt = calling[calling['call-date'] == p_date]['call-attempt'].sum() call_connect = calling[calling['call-date'] == p_date]['call-connected'].sum() total_members = members[members['created-at'] == p_date]['patient-id'].nunique() patients_subscribed = subscription[subscription['created-at'] == p_date]['patient-id'].nunique() total_subscription = subscription[subscription['created-at'] == p_date]['id'].nunique() try: sku_per_sub = subs_sku[subs_sku['created-at'] == p_date]['sku-count'].mean().round() q_per_sku = subs_sku[subs_sku['created-at'] == p_date]['q-per-sku'].mean().round() sub_value = subs_amount[subs_amount['created-at'] == p_date]['sub-amount'].mean().round(2) except Exception: sku_per_sub = subs_sku[subs_sku['created-at'] == p_date]['sku-count'].mean() q_per_sku = subs_sku[subs_sku['created-at'] == p_date]['q-per-sku'].mean() sub_value = subs_amount[subs_amount['created-at'] == p_date]['sub-amount'].mean() previous_day = """ Previous Day Stats Membership calls done (attempted) : {attempt} Membership calls connected (Phone picked up by the customer) : {call_connect} Membership count : {mc} Patient subscription : {ps} Average number of SKU per subscription : {a_sku_ps} Quantity per SKU per subscription : {q_sku_ps} Average subscription value : {sv} Total subscriptions : {ts} """.format(mc=total_members, ps=patients_subscribed, a_sku_ps=sku_per_sub, q_sku_ps=q_per_sku, sv=sub_value, ts=total_subscription, attempt=call_attempt, call_connect=call_connect) # Today call_attempt = calling[calling['call-date'] == report_date]['call-attempt'].sum() call_connect = calling[calling['call-date'] == report_date]['call-connected'].sum() total_members = members[members['created-at'] == report_date]['patient-id'].nunique() patients_subscribed = subscription[subscription['created-at'] == report_date]['patient-id'].nunique() total_subscription = subscription[subscription['created-at'] == report_date]['id'].nunique() try: sku_per_sub = subs_sku[subs_sku['created-at'] == report_date]['sku-count'].mean().round() q_per_sku = subs_sku[subs_sku['created-at'] == report_date]['q-per-sku'].mean().round() sub_value = subs_amount[subs_amount['created-at'] == report_date]['sub-amount'].mean().round(2) except Exception: sku_per_sub = subs_sku[subs_sku['created-at'] == report_date]['sku-count'].mean() q_per_sku = subs_sku[subs_sku['created-at'] == report_date]['q-per-sku'].mean() sub_value = subs_amount[subs_amount['created-at'] == report_date]['sub-amount'].mean() current_day = """ Today Stats Membership calls done (attempted) : {attempt} Membership calls connected (Phone picked up by the customer) : {call_connect} Membership count : {mc} Patient subscription : {ps} Average number of SKU per subscription : {a_sku_ps} Quantity per SKU per subscription : {q_sku_ps} Average subscription value : {sv} Total subscriptions : {ts} """.format(mc=total_members, ps=patients_subscribed, a_sku_ps=sku_per_sub, q_sku_ps=q_per_sku, sv=sub_value, ts=total_subscription, attempt=call_attempt, call_connect=call_connect) # Till Today call_attempt = calling[calling['call-date'] <= report_date]['call-attempt'].sum() call_connect = calling[calling['call-date'] <= report_date]['call-connected'].sum() total_members = members[members['created-at'] <= report_date]['patient-id'].nunique() patients_subscribed = subscription[subscription['created-at'] <= report_date]['patient-id'].nunique() total_subscription = subscription[subscription['created-at'] <= report_date]['id'].nunique() sku_per_sub = subs_sku[subs_sku['created-at'] <= report_date]['sku-count'].mean().round() q_per_sku = subs_sku[subs_sku['created-at'] <= report_date]['q-per-sku'].mean().round() sub_value = subs_amount[subs_amount['created-at'] <= report_date]['sub-amount'].mean().round(2) till_today = """ Report till now Membership calls done (attempted) : {attempt} Membership calls connected (Phone picked up by the customer) : {call_connect} Membership count : {mc} Patient subscription : {ps} Average number of SKU per subscription : {a_sku_ps} Quantity per SKU per subscription : {q_sku_ps} Average subscription value : {sv} Total subscriptions : {ts} """.format(mc=total_members, ps=patients_subscribed, a_sku_ps=sku_per_sub, q_sku_ps=q_per_sku, sv=sub_value, ts=total_subscription, attempt=call_attempt, call_connect=call_connect) mail_body = f""" Hey Everyone {previous_day} \n {current_day} \n {till_today} \n Thanks & Regards """ # Sending email subject = 'Membership Program Summary' mail_body = mail_body email = Email() email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=[]) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/membership_meta/membership_meta.py
membership_meta.py
# !/usr/bin/env python # coding: utf-8 import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper import argparse import pandas as pd import re from datetime import date from datetime import datetime import dateutil.relativedelta import numpy as np from dateutil.tz import gettz start_dt = (datetime.now() + dateutil.relativedelta.relativedelta(months=-1) ).replace(day=1).date().strftime("%Y-%m-%d") end_dt = date.today().strftime("%Y-%m-%d") parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sd', '--start_date', default='NA', type=str, required=False) parser.add_argument('-ed', '--end_date', default='NA', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to start_date = args.start_date end_date = args.end_date if start_date == 'NA' and end_date == 'NA': start_date = start_dt end_date = end_dt logger = get_logger() logger.info(f"env: {env}") logger.info('Script Manager Initialized') rs_db = DB() rs_db.open_connection() start_date_n = datetime.strptime('{0}'.format(start_date), "%Y-%m-%d").replace(day=1).date() end_date_n = datetime.strptime('{0}'.format(end_date), "%Y-%m-%d").replace(day=1).date() drug_q = ''' select d.id as "drug_id", d."drug-name" as "drug_name", d."type" as "drug_type", d.category as "drug_category", d."repeatability-index" as "drug_repeatability_index", d.schedule as "drug_schedule", d.company as "drug_company", d.composition as "drug_composition", d.pack as "drug_pack", d."pack-form" as "drug_pack_form" from "prod2-generico".drugs d''' drugs = rs_db.get_df(query=drug_q) # Extract drug composition from drug name using regex # added 'r' prefix drugs['drug_dosage'] = drugs['drug_composition'].apply(lambda x: re.findall(r"\((.*?)\)", x)) # Remove brackets from drug dosage column # drugs = drugs.copy(deep=True) drugs['drug_dosage'] = drugs['drug_dosage'].astype(str) drugs['drug_dosage'] = drugs['drug_dosage'].str.strip('[]') # Remove brackets from drug dosage column # drugs = drugs.copy(deep=True) # drugs['drug_dosage'] = drugs['drug_dosage'].astype(str) # drugs['drug_dosage'] = drugs['drug_dosage'].str.strip('[]') # Remove inverted commas from drug dosage column drugs['drug_dosage'] = drugs['drug_dosage'].apply(lambda x: x.replace("'", '')) # Remove dosage from composition drugs['drug_composition'] = drugs['drug_composition'].apply(lambda x: re.sub(r" ?\([^)]+\)", "", x)) # Apply repeatability condition to check whether drug is repeatable or not drugs['drug_is_repeatable'] = np.where(((drugs['drug_repeatability_index'] >= 80) | ((drugs['drug_category'] == 'chronic') & (drugs['drug_repeatability_index'] >= 40))), 'yes', 'no') bi_data_grp = ''' select s."month-created-at" as "bill_month", s."year-created-at" as "bill_year" , "store-id" as "store_id", "drug-id" as "drug_id", COUNT(distinct "patient-id") as "no_of_customers", COUNT(distinct "bill-id") as "no_of_bills", SUM(quantity) as "gross_quantity", SUM(s.quantity * s.rate) as "gross_sales", SUM(s.quantity * s."purchase-rate") as "gross_cogs", SUM(s.quantity * s.mrp ) as "gross_mrp_sales" from "prod2-generico".sales s where s."bill-flag" ='gross' and date(s."created-at")>='{}' and date(s."created-at")<='{}' group by s."month-created-at", s."year-created-at", "store-id", "drug-id" '''.format(start_date, end_date) bi_data_grp = rs_db.get_df(query=bi_data_grp) logger.info(bi_data_grp) bi_data_grp['avg_selling_rate'] = bi_data_grp['gross_sales'] / bi_data_grp['gross_quantity'] bi_data_grp['avg_drug_cogs'] = bi_data_grp['gross_cogs'] / bi_data_grp['gross_quantity'] bi_data_grp['avg_drug_mrp'] = bi_data_grp['gross_mrp_sales'] / bi_data_grp['gross_quantity'] bi_data_grp['abv'] = bi_data_grp['gross_sales'] / bi_data_grp['no_of_bills'] data_return_grp = ''' select s."month-created-at" as "return_month", s."year-created-at" as "return_year" , "store-id" as "store_id", "drug-id" as "drug_id", SUM(quantity) as "return_quantity", SUM(s.quantity * s.rate) as "return_value", SUM(s.quantity * s."purchase-rate") as "return_cogs", SUM(s.quantity * s.mrp ) as "return_mrp_value" from "prod2-generico".sales s where s."bill-flag" ='return' and date(s."created-at")>='{start_date}' and date(s."created-at")<='{end_date}' group by s."month-created-at" , s."year-created-at" , "store-id", "drug-id" '''.format(start_date=start_date, end_date=end_date) data_return_grp = rs_db.get_df(query=data_return_grp) data_return_grp['avg_return_rate'] = data_return_grp['return_value'] / data_return_grp['return_quantity'] data_return_grp['avg_drug_cogs'] = data_return_grp['return_cogs'] / data_return_grp['return_quantity'] data_return_grp['avg_drug_mrp'] = data_return_grp['return_mrp_value'] / data_return_grp['return_quantity'] data_return_grp.drop(['return_cogs', 'return_mrp_value'], axis=1, inplace=True) # Merge patient bill item data and customer returns data by outer # on 'bill_month'/'return_month', # 'bill_year'/'return_year', 'store_id','drug_id' to get aggregated data # on store,drug,month level # Outer merge has been done so that going forward, net measures # can be calculated on # exact month/year of returns only merge_data = pd.merge(bi_data_grp, data_return_grp, how='outer', left_on=['bill_month', 'bill_year', 'store_id', 'drug_id'], right_on=['return_month', 'return_year', 'store_id', 'drug_id']) bi_data_grp = '' data_return_grp = '' # Fill up avg_drug_cogs and avg_drug_mrp values in bill item data table # from returns table # wherever they are null merge_data['avg_drug_cogs_x'] = np.where(merge_data['avg_drug_cogs_x'].isnull(), merge_data['avg_drug_cogs_y'], merge_data['avg_drug_cogs_x']) merge_data.drop('avg_drug_cogs_y', axis=1, inplace=True) merge_data.rename({'avg_drug_cogs_x': 'avg_drug_cogs'}, axis=1, inplace=True) merge_data['avg_drug_mrp_x'] = np.where(merge_data['avg_drug_mrp_x'].isnull(), merge_data['avg_drug_mrp_y'], merge_data['avg_drug_mrp_x']) merge_data.drop('avg_drug_mrp_y', axis=1, inplace=True) merge_data.rename({'avg_drug_mrp_x': 'avg_drug_mrp'}, axis=1, inplace=True) # Fill up null values of important numeric columns merge_data['return_quantity'].fillna(0, inplace=True) merge_data['return_value'].fillna(0, inplace=True) merge_data['gross_quantity'].fillna(0, inplace=True) merge_data['gross_sales'].fillna(0, inplace=True) # Net quantity and net sales columns are calculated merge_data['net_quantity'] = merge_data['gross_quantity'] - merge_data['return_quantity'] merge_data['net_sales'] = merge_data['gross_sales'] - merge_data['return_value'] merge_data['avg_drug_cogs'] = pd.to_numeric(merge_data['avg_drug_cogs']) merge_data['return_cogs'] = merge_data['avg_drug_cogs'] * merge_data['return_quantity'] merge_data['gross_cogs'].fillna(0, inplace=True) merge_data['gross_cogs'] = pd.to_numeric(merge_data['gross_cogs']) merge_data['net_cogs'] = merge_data['gross_cogs'] - merge_data['return_cogs'] merge_data['avg_drug_mrp'] = pd.to_numeric(merge_data['avg_drug_mrp']) merge_data['net_quantity'] = pd.to_numeric(merge_data['net_quantity']) merge_data['net_mrp_sales'] = merge_data['avg_drug_mrp'] * merge_data['net_quantity'] merge_data['gross_sales'] = pd.to_numeric(merge_data['gross_sales']) merge_data['gross_cogs'] = pd.to_numeric(merge_data['gross_cogs']) merge_data['gross_margin'] = merge_data['gross_sales'] - merge_data['gross_cogs'] merge_data['net_sales'] = pd.to_numeric(merge_data['net_sales']) merge_data['net_cogs'] = pd.to_numeric(merge_data['net_cogs']) merge_data['net_margin'] = merge_data['net_sales'] - merge_data['net_cogs'] merge_data['gross_margin_percentage'] = merge_data['gross_margin'] / merge_data['gross_sales'] * 100 merge_data['net_margin_percentage'] = merge_data['net_margin'] / merge_data['net_sales'] * 100 merge_data['final_month'] = merge_data['bill_month'] merge_data['final_year'] = merge_data['bill_year'] merge_data['final_month'] = np.where(merge_data['final_month'].isnull(), merge_data['return_month'], merge_data['final_month']) merge_data['final_year'] = np.where(merge_data['final_year'].isnull(), merge_data['return_year'], merge_data['final_year']) # Import Shortbook-1 data to calculate drug fill rate: sb_q_total_order = ''' select sb."store-id", sb."drug-id", sb.quantity as sb_quantity, sb."created-at" as "sb-created-at" , sb."received-at" as "sb-received-at" from "prod2-generico"."short-book-1" sb where sb.quantity >0 and sb."auto-generated" =0 and date(sb."created-at")>='{start_date}' and date(sb."created-at")<='{end_date}' '''.format(start_date=start_date, end_date=end_date) data_sb_1 = rs_db.get_df(query=sb_q_total_order) sb_q_fullfilled_order = ''' select sb."store-id", sb."drug-id", sb.quantity as sb_quantity, sb."created-at" as "sb-created-at" , sb."received-at" as "sb-received-at" from "prod2-generico"."short-book-1" sb where sb.quantity >0 and sb."auto-generated" =0 and date(sb."created-at")>='{start_date}' and date(sb."created-at")<='{end_date}' and sb."received-at" !='0101-01-01 00:00:00.000' '''.format(start_date=start_date, end_date=end_date) data_sb_2 = rs_db.get_df(query=sb_q_fullfilled_order) data_sb_1.columns = [c.replace('-', '_') for c in data_sb_1.columns] data_sb_2.columns = [c.replace('-', '_') for c in data_sb_2.columns] data_sb_1['sb_created_at'] = pd.to_datetime(data_sb_1['sb_created_at']) data_sb_1['sb_month'] = data_sb_1['sb_created_at'].dt.month data_sb_1['sb_year'] = data_sb_1['sb_created_at'].dt.year data_sb_2['sb_created_at'] = pd.to_datetime(data_sb_2['sb_created_at']) data_sb_2['sb_month'] = data_sb_2['sb_created_at'].dt.month data_sb_2['sb_year'] = data_sb_2['sb_created_at'].dt.year data_sb_1 = data_sb_1.groupby(['sb_month', 'sb_year', 'store_id', 'drug_id'])['sb_created_at'].count().to_frame( name='total_orders').reset_index() #data_sb_2 = data_sb[data_sb['sb_received_at'] == '0101-01-01 00:00:00.000'] data_sb_2 = data_sb_2.groupby(['sb_month', 'sb_year', 'store_id', 'drug_id'])['sb_received_at'].count().to_frame( name='orders_fulfilled').reset_index() data_sb = pd.merge(data_sb_1, data_sb_2, how='left', on=['sb_month', 'sb_year', 'store_id', 'drug_id']) data_sb['total_orders'].fillna(0, inplace=True) data_sb['orders_fulfilled'].fillna(0, inplace=True) # Entire bill item and returns combined data-frame is merged # with the drugs dataframe on 'drug_id' category_data = pd.merge(drugs, merge_data, how='right', on='drug_id') drugs = '' # Group by 'final_month','final_year','store_id','drug_id','drug_type' # to find revenue and qty by drug type category_data_grp = category_data.groupby(['final_month', 'final_year', 'store_id', 'drug_id', 'drug_type'] )['gross_sales', 'gross_quantity'].sum().reset_index() category_data_grp['generic_revenue'] = np.where(category_data_grp['drug_type'] == 'generic', category_data_grp['gross_sales'], 0) category_data_grp['generic_quantity'] = np.where(category_data_grp['drug_type'] == 'generic', category_data_grp['gross_quantity'], 0) category_data_grp['ethical_revenue'] = np.where(category_data_grp['drug_type'] == 'ethical', category_data_grp['gross_sales'], 0) category_data_grp['ethical_quantity'] = np.where(category_data_grp['drug_type'] == 'ethical', category_data_grp['gross_quantity'], 0) # Group by 'final_month','final_year','store_id','drug_id' # and exclude drug type to now find aggregates for later on calculating substitution % category_data_grp = category_data_grp.groupby(['final_month', 'final_year', 'store_id', 'drug_id'])[ 'gross_sales', 'gross_quantity', 'generic_revenue', 'generic_quantity', 'ethical_revenue', 'ethical_quantity'].sum().reset_index() # Drop gross sales and gross quantity columns to avoid column duplicates later on category_data_grp.drop(['gross_sales', 'gross_quantity'], axis=1, inplace=True) # Merge main category data frame with the substitution(category_data_grp) data frame category_data = pd.merge(category_data, category_data_grp, how='left', on=['final_month', 'final_year', 'store_id', 'drug_id']) # Merge this data-frame with short-book dataframe on 'month','year','store_id','drug_id' category_data = pd.merge(category_data, data_sb, how='left', left_on=['final_month', 'final_year', 'store_id', 'drug_id'], right_on=['sb_month', 'sb_year', 'store_id', 'drug_id']) data_sb = '' category_data_grp = '' # Calculate drug fill rate by dividing orders fulfilled by total orders drug-wise category_data['drug_fill_rate_percentage'] = category_data['orders_fulfilled'] / category_data['total_orders'] * 100 # Calculate normalized date using final_month and final_year category_data['final_year'] = category_data['final_year'].astype(int) category_data['final_month'] = category_data['final_month'].astype(int) category_data['day'] = 1 category_data.rename({'final_year': 'year', 'final_month': 'month'}, axis=1, inplace=True) category_data['final_date'] = pd.to_datetime(category_data[['year', 'month', 'day']]) # Drop day column and rename month year columns to final_month and final_year. # Also change their data types to float again category_data.drop('day', axis=1, inplace=True) category_data.rename({'year': 'final_year', 'month': 'final_month'}, axis=1, inplace=True) category_data['final_year'] = category_data['final_year'].astype(float) category_data['final_month'] = category_data['final_month'].astype(float) # Re-order columns category_data = category_data[ ['final_month', 'final_year', 'bill_month', 'bill_year', 'return_month', 'return_year', 'store_id', 'drug_id', 'drug_name', 'drug_composition', 'drug_dosage', 'drug_company', 'drug_type', 'drug_category', 'drug_schedule', 'drug_pack', 'drug_pack_form', 'drug_repeatability_index', 'drug_is_repeatable', 'no_of_customers', 'no_of_bills', 'abv', 'generic_revenue', 'ethical_revenue', 'generic_quantity', 'ethical_quantity', 'gross_quantity', 'avg_selling_rate', 'gross_sales', 'return_quantity', 'avg_return_rate', 'return_value', 'net_quantity', 'net_sales', 'avg_drug_mrp', 'gross_mrp_sales', 'net_mrp_sales', 'avg_drug_cogs', 'gross_cogs', 'return_cogs', 'net_cogs', 'gross_margin', 'net_margin', 'gross_margin_percentage', 'net_margin_percentage', 'sb_month', 'sb_year', 'total_orders', 'orders_fulfilled', 'drug_fill_rate_percentage', 'final_date']] # Round off all numeric columns to two decimal places numeric_cols = ['final_month', 'final_year', 'bill_month', 'bill_year', 'return_month', 'return_year', 'store_id', 'drug_id', 'drug_repeatability_index', 'no_of_customers', 'no_of_bills', 'abv', 'generic_revenue', 'ethical_revenue', 'generic_quantity', 'ethical_quantity', 'gross_quantity', 'avg_selling_rate', 'gross_sales', 'return_quantity', 'avg_return_rate', 'return_value', 'net_quantity', 'net_sales', 'avg_drug_mrp', 'gross_mrp_sales', 'net_mrp_sales', 'avg_drug_cogs', 'gross_cogs', 'return_cogs', 'net_cogs', 'gross_margin', 'net_margin', 'gross_margin_percentage', 'net_margin_percentage', 'sb_month', 'sb_year', 'total_orders', 'orders_fulfilled', 'drug_fill_rate_percentage'] category_data[numeric_cols] = category_data[numeric_cols].round(2) category_data = category_data.replace([np.inf, -np.inf], np.nan) category_data['created-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') category_data['updated-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') category_data['created-by'] = 'etl-automation' category_data['updated-by'] = 'etl-automation' category_data.columns = [c.replace('_', '-') for c in category_data.columns] category_data['final-date'] = category_data['final-date'].dt.date category_data[["drug-id","drug-repeatability-index"]]=category_data[["drug-id","drug-repeatability-index"]].apply(pd.to_numeric, errors='ignore').astype('Int64') # Delete records of current and last month from table data delete_q = """ DELETE FROM "prod2-generico".category WHERE "final-date" >= '{start_date_n}' and "final-date" <= '{end_date_n}' """.format(start_date_n=start_date_n, end_date_n=end_date_n) rs_db.execute(delete_q) logger.info('Delete for recent period done') s3 = S3() schema = 'prod2-generico' table_name = 'category' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # Upload data in table for current and last month s3.write_df_to_db(df=category_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/category/category.py
category.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.queries.sales import sales_config import pandas as pd def main(db, table_suffix): table_name = f"sales" bill_table_name = "bill-flags" stores_master_table_name = "stores-master" if table_suffix: table_name = f"sales_{table_suffix}" bill_table_name = f"bill-flags-{table_suffix}" stores_master_table_name = f"stores-master-{table_suffix}" db.execute(query="begin ;") db.execute(sales_config.max_bill_id.format(table_name), params=None) sales_intermediate: pd.DataFrame = rs_db.cursor.fetch_dataframe() max_bill_id = sales_intermediate.values[0][0] if max_bill_id is None: max_bill_id = 0 db.execute(sales_config.max_return_id.format(table_name), params=None) returns_intermediate: pd.DataFrame = rs_db.cursor.fetch_dataframe() max_return_id = returns_intermediate.values[0][0] if max_return_id is None: max_return_id = 0 query = sales_config.insert_sales_record.format( table_name, bill_table_name, stores_master_table_name, max_bill_id, bill_table_name, stores_master_table_name, max_return_id) db.execute(query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-ts', '--table_suffix', default="", type=str, required=False, help="Table suffix for testing.") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() table_suffix = args.table_suffix logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db, table_suffix=table_suffix) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/sales/sales.py
sales.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db, table_suffix): table_name = f"sales" bill_table_name = "bill-flags" stores_master_table_name = "stores-master" if table_suffix: table_name = f"sales_{table_suffix}" bill_table_name = f"bill-flags-{table_suffix}" stores_master_table_name = f"stores-master-{table_suffix}" # db.execute(query="begin ;") #Update drugs drugs_update_query = f""" update "prod2-generico"."{table_name}" set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "drug-name" = c."drug-name", "type" = c."type", "category" = c."category", "hsncode" = c."hsncode", "is-repeatable" = c."is-repeatable", "composition" = c."composition", "company" = c."company", "company-id" = c."company-id", "composition-master-id" = c."composition-master-id" from "prod2-generico"."{table_name}" s join "prod2-generico"."drugs" c on c."id" = s."drug-id" where (NVL(s."drug-name",'') != c."drug-name" or NVL(s."type",'') != c."type" or NVL(s."category",'') != c."category" or NVL(s."hsncode",'') != c."hsncode" or NVL(s."is-repeatable") != c."is-repeatable" or NVL(s."composition",'') != c."composition" or NVL(s."company",'') != c."company" or NVL(s."company-id",0) != c."company-id" or NVL(s."composition-master-id",0) != c."composition-master-id"); """ db.execute(query=drugs_update_query) # Update group group_update_query = f""" update "prod2-generico"."{table_name}" set "group" = d."group" from "prod2-generico"."{table_name}" s join "prod2-generico"."drug-unique-composition-mapping" d on s."drug-id" = d."drug-id" where (NVL(s."group", '')!= d."group"); """ db.execute(query=group_update_query) # Update patients info patients_update_query = f""" update "prod2-generico"."{table_name}" set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "patient-category" = p."patient-category", "p-reference" = p."reference" from "prod2-generico"."{table_name}" s join "prod2-generico"."patients" p on s."patient-id" = p."id" where (NVL(s."patient-category",'') != p."patient-category" or NVL(s."p-reference",'') != p."reference"); """ db.execute(query=patients_update_query) # Update patients_metadata info patients_m_update_query = f""" update "prod2-generico"."{table_name}" set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "first-bill-date" = pm."first-bill-date" from "prod2-generico"."{table_name}" s join "prod2-generico"."patients-metadata-2" pm on s."patient-id" = pm."id" where (NVL(to_char(s."first-bill-date", 'YYYY-MM-DD'),'') != to_char(pm."first-bill-date", 'YYYY-MM-DD')); """ db.execute(query=patients_m_update_query) # Update stores information stores_update_query = f""" update "prod2-generico"."{table_name}" set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "store-manager" = msm."store-manager", "line-manager" = msm."line-manager", "abo" = msm.abo, "city" = msm.city, "acquired" = msm."acquired" , "old-new-static" = msm."old-new-static", "store-name" = msm.store from "prod2-generico"."{table_name}" s join "prod2-generico"."{stores_master_table_name}" as msm on s."store-id" = msm."id" where (NVL(s."store-manager",'') != msm."store-manager" or NVL(s."line-manager",'') != msm."line-manager" or NVL(s."abo",'') != msm.abo or NVL(s."city",'') != msm.city or NVL(s."acquired",999) != msm."acquired" or NVL(s."old-new-static",'') != msm."old-new-static" or NVL(s."store-name",'') != msm.store); """ db.execute(query=stores_update_query) # Update bill_flags information bill_flags_update_query = f""" update "prod2-generico"."{table_name}" set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "pr-flag" = NVL(pso2."pr-flag", false), "hd-flag" = NVL(pso2."hd-flag", false), "ecom-flag" = NVL(pso2."ecom-flag", false), "crm-flag" = NVL(pso2."crm-flag", false) from "prod2-generico"."{table_name}" s join "prod2-generico"."{bill_table_name}" as pso2 on s."bill-id" = pso2."id" where (NVL(s."pr-flag",false) != NVL(pso2."pr-flag", false) or NVL(s."hd-flag",false) != NVL(pso2."hd-flag", false) or NVL(s."ecom-flag", false) != NVL(pso2."ecom-flag", false) or NVL(s."crm-flag", false) != NVL(pso2."crm-flag", false)); """ db.execute(query=bill_flags_update_query) """ committing the transaction """ # db.execute(query=" commit; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-ts', '--table_suffix', default="", type=str, required=False, help="Table suffix for testing.") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() table_suffix = args.table_suffix logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = True """ calling the main function """ main(db=rs_db, table_suffix=table_suffix) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/sales/update_optimized_sales.py
update_optimized_sales.py
import argparse import os import sys sys.path.append('../../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from dateutil.relativedelta import relativedelta import pandas as pd import numpy as np import datetime from dateutil.tz import gettz from zeno_etl_libs.db.db import DB, PostGreWrite parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'store-ops-metrics' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) date1= (datetime.datetime.today() + relativedelta(months=-1)).replace(day=1).strftime('%Y-%m-%d') date2= (datetime.datetime.today() + relativedelta(days=-1)).strftime('%Y-%m-%d') # ============================================================================= # Importing all stores with opening date # ============================================================================= sm = """ select sm.id as "store-id" from "prod2-generico"."stores-master" sm inner join "prod2-generico"."stores" s on s.id = sm.id where date(sm."opened-at") != '0101-01-01' and s."is-active" = 1 group by sm.id; """ sm_data = rs_db.get_df(sm) sm_data.columns = [c.replace('-', '_') for c in sm_data.columns] sm_data['join']='A' # ============================================================================= # Date range explode # ============================================================================= d_date = pd.DataFrame({'join':['A']}) #d_date['join']='A' d_date['start_date']= date1 d_date['end_date']= date2 d_date['date'] = [pd.date_range(s, e, freq='d') for s, e in zip(pd.to_datetime(d_date['start_date']), pd.to_datetime(d_date['end_date']))] #d_date = d_date.explode('date') d_date = pd.DataFrame({'date': np.concatenate(d_date.date.values)}) d_date['join']='A' #d_date.drop(['start_date','end_date'],axis=1,inplace=True) d_date['date'] = d_date['date'].astype('str') m_data = pd.merge(left=sm_data,right=d_date,on=['join'],how='inner') m_data.drop('join',axis=1,inplace=True) # ============================================================================= # AS PR received TAT # ============================================================================= as_pr = f""" select "store-id" , date("received-at") as "date", avg( case when (sb."auto-short" = 0 AND sb."auto-generated" = 0 AND sb."status" NOT IN ('deleted')) then (datediff('hour', sd."store-delivered-at", sb."received-at")) end) as "pr_received_tat", avg( case when (sb."auto-short" = 1 and sb."home-delivery" = 0 and sb."patient-id" = 4480 and sb."status" NOT IN ('deleted')) then (datediff('hour', sd."store-delivered-at", sb."received-at")) end) as "as_received_tat" from "prod2-generico"."short-book-1" sb left join "prod2-generico"."store-delivered" sd on sd.id = sb.id where date("received-at")>= '{date1}' and date("received-at")<= '{date2}' group by "store-id" , date("received-at"); """ as_pr_tat = rs_db.get_df(as_pr) as_pr_tat.columns = [c.replace('-', '_') for c in as_pr_tat.columns] as_pr_tat['date'] = as_pr_tat['date'].astype('str') m_data = pd.merge(left=m_data,right=as_pr_tat,how='left',on=['store_id','date']) # ============================================================================= # Audit Loss # ============================================================================= a_loss = f""" select date(a."created-at") as "date", a."store-id", sum(aps."actual-quantity" * aps."final-ptr") as "actual-value", sum((aps."actual-quantity"-(case when aps."accounted-quantity">aps."actual-quantity" then aps."actual-quantity" else aps."accounted-quantity" end )-aps."corrected-qty")* aps."final-ptr") as "accounted-value", sum((aps."actual-quantity"-(aps."accounted-quantity")-aps."corrected-qty")* aps."final-ptr") as "billing-page-value", sum(case when (aps."actual-quantity"-aps."accounted-quantity")<0 and aps."correction-requested-qty">0 then 1 else 0 end) as "merchandizing-issue" from "prod2-generico"."audits" a left join "prod2-generico"."audit-process-sku" aps on a.id = aps."audit-id" where date(a."created-at") >= '{date1}' and date(a."created-at") <= '{date2}' group by 1,2 ; """ audit_loss = rs_db.get_df(a_loss) audit_loss.columns = [c.replace('-', '_') for c in audit_loss.columns] audit_loss['date'] = audit_loss['date'].astype('str') m_data = pd.merge(left=m_data,right=audit_loss,on=['store_id','date'],how='left') # ============================================================================= # LP Liquidation + LP PR PCT # ============================================================================= lp = f""" select lp."store-id" , lp."received-date" as "date", sum(lp."lp-sales-sum") as "lp-sales-sum", sum(lp."lp-value") as "lp-value", sum(s."lp_pr_sales") as "lp_pr_sales" from ( select lp."store-id" , lp."received-date", sum(lp."lp-sales-sum") as "lp-sales-sum", sum(lp."lp-value-sum") as "lp-value" from "prod2-generico"."lp-liquidation" lp where date(lp."received-date")>= '{date1}' and date(lp."received-date")<= '{date2}' group by lp."store-id" , date(lp."received-date")) lp inner join ( select "store-id" , "created-date", sum(case when "pr-flag" = true then "revenue-value" end) as "lp_pr_sales" from "prod2-generico"."sales" where date("created-at")>= '{date1}' and date("created-at")<= '{date2}' group by 1, 2) s on s."store-id" = lp."store-id" and s."created-date" = lp."received-date" where date(lp."received-date")>= '{date1}' and date(lp."received-date")<= '{date2}' group by lp."store-id" , date(lp."received-date"); """ lp_liq = rs_db.get_df(lp) lp_liq.columns = [c.replace('-', '_') for c in lp_liq.columns] lp_liq['date'] = lp_liq['date'].astype('str') m_data = pd.merge(left=m_data,right=lp_liq,on=['store_id','date'],how='left') # ============================================================================= # OOS less than min + STore level OOS # ============================================================================= oos = f""" select oos."closing-date" as "date", oos."store-id" , sum( case when oos."bucket" in ('AW', 'AX', 'AY') and oos."oos-min-count" = 0 then oos."drug-count" end) as min_count_oos_ax, sum(case when oos."bucket" in ('AW', 'AX', 'AY') then oos."drug-count" end) as "total_drug_count_oos_ax", sum(case when oos."oos-min-count" = 0 and d."company-id" = 6984 then oos."drug-count" end) as "goodaid_min_count", sum(case when d."company-id" = 6984 then oos."drug-count" end) as "goodaid_total_count", sum(oos."drug-count") as "total_drug_count_oos", sum(oos."oos-count") as "total_oos_drug_count_oos" from "prod2-generico"."out-of-shelf-drug-level" oos inner join "prod2-generico"."drugs" d on oos."drug-id" = d."id" where oos."max-set" = 'Y' and oos."mature-flag" = 'Y' and date(oos."closing-date") >='{date1}' and date(oos."closing-date") <='{date2}' group by 1, 2; """ oos_data = rs_db.get_df(oos) oos_data.columns = [c.replace('-', '_') for c in oos_data.columns] oos_data['date'] = oos_data['date'].astype('str') m_data = pd.merge(left=m_data,right=oos_data,on=['store_id','date'],how='left') # ============================================================================= # Feedback rating and bill pct # ============================================================================= fb = f""" select date(b."created-at") as "date", b."store-id", count(distinct case when f.rating is not null then b.id end)* 1.0 / count(distinct b.id)* 1.0 as "feedback-bills-pct", NVL(count(distinct case when f.rating in (1, 2) then b.id end), 0) as "flag-rating", count(distinct case when f.rating is not null then b.id end) as "feedback_bills" from "prod2-generico"."bills-1" b left join "prod2-generico"."feedback" f on f."bill-id" = b.id where date(b."created-at") >= '{date1}' and date(b."created-at") <= '{date2}' group by date(b."created-at") , b."store-id"; """ fb_data = rs_db.get_df(fb) fb_data.columns = [c.replace('-', '_') for c in fb_data.columns] fb_data['date'] = fb_data['date'].astype('str') m_data = pd.merge(left=m_data,right=fb_data,on=['store_id','date'],how='left') # ============================================================================= # Sales related Metric # ============================================================================= sd = f""" select "store-id", "created-date" as "date", sum(case when "bill-flag" = 'gross' and "substitution-status" = 'substituted' then quantity end) as "subs_num", NVL(sum(case when "bill-flag" = 'gross' and "substitution-status" in ('substituted', 'not-substituted') then quantity end),1) as "subs_den", sum(case when "bill-flag" = 'gross' and "substitution-status" = 'substituted' and "hd-flag" = True then quantity end) as "hd_subs_num", NVL(sum(case when "bill-flag" = 'gross' and "substitution-status" in ('substituted', 'not-substituted') and "hd-flag" = True then quantity end),1) as "hd_subs_den", sum(case when "bill-flag" = 'gross' and "substitution-status-g" = 'ga-substituted' and "goodaid-availablity-flag"='available' then quantity end) as "ga_subs_num", NVL(sum(case when "bill-flag" = 'gross' and "goodaid-availablity-flag"='available' and "substitution-status" in ('ga-substituted', 'substituted', 'not-substituted') then quantity end),1) as "ga_subs_den", sum(case when "bill-flag" = 'return' then "revenue-value" end) as "return-value", sum(case when "bill-flag" = 'gross' then "revenue-value" end) as "gross-revennue", count(distinct case when "promo-code" = 'BOGO' and "bill-flag" = 'gross' then "bill-id" end) as "bogo-bills", sum("revenue-value") as revenue, sum(case when "pr-flag" =True then "revenue-value" end) as "pr_sales", sum(case when "hd-flag" =True then "revenue-value" end) as "hd_sales", sum(case when "company-id" =6984 then "revenue-value" end) as "goodaid_sales", sum(case when "ecom-flag" =True then "revenue-value" end) as "ecomm_sales", sum(case when "type" ='generic' then "revenue-value" end) as "generic_sales", count(DISTINCT case when "hd-flag" =True and "bill-flag" = 'gross' then "bill-id" end) as "hd_bills", count(distinct case when "bill-flag" = 'gross' then "bill-id" end) as "NOB", sum(case when "bill-flag" = 'gross' then "revenue-value" end)*1.0/NVL(count(distinct case when "bill-flag" = 'gross' then "bill-id" end),1)*1.0 as "ABV" from "prod2-generico"."sales" where "created-date">='{date1}' and "created-date"<='{date2}' group by "store-id" , "created-date"; """ sales_data = rs_db.get_df(sd) sales_data.columns = [c.replace('-', '_') for c in sales_data.columns] sales_data['date'] = sales_data['date'].astype('str') m_data = pd.merge(left=m_data,right=sales_data,on=['store_id','date'],how='left') # ============================================================================= # Missed Call info # ============================================================================= msc = f""" SELECT scle."store-id", date(scle."date-time") as "date", count(case when scle."call-type" = 'MISSED' then scle."call-type" end) as "missed_calls", count(scle."call-type") as "total_received_calls" FROM "prod2-generico"."store-call-logs-entries" scle where scle."call-type" in ('INCOMING', 'MISSED') and date(scle."date-time") >= '{date1}' and date(scle."date-time") <= '{date2}' group by scle."store-id", date(scle."date-time"); """ missed_call = rs_db.get_df(msc) missed_call.columns = [c.replace('-', '_') for c in missed_call.columns] missed_call['date'] = missed_call['date'].astype('str') m_data = pd.merge(left=m_data,right=missed_call,on=['store_id','date'],how='left') # ============================================================================= # Calling dashboard # ============================================================================= call = f""" select cd."store-id" , date(cd."created-at") as "date", count(distinct cd.id) as "target_calls", count(distinct case when ch.id is not null then cd.id end) as "actual_calls", count(distinct case when cd."backlog-days-count">0 then cd.id end) as "backlog_days_flag" from "prod2-generico"."calling-dashboard" cd left join "prod2-generico"."calling-history" ch on cd.id = ch."calling-dashboard-id" where date(cd."created-at")>= '{date1}' and date(cd."created-at")<= '{date2}' group by cd."store-id" , date(cd."created-at"); """ calling_data = rs_db.get_df(call) calling_data.columns = [c.replace('-', '_') for c in calling_data.columns] calling_data['date'] = calling_data['date'].astype('str') m_data = pd.merge(left=m_data,right=calling_data,on=['store_id','date'],how='left') # ============================================================================= # NPI # ============================================================================= npi = f""" select nrt."store-id" , date(nrt."store-return-created-at") as "date", avg(DATEDIFF ('h', nrt."npi-added-in-store-at", nrt."check-created-at" )) as "hours-to-start-scanning", avg(DATEDIFF ('h', nrt."npi-added-in-store-at", nrt."store-return-created-at" )) as "hours-to-mark-store-return" from "prod2-generico"."npi-returns-tracking" nrt where date(nrt."store-return-created-at")>='{date1}' and date(nrt."store-return-created-at")<= '{date2}' group by nrt."store-id", date(nrt."store-return-created-at"); """ npi_data = rs_db.get_df(npi) npi_data.columns = [c.replace('-', '_') for c in npi_data.columns] npi_data['date'] = npi_data['date'].astype('str') m_data = pd.merge(left=m_data,right=npi_data,on=['store_id','date'],how='left') # ============================================================================= # Cluster FF # ============================================================================= cff = f""" Select date(pso."created-at") AS "date", -- PSO Created at pstm."from-store-id" AS "store-id" , --pstm."to-store-id" AS "destination-store-id", -- max(c.id) as "cluster-id" , -- max(sos."name") AS "source_store", -- max(des."name") AS "destination_store", -- max(pstm."item-quantity") AS "to-be-transferred-qty", -- SUM(sti."quantity") as "actual-transferred-qty", -- pso."status" as "pso-status", -- pstm."status" AS "tn-status", -- st."status" AS "st-status", -- pso."drug-id" , -- pso."drug-name" , -- max(pstm.id) AS "pstm-id", -- max(pstm."is-active") as "is-active", avg(DATEDIFF ('h', pstm."created-at", st."initiated-at" )) as "hrs_cluster_order_ready_for_pickup", avg(DATEDIFF ('h', pstm."created-at", st."transferred-at" )) as "hrs_cluster_biker_picked_up_order", avg(DATEDIFF ('h', pstm."created-at", st."received-at" )) as "hrs_cluster_store_received_order" -- PSO Created at FROM "prod2-generico"."pso-stock-transfer-mapping" pstm LEFT JOIN "prod2-generico"."stock-transfers-1" st on pstm."stock-transfer-id" = st.id Left JOIN "prod2-generico"."pso-stock-transfer-inventory-mapping" pstim ON pstm.id = pstim."pso-stock-transfer-mapping-id" LEFT JOIN "prod2-generico"."stock-transfer-items-1" sti ON pstim."inventory-id" = sti."inventory-id" AND st.id = sti."transfer-id" Left join "prod2-generico"."patients-store-orders" pso ON pstm."patient-store-order-id" = pso.id left join "prod2-generico"."store-clusters" sc on pstm."from-store-id" = sc."store-id" left join "prod2-generico".stores sos on pstm."from-store-id" = sos.id left join "prod2-generico".stores des on pstm."to-store-id" = des.id inner join "prod2-generico".clusters c on sc."cluster-id" = c.id and sc."is-active" = 1 WHERE sc."cluster-id" is not null AND date(pso."created-at") >= '{date1}' and date(pso."created-at") <= '{date2}' GROUP BY pstm."from-store-id", date(pso."created-at"); """ cluster_data = rs_db.get_df(cff) cluster_data.columns = [c.replace('-', '_') for c in cluster_data.columns] cluster_data['date'] = cluster_data['date'].astype('str') m_data = pd.merge(left=m_data,right=cluster_data,on=['store_id','date'],how='left') # ============================================================================= # as - pr otif # ============================================================================= aspr = f""" select "store-id" , date("created-at") as "date", sum(case when "as-ms-pr" = 'as' then "requested-quantity" end) as "as_requested_qty", sum(case when "as-ms-pr" = 'pr' then "requested-quantity" end) as "pr_requested_qty", sum(case when "as-ms-pr" = 'as' and date("store-delivered-at")!= '0101-01-01' and "store-delivered-at" < "delivery-tat" then "requested-quantity" end) as "as_otif_qty", sum(case when "as-ms-pr" = 'pr' and date("store-delivered-at")!= '0101-01-01' and "store-delivered-at" < "delivery-tat" then "requested-quantity" end) as "pr_otif_qty" from "prod2-generico"."sb-sla" where date("created-at")>='{date1}' and date("created-at")<= '{date2}' group by "store-id" ,date("created-at"); """ aspr_data = rs_db.get_df(aspr) aspr_data.columns = [c.replace('-', '_') for c in aspr_data.columns] aspr_data['date'] = aspr_data['date'].astype('str') m_data = pd.merge(left=m_data,right=aspr_data,on=['store_id','date'],how='left') # ============================================================================= # store opening closing # ============================================================================= s_date = f""" select date("created-at") as "date", "store-id" , min("created-at") as "first_search", max("created-at") as "last_search" from "prod2-generico"."searches" group by date("created-at"), "store-id"; """ opening_data = rs_db.get_df(s_date) opening_data.columns = [c.replace('-', '_') for c in opening_data.columns] opening_data['date'] = opening_data['date'].astype('str') m_data = pd.merge(left=m_data,right=opening_data,on=['store_id','date'],how='left') # ============================================================================= # store info # ============================================================================= s_info = f""" select id as "store-id", store , "line-manager" , abo , city , "franchisee-name", acquired , "cluster-name" , "old-new-static" from "prod2-generico"."stores-master"; """ store_info = rs_db.get_df(s_info) store_info.columns = [c.replace('-', '_') for c in store_info.columns] m_data = pd.merge(left=m_data,right=store_info,on=['store_id'],how='left') # ============================================================================= # PR wholeness # ============================================================================= pro = f""" select pr."store-id" , date(pr."turnaround-time") as "date", sum(case when pr."pso-status" != 'pso-draft' then pr."selling-rate" end) as "pr_created_value", sum(case when pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end)<= pr."turnaround-time" then pr."selling-rate" else 0 end) as "within_slot_delivered_pr_value", sum(case when pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end) is not null then pr."selling-rate" end) as "total_delivered_pr_value", count(distinct case when pr."pso-status" != 'pso-draft' then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0) )::text end) as "pr_created_count", count(distinct case when pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end)<= pr."turnaround-time" then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0)::text ) else null end) as "within_slot_delivered_count", count(distinct case when pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end) is not null then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0) )::text end) as "total_delivered_pr_count", sum(case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' then pr."selling-rate" end) as "pr_created_value_delivery", sum(case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end)<= pr."turnaround-time" then pr."selling-rate" else 0 end) as "within_slot_delivered_pr_value_delivery", sum(case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end) is not null then pr."selling-rate" end) as "total_delivered_pr_value_delivery", count(distinct case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0) )::text end) as "pr_created_count_delivery", count(distinct case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end)<= pr."turnaround-time" then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0)::text ) else null end) as "within_slot_delivered_count_delivery", count(distinct case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end) is not null then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0) )::text end) as "total_delivered_pr_count_delivery" from "prod2-generico"."patient-requests-metadata" pr left join "prod2-generico"."home-delivery-metadata" hdm on hdm.id = pr.id where date(pr."created-at") >= '{date1}' and date(pr."created-at") <= '{date2}' group by 1, 2; """ pro_data = rs_db.get_df(pro) pro_data.columns = [c.replace('-', '_') for c in pro_data.columns] pro_data['date'] = pro_data['date'].astype('str') m_data = pd.merge(left=m_data,right=pro_data,on=['store_id','date'],how='left') # ============================================================================= # Search to pr conversion # ============================================================================= search = f""" select date("search-date") as "date", "store-id", sum(case when "pr-opportunity-converted-flag"=1 then "lost-sales" end) as "pr_achieved_sales", sum(case when "pr-opportunity-converted-flag"=1 then "loss-quantity" end) as "pr_achieved_qty", sum(case when "pr-opportunity-flag" =1 then "lost-sales" end) as "search_loss_sales", sum(case when "pr-opportunity-flag" =1 then "loss-quantity" end) as "search_loss_qty" from "prod2-generico"."cfr-searches-v2" where date("search-date") >= '{date1}' and date("search-date") <= '{date2}' group by date("search-date"),"store-id" ; """ search_data = rs_db.get_df(search) search_data.columns = [c.replace('-', '_') for c in search_data.columns] search_data['date'] = search_data['date'].astype('str') m_data = pd.merge(left=m_data,right=search_data,on=['store_id','date'],how='left') # ============================================================================= # cash tally data # ============================================================================= ctally = f""" select "store-id" , date, max("created-at") as max_cash_tally_date from "prod2-generico"."cash-tally" where date("date") >= '{date1}' and date("date") <= '{date2}' group by "store-id" , date; """ ctally_data = rs_db.get_df(ctally) ctally_data.columns = [c.replace('-', '_') for c in ctally_data.columns] ctally_data['date'] = ctally_data['date'].astype('str') m_data = pd.merge(left=m_data,right=ctally_data,on=['store_id','date'],how='left') # ============================================================================= # Expiry Sales value # ============================================================================= exp = f""" select si."snapshot-date" as "date", si."entity-id" as "store-id" , SUM(case when si."inventory-sub-type-1" = 'expired' then si."value-with-tax" end ) as "expired-value", SUM(case when si."inventory-sub-type-1" = 'near-expiry' then si."value-with-tax" end ) as "near-expiry-value" from "prod2-generico"."system-inventory" si where si."entity-type" = 'store' and date(si."snapshot-date") >= '{date1}' and date(si."snapshot-date") <= '{date2}' group by si."snapshot-date" , si."entity-id" ; """ exp_data = rs_db.get_df(exp) exp_data.columns = [c.replace('-', '_') for c in exp_data.columns] exp_data['date'] = exp_data['date'].astype('str') m_data = pd.merge(left=m_data,right=exp_data,on=['store_id','date'],how='left') # ============================================================================= # PSO draft conversion % # ============================================================================= draft = f""" select date("created-at") as "date", "store-id" , sum(case when "pso-parent-id" is not null then 1 else 0 end) as "pso-draft-count", sum(case when "pso-parent-id" is not null and status != 'pso-draft' then 1 else 0 end) as "pso-draft-converted-count" from "prod2-generico"."patients-store-orders" pso where date("created-at")>= '{date1}' and date("created-at")<= '{date2}' group by 1, 2 ; """ draft_data = rs_db.get_df(draft) draft_data.columns = [c.replace('-', '_') for c in draft_data.columns] draft_data['date'] = draft_data['date'].astype('str') m_data = pd.merge(left=m_data,right=draft_data,on=['store_id','date'],how='left') m_data.info() # Write to Redshift Also m_data.columns = [c.replace('_', '-') for c in m_data.columns] m_data.columns m_data = m_data[[ 'store-id' ,'date' ,'pr-received-tat' ,'as-received-tat' ,'lp-sales-sum' ,'lp-value' ,'lp-pr-sales' ,'min-count-oos-ax' ,'total-drug-count-oos-ax' ,'goodaid-min-count' ,'goodaid-total-count' ,'total-drug-count-oos' ,'total-oos-drug-count-oos' ,'feedback-bills-pct' ,'flag-rating' ,'subs-num' ,'subs-den' ,'hd-subs-num' ,'hd-subs-den' ,'ga-subs-num' ,'ga-subs-den' ,'return-value' ,'gross-revennue' ,'bogo-bills' ,'revenue' ,'pr-sales' ,'hd-sales' ,'goodaid-sales' ,'ecomm-sales' ,'hd-bills' ,'nob' ,'abv' ,'missed-calls' ,'total-received-calls' ,'target-calls' ,'actual-calls' ,'hours-to-start-scanning' ,'hours-to-mark-store-return' ,'hrs-cluster-order-ready-for-pickup' ,'hrs-cluster-biker-picked-up-order' ,'hrs-cluster-store-received-order' ,'as-requested-qty' ,'pr-requested-qty' ,'as-otif-qty' ,'pr-otif-qty' ,'first-search' ,'last-search' ,'store' ,'line-manager' ,'abo' ,'city' ,'franchisee-name' ,'acquired' ,'cluster-name' ,'old-new-static' ,'pr-created-value' ,'within-slot-delivered-pr-value' ,'total-delivered-pr-value' ,'pr-created-count' ,'within-slot-delivered-count' ,'total-delivered-pr-count','pr-achieved-sales' ,'pr-achieved-qty' ,'search-loss-sales' ,'search-loss-qty','feedback-bills' ,'max-cash-tally-date', 'backlog-days-flag', 'pr-created-value-delivery' , 'within-slot-delivered-pr-value-delivery', 'total-delivered-pr-value-delivery', 'pr-created-count-delivery', 'within-slot-delivered-count-delivery' , 'total-delivered-pr-count-delivery', 'generic-sales','expired-value', 'actual-value', 'accounted-value', 'billing-page-value', 'merchandizing-issue', 'pso-draft-count', 'pso-draft-converted-count', 'near-expiry-value' ]] truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=m_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/store-ops-metrics/store-ops-metrics.py
store-ops-metrics.py
import argparse import datetime import sys import os import boto3 import time from zeno_etl_libs.helper import helper sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-ss', '--schema_name', default="", type=str, required=False) parser.add_argument('-d', '--date_prefix', default="NA", type=str, required=False) parser.add_argument('-ndo', '--n_day_old', default="NA", type=str, required=False) parser.add_argument('-lt', '--list_of_tables', default=None, type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rc', '--reason_code', default="NA", type=str, required=False) parser.add_argument('-p', '--purpose', default="NA", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") schema_name = args.schema_name list_of_tables = args.list_of_tables email_to = args.email_to reason_code = args.reason_code date_prefix = args.date_prefix n_day_old = args.n_day_old purpose = args.purpose logger.info(f"schema_name: {schema_name}") logger.info(f"list_of_tables: {list_of_tables}") logger.info(f"email_to: {email_to}") logger.info(f"reason_code: {reason_code}") logger.info(f"date_prefix: {date_prefix}") logger.info(f"n_day_old: {n_day_old}") logger.info(f"purpose: {purpose}") list_of_tables = list_of_tables.split(",") if not schema_name: raise Exception("Please provide schema name !!!") if not list_of_tables: raise Exception("Please provide list of tables") """ our aim is to decide the date_prefix, using date_prefix or n_day_old or purpose """ if date_prefix == "NA": """ since glue gives error while passing empty string so, NA is used for empty string """ date_prefix = "" """ n_day_old: n day old tables to be deleted """ if n_day_old and n_day_old != "NA": n_day_old = int(n_day_old) old_date = datetime.datetime.now() + datetime.timedelta(days=-n_day_old) date_prefix = old_date.strftime("%Y-%m-%d") if purpose in ("INV_LEDGER", "MIS"): if purpose == "INV_LEDGER": """ for daily inventory ledger calculation related tables """ email_to = "[email protected]" old_date = datetime.datetime.now() + datetime.timedelta(days=-2) date_prefix = old_date.strftime("%Y-%m-%d") list_of_tables = ["inventory-1", "invoice-items-1", "invoices-1", "customer-return-items-1", "customer-returns-1", "stock-transfer-items-1", "stock-transfers-1", "bill-items-1", "bills-1", "return-items-1", "returns-to-dc-1", "deleted-invoices", "deleted-invoices-1", "inventory-changes-1", "cluster-tasks"] if purpose == "MIS": """ for monthly mis related calculation """ email_to = "[email protected]" old_date = datetime.datetime.now() + datetime.timedelta(days=-1) date_prefix = old_date.strftime("%Y-%m-%d") list_of_tables = ["bill-items-1", "bills-1", "customer-return-items-1", "customer-returns-1", "debit-notes", "debit-notes-1", "delivery-tracking", "distributors", "drugs", "inventory", "inventory-1", "invoice-items", "invoice-items-1", "invoices", "invoices-1", "patient-requests", "patients-store-orders", "return-items", "return-items-1", "stores", "store-slots", "store-dc-mapping", "returns-to-dc"] if reason_code == "NA": """ since glue gives error while passing empty string so, NA is used for empty string """ reason_code = "" email = Email() rs_db = DB(read_only=False) rs_db.open_connection() date_prefixes = date_prefix.split(",") for date_prefix in date_prefixes: for i in list_of_tables: logger.info(f"started dropping table: {i}") new_table_name = i if reason_code: new_table_name += f"-{reason_code}" if date_prefix: new_table_name += f"-{date_prefix}" table_info = helper.get_table_info(db=rs_db, table_name=new_table_name, schema=schema_name) if isinstance(table_info, type(None)): logger.info(f"Table: {new_table_name} is absent, not need to drop.") else: logger.info(f"Table exists: {new_table_name}, so needs to drop.") q = f""" drop table "{schema_name}"."{new_table_name}"; """ rs_db.execute(query=q) logger.info(f"table dropped successfully: {new_table_name}") """ closing the DB connection in the end """ rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/drop-tables/drop-tables.py
drop-tables.py
To fetch past playstore reviews google to s3 to DB """"" import argparse import os import sys from io import StringIO import datetime import dateutil from dateutil.tz import gettz import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.db.db import DB parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-d', '--full_run', default=0, type=int, required=False) parser.add_argument('-l', '--max_month', default=6, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env full_run = args.full_run max_month = args.max_month os.environ['env'] = env logger = get_logger() logger.info(f"info message") logger.info(f"full_run: {full_run}") rs_db = DB(read_only=False) rs_db.open_connection() reviews = pd.DataFrame() s3 = S3() logger.info(f"max_month: {max_month}") if full_run == 1: for year in (21, 22): for month in range(1, 12): if month > max_month and year == 22: """ stopping """ continue uri = f"s3://aws-glue-temporary-921939243643-ap-south-1/playstore-reviews/reviews_reviews_com.zenohealth.android_20{year}{str(month).zfill(2)}.csv" logger.info(f"uri: {uri}") csv_string = s3.get_file_object(uri=uri, encoding="utf-16") df = pd.read_csv(StringIO(csv_string)) df['month'] = str(month).zfill(2) df['year'] = str(year) reviews = pd.concat([reviews, df], ignore_index=True) else: last_month_date = datetime.datetime.now() - datetime.timedelta(days=30) last_year = last_month_date.strftime("%Y")[2:] last_month = last_month_date.strftime("%m") logger.info(f"last_month_date: {last_month_date} last year : {last_year} last month : {last_month} ") uri = f"s3://aws-glue-temporary-921939243643-ap-south-1/playstore-reviews/reviews_reviews_com.zenohealth.android_20" \ f"{last_year}{str(last_month).zfill(2)}.csv" logger.info(f"uri: {uri}") csv_string = s3.get_file_object(uri=uri, encoding="utf-16") reviews = pd.read_csv(StringIO(csv_string)) reviews['month'] = str(last_month) # reviews['month'] = reviews['month'].astype('str', errors='ignore')[2:] reviews['year'] = str(last_year) # reviews['year'] = reviews['year'].astype('str', errors='ignore') columns = [c.replace(" ", "-").lower() for c in reviews.columns] reviews.columns = columns for col in ['review-submit-date-and-time', 'review-last-update-date-and-time','developer-reply-date-and-time']: reviews[col] = pd.to_datetime(reviews[col], errors='coerce').dt.strftime('%Y-%m-%d %H:%M:%S') reviews[col] = reviews[col].replace('NaT', '') reviews['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') reviews['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') reviews['created-by'] = 'etl-automation' reviews['updated-by'] = 'etl-automation' # Table info schema = 'prod2-generico' table_name = 'ecomm-playstore-old-reviews' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") logger.info(f"Table:{table_name} exists and input data has all columns") if full_run == 1: truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' else: truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "month">={last_month} and "year">={last_year}''' rs_db.execute(truncate_query) s3.write_df_to_db(df=reviews[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info("Pushed reviews successfully") rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ecomm-playstore-old-reviews/ecomm-playstore-old-reviews.py
ecomm-playstore-old-reviews.py
#!/usr/bin/env python # coding: utf-8 import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json from datetime import datetime, timedelta import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-dd', '--doh_days', default=60, type=int, required=False) parser.add_argument('-sd', '--sold_days', default=90, type=int, required=False) parser.add_argument('-ed', '--expiry_days', default=210, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to doh_days = args.doh_days sold_days = args.sold_days expiry_days = args.expiry_days os.environ['env'] = env logger = get_logger(level = 'INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.now() logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("doh_days - " + str(doh_days)) logger.info("sold_days - " + str(sold_days)) logger.info("expiry_days -" + str(expiry_days)) logger.info("") # date parameter logger.info("code started at {}".format(datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") # ============================================================================= # NPI at store # ============================================================================= npi_store_query = """ select * from "prod2-generico"."dead-stock-inventory" dsi where "inventory-type" = 'Rotate' """ npi_store = rs_db.get_df(npi_store_query) logger.info("Fetched NPI from dead-stock-inventory - lines -{}".format(len(npi_store))) # ============================================================================= # Fetching Store-Clusters List # ============================================================================= s0 = """ SELECT s."store-id", sc."cluster-id" FROM ( SELECT s.id as "store-id" FROM "prod2-generico".stores s WHERE s.category = 'retail' )s left join ( SELECT sc."store-id" , sc."cluster-id" FROM "prod2-generico"."store-clusters" sc WHERE sc."is-active" = 1)sc ON s."store-id" = sc."store-id" """ clust_store = rs_db.get_df(s0) logger.info("Fetched store-cluster combo") npi_store = pd.merge(npi_store, clust_store[['store-id', 'cluster-id']], on='store-id', how='left') # ============================================================================= # Adding Cluster Sold Quantity # ============================================================================= cluster_sold_total = pd.DataFrame() for cluster_id in tuple(map(int, (list(clust_store[clust_store['cluster-id'].notna()]['cluster-id'].astype(int).unique())))): s00 = """ select sc."store-id" from "prod2-generico"."store-clusters" sc where sc."is-active" = 1 and sc."cluster-id" in ({cluster_id}) """.format(cluster_id=cluster_id) dist_stores = rs_db.get_df(s00) stores_in_cluster = tuple(map(int, dist_stores['store-id'].values.tolist())) logger.info('stores in cluster {}-{}'.format(cluster_id, stores_in_cluster)) drgs = tuple(map(int, (list(npi_store[npi_store['cluster-id'] == cluster_id]['drug-id'].unique())))) s1 = """ select '{cluster_id}' as "cluster-id", "drug-id", sum("net-quantity") as "clus-sales-qty" from "prod2-generico"."sales" sh where "store-id" in {stores_in_cluster} -- and "created-date" >= '2022-04-14' and date("created-at") >=dateadd(d,-{sold_days},current_date) and "drug-id" in {drgs} group by "drug-id" """.format(cluster_id=cluster_id, stores_in_cluster=stores_in_cluster, sold_days=sold_days, drgs=drgs) cluster_sold = rs_db.get_df(s1) cluster_sold_total = cluster_sold_total.append(cluster_sold, ignore_index='True') logger.info('cluster-{},Cluster_sold_added'.format(cluster_id)) npi_store[['cluster-id', 'drug-id']]=npi_store[['cluster-id', 'drug-id']].apply(pd.to_numeric, errors='ignore').astype('Int64') cluster_sold_total[['cluster-id', 'drug-id']]=cluster_sold_total[['cluster-id', 'drug-id']].apply(pd.to_numeric, errors='ignore').astype('Int64') # ============================================================================= # Adding Flags - Cluster sold, Shelf life more than 6 months # ============================================================================= npi_store = pd.merge(npi_store, cluster_sold_total, on=['cluster-id', 'drug-id'], how='left') npi_store['days-to-expire'] = (pd.to_datetime(npi_store['expiry'])-datetime.today()).dt.days def timecheck(a): if a > expiry_days: return 1 else: return 0 npi_store['shelf-life-more-than-6-months-flag'] = npi_store['days-to-expire'].apply(timecheck) npi_store['clus-sales-qty'].fillna(0, inplace=True) npi_store['clus-sales-qty'] = npi_store['clus-sales-qty'].astype(int) def clustsoldcheck(a): if a == 0: return 0 else: return 1 npi_store['clust-sold-flag'] = npi_store['clus-sales-qty'].apply(clustsoldcheck) logger.info("Added Flags in dead_stock_inventory - Current lines -{}".format(len(npi_store))) npi_store_summary = npi_store[npi_store['shelf-life-more-than-6-months-flag']==1] npi_store_summary = npi_store_summary[npi_store_summary['clust-sold-flag']==0] npi_store_summary = npi_store_summary.groupby('store-id').agg({'store-name':'first', 'quantity':'sum', 'locked-quantity':'sum', 'value':'sum', 'locked-value':'sum'}).reset_index() npi_store_summary['sns-time'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') npi_store['created-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') npi_store['created-by']= '[email protected]' npi_store['updated-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') npi_store['updated-by'] = '[email protected]' npi_store_summary =npi_store_summary[['store-id','store-name','quantity','locked-quantity','value','locked-value','sns-time']] npi_store_summary['created-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') npi_store_summary['created-by']= '[email protected]' npi_store_summary['updated-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') npi_store_summary['updated-by'] = '[email protected]' npi_store[['invoice-id','invoice-item-id','distributor-id','short-book-id']] = npi_store[['invoice-id','invoice-item-id','distributor-id','short-book-id']].apply(pd.to_numeric, errors='ignore').astype('Int64') # ============================================================================= # writing to Redshift # ============================================================================= schema = 'prod2-generico' table_name = 'npi-inventory-at-store' table_name2 = 'npi-inventory-at-store-sns-last-3-month' table_name3 = 'npi-inventory-at-store-sns-summary' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) table_info2 = helper.get_table_info(db=rs_db_write, table_name=table_name2, schema=schema) table_info3 = helper.get_table_info(db=rs_db_write, table_name=table_name3, schema=schema) status2 = False status1 = False status3 = False if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' delete from "{schema}"."{table_name}" ''' rs_db_write.execute(truncate_query) logger.info(str(table_name) + ' table deleted') s3.write_df_to_db(df=npi_store[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(str(table_name) + ' table uploaded') status2 = True if status2: if isinstance(table_info2, type(None)): raise Exception(f"table: {table_name2} do not exist, create the table first") else: logger.info(f"Table:{table_name2} exists") npi_store['sns-time']= datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') delete_main_query = f''' delete from "{schema}"."{table_name2}" where extract(mon from "sns-time") = extract(mon from current_date) ''' rs_db_write.execute(delete_main_query) logger.info(str(table_name2) + ' table data deleted for same months entry') delete_main_query = f''' delete from "{schema}"."{table_name2}" where DATE("sns-time")< DATE(dateadd(d,-125,current_date)) ''' rs_db_write.execute(delete_main_query) logger.info(str(table_name2) + ' table data deleted for 4+ month old data') s3.write_df_to_db(df=npi_store[table_info2['column_name']], table_name=table_name2, db=rs_db_write, schema=schema) logger.info(str(table_name2) + ' table uploaded') status1 = True if status1: logger.info(f"Table:{table_name2} exists") delete_main_query = f''' delete from "{schema}"."{table_name3}" where extract(mon from "sns-time") = extract(mon from current_date) ''' rs_db_write.execute(delete_main_query) logger.info(str(table_name3) + ' table data deleted for same months entry') s3.write_df_to_db(df=npi_store_summary[table_info3['column_name']], table_name=table_name3, db=rs_db_write, schema=schema) logger.info(str(table_name3) + ' table uploaded') status3 = True if status3 is True: status = 'Success' else: status = 'Failed' # logger.close() end_time = datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name} table updated", mail_body=f"{table_name2} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/npi/npi-inventory-at-store.py
npi-inventory-at-store.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz from zeno_etl_libs.utils.doid_write import doid_custom_write import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sku', '--sku_to_add_per_round', default=50, type=int, required=False) parser.add_argument('-si', '--store_id_to_close', default=330, type=str, required=False) parser.add_argument('-ccf', '--cold_chain_flag', default=0, type=str, required=False) parser.add_argument('-dts', '--date_to_start', default='2022-09-11', type=str, required=False) parser.add_argument('-lsos3', '--list_name_on_s3', default='NPI_Palghar_list_upload', type=str, required=False) parser.add_argument('-ssmm', '--change_ss_min_max_to_zero_flag', default=0, type=int, required=False) parser.add_argument('-bif', '--block_ipc_flag', default=0, type=int, required=False) parser.add_argument('-bind', '--block_ipc_for_n_days', default=30, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to sku_to_add_per_round = args.sku_to_add_per_round store_id_to_close = args.store_id_to_close cold_chain_flag = args.cold_chain_flag date_to_start = args.date_to_start list_name_on_s3 = args.list_name_on_s3 change_ss_min_max_to_zero_flag = args.change_ss_min_max_to_zero_flag block_ipc_flag = args.block_ipc_flag block_ipc_for_n_days = args.block_ipc_for_n_days store_id_to_close = int(store_id_to_close) os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() mysql_read = MySQL() mysql_read.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("sku_to_add_per_round - " + str(sku_to_add_per_round)) logger.info("store_id_to_close - " + str(store_id_to_close)) logger.info("cold_chain_flag - " + str(cold_chain_flag)) logger.info("date_to_start - " + str(date_to_start)) logger.info("list_name_on_s3 - " + str(list_name_on_s3)) logger.info("change_ss_min_max_to_zero_flag - " + str(change_ss_min_max_to_zero_flag)) logger.info("block_ipc_flag - " + str(block_ipc_flag)) logger.info("block_ipc_for_n_days - " + str(block_ipc_for_n_days)) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() store_last_sataus_query = """ select * from ( select row_number() over (partition by nd.`store-id` order by nd.`created-at` desc ) as `row`, nd.`store-id`, nd.status , nd.`created-at` from `npi-drugs` nd where nd.`store-id` = {store_id_to_close}) nd where nd.`row` = 1 """.format(store_id_to_close=store_id_to_close) store_last_sataus = pd.read_sql_query(store_last_sataus_query, mysql_read.connection) if (len(store_last_sataus)==0) or (store_last_sataus.loc[0,'status']=='completed'): # Getting npi list npi_drug_list =pd.read_csv(s3.download_file_from_s3(file_name=f"npi_add_by_manual_list/{list_name_on_s3}.csv")) npi_drug_list= npi_drug_list[['store-id','drug-id']] drugs = tuple(map(int,npi_drug_list['drug-id'].unique())) store_drug_prod_inv_query = ''' SELECT i.`drug-id`, d.`type` , d.`pack-form` , d.`cold-chain` , sum(i.quantity) as 'quantity' FROM `inventory-1` i left join drugs d on i.`drug-id` = d.id WHERE i.`store-id` = {store_id_to_close} and i.`drug-id` in {drugs} group by i.`drug-id`, d.`type` , d.`pack-form` , d.`cold-chain` '''.format(store_id_to_close=store_id_to_close,drugs=drugs) store_drug_prod_inv = pd.read_sql_query(store_drug_prod_inv_query, mysql_read.connection) npi_drug_list = npi_drug_list.merge(store_drug_prod_inv,on = 'drug-id', how = 'left') npi_drug_list['quantity'] = npi_drug_list['quantity'].fillna(0) npi_drug_list = npi_drug_list[npi_drug_list['quantity']>0] store_drug_prod_query = ''' select `store-id` , `drug-id`, 1 as `dummy` from `npi-drugs` nd where date(nd.`created-at`) >= '{date_to_start}' and nd.`store-id` = {store_id_to_close} '''.format(store_id_to_close=store_id_to_close,date_to_start=date_to_start) store_drug_prod = pd.read_sql_query(store_drug_prod_query, mysql_read.connection) # store_drug_prod_query = ''' # select # "store-id" , # "drug-id", # 1 as "dummy" # from # "prod2-generico"."npi-drugs" nd # where # date(nd."created-at") >= '{date_to_start}' # and nd."store-id" = {store_id_to_close} # '''.format(store_id_to_close=store_id_to_close,date_to_start=date_to_start) # store_drug_prod = rs_db.get_df(store_drug_prod_query) # merging prod and DSS to avoid duplicate entries npi_drug_list = npi_drug_list.merge(store_drug_prod, how='left', on=['store-id', 'drug-id']) npi_drug_list = npi_drug_list.replace(np.nan, 0) npi_drug_list = npi_drug_list[npi_drug_list.dummy == 0] audit_drug_prod_query = ''' SELECT a."store-id" , a."drug-id" , 1 as dummy_audit from ( select b."store-id" , a."drug-id" , 1 as dummy, ROW_NUMBER() OVER(PARTITION BY b."store-id" , a."drug-id" ORDER BY a.id DESC) as "row" from "prod2-generico"."inventory-check-items-1" as a join "prod2-generico"."inventory-check-1" as b on a."check-id" = b.id where b."complete" = 0)a WHERE a."row" = 1 ''' audit_drug_prod = rs_db.get_df(audit_drug_prod_query) logger.info('Read audit_drug_prod - from RS') # merging with audit drugs to avoid audit drugs entry npi_drug_list = npi_drug_list.merge(audit_drug_prod, how='left', on=['store-id', 'drug-id']) # replaceing null with 0 and extracting 35 rows npi_drug_list = npi_drug_list.replace(np.nan, 0) npi_drug_list = npi_drug_list[npi_drug_list.dummy_audit == 0] choice = [npi_drug_list['type'] == 'high-value-ethical', npi_drug_list['type'] == 'ethical', npi_drug_list['type'] == 'generic', npi_drug_list['type'] == 'ayurvedic', npi_drug_list['type'] == 'surgical', npi_drug_list['type'] == 'category-4', npi_drug_list['type'] == 'otc', npi_drug_list['type'] == 'general', npi_drug_list['type'] == 'baby-food', npi_drug_list['type'] == 'baby-product', npi_drug_list['type'] == 'glucose-test-kit', npi_drug_list['type'] == 'discontinued-products', npi_drug_list['type'] == 'banned'] select = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] npi_drug_list['sort-type'] = np.select(choice, select, default=999) choice = [npi_drug_list['pack-form'] == 'STRIP', npi_drug_list['pack-form'] == 'PACKET', npi_drug_list['pack-form'] == 'SACHET', npi_drug_list['pack-form'] == 'TUBE', npi_drug_list['pack-form'] == 'BOTTLE', npi_drug_list['pack-form'] == 'TETRA PACK', npi_drug_list['pack-form'] == 'PRE FILLED SYRINGE', npi_drug_list['pack-form'] == 'VIAL', npi_drug_list['pack-form'] == 'CARTRIDGE', npi_drug_list['pack-form'] == 'JAR', npi_drug_list['pack-form'] == 'SPRAY BOTTLE', npi_drug_list['pack-form'] == 'BOX', npi_drug_list['pack-form'] == 'TIN', npi_drug_list['pack-form'] == 'AMPOULE', npi_drug_list['pack-form'] == 'KIT'] select = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] npi_drug_list['sort-pack-form'] = np.select(choice, select, default=999) npi_drug_list.sort_values([ 'sort-pack-form', 'sort-type'], ascending=[True,True], inplace=True) if int(cold_chain_flag) == 0: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain'] == 0] logger.info('removing cold chain products') elif int(cold_chain_flag) == 2: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain'] == 1] logger.info('considering only cold chain products') else: logger.info('Not caring whether cold chain items are added or not') npi_drug_list = npi_drug_list.head(sku_to_add_per_round).reset_index(drop=True) final_list_npi = npi_drug_list[['store-id', 'drug-id']] mysql_write = MySQL(read_only=False) mysql_write.open_connection() # inserting data into prod logger.info("mySQL - Insert starting") final_list_npi.to_sql(name='npi-drugs', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") mysql_write.close() if int(change_ss_min_max_to_zero_flag) == 1: logger.info('start - change SS Min Max to 0') # set max=0 for npi drugs in DOID npi_store_drugs = final_list_npi[["store-id", "drug-id"]] npi_store_drugs.columns = [c.replace('-', '_') for c in npi_store_drugs.columns] doid_missed_entries = doid_custom_write(npi_store_drugs, logger) # save email attachements to s3 # curr_date = str(datetime.date.today()) # doid_missed_entries_uri = s3.save_df_to_s3(doid_missed_entries, # file_name=f"doid_missed_entries_{curr_date}.csv") logger.info('end - change SS Min Max to 0') else: # doid_missed_entries_uri = [] logger.info('Not Changing SS Min Max to 0') if int(block_ipc_flag) ==1: logger.info(f'start : block ipc for {block_ipc_for_n_days} days') # Rotation drugs to be appended in omit_ss_reset table omit_drug_store = final_list_npi[["drug-id", "store-id"]].drop_duplicates() omit_drug_store["updated-at"] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') omit_drug_store["created-at"] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') omit_drug_store["created-by"] = '[email protected]' omit_drug_store["updated-by"] = '[email protected]' omit_drug_store["start-date"] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d') omit_drug_store["end-date"] = (datetime.datetime.now(tz=gettz('Asia/Kolkata')) + datetime.timedelta( days=block_ipc_for_n_days)).strftime('%Y-%m-%d') omit_drug_store["is-active"] = 1 omit_drug_store["reason"] = 'NPI' schema = 'prod2-generico' table_name = 'omit-ss-reset' # Uncomment following part once omit-ss-reset table is transferred to DSS table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) s3.write_df_to_db(df=omit_drug_store[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(f'End : block ipc for {block_ipc_for_n_days} days') else: logger.info(f'Not Blocking IPC for {block_ipc_for_n_days} days') # npi_added_uri = s3.save_df_to_s3(df=npi_drug_list, file_name='npi_removal_details_{}.csv'.format(cur_date)) status = 'added' email = Email() email.send_email_file(subject=f"{env} : store id - {store_id_to_close} NPI List", mail_body=f"list-{status},{len(final_list_npi)} SKU Added\n" f"ipc change flag - {change_ss_min_max_to_zero_flag}, block ipc flag - {block_ipc_for_n_days}, block ipc for {block_ipc_for_n_days} days\n", to_emails=email_to, file_uris=[]) else: status = 'not-added' email = Email() email.send_email_file(subject=f"{env} : store id - {store_id_to_close} NPI List", mail_body=f"list-{status},Previos Status - {store_last_sataus.loc[0,'status']}", to_emails=email_to, file_uris=[]) rs_db.close_connection() rs_db_write.close_connection() mysql_read.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/npi/npi_push_through_manual_list.py
npi_push_through_manual_list.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sku', '--sku_to_add_per_round', default=25, type=int, required=False) parser.add_argument('-si', '--store_id_to_close', default=320, type=str, required=False) parser.add_argument('-ccf', '--cold_chain_flag', default=0, type=str, required=False) parser.add_argument('-dts', '--date_to_start', default='2022-09-08', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to sku_to_add_per_round = args.sku_to_add_per_round store_id_to_close = args.store_id_to_close cold_chain_flag = args.cold_chain_flag date_to_start = args.date_to_start store_id_to_close = int(store_id_to_close) os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() mysql_read = MySQL() mysql_read.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("sku_to_add_per_round - " + str(sku_to_add_per_round)) logger.info("store_id_to_close - " + str(store_id_to_close)) logger.info("cold_chain_flag - " + str(cold_chain_flag)) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() store_last_sataus_query = """ select * from ( select row_number() over (partition by nd.`store-id` order by nd.`created-at` desc ) as `row`, nd.`store-id`, nd.status , nd.`created-at` from `npi-drugs` nd where nd.`store-id` = {store_id_to_close}) nd where nd.`row` = 1 """.format(store_id_to_close=store_id_to_close) store_last_sataus = pd.read_sql_query(store_last_sataus_query, mysql_read.connection) if store_last_sataus.loc[0,'status']=='completed': # Getting inventory detail prod_inventory_query = ''' select i."store-id" , i."drug-id" , d."drug-name" , d."pack-form" , d."type" , d."cold-chain" , sum(i.quantity) as "quantity", sum(i.quantity + i."locked-for-check" + i."locked-for-audit" + i."locked-for-return" + i."locked-for-transfer" ) as "quantity-available-physically-at-store" from "prod2-generico"."prod2-generico"."inventory-1" i left join "prod2-generico"."prod2-generico".stores s on i."store-id" = s.id left join "prod2-generico"."prod2-generico".drugs d on d.id = i."drug-id" left join "prod2-generico"."prod2-generico"."invoices-1" i2 on i."franchisee-invoice-id" = i2.id where i."store-id" = {store_id_to_close} and i2."franchisee-invoice" = 0 and (i.quantity >0 -- or i."locked-for-check" >0 -- or i."locked-for-audit" >0 -- or i."locked-for-return" >0 -- or i."locked-for-transfer" >0 ) group by i."store-id" , i."drug-id" , d."drug-name", d."pack-form" , d."type" , d."cold-chain" '''.format(store_id_to_close=store_id_to_close) npi_drug_list = rs_db.get_df(prod_inventory_query) store_drug_prod_query = ''' select `store-id` , `drug-id`, 1 as `dummy` from `npi-drugs` nd where date(nd.`created-at`) >= '{date_to_start}' and nd.`store-id` = {store_id_to_close} '''.format(store_id_to_close=store_id_to_close,date_to_start=date_to_start) store_drug_prod = pd.read_sql_query(store_drug_prod_query, mysql_read.connection) # store_drug_prod_query = ''' # select # "store-id" , # "drug-id", # 1 as "dummy" # from # "prod2-generico"."npi-drugs" nd # where # date(nd."created-at") >= '{date_to_start}' # and nd."store-id" = {store_id_to_close} # '''.format(store_id_to_close=store_id_to_close,date_to_start=date_to_start) # store_drug_prod = rs_db.get_df(store_drug_prod_query) # merging prod and DSS to avoid duplicate entries npi_drug_list = npi_drug_list.merge(store_drug_prod, how='left', on=['store-id', 'drug-id']) npi_drug_list = npi_drug_list.replace(np.nan, 0) npi_drug_list = npi_drug_list[npi_drug_list.dummy == 0] choice = [npi_drug_list['type'] == 'high-value-ethical', npi_drug_list['type'] == 'ethical', npi_drug_list['type'] == 'generic', npi_drug_list['type'] == 'ayurvedic', npi_drug_list['type'] == 'surgical', npi_drug_list['type'] == 'category-4', npi_drug_list['type'] == 'otc', npi_drug_list['type'] == 'general', npi_drug_list['type'] == 'baby-food', npi_drug_list['type'] == 'baby-product', npi_drug_list['type'] == 'glucose-test-kit', npi_drug_list['type'] == 'discontinued-products', npi_drug_list['type'] == 'banned'] select = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] npi_drug_list['sort-type'] = np.select(choice, select, default=999) choice = [npi_drug_list['pack-form'] == 'STRIP', npi_drug_list['pack-form'] == 'PACKET', npi_drug_list['pack-form'] == 'SACHET', npi_drug_list['pack-form'] == 'TUBE', npi_drug_list['pack-form'] == 'BOTTLE', npi_drug_list['pack-form'] == 'TETRA PACK', npi_drug_list['pack-form'] == 'PRE FILLED SYRINGE', npi_drug_list['pack-form'] == 'VIAL', npi_drug_list['pack-form'] == 'CARTRIDGE', npi_drug_list['pack-form'] == 'JAR', npi_drug_list['pack-form'] == 'SPRAY BOTTLE', npi_drug_list['pack-form'] == 'BOX', npi_drug_list['pack-form'] == 'TIN', npi_drug_list['pack-form'] == 'AMPOULE', npi_drug_list['pack-form'] == 'KIT'] select = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] npi_drug_list['sort-pack-form'] = np.select(choice, select, default=999) npi_drug_list.sort_values([ 'sort-pack-form', 'drug-name','sort-type'], ascending=[True,True,True], inplace=True) if int(cold_chain_flag) == 0: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain'] == 0] logger.info('removing cold chain products') elif int(cold_chain_flag) == 2: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain'] == 1] logger.info('considering only cold chain products') else: logger.info('Not caring whether cold chain items are added or not') npi_drug_list = npi_drug_list.head(sku_to_add_per_round).reset_index(drop=True) final_list_npi = npi_drug_list[['store-id', 'drug-id']] mysql_write = MySQL(read_only=False) mysql_write.open_connection() # inserting data into prod logger.info("mySQL - Insert starting") final_list_npi.to_sql(name='npi-drugs', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") mysql_write.close() # npi_added_uri = s3.save_df_to_s3(df=npi_drug_list, file_name='npi_removal_details_{}.csv'.format(cur_date)) status = 'added' email = Email() email.send_email_file(subject=f"{env} : Kokate NPI List", mail_body=f"list-{status},{len(final_list_npi)} SKU Added", to_emails=email_to, file_uris=[]) else: status = 'not-added' email = Email() email.send_email_file(subject=f"{env} : Kokate NPI List", mail_body=f"list-{status},Previos Status - {store_last_sataus.loc[0,'status']}", to_emails=email_to, file_uris=[]) rs_db.close_connection() mysql_read.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/npi/store_closure_item_push_through_npi.py
store_closure_item_push_through_npi.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") # ============================================================================= # NPI at WH Snapshot # ============================================================================= npi_wh_query = """ SELECT f.Itemc as "itemc", i.name , i."Location" as "aisle", i.Barcode as "drug-id", sum(f.BQty) as "bqty" FROM "prod2-generico"."prod2-generico".fifo f left join "prod2-generico"."prod2-generico".item i on f.Itemc = i.code WHERE f.Acno = 59353 and i.barcode !~'[^0-9]' GROUP by f.Itemc , i.name , i.Barcode, i."location" HAVING sum(f.BQty)> 0 order by f.itemc asc """ npi_wh = rs_db.get_df(npi_wh_query) logger.info("Fetched NPI in WH - balance quantity -{}".format(int(sum(npi_wh['bqty'])))) npi_wh['bqty'] = npi_wh['bqty'].apply(pd.to_numeric, errors='ignore').astype('Int64') npi_wh['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') # ============================================================================= # Writing table to RS # ============================================================================= schema = 'prod2-generico' table_name = 'npi-inv-at-wh-sns' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) status1 = False if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' delete from "{schema}"."{table_name}" where date("updated-at")<date(dateadd(d,-30,current_date)) ''' rs_db_write.execute(truncate_query) logger.info(str(table_name) + ' table 30 days + old data deleted') truncate_query = f''' delete from "{schema}"."{table_name}" where date("updated-at")=date(current_date) ''' rs_db_write.execute(truncate_query) logger.info( str(table_name) + 'table data deleted for current date to avoid duplicate entries in case of multiple entries') s3.write_df_to_db(df=npi_wh[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(str(table_name) + ' table uploaded') status1 = True if status1 is True: status = 'Success' else: status = 'Failed' # ============================================================================= # Sending Email # ============================================================================= # logger.close() end_time = datetime.datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) logger.info('min_to_complete_job - ' + str(min_to_complete)) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name} table updated", mail_body=f"{table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/npi/npi-inv-at-wh-sns.py
npi-inv-at-wh-sns.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MSSql from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import datetime import argparse import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() mssql = MSSql(connect_via_tunnel=False) connection = mssql.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) today_date = start_time.strftime('%Y-%m-%d') logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) # ============================================================================= # Fetching total return created as npi-salebale # ============================================================================= redshift_returns_query = """ select * from ( select row_number() over(partition by ri1.id order by ri1.id desc, nvl(nd.id, 0) desc, nvl(nci."check-id", 0) desc) as "row", case when rtd1."store-id" = 111 then 'Return-via-Zippin-Central' when nd.id is null then 'store-random-return' else 'normal-npi-return' end as "type-of-npi-return", nd.id as "nd-id", case when nd.id is not null then nci."check-id" else null end as "check-id", case when nd.id is not null then nci.expected else null end as "expected", case when nd.id is not null then nci.accounted else null end as "accounted", case when nd.id is not null then nci.scanned else null end as "scanned", case when nd.id is not null then nci."created-by" else null end as "check-created-by", case when nd.id is not null then nci."created-at" else null end as "check-created-at", case when nd.id is not null then nc."type" else null end as "npi-type", nd."created-at" as "npi-added-in-store-at", rtd1."store-id" , s.name as "store-name", s."franchisee-id" , f.name as "franchise-name", ri1."inventory-id" , -- i1."batch-number" , d."drug-name" , d."type" as "drug-type", -- i1.expiry , i1.barcode , i1."drug-id" , rs.name as "return-to-dc-wh", rtd1.id as "return-id", ri1.id as "return-item-id", rtd1."created-at" as "store-return-created-at", ri1."returned-quantity" as "return-qty", ri1.net as "net-value", ri1.taxable as "net-taxable", ri1."return-reason" as "return-reason", ri1.status as "return-status", dn1.status as "DN-status", dn1.serial as "dn-number", dn1."net-value" as "DN-Net", dn1."created-at" as "DN-Saved-at", dn1."dispatched-at" as "DN-Dispatched-at", dn1."received-at" as "DN-Received-AT", dn1."received-by" as "DN-Received-by", dn1."approved-at" as "dn-approved-at", dn1."settled-at" as "dn-settled-at", dn1."accounted-at" as "dn-accounted-at", dn1."rejected-at" as "dn-rejected-at", dn1."created-by" as "dn-created-by", dn1."approved-by" as "dn-approved-by", dn1."rejected-by" as "dn-rejected-by", dn1."settled-by" as "dn-settled-by", dn1."accounted-by" as "dn-accounted-by", rit."transfer-note-no" , rit."inventory-transferred" , rit."transfer-dc-id" , rit."wms-transfer-id" , rit."transferred-at" as "rit-transferred-at" , split_part(rit."wms-transfer-id", '-', 6)as "mysql-srlno", case when ri1.status = 'saved' then 'Store Return Saved' when ri1.status = 'approved' and dn1.status is null then 'Store Return Saved' when ri1.status = 'approved' and dn1.status = 'saved' then 'Store DN Saved' when ri1.status = 'approved' and dn1.status = 'dispatched' then 'DN Dispatched' when ri1.status = 'approved' and dn1.status = 'received' then 'DN Received' when rit.id is not null and rit."transfer-dc-id" = 256 then 'Transferred to Expiry' when rit.id is not null and rit."transfer-dc-id" = 255 then 'Transferred to WMS' when rit.id is null and ri1.status = 'settled' and dn1.status = 'settled' then 'Settled Without transfer' when rit.id is not null and rit."transfer-dc-id" is null and ri1.status = 'settled' and dn1.status = 'settled' then 'Transferred location unknown - Settled' when ri1.status = 'discarded' then 'Discarded' else 'status issue' end as "Comprehensive-status" from "prod2-generico"."return-items-1" ri1 left join "prod2-generico"."returns-to-dc-1" rtd1 on ri1."return-id" = rtd1.id left join "prod2-generico"."npi-check-items" nci on nci."inventory-id" = ri1."inventory-id" and nci.status = 'inventory-check-completed' and nci."created-at" <= ri1."approved-at" left join "prod2-generico"."npi-check" nc on nci."check-id" = nc.id and nc."store-id" = rtd1."store-id" left join "prod2-generico"."npi-drugs" nd on nc.id = nd."npi-check-id" and nci."drug-id" = nd."drug-id" and nc."store-id" = nd."store-id" left join "prod2-generico"."inventory-1" i1 on ri1."inventory-id" = i1.id -- and nd."store-id" = i1."store-id" -- and rtd1."store-id" = i1."store-id" -- and ri1."inventory-id" = i1.id left join "prod2-generico"."debit-note-items-1" dni1 on ri1.id = dni1."item-id" and dni1."is-active" != 0 left join "prod2-generico"."debit-notes-1" dn1 on dni1."debit-note-id" = dn1.id left join "prod2-generico"."return-item-transfers" rit on ri1.id = rit."return-item-id" left join "prod2-generico".stores s on rtd1."store-id" = s.id left join "prod2-generico".drugs d on i1."drug-id" = d.id left join "prod2-generico".franchisees f on s."franchisee-id" = f.id left join "prod2-generico".stores rs on rtd1."dc-id" = rs.id left join "prod2-generico"."return-items-1" ri1ref on ri1."return-item-reference" = ri1ref.id where ((ri1."return-reason" = 'reason-npi-saleable') or ((ri1."return-reason" = 'reason-npi-non-saleable') and (ri1ref."return-reason" = 'reason-npi-saleable'))) and ri1.status not in ('deleted', 'amended') and (dn1.id is null or dn1."is-internal-debit-note" != 1) and (dn1.status is null or dn1.status not in ('rejected', 'transferred')) order by ri1.id desc)a where a."row" = 1 """ redshift_returns = rs_db.get_df(redshift_returns_query) logger.info("Fetched Redshift returns") logger.info(f"redshift_returns - line items - {len(redshift_returns)}") other_transferred = redshift_returns[redshift_returns['transfer-dc-id']!=255] npi_transferred = redshift_returns[redshift_returns['transfer-dc-id']==255] logger.info(f"npi_transferred - line items - {len(npi_transferred)}") # ============================================================================= # Connecting redshift returns to wms via fifo (psrlnotrf-barcode) # ============================================================================= wms_fifo_query = """ SELECT f.Psrlno , f.PsrlnoTrf , f.Pbillno , f.Vno , f.Acno, f."wms-drug-id", f."wms-drug-name", f."fifo-tqty", f."fifo-bqty", f."import-status" from ( SELECT COUNT(f.Psrlno) over (partition by f.Pbillno , f.PsrlnoTrf order by f.Psrlno desc range BETWEEN UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING) as "counted-match", f.Psrlno , f.PsrlnoTrf , f.Pbillno , f.Vno , f.Acno, i.Barcode as 'wms-drug-id', i.name as 'wms-drug-name', f.TQty as 'fifo-tqty', f.BQty as 'fifo-bqty', 'imported' as 'import-status' FROM FIFO f left join Item i on f.Itemc = i.code WHERE f.Acno = 59353)f where f."counted-match" = 1 """ wms_fifo = pd.read_sql(wms_fifo_query,connection) logger.info("Fetched Fifo Returns") npi_transferred['barcode'] = npi_transferred['barcode'].apply(pd.to_numeric, errors='ignore').astype('Int64') wms_fifo['PsrlnoTrf']=wms_fifo['PsrlnoTrf'].apply(pd.to_numeric, errors='ignore').astype('Int64') npi_transferred = npi_transferred.merge(wms_fifo,left_on = ['barcode','transfer-note-no'], right_on = ['PsrlnoTrf','Pbillno'],how = 'left') npi_transferred_fifo = npi_transferred[npi_transferred['PsrlnoTrf'].notna()] logger.info(f"npi_transferred_fifo - line items - {len(npi_transferred_fifo)}") npi_transferred_fifo['wms-link'] = 'barcode-psrlnotrf' npi_transferred_notfifo = npi_transferred[npi_transferred['PsrlnoTrf'].isna()] logger.info(f"npi_transferred_not_in_fifo - line items - {len(npi_transferred_notfifo)}") # ============================================================================= # Connecting Items which are not imported yet # ============================================================================= wms_apsync_query = """ SELECT f.Psrlno, f.Vno from ( SELECT Psrlno , Vno , row_number() over (partition by asbt.Psrlno , asbt.Vno order by asbt.Psrlno desc ) as "row" FROM AP_SyncBrTrf asbt)F WHERE f."row"=1 """ wms_apsync = pd.read_sql(wms_apsync_query,connection) logger.info("Fetched AP_SyncBrTrf Returns") wms_apsync['Vno']=wms_apsync['Vno'].apply(pd.to_numeric, errors='ignore').astype('Int64') npi_transferred_notfifo['transfer-note-no'] = npi_transferred_notfifo['transfer-note-no'].apply(pd.to_numeric, errors='ignore').astype('Int64') wms_apsync['Psrlno']=wms_apsync['Psrlno'].apply(pd.to_numeric, errors='ignore').astype('Int64') npi_transferred_notfifo['barcode'] = npi_transferred_notfifo['barcode'].apply(pd.to_numeric, errors='ignore').astype('Int64') npi_transferred_notfifo = npi_transferred_notfifo.merge(wms_apsync,left_on = ['barcode','transfer-note-no'], right_on=['Psrlno','Vno'],how = 'left',suffixes = ['','-sync']) npi_transferred_import_pending = npi_transferred_notfifo[npi_transferred_notfifo['Psrlno-sync'].notna()] npi_transferred_import_pending['import-status'] = 'import-pending' npi_transferred_import_pending['wms-link'] = 'import-pending' logger.info(f"npi_transferred_import_pending - line items - {len(npi_transferred_import_pending)}") npi_transferred_issue = npi_transferred_notfifo[npi_transferred_notfifo['Psrlno-sync'].isna()] logger.info(f"npi_transferred_issue - line items - {len(npi_transferred_issue)}") # ============================================================================= # Connecting Fifi (psrlnotrf-innventory-id) # ============================================================================= wms_fifo['Pbillno']=wms_fifo['Pbillno'].apply(pd.to_numeric, errors='ignore').astype('Int64') npi_transferred_issue = npi_transferred_issue.merge(wms_fifo,left_on = ['inventory-id','transfer-note-no'], right_on = ['PsrlnoTrf','Pbillno'],how = 'left', suffixes =['','_inventory_match'] ) conditions = [(npi_transferred_issue['Psrlno_inventory_match'].notna())] choices = ['inventory-psrlnotrf'] npi_transferred_issue['wms-link'] = np.select(conditions, choices) npi_transferred_issue['Psrlno'] = npi_transferred_issue['Psrlno_inventory_match'] npi_transferred_issue['PsrlnoTrf'] = npi_transferred_issue['PsrlnoTrf_inventory_match'] npi_transferred_issue['Pbillno'] = npi_transferred_issue['Pbillno_inventory_match'] npi_transferred_issue['Vno'] = npi_transferred_issue['Vno_inventory_match'] npi_transferred_issue['Acno'] = npi_transferred_issue['Acno_inventory_match'] npi_transferred_issue['wms-drug-id'] = npi_transferred_issue['wms-drug-id_inventory_match'] npi_transferred_issue['wms-drug-name'] = npi_transferred_issue['wms-drug-name_inventory_match'] npi_transferred_issue['fifo-tqty'] = npi_transferred_issue['fifo-tqty_inventory_match'] npi_transferred_issue['fifo-bqty'] = npi_transferred_issue['fifo-bqty_inventory_match'] npi_transferred_issue['import-status'] = npi_transferred_issue['import-status_inventory_match'] npi_transferred_issue = npi_transferred_issue.drop(['Psrlno_inventory_match', 'PsrlnoTrf_inventory_match', 'Pbillno_inventory_match', 'Vno_inventory_match', 'Acno_inventory_match', 'wms-drug-id_inventory_match', 'wms-drug-name_inventory_match', 'fifo-tqty_inventory_match', 'fifo-bqty_inventory_match', 'import-status_inventory_match'], axis=1) npi_transferred_inv_match = npi_transferred_issue[npi_transferred_issue['PsrlnoTrf'].notna()] logger.info(f"npi_transferred_inv_match - line items - {len(npi_transferred_inv_match)}") npi_transferred_issue = npi_transferred_issue[npi_transferred_issue['PsrlnoTrf'].isna()] logger.info(f"npi_transferred_issue - line items - {len(npi_transferred_issue)}") # ============================================================================= # Connecting Items by transfer note and drug id (where there is single drug for entire transfer note) # ============================================================================= npi_transferred_issue['drug-transfernote'] = npi_transferred_issue['drug-id'].astype('str') + '-' + npi_transferred_issue['transfer-note-no'].astype('str') durg_transfernote = tuple(map(str,npi_transferred_issue['drug-transfernote'].unique())) wms_transfer_drug_query = """ SELECT f.Psrlno , f.PsrlnoTrf , f.Pbillno , f.Vno , f.Acno, f."wms-drug-id", f."wms-drug-name", f."fifo-tqty", f."fifo-bqty", f."import-status" from ( SELECT COUNT(f.Psrlno) over (partition by f.Pbillno , i.Barcode order by f.Psrlno desc range BETWEEN UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING) as "counted-match", f.Psrlno , f.PsrlnoTrf , f.Pbillno , f.Vno , f.Acno, i.Barcode as 'wms-drug-id', i.name as 'wms-drug-name', f.TQty as 'fifo-tqty', f.BQty as 'fifo-bqty', 'imported' as 'import-status' FROM FIFO f left join Item i on f.Itemc = i.code WHERE f.Acno = 59353 and f.TQty > 0 and concat(i.Barcode, '-', f.Pbillno) in {durg_transfernote})f where f."counted-match" = 1 """.format(durg_transfernote=durg_transfernote) wms_transfer_drug = pd.read_sql(wms_transfer_drug_query,connection) logger.info("Fetched data for join based on transfer note and drug id Returns") wms_transfer_drug['wms-drug-id'] = wms_transfer_drug['wms-drug-id'].apply(pd.to_numeric, errors='ignore').astype('Int64') wms_transfer_drug['Pbillno'] = wms_transfer_drug['Pbillno'].apply(pd.to_numeric, errors='ignore').astype('Int64') npi_transferred_issue = npi_transferred_issue.merge(wms_transfer_drug,left_on = ['drug-id','transfer-note-no'], right_on = ['wms-drug-id','Pbillno'], how ='left', suffixes = ['','_drug_transfernote']) conditions = [(npi_transferred_issue['Psrlno_drug_transfernote'].notna())] choices = ['drug-transfernote'] npi_transferred_issue['wms-link'] = np.select(conditions, choices) npi_transferred_issue['Psrlno'] = npi_transferred_issue['Psrlno_drug_transfernote'] npi_transferred_issue['PsrlnoTrf'] = npi_transferred_issue['PsrlnoTrf_drug_transfernote'] npi_transferred_issue['Pbillno'] = npi_transferred_issue['Pbillno_drug_transfernote'] npi_transferred_issue['Vno'] = npi_transferred_issue['Vno_drug_transfernote'] npi_transferred_issue['Acno'] = npi_transferred_issue['Acno_drug_transfernote'] npi_transferred_issue['wms-drug-id'] = npi_transferred_issue['wms-drug-id_drug_transfernote'] npi_transferred_issue['wms-drug-name'] = npi_transferred_issue['wms-drug-name_drug_transfernote'] npi_transferred_issue['fifo-tqty'] = npi_transferred_issue['fifo-tqty_drug_transfernote'] npi_transferred_issue['fifo-bqty'] = npi_transferred_issue['fifo-bqty_drug_transfernote'] npi_transferred_issue['import-status'] = npi_transferred_issue['import-status_drug_transfernote'] npi_transferred_issue = npi_transferred_issue.drop(['Psrlno_drug_transfernote', 'PsrlnoTrf_drug_transfernote', 'Pbillno_drug_transfernote', 'Vno_drug_transfernote', 'Acno_drug_transfernote', 'wms-drug-id_drug_transfernote', 'wms-drug-name_drug_transfernote', 'fifo-tqty_drug_transfernote', 'fifo-bqty_drug_transfernote', 'import-status_drug_transfernote'], axis=1) npi_transferred_drug_transfer_note = npi_transferred_issue[npi_transferred_issue['Psrlno'].notna()] logger.info(f"npi_transferred_drug_transfer_note - line items - {len(npi_transferred_drug_transfer_note)}") npi_transferred_issue = npi_transferred_issue[npi_transferred_issue['Psrlno'].isna()] logger.info(f"npi_transferred_issue - line items - {len(npi_transferred_issue)}") # ============================================================================= # Connecting by salepurchase2 Vtype - BR, Pbillno - Transfernote-no, srlno - wms-transfer-id's last number # ============================================================================= npi_transferred_issue['mysql-pbillno-srlno'] = npi_transferred_issue['transfer-note-no'].astype(str) + '-' + npi_transferred_issue['mysql-srlno'].astype(str) sp_list = tuple(map(str,npi_transferred_issue['mysql-pbillno-srlno'].unique())) salepurchase2_query = """ SELECT f.Psrlno , f.PsrlnoTrf , f.Pbillno , f.Vno , f.Acno, f."wms-drug-id", f."wms-drug-name", f."fifo-tqty", f."fifo-bqty", f."import-status", f."wms-srlno" from ( SELECT sp.Psrlno , f.PsrlnoTrf, sp.Pbillno , f.Vno , f.Acno , i.Barcode as 'wms-drug-id', i.name as 'wms-drug-name', f.TQty as 'fifo-tqty', f.BQty as 'fifo-bqty', 'imported' as 'import-status', sp.srlno as 'wms-srlno', COUNT(sp.Psrlno) over (partition by sp.Pbillno , sp.srlno order by sp.Psrlno desc range BETWEEN UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING) as "counted-match" FROM SalePurchase2 sp left join Item i on sp.Itemc = i.code left join FIFO f on f.Psrlno = sp.Psrlno WHERE sp.Vtype = 'BR' -- and sp.Pbillno = transfer_note -- and i.Barcode = drug_id -- and sp.srlno = transfer_end_number -- and f.PsrlnoTrf = barcode -- and CONCAT(sp.Pbillno, '-', sp.srlno) in {list_sp} ) f WHERE f."counted-match" = 1 """ salepurchase2 = pd.read_sql(salepurchase2_query ,connection) logger.info("Fetched Salepurchase2 data with Vtype 'BR") salepurchase2['Pbillno-srlno'] = salepurchase2['Pbillno'].astype(str) +'-' + salepurchase2['wms-srlno'].astype(str) salepurchase2 = salepurchase2[salepurchase2['Pbillno-srlno'].isin(sp_list)] salepurchase2['Pbillno'] = salepurchase2['Pbillno'].apply(pd.to_numeric, errors='ignore').astype('Int64') salepurchase2['wms-srlno'] = salepurchase2['wms-srlno'].astype(str) npi_transferred_issue['drug-id'] = npi_transferred_issue['drug-id'].astype(str) npi_transferred_issue = npi_transferred_issue.merge(salepurchase2,left_on = ['transfer-note-no','drug-id','mysql-srlno'], right_on = ['Pbillno','wms-drug-id','wms-srlno'], how='left', suffixes =['','-sp2']) npi_transferred_issue['drug-id'] = npi_transferred_issue['drug-id'].astype(int) conditions = [(npi_transferred_issue['Psrlno-sp2'].notna())] choices = ['sp2-pbillno-srlno'] npi_transferred_issue['wms-link'] = np.select(conditions, choices) npi_transferred_issue['Psrlno'] = npi_transferred_issue['Psrlno-sp2'] npi_transferred_issue['PsrlnoTrf'] = npi_transferred_issue['PsrlnoTrf-sp2'] npi_transferred_issue['Pbillno'] = npi_transferred_issue['Pbillno-sp2'] npi_transferred_issue['Vno'] = npi_transferred_issue['Vno-sp2'] npi_transferred_issue['Acno'] = npi_transferred_issue['Acno-sp2'] npi_transferred_issue['wms-drug-id'] = npi_transferred_issue['wms-drug-id-sp2'] npi_transferred_issue['wms-drug-name'] = npi_transferred_issue['wms-drug-name-sp2'] npi_transferred_issue['fifo-tqty'] = npi_transferred_issue['fifo-tqty-sp2'] npi_transferred_issue['fifo-bqty'] = npi_transferred_issue['fifo-bqty-sp2'] npi_transferred_issue['import-status'] = npi_transferred_issue['import-status-sp2'] npi_transferred_issue = npi_transferred_issue.drop(['Psrlno-sp2', 'PsrlnoTrf-sp2', 'Pbillno-sp2', 'Vno-sp2', 'Acno-sp2', 'wms-drug-id-sp2', 'wms-drug-name-sp2', 'fifo-tqty-sp2', 'fifo-bqty-sp2', 'import-status-sp2', 'mysql-pbillno-srlno', 'wms-srlno'], axis=1) npi_transferred_sp2 = npi_transferred_issue[npi_transferred_issue['Psrlno'].notna()] logger.info(f"npi_transferred_sp2 - line items - {len(npi_transferred_sp2)}") npi_transferred_issue = npi_transferred_issue[npi_transferred_issue['Psrlno'].isna()] logger.info(f"npi_transferred_issue - line items - {len(npi_transferred_issue)}") # ============================================================================= # Collating total npi wms transferred returns # ============================================================================= conditions = [(npi_transferred_issue['Psrlno'].isna())] choices = ['link-issue'] npi_transferred_issue['wms-link'] = np.select(conditions, choices) npi_returns = pd.concat([npi_transferred_fifo ,npi_transferred_import_pending, npi_transferred_inv_match, npi_transferred_drug_transfer_note, npi_transferred_sp2,npi_transferred_issue]) logger.info(f"npi_returns - Total line items - {len(npi_returns)}") logger.info(f"percentage-issue (return-item-wise)- {round((len(npi_transferred_issue)/len(npi_returns))*100,2)}%") # ============================================================================= # Adding liquidation data # ============================================================================= psrlno = tuple(map(int,npi_returns[npi_returns['Psrlno'].notna()]['Psrlno'].unique())) liquidation_query = """ SELECT sp.Psrlno , sum(sp.Qty) as 'liquidated-quantity' FROM SalePurchase2 sp left join fifo f on sp.Psrlno = f.Psrlno WHERE f.Acno = 59353 and sp.Vtype = 'SB' GROUP by sp.Psrlno """ liquidation = pd.read_sql(liquidation_query,connection) logger.info("Fetched liquidation data") npi_returns = npi_returns.merge(liquidation,on ='Psrlno', how = 'left' ) # ============================================================================= # Adding Purchase Expiry data # ============================================================================= pe_query = """ SELECT sum(sppe.Qty) as 'purchase-expiry', spge.Psrlno FROM SalePurchase2 sppe left join BrExp be on sppe.ChlnSrlno = be.BeSrlno left join SalePurchase2 spge on spge.Vtype = 'GE' and spge.Vno = be.Vno and be.Itemc = spge.Itemc and spge.ScmPer = be.BeSrlno left join FIFO f on spge.Psrlno = f.Psrlno WHERE sppe.Vtype = 'PE' and sppe.Acno = 59353 and f.TQty != 0 GROUP by spge.Psrlno """.format(psrlno=psrlno) purchase_expiry = pd.read_sql(pe_query,connection) logger.info("Fetched purchase_expiry data") npi_returns = npi_returns.merge(purchase_expiry,on ='Psrlno', how = 'left' ) if len(npi_returns)==len(npi_transferred): logger.info('wms-transferred-line-matched') else: logger.info('issue-wms-transferred-line-match') # ============================================================================= # Collating and creating table for upload # ============================================================================= return_npi_saleable = pd.concat([other_transferred,npi_returns]) logger.info(f"return_npi_saleable - Total line items - {len(return_npi_saleable)}") return_npi_saleable.columns = return_npi_saleable.columns.str.lower() return_npi_saleable[['acno','vno','fifo-bqty','fifo-tqty','inventory-transferred','liquidated-quantity','purchase-expiry','transfer-dc-id','store-id','psrlno','psrlnotrf','check-id','return-id','expected','accounted','scanned','franchisee-id']] = return_npi_saleable[['acno','vno','fifo-bqty','fifo-tqty','inventory-transferred','liquidated-quantity','purchase-expiry','transfer-dc-id','store-id','psrlno','psrlnotrf','check-id','return-id','expected','accounted','scanned','franchisee-id']].apply(pd.to_numeric, errors='ignore').astype('Int64') return_npi_saleable[['dn-net','net-taxable','net-value']] = return_npi_saleable[['dn-net','net-taxable','net-value']].astype(float) # ============================================================================= # Writing table to RS # ============================================================================= try: schema = 'prod2-generico' table_name = 'npi-returns-tracking' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' delete from "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(str(table_name) + ' table old data deleted') s3.write_df_to_db(df=return_npi_saleable[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(str(table_name) + ' table uploaded') status = True except Exception as error: status = False raise Exception(error) finally: rs_db.close_connection() mssql.close_connection() if status is True: mssg = 'Success' else: mssg = 'Failed' # ============================================================================= # Sending Email # ============================================================================= end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f"{env}-{mssg} : {table_name} table updated", mail_body=f"{table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[])
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/npi/npi-returns-tracking.py
npi-returns-tracking.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-ad', '--analysis_date_parameter', default="NULL", type=str, required=False) parser.add_argument('-adis', '--analysis_date_parameter_inv_sns', default="NULL", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to analysis_date_parameter = args.analysis_date_parameter analysis_date_parameter_inv_sns = args.analysis_date_parameter_inv_sns os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("analysis_date_parameter - " + analysis_date_parameter) logger.info("analysis_date_parameter_inv_sns - " + analysis_date_parameter_inv_sns) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") analysis_date = (datetime.datetime.now(tz=gettz('Asia/Kolkata')) -datetime.timedelta(days=1)).strftime('%Y-%m-%d') analysis_date_sns = (datetime.datetime.now(tz=gettz('Asia/Kolkata')) -datetime.timedelta(days=1)).strftime('%Y-%m-%d') # analysis_date = '2022-05-11' # analysis_date_sns = '2022-05-09' # ============================================================================= # Setting Analysis date # ============================================================================= # analysis_date decides - For which day Shortbook orders need to be evaluated # analysis_date_sns decides - For which day Fifo Inventory is taken # By Default - Yesterdays Order Analysis With Yesterdays FIFO Will be done, To Give Time for orders to bounce if analysis_date_parameter!="NULL": analysis_date = analysis_date_parameter else: analysis_date = analysis_date logger.info('analysis-date - '+ str(analysis_date)) if analysis_date_parameter_inv_sns!="NULL": analysis_date_sns = analysis_date_parameter_inv_sns else: analysis_date_sns = analysis_date_sns logger.info('analysis_date_sns Inventory of this day will be used for analysis - '+ str(analysis_date_sns)) # ============================================================================= # Fetching NPI at WH for today morning # ============================================================================= npi_wh_query = """ select * from "prod2-generico"."npi-inv-at-wh-sns" where date("updated-at") = '{analysis_date}' """.format(analysis_date = analysis_date_sns) whlivenpi= rs_db.get_df(npi_wh_query) logger.info("Fetched NPI in WH - balance quantity -{}".format(int(sum(whlivenpi['bqty'])))) whlivenpi['aisle_number'] = (whlivenpi.loc[:,'aisle'].astype(str).str[1:3]) mask = (whlivenpi['aisle_number'] == '10') | (whlivenpi['aisle_number'] == '11') whlivenpi = whlivenpi[mask] whlivenpi = whlivenpi.groupby(['itemc','name','aisle_number','drug-id']).agg(sum).reset_index() # ============================================================================= # Fetching Shortbook Orders for the day # ============================================================================= drugs = tuple(map(int,(whlivenpi['drug-id'].unique()))) if len(drugs)==0: drugs = [0] drugs= str(list(drugs)).replace('[', '(').replace(']', ')') sb_orders_query = """ select sb.id as "short-book-id", sb."store-id" , sb."drug-name", sb."drug-id" , case when sb."auto-short" = 0 then 'pr' when sb."auto-short" = 1 and "patient-id" = 4480 then 'as' end as "order-type", sb.quantity AS "orderd-quantity", sb."distributor-id", d.name as "distributor-name", case when sb."distributor-id" = 8105 then 'warehouse-order' else 'other-distributor-order' end as "order-source" from "prod2-generico"."short-book-1" sb left join "prod2-generico".distributors d on sb."distributor-id" = d.id where (sb."auto-short" = 0 or (sb."auto-short" = 1 and "patient-id" = 4480)) and "drug-id" in {drugs} and DATE(sb."created-at") = '{analysis_date}' """.format(drugs=drugs, analysis_date=analysis_date) sb_orders= rs_db.get_df(sb_orders_query) logger.info("fetched shortbook orders for analysis date") # ============================================================================= # Checking Error with Fixed Distrubutor tag # ============================================================================= sb_orders['store-drug'] = sb_orders['store-id'].astype(str)+'-'+ sb_orders['drug-id'].astype(str) store_drug = tuple(map(str, (list( sb_orders['store-drug'].unique())))) fixed_distrubutor_query = """ select concat(fd."store-id" , concat('-', fd."drug-id")) as "store-drug-fixed-distributor" from "prod2-generico"."fixed-distributors" fd where active = 1 and "distributor-id" = 8105 and concat(fd."store-id" , concat('-', fd."drug-id")) in {store_drug} group by "drug-id", "store-id" """.format(store_drug=store_drug) fixed_distributor_check = rs_db.get_df(fixed_distrubutor_query) logger.info("Fetched relevant fixed distributor data") sb_orders = sb_orders.merge(fixed_distributor_check,left_on ='store-drug', right_on = 'store-drug-fixed-distributor',how = 'left') def fixed_check(x): if x is None: return 0 else: return 1 sb_orders['fixed-distributor-tag'] = sb_orders['store-drug-fixed-distributor'].apply(fixed_check) sb_orders['dummy'] = 1 del sb_orders['store-drug'] del sb_orders['store-drug-fixed-distributor'] sb_orders_fix_tag = sb_orders sb_orders_fix_tag = sb_orders_fix_tag.groupby(['drug-id','drug-name','order-type']).agg({'dummy':sum, 'fixed-distributor-tag':sum}).reset_index() sb_orders_fix_tag['fixed-distributor-issue-percentage'] = 1 - (sb_orders_fix_tag['fixed-distributor-tag']/sb_orders_fix_tag['dummy']) del sb_orders_fix_tag['dummy'] del sb_orders_fix_tag['fixed-distributor-tag'] def fixed_flag(x): if x> 0: return 1 else: return 0 sb_orders_fix_tag['fixed-distributor-flag'] = sb_orders_fix_tag['fixed-distributor-issue-percentage'].apply(fixed_flag) # ============================================================================= # Fetching shortbook-order logs to check bounce orders # ============================================================================= dist_short_book_ids = tuple(map(int, list( sb_orders['short-book-id'].unique()))) if len(dist_short_book_ids )==0: dist_short_book_ids = [0] dist_short_book_ids = str(list(dist_short_book_ids )).replace('[', '(').replace(']', ')') order_logs_query = """ select "short-book-id" , "ordered-dist-id" , concat(coalesce("ordered-dist-id" ,0),concat('-',coalesce("status",'null'))) as "dist-status" from "prod2-generico"."short-book-order-logs" sbol where "short-book-id" in {dist_short_book_ids} order by sbol.id ASC """.format(dist_short_book_ids=dist_short_book_ids) order_logs= rs_db.get_df(order_logs_query) logger.info("Fetched order logs") order_logs['dist-status'] = order_logs['dist-status'].astype(str) order_logs['ordered-dist-id'] = order_logs['ordered-dist-id'].astype(str) order_logs = order_logs.groupby(['short-book-id']).agg({'dist-status':','.join, 'ordered-dist-id':','.join}).reset_index() order_logs['shortbookid-dist-status'] = str('(') + order_logs['short-book-id'].astype(str)+ str(' ') +order_logs['dist-status'] + str(')') del order_logs['dist-status'] sb_orders= sb_orders.merge(order_logs, on = 'short-book-id', how = 'left') sb_orders = pd.pivot_table(sb_orders, values='orderd-quantity', index=['drug-name','drug-id','order-type','store-id','ordered-dist-id','shortbookid-dist-status'], columns='order-source',aggfunc='sum',fill_value=0).reset_index() sb_orders['total-orders'] = sb_orders['other-distributor-order']+sb_orders['warehouse-order'] sb_orders['store-id'] = sb_orders['store-id'].astype(str) sb_orders = sb_orders.groupby(['drug-id','drug-name','order-type']).agg({'store-id':','.join, 'ordered-dist-id':','.join, 'shortbookid-dist-status':','.join, 'other-distributor-order':sum, 'warehouse-order':sum, 'total-orders':sum}).reset_index() sb_orders = sb_orders.merge(sb_orders_fix_tag, on = ['drug-id','drug-name','order-type'], how = 'left') def order_check(x): if '8105' in x: return 1 else: return 0 sb_orders['ordered-flag'] = sb_orders['ordered-dist-id'].apply(order_check) # ============================================================================= # extra-order-to-diff-distrubutor Check # ============================================================================= whlivenpi['drug-id'] = whlivenpi['drug-id'].apply(pd.to_numeric, errors='ignore').astype('Int64') sb_orders = sb_orders.merge(whlivenpi[['drug-id','bqty']],on='drug-id',how='left') sb_orders.loc[sb_orders['bqty']>=sb_orders['total-orders'] , 'extra-order-to-diff-distrubutor'] = sb_orders['other-distributor-order'] sb_orders.loc[(sb_orders['total-orders'] >sb_orders['bqty']) & (sb_orders['other-distributor-order']>(sb_orders['total-orders']-sb_orders['bqty'])) , 'extra-order-to-diff-distrubutor'] = sb_orders['other-distributor-order'] - (sb_orders['total-orders']-sb_orders['bqty']) sb_orders.loc[(sb_orders['total-orders'] >sb_orders['bqty']) & (sb_orders['other-distributor-order']<(sb_orders['total-orders']-sb_orders['bqty'])) , 'extra-order-to-diff-distrubutor'] = 0 sb_orders['extra-order-to-diff-distrubutor'] = sb_orders['extra-order-to-diff-distrubutor'].apply(pd.to_numeric, errors='ignore').astype('Int64') conditions = [((sb_orders['extra-order-to-diff-distrubutor']>0)&(sb_orders['ordered-flag']==1))] choices = [1] sb_orders['bounce-flag'] = np.select(conditions, choices, default = 0) conditions = [((sb_orders['extra-order-to-diff-distrubutor']>0)&(sb_orders['fixed-distributor-flag']==1))] choices = [1] sb_orders['fixed-distributor-flag'] = np.select(conditions, choices, default = 0) conditions = [((sb_orders['extra-order-to-diff-distrubutor']>0)&(sb_orders['fixed-distributor-flag']==1))] choices = [sb_orders['fixed-distributor-issue-percentage']] sb_orders['fixed-distributor-issue-percentage'] = np.select(conditions, choices, default = 0) sb_orders.rename(columns={'store-id':'store-ids'},inplace = True) del sb_orders['ordered-dist-id'] del sb_orders['ordered-flag'] sb_orders['extra-order-to-diff-distrubutor'] = sb_orders['extra-order-to-diff-distrubutor'].fillna(0) conditions = [sb_orders['extra-order-to-diff-distrubutor']==0, ((sb_orders['extra-order-to-diff-distrubutor']>0)&(sb_orders['bounce-flag']==1)), ((sb_orders['extra-order-to-diff-distrubutor']>0)&(sb_orders['fixed-distributor-flag']==1))] choices = ['no-issue','bounce-issue','fixed-distributor-table-issue'] sb_orders['issue-type'] = np.select(conditions, choices, default = 'different-issue') sb_orders['analysis-date'] = analysis_date sb_orders = sb_orders[['drug-id','drug-name','order-type','store-ids','shortbookid-dist-status','bqty','warehouse-order','other-distributor-order','total-orders','extra-order-to-diff-distrubutor','bounce-flag','fixed-distributor-flag','fixed-distributor-issue-percentage','issue-type','analysis-date']] logger.info("table is ready to be written in Redshift") # ============================================================================= # Writing table to RS # ============================================================================= schema = 'prod2-generico' table_name = 'npi-missed-order-analysis' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) status1 = False if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = ''' delete from "{schema}"."{table_name}" where date("analysis-date") = '{analysis_date}' '''.format(schema=schema,table_name=table_name,analysis_date=analysis_date) rs_db_write.execute(truncate_query) logger.info(str(table_name) + ' table deleted') s3.write_df_to_db(df=sb_orders[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(str(table_name) + ' table uploaded') status1 = True if status1 is True: status = 'Success' else: status = 'Failed' # ============================================================================= # Sending Email # ============================================================================= # logger.close() end_time = datetime.datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) logger.info('min_to_complete_job - ' + str(min_to_complete)) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name} table updated", mail_body=f"{table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/npi/npi-missed-order-analysis.py
npi-missed-order-analysis.py
"" import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sku', '--sku_to_add_per_round', default=18, type=int, required=False) parser.add_argument('-si', '--store_id', default=4, type=int, required=False) parser.add_argument('-ccf', '--cold_chain_flag', default=1, type=str, required=False) parser.add_argument('-dts', '--date_to_start', default='2022-11-01', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to sku_to_add_per_round = args.sku_to_add_per_round store_id = args.store_id cold_chain_flag = args.cold_chain_flag date_to_start = args.date_to_start store_id = int(store_id) os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() mysql_read = MySQL() mysql_read.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("sku_to_add_per_round - " + str(sku_to_add_per_round)) logger.info("store_id_to_close - " + str(store_id)) logger.info("cold_chain_flag - " + str(cold_chain_flag)) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() store_last_sataus_query = """ select * from ( select row_number() over (partition by nd.`store-id` order by nd.`created-at` desc ) as `row`, nd.`store-id`, nd.status , nd.`created-at` from `npi-drugs` nd where nd.`store-id` = {store_id}) nd where nd.`row` = 1 """.format(store_id=store_id) store_last_sataus = pd.read_sql_query(store_last_sataus_query, mysql_read.connection) if store_last_sataus.loc[0,'status']=='completed': # Getting inventory detail prod_inventory_query = ''' select i."store-id" , i."drug-id" , d."drug-name" , d."pack-form" , d."type" , d."cold-chain" , sum(i.quantity) as "quantity", sum(i.quantity + i."locked-for-check" + i."locked-for-audit" + i."locked-for-return" + i."locked-for-transfer" ) as "quantity-available-physically-at-store" from "prod2-generico"."prod2-generico"."inventory-1" i left join "prod2-generico"."prod2-generico".stores s on i."store-id" = s.id left join "prod2-generico"."prod2-generico".drugs d on d.id = i."drug-id" left join "prod2-generico"."prod2-generico"."invoices-1" i2 on i."franchisee-invoice-id" = i2.id where i."store-id" = {store_id} and i2."franchisee-invoice" = 0 and (i.quantity >0 -- or i."locked-for-check" >0 -- or i."locked-for-audit" >0 -- or i."locked-for-return" >0 -- or i."locked-for-transfer" >0 ) group by i."store-id" , i."drug-id" , d."drug-name", d."pack-form" , d."type" , d."cold-chain" '''.format(store_id=store_id) prod_inventory = rs_db.get_df(prod_inventory_query) store_assortment_query = """ SELECT sda."store-id" , sda."drug-id" FROM "prod2-generico"."store-drug-assortment" sda WHERE sda."is-active" = 1 and sda."store-id" ={store_id} """.format(store_id=store_id) store_assortment = rs_db.get_df(store_assortment_query) drugs_in_assortment = tuple(map(int, list(store_assortment['drug-id'].unique()))) npi_drug_list = prod_inventory[~prod_inventory['drug-id'].isin(drugs_in_assortment)] npi_remaning = False if len(npi_drug_list)== 0: npi_remaning = False else: npi_remaning = True logger.info('npi-present-check-1') store_drug_prod_query = ''' select "store-id" , "drug-id", 1 as "dummy" from "prod2-generico"."npi-drugs" nd where date(nd."created-at") >= date(dateadd(d,-15,current_date)) and nd."store-id" = {store_id} '''.format(store_id=store_id,date_to_start=date_to_start) store_drug_prod = rs_db.get_df(store_drug_prod_query) # merging prod and DSS to avoid duplicate entries npi_drug_list = npi_drug_list.merge(store_drug_prod, how='left', on=['store-id', 'drug-id']) npi_drug_list = npi_drug_list.replace(np.nan, 0) npi_drug_list = npi_drug_list[npi_drug_list.dummy == 0] if len(npi_drug_list) == 0: npi_remaning = False else: npi_remaning = True logger.info('npi-present-check-2') choice = [npi_drug_list['type'] == 'high-value-ethical', npi_drug_list['type'] == 'ethical', npi_drug_list['type'] == 'generic', npi_drug_list['type'] == 'ayurvedic', npi_drug_list['type'] == 'surgical', npi_drug_list['type'] == 'category-4', npi_drug_list['type'] == 'otc', npi_drug_list['type'] == 'general', npi_drug_list['type'] == 'baby-food', npi_drug_list['type'] == 'baby-product', npi_drug_list['type'] == 'glucose-test-kit', npi_drug_list['type'] == 'discontinued-products', npi_drug_list['type'] == 'banned'] select = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] npi_drug_list['sort-type'] = np.select(choice, select, default=999) choice = [npi_drug_list['pack-form'] == 'STRIP', npi_drug_list['pack-form'] == 'PACKET', npi_drug_list['pack-form'] == 'SACHET', npi_drug_list['pack-form'] == 'TUBE', npi_drug_list['pack-form'] == 'BOTTLE', npi_drug_list['pack-form'] == 'TETRA PACK', npi_drug_list['pack-form'] == 'PRE FILLED SYRINGE', npi_drug_list['pack-form'] == 'VIAL', npi_drug_list['pack-form'] == 'CARTRIDGE', npi_drug_list['pack-form'] == 'JAR', npi_drug_list['pack-form'] == 'SPRAY BOTTLE', npi_drug_list['pack-form'] == 'BOX', npi_drug_list['pack-form'] == 'TIN', npi_drug_list['pack-form'] == 'AMPOULE', npi_drug_list['pack-form'] == 'KIT'] select = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] npi_drug_list['sort-pack-form'] = np.select(choice, select, default=999) npi_drug_list.sort_values(['cold-chain', 'sort-pack-form', 'drug-name','sort-type'], ascending=[True,True,True,True], inplace=True) if int(cold_chain_flag) == 0: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain'] == 0] logger.info('removing cold chain products') elif int(cold_chain_flag) == 2: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain'] == 1] logger.info('considering only cold chain products') else: logger.info('Not caring whether cold chain items are added or not') npi_drug_list = npi_drug_list.head(sku_to_add_per_round).reset_index(drop=True) final_list_npi = npi_drug_list[['store-id', 'drug-id']] mysql_write = MySQL(read_only=False) mysql_write.open_connection() # inserting data into prod logger.info("mySQL - Insert starting") final_list_npi.to_sql(name='npi-drugs', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") mysql_write.close() # npi_added_uri = s3.save_df_to_s3(df=npi_drug_list, file_name='npi_removal_details_{}.csv'.format(cur_date)) if npi_remaning: status = 'added' else: status = 'not-added-because-no-npi' email = Email() email.send_email_file(subject=f"{env} : {store_id} NPI List", mail_body=f"list-{status},{len(final_list_npi)} SKU {status}", to_emails=email_to, file_uris=[]) else: status = 'not-added' email = Email() email.send_email_file(subject=f"{env} : {store_id} NPI List", mail_body=f"list-{status},Previos Status - {store_last_sataus.loc[0,'status']}", to_emails=email_to, file_uris=[]) rs_db.close_connection() mysql_read.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/npi/assortment_based_npi_push.py
assortment_based_npi_push.py
# ============================================================================= # purpose: NPI REMOVAL CODE # Author: Saurav Maskar # ============================================================================= import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import datetime import argparse import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sku', '--sku_to_add_daily', default=18, type=int, required=False) parser.add_argument('-fsku', '--fofo_sku_to_add_daily', default=50, type=int, required=False) parser.add_argument('-ccf', '--cold_chain_flag', default=0, type=str, required=False) parser.add_argument('-si', '--stores_to_include_if_blank_all', default="NULL", type=str, required=False) parser.add_argument('-se', '--stores_to_exclude_if_blank_none', default="NULL", type=str, required=False) parser.add_argument('-ci', '--city_id_to_include_if_blank_all', default="NULL", type=str, required=False) parser.add_argument('-ce', '--city_id_to_exclude_if_blank_none', default="NULL", type=str, required=False) parser.add_argument('-ff', '--fofo_inclusion_flag', default="1", type=str, required=False) parser.add_argument('-gif', '--goodaid_inclusion_flag', default=1, type=int, required=False) parser.add_argument('-qc', '--quantity_cap', default=70, type=int, required=False) parser.add_argument('-fqc', '--fofo_quantity_cap', default=70, type=int, required=False) parser.add_argument('-rfm', '--read_from_mysql', default=1, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to sku_to_add_daily = args.sku_to_add_daily fofo_sku_to_add_daily = args.fofo_sku_to_add_daily # Cold Chain Parameter Logic - If 0 - Don't add cold chain products, IF 2 - Only add cold chain product, If 1 - Don't care if cold chain product is added or not cold_chain_flag = args.cold_chain_flag stores_to_include_if_blank_all = args.stores_to_include_if_blank_all stores_to_exclude_if_blank_none = args.stores_to_exclude_if_blank_none city_id_to_include_if_blank_all = args.city_id_to_include_if_blank_all city_id_to_exclude_if_blank_none = args.city_id_to_exclude_if_blank_none fofo_inclusion_flag = args.fofo_inclusion_flag goodaid_inclusion_flag = args.goodaid_inclusion_flag quantity_cap = args.quantity_cap fofo_quantity_cap = args.fofo_quantity_cap read_from_mysql= args.read_from_mysql os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() mysql_read = MySQL() mysql_read.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("sku_to_add_daily - " + str(sku_to_add_daily)) logger.info("fofo_sku_to_add_daily - " + str(sku_to_add_daily)) logger.info("cold_chain_flag - " + str(cold_chain_flag)) logger.info("stores_to_include_if_blank_all - " + str(stores_to_include_if_blank_all)) logger.info("stores_to_exclude_if_blank_none - " + str(stores_to_exclude_if_blank_none)) logger.info("city_id_to_include_if_blank_all - " + str(city_id_to_include_if_blank_all)) logger.info("city_id_to_exclude_if_blank_none - " + str(city_id_to_exclude_if_blank_none)) logger.info("fofo_inclusion_flag - " + str(fofo_inclusion_flag)) logger.info("goodaid_inclusion_flag - " + str(goodaid_inclusion_flag)) logger.info("quantity_cap - " + str(quantity_cap)) logger.info("fofo_quantity_cap - " + str(fofo_quantity_cap)) # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() time_period_to_look_back = cur_date.day + 2 # ============================================================================= # set parameters, to adhere to adhoc request of adding/excluding NPI in mentioned stores only # ============================================================================= parameter_input1 = False parameter_input2 = False parameter_input3 = False parameter_input4 = False # Writng this function so that we can get list of stores irrespective of input format in parameter def fetch_number(list): list2 = [] for i in list: try: list2.append(int(i)) except: pass return list2 if stores_to_include_if_blank_all == 'NULL' and stores_to_exclude_if_blank_none == 'NULL': parameter_input1 = False parameter_input2 = False logger.info('Missing parameters, Taking all stores') else: if stores_to_include_if_blank_all != 'NULL': parameter_input1 = True stores_to_include_if_blank_all = stores_to_include_if_blank_all stores_to_include_if_blank_all = fetch_number(stores_to_include_if_blank_all.split(',')) logger.info('read parameters to include stores, taking included stores only - {}'.format( stores_to_include_if_blank_all)) if stores_to_exclude_if_blank_none != 'NULL': parameter_input2 = True stores_to_exclude_if_blank_none = stores_to_exclude_if_blank_none stores_to_exclude_if_blank_none = fetch_number(stores_to_exclude_if_blank_none.split(',')) logger.info('read parameters to exclude stores, not taking excluded stores - {}'.format( stores_to_exclude_if_blank_none)) if city_id_to_include_if_blank_all == 'NULL' and city_id_to_exclude_if_blank_none == 'NULL': parameter_input3 = False parameter_input4 = False logger.info('Missing parameters, Taking all cities') else: if city_id_to_include_if_blank_all != 'NULL': parameter_input3 = True city_id_to_include_if_blank_all = city_id_to_include_if_blank_all city_id_to_include_if_blank_all = fetch_number(city_id_to_include_if_blank_all.split(',')) logger.info('read parameters to include city, taking included cities only - {}'.format( city_id_to_include_if_blank_all)) if city_id_to_exclude_if_blank_none != 'NULL': parameter_input4 = True city_id_to_exclude_if_blank_none = city_id_to_exclude_if_blank_none city_id_to_exclude_if_blank_none = fetch_number(city_id_to_exclude_if_blank_none.split(',')) logger.info('read parameters to exclude city, not taking excluded cities - {}'.format( city_id_to_exclude_if_blank_none)) # ============================================================================= # NPI Removal Script # ============================================================================= # Getting prod drug detail prod_drugs_query = ''' select id as "drug-id", "drug-name", type, "pack-form", "cold-chain" from "prod2-generico"."drugs" ''' prod_drugs = rs_db.get_df(prod_drugs_query) # getting my sql store_drug list if int(read_from_mysql) == 1: store_drug_prod_query = ''' select `store-id` , `drug-id`, 1 as `dummy` from `prod2-generico`.`npi-drugs` nd where status in ('saved', 'in-progress') or (status = 'completed' and date(nd.`created-at`) > date(DATE_ADD(date(now()) , INTERVAL -{time_period_to_look_back} Day))) '''.format(time_period_to_look_back=time_period_to_look_back) store_drug_prod = pd.read_sql_query(store_drug_prod_query, mysql_read.connection) logger.info('Read store_drug_prod - from Mysql') else: store_drug_prod_query = ''' select "store-id" , "drug-id", 1 as "dummy" from "prod2-generico"."npi-drugs" nd where status in ('saved', 'in-progress') or (status = 'completed' and date(nd."created-at") > date(dateadd(d,-{time_period_to_look_back},current_date))) '''.format(time_period_to_look_back=time_period_to_look_back) store_drug_prod = rs_db.get_df(store_drug_prod_query) logger.info('Read store_drug_prod - from RS') # Getting list of drugs in audit at the moment if int(read_from_mysql) == 1: audit_drug_prod_query = ''' SELECT a.`store-id` , a.`drug-id` , 1 as dummy_audit from ( select b.`store-id` , a.`drug-id` , 1 as dummy, ROW_NUMBER() OVER(PARTITION BY b.`store-id` , a.`drug-id` ORDER BY a.id DESC) as 'row' from `inventory-check-items-1` as a join `inventory-check-1` as b on a.`check-id` = b.id where b.`complete` = 0)a WHERE a.`row` = 1 ''' audit_drug_prod = pd.read_sql_query(audit_drug_prod_query, mysql_read.connection) logger.info('Read audit_drug_prod - from Mysql') else: audit_drug_prod_query = ''' SELECT a."store-id" , a."drug-id" , 1 as dummy_audit from ( select b."store-id" , a."drug-id" , 1 as dummy, ROW_NUMBER() OVER(PARTITION BY b."store-id" , a."drug-id" ORDER BY a.id DESC) as "row" from "prod2-generico"."inventory-check-items-1" as a join "prod2-generico"."inventory-check-1" as b on a."check-id" = b.id where b."complete" = 0)a WHERE a."row" = 1 ''' audit_drug_prod = rs_db.get_df(audit_drug_prod_query) logger.info('Read audit_drug_prod - from RS') # getting store_id list # connection = current_config.data_science_postgresql_conn() # store_list_query = ''' # select distinct store_id # from dead_stock_inventory dsi # where inventory_type = 'Rotate' # ''' # store_list = pd.read_sql_query(store_list_query, connection) # connection.close() store_list_query = ''' select distinct "store-id" from "prod2-generico"."npi-inventory-at-store" nias where "inventory-type" = 'Rotate' and nias."clust-sold-flag" = 0 and nias."shelf-life-more-than-6-months-flag" = 1 ''' store_list = rs_db.get_df(store_list_query) # getting last day store status store_completed = pd.DataFrame() if int(read_from_mysql)==1: store_last_status_query = """ select * from ( select row_number() over (partition by nd.`store-id` order by nd.`created-at` desc ) as `row`, nd.`store-id`, nd.status , nd.`created-at` from `prod2-generico`.`npi-drugs` nd) nd where nd.`row` = 1 """ store_last_status = pd.read_sql_query(store_last_status_query, mysql_read.connection) logger.info('Read store_last_status - from Mysql') else: store_last_status_query = """ select * from ( select row_number() over (partition by nd."store-id" order by nd."created-at" desc ) as "row", nd."store-id", nd.status , nd."created-at" from "prod2-generico"."npi-drugs" nd) nd where nd."row" = 1 """ store_last_status = rs_db.get_df(store_last_status_query) logger.info('Read store_last_status - from RS') store_completed = store_last_status[store_last_status['status']=='completed']['store-id'] store_completed = pd.DataFrame(store_completed,columns=['store-id']) # Checking If any new store is added nd_stores = store_last_status['store-id'].unique() new_stores = pd.DataFrame() for store in store_list['store-id']: if store not in nd_stores: #print(store) store_new = pd.DataFrame([store], columns=['store-id']) new_stores = new_stores.append(store_new) store_completed = pd.concat([store_completed,new_stores]) # Adding city ids and franchise flag to stores store_info_query = ''' select s.id as "store-id", s."franchisee-id" , s."city-id" from "prod2-generico".stores s ''' store_info = rs_db.get_df(store_info_query ) store_completed = store_completed.merge(store_info,on='store-id',how='left') if parameter_input1: store_completed = store_completed[store_completed ['store-id'].isin(stores_to_include_if_blank_all)] if parameter_input2: store_completed = store_completed[~store_completed ['store-id'].isin(stores_to_exclude_if_blank_none)] if parameter_input3: store_completed = store_completed[store_completed['city-id'].isin(city_id_to_include_if_blank_all)] if parameter_input4: store_completed = store_completed[~store_completed['city-id'].isin(city_id_to_exclude_if_blank_none)] if int(fofo_inclusion_flag) == 0: store_completed = store_completed[store_completed['franchisee-id']==1] elif int(fofo_inclusion_flag) == 2: store_completed = store_completed[store_completed['franchisee-id'] != 1] elif int(fofo_inclusion_flag) == 1: store_completed = store_completed del store_completed['city-id'] # for store in store_list['store-id']: # store_completed_query = ''' # select # distinct "store-id" # from # "prod2-generico"."npi-drugs" # where # date("created-at") = # ( # select # Max(date("created-at")) # from # "prod2-generico"."npi-drugs" # where # "store-id"= {store}) # and status = 'completed' # and "store-id"= {store} # '''.format(store=store) # store_completed_1 = rs_db.get_df(store_completed_query) # # if len(store_completed_1)== 0: # new_store = """ # SELECT # DISTINCT nd."store-id" # FROM # "prod2-generico"."npi-drugs" nd # WHERE # nd."store-id" = {store} # """.format(store=store) # new_store = rs_db.get_df(new_store) # # if len(new_store)== 0: # store_completed_1 = pd.DataFrame([store],columns=['store-id']) # # store_completed = store_completed_1.append(store_completed) # getting PG drug list # connection = current_config.data_science_postgresql_conn() # npi_drug_list = """ # select store_id, drug_id, # sum(locked_quantity + quantity) as "total_quantity", # sum(locked_value + value) as "total_value" # from dead_stock_inventory dsi # where inventory_type = 'Rotate' # group by store_id, drug_id # """ # npi_drug_list = pd.read_sql_query(npi_drug_list, connection) # connection.close() npi_drug_list = """ select "store-id", "drug-id", sum("locked-quantity" + "quantity") as "total-quantity", sum("locked-value" + "value") as "total-value" from "prod2-generico"."npi-inventory-at-store" nias where "inventory-type" = 'Rotate' and nias."clust-sold-flag" = 0 and nias."shelf-life-more-than-6-months-flag" = 1 group by "store-id", "drug-id" """ npi_drug_list = rs_db.get_df(npi_drug_list) # merging npi list with drugs table for packform npi_drug_list = npi_drug_list.merge(prod_drugs, how='inner', on='drug-id') # ============================================================================= # Adding Quantity Sold at System level # ============================================================================= drgs = tuple(map(int,npi_drug_list['drug-id'].unique())) s1 = """ select "drug-id", sum("net-quantity") as "system-sales-qty-last-90-days" from "prod2-generico"."sales" sh where date("created-at") >= date(current_date - 90) and date("created-at") <= date(current_date) and "drug-id" in {drgs} group by "drug-id" """.format( drgs=drgs) quantity_sold = rs_db.get_df(s1) npi_drug_list = npi_drug_list.merge(quantity_sold,on = 'drug-id', how ='left') npi_drug_list['system-sales-qty-last-90-days'] = npi_drug_list['system-sales-qty-last-90-days'].fillna(0) # ============================================================================= # System Searched quantity last 90 days # ============================================================================= s2 = """ select "drug-id", sum("search-count-clean") as "system-searched-qty-last-90-days" from "prod2-generico"."cfr-searches-v2" csv2 where date("search-date") >= date(current_date - 90) and date("search-date") <= date(current_date) and "drug-id" in {drgs} group by "drug-id" """.format( drgs=drgs) drugs_searched = rs_db.get_df(s2) npi_drug_list = npi_drug_list.merge(drugs_searched,on = 'drug-id', how ='left') npi_drug_list['system-searched-qty-last-90-days'] = npi_drug_list['system-searched-qty-last-90-days'].fillna(0) npi_drug_list['liquidation-index'] = npi_drug_list['system-sales-qty-last-90-days']*0.8+npi_drug_list['system-searched-qty-last-90-days']*0.2 # GA drugs inclusion flag if int(goodaid_inclusion_flag) == 0: logger.info('removing GA drugs') goodaid_drug_query = ''' select d.id as "drug-id" from "prod2-generico".drugs d where d."company-id" = 6984 ''' goodaid_drugs = rs_db.get_df(goodaid_drug_query) goodaid_drug_id = tuple(map(int, goodaid_drugs['drug-id'].unique())) npi_drug_list = npi_drug_list[~npi_drug_list['drug-id'].isin(goodaid_drug_id)] logger.info('removed GA drugs') else: logger.info('not removing GA drugs') if int(cold_chain_flag) == 0: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain']==0] logger.info('removing cold chain products') elif int(cold_chain_flag) == 2: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain'] == 1] logger.info('considering only cold chain products') else: logger.info('Not caring whether cold chain items are added or not') # merging prod and DSS to avoid duplicate entries npi_drug_list = npi_drug_list.merge(store_drug_prod, how='left', on=['store-id', 'drug-id']) # merging with completed stores npi_drug_list = npi_drug_list.merge(store_completed, how='inner', on=['store-id']) # replaceing null with 0 and extracting 35 rows npi_drug_list = npi_drug_list.replace(np.nan, 0) npi_drug_list = npi_drug_list[npi_drug_list.dummy == 0] # merging with audit drugs to avoid audit drugs entry npi_drug_list = npi_drug_list.merge(audit_drug_prod, how='left', on=['store-id', 'drug-id']) # replaceing null with 0 and extracting 35 rows npi_drug_list = npi_drug_list.replace(np.nan, 0) npi_drug_list = npi_drug_list[npi_drug_list.dummy_audit == 0] npi_drug_list=npi_drug_list[~npi_drug_list['type'].isin(['discontinued-products','banned'])] choice = [npi_drug_list['type'] == 'high-value-ethical', npi_drug_list['type'] == 'ethical', npi_drug_list['type'] == 'generic', npi_drug_list['type'] == 'ayurvedic', npi_drug_list['type'] == 'surgical', npi_drug_list['type'] == 'category-4', npi_drug_list['type'] == 'otc', npi_drug_list['type'] == 'general', npi_drug_list['type'] == 'baby-food', npi_drug_list['type'] == 'baby-product', npi_drug_list['type'] == 'glucose-test-kit', npi_drug_list['type'] == 'discontinued-products', npi_drug_list['type'] == 'banned'] select = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] npi_drug_list['sort-type'] = np.select(choice, select, default=999) npi_drug_list.sort_values(['store-id', 'liquidation-index', 'sort-type', 'pack-form', 'drug-name'], ascending=[True, False, True, True, True], inplace=True) # Adding decided SKU (18 - parameter - sku_to_add_daily) per day npi_drug_list_franchisee = npi_drug_list[npi_drug_list['franchisee-id']!=1] npi_drug_list_coco = npi_drug_list[npi_drug_list['franchisee-id']==1] final_list_franchisee = npi_drug_list_franchisee.groupby('store-id').head(fofo_sku_to_add_daily).reset_index(drop=True) final_list_coco = npi_drug_list_coco.groupby('store-id').head(sku_to_add_daily).reset_index(drop=True) final_list = pd.concat([final_list_franchisee,final_list_coco],sort = True).reset_index(drop=True) # Capping quantity to decided number for outside mumbai(70 - Paramenter - quantity_cap) final_list['total-quantity'] = final_list['total-quantity'].astype(float) final_list['cum_sum_quantity_per_store'] = final_list.groupby(['store-id'])['total-quantity'].cumsum() # Atleast one sku should be added final_list['sku_rank'] = final_list.groupby(['store-id']).cumcount()+1 # Adding city ids # Mumbai citi ids - 1 - Mumbai, 3 - Thane, 2 - Navi Mumbai store_ids = tuple(map(int,final_list['store-id'].unique())) additng_city_id_query = """ select s.id as "store-id", s."city-id", zc."name" as "city-name" from "prod2-generico".stores s left join "prod2-generico"."zeno-city" zc on s."city-id" = zc.id where s.id in {store_ids} """.format(store_ids=store_ids + (0,0)) additng_city_id = rs_db.get_df(additng_city_id_query) final_list = final_list.merge(additng_city_id,how = 'left', on = 'store-id') final_list['city-id'] = final_list['city-id'].astype(int) conditions = [final_list['city-id'].isin([1,2,3]),final_list['sku_rank']==1,final_list['franchisee-id']!=1,final_list['sku_rank']!=1] choices = [1,1,1,final_list['cum_sum_quantity_per_store']] final_list['quantity_cap_index'] = np.select(conditions, choices, default = 0) final_list = final_list[((final_list['franchisee-id']==1) & (final_list['quantity_cap_index']<quantity_cap))|((final_list['franchisee-id']!=1) & (final_list['quantity_cap_index']<fofo_quantity_cap))] logger.info(f'for outside mumbai cities quantity is capped to {quantity_cap}') final_list['created-date'] = cur_date final_list['created-by'] = '[email protected]' final_list_npi = final_list[['store-id', 'drug-id']] expected_data_length_insert = len(final_list_npi) logger.info("mySQL - Resulted data length after insert should be is {}".format(expected_data_length_insert)) schema = 'prod2-generico' table_name = 'npi-removal' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) status1 = False status2 = False if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") s3.write_df_to_db(df=final_list[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(str(table_name) + ' table uploaded') status1 = True if status1: mysql_write = MySQL(read_only=False) mysql_write.open_connection() # inserting data into prod logger.info("mySQL - Insert starting") final_list_npi.to_sql(name='npi-drugs', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") status2 = True npi_added_uri = s3.save_df_to_s3(df=final_list, file_name='npi_removal_details_{}.csv'.format(cur_date)) if status2 is True: status = 'Success' else: status = 'Failed' end_time = datetime.datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name} table updated", mail_body=f"{table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[npi_added_uri]) rs_db.close_connection() mysql_write.close() mysql_read.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/npi/npi-removal.py
npi-removal.py
import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper import helper from zeno_etl_libs.utils.ipc_pmf.ipc_combination_fcst.forecast_main import ipc_comb_forecast from zeno_etl_libs.utils.ipc_pmf.ipc_drug_fcst.forecast_main import ipc_drug_forecast from zeno_etl_libs.utils.ipc_pmf.ipc_combination_fcst.fcst_mapping import fcst_comb_drug_map from zeno_etl_libs.utils.ipc_pmf.safety_stock import safety_stock_calc from zeno_etl_libs.utils.ipc_pmf.post_processing import post_processing from zeno_etl_libs.utils.ipc_pmf.heuristics.recency_corr import fcst_correction from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update def main(debug_mode, reset_stores, reset_date, type_list_comb_lvl, type_list_drug_lvl, v4_active_flag, drug_type_list_v4, read_schema, rs_db_read, write_schema, rs_db_write, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' # Define empty variables if required in case of fail safety_stock_df = pd.DataFrame() df_one_one = pd.DataFrame() df_one_many = pd.DataFrame() df_one_none = pd.DataFrame() df_none_one = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() try: for store_id in reset_stores: logger.info(f"Running for store id: {store_id} and reset date: {reset_date}") type_list_comb_lvl_str = str(type_list_comb_lvl).replace('[', '(').replace(']', ')') type_list_drug_lvl_str = str(type_list_drug_lvl).replace('[', '(').replace(']', ')') # RUNNING IPC-COMBINATION FORECAST PIPELINE logger.info("Combination Forecast Pipeline starts") fcst_df_comb_lvl, seg_df_comb_lvl, \ comb_sales_latest_12w, comb_sales_4w_wtd = ipc_comb_forecast( store_id, reset_date, type_list_comb_lvl_str, read_schema, rs_db_read, logger) # RUNNING IPC-DRUG FORECAST PIPELINE logger.info("Drug Forecast Pipeline starts") fcst_df_drug_lvl, seg_df_drug_lvl, drug_sales_latest_12w,\ drug_sales_latest_4w, drug_sales_4w_wtd = ipc_drug_forecast( store_id, reset_date, type_list_drug_lvl_str, read_schema, rs_db_read, logger) # RECENCY CORRECTION IF FCST=0, FCST=AVG_DEMAND_28D (FROM LATEST 12W) logger.info("Recency correction starts") fcst_df_comb_lvl, fcst_df_drug_lvl = fcst_correction( fcst_df_comb_lvl, comb_sales_latest_12w, fcst_df_drug_lvl, drug_sales_latest_12w, drug_sales_latest_4w, comb_sales_4w_wtd, drug_sales_4w_wtd, logger) # MAPPING FORECASTS TO ASSORTMENT DRUGS logger.info("Allotting combination forecasts to drugs") df_fcst_final, df_one_one, df_one_many, \ df_one_none, df_none_one = fcst_comb_drug_map( store_id, reset_date, fcst_df_comb_lvl, fcst_df_drug_lvl, type_list_comb_lvl, read_schema, rs_db_read, logger) # SAFETY STOCK CALCULATIONS logger.info("Safety Stock Calculations starts") safety_stock_df = safety_stock_calc( df_fcst_final, store_id, reset_date, v4_active_flag, drug_type_list_v4, drug_sales_latest_12w, read_schema, rs_db_read, logger) # POST PROCESSING SS DF logger.info("Post Processing SS-DF starts") safety_stock_df, seg_df_comb_lvl, seg_df_drug_lvl = post_processing( store_id, safety_stock_df, seg_df_comb_lvl, seg_df_drug_lvl, read_schema, rs_db_read, logger) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-pmf-safety-stock safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['store_id'] = safety_stock_df['store_id'].astype(int) safety_stock_df['drug_id'] = safety_stock_df['drug_id'].astype(int) safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-pmf-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: ipc-pmf-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='ipc-pmf-safety-stock', db=rs_db_write, schema=write_schema) # writing table ipc-pmf-comb-segmentation seg_df_comb_lvl['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() seg_df_comb_lvl['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df_comb_lvl['created-by'] = 'etl-automation' seg_df_comb_lvl['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df_comb_lvl['updated-by'] = 'etl-automation' seg_df_comb_lvl.columns = [c.replace('_', '-') for c in seg_df_comb_lvl.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-pmf-comb-segmentation', schema=write_schema) columns = list(table_info['column_name']) seg_df_comb_lvl = seg_df_comb_lvl[columns] # required column order logger.info("Writing to table: ipc-pmf-comb-segmentation") s3.write_df_to_db(df=seg_df_comb_lvl, table_name='ipc-pmf-comb-segmentation', db=rs_db_write, schema=write_schema) # writing table ipc-pmf-drug-segmentation seg_df_drug_lvl['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() seg_df_drug_lvl['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df_drug_lvl['created-by'] = 'etl-automation' seg_df_drug_lvl['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df_drug_lvl['updated-by'] = 'etl-automation' seg_df_drug_lvl.columns = [c.replace('_', '-') for c in seg_df_drug_lvl.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-pmf-drug-segmentation', schema=write_schema) columns = list(table_info['column_name']) seg_df_drug_lvl = seg_df_drug_lvl[columns] # required column order logger.info("Writing to table: ipc-pmf-drug-segmentation") s3.write_df_to_db(df=seg_df_drug_lvl, table_name='ipc-pmf-drug-segmentation', db=rs_db_write, schema=write_schema) logger.info("All writes to RS-DB completed!") # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.loc[ (safety_stock_df["order_upto_point"] > 0)] ss_data_upload = ss_data_upload[['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list_drug_lvl_str, rs_db_write, write_schema, logger, gaid_omit=False) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) status = 'Success' except Exception as error: logger.exception(error) return status, safety_stock_df, df_one_one, df_one_many, df_one_none, \ df_none_one, new_drug_entries, missed_entries if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="Y", type=str, required=False) parser.add_argument('-rd', '--reset_date', default="YYYY-MM-DD", type=str, required=False) parser.add_argument('-rs', '--reset_stores', default=[4], nargs='+', type=int, required=False) parser.add_argument('-v4', '--v4_active_flag', default="Y", type=str, required=False) parser.add_argument('-v4tl', '--drug_type_list_v4', default="{'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'," "'ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'," "'others':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'}", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode # JOB EXCLUSIVE PARAMS reset_date = args.reset_date reset_stores = args.reset_stores v4_active_flag = args.v4_active_flag drug_type_list_v4 = args.drug_type_list_v4 # EVALUATE REQUIRED JSON PARAMS drug_type_list_v4 = literal_eval(drug_type_list_v4) type_list_comb_lvl = ['ethical', 'generic', 'discontinued-products', 'high-value-ethical'] type_list_drug_lvl = ['ethical', 'ayurvedic', 'generic', 'discontinued-products', 'banned', 'general', 'high-value-ethical', 'baby-product', 'surgical', 'otc', 'glucose-test-kit', 'category-2', 'category-1', 'category-4', 'baby-food', '', 'category-3'] if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() """ calling the main function """ status, safety_stock_df, df_one_one, df_one_many, df_one_none, \ df_none_one, new_drug_entries, missed_entries = main( debug_mode, reset_stores, reset_date, type_list_comb_lvl, type_list_drug_lvl, v4_active_flag, drug_type_list_v4, read_schema, rs_db_read, write_schema, rs_db_write, logger) # open RS connection rs_db_read.close_connection() rs_db_write.close_connection() ss_df_uri = s3.save_df_to_s3( safety_stock_df, file_name=f"safety_stock_df_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") all_cases_xl_path = s3.write_df_to_excel(data={ 'C1_one_one': df_one_one, 'C2_one_many': df_one_many, 'C3_one_none': df_one_none, 'C4_none_one': df_none_one}, file_name=f"all_mappings_{reset_date}.xlsx") email = Email() email.send_email_file( subject=f"IPC Combination Fcst (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[ss_df_uri, new_drug_entries_uri, missed_entries_uri], file_paths=[all_cases_xl_path])
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ipc_pmf/ipc_pmf.py
ipc_pmf.py
# !/usr/bin/env python # coding: utf-8 import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from datetime import datetime from datetime import timedelta from dateutil.tz import gettz import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rd', '--runtime_date_exp', default="0101-01-01", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env runtime_date_exp = args.runtime_date_exp email_to = args.email_to # env = 'stage' # limit = 10 os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") # Connections rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() ############################################# # Main logic block ############################################# # Run date if runtime_date_exp == '0101-01-01': # Timezone aware run_date = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d") else: run_date = runtime_date_exp # runtime_date = '2018-09-01' logger.info("Running for {}".format(run_date)) # Period end date # Paramatrize it period_end_d_ts = datetime.strptime(run_date, '%Y-%m-%d') - timedelta(days=1) period_end_d = period_end_d_ts.strftime('%Y-%m-%d') logger.info("Run date minus 1 is {}".format(period_end_d)) day_minus8 = (pd.to_datetime(run_date) - timedelta(days=8)).strftime("%Y-%m-%d") logger.info("Runtime date minus 8 is {}".format(period_end_d)) # Read last list so that only new data to be uploaded read_schema = 'prod2-generico' rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) query = f""" SELECT "shortbook-date" FROM "cfr-patient-request" GROUP BY "shortbook-date" """ logger.info(query) rs_db_write.execute(query, params=None) last_data_date: pd.DataFrame = rs_db_write.cursor.fetch_dataframe() if last_data_date is None: last_data_date = pd.DataFrame(columns=['shortbook_date']) last_data_date.columns = [c.replace('-', '_') for c in last_data_date.columns] logger.info(len(last_data_date)) last_data_date.head() try: last_sb_date_max = pd.to_datetime(last_data_date['shortbook_date']).max().strftime('%Y-%m-%d') except ValueError: last_sb_date_max = '2000-06-01' logger.info("Last date in last data for cfr patient request is : {}".format(last_sb_date_max)) # Remaining data to be fetched read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) pr_q = """ SELECT `id` as `short-book-id`, `store-id`, `created-at`, `patient-id`, `unique-id`, `drug-id`, `drug-name`, `requested-quantity`, `inventory-at-creation`, `quantity`, `home-delivery`, `received-at`, `bill-id` FROM `short-book-1` WHERE `auto-short` = 0 and `auto-generated` = 0 and date(`created-at`) > '{0}' and date(`created-at`) <= '{1}' """.format(last_sb_date_max, day_minus8) pr_q = pr_q.replace('`', '"') logger.info(pr_q) rs_db.execute(pr_q, params=None) data_pr: pd.DataFrame = rs_db.cursor.fetch_dataframe() if data_pr is None: data_pr = pd.DataFrame(columns=['short_book_id', 'store_id', 'created_at', 'patient_id', 'unique_id', 'drug_id', 'drug_name', 'requested_quantity', 'inventory_at_creation', 'quantity', 'home_delivery', 'received_at', 'bill_id']) data_pr.columns = [c.replace('-', '_') for c in data_pr.columns] logger.info(len(data_pr)) logger.info("New PR data length is : {}".format(len(data_pr))) data_pr['shortbook_date'] = pd.to_datetime(data_pr['created_at']).dt.normalize() for i in ['created_at', 'received_at']: data_pr[i] = pd.to_datetime(data_pr[i], errors='coerce') logger.info("Min date in new data is {} and max date is {}".format(data_pr['shortbook_date'].min().strftime("%Y-%m-%d"), data_pr['shortbook_date'].max().strftime( "%Y-%m-%d"))) ################################################## # Now loss calculation starts ################################################## # Remove invalid requested quantity data_pr_f = data_pr[data_pr.requested_quantity > 0] logger.info("New PR data length after removing negative and 0 requested quantity is : {}".format(len(data_pr_f))) # Replace NULL drug-ids with -1 so that it can be identified as new drug data_pr_f['drug_id'] = data_pr_f['drug_id'].fillna(-1).astype(int) # MySQL drugs table read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) drugs_q = """ SELECT id as drug_id, `drug-name`, `composition`, category as drug_category, type as drug_type, `repeatability-index` FROM drugs """ drugs_q = drugs_q.replace('`', '"') logger.info(drugs_q) rs_db.execute(drugs_q, params=None) data_drugs: pd.DataFrame = rs_db.cursor.fetch_dataframe() if data_drugs is None: data_drugs = pd.DataFrame(columns=['drug_id', 'drug_name', 'composition', 'drug_category', 'drug_type', 'repeatability_index']) data_drugs.columns = [c.replace('-', '_') for c in data_drugs.columns] logger.info(len(data_drugs)) logger.info("Drug master length is : {}".format(len(data_drugs))) # Join PR data with drugs data_pr_f = data_pr_f.merge(data_drugs, how='left', on=['drug_id']) data_pr_f['drug_name'] = np.where(data_pr_f['drug_id'] > 0, data_pr_f['drug_name_y'], data_pr_f['drug_name_x']) # Search for bills in bill-items-1 bills = tuple(list(data_pr_f['bill_id'].dropna().astype(int).drop_duplicates())) logger.info("Number of bills to be searched is : {}".format(len(bills))) ######################################### # Sales data ######################################### read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) sales_q = """ SELECT `created-at`, `patient-id`, `bill-id`, `drug-id`, sum("revenue-value")/sum("quantity") as avg_rate, sum("quantity") as sold_quantity FROM sales WHERE `bill-id` in {} and `bill-flag` = 'gross' GROUP BY `created-at`, `patient-id`, `bill-id`, `drug-id` """.format(bills) sales_q = sales_q.replace('`', '"') # logger.info(sales_q) rs_db.execute(sales_q, params=None) data_b: pd.DataFrame = rs_db.cursor.fetch_dataframe() if data_b is None: data_b = pd.DataFrame(columns=['created_at', 'patient_id', 'bill_id', 'drug_id', 'avg_rate', 'sold_quantity']) data_b.columns = [c.replace('-', '_') for c in data_b.columns] logger.info(len(data_b)) data_b['bill_date'] = pd.to_datetime(data_b['created_at']).dt.normalize() logger.info("Bill date length is : {}".format(len(data_b))) # Join with main data data_b = data_b.rename(columns={'patient_id': 'bill_patient_id', 'created_at': 'bill_created_at'}) data_final_join = data_pr_f.merge(data_b, how='left', on=['bill_id', 'drug_id']) logger.info("PR data length after joining with bills data is : {}".format(len(data_final_join))) data_final_join['day_diff'] = (data_final_join['bill_date'] - data_final_join['shortbook_date']).dt.days # Loss calculation data_final_join['within_tat_flag'] = np.where(data_final_join['day_diff'].between(0, 7), 1, 0) data_final_join['within_tat_sold_quantity'] = np.where(data_final_join['within_tat_flag'] == 1, data_final_join['sold_quantity'], 0) data_final_join['diff_quantity'] = data_final_join['requested_quantity'] - data_final_join[ 'within_tat_sold_quantity'] data_final_join['loss_quantity'] = np.where(data_final_join['diff_quantity'] > 0, data_final_join['diff_quantity'], 0) # Rate already present in bill attached data_final_join['rate_present'] = np.where(data_final_join['avg_rate'] > 0, 1, 0) # Filter out quantity > 30 data_final_join2 = data_final_join[data_final_join.requested_quantity <= 30] logger.info("PR data length after filtering out outlier quantity is : {}".format(len(data_final_join2))) # Populate rate for those not fulfilled drugs = tuple(list(data_final_join2['drug_id'].dropna().drop_duplicates().astype(int))) logger.info("Count of drugs to look up in historical sales is : {}".format(len(drugs))) read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) rate_q = """ SELECT "drug-id", SUM("revenue-value")/SUM("quantity") AS avg_rate_system FROM "sales" WHERE date("created-at") <= '{0}' and "bill-flag" = 'gross' GROUP BY "drug-id" """.format(period_end_d) rate_q = rate_q.replace('`', '"') logger.info(rate_q) rs_db.execute(rate_q, params=None) data_d: pd.DataFrame = rs_db.cursor.fetch_dataframe() if data_d is None: data_d = pd.DataFrame(columns=['drug_id', 'avg_rate_system']) data_d.columns = [c.replace('-', '_') for c in data_d.columns] logger.info(len(data_d)) data_d.head() logger.info("Count of drugs to looked up successfully in historical sales is : " "{}".format(len(data_d))) # Join with main data data_final_join2 = data_final_join2.merge(data_d, how='left', on=['drug_id']) # What should the final rate be, if present in PR then that, else if present in system then that. data_final_join2['attributed_rate'] = np.where(data_final_join2['rate_present'] == 1, data_final_join2['avg_rate'], data_final_join2['avg_rate_system']) # Still some drugs which are new, will not have a rate assigned data_final_join2['system_present'] = np.where(data_final_join2['attributed_rate'] > 0, 1, 0) # Missing value in rate is replaced by a value which is representative of all drugs rate # Can be changed later data_final_join2['attributed_rate'] = data_final_join2['attributed_rate'].fillna(100) # Final loss sales data_final_join2['final_lost_sales'] = data_final_join2['loss_quantity'].astype(float) * data_final_join2[ 'attributed_rate'].astype(float) # Sold quantity and num_days_sold read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) sales_summ_q = """ SELECT "store-id", "drug-id", COUNT(distinct date("created-at")) as num_days_sold, MAX(date("created-at")) as last_sold FROM "sales" WHERE date("created-at") <= '{0}' and "bill-flag" = 'gross' GROUP BY "store-id", "drug-id" """.format(period_end_d) sales_summ_q = sales_summ_q.replace('`', '"') logger.info(sales_summ_q) rs_db.execute(sales_summ_q, params=None) data_d2: pd.DataFrame = rs_db.cursor.fetch_dataframe() if data_d2 is None: data_d2 = pd.DataFrame(columns=['store_id', 'drug_id', 'num_days_sold', 'last_sold']) data_d2.columns = [c.replace('-', '_') for c in data_d2.columns] logger.info(len(data_d2)) data_d2.head() logger.info("Count of drugs with sold quantity and num_days_sold is : {}".format(len(data_d2))) # Join with main data data_final_join2 = data_final_join2.merge(data_d2, how='left', on=['store_id', 'drug_id']) # Put 0 for those not sold in that store data_final_join2['num_days_sold'] = data_final_join2['num_days_sold'].fillna(0) # Round off some values for i in ['attributed_rate', 'final_lost_sales']: data_final_join2[i] = np.round(data_final_join2[i].astype(float), 2) # Attributed date data_final_join2['attributed_loss_date'] = data_final_join2['shortbook_date'] + timedelta(days=7) # Merge stores read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) stores_q = """ SELECT id AS store_id, store AS store_name FROM "stores-master" """ stores_q = stores_q.replace('`', '"') logger.info(stores_q) rs_db.execute(stores_q, params=None) stores: pd.DataFrame = rs_db.cursor.fetch_dataframe() if stores is None: stores = pd.DataFrame(columns=['store_id', 'store_name']) stores.columns = [c.replace('-', '_') for c in stores.columns] logger.info(len(stores)) cfr_pr = data_final_join2.merge(stores, how='left', on=['store_id']) # For redshift specific # Convert int columns to int for i in ['num_days_sold', 'repeatability_index', 'bill_id']: cfr_pr[i] = cfr_pr[i].fillna(0).astype(int) for i in ['shortbook_date', 'attributed_loss_date', 'bill_date', 'last_sold']: cfr_pr[i] = pd.to_datetime(cfr_pr[i]).dt.date logger.info(cfr_pr.columns) ######################################### # Loss classification logic (stand-alone function), in dss it's cfr-seg ######################################## # DOI INFO store_ids = tuple(list(cfr_pr['store_id'].dropna().astype(int).drop_duplicates())) drug_ids = tuple(list(cfr_pr['drug_id'].dropna().astype(int).drop_duplicates())) # Fetch all tables data # tagging drug as new/old read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) doi_q = """ SELECT `store-id`, `drug-id`, `min`, `safe-stock`, `max`, `drug-grade` FROM `drug-order-info` WHERE `store-id` in {0} and `drug-id` in {1} """.format(store_ids, drug_ids) doi_q = doi_q.replace('`', '"') # logger.info(doi_q) rs_db.execute(doi_q, params=None) doi_data: pd.DataFrame = rs_db.cursor.fetch_dataframe() if doi_data is None: doi_data = pd.DataFrame(columns=['store_id', 'drug_id', 'min', 'safe_stock', 'max', 'drug_grade']) doi_data.columns = [c.replace('-', '_') for c in doi_data.columns] logger.info(len(doi_data)) cfr_pr = cfr_pr.merge(doi_data, how='left', on=['store_id', 'drug_id']) cfr_pr['fulfilment_hours'] = (cfr_pr['received_at'] - cfr_pr['created_at']).astype('timedelta64[h]') # Loss classification tag def loss_classification_tag(x): if x['drug_grade'] in ['A1', 'A2']: return 'DS_loss' elif (x['inventory_at_creation']) >= (x['requested_quantity']): return 'system_loss' elif (x['fulfilment_hours'] >= 0) & (x['fulfilment_hours'] < 48): return 'store_loss' elif (x['fulfilment_hours'] >= 48) or pd.isnull(x['fulfilment_hours']): return 'supply_chain_loss' else: return 'None' cfr_pr['loss_tag'] = cfr_pr.apply(loss_classification_tag, axis=1) # DB upload columns final_cols = ['store_id', 'store_name', 'shortbook_date', 'patient_id', 'unique_id', 'drug_id', 'short_book_id', 'drug_name_x', 'composition', 'repeatability_index', 'drug_category', 'drug_type', 'requested_quantity', 'inventory_at_creation', 'created_at', 'received_at', 'home_delivery', 'drug_name_y', 'bill_id', 'bill_date', 'within_tat_flag', 'within_tat_sold_quantity', 'loss_quantity', 'system_present', 'attributed_rate', 'final_lost_sales', 'attributed_loss_date', 'num_days_sold', 'last_sold', 'min', 'safe_stock', 'max', 'drug_grade', 'fulfilment_hours', 'loss_tag'] cfr_pr = cfr_pr[final_cols] ##################################################### # Write to DB ##################################################### data_export = cfr_pr.copy() data_export.columns = [c.replace('_', '-') for c in data_export.columns] write_schema = 'prod2-generico' write_table_name = 'cfr-patient-request' table_info = helper.get_table_info(db=rs_db_write, table_name=write_table_name, schema=write_schema) # table_info_clean = table_info[~table_info['column_name'].isin(['id', 'created-at', 'updated-at'])] # Mandatory lines data_export['etl-created-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['etl-created-by'] = 'etl-automation' data_export['etl-updated-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['etl-updated-by'] = 'etl-automation' s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection() logger.info("File ends")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/cfr-patient-request/cfr-patient-request.py
cfr-patient-request.py
"" import argparse import os import sys import datetime import dateutil from dateutil.tz import gettz from datetime import datetime as dt from datetime import date, timedelta import pandas as pd import numpy as np sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.db.db import DB parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"info message") rs_db = DB() rs_db_write = DB(read_only=False) rs_db.open_connection() rs_db_write.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'franchise-patient-one-view' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) # creating summary data using bills info pat_store_q = """ select s."patient-id", s."store-id" , count(distinct "bill-id") "total-bills-to-store", sum(s."revenue-value") "total-value-to-store", max(date("created-at")) "last-transacted-at", max("bill-id") "last-bill-id" from "prod2-generico".sales s where "franchisee-id" != 1 and "bill-flag" = 'gross' group by 1, 2 having "last-transacted-at"> DATEADD('month', -6, DATE_TRUNC('month', CURRENT_DATE)) """ pat_store = rs_db.get_df(pat_store_q) # taking refill date refill_q = f""" select "patient-id", "store-id", min("refill-date") as "expected-next-date" from "prod2-generico"."retention-refill" where "bill-id" in {tuple(pat_store['last-bill-id'].unique())} group by 1, 2 """ refill = rs_db.get_df(refill_q) pat_store_refill = pd.merge(pat_store, refill, how='left', on=['patient-id', 'store-id']) pat_store_refill[(pd.isnull(pat_store_refill['expected-next-date']) == True)].head() pat_store_refill['expected-next-date'] = np.where(pd.isnull(pat_store_refill['expected-next-date']) == True, pat_store_refill['last-transacted-at'] + timedelta(days=30), pat_store_refill['expected-next-date']) #segment category seg_q = """ select id as "patient-id", "patient-category" from "prod2-generico".patients where id in {} """.format(tuple(pat_store_refill['patient-id'].unique())) seg = rs_db.get_df(seg_q) pat_store_refill_seg = pd.merge(pat_store_refill, seg, how='left', on=['patient-id']) #etl pat_store_refill_seg['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') pat_store_refill_seg['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') pat_store_refill_seg['created-by'] = 'etl-automation' pat_store_refill_seg['updated-by'] = 'etl-automation' if pat_store_refill_seg.empty: print('DataFrame is empty!') exit() if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}"''' print(truncate_query) rs_db_write.execute(truncate_query) s3.write_df_to_db(df=pat_store_refill_seg[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/franchise-patient-one-view/franchise-patient-one-view.py
franchise-patient-one-view.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from datetime import datetime as dt from datetime import timedelta import pandas as pd from dateutil.tz import gettz parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-fr', '--full_run', default=0, type=int, required=False) parser.add_argument('-ar', '--alternate_range', default=0, type=int, required=False) parser.add_argument('-st', '--start', default="2017-01-01", type=str, required=False) parser.add_argument('-ed', '--end', default=str(dt.now().date()), type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to full_run = args.full_run alternate_range = args.alternate_range start = args.start end = args.end logger = get_logger() logger.info(f"env: {env}") # params if full_run: start = '2017-05-13' end = str(dt.today().date() - timedelta(days=1)) elif alternate_range: start = start end = end else: start = str(dt.today().date() - timedelta(days=2)) end = str(dt.today().date() - timedelta(days=1)) read_schema = 'prod2-generico' table_name = 'daywise-marketing-spend' rs_db = DB() rs_db.open_connection() s3 = S3() table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=read_schema) if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f""" DELETE FROM "{read_schema}"."{table_name}" WHERE "date" BETWEEN '{start}' AND '{end}'; """ logger.info(f"truncate query : \n {truncate_query}") rs_db.execute(truncate_query) # Date_wise_spend_and_sale_calculation market_spend_q = f""" SELECT T1.date_ as date , T1.store_id, T1.`promo-code`, T1.`code-type`, T1.new_patient, T1.unique_patients_count, T1.total_bills_count, T1.sales, T1.profit, T2.marketing_spend FROM ( SELECT date(b.`created-at`) AS date_, b.`store-id` AS store_id, coalesce(pc."promo-code", '0') AS "promo-code", coalesce(pc."code-type", '0') AS "code-type", (CASE WHEN date(b.`created-at`)= date(pm.`first-bill-date`) THEN 1 ELSE 0 END) AS new_patient, COUNT(DISTINCT b.`patient-id`) AS unique_patients_count, COUNT(DISTINCT b.id) AS total_bills_count, SUM(bi.quantity * bi.rate) AS sales, (SUM(bi.quantity * bi.rate)-SUM(i.`purchase-rate` * bi.quantity)) AS profit FROM "{read_schema}".`bills-1` b LEFT JOIN "{read_schema}".`promo-codes` pc ON b.`promo-code-id` = pc.id LEFT JOIN "{read_schema}".`bill-items-1` bi ON b.id = bi.`bill-id` LEFT JOIN "{read_schema}".`patients-metadata-2` pm ON b.`patient-id` = pm.`id` LEFT JOIN "{read_schema}".`inventory-1` i ON bi.`inventory-id` = i.id WHERE date(b.`created-at`) BETWEEN '{start}' AND '{end}' GROUP BY date(b.`created-at`), b.`store-id`, new_patient, pc.`promo-code`, pc.`code-type` ) T1 LEFT JOIN ( SELECT date(b.`created-at`) AS date_, b.`store-id` AS store_id, coalesce(pc."promo-code", '0') AS "promo-code", coalesce(pc."code-type", '0') AS "code-type", (CASE WHEN date(b.`created-at`)= date(pm.`first-bill-date`) THEN 1 ELSE 0 END) AS new_patient, COUNT(DISTINCT b.`patient-id`) AS unique_patients_count, COUNT(DISTINCT b.id) AS total_bills_count, SUM(b.`promo-discount`) AS marketing_spend FROM "{read_schema}".`bills-1` b LEFT JOIN "{read_schema}".`promo-codes` pc ON b.`promo-code-id` = pc.id LEFT JOIN "{read_schema}".`patients-metadata-2` pm ON b.`patient-id` = pm.`id` WHERE date(b.`created-at`) BETWEEN '{start}' AND '{end}' GROUP BY date(b.`created-at`), b.`store-id`, new_patient, pc.`promo-code`, pc.`code-type` ) T2 ON T1.date_ = T2.date_ AND T1.store_id = T2.store_id AND T1.new_patient = T2.new_patient AND T1.`promo-code` = T2.`promo-code` AND T1.`code-type` = T2.`code-type`;""" market_spend_q = market_spend_q.replace('`', '"') logger.info(f"data fetching query : \n {market_spend_q}") marketing_spend_sales = rs_db.get_df(market_spend_q) marketing_spend_sales.columns = [c.replace('-', '_') for c in marketing_spend_sales.columns] logger.info(f"raw data length data : {len(marketing_spend_sales)}") # If customer is not using any promo so tagging him as 'Organic' # Temporary : will resolve query marketing_spend_sales['pr_tag'] = 0 marketing_spend_sales['hd_tag'] = 0 # Filling null value as '0' fill_value = {'promo_code': 'Organic', 'code_type': 'Organic'} marketing_spend_sales = marketing_spend_sales.fillna(value=fill_value) # store attributes store_q = f""" select id as store_id , store, abo, "store-manager", "line-manager", "opened-at" as store_open_at from "{read_schema}"."stores-master" sm; """ store_q = store_q.replace('`', '"') logger.info(store_q) store_attr = rs_db.get_df(store_q) store_attr.columns = [c.replace('-', '_') for c in store_attr.columns] logger.info(f"stores table length : {len(store_attr)}") store_attr.head() marketing_spend_sales = pd.merge(marketing_spend_sales, store_attr, left_on='store_id', right_on='store_id', how='left') marketing_spend_sales['redeemed_point'] = None marketing_spend_sales.columns = [c.replace('_', '-') for c in marketing_spend_sales.columns] # etl marketing_spend_sales['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') marketing_spend_sales['created-by'] = 'etl-automation' marketing_spend_sales['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') marketing_spend_sales['updated-by'] = 'etl-automation' # Write to csv s3.save_df_to_s3(df=marketing_spend_sales[table_info['column_name']], file_name='day_wise_marketing_spend/marketing_spend_sales.csv') s3.write_df_to_db(df=marketing_spend_sales[table_info['column_name']], table_name=table_name, db=rs_db, schema=read_schema) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/daywise_marketing_spend/daywise_marketing_spend.py
daywise_marketing_spend.py
# !/usr/bin/env python # coding: utf-8 import argparse import sys import os sys.path.append('../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from datetime import datetime from datetime import timedelta from dateutil.tz import gettz import pandas as pd import numpy as np # Custom library imports from zeno_etl_libs.utils.general_funcs import month_diff parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rd', '--runtime_date_exp', default="0101-01-01", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env runtime_date_exp = args.runtime_date_exp email_to = args.email_to # env = 'stage' # limit = 10 os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") # Connections rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() # Run date if runtime_date_exp != '0101-01-01': run_date = runtime_date_exp else: run_date = datetime.today().strftime('%Y-%m-%d') # runtime_date = '2021-09-01' logger.info("Running for {}".format(run_date)) # Period end date # Paramatrize it period_end_d = (pd.to_datetime(run_date) - timedelta(days=1)).strftime('%Y-%m-%d') logger.info("Run date minus 1 is {}".format(period_end_d)) period_end_d_minus180 = (pd.to_datetime(period_end_d) - timedelta(days=180)).strftime('%Y-%m-%d') logger.info("Period end date minus 180 is {}".format(period_end_d_minus180)) # Data to be fetched ######################################################### # Bill data ######################################################## read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) bills_q = """ SELECT a."patient-id", a."store-id", a."id" as bill_id, a."created-at" AS bill_created_at, a."bill-date", a."total-spend", a."bill-year" as year_bill, a."bill-month" as month_bill, a."cum-nob" as nob_till_bill, a."cum-spend" as spend_till_bill, a."cum-abv" as average_bill_value, a."normalized-date", a."value-segment", a."value-segment-calculation-date" as value_segment_calc_date, a."behaviour-segment", b."behaviour-segment-calculation-date" as behaviour_segment_calc_date, b."first-bill-date" as overall_min_bill_date, b."primary-disease", (case when b."is-repeatable" is True then 1 else 0 end) as latest_is_repeatable, (case when b."is-generic" is True then 1 else 0 end) as latest_is_generic, (case when b."hd-flag" is True then 1 else 0 end) as latest_hd_flag, s."store" as store_name, s."opened-at" as store_opened_at, s."abo" FROM "retention-master" a LEFT JOIN "patients-metadata-2" b on a."patient-id" = b."id" LEFT JOIN "stores-master" s on a."store-id" = s."id" WHERE a."bill-date" > '{0}' AND a."bill-date" <= '{1}' """.format(period_end_d_minus180, period_end_d) # AND a."store-id" = 2 bills_q = bills_q.replace('`', '"') logger.info(bills_q) data_bill = rs_db.get_df(query=bills_q) data_bill.columns = [c.replace('-', '_') for c in data_bill.columns] logger.info(len(data_bill)) for i in ['bill_created_at', 'bill_date', 'overall_min_bill_date', 'normalized_date', 'value_segment_calc_date', 'behaviour_segment_calc_date']: data_bill[i] = pd.to_datetime(data_bill[i]) logger.info("Data for bills fetched with length {}".format(len(data_bill))) # Sort on patient_id, bill_date data_bill = data_bill.sort_values(by=['patient_id', 'bill_created_at']) ################################ # Calculated columns ################################ # Find next bill date data_bill['next_bill_date'] = data_bill.groupby(['patient_id'])['bill_date'].shift(-1) # Difference between next bill date and current bill date data_bill['day_diff_next_bill'] = (data_bill['next_bill_date'] - data_bill['bill_date']).dt.days # But what's the difference between run_date and bill date data_bill['day_diff_today'] = (pd.to_datetime(run_date) - data_bill['bill_date']).dt.days # Define lost event # Next bill diff >90 days OR next bill date NULL # AND # Date diff with run_date, should also be >90 data_bill['lost_event_flag'] = np.where(((data_bill['day_diff_next_bill'] > 90) | (data_bill['day_diff_next_bill'].isnull())) & (data_bill['day_diff_today'] > 90), 1, 0) # But what's the lost attribution date data_bill['bill_date_plus90'] = pd.to_datetime(data_bill['bill_date'] + timedelta(days=90)) data_bill['lost_attribution_date'] = np.where(data_bill['lost_event_flag'] == 1, data_bill['bill_date_plus90'].dt.strftime('%Y-%m-%d'), "") data_bill['lost_attribution_date'] = pd.to_datetime(data_bill['lost_attribution_date'], errors='coerce') # Month diff data_bill['month_diff_acq'] = month_diff(data_bill['bill_date'], data_bill['overall_min_bill_date']) ################################ # Calculated columns ################################ # Round to 2 decimals for i in ['spend_till_bill', 'average_bill_value']: data_bill[i] = data_bill[i].astype(float).round(2) ################################# # Data lost ################################# data_lost = data_bill[data_bill['lost_event_flag'] == 1].copy() logger.info("Lost data length {}".format(len(data_lost))) ######################################################## # Churn reasons ####################################################### ############################ # PR Lost or Delayed ############################ # Todo change order-number to patient-request-number or the aligned source of truth read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) pr_q = """ SELECT `patient-id`, `order-number`, `bill-id`, MIN(`pr-created-at`) AS min_created_at, MAX(`completed-at`) AS max_completed_at FROM `patient-requests-metadata` WHERE `pso-requested-quantity` > 0 AND date(`pr-created-at`) > '{0}' AND date(`pr-created-at`) <= '{1}' GROUP BY `patient-id`, `order-number`, `bill-id` """.format(period_end_d_minus180, period_end_d) pr_q = pr_q.replace('`', '"') logger.info(pr_q) data_pr = rs_db.get_df(query=pr_q) data_pr.columns = [c.replace('-', '_') for c in data_pr.columns] logger.info(len(data_pr)) logger.info("PR data fetched with length {}".format(len(data_pr))) # PR Delay # Delay can only happen for those who billed data_pr_b = data_pr[data_pr['bill_id'] >= 0].copy() for i in ['min_created_at', 'max_completed_at']: data_pr_b[i] = pd.to_datetime(data_pr_b[i], errors='coerce') data_pr_b['hour_diff'] = (data_pr_b['max_completed_at'] - data_pr_b['min_created_at']) / np.timedelta64(1, 'h') data_pr_b['pr_72hrs_delay'] = np.where(data_pr_b['hour_diff'] > 72, 1, 0) # Take unique on bills data_pr_b_unique = data_pr_b.drop_duplicates(subset=['patient_id', 'bill_id']).copy() data_pr_b_unique['bill_id'] = data_pr_b_unique['bill_id'].astype(int) # Merge with main data data_lost = data_lost.merge(data_pr_b_unique[['patient_id', 'bill_id', 'pr_72hrs_delay']], how='left', on=['patient_id', 'bill_id']) data_lost['pr_72hrs_delay'] = data_lost['pr_72hrs_delay'].fillna(0) logger.info("Lost data length after joining with PR delay status {}".format(len(data_lost))) # PR Loss data_pr_lost = data_pr_b[(data_pr_b['max_completed_at'] == '0000-00-00 00:00:00') | (data_pr_b['max_completed_at'].isnull())].copy() for i in ['min_created_at', 'max_completed_at']: data_pr_lost[i] = pd.to_datetime(data_pr_lost[i], errors='coerce') run_date_minus_7 = pd.to_datetime(run_date) - timedelta(days=7) data_pr_lost = data_pr_lost[data_pr_lost['min_created_at'] <= run_date_minus_7] logger.info("PR Loss data length {}".format(len(data_pr_lost))) # Merge with main data data_lost_tmp = data_lost.merge( data_pr_lost[['patient_id', 'order_number', 'min_created_at', 'max_completed_at']], how='left', on=['patient_id']) # Because merged on patient id only, so date diff with bill date to be taken data_lost_tmp['lost_pr_date_diff'] = (data_lost_tmp['min_created_at'] - data_lost_tmp['bill_date']).dt.days # For a customer to be lost due to PR, the PR event should happen after that bill date data_lost_tmp = data_lost_tmp[data_lost_tmp['lost_pr_date_diff'] > 0] # But should be less than or equal to loss attributed day data_lost_tmp = data_lost_tmp[data_lost_tmp['min_created_at'] <= data_lost_tmp['lost_attribution_date']] # Drop any duplicate mappings data_lost_tmp = data_lost_tmp.drop_duplicates(subset=['patient_id', 'bill_id']) data_lost_tmp = data_lost_tmp[ ['patient_id', 'bill_id', 'min_created_at', 'max_completed_at', 'lost_pr_date_diff']].copy() data_lost_tmp['pr_lost'] = 1 logger.info("PR loss final data length is {}".format(len(data_lost_tmp))) # Merge with main data data_lost = data_lost.merge(data_lost_tmp, how='left', on=['patient_id', 'bill_id']) data_lost['pr_lost'] = data_lost['pr_lost'].fillna(0) logger.info("Lost data length after joining with PR Lost status {}".format(len(data_lost))) ############################ # HD delayed ############################ # Todo change clarify if bill-id>0 is compulsory, to get HD read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) hd_q = """ SELECT `patient-id`, `bill-id`, MIN(`pso-created-at`) AS min_created_at, MAX(`delivered-at`) AS max_delivered_at FROM `home-delivery-metadata` WHERE `bill-id` > 0 AND date(`pso-created-at`) > '{0}' AND date(`pso-created-at`) <= '{1}' GROUP BY `patient-id`, `bill-id` """.format(period_end_d_minus180, period_end_d) hd_q = hd_q.replace('`', '"') logger.info(hd_q) data_hd = rs_db.get_df(query=hd_q) data_hd.columns = [c.replace('-', '_') for c in data_hd.columns] logger.info(len(data_hd)) logger.info("HD data fetched with length {}".format(len(data_hd))) for i in ['min_created_at', 'max_delivered_at']: data_hd[i] = pd.to_datetime(data_hd[i], errors='coerce') data_hd['hour_diff'] = (data_hd['max_delivered_at'] - data_hd['min_created_at']) / np.timedelta64(1, 'h') data_hd['hd_24hrs_delay'] = np.where(data_hd['hour_diff'] > 24, 1, 0) # Take unique on bills data_hd_unique = data_hd.drop_duplicates(subset=['patient_id', 'bill_id']).copy() data_hd_unique['bill_id'] = data_hd_unique['bill_id'].astype(int) data_lost = data_lost.merge(data_hd_unique[['patient_id', 'bill_id', 'hd_24hrs_delay']], how='left', on=['patient_id', 'bill_id']) data_lost['hd_24hrs_delay'] = data_lost['hd_24hrs_delay'].fillna(0) logger.info("Lost data length after joining with HD delay status {}".format(len(data_lost))) ############################ # NPS ############################ # Todo change with nps-bill-mapping later read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) nps_q = """ SELECT b.`id` AS patient_id, a.`rating`, DATE(a.`created-at`) AS feedback_date FROM feedback a INNER JOIN patients b on a.phone = b.phone WHERE date(a.`created-at`) > '{0}' AND date(a.`created-at`) <= '{1}' GROUP BY b.`id`, a.`rating`, DATE(a.`created-at`) """.format(period_end_d_minus180, period_end_d) nps_q = nps_q.replace('`', '"') logger.info(nps_q) data_nps = rs_db.get_df(query=nps_q) data_nps.columns = [c.replace('-', '_') for c in data_nps.columns] logger.info(len(data_nps)) logger.info("NPS data fetched with length {}".format(len(data_nps))) data_nps['feedback_date'] = pd.to_datetime(data_nps['feedback_date']) data_nps['detractor_flag'] = np.where(((data_nps['feedback_date'] <= '2019-10-23') & (data_nps['rating'] <= 6)) | (data_nps['rating'] <= 3), 1, 0) # NPS detractors only data_nps_d = data_nps[data_nps['detractor_flag'] == 1] data_lost_nps_tmp = data_lost.merge(data_nps_d[['patient_id', 'rating', 'feedback_date', 'detractor_flag']], how='left', on=['patient_id']) data_lost_nps_tmp['nps_date_diff'] = (data_lost_nps_tmp['feedback_date'] - data_lost_nps_tmp['bill_date']).dt.days # To be lost, NPS should be on or after churn event bill date data_lost_nps_tmp = data_lost_nps_tmp[data_lost_nps_tmp['nps_date_diff'] >= 0] # But should be less than or equal to loss attributed day data_lost_nps_tmp = data_lost_nps_tmp[data_lost_nps_tmp['feedback_date'] <= data_lost_nps_tmp['lost_attribution_date']] data_lost_nps = data_lost_nps_tmp.drop_duplicates(subset=['patient_id', 'bill_id']) data_lost_nps = data_lost_nps[['patient_id', 'bill_id', 'rating', 'feedback_date', 'nps_date_diff']].copy() data_lost_nps['nps_detractor_lost'] = 1 # Merge with main data data_lost = data_lost.merge(data_lost_nps, how='left', on=['patient_id', 'bill_id']) data_lost['nps_detractor_lost'] = data_lost['nps_detractor_lost'].fillna(0) logger.info("Lost data length after joining with NPS Lost status {}".format(len(data_lost))) ################################## # Customer returns ################################## read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) return_q = """ SELECT a.`bill-id` FROM `customer-return-items-1` a INNER JOIN `bills-1` b ON a.`bill-id` = b.`id` WHERE date(b.`created-at`) > '{0}' AND date(b.`created-at`) <= '{1}' GROUP BY a.`bill-id` """.format(period_end_d_minus180, period_end_d) return_q = return_q.replace('`', '"') logger.info(return_q) data_return = rs_db.get_df(query=return_q) data_return.columns = [c.replace('-', '_') for c in data_return.columns] logger.info(len(data_return)) data_return['return_flag'] = 1 # Merge with main data data_lost = data_lost.merge(data_return, how='left', on=['bill_id']) data_lost['return_flag'] = data_lost['return_flag'].fillna(0) logger.info("Lost data length after joining with Customer returns data {}".format(len(data_lost))) ############################# # Expiry items ############################ read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) expiry_q = """ SELECT a.`bill-id`, a.`inventory-id`, b.`expiry` FROM `bill-items-1` a LEFT JOIN `inventory-1` b on a.`inventory-id` = b.`id` WHERE date(a.`created-at`) > '{0}' AND date(a.`created-at`) <= '{1}' """.format(period_end_d_minus180, period_end_d) expiry_q = expiry_q.replace('`', '"') # logger.info(expiry_q) data_expiry = rs_db.get_df(query=expiry_q) data_expiry.columns = [c.replace('-', '_') for c in data_expiry.columns] logger.info(len(data_expiry)) logger.info("Bill item data with inventory id - fetched with length {}".format(len(data_expiry))) data_expiry['expiry'] = pd.to_datetime(data_expiry['expiry'], errors='coerce') # Merge and calculate data_lost_inv = data_lost[['bill_id', 'bill_date']].merge(data_expiry, how='left', on=['bill_id']) data_lost_inv['expiry_days'] = (data_lost_inv['expiry'] - data_lost_inv['bill_date']).dt.days data_lost_inv['expiry_less_6m'] = np.where(data_lost_inv['expiry_days'] < 180, 1, 0) data_lost_inv_grp = data_lost_inv.groupby(['bill_id']).agg( {'inventory_id': 'count', 'expiry_less_6m': 'sum'}).reset_index() data_lost_inv_grp = data_lost_inv_grp.rename(columns={'inventory_id': 'items'}) data_lost_inv_grp['expiry_less_6m_pc'] = data_lost_inv_grp['expiry_less_6m'] / data_lost_inv_grp['items'] data_lost_inv_grp['near_expiry_flag'] = np.where(data_lost_inv_grp['expiry_less_6m_pc'] >= 0.5, 1, 0) ############################## # Merge with main data ############################## data_lost = data_lost.merge(data_lost_inv_grp, how='left', on=['bill_id']) data_lost['near_expiry_flag'] = data_lost['near_expiry_flag'].fillna(0) logger.info("Lost data length after joining with Expiry items data {}".format(len(data_lost))) # Churn event exact def churn_event(row): if row['nps_detractor_lost'] == 1: return 'NPS Lost' elif row['pr_lost'] == 1: return 'PR Lost' elif row['pr_72hrs_delay'] == 1: return 'PR Delayed' elif row['hd_24hrs_delay'] == 1: return 'HD Delayed' elif row['return_flag'] == 1: return 'Items returned' elif row['near_expiry_flag'] == 1: return 'Near expiry items' else: return 'Not known' data_lost['churn_event'] = data_lost.apply(lambda row: churn_event(row), axis=1) # DB upload columns final_cols = ['patient_id', 'store_id', 'bill_id', 'bill_created_at', 'bill_date', 'year_bill', 'month_bill', 'nob_till_bill', 'next_bill_date', 'day_diff_next_bill', 'day_diff_today', 'lost_event_flag', 'bill_date_plus90', 'lost_attribution_date', 'overall_min_bill_date', 'normalized_date', 'month_diff_acq', 'total_spend', 'spend_till_bill', 'average_bill_value', 'pr_72hrs_delay', 'min_created_at', 'max_completed_at', 'lost_pr_date_diff', 'pr_lost', 'hd_24hrs_delay', 'rating', 'feedback_date', 'nps_date_diff', 'nps_detractor_lost', 'return_flag', 'items', 'expiry_less_6m', 'expiry_less_6m_pc', 'near_expiry_flag', 'churn_event', 'latest_is_repeatable', 'latest_is_generic', 'latest_hd_flag', 'primary_disease', 'value_segment_calc_date', 'value_segment', 'behaviour_segment_calc_date', 'behaviour_segment', 'store_name', 'store_opened_at', 'abo'] data_export = data_lost[final_cols] # For redshift specific # Convert int columns to int for i in ['bill_id', 'lost_event_flag', 'pr_72hrs_delay', 'pr_lost', 'hd_24hrs_delay', 'nps_detractor_lost', 'return_flag', 'expiry_less_6m', 'near_expiry_flag']: data_export[i] = data_export[i].fillna(0).astype(int) # Impute for Nulls # Impute 99999 instead of null, for now # Todo change dtype to float in DDL # month_diff_acq was added because of float vs integer mismatch in database writing for i in ['day_diff_next_bill', 'lost_pr_date_diff', 'nps_date_diff', 'month_diff_acq', 'rating']: data_export[i] = data_export[i].fillna(99999).astype(int) for i in ['bill_date', 'overall_min_bill_date', 'normalized_date', 'next_bill_date', 'bill_date_plus90', 'lost_attribution_date', 'value_segment_calc_date', 'behaviour_segment_calc_date', 'feedback_date']: data_export[i] = pd.to_datetime(data_export[i]).dt.date logger.info(data_export.columns) ################################ # DB WRITE ############################### write_schema = 'prod2-generico' write_table_name = 'car-churn' table_info = helper.get_table_info(db=rs_db_write, table_name=write_table_name, schema=write_schema) # table_info_clean = table_info[~table_info['column_name'].isin(['id', 'created-at', 'updated-at'])] data_export.columns = [c.replace('_', '-') for c in data_export.columns] # Mandatory lines data_export['created-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['created-by'] = 'etl-automation' data_export['updated-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['updated-by'] = 'etl-automation' # Truncate and append rs_db_write.execute(f"set search_path to '{write_schema}'", params=None) truncate_q = f""" DELETE FROM "{write_table_name}" WHERE "bill-date" > '{period_end_d_minus180}' AND "bill-date" <= '{period_end_d}' """ rs_db_write.execute(truncate_q) # Write to DB s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection() logger.info("File ends")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/car-churn/car-churn.py
car-churn.py
import argparse import os import sys from zeno_etl_libs.db.db import DB sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() db = DB(read_only=False) db.open_connection() tables_meta = { "acm": { "pk": ["code", "Slcd"], "full_dump": 1 }, "item": { "pk": ["code"], "full_dump": 1 }, "fifo": { "pk": ["psrlno"], "full_dump": 1 }, "salepurchase1": { "pk": ["vtyp", "vdt", "vno", "subvno"], "full_dump": 1 }, "salepurchase2": { "pk": ["Vtype", "Vdt", "Vno", "Itemc", "Psrlno", "srlno"], "full_dump": 1 }, "master": { "pk": ["code"], "full_dump": 1 }, "billtrackmst": { "pk": ["srl"], "full_dump": 1 }, "company": { "pk": ["code"], "full_dump": 1 }, "acmextra": { "pk": ["Code", "slcd"], "full_dump": 1 }, "dispatchstmt": { "pk": ["TagNo", "TagDt", "Vdt", "Vtype", "Vno"], "full_dump": 1 }, "app-sp2upd": { "pk": ["Vtype", "Vdt", "Vno", "Itemc", "Psrlno", "NewPsrlno", "PorderNo"] }, "acknow": { "pk": ["vtype", "Vno", "Srl"], "full_dump": 1 }, "proofsp1": { "pk": ["Vtype", "Vdt", "Vno"] }, "proofsp2": { "pk": ["Vtype", "Vdt", "Vno", "Ordno", "Itemc"] }, "porder": { "pk": ["Ordno", "acno", "itemc"], "full_dump": 1 }, "porderupd": { "pk": ["Ordno", "acno", "itemc"] }, "salt": { "pk": ["code"], "full_dump": 1 }, "billost": { "pk": ["Vtype", "vdt", "Vno", "SubVno"], "full_dump": 1 }, "rcptpymt": { "pk": ["vtype", "vdt", "vno"], "full_dump": 1 }, "app-sp2": { "pk": ["Vtype", "Vdt", "Vno", "Itemc", "Psrlno", "NewPsrlno", "PorderNo"], "full_dump": 1 }, "adjstmnt": { "pk": ["vtype", "vdt", "vno", "avtype", "avdt", "avno", "amount", "Srlno", "SubVno", "RefNo"], "full_dump": 1 } } """ Since s3 lists everything in asc order so processing on First Come basic """ # list all the date folder on s3 bucket_name = 'generico-node-internal' schema = "prod2-generico" s3 = S3(bucket_name=bucket_name) env_folder = "production" if env == "prod" else "staging" date_list_response = s3.s3_client.list_objects_v2( Bucket=bucket_name, Delimiter='/', MaxKeys=100, Prefix=f"wms/data-sync-to-s3/non-processed/{env_folder}/" ) for date_data in date_list_response['CommonPrefixes']: file_list_response = s3.s3_client.list_objects_v2( Bucket='generico-node-internal', Delimiter='/', MaxKeys=100, Prefix=date_data['Prefix'] ) for file in file_list_response['Contents']: key = file['Key'] file_name = key.split("/")[-1] table_name = file_name.split("_")[0].lower() temp_table_name = f"temp-{table_name}" file_s3_uri = f"s3://{bucket_name}/{key}" if table_name in [t.lower() for t in tables_meta.keys()]: logger.info(f"Syncing key: {key}") try: """ create temp table """ create_temp_table_query = f""" create temp table IF NOT EXISTS "{temp_table_name}" (like "{schema}"."{table_name}"); """ db.execute(query=create_temp_table_query) logger.info(f"Created temp table: {temp_table_name}") """ insert data into the temp table """ s3.write_to_db_from_s3_csv(table_name=temp_table_name, file_s3_uri=file_s3_uri, db=db) logger.info(f"Inserted data in temp table: {temp_table_name}") """ delete the common data between the temp and original table """ if tables_meta[table_name].get("full_dump"): delete_common_data_query = f""" DELETE FROM "{schema}"."{table_name}" ; """ else: filter_list = [] for pk in tables_meta[table_name]['pk']: _pk = pk.lower() filter_list.append(f""" "{schema}"."{table_name}"."{_pk}" = source."{_pk}" """) filter_str = " and ".join(filter_list) delete_common_data_query = f""" DELETE FROM "{schema}"."{table_name}" USING "{temp_table_name}" source WHERE {filter_str}; """ db.execute(query=delete_common_data_query) logger.info(f"Deleted old data from target table: {table_name}") """ Insert the new data """ insert_query = f""" insert into "{schema}"."{table_name}" select * from "{temp_table_name}" """ db.execute(query=insert_query) logger.info(f"Inserted new data in target table: {table_name}") """ clear the temp table """ clear_temp_table_query = f""" delete from "{temp_table_name}" """ db.execute(query=clear_temp_table_query) logger.info(f"Clearing temp table for next round: {temp_table_name}") """ move the file to processed folder from non-processed """ target_key = key.replace("non-processed", "processed") s3.move_s3_obj(source=f"/{bucket_name}/{key}", target_key=target_key) logger.info(f"Moved file to processed folder: {target_key}") except Exception as e: logger.exception(e)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/sync-warehouse-s3-data-to-redshift/sync-warehouse-s3-data-to-redshift.py
sync-warehouse-s3-data-to-redshift.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import dateutil import datetime from dateutil.tz import gettz from zeno_etl_libs.helper.email.email import Email import numpy as np import Levenshtein as lev from datetime import timedelta parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-d', '--full_run', default=0, type=int, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() email_to = args.email_to env = args.env full_run = args.full_run os.environ['env'] = env logger = get_logger() logger.info(f"full_run: {full_run}") rs_db = DB() rs_db_write = DB(read_only=False) rs_db.open_connection() rs_db_write.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'ecomm-playstore-patients' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) # max of data playstore_q = """ select max("review-created-at") max_exp from "prod2-generico"."ecomm-playstore-reviews" """ max_exp_date = rs_db.get_df(playstore_q) max_exp_date['max_exp'].fillna(np.nan, inplace=True) print(max_exp_date.info()) max_exp_date = max_exp_date['max_exp'].to_string(index=False) print(max_exp_date) # params if full_run or max_exp_date == 'NaN': start = '2017-05-13' else: start = max_exp_date start = dateutil.parser.parse(start) print(start) startminus7 = start - timedelta(days=7) startminus14 = start - timedelta(days=14) q = f""" select "review-id", "review", "author-name", "review-created-at", "star-rating" from "prod2-generico"."ecomm-playstore-reviews" where date("review-created-at")> '{startminus7}' """ reviews = rs_db.get_df(q) print(reviews) reviews.columns = [c.replace('-', '_') for c in reviews.columns] reviews['review_created_at'] = pd.to_datetime(reviews['review_created_at']) reviews['review_day_pre7'] = reviews['review_created_at'] - pd.DateOffset(days=7) zeno_q = f""" select zo.id as zeno_order_id_before_review , zo."patient-id" , zo."created-at" as order_created_at, p.phone, p."name" as "matched-name" from "prod2-generico"."zeno-order" zo left join "prod2-generico".patients p on zo."patient-id" = p.id where date(zo."created-at") > '{startminus14}' and p."name" is not null """ zeno_orders = rs_db.get_df(zeno_q) reviews['i'] = 1 zeno_orders['i'] = 1 merged_df = pd.merge(reviews, zeno_orders, how='outer', on='i') merged_df['author_name'] = merged_df['author_name'].str.lower() merged_df['matched-name'] = merged_df['matched-name'].str.lower() merged_df['lev_ratio'] = merged_df.apply(lambda row: lev.ratio(row['author_name'], row['matched-name']), 1) merged_df['rank_order'] = merged_df.sort_values(['zeno_order_id_before_review'], ascending=[False]) \ .groupby(['review_id', 'matched-name']) \ .cumcount() + 1 latest_order = merged_df[(merged_df['rank_order'] == 1)] latest_order.columns latest_order['top_3_matches'] = latest_order.sort_values(['lev_ratio'], ascending=[False]).groupby(['review_id']) \ .cumcount() + 1 latest_order = latest_order[(latest_order['top_3_matches'] <= 3)] latest_order = latest_order.sort_values(['star_rating', 'review_id', 'top_3_matches'] , ascending=[True, True, True]) latest_order.columns = [c.replace('_', '-') for c in latest_order.columns] latest_order_data = latest_order[['review-id', 'review', 'star-rating', 'review-created-at', 'author-name', 'matched-name', 'zeno-order-id-before-review', 'patient-id' , 'order-created-at', 'phone', 'lev-ratio']] latest_order_mail = latest_order[['review-id', 'review', 'star-rating', 'review-created-at', 'author-name', 'matched-name', 'zeno-order-id-before-review', 'patient-id' , 'order-created-at']] # etl latest_order_data['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') latest_order_data['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') latest_order_data['created-by'] = 'etl-automation' latest_order_data['updated-by'] = 'etl-automation' latest_order_data=latest_order_data[(pd.to_datetime(latest_order_data['review-created-at']) > start)] latest_order_mail=latest_order_mail[(pd.to_datetime(latest_order_mail['review-created-at']) > start)] if latest_order_mail.empty: print('DataFrame is empty!') exit() if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") print(start) truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where DATE("review-created-at") >'{start}' ''' print(truncate_query) rs_db_write.execute(truncate_query) s3.write_df_to_db(df=latest_order_data[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) file_name = 'Zeno_playstore.xlsx' file_path = s3.write_df_to_excel(data={'Zeno Playstore': latest_order_mail}, file_name=file_name) email = Email() # file_path ='/Users/Lenovo/Downloads/utter.csv' email.send_email_file(subject="Zeno Playstore", mail_body='Zeno Playstore', to_emails=email_to, file_uris=[], file_paths=[file_path]) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ecomm-playstore-patients/ecomm-playstore-patients.py
ecomm-playstore-patients.py
import os import sys import argparse import numpy as np import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-d', '--default_size', default=1024, type=int, required=False) parser.add_argument('-m', '--mail_list', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env default_size = args.default_size mail_list = args.mail_list os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() mysql = MySQL(read_only=False) mysql.open_connection() email = Email() SCHEMA = "prod2-generico" TABLE_NAME = "table-size-config" try: QUERY = """SELECT TRIM(pgdb.datname) AS Database, TRIM(a.name) AS Table, ((b.mbytes/part.total::decimal)*100)::decimal(5,2) AS pct_of_total, b.mbytes, b.unsorted_mbytes FROM stv_tbl_perm a JOIN pg_database AS pgdb ON pgdb.oid = a.db_id JOIN ( SELECT tbl, SUM( DECODE(unsorted, 1, 1, 0)) AS unsorted_mbytes, COUNT(*) AS mbytes FROM stv_blocklist GROUP BY tbl ) AS b ON a.id = b.tbl JOIN ( SELECT SUM(capacity) AS total FROM stv_partitions WHERE part_begin = 0 ) AS part ON 1 = 1 WHERE a.slice = 0 ORDER BY 4 desc, db_id, name """ df_rs_size = rs_db.get_df(query=QUERY) table_size_conf = f"""select * from "{SCHEMA}"."{TABLE_NAME}";""" df_table_size_conf = rs_db.get_df(query=table_size_conf) df_imp_tables = pd.merge(df_table_size_conf, df_rs_size, left_on="table-name", right_on="table", how="inner") df_imp_tables = df_imp_tables.loc[df_imp_tables['mbytes'] > df_imp_tables['default-size'].astype(int)] df_imp_tables = df_imp_tables.drop(['id', 'schema', 'table-name', 'database', 'unsorted_mbytes'], axis=1) df_imp_tables = df_imp_tables[['table', 'pct_of_total', 'mbytes', 'default-size']] df_other_tables = pd.merge(df_table_size_conf, df_rs_size, left_on="table-name", right_on="table", how="right") df_other_tables_filtered = df_other_tables.loc[df_other_tables[ 'table-name'].isin([np.NaN, None])] df_other_tables_filtered = df_other_tables_filtered[ df_other_tables_filtered['mbytes'] > 1024] df_other_tables_filtered = df_other_tables_filtered.drop([ 'id', 'schema', 'table-name', 'database', 'unsorted_mbytes'], axis=1) df_other_tables_filtered['default-size'] = default_size df_other_tables_filtered = df_other_tables_filtered[ ['table', 'pct_of_total', 'mbytes', 'default-size']] final_df = pd.concat([df_imp_tables, df_other_tables_filtered]) final_df.columns = ['table_name', '%_of_total_RS', 'Actual_size_MB', 'default_size_configured_MB'] QUERY = """ show tables; """ df_mysql_source = pd.read_sql_query(con=mysql.connection, sql=QUERY) final_df = pd.merge(final_df, df_mysql_source, left_on='table_name', right_on='Tables_in_prod2-generico', how='outer', indicator=True)\ .query("_merge != 'both'").drop('_merge', axis=1).reset_index(drop=True) final_df = final_df.drop(['Tables_in_prod2-generico'], axis=1).dropna().sort_values('Actual_size_MB', ascending=False) file_path = '/tmp/output.csv' final_df.to_csv(file_path) email.send_email_file(subject='[Alert] List of ETL tables exceeding size limit', mail_body="list of tables exceeding" " default size defined are as attached \n", to_emails=mail_list, file_paths=[file_path]) except Exception as error: raise Exception from error finally: rs_db.close_connection() mysql.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/table_size_config/table-size-config.py
table-size-config.py
import argparse import os import sys sys.path.append('../../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from dateutil.relativedelta import relativedelta import pandas as pd import numpy as np import datetime from dateutil.tz import gettz from zeno_etl_libs.db.db import DB, PostGreWrite parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'sc-metrics' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) date1= (datetime.datetime.today() + relativedelta(months=-1)).replace(day=1).strftime('%Y-%m-%d') date2= (datetime.datetime.today() + relativedelta(days=-1)).strftime('%Y-%m-%d') # ============================================================================= # Importing all stores with opening date # ============================================================================= sm = """ select sm.id as "store-id" from "prod2-generico"."stores-master" sm inner join "prod2-generico"."stores" s on s.id = sm.id where date(sm."opened-at") != '0101-01-01' and s."is-active" = 1 group by sm.id; """ sm_data = rs_db.get_df(sm) sm_data.columns = [c.replace('-', '_') for c in sm_data.columns] sm_data['join']='A' # ============================================================================= # Date range explode # ============================================================================= d_date = pd.DataFrame({'join':['A']}) #d_date['join']='A' d_date['start_date']= date1 d_date['end_date']= date2 d_date['date'] = [pd.date_range(s, e, freq='d') for s, e in zip(pd.to_datetime(d_date['start_date']), pd.to_datetime(d_date['end_date']))] #d_date = d_date.explode('date') d_date = pd.DataFrame({'date': np.concatenate(d_date.date.values)}) d_date['join']='A' #d_date.drop(['start_date','end_date'],axis=1,inplace=True) d_date['date'] = d_date['date'].astype('str') m_data = pd.merge(left=sm_data,right=d_date,on=['join'],how='inner') m_data.drop('join',axis=1,inplace=True) # ============================================================================= # AS PR received TAT # ============================================================================= as_pr = f""" select "store-id" , date("received-at") as "date", avg( case when (sb."auto-short" = 0 AND sb."auto-generated" = 0 AND sb."status" NOT IN ('deleted')) then (datediff('hour', sd."store-delivered-at", sb."received-at")) end) as "pr_received_tat", avg( case when (sb."auto-short" = 1 and sb."home-delivery" = 0 and sb."patient-id" = 4480 and sb."status" NOT IN ('deleted')) then (datediff('hour', sd."store-delivered-at", sb."received-at")) end) as "as_received_tat" from "prod2-generico"."short-book-1" sb left join "prod2-generico"."store-delivered" sd on sd.id = sb.id where date("received-at")>= '{date1}' and date("received-at")<= '{date2}' group by "store-id" , date("received-at"); """ as_pr_tat = rs_db.get_df(as_pr) as_pr_tat.columns = [c.replace('-', '_') for c in as_pr_tat.columns] as_pr_tat['date'] = as_pr_tat['date'].astype('str') m_data = pd.merge(left=m_data,right=as_pr_tat,how='left',on=['store_id','date']) # ============================================================================= # Audit Loss # ============================================================================= a_loss = f""" select date(a."created-at") as "date", a."store-id", sum(aps."actual-quantity" * aps."final-ptr") as "actual-value", sum((aps."actual-quantity"-(case when aps."accounted-quantity">aps."actual-quantity" then aps."actual-quantity" else aps."accounted-quantity" end )-aps."corrected-qty")* aps."final-ptr") as "accounted-value", sum((aps."actual-quantity"-(aps."accounted-quantity")-aps."corrected-qty")* aps."final-ptr") as "billing-page-value", sum(case when (aps."actual-quantity"-aps."accounted-quantity")<0 and aps."correction-requested-qty">0 then 1 else 0 end) as "merchandizing-issue" from "prod2-generico"."audits" a left join "prod2-generico"."audit-process-sku" aps on a.id = aps."audit-id" where date(a."created-at") >= '{date1}' and date(a."created-at") <= '{date2}' group by 1,2 ; """ audit_loss = rs_db.get_df(a_loss) audit_loss.columns = [c.replace('-', '_') for c in audit_loss.columns] audit_loss['date'] = audit_loss['date'].astype('str') m_data = pd.merge(left=m_data,right=audit_loss,on=['store_id','date'],how='left') # ============================================================================= # LP Liquidation + LP PR PCT # ============================================================================= lp = f""" select lp."store-id" , lp."received-date" as "date", sum(lp."lp-sales-sum") as "lp-sales-sum", sum(lp."lp-value") as "lp-value", sum(s."lp_pr_sales") as "lp_pr_sales" from ( select lp."store-id" , lp."received-date", sum(lp."lp-sales-sum") as "lp-sales-sum", sum(lp."lp-value-sum") as "lp-value" from "prod2-generico"."lp-liquidation" lp where date(lp."received-date")>= '{date1}' and date(lp."received-date")<= '{date2}' group by lp."store-id" , date(lp."received-date")) lp inner join ( select "store-id" , "created-date", sum(case when "pr-flag" = true then "revenue-value" end) as "lp_pr_sales" from "prod2-generico"."sales" where date("created-at")>= '{date1}' and date("created-at")<= '{date2}' group by 1, 2) s on s."store-id" = lp."store-id" and s."created-date" = lp."received-date" where date(lp."received-date")>= '{date1}' and date(lp."received-date")<= '{date2}' group by lp."store-id" , date(lp."received-date"); """ lp_liq = rs_db.get_df(lp) lp_liq.columns = [c.replace('-', '_') for c in lp_liq.columns] lp_liq['date'] = lp_liq['date'].astype('str') m_data = pd.merge(left=m_data,right=lp_liq,on=['store_id','date'],how='left') # ============================================================================= # OOS less than min + STore level OOS # ============================================================================= oos = f""" select oos."closing-date" as "date", oos."store-id" , sum( case when oos."bucket" in ('AW', 'AX', 'AY') and oos."oos-min-count" = 0 then oos."drug-count" end) as min_count_oos_ax, sum(case when oos."bucket" in ('AW', 'AX', 'AY') then oos."drug-count" end) as "total_drug_count_oos_ax", sum(case when oos."oos-min-count" = 0 and d."company-id" = 6984 then oos."drug-count" end) as "goodaid_min_count", sum(case when d."company-id" = 6984 then oos."drug-count" end) as "goodaid_total_count", sum(oos."drug-count") as "total_drug_count_oos", sum(oos."oos-count") as "total_oos_drug_count_oos" from "prod2-generico"."out-of-shelf-drug-level" oos inner join "prod2-generico"."drugs" d on oos."drug-id" = d."id" where oos."max-set" = 'Y' and oos."mature-flag" = 'Y' and date(oos."closing-date") >='{date1}' and date(oos."closing-date") <='{date2}' group by 1, 2; """ oos_data = rs_db.get_df(oos) oos_data.columns = [c.replace('-', '_') for c in oos_data.columns] oos_data['date'] = oos_data['date'].astype('str') m_data = pd.merge(left=m_data,right=oos_data,on=['store_id','date'],how='left') # ============================================================================= # Feedback rating and bill pct # ============================================================================= fb = f""" select date(b."created-at") as "date", b."store-id", count(distinct case when f.rating is not null then b.id end)* 1.0 / count(distinct b.id)* 1.0 as "feedback-bills-pct", NVL(count(distinct case when f.rating in (1, 2) then b.id end), 0) as "flag-rating", count(distinct case when f.rating is not null then b.id end) as "feedback_bills" from "prod2-generico"."bills-1" b left join "prod2-generico"."feedback" f on f."bill-id" = b.id where date(b."created-at") >= '{date1}' and date(b."created-at") <= '{date2}' group by date(b."created-at") , b."store-id"; """ fb_data = rs_db.get_df(fb) fb_data.columns = [c.replace('-', '_') for c in fb_data.columns] fb_data['date'] = fb_data['date'].astype('str') m_data = pd.merge(left=m_data,right=fb_data,on=['store_id','date'],how='left') # ============================================================================= # Sales related Metric # ============================================================================= sd = f""" select "store-id", "created-date" as "date", sum(case when "bill-flag" = 'gross' and "substitution-status" = 'substituted' then quantity end) as "subs_num", NVL(sum(case when "bill-flag" = 'gross' and "substitution-status" in ('substituted', 'not-substituted') then quantity end),1) as "subs_den", sum(case when "bill-flag" = 'gross' and "substitution-status" = 'substituted' and "hd-flag" = True then quantity end) as "hd_subs_num", NVL(sum(case when "bill-flag" = 'gross' and "substitution-status" in ('substituted', 'not-substituted') and "hd-flag" = True then quantity end),1) as "hd_subs_den", sum(case when "bill-flag" = 'gross' and "substitution-status-g" = 'ga-substituted' and "goodaid-availablity-flag"='available' then quantity end) as "ga_subs_num", NVL(sum(case when "bill-flag" = 'gross' and "goodaid-availablity-flag"='available' and "substitution-status" in ('ga-substituted', 'substituted', 'not-substituted') then quantity end),1) as "ga_subs_den", sum(case when "bill-flag" = 'return' then "revenue-value" end) as "return-value", sum(case when "bill-flag" = 'gross' then "revenue-value" end) as "gross-revennue", count(distinct case when "promo-code" = 'BOGO' and "bill-flag" = 'gross' then "bill-id" end) as "bogo-bills", sum("revenue-value") as revenue, sum(case when "pr-flag" =True then "revenue-value" end) as "pr_sales", sum(case when "hd-flag" =True then "revenue-value" end) as "hd_sales", sum(case when "company-id" =6984 then "revenue-value" end) as "goodaid_sales", sum(case when "ecom-flag" =True then "revenue-value" end) as "ecomm_sales", sum(case when "type" ='generic' then "revenue-value" end) as "generic_sales", count(DISTINCT case when "hd-flag" =True and "bill-flag" = 'gross' then "bill-id" end) as "hd_bills", count(distinct case when "bill-flag" = 'gross' then "bill-id" end) as "NOB", sum(case when "bill-flag" = 'gross' then "revenue-value" end)*1.0/NVL(count(distinct case when "bill-flag" = 'gross' then "bill-id" end),1)*1.0 as "ABV" from "prod2-generico"."sales" where "created-date">='{date1}' and "created-date"<='{date2}' group by "store-id" , "created-date"; """ sales_data = rs_db.get_df(sd) sales_data.columns = [c.replace('-', '_') for c in sales_data.columns] sales_data['date'] = sales_data['date'].astype('str') m_data = pd.merge(left=m_data,right=sales_data,on=['store_id','date'],how='left') # ============================================================================= # Missed Call info # ============================================================================= msc = f""" SELECT scle."store-id", date(scle."date-time") as "date", count(case when scle."call-type" = 'MISSED' then scle."call-type" end) as "missed_calls", count(scle."call-type") as "total_received_calls" FROM "prod2-generico"."store-call-logs-entries" scle where scle."call-type" in ('INCOMING', 'MISSED') and date(scle."date-time") >= '{date1}' and date(scle."date-time") <= '{date2}' group by scle."store-id", date(scle."date-time"); """ missed_call = rs_db.get_df(msc) missed_call.columns = [c.replace('-', '_') for c in missed_call.columns] missed_call['date'] = missed_call['date'].astype('str') m_data = pd.merge(left=m_data,right=missed_call,on=['store_id','date'],how='left') # ============================================================================= # Calling dashboard # ============================================================================= call = f""" select cd."store-id" , date(cd."created-at") as "date", count(distinct cd.id) as "target_calls", count(distinct case when ch.id is not null then cd.id end) as "actual_calls", count(distinct case when cd."backlog-days-count">0 then cd.id end) as "backlog_days_flag" from "prod2-generico"."calling-dashboard" cd left join "prod2-generico"."calling-history" ch on cd.id = ch."calling-dashboard-id" where date(cd."created-at")>= '{date1}' and date(cd."created-at")<= '{date2}' group by cd."store-id" , date(cd."created-at"); """ calling_data = rs_db.get_df(call) calling_data.columns = [c.replace('-', '_') for c in calling_data.columns] calling_data['date'] = calling_data['date'].astype('str') m_data = pd.merge(left=m_data,right=calling_data,on=['store_id','date'],how='left') # ============================================================================= # NPI # ============================================================================= npi = f""" select nrt."store-id" , date(nrt."store-return-created-at") as "date", avg(DATEDIFF ('h', nrt."npi-added-in-store-at", nrt."check-created-at" )) as "hours-to-start-scanning", avg(DATEDIFF ('h', nrt."npi-added-in-store-at", nrt."store-return-created-at" )) as "hours-to-mark-store-return" from "prod2-generico"."npi-returns-tracking" nrt where date(nrt."store-return-created-at")>='{date1}' and date(nrt."store-return-created-at")<= '{date2}' group by nrt."store-id", date(nrt."store-return-created-at"); """ npi_data = rs_db.get_df(npi) npi_data.columns = [c.replace('-', '_') for c in npi_data.columns] npi_data['date'] = npi_data['date'].astype('str') m_data = pd.merge(left=m_data,right=npi_data,on=['store_id','date'],how='left') # ============================================================================= # Cluster FF # ============================================================================= cff = f""" Select date(pso."created-at") AS "date", -- PSO Created at pstm."from-store-id" AS "store-id" , --pstm."to-store-id" AS "destination-store-id", -- max(c.id) as "cluster-id" , -- max(sos."name") AS "source_store", -- max(des."name") AS "destination_store", -- max(pstm."item-quantity") AS "to-be-transferred-qty", -- SUM(sti."quantity") as "actual-transferred-qty", -- pso."status" as "pso-status", -- pstm."status" AS "tn-status", -- st."status" AS "st-status", -- pso."drug-id" , -- pso."drug-name" , -- max(pstm.id) AS "pstm-id", -- max(pstm."is-active") as "is-active", avg(DATEDIFF ('h', pstm."created-at", st."initiated-at" )) as "hrs_cluster_order_ready_for_pickup", avg(DATEDIFF ('h', pstm."created-at", st."transferred-at" )) as "hrs_cluster_biker_picked_up_order", avg(DATEDIFF ('h', pstm."created-at", st."received-at" )) as "hrs_cluster_store_received_order" -- PSO Created at FROM "prod2-generico"."pso-stock-transfer-mapping" pstm LEFT JOIN "prod2-generico"."stock-transfers-1" st on pstm."stock-transfer-id" = st.id Left JOIN "prod2-generico"."pso-stock-transfer-inventory-mapping" pstim ON pstm.id = pstim."pso-stock-transfer-mapping-id" LEFT JOIN "prod2-generico"."stock-transfer-items-1" sti ON pstim."inventory-id" = sti."inventory-id" AND st.id = sti."transfer-id" Left join "prod2-generico"."patients-store-orders" pso ON pstm."patient-store-order-id" = pso.id left join "prod2-generico"."store-clusters" sc on pstm."from-store-id" = sc."store-id" left join "prod2-generico".stores sos on pstm."from-store-id" = sos.id left join "prod2-generico".stores des on pstm."to-store-id" = des.id inner join "prod2-generico".clusters c on sc."cluster-id" = c.id and sc."is-active" = 1 WHERE sc."cluster-id" is not null AND date(pso."created-at") >= '{date1}' and date(pso."created-at") <= '{date2}' GROUP BY pstm."from-store-id", date(pso."created-at"); """ cluster_data = rs_db.get_df(cff) cluster_data.columns = [c.replace('-', '_') for c in cluster_data.columns] cluster_data['date'] = cluster_data['date'].astype('str') m_data = pd.merge(left=m_data,right=cluster_data,on=['store_id','date'],how='left') # ============================================================================= # as - pr otif # ============================================================================= aspr = f""" select "store-id" , date("created-at") as "date", sum(case when "as-ms-pr" = 'as' then "requested-quantity" end) as "as_requested_qty", sum(case when "as-ms-pr" = 'pr' then "requested-quantity" end) as "pr_requested_qty", sum(case when "as-ms-pr" = 'as' and date("store-delivered-at")!= '0101-01-01' and "store-delivered-at" < "delivery-tat" then "requested-quantity" end) as "as_otif_qty", sum(case when "as-ms-pr" = 'pr' and date("store-delivered-at")!= '0101-01-01' and "store-delivered-at" < "delivery-tat" then "requested-quantity" end) as "pr_otif_qty" from "prod2-generico"."sb-sla" where date("created-at")>='{date1}' and date("created-at")<= '{date2}' group by "store-id" ,date("created-at"); """ aspr_data = rs_db.get_df(aspr) aspr_data.columns = [c.replace('-', '_') for c in aspr_data.columns] aspr_data['date'] = aspr_data['date'].astype('str') m_data = pd.merge(left=m_data,right=aspr_data,on=['store_id','date'],how='left') # ============================================================================= # store opening closing # ============================================================================= s_date = f""" select date("created-at") as "date", "store-id" , min("created-at") as "first_search", max("created-at") as "last_search" from "prod2-generico"."searches" group by date("created-at"), "store-id"; """ opening_data = rs_db.get_df(s_date) opening_data.columns = [c.replace('-', '_') for c in opening_data.columns] opening_data['date'] = opening_data['date'].astype('str') m_data = pd.merge(left=m_data,right=opening_data,on=['store_id','date'],how='left') # ============================================================================= # store info # ============================================================================= s_info = f""" select id as "store-id", store , "line-manager" , abo , city , "franchisee-name", acquired , "cluster-name" , "old-new-static" from "prod2-generico"."stores-master"; """ store_info = rs_db.get_df(s_info) store_info.columns = [c.replace('-', '_') for c in store_info.columns] m_data = pd.merge(left=m_data,right=store_info,on=['store_id'],how='left') # ============================================================================= # PR wholeness # ============================================================================= pro = f""" select pr."store-id" , date(pr."turnaround-time") as "date", sum(case when pr."pso-status" != 'pso-draft' then pr."selling-rate" end) as "pr_created_value", sum(case when pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end)<= pr."turnaround-time" then pr."selling-rate" else 0 end) as "within_slot_delivered_pr_value", sum(case when pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end) is not null then pr."selling-rate" end) as "total_delivered_pr_value", count(distinct case when pr."pso-status" != 'pso-draft' then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0) )::text end) as "pr_created_count", count(distinct case when pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end)<= pr."turnaround-time" then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0)::text ) else null end) as "within_slot_delivered_count", count(distinct case when pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end) is not null then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0) )::text end) as "total_delivered_pr_count", sum(case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' then pr."selling-rate" end) as "pr_created_value_delivery", sum(case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end)<= pr."turnaround-time" then pr."selling-rate" else 0 end) as "within_slot_delivered_pr_value_delivery", sum(case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end) is not null then pr."selling-rate" end) as "total_delivered_pr_value_delivery", count(distinct case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0) )::text end) as "pr_created_count_delivery", count(distinct case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end)<= pr."turnaround-time" then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0)::text ) else null end) as "within_slot_delivered_count_delivery", count(distinct case when pr."order-type" = 'delivery' and pr."pso-status" != 'pso-draft' and (case when pr."order-type" = 'pickup' then pr."completed-at" else hdm."delivered-at" end) is not null then (pr."order-number" || pr."store-id" || pr."patient-id" || pr."created-at" || nvl(pr."bill-id", 0) )::text end) as "total_delivered_pr_count_delivery" from "prod2-generico"."patient-requests-metadata" pr left join "prod2-generico"."home-delivery-metadata" hdm on hdm.id = pr.id where date(pr."created-at") >= '{date1}' and date(pr."created-at") <= '{date2}' group by 1, 2; """ pro_data = rs_db.get_df(pro) pro_data.columns = [c.replace('-', '_') for c in pro_data.columns] pro_data['date'] = pro_data['date'].astype('str') m_data = pd.merge(left=m_data,right=pro_data,on=['store_id','date'],how='left') # ============================================================================= # Search to pr conversion # ============================================================================= search = f""" select date("search-date") as "date", "store-id", sum(case when "pr-opportunity-converted-flag"=1 then "lost-sales" end) as "pr_achieved_sales", sum(case when "pr-opportunity-converted-flag"=1 then "loss-quantity" end) as "pr_achieved_qty", sum(case when "pr-opportunity-flag" =1 then "lost-sales" end) as "search_loss_sales", sum(case when "pr-opportunity-flag" =1 then "loss-quantity" end) as "search_loss_qty" from "prod2-generico"."cfr-searches-v2" where date("search-date") >= '{date1}' and date("search-date") <= '{date2}' group by date("search-date"),"store-id" ; """ search_data = rs_db.get_df(search) search_data.columns = [c.replace('-', '_') for c in search_data.columns] search_data['date'] = search_data['date'].astype('str') m_data = pd.merge(left=m_data,right=search_data,on=['store_id','date'],how='left') # ============================================================================= # cash tally data # ============================================================================= ctally = f""" select "store-id" , date, max("created-at") as max_cash_tally_date from "prod2-generico"."cash-tally" where date("date") >= '{date1}' and date("date") <= '{date2}' group by "store-id" , date; """ ctally_data = rs_db.get_df(ctally) ctally_data.columns = [c.replace('-', '_') for c in ctally_data.columns] ctally_data['date'] = ctally_data['date'].astype('str') m_data = pd.merge(left=m_data,right=ctally_data,on=['store_id','date'],how='left') # ============================================================================= # Expiry Sales value # ============================================================================= exp = f""" select si."snapshot-date" as "date", si."entity-id" as "store-id" , SUM(case when si."inventory-sub-type-1" = 'expired' then si."value-with-tax" end ) as "expired-value", SUM(case when si."inventory-sub-type-1" = 'near-expiry' then si."value-with-tax" end ) as "near-expiry-value" from "prod2-generico"."system-inventory" si where si."entity-type" = 'store' and date(si."snapshot-date") >= '{date1}' and date(si."snapshot-date") <= '{date2}' group by si."snapshot-date" , si."entity-id" ; """ exp_data = rs_db.get_df(exp) exp_data.columns = [c.replace('-', '_') for c in exp_data.columns] exp_data['date'] = exp_data['date'].astype('str') m_data = pd.merge(left=m_data,right=exp_data,on=['store_id','date'],how='left') # ============================================================================= # PSO draft conversion % # ============================================================================= draft = f""" select date("created-at") as "date", "store-id" , sum(case when "pso-parent-id" is not null then 1 else 0 end) as "pso-draft-count", sum(case when "pso-parent-id" is not null and status != 'pso-draft' then 1 else 0 end) as "pso-draft-converted-count" from "prod2-generico"."patients-store-orders" pso where date("created-at")>= '{date1}' and date("created-at")<= '{date2}' group by 1, 2 ; """ draft_data = rs_db.get_df(draft) draft_data.columns = [c.replace('-', '_') for c in draft_data.columns] draft_data['date'] = draft_data['date'].astype('str') m_data = pd.merge(left=m_data,right=draft_data,on=['store_id','date'],how='left') m_data.info() # Write to Redshift Also m_data.columns = [c.replace('_', '-') for c in m_data.columns] m_data.columns m_data = m_data[[ 'store-id' ,'date' ,'pr-received-tat' ,'as-received-tat' ,'lp-sales-sum' ,'lp-value' ,'lp-pr-sales' ,'min-count-oos-ax' ,'total-drug-count-oos-ax' ,'goodaid-min-count' ,'goodaid-total-count' ,'total-drug-count-oos' ,'total-oos-drug-count-oos' ,'feedback-bills-pct' ,'flag-rating' ,'subs-num' ,'subs-den' ,'hd-subs-num' ,'hd-subs-den' ,'ga-subs-num' ,'ga-subs-den' ,'return-value' ,'gross-revennue' ,'bogo-bills' ,'revenue' ,'pr-sales' ,'hd-sales' ,'goodaid-sales' ,'ecomm-sales' ,'hd-bills' ,'nob' ,'abv' ,'missed-calls' ,'total-received-calls' ,'target-calls' ,'actual-calls' ,'hours-to-start-scanning' ,'hours-to-mark-store-return' ,'hrs-cluster-order-ready-for-pickup' ,'hrs-cluster-biker-picked-up-order' ,'hrs-cluster-store-received-order' ,'as-requested-qty' ,'pr-requested-qty' ,'as-otif-qty' ,'pr-otif-qty' ,'first-search' ,'last-search' ,'store' ,'line-manager' ,'abo' ,'city' ,'franchisee-name' ,'acquired' ,'cluster-name' ,'old-new-static' ,'pr-created-value' ,'within-slot-delivered-pr-value' ,'total-delivered-pr-value' ,'pr-created-count' ,'within-slot-delivered-count' ,'total-delivered-pr-count','pr-achieved-sales' ,'pr-achieved-qty' ,'search-loss-sales' ,'search-loss-qty','feedback-bills' ,'max-cash-tally-date', 'backlog-days-flag', 'pr-created-value-delivery' , 'within-slot-delivered-pr-value-delivery', 'total-delivered-pr-value-delivery', 'pr-created-count-delivery', 'within-slot-delivered-count-delivery' , 'total-delivered-pr-count-delivery', 'generic-sales','expired-value', 'actual-value', 'accounted-value', 'billing-page-value', 'merchandizing-issue', 'pso-draft-count', 'pso-draft-converted-count', 'near-expiry-value' ]] truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=m_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/sc-metrics/sc-metrics.py
sc-metrics.py
import argparse import os import sys from datetime import datetime as dt from datetime import timedelta import numpy as np import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.parameter.job_parameter import parameter job_params = parameter.get_params(job_id=64) env = job_params['env'] os.environ['env'] = env email_to = job_params['email_to'] day_wise_sale = job_params['day_wise_sale'] logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() read_schema = 'prod2-generico' # Fetching data from google sheet gs = GoogleSheet() cfr_data = gs.download({ "spreadsheet_id": "18SUPchsLqNAl0m7xSu09jz51taZO5JgZtQQAliahddg", "sheet_name": "CFR", "listedFields": []}) generic_activity_data = gs.download({ "spreadsheet_id": "18SUPchsLqNAl0m7xSu09jz51taZO5JgZtQQAliahddg", "sheet_name": "Generic Activity", "listedFields": []}) data_cfr = pd.DataFrame(cfr_data) data_generic = pd.DataFrame(generic_activity_data) data_cfr['Project'] = 'CFR Search' data_generic['Project'] = 'Generic Assrt Extention' data = pd.concat([data_cfr, data_generic]) end = dt.now().date() - timedelta(days=1) start_m = dt.now().date() - timedelta(days=30) start_w1 = dt.now().date() - timedelta(days=7) start_w2 = dt.now().date() - timedelta(days=14) data = data[['store_id', 'drug_id', 'drug name', 'drug grp', 'cat', 'Project']] data.columns = [c.replace('_', '-') for c in data.columns] data = data.drop_duplicates() data['drug grp'] = data['drug grp'].apply(lambda x: "others" if x not in ('ethical', 'generic') else x) drugs = tuple(data['drug-id'].drop_duplicates()) limit_str = " " doi_q = f""" SELECT "store-id", "drug-id", "min", "safe-stock", "max", "as-active", "ms-active", "pr-active" FROM "{read_schema}"."drug-order-info" WHERE "drug-id" in {drugs} {limit_str}""" inv_q = f""" SELECT "store-id", "drug-id", SUM("locked-quantity" + "quantity" + "locked-for-audit" + "locked-for-transfer" + "locked-for-check" + "locked-for-return") AS "current-inventory", SUM(("locked-quantity" + "quantity" + "locked-for-audit" + "locked-for-transfer" + "locked-for-check" + "locked-for-return")* ptr) as "inv-value" FROM "{read_schema}"."inventory-1" WHERE "drug-id" in {drugs} GROUP BY "store-id", "drug-id" {limit_str};""" sales_q = f""" select "store-id", "drug-id", DATE("created-at") as "sales-date", sum("net-quantity") as "net-sales-quantity", sum("revenue-value") as "net-sales-value" from "{read_schema}".sales s where DATE("created-at") between '{start_m}' and '{end}' and "drug-id" in {drugs} group by "store-id", "drug-id", DATE("created-at") {limit_str}; """ doi = rs_db.get_df(doi_q) inv = rs_db.get_df(inv_q) sales = rs_db.get_df(sales_q) data['store-id'] = data['store-id'].astype(int) data['drug-id'] = data['drug-id'].astype(int) data = pd.merge(data, doi, how='left', on=['store-id', 'drug-id']) inv['current-inventory'] = inv['current-inventory'].apply(lambda x: 0 if x < 1 else x) inv['inv-value'] = inv['inv-value'].apply(lambda x: 0 if x < 1 else x) data = pd.merge(data, inv, how='left', on=['store-id', 'drug-id']) D_30 = sales[sales['sales-date'].between(start_m, end)].groupby(['store-id', 'drug-id'], as_index=False).agg({'net-sales-quantity': 'sum', 'net-sales-value': 'sum'}) D_14 = sales[sales['sales-date'].between(start_w2, end)].groupby(['store-id', 'drug-id'], as_index=True).agg( sales_quantiy_14=('net-sales-quantity', 'sum'), sales_value_14=('net-sales-value', 'sum')).reset_index() D_07 = sales[sales['sales-date'].between(start_w1, end)].groupby(['store-id', 'drug-id'], as_index=True).agg( sales_quantiy_07=('net-sales-quantity', 'sum'), sales_value_07=('net-sales-value', 'sum')).reset_index() D_30['net-sales-quantity'] = D_30['net-sales-quantity'].apply(lambda x: 0 if x < 1 else x) D_30['net-sales-value'] = D_30['net-sales-value'].apply(lambda x: 0 if x < 1 else x) if day_wise_sale: sales_day_wise = pd.pivot_table(data=sales, index=['store-id', 'drug-id'], columns='sales-date', values='net-sales-quantity', aggfunc='sum').reset_index().fillna(0) data = pd.merge(data, sales_day_wise, how='left', on=['store-id', 'drug-id']) data = pd.merge(data, D_30, how='left', on=['store-id', 'drug-id']) data = pd.merge(data, D_14, how='left', on=['store-id', 'drug-id']) data = pd.merge(data, D_07, how='left', on=['store-id', 'drug-id']) data['Max>0 Count'] = data['max'].apply(lambda x: 1 if x > 0 else 0) data['Total Str-Drg Combinations'] = 1 data['Inv > 0 Count'] = data['current-inventory'].apply(lambda x: 1 if x > 0 else 0) data = data.fillna(0) availability_summary = data.groupby(['Project', 'drug grp'], as_index=False).agg({'Total Str-Drg Combinations': 'sum', 'max': 'sum', 'Max>0 Count': 'sum', 'as-active': 'sum', 'current-inventory': 'sum', 'Inv > 0 Count': 'sum'}) availability_summary['Availability %'] = availability_summary['Inv > 0 Count'] / availability_summary[ 'Total Str-Drg Combinations'] availability_summary.columns = ['Project', 'Type', 'Total Str-Drg Combinations', 'Max', 'Max>0 Count', 'AS Active Count', 'Inv QTY', 'Inv > 0 Count', 'Availability %'] inventory_doh_summary = data.groupby(['Project', 'drug grp'], as_index=False).agg({'Total Str-Drg Combinations': 'sum', 'current-inventory': 'sum', 'inv-value': 'sum', 'net-sales-quantity': 'sum', 'net-sales-value': 'sum' }) inventory_doh_summary['Avg DOH'] = inventory_doh_summary['inv-value'] * 30 / inventory_doh_summary[ 'net-sales-value'] inventory_doh_summary.columns = ['Project', 'Type', 'Total Str-Drg Combinations', 'Inv QTY', 'Inv Value', 'Last 30 days sales qty', 'Last 30 days sales Value', 'Avg DOH'] data['inv-value'] = data['inv-value'].astype(float) data['net-sales-value'] = data['net-sales-value'].astype(float) data['DOH'] = data['inv-value'] * 30 / data['net-sales-value'] data['DOH'] = data['DOH'].fillna(0) data['DOH Buckets'] = pd.cut(data['DOH'], bins=[-1, 7, 15, 30, 90, 10000, np.inf], labels=['less than 7', '7 - 15 days', '15-30 days', '30-90 days', 'greater than 90 days', 'No sales']) data['DOH Buckets'] = np.where(data['current-inventory'] < 1, 'No Stock', data['DOH Buckets']) doh_buckets = data.groupby(['Project', 'DOH Buckets'], as_index=True).agg({'Total Str-Drg Combinations': 'sum', 'inv-value': 'sum', 'net-sales-value': 'sum', 'DOH': 'mean'}).reset_index() doh_buckets.columns = ['Project', 'DOH Buckets', 'Count Of Str-Drug', 'Inv Val', 'Sales Val ( Last 30 days )', 'Avg DOH'] str_drg = data[['store-id', 'drug-id', 'Project']].drop_duplicates() str_drg = str_drg.rename(columns={'Project': 'project'}) file_name = 'Summary_Report.xlsx' file_path = s3.write_df_to_excel(data={'Presence & Availability': availability_summary, 'Inventory DOH': inventory_doh_summary, 'DOH Buckets': doh_buckets, 'base file': data}, file_name=file_name) email = Email() email.send_email_file(subject="Weekly CFR Visibility Report", mail_body=f'Weekly CFR Visibility Report from {start_m} to {end}', to_emails=email_to, file_uris=[], file_paths=[file_path])
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/cfr_auto_mailer/cfr_auto_mailer.py
cfr_auto_mailer.py
import os import sys import pandas as pd import datetime as dt import numpy as np from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper import helper import argparse def main(debug_mode, as_inactive_exclude_types, mature_delta_days, exclude_stores, db, rs_db_write, read_schema, write_schema, logger): s3 = S3() logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' run_date = dt.date.today() mature_delta_start_date = run_date - dt.timedelta(days=mature_delta_days) logger.info("Getting all store IDs") stores = get_stores(exclude_stores, db, read_schema) store_id_list = list(stores['id']) logger.info("All stores ID's fetched!") out_of_shelf = pd.DataFrame() try: # getting oos iteratively for store_id in store_id_list: logger.info(f"Getting required data for store: {store_id}") # getting current inventory inventory = get_inventory(store_id, db, read_schema) # getting past 30d sales values of drugs in store df_30d_sales = get_past_30d_sales(store_id, db, run_date, read_schema) # getting ipc buckets df_buckets = get_buckets(store_id, db, read_schema) # getting doi info for drugs whose max is set doi_class_1 = get_drug_list(store_id, db, read_schema, max_set='Y', drugs=[]) doi_class_1["max_set"] = 'Y' # getting doi info for drugs whose max is not set, # but sold in past 3 months drug_list = list(df_30d_sales.drug_id.unique()) doi_class_2 = get_drug_list(store_id, db, read_schema, max_set='N', drugs=drug_list) doi_class_2["max_set"] = 'N' # combine both doi_class tables doi_class = doi_class_1.append(doi_class_2) # getting std_qty of all drugs in system drug_std_qty = get_std_qty(db, read_schema) # get mature drug flags df_mature_flag = mature_drugs_flag( store_id, run_date, mature_delta_start_date, mature_delta_days, rs_db, read_schema) # ========================================== # Out of shelf calculation starts # ========================================== store_name = inventory["store_name"].unique()[0] out_of_shelf_store = doi_class.merge(inventory[['store_id', 'store_name', 'drug_id', 'quantity']], on=['store_id', 'drug_id'], how='left') out_of_shelf_store['quantity'].fillna(0, inplace=True) out_of_shelf_store['store_name'].fillna(store_name, inplace=True) # set OUP = 0, for NPI drugs in max_set = 'N' out_of_shelf_store["order_upto_point"] = np.where( out_of_shelf_store["max_set"] == 'N', 0, out_of_shelf_store["order_upto_point"]) # merging buckets of drugs out_of_shelf_store = out_of_shelf_store.merge(df_buckets, on=["store_id", "drug_id"], how="left") out_of_shelf_store["bucket"].fillna('NA', inplace=True) # merging std_qty of drugs out_of_shelf_store = out_of_shelf_store.merge(drug_std_qty, on="drug_id", how="left") out_of_shelf_store["std_qty"].fillna(1, inplace=True) # merging past 30d sales value of store-drugs out_of_shelf_store = out_of_shelf_store.merge(df_30d_sales, on="drug_id", how="left") out_of_shelf_store["gross_sales_val"].fillna(0, inplace=True) # add mature drug_flag out_of_shelf_store = out_of_shelf_store.merge( df_mature_flag, how='left', on=['store_id', 'drug_id']) out_of_shelf_store['mature_flag'].fillna('N', inplace=True) out_of_shelf = out_of_shelf.append(out_of_shelf_store) out_of_shelf["closing_date"] = run_date logger.info("All stores required data fetched!") # calculating store wise OOS percent high-value-ethical logger.info("Creating OOS report on store-drug level") out_of_shelf["type"] = np.where( out_of_shelf["type"] == 'high-value-ethical', 'ethical', out_of_shelf["type"]) out_of_shelf["type"] = np.where( out_of_shelf["type"].isin(['generic', 'ethical']), out_of_shelf["type"], 'others') out_of_shelf["oos_flag"] = np.where(out_of_shelf["quantity"] == 0, 1, 0) # adding inv<min (SS) flag out_of_shelf["oos_min_flag"] = np.where( out_of_shelf["quantity"] <= out_of_shelf["safety_stock"], 1, 0) # adding inv<std_qty flag out_of_shelf["oos_std_qty_flag"] = np.where( out_of_shelf["quantity"] < out_of_shelf["std_qty"], 1, 0) # adding 30d sales value out_of_shelf["oos_sales_loss_30d"] = out_of_shelf["gross_sales_val"] * \ out_of_shelf["oos_flag"] out_of_shelf["sales_30d"] = out_of_shelf["gross_sales_val"] # exclude as-active = 0 based on specified drug types out_of_shelf = out_of_shelf.loc[~((out_of_shelf["as_active"] == 0) & (out_of_shelf["type"].isin( as_inactive_exclude_types)))] # OOS group store drug level out_of_shelf_group = pd.DataFrame(out_of_shelf.groupby( ['store_id', 'store_name', 'drug_id', 'drug_name', 'type', 'bucket', 'drug_grade', 'max_set', 'mature_flag']).agg( {'oos_flag': ['sum', 'count'], 'oos_min_flag': ['sum', 'count'], 'oos_std_qty_flag': ['sum', 'count'], 'oos_sales_loss_30d': 'sum', 'sales_30d': 'sum'})).reset_index() out_of_shelf_group.columns = [ 'store_id', 'store_name', 'drug_id', 'drug_name', 'type', 'bucket', 'drug_grade', 'max_set', 'mature_flag', 'oos_count', 'drug_count', 'oos_min_count', 'oos_min_drug_count', 'oos_std_qty_count', 'oos_std_qty_drug_count', 'oos_sales_loss_30d', 'sales_30d'] # add customer segment info customer_segment = get_customer_segment(db, read_schema, interval=90) out_of_shelf_group = out_of_shelf_group.merge( customer_segment, how='left', on=['store_id', 'drug_id']) out_of_shelf_group['customer_type'].fillna('Non-premium', inplace=True) # add min, safe-stock, max and current-inventory out_of_shelf_group = out_of_shelf_group.merge( out_of_shelf[["store_id", "drug_id", "as_active", "safety_stock", "reorder_point", "order_upto_point", "quantity"]], on=["store_id", "drug_id"], how="left") out_of_shelf_group.rename( {"safety_stock": "min", "reorder_point": "safe-stock", "order_upto_point": "max", "quantity": "inventory_quantity"}, axis=1, inplace=True) out_of_shelf_group['closing_date'] = run_date # OOS group store type grade level out_of_shelf_store_group = pd.DataFrame(out_of_shelf.groupby( ['store_id', 'store_name', 'type', 'bucket', 'max_set']).agg( {'oos_flag': ['sum', 'count'], 'oos_min_flag': ['sum', 'count'], 'oos_std_qty_flag': ['sum', 'count'], 'oos_sales_loss_30d': 'sum', 'sales_30d': 'sum'})).reset_index() out_of_shelf_store_group.columns = [ 'store_id', 'store_name', 'type', 'bucket', 'max_set', 'oos_count', 'drug_count', 'oos_min_count', 'oos_min_drug_count', 'oos_std_qty_count', 'oos_std_qty_drug_count', 'oos_sales_loss_30d', 'sales_30d'] out_of_shelf_store_group['closing_date'] = run_date # required format for RS write logger.info("Formatting table for RS-DB write") out_of_shelf_group.columns = [c.replace('_', '-') for c in out_of_shelf_group.columns] out_of_shelf_store_group.columns = [c.replace('_', '-') for c in out_of_shelf_store_group.columns] out_of_shelf_group['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') out_of_shelf_group['created-by'] = 'etl-automation' out_of_shelf_group['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') out_of_shelf_group['updated-by'] = 'etl-automation' out_of_shelf_store_group['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') out_of_shelf_store_group['created-by'] = 'etl-automation' out_of_shelf_store_group['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') out_of_shelf_store_group['updated-by'] = 'etl-automation' if debug_mode == 'N': logger.info("Writing table to RS-DB") logger.info("Writing to table: out-of-shelf-drug-level") table_info = helper.get_table_info(db=rs_db_write, table_name='out-of-shelf-drug-level', schema=write_schema) columns = list(table_info['column_name']) out_of_shelf_group = out_of_shelf_group[columns] # required column order s3.write_df_to_db(df=out_of_shelf_group, table_name='out-of-shelf-drug-level', db=rs_db_write, schema=write_schema) logger.info("Writing to table: out-of-shelf-store-level") table_info = helper.get_table_info(db=rs_db_write, table_name='out-of-shelf-store-level', schema=write_schema) columns = list(table_info['column_name']) out_of_shelf_store_group = out_of_shelf_store_group[columns] # required column order s3.write_df_to_db(df=out_of_shelf_store_group, table_name='out-of-shelf-store-level', db=rs_db_write, schema=write_schema) logger.info("Writing table to RS-DB completed!") else: logger.info("Writing to RS-DB skipped") # get metrics for email notification df_max_set = out_of_shelf_store_group.loc[ out_of_shelf_store_group["max-set"] == 'Y'] df_ethical = df_max_set.loc[df_max_set["type"] == 'ethical'] df_generic = df_max_set.loc[df_max_set["type"] == 'generic'] df_others = df_max_set.loc[df_max_set["type"] == 'others'] store_count = len(df_max_set["store-id"].unique()) oos_sys = round( (100 * df_max_set["oos-count"].sum() / df_max_set["drug-count"].sum()), 2) oos_ethical = round( (100 * df_ethical["oos-count"].sum() / df_ethical["drug-count"].sum()), 2) oos_generic = round( (100 * df_generic["oos-count"].sum() / df_generic["drug-count"].sum()), 2) oos_others = round( (100 * df_others["oos-count"].sum() / df_others["drug-count"].sum()), 2) status = 'Success' logger.info(f"OOS code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"OOS code execution status: {status}") store_count, oos_sys, oos_ethical, oos_generic, oos_others = 0, 0, 0, 0, 0 return status, run_date, store_count, oos_sys, oos_ethical, oos_generic, oos_others def get_stores(exclude_stores, db, schema): if not exclude_stores: exclude_stores = "(0)" else: exclude_stores = tuple(exclude_stores) q_store = """ select id from "{schema}".stores where name <> 'Zippin Central' and name <> 'Marketing' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {exclude_stores} """.format(schema=schema, exclude_stores=exclude_stores) df_stores = db.get_df(q_store) return df_stores def get_inventory(store_id, db, schema): q_inventory = """ select "store-id" , s.name as "store-name", "drug-id" , sum(quantity+"locked-quantity"+"locked-for-audit"+ "locked-for-check") as quantity, sum(quantity+"locked-quantity"+"locked-for-audit"+ "locked-for-check"+"locked-for-transfer"+"locked-for-return") as "total-system-quantity" from "{schema}"."inventory-1" i left join "{schema}".stores s on i."store-id" = s.id where "store-id" = {0} group by "store-id" , s.name, "drug-id" """.format(store_id, schema=schema) df_inventory = db.get_df(q_inventory) df_inventory.columns = [c.replace('-', '_') for c in df_inventory.columns] return df_inventory def get_past_30d_sales(store_id, db, run_date, schema): start_date = run_date - dt.timedelta(days=30) end_date = run_date q_sales = """ select "drug-id", sum("revenue-value") as "gross-sales-val" from "{schema}".sales s where "store-id" = {0} and "bill-flag" = 'gross' and date("created-at") between '{1}' and '{2}' group by "drug-id" """.format(store_id, start_date.strftime("%Y-%m-%d"), end_date.strftime("%Y-%m-%d"), schema=schema) df_30d_sales = db.get_df(q_sales) df_30d_sales.columns = [c.replace('-', '_') for c in df_30d_sales.columns] df_30d_sales = df_30d_sales.dropna() df_30d_sales["drug_id"] = df_30d_sales["drug_id"].astype(int) return df_30d_sales def get_std_qty(db, schema): q_std_qty = f""" select "drug-id" , "std-qty" from "{schema}"."drug-std-info" dsi """ df_drug_std_qty = db.get_df(q_std_qty) df_drug_std_qty.columns = [c.replace('-', '_') for c in df_drug_std_qty.columns] return df_drug_std_qty def get_buckets(store_id, db, schema): q_latest_buckets = f""" select "store-id" , "drug-id" , bucket from "{schema}"."ipc2-segmentation" is2 where "store-id" = {store_id} and "reset-date" = (select max("reset-date") from "{schema}"."ipc2-segmentation" where "store-id" = {store_id}) """ df_latest_buckets = db.get_df(q_latest_buckets) df_latest_buckets['bucket'] = np.where(df_latest_buckets['bucket'] == '', 'NA', df_latest_buckets['bucket']) df_latest_buckets.columns = [c.replace('-', '_') for c in df_latest_buckets.columns] return df_latest_buckets def get_customer_segment(db, schema, interval=90): q_customer_seg = """ select distinct "store-id" , "drug-id" , seg."segment-calculation-date" , case when seg."value-segment" in ('platinum', 'gold', 'silver') then 'Premium' else 'Non-premium' end as "customer-type" from "{schema}".sales s left join ( select "patient-id" , "segment-calculation-date", "value-segment" from "{schema}"."customer-value-segment" where "segment-calculation-date" = (select max("segment-calculation-date") from "{schema}"."customer-value-segment") ) as seg on s."patient-id" = seg."patient-id" where DATEDIFF(day, date(s."created-at"), current_date) <= {0} and "customer-type" = 'Premium' order by "store-id" , "drug-id" """.format(interval, schema=schema) df_customer_seg = db.get_df(q_customer_seg) df_customer_seg.columns = [c.replace('-', '_') for c in df_customer_seg.columns] return df_customer_seg def get_drug_list(store_id, db, schema, max_set='Y', drugs=None): if max_set == 'Y': max_condition = "max > 0" drugs_condition = "" elif max_set == 'N' and drugs != []: max_condition = "max = 0" drugs_condition = """and "drug-id" in {0}""".format( str(drugs).replace('[', '(').replace(']', ')')) else: max_condition = "max = 0" drugs_condition = """and "drug-id" in (0)""" # getting max from drug-order-info doi_query = """ select "store-id", "drug-id", "drug-name", type, category, "drug-grade", min, doi."safe-stock", max, "as-active" from "{schema}"."drug-order-info" doi join "{schema}".drugs d on d.id = doi."drug-id" where {1} and d.type not in ('discontinued-products', 'banned') and "store-id" = {0} {2} """.format(store_id, max_condition, drugs_condition, schema=schema) df_doi = db.get_df(doi_query) df_doi.columns = [c.replace('-', '_') for c in df_doi.columns] df_doi.columns = ['store_id', 'drug_id', 'drug_name', 'type', 'category', 'drug_grade', 'safety_stock', 'reorder_point', 'order_upto_point', 'as_active'] return df_doi def mature_drugs_flag(store_id, run_date, mature_delta_start_date, mature_delta_days, db, schema): q_mature_days = """ select "store-id" , "drug-id" , sum("drug-count") as mature_days from "{schema}"."out-of-shelf-drug-level" oosdl where "closing-date" < '{0}' and "closing-date" >= '{1}' and "max-set" = 'Y' and "store-id" = {2} group by "store-id" , "drug-id" """.format(run_date.strftime("%Y-%m-%d"), mature_delta_start_date.strftime("%Y-%m-%d"), store_id, schema=schema) df_mature_flag = db.get_df(q_mature_days) df_mature_flag.columns = [c.replace('-', '_') for c in df_mature_flag.columns] df_mature_flag["mature_flag"] = np.where( df_mature_flag["mature_days"] == mature_delta_days, 'Y', 'N') df_mature_flag.drop("mature_days", axis=1, inplace=True) return df_mature_flag if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="Y", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-exlist', '--as_inact_ex_types', default="generic,others", type=str, required=True) parser.add_argument('-mdd', '--mature_delta_days', default=7, type=int, required=False) parser.add_argument('-exs', '--exclude_stores', default="52,60,92,243,281", type=str, required=True) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env debug_mode = args.debug_mode email_to = args.email_to as_inactive_exclude_types = args.as_inact_ex_types.replace(" ", "").split(",") mature_delta_days = args.mature_delta_days exclude_stores = args.exclude_stores.replace(" ", "").split(",") # ensure input is correct if not all([i in ['generic', 'ethical', 'others'] for i in as_inactive_exclude_types]): as_inactive_exclude_types = ['generic', 'others'] # default types #convert string store_ids to int exclude_stores = [int(i) for i in exclude_stores] read_schema = 'prod2-generico' write_schema = 'prod2-generico' logger = get_logger() rs_db = DB() rs_db_write = DB(read_only=False) # open RS connection rs_db.open_connection() rs_db_write.open_connection() """ calling the main function """ status, run_date, store_count, oos_sys, oos_ethical, \ oos_generic, oos_others = main( debug_mode, as_inactive_exclude_types, mature_delta_days, exclude_stores, rs_db, rs_db_write, read_schema, write_schema, logger) # close RS connection rs_db.close_connection() rs_db_write.close_connection() # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"OOS Job (GLUE-{env}) {run_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Job Params: {args} ===SYSTEM LEVEL=== TOTAL : {oos_sys}% GENERIC : {oos_generic}% ETHICAL : {oos_ethical}% OTHERS : {oos_others}% STORES : {store_count} (flags: max_set='Y', mature_flag='All') """, to_emails=email_to) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/out_of_shelf/out_of_shelf.py
out_of_shelf.py
import argparse # this is to include zeno_etl_libs in the python search path on the run time import sys import os sys.path.append('../../../..') import pandas as pd from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger source_pg_table = "customer_behaviour_segment" target_rs_table = "customer-behaviour-segment" def main(rs_db, pg_db, s3, limit, batch_size): table_info = helper.get_table_info(db=rs_db, table_name=target_rs_table, schema='prod2-generico') columns = list(table_info['column_name']) # columns.remove('id') rs_db.execute(query=f""" delete from "prod2-generico"."{target_rs_table}"; """) incomplete = True last_id = None df = pd.DataFrame() total_pushed = 0 while incomplete: limit_str = f" limit {batch_size} " if batch_size else "" filter_str = f" where id > {last_id} " if last_id else "" query = f""" select id, patient_id as "patient-id", segment_calculation_date as "segment-calculation-date", segment_name as "behaviour-segment" from {source_pg_table} cvs {filter_str} order by id asc {limit_str} ; """ df = pd.read_sql_query(query, pg_db.connection) # df['updated-at'] = dt.now() # df['created-at'] = dt.now() # df['created-by'] = 'etl-automation' # df['updated-by'] = 'etl-automation' if df.empty: incomplete = False else: last_id = int(df['id'].values[-1]) df = df[columns] # df['segment-calculation-date'] = pd.to_datetime(df['segment-calculation-date']) # df['segment-calculation-date'] = df['segment-calculation-date'].dt.date.apply(str) # print(df) s3.write_df_to_db(df=df, table_name=target_rs_table, db=rs_db, schema='prod2-generico') total_pushed += batch_size if limit and limit < total_pushed: incomplete = False if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-l', '--limit', default=None, type=int, required=False, help="Total patients to process") parser.add_argument('-b', '--batch_size', default=500000, type=int, required=False, help="batch size") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() limit = args.limit batch_size = args.batch_size logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() _s3 = S3() pg_db = PostGre() pg_db.open_connection() """ calling the main function """ main(rs_db=rs_db, pg_db=pg_db, s3=_s3, limit=limit, batch_size=batch_size) # Closing the DB Connection rs_db.close_connection() pg_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/behaviour-segnment/behaviour_segment.py
behaviour_segment.py
import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') # sys.path.insert(0,'/Users/tusharuike/ETL') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.django.api import Django from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper import helper from zeno_etl_libs.utils.ipc2.forecast_main import ipc_forecast from zeno_etl_libs.utils.ipc2.safety_stock import safety_stock_calc from zeno_etl_libs.utils.ipc2.portfolio_consolidation import wh_consolidation, \ goodaid_consolidation, D_class_consolidation from zeno_etl_libs.utils.ipc.store_portfolio_additions import generic_portfolio from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc2.post_processing import post_processing from zeno_etl_libs.utils.ipc2.helpers.correction_flag import compare_df, \ add_correction_flag from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.utils.ipc2.helpers.outlier_check import check_oup_outlier def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, v3_active_flag, v4_active_flag, v5_active_flag, v6_active_flag, d_class_consolidation, wh_gen_consolidation, goodaid_ss_flag, keep_all_generic_comp, omit_npi, ga_inv_weight, rest_inv_weight, top_inv_weight, v6_type_list, v6_ptr_cut_off, open_po_turbhe_active, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, outlier_check, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' # Define empty variables if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() df_outliers_all = pd.DataFrame() manual_doid_upd_all = pd.DataFrame() try: for store_id in reset_stores: logger.info(f"Running for store id: {store_id} and reset date: {reset_date}") if not type_list: type_list = str( list(reset_store_ops.loc[reset_store_ops['store_id'] == store_id, 'type'].unique())) type_list = type_list.replace('[', '(').replace(']', ')') # RUNNING IPC2.0 FORECAST PIPELINE logger.info("Forecast Pipeline starts...") agg_fcst, cal_sales, weekly_fcst, seg_df, drug_class = ipc_forecast( store_id, reset_date, type_list, read_schema, rs_db_read, logger) # SAFETY STOCK CALCULATIONS logger.info("Safety Stock Calculations starts...") safety_stock_df = safety_stock_calc( agg_fcst, cal_sales, store_id, reset_date, v3_active_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, v4_active_flag, drug_type_list_v4, v5_active_flag, open_po_turbhe_active, read_schema, rs_db_read, logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': logger.info("WH Generic Consolidation starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = wh_consolidation( safety_stock_df, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'WH') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': logger.info("GA SS Modification starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = goodaid_consolidation( safety_stock_df, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'GA') # D-CLASS SKU CONSOLIDATION if d_class_consolidation == 'Y': logger.info("D Class Consolidation starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = D_class_consolidation( safety_stock_df, store_id, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'DCC') # KEEP ALL GENERIC COMPOSITIONS IN STORE if keep_all_generic_comp == 'Y': logger.info("All Generic Composition starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = generic_portfolio(safety_stock_df, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'AG') # OMIT NPI DRUGS if omit_npi == 'Y': logger.info("Omit NPI starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'NPI') # POST PROCESSING AND ORDER VALUE CALCULATIONS logger.info("Post Processing starts") safety_stock_df, order_value, weekly_fcst, \ seg_df = post_processing(safety_stock_df, weekly_fcst, seg_df, store_id, read_schema, rs_db_read, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc2-weekly-forecast weekly_fcst['store_id'] = weekly_fcst['store_id'].astype(int) weekly_fcst['drug_id'] = weekly_fcst['drug_id'].astype(int) weekly_fcst['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() weekly_fcst['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['created-by'] = 'etl-automation' weekly_fcst['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['updated-by'] = 'etl-automation' weekly_fcst.columns = [c.replace('_', '-') for c in weekly_fcst.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc2-weekly-forecast', schema=write_schema) columns = list(table_info['column_name']) weekly_fcst = weekly_fcst[columns] # required column order logger.info("Writing to table: ipc2-weekly-forecast") s3.write_df_to_db(df=weekly_fcst, table_name='ipc2-weekly-forecast', db=rs_db_write, schema=write_schema) # writing table ipc2-safety-stock safety_stock_df['store_id'] = safety_stock_df['store_id'].astype(int) safety_stock_df['drug_id'] = safety_stock_df['drug_id'].astype(int) safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc2-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: ipc2-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='ipc2-safety-stock', db=rs_db_write, schema=write_schema) # writing table ipc2-segmentation seg_df['store_id'] = seg_df['store_id'].astype(int) seg_df['drug_id'] = seg_df['drug_id'].astype(int) seg_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() seg_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df['created-by'] = 'etl-automation' seg_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df['updated-by'] = 'etl-automation' seg_df.columns = [c.replace('_', '-') for c in seg_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc2-segmentation', schema=write_schema) columns = list(table_info['column_name']) seg_df = seg_df[columns] # required column order logger.info("Writing to table: ipc2-segmentation") s3.write_df_to_db(df=seg_df, table_name='ipc2-segmentation', db=rs_db_write, schema=write_schema) logger.info("All writes to RS-DB completed!") # OUP OUTLIER CHECK if outlier_check == 'Y': logger.info("Outlier detection starts") outlier_drugs, df_outliers, \ manual_doid_upd_df = check_oup_outlier( safety_stock_df, store_id, reset_date, rs_db_read, read_schema) df_outliers_all = df_outliers_all.append(df_outliers) manual_doid_upd_all = manual_doid_upd_all.append(manual_doid_upd_df) else: outlier_drugs = [] # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.loc[ (safety_stock_df["order_upto_point"] > 0) & (~safety_stock_df["drug_id"].isin(outlier_drugs))] ss_data_upload = ss_data_upload[['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") if isinstance(reset_store_ops, pd.DataFrame): content_type = 74 object_id = reset_store_ops.loc[ reset_store_ops[ 'store_id'] == store_id, 'object_id'].unique() for obj in object_id: request_body = {"object_id": int(obj), "content_type": content_type} api_response, _ = django.django_model_execution_log_create_api( request_body) reset_store_ops.loc[ reset_store_ops['object_id'] == obj, 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"IPC code execution status: {status}") return status, order_value_all, new_drug_entries, missed_entries,\ df_outliers_all, manual_doid_upd_all if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="N", type=str, required=False) parser.add_argument('-exsto', '--exclude_stores', default=[52, 60, 92, 243, 281], nargs='+', type=int, required=False) parser.add_argument('-gad', '--goodaid_ss_flag', default="Y", type=str, required=False) parser.add_argument('-giw', '--ga_inv_weight', default=0.5, type=float, required=False) parser.add_argument('-riw', '--rest_inv_weight', default=0.0, type=float, required=False) parser.add_argument('-tiw', '--top_inv_weight', default=1, type=float, required=False) parser.add_argument('-dcc', '--d_class_consolidation', default="Y", type=str, required=False) parser.add_argument('-wgc', '--wh_gen_consolidation', default="Y", type=str, required=False) parser.add_argument('-v4', '--v4_active_flag', default="Y", type=str, required=False) parser.add_argument('-v5', '--v5_active_flag', default="N", type=str, required=False) parser.add_argument('-v6', '--v6_active_flag', default="N", type=str, required=False) parser.add_argument('-v6lst', '--v6_type_list', default=['ethical', 'generic', 'others'], nargs='+', type=str, required=False) parser.add_argument('-v6ptr', '--v6_ptr_cut_off', default=400, type=int, required=False) parser.add_argument('-rd', '--reset_date', default="YYYY-MM-DD", type=str, required=False) parser.add_argument('-rs', '--reset_stores', default=[0], nargs='+', type=int, required=False) parser.add_argument('-v3', '--v3_active_flag', default="Y", type=str, required=False) parser.add_argument('-v3sp', '--corrections_selling_probability_cutoff', default="{'ma_less_than_2': 0.40, 'ma_more_than_2' : 0.40}", type=str, required=False) parser.add_argument('-v3cp', '--corrections_cumulative_probability_cutoff', default="{'ma_less_than_2':0.50,'ma_more_than_2':0.63}", type=str, required=False) parser.add_argument('-v4tl', '--drug_type_list_v4', default="{'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'," "'ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'," "'others':'{0:[0,0,0], 1:[0,1,2], 2:[0,1,2],3:[1,2,3]}'}", type=str, required=False) parser.add_argument('-npi', '--omit_npi', default='Y', type=str, required=False) parser.add_argument('-kagc', '--keep_all_generic_comp', default='Y', type=str, required=False) parser.add_argument('-oc', '--outlier_check', default='Y', type=str, required=False) parser.add_argument('-opta', '--open_po_turbhe_active', default='N', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode # JOB EXCLUSIVE PARAMS exclude_stores = args.exclude_stores goodaid_ss_flag = args.goodaid_ss_flag ga_inv_weight = args.ga_inv_weight rest_inv_weight = args.rest_inv_weight top_inv_weight = args.top_inv_weight d_class_consolidation = args.d_class_consolidation wh_gen_consolidation = args.wh_gen_consolidation v5_active_flag = args.v5_active_flag v6_active_flag = args.v6_active_flag v6_type_list = args.v6_type_list v6_ptr_cut_off = args.v6_ptr_cut_off reset_date = args.reset_date reset_stores = args.reset_stores v3_active_flag = args.v3_active_flag v4_active_flag = args.v4_active_flag corrections_selling_probability_cutoff = args.corrections_selling_probability_cutoff corrections_cumulative_probability_cutoff = args.corrections_cumulative_probability_cutoff drug_type_list_v4 = args.drug_type_list_v4 omit_npi = args.omit_npi keep_all_generic_comp = args.keep_all_generic_comp outlier_check = args.outlier_check open_po_turbhe_active = args.open_po_turbhe_active # EVALUATE REQUIRED JSON PARAMS corrections_selling_probability_cutoff = literal_eval( corrections_selling_probability_cutoff) corrections_cumulative_probability_cutoff = literal_eval( corrections_cumulative_probability_cutoff) drug_type_list_v4 = literal_eval(drug_type_list_v4) logger = get_logger() s3 = S3() django = Django() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if reset_stores == [0]: # Fetch scheduled IPC stores from OPS ORACLE store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format(str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # only stores aged > 3 months are eligible store_id = stores.loc[dt.datetime.now() - stores['opened_at'] > dt.timedelta(days=90), 'id'].values # QUERY TO GET SCHEDULED STORES AND TYPE FROM OPS ORACLE pg_internal = PostGre(is_internal=True) pg_internal.open_connection() reset_store_query = """ SELECT "ssr"."id" as object_id, "s"."bpos_store_id" as store_id, "dc"."slug" as type, "ssr"."drug_grade" FROM "safety_stock_reset_drug_category_mapping" ssr INNER JOIN "ops_store_manifest" osm ON ( "ssr"."ops_store_manifest_id" = "osm"."id" ) INNER JOIN "retail_store" s ON ( "osm"."store_id" = "s"."id" ) INNER JOIN "drug_category" dc ON ( "ssr"."drug_category_id" = "dc"."id") WHERE ( ( "ssr"."should_run_daily" = TRUE OR "ssr"."trigger_dates" && ARRAY[ date('{reset_date}')] ) AND "ssr"."is_auto_generate" = TRUE AND "osm"."is_active" = TRUE AND "osm"."is_generate_safety_stock_reset" = TRUE AND "dc"."is_safety_stock_reset_enabled" = TRUE AND "dc"."is_active" = TRUE AND s.bpos_store_id in {store_list} ) """.format( store_list=str(list(store_id)).replace('[', '(').replace(']', ')'), reset_date=reset_date) reset_store_ops = pd.read_sql_query(reset_store_query, pg_internal.connection) pg_internal.close_connection() reset_store_ops['api_call_response'] = False reset_stores = reset_store_ops['store_id'].unique() type_list = None else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None """ calling the main function """ status, order_value_all, new_drug_entries, missed_entries, \ df_outliers_all, manual_doid_upd_all = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, v3_active_flag, v4_active_flag, v5_active_flag, v6_active_flag, d_class_consolidation, wh_gen_consolidation, goodaid_ss_flag, keep_all_generic_comp, omit_npi, ga_inv_weight, rest_inv_weight, top_inv_weight, v6_type_list, v6_ptr_cut_off, open_po_turbhe_active, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, outlier_check, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # save email attachements to s3 order_value_all_uri = s3.save_df_to_s3(order_value_all, file_name=f"order_value_all_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") df_outliers_all_uri = s3.save_df_to_s3(df_outliers_all, file_name=f"df_outliers_all_{reset_date}.csv") manual_doid_upd_all_uri = s3.save_df_to_s3(manual_doid_upd_all, file_name=f"manual_doid_upd_all_{reset_date}.csv") # SEND EMAIL ATTACHMENTS (IPC-RUN STATUS) logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"IPC2.0 SS Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[order_value_all_uri, new_drug_entries_uri, missed_entries_uri]) # SEND EMAIL ATTACHMENTS (OUTLIER WARNING) outlier_count = df_outliers_all.shape[0] if outlier_count > 0: outlier_order_qty = df_outliers_all["to_order_quantity"].sum() outlier_order_val = round(df_outliers_all["to_order_value"].sum(), 2) outlier_stores = list(df_outliers_all["store_id"].unique()) email.send_email_file( subject=f"IPC2.0 OUTLIER WARNING (SM-{env}) {reset_date}: " f"Cases {outlier_count}", mail_body=f""" Stores: {outlier_stores} Cases: {outlier_count} Order Quantity: {outlier_order_qty} Order Value: {outlier_order_val} Note: For the detected cases SS, ROP & OUP is set to 0. Please verify and upload attached file using DOID-GLUE JOB. """, to_emails=email_to, file_uris=[df_outliers_all_uri, manual_doid_upd_all_uri]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ipc2/ipc2_ss_main.py
ipc2_ss_main.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet from zeno_etl_libs.logger import get_logger from dateutil.tz import gettz import numpy as np import pandas as pd import datetime as dt import argparse parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") table_name = 'goodaid-atc-sr' rs_db = DB() rs_db.open_connection() s3 = S3() # fetching data from Gsheet gs = GoogleSheet() data = gs.download(data={ "spreadsheet_id": "1JMt8oICcodWbzHqQg3DckHKFrJAR0vXmFVXOunW-38Q", "sheet_name": "Sheet1", "listedFields": [] }) data = pd.DataFrame(data) data['drug_id'] = data['drug_id'].astype(str).astype(int) logger.info("Data: G-sheet data fetched successfully") logger.info(len(data)) data.drop(['drug_name', 'composition'], axis=1, inplace=True) drug_id_list = data.drug_id.unique() drug_id_list = tuple(drug_id_list) query = ''' select id as "drug_id", "drug-name", composition from "prod2-generico".drugs d where id in {} ''' data_name = rs_db.get_df(query.format(drug_id_list)) data = pd.merge(left=data, right=data_name, how='inner', on='drug_id') # providing start-date for all the drugs query = ''' select d.id as "drug_id", MIN(bi."created-at") as "start-date", d."composition-master-id" from "prod2-generico"."bill-items-1" bi left join "prod2-generico"."inventory-1" i on bi."inventory-id" = i.id left join "prod2-generico".drugs d on i."drug-id" = d.id where d."company-id" = 6984 and d.id in {} and bi."created-at" is not null group by d.id, d."composition-master-id" ''' min_date = rs_db.get_df(query.format(drug_id_list)) logger.info("Data: min-composition start date fetched successfully") logger.info(len(min_date)) merged = pd.merge(left=data, right=min_date, how='inner', on='drug_id') merged['start-date'] = pd.to_datetime(merged['start-date']).dt.date merged['start-date'] = pd.to_datetime(merged['start-date']) logger.info(len(merged)) # providing composition wise lot and rank gaid_comp_min_date = f''' select MIN(bi."created-at") as "min-bill-date", d."composition-master-id" from "prod2-generico"."bill-items-1" bi left join "prod2-generico"."inventory-1" i on bi."inventory-id" = i.id left join "prod2-generico".drugs d on i."drug-id" = d.id where d."company-id" = 6984 group by d."composition-master-id" ''' min_date_comp = rs_db.get_df(gaid_comp_min_date) min_date_comp['rank'] = min_date_comp['min-bill-date'].rank().astype(int) min_date_comp['lot'] = (min_date_comp['rank'] / 25).apply(np.ceil).astype(int) logger.info("Data: min-composition start date, lot and rank fetched successfully") logger.info(len(min_date_comp)) goodaid_tagging = pd.merge(left=merged, right=min_date_comp, how='left', on='composition-master-id') goodaid_tagging.columns = goodaid_tagging.columns.str.replace(" ", "-") goodaid_tagging.columns = goodaid_tagging.columns.str.replace("_", "-") goodaid_tagging['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_tagging['created-by'] = 'etl-automation' goodaid_tagging['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_tagging['updated-by'] = 'etl-automation' logger.info(len(goodaid_tagging)) # ========================================================================= # Writing table in Redshift # ========================================================================= schema = 'prod2-generico' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=goodaid_tagging[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-atc-sr-update.py
goodaid-atc-sr-update.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from dateutil.tz import gettz import numpy as np import pandas as pd import datetime as dt import argparse parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") table_name = 'ethical-generic-rank' rs_db = DB() rs_db.open_connection() s3 = S3() #removing old goodaid drugs from base data ga_query = f''' select distinct ("drug-id") as "drug_id" from "prod2-generico"."prod2-generico"."goodaid-atc-sr" gas where "old-new-drug" = 'old' ''' goodaid_old_drugs = rs_db.get_df(ga_query) drug_id_list = goodaid_old_drugs.drug_id.unique() drug_id_list = tuple(drug_id_list) logger.info("the number of old goodaid drugs is: " +str(len(goodaid_old_drugs))) # fetching sales data. query = ''' select "drug-id" , "drug-name" , "type" , company, composition , "company-id" , "goodaid-availablity-flag", sum("revenue-value") as "revenue-value", sum(quantity) as "quantity" from "prod2-generico".sales s where "type" in ('ethical', 'generic') and "drug-id" not in {} group by 1,2,3,4,5,6,7''' base_data = rs_db.get_df(query.format(drug_id_list)) logger.info("Data: base fetched successfully: " +str(len(base_data))) # Getting new goodaid compositions from goodaid-atc-sr table ga_query = f''' select distinct ("drug-id") from "prod2-generico"."prod2-generico"."goodaid-atc-sr" gas where "old-new-drug" = 'new' ''' goodaid_drugs = rs_db.get_df(ga_query) logger.info("Data: goodaid_drugs fetched successfully: " +str(len(goodaid_drugs))) # identifying goodaid drugs in base data base_data['is-goodaid'] = np.where(base_data['drug-id'].isin(goodaid_drugs['drug-id'].unique().tolist()), 1, 0) logger.info("Data: base_data with goodaid flag fetched successfully: " +str(len(base_data))) # rank 1 ethical_generic = base_data.groupby( ['composition', 'drug-id', 'drug-name', 'type', 'company', 'is-goodaid', 'goodaid-availablity-flag']).agg( {'quantity': 'sum', 'revenue-value': 'sum'}).reset_index() logger.info("Data: ethical_generic fetched successfully") ethical_generic['rank'] = ethical_generic.sort_values(['is-goodaid','type','quantity'], ascending=[False, False, False])\ .groupby(['composition', 'type']).cumcount() + 1 logger.info("Data: ethical_generic with rank fetched successfully") # compositions with >1 good aid drug ethical_generic_ex = ethical_generic[(ethical_generic['is-goodaid'] == '1') & (ethical_generic['rank'] > 1)] ethical_generic['exclusion'] = np.where(ethical_generic['drug-id'] .isin(ethical_generic_ex['drug-id'].unique() .tolist()), 1, 0) logger.info("Data: ethical_generic exclusion fetched successfully") # excluding compositions with >1 good aid drug ethical_generic_final = ethical_generic[(ethical_generic['exclusion'] == 0)] logger.info("Data: ethical_generic exclusion fetched successfully") # rank data set after exclusion ethical_generic_final = ethical_generic_final[['composition', 'drug-id', 'drug-name', 'type', 'company', 'is-goodaid', 'goodaid-availablity-flag', 'quantity', 'revenue-value']] ethical_generic_final['rank'] = ethical_generic_final.sort_values(['is-goodaid', 'type', 'quantity'], ascending=[False, False, False]) \ .groupby(['composition', 'type']) \ .cumcount() + 1 ethical_generic_rank = ethical_generic_final[ethical_generic_final['composition'] != ''] logger.info("Data: ethical_generic_rank fetched successfully") ethical_generic_rank['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') ethical_generic_rank['created-by'] = 'etl-automation' ethical_generic_rank['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') ethical_generic_rank['updated-by'] = 'etl-automation' # ========================================================================= # Writing table in Redshift # ========================================================================= schema = 'prod2-generico' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=ethical_generic_rank[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/ethical-generic-rank.py
ethical-generic-rank.py
import sys import os sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB import argparse import datetime parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]," "[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() query = ''' select mtd."start-date", mtd.composition, round(mtd."MTD composition share",2) as "MTD composition share", round(y."Yesterdays composition share",2) as "Yesterdays composition share", round(mtd."Goodaid Margin",2) as "Goodaid Margin", round(mtd."ethical margin",2) as "Ethical Margin", mtd."MTD Goodaid Qty", mtd."MTD Non GA Generic Qty", mtd."MTD Ethical Qty", round(mtd."MTD Goodaid Sales", 0) as "MTD Goodaid Sales", round(mtd."MTD Non GA Generic Sales",0) as "MTD Non GA Generic Sales", round(mtd."MTD Ethical Sales",0) as "MTD Ethical Sales", y."Yesterdays Goodaid Qty", y."Yesterdays Non GA Generic Qty", y."Yesterdays Ethical Qty", round(y."Yesterdays Goodaid Sales",0) as "Yesterdays Goodaid Sales", round(y."Yesterdays Non GA Generic Sales",0) as "Yesterdays Non GA Generic Sales", round(y."Yesterdays Ethical Sales", 0) as "Yesterdays Ethical Sales" from (select date(g."min-bill-date") as "start-date", s.composition , sum(case when s."type"= 'generic' and s."company-id"= 6984 then (s."net-quantity") else 0 end) as "MTD Goodaid Qty", sum(case when s."type"= 'generic' and "company-id" <> 6984 then (s."net-quantity") else 0 end) as "MTD Non GA Generic Qty", sum(case when s."type"= 'ethical' then (s."net-quantity") else 0 end) as "MTD Ethical Qty", sum(case when s."type"= 'generic' and s."company-id"= 6984 then ("revenue-value") else 0 end) as "MTD Goodaid Sales", sum(case when s."type"= 'generic' and s."company-id" <> 6984 then (s."revenue-value") else 0 end) as "MTD Non GA Generic Sales", sum(case when s."type"= 'ethical' then (s."revenue-value") else 0 end) as "MTD Ethical Sales", (("MTD Goodaid Qty"*1.0)/("MTD Goodaid Qty"*1.0+"MTD Non GA Generic Qty"*1.0+"MTD Ethical Qty"*1.0))*100 as "MTD composition share", sum(case when s."type"= 'generic' and s."company-id"= 6984 then (s.quantity*s."purchase-rate") else 0 end) as "MTD Goodaid Cogs", sum(case when s."type"= 'ethical' then (s.quantity *s."purchase-rate") else 0 end) as "MTD Ethical Cogs", (("MTD Ethical Sales"-"MTD Ethical Cogs")/"MTD Ethical Sales")*100 as "ethical margin", (("MTD Goodaid Sales"-"MTD Goodaid Cogs")/"MTD Goodaid Sales")*100 as "Goodaid Margin" from "prod2-generico"."prod2-generico".sales s left join "prod2-generico"."prod2-generico"."goodaid-atc-sr" g on s.composition = g.composition where s."bill-flag" = 'gross' and s.composition in ('Sitagliptin(100mg)', 'Sitagliptin(50mg)', 'Metformin(1000mg),Sitagliptin(50mg)', 'Metformin(500mg),Sitagliptin(50mg)') and (s."created-at") > DATE_TRUNC('day', dateadd(day, -(extract(day from current_date)), current_date)) group by 1,2) mtd left join (select composition , sum(case when "type"= 'generic' and "company-id"= 6984 then ("net-quantity") else 0 end) as "Yesterdays Goodaid Qty", sum(case when "type"= 'generic' and "company-id" <> 6984 then ("net-quantity") else 0 end) as "Yesterdays Non GA Generic Qty", sum(case when "type"= 'ethical' then ("net-quantity") else 0 end) as "Yesterdays Ethical Qty", sum(case when "type"= 'generic' and "company-id"= 6984 then ("revenue-value") else 0 end) as "Yesterdays Goodaid Sales", sum(case when "type"= 'generic' and "company-id" <> 6984 then ("revenue-value") else 0 end) as "Yesterdays Non GA Generic Sales", sum(case when "type"= 'ethical' then ("revenue-value") else 0 end) as "Yesterdays Ethical Sales", (("Yesterdays Goodaid Qty"*1.0)/("Yesterdays Goodaid Qty"*1.0+"Yesterdays Non GA Generic Qty"*1.0+"Yesterdays Ethical Qty"*1.0))*100 as "Yesterdays composition share", sum(case when s."type"= 'generic' and s."company-id"= 6984 then (s.quantity*s."purchase-rate") else 0 end) as "Yest Goodaid Cogs", sum(case when s."type"= 'ethical' then (s.quantity *s."purchase-rate") else 0 end) as "Yest Ethical Cogs" from "prod2-generico"."prod2-generico".sales s where s."bill-flag" = 'gross' and composition in ('Sitagliptin(100mg)', 'Sitagliptin(50mg)', 'Metformin(1000mg),Sitagliptin(50mg)', 'Metformin(500mg),Sitagliptin(50mg)') and date("created-at") = dateadd(day, -1, current_date) group by 1) y on mtd.composition = y.composition ''' data = rs_db.get_df(query) logger.info("data for the 4 composition successfully loaded") run_date = str(datetime.datetime.now().date()) file_name = 'Goodaid New Diabetes Drug Data-{}.csv'.format(str(run_date)) # Uploading the file to s3 new_drugs = s3.save_df_to_s3(df=data, file_name=file_name) # Sending email subject = '''New Diabetes Drug Data ''' mail_body = '''Please find the attached file containing the data till-{} '''.format(run_date) file_uris = [new_drugs] email = Email() email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris) # deleteing the old files for uri in file_uris: s3.delete_s3_obj(uri=uri) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/ga-drug-automailer.py
ga-drug-automailer.py
import os import sys import pandas as pd import numpy as np import datetime import argparse sys.path.append('../../../..') from datetime import date from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() # email_to = args.email_to env = args.env os.environ['env'] = env email = Email() logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() # Below is incentive lost automailer will run on every monday if date.today().weekday() == 0: query = ''' select c.abo, c."store-id" as "store_id", sm.store as "store_name", sum(c."total-opportunity"-c."achived") as "missed_opportunity_yesterday", sum((c."total-opportunity"-c."achived")*gi.incentive ) as "missed_incentive_value_yesterday", s."franchisee-email" as "store_email" from ( select a.abo, a."composition", a."store-id", a."date", a."achived", b."total-opportunity" from ( select abo, composition , "store-id" , "date", count(distinct ("patient-id" || "composition-master-id" || "group-molecule")) as "achived" from "prod2-generico"."prod2-generico"."goodaid-incentive-v3" a where "date" >= dateadd(day, -7, current_date) group by abo, composition, "store-id", "date" ) a left join ( select abo, composition, "store-id" , "date", sum("actaul-total-opp") as "total-opportunity" from "prod2-generico"."prod2-generico"."goodaid-daily-store-opportunity" g where "date" >= dateadd(day, -7, current_date) group by abo, composition, "store-id" , "date") b on a."store-id" = b."store-id" and a."composition" = b."composition" and a."date" = b."date") c left join "prod2-generico"."prod2-generico"."goodaid-incentive-rate-card" gi on c.composition= gi.composition left join "prod2-generico"."prod2-generico"."stores-master" sm on c."store-id"=sm.id left join "prod2-generico"."prod2-generico".stores s on c."store-id" = s.id where gi.status = 'live' and sm."franchisee-id" = 1 and c.abo is not null group by c.abo, c."store-id", store, s."franchisee-email" having missed_opportunity_yesterday >=0 order by abo; ''' incentive_data = rs_db.get_df(query) # MTD incentive miss data query = ''' select c.abo, c."store-id" as "store_id", sm.store as "store_name", sum(c."total-opportunity"-c."achived") as "missed_opportunity_MTD", sum((c."total-opportunity"-c."achived")*gi.incentive ) as "missed_incentive_value_MTD", s."franchisee-email" as "store_email" from ( select a.abo, a."composition", a."store-id", a."date", a."achived", b."total-opportunity" from ( select abo, composition , "store-id" , "date", count(distinct ("patient-id" || "composition-master-id" || "group-molecule")) as "achived" from "prod2-generico"."prod2-generico"."goodaid-incentive-v3" a where "date" > DATE_TRUNC('day', dateadd(day, -(extract(day from current_date)), current_date)) group by abo, composition, "store-id", "date" ) a left join ( select abo, composition, "store-id" , "date", sum("actaul-total-opp") as "total-opportunity" from "prod2-generico"."prod2-generico"."goodaid-daily-store-opportunity" g where "date" > DATE_TRUNC('day', dateadd(day, -(extract(day from current_date)), current_date)) group by abo, composition, "store-id" , "date") b on a."store-id" = b."store-id" and a."composition" = b."composition" and a."date" = b."date") c left join "prod2-generico"."prod2-generico"."goodaid-incentive-rate-card" gi on c.composition= gi.composition left join "prod2-generico"."prod2-generico"."stores-master" sm on c."store-id"=sm.id left join "prod2-generico"."prod2-generico".stores s on c."store-id" = s.id where gi.status = 'live' and sm."franchisee-id" = 1 and c.abo is not null group by c.abo, c."store-id", store, s."franchisee-email" having missed_opportunity_MTD >=0 order by abo; ''' incentive_data_mtd = rs_db.get_df(query) incentive_data = incentive_data.merge(incentive_data_mtd, on=['abo', 'store_id', 'store_name', 'store_email'], how='left') # last month incentive miss data query = ''' select c.abo, c."store-id" as "store_id", sm.store as "store_name", sum(c."total-opportunity"-c."achived") as "missed_opportunity_lm", sum((c."total-opportunity"-c."achived")*gi.incentive ) as "missed_incentive_value_lm", s."franchisee-email" as "store_email" from ( select a.abo, a."composition", a."store-id", a."date", a."achived", b."total-opportunity" from ( select abo, composition , "store-id" , "date", count(distinct ("patient-id" || "composition-master-id" || "group-molecule")) as "achived" from "prod2-generico"."prod2-generico"."goodaid-incentive-v3" a where "date" between date_trunc('month', current_date) - interval '1 month' and date_trunc('month', current_date) - interval '1 day' group by abo, composition, "store-id", "date" ) a left join ( select abo, composition, "store-id" , "date", sum("actaul-total-opp") as "total-opportunity" from "prod2-generico"."prod2-generico"."goodaid-daily-store-opportunity" g where "date" between date_trunc('month', current_date) - interval '1 month' and date_trunc('month', current_date) - interval '1 day' group by abo, composition, "store-id" , "date") b on a."store-id" = b."store-id" and a."composition" = b."composition" and a."date" = b."date") c left join "prod2-generico"."prod2-generico"."goodaid-incentive-rate-card" gi on c.composition= gi.composition left join "prod2-generico"."prod2-generico"."stores-master" sm on c."store-id"=sm.id left join "prod2-generico"."prod2-generico".stores s on c."store-id" = s.id where gi.status = 'live' and sm."franchisee-id" = 1 and c.abo is not null group by c.abo, c."store-id", store, s."franchisee-email" having missed_opportunity_lm >=0 order by abo ''' incentive_data_lm = rs_db.get_df(query) incentive_data = incentive_data.merge(incentive_data_lm, on=['abo', 'store_id', 'store_name', 'store_email'], how='left') query = ''' select abo, email from "prod2-generico"."prod2-generico"."stores-master" sm left join "prod2-generico"."prod2-generico".users u on sm.abo = u."name" where abo is not null and u."type" = 'area-business-owner' group by 1,2 order by abo''' abo_data = rs_db.get_df(query) incentive_data = incentive_data.merge(abo_data, how='left', on='abo') incentive_data = incentive_data[incentive_data['email'].notna()] abo_list = incentive_data.abo.unique() abo_list = tuple(abo_list) store_list = incentive_data.store_name.unique() store_list = tuple(store_list) now = datetime.date.today() then = now + datetime.timedelta(days=-7) currentMonth = datetime.datetime.now().strftime('%m') currentYear = datetime.datetime.now().year datetime_object = datetime.datetime.strptime(currentMonth, "%m") full_month_name = datetime_object.strftime("%B") last_month = datetime.datetime.now() - pd.DateOffset(months=1) last_month = last_month.strftime('%m') datetime_object_lm = datetime.datetime.strptime(last_month, "%m") full_month_name_lm = datetime_object_lm.strftime("%B") for x in abo_list: incentive_data_1 = incentive_data[incentive_data['abo'] == x] abo_incentive_data = incentive_data_1.groupby(['abo', 'store_name', 'store_id']).agg( {'missed_incentive_value_yesterday': 'sum', 'missed_incentive_value_mtd': 'sum', \ 'missed_incentive_value_lm': 'sum'}).reset_index() abo_incentive_data[ ["missed_incentive_value_yesterday", "missed_incentive_value_mtd", "missed_incentive_value_lm"]] = \ abo_incentive_data[["missed_incentive_value_yesterday",\ "missed_incentive_value_mtd", "missed_incentive_value_lm"]].astype(np.int64) total_incentive_missed = abo_incentive_data.missed_incentive_value_yesterday.sum() abo_incentive_data.rename(columns={'missed_incentive_value_yesterday': f'Lost incentive last week(Rs)-{then}', \ 'missed_incentive_value_mtd': f'Lost incentive (Rs) MTD {full_month_name}-{currentYear}', \ 'missed_incentive_value_lm': f'Lost incentive (Rs) last Month {full_month_name_lm}-{currentYear}', \ 'store_name': f'Store Name', 'store_id': f'Store ID'}, inplace=True) email_to = str(incentive_data_1.email.iloc[0]) # Sending email subject = f'Rs.{total_incentive_missed} Incentive Lost Last Week' mail_body = f" Hi {(abo_incentive_data.abo.iloc[0])} your stores have lost Rs.{total_incentive_missed} last week " \ f"({str(then)}) by not substituting GoodAid drugs in your stores. \ Please try and substitute Goodaid as much as possible to earn maximum incentive." file_uris = [s3.save_df_to_s3(df=abo_incentive_data, file_name=f'{incentive_data_1.abo.iloc[0]} total incentive Loss on {now}.csv')] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris) # deleteing the old files for uri in file_uris: s3.delete_s3_obj(uri=uri) for x in store_list: incentive_data_2 = incentive_data[incentive_data['store_name'] == x] store_incentive_data = incentive_data_2.groupby(['abo', 'store_name', 'store_id']).agg( {'missed_incentive_value_yesterday': 'sum', 'missed_incentive_value_mtd': 'sum', \ 'missed_incentive_value_lm': 'sum'}).reset_index() store_incentive_data[ ["missed_incentive_value_yesterday", "missed_incentive_value_mtd", "missed_incentive_value_lm"]] = \ store_incentive_data[["missed_incentive_value_yesterday", \ "missed_incentive_value_mtd", "missed_incentive_value_lm"]].astype(np.int64) email_to = str(incentive_data_2.store_email.iloc[0]) # Sending email subject = f'Rs.{(store_incentive_data.missed_incentive_value_yesterday.iloc[0])} Incentive Lost Yesterday' mail_body = f" Hi {(store_incentive_data.store_name.iloc[0])} store you have lost Rs.{(store_incentive_data.missed_incentive_value_yesterday.iloc[0])} last week ({str(then)})\ by not substituting GoodAid drugs in your store. Please try and substitute Goodaid as much as possible to earn maximum incentive." store_incentive_data.rename(columns={'missed_incentive_value_yesterday': f'Lost incentive last week(Rs)-{then}', 'missed_incentive_value_mtd': f'Lost incentive (Rs) MTD ' f'{full_month_name}-{currentYear}', \ 'missed_incentive_value_lm': f'Lost incentive (Rs) last Month ' f'{full_month_name_lm}-{currentYear}', 'store_name': f'Store Name', 'store_id': f'Store ID'}, inplace=True) file_uris = [s3.save_df_to_s3(df=store_incentive_data, file_name=f'{incentive_data_2.store_name.iloc[0]} total incentive Loss on {now}.csv')] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris) # deleteing the old files for uri in file_uris: s3.delete_s3_obj(uri=uri) # 2nd automailer for new stock at stores this runs everyday. query = ''' select i."store-id" as "store_id" , s."name" as "store_name", i."drug-id" as "drug_id", d."drug-name" as "drug_name", d.composition , d.company , s."franchisee-email" as "email", sum(i.quantity+i."locked-quantity"+i."locked-for-check"+i."locked-for-return"+i."locked-for-audit"+ i."locked-for-transfer") as "quantity_available_at_store" FROM "prod2-generico"."prod2-generico"."inventory-1" i inner join "prod2-generico"."prod2-generico".drugs d on d.id = i."drug-id" left join "prod2-generico"."prod2-generico".stores s on i."store-id" = s.id where d."company-id" = 6984 and s."franchisee-id" =1 GROUP by 1,2,3,4,5,6,7 HAVING min(date(i."created-at")) = CURRENT_DATE-1 ''' new_drug_data = rs_db.get_df(query) store_list = new_drug_data.store_name.unique() store_list = tuple(store_list) nl = '\n' now = datetime.date.today() if len(new_drug_data) > 0: for x in store_list: store_drug_data = new_drug_data[new_drug_data['store_name'] == x] store_drug_data_1 = store_drug_data[['store_id', 'store_name', 'drug_id', 'drug_name', 'composition', 'company', 'quantity_available_at_store']].reset_index(drop = True) email_to = str(store_drug_data.email.iloc[0]) # email_to = '[email protected]' subject = f'{len(store_drug_data)} New Goodaid Drugs Arrived at your Store' mail_body = f" Hi {(store_drug_data_1.store_name.iloc[0])} store {nl}{len(store_drug_data)} New Goodaid SKU/Drugs " \ f"have arrived at your store please start substituting." file_uris = [s3.save_df_to_s3(df=store_drug_data_1, file_name=f'{store_drug_data_1.store_name.iloc[0]} ' f'drugs arrived at {now}.csv')] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris, from_email='[email protected]') # deleteing the old files for uri in file_uris: s3.delete_s3_obj(uri=uri) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-incentive-lost-automailer.py
goodaid-incentive-lost-automailer.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.logger import get_logger import pandas as pd import datetime import argparse import operator as op parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]," "[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() email_to = args.email_to env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() query = ''' select s."patient-id" , s."created-at" , s."drug-id", s.composition , g.category from "prod2-generico"."prod2-generico".sales s left join "prod2-generico"."prod2-generico"."goodaid-atc-sr" g on s."drug-id" = g."drug-id" where s."company-id" = 6984 and date(s."created-at") between '2021-03-01' and current_date-1 ;''' data = rs_db.get_df(query) data.columns = [c.replace('-', '_') for c in data.columns] df = data # this function returns a DataFrame containing the acquisition date and order date def get_cohorts(df, period='M'): df = df[['patient_id', 'created_at']].drop_duplicates() df = df.assign(Month=df.groupby('patient_id') \ ['created_at'].transform('min').dt.to_period(period)) df = df.assign(order_date=df['created_at'].dt.to_period(period)) return df # calculates the retention of customers after their acquisition def get_retention(df, period='M'): df = get_cohorts(df, period).groupby(['Month', 'order_date']) \ .agg({'patient_id': 'nunique'}) \ .reset_index(drop=False).rename(columns={'patient_id': 'patients'}) df['periods'] = (df.order_date - df.Month).apply(op.attrgetter('n')) return df # Returns a cohort matrix def get_cohort_matrix(df, period='M', percentage=False): df = get_retention(df, period).pivot_table(index='Month', columns='periods', values='patients') if percentage: df = df.divide(df.iloc[:, 0], axis=0) * 100 return df # overall Cohort monthly overall_mon = get_cohort_matrix(df, 'M', percentage=False).reset_index() overall_mon_per = get_cohort_matrix(df, 'M', percentage=True).round(2).reset_index() overall_mon_per[0] = overall_mon[0] # overall Cohort quarter overall_quat = get_cohort_matrix(df, 'Q', percentage=False).reset_index() overall_quat_per = get_cohort_matrix(df, 'Q', percentage=True).round(2).reset_index() overall_quat_per[0] = overall_quat[0] # chronic cohort monthly df = data[data['category'] == 'chronic'] chronic_mon = get_cohort_matrix(df, 'M', percentage=False).reset_index() chronic_mon_per = get_cohort_matrix(df, 'M', percentage=True).round(2).reset_index() chronic_mon_per[0] = chronic_mon[0] # chronic cohort quarterly chronic_quat = get_cohort_matrix(df, 'Q', percentage=False).reset_index() chronic_quat_per = get_cohort_matrix(df, 'Q', percentage=True).round(2).reset_index() chronic_quat_per[0] = chronic_quat[0] # acute cohorts monthly df = data[data['category'] == 'acute'] acute_mon = get_cohort_matrix(df, 'M', percentage=False).reset_index() acute_mon_per = get_cohort_matrix(df, 'M', percentage=True).round(2).reset_index() acute_mon_per[0] = acute_mon[0] # acute cohort quarterly acute_quat = get_cohort_matrix(df, 'Q', percentage=False).reset_index() acute_quat_per = get_cohort_matrix(df, 'Q', percentage=True).round(2).reset_index() acute_quat_per[0] = acute_quat[0] # Formatting Excel path = "/".join(os.getcwd().split("/")[:-2]) + "/tmp/" if not os.path.exists(path): os.mkdir(path, 0o777) time_now = datetime.datetime.now().strftime('%Y-%m-%d') currentMonth= datetime.datetime.now().strftime('%m') currentDay = datetime.datetime.now().day datetime_object = datetime.datetime.strptime(currentMonth, "%m") full_month_name = datetime_object.strftime("%B") file_name = "Cohorts_{}.xlsx".format(time_now) local_file_full_path = path + file_name # writing in a Excel with pd.ExcelWriter(local_file_full_path) as writer: overall_mon.to_excel(writer, sheet_name='Overall Monthly', index=False) overall_mon_per.to_excel(writer, sheet_name='Overall Monthly', index=False, startrow=len(overall_mon) + 4) overall_quat.to_excel(writer, sheet_name='Overall Quarterly', index=False) overall_quat_per.to_excel(writer, sheet_name='Overall Quarterly', index=False, startrow=len(overall_quat) + 4) chronic_mon.to_excel(writer, sheet_name='Chronic Monthly', index=False) chronic_mon_per.to_excel(writer, sheet_name='Chronic Monthly', index=False, startrow=len(chronic_mon) + 4) chronic_quat.to_excel(writer, sheet_name='Chronic Quarterly', index=False) chronic_quat_per.to_excel(writer, sheet_name='Chronic Quarterly', index=False, startrow=len(chronic_quat) + 4) acute_mon.to_excel(writer, sheet_name='Acute Monthly', index=False) acute_mon_per.to_excel(writer, sheet_name='Acute Monthly', index=False, startrow=len(acute_mon) + 4) acute_quat.to_excel(writer, sheet_name='Acute Quarterly', index=False) acute_quat_per.to_excel(writer, sheet_name='Acute Quarterly', index=False, startrow=len(acute_quat) + 4) email = Email() email.send_email_file(subject="Cohorts for {}".format(full_month_name), mail_body='Hi Rohan please find the attached Cohorts till {}-{}'.format(currentDay,full_month_name), to_emails=email_to, file_paths=[local_file_full_path]) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-retention-cohort-automailer.py
goodaid-retention-cohort-automailer.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from dateutil.tz import gettz from zeno_etl_libs.logger import get_logger import argparse import pandas as pd import datetime as dt import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-cb', '--created_by', default="etl-automation", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected], [email protected], [email protected]," "[email protected]",type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to created_by = args.created_by os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") logger.info(f"user:{created_by}") # prod creds below rs_db = DB() rs_db.open_connection() s3 = S3() # def main(rs_db, s3): schema = 'prod2-generico' table_name = 'goodaid-incentive-rate-card' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # getting new drugs incentive data from s3 df = pd.read_csv(s3.download_file_from_s3(file_name="goodaid-incentive-rate/incentive-rate-card.csv")) logger.info("number of drugs whose incentive has to be updated is: " +str(len(df))) # data of drugs in the incentive rate card table query = f''' select * from "prod2-generico"."goodaid-incentive-rate-card" girc where status = 'live' ''' data = rs_db.get_df(query) data.columns = [c.replace('-','_') for c in data.columns] logger.info("number of live drugs with incentive are: " +str(len(data))) # setting up start and end date if it has to be updated currently now = dt.date.today() then = now + dt.timedelta(days=365) ########################################################################################### # for durgs which are currently present in the table and their incentive has to be updated # checking for the existing drugs data_drug_id= data.drug_id.unique() bool_series = df.drug_id.isin(data_drug_id) fill_df = df[bool_series] logger.info("number of drugs whose incentive has to be updated are: " +str(len(fill_df))) number_of_drugs = len(fill_df) if number_of_drugs>0: fill_df['incentive_start_date'] = now fill_df['incentive_end_date']= then fill_df['status']= 'live' drug_id_list = fill_df.drug_id.unique() if len(list(drug_id_list))<=1: logger.info(drug_id_list) drug_id_list = str(list(drug_id_list)).replace('[', '(').replace(']', ')') logger.info(drug_id_list) else: drug_id_list = tuple(drug_id_list) if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} does not exist, create the table first") else: print(f"Table:{table_name} exists") update_query = f''' update "{schema}"."{table_name}" set "incentive-end-date" = CURRENT_DATE-1 ,status = 'not live', "updated-at" = current_date where "drug-id" in {drug_id_list} and status = 'live' ''' rs_db.execute(update_query) logger.info(f"Table:{table_name} table updated") fill_df['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') fill_df['created-by'] = created_by fill_df['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') fill_df['updated-by'] = 'etl-automation' fill_df.columns = [c.replace('_','-') for c in fill_df.columns] # ========================================================================= # append table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") s3.write_df_to_db(df=fill_df[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # Providing incentive for newly added drugs bool_series = ~df.drug_id.isin(data_drug_id) fill_df = df[bool_series] logger.info("number of new drugs whose incentive has to be added are: " +str(len(fill_df))) number_of_drugs = len(fill_df) if number_of_drugs>0: drug_id_list = fill_df.drug_id.unique() if len(list(drug_id_list))<=1: logger.info(drug_id_list) drug_id_list = str(list(drug_id_list)).replace('[', '(').replace(']', ')') logger.info(drug_id_list) else: drug_id_list = tuple(drug_id_list) query = f''' select i."drug-id" as "drug_id", MIN(bi."created-at") as "incentive_start_date" from "prod2-generico"."bill-items-1" bi left join "prod2-generico"."inventory-1" i on bi."inventory-id" = i.id where i."drug-id" in {drug_id_list} group by i."drug-id" ''' new_data = rs_db.get_df(query) new_data.incentive_start_date = pd.to_datetime(new_data.incentive_start_date) new_data['incentive_start_date'] = new_data['incentive_start_date'].dt.date new_data['incentive_end_date'] = new_data.incentive_start_date + dt.timedelta(days= 365) merged_df = pd.merge(fill_df, new_data, how= 'left', on = 'drug_id') merged_df['incentive_start_date'].fillna(value=pd.to_datetime(now).strftime('%Y-%m-%d'), inplace=True) merged_df['incentive_end_date'].fillna(value=pd.to_datetime(then).strftime('%Y-%m-%d'), inplace=True) merged_df['status'] = 'live' merged_df.columns = [c.replace('_','-') for c in merged_df.columns] merged_df['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') merged_df['created-by'] = created_by merged_df['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') merged_df['updated-by'] = 'etl-automation' # ========================================================================= # append table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") s3.write_df_to_db(df=merged_df[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # getting data from the table which was uploaded by the user query= ''' select * from "prod2-generico"."goodaid-incentive-rate-card" girc where date("created-at")= current_date order by "drug-id" asc ''' updated_incentives = rs_db.get_df(query) number_of_incentives_updated = len(updated_incentives) file_name= 'updated_goodaid_incentives_{}.csv'.format(dt.datetime.today().strftime('%Y-%m-%d')) if number_of_incentives_updated > 0: # Uploading the file to s3 updated_incentives = s3.save_df_to_s3(df=updated_incentives, file_name=file_name) # Sending email subject = ''' Goodaid Incentives Updated''' mail_body = '''The {} drug_ids for which the incentive was added or updated are in the file attached please review it. '''.format(number_of_incentives_updated) file_uris = [updated_incentives] email = Email() email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris) # deleteing the old files for uri in file_uris: s3.delete_s3_obj(uri=uri) # saving the file to archive which was uploaded by the user on retool f_name = 'goodaid-incentive-rate/archive/incentive-rate-card_{}.csv'.format(dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S')) s3.save_df_to_s3(df=df, file_name=f_name) # deleting the file which was uploaded by the user on retool uri = 's3://aws-glue-temporary-921939243643-ap-south-1/goodaid-incentive-rate/incentive-rate-card.csv' s3.delete_s3_obj(uri=uri) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-incentive-update.py
goodaid-incentive-update.py
import os import sys import argparse import datetime as dt import pandas as pd import numpy as np from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() email_to = args.email_to env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() # def main(rs_db, s3): schema = 'prod2-generico' table_name = 'goodaid-incentive-rate-day' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # Import data query = ''' select "drug-id" , incentive , "incentive-start-date" , "incentive-end-date" from "prod2-generico"."prod2-generico"."goodaid-incentive-rate-card" ''' data = rs_db.get_df(query) logger.info(f"Base ratecard read with length {len(data)}") logger.info(f"Unique drug-id count {data['drug-id'].nunique()}") # Explode # This step splits every drug-id, incentive for each day # between incentive start date and incentive end date data['rate_date'] = [pd.date_range(s, e, freq='d') for s, e in zip(pd.to_datetime(data['incentive-start-date']), pd.to_datetime(data['incentive-end-date']))] data.columns = [c.replace('-', '_') for c in data.columns] data_export = pd.DataFrame({'drug_id': data.drug_id.repeat(data.rate_date.str.len()), 'incentive': data.incentive.repeat(data.rate_date.str.len()), 'rate_date': np.concatenate(data.rate_date.values)}) data_export.columns = [c.replace('_', '-') for c in data_export.columns] logger.info(f"Exploded ratecard read with length {len(data_export)}") logger.info(f"Unique drug-id count {data_export['drug-id'].nunique()}") data_export['rate-date'] = data_export['rate-date'].dt.date data_export['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['created-by'] = 'etl-automation' data_export['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['updated-by'] = 'etl-automation' # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") data['Check_1'] = (data['incentive_end_date'] - data['incentive_start_date']).dt.days x= sum(data.Check_1) + len(data) diff = len(data_export) - x if diff > 0: # Sending email subject = ''' Error in Goodaid Incentive Explode ''' mail_body = '''There is a error in goodaid ratecard explode please review it.''' email = Email() email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-ratecard-explode.py
goodaid-ratecard-explode.py
#!/usr/bin/env python # coding: utf-8 import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from dateutil.tz import gettz from zeno_etl_libs.logger import get_logger import argparse import pandas as pd import datetime as dt import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() # def main(rs_db, s3): schema = 'prod2-generico' table_name = 'goodaid-dfc' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) # ============================================================================= # Active Composition at warehouse # ============================================================================= query = f''' select a."drug-id" , d.composition , d."composition-master-id" from "prod2-generico"."prod2-generico"."wh-sku-subs-master" a inner join "prod2-generico"."prod2-generico".drugs d on d.id = a."drug-id" where d."company-id" = 6984 and a."add-wh" = 'Yes' and d."type" != 'discontinued-products' group by a."drug-id" , d.composition , d."composition-master-id" ''' ga_active_compositions= rs_db.get_df(query) ga_active_compositions.columns = [c.replace('-', '_') for c in ga_active_compositions.columns] g_drugs = tuple(map(int, list(ga_active_compositions['drug_id'].unique()))) ga_active_compositions = ga_active_compositions[~ga_active_compositions['composition_master_id'].isna()] gaid_compositions = tuple(map(str, list(ga_active_compositions['composition_master_id'].apply(pd.to_numeric, errors='ignore').astype('Int64').unique()))) logger.info("Data: ga_active_compositions, and ga_active_drugs fetched successfully: " +str(len(ga_active_compositions))) # ============================================================================= # Net sales of GAID Drugs # ============================================================================= query_drug_level = ''' select s."store-id" , s."drug-id" , d."drug-name" , max(gas."old-new-drug") as "goodaid-old-new-drugs", d.composition , d."composition-master-id" , SUM(s."quantity") as "total_quantity", SUM(s.rate * s."quantity") as "total_revenue", MIN(b."opened-at") as "store_opened_at" from "prod2-generico"."prod2-generico".sales s left join "prod2-generico"."prod2-generico".stores b on s."store-id" = b.id left join "prod2-generico"."prod2-generico".drugs d on s."drug-id" = d.id left join "prod2-generico"."prod2-generico"."goodaid-atc-sr" gas on s."drug-id" = gas."drug-id" where "bill-flag" = 'gross' and s."drug-id" in {} and s."company-id" = 6984 and DATE(s."created-at") >= CURRENT_DATE - interval '31days' group by s."store-id" , s."drug-id" , d."drug-name" , d."composition-master-id", d.composition ''' drug_sales= rs_db.get_df(query_drug_level.format(g_drugs)) drug_sales.columns = [c.replace('-', '_') for c in drug_sales.columns] logger.info("Data: drugs sales data fetched successfully: " + str(len(drug_sales))) # ============================================================================= # Net sales of GAID compositions # ============================================================================= query = ''' select s."store-id" , d.composition , d."composition-master-id" , SUM(case when s."company-id" = 6984 then (s."quantity") else 0 end) as "goodaid_quantity", SUM(case when s."type" = 'ethical' then (s."quantity") else 0 end) as "ethical_quantity", SUM(case when s."type" = 'generic' then (s."quantity") else 0 end) as "total_generic_quantity", SUM(case when s."company-id" = 6984 then (s.rate * s."quantity") else 0 end) as "goodaid_revenue_value", SUM(case when datediff(day, s."created-at", (current_date- 1)) <= 15 then s.quantity else 0 end) as "total_quantity_15d", SUM(case when datediff(day, s."created-at", (current_date- 1)) <= 15 then (s.rate * s."quantity") else 0 end) as "total_revenue_15d", SUM(case when s."company-id" = 6984 and datediff(day, s."created-at", (current_date- 1)) <= 15 then (s."quantity") else 0 end) as "goodaid_quantity_15d", SUM(case when s."type" = 'ethical' and datediff(day, s."created-at", (current_date- 1)) <= 15 then (s."quantity") else 0 end) as "ethical_quantity_15d", SUM(case when s."type" = 'generic' and datediff(day, s."created-at", (current_date- 1)) <= 15 then (s."quantity") else 0 end) as "total_generic_quantity_15d", SUM(case when s."company-id" = 6984 and datediff(day, s."created-at", (current_date- 1)) <= 15 then (s.rate * s."quantity") else 0 end) as "goodaid_revenue_value_15" from "prod2-generico"."prod2-generico".sales s left join "prod2-generico"."prod2-generico".stores b on s."store-id" = b.id left join "prod2-generico"."prod2-generico".drugs d on d.id = s."drug-id" where "bill-flag" = 'gross' and d."composition-master-id" in {} and DATE(s."created-at") >= CURRENT_DATE - interval '31days' group by s."store-id" , d."composition-master-id", d.composition ''' first_purchase= rs_db.get_df(query.format(gaid_compositions)) first_purchase.columns = [c.replace('-', '_') for c in first_purchase.columns] logger.info("Data: purchase data fetched successfully: " + str(len(first_purchase))) first_purchase = drug_sales.merge(first_purchase,how = 'left', on = ['store_id','composition','composition_master_id']) # ============================================================================= # Goodaid-comp-store first bill # ============================================================================= query = """ select "store-id" , s."drug-id" , min("created-at") as "ga_comp_first_bill" from "prod2-generico"."prod2-generico".sales s where s."drug-id" in {} and "company-id" = 6984 and date("created-at")>= '2021-02-01' group by "store-id" , s."drug-id" """ comp_first_b= rs_db.get_df(query.format(g_drugs)) comp_first_b.columns= [c.replace('-','_') for c in comp_first_b.columns] logger.info("Data: comp_first_b fetched successfully: " + str(len(comp_first_b))) first_purchase = pd.merge(left=first_purchase, right=comp_first_b, on=['store_id', 'drug_id'], how='left') def month_diff(a, b): return 12 * (a.year - b.dt.year) + (a.month - b.dt.month) first_purchase['store_age_months'] = month_diff(dt.datetime.now(), first_purchase['store_opened_at']) first_purchase['store_type'] = np.where(first_purchase['store_age_months'] <= 3, 'new_store', 'old_store') first_purchase['drug_age_days'] = (dt.datetime.now() - first_purchase['ga_comp_first_bill']).dt.days first_purchase['drug_age_days'].fillna(0,inplace=True) first_purchase['drug_type'] = np.where(first_purchase['drug_age_days'] <= 60, 'new_drug', 'old_drug') # DFc calculation to be written post signoff from goodaid team first_purchase['ga_share_30'] = first_purchase['total_quantity'] / ( first_purchase['total_generic_quantity']) * 100 first_purchase['ga_share_15'] = first_purchase['goodaid_quantity_15d'] / ( first_purchase['total_generic_quantity_15d']) * 100 first_purchase.replace([np.inf, -np.inf], 0, inplace=True) first_purchase['ga_share_30'].fillna(0, inplace=True) first_purchase['ga_share_15'].fillna(0, inplace=True) # conditions = [ # ( # (first_purchase['store_type'] == 'old_store') & # (first_purchase['drug_type'] == 'old_drug') & # (first_purchase['ga_share_30'] >= 50) # ), # ( # (first_purchase['store_type'] == 'old_store') & # (first_purchase['drug_type'] == 'old_drug') & # (first_purchase['ga_share_30'] < 50) # ), # ( # (first_purchase['store_type'] == 'old_store') & # (first_purchase['drug_type'] == 'new_drug') & # (first_purchase['ga_share_15'] >= 50) # ), # ( # (first_purchase['store_type'] == 'old_store') & # (first_purchase['drug_type'] == 'new_drug') & # (first_purchase['ga_share_15'] < 50) # ), # # ( # (first_purchase['store_type'] == 'new_store') & # (first_purchase['drug_type'] == 'new_drug') # ), # ( # (first_purchase['store_type'] == 'new_store') & # (first_purchase['drug_type'] == 'old_drug') # ) # ] # choices = [first_purchase['goodaid_quantity'] / 30, # 0.5 * first_purchase['total_generic_quantity_15d'] / 15, # first_purchase['goodaid_quantity_15d'] / 15, # 0.5 * first_purchase['total_generic_quantity_15d'] / 15, # first_purchase['total_generic_quantity_15d'] / 15, # first_purchase['total_generic_quantity'] / 30] conditions = [True] choices = [first_purchase['goodaid_quantity'] / 30] first_purchase['dfc_val'] = np.select(conditions, choices, default=0.01) first_purchase['dfc_val'].fillna(0.01, inplace=True) first_purchase['dfc_val'] = np.where(first_purchase['dfc_val'] == 0, 0.01, first_purchase['dfc_val']) logger.info("Data: first_purchase table fetched successfully: " +str(len(first_purchase))) goodaid_dfc=first_purchase goodaid_dfc.columns= [c.replace('_', '-') for c in goodaid_dfc.columns] goodaid_dfc['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_dfc['created-by'] = 'etl-automation' goodaid_dfc['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_dfc['updated-by'] = 'etl-automation' goodaid_dfc = goodaid_dfc.astype({'drug-age-days':'int'}) goodaid_dfc['goodaid-quantity'] = goodaid_dfc['goodaid-quantity'].fillna(0) goodaid_dfc['ethical-quantity'] = goodaid_dfc['ethical-quantity'].fillna(0) goodaid_dfc['total-generic-quantity'] = goodaid_dfc['total-generic-quantity'].fillna(0) goodaid_dfc['total-quantity-15d'] = goodaid_dfc['total-quantity-15d'].fillna(0) goodaid_dfc['goodaid-quantity-15d'] = goodaid_dfc['goodaid-quantity-15d'].fillna(0) goodaid_dfc['ethical-quantity-15d'] = goodaid_dfc['ethical-quantity-15d'].fillna(0) goodaid_dfc['total-generic-quantity-15d'] = goodaid_dfc['total-generic-quantity-15d'].fillna(0) goodaid_dfc = goodaid_dfc.astype({'goodaid-quantity':'int', 'ethical-quantity':'int', 'total-generic-quantity':'int', 'total-quantity-15d':'int', 'goodaid-quantity-15d':'int', 'ethical-quantity-15d':'int', 'total-generic-quantity-15d':'int'}) logger.info("Data: goodaid_dfc table fetched successfully: " +str(len(goodaid_dfc))) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db_write.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=goodaid_dfc[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(f"Table:{table_name} table uploaded") # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-dfc.py
goodaid-dfc.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from dateutil.tz import gettz from zeno_etl_libs.logger import get_logger import argparse import pandas as pd import datetime as dt import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() # def main(rs_db, s3): schema = 'prod2-generico' table_name = 'goodaid-incentive-v3' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # ============================================================================= # Stores Master # ============================================================================= query = ''' select id as "store_id", "store-type" , city , store as "store_name", "line-manager" , abo from "prod2-generico"."prod2-generico"."stores-master" sm ''' store_master = rs_db.get_df(query) store_master.columns = [c.replace('-', '_') for c in store_master.columns] logger.info('Data: store_master data fetched successfully: ' + str(len(store_master))) # ============================================================================= # Existing Good-Aid composition # ============================================================================= query = f''' select distinct(d.composition),d."composition-master-id" from "prod2-generico"."prod2-generico"."wh-sku-subs-master" a inner join "prod2-generico"."prod2-generico".drugs d on d.id = a."drug-id" where d."company-id" = 6984 and a."add-wh" = 'Yes' and d."type" = 'generic' group by d.composition,d."composition-master-id" ''' ga_active_compositions = rs_db.get_df(query) ga_active_compositions.columns = [c.replace('-', '_') for c in ga_active_compositions.columns] g_composition = tuple(map(int, list(ga_active_compositions['composition_master_id'].unique()))) compositions = tuple([str(i) for i in ga_active_compositions['composition']]) logger.info('Data: ga_active_compositions fetched successfully: ' + str(len(ga_active_compositions))) # ============================================================================= # Base data # ============================================================================= query = ''' select date(s."created-at") as "date", s."created-at" as "date_time", s."bill-id" , s."patient-id" , s."store-id" , s."drug-id" , d.company , d."company-id" , d.composition , d."composition-master-id" , (case when s."bill-flag"= 'gross' then 1 else -1 end) as "bill_flag", sum(s.rate * s."net-quantity") as "sales", sum(s."net-quantity") as "quantity", sum(s."revenue-value") as "total revenue" from "prod2-generico"."prod2-generico".sales s left join "prod2-generico"."prod2-generico".drugs d on s."drug-id" = d.id where d."company-id" = 6984 and d.composition is not null and d."composition-master-id" is not null group by date(s."created-at") , (s."created-at") , s."bill-id" , s."patient-id" , s."store-id" , s."drug-id" , d.company , d."company-id" , d.composition , d."composition-master-id" , s."bill-flag" ''' base_data = rs_db.get_df(query) base_data.columns = [c.replace('-', '_') for c in base_data.columns] logger.info("Data: base data successfully fetched: " + str(base_data.shape)) base_data = pd.merge(left=base_data, right=store_master, on=['store_id'], how='left') logger.info('Shape of base data is' + str(base_data.shape)) # ============================================================================= # Group Molecule # ============================================================================= g_query = ''' select cm."composition-master-id" as "composition-master-id", LISTAGG( distinct cm."molecule-master-id" , '-' ) WITHIN GROUP (ORDER by cm."molecule-master-id" ) as "group_molecule", listagg(distinct mm."name" ,'-' ) as "group_molecule_text" from "prod2-generico"."prod2-generico"."composition-master-molecules-master-mapping" cm inner join "prod2-generico"."prod2-generico"."molecule-master" mm on cm."molecule-master-id" = mm.id where cm."composition-master-id" is not null group by cm."composition-master-id" ''' group_molecule = rs_db.get_df(g_query) logger.info("Data: group_molecule table fetched successfully" + str(group_molecule.shape)) group_molecule.columns = [c.replace('-', '_') for c in group_molecule.columns] base_data = pd.merge(left=base_data, right=group_molecule, on=['composition_master_id'], how='left') base_data_temp = base_data.copy() logger.info('Shape of base data after joining with group molecule is :' + str(base_data.shape)) # ============================================================================= # Attributed Store, Order Mode, Attributed date # ============================================================================= query = ''' select "bill-id" , "store-id" as "attributed_store", date("created-at") as "attributed_date", (case when "ecom-flag" = 1 then 'Ecom' else 'Non-Ecom' end ) as "order_source" from "prod2-generico"."prod2-generico".sales s where "company-id" = 6984 and "bill-flag" = 'gross' group by 1, 2, 3, 4 ''' attributed_store = rs_db.get_df(query) attributed_store.columns = [c.replace('-', '_') for c in attributed_store.columns] logger.info('Shape of base_data for attributed_bill :' + str(attributed_store.shape)) logger.info('Number of unique bills :' + str(attributed_store['bill_id'].nunique())) base_data = pd.merge(left=base_data, right=attributed_store, on=['bill_id'], how='left') logger.info('Shape of base_data after joining attributed_bill :' + str(base_data.shape)) # ============================================================================= # Goodaid incentive day-wise rate card # ============================================================================= query = ''' select "drug-id" , "rate-date" , incentive from "prod2-generico"."prod2-generico"."goodaid-incentive-rate-day" ''' rate_card = rs_db.get_df(query) rate_card.columns = [c.replace('-', '_') for c in rate_card.columns] logger.info("Data: rate card data successfully fetched: " + str(rate_card.shape)) base_data = pd.merge(left=base_data, right=rate_card, left_on=['drug_id', 'attributed_date'], right_on=['drug_id', 'rate_date'], how='left') logger.info('Shape of base data after joining rate card is :' + str(base_data.shape)) base_data['incentive'].fillna(0, inplace=True) # ============================================================================= # Condition to fetch max incentive amongst the same molecule purchased in a bill # ============================================================================= base_data_agg = base_data.groupby(['attributed_store', 'patient_id', 'group_molecule', 'group_molecule_text', 'order_source', 'date', 'date_time', 'bill_id', 'bill_flag'], as_index=False).agg({'quantity': ['sum'], 'sales': ['sum'], 'incentive': ['max']} ).reset_index(drop=True) base_data_agg.columns = ["_".join(x) for x in base_data_agg.columns.ravel()] base_data_agg.columns = base_data_agg.columns.str.rstrip('_x') base_sort = base_data_agg.sort_values(by=['attributed_store', 'patient_id', 'group_molecule', 'group_molecule_text', 'date', 'date_time', 'bill_id', ], ascending=True) # ============================================================================= # Condition to keep only 1st instance from patient-group_molecule-bill return history # ============================================================================= return_bill = base_sort[base_sort['bill_flag'] == -1].drop_duplicates( subset=['patient_id', 'group_molecule', 'bill_id'], keep='first') logger.info('Shape of return_bill is :' + str(return_bill.shape)) gross_bill = base_sort[base_sort['bill_flag'] == 1] logger.info('Shape of gross_bill is :' + str(gross_bill.shape)) inc_metadata = gross_bill.append(return_bill) logger.info('Shape of inc_metadata after appending gross+return is :' + str(inc_metadata.shape)) inc_metadata = inc_metadata.sort_values(by=['patient_id', 'group_molecule', 'group_molecule_text', 'date', 'date_time', 'bill_id'], ascending=True) inc_metadata.drop_duplicates(keep='first', inplace=True) logger.info('Shape of inc_meadata after dropping duplicates is :' + str(inc_metadata.shape)) # ============================================================================= # logic to calculate patient-group_molecule bill rank # ============================================================================= inc_metadata['cum_sum'] = inc_metadata.groupby(['patient_id', 'group_molecule'])['bill_flag'].cumsum() # To extract the previous cumulated sum instance inc_metadata['prev_cum_sum'] = inc_metadata.groupby(['patient_id', 'group_molecule'])['cum_sum'].shift(1) inc_metadata['prev_cum_sum'].fillna(0, inplace=True) inc_metadata['cum_sum_old'] = 0 # Can be commented once the job runs for limited time period inc_metadata['cum_sum_final'] = inc_metadata['cum_sum'] + inc_metadata['cum_sum_old'] # ============================================================================= # Applying condition for eligible incentive # ============================================================================= conditions = [ ( (inc_metadata['cum_sum_final'] == 1) & (inc_metadata['prev_cum_sum'] == 0) ), ( (inc_metadata['cum_sum_final'] == 0) ) ] choices = ['achieved', 'deduct'] inc_metadata['incentive_flag'] = np.select(conditions, choices, default='no_opportunity') inc_metadata = pd.merge(left=inc_metadata, right=store_master, right_on=['store_id'], left_on=['attributed_store'], how='left') logger.info('Shape of inc_meadata after joining stores_master :' + str(inc_metadata.shape)) # Fetch the cases where incentive is not tagged zero_incentive = inc_metadata[(inc_metadata['incentive_flag'] == 'achieved') & (inc_metadata['incentive_ma'] == 0)] logger.info('Shape of zero_incentive data :' + str(zero_incentive.shape)) # ============================================================================= # Adding composition in goodaid_incentive_v3 # ============================================================================= base_data_comp = base_data_temp[['bill_id', 'patient_id', 'group_molecule', 'composition', 'composition_master_id']] base_data_comp = base_data_comp.sort_values(by=['bill_id', 'patient_id', 'group_molecule', 'composition_master_id'], ascending=True) logger.info('Shape of base_data_comp :' + str(base_data_comp.shape)) # Extracting the first composition from patient-bill-group_molecule base_data_comp = base_data_comp.groupby(['bill_id', 'patient_id', 'group_molecule']).first().reset_index() logger.info('Shape of base_data_comp after extracting unique composition :' + str(base_data_comp.shape)) inc_metadata = pd.merge(left=inc_metadata, right=base_data_comp, on=['bill_id', 'patient_id', 'group_molecule'], how='left') logger.info('Shape of inc_metadata data after merging with base_data_comp :' + str(inc_metadata.shape)) # Creating a copy of inc_metadata to sync with output table name goodaid_incentive_v3 = inc_metadata.copy() logger.info('Shape of goodaid_incentive_v3 data :' + str(goodaid_incentive_v3.shape)) goodaid_incentive_v3['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_incentive_v3['created-by'] = 'etl-automation' goodaid_incentive_v3['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_incentive_v3['updated-by'] = 'etl-automation' goodaid_incentive_v3.columns = [c.replace('_', '-') for c in goodaid_incentive_v3.columns] logger.info('Shape of goodaid_incentive_v3 data :' + str(goodaid_incentive_v3.shape)) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=goodaid_incentive_v3[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # def main(rs_db, s3): schema = 'prod2-generico' table_name = 'goodaid-opportunity' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # ============================================================================= # Total opportunity store level aggregated and avg selling qty # ============================================================================= query = f''' select b."store-id" , count(distinct concat(b."patient-id", q1."group_molecule")) as "total_opportunity", round(avg(a.quantity)) as "avg_qty" from "prod2-generico"."prod2-generico"."bill-items-1" a left join "prod2-generico"."prod2-generico"."bills-1" b on b.id = a."bill-id" left join "prod2-generico"."prod2-generico"."inventory-1" c on c.id = a."inventory-id" left join "prod2-generico"."prod2-generico".drugs d on d.id = c."drug-id" left join "prod2-generico"."prod2-generico"."patients-metadata-2" pm on pm."id" = b."patient-id" inner join ({g_query}) q1 on q1."composition-master-id" = d."composition-master-id" where (d."composition-master-id" in {g_composition} or d."company-id" = 6984) and DATE(pm."last-bill-date") >= date(date_trunc('month', current_date) - interval '3 month') group by 1 ''' opportunity = rs_db.get_df(query) opportunity.columns = [c.replace('-', '_') for c in opportunity.columns] logger.info('Shape of opportunity data :' + str(opportunity.shape)) # ============================================================================= # opportunity achieved # ============================================================================= query = f''' select b."store-id" , count(distinct concat(b."patient-id", q1."group_molecule")) as "total_opportunity_achieved" from "prod2-generico"."prod2-generico"."bill-items-1" a left join "prod2-generico"."prod2-generico"."bills-1" b on b.id = a."bill-id" left join "prod2-generico"."prod2-generico"."inventory-1" c on c.id = a."inventory-id" left join "prod2-generico"."prod2-generico".drugs d on d.id = c."drug-id" left join "prod2-generico"."prod2-generico"."patients-metadata-2" pm on pm."id" = b."patient-id" inner join ({g_query}) q1 on q1."composition-master-id" = d."composition-master-id" where d."composition-master-id" in {g_composition} and d."company-id" = 6984 and DATE(pm."last-bill-date") >= date(date_trunc('month', current_date) - interval '3 month') group by 1 ''' opportunity_ach = rs_db.get_df(query) opportunity_ach.columns = [c.replace('-', '_') for c in opportunity_ach.columns] logger.info('Shape of opportunity_ach data :' + str(opportunity_ach.shape)) goodaid_opportunity = pd.merge(left=opportunity, right=opportunity_ach, on=['store_id'], how='left') logger.info('Shape of goodaid_opportunity data after merging opp and opp_achieved :' + str(goodaid_opportunity.shape)) goodaid_opportunity = pd.merge(left=goodaid_opportunity, right=store_master, on=['store_id'], how='left') logger.info('Shape of goodaid_opportunity data after joining stores_master :' + str(goodaid_opportunity.shape)) goodaid_opportunity['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_opportunity['created-by'] = 'etl-automation' goodaid_opportunity['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_opportunity['updated-by'] = 'etl-automation' goodaid_opportunity.columns = [c.replace('_', '-') for c in goodaid_opportunity.columns] logger.info('Shape of goodaid_oppurtunity data :' + str(goodaid_opportunity.shape)) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=goodaid_opportunity[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-incentive-v3.py
goodaid-incentive-v3.py
import sys import os sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB import argparse import pandas as pd import datetime parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]," "[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() query = f''' select a."drug-id" , d.composition , d."drug-name" from "prod2-generico"."prod2-generico"."wh-sku-subs-master" a left join "prod2-generico"."prod2-generico".drugs d on a."drug-id" = d.id left join "prod2-generico"."prod2-generico"."goodaid-incentive-rate-card" b on a."drug-id" = b."drug-id" where b."drug-id" is null and d."company-id" = 6984 and a."add-wh" = 'Yes' group by a."drug-id" , d.composition, d."drug-name" ''' new_drugs =rs_db.get_df(query) new_drugs.columns = [c.replace('-', '_') for c in new_drugs.columns] run_date = str(datetime.datetime.now().date()) file_name = 'Goodaid_ATC_SR_and_Incentive_Mapping_{}.csv'.format(str(run_date)) no_of_drugs = len(new_drugs) logger.info('Total number of miss drugs are {}'.format(no_of_drugs)) drug_names= new_drugs.drug_name.unique() logger.info('Unique missed drugs are {}'.format(drug_names)) if no_of_drugs > 0: # Uploading the file to s3 new_drugs = s3.save_df_to_s3(df=new_drugs, file_name=file_name) # Sending email subject = ''' Goodaid ATC SR and Incentive Mapping''' mail_body = '''Provide GoodAid Incentive mapping for -{} Drugs '''.format(no_of_drugs) file_uris = [new_drugs] email = Email() email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris) # deleteing the old files for uri in file_uris: s3.delete_s3_obj(uri=uri) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/ga-wh-incentive-miss-automailer.py
ga-wh-incentive-miss-automailer.py
import os import sys import argparse import datetime as dt import pandas as pd import numpy as np sys.path.append('../../../..') from dateutil.tz import gettz from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() # def main(rs_db, s3): schema = 'prod2-generico' table_name = 'goodaid-daily-store-opportunity' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # ============================================================================= # Existing Good-Aid composition # ============================================================================= query = f''' select distinct(d.composition),d."composition-master-id" from "prod2-generico"."prod2-generico"."wh-sku-subs-master" a inner join "prod2-generico"."prod2-generico".drugs d on d.id = a."drug-id" where d."company-id" = 6984 and a."add-wh" = 'Yes' and d."type" = 'generic' group by d.composition,d."composition-master-id" ''' ga_active_compositions= rs_db.get_df(query) ga_active_compositions.columns = [c.replace('-', '_') for c in ga_active_compositions.columns] g_composition = tuple(map(int, list(ga_active_compositions['composition_master_id'].unique()))) compositions = tuple([str(i) for i in ga_active_compositions['composition']]) logger.info('Data: ga_active_compositions fetched successfully: ' +str(len(ga_active_compositions))) # ============================================================================= # Stores Master # ============================================================================= query= ''' select id as "store_id", "store-type" , city , store as "store_name", "line-manager" , abo from "prod2-generico"."prod2-generico"."stores-master" sm ''' store_master= rs_db.get_df(query) store_master.columns = [c.replace('-', '_') for c in store_master.columns] logger.info('Data: store_master data fetched successfully: ' +str(len(store_master))) # ============================================================================= # Group Molecule # ============================================================================= g_query= ''' select cm."composition-master-id" as "composition-master-id", LISTAGG( distinct cm."molecule-master-id" , '-' ) WITHIN GROUP (ORDER by cm."molecule-master-id" ) as "group_molecule", listagg(distinct mm."name" ,'-' ) as "group_molecule_text" from "prod2-generico"."prod2-generico"."composition-master-molecules-master-mapping" cm inner join "prod2-generico"."prod2-generico"."molecule-master" mm on cm."molecule-master-id" = mm.id where cm."composition-master-id" is not null group by cm."composition-master-id" ''' group_molecule = rs_db.get_df(g_query) group_molecule.columns= [c.replace ('-','_') for c in group_molecule.columns] group_molecule.sort_values(by='group_molecule', ascending=True, inplace= True) group_molecule.reset_index(inplace= True, drop = True) logger.info("Data: group_molecule table fetched successfully" +str(group_molecule.shape)) # ============================================================================= # Extract store-wise day wise actual opportunity based on billing # ============================================================================= query = f''' select date(s."created-at") as "date", s."store-id" , q1."group_molecule", q1."group_molecule_text", count(distinct concat(s."patient-id", q1."group_molecule")) as "total_opportunity" from "prod2-generico"."prod2-generico".sales s inner join ({g_query}) q1 on q1."composition-master-id" = s."composition-master-id" where (s."composition-master-id" in {g_composition} or s."company-id" = 6984) and date(s."created-at") >= DATEADD(month, -3, GETDATE()) and "bill-flag" = 'gross' group by 1,2,3,4 ''' goodaid_daily_store_opportunity = rs_db.get_df(query) goodaid_daily_store_opportunity.columns = [c.replace('-', '_') for c in goodaid_daily_store_opportunity.columns] logger.info('Shape of goodaid_daily_store_opportunity data :' + str(goodaid_daily_store_opportunity.shape)) # ============================================================================= # Extracting composition wise opportunity # ============================================================================= query = f''' select date(s."created-at") as "date", s."store-id" , q1."group_molecule", s.composition , s."composition-master-id" , count(distinct concat(concat(s."patient-id", q1."group_molecule"), s."composition-master-id")) as "total_opportunity" from "prod2-generico"."prod2-generico".sales s inner join ({g_query}) q1 on q1."composition-master-id" = s."composition-master-id" where (s."composition-master-id" in {g_composition} or s."company-id" = 6984) and date(s."created-at") >= DATEADD(month, -3, GETDATE()) and "bill-flag" = 'gross' group by 1,2,3,4,5 ''' goodaid_daily_opp_comp = rs_db.get_df(query) goodaid_daily_opp_comp.columns = [c.replace('-', '_') for c in goodaid_daily_opp_comp.columns] logger.info('Shape of goodaid_daily_opp_comp data :' + str(goodaid_daily_opp_comp.shape)) # ============================================================================= # Extrating total_opportunity at date-store_group_molecule # ============================================================================= goodaid_composition = goodaid_daily_opp_comp.groupby\ (['date', 'store_id', 'group_molecule'],as_index=False).agg\ ({"total_opportunity": "sum"}).reset_index(drop=True) goodaid_composition.rename({'total_opportunity': 'aggregate_total_opportunity'}, axis=1, inplace=True) goodaid_daily_opp_comp = pd.merge\ (left=goodaid_daily_opp_comp, right=goodaid_composition, on=['date', 'store_id', 'group_molecule'], how='left') logger.info('Shape of goodaid_daily_opp_comp data after joining goodaid_composition :' + str(goodaid_daily_opp_comp.shape)) #Creating an multiplier field goodaid_daily_opp_comp['multiplier'] =\ goodaid_daily_opp_comp['total_opportunity']/\ goodaid_daily_opp_comp['aggregate_total_opportunity'] goodaid_daily_opp_comp=goodaid_daily_opp_comp[['date', 'store_id', 'group_molecule', 'composition','composition_master_id','multiplier']] goodaid_daily_store_opportunity = pd.merge\ (right=goodaid_daily_opp_comp, left=goodaid_daily_store_opportunity, on=['date', 'store_id', 'group_molecule'], how='left') goodaid_daily_store_opportunity['actaul_total_opp'] = \ goodaid_daily_store_opportunity['total_opportunity'] * goodaid_daily_store_opportunity[ 'multiplier'] goodaid_daily_store_opportunity['actaul_total_opp']=\ np.ceil(goodaid_daily_store_opportunity['actaul_total_opp']) logger.info('Shape of goodaid_daily_store_opportunity data after joining comp_opp :' + str(goodaid_daily_store_opportunity.shape)) goodaid_daily_store_opportunity = pd.merge(left=goodaid_daily_store_opportunity, right=store_master, on=['store_id'], how='left') logger.info('Shape of goodaid_daily_store_opportunity data after joining stores_master :' + str(goodaid_daily_store_opportunity.shape)) goodaid_daily_store_opportunity['created-at'] = \ dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_daily_store_opportunity['created-by'] = 'etl-automation' goodaid_daily_store_opportunity['updated-at'] = \ dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') goodaid_daily_store_opportunity['updated-by'] = 'etl-automation' goodaid_daily_store_opportunity.columns = [c.replace('_','-') for c in goodaid_daily_store_opportunity.columns] logger.info('Shape of goodaid_opportunity data :' + str(goodaid_daily_store_opportunity.shape)) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=goodaid_daily_store_opportunity[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-daily-store-opportunity.py
goodaid-daily-store-opportunity.py
# @Purpose: To replicate the table from warehouse db to redshift import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.db.db import MSSql from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.email.email import Email import argparse import traceback import pandas as pd parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-eet', '--error_email_to', default="NA", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env error_email_to = args.error_email_to os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() email = Email() schema = 'prod2-generico' # from bhiwandi wh # SalePurchase table mssql = MSSql(connect_via_tunnel=False) cnxn = mssql.open_connection() cursor = cnxn.cursor() query = ''' SELECT * FROM Salepurchase2 WHERE Vtype not in ('SB') ''' try: salepur_bhw = pd.read_sql(query, cnxn) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) salepur_bhw['warehouse'] = 'BHW' salepur_bhw['warehouseId'] = 199 logger.info("Data from BHW acquired: " + str(len(salepur_bhw))) # from Goodaid wh mssql_ga = MSSql(connect_via_tunnel=False, db='Esdata_WS_2') cnxn_ga = mssql_ga.open_connection() cursor_ga = cnxn_ga.cursor() query = ''' SELECT * FROM Salepurchase2 WHERE Vtype not in ('SB')''' try: salepur_ga = pd.read_sql(query, cnxn_ga) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) salepur_ga['warehouse'] = 'GA' salepur_ga['warehouseId'] = 343 logger.info("Data from GAW acquired: " + str(len(salepur_ga))) # From TEPL mssql_tepl = MSSql(connect_via_tunnel=False, db='Esdata_TEPL') cnxn_tepl = mssql_tepl.open_connection() cursor = cnxn_tepl.cursor() query = ''' SELECT * FROM SalePurchase2 sp ''' try: salepur_tepl = pd.read_sql(query, cnxn_tepl) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) salepur_tepl['warehouse'] = 'TEPL' salepur_tepl['warehouseId'] = 342 logger.info("Data from TEPLW acquired: " + str(len(salepur_tepl))) # From older db salepurchase 2 #mssql_old = MSSql(connect_via_tunnel=False, db='Esdata2122') #cnxn_old = mssql_old.open_connection() #cursor = cnxn_old.cursor() #query = ''' SELECT * FROM SalePurchase2 sp where Vtype not in ('SB') ''' #try: #salepur_old = pd.read_sql(query, cnxn_old) #except Exception as error: #helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) #salepur_old['warehouse'] = 'BHW' #salepur_old['warehouseId'] = 199 #logger.info("Data from BHW acquired: " + str(len(salepur_tepl))) # concating the above dataframes df_new = pd.concat([salepur_bhw, salepur_ga, salepur_tepl]).reset_index(drop=True) df_new[['scm1', 'scm2', 'Gacno', 'Sman', 'Area', 'route', 'CodeCent', 'ChlnSrlno', 'RefVno', 'SRGGVno', 'SBPsrlno', 'CompCode', 'mState', 'PsTypeTOM', 'ICase', 'IBox', 'ILoose', 'PorderNo', 'StockLocation']] \ = df_new[['scm1', 'scm2', 'Gacno', 'Sman', 'Area', 'route', 'CodeCent', 'ChlnSrlno', 'RefVno', 'SRGGVno', 'SBPsrlno', 'CompCode', 'mState', 'PsTypeTOM', 'ICase', 'IBox', 'ILoose', 'PorderNo', 'StockLocation']] \ .apply(pd.to_numeric, errors='ignore').astype('Int64') df_new.columns = df_new.columns.str.lower() logger.info("Data from both BHW and GAW concatenated: " + str(len(df_new))) # def main(rs_db, s3): table_name='salepurchase2' table_name_temp = 'salepurchase2_temp' table_info = helper.get_table_info(db=rs_db, table_name=table_name_temp, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name_temp} do not exist, create the table first") else: print(f"Table:{table_name_temp} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name_temp} table truncated") s3.write_df_to_db(df=df_new[table_info['column_name']], table_name=table_name_temp, db=rs_db, schema=schema) rs_db.execute(query="begin ;") rs_db.execute(query=f""" delete from "prod2-generico"."{table_name}" where date(vdt)>= '2022-04-01'; """) query=f''' insert into "{schema}"."{table_name}" select * FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(query=query) """ committing the transaction """ rs_db.execute(query=" end; ") logger.info(f"Table:{table_name} table uploaded") df_new.drop(df_new.index, inplace=True) # salepurchase1 table # SP1 from BHW query = ''' SELECT * FROM Salepurchase1 s WHERE Vtyp not in ('SB') ''' try: salepur1_bhw = pd.read_sql(query, cnxn) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) salepur1_bhw['warehouse'] = 'BHW' salepur1_bhw['warehouseId'] = 199 logger.info("Data from BHW acquired: " + str(len(salepur1_bhw))) # SP1 from GAW query = ''' SELECT * FROM Salepurchase1 s WHERE Vtyp not in ('SB') ''' try: salepur1_ga = pd.read_sql(query, cnxn_ga) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) salepur1_ga['warehouse'] = 'GA' salepur1_ga['warehouseId'] = 343 logger.info("Data from GAW acquired: " + str(len(salepur1_ga))) # SP1 from TEPLW query = ''' SELECT * FROM Salepurchase1 s ''' try: salepur1_tepl = pd.read_sql(query, cnxn_tepl) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) salepur1_tepl['warehouse'] = 'TEPL' salepur1_tepl['warehouseId'] = 342 logger.info("Data from TEPLW acquired: " + str(len(salepur1_tepl))) # SP1 form old BHW #query = ''' #SELECT * FROM Salepurchase1 s WHERE Vtyp not in ('SB') ''' #try: #salepur1_bhw_old = pd.read_sql(query, cnxn_old) #except Exception as error: #helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) #salepur1_bhw_old['warehouse'] = 'BHW' #salepur1_bhw_old['warehouseId'] = 199 #logger.info("Data from BHW acquired: " + str(len(salepur1_bhw))) salepurchase1 = pd.concat([salepur1_bhw, salepur1_ga, salepur1_tepl]).reset_index(drop=True) salepurchase1[['SyncNo', 'StndVno', 'BillTocode']] = salepurchase1[ ['SyncNo', 'StndVno', 'BillTocode']] \ .apply(pd.to_numeric, errors='ignore').astype('Int64') salepurchase1.columns = salepurchase1.columns.str.lower() # def main(rs_db, s3): table_name = 'salepurchase1' table_name_temp = 'salepurchase1_temp' table_info = helper.get_table_info(db=rs_db, table_name=table_name_temp, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name_temp} do not exist, create the table first") else: print(f"Table:{table_name_temp} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name_temp} table truncated") s3.write_df_to_db(df=salepurchase1[table_info['column_name']], table_name=table_name_temp, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") rs_db.execute(query="begin ;") rs_db.execute(query=f""" delete from "prod2-generico"."{table_name}" where date(vdt)>= '2022-04-01'; """) query=f''' insert into "{schema}"."{table_name}" select * FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(query=query) """ committing the transaction """ rs_db.execute(query=" end; ") salepurchase1.drop(salepurchase1.index, inplace=True) # Fifo from bhiwandi query = ''' SELECT * FROM FIFO f ''' try: fifo_bhw = pd.read_sql(query, cnxn) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) fifo_bhw['warehouse'] = 'BHW' fifo_bhw['warehouseId'] = 199 logger.info("FIFO Data from BHW acquired: " + str(len(fifo_bhw))) # Fifo from GA warehouse query = ''' SELECT * FROM FIFO f ''' try: fifo_ga = pd.read_sql(query, cnxn_ga) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) fifo_ga['warehouse'] = 'GA' fifo_ga['warehouseId'] = 343 logger.info("FIFO Data from GAW acquired: " + str(len(fifo_ga))) # fifo from tepl warehouse query = ''' SELECT * FROM FIFO f ''' try: fifo_tepl = pd.read_sql(query, cnxn_tepl) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) fifo_tepl['warehouse'] = 'TEPL' fifo_tepl['warehouseId'] = 342 logger.info("FIFO Data from GAW acquired: " + str(len(fifo_tepl))) fifo = pd.concat([fifo_bhw, fifo_ga, fifo_tepl]).reset_index(drop=True) fifo[['ScmOfferNo', 'WUCode', 'PsrlnoGDNTrf', 'StockLocation', 'SyncNo']] \ = fifo[['ScmOfferNo', 'WUCode', 'PsrlnoGDNTrf', 'StockLocation', 'SyncNo']] \ .apply(pd.to_numeric, errors='ignore').astype('Int64') fifo.columns = fifo.columns.str.lower() logger.info("FIFO Data from both GA and BHW acquired: " + str(len(fifo))) # def main(rs_db, s3): table_name = 'fifo' table_name_temp='fifo_temp' table_info = helper.get_table_info(db=rs_db, table_name=table_name_temp, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name_temp} do not exist, create the table first") else: print(f"Table:{table_name_temp} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name_temp} table truncated") s3.write_df_to_db(df=fifo[table_info['column_name']], table_name=table_name_temp, db=rs_db, schema=schema) logger.info(f"Table:{table_name_temp} table uploaded") rs_db.execute(query="begin ;") rs_db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query=f''' insert into "{schema}"."{table_name}" select * FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(query=query) """ committing the transaction """ rs_db.execute(query=" end; ") fifo.drop(fifo.index, inplace=True) # acknow table from BHW , GAW and TEPL # acknow from BHW query = ''' SELECT * FROM Acknow a ''' try: acknow_bhw = pd.read_sql(query, cnxn) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) acknow_bhw['warehouse'] = 'BHW' acknow_bhw['warehouseId'] = 199 logger.info("Acknow Data from BHW acquired: " + str(len(acknow_bhw))) # acknow from GAW query = ''' SELECT * FROM Acknow a ''' try: acknow_ga = pd.read_sql(query, cnxn_ga) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) acknow_ga['warehouse'] = 'GA' acknow_ga['warehouseId'] = 343 logger.info("Acknow Data from GAW acquired: " + str(len(acknow_ga))) # acknow from TEPL warehouse query = ''' SELECT * FROM Acknow a ''' try: acknow_tepl = pd.read_sql(query, cnxn_tepl) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) acknow_tepl['warehouse'] = 'TEPL' acknow_tepl['warehouseId'] = 342 logger.info("Acknow Data from GAW acquired: " + str(len(acknow_ga))) # acknow from BHW #query = ''' #SELECT * FROM Acknow a ''' #try: #acknow_bhw_old = pd.read_sql(query, cnxn_old) #except Exception as error: #helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) #acknow_bhw_old['warehouse'] = 'BHW' #acknow_bhw_old['warehouseId'] = 199 #logger.info("Acknow Data from BHW acquired: " + str(len(acknow_bhw_old))) acknow = pd.concat([acknow_bhw, acknow_ga, acknow_tepl]).reset_index(drop=True) logger.info("Acknow Data from after combining: " + str(len(acknow))) acknow.columns = acknow.columns.str.lower() # def main(rs_db, s3): table_name = 'acknow' table_name_temp='acknow_temp' table_info = helper.get_table_info(db=rs_db, table_name=table_name_temp, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name_temp} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name_temp} table truncated") s3.write_df_to_db(df=acknow[table_info['column_name']], table_name=table_name_temp, db=rs_db, schema=schema) logger.info(f"Table:{table_name_temp} table uploaded") rs_db.execute(query="begin ;") rs_db.execute(query=f""" delete from "prod2-generico"."{table_name}" where date(vdt)>= '2022-04-01'; """) query=f''' insert into "{schema}"."{table_name}" select * FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(query=query) """ committing the transaction """ rs_db.execute(query=" end; ") acknow.drop(acknow.index, inplace=True) # Getting item, master and acm from BHW warehouse query = ''' select * from Item ''' try: item = pd.read_sql(query, cnxn) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) item[['Saltcode', 'IucCode', 'SyncIdMod', 'SyncNo']] = item[ ['Saltcode', 'IucCode', 'SyncIdMod', 'SyncNo']] \ .apply(pd.to_numeric, errors='ignore').astype('Int64') item.columns = item.columns.str.lower() logger.info("Item Data from BHW acquired: " + str(len(item))) # def main(rs_db, s3): table_name = 'item' table_name_temp = 'item_temp' table_info = helper.get_table_info(db=rs_db, table_name=table_name_temp, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name_temp} do not exist, create the table first") else: print(f"Table:{table_name_temp} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name_temp} table truncated") s3.write_df_to_db(df=item[table_info['column_name']], table_name=table_name_temp, db=rs_db, schema=schema) logger.info(f"Table:{table_name_temp} table uploaded") rs_db.execute(query="begin ;") rs_db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query=f''' insert into "{schema}"."{table_name}" select * FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(query=query) """ committing the transaction """ rs_db.execute(query=" end; ") item.drop(item.index, inplace=True) # ACM table query = ''' select * from Acm ''' try: acm = pd.read_sql(query, cnxn) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) acm[['BillToCode', 'SyncNo']] = acm[['BillToCode', 'SyncNo']].apply(pd.to_numeric, errors='ignore').astype('Int64') acm.columns = acm.columns.str.lower() logger.info("acm Data from BHW acquired: " + str(len(acm))) # def main(rs_db, s3): table_name = 'acm' table_name_temp='acm_temp' table_info = helper.get_table_info(db=rs_db, table_name=table_name_temp, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name_temp} do not exist, create the table first") else: print(f"Table:{table_name_temp} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name_temp} table truncated") s3.write_df_to_db(df=acm[table_info['column_name']], table_name=table_name_temp, db=rs_db, schema=schema) logger.info(f"Table:{table_name_temp} table uploaded") rs_db.execute(query="begin ;") rs_db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query=f''' insert into "{schema}"."{table_name}" select * FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(query=query) """ committing the transaction """ rs_db.execute(query=" end; ") # from Master table query = ''' select * from Master ''' try: master = pd.read_sql(query, cnxn) except Exception as error: helper.log_or_email_error(logger=logger, exception=error, email_to=error_email_to) master[['SyncNo']] = master[['SyncNo']].apply(pd.to_numeric, errors='ignore').astype('Int64') master.columns = master.columns.str.lower() logger.info("master Data from BHW acquired: " + str(len(master))) # def main(rs_db, s3): table_name = 'master' table_name_temp='master_temp' table_info = helper.get_table_info(db=rs_db, table_name=table_name_temp, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name_temp} do not exist, create the table first") else: print(f"Table:{table_name_temp} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name_temp} table truncated") s3.write_df_to_db(df=master[table_info['column_name']], table_name=table_name_temp, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") rs_db.execute(query="begin ;") rs_db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query=f''' insert into "{schema}"."{table_name}" select * FROM "{schema}"."{table_name_temp}" ''' rs_db.execute(query=query) """ committing the transaction """ rs_db.execute(query=" end; ") # closing the DB connection in the end rs_db.close_connection() mssql.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/supplychain.py
supplychain.py
import os import sys import argparse import pandas as pd import datetime import numpy as np sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from dateutil.tz import gettz from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() # def main(rs_db, s3): schema = 'prod2-generico' table_name = 'inventory-ga' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) #Getting the data #Active GoodAid drugs query = f''' SELECT d.id as "drug_id", d."composition-master-id" as "composition_master_id", d.composition FROM "prod2-generico"."prod2-generico"."inventory-1" i join "prod2-generico"."prod2-generico".drugs d on i."drug-id" = d.id WHERE d."company-id" = 6984 and i."created-at" <= current_date group by d."composition-master-id" , d.composition, d.id ''' ga_active= rs_db.get_df(query) logger.info("Data: ga_active compositions fetched") gaid_compositions = tuple(map(int, list(ga_active['composition_master_id'].unique()))) # Store master query = f''' select id as "store-id", store as "store-name", "store-manager" , "line-manager" , abo from "prod2-generico"."prod2-generico"."stores-master" sm ''' store_master = rs_db.get_df(query) logger.info("Data: got stores master data successfully") # current inventory inv = ''' select a."store-id" , a."drug-id" , b."drug-name" , b."type" , b.category , b.company , b.composition , b."composition-master-id" , (c.min) as "min", (c."safe-stock") as "safe-stock", (c.max) as "max", SUM(a.quantity + a."locked-for-check" + a."locked-for-audit" + a."locked-for-return" + a."locked-for-transfer") as "current-inventory", SUM(a."locked-quantity") as "in-transit", SUM((a.quantity + a."locked-for-check" + a."locked-for-audit" + a."locked-for-return" + a."locked-for-transfer") * a.ptr) as "value" from "prod2-generico"."prod2-generico"."inventory-1" a join "prod2-generico"."prod2-generico".drugs b on a."drug-id" = b.id left join "prod2-generico"."prod2-generico"."drug-order-info" c on c."store-id" = a."store-id" and c."drug-id" = b.id where b."composition-master-id" in {} group by a."store-id" , a."drug-id" , b."drug-name" , b."type" , b.category , b.composition , b.company, b."composition-master-id", c.min , c."safe-stock" , c.max''' inventory= rs_db.get_df(inv.format(gaid_compositions)) logger.info("Inventory table successfully fetched") inventory['goodaid-flag'] = np.where(inventory['company'] == 'GOODAID', 'GoodAid', 'Non-GoodAid') inventory['ss-status'] = np.where(inventory['max'] > 0, 'ss_set', 'ss_not_set') conditions = [ ( (inventory['current-inventory'] <= inventory['safe-stock']) & (inventory['current-inventory'] > 0) ), ( (inventory['current-inventory'] > inventory['safe-stock']) ), ( inventory['current-inventory'] <= 0 ) ] choices = ['inv_less_than_ss', 'inv_more_than_ss', 'not_in_inventory'] inventory['inventory-flag'] = np.select(conditions, choices, default='not_in_inventory') inventory_ga = pd.merge(left=inventory, right=store_master, on=['store-id'], how='left') logger.info("Data: inventory_ga table fetched successfully") inventory_ga['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') inventory_ga['created-by'] = 'etl-automation' inventory_ga['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') inventory_ga['updated-by'] = 'etl-automation' inventory_ga.columns = [c.replace('_', '-') for c in inventory_ga.columns] # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=inventory_ga[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") #### # def main(rs_db, s3): table_name = 'order-status-ga' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # order status o_status= f''' select a.id as "short-book-id", a."store-id" , a."drug-id" , a."drug-name" , c."type" , c.company , c.composition , a.quantity , a."required-quantity" , a.status , a."created-at" as "short-book-created-at", a."dispatched-at" as "short-book-dispatched-at" , a."received-at" as "short-book-received-at" , a."auto-short" , a."patient-id" from "prod2-generico"."prod2-generico"."short-book-1" a left join "prod2-generico"."prod2-generico".drugs c on c.id = a."drug-id" where DATE(a."created-at") >= DATEADD(month, -2, GETDATE()) and c."company-id" = 6984 ''' order_status= rs_db.get_df(o_status) logger.info("Data: order_status df fetched successfully") order_status['goodaid-flag'] = np.where(order_status['company'] == 'GOODAID', 'GoodAid', 'Non-GoodAid') def get_status(order_status): if (order_status['auto-short'] == 1) & (order_status['patient-id'] == 4480): return 'auto-short' elif (order_status['auto-short'] == 1) & (order_status['patient-id'] != 4480): return 'manual-short' order_status['order-type'] = order_status.apply(get_status, axis=1) del order_status['auto-short'] del order_status['patient-id'] order_status['ff-hours'] = (pd.to_datetime(order_status['short-book-dispatched-at'], errors='coerce') - order_status['short-book-created-at']) / np.timedelta64(1, 'h') order_status_ga = pd.merge(left=order_status, right=store_master, on=['store-id'], how='left') order_status_ga['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') order_status_ga['created-by'] = 'etl-automation' order_status_ga['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') order_status_ga['updated-by'] = 'etl-automation' order_status_ga.columns = [c.replace('_', '-') for c in order_status_ga.columns] logger.info("Data: all the operations performed and order status data fetched successfully") # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=order_status_ga[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/goodaid/goodaid-corp.py
goodaid-corp.py
import argparse import os import sys from datetime import datetime as dt import numpy as np from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper.parameter.job_parameter import parameter parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env job_params = parameter.get_params(job_id=42) email_to = job_params['email_to'] logger = get_logger() # params # Segment calculation date should be 1st of every month try: period_end_d_plus1 = job_params['period_end_d_plus1'] period_end_d_plus1 = str(dt.strptime(period_end_d_plus1, "%Y-%m-%d").date()) period_end_d_plus1 = period_end_d_plus1[:-3] + '-01' except ValueError: period_end_d_plus1 = dt.today().strftime('%Y-%m') + '-01' logger.info(f"segment calculation date : {period_end_d_plus1}") read_schema = 'prod2-generico' table_name = 'customer-value-segment' rs_db = DB() rs_db.open_connection() s3 = S3() table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=read_schema) logger.info(table_info) if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") s = f""" SELECT "patient-id", COUNT(DISTINCT "id") AS "total-bills", SUM("net-payable") AS "total-spend" FROM "{read_schema}"."bills-1" WHERE DATEDIFF('days', '{period_end_d_plus1}', date("created-at")) between -90 and -1 GROUP BY "patient-id" """ logger.info(f"data query : {s}") data = rs_db.get_df(query=s) logger.info(data.head()) total_patients = data['patient-id'].nunique() logger.info(f"total patient count for run {period_end_d_plus1} : {total_patients}") data['total-spend'] = data['total-spend'].astype(float) data['abv'] = np.round(data['total-spend'] / data['total-bills'], 2) data = data.sort_values(['total-spend'], ascending=False) data['rank'] = data['total-spend'].rank(method='dense', ascending=False) data['rank'] = data['rank'].astype(int) data['cumm-sales'] = data.sort_values(['total-spend'], ascending=False)['total-spend'].cumsum() len_data = len(data) logger.info(len_data) def assign_value_segment(row): """ :param row: :return: value-segment """ if row['rank'] <= 0.05 * len_data: return 'platinum' if (row['rank'] > 0.05 * len_data) & (row['rank'] <= 0.1 * len_data): return 'gold' if (row['rank'] > 0.1 * len_data) & (row['rank'] <= 0.2 * len_data): return 'silver' return 'others' data['value-segment'] = data.apply(assign_value_segment, axis=1) platinum_length = len(data[data['value-segment'] == 'platinum']) gold_length = len(data[data['value-segment'] == 'gold']) silver_length = len(data[data['value-segment'] == 'silver']) others_length = len(data[data['value-segment'] == 'others']) platinum_data = data[data['value-segment'] == 'platinum'] # Write to csv s3.save_df_to_s3(df=platinum_data, file_name='Shubham_G/value_segment/value_segment_data_platinum.csv') logger.info(f'Length of Platinum segment is {platinum_length}') logger.info(f'Length of Gold segment is {gold_length}') logger.info(f'Length of Silver segment is {silver_length}') logger.info(f'Length of Others segment is {others_length}') q2 = f""" SELECT "patient-id", "store-id", COUNT(DISTINCT "id") AS "store-bills", SUM("net-payable") AS "store-spend" FROM "{read_schema}"."bills-1" WHERE DATEDIFF('days', '{period_end_d_plus1}', date("created-at")) between -90 and -1 GROUP BY "patient-id","store-id" """ logger.info(q2) data_store = rs_db.get_df(query=q2) logger.info(f"data_store {data_store.head()}") data_store['rank'] = data_store.sort_values(['store-bills', 'store-spend'], ascending=[False, False]). \ groupby(['patient-id']).cumcount() + 1 patient_store = data_store[data_store['rank'] == 1][['patient-id', 'store-id']] q3 = f""" SELECT "id" AS "store-id", "name" AS "store-name" FROM "{read_schema}"."stores" """ logger.info(q3) stores = rs_db.get_df(q3) logger.info(f"stores {stores}") patient_store = patient_store.merge(stores, how='inner', on=['store-id', 'store-id']) data = data.merge(patient_store, how='inner', left_on=['patient-id'], right_on=['patient-id']) runtime_month = dt.today().strftime('%Y-%m') runtime_date = dt.today().strftime('%Y-%m-%d') data['segment-calculation-date'] = period_end_d_plus1 data['base-list-identifier'] = runtime_month data['upload-date'] = runtime_date # etl data['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data['created-by'] = 'etl-automation' data['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data['updated-by'] = 'etl-automation' logger.info(f"data write : \n {data.head()}") # truncate data if current month data already exist if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f""" DELETE FROM "{read_schema}"."{table_name}" WHERE "segment-calculation-date" = '{period_end_d_plus1}'; """ logger.info(truncate_query) rs_db.execute(truncate_query) # drop duplicates subset - patient-id data.drop_duplicates(subset=['patient-id'], inplace=True) # Write to csv s3.save_df_to_s3(df=data[table_info['column_name']], file_name='Shubham_G/value_segment/value_segment_data.csv') s3.write_df_to_db(df=data[table_info['column_name']], table_name=table_name, db=rs_db, schema=read_schema) logger.info("Script ran successfully") # email after job ran successfully email = Email() mail_body = f"Value segments upload succeeded for segment calculation date {period_end_d_plus1} " \ f"with data shape {data.shape} and total patient count {total_patients}" if data.shape[0] == total_patients: subject = "Task Status behaviour segment calculation : successful" else: subject = "Task Status behaviour segment calculation : failed" email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=[], file_paths=[]) # closing connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/consumer_segments/consumer-value-segments.py
consumer-value-segments.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from datetime import datetime as dt from datetime import timedelta from dateutil.tz import gettz parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to logger = get_logger() logger.info(f"env: {env}") read_schema = 'prod2-generico' table_name = 'diagnostic-visibility' rs_db = DB() rs_db.open_connection() end = dt.now().date() start = end - timedelta(days=15) s3 = S3() table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=read_schema) if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f''' DELETE FROM "{read_schema}"."{table_name}" WHERE "date" BETWEEN '{start}' and '{end}' ''' logger.info(truncate_query) rs_db.execute(truncate_query) diagnostics_q = f""" select distinct * from ( select d1."cash-payment", d2.*, rcrm.comments, zer."reason-name", zer."type" as "reason-type", test."number-of-tests", test."booking-at", sm.store, sm.city, sm.line, sm.abo, sm."store-manager", acq."acq-medium", (case when d2.status in ('REDEMPTION', 'COMPLETED') then 1 else 0 end ) "red-com", sum("red-com") over (partition by d2."patient-id" order by d2."date", d2."redemption-id" rows unbounded preceding) as nodo from ( select r.id as "redemption-id", r."patient-id", r."source", r."status", r."store-id", r."total-amount" as "total-sales", r."redeemed-value" as "reward-payment", date(r."created-at") as date, r."call-status", r."created-by" as pharmacist from "prod2-generico".redemption r) d2 left join ( select rp."redemption-id", SUM(case when rp."payment-type" in ('CASH', 'LINK') then rp.amount else 0 end) "cash-payment" from "prod2-generico"."redemption-payments" rp group by rp."redemption-id") d1 on d2."redemption-id" = d1."redemption-id" left join "prod2-generico"."redemption-cancellation-reason-mapping" rcrm on rcrm."redemption-id" = d2."redemption-id" left join "prod2-generico"."zeno-escalation-reason" zer on rcrm."redemption-cancellation-reason-id" = zer.id left join ( select rs."redemption-id", count(distinct rs."sku-id") as "number-of-tests", max(rs."slot-date") as "booking-at" from "prod2-generico"."redemption-skus" rs left join "prod2-generico"."reward-product" rp on rs."sku-id" = rp.id group by rs."redemption-id") test on d2."redemption-id" = test."redemption-id" left join "prod2-generico"."stores-master" sm on d2."store-id" = sm.id left join ( select r."patient-id", (case when (MIN(DATE(r."redemption-date")) - MIN(DATE(b."created-at"))) > 0 then 'drug_store' when (MIN(DATE(r."redemption-date")) - MIN(DATE(b."created-at"))) < 0 then 'diagnostic' else 'diagnostic_no_visit_store' end ) "acq-medium" from "prod2-generico".redemption r left join "prod2-generico"."bills-1" b on r."patient-id" = b."patient-id" where r.status in ('REDEMPTION', 'COMPLETED') group by r."patient-id") acq on d2."patient-id" = acq."patient-id") X where X."date" between '{start}' and '{end}'; """ diagnostics = rs_db.get_df(diagnostics_q) diagnostics['store-id'] = diagnostics['store-id'].fillna(0) diagnostics['source'] = diagnostics['source'].map({'OPS_DASHBOARD': 'OPS Oracle', 'LOYALTY_UI': 'App', 'STORE': 'Store'}) # datatype correction diagnostics['number-of-tests'] = diagnostics['number-of-tests'].fillna(0) diagnostics['number-of-tests'] = diagnostics['number-of-tests'].astype(int) diagnostics['cash-payment'] = diagnostics['cash-payment'].astype(float) diagnostics['store-id'] = diagnostics['store-id'].astype(int) diagnostics['total-sales'] = diagnostics['total-sales'].astype(float) diagnostics['reward-payment'] = diagnostics['reward-payment'].astype(float) # etl diagnostics['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') diagnostics['created-by'] = 'etl-automation' diagnostics['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') diagnostics['updated-by'] = 'etl-automation' # Write to csv s3.save_df_to_s3(df=diagnostics[table_info['column_name']], file_name='data.csv') s3.write_df_to_db(df=diagnostics[table_info['column_name']], table_name=table_name, db=rs_db, schema=read_schema) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/diagnostic_data/diagnostic_data_visiblity.py
diagnostic_data_visiblity.py
import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.django.api import Django from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.non_ipc.data_prep.non_ipc_data_prep import non_ipc_data_prep from zeno_etl_libs.utils.non_ipc.forecast.forecast_main import non_ipc_forecast from zeno_etl_libs.utils.non_ipc.safety_stock.safety_stock import non_ipc_safety_stock_calc from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc.post_processing import post_processing from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.utils.ipc.store_portfolio_additions import generic_portfolio def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, keep_all_generic_comp, agg_week_cnt, kind, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' if v3_active_flag == 'Y': corrections_flag = True else: corrections_flag = False # Define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() logger.info("Forecast pipeline starts...") try: for store_id in reset_stores: logger.info("Non-IPC SS calculation started for store id: " + str(store_id)) if not type_list: type_list = str( list(reset_store_ops.loc[reset_store_ops['store_id'] == store_id, 'type'].unique())) type_list = type_list.replace('[', '(').replace(']', ')') # RUNNING DATA PREPARATION drug_data_agg_weekly, drug_data_weekly, drug_class, \ bucket_sales = non_ipc_data_prep( store_id_list=store_id, reset_date=reset_date, type_list=type_list, db=rs_db_read, schema=read_schema, agg_week_cnt=agg_week_cnt, logger=logger) # CREATING TRAIN FLAG TO HANDLE STORES WITH HISTORY < 16 WEEKS week_count = drug_data_weekly['date'].nunique() if week_count >= 16: train_flag = True else: train_flag = False # RUNNING FORECAST PIPELINE AND SAFETY STOCK CALC out_of_sample = 1 horizon = 1 train, error, predict, ensemble_train, ensemble_error, \ ensemble_predict = non_ipc_forecast( drug_data_agg_weekly, drug_data_weekly, drug_class, out_of_sample, horizon, train_flag, logger, kind) final_predict = ensemble_predict.query('final_fcst == "Y"') safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, \ drug_rejects_ipcv6 = non_ipc_safety_stock_calc( store_id, drug_data_weekly, reset_date, final_predict, drug_class, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, chronic_max_flag, train_flag, drug_type_list_v4, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, rs_db_read, read_schema, logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': safety_stock_df, consolidation_log = stores_ss_consolidation( safety_stock_df, rs_db_read, read_schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': safety_stock_df, good_aid_ss_log = update_ga_ss( safety_stock_df, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=logger) # KEEP ALL GENERIC COMPOSITIONS IN STORE if keep_all_generic_comp == 'Y': safety_stock_df = generic_portfolio(safety_stock_df, rs_db_read, read_schema, logger) # OMIT NPI DRUGS if omit_npi == 'Y': safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) # POST PROCESSING AND ORDER VALUE CALCULATION safety_stock_df['percentile'] = 0.5 final_predict.rename(columns={'month_begin_dt': 'date'}, inplace=True) drug_class, weekly_fcst, safety_stock_df, \ order_value = post_processing( store_id, drug_class, final_predict, safety_stock_df, rs_db_read, read_schema, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-forecast predict['forecast_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() predict['store_id'] = store_id predict['store_id'] = predict['store_id'].astype(int) predict['drug_id'] = predict['drug_id'].astype(int) predict['month_begin_dt'] = predict['month_begin_dt'].dt.date predict['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') predict['created-by'] = 'etl-automation' predict['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') predict['updated-by'] = 'etl-automation' predict.columns = [c.replace('_', '-') for c in predict.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-predict', schema=write_schema) columns = list(table_info['column_name']) predict = predict[columns] # required column order logger.info("Writing to table: non-ipc-predict") s3.write_df_to_db(df=predict, table_name='non-ipc-predict', db=rs_db_write, schema=write_schema) # writing table non-ipc-safety-stock safety_stock_df['store_id'] = safety_stock_df['store_id'].astype(int) safety_stock_df['drug_id'] = safety_stock_df['drug_id'].astype(int) safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: non-ipc-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='non-ipc-safety-stock', db=rs_db_write, schema=write_schema) # writing table non-ipc-abc-xyz-class drug_class['store_id'] = drug_class['store_id'].astype(int) drug_class['drug_id'] = drug_class['drug_id'].astype(int) drug_class['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() drug_class['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['created-by'] = 'etl-automation' drug_class['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['updated-by'] = 'etl-automation' drug_class.columns = [c.replace('_', '-') for c in drug_class.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-abc-xyz-class', schema=write_schema) columns = list(table_info['column_name']) drug_class = drug_class[columns] # required column order logger.info("Writing to table: non-ipc-abc-xyz-class") s3.write_df_to_db(df=drug_class, table_name='non-ipc-abc-xyz-class', db=rs_db_write, schema=write_schema) # to write ipc v6 tables ... # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] # prevent heavy outliers ss_data_upload = safety_stock_df.query('order_upto_point < 1000') ss_data_upload = ss_data_upload.query('order_upto_point > 0')[ ['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) logger.info("All writes to RS-DB completed!") # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") if isinstance(reset_store_ops, pd.DataFrame): content_type = 74 object_id = reset_store_ops.loc[ reset_store_ops['store_id'] == store_id, 'object_id'].unique() for obj in object_id: request_body = {"object_id": int(obj), "content_type": content_type} api_response, _ = django.django_model_execution_log_create_api( request_body) reset_store_ops.loc[ reset_store_ops['object_id'] == obj, 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"Non-IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Non-IPC code execution status: {status}") return status, order_value_all, new_drug_entries, missed_entries if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="N", type=str, required=False) parser.add_argument('-exsto', '--exclude_stores', default=[52, 60, 92, 243, 281], nargs='+', type=int, required=False) parser.add_argument('-gad', '--gaid_flag', default="Y", type=str, required=False) parser.add_argument('-giw', '--gaid_inv_wt', default=0.5, type=float, required=False) parser.add_argument('-riw', '--rest_inv_wt', default=0.0, type=float, required=False) parser.add_argument('-tiw', '--top_inv_wt', default=1, type=float, required=False) parser.add_argument('-cmf', '--chronic_max_flag', default="N", type=str, required=False) parser.add_argument('-wgc', '--wh_gen_consld', default="Y", type=str, required=False) parser.add_argument('-v5', '--v5_active_flag', default="N", type=str, required=False) parser.add_argument('-v6', '--v6_active_flag', default="N", type=str, required=False) parser.add_argument('-v6lst', '--v6_type_list', default=['ethical', 'generic', 'others'], nargs='+', type=str, required=False) parser.add_argument('-v6ptr', '--v6_ptr_cut_off', default=400, type=int, required=False) parser.add_argument('-rd', '--reset_date', default="YYYY-MM-DD", type=str, required=False) parser.add_argument('-rs', '--reset_stores', default=[0], nargs='+', type=int, required=False) parser.add_argument('-v3', '--v3_active_flag', default="N", type=str, required=False) parser.add_argument('-v3sp', '--corr_selling_prob_cutoff', default="{'ma_less_than_2': 0.40, 'ma_more_than_2' : 0.40}", type=str, required=False) parser.add_argument('-v3cp', '--corr_cumm_prob_cutoff', default="{'ma_less_than_2':0.50,'ma_more_than_2':0.63}", type=str, required=False) parser.add_argument('-v4tl', '--v4_drug_type_list', default="{'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'," "'ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'," "'others':'{0:[0,0,0], 1:[0,1,2], 2:[0,1,2],3:[1,2,3]}'}", type=str, required=False) parser.add_argument('-wct', '--agg_week_cnt', default=4, type=int, required=False) parser.add_argument('-k', '--kind', default='mae', type=str, required=False) parser.add_argument('-npi', '--omit_npi', default='N', type=str, required=False) parser.add_argument('-kagc', '--keep_all_generic_comp', default='N', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode # JOB EXCLUSIVE PARAMS exclude_stores = args.exclude_stores goodaid_ss_flag = args.gaid_flag ga_inv_weight = args.gaid_inv_wt rest_inv_weight = args.rest_inv_wt top_inv_weight = args.rest_inv_wt chronic_max_flag = args.chronic_max_flag wh_gen_consolidation = args.wh_gen_consld v5_active_flag = args.v5_active_flag v6_active_flag = args.v6_active_flag v6_type_list = args.v6_type_list v6_ptr_cut_off = args.v6_ptr_cut_off reset_date = args.reset_date reset_stores = args.reset_stores v3_active_flag = args.v3_active_flag corrections_selling_probability_cutoff = args.corr_selling_prob_cutoff corrections_cumulative_probability_cutoff = args.corr_cumm_prob_cutoff drug_type_list_v4 = args.v4_drug_type_list agg_week_cnt = args.agg_week_cnt kind = args.kind omit_npi = args.omit_npi keep_all_generic_comp = args.keep_all_generic_comp # EVALUATE REQUIRED JSON PARAMS corrections_selling_probability_cutoff = literal_eval( corrections_selling_probability_cutoff) corrections_cumulative_probability_cutoff = literal_eval( corrections_cumulative_probability_cutoff) drug_type_list_v4 = literal_eval(drug_type_list_v4) logger = get_logger() s3 = S3() django = Django() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if reset_stores == [0]: # Fetch scheduled Non-IPC stores from OPS ORACLE store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format( str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # considering reset of stores aged (3 months < age < 1 year) store_id = stores.loc[ (dt.datetime.now() - stores['opened_at'] > dt.timedelta(days=90)) & (dt.datetime.now() - stores['opened_at'] <= dt.timedelta(days=365)), 'id'].values # QUERY TO GET SCHEDULED STORES AND TYPE FROM OPS ORACLE pg_internal = PostGre(is_internal=True) pg_internal.open_connection() reset_store_query = """ SELECT "ssr"."id" as object_id, "s"."bpos_store_id" as store_id, "dc"."slug" as type, "ssr"."drug_grade" FROM "safety_stock_reset_drug_category_mapping" ssr INNER JOIN "ops_store_manifest" osm ON ( "ssr"."ops_store_manifest_id" = "osm"."id" ) INNER JOIN "retail_store" s ON ( "osm"."store_id" = "s"."id" ) INNER JOIN "drug_category" dc ON ( "ssr"."drug_category_id" = "dc"."id") WHERE ( ( "ssr"."should_run_daily" = TRUE OR "ssr"."trigger_dates" && ARRAY[ date('{reset_date}')] ) AND "ssr"."is_auto_generate" = TRUE AND "osm"."is_active" = TRUE AND "osm"."is_generate_safety_stock_reset" = TRUE AND "dc"."is_safety_stock_reset_enabled" = TRUE AND "dc"."is_active" = TRUE AND s.bpos_store_id in {store_list} ) """.format( store_list=str(list(store_id)).replace('[', '(').replace(']',')'), reset_date=reset_date) reset_store_ops = pd.read_sql_query(reset_store_query, pg_internal.connection) pg_internal.close_connection() reset_store_ops['api_call_response'] = False reset_stores = reset_store_ops['store_id'].unique() type_list = None else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None """ calling the main function """ status, order_value_all, new_drug_entries, \ missed_entries = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, keep_all_generic_comp, agg_week_cnt, kind, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # save email attachements to s3 order_value_all_uri = s3.save_df_to_s3(order_value_all, file_name=f"order_value_all_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"Non-IPC SS Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[order_value_all_uri, new_drug_entries_uri, missed_entries_uri]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/non_ipc/non_ipc_ss_main.py
non_ipc_ss_main.py
import boto3 import sys import os import argparse import pandas as pd import numpy as np from datetime import datetime sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper client = boto3.client('glue') parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() db = DB() db.open_connection() s3 = S3() record_list = [] table_name = 'audit-log' schema = 'prod2-generico' table_info = helper.get_table_info(db=db, table_name=table_name, schema=schema) job_list_response = client.list_jobs(MaxResults=500) job_list = job_list_response['JobNames'] for i in job_list: if i.__contains__(env): query = """select max("started-on") from "{}"."{}" where "job-name" = '{}';""".format(schema, table_name, i) df_init = db.get_df(query) max_processing_date = df_init.values[0][0] response = client.get_job_runs( JobName=i ) response_list = response['JobRuns'] for i in response_list: if max_processing_date is None: record_list.append(i) elif i['StartedOn'].strftime('%Y-%m-%d %H:%M:%s') > datetime.utcfromtimestamp((max_processing_date - np.datetime64('1970-01-01T00:00:00')) / np.timedelta64(1, 's')).strftime('%Y-%m-%d %H:%M:%s'): record_list.append(i) df = pd.DataFrame(record_list) if df.empty: logger.info(df) else: logger.info(df.columns) df.drop(['Arguments', 'PredecessorRuns', 'AllocatedCapacity', 'Timeout', 'LogGroupName', 'GlueVersion'], axis=1, inplace=True) column_list = df.columns if 'ErrorMessage' not in column_list: df['ErrorMessage'] = 'NULL' if 'TriggerName' not in column_list: df['TriggerName'] = 'NULL' if column_list.__contains__('WorkerType') or column_list.__contains__('NumberOfWorkers'): df.drop(['WorkerType', 'NumberOfWorkers'], axis=1, inplace=True) logger.info(df.columns) df = df.reindex(columns=['Id', 'Attempt', 'TriggerName','JobName', 'StartedOn', 'LastModifiedOn', 'CompletedOn', 'JobRunState', 'ExecutionTime', 'ErrorMessage', 'MaxCapacity']) df.columns = ['id', 'attempt', 'trigger-name', 'job-name', 'started-on', 'last-modified-on', 'completed-on', 'job-run-state', 'execution-time', 'error-message', 'max-capacity'] s3.write_df_to_db(df=df[table_info['column_name']], table_name=table_name, db=db, schema=schema)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/audit_log/update_audit_log.py
update_audit_log.py
# !/usr/bin/env python # coding: utf-8 import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from datetime import datetime from datetime import timedelta from dateutil.tz import gettz import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rd', '--runtime_date_exp', default="0101-01-01", type=str, required=False) # any_period_run should be "yes" in case of manual run for historic data parser.add_argument('-apr', '--any_period_run', default="no", type=str, required=False) # start date should be assigned in case any_period_run =='yes' parser.add_argument('-sd', '--start_date', default="0101-01-01", type=str, required=False) # end date should be assigned in case any_period_run =='yes' parser.add_argument('-ed', '--end_date', default="0101-01-01", type=str, required=False) # run_type should be "delete" in case some past entries has to be deleted and # "update" in case selected entries need update parser.add_argument('-rt', '--run_type', default="no", type=str, required=False) # Upload type should be "normal" on daily run, in case of manual update value should be changed parser.add_argument('-ut', '--upload_type', default="normal", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env runtime_date_exp = args.runtime_date_exp email_to = args.email_to any_period_run = args.any_period_run start_date = args.start_date end_date = args.end_date run_type = args.run_type upload_type = args.upload_type os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() # Run date if runtime_date_exp == '0101-01-01': # Timezone aware run_date = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d") else: run_date = runtime_date_exp # runtime_date = '2018-09-01' # runtime_date = '2021-09-01' logger.info("Running for {}".format(run_date)) # Period end date # Paramatrize it if any_period_run == 'no': period_end_d_ts = datetime.strptime(run_date, '%Y-%m-%d') - timedelta(days=1) period_end_d = period_end_d_ts.strftime('%Y-%m-%d') else: period_end_d = end_date logger.info("Run date minus 1 is {}".format(period_end_d)) # Read last list so that only new data to be uploaded read_schema = 'prod2-generico' rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) past_date_q = f""" SELECT "search-date" FROM "cfr-searches-v2" GROUP BY "search-date" """ logger.info(past_date_q) last_data_date = rs_db_write.get_df(query=past_date_q) last_data_date.columns = [c.replace('-', '_') for c in last_data_date.columns] logger.info(f"length of last_data_date: {len(last_data_date)}") if any_period_run == 'no': try: last_s_date_max = pd.to_datetime(last_data_date['search_date']).max().strftime('%Y-%m-%d') except ValueError: last_s_date_max = '2000-06-01' else: last_s_date_max_ts = datetime.strptime(start_date, '%Y-%m-%d') - timedelta(days=1) last_s_date_max = last_s_date_max_ts.strftime('%Y-%m-%d') logger.info("Last date in last data for cfr searches is : {}".format(last_s_date_max)) # Remaining data to be fetched rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) search_q = """ SELECT id, `store-id`, `created-at`, `drug-id`, `drug-name`, `composition`, `inventory-quantity` FROM `searches` WHERE date(`created-at`) > '{0}' and date(`created-at`) <= '{1}' and `inventory-quantity` = 0 """.format(last_s_date_max, period_end_d) search_q = search_q.replace('`', '"') logger.info(search_q) data_s_zero = rs_db_write.get_df(query=search_q) data_s_zero.columns = [c.replace('-', '_') for c in data_s_zero.columns] logger.info("New Searches data length is : {}".format(len(data_s_zero))) data_s_zero['search_timestamp'] = pd.to_datetime(data_s_zero['created_at']) data_s_zero['search_date'] = pd.to_datetime(data_s_zero['search_timestamp'].dt.normalize()) # logger.info("Min date in new data is {} and max date is " # "{}".format(data_s['search_date'].min().strftime("%Y-%m-%d") # , data_s['search_date'].max().strftime("%Y-%m-%d"))) ################################################## # Now loss calculation starts ################################################## # MySQL drugs table rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) drugs_q = """ SELECT id as drug_id, `drug-name`, `composition`, category as drug_category, type as drug_type, `repeatability-index` FROM drugs """ drugs_q = drugs_q.replace('`', '"') logger.info(drugs_q) data_drugs = rs_db_write.get_df(query=drugs_q) data_drugs.columns = [c.replace('-', '_') for c in data_drugs.columns] logger.info("Drug master length is : {}".format(len(data_drugs))) # Join PR data with drugs data_s_zero = data_s_zero.merge(data_drugs, how='left', on=['drug_id']) logger.info("New Searches data length with zero inventory is : {}".format(len(data_s_zero))) # Group at store, date, timestamp, drug level data_s_zero_unique = data_s_zero.groupby(['store_id', 'search_date', 'search_timestamp', 'drug_id', 'drug_name_y', 'composition_y', 'repeatability_index', 'drug_category', 'drug_type'] )['id'].count().reset_index().rename(columns={'id': 'search_count'}) # Todo - to be checked later, since it doesn't make a row count difference currently, # and drugs table used for other joins also """ Merge with the drugs table and groupby can be done in single query: It will save compute time and memory utilisation """ logger.info("Zero inventory search data with grouping at store, date, timestamp, drug is length : " "{}".format(len(data_s_zero_unique))) logger.info("Unique length is {}".format(len(data_s_zero_unique[['store_id', 'search_timestamp', 'drug_id', 'drug_name_y']].drop_duplicates()))) ######################################### # Sales data ######################################## rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) sales_q = """ SELECT `store-id`, `drug-id`, date(`created-at`) as sales_date, `created-at` as sold_timestamp, sum(quantity) as sold_quantity FROM sales WHERE date(`created-at`) >= '{0}' and date(`created-at`) <= '{1}' and `bill-flag` = 'gross' GROUP BY `store-id`, `drug-id`, date(`created-at`), `created-at` """.format(last_s_date_max, period_end_d) sales_q = sales_q.replace('`', '"') logger.info(sales_q) data_sales = rs_db_write.get_df(query=sales_q) data_sales.columns = [c.replace('-', '_') for c in data_sales.columns] logger.info(len(data_sales)) logger.info("Sales data length is {}".format(len(data_sales))) data_sales['sold_timestamp'] = pd.to_datetime(data_sales['sold_timestamp']) data_sales['sales_date'] = pd.to_datetime(data_sales['sales_date']) # Merge data_sales_merge = data_s_zero_unique[['store_id', 'drug_id', 'search_date', 'search_timestamp']].merge( data_sales[['store_id', 'drug_id', 'sales_date', 'sold_timestamp']], how='inner', on=['store_id', 'drug_id']) logger.info("Length of search and sales data merged (containing all combinations) is " "{}".format(len(data_sales_merge))) data_sales_merge['sold_timestamp_diff'] = (data_sales_merge['sold_timestamp'] - data_sales_merge['search_timestamp'] ).astype('timedelta64[s]') logger.info("Data sales merge head is {}".format(data_sales_merge.head())) # Date same data_sales_merge = data_sales_merge[data_sales_merge['sales_date'] == data_sales_merge['search_date']].copy() logger.info("Data sales merge length after filtering same date is {}".format(len(data_sales_merge))) # Time diff > 0 data_sales_merge = data_sales_merge[data_sales_merge['sold_timestamp_diff'] > 0].copy() logger.info("Data sales merge length after filtering positive time difference is " "{}".format(len(data_sales_merge))) # Flag data_sales_merge_unique = data_sales_merge.drop_duplicates( subset=['store_id', 'drug_id', 'search_date', 'search_timestamp']) data_sales_merge_unique['drug_sold_same_day_flag'] = 1 logger.info("Data sales merge length after dropping duplicates at search timestamp is " "{}".format(len(data_sales_merge_unique))) # Merge with main dataframe data_s_zero_unique = data_s_zero_unique.merge( data_sales_merge_unique[['store_id', 'drug_id', 'search_date', 'search_timestamp', 'drug_sold_same_day_flag']], how='left', on=['store_id', 'drug_id', 'search_date', 'search_timestamp']) data_s_zero_unique['drug_sold_same_day_flag'] = data_s_zero_unique['drug_sold_same_day_flag'].fillna(0) logger.info("Zero inventory search data after merging with sold data, length : " "{}".format(len(data_s_zero_unique))) ############################################### # Composition sold same day (but after search) ############################################### data_sales_comp = data_sales.merge(data_drugs[['drug_id', 'composition']], how='left', on='drug_id') data_sales_comp = data_sales_comp[~data_sales_comp['composition'].isnull()].copy() data_sales_comp = data_sales_comp[data_sales_comp['composition'] != ''].copy() logger.info("Composition sales data length is {}".format(len(data_sales_comp))) data_sales_comp_unique = data_sales_comp[ ['store_id', 'composition', 'sales_date', 'sold_timestamp']].drop_duplicates() logger.info("Composition sales data unique - length is {}".format(len(data_sales_comp_unique))) # Merge data_sales_comp_merge = data_s_zero_unique[['store_id', 'drug_id', 'composition_y', 'search_date', 'search_timestamp']].merge( data_sales_comp_unique[['store_id', 'composition', 'sales_date', 'sold_timestamp']], how='inner', left_on=['store_id', 'composition_y'], right_on=['store_id', 'composition']) data_sales_comp_merge = data_sales_comp_merge.drop(columns=['composition'], axis=1) logger.info( "Length of search and comp sales data merged (containing all combinations) is {}".format( len(data_sales_comp_merge))) data_sales_comp_merge['sold_timestamp_diff'] = (data_sales_comp_merge['sold_timestamp'] - data_sales_comp_merge['search_timestamp'] ).astype('timedelta64[s]') logger.info("Data comp sales merge head is {}".format(data_sales_comp_merge.head())) # Date same data_sales_comp_merge = data_sales_comp_merge[ data_sales_comp_merge['sales_date'] == data_sales_comp_merge['search_date']].copy() logger.info("Data comp sales merge length after filtering same date is " "{}".format(len(data_sales_comp_merge))) # Time diff > 0 data_sales_comp_merge = data_sales_comp_merge[data_sales_comp_merge['sold_timestamp_diff'] > 0].copy() logger.info("Data comp sales merge length after filtering positive time difference is " "{}".format(len(data_sales_comp_merge))) # Flag data_sales_comp_merge_unique = data_sales_comp_merge.drop_duplicates( subset=['store_id', 'drug_id', 'search_timestamp']) data_sales_comp_merge_unique['comp_sold_same_day_flag'] = 1 logger.info("Data comp sales merge length after dropping duplicates at search timestamp is " "{}".format(len(data_sales_comp_merge_unique))) # Merge with main dataframe data_s_zero_unique = data_s_zero_unique.merge( data_sales_comp_merge_unique[['store_id', 'drug_id', 'search_timestamp', 'comp_sold_same_day_flag']], how='left', on=['store_id', 'drug_id', 'search_timestamp']) data_s_zero_unique['comp_sold_same_day_flag'] = data_s_zero_unique['comp_sold_same_day_flag'].fillna(0) logger.info("Zero inventory search data after merging with comp sold data, length : " "{}".format(len(data_s_zero_unique))) ################################### # Composition sold in window ################################## data_sales_comp = data_sales.merge(data_drugs[['drug_id', 'composition']], how='left', on='drug_id') data_sales_comp = data_sales_comp[~data_sales_comp['composition'].isnull()].copy() data_sales_comp = data_sales_comp[data_sales_comp['composition'] != ''].copy() logger.info("Window-Composition sales data length is {}".format(len(data_sales_comp))) data_sales_comp_unique = data_sales_comp[['store_id', 'composition', 'sold_timestamp']].drop_duplicates() logger.info("Window-Composition sales data unique - length is {}".format(len(data_sales_comp_unique))) # Merge data_sales_comp_merge = data_s_zero_unique[['store_id', 'drug_id', 'composition_y', 'search_timestamp']].merge( data_sales_comp_unique[['store_id', 'composition', 'sold_timestamp']], how='inner', left_on=['store_id', 'composition_y'], right_on=['store_id', 'composition']) data_sales_comp_merge = data_sales_comp_merge.drop(columns=['composition'], axis=1) logger.info( "Window-Length of search and comp sales data merged (containing all combinations) is {}".format( len(data_sales_comp_merge))) data_sales_comp_merge['sold_timestamp_diff'] = (data_sales_comp_merge['sold_timestamp'] - data_sales_comp_merge['search_timestamp'] ).astype('timedelta64[s]') logger.info("Window-Data comp sales merge head is {}".format(data_sales_comp_merge.head())) # Time diff > 0 data_sales_comp_merge = data_sales_comp_merge[data_sales_comp_merge['sold_timestamp_diff'] > 0].copy() logger.info("Window-Data comp sales merge length after filtering positive time difference is " "{}".format(len(data_sales_comp_merge))) # Time diff window 30 minutes = 1800 seconds data_sales_comp_merge = data_sales_comp_merge[data_sales_comp_merge['sold_timestamp_diff'].between(1, 1800)].copy() logger.info( "Window-Data comp sales merge length after filtering for window (30minutes) is {}".format( len(data_sales_comp_merge))) # Flag data_sales_comp_merge_unique = data_sales_comp_merge.drop_duplicates( subset=['store_id', 'drug_id', 'search_timestamp']) data_sales_comp_merge_unique['comp_sold_window_flag'] = 1 logger.info("Window-Data comp sales merge length after dropping duplicates at search timestamp is " "{}".format(len(data_sales_comp_merge_unique))) # Merge with main dataframe data_s_zero_unique = data_s_zero_unique.merge( data_sales_comp_merge_unique[['store_id', 'drug_id', 'search_timestamp', 'comp_sold_window_flag']], how='left', on=['store_id', 'drug_id', 'search_timestamp']) data_s_zero_unique['comp_sold_window_flag'] = data_s_zero_unique['comp_sold_window_flag'].fillna(0) logger.info("Window-Zero inventory search data after merging with comp sold data, length : " "{}".format(len(data_s_zero_unique))) ###################################################### # PR Made same day (but after search) ###################################################### rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) pr_q = """ SELECT `store-id`, date(`created-at`) AS pr_date, `drug-id`, `created-at` as pr_timestamp FROM `patient-requests` WHERE date(`created-at`) >= '{0}' and date(`created-at`) <= '{1}' GROUP BY `store-id`, date(`created-at`), `drug-id`, `created-at` """.format(last_s_date_max, period_end_d) pr_q = pr_q.replace('`', '"') logger.info(pr_q) data_pr = rs_db_write.get_df(query=pr_q) data_pr.columns = [c.replace('-', '_') for c in data_pr.columns] logger.info(len(data_pr)) logger.info("PR data length is {}".format(len(data_pr))) data_pr['pr_timestamp'] = pd.to_datetime(data_pr['pr_timestamp']) data_pr['pr_date'] = pd.to_datetime(data_pr['pr_date']) # Merge data_pr_merge = data_s_zero_unique[['store_id', 'drug_id', 'search_date', 'search_timestamp']].merge( data_pr[['store_id', 'drug_id', 'pr_date', 'pr_timestamp']], how='inner', on=['store_id', 'drug_id']) logger.info("Length of search and PR data merged (containing all combinations) is " "{}".format(len(data_pr_merge))) data_pr_merge['pr_timestamp_diff'] = (data_pr_merge['pr_timestamp'] - data_pr_merge['search_timestamp'] ).astype('timedelta64[s]') logger.info("Data pr merge head is {}".format(data_pr_merge.head())) # Date same data_pr_merge = data_pr_merge[data_pr_merge['pr_date'] == data_pr_merge['search_date']].copy() logger.info("Data pr merge length after filtering same date is {}".format(len(data_pr_merge))) # Time diff > 0 data_pr_merge = data_pr_merge[data_pr_merge['pr_timestamp_diff'] > 0].copy() logger.info("Data pr merge length after filtering positive time difference is {}".format(len(data_pr_merge))) # Flag data_pr_merge_unique = data_pr_merge.drop_duplicates(subset=['store_id', 'drug_id', 'search_timestamp']) data_pr_merge_unique['pr_same_day_flag'] = 1 logger.info("Data pr merge length after dropping duplicates at search timestamp is " "{}".format(len(data_pr_merge_unique))) # Merge with main dataframe data_s_zero_unique = data_s_zero_unique.merge(data_pr_merge_unique[['store_id', 'drug_id', 'search_timestamp', 'pr_same_day_flag']], how='left', on=['store_id', 'drug_id', 'search_timestamp']) data_s_zero_unique['pr_same_day_flag'] = data_s_zero_unique['pr_same_day_flag'].fillna(0) logger.info("Zero inventory search data after merging with pr data, length : " "{}".format(len(data_s_zero_unique))) ################################### # Composition PR same day (but after search) ################################## data_pr_comp = data_pr.merge(data_drugs[['drug_id', 'composition']], how='left', on='drug_id') data_pr_comp = data_pr_comp[~data_pr_comp['composition'].isnull()].copy() data_pr_comp = data_pr_comp[data_pr_comp['composition'] != ''].copy() logger.info("Composition pr data length is {}".format(len(data_pr_comp))) data_pr_comp_unique = data_pr_comp[['store_id', 'composition', 'pr_date', 'pr_timestamp']].drop_duplicates() logger.info("Composition pr data unique - length is {}".format(len(data_pr_comp_unique))) # Merge data_pr_comp_merge = data_s_zero_unique[ ['store_id', 'drug_id', 'composition_y', 'search_date', 'search_timestamp']].merge( data_pr_comp_unique[['store_id', 'composition', 'pr_date', 'pr_timestamp']], how='inner', left_on=['store_id', 'composition_y'], right_on=['store_id', 'composition']) data_pr_comp_merge = data_pr_comp_merge.drop(columns=['composition'], axis=1) logger.info( "Length of search and comp pr data merged (containing all combinations) is " "{}".format(len(data_pr_comp_merge))) data_pr_comp_merge['pr_timestamp_diff'] = (data_pr_comp_merge['pr_timestamp'] - data_pr_comp_merge['search_timestamp'] ).astype('timedelta64[s]') logger.info("Data comp pr merge head is {}".format(data_pr_comp_merge.head())) # Date same data_pr_comp_merge = data_pr_comp_merge[data_pr_comp_merge['pr_date'] == data_pr_comp_merge['search_date']].copy() logger.info("Data comp pr merge length after filtering same date is {}".format(len(data_pr_comp_merge))) # Time diff > 0 data_pr_comp_merge = data_pr_comp_merge[data_pr_comp_merge['pr_timestamp_diff'] > 0].copy() logger.info("Data comp pr merge length after filtering positive time difference is " "{}".format(len(data_pr_comp_merge))) # Flag data_pr_comp_merge_unique = data_pr_comp_merge.drop_duplicates(subset=['store_id', 'drug_id', 'search_timestamp']) data_pr_comp_merge_unique['comp_pr_same_day_flag'] = 1 logger.info("Data comp pr merge length after dropping duplicates at search timestamp is {}".format( len(data_pr_comp_merge_unique))) # Merge with main dataframe data_s_zero_unique = data_s_zero_unique.merge(data_pr_comp_merge_unique[['store_id', 'drug_id', 'search_timestamp', 'comp_pr_same_day_flag']], how='left', on=['store_id', 'drug_id', 'search_timestamp']) data_s_zero_unique['comp_pr_same_day_flag'] = data_s_zero_unique['comp_pr_same_day_flag'].fillna(0) logger.info("Zero inventory search data after merging with comp pr data, length : " "{}".format(len(data_s_zero_unique))) ################################################# # MS made same day (but after search) ################################################# rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) ms_q = """ SELECT `store-id`, date(`created-at`) AS ms_date, `drug-id`, `created-at` as ms_timestamp FROM `short-book-1` WHERE `auto-short` = 1 and `patient-id` != 4480 and date(`created-at`) >= '{0}' and date(`created-at`) <= '{1}' GROUP BY `store-id`, date(`created-at`), `drug-id`, `created-at` """.format(last_s_date_max, period_end_d) ms_q = ms_q.replace('`', '"') logger.info(ms_q) data_ms = rs_db_write.get_df(query=ms_q) data_ms.columns = [c.replace('-', '_') for c in data_ms.columns] logger.info(len(data_ms)) logger.info("MS data length is {}".format(len(data_pr))) data_ms['ms_timestamp'] = pd.to_datetime(data_ms['ms_timestamp']) data_ms['ms_date'] = pd.to_datetime(data_ms['ms_date']) # Merge data_ms_merge = data_s_zero_unique[['store_id', 'drug_id', 'search_date', 'search_timestamp']].merge( data_ms[['store_id', 'drug_id', 'ms_date', 'ms_timestamp']], how='inner', on=['store_id', 'drug_id']) logger.info("Length of search and ms data merged (containing all combinations) is " "{}".format(len(data_ms_merge))) data_ms_merge['ms_timestamp_diff'] = (data_ms_merge['ms_timestamp'] - data_ms_merge['search_timestamp'] ).astype('timedelta64[s]') logger.info("Data ms merge head is {}".format(data_ms_merge.head())) # Date same data_ms_merge = data_ms_merge[data_ms_merge['ms_date'] == data_ms_merge['search_date']].copy() logger.info("Data ms merge length after filtering same date is {}".format(len(data_ms_merge))) # Time diff > 0 data_ms_merge = data_ms_merge[data_ms_merge['ms_timestamp_diff'] > 0].copy() logger.info("Data ms merge length after filtering positive time difference is " "{}".format(len(data_ms_merge))) # Flag data_ms_merge_unique = data_ms_merge.drop_duplicates(subset=['store_id', 'drug_id', 'search_timestamp']) data_ms_merge_unique['ms_same_day_flag'] = 1 logger.info("Data ms merge length after dropping duplicates at search timestamp is " "{}".format(len(data_ms_merge_unique))) # Merge with main dataframe data_s_zero_unique = data_s_zero_unique.merge(data_ms_merge_unique[['store_id', 'drug_id', 'search_timestamp', 'ms_same_day_flag']], how='left', on=['store_id', 'drug_id', 'search_timestamp']) data_s_zero_unique['ms_same_day_flag'] = data_s_zero_unique['ms_same_day_flag'].fillna(0) logger.info("Zero inventory search data after merging with ms data, length : " "{}".format(len(data_s_zero_unique))) ###################################################### # Short-book present same day (but after search) ##################################################### rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) sb_q = """ SELECT `store-id`, date(`created-at`) as shortbook_date, `drug-id`, `created-at` as shortbook_timestamp FROM `short-book-1` WHERE `auto-short` = 0 and `auto-generated` = 0 and date(`created-at`) >= '{0}' and date(`created-at`) <= '{1}' GROUP BY `store-id`, date(`created-at`), `drug-id`, `created-at` """.format(last_s_date_max, period_end_d) sb_q = sb_q.replace('`', '"') logger.info(sb_q) data_sb = rs_db_write.get_df(query=sb_q) data_sb.columns = [c.replace('-', '_') for c in data_sb.columns] logger.info(len(data_sb)) logger.info("short-book data length is {}".format(len(data_sb))) data_sb['shortbook_timestamp'] = pd.to_datetime(data_sb['shortbook_timestamp']) data_sb['shortbook_date'] = pd.to_datetime(data_sb['shortbook_date']) # Merge data_sb_merge = data_s_zero_unique[['store_id', 'drug_id', 'search_date', 'search_timestamp']].merge( data_sb[['store_id', 'drug_id', 'shortbook_date', 'shortbook_timestamp']], how='inner', on=['store_id', 'drug_id']) logger.info( "Length of search and shortbook data merged (containing all combinations) is " "{}".format(len(data_sb_merge))) data_sb_merge['sb_timestamp_diff'] = (data_sb_merge['shortbook_timestamp'] - data_sb_merge['search_timestamp'] ).astype('timedelta64[s]') logger.info("Data shortbook merge head is {}".format(data_sb_merge.head())) # Date same data_sb_merge = data_sb_merge[data_sb_merge['shortbook_date'] == data_sb_merge['search_date']].copy() logger.info("Data shortbook merge length after filtering same date is {}".format(len(data_sb_merge))) # Time diff > 0 data_sb_merge = data_sb_merge[data_sb_merge['sb_timestamp_diff'] > 0].copy() logger.info("Data shortbook merge length after filtering positive time difference is " "{}".format(len(data_sb_merge))) # Flag data_sb_merge_unique = data_sb_merge.drop_duplicates(subset=['store_id', 'drug_id', 'search_timestamp']) data_sb_merge_unique['shortbook_present'] = 1 logger.info("Data shortbook merge length after dropping duplicates at search timestamp is " "{}".format(len(data_sb_merge_unique))) # Merge with main dataframe data_s_zero_unique = data_s_zero_unique.merge(data_sb_merge_unique[['store_id', 'drug_id', 'search_timestamp', 'shortbook_present']], how='left', on=['store_id', 'drug_id', 'search_timestamp']) data_s_zero_unique['shortbook_present'] = data_s_zero_unique['shortbook_present'].fillna(0) logger.info("Zero inventory search data after merging with sb data, length : " "{}".format(len(data_s_zero_unique))) ######################################### # Group at store, date, drug level ######################################### data_s_zero_grp = data_s_zero_unique.groupby(['store_id', 'search_date', 'drug_id', 'drug_name_y', 'composition_y', 'repeatability_index', 'drug_category', 'drug_type'] )['search_count', 'drug_sold_same_day_flag', 'comp_sold_same_day_flag', 'comp_sold_window_flag', 'pr_same_day_flag', 'comp_pr_same_day_flag', 'ms_same_day_flag', 'shortbook_present'].sum().reset_index() logger.info( "Zero inventory search data with grouping at store, date, drug is length : " "{}".format(len(data_s_zero_grp))) # Convert some columns into binary columns for col in ['drug_sold_same_day_flag', 'comp_sold_same_day_flag', 'comp_sold_window_flag', 'pr_same_day_flag', 'comp_pr_same_day_flag', 'ms_same_day_flag', 'shortbook_present']: data_s_zero_grp[col] = np.where(data_s_zero_grp[col] > 0, 1, 0) logger.info( "Zero inventory search data after taking binary columns - length : " "{}".format(len(data_s_zero_grp))) # Populate rate for those not fulfilled drugs = tuple(list(data_s_zero_grp['drug_id'].dropna().drop_duplicates().astype(int))) logger.info("Count of drugs to look up in historical sales is : {}".format(len(drugs))) rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) rate_q = """ SELECT "drug-id", SUM("revenue-value")/SUM("quantity") AS avg_rate_system FROM "sales" WHERE date("created-at") <= '{0}' and "bill-flag" = 'gross' GROUP BY "drug-id" """.format(period_end_d) rate_q = rate_q.replace('`', '"') logger.info(rate_q) data_d = rs_db_write.get_df(query=rate_q) data_d.columns = [c.replace('-', '_') for c in data_d.columns] logger.info(len(data_d)) logger.info("Count of drugs to looked up successfully in historical sales is : " "{}".format(len(data_d))) # Join with main data data_s_zero_grp = data_s_zero_grp.merge(data_d, how='left', on=['drug_id']) data_s_zero_grp['rate_present'] = np.where(data_s_zero_grp['avg_rate_system'] > 0, 1, 0) # What should the final rate be, if not present in system data_s_zero_grp['attributed_rate'] = np.where(data_s_zero_grp['rate_present'] == 1, data_s_zero_grp['avg_rate_system'], np.where(data_s_zero_grp['drug_type'] == 'generic', 35, 100)) # Read standard quantity # Write connection for now, because it's a dependency table # Change to read connection later rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) std_q = """ SELECT "drug-id", "std-qty" as "standard-quantity" FROM "drug-std-info" """ std_q = std_q.replace('`', '"') logger.info(std_q) data_drugs_q = rs_db_write.get_df(query=std_q) data_drugs_q.columns = [c.replace('-', '_') for c in data_drugs_q.columns] logger.info(len(data_drugs_q)) # Merge with main data data_s_zero_grp = data_s_zero_grp.merge(data_drugs_q, how='left', on=['drug_id']) # Impute for missing standard quantity data_s_zero_grp['standard_quantity'] = data_s_zero_grp['standard_quantity'].fillna(1).astype(int) # Remove outlier quantity data_s_zero_grp['search_count_clean'] = np.where(data_s_zero_grp['search_count'] > 30, 30, data_s_zero_grp['search_count']) data_s_zero_grp['loss_quantity'] = data_s_zero_grp['search_count_clean'] * data_s_zero_grp[ 'standard_quantity'] data_s_zero_grp['lost_sales'] = data_s_zero_grp['loss_quantity'].astype(float) * data_s_zero_grp[ 'attributed_rate'].astype(float) rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) sales_summ_q = """ SELECT "store-id", "drug-id", COUNT(distinct date("created-at")) AS num_days_sold, MAX(date("created-at")) as last_sold FROM "sales" WHERE date("created-at") <= '{0}' and "drug-id" in {1} and "bill-flag" = 'gross' GROUP BY "store-id", "drug-id" """.format(period_end_d, drugs) sales_summ_q = sales_summ_q.replace('`', '"') # logger.info(sales_summ_q) data_d2 = rs_db_write.get_df(query=sales_summ_q) data_d2.columns = [c.replace('-', '_') for c in data_d2.columns] logger.info(len(data_d2)) logger.info("Count of drugs with sold quantity and num_days_sold is : {}".format(len(data_d2))) # Join with main data data_s_zero_grp = data_s_zero_grp.merge(data_d2, how='left', on=['store_id', 'drug_id']) # Put 0 for those not sold in that store data_s_zero_grp['num_days_sold'] = data_s_zero_grp['num_days_sold'].fillna(0) ############################################ # Final loss (to be defined) ############################################ data_s_zero_grp['sold_or_substituted_flag'] = np.where(((data_s_zero_grp['comp_sold_window_flag'] > 0) | (data_s_zero_grp['drug_sold_same_day_flag'] > 0)), 1, 0) data_s_zero_grp['pr_opportunity_flag'] = np.where(data_s_zero_grp['sold_or_substituted_flag'] > 0, 0, 1) data_s_zero_grp['pr_converted_flag'] = np.where(data_s_zero_grp['comp_pr_same_day_flag'] > 0, 1, 0) # Those which are already converted, should also be get added in opportunity data_s_zero_grp['pr_opportunity_flag'] = np.where(data_s_zero_grp['pr_converted_flag'] > 0, 1, data_s_zero_grp['pr_opportunity_flag']) data_s_zero_grp['pr_opportunity_converted_flag'] = np.where((data_s_zero_grp['pr_opportunity_flag'] > 0) & (data_s_zero_grp['pr_converted_flag'] > 0), 1, 0) # Amount data_s_zero_grp['lost_sales_not_substituted'] = np.where(data_s_zero_grp['sold_or_substituted_flag'] == 0, data_s_zero_grp['lost_sales'], 0) data_s_zero_grp['lost_sales_not_substituted_not_pr'] = np.where(data_s_zero_grp['pr_converted_flag'] == 0, data_s_zero_grp['lost_sales_not_substituted'], 0) # Final lost sales, sensitive data_s_zero_grp['final_loss_flag'] = np.where((data_s_zero_grp['sold_or_substituted_flag'] == 0) & (data_s_zero_grp['pr_converted_flag'] == 0), 1, 0) data_s_zero_grp['final_lost_sales'] = np.where(data_s_zero_grp['final_loss_flag'] == 1, data_s_zero_grp['lost_sales'], 0) # Round off some values for i in ['attributed_rate', 'lost_sales', 'lost_sales_not_substituted', 'lost_sales_not_substituted_not_pr', 'final_lost_sales']: data_s_zero_grp[i] = np.round(data_s_zero_grp[i].astype(float), 2) # Merge with drug order info data to get safe-stock,min and max quantity on store_id,drug_id level rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) doi_q = """ SELECT `store-id` , `drug-id` , `safe-stock` safety_stock, `min` minimum_quantity, `max` maximum_quantity FROM `drug-order-info` doi WHERE `drug-id` in {} """.format(drugs) doi_q = doi_q.replace('`', '"') # logger.info(doi_q) drug_order_info_data = rs_db_write.get_df(query=doi_q) drug_order_info_data.columns = [c.replace('-', '_') for c in drug_order_info_data.columns] logger.info(len(drug_order_info_data)) data_s_zero_grp = data_s_zero_grp.merge(drug_order_info_data, how='left', on=['store_id', 'drug_id']) logger.info("Data length after merging with drug-order-info, is {}".format(len(data_s_zero_grp))) # Merge stores rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) stores_q = """ SELECT id AS store_id, store AS store_name FROM "stores-master" """ stores_q = stores_q.replace('`', '"') logger.info(stores_q) stores = rs_db_write.get_df(query=stores_q) stores.columns = [c.replace('-', '_') for c in stores.columns] logger.info(len(stores)) data_s_zero_grp = data_s_zero_grp.merge(stores, how='left', on=['store_id']) logger.info("Data length after merging with stores, is {}".format(len(data_s_zero_grp))) # DB upload columns final_cols = ['store_id', 'store_name', 'search_date', 'drug_id', 'drug_name_y', 'composition_y', 'repeatability_index', 'drug_category', 'drug_type', 'search_count_clean', 'rate_present', 'attributed_rate', 'standard_quantity', 'loss_quantity', 'lost_sales', 'lost_sales_not_substituted', 'lost_sales_not_substituted_not_pr', 'shortbook_present', 'final_lost_sales', 'num_days_sold', 'last_sold', 'safety_stock', 'minimum_quantity', 'maximum_quantity', 'comp_sold_window_flag', 'drug_sold_same_day_flag', 'comp_sold_same_day_flag', 'pr_same_day_flag', 'comp_pr_same_day_flag', 'ms_same_day_flag', 'sold_or_substituted_flag', 'pr_opportunity_flag', 'pr_converted_flag', 'pr_opportunity_converted_flag', 'final_loss_flag'] data_export = data_s_zero_grp[final_cols] # For redshift specific # Convert int columns to int for i in ['num_days_sold', 'safety_stock', 'minimum_quantity', 'maximum_quantity']: data_export[i] = data_export[i].fillna(0).astype(int) logger.info(data_export.columns) ################################ # DB WRITE ############################### write_schema = 'prod2-generico' write_table_name = 'cfr-searches-v2' update_table_name = 'cfr-searches-v2-etl-update' table_info = helper.get_table_info(db=rs_db_write, table_name=write_table_name, schema=write_schema) ################################ # Table info for update table ############################### table_info_update = helper.get_table_info(db=rs_db_write, table_name=update_table_name, schema=write_schema) # table_info_clean = table_info[~table_info['column_name'].isin(['id', 'created-at', 'updated-at'])] data_export.columns = [c.replace('_', '-') for c in data_export.columns] # id and created-at # Todo change to - later and remove id data_export['id'] = -1 # Mandatory lines data_export['created_at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') # Deleting data for the choosen time period if any_period_run == 'yes': if run_type == 'delete': rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) delete_main_query = f""" delete from "cfr-searches-v2" where date("search-date") > '{last_s_date_max}' and date("search-date") <= '{period_end_d}' """ rs_db_write.execute(delete_main_query) s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) # logger.info(str('cfr-searches-v2') + ' table data deleted for specific time period') elif run_type == 'update': rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) delete_query = f""" delete from "cfr-searches-v2-etl-update" """ rs_db_write.execute(delete_query) s3.write_df_to_db(df=data_export[table_info_update['column_name']], table_name=update_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) rs_db_write.execute(query="begin ;") update_main_query = f""" update "cfr-searches-v2" set "rate-present" = cfe2."rate-present" , "attributed-rate" = cfe2."attributed-rate" , "num-days-sold" = cfe2."num-days-sold" , "last-sold" = cfe2."last-sold" , "sold-or-substituted-flag" = cfe2."sold-or-substituted-flag" , "pr-opportunity-flag" = cfe2."pr-opportunity-flag" , "pr-converted-flag" = cfe2."pr-converted-flag" , "lost-sales-not-substituted" = cfe2."lost-sales-not-substituted" , "lost-sales-not-substituted-not-pr" = cfe2."lost-sales-not-substituted-not-pr" , "final-loss-flag" = cfe2."final-loss-flag" , "final-lost-sales" = cfe2."final-lost-sales" , "search-count-clean" = cfe2."search-count-clean" , "loss-quantity" = cfe2."loss-quantity" , "lost-sales" = cfe2."lost-sales" from "prod2-generico"."cfr-searches-v2" cf2 inner join "cfr-searches-v2-etl-update" cfe2 on cfe2."search-date" = cf2."search-date" and cfe2."store-id" = cf2."store-id" and cfe2."drug-id" = cf2."drug-id" """ rs_db_write.execute(update_main_query) rs_db_write.execute(query="commit ;") if upload_type == 'normal': s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) # Closing the DB Connection rs_db_write.close_connection() logger.info("File ends")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/cfr-searches-v2/cfr-searches-v2.py
cfr-searches-v2.py
import argparse import datetime import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.utils.inventory.inventory import Data from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-sd', '--start_date', default="NA", type=str, required=False, help="Start date in IST") parser.add_argument('-ed', '--end_date', default="NA", type=str, required=False, help="End date in IST") parser.add_argument('-bs', '--batch_size', default=1, type=int, required=False, help="How many stores to process in one go") parser.add_argument('-fr', '--is_full_run', default="NO", type=str, required=False, help="Only one batch or all to process") args, unknown = parser.parse_known_args() env = args.env start_date = args.start_date end_date = args.end_date batch_size = args.batch_size is_full_run = args.is_full_run os.environ['env'] = env logger = get_logger() write_schema = "prod2-generico" if env == 'prod' else 'test-generico' """ read connection """ db = DB() db.open_connection() """ write connection """ w_db = DB(read_only=False) w_db.open_connection() s3 = S3(bucket_name=f"{env}-zeno-s3-db") if not (start_date and end_date) or start_date == "NA" or end_date == "NA": """ if no dates given, then run for yesterday """ end_date = datetime.datetime.now().strftime("%Y-%m-%d") start_date = datetime.datetime.now() + datetime.timedelta(days=-1) start_date = start_date.strftime("%Y-%m-%d") """ Instructions to use(README): 0. Make sure tables for both the dates (start and end) are present in public schema (eg: bills-1-mis-2022-06-11) 1. set the start date and end date 2. Set the store id if only one store changes are required, if all stores are required then don't set store id 3. Data is uploaded to s3(prod-zeno-s3-db) inside "inventory/ledger/" folder (eg: s3://dev-zeno-s3-db/inventory/ledger/2022/06/11/240.csv) 4. S3 Data can be queried using AWS Athena Tables Required: inventory-1,invoice-items-1,invoices-1,customer-return-items-1,customer-returns-1,stock-transfer-items-1, stock-transfers-1,bill-items-1,bills-1,return-items-1,returns-to-dc-1,deleted-invoices,deleted-invoices-1, inventory-changes-1 Improvements: 1. use parquet format to store the data import pandas as pd df = pd.read_csv('example.csv') df.to_parquet('output.parquet') Meaning of columns: "o": Opening/Start "cr": Customer Return "xin": Stock transfer in "xout": Stock transfer out "sold": Sold to customer "ret": Return to DC "ar": Audit "rr": Reverted Return "del": Invoice Deleted "c": closing """ """ get all the stores """ q = f""" select distinct "store-id" as "store-id" from "prod2-generico"."inventory-1" i """ stores = db.get_df(query=q) """ this column order will be maintained across all csv files """ column_order = ["id", "barcode", "ptr", "o", "cr", "xin", "cin", "xout", "cout", "sold", "ret", "ar", "rr", "del", "c", "e"] """ clean existing records, if any """ q = f""" delete from "{write_schema}"."inventory-ledger" where date("start-time") = '{start_date}'; """ w_db.execute(query=q) batch = 0 for store_id_batch in helper.batch(stores['store-id'], batch_size): csv_store_ids = ','.join([str(s) for s in store_id_batch]) batch += 1 logger.info(f"batch: {batch}, csv store ids: {csv_store_ids}") data = Data(db=db, csv_store_ids=csv_store_ids, start_date=start_date, end_date=end_date) recon_df = data.concat() uri = s3.save_df_to_s3(df=recon_df[column_order], file_name=f"inventory/ledger/{start_date.replace('-', '/')}/batch_{batch}.csv", index=False) table_info = helper.get_table_info(db=w_db, table_name="inventory-ledger", schema=write_schema) recon_df['start-time'] = data.start_ts recon_df['end-time'] = data.end_ts recon_df['created-at'] = datetime.datetime.now() recon_df['updated-at'] = datetime.datetime.now() recon_df['created-by'] = "etl-automation" recon_df['updated-by'] = "etl-automation" s3.write_df_to_db(df=recon_df[table_info['column_name']], table_name="inventory-ledger", db=w_db, schema=write_schema) logger.info(f"Uploaded successfully @ {uri}") if is_full_run.lower() == "no": logger.info(f"Stopping after one batch, since is_full_run: {is_full_run}") db.close_connection() w_db.close_connection() break db.close_connection() w_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/inventory-ledger/inventory-ledger.py
inventory-ledger.py
import argparse import datetime import sys import os import numpy as np # from memory_profiler import profile import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB # from zeno_etl_libs.utils.inventory.inventory_2 import Data from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper def remove_duplicates(df: pd.DataFrame, f): """ #remove duplicates from dataframe of the form id, f, ptr #f corresponds to quantity which is added up for duplicate ids #ptr remains same for all """ print(f"Removed duplicates on column: {f}") df1 = df.groupby('id', as_index=False)[f].sum() df2 = df.drop_duplicates(subset='id').drop(columns=f) df = pd.merge(left=df1, right=df2, on='id', how='left') return df def getids(df: pd.DataFrame): """ utility function to generate string to be used in "in" query """ return ",".join(str(i) for i in df['id'].unique()) def combin_xin(recon_l: pd.DataFrame, xin_l: pd.DataFrame): """ this will take care of stores own inventory coming back """ return pd.concat([recon_l, xin_l], axis=0).drop_duplicates(subset='id') class Data: """ class to get the inventory related data Example: 'o', 'cr', 'xin', 'xout', 'ret', 'sold', 'del', 'ar', 'rr', 'c' """ def __init__(self, db, csv_store_ids, start_date, end_date, snapshot_ist_time_delta=0): """ :param db: database connection :param csv_store_ids: multiple store ids in csv :param start_date: start date in IST :param end_date: end date in IST """ self.db = db self.csv_store_ids = csv_store_ids self.start_ts = f"{start_date} 02:00:00" # in IST self.end_ts = f"{end_date} 03:00:00" # in IST """ since snapshots names are in UTC so tables alias is one day back""" start_date_utc = datetime.datetime.strptime(start_date, '%Y-%m-%d') - datetime.timedelta( days=snapshot_ist_time_delta) start_date_utc = start_date_utc.strftime("%Y-%m-%d") end_date_utc = datetime.datetime.strptime(end_date, '%Y-%m-%d') - datetime.timedelta( days=snapshot_ist_time_delta) end_date_utc = end_date_utc.strftime("%Y-%m-%d") self.s_alias = f"-mis-{start_date_utc}" if start_date == "2022-06-01": # Only for 2022-06-01 manual snapshot, since snapshot name and date are same self.s_alias = f"-mis-{start_date}" self.e_alias = f"-inv-{end_date_utc}" self.s_schema = "public" self.e_schema = "public" """ Data frames """ self.recon_l = pd.DataFrame() # Final reconciled data frame self.p_l = pd.DataFrame() # purchased / received self.prd_l = pd.DataFrame() # purchased return dispatched self.prs_l = pd.DataFrame() # purchased return settled self.pr_l = pd.DataFrame() # purchased return cogs self.o_l = pd.DataFrame() # opening / initial self.cr_l = pd.DataFrame() # self.xin_l = pd.DataFrame() # self.xout_l = pd.DataFrame() # self.sold_l = pd.DataFrame() # self.ret_l = pd.DataFrame() # self.ar_l = pd.DataFrame() # self.rr_l = pd.DataFrame() # self.del_l = pd.DataFrame() # self.c_l = pd.DataFrame() # def take_union(self): """ select one value of barcode from left or right data frame """ for col in ['barcode', 'ptr']: self.recon_l[col] = np.where(self.recon_l[f'{col}_x'].isna(), self.recon_l[f'{col}_y'], self.recon_l[f'{col}_x']) self.recon_l.drop(columns=[f'{col}_x', f'{col}_y'], axis=1, inplace=True) def opening(self): """ opening inventory calculation """ q = f""" select id, nvl("barcode-reference", 0) barcode, quantity o, ptr from "{self.s_schema}"."inventory-1{self.s_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is null and quantity != 0 order by id """ o_l_1 = self.db.get_df(query=q) q = f""" select id, nvl("barcode-reference", 0) barcode, quantity o, ptr from "{self.s_schema}"."inventory-1{self.s_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is not null and quantity != 0 order by id """ o_l_2 = self.db.get_df(query=q) self.o_l = pd.concat([o_l_1, o_l_2], ignore_index=True) return self.o_l def purchased(self): """ purchased inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."actual-quantity" p, c.ptr from "{self.e_schema}"."invoice-items-1{self.e_alias}" a join "{self.e_schema}"."invoices-1{self.e_alias}" b on a."franchisee-invoice-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (c."invoice-item-id" = a.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a."actual-quantity" !=0 """ self.p_l = self.db.get_df(query=q) return self.p_l def purchase_returns(self): """ purchase returns cogs inventory calculation """ q = f""" select e.id, nvl("barcode-reference", 0) barcode, sum(nvl(d."returned-quantity", 0)) pr, e.ptr from "{self.e_schema}"."debit-notes-1{self.e_alias}" a join "{self.e_schema}"."debit-note-items-1{self.e_alias}" c on c."debit-note-id" = a."id" join "{self.e_schema}"."return-items-1{self.e_alias}" d on d."id" = c."item-id" join "{self.e_schema}"."inventory-1{self.e_alias}" e on e."id" = d."inventory-id" where a."store-id" in ({self.csv_store_ids}) and c."is-active" = true and a."settled-at" >= '{self.start_ts}' and a."settled-at" <= '{self.end_ts}' and d."returned-quantity" !=0 group by e.id, "barcode-reference", e.ptr """ self.pr_l = self.db.get_df(query=q) return self.pr_l def purchased_return_dispatched(self): """ purchased return dispatched inventory calculation """ q = f""" select d.id , nvl("barcode-reference", 0) barcode, sum(nvl(c."returned-quantity", 0)) prd, d."ptr" from "{self.e_schema}"."debit-notes-1{self.e_alias}" a join "{self.e_schema}"."debit-note-items-1{self.e_alias}" b on b."debit-note-id" = a.id join "{self.e_schema}"."return-items-1{self.e_alias}" c on b."item-id" = c.id join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" e on c."return-id" = e.id join "{self.e_schema}"."inventory-1{self.e_alias}" d on c."inventory-id" = d.id where e."store-id" in ({self.csv_store_ids}) and a."dispatched-at" >= '{self.start_ts}' and a."dispatched-at" <= '{self.end_ts}' group by d.id, "barcode-reference", d.ptr """ self.prd_l = self.db.get_df(query=q) return self.prd_l def purchased_return_settled(self): """ purchased return settled inventory calculation """ q = f""" select d.id , nvl("barcode-reference", 0) barcode, sum(nvl(c."returned-quantity",0)) prs, d."ptr" from "{self.e_schema}"."debit-notes-1{self.e_alias}" a join "{self.e_schema}"."debit-note-items-1{self.e_alias}" b on b."debit-note-id" = a.id join "{self.e_schema}"."return-items-1{self.e_alias}" c on b."item-id" = c.id join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" e on c."return-id" = e.id join "{self.e_schema}"."inventory-1{self.e_alias}" d on c."inventory-id" = d.id where e."store-id" in ({self.csv_store_ids}) and a."settled-at" >= '{self.start_ts}' and a."settled-at" <= '{self.end_ts}' group by d.id, "barcode-reference", d.ptr """ self.prs_l = self.db.get_df(query=q) return self.prs_l def customer_returns(self): """ customer return inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" cr, c.ptr from "{self.e_schema}"."customer-return-items-1{self.e_alias}" a join "{self.e_schema}"."customer-returns-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."returned-at" >= '{self.start_ts}' and b."returned-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" cr, c.ptr from "{self.e_schema}"."customer-return-items-1{self.e_alias}" a join "{self.e_schema}"."customer-returns-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."returned-at" >= '{self.start_ts}' and b."returned-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.cr_l = self.db.get_df(query=q) self.cr_l = remove_duplicates(df=self.cr_l, f="cr") return self.cr_l def xin(self): """ Stock transfer in - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a.quantity xin, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."destination-store") where b."destination-store" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a.quantity xin, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."destination-store") where b."destination-store" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a.quantity !=0 """ self.xin_l = self.db.get_df(query=q) self.xin_l = remove_duplicates(df=self.xin_l, f="xin") return self.xin_l def xout(self): """ Stock transfer out inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."quantity" xout, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."source-store") where b."source-store" in ({self.csv_store_ids}) and a."transferred-at" >= '{self.start_ts}' and a."transferred-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."quantity" xout, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."source-store") where b."source-store" in ({self.csv_store_ids}) and a."transferred-at" >= '{self.start_ts}' and a."transferred-at" <= '{self.end_ts}' and a.quantity !=0 """ self.xout_l = self.db.get_df(query=q) self.xout_l = remove_duplicates(self.xout_l, "xout") return self.xout_l def sold(self): """ Sold inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."quantity" sold, c.ptr from "{self.e_schema}"."bill-items-1{self.e_alias}" a join "{self.e_schema}"."bills-1{self.e_alias}" b on a."bill-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."quantity" sold, c.ptr from "{self.e_schema}"."bill-items-1{self.e_alias}" a join "{self.e_schema}"."bills-1{self.e_alias}" b on a."bill-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a.quantity !=0 """ self.sold_l = self.db.get_df(query=q) self.sold_l = remove_duplicates(self.sold_l, "sold") return self.sold_l def returned_to_dc(self): """ Return to dc - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" ret, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" ret, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.ret_l = self.db.get_df(query=q) self.ret_l = remove_duplicates(self.ret_l, "ret") return self.ret_l def deleted(self): """ Deleted - inventory calculation """ q = f""" select a.id, nvl("barcode-reference", 0) barcode, a.quantity del, a.ptr from "{self.s_schema}"."inventory-1{self.s_alias}" a join "{self.e_schema}"."deleted-invoices{self.e_alias}" c on a."invoice-id" = c.id where a."store-id" in ({self.csv_store_ids}) and c."deleted-at" >= '{self.start_ts}' and c."deleted-at" <= '{self.end_ts}' and a.quantity !=0 union select a.id, nvl("barcode-reference", 0) barcode, a.quantity del, a.ptr from "{self.s_schema}"."inventory-1{self.s_alias}" a join "{self.e_schema}"."deleted-invoices-1{self.e_alias}" c on a."franchisee-invoice-id" = c.id where a."store-id" in ({self.csv_store_ids}) and c."deleted-at" >= '{self.start_ts}' and c."deleted-at" <= '{self.end_ts}' and a.quantity !=0 """ self.del_l = self.db.get_df(query=q) self.del_l = remove_duplicates(self.del_l, "del") return self.del_l def closing(self): """ Closing inventory calculation """ q = f""" select id, nvl("barcode-reference", 0) barcode, quantity c, ptr from "{self.e_schema}"."inventory-1{self.e_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is null and quantity !=0 order by id """ c_l_1 = self.db.get_df(query=q) q = f""" select id, nvl("barcode-reference", 0) barcode, quantity c, ptr from "{self.e_schema}"."inventory-1{self.e_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is not null and quantity !=0 order by id """ c_l_2 = self.db.get_df(query=q) self.c_l = pd.concat([c_l_1, c_l_2], ignore_index=True) return self.c_l def audit_recon(self): """ Audit recon - inventory calculation """ q = f""" select b.id, nvl("barcode-reference", 0) barcode, a.change ar, b.ptr from "{self.e_schema}"."inventory-changes-1{self.e_alias}" a join "{self.e_schema}"."inventory-1{self.e_alias}" b on (a."inventory-id" = b.id and b."store-id" = a."store-id") where a."store-id" in ({self.csv_store_ids}) and a."created-at" >= '{self.start_ts}' and a."created-at" <= '{self.end_ts}' and a.change !=0 union all select b.id, nvl("barcode-reference", 0) barcode, a.change ar, b.ptr from "{self.e_schema}"."inventory-changes-1{self.e_alias}" a join "{self.e_schema}"."inventory-1{self.e_alias}" b on (a."inventory-id" = b."barcode-reference" and b."store-id" = a."store-id") where a."store-id" in ({self.csv_store_ids}) and a."created-at" >= '{self.start_ts}' and a."created-at" <= '{self.end_ts}' and a.change !=0 """ self.ar_l = self.db.get_df(query=q) self.ar_l = remove_duplicates(self.ar_l, "ar") return self.ar_l def reverted_returns(self): """ Reverted returns - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" rr, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and a."reverted-at" >= '{self.start_ts}' and a."reverted-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" rr, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and a."reverted-at" >= '{self.start_ts}' and a."reverted-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.rr_l = self.db.get_df(query=q) self.rr_l = remove_duplicates(self.rr_l, "rr") return self.rr_l def get_meta_data(self): """ extra data needed for inventory """ q = f""" select i.id, i."purchase-rate" , d."drug-name" from "prod2-generico"."prod2-generico"."inventory-1" i left join "prod2-generico"."prod2-generico".drugs d on i."drug-id" = d.id where i."store-id" in ({self.csv_store_ids}) """ return self.db.get_df(query=q) # @profile def start_data_fetch(self): """ calls all the function which fetch the data from database """ print("Starting data fetch.") self.opening() print("opening: Successfully fetched.") self.purchased() print("purchased: Successfully fetched.") self.purchase_returns() print("purchase returns: Successfully fetched.") self.purchased_return_dispatched() print("purchased_return_dispatched : Successfully fetched.") self.purchased_return_settled() print("purchased_return_settled : Successfully fetched.") self.customer_returns() print("customer_returns: Successfully fetched.") self.xin() print("xin: Successfully fetched.") self.xout() print("xout: Successfully fetched.") self.sold() print("sold: Successfully fetched.") self.returned_to_dc() print("returned_to_dc: Successfully fetched.") self.deleted() print("deleted: Successfully fetched.") self.closing() print("closing: Successfully fetched.") self.audit_recon() print("audit_recon: Successfully fetched.") self.reverted_returns() print("reverted_returns: Successfully fetched.") # @profile def concat(self): """ data fetching from database """ self.start_data_fetch() """ ## combine initial and received temp_l = select(p_l, :id, :barcode, :p => :o, :ptr) recon_l = vcat(o_l, temp_l) ## following handles inventory lying in inventory-1 but received later recon_l = remove_duplicates(recon_l, "o") recon_l = combine_cr(recon_l, cr_l) recon_l = combine_xin(recon_l, xin_l) recon_l = combine_xout(recon_l, xout_l) recon_l = combine_sold(recon_l, sold_l) recon_l = combine_ret(recon_l, ret_l) recon_l = combine_ar(recon_l, ar_l) recon_l = combine_rr(recon_l, rr_l) recon_l = leftjoin(recon_l, select(del_l, :id, :del), on = :id) recon_l = leftjoin(recon_l, select(c_l, :id, :c), on = :id) """ # """ combine initial and received and call it opening(o) """ # self.p_l.rename(columns={'p': 'o'}, inplace=True) # self.recon_l = remove_duplicates(self.o_l, f="o") self.recon_l = self.o_l # """ following handles inventory lying in inventory-1 but received later """ # self.recon_l = pd.concat([self.p_l, self.o_l], ignore_index=True) # self.recon_l = remove_duplicates(self.recon_l, "o") """ purchase """ self.recon_l = pd.merge(self.recon_l, self.p_l, on='id', how='outer') self.take_union() """ purchase returns """ self.recon_l = pd.merge(self.recon_l, self.pr_l, on='id', how='outer') self.take_union() """ purchase_return_deleted """ self.recon_l = pd.merge(self.recon_l, self.prd_l, on='id', how='outer') self.take_union() """ purchase_return_settled """ self.recon_l = pd.merge(self.recon_l, self.prs_l, on='id', how='outer') self.take_union() # self.recon_l['pr'] = 0 # self.recon_l['prd'] = 0 # self.recon_l['prs'] = 0 """combine_cr: following handles the case where inventory was stock transferred, after the start time and returned before end time """ self.recon_l = pd.merge(self.recon_l, self.cr_l, on='id', how='outer') self.take_union() """combine_xin: this will take care of stores own inventory coming back""" self.recon_l = pd.merge(self.recon_l, self.xin_l, on='id', how='outer') self.take_union() """combine_xout: this will take care of stores own inventory transferred out""" self.recon_l = pd.merge(self.recon_l, self.xout_l, on='id', how='outer') self.take_union() """combine_sold: this will take care of stores inventory sold """ self.recon_l = pd.merge(self.recon_l, self.sold_l, on='id', how='outer') self.take_union() """combine_ret: this will take care of stores inventory returned """ self.recon_l = pd.merge(self.recon_l, self.ret_l, on='id', how='outer') self.take_union() """combine_ar: """ self.recon_l = pd.merge(self.recon_l, self.ar_l, on='id', how='outer') self.take_union() """combine_rr: """ self.recon_l = pd.merge(self.recon_l, self.rr_l, on='id', how='outer') self.take_union() """ deleted """ self.recon_l = pd.merge(self.recon_l, self.del_l, on='id', how='left') self.take_union() """ closing """ self.recon_l = pd.merge(self.recon_l, self.c_l, on='id', how='left') self.take_union() """ calculate the error """ self.recon_l = self.recon_l.fillna(0) for col in ['id', 'o', 'p', 'pr', 'prd', 'prs', 'cr', 'xin', 'xout', 'ret', 'sold', 'del', 'ar', 'rr', 'c', 'barcode']: self.recon_l[col] = pd.to_numeric(self.recon_l[col]) self.recon_l[col] = self.recon_l[col].astype('int', errors='raise') self.recon_l['e'] = self.recon_l['o'] + self.recon_l['p'] + self.recon_l['cr'] + \ self.recon_l['xin'] - \ self.recon_l['xout'] - \ self.recon_l['ret'] - self.recon_l['sold'] - self.recon_l['del'] + \ self.recon_l['ar'] + \ self.recon_l['rr'] - self.recon_l['c'] return self.recon_l parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-sd', '--start_date', default="NA", type=str, required=False, help="Start date in IST") parser.add_argument('-ed', '--end_date', default="NA", type=str, required=False, help="End date in IST") parser.add_argument('-sitd', '--snapshot_ist_time_delta', default=0, type=int, required=False, help="End date in IST") parser.add_argument('-bs', '--batch_size', default=1, type=int, required=False, help="How many stores to process in one go") parser.add_argument('-fr', '--is_full_run', default="NO", type=str, required=False, help="Only one batch or all to process") args, unknown = parser.parse_known_args() env = args.env start_date = args.start_date end_date = args.end_date batch_size = args.batch_size snapshot_ist_time_delta = args.snapshot_ist_time_delta is_full_run = args.is_full_run os.environ['env'] = env logger = get_logger() # schema = "test-generico" schema = "public" if env == "prod": schema = "prod2-generico" prefix = "-inv-2022-04-01" """ read connection """ db = DB() db.open_connection() """ write connection """ w_db = DB(read_only=False) w_db.open_connection() s3 = S3(bucket_name=f"{env}-zeno-s3-db") if not (start_date and end_date) or start_date == "NA" or end_date == "NA": """ if no dates given, then run for yesterday """ end_date = datetime.datetime.now().strftime("%Y-%m-%d") start_date = datetime.datetime.now() + datetime.timedelta(days=-1) start_date = start_date.strftime("%Y-%m-%d") """ Instructions to use(README): 0. Make sure tables for both the dates (start and end) are present in public schema (eg: bills-1-mis-2022-06-11) 1. set the start date and end date 2. Set the store id if only one store changes are required, if all stores are required then don't set store id 3. Data is uploaded to s3(prod-zeno-s3-db) inside "inventory/ledger/" folder (eg: s3://dev-zeno-s3-db/inventory/ledger/2022/06/11/240.csv) 4. S3 Data can be queried using AWS Athena Tables Required: inventory-1,invoice-items-1,invoices-1,customer-return-items-1,customer-returns-1,stock-transfer-items-1, stock-transfers-1,bill-items-1,bills-1,return-items-1,returns-to-dc-1,deleted-invoices,deleted-invoices-1, inventory-changes-1 Improvements: 1. use parquet format to store the data import pandas as pd df = pd.read_csv('example.csv') df.to_parquet('output.parquet') Meaning of columns: "o": Opening/Start "cr": Customer Return "xin": Stock transfer in "xout": Stock transfer out "sold": Sold to customer "ret": Return to DC "ar": Audit "rr": Reverted Return "del": Invoice Deleted "c": closing """ """ get all the stores """ q = f""" select distinct "store-id" as "store-id" from "{schema}"."inventory-1{prefix}" i """ stores = db.get_df(query=q) """ this column order will be maintained across all csv files """ column_order = ["id", "barcode", "ptr", "o", "p", "pr", "prd", "prs", "cr", "xin", "xout", "sold", "ret", "ar", "rr", "del", "c", "e"] inventory_ledger_table = "inventory-ledger-v2" """ clean existing records, if any """ q = f""" delete from "{schema}"."{inventory_ledger_table}" -- where date("start-time") = '{start_date}'; """ w_db.execute(query=q) batch = 0 for store_id_batch in helper.batch(stores['store-id'], batch_size): csv_store_ids = ','.join([str(s) for s in store_id_batch]) batch += 1 logger.info(f"batch: {batch}, csv store ids: {csv_store_ids}") data = Data(db=db, csv_store_ids=csv_store_ids, start_date=start_date, end_date=end_date, snapshot_ist_time_delta=snapshot_ist_time_delta) recon_df = data.concat() uri = s3.save_df_to_s3(df=recon_df[column_order], file_name=f"inventory/ledger/{start_date.replace('-', '/')}/batch_{batch}.csv", index=False) table_info = helper.get_table_info(db=w_db, table_name=inventory_ledger_table, schema=schema) recon_df['start-time'] = data.start_ts recon_df['end-time'] = data.end_ts recon_df['created-at'] = datetime.datetime.now() recon_df['updated-at'] = datetime.datetime.now() recon_df['created-by'] = "etl-automation" recon_df['updated-by'] = "etl-automation" s3.write_df_to_db(df=recon_df[table_info['column_name']], table_name=inventory_ledger_table, db=w_db, schema=schema) logger.info(f"Uploaded successfully @ {uri}") if is_full_run.lower() == "no": logger.info(f"Stopping after one batch, since is_full_run: {is_full_run}") db.close_connection() w_db.close_connection() break db.close_connection() w_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/inventory-ledger/inventory-ledger-v2.py
inventory-ledger-v2.py
import argparse import datetime import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.utils.inventory.inventory import Data from zeno_etl_libs.helper.aws.s3 import S3 parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-sd', '--start_date', default="2022-06-01", type=str, required=False, help="Start date in IST") parser.add_argument('-ed', '--end_date', default="2022-06-26", type=str, required=False, help="End date in IST") parser.add_argument('-si', '--store_id', default="215", type=int, required=False, help="") parser.add_argument('-lfp', '--local_file_path', default="/Users/kuldeep/Downloads", type=str, required=False, help="") args, unknown = parser.parse_known_args() env = args.env start_date = args.start_date end_date = args.end_date store_id = args.store_id local_file_path = args.local_file_path os.environ['env'] = env logger = get_logger() """ read connection """ db = DB() db.open_connection() s3 = S3(bucket_name=f"{env}-zeno-s3-db") if not (start_date and end_date) or start_date == "NA" or end_date == "NA": """ if no dates given, then run for yesterday """ end_date = datetime.datetime.now().strftime("%Y-%m-%d") start_date = datetime.datetime.now() + datetime.timedelta(days=-1) start_date = start_date.strftime("%Y-%m-%d") """ Instructions to use(README): 0. Make sure tables for both the dates (start and end) are present in public schema (eg: bills-1-mis-2022-06-11) 1. set the start date and end date 2. Set the store id 3. Data is uploaded to s3(ie. prod-zeno-s3-db) inside "inventory/ledger/" folder (eg: s3://prod-zeno-s3-db/inventory/ledger/adhoc/2022/06/11/240.csv) 4. S3 Data can be queried using AWS Athena Tables Required: inventory-1,invoice-items-1,invoices-1,customer-return-items-1,customer-returns-1,stock-transfer-items-1, stock-transfers-1,bill-items-1,bills-1,return-items-1,returns-to-dc-1,deleted-invoices,deleted-invoices-1, inventory-changes-1 """ """ this column order will be maintained across all csv files """ column_order = ["id", "barcode", "ptr", "o", "cr", "xin", "xout", "sold", "ret", "ar", "rr", "del", "c", "e", 'start-time', 'end-time', 'purchase-rate', 'drug-name'] """ calculating the data """ data = Data(db=db, csv_store_ids=f"{store_id}", start_date=start_date, end_date=end_date) recon_df = data.concat() recon_df['start-time'] = data.start_ts recon_df['end-time'] = data.end_ts """ add other meta data """ meta_df = data.get_meta_data() df = recon_df.merge(meta_df, how='left', on=['id']) """ for testing the s3 part """ # recon_df = pd.DataFrame(data=[[1,2,3,4,5,6,7,8,9,0,1,2,3,4]], columns=column_order) file_name = f"store-{store_id}-{start_date}-{end_date}.csv" uri = s3.save_df_to_s3(df=df[column_order], file_name=f"inventory/ledger/adhoc/{file_name}", index=False) if local_file_path: local_file_path = f"{local_file_path}/{file_name}" df.to_csv(path_or_buf=local_file_path) logger.info(f"Uploaded successfully @ {uri}")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/inventory-ledger/inventory-ledger-one-store.py
inventory-ledger-one-store.py
import argparse import os import sys from datetime import datetime as dt import numpy as np import pandas as pd from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-acd', '--alternate_calc_date', default=0, type=int, required=False) parser.add_argument('-cd', '--calculation_date', default=0, type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to alternate_calc_date = args.alternate_calc_date calculation_date = args.calculation_date logger = get_logger() logger.info(f"env: {env}") # params status = 'Failed' if alternate_calc_date: calculation_date = calculation_date else: calculation_date = str(dt.now().date()) schema = 'prod2-generico' table_name = 'crm-view' rs_db = DB() rs_db.open_connection() s3 = S3() table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) read_schema = 'prod2-generico' if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f""" DELETE FROM "{read_schema}"."{table_name}" WHERE "calculation-date" = '{calculation_date}'; """ logger.info(truncate_query) rs_db.execute(truncate_query) # Fetching all patient recency, frequency, monetary(abv) rfm_q = f""" SELECT b."patient-id", SUM(bi.rate * bi.quantity) AS "total-cx-purchase", SUM(bi.rate * bi.quantity)/ COUNT(DISTINCT bi."bill-id") AS monetary, COUNT(DISTINCT bi."bill-id") AS frequency, DATEDIFF('days', MAX(DATE(b."created-at")), '{calculation_date}') AS recency, SUM(i."purchase-rate" * bi.quantity) AS "total-wc-purchase", MIN(DATE(b."created-at")) AS "acq-date", MAX(DATE(b."created-at")) AS "last-bill" FROM "prod2-generico"."bills-1" b LEFT JOIN "prod2-generico"."bill-items-1" bi ON b.id = bi."bill-id" LEFT JOIN "prod2-generico"."inventory-1" i ON bi."inventory-id" = i.id WHERE DATE(b."created-at") <= '{calculation_date}' GROUP BY b."patient-id";""" # Fetching all patient promos promo_q = f""" SELECT b."patient-id", SUM(b."promo-discount") AS "promo-discount", SUM(b."redeemed-points") AS "redeemed-points" FROM "{read_schema}"."bills-1" b WHERE DATE(b."created-at") <= '{calculation_date}' GROUP BY b."patient-id";""" # Fetching all patient consumer behaviour and value segment calc_date = calculation_date[:7] + "-01" cbs_q = f""" select cbs."patient-id" , cbs."behaviour-segment" as "current-behaviour-segment" from "{read_schema}"."customer-behaviour-segment" cbs where cbs."segment-calculation-date" = '{calc_date}';""" cvs_q = f""" select cvs."patient-id" , cvs."value-segment" as "current-value-segment" from "{read_schema}"."customer-value-segment" cvs where cvs."segment-calculation-date" = '{calc_date}'; """ # Fetching all patient consumer_flag flag_q = f""" select rm."patient-id" , (case when max(cast (rm."is-generic" as int))= 1 then 'generic' else 'non-generic' end) as "is-generic", (case when max(cast (rm."is-repeatable" as int ))= 1 then 'repetable' else 'non-repeatable' end) as "is-repeatable", (case when max(cast (rm."is-chronic" as int))= 1 then 'chronic' else 'acute' end) as "is-chronic" , (case when max(cast (rm."hd-flag" as int))= 1 then 'hd-customer' else 'non-hd-customer' end) as "is-hd" from "{read_schema}"."retention-master" rm where date(rm."bill-date") < '{calculation_date}' group by rm."patient-id";""" # Fetching all patient acquisition source acq_q = f""" select rm."patient-id", (case when rm."promo-code-id" is null then 'organic' else 'inorganic' end) as acquisition from "{read_schema}"."retention-master" rm where rm."p-first-bill-date" = rm."created-at";""" # Fetching patient primary stores store_q = f""" select rm."patient-id", rm.store, rm.abo, rm."store-manager", rm."store-type", rm."store-city" as "city", rm."line-manager", rm."store-b2b" from "{read_schema}"."retention-master" rm where rm."p-first-bill-id" = rm.id;""" rfm = rs_db.get_df(rfm_q) promo = rs_db.get_df(promo_q) cbs = rs_db.get_df(cbs_q) cvs = rs_db.get_df(cvs_q) flags = rs_db.get_df(flag_q) acq = rs_db.get_df(acq_q) stores = rs_db.get_df(store_q) # logger_info logger.info('total number of patient, size : {}'.format(len(rfm))) # data types rfm['total-cx-purchase'] = rfm['total-cx-purchase'].astype(float) rfm['total-wc-purchase'] = rfm['total-wc-purchase'].astype(float) rfm['monetary'] = rfm['monetary'].astype(float) rfm['acq-date'] = pd.to_datetime(rfm['acq-date']) rfm['last-bill'] = pd.to_datetime(rfm['last-bill']) promo['promo-discount'] = promo['promo-discount'].astype(float) # Function for Customer stages rfm['r-score'] = 1 rfm['f-score'] = 1 rfm['m-score'] = 1 rfm['r-score'] = pd.qcut(rfm['recency'], 5, labels=[5, 4, 3, 2, 1]) rfm['m-score'] = pd.qcut(rfm['monetary'], 5, labels=[1, 2, 3, 4, 5]) try: rfm['f-score'] = pd.qcut(rfm['frequency'], 5, labels=[1, 2, 3, 4, 5]) except ValueError: rfm['f-score'] = pd.cut(rfm['frequency'], bins=[0, 1, 3, 6, 10, np.inf], labels=[1, 2, 3, 4, 5]) rfm['stage'] = np.nan rfm['stage'] = np.where((rfm['r-score'].isin([3, 4])) & (rfm['f-score'].isin([4, 5])), 'Loyal Customers', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([4, 5])) & (rfm['f-score'].isin([2, 3])), 'Potential Loyalist', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([5])) & (rfm['f-score'].isin([4, 5])), 'Champions', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([5])) & (rfm['f-score'].isin([1])), 'New Customer', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([4])) & (rfm['f-score'].isin([1])), 'Promising', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([3])) & (rfm['f-score'].isin([3])), 'Customer needing attention', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([3])) & (rfm['f-score'].isin([1, 2])), 'About to Sleep', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([1, 2])) & (rfm['f-score'].isin([3, 4])), 'At Risk', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([1, 2])) & (rfm['f-score'].isin([5])), 'Can\'t Lose them', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([1, 2])) & (rfm['f-score'].isin([1, 2])), 'Hibernating', rfm['stage']) rfm['stage'] = np.where((rfm['r-score'].isin([1])) & (rfm['f-score'].isin([1])), 'Lost', rfm['stage']) # roi calculation at customer level crm = pd.merge(rfm, promo, on='patient-id', how='left') # roi = profit_gain / investment # p = wc_purchase, s = cx_purchase, pr = promo/discount # roi = (s-p-pr )/(p+pr) crm['investment'] = crm['total-wc-purchase'] + crm['redeemed-points'] + crm['promo-discount'] crm['gain'] = crm['total-cx-purchase'] - crm['investment'] crm['roi'] = crm['gain'] / crm['investment'] crm = crm.drop(columns=['investment', 'gain']) crm['abv-seg'] = pd.cut(crm['monetary'], bins=[0, 200, 300, 500, 750, 1000, 1250, 1500, 2000, np.inf], labels=['<=200', '201-300', '301-500', '501-750', '751-1000', '1001-1250', '1251-1500', '1501-2000', '>2000']) crm['nob-seg'] = pd.cut(crm['frequency'], bins=[0, 4, 10, 25, 50, 100, np.inf], labels=['1-4', '5-10', '11-25', '26-50', '50-100', '>100']) # consumer behaviour and value segment crm = pd.merge(crm, cbs, on='patient-id', how='left') crm = pd.merge(crm, cvs, on='patient-id', how='left') # consumer flag crm = pd.merge(crm, flags, on='patient-id', how='left') # consumer acquisition crm = pd.merge(crm, acq, on='patient-id', how='left') # consumer store data crm = pd.merge(crm, stores, on='patient-id', how='left') crm['calculation-date'] = calculation_date crm['segment-calculation-date'] = calc_date # data correction crm['r-score'] = crm['r-score'].fillna(1) crm['f-score'] = crm['f-score'].fillna(1) crm['m-score'] = crm['m-score'].fillna(1) crm['r-score'] = crm['r-score'].astype(int) crm['f-score'] = crm['f-score'].astype(int) crm['m-score'] = crm['m-score'].astype(int) logger.info("info :", crm.info()) # etl crm['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') crm['created-by'] = 'etl-automation' crm['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') crm['updated-by'] = 'etl-automation' # Write to csv s3.save_df_to_s3(df=crm[table_info['column_name']], file_name='crm_view.csv') s3.write_df_to_db(df=crm[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/crm_view/crm-view.py
crm-view.py
import argparse import numpy as np import os import pandas as pd import sys from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from datetime import datetime as dt from datetime import timedelta parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-fr', '--full_run', default=0, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to full_run = args.full_run logger = get_logger() logger.info(f"env: {env}") # ============================================================================= # set parameters # ============================================================================= if full_run: pso_date1 = '2022-02-01' pso_date2 = str(dt.today().date() - timedelta(days=1)) else: pso_date1 = str(dt.today().date() - timedelta(days=10)) pso_date2 = str(dt.today().date() - timedelta(days=1)) schema = 'prod2-generico' table_name = "pso-recommendation-visibility" rs_db = DB() rs_db.open_connection() s3 = S3() table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) read_schema = 'prod2-generico' if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f""" DELETE FROM "{read_schema}"."{table_name}" WHERE "created-at" BETWEEN '{pso_date1}' AND '{pso_date2}'; """ logger.info(truncate_query) rs_db.execute(truncate_query) # ============================================================================= # store clusters # ============================================================================= qc = f""" select sf."feature-id", f.feature, sf."store-id", sf."is-active" as "pso-recomm-active", coalesce(sc."cluster-id", 0) as "cluster-id", coalesce(c.name, '0') as "cluster-name" from "{read_schema}".features f left join "{read_schema}"."store-features" sf on f.id = sf."feature-id" left join "{read_schema}"."store-clusters" sc on sc."store-id" = sf."store-id" left join "{read_schema}".clusters c on c.id = sc."cluster-id" where sf."feature-id" = 68 and sf."is-active" = 1; """ store_clusters = rs_db.get_df(query=qc) orders_transfers_all = pd.DataFrame() for cluster in store_clusters['cluster-id'].unique(): logger.info("") logger.info("cluster {}".format(cluster)) temp = store_clusters[store_clusters['cluster-id'] == cluster] cluster_stores = tuple(map(int, list(temp['store-id'].unique()))) # ============================================================================= # GET PRs # ============================================================================= q1 = f""" select pso."order-number", pso.id as "patient-store-order-id", pso."patient-request-id", pso."zeno-order-id" , pso."patient-id" , pso."order-source" , pso."order-type" , pso."slot-recommendation-status" AS "fulfillment-actions", pso."status" as "pso-status", pso."created-at" AS "pso-created-at", pso."store-id" , s."name" as "store-name", pso."drug-id" , pso."drug-name" , pso."requested-quantity", pso."inventory-quantity" as "inventory-at-creation", pr."required-quantity", pr."quantity-to-order", pso."bill-id", b."created-at" AS "bill-date", dt."delivered-at" from "{read_schema}"."patients-store-orders" pso left join "{read_schema}"."patient-requests" pr on pso."order-number" = pr."patient-request-number" and pso."patient-request-id" = pr.id join "{read_schema}"."stores" s on s."id" = pso."store-id" left join "{read_schema}"."bills-1" b on b."id" = pso."bill-id" left join "{read_schema}"."delivery-tracking" dt on dt."patient-store-order-id" = pso."id" where DATE(pso."created-at") >= '{pso_date1}' and DATE(pso."created-at") <= '{pso_date2}' and pso."store-id" in {cluster_stores} and b."created-at" is not null; """ q2 = f""" select distinct pso."order-number", pso."slot-date", psr."recommended-slot-date", pso."slot-id", psr."recommended-slot-id", ss_1."end-time" as "selected-end-time", ss_2."end-time" as "recommended-end-time", (case when pso."slot-date" = psr."recommended-slot-date" and pso."slot-id" = psr."recommended-slot-id" then 'recommended_slot' else 'not_recommended_slot' end) "selected-slot" from "{read_schema}"."patients-store-orders" pso left join "{read_schema}"."pso-slot-recommendation" psr on pso."order-number" = psr."order-number" left join "{read_schema}"."store-slots" ss_1 on pso."slot-id" = ss_1.id left join "{read_schema}"."store-slots" ss_2 on pso."slot-id" = ss_2.id where DATE(pso."created-at") >= '{pso_date1}' and DATE(pso."created-at") <= '{pso_date2}';""" orders = rs_db.get_df(query=q1) recommendation = rs_db.get_df(query=q2) orders['required-quantity'].fillna(0, inplace=True) orders['quantity-to-order'].fillna(0, inplace=True) orders['delivered-at'] = pd.to_datetime(orders['delivered-at'], errors='coerce') orders['delivered-at'] = np.where(orders['delivered-at'].isnull(), orders['bill-date'], orders['delivered-at']) def string_to_time(x): try: return dt.strptime(x, "%I:%M %p").time() except: try: return dt.strptime(x, "%I:%M%p").time() except: return "Can't convert" recommendation['selected-end-time'] = recommendation['selected-end-time'].apply( lambda x: string_to_time(x)) recommendation['recommended-end-time'] = recommendation['recommended-end-time'].apply( lambda x: string_to_time(x)) recommendation['recommended-slot-date'] = recommendation['recommended-slot-date'].fillna(dt(2100, 1, 1)) recommendation['slot-date'] = pd.to_datetime(recommendation['slot-date']).dt.date recommendation['recommended-slot-date'] = pd.to_datetime(recommendation['recommended-slot-date']).dt.date def early_later(x): if x['slot-date'] < x['recommended-slot-date']: return 'early_slot' elif (x['slot-date'] == x['recommended-slot-date']) & (x['selected-end-time'] < x['recommended-end-time']): return 'early_slot' elif x['selected-slot'] == 'recommended_slot': return 'recommended-slot' else: return 'later_slot' recommendation['early-later-slot'] = recommendation.apply(lambda x: early_later(x), 1) orders = pd.merge(orders, recommendation, on='order-number', how='left') orders['availability-tag'] = np.where( orders['quantity-to-order'] > 0, "pr-short", np.nan) orders['availability-tag'] = orders.fillna('').sort_values( ['order-number', 'availability-tag']).groupby('order-number')['availability-tag'].transform('last') orders['availability-tag'] = np.where( orders['availability-tag'] != 'pr_short', "pr_not_short", orders['availability-tag']) # ============================================================================= # Get transfers # ============================================================================= trnfrs = tuple(map(int, list(orders['patient-store-order-id'].unique()))) q2 = f""" select pso."order-number", pstm."patient-store-order-id", pstm."from-store-id", pstm."to-store-id", pstm."item-quantity" as "to-be-transferred-qty", sti."quantity" as "actual-transferred-qty", st."total-items", pstm."slot-date", pstm."status" as "tn-status", st."status" as "transfer-status", st."initiated-at", st."transferred-at", st."received-at", DATEDIFF(minute, st."transferred-at", st."received-at") as "transfer-minutes", zo."created-at" as "zeno-created-at" from "{read_schema}"."pso-stock-transfer-mapping" pstm left join "{read_schema}"."patients-store-orders" pso on pso.id = pstm."patient-store-order-id" left join "{read_schema}"."stock-transfers-1" st on st.id = pstm."stock-transfer-id" left join "{read_schema}"."stock-transfer-items-1" sti on sti.id = pstm."stock-transfer-item-id" left join "{read_schema}"."zeno-order" zo on zo.id = pso."zeno-order-id" where pstm."patient-store-order-id" in {trnfrs} """ transfers = rs_db.get_df(query=q2) transfers['received-at'] = pd.to_datetime(transfers['received-at'], format='%Y-%m-%d %H:%M:%S', errors='coerce') transfers_summ = transfers.groupby(['order-number', 'patient-store-order-id']).agg( {'initiated-at': [np.max], 'transferred-at': [np.max], 'received-at': [np.max], 'zeno-created-at': [np.max], 'to-be-transferred-qty': [np.sum], 'actual-transferred-qty': [np.sum]}).reset_index() transfers_summ.columns = ["_".join(x) for x in transfers_summ.columns.ravel()] transfers_summ.rename(columns={'initiated-at_amax': 'initiated-at', 'transferred-at_amax': 'transferred-at', 'received-at_amax': 'received-at', 'to-be-transferred-qty_sum': 'to-be-transferred-qty', 'actual-transferred-qty_sum': 'actual-transferred-qty', 'transfer-status_': 'transfer-status', 'order-number_': 'order-number', 'patient-store-order-id_': 'patient-store-order-id', 'zeno-created-at_amax': 'zeno-created-at'}, inplace=True) if cluster == 0: transfers_summ['order-number'] = np.nan transfers_summ['patient-store-order-id'] = np.nan # transfers_summ = transfers_summ.drop(columns=['index_']) orders_transfers = pd.merge(left=orders, right=transfers_summ, how='left', on=['order-number', 'patient-store-order-id']) orders_transfers['to-be-transferred-qty'].fillna(0, inplace=True) orders_transfers['actual-transferred-qty'].fillna(0, inplace=True) orders_transfers['zeno-created-at'] = pd.to_datetime(orders_transfers['zeno-created-at']) orders_transfers['initiated-at'] = pd.to_datetime(orders_transfers['initiated-at']) orders_transfers['transferred-at'] = pd.to_datetime(orders_transfers['transferred-at']) # lead to pso creation orders_transfers['lead-to-pso-creation-hours'] = \ ((orders_transfers['pso-created-at'] - orders_transfers['zeno-created-at']) / np.timedelta64(1, 'h')) # PSO to transfer inititate orders_transfers['pso-to-transfer-initiate-hours'] = \ ((orders_transfers['initiated-at'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) # PSO to transfer transferred orders_transfers['pso-to-transfer-transfer-hours'] = \ ((orders_transfers['transferred-at'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) # PSO to transfer received orders_transfers['pso-to-transfer-received-hours'] = \ ((orders_transfers['received-at'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) # PSO to bill orders_transfers['pso-to-bill-hours'] = \ ((orders_transfers['bill-date'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) orders_transfers['pso-to-bill-hours'] = np.where( orders_transfers['pso-to-bill-hours'] < 0, 0, orders_transfers['pso-to-bill-hours']) # PSO to delivered orders_transfers['pso-to-delivered-hours'] = \ ((orders_transfers['delivered-at'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) orders_transfers['cluster-id'] = cluster # ============================================================================= # Cluster Name # ============================================================================= qc1 = f""" select c.id AS "cluster-id" , c.name AS "cluster-name" from "{read_schema}".clusters c """ cluster_info = rs_db.get_df(query=qc1) orders_transfers = pd.merge(orders_transfers, cluster_info, on='cluster-id', how='left') # ============================================================================= # OTIF calculation # ============================================================================= bills = tuple(map(int, list(orders_transfers[orders_transfers['bill-id'].notna()]['bill-id'].unique()))) qc = f""" select bi."bill-id", count(distinct i."drug-id") as "drug-billed-cnt", sum(bi.quantity) as "quantity-billed-sum" from "{read_schema}"."bills-1" b join "{read_schema}"."bill-items-1" bi on b.id = bi."bill-id" join "{read_schema}"."inventory-1" i on i.id = bi."inventory-id" where bi."bill-id" in {bills} group by bi."bill-id" """ billed = rs_db.get_df(query=qc) orders_transfers1 = pd.merge(left=orders_transfers, right=billed, how='left', on=['bill-id']) orders_transfers_d_infull1 = orders_transfers.groupby( ['order-number'])['drug-id'].nunique().reset_index().rename( columns={'drug-id': 'drug-ordered-cnt'}) orders_transfers_q_infull1 = orders_transfers.groupby( ['order-number']).agg( {'requested-quantity': [np.sum]}).reset_index().rename( columns={'requested-quantity': 'requested-quantity-ordered-sum'}) orders_transfers_q_infull1.columns = ["_".join(x) for x in orders_transfers_q_infull1.columns.ravel()] orders_transfers_q_infull1.rename( columns={'requested-quantity-ordered-sum_sum': 'requested-quantity-ordered-sum', 'order-number_': 'order-number'}, inplace=True) orders_transfers_infull1 = pd.merge(orders_transfers_d_infull1, orders_transfers_q_infull1, on='order-number', how='inner') orders_transfers2 = pd.merge(left=orders_transfers1, right=orders_transfers_infull1, how='left', on=['order-number']) orders_transfers2['in-full-flag'] = np.where( orders_transfers2['drug-billed-cnt'] >= orders_transfers2['drug-ordered-cnt'], "in_full", "not_in_full") orders_transfers2['qty-in-full-flag'] = np.where( orders_transfers2['quantity-billed-sum'] >= orders_transfers2['requested-quantity-ordered-sum'], "qty_in_full", "qty_not_in_full") orders_transfers2['drug-billed-cnt'].fillna(0, inplace=True) orders_transfers2['quantity-billed-sum'].fillna(0, inplace=True) orders_transfers2['drug-ordered-cnt'].fillna(0, inplace=True) orders_transfers2['requested-quantity-ordered-sum'].fillna(0, inplace=True) # del orders_transfers2['drug_ordered_cnt'] # del orders_transfers2['drug_billed_cnt'] # del orders_transfers2['quantity_billed_sum'] # del orders_transfers2['requested_quantity_ordered_sum'] orders_transfers2['slot-date-time'] = orders_transfers2.apply(lambda x: dt.combine(x['slot-date'], x['selected-end-time']), 1) breakpoint() # Different definition for PSO recommendation orders_transfers2['otif-flag'] = np.where( ((orders_transfers2['in-full-flag'] == 'in-full') & (orders_transfers2['delivered-at'] <= orders_transfers2['slot-date-time'])), "otif", "not_otif") orders_transfers2['qty-otif-flag'] = np.where( ((orders_transfers2['qty-in-full-flag'] == 'qty-in-full') & (orders_transfers2['delivered-at'] <= orders_transfers2['slot-date-time'])), "qty_otif", "qty_not_otif") del orders_transfers2['slot-date-time'] logger.info("") logger.info( "length is same {}".format(len(orders) == len(orders_transfers2))) logger.info("") orders_transfers_all = orders_transfers_all.append(orders_transfers2) pso_recommendation = orders_transfers_all actions = pso_recommendation.groupby('order-number', as_index=False).agg({'fulfillment-actions': 'unique'}) def order_action_fulfillment(x): if 'LP' in x: return 'LP' elif 'S2S' in x: return 'S2S' elif 'DC' in x: return 'DC' elif 'SF' in x: return 'SF' else: return None actions['final-fulfillment'] = actions['fulfillment-actions'].apply(lambda x: order_action_fulfillment(x)) actions = actions.drop(columns=['fulfillment-actions']) pso_recommendation = pd.merge(pso_recommendation, actions, on='order-number', how='left') # data type correction pso_recommendation['recommended-slot-id'] = pso_recommendation['recommended-slot-id'].fillna(0) pso_recommendation['recommended-slot-id'] = pso_recommendation['recommended-slot-id'].astype(int) # etl pso_recommendation['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') pso_recommendation['created-by'] = 'etl-automation' pso_recommendation['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') pso_recommendation['updated-by'] = 'etl-automation' # Write to csv s3.save_df_to_s3(df=pso_recommendation[table_info['column_name']], file_name='Shubham_G/PSO_Recomm/Pso_Recomm.csv') s3.write_df_to_db(df=pso_recommendation[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info('PSO Recommendation Table Uploaded Successfully') # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/pso-recommendation/pso-recommendation.py
pso-recommendation.py
# !/usr/bin/env python # coding: utf-8 import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from datetime import datetime from datetime import timedelta from dateutil.tz import gettz import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rd', '--runtime_date_exp', default="0101-01-01", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env runtime_date_exp = args.runtime_date_exp email_to = args.email_to # env = 'stage' # limit = 10 os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() def get_drugs(): # Drugs read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) drugs_q = """ SELECT `id` AS drug_id, `composition`, `drug-name`, `type` AS drug_type, `category` AS drug_category, `repeatability-index`, `is-repeatable` FROM `drugs` """ drugs_q = drugs_q.replace('`', '"') logger.info(drugs_q) drugs = rs_db.get_df(query=drugs_q) drugs.columns = [c.replace('-', '_') for c in drugs.columns] logger.info(len(drugs)) logger.info("Data for drugs fetched") return drugs def get_drugs_metadata(): ######################################### # Drug interval ######################################### # Read drug interval per strip # Currently purchase-interval in drug-std-info is not really a per strip interval # (since it's at drug-id level, not drug-unit level) # But because it's a median, so taking it divided by std-qty as best substitute for per strip interval # But later on it must be replaced with correct column/logic for interval_per_strip # Todo - evaluate interval per strip condition later read_schema = 'prod2-generico' rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) drugs_metadata_q = """ SELECT "drug-id", "purchase-interval"/"std-qty" as interval_per_strip FROM "drug-std-info" """ drugs_metadata_q = drugs_metadata_q.replace('`', '"') logger.info(drugs_metadata_q) drugs_metadata = rs_db.get_df(query=drugs_metadata_q) drugs_metadata.columns = [c.replace('-', '_') for c in drugs_metadata.columns] logger.info("Interval per drug strip, data fetched with " "length {}".format(len(drugs_metadata))) drugs_metadata['interval_per_strip'] = drugs_metadata['interval_per_strip'].round(2) logger.info("Mean value of interval per strip, before imputation {}".format( drugs_metadata['interval_per_strip'].mean())) # If for any drug, interval is less than 7 days, then make it 7 days drugs_metadata['interval_per_strip'] = np.where(drugs_metadata['interval_per_strip'] < 7, 7, drugs_metadata['interval_per_strip']) # If for any drug, interval is more than 180 days, then make it 180 days drugs_metadata['interval_per_strip'] = np.where(drugs_metadata['interval_per_strip'] > 180, 180, drugs_metadata['interval_per_strip']) logger.info("Mean value of interval per strip, after boundary imputation {}".format( drugs_metadata['interval_per_strip'].mean())) return drugs_metadata def batch(store_id, drugs, drugs_metadata): # Run date if runtime_date_exp != '0101-01-01': runtime_date = runtime_date_exp else: runtime_date = datetime.today().strftime('%Y-%m-%d') # runtime_date = '2021-09-01' logger.info("Running for {}".format(runtime_date)) # Period end date # Paramatrize it period_end_d = (datetime.strptime(runtime_date, '%Y-%m-%d') - timedelta(days=1)).strftime('%Y-%m-%d') # period_end_d = period_end_d_ts.strftime('%Y-%m-%d') # Data to be fetched ######################################################### # Bill data ######################################################## read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) sales_q = """ SELECT s."patient-id", s."store-id", s."year-created-at" as year_bill, s."month-created-at" as month_bill, s."created-date" as bill_date, s."bill-id", s."drug-id", NVL(pdi."mean-interval", 0) as mean_interval_hist, SUM(s."quantity") as "quantity" FROM "sales" s left join ( select "patient-id", "drug-id", "mean-interval" from "patient-drug-interval" where "cov" <= 0.5 ) pdi on pdi."patient-id" = s."patient-id" and pdi."drug-id" = s."drug-id" WHERE "store-id" = {0} AND s."created-date" <= '{1}' AND s."bill-flag" = 'gross' group by s."patient-id", s."store-id", s."year-created-at", s."month-created-at", s."created-date", s."bill-id", s."drug-id", NVL(pdi."mean-interval", 0) """.format(store_id, period_end_d) # AND "store-id" = 2 logger.info(sales_q) data_s = rs_db.get_df(query=sales_q) data_s.columns = [c.replace('-', '_') for c in data_s.columns] logger.info("Data length is : {}".format(len(data_s))) data_s['bill_date'] = pd.to_datetime(data_s['bill_date']) # Merge main data, with drugs metadata data_raw = data_s.merge(drugs, how='left', on='drug_id') data_raw['is_repeatable'] = data_raw['is_repeatable'].fillna(0) data_raw['is_generic'] = np.where(data_raw['drug_type'] == 'generic', 1, 0) logger.info("Raw data length - {}".format(len(data_raw))) data = data_raw ####################################### # Estimated due date ####################################### # # Grp on unique columns # data = data_raw.groupby(['patient_id', 'store_id', 'year_bill', 'month_bill', # 'bill_date', 'bill_id', 'composition', # 'drug_id', 'drug_name', 'drug_type', # 'drug_category', 'repeatability_index', # 'is_repeatable', 'is_generic'])[['quantity']].sum().reset_index() logger.info("Data length after grouping at unique level - {}".format(len(data))) # Impute mean at composition level drugs_metadata_merge = drugs[['drug_id', 'composition']].merge(drugs_metadata, how='inner', on=['drug_id']) drugs_metadata_merge['interval_per_strip'] = drugs_metadata_merge['interval_per_strip'].fillna( drugs_metadata_merge.groupby('composition')['interval_per_strip'].transform('mean')).astype(int) logger.info("After imputation - Interval per drug strip, data fetched with " "length {}".format(len(drugs_metadata_merge))) logger.info("Mean value of interval per strip, after composotion imputation {}".format( drugs_metadata_merge['interval_per_strip'].mean())) # Merge with refill data data = data.merge(drugs_metadata_merge[['drug_id', 'interval_per_strip']], how='left', on=['drug_id']) # Don't impute for now, but if were to impute for those not having interval # Useful when customer buys new drug label, which is not popular # Should it be imputed by avg of other drugs in same comp? # Imputed # data['interval_per_strip'] = data['interval_per_strip'].fillna(15) data['expected_next_interval_drug'] = data['quantity'] * data['interval_per_strip'] data['expected_next_interval_drug'] = data['expected_next_interval_drug'].round(2) logger.info("Mean value of expected interval, at drug level impute {}".format( data['expected_next_interval_drug'].mean())) logger.info("Data length after merging refill data - {}".format(len(data))) ################################### # Patient-drug-interval ################################### # Impute for patient drug id's where it's already consistent # If for any drug, interval is less than 7 days, then make it 7 days data['mean_interval_hist'] = np.where(((data['mean_interval_hist'] > 0) & (data['mean_interval_hist'] < 7)), 7, data['mean_interval_hist']) # If for any drug, interval is more than 180 days, then make it 180 days data['mean_interval_hist'] = np.where(data['mean_interval_hist'] > 180, 180, data['mean_interval_hist']) data['mean_interval_hist'] = data['mean_interval_hist'].round(2) logger.info("Mean value of interval, of patient drug interval after boundary imputation {}".format( data['mean_interval_hist'].mean())) # Number of cases where it will be imputed pd_impute_length = len(data[data['mean_interval_hist'] > 0]) logger.info("Impute to be done for length {}".format(pd_impute_length)) # Finally impute data['expected_next_interval'] = np.where(data['mean_interval_hist'] > 0, data['mean_interval_hist'], data['expected_next_interval_drug']) logger.info("Mean value of interval, after patient drug level imputation {}".format( data['expected_next_interval'].mean())) # Remove any nulls # Todo - evaluate null interval exclusion condition later data = data[data['expected_next_interval'] > 0] data['expected_next_interval'] = data['expected_next_interval'].astype(int) data = data[data['expected_next_interval'] > 0] logger.info("Data length after removing any nulls - {}".format(len(data))) # If for any drug, interval is more than 180 days, then make it 180 days data['expected_next_interval'] = np.where(data['expected_next_interval'] > 180, 180, data['expected_next_interval']) data['refill_date'] = data['bill_date'] + pd.to_timedelta(data['expected_next_interval'], unit='D') data['refill_date'] = pd.to_datetime(data['refill_date'].dt.date) data['year_refill'] = data['refill_date'].dt.year data['month_refill'] = data['refill_date'].dt.month # Refill relevancy flag - for ops oracle # Todo write custom logic for refill relevancy for front-end, check confluence documentation data['refill_relevancy_flag'] = 1 # DB upload columns final_cols = ['patient_id', 'store_id', 'year_bill', 'month_bill', 'bill_date', 'bill_id', 'composition', 'drug_id', 'drug_name', 'drug_type', 'drug_category', 'repeatability_index', 'is_repeatable', 'is_generic', 'quantity', 'interval_per_strip', 'expected_next_interval_drug', 'mean_interval_hist', 'expected_next_interval', 'refill_date', 'year_refill', 'month_refill', 'refill_relevancy_flag'] data_export = data[final_cols] # For redshift specific # Convert int columns to int for i in ['bill_id', 'drug_id', 'repeatability_index', 'is_repeatable', 'quantity']: data_export[i] = data_export[i].fillna(0).astype(int) logger.info(data_export.columns) ################################ # DB WRITE ############################### write_schema = 'prod2-generico' write_table_name = 'retention-refill' table_info = helper.get_table_info(db=rs_db_write, table_name=write_table_name, schema=write_schema) # table_info_clean = table_info[~table_info['column_name'].isin(['id', 'created-at', 'updated-at'])] data_export.columns = [c.replace('_', '-') for c in data_export.columns] # Mandatory lines data_export['created-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['created-by'] = 'etl-automation' data_export['updated-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['updated-by'] = 'etl-automation' # Truncate and append rs_db_write.execute(f"set search_path to '{write_schema}'", params=None) truncate_q = """ DELETE FROM "{0}" WHERE "store-id" = {1} """ rs_db_write.execute(truncate_q.format(write_table_name, store_id)) # Write to DB s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) def get_store_ids(): query = """ select "store-id" from "prod2-generico"."bills-1" group by "store-id" """ store_list = rs_db.get_df(query=query)['store-id'].drop_duplicates().to_list() return store_list def main(): store_list = get_store_ids() drugs = get_drugs() drugs_metadata = get_drugs_metadata() for store_id in store_list: # if store_id not in (2, 4): # continue logger.info("running for store id: {}".format(store_id)) batch(store_id, drugs, drugs_metadata) if __name__ == '__main__': try: main() except Exception as err: logger.exception(err) finally: # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/retention-refill/retention-refill.py
retention-refill.py
# !/usr/bin/env python # coding: utf-8 import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB, MongoDB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from datetime import datetime from datetime import timedelta import dateutil from dateutil.tz import gettz import pandas as pd import numpy as np # Import custom functions from zeno_etl_libs.utils.consumer.crm_campaigns import CrmCampaigns from zeno_etl_libs.utils.general_funcs import hms_to_seconds parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rd', '--runtime_date_exp', default="0101-01-01", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env runtime_date_exp = args.runtime_date_exp email_to = args.email_to os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") # Instantiate the CRM campaigns class # This imports connections also cc = CrmCampaigns() # Write connection instantiated, because # to check data upload sync, same connection needed rs_db_write = DB(read_only=False) rs_db_write.open_connection() # MongoDB Client mg_db = MongoDB() mg_client = mg_db.open_connection("generico-crm") s3 = S3() # Run date if runtime_date_exp != '0101-01-01': run_date = runtime_date_exp else: run_date = datetime.today().strftime('%Y-%m-%d') # run_date = '2021-09-01' logger.info("Running for {}".format(run_date)) run_date_minus1 = (pd.to_datetime(run_date) - timedelta(days=1)).strftime('%Y-%m-%d') logger.info(f"Run date is {run_date} and previous date is {run_date_minus1}") run_date_minus1_ts = dateutil.parser.parse(f"{run_date_minus1} 00:00:00") run_date_ts = dateutil.parser.parse(f"{run_date} 23:59:59") logger.info(f"Look up period is {run_date_minus1_ts} to {run_date_ts}") ######################################################### # Read from Mongo-DB ######################################################## # Pick only for period mentioned # date_time is the timestamp column # But since it's string, so have to convert to date, before processing # Read Generico crm table db = mg_client['generico-crm'] # Query collection = db['callLogs'].find({"type": "STORE_CALL_CONNECT", "$expr": { "$and": [ { "$gte": [{"$dateFromString": {"dateString": "$date_time"}}, run_date_minus1_ts] }, { "$lte": [{"$dateFromString": {"dateString": "$date_time"}}, run_date_ts] } ] } }) # Get into pandas data-frame data_raw = pd.DataFrame(list(collection)) logger.info("Data fetched is with length {}".format(len(data_raw))) # List data columns logger.info("Column names in data are {}".format(data_raw.columns)) #################################################### # Filters on rows or columns ################################################### """ # Doing it in later blocks, so ignore for now # Exclude patient id 0 # data = data_raw[data_raw['patient_id'] > 0] """ data = data_raw.copy() unique_cols = ['call_type', 'status', 'type', 'is_active', 'to_number', 'from_number', 'store_id', 'duration', 'date_time'] # Find unique entries data_unique = data[unique_cols].drop_duplicates() logger.info("Unique data length is - {}".format(len(data_unique))) # Convert to object data_unique['is_active'] = data_unique['is_active'].astype(str) # Convert to time-stamp data_unique['date_time'] = pd.to_datetime(data_unique['date_time']) ############################################ # Upload to DSS unique table ############################################ read_schema = 'prod2-generico' rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) last_dss_q = """ SELECT "call-type", "status", "type", "is-active", "to-number", "from-number", "store-id", "duration", "date-time" FROM "store-call-logs-entries" """ logger.info(last_dss_q) last_data_dss = rs_db_write.get_df(query=last_dss_q) last_data_dss.columns = [c.replace('-', '_') for c in last_data_dss.columns] logger.info("Last data in DSS length {}".format(len(last_data_dss))) # Convert to date-time last_data_dss['date_time'] = pd.to_datetime(last_data_dss['date_time']) # Join and check which to insert and which to update # Data match with mySQL data_export_dss = data_unique.merge( last_data_dss, how='outer', on=unique_cols, indicator=True) # To upload data_insert_dss = data_export_dss[data_export_dss['_merge'] == 'left_only'] data_insert_dss.drop(['_merge'], axis=1, inplace=True) logger.info("Length in left dataset after outer join {}".format(len(data_insert_dss))) # Upload to DSS ################################ # DB WRITE ############################### write_schema = 'prod2-generico' write_table_name = 'store-call-logs-entries' table_info = helper.get_table_info(db=rs_db_write, table_name=write_table_name, schema=write_schema) data_export = data_insert_dss.copy() data_export.columns = [c.replace('_', '-') for c in data_export.columns] # Mandatory lines data_export['created-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['created-by'] = 'etl-automation' data_export['updated-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['updated-by'] = 'etl-automation' logger.info("Insert DSS started") # Write to DB s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) logger.info("Insert DSS Done") ############################################################### # Processing for calling-dashboard ############################################################## # Remove dummy stores # Now fetch from unique table, and process for calling dashboard read_schema = 'prod2-generico' rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) dss_q = """ SELECT "call-type", "status", "type", "is-active", "to-number", "from-number", "store-id", "duration", "date-time" FROM "store-call-logs-entries" WHERE "store-id" not in (52, 60, 92, 111, 149) and "date-time" >= '{}' """.format(run_date_minus1) logger.info(dss_q) data = rs_db_write.get_df(query=dss_q) data.columns = [c.replace('-', '_') for c in data.columns] # Convert to time-stamp data['date_time'] = pd.to_datetime(data['date_time']) logger.info("Data last 2-days length is - {}".format(len(data))) # First make customer number final # If Missed or incoming, then use from_number, # If outgoing then used to_number data['patient_number'] = np.where(data['call_type'].isin(['MISSED', 'INCOMING']), data['from_number'], np.where(data['call_type'] == 'OUTGOING', data['to_number'], np.nan)) # Now see how many of them actually have patient id's mapped # Remove those who don't phones = tuple(data['patient_number'].dropna().drop_duplicates().to_list()) logger.info("Phones to be searched in patients table - length is {}".format(len(phones))) ############################## # MySQL patients table ############################## """ When number of phones > 200, in query will slows down the query performance, try using "inner join" with the "store-call-logs-entries" table to apply the filter """ # Todo Patients info needed from real-time table, and not from replication, # challenge to be addressed later patients_info_q = """ SELECT phone as patient_number, id as patient_id FROM patients WHERE phone in {} """.format(phones) data_p = pd.read_sql_query(patients_info_q, cc.ms_connection_read.connection) data_p.columns = [c.replace('-', '_') for c in data_p.columns] logger.info("Patient id found for phones - length {}".format(len(data_p))) # Merge data = data.merge(data_p, how='inner', on=['patient_number']) logger.info("Length for calling data for patient id present - {}".format(len(data))) data = data.sort_values(by=['date_time']) # Now filters come # Divide into 3-3hrs windows. And then put year, month, day, window index data['year_call'] = data['date_time'].dt.year data['month_call'] = data['date_time'].dt.month data['day_call'] = data['date_time'].dt.day data['hour_call'] = data['date_time'].dt.hour # For now divide into 1-day bucket, and check that same day should not be duplicates # Now find out cases where missed call, but within 30minutes, and incoming call from same number. # Remove those cases # Sort data by date_time alone data = data.sort_values(by=['date_time']) # Change HH:MM:SS to seconds data['duration_sec'] = data.apply(lambda row: hms_to_seconds(row['duration']), axis=1) logger.info("Avg value of duration is {}".format(data['duration_sec'].mean())) # Cases can be # Missed call, incoming # Missed call, missed call, incoming # Missed call, incoming, missed call # First remove the successive missed calls and keep only latest of them # For that, shift lag -1 and see if successive call is missed call or not # GROUP CALL TYPE into MISSED, 'OTHERS' data['call_type_grp'] = np.where(data['call_type'] != 'MISSED', 'OTHERS', data['call_type']) logger.info("Unique call type groups are {}".format(data['call_type_grp'].unique())) logger.info("Current df head is {}".format(data.head())) # Assign 1 to MISSED and 0 for others, and start from first instance of Missed call data['missed_call_flag'] = np.where(data['call_type_grp'] == 'MISSED', 1, 0) # Sort data by date_time data = data.sort_values(by=['patient_id', 'date_time']) logger.info("Data length before applying missed call filter is {}".format(len(data))) # MISSED CALL CUM-FLAG data['missed_call_cumsum'] = data.groupby(['patient_id'])['missed_call_flag'].cumsum() logger.info("Current df head is {}".format(data.head())) # FILTER FOR >=1 MISSED CALL CUMSUM data = data[data['missed_call_cumsum'] >= 1].copy() logger.info("Data length AFTER applying missed call filter is {}".format(len(data))) logger.info("Current df head is {}".format(data.head())) # Grouping call durations across calls data = data.groupby(['year_call', 'month_call', 'day_call', 'store_id', 'patient_id', 'call_type_grp'])['duration_sec'].sum().reset_index() data['same_day_prev_call_type'] = data.groupby(['year_call', 'month_call', 'day_call', 'patient_id'])['call_type_grp'].shift(1) data['same_day_next_call_type'] = data.groupby(['year_call', 'month_call', 'day_call', 'patient_id'])['call_type_grp'].shift(-1) data['same_day_next_call_duration_sec'] = data.groupby(['year_call', 'month_call', 'day_call', 'patient_id'])['duration_sec'].shift(-1) # Only Missed data_f = data[((data['call_type_grp'] == 'MISSED') & (data['same_day_next_call_type'].isnull())) | ((data['call_type_grp'] != 'MISSED') & (data['same_day_prev_call_type'] == 'MISSED') & (data['duration_sec'] < 30))].copy() logger.info("length of missed call data is {}".format(len(data_f))) logger.info("Current df head is {}".format(data_f.head())) # Unique data_f_unique = data_f.drop_duplicates(subset=['year_call', 'month_call', 'day_call', 'patient_id']) logger.info("Unique (per day) length {}".format(len(data_f_unique))) ################################################ # Insert in mySQL - mandatory steps ################################################ # Remove Last 7 days billed already data_f_unique = cc.no_bill_in_last_n_days(data_f_unique, run_date, last_n_days_param=7) # Should not have been called in last 7-days thru calling dashboard # Can be paramatrized, or changed later to 2days data_f_unique = cc.no_call_in_last_n_days(data_f_unique, run_date, last_n_days_param=7) # Read DND list data_f_unique = cc.remove_dnd(data_f_unique) ################################################# # MySQL insert # Upload to mySQL DB ################################################# # Output to calling-dashboard, ensure unique data_c = data_f_unique[['store_id', 'patient_id']].copy() data_c['campaign_id'] = 19 data_c['callback_reason'] = 'For callback' data_c['list_date'] = run_date data_c['call_date'] = data_c['list_date'] # Remove any duplicates data_c = data_c.drop_duplicates(subset='patient_id') logger.info("Unique list to be considered for calling dashboard - length {}".format(len(data_c))) logger.info("mySQL - Insert starting") data_c.columns = [c.replace('_', '-') for c in data_c.columns] data_c.to_sql(name='calling-dashboard', con=cc.ms_connection_write.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") logger.info("Missed call - Calling list data inserted/uploaded to mySQL for run date {}" " with length : {}".format(run_date, len(data_c))) # Closing the DB Connections rs_db_write.close_connection() cc.close_connections() logger.info("File ends")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/crm-missed-call/crm-missed-call.py
crm-missed-call.py
import os import sys sys.path.append('./../../../..') import pandas as pd import argparse from datetime import datetime as dt from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger def main(ms_db, rs_db, s3, year_month_input, test_records_limit): logger = get_logger() ms_cursor = ms_db.open_connection() # year_month_input = "2021-08" # eg. "2022-01" year_month = year_month_input or dt.now().strftime("%Y-%m") plain_year_month = year_month.replace("-", "") year, month = int(year_month.split("-")[0]), int(year_month.split("-")[1]) # default_db = "test-generico" if env == EnvNames.development else "prod2-generico" default_db = "prod2-generico" db_name = f"generico_{plain_year_month}" if year_month_input else default_db ms_cursor.execute(query=f"use `{db_name}`;") # test_records_limit = 1 # None if running for all records limit_str = f"LIMIT {test_records_limit} ;" if test_records_limit else ";" # Data 1 query = """ select '2020-09-01' date, '' `return-item-id`, f.id `invoice-item-id`, d.`id` `invoice-id`, c.id `inventory-id`, '' `return-id`, e.`id` `drug-id`, e.`drug-name`, f.vat gst, c.`purchase-rate`, c.`expiry`, case d.`received-at` when '0000-00-00 00:00:00' then '1971-01-01 00:00:00' else d.`received-at` end `received-at`, d.`dispatch-status`, case d.`dispatched-at` when '0000-00-00 00:00:00' then '1971-01-01 00:00:00' else d.`dispatched-at` end `invoice-dispatched-at`, d.`franchisee-invoice-number`, d.`invoice-number`, d.`invoice-date`, h.name `distributor`, g.id `store-id`, g.name `store-name`, e.`type`, c.`locked-quantity` quantity, '' `return-reason`, '' serial, '' `debit-note-status`, '1971-01-01 00:00:00' `debit-note-created-at`, '1971-01-01 00:00:00' `debit-note-dispatched-at`, '1971-01-01 00:00:00' `discarded-at`, '' `discard-reason`, '' `return-status`, '' `return_created_at`, '' `returns_created_by`, d.`created-by` 'invoice_created_by', c.mrp, e.pack from `inventory` c join `invoices` d on c.`invoice-id` = d.id join `drugs` e on c.`drug-id` = e.id join `invoice-items` f on c.`invoice-item-id` = f.id join `stores` g on c.`store-id` = g.id join `distributors` h on d.`distributor-id` = h.id where c.`locked-quantity` > 0 %s """ % limit_str df_1 = pd.read_sql_query(query, ms_db.connection) logger.info("Data 1, fetched.") # Data: 2 query = """ select '2020-09-01' date, '' `return-item-id`, f.`invoice-item-reference` `invoice-item-id`, d.`id` `invoice-id`, c.id `inventory-id`, '' `return-id`, e.`id` `drug-id`, e.`drug-name`, f.vat gst, k.`purchase-rate`, c.`expiry`, case d.`received-at` when '0000-00-00 00:00:00' then '1971-01-01 00:00:00' else d.`received-at` end `received-at`, d.`dispatch-status`, case d.`dispatched-at` when '0000-00-00 00:00:00' then '1971-01-01 00:00:00' else d.`dispatched-at` end `invoice-dispatched-at`, d.`franchisee-invoice-number`, d.`invoice-number`, d.`invoice-date`, h.name `distributor`, g.id `store-id`, g.name `store-name`, e.`type`, c.`locked-quantity` quantity, '' `return-reason`, '' serial, '' `debit-note-status`, '1971-01-01 00:00:00' `debit-note-created-at`, '1971-01-01 00:00:00' `debit-note-dispatched-at`, '1971-01-01 00:00:00' `discarded-at`, '' `discard-reason`, '' `return-status`, '' `return_created_at`, '' `returns_created_by`, d.`created-by` 'invoice_created_by', c.mrp, e.pack from `inventory-1` c join `invoices` d on c.`invoice-id` = d.id join `drugs` e on c.`drug-id` = e.id join `invoice-items-1` f on c.`invoice-item-id` = f.id join `stores` g on c.`store-id` = g.id join `distributors` h on d.`distributor-id` = h.id join `inventory` k on c.id = k.id where c.`locked-quantity` > 0 %s """ % limit_str df_2 = pd.read_sql_query(query, ms_db.connection) logger.info("Data 2, fetched.") # # Data: 3 query = """ select '2020-09-01 ' date, a.id `return-item-id`, f.id `invoice-item-id`, d.`id` `invoice-id`, c.id `inventory-id`, b.id `return-id`, e.`id` `drug-id`, e.`drug-name`, f.vat gst, c.`purchase-rate`, c.`expiry`, case d.`received-at` when ' 0000-00-00 00:00:00 ' then ' 1971-01-01 00:00:00 ' else d.`received-at` end `received-at`, d.`dispatch-status`, case d.`dispatched-at` when ' 0000-00-00 00:00:00 ' then ' 1971-01-01 00:00:00 ' else d.`dispatched-at` end `invoice-dispatched-at`, d.`franchisee-invoice-number`, d.`invoice-number`, d.`invoice-date`, h.name `distributor`, g.id `store-id`, g.name `store-name`, e.`type`, a.`returned-quantity` quantity, a.`return-reason`, i.serial, i.`status` `debit-note-status`, case i.`created-at` when ' 0000-00-00 00:00:00 ' then ' 1971-01-01 00:00:00 ' else i.`created-at` end `debit-note-created-at`, case i.`dispatched-at` when ' 0000-00-00 00:00:00 ' then ' 1971-01-01 00:00:00 ' else i.`dispatched-at` end `debit-note-dispatched-at`, case a.`discarded-at` when ' 0000-00-00 00:00:00 ' then ' 1971-01-01 00:00:00 ' else a.`discarded-at` end `discarded-at`, a.`discard-reason`, a.status `return-status`, b.`created-at` `return_created_at`, b.`created-by` `returns_created_by`, d.`created-by` ' invoice_created_by', c.mrp, e.pack from `return-items` a join `returns-to-dc` b on a.`return-id` = b.id join `inventory` c on a.`inventory-id` = c.id join `invoices` d on c.`invoice-id` = d.id join `drugs` e on c.`drug-id` = e.id join `invoice-items` f on c.`invoice-item-id` = f.id join `stores` g on b.`store-id` = g.id join `distributors` h on d.`distributor-id` = h.id left join `debit-notes` i on a.`debit-note-reference` = i.id where a.`status` in ('saved', 'approved') %s """ % limit_str df_3 = pd.read_sql_query(query, ms_db.connection) logger.info("Data 3, fetched.") # Updating the columns df_1.columns = [c.replace('-', '_') for c in df_1.columns] df_2.columns = [c.replace('-', '_') for c in df_2.columns] df_3.columns = [c.replace('-', '_') for c in df_3.columns] df = df_1.append([df_2, df_3]) df['year'] = year df['month'] = month # # Insert the data table_name = "wc-inventory" schema = "prod2-generico" # # Clean the old data for the same month if any # query = f""" # delete # from # "%s"."%s" # where # year = %s # and month = %s; # """ % (schema, table_name, year, month) # # rs_db.execute(query=query) inventory_table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) df['date'] = pd.to_datetime(df['date']).dt.date file_name = f"{table_name}_{year}{month}.csv" s3.save_df_to_s3(df=df[list(dict.fromkeys(inventory_table_info['column_name']))], file_name=file_name) file_s3_uri = f's3://aws-glue-temporary-921939243643-ap-south-1/{file_name}' s3.write_to_db_from_s3_csv( db=rs_db, file_s3_uri=file_s3_uri, schema=schema, table_name=table_name ) logger.info(f"Data uploaded to s3 successfully, at {file_s3_uri}") # s3.write_df_to_db( # df=df[list(dict.fromkeys(inventory_table_info['column_name']))], # table_name=table_name, db=rs_db, schema=schema # ) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-ym', '--year_month', default=None, type=str, required=False, help="Year Month eg. 2022-01") parser.add_argument('-l', '--limit', default=None, type=int, required=False, help="test records") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env year_month = args.year_month limit = args.limit print(f"env: {env}") rs_db = DB() rs_db.open_connection() ms_db = MySQL() _s3 = S3() """ calling the main function """ main(ms_db=ms_db, rs_db=rs_db, s3=_s3, year_month_input=year_month, test_records_limit=limit) # Closing the DB Connection rs_db.close_connection() ms_db.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/wc-inventory/wc-inventory-data-to-s3.py
wc-inventory-data-to-s3.py
# this is include zeno_etl_libs in the python search path on the run time import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from datetime import datetime as dt from zeno_etl_libs.logger import get_logger def main(rs_db, s3, year_month): logger = get_logger() # year_month = "2021-05" # eg. "2022-01" year_month = year_month or dt.now().strftime("%Y-%m") # plain_year_month = year_month.replace("-", "") year, month = int(year_month.split("-")[0]), int(year_month.split("-")[1]) # default_db = "prod2-generico" # db_name = f"generico_{plain_year_month}" if year_month_input else default_db table_name = "wc-inventory" schema = "prod2-generico" # Clean the old data for the same month if any query = f""" delete from "%s"."%s" where year = %s and month = %s; """ % (schema, table_name, year, month) rs_db.execute(query=query) logger.info(f"Old data cleaned from table: {table_name}, year-month: {year_month}") file_name = f"{table_name}_{year}{month}.csv" file_s3_uri = f's3://aws-glue-temporary-921939243643-ap-south-1/{file_name}' s3.write_to_db_from_s3_csv( db=rs_db, file_s3_uri=file_s3_uri, schema=schema, table_name=table_name ) logger.info("Data pushed to table successfully.") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-ym', '--year_month', default=None, type=str, required=False, help="YYYY-MM eg. 2022-01") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env year_month = args.year_month print(f"env: {env}") rs_db = DB() rs_db.open_connection() _s3 = S3() """ calling the main function """ main(rs_db=rs_db, s3=_s3, year_month=year_month) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/wc-inventory/wc-inventory-data-to-table.py
wc-inventory-data-to-table.py
echo "start time: $(date)" year_month="2021-09" #echo "snapshot to be restored: prod2-$year_month-06-02-00-generico.sql.gz" # shellcheck disable=SC2164 # go to vol3 because snapshots are big files #cd /vol3/database/ # switch to super doer(sudo) # sudo su # Download the snapshot from s3 to database folder snapshot_name=prod2-"$year_month"-01-02-00-generico.sql s3cmd get s3://prod-generico-storage/mysql/"$snapshot_name".gz echo "S3 Download done at: $(date)" # extracting the zip #zcat "$snapshot_name".gz > "$snapshot_name" # replacing the prod2-generico DB with yearmonth-generico # shellcheck disable=SC2039 plain_year_month=$(echo "$year_month" | sed 's:[!@#$%^&*()=-]::g') echo "$plain_year_month" #sed -i "s#prod2\-generico#'$plain_year_month'\-generico#" "$snapshot_name" # split the dump for specific tables # shellcheck disable=SC2006 echo "Start: table spliting" sh mysqldumpsplitter.sh --source "$snapshot_name".gz --extract DBTABLE --match_str "prod2-generico.(inventory|invoices|drugs|invoice-items|stores|distributors|store-dc-mapping|inventory-1|invoice-items-1|return-items|returns-to-dc|debit-notes)" --decompression gzip --compression none --output_dir ./out/tables/"$plain_year_month"/ echo "End: table spliting at: $(date)" db_password="dev-server" db_name="generico_$plain_year_month" echo "$db_name", "$db_password" mysql -u admin -h stag-mysql.cdaq46oaug4x.ap-south-1.rds.amazonaws.com -p"$db_password" -e "drop database IF EXISTS $db_name;" mysql -u admin -h stag-mysql.cdaq46oaug4x.ap-south-1.rds.amazonaws.com -p"$db_password" -e "create database IF NOT EXISTS $db_name;" # mysql -u server -p"$db_password" -e "drop database IF EXISTS $db_name;" # mysql -u server -p"$db_password" -e "create database IF NOT EXISTS $db_name;" # import all the tables echo "Start: table import to DB" for filename in ./out/tables/"$plain_year_month"/*.sql; do echo "$filename start at: $(date)" mysql -u admin -h stag-mysql.cdaq46oaug4x.ap-south-1.rds.amazonaws.com -p"$db_password" "$db_name" < "$filename" # mysql -u server -p"$db_password" "$db_name" < "$filename" done
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/wc-inventory/restore_db_tables.sh
restore_db_tables.sh
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") # getting inventory snapshot data cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() cur_year = datetime.datetime.now(tz=gettz('Asia/Kolkata')).year prev_date = cur_date - datetime.timedelta(1) logger.info('Inventory snapshot for date ' + str(cur_date)) stores_query = """ select distinct id as "store-id" from "prod2-generico"."stores" """ stores = rs_db.get_df(stores_query) # expiry_loss_zp status1 = False try: exipry_loss_query = """ select d.*, e."name", s."name" as "cost-centre", e."gstn", r."id" as "return-item-id", r."taxable" as "taxable-value", r."gst" as "tax-rate", r."gst-amount" as "tax-value", r."net" as "return-net-value", e."id" as "distributor-id", "drug-id", "invoice-number", "invoice-date", f."type", e.type as "dist-type", f."drug-name", x.id as "invt-id", "batch-number", x."expiry" from "prod2-generico"."return-items" r join "prod2-generico"."debit-notes" d on r."debit-note-reference" = d."id" join "prod2-generico"."inventory" x on r."inventory-id" = x."id" join "prod2-generico"."invoices" i on i."id" = x."invoice-id" join "prod2-generico"."distributors" e on d."dist-id" = e."id" join "prod2-generico"."stores" s on d."store-id" = s."id" join "prod2-generico"."drugs" f on f."id" = x."drug-id" where d."dist-id" != 64 and d."status" in ('accounted', 'settled') and d."category" = 'product-expired' and (date(d."settled-at") = date(Dateadd(d,-1,current_date)) or date(d."accounted-at") = date(Dateadd(d,-1,current_date)) ) """ expiry_loss = rs_db.get_df(exipry_loss_query) logger.info('fetched expiry_loss data for returns whose debit note is settled/accounted yesterday') schema = 'prod2-generico' table_name = 'expiry-loss-accounts' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) truncate_query = ''' delete from "prod2-generico"."expiry-loss-accounts" where (date("settled-at") = date(Dateadd(d,-1,current_date)) or date("accounted-at") = date(Dateadd(d,-1,current_date)) ) ''' rs_db_write.execute(truncate_query) logger.info(str(table_name) + ' table deleted for yesterday data to avoid data duplication in case of multiple runs') s3.write_df_to_db(df=expiry_loss[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(str(table_name) + ' table appended') status1 = True except: logger.info('expiry_loss_ load failed') # WC_inventory_invoices status2 = False try: # Keeping Audit loss data for current year only audit_loss_query = """ SELECT b."id" AS "inventory-check-item-id", b."check-id", a."type" AS "audit-type", a."created-at" AS "audit-date", a."store-id", s."name" AS "store-name", b."drug-id", d."drug-name", d."type", d."category", b."inventory-id", b."expected", b."accounted", b."status", COALESCE(t."sum-changes", 0) AS "sum-changes", COALESCE((b."accounted" + t."sum-changes"), 0) AS "final-accounted", i."ptr" AS "zp-ptr", i."purchase-rate" AS "wc-ptr", COALESCE((b."expected" - (b."accounted" + t."sum-changes")), 0) AS "qty-diff", COALESCE((b."expected" * i."ptr"), 0) AS "expected-value", COALESCE(((b."accounted" + t."sum-changes") * i."ptr"), 0) AS "accounted-value" FROM "prod2-generico"."inventory-check-1" a JOIN "prod2-generico"."inventory-check-items-1" b ON a."id" = b."check-id" LEFT JOIN (SELECT y."store-id", y."inventory-id", y."inventory-check-item-id", SUM(y."change") AS "sum-changes" FROM "prod2-generico"."inventory-changes-1" y WHERE y."change-reason" IN ('audit-reconciliation' , 'found-later', 'multiple-scanned', 'pack-size-error') GROUP BY y."store-id" , y."inventory-id" , y."inventory-check-item-id") t ON b."id" = t."inventory-check-item-id" LEFT JOIN "prod2-generico"."stores" s ON s."id" = a."store-id" LEFT JOIN "prod2-generico"."drugs" d ON d."id" = b."drug-id" LEFT JOIN "prod2-generico"."inventory-1" i ON i."id" = b."inventory-id" WHERE date(a."created-at") = date(Dateadd(d,-1,current_date)) """ audit_loss = rs_db.get_df(audit_loss_query) logger.info('fetched audit_loss data for yesterday') schema = 'prod2-generico' table_name2 = 'audit-loss-accounts' table_info2 = helper.get_table_info(db=rs_db_write, table_name=table_name2, schema=schema) truncate_query = ''' delete from "prod2-generico"."audit-loss-accounts" where date("audit-date") = date(Dateadd(d,-1,current_date)) ''' rs_db_write.execute(truncate_query) logger.info(str(table_name2) + ' table deleted for yesterday data to avoid duplicate data in case of multiple runs') truncate_query = ''' delete from "prod2-generico"."audit-loss-accounts" where extract (y from "audit-date") != {current_year} '''.format(current_year= cur_year) rs_db_write.execute(truncate_query) logger.info(str(table_name2) + ' table deleted for previous years data') s3.write_df_to_db(df=audit_loss[table_info2['column_name']], table_name=table_name2, db=rs_db_write, schema=schema) logger.info(str(table_name2) + ' table uploaded') status2 = True except: logger.info('audit_loss load failed') if (status1 & status2) is True: status = 'Success' else: status = 'Failed' end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name} & {table_name2} table updated", mail_body=f"{table_name} & {table_name2} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/expiry-audit-loss/expiry-audit-loss.py
expiry-audit-loss.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet import pandas as pd import dateutil import datetime as dt from dateutil.tz import gettz import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB(read_only=False) rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'pmf-conversion-table' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema='prod2-generico') # max session id try: max_session_q = """ select max("session-id") max_session_id FROM "prod2-generico"."pmf-conversion-table" """ max_session = rs_db.get_df(max_session_q) max_session.columns = [c.replace('-', '_') for c in max_session.columns] max_session = max_session.max_session_id[0] base_q = f""" select ad."store-id" , ad."unique-id" as "session-id", ad."patients-store-orders-id" , ad."requested-drug-id" , ad."requested-drug-name" , ad."suggested-drug-id", ad."suggested-drug-name", ad."patient-phone" ,ad."patient-id", d2."type" as suggested_drug_type, d."type" as requested_drug_type, prm."bill-id" as bill_id_thru_pso ,sda."drug-id" as ass_drug, ad."created-by" as "session-created-by", ad."created-at" as "session-date", sda."is-active" as assortment_active, plt."tag" as session_source, nvl(ga."generic-affinity-score",0)"generic-affinity-score" , cl."patient-phone" as called_patient, max(sgdp."requested-selling-rate")"requested-drug-rate", max(ad."suggested-drug-rate")"suggested-drug-rate", max(ad."requested-drug-quantity")"requested-drug-quantity", max(ad."suggested-drug-quantity")"suggested-drug-quantity", max(ad."required-drug-quantity")"required-drug-quantity", max(prm."bill-id") over (partition by ad."unique-id") as max_bill, max(prm."gross-quantity") as "drug-sold", max(case when b."net-payable">0 then 1 else 0 end) as "billed-same-day", max(case when sa."gross-quantity">0 then 1 else 0 end) as "drug-sold-same-day", max(ad."suggested-drug-inventory-quantity") "suggested-drug-inventory-quantity", max(ad."requested-drug-inventory-quantity") "requested-drug-inventory-quantity", max(prm."created-by") over (partition by ad."unique-id") as "max-pso-created-by" from "prod2-generico"."alternate-drugs" ad left join "prod2-generico"."patient-requests-metadata" prm on prm.id = ad."patients-store-orders-id" left join "prod2-generico".patients p on right(REPLACE(REPLACE(p."phone",'.',''),' ',''), 10) = right(REPLACE(REPLACE(ad."patient-phone",'.',''),' ',''), 10) left join "prod2-generico"."bills-1" b on b."patient-id" = (case when ad."patient-id" is null then prm."patient-id" when ad."patient-id" is null and prm."patient-id" is null then p.id else ad."patient-id" end) and date(ad."created-at") = date(b."created-at") left join "prod2-generico"."sales-agg" sa on sa."patient-id" = (case when ad."patient-id" is null then prm."patient-id" when ad."patient-id" is null and prm."patient-id" is null then p.id else ad."patient-id" end) and sa."drug-id" = prm."drug-id" and date(sa."created-date") = date(ad."created-at") left join "prod2-generico"."store-drug-assortment" sda on sda."store-id" = ad."store-id" and sda."drug-id" = ad."requested-drug-id" and sda."is-active" =1 left join "prod2-generico".drugs d on d.id = ad."requested-drug-id" left join "prod2-generico".drugs d2 on d2.id = ad."suggested-drug-id" inner join "prod2-generico"."pmf-login-tag" plt on ad."created-by" = plt."login-id" left join "prod2-generico"."generic-affinity" ga on ga."patient-id"=(case when ad."patient-id" is null then prm."patient-id" when ad."patient-id" is null and prm."patient-id" is null then p.id else ad."patient-id" end) left join ( select "drug-id" , max("selling-rate") as "requested-selling-rate" from "prod2-generico"."store-group-drug-price" i group by 1 ) sgdp on ad."requested-drug-id" = sgdp."drug-id" left join ( select right(callfrom, 10) as "patient-phone", min(starttime) as "call-time" from "prod2-generico"."prod2-generico".exotelincomingcalllogs e where calltype = 'completed' group by 1, date(starttime)) cl on ad."patient-phone" = cl."patient-phone" and date(ad."created-at") = date(cl."call-time") where ad."unique-id" > {max_session} group by ad."store-id" , ad."unique-id" , ad."patients-store-orders-id" , ad."requested-drug-id" , ad."requested-drug-name" , prm."drug-id", prm."drug-name" , prm."bill-id",sda."drug-id",ga."generic-affinity-score",d."type",d2."type", ad."created-by", ad."suggested-drug-id", ad."suggested-drug-name", ad."patient-phone", ad."created-at", sda."is-active", plt."tag", cl."patient-phone" ,ad."patient-id",prm."created-by" """ base = rs_db.get_df(base_q) base.columns = [c.replace('-', '_') for c in base.columns] base['assortment_active'].fillna(0, inplace=True) # assortment flag conditions = [( (base.suggested_drug_id.isnull()) & (base['assortment_active'] == 0) ), ( (base.suggested_drug_id.isnull()) & (base['assortment_active'] == 1) ), (base.suggested_drug_id.notnull()) ] choices = [1, 0, 0] base['flag_not_assort'] = np.select(conditions, choices) base2 = base[(base['session_id'] == '1663646353324')] # unavailability flag conditions = [ (base['flag_not_assort'] == 1), (base['required_drug_quantity'] > base[ 'suggested_drug_inventory_quantity']), (base['required_drug_quantity'] <= base[ 'suggested_drug_inventory_quantity']) ] choices = [1, 1, 0] base['flag_unavailability'] = np.select(conditions, choices) # sessions where patient had called base['patient_called_flag'] = np.where(base['called_patient'].isnull(), 0, 1) # session converted (anyone drug converted then converted) base['session_conv_flag'] = np.where(base['max_bill'].isnull(), 0, 1) # session drug converted base['session_drug_conv_flag'] = np.where(base['bill_id_thru_pso'].isnull(), 0, 1) # drug level expensive or not base['drug_expensive_flag'] = np.where((base['suggested_drug_id'] != base['requested_drug_id']) & (base['suggested_drug_rate'] > base['requested_drug_rate']), 1, 0) session_expensive_count = base.groupby('session_id')['drug_expensive_flag'].sum().reset_index() session_expensive_count = session_expensive_count.rename(columns={'drug_expensive_flag': 'expensive_drugs'}) session_not_in_assortment_count = base.groupby('session_id')['flag_not_assort'].sum().reset_index() session_not_in_assortment_count = session_not_in_assortment_count.rename( columns={'flag_not_assort': 'not_in_assortment_drugs'}) session_drug_count = base[(base['suggested_drug_id'] != base['requested_drug_id'])].groupby('session_id')[ 'suggested_drug_id'].nunique().reset_index() session_drug_count = session_drug_count.rename(columns={'suggested_drug_id': 'suggested_drug_cnt'}) session_ethical_count = base[base['requested_drug_type'] == 'ethical'].groupby('session_id')[ 'requested_drug_id'].nunique().reset_index() session_ethical_count = session_ethical_count.rename(columns={'requested_drug_id': 'eth_drugs'}) session_generic_count = base[base['requested_drug_type'] == 'generic'].groupby('session_id')[ 'requested_drug_id'].nunique().reset_index() session_generic_count = session_generic_count.rename(columns={'requested_drug_id': 'gen_drugs'}) session_unavailable_count = base.groupby('session_id')['flag_unavailability'].sum().reset_index() session_unavailable_count = session_unavailable_count.rename(columns={'flag_unavailability': 'unavailable_drugs'}) base = pd.merge(base, session_ethical_count, how='left', on=['session_id']) base = pd.merge(base, session_generic_count, how='left', on=['session_id']) base = pd.merge(base, session_expensive_count, how='left', on=['session_id']) base = pd.merge(base, session_drug_count, how='left', on=['session_id']) base = pd.merge(base, session_not_in_assortment_count, how='left', on=['session_id']) base = pd.merge(base, session_unavailable_count, how='left', on=['session_id']) # base2=base[(base['session_id']== '1663646353324')] # ethical prefering session base['ethical_preference_issue'] = np.where( (base['eth_drugs'] > base['gen_drugs']) & (base['generic_affinity_score'] <= 2), 1, 0) # drug rate comparison base['rate_issue'] = np.where((base['expensive_drugs'] > 0), 1, 0) # assortment issue base['assortment_issue'] = np.where((base['not_in_assortment_drugs'] > 0), 1, 0) # availability issue base['availability_issue'] = np.where((base['unavailable_drugs'] > 0), 1, 0) # issue conditions = [ (base['assortment_issue'] == 1), (base['availability_issue'] == 1), (base['rate_issue'] == 1), (base['ethical_preference_issue'] == 1) ] choices = ['assortment', 'availability', 'rate', 'ethical preference'] base['issue'] = np.select(conditions, choices) base[['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'patient_id', 'drug_sold']] = \ base[['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'patient_id', 'drug_sold']].fillna(0) base[ ['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'assortment_active', 'patient_id', 'drug_sold']] = base[ ['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'assortment_active', 'patient_id', 'drug_sold']] \ .apply(np.int64) base[['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'patient_id', 'drug_sold']] = \ base[['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'patient_id', 'drug_sold']].replace({0: None}) base.columns = [c.replace('_', '-') for c in base.columns] base['etl-created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') # To Avoid Duplication truncate_query = f""" DELETE FROM "prod2-generico"."pmf-conversion-table" WHERE "session-id" > {max_session}; """ logger.info(truncate_query) rs_db.execute(truncate_query) s3.write_df_to_db(df=base[table_info['column_name']], table_name='pmf-conversion-table', db=rs_db, schema='prod2-generico') except Exception as e: logger.exception(e) finally: rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/pmf-conversion-table/pmf-conversion-table.py
pmf-conversion-table.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet import pandas as pd import dateutil import datetime as dt from dateutil.tz import gettz import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'pmf-conversion-table' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema='prod2-generico') table_name1 = 'pmf-conversion-temp' table_info1 = helper.get_table_info(db=rs_db, table_name=table_name1, schema='prod2-generico') try: # update session id update_session_q = """ select "session-id" FROM "prod2-generico"."pmf-conversion-table" pmf left join "prod2-generico"."patient-requests-metadata" prm on pmf."patients-store-orders-id" = prm.id where nvl(pmf."bill-id-thru-pso", 0) != nvl(prm."bill-id", 0) group by 1 """ update_session = rs_db.get_df(update_session_q) truncate_query = f""" DELETE FROM "prod2-generico"."pmf-conversion-temp" """ logger.info(truncate_query) rs_db.execute(truncate_query) s3.write_df_to_db(df=update_session[table_info1['column_name']], table_name='pmf-conversion-temp', db=rs_db, schema='prod2-generico') base_q = f""" select ad."store-id" , ad."unique-id" as "session-id", ad."patients-store-orders-id" , ad."requested-drug-id" , ad."requested-drug-name" , ad."suggested-drug-id", ad."suggested-drug-name", ad."patient-phone" ,ad."patient-id", d2."type" as suggested_drug_type, d."type" as requested_drug_type, prm."bill-id" as bill_id_thru_pso ,sda."drug-id" as ass_drug, ad."created-by" as "session-created-by", ad."created-at" as "session-date", sda."is-active" as assortment_active, plt."tag" as session_source, nvl(ga."generic-affinity-score",0)"generic-affinity-score" , cl."patient-phone" as called_patient, max(sgdp."requested-selling-rate")"requested-drug-rate", max(ad."suggested-drug-rate")"suggested-drug-rate", max(ad."requested-drug-quantity")"requested-drug-quantity", max(ad."suggested-drug-quantity")"suggested-drug-quantity", max(ad."required-drug-quantity")"required-drug-quantity", max(prm."bill-id") over (partition by ad."unique-id") as max_bill, max(prm."gross-quantity") as "drug-sold", max(case when b."net-payable">0 then 1 else 0 end) as "billed-same-day", max(case when sa."gross-quantity">0 then 1 else 0 end) as "drug-sold-same-day", max(ad."suggested-drug-inventory-quantity") "suggested-drug-inventory-quantity", max(ad."requested-drug-inventory-quantity") "requested-drug-inventory-quantity", max(prm."created-by") over (partition by ad."unique-id") as "max-pso-created-by" from "prod2-generico"."alternate-drugs" ad inner join "prod2-generico"."pmf-conversion-temp" pct on ad."unique-id"= pct."session-id" left join "prod2-generico"."patient-requests-metadata" prm on prm.id = ad."patients-store-orders-id" left join "prod2-generico".patients p on right(REPLACE(REPLACE(p."phone",'.',''),' ',''), 10) = right(REPLACE(REPLACE(ad."patient-phone",'.',''),' ',''), 10) left join "prod2-generico"."bills-1" b on b."patient-id" = (case when ad."patient-id" is null then prm."patient-id" when ad."patient-id" is null and prm."patient-id" is null then p.id else ad."patient-id" end) and date(ad."created-at") = date(b."created-at") left join "prod2-generico"."sales-agg" sa on sa."patient-id" = (case when ad."patient-id" is null then prm."patient-id" when ad."patient-id" is null and prm."patient-id" is null then p.id else ad."patient-id" end) and sa."drug-id" = prm."drug-id" and date(sa."created-date") = date(ad."created-at") left join "prod2-generico"."store-drug-assortment" sda on sda."store-id" = ad."store-id" and sda."drug-id" = ad."requested-drug-id" and sda."is-active" =1 left join "prod2-generico".drugs d on d.id = ad."requested-drug-id" left join "prod2-generico".drugs d2 on d2.id = ad."suggested-drug-id" inner join "prod2-generico"."pmf-login-tag" plt on ad."created-by" = plt."login-id" left join "prod2-generico"."generic-affinity" ga on ga."patient-id"=(case when ad."patient-id" is null then prm."patient-id" when ad."patient-id" is null and prm."patient-id" is null then p.id else ad."patient-id" end) left join ( select "drug-id" , max("selling-rate") as "requested-selling-rate" from "prod2-generico"."store-group-drug-price" i group by 1 ) sgdp on ad."requested-drug-id" = sgdp."drug-id" left join ( select right(callfrom, 10) as "patient-phone", min(starttime) as "call-time" from "prod2-generico"."prod2-generico".exotelincomingcalllogs e where calltype = 'completed' group by 1, date(starttime)) cl on ad."patient-phone" = cl."patient-phone" and date(ad."created-at") = date(cl."call-time") group by ad."store-id" , ad."unique-id" , ad."patients-store-orders-id" , ad."requested-drug-id" , ad."requested-drug-name" , prm."drug-id", prm."drug-name" , prm."bill-id",sda."drug-id",ga."generic-affinity-score",d."type",d2."type", ad."created-by", ad."suggested-drug-id", ad."suggested-drug-name", ad."patient-phone", ad."created-at", sda."is-active", plt."tag", cl."patient-phone" , ad."patient-id" , prm."created-by" """ base = rs_db.get_df(base_q) base.columns = [c.replace('-', '_') for c in base.columns] base['assortment_active'].fillna(0, inplace=True) # assortment flag conditions = [( (base.suggested_drug_id.isnull()) & (base['assortment_active'] == 0) ), ( (base.suggested_drug_id.isnull()) & (base['assortment_active'] == 1) ), (base.suggested_drug_id.notnull()) ] choices = [1, 0, 0] base['flag_not_assort'] = np.select(conditions, choices) base2 = base[(base['session_id'] == '1663646353324')] # unavailability flag conditions = [ (base['flag_not_assort'] == 1), (base['required_drug_quantity'] > base[ 'suggested_drug_inventory_quantity']), (base['required_drug_quantity'] <= base[ 'suggested_drug_inventory_quantity']) ] choices = [1, 1, 0] base['flag_unavailability'] = np.select(conditions, choices) # sessions where patient had called base['patient_called_flag'] = np.where(base['called_patient'].isnull(), 0, 1) # session converted (anyone drug converted then converted) base['session_conv_flag'] = np.where(base['max_bill'].isnull(), 0, 1) # session drug converted base['session_drug_conv_flag'] = np.where(base['bill_id_thru_pso'].isnull(), 0, 1) # drug level expensive or not base['drug_expensive_flag'] = np.where((base['suggested_drug_id'] != base['requested_drug_id']) & (base['suggested_drug_rate'] > base['requested_drug_rate']), 1, 0) session_expensive_count = base.groupby('session_id')['drug_expensive_flag'].sum().reset_index() session_expensive_count = session_expensive_count.rename(columns={'drug_expensive_flag': 'expensive_drugs'}) session_not_in_assortment_count = base.groupby('session_id')['flag_not_assort'].sum().reset_index() session_not_in_assortment_count = session_not_in_assortment_count.rename( columns={'flag_not_assort': 'not_in_assortment_drugs'}) session_drug_count = base[(base['suggested_drug_id'] != base['requested_drug_id'])].groupby('session_id')[ 'suggested_drug_id'].nunique().reset_index() session_drug_count = session_drug_count.rename(columns={'suggested_drug_id': 'suggested_drug_cnt'}) session_ethical_count = base[base['requested_drug_type'] == 'ethical'].groupby('session_id')[ 'requested_drug_id'].nunique().reset_index() session_ethical_count = session_ethical_count.rename(columns={'requested_drug_id': 'eth_drugs'}) session_generic_count = base[base['requested_drug_type'] == 'generic'].groupby('session_id')[ 'requested_drug_id'].nunique().reset_index() session_generic_count = session_generic_count.rename(columns={'requested_drug_id': 'gen_drugs'}) session_unavailable_count = base.groupby('session_id')['flag_unavailability'].sum().reset_index() session_unavailable_count = session_unavailable_count.rename(columns={'flag_unavailability': 'unavailable_drugs'}) base = pd.merge(base, session_ethical_count, how='left', on=['session_id']) base = pd.merge(base, session_generic_count, how='left', on=['session_id']) base = pd.merge(base, session_expensive_count, how='left', on=['session_id']) base = pd.merge(base, session_drug_count, how='left', on=['session_id']) base = pd.merge(base, session_not_in_assortment_count, how='left', on=['session_id']) base = pd.merge(base, session_unavailable_count, how='left', on=['session_id']) # base2=base[(base['session_id']== '1663646353324')] # ethical prefering session base['ethical_preference_issue'] = np.where( (base['eth_drugs'] > base['gen_drugs']) & (base['generic_affinity_score'] <= 2), 1, 0) # drug rate comparison base['rate_issue'] = np.where((base['expensive_drugs'] > 0), 1, 0) # assortment issue base['assortment_issue'] = np.where((base['not_in_assortment_drugs'] > 0), 1, 0) # availability issue base['availability_issue'] = np.where((base['unavailable_drugs'] > 0), 1, 0) # issue conditions = [ (base['assortment_issue'] == 1), (base['availability_issue'] == 1), (base['rate_issue'] == 1), (base['ethical_preference_issue'] == 1) ] choices = ['assortment', 'availability', 'rate', 'ethical preference'] base['issue'] = np.select(conditions, choices) base[['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'patient_id', 'drug_sold']] = \ base[['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'patient_id', 'drug_sold']].fillna(0) base[ ['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'assortment_active', 'patient_id', 'drug_sold']] = base[ ['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'assortment_active', 'patient_id', 'drug_sold']] \ .apply(np.int64) base[['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'patient_id', 'drug_sold']] = \ base[['patients_store_orders_id', 'max_bill', 'suggested_drug_id', 'bill_id_thru_pso', 'patient_id', 'drug_sold']].replace({0: None}) base.columns = [c.replace('_', '-') for c in base.columns] base['etl-created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') # To Avoid Duplication truncate_query = f""" DELETE FROM "prod2-generico"."pmf-conversion-table" where "session-id" in (select "session-id" from "prod2-generico"."pmf-conversion-temp" group by 1) """ logger.info(truncate_query) rs_db.execute(truncate_query) s3.write_df_to_db(df=base[table_info['column_name']], table_name='pmf-conversion-table', db=rs_db, schema='prod2-generico') except Exception as e: logger.exception(e) finally: rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/pmf-conversion-table/pmf-update.py
pmf-update.py
"" import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import dateutil import datetime from dateutil.tz import gettz import numpy as np from datetime import timedelta parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'system-drug-assortment-count' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) try: # count of drugs in assortment df_q = """ select "type",count(distinct d.id) "drug-id-count", count(distinct case when "is-validated" ='Yes' then d.id end) "verified-drug-count" from "prod2-generico".drugs d group by 1 """ df = rs_db.get_df(df_q) # etl df['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df['created-by'] = 'etl-automation' df['updated-by'] = 'etl-automation' if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where date("created-at")=current_date''' rs_db.execute(truncate_query) s3.write_df_to_db(df=df[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) except : raise Exception("error") finally: rs_db.close_connection() rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/system-drug-assortment-count/system-drug-assortment-count.py
system-drug-assortment-count.py
"" import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet import pandas as pd import dateutil import datetime from dateutil.tz import gettz import numpy as np from datetime import timedelta parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-d', '--full_run', default=0, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env full_run = args.full_run os.environ['env'] = env logger = get_logger() logger.info(f"full_run: {full_run}") rs_db = DB() rs_db_write = DB(read_only=False) rs_db.open_connection() rs_db_write.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'cash-burn-tableau-health-board' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) # max of data burn_q = """ select date(max("burn-date")) max_exp from "prod2-generico"."cash-burn-tableau-health-board" """ rs_db.execute(burn_q, params=None) max_exp_date: pd.DataFrame = rs_db.cursor.fetch_dataframe() max_exp_date['max_exp'].fillna(np.nan ,inplace=True) print(max_exp_date.info()) max_exp_date = max_exp_date['max_exp'].to_string(index=False) print(max_exp_date) # Read from gsheet gs = GoogleSheet() burn_data = gs.download(data={ "spreadsheet_id": "1WR5VeO1OyBqwMp3xXF2hn9ZIA5BxmVaqqEUBbOv4tzk", "sheet_name": "cash burn", "listedFields": [] }) df = pd.DataFrame(burn_data) print(type(df['date'])) df[['date']] = df[ ['date']] \ .apply(pd.to_datetime, errors='coerce') print(type(df['date'])) burn = df.copy() # params if full_run or max_exp_date == 'NaN': start = '2017-05-13' else: start = max_exp_date start = dateutil.parser.parse(start) startminus2 = start - timedelta(days=2) burn = burn[(burn['date'] >= start)] # etl burn['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') burn['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') burn['created-by'] = 'etl-automation' burn['updated-by'] = 'etl-automation' burn.columns = [c.replace('_', '-') for c in burn.columns] dict = {'date': 'burn-date'} burn.rename(columns=dict, inplace=True) if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "burn-date">='{startminus2}' ''' rs_db_write.execute(truncate_query) s3.write_df_to_db(df=burn[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/cash-burn-tableau-health-board/cash-burn-tableau-health-board.py
cash-burn-tableau-health-board.py
import argparse import os import sys from datetime import datetime as dt from datetime import timedelta from warnings import filterwarnings as fw import numpy as np import pandas as pd fw('ignore') sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper.parameter.job_parameter import parameter parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) job_params = parameter.get_params(job_id=131) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = job_params['email_to'] logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() read_schema = 'prod2-generico' ################################################################# # ABV Module ################################################################# # Last Monday : today = dt.today().date() last_monday = today - timedelta(days=(today.weekday())) logger.info(last_monday) abv_q = f""" select pm."primary-store-id", cv."abv-seg", cv."patient-id", recency, frequency, stage, p.phone, cv."last-bill" from "{read_schema}"."crm-view" cv left join "{read_schema}"."patients-metadata-2" pm on cv."patient-id" = pm.id left join "{read_schema}".patients p on pm.id = p.id where cv."calculation-date" = '{last_monday}' and cv."r-score" >= 4 and cv."f-score" >= 3;""" logger.info(f"query for abv module data : {abv_q}") abv_driver = rs_db.get_df(abv_q) # Creating identity for clevertap abv_driver['phone'] = abv_driver['phone'].apply(lambda x: '91' + x) logger.info(f"Campaign will run for : {abv_driver.stage.unique()}") logger.info(f"recency min : {abv_driver.recency.min()}") logger.info(f"recency max : {abv_driver.recency.max()}") logger.info(f"frequency min : {abv_driver.frequency.min()}") logger.info(f"frequency max : {abv_driver.frequency.max()}") abv_dis = pd.crosstab(index=abv_driver['primary-store-id'], columns=abv_driver['abv-seg'], values=abv_driver['patient-id'], aggfunc='nunique', normalize='index') * 100 abv_dis['major_contributor'] = abv_dis.idxmax(axis=1) abv_dis = abv_dis.reset_index() store_abv_campaign = abv_dis.groupby('major_contributor')['primary-store-id'].apply(lambda x: list(np.unique(x))) logger.info(store_abv_campaign) patient_abv = abv_dis[['primary-store-id', 'major_contributor']] patient_abv = pd.merge(patient_abv, abv_driver, how='left', left_on=['primary-store-id', 'major_contributor'], right_on=['primary-store-id', 'abv-seg']) abv_patient_count = patient_abv.groupby('major_contributor')['patient-id'].nunique() logger.info(f"ABV driver campaign patient count {abv_patient_count}", ) patient_abv = patient_abv[['primary-store-id', 'abv-seg', 'patient-id']] abv_driver_mail_body = f""" Hey Team, For ABV Driver campaign (Targeted) patients list is attached in mail Campaign will run for patients where NOB is greater than {abv_driver.frequency.min()} and recency of customer less than {abv_driver.recency.max()} days Customers will fall in stages : {abv_driver.stage.unique()} Store-wise campaign : list attached Please follow targeted customer for their ABV segments ( Neglect if segment size <1000) Code will be open but sms campaign will run for mentioned patients only. Test/Control split - 90/10 Code : Open Min purchase condition : based on targeted abv segment Max per patients : 1 Conversion condition : Charged (Next 30 Days) & total-amount > abv-seg(max) *Marketing team : suggest/create promo-codes *Pooja : send SMS-draft for campaigns """ sac = s3.save_df_to_s3(df=pd.DataFrame(store_abv_campaign), file_name="Store_ABV_Campaigns.csv", index_label='ABV Segment', index=True) acpl = s3.save_df_to_s3(df=pd.DataFrame(patient_abv), file_name="ABV_Campaign_Patients_list.csv") # Sending email subject = 'ABV Driver Campaign' mail_body = abv_driver_mail_body email = Email() files = [sac, acpl] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=files) ################################################################# # Lost Customers Module ################################################################# lost_q = f""" select pm."primary-store-id", cv."patient-id", recency, frequency, stage, p.phone, "last-bill" from "{read_schema}"."crm-view" cv left join "{read_schema}"."patients-metadata-2" pm on cv."patient-id" = pm.id left join "{read_schema}".patients p on pm.id = p.id where cv."calculation-date" = '{last_monday}' and stage in ('Hibernating', 'At Risk', 'Can\\\'t Lose them');""" logger.info(f"query for lost customer module data : {lost_q}") lost_customers = rs_db.get_df(lost_q) store_wise_segment = pd.pivot_table(data=lost_customers, index='primary-store-id', columns='stage', values='patient-id', aggfunc='nunique').reset_index() segment_properties = pd.pivot_table(data=lost_customers, index='stage', values=['recency', 'frequency', 'last-bill'], aggfunc=['min', 'max']).reset_index() segment_size = pd.pivot_table(data=lost_customers, index='stage', values='patient-id', aggfunc=['nunique']).reset_index() lost_customers_data = lost_customers[['primary-store-id', 'stage', 'patient-id']].drop_duplicates() lost_customer_mail_body = """ Hey Team, Properties for lost customer segments is attached, Please create campaign using those properties Can't lose them : High priority At risk : Medium priority Hibernating : low priority Suggest promo-codes accordingly Segment size is also attached for reference Test/Control split - 90/10 Code : Restricted Min purchase condition : 1 Max per patients : 1 Discount : based on priority Conversion condition : Charged (Next 30 Days) *Marketing team : suggest/create promo-codes *Pooja : send SMS-draft for campaigns Thanks & Regards """ sws = s3.save_df_to_s3(df=store_wise_segment, file_name="Store_Lost_Customers.csv") lcsp = s3.save_df_to_s3(df=segment_properties, file_name="Lost_Customer_Segment_Properties.csv") ss = s3.save_df_to_s3(df=segment_size, file_name="Lost_Customer_Segment_Size.csv") lsd = s3.save_df_to_s3(df=lost_customers_data, file_name="Lost_Customer_Data.csv") # Sending email subject = 'Lost Customer Campaign' mail_body = lost_customer_mail_body email = Email() files = [sws, lcsp, ss, lsd] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=files) ################################################################# # Retention Module ################################################################# retention_q = f""" select pm."primary-store-id", cv."patient-id", recency, frequency, stage, p.phone, "last-bill" from "{read_schema}"."crm-view" cv left join "{read_schema}"."patients-metadata-2" pm on cv."patient-id" = pm.id left join "{read_schema}".patients p on pm.id = p.id where cv."calculation-date" = '{last_monday}' and stage in ('Promising') and "m-score" >= 4;""" logger.info(f"query for retention module data : {retention_q}") retention = rs_db.get_df(retention_q) retention_data = retention[['primary-store-id', 'stage', 'patient-id']].drop_duplicates() store_wise_segment = pd.pivot_table(data=retention, index='primary-store-id', columns='stage', values='patient-id', aggfunc='nunique').reset_index() segment_properties = pd.pivot_table(data=retention, index='stage', values=['recency', 'frequency', 'last-bill'], aggfunc=['min', 'max']).reset_index() segment_size = pd.pivot_table(data=retention, index='stage', values='patient-id', aggfunc=['nunique']).reset_index() retention_mail_body = """ Hey Team, Properties for retention campaign is attached, Focus is to increase quarter on quarter retention Please create campaign using those properties Suggest promo-codes accordingly Segment size is also attached for reference Code will be open but sms campaign will run for mentioned patients only. Test/Control split - 90/10 Code : Open Min purchase condition : minimum monetary value of segment Max per patients : 4 (NOB2-4) NOB : 2-4 Conversion condition : Charged (Next 30 Days) *Marketing team : suggest/create promo-codes *Pooja : send SMS-draft for campaigns Thanks & Regards """ sws = s3.save_df_to_s3(df=store_wise_segment, file_name="Store_Retention.csv") lcsp = s3.save_df_to_s3(df=segment_properties, file_name="Retention_Segment_Properties.csv") ss = s3.save_df_to_s3(df=segment_size, file_name="Retention_Segment_Size.csv") rd = s3.save_df_to_s3(df=retention_data, file_name="Retention_Customer_Data.csv") # Sending email subject = 'Retention Campaign' mail_body = retention_mail_body email = Email() files = [sws, lcsp, ss, rd] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=files) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/campaign-recommendation/campaign-recommendation.py
campaign-recommendation.py
from zeno_etl_libs.db.db import DB, MongoDB, MSSql import sys import os import argparse sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd from datetime import datetime from dateutil.tz import gettz parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env # Part 1: Preferred Distributor mg_db = MongoDB() mg_client = mg_db.open_connection("generico-crm") db = mg_client['generico-crm'] collection = db["wmsDrugDistributorMappingV2"].find() dist_list = pd.DataFrame(list(collection)) pref_dist=dist_list[['wms_id','is_active','drug_id','drug_name','rank1','rank1_name','moq']] pref_dist=pref_dist.rename(columns={'rank1':'distributor_id','rank1_name':'distributor_name'}) pref_dist[['drug_id','distributor_id']]=\ pref_dist[['drug_id','distributor_id']].apply(pd.to_numeric, errors='ignore').astype('Int64') created_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") pref_dist['created-date']=datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") pref_dist['etl-created-at']=datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") updated_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") pref_dist['etl-updated-at']=datetime.strptime(updated_at,"%Y-%m-%d %H:%M:%S") pref_dist['etl-created-by'] = 'etl-automation' pref_dist['etl-updated-by'] = 'etl-automation' pref_dist.columns = [c.replace('_', '-') for c in pref_dist.columns] rs_db= DB() rs_db.open_connection() s3=S3() schema = "prod2-generico" table_name = "preferred-distributor" table_info = helper.get_table_info(db=rs_db , table_name=table_name, schema=schema) #Truncate the Query snapshot_date = datetime.now().date() truncate_query = ''' delete from "prod2-generico"."preferred-distributor" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=pref_dist[table_info['column_name']], table_name=table_name, db=rs_db, schema='prod2-generico') # Part 2 : Review Time mg_db = MongoDB() mg_client = mg_db.open_connection("generico-crm") db = mg_client['generico-crm'] collection = db["distributorConfiguration"].find() dist_list = pd.DataFrame(list(collection)) review_time=dist_list[['is_active','wms_id','distributor_id','distributor_name','weekly_po','proxy_wh']] pd.options.mode.chained_assignment = None review_time['days_in_week']=review_time['weekly_po'].copy().apply(lambda a:len(a)) review_time['days_in_week']=review_time['days_in_week'].replace(0,4) review_time['review_days']=\ review_time['days_in_week'].copy()\ .apply(lambda a: 4 if a==2 else (3 if a==3 else (7 if a==1 else (1 if a==7 else 4)))) review_time[['distributor_id']]=\ review_time[['distributor_id']].apply(pd.to_numeric, errors='ignore').astype('Int64') review_time[['proxy_wh']]=\ review_time[['proxy_wh']].astype('str') created_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") review_time['created-date']=datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") review_time['etl-created-at']=datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") updated_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") review_time['etl-updated-at']=datetime.strptime(updated_at,"%Y-%m-%d %H:%M:%S") review_time['etl-created-by'] = 'etl-automation' review_time['etl-updated-by'] = 'etl-automation' review_time.columns = [c.replace('_', '-') for c in review_time.columns] rs_db= DB() rs_db.open_connection() s3=S3() schema = "prod2-generico" table_name = "wms-distributors-review-time" table_info = helper.get_table_info(db=rs_db , table_name=table_name, schema=schema) #Truncate the Query snapshot_date = datetime.now().date() truncate_query = ''' delete from "prod2-generico"."wms-distributors-review-time" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=review_time[table_info['column_name']], table_name=table_name, db=rs_db, schema='prod2-generico') rs_db.close_connection() mg_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/warehouse/wms_preferred_distributor.py
wms_preferred_distributor.py
import os import sys import argparse import pandas as pd from datetime import datetime, timedelta sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update if __name__ == '__main__': parser = argparse.ArgumentParser( description="To update DOID with latest forecast.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-nm', '--for_next_month', default="Y", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to for_next_month = args.for_next_month logger = get_logger() logger.info("Scripts begins") status = False schema = 'prod2-generico' err_msg = '' df_uri1 = '' df_uri2 = '' drugs_not_in_doi = 0 drugs_missed = 0 drugs_updated = 0 # getting run date for the script run_date = str(datetime.now().date()) current_month_date = ( datetime.now().date() - timedelta(days=datetime.now().day - 1)) if for_next_month == 'Y': forecast_date = str( datetime(current_month_date.year + int(current_month_date.month / 12), ((current_month_date.month % 12) + 1), 1).date()) else: forecast_date = str(current_month_date) try: rs_db = DB() rs_db.open_connection() wh_safety_stock_df_query = """ select * from "prod2-generico"."wh-safety-stock" wss where "forecast-type" = 'forecast' and "forecast-date" = '{forecast_date}' """.format(forecast_date=forecast_date) wh_safety_stock_df = rs_db.get_df(wh_safety_stock_df_query) wh_safety_stock_df.columns = [c.replace('-', '_') for c in wh_safety_stock_df.columns] # CONSIDERING DRUG TYPES FOR DATA LOAD type_list = rs_db.get_df( 'select distinct type from "prod2-generico".drugs') type_list = tuple(type_list[ ~type_list.type.isin( ['', 'banned', 'discontinued-products'])][ 'type']) # UPLOADING SAFETY STOCK NUMBERS IN DRUG-ORDER-INFO ss_data_upload = wh_safety_stock_df.query('order_upto_point > 0')[ ['wh_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = [ 'store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] logger.info('updating DOID') new_drug_entries, missed_entries = doid_update( ss_data_upload, type_list, rs_db, schema, logger) logger.info('DOID updated') drugs_not_in_doi = len(new_drug_entries) drugs_missed = len(missed_entries) drugs_updated = len(ss_data_upload) - len(missed_entries) - len(new_drug_entries) s3 = S3() df_uri1 = s3.save_df_to_s3(df=new_drug_entries, file_name='DOID_new_drug_entries_{date}.csv'.format(date=str(run_date))) df_uri2 = s3.save_df_to_s3(df=missed_entries, file_name='DOID_missed_entries_{date}.csv'.format(date=str(run_date))) status = True except Exception as error: err_msg = str(error) logger.exception(str(error)) email = Email() if status: result = 'Success' email.send_email_file(subject=f"wh_doid_update ({env}): {result}", mail_body=f""" drugs updated successfully --> {drugs_updated} drugs not updated --> {drugs_missed} drugs not in doid --> {drugs_not_in_doi} """, to_emails=email_to, file_uris=[df_uri1, df_uri2]) else: result = 'Failed' email.send_email_file(subject=f"wh_doid_update ({env}): {result}", mail_body=f"Run time: {datetime.now()} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/warehouse/wh_doid_update.py
wh_doid_update.py
import os import sys import pandas as pd from datetime import datetime, timedelta import numpy as np from dateutil.tz import gettz from scipy.stats import norm from calendar import monthrange sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.helper.parameter.job_parameter import parameter #tag = parameters env = "dev" os.environ['env'] = env job_params = parameter.get_params(job_id=130) email_to = job_params['email_to'] days = job_params['days'] lead_time_mean = job_params['lead_time_mean'] lead_time_std = job_params['lead_time_std'] max_review_period = job_params['max_review_period'] wh_id = 199 cap_ss_days = job_params['cap_ss_days'] service_level = job_params['service_level'] ordering_freq = job_params['ordering_freq'] logger = get_logger() logger.info("Scripts begins. Env = " + env) status = False err_msg = '' df_uri = '' run_date = str(datetime.now().strftime("%Y-%m-%d")) drugs_not_in_doi = 0 drugs_missed = 0 drugs_updated = 0 def get_launch_stock_per_store(rs_db, days, drugs): new_stores_list_query = """ select id as store_id, date("opened-at") as opened_at from "prod2-generico".stores s where "opened-at" >= CURRENT_DATE - {days} and id not in (281, 297) """.format(days=days) new_stores_list = rs_db.get_df(new_stores_list_query) store_ids_list = tuple(new_stores_list['store_id'].astype(str)) # get shortbook launch orders sb_orders_query = ''' select distinct sb."store-id" as store_id, sb."drug-id" as drug_id, date(sb."created-at") as created_at, sb.quantity as ordered_quantity, date(s2."opened-at") as opened_at from "prod2-generico"."short-book-1" sb left join "prod2-generico".stores s2 on s2.id = sb."store-id" where "store-id" in {store_ids} and date(sb."created-at") < date(s2."opened-at") '''.format(store_ids=store_ids_list, days=days) sb_orders = rs_db.get_df(sb_orders_query) df = sb_orders.copy() df = df[df['drug_id'].isin(drugs['drug_id'])] df = df[['store_id', 'drug_id', 'ordered_quantity']] df.drop_duplicates(inplace=True) new_stores_count = sb_orders['store_id'].nunique() df = df[['drug_id', 'ordered_quantity']] launch_stock = df.groupby('drug_id').sum().reset_index() launch_stock_per_store = launch_stock.copy() launch_stock_per_store['ordered_quantity'] = \ launch_stock['ordered_quantity'] / new_stores_count launch_stock_per_store.rename( columns={'ordered_quantity': 'launch_stock_per_store'}, inplace=True) return launch_stock_per_store try: rs_db = DB() rs_db.open_connection() # read inputs file to get parameters logger.info('reading input file to get parameters') params_table_query = """ select "param-name" as param, value from "prod2-generico"."wh-goodaid-forecast-input" where "param-name" not in ('drug_lvl_fcst_inputs' , 's_and_op_factors') """ logger.info('input parameters read') params_table = rs_db.get_df(params_table_query) params_table = params_table.apply(pd.to_numeric, errors='ignore') revenue_min = int(params_table.where( params_table['param'] == 'revenue_min', axis=0).dropna()['value']) revenue_max = int(params_table.where( params_table['param'] == 'revenue_max', axis=0).dropna()['value']) #getting expected new stores openings params_table_query = """ select "month-begin-dt" as month_begin_dt, value as expected_nso from "prod2-generico"."wh-forecast-repln-input" where "param-name" = 'expected_nso' """ params_table = rs_db.get_df(params_table_query) logger.info('expected_nso parameter read') params_table = params_table.apply(pd.to_numeric, errors='ignore') params_table['month_begin_dt'] = params_table['month_begin_dt'].astype(str) current_month_date = ( datetime.now(tz=gettz('Asia/Kolkata')).date() - timedelta(days=datetime.now(tz=gettz('Asia/Kolkata')).day - 1)) try: expected_new_stores = int(params_table[ params_table[ 'month_begin_dt'] == str(current_month_date)][ 'expected_nso']) except Exception as error: expected_new_stores = 0 logger.info("expected new stores --> " + str(expected_new_stores)) # get active gaid drugs list drugs_query = ''' select wssm."drug-id" as drug_id, d.composition, d."drug-name" as drug_name, d.company, d."type", d.category from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on d.id = wssm."drug-id" where wssm."add-wh" = 'Yes' and d."type" not in ('discontinued-products') and d.company = 'GOODAID' ''' drugs = rs_db.get_df(drugs_query) logger.info('active drugs list pulled from wssm') # get 28 days sales for active gaid drugs drug_sales_query = ''' select "drug-id" as drug_id, date("created-at") as created_at, sum(quantity) as drug_sales_quantity from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - {days} and date("created-at") < current_date group by "drug-id", date("created-at") '''.format(days=days, drug_ids=tuple(drugs['drug_id'])) sales_data_for_std = rs_db.get_df(drug_sales_query) drugs_std = sales_data_for_std.groupby('drug_id').std().reset_index() drugs_std = drugs_std.rename(columns={'drug_sales_quantity': 'demand_daily_deviation'}) drug_sales = sales_data_for_std.groupby('drug_id').sum().reset_index() logger.info('drug sales data pulled from rs') drug_sales['drug_sales_quantity'] = drug_sales[ 'drug_sales_quantity'] * 28 / days # get non-ethical composition level sale composition_sales_query = ''' select composition as composition, sum(quantity) as composition_sales_quantity from "prod2-generico".sales where composition in {compositions} and date("created-at") >= current_date - {days} and date("created-at") < current_date and "type" <> 'ethical' group by composition '''.format(days=days, compositions=tuple(drugs['composition'])) composition_sales = rs_db.get_df(composition_sales_query) logger.info('composition data pulled from rs') composition_sales['composition_sales_quantity'] = composition_sales[ 'composition_sales_quantity'] * 28 / days # merging data main_df = drugs.merge(drug_sales, on='drug_id', how='left') main_df['drug_sales_quantity'].fillna(0, inplace=True) main_df = main_df.merge(composition_sales, on='composition', how='left') main_df['composition_sales_quantity'].fillna(0, inplace=True) # getting 50% of composition level sales main_df['composition_sales_quantity_50%'] = main_df[ 'composition_sales_quantity'] * 0.5 main_df['composition_sales_quantity_50%'] = main_df[ 'composition_sales_quantity_50%'].round(0) # calculate month-on-month sales growth # getting last-to-last 28 day sales for calcuating growth factor last_to_last_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as last_to_last_28_day_sales from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - 56 and date("created-at") < current_date - 28 group by "drug-id" '''.format(drug_ids=tuple(drugs['drug_id'])) last_to_last_sales = rs_db.get_df(last_to_last_sales_query) logger.info('last-to-last 28 day sales data pulled from rs') # getting last 28 day sales last_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as last_28_day_sales from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - 28 and date("created-at") < current_date group by "drug-id" '''.format(drug_ids=tuple(drugs['drug_id'])) last_sales = rs_db.get_df(last_sales_query) logger.info('last 28 day sales data pulled from rs') # merging to main_df main_df = main_df.merge(last_to_last_sales, on='drug_id', how='left') main_df['last_to_last_28_day_sales'].fillna(0, inplace=True) main_df = main_df.merge(last_sales, on='drug_id', how='left') main_df['last_28_day_sales'].fillna(0, inplace=True) main_df['growth_factor'] = main_df['last_28_day_sales'] / main_df[ 'last_to_last_28_day_sales'] main_df['growth_factor'].fillna(1, inplace=True) main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] == np.inf, 1, main_df['growth_factor']) # growth factor capped at 150% - min at 100% main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] > 1.5, 1.5, main_df['growth_factor']) main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] < 1, 1, main_df['growth_factor']) # growth factor foreced to 1 when 50% comp sales > drug sales main_df['growth_factor'] = np.where(main_df[ 'composition_sales_quantity_50%'] > main_df[ 'drug_sales_quantity'], 1, main_df['growth_factor']) main_df['s_op_factor'] = 1 # get avg gaid sales for 13-16 lakh revenue stores # getting stores lists to compare with stores_cmp_query = ''' select "store-id" as store_id, round(sum("revenue-value")) as revenue from "prod2-generico".sales where date("created-at") >= current_date - 28 and date("created-at") < current_date group by "store-id" ''' stores_cmp = rs_db.get_df(stores_cmp_query) stores_cmp = stores_cmp[stores_cmp['revenue'] > revenue_min] stores_cmp = stores_cmp[stores_cmp['revenue'] < revenue_max] stores_list_to_comp = tuple(stores_cmp['store_id']) logger.info('list of stores with revenue between 1.3 and 1.6 mil -->' + str(stores_list_to_comp)) # adding expected_new_stores column main_df['expected_new_stores'] = expected_new_stores # getting avg sales avg_store_sales_query = ''' select composition , sum(quantity)/ {count} as avg_drug_sales_quantity from "prod2-generico".sales where composition in {compositions} and date("created-at") >= current_date - 28 and date("created-at") < current_date and "type" <> 'ethical' and "store-id" in {stores_list_to_comp} group by composition '''.format(compositions=tuple(drugs['composition']), \ stores_list_to_comp=stores_list_to_comp, \ count=len(stores_list_to_comp)) avg_store_sales = rs_db.get_df(avg_store_sales_query) logger.info('avg composition sales retrieved for sample stores') avg_store_sales['avg_drug_sales_quantity'] = avg_store_sales[ 'avg_drug_sales_quantity'].round() # merge to main_df main_df = main_df.merge(avg_store_sales, on='composition', how='left') main_df['avg_drug_sales_quantity'].fillna(0, inplace=True) # get final forecast figures main_df['forecast'] = main_df[[ 'drug_sales_quantity', 'composition_sales_quantity_50%']].max(axis=1) main_df['forecast'] = main_df['forecast'] * main_df['growth_factor'] * \ main_df['s_op_factor'] + main_df[ 'expected_new_stores'] * \ main_df['avg_drug_sales_quantity'] main_df['forecast'] = main_df['forecast'].round() main_df['demand_daily'] = main_df['forecast'] / 28 main_df = main_df.merge(drugs_std, on='drug_id', how='left') main_df['demand_daily_deviation'].fillna(0, inplace=True) main_df['lead_time_mean'] = lead_time_mean main_df['lead_time_std'] = lead_time_std main_df['review_period'] = max_review_period main_df['ordering_freq'] = ordering_freq main_df['service_level'] = service_level # calculate ss min max main_df['ss_wo_cap'] = (norm.ppf(main_df['service_level']).round(2) * np.sqrt( ( main_df['lead_time_mean'] * main_df['demand_daily_deviation'] * main_df['demand_daily_deviation'] ) + ( main_df['lead_time_std'] * main_df['lead_time_std'] * main_df['demand_daily'] * main_df['demand_daily'] ) ) ).round(0) main_df['cap_ss_days'] = np.where(main_df['ss_wo_cap'] / main_df['forecast'] * 28 > cap_ss_days, cap_ss_days, '') main_df['safety_stock'] = np.where(main_df['ss_wo_cap'] / main_df['forecast'] * 28 > cap_ss_days, main_df['drug_sales_quantity'] / 28 * cap_ss_days, main_df['ss_wo_cap']).round(0) main_df['rop_without_nso'] = ( main_df['safety_stock'] + main_df['demand_daily'] * ( main_df['lead_time_mean'] + main_df['review_period'] ) ).round() launch_stock_per_store = get_launch_stock_per_store(rs_db, 90, drugs) main_df = main_df.merge(launch_stock_per_store, on='drug_id', how='left') main_df['launch_stock_per_store'].fillna(0, inplace=True) num_days = monthrange(current_month_date.year, current_month_date.month)[1] main_df['reorder_point'] = main_df['rop_without_nso'] + \ np.round((main_df['lead_time_mean'] + main_df['review_period']) * main_df['expected_new_stores'] / num_days) * \ main_df['launch_stock_per_store'] main_df['order_upto_point'] = ( main_df['reorder_point'] + main_df['ordering_freq'] * main_df['demand_daily'] ).round() main_df['safety_stock_doh'] = main_df['safety_stock'] / main_df['forecast'] * 28 main_df['reorder_point_doh'] = main_df['reorder_point'] / main_df['forecast'] * 28 main_df['order_upto_point_doh'] = main_df['order_upto_point'] / main_df['forecast'] * 28 # get table structure to write to to_upload_query = ''' select * from "prod2-generico"."wh-safety-stock" limit 1 ''' to_upload = rs_db.get_df(to_upload_query) to_upload.columns = [c.replace('-', '_') for c in to_upload.columns] to_upload.drop(0, axis=0, inplace=True) to_upload['drug_id'] = main_df['drug_id'] to_upload['drug_name'] = main_df['drug_name'] to_upload['type'] = main_df['type'] to_upload['category'] = main_df['category'] to_upload['company'] = main_df['company'] # to_upload['bucket'] = main_df['bucket'] to_upload['fcst'] = main_df['forecast'].astype(int, errors='ignore') to_upload['wh_id'] = wh_id to_upload['forecast_type'] = 'goodaid_199' to_upload['lead_time_mean'] = main_df['lead_time_mean'] to_upload['max_review_period'] = main_df['review_period'].astype(int, errors='ignore') to_upload['demand_daily'] = main_df['demand_daily'] to_upload['std'] = main_df['demand_daily_deviation'] to_upload['safety_stock'] = main_df['safety_stock'].astype(int, errors='ignore') to_upload['expected_nso'] = expected_new_stores to_upload['rop_without_nso'] = main_df['rop_without_nso'].astype(int, errors='ignore') to_upload['reorder_point'] = main_df['reorder_point'].astype(int, errors='ignore') to_upload['order_upto_point'] = main_df['order_upto_point'].astype(int, errors='ignore') to_upload['last_month_sales'] = main_df['drug_sales_quantity'].astype(int, errors='ignore') to_upload['safety_stock_days'] = main_df['safety_stock_doh'] to_upload['reorder_point_days'] = main_df['reorder_point_doh'] to_upload['order_upto_days'] = main_df['order_upto_point_doh'] to_upload['reset_date'] = run_date to_upload['month'] = str(datetime.now(tz=gettz('Asia/Kolkata')).strftime("%m")) to_upload['year'] = str(datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y")) to_upload['month_begin_dt'] = str( datetime.now(tz=gettz('Asia/Kolkata')).date() - timedelta(days=datetime.now(tz=gettz('Asia/Kolkata')).day - 1)) to_upload['created_at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") to_upload['created_by'] = 'etl-automation' to_upload['updated_at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") to_upload['updated_by'] = 'etl-automation' to_upload['cap_ss_days'] = main_df['cap_ss_days'] to_upload['ss_wo_cap'] = main_df['ss_wo_cap'].astype(int, errors='ignore') to_upload['lead_time_std'] = main_df['lead_time_std'] to_upload['ordering_freq'] = main_df['ordering_freq'] to_upload = to_upload.fillna('') #write connection rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() s3.write_df_to_db(df=to_upload, table_name='wh-safety-stock', db=rs_db_write, schema='prod2-generico') logger.info("wh-safety-stock table updated") # WRITING ATTACHMENTS FOR SUCCESS df_uri = s3.save_df_to_s3(df=main_df, file_name='BHW_goodaid_forecast_{date}.csv'.format(date=str(run_date))) # writing to doid logger.info('writing to doid for ' + str(int(to_upload[['drug_id']].nunique())) + ' drugs') ss_data_upload = to_upload.query('order_upto_point > 0')[ ['wh_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = [ 'store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] type_list = tuple(drugs['type'].unique()) ss_data_upload = ss_data_upload.astype(float) new_drug_entries, missed_entries = doid_update(ss_data_upload, type_list, rs_db, 'prod2-generico', logger, gaid_omit=False) rs_db.connection.close() drugs_not_in_doi = len(new_drug_entries) drugs_missed = len(missed_entries) drugs_updated = len(ss_data_upload) - len(missed_entries) - len(new_drug_entries) rs_db.close_connection() rs_db_write.close_connection() status = True except Exception as e: err_msg = str(e) logger.info('wh_goodaid_forecast_199 job failed') logger.exception(e) # Sending email email = Email() if status: result = 'Success' email.send_email_file(subject=f"Bhiwandi Warehouse GOODAID forecast ({env}): {result}", mail_body=f""" drugs updated successfully --> {drugs_updated} drugs not updated --> {drugs_missed} drugs not in doid --> {drugs_not_in_doi} """, to_emails=email_to, file_uris=[df_uri]) else: result = 'Failed' email.send_email_file(subject=f"Bhiwandi Warehouse GOODAID forecast ({env}): {result}", mail_body=f"Run time: {datetime.now(tz=gettz('Asia/Kolkata'))} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended") """ DDL create table "prod2-generico"."wh-goodaid-forecast-input" ( "param-name" text ENCODE lzo, value text ENCODE lzo, "drug-id" text ENCODE lzo, "lead_time_doh" int8 ENCODE az64, "safety_stock_doh" int8 ENCODE az64, "review_period" int8 ENCODE az64, "start-date" date ENCODE az64, "end-date" date ENCODE az64, description text ENCODE lzo, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-goodaid-forecast-input" owner to "admin"; """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/warehouse/wh_goodaid_forecast_199.py
wh_goodaid_forecast_199.py
import os import sys import argparse import datetime import pandas as pd sys.path.append('../../../..') from dateutil.tz import gettz from zeno_etl_libs.db.db import DB, MSSql from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper import helper if __name__ == '__main__': parser = argparse.ArgumentParser( description ="Populates table wh-inventory-ss that takes daily snapshot of warehouse inventory.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to err_msg = '' logger = get_logger() logger.info("Script begins") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')) status = False try: # MSSql connection mssql = MSSql(connect_via_tunnel=False) mssql_connection = mssql.open_connection() # RS Connection rs_db = DB() rs_db.open_connection() q1 = """ Select * FROM (select 199 as wh_id, b.code as wms_drug_code, b.Barcode as drug_id, a2.Altercode as distributor_id, a2.Name as distributor_name, a.Acno as wms_distributor_code, a.Vdt as purchase_date, b.name as drug_name, a.Srate as srate, coalesce(a.TQty, 0) as total_quantity, case when a.Vno < 0 then 0 else coalesce(a.bqty, 0) end as balance_quantity, case when a.Vno > 0 then 0 else coalesce(a.tqty, 0) end as locked_quantity, coalesce(a.TQty * a.cost, 0) as total_value, case when a.Vno < 0 then 0 else coalesce(a.bqty * a.cost, 0) end as balance_value, case when a.Vno > 0 then 0 else coalesce(a.tqty * a.cost, 0) end as locked_value, a.Evdt as expiry, b.Compname as company_name, b.Compcode as company_code, b.Pack as pack, a.Cost as purchase_rate, a.Pbillno as purchase_bill_no, a.Psrlno as purchase_serial_no, a.Batch as batch_number, a.mrp as mrp, b.Prate as prate, m.name as "drug_type", s.name as "composition", a.Gdn2 as godown_qty, a.BQty - a.Gdn2 as store_qty, sp.NetAmt invoice_net_amt, sp.Taxamt invoice_tax_amt, sp.Disamt invoice_dis_amt, sp.qty as invoice_qty, sp.cgst, sp.sgst, sp.igst, a.vno, b.MinQty as shelf_min, b.MaxQty as shelf_max from fifo a with (nolock) right join item b with (nolock) on a.itemc = b.code left join Acm a2 with (nolock) on a2.code = a.Acno and a2.Slcd in ('SL', 'GL') left join Master m with (nolock) on b.ItemCat = m.code left join Salt s with (nolock) on b.Saltcode = s.Code left join SalePurchase2 sp with (nolock) on a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt where b.code > 0 and (a.Psrlno in ( select Psrlno from Esdata.dbo.salepurchase2 s2) or a.Psrlno IN (SELECT sp2.Psrlno from Esdata2122.dbo.SalePurchase2 sp2 )) and b.Barcode not like '%[^0-9]%') a Where a."vno"!=0 and (a."balance_quantity"+a."locked_quantity")>0 """ logger.info("getting data from esdata1 tables") bhw = pd.read_sql(q1, mssql_connection) logger.info("Data pulled from esdata1 tables") # MSSql2 connection mssql2 = MSSql(connect_via_tunnel=False, db='Esdata_WS_2') mssql2_connection = mssql2.open_connection() q2 = """ Select * FROM (select 343 as wh_id, b.code as wms_drug_code, b.Barcode as drug_id, a2.Altercode as distributor_id, a2.Name as distributor_name, a.Acno as wms_distributor_code, a.Vdt as purchase_date, b.name as drug_name, a.Srate as srate, coalesce(a.TQty, 0) as total_quantity, case when a.Vno < 0 then 0 else coalesce(a.bqty, 0) end as balance_quantity, case when a.Vno > 0 then 0 else coalesce(a.tqty, 0) end as locked_quantity, coalesce(a.TQty * a.cost, 0) as total_value, case when a.Vno < 0 then 0 else coalesce(a.bqty * a.cost, 0) end as balance_value, case when a.Vno > 0 then 0 else coalesce(a.tqty * a.cost, 0) end as locked_value, a.Evdt as expiry, b.Compname as company_name, b.Compcode as company_code, b.Pack as pack, a.Cost as purchase_rate, a.Pbillno as purchase_bill_no, a.Psrlno as purchase_serial_no, a.Batch as batch_number, a.mrp as mrp, b.Prate as prate, m.name as "drug_type", s.name as "composition", a.Gdn2 as godown_qty, a.BQty - a.Gdn2 as store_qty, sp.NetAmt invoice_net_amt, sp.Taxamt invoice_tax_amt, sp.Disamt invoice_dis_amt, sp.qty as invoice_qty, sp.cgst, sp.sgst, sp.igst, a.vno, b.MinQty as shelf_min, b.MaxQty as shelf_max from fifo a with (nolock) right join item b with (nolock) on a.itemc = b.code left join Acm a2 with (nolock) on a2.code = a.Acno and a2.Slcd in ('SL', 'GL') left join Master m with (nolock) on b.ItemCat = m.code left join Salt s with (nolock) on b.Saltcode = s.Code left join SalePurchase2 sp with (nolock) on a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt where b.code > 0 and a.Psrlno in ( select Psrlno from SalePurchase2) and b.Barcode not like '%[^0-9]%') b Where b."vno"!=0 and (b."balance_quantity"+b."locked_quantity")>0 """ logger.info("getting data from esdata2 tables") gaw = pd.read_sql(q2, mssql2_connection) logger.info("Data pulled from esdata2 tables") # MSSql3 connection mssql3 = MSSql(connect_via_tunnel=False, db='Esdata_TEPL') mssql3_connection = mssql3.open_connection() q3 = """ Select * FROM ( select 342 as wh_id, b.code as wms_drug_code, b.Barcode as drug_id, a2.Altercode as distributor_id, a2.Name as distributor_name, a.Acno as wms_distributor_code, a.Vdt as purchase_date, b.name as drug_name, a.Srate as srate, coalesce(a.TQty, 0) as total_quantity, case when a.Vno < 0 then 0 else coalesce(a.bqty, 0) end as balance_quantity, case when a.Vno > 0 then 0 else coalesce(a.tqty, 0) end as locked_quantity, coalesce(a.TQty * a.cost, 0) as total_value, case when a.Vno < 0 then 0 else coalesce(a.bqty * a.cost, 0) end as balance_value, case when a.Vno > 0 then 0 else coalesce(a.tqty * a.cost, 0) end as locked_value, a.Evdt as expiry, b.Compname as company_name, b.Compcode as company_code, b.Pack as pack, a.Cost as purchase_rate, a.Pbillno as purchase_bill_no, a.Psrlno as purchase_serial_no, a.Batch as batch_number, a.mrp as mrp, b.Prate as prate, m.name as "drug_type", s.name as "composition", a.Gdn2 as godown_qty, a.BQty - a.Gdn2 as store_qty, sp.NetAmt invoice_net_amt, sp.Taxamt invoice_tax_amt, sp.Disamt invoice_dis_amt, sp.qty as invoice_qty, sp.cgst, sp.sgst, sp.igst, a.vno, b.MinQty as shelf_min, b.MaxQty as shelf_max from fifo a with (nolock) right join item b with (nolock) on a.itemc = b.code left join Acm a2 with (nolock) on a2.code = a.Acno and a2.Slcd in ('SL', 'GL') left join Master m with (nolock) on b.ItemCat = m.code left join Salt s with (nolock) on b.Saltcode = s.Code left join SalePurchase2 sp with (nolock) on a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt where b.code > 0 and a.Psrlno in ( select Psrlno from SalePurchase2) and b.Barcode not like '%[^0-9]%') c Where c."vno"!=0 and (c."balance_quantity"+c."locked_quantity")>0 """ logger.info("getting data from esdata3 tables") tepl = pd.read_sql(q3, mssql3_connection) logger.info("Data pulled from esdata3 tables") df1 = pd.concat([bhw, gaw,tepl]) # getting safety stock data doi_query = """ select doi."store-id" as "wh_id", doi."drug-id" as "drug_id", doi."safe-stock" as "reorder_point", doi.min as "safety_stock", doi.max as "order_upto_point", 'NA' as bucket, 'NA' as history_bucket, 'NA' as category from "prod2-generico"."prod2-generico"."drug-order-info" doi left join "prod2-generico"."prod2-generico".drugs d on doi."drug-id" = d.id where "store-id" in (199, 343, 342) and d."company-id" != 6984 union select doid."store-id" as "wh_id", doid."drug-id" as "drug_id", doid."safe-stock" as "reorder_point", doid.min as "safety_stock", doid.max as "order_upto_point", 'NA' as bucket, 'NA' as history_bucket, 'NA' as category from "prod2-generico"."prod2-generico"."drug-order-info-data" doid left join "prod2-generico"."prod2-generico".drugs d on doid."drug-id" = d.id where doid."store-id" in (199, 343, 342) and d."company-id" = 6984 """ logger.info("Getting data from RS") doi_data = rs_db.get_df(doi_query) logger.info("Data pulled from RS") # doi_data.columns = doi_data.columns.str.decode("utf-8") doi_data.columns = [c.replace('-', '_') for c in doi_data.columns] wh_portfolio_query = """ select "drug-id" from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on wssm."drug-id" = d.id where wssm."add-wh" = 'Yes' and d."type" not in ('discontinued-products', 'banned') """ wh_portfolio = rs_db.get_df(wh_portfolio_query) wh_portfolio.columns = [c.replace('-', '_') for c in wh_portfolio.columns] wh_portfolio["in_wh_portfolio"] = 1 wh_portfolio['drug_id'] = wh_portfolio['drug_id'].astype(str) wh_inventory = df1.merge(wh_portfolio, on="drug_id", how='outer') wh_inventory['in_wh_portfolio'] = wh_inventory['in_wh_portfolio'].fillna(0).astype(int) wh_inventory['wh_id']=wh_inventory['wh_id'].fillna(199) wh_inventory[['wms_drug_code','distributor_id','wms_distributor_code','company_code','vno']]=\ wh_inventory[['wms_drug_code','distributor_id','wms_distributor_code','company_code','vno']].fillna(-1) # merging two data sets doi_data['drug_id'] = doi_data['drug_id'].astype(str) wh_inventory = wh_inventory.merge(doi_data, on=['drug_id', 'wh_id'], how='left') wh_inventory[['bucket','history_bucket','category']].fillna('NA', inplace=True) wh_inventory.dtypes wh_inventory[['safety_stock','reorder_point','order_upto_point','shelf_min', 'shelf_max','invoice_qty' ]].fillna(0, inplace=True) wh_inventory['snapshot_date'] = cur_date.strftime("%Y-%m-%d %H:%M:%S") wh_inventory['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( "%Y-%m-%d %H:%M:%S") wh_inventory['created-by'] = 'etl-automation' wh_inventory['updated-by'] = 'etl-automation' wh_inventory['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( "%Y-%m-%d %H:%M:%S") wh_inventory[['total_quantity', 'balance_quantity', 'locked_quantity', 'total_value', 'balance_value', 'locked_value','safety_stock', 'reorder_point', 'order_upto_point', 'shelf_min', 'shelf_max', 'invoice_qty','godown_qty','store_qty','srate','purchase_serial_no' ]]=wh_inventory[['total_quantity', 'balance_quantity', 'locked_quantity', 'total_value', 'balance_value', 'locked_value','safety_stock', 'reorder_point', 'order_upto_point', 'shelf_min', 'shelf_max', 'invoice_qty','godown_qty','store_qty','srate','purchase_serial_no' ]].fillna(0) wh_inventory.dtypes # Writing data wh_inventory[['wh_id', 'wms_drug_code','drug_id','wms_distributor_code', 'company_code','purchase_serial_no', 'safety_stock','reorder_point', 'order_upto_point', 'total_quantity','balance_quantity', 'locked_quantity', 'godown_qty', 'store_qty','invoice_qty','shelf_min','shelf_max','vno' ]] = \ wh_inventory[['wh_id', 'wms_drug_code','drug_id','wms_distributor_code', 'company_code','purchase_serial_no','safety_stock','reorder_point', 'order_upto_point', 'total_quantity','balance_quantity', 'locked_quantity', 'godown_qty', 'store_qty','invoice_qty','shelf_min','shelf_max','vno' ]].astype(int) wh_inventory.columns = [c.replace('_', '-') for c in wh_inventory.columns] wh_inventory = wh_inventory[ ['wms-drug-code', 'drug-id', 'distributor-id', 'distributor-name', 'wms-distributor-code', 'purchase-date', 'drug-name', 'srate', 'total-quantity', 'balance-quantity', 'locked-quantity', 'total-value', 'balance-value', 'locked-value', 'expiry', 'company-name', 'company-code', 'pack', 'purchase-rate', 'purchase-bill-no', 'purchase-serial-no', 'batch-number', 'mrp', 'prate', 'drug-type', 'composition', 'bucket', 'history-bucket', 'category', 'safety-stock', 'reorder-point', 'order-upto-point', 'shelf-min', 'shelf-max', 'snapshot-date', 'godown-qty', 'store-qty', 'invoice-net-amt', 'invoice-tax-amt', 'invoice-dis-amt', 'invoice-qty', 'cgst', 'sgst', 'igst', 'vno', 'created-at', 'created-by', 'updated-at', 'updated-by', 'in-wh-portfolio', 'wh-id']] s3 = S3() logger.info("Writing data to wh-inventory-ss") schema = "prod2-generico" table_name = "wh-inventory-ss" table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) s3.write_df_to_db(df=wh_inventory[table_info['column_name']], table_name=table_name, db=rs_db, schema='prod2-generico') logger.info("wh-inventory-ss table updated") status = True except Exception as e: err_msg = str(e) logger.info('wms_inventory job failed') logger.exception(e) finally: rs_db.close_connection() mssql.close_connection() mssql2.close_connection() mssql3.close_connection() # Sending email email = Email() if status: result = 'Success' email.send_email_file(subject=f"wms_inventory ({env}): {result}", mail_body=f"Run time: {cur_date}", to_emails=email_to, file_uris=[]) else: result = 'Failed' email.send_email_file(subject=f"wms_inventory ({env}): {result}", mail_body=f"Run time: {cur_date} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/warehouse/wms_inventory.py
wms_inventory.py
import os import sys import pandas as pd from datetime import datetime, timedelta import numpy as np from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.helper.parameter.job_parameter import parameter #tag = parameters env = "dev" os.environ['env'] = env job_params = parameter.get_params(job_id=125) email_to = job_params['email_to'] logger = get_logger() logger.info("Scripts begins. Env = " + env) status = False err_msg = '' df_uri = '' run_date = str(datetime.now().strftime("%Y-%m-%d")) drugs_not_in_doi = 0 drugs_missed = 0 drugs_updated = 0 try: rs_db = DB() rs_db.open_connection() # read inputs file to get parameters logger.info('reading input file to get parameters') params_table_query = """ select "param-name" as param, value from "prod2-generico"."wh-goodaid-forecast-input" where "param-name" not in ('drug_lvl_fcst_inputs' , 's_and_op_factors') """ logger.info('input parameters read') params_table = rs_db.get_df(params_table_query) params_table = params_table.apply(pd.to_numeric, errors='ignore') days = int(params_table.where(params_table['param'] == 'days', axis=0).dropna()['value']) expected_new_stores = int(params_table.where( params_table['param'] == 'expected_new_stores', axis=0).dropna()['value']) wh_id = int(params_table.where(params_table['param'] == 'gaw_id', axis=0).dropna()['value']) revenue_min = int(params_table.where( params_table['param'] == 'revenue_min', axis=0).dropna()['value']) revenue_max = int(params_table.where( params_table['param'] == 'revenue_max', axis=0).dropna()['value']) # get active gaid drugs list drugs_query = ''' select wssm."drug-id" as drug_id, d.composition, d."drug-name" as drug_name, d.company, d."type", d.category from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on d.id = wssm."drug-id" where wssm."add-wh" = 'Yes' and d."type" not in ('discontinued-products') and d.company = 'GOODAID' ''' drugs = rs_db.get_df(drugs_query) logger.info('active drugs list pulled from wssm') # get 28 days sales for active gaid drugs drug_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as drug_sales_quantity from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - {days} and date("created-at") < current_date group by "drug-id" '''.format(days=days, drug_ids=tuple(drugs['drug_id'])) drug_sales = rs_db.get_df(drug_sales_query) logger.info('drug sales data pulled from rs') drug_sales['drug_sales_quantity'] = drug_sales[ 'drug_sales_quantity'] * 28 / days # get non-ethical composition level sale composition_sales_query = ''' select composition as composition, sum(quantity) as composition_sales_quantity from "prod2-generico".sales where composition in {compositions} and date("created-at") >= current_date - {days} and date("created-at") < current_date and "type" <> 'ethical' group by composition '''.format(days=days, compositions=tuple(drugs['composition'])) composition_sales = rs_db.get_df(composition_sales_query) logger.info('composition data pulled from rs') composition_sales['composition_sales_quantity'] = composition_sales[ 'composition_sales_quantity'] * 28 / days # merging data main_df = drugs.merge(drug_sales, on='drug_id', how='left') main_df['drug_sales_quantity'].fillna(0, inplace=True) main_df = main_df.merge(composition_sales, on='composition', how='left') main_df['composition_sales_quantity'].fillna(0, inplace=True) # getting 50% of composition level sales main_df['composition_sales_quantity_50%'] = main_df[ 'composition_sales_quantity'] * 0.5 main_df['composition_sales_quantity_50%'] = main_df[ 'composition_sales_quantity_50%'].round(0) # calculate month-on-month sales growth # getting last-to-last 28 day sales for calcuating growth factor last_to_last_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as last_to_last_28_day_sales from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - 56 and date("created-at") < current_date - 28 group by "drug-id" '''.format(drug_ids=tuple(drugs['drug_id'])) last_to_last_sales = rs_db.get_df(last_to_last_sales_query) logger.info('last-to-last 28 day sales data pulled from rs') # getting last 28 day sales last_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as last_28_day_sales from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - 28 and date("created-at") < current_date group by "drug-id" '''.format(drug_ids=tuple(drugs['drug_id'])) last_sales = rs_db.get_df(last_sales_query) logger.info('last 28 day sales data pulled from rs') # merging to main_df main_df = main_df.merge(last_to_last_sales, on='drug_id', how='left') main_df['last_to_last_28_day_sales'].fillna(0, inplace=True) main_df = main_df.merge(last_sales, on='drug_id', how='left') main_df['last_28_day_sales'].fillna(0, inplace=True) main_df['growth_factor'] = main_df['last_28_day_sales'] / main_df[ 'last_to_last_28_day_sales'] main_df['growth_factor'].fillna(1, inplace=True) main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] == np.inf, 1, main_df['growth_factor']) # growth factor capped at 150% - min at 100% main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] > 1.5, 1.5, main_df['growth_factor']) main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] < 1, 1, main_df['growth_factor']) # growth factor foreced to 1 when 50% comp sales > drug sales main_df['growth_factor'] = np.where(main_df[ 'composition_sales_quantity_50%'] > main_df[ 'drug_sales_quantity'], 1, main_df['growth_factor']) # get s&op factor logger.info('reading s&op factors table') input_table_query = """ select "drug-id" as drug_id, value as s_op_factor, "start-date" as start_date, "end-date" as end_date from "prod2-generico"."wh-goodaid-forecast-input" where "param-name" = 's_and_op_factors' """ s_op_table = rs_db.get_df(input_table_query) logger.info('s&op factors table read') s_op_table = s_op_table.apply(pd.to_numeric, errors='ignore') s_op_table = s_op_table[ s_op_table['start_date'] <= datetime.now().date()] s_op_table = s_op_table[ s_op_table['end_date'] >= datetime.now().date()] s_op_table.drop('start_date', axis=1, inplace=True) s_op_table.drop('end_date', axis=1, inplace=True) main_df = main_df.merge(s_op_table, on='drug_id', how='left') main_df['s_op_factor'].fillna(1, inplace=True) # get avg gaid sales for 13-16 lakh revenue stores # getting stores lists to compare with stores_cmp_query = ''' select "store-id" as store_id, round(sum("revenue-value")) as revenue from "prod2-generico".sales where date("created-at") >= current_date - 28 and date("created-at") < current_date group by "store-id" ''' stores_cmp = rs_db.get_df(stores_cmp_query) stores_cmp = stores_cmp[stores_cmp['revenue'] > revenue_min] stores_cmp = stores_cmp[stores_cmp['revenue'] < revenue_max] stores_list_to_comp = tuple(stores_cmp['store_id']) logger.info('list of stores with revenue between 1.3 and 1.6 mil -->' + str(stores_list_to_comp)) # adding expected_new_stores column main_df['expected_new_stores'] = expected_new_stores # getting avg sales avg_store_sales_query = ''' select composition , sum(quantity)/ {count} as avg_drug_sales_quantity from "prod2-generico".sales where composition in {compositions} and date("created-at") >= current_date - 28 and date("created-at") < current_date and "type" <> 'ethical' and "store-id" in {stores_list_to_comp} group by composition '''.format(compositions=tuple(drugs['composition']), \ stores_list_to_comp=stores_list_to_comp, \ count=len(stores_list_to_comp)) avg_store_sales = rs_db.get_df(avg_store_sales_query) logger.info('avg composition sales retrieved for sample stores') avg_store_sales['avg_drug_sales_quantity'] = avg_store_sales[ 'avg_drug_sales_quantity'].round() # merge to main_df main_df = main_df.merge(avg_store_sales, on='composition', how='left') main_df['avg_drug_sales_quantity'].fillna(0, inplace=True) # get final forecast figures main_df['forecast'] = main_df[[ 'drug_sales_quantity', 'composition_sales_quantity_50%']].max(axis=1) main_df['forecast'] = main_df['forecast'] * main_df['growth_factor'] * \ main_df['s_op_factor'] + main_df[ 'expected_new_stores'] * \ main_df['avg_drug_sales_quantity'] main_df['forecast'] = main_df['forecast'].round() # get input table and merge with main_df logger.info('reading input table') input_table_query = """ select "drug-id" as drug_id, lead_time_doh, safety_stock_doh, review_period from "prod2-generico"."wh-goodaid-forecast-input" where "param-name" = 'drug_lvl_fcst_inputs' """ input_table = rs_db.get_df(input_table_query) logger.info('input table read') input_table = input_table.apply(pd.to_numeric, errors='ignore') input_table['reorder_point_doh'] = input_table['lead_time_doh'] + \ input_table['safety_stock_doh'] input_table['min_doh'] = input_table['safety_stock_doh'] input_table['order_upto_point_doh'] = input_table['lead_time_doh'] + \ input_table['safety_stock_doh'] + \ input_table['review_period'] main_df = main_df.merge(input_table, on='drug_id', how='left') # populating missing rows with defaults main_df['lead_time_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'lead_time_doh'].item(), inplace=True) main_df['safety_stock_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'safety_stock_doh'].item(), inplace=True) main_df['review_period'].fillna( input_table.loc[input_table['drug_id'] == 0, 'review_period'].item(), inplace=True) main_df['reorder_point_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'reorder_point_doh'].item(), inplace=True) main_df['min_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'min_doh'].item(), inplace=True) main_df['order_upto_point_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'order_upto_point_doh'].item(), inplace=True) # calculate ss min max main_df['safety_stock'] = (main_df['forecast'] / 28 * main_df['safety_stock_doh']).round() main_df['reorder_point'] = (main_df['forecast'] / 28 * main_df['reorder_point_doh']).round() main_df['order_upto_point'] = (main_df['forecast'] / 28 * main_df['order_upto_point_doh']).round() # get table structure to write to to_upload_query = ''' select * from "prod2-generico"."wh-safety-stock" limit 1 ''' to_upload = rs_db.get_df(to_upload_query) to_upload.columns = [c.replace('-', '_') for c in to_upload.columns] to_upload.drop(0, axis=0, inplace=True) to_upload['drug_id'] = main_df['drug_id'] to_upload['drug_name'] = main_df['drug_name'] to_upload['type'] = main_df['type'] to_upload['category'] = main_df['category'] to_upload['company'] = main_df['company'] # to_upload['bucket'] = main_df['bucket'] to_upload['fcst'] = main_df['forecast'].astype(int, errors='ignore') to_upload['wh_id'] = wh_id to_upload['forecast_type'] = 'goodaid' to_upload['lead_time_mean'] = main_df['lead_time_doh'] to_upload['max_review_period'] = main_df['review_period'].astype(int, errors='ignore') to_upload['demand_daily'] = main_df['forecast'] / 28 to_upload['safety_stock'] = main_df['safety_stock'].astype(int, errors='ignore') to_upload['expected_nso'] = expected_new_stores to_upload['reorder_point'] = main_df['reorder_point'].astype(int, errors='ignore') to_upload['order_upto_point'] = main_df['order_upto_point'].astype(int, errors='ignore') to_upload['last_month_sales'] = main_df['drug_sales_quantity'].astype(int, errors='ignore') to_upload['safety_stock_days'] = main_df['safety_stock_doh'] to_upload['reorder_point_days'] = main_df['reorder_point_doh'] to_upload['order_upto_days'] = main_df['order_upto_point_doh'] to_upload['reset_date'] = run_date to_upload['month'] = str(datetime.now(tz=gettz('Asia/Kolkata')).strftime("%m")) to_upload['year'] = str(datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y")) to_upload['month_begin_dt'] = str( datetime.now(tz=gettz('Asia/Kolkata')).date() - timedelta(days=datetime.now(tz=gettz('Asia/Kolkata')).day - 1)) to_upload['created_at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") to_upload['created_by'] = 'etl-automation' to_upload['updated_at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") to_upload['updated_by'] = 'etl-automation' to_upload = to_upload.fillna('') rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() s3.write_df_to_db(df=to_upload, table_name='wh-safety-stock', db=rs_db_write, schema='prod2-generico') logger.info("wh-safety-stock table updated") # WRITING ATTACHMENTS FOR SUCCESS df_uri = s3.save_df_to_s3(df=main_df, file_name='GAW_goodaid_forecast_{date}.csv'.format(date=str(run_date))) # writing to doid logger.info('writing to doid for ' + str(int(to_upload[['drug_id']].nunique())) + ' drugs') ss_data_upload = to_upload.query('order_upto_point > 0')[ ['wh_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = [ 'store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] type_list = tuple(drugs['type'].unique()) ss_data_upload = ss_data_upload.astype(float) new_drug_entries, missed_entries = doid_update( ss_data_upload, type_list, rs_db, 'prod2-generico', logger, gaid_omit=False) rs_db.connection.close() drugs_not_in_doi = len(new_drug_entries) drugs_missed = len(missed_entries) drugs_updated = len(ss_data_upload) - len(missed_entries) - len(new_drug_entries) rs_db.close_connection() rs_db_write.close_connection() status = True except Exception as e: err_msg = str(e) logger.info('wh_goodaid_forecast_343 job failed') logger.exception(e) # Sending email email = Email() if status: result = 'Success' email.send_email_file(subject=f"GOODAID Warehouse forecast ({env}): {result}", mail_body=f""" drugs updated successfully --> {drugs_updated} drugs not updated --> {drugs_missed} drugs not in doid --> {drugs_not_in_doi} """, to_emails=email_to, file_uris=[df_uri]) else: result = 'Failed' email.send_email_file(subject=f"GOODAID Warehouse forecast ({env}): {result}", mail_body=f"Run time: {datetime.now(tz=gettz('Asia/Kolkata'))} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended") """ DDL create table "prod2-generico"."wh-goodaid-forecast-input" ( "param-name" text ENCODE lzo, value text ENCODE lzo, "drug-id" text ENCODE lzo, "lead_time_doh" int8 ENCODE az64, "safety_stock_doh" int8 ENCODE az64, "review_period" int8 ENCODE az64, "start-date" date ENCODE az64, "end-date" date ENCODE az64, description text ENCODE lzo, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-goodaid-forecast-input" owner to "admin"; """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/warehouse/wh_goodaid_forecast_343.py
wh_goodaid_forecast_343.py
import os import sys import argparse import pandas as pd import numpy as np from datetime import datetime, timedelta from calendar import monthrange sys.path.append('../../../..') from zeno_etl_libs.db.db import DB, MongoDB, MSSql from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger, send_logs_via_email from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.warehouse.data_prep.wh_data_prep \ import get_launch_stock_per_store if __name__ == '__main__': parser = argparse.ArgumentParser( description="To generate distributor level forecast at warehouse for the next month.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-nso', '--nso_history_days', default=90, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to nso_history_days = args.nso_history_days logger = get_logger() logger.info("Script begins") status = False err_msg = '' df_uri = '' run_date = str(datetime.now().date()) current_month_date = ( datetime.now().date() - timedelta(days=datetime.now().day - 1)) next_month_date = datetime(current_month_date.year + \ int(current_month_date.month / 12), \ ((current_month_date.month % 12) + 1), 1).date() num_days = monthrange(next_month_date.year, next_month_date.month)[1] try: df = pd.DataFrame() rs_db = DB() rs_db.open_connection() # MSSql connection mssql = MSSql(connect_via_tunnel=False) mssql_connection = mssql.open_connection() q1 = """ select b.Barcode as drug_id, sum(case when Vno < 0 then 0 else coalesce(a.bqty, 0) end) as balance_quantity, sum(case when Vno > 0 then 0 else coalesce(a.Tqty, 0) end) as locked_quantity from fifo a right join item b on a.itemc = b.code where b.code > 0 and b.Barcode not like '%[^0-9]%' and a.Psrlno in ( select Psrlno from SalePurchase2 sp where Vtype = 'PB') and a.TQty > 0 group by b.Barcode, b.name """ wh_inventory = pd.read_sql(q1, mssql_connection) logger.info("data pulled from RS") wh_inventory['drug_id'] = pd.to_numeric(wh_inventory['drug_id']) wh_inventory = wh_inventory.astype(int, errors='ignore') wh_inventory['total_quantity'] = wh_inventory['balance_quantity'] + wh_inventory['locked_quantity'] # get wh portfolio drugs_list = rs_db.get_df( ''' select wssm."drug-id" as drug_id, d."drug-name" as drug_name, f.fcst, f.ss, f.rop, f.oup from "prod2-generico"."wh-sku-subs-master" wssm left join ( select "drug-id", fcst, "safety-stock" as ss, "reorder-point" as rop, "order-upto-point" as oup from "prod2-generico"."wh-safety-stock" wss where "forecast-date" = ( select max("forecast-date") from "prod2-generico"."wh-safety-stock")) f on f."drug-id" = wssm."drug-id" left join "prod2-generico".drugs d on d.id = wssm."drug-id" where wssm."add-wh" = 'Yes' and d."type" <> 'discontinued-products' and d.company <> 'GOODAID' ''') drugs_list.fillna(0, inplace=True) drugs_list = drugs_list.astype(int, errors='ignore') # getting params logger.info('reading input file to get expected_nso') params_table_raw = """ select "month-begin-dt" as month_begin_dt, value as expected_nso from "prod2-generico"."wh-forecast-repln-input" where "param-name" = 'expected_nso' """ params_table = rs_db.get_df(params_table_raw) params_table = params_table.apply(pd.to_numeric, errors='ignore') try: expected_nso = int(params_table[ params_table['month_begin_dt'] == next_month_date]['expected_nso']) except Exception as error: expected_nso = 0 logger.info('expected_nso parameter read --> ' + str(expected_nso)) logger.info('nso_history_days --> ' + str(nso_history_days)) # getting launch stock per store launch_stock_per_store = get_launch_stock_per_store(rs_db, nso_history_days) logger.info('launch stock per store pulled') drugs_list = drugs_list.merge(launch_stock_per_store, on='drug_id', how='left') drugs_list['launch_stock_per_store'].fillna(0, inplace=True) drugs_list['fcst'] += drugs_list['launch_stock_per_store'] * expected_nso drugs_list['fcst'] = drugs_list['fcst'].round().astype(int) del drugs_list['launch_stock_per_store'] df = drugs_list.copy() df = df.merge(wh_inventory, on='drug_id', how='left') df['below_rop'] = np.where(df['total_quantity'] <= df['rop'], True, False) df.loc[df['below_rop'] == False, 'purchase_quantity'] = np.ceil( (df['fcst'] - (df['total_quantity'] - df['rop'])) / ( df['oup'] - df['rop']) + 1) * (df['oup'] - df['rop']) df.loc[df['below_rop'] == True, 'purchase_quantity'] = np.ceil( df['oup'] - (df['total_quantity'] - 4 * df['fcst'] / num_days)) + ( df['oup'] - df['rop']) * np.ceil( (df['fcst'] - np.ceil(df['oup'] - ( df['total_quantity'] - 4 * df['fcst'] / num_days))) / ( df['oup'] - df['rop']) + 1) df['purchase_quantity'].fillna(0, inplace=True) df.loc[df['purchase_quantity'] <= 0, 'purchase_quantity'] = 0 del df['below_rop'] df['purchase_quantity'] = df['purchase_quantity'].astype(int) mg_db = MongoDB() mg_client = mg_db.open_connection("generico-crm") db = mg_client['generico-crm'] collection = db["wmsDrugDistributorMappingV2"].find( { "is_active" : "true" }, { "drug_id": "$drug_id", "rank1": "$rank1", "rank1_name": "$rank1_name" } ) dist_list = pd.DataFrame(list(collection)) s3 = S3() df_uri = s3.save_df_to_s3(df=df, file_name='wh_dist_pur_fcst_{date}.csv'.format(date=str(next_month_date))) status = True except Exception as error: err_msg = str(error) logger.exception(str(error)) # Sending email email = Email() if status: result = 'Success' email.send_email_file(subject='''Warehouse distributor M+1 purchase forecast for {date} ({env}): {result} '''.format(date=str(next_month_date), env=env, result=result), mail_body=f"Run time: {datetime.now()} {err_msg}", to_emails=email_to, file_uris=[df_uri]) else: result = 'Failed' email.send_email_file(subject='''Warehouse distributor M+1 purchase forecast for {date} ({env}): {result} '''.format(date=str(next_month_date), env=env, result=result), mail_body=f"Run time: {datetime.now()} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/warehouse/wh_dist_pur_fcst.py
wh_dist_pur_fcst.py
# -*- coding: utf-8 -*- """ Created on Mon Apr 21 21:45:59 2022 @author: [email protected] @Purpose: To generate forecast and replenishment figures for Warehouse """ import os import sys import pandas as pd from datetime import datetime, timedelta from scipy.stats import norm from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.warehouse.data_prep.wh_data_prep import wh_data_prep from zeno_etl_libs.utils.warehouse.forecast.forecast_main import wh_forecast from zeno_etl_libs.utils.warehouse.safety_stock.wh_safety_stock import \ wh_safety_stock_calc from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.helper.parameter.job_parameter import parameter #tag = parameters env = "dev" os.environ['env'] = env # runtime variables job_params = parameter.get_params(job_id=117) ss_runtime_var = {'lead_time_mean': job_params['lead_time_mean'], 'lead_time_std': job_params['lead_time_std'], 'service_level': job_params['service_level'], 'ordering_freq': job_params['ordering_freq'], 'max_review_period': job_params['max_review_period'], 'z': round(norm.ppf(job_params['service_level']), 2), 'for_next_month': job_params['for_next_month'], 'cap_ss_days': job_params['cap_ss_days'], 'use_fcst_error': job_params['use_fcst_error'], 'fcst_hist_to_use': job_params['fcst_hist_to_use'], 'debug_mode': job_params['debug_mode'], 'simulate_for': job_params['simulate_for']} email_to = job_params['email_to'] debug_mode = job_params['debug_mode'] simulate_for = job_params['simulate_for'] err_msg = '' df_uri = '' schema = job_params['schema'] reset = job_params['reset'] wh_id = job_params['wh_id'] nso_history_days = job_params['nso_history_days'] status = False logger = get_logger() logger.info("Scripts begins") logger.info("Run time variables --> " + str(ss_runtime_var)) # getting run date for the script if debug_mode == 'Y' and simulate_for != '': reset_date = simulate_for current_month_date = (pd.to_datetime(simulate_for).date() - timedelta(days=pd.to_datetime(simulate_for).day - 1)) else: reset_date = str(datetime.now(tz=gettz('Asia/Kolkata')).date()) current_month_date = (datetime.now(tz=gettz('Asia/Kolkata')).date() - timedelta(days=datetime.now(tz=gettz('Asia/Kolkata')).day - 1)) if ss_runtime_var['for_next_month'] == 'Y': forecast_date = str( datetime(current_month_date.year + int(current_month_date.month / 12), ((current_month_date.month % 12) + 1), 1).date()) else: forecast_date = str(current_month_date) logger.info(f""" debug_mode --> {debug_mode} reset_date --> {reset_date}, current_month_date --> {current_month_date}, forecast_date --> {forecast_date} """) try: rs_db = DB() rs_db.open_connection() logger.info('reading input file to get expected_nso') params_table_query = """ select "month-begin-dt" as month_begin_dt, value as expected_nso from "prod2-generico"."wh-forecast-repln-input" where "param-name" = 'expected_nso' """ params_table = rs_db.get_df(params_table_query) logger.info('expected_nso parameter read') params_table = params_table.apply(pd.to_numeric, errors='ignore') params_table['month_begin_dt'] = params_table['month_begin_dt'].astype(str) try: expected_nso = int(params_table[ params_table[ 'month_begin_dt'] == forecast_date][ 'expected_nso']) except Exception as error: expected_nso = 0 logger.info(f"expected_nso --> {expected_nso}") store_query = ''' select "id", name, "opened-at" as opened_at from "prod2-generico".stores where "name" <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in (92, 52) ''' stores = rs_db.get_df(store_query) store_id_list = list(stores['id']) new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() # CONSIDERING DRUG TYPES FOR DATA LOAD type_list = rs_db.get_df( 'select distinct type from "prod2-generico".drugs') type_list = tuple(type_list[ ~type_list.type.isin( ['', 'banned', 'discontinued-products'])][ 'type']) # RUNNING DATA PREPARATION drug_sales_monthly, wh_drug_list, drug_history, demand_daily_deviation = wh_data_prep( store_id_list, current_month_date, reset_date, type_list, rs_db, logger, ss_runtime_var, schema) drug_sales_monthly['drug_id'] = drug_sales_monthly['drug_id'].astype(int, errors='ignore') drug_sales_monthly['year'] = drug_sales_monthly['year'].astype(int, errors='ignore') drug_sales_monthly['month'] = drug_sales_monthly['month'].astype(int, errors='ignore') drug_sales_monthly['net_sales_quantity'] = drug_sales_monthly['net_sales_quantity'].astype(int, errors='ignore') drug_history = drug_history.astype(int, errors='ignore') drug_sales_monthly['reset_date'] = reset_date # FORECASTING train, train_error, predict, wh_train, wh_train_error, wh_predict = wh_forecast( drug_sales_monthly, wh_drug_list, drug_history, logger) train['wh_id'] = wh_id train_error['wh_id'] = wh_id predict['wh_id'] = wh_id wh_train['wh_id'] = wh_id wh_train_error['wh_id'] = wh_id wh_predict['wh_id'] = wh_id train['forecast_date'] = forecast_date train_error['forecast_date'] = forecast_date predict['forecast_date'] = forecast_date wh_train['forecast_date'] = forecast_date wh_train_error['forecast_date'] = forecast_date wh_predict['forecast_date'] = forecast_date # SAFETY STOCK CALCULATIONS last_actual_month = drug_sales_monthly['month_begin_dt'].max() last_month_sales = drug_sales_monthly[ drug_sales_monthly['month_begin_dt'] == str(last_actual_month)] last_month_sales = last_month_sales[['drug_id', 'net_sales_quantity']] last_month_sales.rename( columns={'net_sales_quantity': 'last_month_sales'}, inplace=True) wh_safety_stock_df = wh_safety_stock_calc( ss_runtime_var, wh_drug_list, wh_predict, last_month_sales, demand_daily_deviation, current_month_date, forecast_date, reset_date, logger, expected_nso, nso_history_days, rs_db) wh_safety_stock_df['wh_id'] = wh_id wh_safety_stock_df['reset_date'] = str(reset_date) rs_db.close_connection() # WRITING TO POSTGRES s3 = S3() rs_db_write = DB(read_only=False) rs_db_write.open_connection() created_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") wh_safety_stock_df['ptr'] = '' wh_safety_stock_df['fcst'] = wh_safety_stock_df['fcst'].fillna(0).astype(int) wh_safety_stock_df['safety_stock'] = wh_safety_stock_df['safety_stock'].fillna(0).astype(int) wh_safety_stock_df['month'] = wh_safety_stock_df['month'].astype(int) wh_safety_stock_df['year'] = wh_safety_stock_df['year'].astype(int) wh_safety_stock_df['ss_wo_cap'] = wh_safety_stock_df['ss_wo_cap'].fillna(0).astype(int) wh_safety_stock_df['reorder_point'] = wh_safety_stock_df['reorder_point'].fillna(0).astype(int) wh_safety_stock_df['order_upto_point'] = wh_safety_stock_df['order_upto_point'].fillna(0).astype(int) wh_safety_stock_df['shelf_min'] = wh_safety_stock_df['shelf_min'].fillna(0).astype(int) wh_safety_stock_df['shelf_max'] = wh_safety_stock_df['shelf_max'].fillna(0).astype(int) wh_safety_stock_df['rop_without_nso'] = wh_safety_stock_df['rop_without_nso'].fillna(0).astype(int) wh_safety_stock_df['oup_without_nso'] = wh_safety_stock_df['oup_without_nso'].fillna(0).astype(int) wh_safety_stock_df['created_at'] = created_at wh_safety_stock_df['created_by'] = 'etl-automation' wh_safety_stock_df['updated_at'] = created_at wh_safety_stock_df['updated_by'] = 'etl-automation' columns = [c.replace('-', '_') for c in ['drug-id', 'drug-name', 'type', 'category', 'company', 'ptr', 'bucket', 'history-bucket', 'fcst', 'final-fcst', 'forecast-type', 'model', 'month', 'month-begin-dt', 'std', 'year', 'wh-id', 'forecast-date', 'lead-time-mean', 'lead-time-std', 'max-review-period', 'ordering-freq', 'service-level', 'z-value', 'demand-daily', 'demand-daily-deviation', 'safety-stock', 'launch-stock-per-store', 'expected-nso', 'rop-without-nso', 'reorder-point', 'oup-without-nso', 'order-upto-point', 'shelf-min', 'shelf-max', 'last-month-sales', 'safety-stock-days', 'reorder-point-days', 'order-upto-days', 'reset-date', 'created-at', 'created-by', 'updated-at', 'updated-by', 'cap_ss_days', 'ss_wo_cap']] wh_safety_stock_df = wh_safety_stock_df[columns] if debug_mode == 'N': # drug_sales_monthly drug_sales_monthly['created-at'] = created_at drug_sales_monthly['created-by'] = 'etl-automation' drug_sales_monthly['updated-at'] = created_at drug_sales_monthly['updated-by'] = 'etl-automation' s3.write_df_to_db(df=drug_sales_monthly, table_name='wh-drug-sales-monthly', db=rs_db_write, schema='prod2-generico') # train train['type'] = 'separate' train['created-at'] = created_at train['created-by'] = 'etl-automation' train['updated-at'] = created_at train['updated-by'] = 'etl-automation' s3.write_df_to_db(df=train, table_name='wh-train', db=rs_db_write, schema='prod2-generico') # wh_train wh_train['type'] = 'ensemble' wh_train['created-at'] = created_at wh_train['created-by'] = 'etl-automation' wh_train['updated-at'] = created_at wh_train['updated-by'] = 'etl-automation' s3.write_df_to_db(df=wh_train, table_name='wh-train', db=rs_db_write, schema='prod2-generico') # train_error train_error['type'] = 'separate' train_error['created-at'] = created_at train_error['created-by'] = 'etl-automation' train_error['updated-at'] = created_at train_error['updated-by'] = 'etl-automation' s3.write_df_to_db(df=train_error, table_name='wh-train-error', db=rs_db_write, schema='prod2-generico') # wh_train_error wh_train_error['type'] = 'ensemble' wh_train_error['created-at'] = created_at wh_train_error['created-by'] = 'etl-automation' wh_train_error['updated-at'] = created_at wh_train_error['updated-by'] = 'etl-automation' s3.write_df_to_db(df=wh_train_error[train_error.columns], table_name='wh-train-error', db=rs_db_write, schema='prod2-generico') # predict predict['type'] = 'separate' predict['created-at'] = created_at predict['created-by'] = 'etl-automation' predict['updated-at'] = created_at predict['updated-by'] = 'etl-automation' s3.write_df_to_db(df=predict, table_name='wh-predict', db=rs_db_write, schema='prod2-generico') # wh_predict wh_predict['type'] = 'ensemble' wh_predict['created-at'] = created_at wh_predict['created-by'] = 'etl-automation' wh_predict['updated-at'] = created_at wh_predict['updated-by'] = 'etl-automation' s3.write_df_to_db(df=wh_predict, table_name='wh-predict', db=rs_db_write, schema='prod2-generico') # wh_safety_stock_df s3.write_df_to_db(df=wh_safety_stock_df, table_name='wh-safety-stock', db=rs_db_write, schema='prod2-generico') if reset == 'Y': # UPLOADING SAFETY STOCK NUMBERS IN DRUG-ORDER-INFO ss_data_upload = wh_safety_stock_df.query('order_upto_point > 0')[ ['wh_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = [ 'store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries, missed_entries = doid_update( ss_data_upload, type_list, rs_db_write, schema, logger) logger.info('DOI updated as per request') logger.info('missed entries --> ' + str(missed_entries)) logger.info('new_drug_entries entries --> ' + str(new_drug_entries)) else: logger.info('DOID did not update as per request') rs_db_write.close_connection() df_uri = s3.save_df_to_s3(df=wh_safety_stock_df, file_name='wh_safety_stock_{date}.csv'.format(date=str(forecast_date))) status = True except Exception as error: err_msg = str(error) logger.info(str(error)) raise error email = Email() if debug_mode == 'Y': email_to = '[email protected],[email protected]' if status: result = 'Success' email.send_email_file(subject=f"Warehouse forecast & replenishment ({env}): {result}", mail_body=f"Run time: {datetime.now()} {err_msg}", to_emails=email_to, file_uris=[df_uri]) else: result = 'Failed' email.send_email_file(subject=f"Warehouse forecast & replenishment ({env}): {result}", mail_body=f"Run time: {datetime.now()} {err_msg}", to_emails=email_to, file_uris=[]) # DDLs for tables """ create table "prod2-generico"."wh-forecast-repln-input" ( "param-name" text ENCODE lzo, "month-begin-dt" date ENCODE az64, value text ENCODE lzo, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-forecast-repln-input" owner to "admin"; CREATE TABLE "prod2-generico"."wh-safety-stock" ( "drug-id" int8 ENCODE az64, "drug-name" text ENCODE lzo, "type" text ENCODE lzo, category text ENCODE lzo, company text ENCODE lzo, ptr float8 ENCODE zstd, bucket text ENCODE lzo, "history-bucket" text ENCODE lzo, fcst float8 ENCODE zstd, "final-fcst" text ENCODE lzo, "forecast-type" text ENCODE lzo, model text ENCODE lzo, "month" int8 ENCODE az64, "month-begin-dt" date ENCODE az64, std float8 ENCODE zstd, "year" int8 ENCODE az64, "wh-id" int8 ENCODE az64, "forecast-date" text ENCODE lzo, "lead-time-mean" int8 ENCODE az64, "lead-time-std" int8 ENCODE az64, "max-review-period" int8 ENCODE az64, "ordering-freq" int8 ENCODE az64, "service-level" float8 ENCODE zstd, "z-value" float8 ENCODE zstd, "demand-daily" float8 ENCODE zstd, "demand-daily-deviation" float8 ENCODE zstd, "safety-stock" float8 ENCODE zstd, "reorder-point" float8 ENCODE zstd, "order-upto-point" float8 ENCODE zstd, "shelf-min" float8 ENCODE zstd, "shelf-max" float8 ENCODE zstd, "last-month-sales" float8 ENCODE zstd, "safety-stock-days" float8 ENCODE zstd, "reorder-point-days" float8 ENCODE zstd, "order-upto-days" float8 ENCODE zstd, "reset-date" text ENCODE lzo, "uploaded-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "rop-without-nso" int8 ENCODE az64, "launch-stock-per-store" float8 ENCODE zstd, "expected-nso" int8 ENCODE az64, "oup-without-nso" int8 ENCODE az64, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-safety-stock" owner to "admin"; CREATE TABLE "prod2-generico"."wh-drug-sales-monthly" ( "drug-id" int8 encode az64, "month-begin-dt" timestamp without time zone ENCODE az64, "year" int8 encode az64, "month" int8 encode az64, "net-sales-quantity" float8 encode zstd, "first-bill-date" timestamp without time zone ENCODE az64, "bill-month" date ENCODE az64, "reset-date" text encode lzo, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-drug-sales-monthly" owner to "admin"; create table "prod2-generico"."wh-train" ( "drug-id" int8 encode az64, "month-begin-dt" text encode lzo, "year" int8 encode az64, "month" int8 encode az64, fcst float8 encode zstd, std float8 encode zstd, actual float8 encode zstd, ape float8 encode zstd, ae float8 encode zstd, model text encode lzo, "history-bucket" text encode lzo, "hyper-params" text encode lzo, "forecast-type" text encode lzo, "final-fcst" text encode lzo, "wh-id" int8 encode az64, "forecast-date" text encode lzo, "type" text encode lzo, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-train" owner to "admin"; CREATE TABLE "prod2-generico"."wh-train-error" ( "drug-id" int8 encode az64, mae float8 encode zstd, mape float8 encode zstd, model text encode lzo, "history-bucket" text encode lzo, "forecast-type" text encode lzo, "final-fcst" text encode lzo, "wh-id" int8 encode az64, "forecast-date" text encode lzo, "type" text encode lzo, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-train-error" owner to "admin"; CREATE TABLE "prod2-generico"."wh-predict" ( "drug-id" int8 encode az64, "month-begin-dt" text encode lzo, "year" int8 encode az64, "month" int8 encode az64, fcst float8 encode zstd, std float8 encode zstd, model text encode lzo, "history-bucket" text encode lzo, "forecast-type" text encode lzo, "final-fcst" text encode lzo, "wh-id" int8 encode az64, "forecast-date" text encode lzo, "type" text encode lzo, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-predict" owner to "admin"; CREATE TABLE "prod2-generico"."wh-safety-stock" ( "drug-id" int8 encode az64, "drug-name" text encode lzo, "type" text encode lzo, category text encode lzo, company text encode lzo, ptr float8 encode zstd, bucket text encode lzo, "history-bucket" text encode lzo, fcst int8 encode az64, "final-fcst" text encode lzo, "forecast-type" text encode lzo, model text encode lzo, "month" int8 encode az64, "month-begin-dt" date encode az64, std float8 encode zstd, "year" int8 encode az64, "wh-id" int8 encode az64, "forecast-date" date encode az64, "lead-time-mean" float8 encode zstd, "lead-time-std" float8 encode zstd, "max-review-period" float8 encode zstd, "ordering-freq" float8 encode zstd, "service-level" float8 encode zstd, "z-value" float8 encode zstd, "demand-daily" float8 encode zstd, "demand-daily-deviation" float8 encode zstd, "safety-stock" int8 encode az64, "launch-stock-per-store" float8 encode zstd, "expected-nso" float8 encode zstd, "rop-without-nso" int8 encode az64, "reorder-point" int8 encode az64, "oup-without-nso" int8 encode az64, "order-upto-point" int8 encode az64, "shelf-min" int8 encode az64, "shelf-max" int8 encode az64, "last-month-sales" int8 encode az64, "safety-stock-days" float8 encode zstd, "reorder-point-days" float8 encode zstd, "order-upto-days" float8 encode zstd, "reset-date" date encode az64, "created-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "created-by" VARCHAR default 'etl-automation' ENCODE lzo, "updated-at" TIMESTAMP without TIME zone default getdate() ENCODE az64, "updated-by" VARCHAR default 'etl-automation' ENCODE lzo ); ALTER TABLE "prod2-generico"."wh-safety-stock" owner to "admin"; """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/warehouse/wh_forecast_reset.py
wh_forecast_reset.py
import os import sys import argparse import pandas as pd from datetime import datetime, timedelta from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.db.db import DB, MSSql from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email if __name__ == '__main__': parser = argparse.ArgumentParser( description="To update wh_to_store_ff table.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to logger = get_logger() logger.info("Scripts begins") status = False schema = 'prod2-generico' err_msg = '' # getting run date for the script run_date = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") try: mssql = MSSql(connect_via_tunnel=False) mssql_connection = mssql.open_connection() q = """ select a.adnlordno, a.qty as [ordered_quantity], case when OrderDt is null then null else CONVERT(DATETIME, concat(CONVERT(date, OrderDt), ' ', a.mTime), 0) end as [wms_ordered_at], case when S2.VDT is null then null else CONVERT(DATETIME, concat(CONVERT(date, S2.VDT), ' ', s1.mTime), 0) end as [wms_invoiced_at], case when ds.FinalDate is null then null else CONVERT(DATETIME, concat(CONVERT(date, ds.FinalDate), ' ', ds.FinalTime), 0) end as [wms_dispatched_at], a.itemc, a.ordno, S1.gstVno AS [invoice_number], BTM.Name AS [wms_invoice_status], CONVERT(INT, A1.ALTERCODE) AS [store_id], ap.picktime, A1.NAME AS [wms_store_name], CONVERT(INT, I.BARCODE) AS [drug_id], I.NAME AS [wms_drug_name], '' as [batch_no], -- S2.BATCH AS [batch_no], CONVERT(DECIMAL(18, 0), S2.QTY) AS [wms_qty], CONVERT(DECIMAL(18, 0), S2.FQTY) AS [wms_free_qty], CASE WHEN CONVERT(DECIMAL(18, 0), (S2.QTY + S2.FQTY))>a.qty THEN a.qty ELSE CONVERT(DECIMAL(18, 0), (S2.QTY + S2.FQTY)) END AS [wms_actual_qty], (S2.NETAMT + (S2.IGSTAmt + S2.CGSTAmt + S2.SGSTAmt)) AS [wms_net_value], (S2.IGSTAmt + S2.CGSTAmt + S2.SGSTAmt) AS [wms_net_value_tax], s1.uid as [checker_name], mst.name as [picker_name], mr.name as [route], case when S1.Acno = 59353 then 'npi' else 'non_npi' end as npi_drug, I.Location as rack_location, CASE when I.Location >= 11001011 and I.Location <= 11306041 then 'npi_rack' else 'non_npi_rack' end as npi_rack, s1.Vno, b.qtyrecd as picked_quantity from ( select * from PorderUPD union select * from Porder) a left join ProofSp2 b on b.Itemc = a.itemc and b.Ordno = a.Ordno and b.Vdt = a.PurVdt and b.Vtype = a.PurVtype left join ProofSp1 c on b.Vno = c.vno and b.Vtype = c.Vtype and b.Vdt = c.Vdt left join ( select Vno, Vdt, Vtype, Itemc, acno, slcd, area, max(Psrlno) as [Psrlno], sum(Qty) as [Qty], sum(fqty) as [fqty], sum(NetAmt) as [NetAmt], sum(IGSTAmt) as [IGSTAmt], sum(CGSTAmt) as [CGSTAmt], sum(SGSTAmt) as [SGSTAmt] from SalePurchase2 group by Vno, Vdt, Vtype, Itemc, acno, slcd, area ) as s2 on s2.vno = c.RefVno and s2.Itemc = a.itemc and s2.Vtype = c.RefVtype and s2.Vdt = c.RefVdt left join SalePurchase1 S1 on c.RefVno = S1.Vno and c.acno = S1.Acno and c.RefVdt = S1.Vdt left JOIN ACM A1 ON a.ACNO = A1.CODE -- AND S2.SLCD = A.SLCD left join ( select vno, vdt, vtype, itemc, max(PickTime) as PickTime, max(PickerID) as PickerID from App_SP2 group by vno, vdt, vtype, itemc union select vno, vdt, vtype, itemc, max(PickTime) as PickTime, max(PickerID) as PickerID from App_SP2Upd group by vno, vdt, vtype, itemc ) ap on ap.vno = c.Vno and ap.vdt = c.Vdt and ap.Vtype = c.Vtype and AP.itemc = a.Itemc left join DispatchStmt ds on ds.Vdt = s2.Vdt and ds.Vno = s2.Vno and ds.Vtype = s2.Vtype LEFT JOIN MASTER M ON S2.AREA = M.CODE AND M.SLCD = 'AR' LEFT JOIN ACMEXTRA AE ON A1.CODE = AE.CODE AND A1.SLCD = AE.SLCD left JOIN Item I ON a.ITEMC = I.CODE left JOIN COMPANY C1 ON I.COMPCODE = C1.CODE -- left JOIN -- FIFO F ON S2.PSRLNO = F.PSRLNO LEFT JOIN MASTER CC ON CC.CODE = AE.CUSTCAT AND CC.SLCD = 'CC' LEFT JOIN BillTrackMst BTM ON S1.SyncTag = BTM.Srl left join ( select code, name from MASTER where slcd = 'SM') as mst on mst.code = ap.PickerID left join MASTER mr on mr.code = a1.route WHERE OrderDt >= cast(DATEADD(month, -1, GETDATE()) - day(GETDATE()) + 1 as date) and AdnlOrdNo is not null and isnumeric(I.BARCODE) = 1 """ df = pd.read_sql(q, mssql_connection) df['sbid'] = df['adnlordno'].str[-8:].astype(int) sbid = tuple(df['sbid']) rs_db_read = DB() rs_db_read.open_connection() q2 = """ select id as sbid, case when "auto-short" = 1 then 'as/ms' else 'pr' end as order_type from "prod2-generico"."short-book-1" where id in {} """.format(sbid) as_pr = rs_db_read.get_df(q2) df = df.merge(as_pr, on='sbid', how='left') q3 = """ select id as drug_id, type, case when company = 'GOODAID' then 'goodaid' when "type" = 'ethical' then 'ethical' when "type" = 'generic' then 'generic' else 'other' end as sub_type from "prod2-generico".drugs """ drugs = rs_db_read.get_df(q3) q4 = """ select id as store_id, case when "franchisee-id" = 1 then 'coco' else 'fofo' end as store_type from "prod2-generico"."stores-master" sm """ stores = rs_db_read.get_df(q4) df = df.merge(stores, on='store_id', how='left') df['run_time'] = run_date q5 = """ select a.id as sbid, coalesce(fofo_approved_at."presaved_approved_at", '0101-01-01 00:00:00.000') as presaved_approved_at, a."created-at" as sb_created_at, a."ordered-at" as sb_ordered_at, a."re-ordered-at" as sb_reordered_at, coalesce(s.delivered_at, '0101-01-01 00:00:00.000') as sb_delivered_at from "prod2-generico"."prod2-generico"."short-book-1" a left join ( select sbol."short-book-id" , min(sbol."created-at") as "presaved_approved_at" from "prod2-generico"."prod2-generico"."short-book-order-logs" sbol left join "prod2-generico"."prod2-generico"."short-book-1" sb2 on sb2.id = sbol."short-book-id" left join "prod2-generico"."prod2-generico".stores s2 on s2.id = sb2."store-id" where s2."franchisee-id" != 1 and sbol.status not in ('presaved', 'lost', 'failed', 'declined', 'deleted') group by sbol."short-book-id" ) fofo_approved_at on fofo_approved_at."short-book-id" = a.id left join ( select s."short-book-id", MAX(b."delivered-at") as "delivered_at" from "prod2-generico"."short-book-invoice-items" s join "prod2-generico"."invoice-items" c on s."invoice-item-id" = c."id" join "prod2-generico"."invoices" b on c."invoice-id" = b.id where DATE("approved-at") >= date(date_trunc('month', current_date) - interval '1 month') group by s."short-book-id") s on a."id" = s."short-book-id" where id in {} """.format(sbid) timestamps = rs_db_read.get_df(q5) timestamps.fillna('', inplace=True) df = df.merge(timestamps, on='sbid', how='left') q6 = """ select Vno, max(TagNo) as dispatch_no from DispatchStmt ds where Vtype = 'SB' group by Vno """ dispatch_no = pd.read_sql(q6, mssql_connection) df = df.merge(dispatch_no, on='Vno', how='left') del df['Vno'] df['picked_qty'] = df['picked_quantity'] del df['picked_quantity'] rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() logger.info('writing data to table wh-to-store-ff') s3.write_df_to_db(df, 'wh-to-store-ff', rs_db_write, schema=schema) logger.info('deleting previous data') rs_db_write.execute(""" delete from "prod2-generico"."wh-to-store-ff" where run_time <> ( select max(run_time) from "prod2-generico"."wh-to-store-ff" ) """) logger.info('wh-to-store-ff table updated') status = True except Exception as error: err_msg = str(error) logger.exception(str(error)) email = Email() if not status: result = 'Failed' email.send_email_file(subject=f"wh_to_store_ff ({env}): {result}", mail_body=f"Run time: {datetime.now()} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/warehouse/wh_to_store_ff.py
wh_to_store_ff.py
import os import sys import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.utils.doid_write import doid_custom_write from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email import argparse def main(s3_file_end_path, ss_col_name, rop_col_name, oup_col_name, s3, debug_mode, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' missed_entries = pd.DataFrame() try: # Read csv file from S3 into pandas datafame logger.info("Reading file from S3 into pd.DataFrame") file_path = s3.download_file_from_s3(s3_file_end_path) df_upload = pd.read_csv(file_path) logger.info(f"Input DF shape: {df_upload.shape}") if debug_mode == 'N': # Upload values into DOID logger.info("Updating new values into DOID") missed_entries = doid_custom_write(df_upload, logger, ss_col=ss_col_name, rop_col=rop_col_name, oup_col=oup_col_name) # Delete file from S3 logger.info("Deleting uploaded file from S3") s3_file_uri = "s3://aws-glue-temporary-921939243643-ap-south-1/" + s3_file_end_path s3.delete_s3_obj(uri=s3_file_uri) status = 'Success' logger.info(f"DOID manual update code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"DOID manual update code execution status: {status}") return status, missed_entries if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="Y", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-s3fn', '--s3_file_end_path', default="doid_manual_update_csv/file_name.csv", type=str, required=False) parser.add_argument('-ss', '--ss_col_name', default="ss", type=str, required=False) parser.add_argument('-rop', '--rop_col_name', default="rop", type=str, required=False) parser.add_argument('-oup', '--oup_col_name', default="oup", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env debug_mode = args.debug_mode email_to = args.email_to s3_file_end_path = args.s3_file_end_path ss_col_name = args.ss_col_name rop_col_name = args.rop_col_name oup_col_name = args.oup_col_name logger = get_logger() s3 = S3() status, missed_entries = main(s3_file_end_path, ss_col_name, rop_col_name, oup_col_name, s3, debug_mode, logger) missed_entries_uri = s3.save_df_to_s3( missed_entries, file_name=f"missed_entries_manual_update.csv") # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"DOID Manual Update (GLUE-{env}): {status}", mail_body=f""" Debug Mode: {debug_mode} Job Params: {args} """, to_emails=email_to, file_uris=[missed_entries_uri]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/doid_manual_update/doid_manual_update.py
doid_manual_update.py
import argparse import os import sys import pandas as pd from zeno_etl_libs.db.db import PostGreWrite, DB from zeno_etl_libs.helper import helper sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-fr', '--full_run', default="yes", type=str, required=False) parser.add_argument('-dfs', '--db_fetch_size', default=1000, type=int, required=False) parser.add_argument('-ibs', '--insert_batch_size', default=100, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env full_run = args.full_run db_fetch_size = args.db_fetch_size insert_batch_size = args.insert_batch_size os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") logger.info(f"full_run: {full_run}") logger.info(f"db_fetch_size: {db_fetch_size}") logger.info(f"insert_batch_size: {insert_batch_size}") """ opening the Redshift connection """ rs_db = DB() rs_db.open_connection() """ opening the postgres connection """ pg_db_w = PostGreWrite() pg_db_w.open_connection() pg_schema = "public" rs_schema = "prod2-generico" if env == "dev" else "prod2-generico" rs_table = "patients-metadata-2" pg_table = rs_table.replace("-", "_") pg_temp_table = pg_table + "_temp" query = f""" SELECT max(updated_at) as "last_updated_at" FROM "{pg_schema}"."patients_metadata_2" """ df = pd.read_sql_query(query, pg_db_w.connection) date_filter = "" if df.last_updated_at[0] is not None: date_filter = f""" where "updated-at" >= '{df.last_updated_at[0]}' """ table_info = helper.get_table_info(db=rs_db, table_name=rs_table, schema=rs_schema) columns = ["id", "value-segment", "value-segment-calculation-date", "behaviour-segment", "behaviour-segment-calculation-date", "last-bill-date", "number-of-bills", "total-spend", "average-bill-value", "is-chronic", "total-quantity", "quantity-generic", "quantity-generic-pc", "hd-bills", "referred-count", "latest-nps-rating", "latest-nps-rating-comment", "latest-nps-rating-date", "latest-nps-rating-store-id", "latest-nps-rating-store-name", "first-bill-date", "is-goodaid"] def get_patients_metadata_from_rs(batch=1): limit = db_fetch_size """ Query to get patients-metadata from RS """ query = f""" SELECT "{'","'.join(columns)}" FROM "{rs_schema}"."{rs_table}" {date_filter} order by "updated-at" limit {limit} offset {(batch - 1) * limit} """ logger.info(f"Batch: {batch}, limit:{limit} ") df: pd.DataFrame = rs_db.get_df(query=query) df.columns = [c.replace('-', '_') for c in df.columns] # fix data types for col in ['total_spend', 'average_bill_value', 'quantity_generic_pc']: df[col] = df[col].fillna(0.0).astype(float) for col in ['behaviour_segment_calculation_date', 'value_segment_calculation_date', 'last_bill_date', 'latest_nps_rating_date', 'first_bill_date']: df[col] = pd.to_datetime(df[col], errors='ignore') for col in ['number_of_bills', 'total_quantity', 'quantity_generic', 'hd_bills', 'referred_count', 'latest_nps_rating', 'latest_nps_rating_store_id']: df[col] = df[col].fillna(0).astype(int) for col in ['is_chronic', 'is_goodaid']: df[col] = df[col].fillna(False).astype(bool) logger.info("fetched data from RS DB successfully.") return df try: # clean the temp table query = f""" delete from {pg_schema}.{pg_temp_table}; """ pg_db_w.engine.execute(query) # insert_batch_size = 10000 batch = 1 while True: df = get_patients_metadata_from_rs(batch=batch) if df.empty: logger.info("Nothing to sync since last update.") break "Insert into the PostGre temp table" small_batch_counter = 1 for ga_df in helper.batch(df, insert_batch_size): ga_df.to_sql(name=pg_temp_table, con=pg_db_w.engine, if_exists='append', chunksize=500, method='multi', index=False) logger.info(f"small_batch_counter: {small_batch_counter}") small_batch_counter += 1 logger.info("Inserted data in Postgres DB temp table.") if full_run.lower() != 'yes': break batch += 1 """Sync temp and main table""" # 1. Delete the common records query = f""" delete from {pg_schema}.{pg_table} as tgt using {pg_schema}.{pg_temp_table} as src where tgt.id = src.id ; """ pg_db_w.engine.execute(query) # 2. Insert the temp table records to main table query = f""" insert into {pg_schema}.{pg_table} select * from {pg_schema}.{pg_temp_table}; """ pg_db_w.engine.execute(query) logger.info("Synced data in Postgres DB successfully") except Exception as e: # logger.exception(e) raise e finally: pg_db_w.close_connection() rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/patients-metadata-postgre-sync/patients-metadata-postgre-sync.py
patients-metadata-postgre-sync.py
import argparse import os import sys import pandas as pd from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet from datetime import datetime as dt parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sd', '--start_date', default="0", type=str, required=False) parser.add_argument('-ed', '--end_date', default="0", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger() # Start date and end date parameters (can be changed later) try: start_date = args.start_date start_date = str(dt.strptime(start_date, "%Y-%m-%d").date()) end_date = args.end_date end_date = str(dt.strptime(end_date, "%Y-%m-%d").date()) except ValueError: start_date = dt.today().replace(day=1).strftime("%Y-%m-%d") end_date = dt.today().strftime("%Y-%m-%d") schema = 'prod2-generico' table_name = 'mktg-store-targets' rs_db = DB(read_only=False) rs_db.open_connection() s3 = S3() table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) read_schema = 'prod2-generico' # Delete records of current month from table data if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f""" DELETE FROM "{read_schema}"."mktg-store-targets" WHERE DATE("month-ref-date") >= '{start_date}' AND DATE("month-ref-date") <= '{end_date}' """ logger.info(truncate_query) rs_db.execute(truncate_query) logger.info('Delete for recent month done') gs = GoogleSheet() mktg_store_targets = gs.download({ "spreadsheet_id": "1AZQF5DF6bQjX3rEtgdZ2BUI7htoNUnf2DaKFFHLaiMg", "sheet_name": "MT", "listedFields": []}) mktg_store_targets = pd.DataFrame(mktg_store_targets) mktg_store_targets['month-ref-date'] = mktg_store_targets['month-ref-date'].apply(pd.to_datetime, errors='coerce') mktg_store_targets_today = mktg_store_targets[(mktg_store_targets['month-ref-date'] >= start_date) & (mktg_store_targets['month-ref-date'] <= end_date)] # data type correction mktg_store_targets_today['store-id'] = mktg_store_targets_today['store-id'].astype(int) mktg_store_targets_today['target-sales'] = pd.to_numeric(mktg_store_targets_today['target-sales'], errors='coerce') mktg_store_targets_today['target-acq'] = pd.to_numeric(mktg_store_targets_today['target-acq'], errors='coerce') # etl mktg_store_targets_today['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') mktg_store_targets_today['created-by'] = 'etl-automation' mktg_store_targets_today['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') mktg_store_targets_today['updated-by'] = 'etl-automation' # Write to csv s3.save_df_to_s3(df=mktg_store_targets_today[table_info['column_name']], file_name='marketing_store_targets.csv') # upload to db s3.write_df_to_db(df=mktg_store_targets_today[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/mktg-store-targets/mktg-store-targets.py
mktg-store-targets.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-yc', '--year_cutoff', default='2019', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to year_cutoff = args.year_cutoff os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("year_cutoff - " + year_cutoff) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") stores_query = """ select distinct id as "store-id" from "prod2-generico".stores s """ stores = rs_db.get_df(stores_query) logger.info("Fetched distinct stores") q_aa = """ select ri."id" as "return-id", ri."inventory-id", ri."returned-quantity", rtd."store-id", str."name" as "store-name", drug."drug-name", h."name" as "dist-name", dn."serial", ri."net", case when date(iv."dispatched-at") = '0101-01-01' then 1 else 0 end as flag, iv."approved-at" as "invoice-approved-at", iv."dispatched-at" as "invoice-dispatched-at", rtd."created-at", ri."approved-at", dn."dispatched-at", ri."settled-at" as "ri-settled-at", dn."settled-at" as "dn-settled-at", dn."accounted-at", ri."status" as "return-status", dn."status" as "dispatch-status", concat(DATE_PART(mon, rtd."created-at"), concat( '-', DATE_PART(y, rtd."created-at"))) as "created-period", concat(DATE_PART(mon, dn."dispatched-at"), concat('-', DATE_PART(y, dn."dispatched-at"))) as "dispatch-period", ri."return-reason", date(inv."expiry") as "expiry", h."credit-period" , concat(DATE_PART(mon, ri."settled-at"), concat('-', DATE_PART(y, ri."settled-at"))) as "settled-period", ri."discard-reason", date(ri."discarded-at") as "discarded-at", rtd."created-by", ri."approved-by", iv."invoice-number", date(iv."invoice-date") as "invoice-date", sdm."forward-dc-id" as "DC", case when (date(iv."dispatched-at")= '0101-01-01' or iv."dispatched-at" > rtd."created-at") then 'DC' else 'Store' end as "Origin", h."type" as "distributor-type", case when h."credit-period">0 then 'credit' else 'non-credit' end as "distributor credit", case when ri."debit-note-reference" is null and ri."status" = 'saved' then '1.Saved' when ri."debit-note-reference" is null and ri."status" = 'approved' then '2.Approved' when ri."debit-note-reference" is not null and dn."status" = 'Saved' then '3.DN Saved' when ri."debit-note-reference" is not null and dn."status" = 'dispatched' then '4.DN Dispatched' when ri."debit-note-reference" is not null and dn."status" = 'Settled' then '5.DN Settled' when ri."debit-note-reference" is not null and dn."status" = 'Accounted' then '6.DN Accounted' when ri."status" = 'discarded' then '7.discarded' else 'Status issue' end as "Comprehensive status", case when (date(iv."dispatched-at")= '0101-01-01' or iv."dispatched-at" > rtd."created-at") and extract(y from iv."dispatched-at") > {year_cutoff} and ri."return-reason" in ( 'reason-product-damaged', 'reason-not-ordered', 'reason-to-be-returned', 'reason-wrong-product', 'reason-softcopy-excess', 'reason-near-expiry', 'reason-product-expired', 'reason-na', 'reason-already-returned', 'reason-customer-refused', 'reason-wrongly-ordered', 'reason-excess-supplied', 'reason-non-moving', 'reason-wrong-mrp', 'reason-wrong-expiry') then 'DC Salable returns' when (date(iv."dispatched-at")= '0101-01-01' or iv."dispatched-at" > rtd."created-at") and extract(y from iv."dispatched-at") > {year_cutoff} and ri."return-reason" in ( 'reason-product-short', 'reason-short-from-dc') then 'DC Short returns' when ri."return-reason" in ('reason-product-damaged', 'reason-near-expiry', 'reason-product-expired', 'reason-wrong-expiry') then 'Store Expiry' when ri."return-reason" in ('reason-not-ordered', 'reason-to-be-returned', 'reason-wrong-product', 'reason-softcopy-excess', 'reason-na', 'reason-already-returned', 'reason-customer-refused', 'reason-wrongly-ordered', 'reason-excess-supplied', 'reason-non-moving', 'reason-wrong-mrp') then 'Store Salable' when ri."return-reason" in ('reason-product-short', 'reason-short-from-dc') then 'Store Short' else 'issue' end as "Comprehensive reasons" from "prod2-generico"."return-items" ri left join "prod2-generico"."returns-to-dc" rtd on ri."return-id" = rtd."id" left join "prod2-generico"."debit-notes" dn on ri."debit-note-reference" = dn."id" left join "prod2-generico"."stores" str on rtd."store-id" = str."id" left join "prod2-generico"."inventory" inv on inv."id" = ri."inventory-id" left join "prod2-generico"."drugs" drug on drug."id" = inv."drug-id" left join "prod2-generico"."invoices" iv on iv."id" = inv."invoice-id" left join "prod2-generico"."distributors" h on h."id" = iv."distributor-id" left join "prod2-generico"."store-dc-mapping" sdm on sdm."store-id" = str."id" and h."type" = sdm."drug-type" where ri."status" not in ('reverted', 'deleted') """.format(year_cutoff=year_cutoff) df2 = rs_db.get_df(q_aa) logger.info("Fetched return data") df2['net'] = df2['net'].astype(float) # df2[['expiry','invoice-date',]].astype(datetime.datetime.date()) status2 = False # pd.to_datetime(df2['expiry']) try: schema = 'prod2-generico' table_name = 'wc-returns' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) truncate_query = """ delete from "prod2-generico"."wc-returns" """ rs_db_write.execute(truncate_query) logger.info(str(table_name) + ' table deleted') s3.write_df_to_db(df=df2[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(str(table_name) + ' table uploaded') status2 = True except: status2 = False if status2 is True: status = 'Success' else: status = 'Failed' # logger.close() end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name} table updated", mail_body=f"{table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/wc-returns/wc-returns.py
wc-returns.py
import sys import os sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB import argparse import pandas as pd import datetime parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="stage", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]", type=str, required=False) parser.add_argument('-si', '--store_id', default=2, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() stores_query = f''' select * from "prod2-generico"."stores" ''' rs_db.execute(query=stores_query, params=None) stores: pd.DataFrame = rs_db.cursor.fetch_dataframe() stores.columns = [col.replace('-', '_') for col in stores.columns] drug_query = f''' select id, "drug-name", company, composition, type, pack , "pack-form", "pack-of", "available-in" from "prod2-generico"."drugs" ''' rs_db.execute(query=stores_query, params=None) drugs: pd.DataFrame = rs_db.cursor.fetch_dataframe() drugs.columns = [col.replace('-', '_') for col in drugs.columns] run_date = str(datetime.datetime.now().date()) store_file_name = 'stores_state_{}.xlsx'.format(str(run_date)) drugs_file_name = 'drugs_state_{}.xlsx'.format(str(run_date)) # Uploading the file to s3 store_uri = s3.save_df_to_s3(df=stores, file_name=store_file_name) drugs_uri = s3.save_df_to_s3(df=stores, file_name=drugs_file_name) # Sending email subject = ''' Stores and Drugs Master Snapshot ''' mail_body = '''Stores and Drugs Master Snapshot - {} '''.format(run_date) file_uris = [store_uri, drugs_uri] email = Email() email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris) # deleteing the old files for uri in file_uris: s3.delete_s3_obj(uri=uri)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/stores_drugs_master_automailer/stores_drugs_master_automailer.py
stores_drugs_master_automailer.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "patient-requests-metadata" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}" where date("created-at")>= date(date_trunc('month', current_date) - interval '6 month'); """) query = f""" insert into "prod2-generico"."{table_name}" ( "id" , "created-at", "created-by", "updated-by", "updated-at", "year-created-at", "month-created-at", "patient-id", "doctor-id", "store-id", "bill-id", "drug-id", "zeno-order-id", "drug-name", "pso-requested-quantity", "pso-inventory-quantity", "order-number", "order-source", "order-type", "patient-request-id", "payment-type", "promo-id", "pso-status", "fulfilled-to-consumer", "type", "category", "company", "company-id", "composition", "composition-master-id", "lp-fulfilled-qty", "sb-id" , "ff-distributor", "ordered-distributor-id", "quantity", "required-quantity", "ordered-at", "completed-at", "invoiced-at", "dispatched-at", "received-at", "sb-status", "decline-reason", "inventory-at-ordering", "re-ordered-at", "dc-ff-time", "store-received-ff-time", "consumer-ff-time", "order-raised-at-dc", "order-raised-at-distributor", "billed-at", "store-name", "store-manager", "line-manager", "abo", "city", "store-b2b", "substituted", "gross-quantity", "gross-revenue-value", "net-quantity", "net-revenue-value", "selling-rate", "store-delivered-at", "franchisee-short-book", "pr-created-at", "sb-created-at", "acquired" , "old-new-static" , "completion-type" , "slot-id" , "slot-type", "turnaround-time", "group" ) select pso."id" as "id", pso."created-at" as "created-at", pso."created-by" as "created-by", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", extract(year from pso."created-at") as "year-created-at", extract(month from pso."created-at") as "month-created-at", pso."patient-id" as "patient-id" , pso."doctor-id" as "doctor-id" , pso."store-id" as "store-id" , pso."bill-id" as "bill-id" , pso."drug-id" as "drug-id", pso."zeno-order-id" as "zeno-order-id", pso."drug-name" as "drug-name" , pso."requested-quantity" as "pso-requested-quantity", pso."inventory-quantity" as "pso-inventory-quantity", pso."order-number" as "order-number" , pso."order-source" as "order-source" , pso."order-type" as "order-type" , pso."patient-request-id" as "patient-request-id" , pso."payment-type" as "payment-type" , pso."promo-id" as "promo-id", pso.status as "pso-status", (case when ms."gross-quantity" > 0 then 1 else 0 end) as "fulfilled-to-consumer", d2."type" , d2."category" , d2."company" , d2."company-id" as "company-id" , d2."composition" , d2."composition-master-id" as "composition-master-id", NVL(prlp."lp-fulfilled-qty", 0) as "lp-fulfilled-qty", sb."id" as "sb-id", sb."distributor-id" as "ff-distributor", sb."ordered-distributor-id" as "ordered-distributor-id", sb."quantity" as "quantity" , sb."required-quantity" as "required-quantity" , case when sb."ordered-at" = '0101-01-01' then null else sb."ordered-at" end as "ordered-at", case when sb."completed-at" = '0101-01-01' then null else sb."completed-at" end as "completed-at", case when sb."invoiced-at" = '0101-01-01' then null else sb."invoiced-at" end as "invoiced-at", case when sb."dispatched-at" = '0101-01-01' then null else sb."dispatched-at" end as "dispatched-at", case when sb."received-at" = '0101-01-01' then null else sb."received-at" end as "received-at", sb."status" as "sb-status", sb."decline-reason" as "decline-reason", sb."inventory-at-ordering" as "inventory-at-ordering" , case when sb."re-ordered-at" = '0101-01-01' then null else sb."re-ordered-at" end as "re-ordered-at", (case when (pso."created-at" = '0101-01-01' or msda."store-delivered-at" = '0101-01-01') then null else datediff(hour, pso."created-at", msda."store-delivered-at") end) as "dc-ff-time", (case when (pso."created-at" = '0101-01-01' or sb."received-at" = '0101-01-01') then null else datediff(hour, pso."created-at", sb."received-at") end) as "store-received-ff-time", (case when (pso."created-at" = '0101-01-01' or b2."created-at" = '0101-01-01') then null else datediff(hour, pso."created-at", b2."created-at") end) as "consumer-ff-time", (case when sb."quantity">0 then 1 else 0 end) as "order-raised-at-dc", (case when ("ordered-at" = '0101-01-01' or "ordered-at" is null) then 0 else 1 end) as "order-raised-at-distributor", b2."created-at" as "billed-at", msm."store" as "store-name", msm."store-manager", msm."line-manager", msm."abo", msm."city", msm."store-b2b", case when msc."generic-flag" is null then 'not-available' when msc."generic-flag" is not null and d2."type" = 'generic' then 'substituted' when msc."generic-flag" is not null and d2."type" != 'generic' then 'not-substituted' else 'not-available' end as "substituted", ms."gross-quantity", ms."gross-revenue-value", ms."net-quantity", ms."net-revenue-value", case when (pso."selling-rate" is null or pso."selling-rate" = 0) and d2."type" = 'generic' then 35 when (pso."selling-rate" is null or pso."selling-rate" = 0) and d2."type" != 'generic' then 100 else pso."selling-rate" end as "selling-rate", msda."store-delivered-at", sb."franchisee-short-book" as "franchisee-short-book", pra."created-at" as "pr-created-at", sb."created-at" as "sb-created-at" , msm."acquired" , msm."old-new-static" , pra."completion-type" , pso."slot-id" , ss."slot-type", pso."turnaround-time", d1."group" from "prod2-generico"."patients-store-orders" pso left join ( select prlp."patient-request-id" , sum("fulfilled-quantity") as "lp-fulfilled-qty" from "prod2-generico"."patient-request-local-purchase" prlp inner join "prod2-generico"."patients-store-orders" pso on NVL(pso."patient-request-id", 0) = prlp."patient-request-id" group by prlp."patient-request-id" ) as prlp on prlp."patient-request-id" = NVL(pso."patient-request-id", 0) left join "prod2-generico"."patient-requests" pra on pra."id" = NVL(pso."patient-request-id", 0) left join "prod2-generico"."patient-requests-short-books-map" mprsb on NVL(pso."patient-request-id", 0) = mprsb."patient-request-id" left join "prod2-generico"."short-book-1" sb on sb.id = mprsb."short-book-id" left join "prod2-generico"."store-delivered" msda on mprsb."short-book-id" = msda."id" left join "prod2-generico"."bills-1" b2 on b2.id = NVL(pso."bill-id", 0) left join "prod2-generico"."drugs" d2 on d2."id" = pso."drug-id" left join "prod2-generico"."drug-unique-composition-mapping" d1 on pso."drug-id" = d1."drug-id" left join "prod2-generico"."substitutable-groups" msc on msc."id" = d1."group" left join "prod2-generico"."sales-agg" ms on ms."bill-id" = pso."bill-id" and ms."drug-id" = pso."drug-id" left join "prod2-generico"."stores-master" msm on pso."store-id" = msm.id left join "prod2-generico"."store-slots" ss on pso."slot-id" = ss.id where date(pso."created-at")>=date(date_trunc('month', current_date) - interval '6 month'); """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."patient-requests-metadata"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") logger.info("running job for patient request") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/patient-request/patient-request.py
patient-request.py
import argparse import os import sys import pandas as pd from pandas.io.json import json_normalize sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.fresh_service.fresh_service import FreshService parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-l', '--limit', default=None, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env limit = args.limit logger = get_logger() logger.info(f"env: {env}") rs_db = DB(read_only=False) rs_db.open_connection() s3 = S3() all_tickets_data = pd.DataFrame() page = 1 check = 1 # get the last updated at query = f""" select max("updated-at") as "max-updated-at" from "prod2-generico"."freshservice-tickets" """ max_update_date_df: pd.DataFrame = rs_db.get_df(query=query) max_update_date = None if not max_update_date_df.empty: max_update_date = max_update_date_df.values[0][0] fs = FreshService() while True: tickets = fs.get_tickets(page=page, updated_since=None) df = json_normalize(tickets) if limit and limit < page: logger.info(f"fetched given pages: {limit}") # this break is for testing purpose break if len(df) > 0: logger.info(f"page no: {page}, length len(df): {len(df)}") page += 1 df['created-by'] = 'etl-automation' df['updated-by'] = 'etl-automation' all_tickets_data = all_tickets_data.append(df) else: logger.info("Fetched all tickets successfully") break all_tickets_data.columns = [c.replace("_", "-") for c in all_tickets_data.columns] # Fixing the data types for col in ['created-at', 'updated-at', 'due-by']: all_tickets_data[col] = pd.to_datetime(all_tickets_data[col], errors='coerce') for col in ['requester-id', 'responder-id', 'group-id', 'id', 'owner-id', 'priority', 'urgency', 'assoc-problem-id', 'assoc-change-id', 'assoc-asset-id', 'display-id']: # all_tickets_data[col] = all_tickets_data[col].astype('str', errors='ignore') all_tickets_data[col] = all_tickets_data[col].astype('Int64', errors='ignore') col_length = {"to-emails": 240, 'description': 49000, 'description-html': 15000, 'subject': 500} for col in col_length.keys(): all_tickets_data[col] = all_tickets_data[col].apply(lambda x: str(x)[0:col_length[col]]) # all_tickets_data.info() schema = 'prod2-generico' table_name = 'freshservice-tickets' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") logger.info(f"Table:{table_name} exists and input data has all columns") # FIXME: Why download all tickets every time, every API call has $ attached to it. use filter in the API call # link: https://api.freshservice.com/#filter_tickets truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=all_tickets_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info("Pushed tickets successfully") rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/fresh-service-tickets/fresh-service-tickets.py
fresh-service-tickets.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "store-delivered" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "store-delivered-at", "needs-recompute-aggvar", "num-rec" ) select s."short-book-id" as "id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta',GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", MAX(b."delivered-at") as "store-delivered-at", NULL AS "needs-recompute-aggvar", NULL AS "num-rec" from "prod2-generico"."short-book-invoice-items" s join "prod2-generico"."invoice-items" c on s."invoice-item-id" = c."id" join "prod2-generico"."invoices" b on c."invoice-id" = b.id group by s."short-book-id"; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/store-delivered-at/store-delivered-at.py
store-delivered-at.py
import argparse import json import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB, MongoDB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import datetime from datetime import datetime as dt from datetime import timedelta from dateutil.tz import gettz import dateutil def main(rs_db, mg_client, s3, data): schema = 'prod2-generico' table_name = 'ecomm-inbound-call-report' date_field = 'created-at' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # job_data_params = {"end": "2021-12-31", "start": "2021-12-01", "full_run": 1, "alternate_range": 0} # params job_data_params = data if job_data_params['full_run']: start = '2017-05-13' elif job_data_params['alternate_range']: start = job_data_params['start'] else: start = str(dt.today().date() - timedelta(days=1)) # convert date to pymongo format start = dateutil.parser.parse(start) # Read Generico crm table db = mg_client['generico-crm'] collection = db["exotelReportLogs"].find({ "exotelNumber": {"$regex": '2071171644'}, "direction": "inbound", "$or": [{"toName": {"$regex": '2071171644'}}, {"toName": 'ZenoCRM1 Incoming'}], "status": { "$in": [ "missed-call", "completed" ] } }) callog_inbound = pd.DataFrame(list(collection)) callog_inbound = callog_inbound[ ['_id', 'exotelId', 'exotelNumber', 'from', 'FromName', 'to', 'toName', 'status', 'createdAt']] dict = {'_id': 'id', 'exotelId': 'exotel-id', 'exotelNumber': 'exotel-number', 'FromName': 'from-name', 'toName': 'to-name', 'startTime': 'start-time', 'endTime': 'end-time', 'createdAt': 'created-at'} callog_inbound.rename(columns=dict, inplace=True) callog_inbound['etl-created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') callog_inbound['etl-updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') callog_inbound['created-by'] = 'etl-automation' callog_inbound['updated-by'] = 'etl-automation' if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "{date_field}">'{start}' ''' logger.info(truncate_query) rs_db.execute(truncate_query) """ seek the data """ logger.info(callog_inbound.head(1)) logger.info(table_info) file_s3_uri_save = s3.save_df_to_s3(df=callog_inbound[table_info['column_name']], file_name="callog_inbound.csv") s3.write_to_db_from_s3_csv(table_name=table_name, file_s3_uri=file_s3_uri_save, db=rs_db, schema=schema) s3.write_df_to_db(df=callog_inbound[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-d', '--data', default=None, type=str, required=False) args, unknown = parser.parse_known_args() env = args.env data = args.data os.environ['env'] = env logger = get_logger() logger.info(f"data: {data}") data = json.loads(data) if data else {} logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() mg_db = MongoDB() mg_client = mg_db.open_connection("generico-crm") s3 = S3() """ calling the main function """ main(rs_db=rs_db, mg_client=mg_client, s3=s3, data=data) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ecomm_inbound_call_report/ecomm_inbound_call_report.py
ecomm_inbound_call_report.py
import os import sys import pandas as pd import datetime as dt import numpy as np import statistics as stats from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email import argparse def main(debug_mode, rs_db, read_schema, write_schema, table_name, s3, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' try: # get drug-patient data from mos logger.info( "Getting historical data from sales table, bill_flag='gross'") q_mos_drugs = f""" select "drug-id" , "bill-id" , "patient-id" , quantity , "revenue-value" as sales, date("created-at") as bill_date from "{read_schema}".sales s where "bill-flag" = 'gross' and DATEDIFF(day, date("created-at"), current_date) < 730 and "store-id" not in (243) """ df_mos_drugs = rs_db.get_df(q_mos_drugs) df_mos_drugs.columns = [c.replace('-', '_') for c in df_mos_drugs.columns] df_mos_drugs["bill_date"] = pd.to_datetime(df_mos_drugs["bill_date"]) df_drugs = df_mos_drugs.drop( ["bill_id", "patient_id", "quantity", "sales", "bill_date"], axis=1).drop_duplicates() dd_qty_sales = df_mos_drugs.groupby("drug_id", as_index=False).agg( {"quantity": "sum", "sales": "sum"}) ################################ # get purchase interval of drugs ################################ logger.info("Calculating patient-drug-interval") df_mos_drugs["bill_date1"] = df_mos_drugs["bill_date"] grp_pts_drug = df_mos_drugs.groupby(["patient_id", "drug_id"], as_index=False).agg( {"bill_date": "count", "bill_date1": "max"}) grp_pts_drug.rename( {"bill_date": "bill_counts", "bill_date1": "latest_date"}, axis=1, inplace=True) # only drugs with atleast 4 bills taken grp_pts_drug = grp_pts_drug.loc[grp_pts_drug["bill_counts"] > 3] df_mos_drugs = df_mos_drugs.drop("bill_date1", axis=1) # only latest 10 patient considered for purchase interval calculation grp_drugs = grp_pts_drug.groupby(["drug_id"], as_index=False).agg( {'patient_id': latest_20}) pts_drugs_to_consider = grp_drugs.explode('patient_id') pts_drugs_to_consider = pts_drugs_to_consider.merge(df_mos_drugs, on=["patient_id", "drug_id"], how="left") interval_pts_drug = pts_drugs_to_consider.groupby( ["patient_id", "drug_id"], as_index=False).agg( {"bill_date": pts_drug_interval}) interval_pts_drug.rename({"bill_date": "purchase_interval"}, axis=1, inplace=True) drug_intv = interval_pts_drug.groupby("drug_id", as_index=False).agg( {"purchase_interval": median}) # handling edge cases drug_intv["purchase_interval"] = np.where( drug_intv["purchase_interval"] == 0, 180, drug_intv["purchase_interval"]) drug_intv["purchase_interval"] = np.where( drug_intv["purchase_interval"] > 180, 180, drug_intv["purchase_interval"]) logger.info("patient-drug-interval calculation finished") df_drugs = df_drugs.merge(dd_qty_sales, on="drug_id", how="left") df_drugs.rename({"quantity": "qty_sold_l2y", "sales": "revenue_l2y"}, axis=1, inplace=True) df_drugs = df_drugs.merge(drug_intv, on="drug_id", how="left") df_drugs["purchase_interval"] = df_drugs["purchase_interval"].fillna( 180) dd = df_mos_drugs.groupby("drug_id", as_index=False).agg( {"bill_id": count_unique}) df_drugs = df_drugs.merge(dd, on="drug_id", how="left") df_drugs.rename({"bill_id": "num_bills_l2y"}, axis=1, inplace=True) dd = df_mos_drugs.groupby("drug_id", as_index=False).agg( {"quantity": mode}) df_drugs = df_drugs.merge(dd, on="drug_id", how="left") df_drugs.rename({"quantity": "mode"}, axis=1, inplace=True) dd = df_mos_drugs.groupby("drug_id", as_index=False).agg( {"quantity": median}) df_drugs = df_drugs.merge(dd, on="drug_id", how="left") df_drugs.rename({"quantity": "median"}, axis=1, inplace=True) df_drugs["std_qty"] = np.where(df_drugs["mode"] > df_drugs["median"], df_drugs["median"], df_drugs["mode"]) df_drugs["std_qty"] = np.where(df_drugs["num_bills_l2y"] <= 10, 1, df_drugs["std_qty"]) df_drugs["std_qty"] = np.where(df_drugs["std_qty"] > 30, 1, df_drugs["std_qty"]) df_drugs["std_qty"] = df_drugs["std_qty"].fillna(1) df_drugs["revenue_l2y"] = df_drugs["revenue_l2y"].fillna(0) df_drugs["qty_sold_l2y"] = df_drugs["qty_sold_l2y"].fillna(0) df_drugs["std_qty"] = df_drugs["std_qty"].astype(int) df_drugs["revenue_l2y"] = df_drugs["revenue_l2y"].astype(float) df_drugs["qty_sold_l2y"] = df_drugs["qty_sold_l2y"].astype(int) df_drugs.dropna(subset=['drug_id', 'num_bills_l2y'], inplace=True) df_drugs["drug_id"] = df_drugs["drug_id"].astype(int) df_drugs["num_bills_l2y"] = df_drugs["num_bills_l2y"].astype(int) df_drugs["avg_selling_rate"] = df_drugs["revenue_l2y"] / df_drugs[ "qty_sold_l2y"] ################################ # get avg-ptr and drug-type info ################################ logger.info("Calculating other fields") # get PTR info for all drugs q_inv = f""" SELECT "drug-id" as drug_id , AVG(ptr) as avg_ptr from "{read_schema}"."inventory-1" i where DATEDIFF(day, date("created-at"), current_date) < 730 group by "drug-id" """ df_inv = rs_db.get_df(q_inv) df_drugs = df_drugs.merge(df_inv, on="drug_id", how="left") # get necessary drug info from drugs master q_drugs = f""" SELECT id as drug_id, type from "{read_schema}".drugs d """ df_drug_info = rs_db.get_df(q_drugs) df_drugs = df_drugs.merge(df_drug_info, on="drug_id", how="left") # default ptr value for generic=35 and rest=100 df_drugs["avg_ptr"] = np.where( (df_drugs["avg_ptr"].isna()) & (df_drugs["type"] == "generic"), 35, df_drugs["avg_ptr"]) df_drugs["avg_ptr"] = np.where( (df_drugs["avg_ptr"].isna()) & (df_drugs["type"] != "generic"), 100, df_drugs["avg_ptr"]) # required format for RS wrtie df_drugs = df_drugs[['drug_id', 'qty_sold_l2y', 'revenue_l2y', 'num_bills_l2y', 'std_qty', 'purchase_interval', 'avg_ptr', 'avg_selling_rate']] df_drugs.columns = [c.replace('_', '-') for c in df_drugs.columns] df_drugs['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_drugs['created-by'] = 'etl-automation' df_drugs['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_drugs['updated-by'] = 'etl-automation' logger.info("All calculations complete") if debug_mode == 'N': logger.info(f"Truncating {table_name} in {write_schema}") truncate_query = f""" truncate table "{write_schema}"."{table_name}" """ rs_db.execute(truncate_query) logger.info(f"Truncating {table_name} in {write_schema} successful") logger.info("Writing table to RS-DB") s3.write_df_to_db(df=df_drugs, table_name=table_name, db=rs_db, schema=write_schema) logger.info("Writing table to RS-DB completed") else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"Drug-Std-Info code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Drug-Std-Info code execution status: {status}") return status def pts_drug_interval(pd_arr): """Purchase interval between buying on patient-drug level considering median interval""" df = pd.DataFrame(pd_arr, columns=["bill_date"]) df = df.sort_values(by='bill_date', ascending=True) df["delta"] = (df['bill_date']-df['bill_date'].shift()) df = df.dropna() median_days = df["delta"].median().days return median_days def latest_20(pd_arr): """To consider only latest 20 patients who bought drug in more than 4 qty objective: to reduce run time""" pts_list = list(pd_arr)[-20:] return pts_list def count_unique(pd_arr): return len(pd_arr.unique()) def mode(pd_arr): return min(pd_arr.mode()) def median(pd_arr): return stats.median(pd_arr) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="Y", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env debug_mode = args.debug_mode email_to = args.email_to read_schema = 'prod2-generico' write_schema = 'prod2-generico' table_name = 'drug-std-info' logger = get_logger() rs_db = DB() s3 = S3() # open RS connection rs_db.open_connection() """ calling the main function """ status = main(debug_mode=debug_mode, rs_db=rs_db, read_schema=read_schema, write_schema=write_schema, table_name=table_name, s3=s3, logger=logger) # close RS connection rs_db.close_connection() # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() reset_date = dt.date.today().strftime("%Y-%m-%d") email.send_email_file( subject=f"Drug-STD-Info Update (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Job Params: {args} """, to_emails=email_to) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/drug_std_info/drug_std_info.py
drug_std_info.py
import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz from fractions import Fraction sys.path.append('../../../..') from zeno_etl_libs.utils.distributor_ranking.distributor_ranking_calc import ranking_calc_dc, ranking_calc_franchisee from zeno_etl_libs.utils.distributor_ranking.ranking_intervention import ranking_override_dc, ranking_override_franchisee from zeno_etl_libs.utils.distributor_ranking.postprocess_ranking import postprocess_ranking_dc, postprocess_ranking_franchisee from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email def main(debug_mode, weights_as, weights_pr, as_low_volume_cutoff, pr_low_volume_cutoff, low_volume_cutoff_franchisee, volume_fraction, time_interval, time_interval_franchisee, rank_override_dc_active, rank_override_franchisee_active, db_read, db_write, read_schema, write_schema, s3, logger): mysql_write = MySQL(read_only=False) logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' reset_date = dt.date.today() # weights format is [lead time, margin, bounce rate, ff, lost recency, success recency] weights_as = [float(Fraction(i)) for i in list(weights_as.values())] weights_pr = [float(Fraction(i)) for i in list(weights_pr.values())] # define empty variable in case of code fail dc_evaluated = [] franchisee_stores_evaluated = [] logger.info("Checking input weights") try: assert(sum(weights_as) == 1) assert(sum(weights_pr) == 1) logger.info("Weight inputs summing up to one") except: logger.info("Weights not summing up to one, reverting to defaults") weights_as = [2 / 13, 1 / 13, 4 / 13, 4 / 13, 1 / 13, 1 / 13] weights_pr = [6 / 15, 1 / 15, 3 / 15, 3 / 15, 1 / 15, 1 / 15] try: # calculate ranks logger.info("Calculating Zippin DC-level Ranking") features_rank_dc = ranking_calc_dc( time_interval=time_interval, weights_as=weights_as, weights_pr=weights_pr, as_low_volume_cutoff=as_low_volume_cutoff, pr_low_volume_cutoff=pr_low_volume_cutoff, volume_fraction=volume_fraction, db=db_read, read_schema=read_schema, logger=logger) logger.info("Completed Zippin DC-level Ranking") logger.info("Calculating Franchisee Store-level Ranking") features_rank_franchisee = ranking_calc_franchisee( time_interval=time_interval_franchisee, weights_as=weights_as, weights_pr=weights_pr, low_volume_cutoff=low_volume_cutoff_franchisee, volume_fraction=volume_fraction, db=db_read, read_schema=read_schema, logger=logger) logger.info("Completed Franchisee Store-level Ranking") logger.info('Number of dc-drug_id combinations evaluated :' + str(features_rank_dc[features_rank_dc['request_type'] == 'AS/MS'].shape[0])) logger.info('Number of franchisee store-drug_id combinations evaluated :' + str(features_rank_franchisee[features_rank_franchisee['request_type'] == 'AS/MS'].shape[0])) if rank_override_dc_active == 'Y': logger.info("Rank override DC level begins") features_rank_dc = ranking_override_dc( features_rank_dc, db_read, read_schema, logger, override_type_list=['AS/MS']) logger.info("Rank override DC level successful") if rank_override_franchisee_active == 'Y': logger.info("Rank override franchisee store level begins") features_rank_franchisee = ranking_override_franchisee( features_rank_franchisee, db_read, read_schema, logger, override_type_list=['AS/MS', 'PR']) logger.info("Rank override franchisee store level successful") # postprocess features for dc level ranking tech_input_dc_level = postprocess_ranking_dc(features_rank_dc, volume_fraction) # postprocess features for franchisee store level ranking tech_input_franchisee_level = postprocess_ranking_franchisee( features_rank_franchisee, volume_fraction) # combine both dc-level and frachisee-level ranking tech_input = pd.concat([tech_input_dc_level, tech_input_franchisee_level]) # combine volume fraction split for cases where total distributors < 3 volume_fraction_split = tech_input['volume_fraction'].str.split( pat='-', expand=True).rename( columns={0: 'volume_fraction_1', 1: 'volume_fraction_2', 2: 'volume_fraction_3'}) tech_input['volume_fraction_1'] = volume_fraction_split[ 'volume_fraction_1'].astype(float) tech_input['volume_fraction_2'] = volume_fraction_split[ 'volume_fraction_2'].astype(float) tech_input['volume_fraction_3'] = volume_fraction_split[ 'volume_fraction_3'].astype(float) tech_input['volume_fraction_2'] = np.where( tech_input['final_dist_3'].isna(), tech_input['volume_fraction_2'] + tech_input['volume_fraction_3'], tech_input['volume_fraction_2']) tech_input['volume_fraction_3'] = np.where( tech_input['final_dist_3'].isna(), 0, tech_input['volume_fraction_3']) tech_input['volume_fraction_1'] = np.where( tech_input['final_dist_2'].isna(), tech_input['volume_fraction_1'] + tech_input['volume_fraction_2'], tech_input['volume_fraction_1']) tech_input['volume_fraction_2'] = np.where( tech_input['final_dist_2'].isna(), 0, tech_input['volume_fraction_2']) tech_input['volume_fraction'] = tech_input['volume_fraction_1'].astype( 'str') + '-' + tech_input['volume_fraction_2'].astype( 'str') + '-' + tech_input['volume_fraction_3'].astype('str') tech_input = tech_input[ ['dc_id', 'store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] ############ adhoc changes by tech, table restructure ############ tech_input = tech_input.reset_index( drop=True).reset_index().rename(columns={'index': 'id'}) tech_input[['volume_fraction_1', 'volume_fraction_2', 'volume_fraction_3']] = tech_input[ 'volume_fraction'].str.split('-', 3, expand=True) tech_input.loc[tech_input['request_type'] == 'AS/MS', 'request_type'] = 'manual-short/auto-short' tech_input.loc[tech_input['request_type'] == 'PR', 'request_type'] = 'patient-request' volume_fraction_melt = pd.melt(tech_input, id_vars=['id'], value_vars=['volume_fraction_1', 'volume_fraction_2', 'volume_fraction_3']).sort_values(by='id') distributor_melt = pd.melt(tech_input, id_vars=['id'], value_vars=['final_dist_1', 'final_dist_2', 'final_dist_3']).sort_values(by='id').rename(columns={'value': 'distributor_id'}) distributor_ranking_rule_values = pd.merge(distributor_melt, volume_fraction_melt, left_index=True, right_index=True, suffixes=('', '_y')) distributor_ranking_rule_values = distributor_ranking_rule_values[ ['id', 'distributor_id', 'value']].rename( columns={'id': 'distributor_ranking_rule_id'}).reset_index( drop=True) distributor_ranking_rule_values = distributor_ranking_rule_values.reset_index().rename(columns={'index': 'id'}) # drop null values in distributor_id(for cases where historical distributors are < 3) distributor_ranking_rule_values = distributor_ranking_rule_values[ ~distributor_ranking_rule_values['distributor_id'].isna()] # convert distributor_id in int format distributor_ranking_rule_values['distributor_id'] = \ distributor_ranking_rule_values['distributor_id'].astype(int) distributor_ranking_rules = tech_input[['id', 'drug_id', 'dc_id', 'franchisee_id', 'store_id', 'drug_type', 'request_type']] # for email info dc_evaluated = distributor_ranking_rules["dc_id"].unique().tolist() franchisee_stores_evaluated = distributor_ranking_rules["store_id"].unique().tolist() # adding required fields distributor_ranking_rules['rule_start_date'] = reset_date distributor_ranking_rules['is_active'] = 1 distributor_ranking_rules['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') distributor_ranking_rules['created_by'] = 'etl-automation' features_rank_dc.loc[:, 'reset_date'] = reset_date features_rank_dc['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') features_rank_dc['created_by'] = 'etl-automation' features_rank_franchisee.loc[:, 'reset_date'] = reset_date features_rank_franchisee['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') features_rank_franchisee['created_by'] = 'etl-automation' # formatting column names distributor_ranking_rule_values.columns = [c.replace('_', '-') for c in distributor_ranking_rule_values.columns] distributor_ranking_rules.columns = [c.replace('_', '-') for c in distributor_ranking_rules.columns] features_rank_dc.columns = [c.replace('_', '-') for c in features_rank_dc.columns] features_rank_franchisee.columns = [c.replace('_', '-') for c in features_rank_franchisee.columns] if debug_mode == 'N': logger.info("Writing table to RS-DB") logger.info("Writing to table: distributor-features-dc") s3.write_df_to_db(df=features_rank_dc, table_name='distributor-features-dc', db=db_write, schema=write_schema) logger.info("Writing to table: distributor-features-franchisee") s3.write_df_to_db(df=features_rank_franchisee, table_name='distributor-features-franchisee', db=db_write, schema=write_schema) logger.info("Writing table to RS-DB completed!") mysql_write.open_connection() logger.info("Updating table to MySQL") try: index_increment = int( pd.read_sql( 'select max(id) from `distributor-ranking-rules`', con=mysql_write.connection).values[0]) + 1 redundant_increment = int( pd.read_sql( 'select max(id) from `distributor-ranking-rule-values`', con=mysql_write.connection).values[0]) + 1 except: index_increment = 1 redundant_increment = 1 logger.info(f"Incremented distributor-ranking-rules by {index_increment}") logger.info(f"Incremented distributor-ranking-rule-values by {redundant_increment}") distributor_ranking_rules['id'] = distributor_ranking_rules['id'] + index_increment distributor_ranking_rule_values['distributor-ranking-rule-id'] = distributor_ranking_rule_values[ 'distributor-ranking-rule-id'] + index_increment distributor_ranking_rule_values['id'] = distributor_ranking_rule_values['id'] + redundant_increment logger.info("Setting existing rules to inactive") mysql_write.engine.execute("UPDATE `distributor-ranking-rules` SET `is-active` = 0") logger.info("Writing to table: distributor-ranking-rules") distributor_ranking_rules.to_sql( name='distributor-ranking-rules', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=10000) logger.info("Writing to table: distributor-ranking-rule-values") distributor_ranking_rule_values.to_sql( name='distributor-ranking-rule-values', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=10000) logger.info("Updating table to MySQL completed!") mysql_write.close() else: logger.info("Writing to RS-DB & MySQL skipped") status = 'Success' logger.info(f"Distributor Ranking code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Distributor Ranking code execution status: {status}") return status, reset_date, dc_evaluated, franchisee_stores_evaluated if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="Y", type=str, required=True) parser.add_argument('-ti', '--time_interval', default=90, type=int, required=False) parser.add_argument('-tif', '--time_interval_franchisee', default=180, type=int, required=False) parser.add_argument('-was', '--weights_as', default={'lead_time':'2/13', 'margin':'1/13', 'bounce_rate':'4/13','ff':'4/13', 'lost_recency':'1/13', 'success_recency':'1/13' }, type=str, required=False) parser.add_argument('-wpr', '--weights_pr', default={'lead_time':'6/15', 'margin':'1/15', 'bounce_rate':'3/15','ff':'3/15','lost_recency':'1/15', 'success_recency':'1/15'}, type=str, required=False) parser.add_argument('-aslvc', '--as_low_vol_cutoff', default=0.02, type=float, required=False) parser.add_argument('-prlvc', '--pr_low_vol_cutoff', default=0.01, type=float, required=False) parser.add_argument('-lvcf', '--low_vol_cutoff_franchisee', default=0.0, type=float, required=False) parser.add_argument('-vf', '--vol_frac', default="0.5-0.3-0.2", type=str, required=False) parser.add_argument('-rodc', '--rank_override_dc', default="N", type=str, required=False) parser.add_argument('-rof', '--rank_override_franchisee', default="N", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode weights_as = args.weights_as weights_pr = args.weights_pr as_low_volume_cutoff = args.as_low_vol_cutoff pr_low_volume_cutoff = args.pr_low_vol_cutoff low_volume_cutoff_franchisee = args.low_vol_cutoff_franchisee volume_fraction = args.vol_frac time_interval = args.time_interval time_interval_franchisee = args.time_interval_franchisee rank_override_dc_active = args.rank_override_dc rank_override_franchisee_active = args.rank_override_franchisee logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() """ calling the main function """ status, reset_date, dc_evaluated, franchisee_stores_evaluated = main( debug_mode, weights_as, weights_pr, as_low_volume_cutoff, pr_low_volume_cutoff, low_volume_cutoff_franchisee, volume_fraction, time_interval, time_interval_franchisee, rank_override_dc_active, rank_override_franchisee_active, rs_db_read, rs_db_write, read_schema, write_schema, s3, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"Distributor Ranking Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} DC's Evaluated: {dc_evaluated} Franchisee Stores Evaluated: {franchisee_stores_evaluated} Job Params: {args} """, to_emails=email_to) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/distributor_ranking/distributor_ranking_main.py
distributor_ranking_main.py
import os import sys import argparse import pandas as pd import numpy as np import datetime sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper.parameter.job_parameter import parameter parser = argparse.ArgumentParser( description="To send consolidated PR FF and OOS numbers.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env job_params = parameter.get_params(job_id=90) email_to = job_params['email_to'] logger = get_logger() logger.info("Script begins") status = False try: # RS Connection rs_db = DB() rs_db.open_connection() query = """ SELECT a."patient-id" as "patient-id", (a."month-created-at") as "month", (a."year-created-at") as "year", CURRENT_TIMESTAMP AS "refreshed_at", a."store-name" AS "store-name", a."drug-name" AS "drug-name", case when date_part(hour, a."created-at") <= '14' then '1stR' else '2ndR' end as "Round", case when DATE(a."invoiced-at") is null then 'Pending' when date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."invoiced-at") = 0 AND date_part(hour, a."invoiced-at") <= '21' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."invoiced-at") = 0 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."invoiced-at") = 1 AND date_part(hour, a."invoiced-at") <= '21' then 'ontime' when date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."invoiced-at") = 0 then 'ontime' when date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."invoiced-at") = 1 AND date_part(hour, a."invoiced-at") <= '16' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."invoiced-at") = 0 AND date_part(hour, a."invoiced-at") <= '21' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."invoiced-at") <= 1 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."invoiced-at") = 2 AND date_part(hour, a."invoiced-at") <= '16' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."created-at", a."invoiced-at") <= 1 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."created-at", a."invoiced-at") = 2 AND date_part(hour, a."invoiced-at") <= '16' then 'ontime' else 'delayed' end AS "fullfilment on invoice", Case when DATE(a."dispatched-at") is null then 'Pending' when date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 0 then 'ontime' when date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 1 AND date_part(hour, a."dispatched-at") <= '10' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 0 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 1 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 2 AND date_part(hour, a."dispatched-at") <= '10' then 'ontime' when date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 0 then 'ontime' when date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 1 AND date_part(hour, a."dispatched-at") <= '17' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 0 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 1 AND date_part(hour, a."dispatched-at") <= '10' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."dispatched-at") <= 1 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 2 AND date_part(hour, a."dispatched-at") <= '17' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."created-at", a."dispatched-at") <= 1 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."created-at", a."dispatched-at") = 2 AND date_part(hour, a."dispatched-at") <= '17' then 'ontime' else 'delayed' end AS "fullfilment on dispatch", case when DATE(a."store-delivered-at") is null then 'Pending' when date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 0 then 'ontime' when date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 1 AND date_part(hour, a."store-delivered-at") <= '11' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 0 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 1 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 2 AND date_part(hour, a."store-delivered-at") <= '11' then 'ontime' when date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 0 then 'ontime' when date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 1 AND date_part(hour, a."store-delivered-at") <= '19' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 0 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 1 AND date_part(hour, a."store-delivered-at") <= '12' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."store-delivered-at") <= 1 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 2 AND date_part(hour, a."store-delivered-at") <= '19' then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."created-at", a."store-delivered-at") <= 1 then 'ontime' when (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."created-at", a."store-delivered-at") = 2 AND date_part(hour, a."store-delivered-at") <= '19'then 'ontime' else 'delayed' end AS "fullfilment on delivery", case when DATE(a."ordered-at") is not null AND date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."ordered-at") = 0 AND date_part(hour, a."ordered-at") <= '15' then 'ontime' when DATE(a."ordered-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Saturday' , 'Sunday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."ordered-at") = 0 then 'ontime' when DATE(a."ordered-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Saturday' , 'Sunday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."ordered-at") = 1 AND date_part(hour, a."ordered-at") <= '15' then 'ontime' when DATE(a."ordered-at") is not null AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."ordered-at") = 0 then 'ontime' when DATE(a."ordered-at") is not null AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."ordered-at") = 1 AND date_part(hour, a."ordered-at") <= '01' then 'ontime' when DATE(a."ordered-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."ordered-at") = 0 AND date_part(hour, a."ordered-at") <= '15' then 'ontime' when DATE(a."ordered-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."ordered-at") = 0 then 'ontime' when DATE(a."ordered-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."ordered-at") = 1 then 'ontime' when DATE(a."ordered-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."ordered-at") = 2 AND date_part(hour, a."ordered-at") <= '01' then 'ontime' when DATE(a."ordered-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."created-at", a."ordered-at") = 0 then 'ontime' when DATE(a."ordered-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."created-at", a."ordered-at") = 1 AND date_part(hour, a."ordered-at") <= '01' then 'ontime' when DATE(a."ordered-at") is null then 'not ordered' else 'delayed' end AS "ordered timing", case when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is null AND date_part(hour, a."created-at") <= '14' AND DATEDIFF(day, a."created-at", a."completed-at") = 0 AND (date_part(hour, a."completed-at")) <= '21' then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."completed-at") = 0 then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) NOT IN ('Sunday' , 'Saturday') AND date_part(hour, a."created-at") > '23' AND DATEDIFF(day, a."created-at", a."completed-at") = 1 AND (date_part(hour, a."completed-at")) <= '21' then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."completed-at") = 0 then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."completed-at") = 1 AND (date_part(hour, a."completed-at")) <= '16' then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND DATEDIFF(day, a."created-at", a."completed-at") = 0 AND date_part(hour, a."created-at") <= '14' AND (date_part(hour, a."completed-at")) <= '21' then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."completed-at") <= 1 then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Saturday' AND date_part(hour, a."created-at") > '14' AND DATEDIFF(day, a."created-at", a."completed-at") = 2 AND (date_part(hour, a."completed-at")) <= '16' then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND (trim(' ' FROM to_char(a."created-at", 'Day'))) = 'Sunday' AND DATEDIFF(day, a."completed-at", a."created-at") <= 1 then 'completed-early' when DATE(a."invoiced-at") is null AND DATE(a."completed-at") is not null AND DATEDIFF(day, a."created-at", a."completed-at") = 2 AND (date_part(hour, a."completed-at")) <= '16' then 'completed-early' else 'no issue' end AS "completed issues", a."sb-status" AS "status", a."pso-requested-quantity" AS "requested-quantity", a."quantity" AS "quantity", a."required-quantity" AS "required-quantity", DATE(a."created-at") AS "created-at", DATE(a."ordered-at") AS "ordered-at", DATE(a."invoiced-at") AS "invoiced-at", DATE(a."dispatched-at") AS "dispatched-at", DATE(a."received-at") AS "received-at", DATE(a."completed-at") AS "completed-at", DATE(dtm."delivered-at") AS "delivered-at" , a."created-at" AS "created-time", a."ordered-at" AS "ordered-time", a."invoiced-at" AS "invoiced-time", a."dispatched-at" AS "dispatch-time", dtm."delivered-at" AS "delivered-time", a."completed-at" AS "completed-time", a."decline-reason" AS "decline reason", a."type", a."store-id", a."drug-id", a."company", a."franchisee-short-book", e."drug-grade", f."name" AS "received distributor", case when a."store-id" >= 146 then 'new' else 'old' end AS "store-type", j."forward-dc-id", ss."name" AS "dc_name", a."store-delivered-at", case when p."patient-category" !='others' then 1 else 0 end as premium_flag FROM "prod2-generico"."patient-requests-metadata" a LEFT JOIN "prod2-generico"."drug-order-info" e ON e."store-id" = a."store-id" AND e."drug-id" = a."drug-id" LEFT JOIN "prod2-generico"."distributors" f ON NVL(a."ordered-distributor-id",0) = f."id" LEFT JOIN (SELECT * FROM "prod2-generico"."store-dc-mapping" WHERE "drug-type" = 'ethical') j ON j."store-id" = a."store-id" LEFT JOIN "prod2-generico"."stores" ss ON ss."id" = j."forward-dc-id" left join "prod2-generico"."delivery-tracking-metadata" dtm on dtm.id=a.id left join "prod2-generico"."patients" p on a."patient-id" =p.id WHERE DATE(a."created-at") >= case when extract(day from current_date) >= 7 then (current_date - extract(day from current_date) + 1) else current_date - 7 end and (a."quantity" > 0 or a."completion-type" = 'stock-transfer') AND a."sb-status" NOT IN ('deleted', 'presaved') """ raw = rs_db.get_df(query) logger.info("data pulled from RS") pr = raw.copy() # OOS query oos_network_q = """ select "closing-date", avg("oos-count")* 100 as oos_perc_network from "prod2-generico"."out-of-shelf-drug-level" oosdl where "closing-date" >= CURRENT_DATE - interval '7 day' and "max-set" = 'Y' group by "closing-date" """ oos_premium_q = """ select "closing-date", avg("oos-count")* 100 as oos_perc_premium from "prod2-generico"."out-of-shelf-drug-level" oosdl where "closing-date" >= CURRENT_DATE - interval '7 day' and "customer-type" = 'Premium' and "max-set" = 'Y' group by "closing-date" """ oos_net = rs_db.get_df(oos_network_q) oos_pre = rs_db.get_df(oos_premium_q) pr.columns = [c.replace('-', '_') for c in pr.columns] oos_net.columns = [c.replace('-', '_') for c in oos_net.columns] oos_pre.columns = [c.replace('-', '_') for c in oos_pre.columns] rs_db.connection.close() pr = pr[pr['completed issues'] == 'no issue'] pr = pr[['store_name', 'created_at', 'fullfilment on delivery', 'quantity']] pr = pr.groupby(['store_name', 'created_at', 'fullfilment on delivery']).sum() pr.reset_index(inplace=True) #store level calculations pr_pivot_store_lvl = pr.pivot_table(index=['store_name','created_at'], values='quantity', columns = 'fullfilment on delivery', aggfunc='sum', fill_value=0) pr_pivot_store_lvl['total_quantity'] = pr_pivot_store_lvl[ 'ontime'] + pr_pivot_store_lvl[ 'delayed'] + pr_pivot_store_lvl['Pending'] pr_pivot_store_lvl['ff%'] = pr_pivot_store_lvl[ 'ontime']/pr_pivot_store_lvl['total_quantity'] * 100 pr_pivot_store_lvl['ff%'] = pr_pivot_store_lvl['ff%'].round(1) pr_pivot_store_lvl['below_80'] = np.where(pr_pivot_store_lvl[ 'ff%']<80, 1, 0) pr_pivot_store_lvl.reset_index(inplace=True) pr_pivot_store_lvl_80 = pr_pivot_store_lvl[['created_at', 'below_80']] pr_pivot_store_lvl_80 = pr_pivot_store_lvl_80.groupby([ 'created_at']).sum() total_stores = pr_pivot_store_lvl.pivot_table(index='created_at', values = 'store_name', aggfunc='count') total_stores.rename(columns={'store_name':'total_stores'}, inplace=True) pr_pivot_day_lvl = pr.pivot_table(index='created_at', values='quantity', columns = 'fullfilment on delivery', aggfunc='sum', fill_value=0) pr_pivot_day_lvl['total_quantity'] = pr_pivot_day_lvl[ 'ontime'] + pr_pivot_day_lvl[ 'delayed'] + pr_pivot_day_lvl['Pending'] pr_pivot_day_lvl['ff%'] = pr_pivot_day_lvl[ 'ontime']/pr_pivot_day_lvl['total_quantity'] * 100 pr_pivot_day_lvl['ff%'] = pr_pivot_day_lvl['ff%'].round(0) pr_pivot_day_lvl.reset_index(inplace=True) pr_pivot_day_lvl = pr_pivot_day_lvl[['created_at', 'ff%']] final_pr = pr_pivot_day_lvl.merge(pr_pivot_store_lvl_80, on='created_at', how='left') final_pr = final_pr.merge(total_stores, on='created_at', how='left') final_pr.reset_index(inplace=True) final_pr = final_pr[['created_at', 'ff%', 'below_80', 'total_stores']] ff = pd.DataFrame() ff['created_at'] = final_pr['created_at'] ff['ff%'] = final_pr['ff%'] ff['below_80'] = final_pr['below_80'] ff['total_stores'] = final_pr['total_stores'] #OOS pre-processing oos_net['oos_perc_network'] = oos_net['oos_perc_network'].round(2) oos_pre['oos_perc_premium'] = oos_pre['oos_perc_premium'].round(2) status = True except Exception as e: logger.info('pr_oos_automailer job failed') logger.exception(e) # Sending email email = Email() run_date = str(datetime.datetime.now().strftime("%Y-%m-%d")) subject = "PR Day-wise Fullfillment MTD / OOS Network & Premium" if status is True: mail_body = f"""PR Fulfillment : \n {ff} \n\n OOS NETWORK : \n {oos_net} \n\n OOS Premium : \n {oos_pre}""".format(ff=ff.to_string(index=False), oos_net=oos_net.to_string(index=False), oos_pre=oos_pre.to_string(index=False)) else: mail_body = f"pr_ff_automailer ({env}) unsuccessful: {datetime.datetime.now()}" email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=[]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/pr_oos_automailer/pr_oos_automailer.py
pr_oos_automailer.py
``` # this is include zeno_etl_libs in the python search path on the run time import sys sys.path.append('./../..') from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.aws.s3 import S3 import argparse import io import pandas as pd import requests from zeno_etl_libs.config import set_env_config, EnvNames from zeno_etl_libs.db.db import DB, RedshiftSQLAlchemy """ Environment: Activate the env as per the requirement """ # env = EnvNames.production # env = EnvNames.staging env = EnvNames.development config = set_env_config(env=env) rs_db = DB(secrets=config.secrets) rs_db.open_connection() rs_db_sa = RedshiftSQLAlchemy(secrets=config.secrets) rs_db_sa.open_connection() s3 = S3(aws_access_key_id=config.secrets['AWS_ACCESS_KEY_ID'], aws_secret_access_key=config.secrets['AWS_SECRET_ACCESS_KEY_ID']) report_type = 'installs_report' ingore_columns = ["google-play-referrer"] def get_data(): appsflyer_uri = "https://hq.appsflyer.com/export" app_id = 'com.zenohealth.android' params = { 'api_token': '70b710e8-59d1-4121-9aae-f520e4d0cebf', 'from': '2022-02-01', 'to': '2022-02-01', 'timezone': 'Asia/Kolkata', 'maximum_rows': 10000, 'additional_fields': 'device_model,keyword_id,store_reinstall,deeplink_url,oaid,install_app_store,' 'contributor1_match_type,contributor2_match_type,contributor3_match_type,match_type,' 'device_category,gp_referrer,gp_click_time,gp_install_begin,amazon_aid,keyword_match_type,' 'att,conversion_type,campaign_type,is_lat' } url = '{}/{}/{}/v5'.format(appsflyer_uri, app_id, report_type) payload = {} res = requests.request("GET", url, data=payload, params=params) if res.status_code == 200: df = pd.read_csv(io.StringIO(res.text)) # print(df) return df else: if res.status_code == 404: print('There is a problem with the request URL. Make sure that it is correct') else: print('There was a problem retrieving data: ', res.text) def check_table_exists(dbcon, tablename): dbcur = dbcon.cursor() dbcur.execute(""" SELECT COUNT(*) FROM information_schema.tables WHERE table_name = '{0}' """.format(tablename.replace('\'', '\'\''))) if dbcur.fetchone()[0] == 1: dbcur.close() return True dbcur.close() return False def create_table_from_df(df, table_name, connection, schema="prod2-generico"): try: df.head(5).to_sql( name=table_name, con=connection, index=False, if_exists='fail', schema=schema) query = f"""truncate table "{schema}"."{table_name}"; """ connection.execute(query) print(f"Created table: {table_name}, successfully.") except Exception as e: print(f"Error creating table: {e}") df = get_data() df.columns = [i.lower().replace(" ", "-") for i in df.columns] table_name = "appsflyer-" + report_type.replace("_","-") check_table_exists(dbcon=rs_db.connection, tablename=table_name) table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema='prod2-generico') """correcting the column order""" df = df[table_info['column_name']] create_table_from_df(df=df, table_name=table_name, connection=rs_db_sa.connection) s3.write_df_to_db(df=df, table_name=table_name, db=rs_db, schema="prod2-generico") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/appsflyer-raw-data/appsflyer-sync.ipynb
appsflyer-sync.ipynb
import os import sys sys.path.append('../../../..') import argparse import datetime as dt import io import pandas as pd import requests from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger class AppFlyerReportDataSync: def __init__(self, report_type, rs_db, s3, created_date=None): self.appsflyer_uri = "https://hq.appsflyer.com/export" self.api_token = '70b710e8-59d1-4121-9aae-f520e4d0cebf' self.report_data_df = pd.DataFrame() # starting with empty frame self.report_type = report_type self.ignore_columns = ["google-play-referrer"] self.rs_db = rs_db self.table_name = "appsflyer-" + report_type.replace("_", "-") self.s3 = s3 self.schema = 'prod2-generico' yesterday = dt.datetime.now() + dt.timedelta(days=-1) """ default date filter is yesterday """ created_date = created_date if created_date else yesterday created_date = created_date.strftime("%Y-%m-%d") self.created_date = created_date self.from_date = self.created_date self.to_date = self.created_date self.logger = get_logger() def get_app_data(self, report_type, app_id, maximum_rows=10000): params = { 'api_token': self.api_token, 'from': self.from_date, 'to': self.to_date, 'timezone': 'Asia/Kolkata', 'maximum_rows': maximum_rows, 'additional_fields': 'device_model,keyword_id,store_reinstall,deeplink_url,oaid,install_app_store,' 'contributor1_match_type,contributor2_match_type,contributor3_match_type,match_type,' 'device_category,gp_referrer,gp_click_time,gp_install_begin,amazon_aid,keyword_match_type,' 'att,conversion_type,campaign_type,is_lat' } url = '{}/{}/{}/v5'.format(self.appsflyer_uri, app_id, report_type) payload = {} res = requests.request("GET", url, data=payload, params=params) if res.status_code == 200: df = pd.read_csv(io.StringIO(res.text)) return df else: if res.status_code == 404: self.logger.info('There is a problem with the request URL. Make sure that it is correct') else: self.logger.info('There was a problem retrieving data: {}'.format(res.text)) def get_report_data(self): app_ids = ['com.zenohealth.android', 'id1550245162'] for app_id in app_ids: if isinstance(self.report_data_df, type(None)) or self.report_data_df.empty: self.report_data_df = self.get_app_data(report_type=self.report_type, app_id=app_id) else: self.report_data_df = self.report_data_df.append( [self.get_app_data(report_type=self.report_type, app_id=app_id)]) self.logger.info(f"Downloaded app data, report_type: {self.report_type}, app_id: {app_id}") if self.report_data_df is not None: self.report_data_df.columns = [i.lower().replace(" ", "-") for i in self.report_data_df.columns] """ dropping the unwanted columns """ i_cols = [] for i_col in self.ignore_columns: if i_col in self.report_data_df.columns: i_cols.append(i_col) if i_cols: self.report_data_df = self.report_data_df.drop(i_cols, axis=1) self.logger.info(f"Dropped unwanted columns: {i_cols}") self.report_data_df['created-date'] = self.created_date return self.report_data_df def check_table_exists(self): cursor = self.rs_db.cursor cursor.execute(""" SELECT COUNT(*) FROM information_schema.tables WHERE table_name = '{0}' """.format(self.table_name.replace('\'', '\'\''))) if cursor.fetchone()[0] == 1: # cursor.close() self.logger.info(f"Table, {self.table_name}, already exists: {True}") return True # cursor.close() self.logger.info(f"Table, {self.table_name}, already exists: {False}") return False def upload_data(self): """ get the report data """ self.get_report_data() if self.report_data_df is None: self.logger.info(f"No data found, report_type, {self.report_type}, created_date:{self.created_date}") elif self.report_data_df.empty: self.logger.info(f"No data found, report_type, {self.report_type}, created_date:{self.created_date}") else: """ create the report table if not exists """ if self.check_table_exists() is False: # rs_db_engine.create_report_table_using_df(df=self.report_data_df, table_name=self.table_name, # schema=self.schema) raise Exception(f""" create the table first: {self.table_name} """) else: query = f""" delete from "{self.schema}"."{self.table_name}" where "created-date" = '{self.created_date}'; """ self.rs_db.execute(query) table_info = helper.get_table_info(db=self.rs_db, table_name=self.table_name, schema=self.schema) """correcting the column order""" self.report_data_df = self.report_data_df[table_info['column_name']] self.s3.write_df_to_db(df=self.report_data_df, table_name=self.table_name, db=self.rs_db, schema=self.schema) self.logger.info(f"Data upload successful, report_type: {self.report_type}") def main(rs_db, s3, from_date=None, to_date=None, reports=None): """ function syns app flyer data to Redshift database for one day at a time """ logger = get_logger() yesterday = dt.datetime.now() + dt.timedelta(days=-1) from_date = dt.datetime.strptime(from_date, '%Y-%m-%d') if from_date else yesterday to_date = dt.datetime.strptime(to_date, '%Y-%m-%d') if to_date else yesterday logger.info(f"from_date: {from_date}, to_date: {to_date}") if to_date < from_date: raise Exception(f"Wrong, from_date: {from_date} and to_date: {to_date} provided") created_date = from_date while from_date <= created_date <= to_date: report_types = reports.split(",") if reports else ['installs_report'] for report_type in report_types: logger.info(f"starting report_type: {report_type}, for created_date: {created_date}") af = AppFlyerReportDataSync(report_type=report_type, rs_db=rs_db, s3=s3, created_date=created_date) af.upload_data() """ next day """ created_date = created_date + dt.timedelta(days=1) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-fd', '--from_date', default=None, type=str, required=False) parser.add_argument('-td', '--to_date', default=None, type=str, required=False) parser.add_argument('-r', '--reports', default=None, type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() from_date = args.from_date to_date = args.to_date reports = args.reports logger.info(f"env: {env} reports: {reports}") rs_db = DB() rs_db.open_connection() s3 = S3() """ calling the main function """ main(rs_db, s3, from_date, to_date, reports) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/appsflyer-raw-data/appsflyer_raw_data.py
appsflyer_raw_data.py