code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import re import os import json import time import logging from os.path import join as os_join from typing import List, Dict, Any, Union, Optional from argparse import ArgumentParser from dataclasses import dataclass, asdict import numpy as np import pandas as pd import datasets import openai from sklearn.metrics import classification_report from torch.utils.data import DataLoader from tqdm.auto import tqdm from tenacity import retry, wait_random_exponential from stefutil import * from zeroshot_classifier.util import * import zeroshot_classifier.util.utcd as utcd_util from zeroshot_classifier.preprocess import get_dataset __all__ = ['ApiCaller', 'PromptMap', 'evaluate'] logger = get_logger('GPT3') class ApiCaller: """ Make API call to Open API GPT3 model to get completions """ url = 'https://api.openai.com/v1/completions' def __init__( self, model: str = 'text-ada-001', batched: bool = False, delay: float = None, token_path: str = None ): self.model = model self.batched = batched self.delay = delay token_path = token_path or os_join(u.proj_path, 'auth', 'open-ai.json') assert os.path.exists(token_path), f'OpenAI token not found at {pl.i(token_path)}' with open(token_path) as f: auth = json.load(f) api_key, org = auth['api-key'], auth['organization'] openai.api_key = api_key # self.headers = { # 'Content-Type': 'application/json', # 'Authorization': f'Bearer {api_key}', # 'OpenAI-Organization': org # } @retry(wait=wait_random_exponential(min=1, max=60 * 30)) # Wait for 30min def completion(self, **kwargs): if self.delay: time.sleep(self.delay) return openai.Completion.create(**kwargs) def __call__(self, prompt: Union[str, List], rand_sleep: bool = True, **kwargs) -> Union[str, List[str]]: if self.batched: assert isinstance(prompt, list) else: assert isinstance(prompt, str) payload = dict( model=self.model, temperature=0, # Generate w/ greedy decoding stop='\n', max_tokens=32 ) payload['prompt'] = prompt payload.update(kwargs) res = self.completion(**payload) res = res.choices if self.batched: assert len(res) == len(prompt) ret = [''] * len(prompt) for e in res: ret[e.index] = e.text return ret else: assert len(res) == 1 res = res[0] return res.text def text2n_token(txt: str) -> int: if not hasattr(text2n_token, 'token_pattern'): text2n_token.token_pattern = re.compile(r'(?u)\b\w+\b') # taken from sklearn.CountVectorizer return len(text2n_token.token_pattern.findall(txt)) def truncate_text(text: str = None, n: int = None) -> str: return ' '.join(text.split()[:n]) class PromptMap: """ Create the GPT3 prompt given text and label options Since we don't know number of tokens the prompt is tokenized into, set artificial length limit based on number of words """ templates = sconfig('baselines.gpt2-nvidia.templates') n_template = len(templates) logger = get_logger('Prompt Map') def __init__( self, dataset_name: str = None, max_text_length: int = 1024, max_prompt_length: int = 1024 + 256, logger_fl: logging.Logger = None ): self.dataset_name = dataset_name self.labels = sconfig(f'UTCD.datasets.{dataset_name}.splits.test.labels') # Take labels from the test split self.n_cls = len(self.labels) self.max_text_length = max_text_length self.max_prompt_length = max_prompt_length self.logger_fl = logger_fl d_log = { 'dataset_name': dataset_name, 'labels': self.labels, '#class': self.n_cls, 'max_text_length': max_text_length, 'max_prompt_length': max_prompt_length } PromptMap.logger.info(f'Prompt Map initialized with: {pl.i(d_log)}') if self.logger_fl: self.logger_fl.info(f'Prompt Map initialized with: {pl.nc(d_log)}') def __call__(self, text: str = None): n_txt = text2n_token(text) if n_txt > self.max_text_length: text = truncate_text(text, n_txt) PromptMap.logger.warning(f'Text too long and truncated: {pl.i(n_txt)} -> {pl.i(self.max_text_length)}') idx_lbs = np.arange(self.n_cls) np.random.shuffle(idx_lbs) # The order which the labels appears are random label_options_str = ' , '.join(f'" {self.labels[idx]} "' for idx in idx_lbs) idx_tpl = np.random.randint(PromptMap.n_template) question = PromptMap.templates[idx_tpl].format(label_options_str) prompt = self._to_prompt(question=question, text=text) n_prompt = text2n_token(prompt) if n_prompt > self.max_prompt_length: n_txt_ = self.max_prompt_length - text2n_token(question) - 2 # 2 for `Text` and `Answer` assert n_txt_ >= 50 # sanity check text = truncate_text(text, n_txt_) PromptMap.logger.warning(f'Prompt too long and text segment truncated: ' f'{pl.i(n_prompt)} -> {pl.i(self.max_prompt_length)}') if self.logger_fl: self.logger_fl.warning(f'Prompt too long and text segment truncated: ' f'{pl.nc(n_prompt)} -> {pl.nc(self.max_prompt_length)}') prompt = self._to_prompt(question=question, text=text) return prompt @staticmethod def _to_prompt(question: str = None, text: str = None): # return f'Text: {text}\nQuestion: {question}\n Answer:' # TODO: This template works w/ `davinci` better? return f'{question}\n Text: {truncate_text(text)} \n Answer:' # This template works w/ `curie` better @dataclass class GPT3EvalMeta: text: str = None prompt: str = None generated: str = None @dataclass class _EvalSingleOut: pred: int = None true: int = None meta: GPT3EvalMeta = None class _EvalSingle: def __init__( self, pm: PromptMap = None, api_caller: ApiCaller = None, label_options: List[str] = None, lb2id: Dict[str, int] = None, logger_fl: logging.Logger = None, return_text: bool = False ): self.pm = pm self.ac = api_caller self.batched = api_caller.batched self.label_options = label_options self.lb2id = lb2id self.logger_fl = logger_fl self.return_text = return_text def __call__(self, e: Union[Dict[str, Any], List[Dict[str, Any]]], pbar=None) -> Union[_EvalSingleOut, List[_EvalSingleOut]]: if self.batched: d: List[Dict] lst_txt, lst_lbs = [i['text'] for i in e], [i['labels'] for i in e] assert isinstance(lst_txt[0], str) and isinstance(lst_lbs[0], list) # sanity check prompts = [self.pm(txt) for txt in lst_txt] res = self.ac(prompts) ret = [] for txt, lbs, ppt, a in zip(lst_txt, lst_lbs, prompts, res): ret.append(self._ret_single(text=txt, labels=lbs, prompt=ppt, answer=a, pbar=pbar)) return ret else: txt, lbs = e['text'], e['labels'] prompt = self.pm(txt) answer = self.ac(prompt) return self._ret_single(text=txt, labels=lbs, prompt=prompt, answer=answer, pbar=pbar) def _ret_single( self, text: str = None, labels: List[int] = None, prompt: str = None, answer: str = None, pbar=None ) -> _EvalSingleOut: if pbar: _d_log = dict(labels=[self.label_options[i] for i in labels], answer=[answer]) pbar.set_postfix({k: pl.i(v) for k, v in _d_log.items()}) answer = answer.lower().strip() # TODO: maybe GPT3 generates multiple answers? ret: Dict[str, Any] if answer in self.label_options: ret = dict(pred=self.lb2id[answer], true=self.lb2id[answer]) else: logger.warning(f'Generated {pl.i([answer])}, not one of label options') self.logger_fl.warning(f'Generated {pl.nc([answer])}, not one of label options') ret = dict(pred=-1, true=labels[0]) if self.return_text: ret.update(meta=GPT3EvalMeta(text=text, prompt=prompt, generated=answer)) return _EvalSingleOut(**ret) def evaluate( model: str = 'text-ada-001', domain: str = 'in', dataset_name: str = 'all', concurrent: bool = False, batched: Union[bool, int] = False, delay: float = None, subsample: Union[bool, int] = False, subsample_seed: int = 77, store_meta: bool = False, store_frequency: Optional[int] = None, resume: List[str] = None ): ac = ApiCaller(model=model, batched=batched, delay=delay) if dataset_name == 'all' and subsample: raise NotImplementedError('Subsampling intended for single dataset') dataset_names = utcd_util.get_eval_dataset_names(domain=domain, dataset_name=dataset_name) _preds, _trues, _infs = None, None, [] if resume: assert len(dataset_names) == 1 # sanity check, intended for resuming from single dataset _preds, _trues, _infs = [], [], [] for r in resume: with open(r, 'r') as fl: meta = json.load(fl) _preds.extend(meta['preds']) _trues.extend(meta['trues']) _infs.extend(meta['inferences']) assert len(_preds) == len(_trues) == len(_infs) # sanity check d = dict(md=model, dm=domain, dnm=dataset_name) output_dir_nm = f'{now(for_path=True)}_Zeroshot-GPT3-Eval_{pl.pa(d)}' output_path = os_join(u.eval_path, output_dir_nm, domain2eval_dir_nm(domain)) logger_fl = get_logger('GPT3 Eval', kind='file-write', file_path=os_join(output_path, f'eval.log')) d_log: Dict[str, Any] = dict( model_name=model, batched=batched, delay=delay, domain=domain, dataset_names=dataset_names, output_path=output_path, concurrent=concurrent, subsample=subsample, subsample_seed=subsample_seed, store_meta=store_meta ) d_log['store_frequency'] = store_frequency logger.info(f'Evaluating GPT3 model w/ {pl.i(d_log)}... ') logger_fl.info(f'Evaluating GPT3 model w/ {d_log}... ') os.makedirs(output_path, exist_ok=True) for dnm in dataset_names: n_txt = sconfig(f'UTCD.datasets.{dnm}.splits.test.n_text') n_tgt = 5000 if isinstance(subsample, bool) else subsample if subsample and n_txt > n_tgt: dset = utcd_util.subsample_dataset(dataset_name=dnm, split='test', n_tgt=n_tgt, seed=subsample_seed) else: dset = get_dataset(dnm, splits='test')['test'] dset: datasets.Dataset n_dset_total = len(dset) n_dset_remain = n_dset_total if resume: n_ori = len(dset) ran_txts = set(e['text'] for e in _infs) def filt(sample: Dict[str, Any]) -> bool: return sample['text'] not in ran_txts dset = dset.filter(filt) # sanity check, every text completed should be accounted for, exactly once n_dset_remain = len(dset) assert len(dset) + len(_infs) == n_ori logger.info(f'{pl.i(len(_infs))} texts evaluated, resuming from {pl.i(n_ori)} => {pl.i(len(dset))} ') logger_fl.info(f'{len(_infs)} texts evaluated, resuming from {n_ori} => {len(dset)} ') pm = PromptMap(dataset_name=dnm, logger_fl=logger_fl) label_options = [lb.lower() for lb in pm.labels] lb2id = {lb: idx for idx, lb in enumerate(label_options)} args = dict(pm=pm, api_caller=ac, label_options=label_options, lb2id=lb2id, logger_fl=logger_fl) eval_single = _EvalSingle(**args, return_text=store_meta) lst_meta = [] meta_path = os_join(output_path, f'{dnm}_meta.json') store_frequency = store_frequency or 100 def write_meta(): # Writing completed inferences to file periodically, in case GPT3 eval gets stuck n_completed = len(lst_meta) if n_completed % store_frequency == 0 or n_completed == n_dset_remain: logger.info(f'Writing eval instances to {pl.i(meta_path)}...') logger_fl.info(f'Writing eval instances to {meta_path}...') d_ = d_log infs = [asdict(m) for m in lst_meta] if resume: infs = _infs + infs if concurrent: # a numpy array created __preds, __trues = preds, trues total_completed = len(__preds) else: total_completed = len(_infs) + n_completed __preds = preds[:total_completed].tolist() __trues = trues[:total_completed].tolist() assert len(__preds) == len(__trues) == len(infs) # sanity check d_['#completed'] = total_completed d_.update(dict(inferences=infs, preds=__preds, trues=__trues)) with open(meta_path, 'w') as f_: json.dump(d_, f_, indent=4) bsz = None if batched: bsz = 8 if isinstance(batched, bool) else batched with_tqdm = dict(desc=f'Evaluating {pl.i(dnm)}', total=n_dset_remain) if concurrent: # TODO: concurrent batched preds, trues = (_preds, _trues) if resume else ([], []) # order irrelevant for e in conc_yield(eval_single, dset, with_tqdm=with_tqdm, mode='thread', n_worker=4): preds.append(e.pred) trues.append(e.true) if store_meta: lst_meta.append(e.meta) write_meta() else: trues, preds = np.empty(n_txt, dtype=int), np.empty(n_txt, dtype=int) if resume: trues[:len(_trues)] = _trues preds[:len(_preds)] = _preds if batched: with tqdm(**with_tqdm) as pbar: idx = 0 for elms in DataLoader(dset, batch_size=bsz, shuffle=False, collate_fn=lambda x: x): for e in eval_single(elms): preds[idx] = e.pred trues[idx] = e.true if store_meta: lst_meta.append(e.meta) write_meta() pbar.update(1) idx += 1 assert idx == n_dset_remain # sanity check else: it = tqdm(dset, **with_tqdm) for idx, elm in enumerate(it): out = eval_single(elm, pbar=it) preds[idx], trues[idx] = out.pred, out.true if store_meta: lst_meta.append(out.meta) write_meta() args = dict( labels=[-1, *range(len(label_options))], target_names=['Label not in dataset', *label_options], zero_division=0, output_dict=True ) report = classification_report(trues, preds, **args) csv_path = os_join(output_path, f'{dnm}.csv') pd.DataFrame(report).transpose().to_csv(csv_path) acc = f'{report["accuracy"]:.3f}' logger.info(f'{pl.i(dnm)} accuracy: {pl.i(acc)}') logger_fl.info(f'{dnm} accuracy: {acc}') def parse_args(): parser = ArgumentParser() models = ['text-ada-001', 'text-babbage-001', 'text-curie-001', 'text-davinci-002'] parser.add_argument('--model', type=str, choices=models, default='text-ada-001', help=""" GPT3 model from Open AI API, see `https://beta.openai.com/docs/models/gpt-3` """) parser.add_argument('--dataset', type=str, default='all', help=""" One of dataset name in UTCD or `all` for all datasets in a domain, see argument `domain` """) parser.add_argument('--domain', type=str, choices=['in', 'out'], default='in', help=""" One of [`in`, `out`] for in-domain, out-of-domain respectively """) parser.add_argument('--concurrent', type=bool, default=False, help=""" Make GPT3 completion requests concurrently """) parser.add_argument('--subsample', type=int, default=5000, help=""" Total #sample to subsample from the dataset """) parser.add_argument('--subsample_seed', type=int, default=77) return parser.parse_args() if __name__ == '__main__': mic.output_width = 256 def set_openai_token(): with open(os_join(u.proj_path, 'auth', 'open-ai.json')) as f: auth = json.load(f) org = auth['organization'] api_key = auth['api-key'] openai.api_key = api_key # set_openai_token() # evaluate(model='text-ada-001', domain='in', dataset_name='emotion') # evaluate(model='text-curie-001', domain='out', dataset_name='multi_eurlex', concurrent=True) # evaluate(model='text-curie-001', domain='in', dataset_name='emotion', concurrent=True) # evaluate(model='text-curie-001', domain='in', dataset_name='finance_sentiment', concurrent=True) # evaluate(model='text-curie-001', domain='in', dataset_name='banking77', concurrent=True, subsample=True) # evaluate(model='text-davinci-002', domain='in', dataset_name='emotion') # evaluate(model='text-davinci-002', domain='out', dataset_name='finance_sentiment') # evaluate(model='text-davinci-002', domain='out', dataset_name='consumer_finance') # evaluate(model='text-davinci-002', domain='out', dataset_name='amazon_polarity', concurrent=True) def subsample_large_dset(): run_args = dict(model='text-curie-001', subsample=True, store_meta=True, store_frequency=10) # dnm = 'amazon_polarity' # dnm = 'yelp' # dnm_ = 'consumer_finance' # dnm_ = 'slurp' dnm_ = 'multi_eurlex' # TODO: doesn't work w/ batched requests??? # dnm_ = 'sgd' rsm = [os_join( u.eval_path, '2022-12-04_17-34-01_Zeroshot-GPT3-Eval_{md=text-curie-001, dm=out, dnm=multi_eurlex}', '22-12-04_out-of-domain', f'{dnm_}_meta.json' )] evaluate(domain='out', dataset_name=dnm_, **run_args, concurrent=True, delay=12, resume=rsm) # subsample_large_dset() def command_prompt(): args = parse_args() evaluate( model=args.model, dataset_name=args.dataset, domain=args.domain, concurrent=args.concurrent, subsample=args.subsample, subsample_seed=args.subsample_seed ) command_prompt()
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/gpt3.py
gpt3.py
import math from os.path import join as os_join from argparse import ArgumentParser from typing import List, Dict import numpy as np import pandas as pd import torch.cuda from transformers import BertTokenizer, BertForSequenceClassification from transformers import TrainingArguments, Trainer from datasets import Dataset from tqdm.auto import tqdm from stefutil import * from zeroshot_classifier.util import * import zeroshot_classifier.util.utcd as utcd_util from zeroshot_classifier.util.load_data import ( get_datasets, seq_cls_format, in_domain_data_path, out_of_domain_data_path ) MODEL_NAME = 'BERT Seq CLS' HF_MODEL_NAME = 'bert-base-uncased' def parse_args(): parser = ArgumentParser() subparser = parser.add_subparsers(dest='command') parser_train = subparser.add_parser('train') parser_test = subparser.add_parser('test') parser_train.add_argument('--dataset', type=str, default='all') parser_train.add_argument('--domain', type=str, choices=['in', 'out'], required=True) parser_train.add_argument('--normalize_aspect', type=bool, default=False) parser_train.add_argument('--learning_rate', type=float, default=5e-5) parser_train.add_argument('--batch_size', type=int, default=16) parser_train.add_argument('--epochs', type=int, default=3) parser_test.add_argument('--dataset', type=str, default='all') parser_test.add_argument('--domain', type=str, choices=['in', 'out'], required=True) parser_test.add_argument('--model_name_or_path', type=str, required=True) return parser.parse_args() if __name__ == "__main__": import os import transformers import datasets args = parse_args() seed = sconfig('random-seed') if args.command == 'train': logger = get_logger(f'{MODEL_NAME} Train') dataset_name, domain, normalize_aspect = args.dataset, args.domain, args.normalize_aspect lr, bsz, n_ep = args.learning_rate, args.batch_size, args.epochs ca(dataset_domain=domain) domain_str = 'in-domain' if domain == 'in' else 'out-of-domain' dset_args = dict(domain=domain) if normalize_aspect: dset_args['normalize_aspect'] = seed data = get_datasets(**dset_args) if dataset_name == 'all': train_dset, test_dset, labels = seq_cls_format(data, all=True) else: train_dset, test_dset, labels = seq_cls_format(data[dataset_name]) d_log = {'#train': len(train_dset), '#test': len(test_dset), 'labels': list(labels.keys())} logger.info(f'Loaded {pl.i(domain_str)} datasets {pl.i(dataset_name)} with {pl.i(d_log)} ') num_labels = len(labels) tokenizer = BertTokenizer.from_pretrained(HF_MODEL_NAME) model = BertForSequenceClassification.from_pretrained(HF_MODEL_NAME, return_dict=True, num_labels=num_labels) tokenizer.add_special_tokens(dict(eos_token=utcd_util.EOT_TOKEN)) # end-of-turn for SGD model.resize_token_embeddings(len(tokenizer)) def tokenize_function(examples): return tokenizer(examples['text'], padding='max_length', truncation=True) train_dset = Dataset.from_pandas(pd.DataFrame(train_dset)) test_dset = Dataset.from_pandas(pd.DataFrame(test_dset)) # small batch size cos samples are very long in some datasets map_args = dict(batched=True, batch_size=16, num_proc=os.cpu_count()) train_dset = train_dset.map(tokenize_function, **map_args) test_dset = test_dset.map(tokenize_function, **map_args) warmup_steps = math.ceil(len(train_dset) * n_ep * 0.1) # 10% of train data for warm-up dir_nm = map_model_output_path( model_name=MODEL_NAME.replace(' ', '-'), output_path=f'{domain}-{dataset_name}', mode=None, sampling=None, normalize_aspect=normalize_aspect ) output_path = os_join(utcd_util.get_base_path(), u.proj_dir, u.model_dir, dir_nm) proj_output_path = os_join(u.base_path, u.proj_dir, u.model_dir, dir_nm, 'trained') d_log = {'batch size': bsz, 'epochs': n_ep, 'warmup steps': warmup_steps, 'save path': output_path} logger.info(f'Launched training with {pl.i(d_log)}... ') training_args = TrainingArguments( # TODO: learning rate output_dir=output_path, learning_rate=lr, num_train_epochs=n_ep, per_device_train_batch_size=bsz, per_device_eval_batch_size=bsz, warmup_steps=warmup_steps, weight_decay=0.01, logging_dir='./logs', load_best_model_at_end=True, logging_steps=100000, save_steps=100000, evaluation_strategy='steps' ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dset, eval_dataset=test_dset, compute_metrics=compute_metrics ) transformers.set_seed(seed) trainer.train() trainer.save_model(proj_output_path) tokenizer.save_pretrained(proj_output_path) elif args.command == 'test': dataset_name, domain, model_path = args.dataset, args.domain, args.model_name_or_path bsz = 32 split = 'test' dataset_names = utcd_util.get_dataset_names(domain) if dataset_name != 'all': assert dataset_name in dataset_names dataset_names = [dataset_name] output_path = os_join(model_path, 'eval') lg_nm = f'{MODEL_NAME} Eval' logger = get_logger(lg_nm) lg_fl = os_join(output_path, f'{now(for_path=True)}_{lg_nm}, dom={domain}.log') logger_fl = get_logger(lg_nm, kind='file-write', file_path=lg_fl) domain_str = 'in-domain' if domain == 'in' else 'out-of-domain' logger.info(f'Evaluating {pl.i(domain_str)} datasets {pl.i(dataset_names)} on model {pl.i(model_path)}... ') logger_fl.info(f'Evaluating {domain_str} datasets {dataset_names} on model {model_path}... ') data = get_datasets(in_domain_data_path if domain == 'in' else out_of_domain_data_path) tokenizer = BertTokenizer.from_pretrained(model_path) model = BertForSequenceClassification.from_pretrained(model_path) model.eval() device = 'cpu' if torch.cuda.is_available(): model = model.cuda() device = 'cuda' lb2id: Dict[str, int] = dict() # see `load_data.seq_cls_format` if dataset_name == 'all': for dset in data.values(): for label in dset['labels']: if label not in lb2id: lb2id[label] = len(lb2id) else: for label in data[dataset_name]['labels']: if label not in lb2id: lb2id[label] = len(lb2id) _lbs = list(lb2id.keys()) logger.info(f'Loaded labels: {pl.i(_lbs)}') logger_fl.info(f'Loaded labels: {_lbs}') def tokenize(examples): return tokenizer(examples['text'], padding='max_length', truncation=True) for dnm in dataset_names: pairs: Dict[str, List[str]] = data[dnm][split] asp = sconfig(f'UTCD.datasets.{dnm}.aspect') logger.info(f'Evaluating {pl.i(asp)} dataset {pl.i(dnm)}... ') logger_fl.info(f'Evaluating {asp} dataset {dnm}... ') n_txt = sconfig(f'UTCD.datasets.{dnm}.splits.{split}.n_text') arr_preds, arr_labels = np.empty(n_txt, dtype=int), np.empty(n_txt, dtype=int) logger.info(f'Loading {pl.i(n_txt)} samples... ') logger_fl.info(f'Loading {n_txt} samples... ') df = pd.DataFrame([dict(text=txt, label=[lb2id[lb] for lb in lb]) for txt, lb in pairs.items()]) dset = Dataset.from_pandas(df) datasets.set_progress_bar_enabled(False) map_args = dict(batched=True, batch_size=64, num_proc=os.cpu_count(), remove_columns=['text']) dset = dset.map(tokenize, **map_args) datasets.set_progress_bar_enabled(True) gen = group_n(range(len(dset)), n=bsz) n_ba = math.ceil(n_txt / bsz) logger.info(f'Evaluating... ') logger_fl.info(f'Evaluating... ') it = tqdm(gen, desc=dnm, unit='ba', total=n_ba) for i, idxs in enumerate(it): inputs = dset[idxs] labels = inputs.pop('label') inputs = {k: torch.tensor(v, device=device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) preds = torch.argmax(outputs[0], dim=1) for i_, (pred, lbs) in enumerate(zip(preds, labels), start=i*bsz): arr_preds[i_] = pred = pred.item() arr_labels[i_] = pred if pred in lbs else lbs[0] args = dict( zero_division=0, target_names=list(lb2id.keys()), labels=list(range(len(lb2id))), output_dict=True ) # disables warning df, acc = eval_res2df(arr_labels, arr_preds, report_args=args, pretty=False) logger.info(f'{pl.i(dnm)} Classification Accuracy: {pl.i(acc)}') logger_fl.info(f'{dnm} Classification Accuracy: {acc}') out = os_join(output_path, f'{dnm}.csv') df.to_csv(out) logger.info(f'{pl.i(dnm)} Eval CSV written to {pl.i(out)}') logger_fl.info(f'{dnm} Eval CSV written to {out}')
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/bert.py
bert.py
import os import pickle from os.path import join as os_join from typing import List import numpy as np import pandas as pd import torch.cuda from sklearn.metrics import classification_report from transformers import pipeline from tqdm.auto import tqdm from zeroshot_classifier.util.load_data import get_datasets from stefutil import * from zeroshot_classifier.util import * import zeroshot_classifier.util.utcd as utcd_util logger = get_logger('BART') def evaluate( model_name: str = 'facebook/bart-large-mnli', domain: str = 'in', dataset_name: str = 'all', split_index: int = None, n_splits: int = None ): bsz = 32 all_dset = dataset_name == 'all' if not all_dset: _dom = sconfig(f'UTCD.datasets.{dataset_name}.domain') if domain is not None: domain = _dom else: assert domain == _dom if all_dset: dataset_names = utcd_util.get_dataset_names(domain) else: dataset_names = [dataset_name] output_dir_nm = f'{now(for_path=True)}_Zeroshot-BART' output_path = os_join(u.eval_path, output_dir_nm, domain2eval_dir_nm(domain)) os.makedirs(output_path, exist_ok=True) is_split = split_index is not None and n_splits is not None split_str, split_str_c = None, None if is_split: assert 0 <= split_index < n_splits if dataset_name == 'all': raise ValueError(f'Splitting intended for single dataset only') split_str = f'{split_index+1}_{n_splits}' split_str_c = f'{pl.i(split_index)}/{pl.i(n_splits)}' log_fnm = f'{now(for_path=True)}_BART_{domain}_{dataset_name}' if is_split: log_fnm = f'{log_fnm}_{split_str}' log_fnm = f'{log_fnm}_Eval' logger_fl = get_logger('BART Eval', kind='file-write', file_path=os_join(output_path, f'{log_fnm}.log')) d_log = dict( model_name=model_name, domain=domain, dataset_names=dataset_names, batch_size=bsz, output_path=output_path, split_index=split_index, n_splits=n_splits ) logger.info(f'Evaluating GPT3 model w/ {pl.i(d_log)}... ') logger_fl.info(f'Evaluating BART model w/ {d_log}... ') device = 0 if torch.cuda.is_available() else -1 # See `transformers::pipelines::base` model = pipeline('zero-shot-classification', model=model_name, device=device) data = get_datasets(domain=domain, dataset_names=dataset_names) split = 'test' for dnm in dataset_names: # loop through all datasets dset = data[dnm] pairs = dset[split] d_info = sconfig(f'UTCD.datasets.{dnm}.splits.{split}') n_txt, label_options = d_info['n_text'], d_info['labels'] d_log = {'#text': n_txt, '#label': len(label_options), 'labels': label_options} logger.info(f'Evaluating {pl.i(dnm)} w/ {pl.i(d_log)}...') lb2id = {lb: idx for idx, lb in enumerate(label_options)} if is_split: it_txts = iter(split_n(pairs.keys(), n=n_splits)) txts = None for i in range(n_splits): txts = next(it_txts) if i == split_index: break n_txt = len(txts) logger.info(f'Loaded split {split_str_c} w/ {pl.i(n_txt)} texts...') logger_fl.info(f'Loaded split {split_str} w/ {n_txt} texts...') else: txts = pairs.keys() txts = (txt for txt in txts) trues, preds = np.empty(n_txt, dtype=int), np.empty(n_txt, dtype=int) it = tqdm(model(txts, label_options, batch_size=bsz), desc=f'Evaluating {pl.i(dnm)}', total=n_txt) for i, out in enumerate(it): txt, labels, scores = out['sequence'], out['labels'], out['scores'] idx_pred = max(enumerate(scores), key=lambda x: x[1])[0] # Index of the highest score pred = lb2id[labels[idx_pred]] lbs_true = [lb2id[lb] for lb in pairs[txt]] if pred in lbs_true: preds[i] = trues[i] = pred else: preds[i], trues[i] = -1, lbs_true[0] if is_split: fnm = f'{now(for_path=True)}_{dnm}_split_{split_str} predictions.pkl' path = os_join(output_path, fnm) with open(path, 'wb') as f: pickle.dump(dict(trues=trues, preds=preds), f) logger.info(f'Partial predictions saved to {pl.i(path)}') logger_fl.info(f'Partial predictions saved to {path}') else: args = dict( labels=[-1, *range(len(label_options))], target_names=['Label not in dataset', *label_options], zero_division=0, output_dict=True ) report = classification_report(trues, preds, **args) acc = f'{report["accuracy"]:.3f}' logger.info(f'{pl.i(dnm)} accuracy: {pl.i(acc)}') logger_fl.info(f'{dnm} accuracy: {acc}') path = os_join(output_path, f'{dnm}.csv') pd.DataFrame(report).transpose().to_csv(path) def merge_splits_and_evaluate(domain: str = 'in', dataset_name: str = None, paths: List[str] = None): trues, preds = [], [] for p in paths: with open(p, 'rb') as f: d = pickle.load(f) trues.append(d['trues']) preds.append(d['preds']) trues, preds = np.concatenate(trues), np.concatenate(preds) d_info = sconfig(f'UTCD.datasets.{dataset_name}.splits.test') n_txt, label_options = d_info['n_text'], d_info['labels'] assert trues.size == preds.size == n_txt args = dict( labels=[-1, *range(len(label_options))], target_names=['Label not in dataset', *label_options], zero_division=0, output_dict=True ) report = classification_report(trues, preds, **args) acc = f'{report["accuracy"]:.3f}' logger.info(f'{pl.i(dataset_name)} accuracy: {pl.i(acc)}') output_dir_nm = f'{now(for_path=True)}_Zeroshot-BART' output_path = os_join(u.eval_path, output_dir_nm, domain2eval_dir_nm(domain)) os.makedirs(output_path, exist_ok=True) path = os_join(output_path, f'{dataset_name}.csv') df = pd.DataFrame(report).transpose() df.to_csv(path) return df if __name__ == '__main__': # evaluate(domain='in') # in the order of #text # evaluate(domain='out', dataset_name='finance_sentiment') # evaluate(domain='out', dataset_name='snips') # evaluate(domain='out', dataset_name='banking77') # evaluate(domain='out', dataset_name='patent') # evaluate(domain='out', dataset_name='multi_eurlex') # evaluate(domain='out', dataset_name='nlu_evaluation') # evaluate(domain='out', dataset_name='yelp') # evaluate(domain='out', dataset_name='amazon_polarity') def chore_merge_splits(): dir_nms = [ '2022-10-19_04-07-56_Zeroshot-BART', '2022-10-19_04-10-14_Zeroshot-BART', '2022-10-19_04-12-11_Zeroshot-BART', '2022-10-19_04-14-26_Zeroshot-BART' ] fnms = [ '2022-10-19_16-09-25_consumer_finance_split_1_4 predictions', '2022-10-19_17-13-13_consumer_finance_split_2_4 predictions', '2022-10-19_19-12-10_consumer_finance_split_3_4 predictions', '2022-10-19_20-55-40_consumer_finance_split_4_4 predictions' ] paths = [ os_join(u.eval_path, dir_nm, '22-10-19_out-of-domain', f'{fnm}.pkl') for dir_nm, fnm in zip(dir_nms, fnms) ] merge_splits_and_evaluate(domain='out', dataset_name='consumer_finance', paths=paths) chore_merge_splits() # evaluate(domain='out', dataset_name='consumer_finance', split_index=3, n_splits=4)
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/bart.py
bart.py
import os import math import random from os.path import join as os_join from typing import List, Dict import numpy as np from torch.utils.data import DataLoader import transformers from sentence_transformers import SentenceTransformer, models, losses, util as sbert_util from tqdm import tqdm from stefutil import * from zeroshot_classifier.util import * from zeroshot_classifier.util.load_data import get_datasets, binary_cls_format import zeroshot_classifier.util.utcd as utcd_util from zeroshot_classifier.models.architecture import BiEncoder from zeroshot_classifier.models._bert_based_models import HF_MODEL_NAME, parse_args MODEL_NAME = 'Bi-Encoder' if __name__ == "__main__": seed = sconfig('random-seed') args = parse_args() cmd = args.command log_nm = f'{MODEL_NAME} {args.command.capitalize()}' logger = get_logger(log_nm) if cmd == 'train': output_path, output_dir, sampling, mode = args.output, args.output_dir, args.sampling, args.mode normalize_aspect = args.normalize_aspect lr, bsz, n_ep = args.learning_rate, args.batch_size, args.epochs init_model_name_or_path = args.init_model_name_or_path # best_metric = 'accuracy' best_metric = 'loss' output_path = map_model_output_path( model_name=MODEL_NAME.replace(' ', '-'), output_path=output_path, output_dir=output_dir, mode=mode, sampling=sampling, normalize_aspect=normalize_aspect ) logger_fl = get_logger(log_nm, kind='file-write', file_path=os_join(output_path, 'training.log')) dset_args = dict(normalize_aspect=seed) if normalize_aspect else dict() data = get_datasets(domain='in', **dset_args) dataset_names = [dnm for dnm, d_dset in sconfig('UTCD.datasets').items() if d_dset['domain'] == 'in'] logger.info(f'Processing datasets {pl.i(dataset_names)} for training... ') logger_fl.info(f'Processing datasets {pl.nc(dataset_names)} for training... ') train, val, test = [], [], [] it = tqdm(dataset_names, desc=f'Formatting into Binary CLS w/ {pl.i(dict(sampling=sampling, mode=mode))}') for dataset_name in it: dset = data[dataset_name] args = dict(sampling=sampling, mode=mode) for split, ds in zip(['train', 'val', 'test'], [train, val, test]): it.set_postfix(dnm=f'{pl.i(dataset_name)}-{pl.i(split)}') ds.extend(binary_cls_format(dset, **args, split=split)) d_log = dict(init_model_name_or_path=init_model_name_or_path) md_nm = init_model_name_or_path if mode == 'explicit': assert init_model_name_or_path != HF_MODEL_NAME # sanity check if init_model_name_or_path != HF_MODEL_NAME: # loading from explicit pre-training local weights, # the classification head would be ignored for classifying 3 classes path = os_join(get_base_path(), u.proj_dir, u.model_dir, init_model_name_or_path) if os.path.exists(path): md_nm = path d_log['files'] = os.listdir(path) logger.info(f'Loading model with {pl.i(d_log)}...') logger_fl.info(f'Loading model with {pl.nc(d_log)}...') word_embedding_model = models.Transformer( init_model_name_or_path, max_seq_length=512, tokenizer_args=dict(use_fast=False) ) add_tok_arg = utcd_util.get_add_special_tokens_args(word_embedding_model.tokenizer, train_strategy=mode) if add_tok_arg: logger.info(f'Adding special tokens {pl.i(add_tok_arg)} to tokenizer... ') logger_fl.info(f'Adding special tokens {pl.nc(add_tok_arg)} to tokenizer... ') word_embedding_model.tokenizer.add_special_tokens(special_tokens_dict=add_tok_arg) word_embedding_model.auto_model.resize_token_embeddings(len(word_embedding_model.tokenizer)) pooling_model = models.Pooling( word_embedding_dimension=word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True ) model = BiEncoder(modules=[word_embedding_model, pooling_model]) random.seed(seed) random.shuffle(train) train_dataloader = DataLoader(train, shuffle=True, batch_size=bsz) val_dataloader = DataLoader(val, shuffle=False, batch_size=bsz) train_loss = losses.CosineSimilarityLoss(model) warmup_steps = math.ceil(len(train_dataloader) * n_ep * 0.1) # 10% of train data for warm-up d_log = { '#data': len(train), 'learning_rate': lr, 'batch size': bsz, 'epochs': n_ep, 'warmup steps': warmup_steps, 'best_model_metric': best_metric, 'output path': output_path } logger.info(f'Training w/ {pl.i(d_log)}... ') logger_fl.info(f'Training w/ {pl.nc(d_log)}... ') transformers.set_seed(seed) model.fit( train_objectives=[(train_dataloader, train_loss)], val_dataloader=val_dataloader, epochs=n_ep, optimizer_params=dict(lr=lr), warmup_steps=warmup_steps, output_path=output_path, logger_fl=logger_fl, best_model_metric=best_metric ) elif cmd == 'test': split = 'test' mode, domain, model_name_or_path, bsz = args.mode, args.domain, args.model_name_or_path, args.batch_size out_path = os_join(u.eval_path, model_name_or_path, domain2eval_dir_nm(domain)) os.makedirs(out_path, exist_ok=True) dataset_names = utcd_util.get_dataset_names(domain) data = get_datasets(domain=domain) model_path = os_join(get_base_path(), u.proj_dir, u.model_dir, model_name_or_path) if not os.path.exists(model_path): model_path = model_name_or_path # A huggingface model logger.info(f'Loading model from path {pl.i(model_path)}... ') model = SentenceTransformer(model_path) md_nm = model.__class__.__qualname__ d_log = dict( model=md_nm, mode=mode, domain=domain, datasets=dataset_names, model_name_or_path=model_name_or_path, batch_size=bsz ) logger = get_logger(f'{MODEL_NAME} Eval') logger.info(f'Evaluating {MODEL_NAME} with {pl.i(d_log)} and saving to {pl.i(out_path)}... ') for dnm in dataset_names: dset = data[dnm] pairs: Dict[str, List[str]] = dset[split] aspect = dset['aspect'] label_options = sconfig(f'UTCD.datasets.{dnm}.splits.{split}.labels') label2id = {lbl: i for i, lbl in enumerate(label_options)} mode2map = TrainStrategy2PairMap(train_strategy=mode) txts = [mode2map.map_text(t, aspect=aspect) for t in pairs.keys()] label_options = [mode2map.map_label(lb, aspect=aspect) for lb in label_options] n_txt = sconfig(f'UTCD.datasets.{dnm}.splits.{split}.n_text') arr_preds, arr_labels = np.empty(n_txt, dtype=int), np.empty(n_txt, dtype=int) d_log = {'#text': n_txt, '#label': len(label_options), 'labels': label_options} logger.info(f'Evaluating {pl.i(dnm)} with {pl.i(d_log)}...') logger.info('Encoding texts...') txt_embeds = model.encode(txts, batch_size=bsz, show_progress_bar=True) logger.info('Encoding labels...') lb_opn_embeds = model.encode(label_options, batch_size=bsz, show_progress_bar=True) for i, (_, labels) in enumerate(tqdm(pairs.items(), desc=f'Evaluating {pl.i(dnm)}')): scores = [sbert_util.cos_sim(txt_embeds[i], v).item() for v in lb_opn_embeds] pred = np.argmax(scores) label_ids = [label2id[lb] for lb in labels] true = pred if pred in label_ids else label_ids[0] arr_preds[i], arr_labels[i] = pred, true args = dict(zero_division=0, target_names=label_options, output_dict=True) # disables warning df, acc = eval_res2df(arr_labels, arr_preds, report_args=args) logger.info(f'{pl.i(dnm)} Classification Accuracy: {pl.i(acc)}') df.to_csv(os_join(out_path, f'{dnm}.csv'))
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/bi-encoder.py
bi-encoder.py
import math import logging import random import pandas as pd from argparse import ArgumentParser from tqdm import tqdm from pathlib import Path from os.path import join from sklearn.metrics import classification_report from torch.utils.data import DataLoader from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CESoftmaxAccuracyEvaluator from zeroshot_classifier.util.load_data import ( get_datasets, binary_cls_format, nli_cls_format, get_nli_data, nli_template, in_domain_data_path, out_of_domain_data_path ) random.seed(42) def parse_args(): parser = ArgumentParser() subparser = parser.add_subparsers(dest='command') parser_train = subparser.add_parser('train') parser_test = subparser.add_parser('test') parser_pretrain = subparser.add_parser('pre_train') # set train arguments parser_train.add_argument('--output', type=str, required=True) parser_train.add_argument('--sampling', type=str, choices=['rand', 'vect'], required=True) parser_train.add_argument('--mode', type=str, choices=['vanilla', 'implicit', 'explicit'], default='vanilla') parser_train.add_argument('--base_model', type=str, required=True) parser_train.add_argument('--batch_size', type=int, default=16) parser_train.add_argument('--epochs', type=int, default=3) # set test arguments parser_test.add_argument('--model_path', type=str, required=True) parser_test.add_argument('--domain', type=str, choices=['in', 'out'] ,required=True) parser_test.add_argument('--mode', type=str, choices=['vanilla', 'implicit', 'explicit'], default='vanilla') # set pre-train arguments parser_pretrain.add_argument('--output', type=str, required=True) parser_pretrain.add_argument('--batch_size', type=int, default=16) parser_pretrain.add_argument('--epochs', type=int, default=3) return parser.parse_args() logger = logging.getLogger(__name__) if __name__ == "__main__": args = parse_args() if args.command == 'pre_train': train, dev = get_nli_data() train_batch_size = args.batch_size num_epochs = args.epochs model_save_path = args.output model = CrossEncoder('bert-base-uncased', num_labels=3) train_dataloader = DataLoader(train, shuffle=True, batch_size=train_batch_size) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) evaluator = CESoftmaxAccuracyEvaluator.from_input_examples(dev, name='AllNLI-dev') # Train the model model.fit(train_dataloader=train_dataloader, epochs=num_epochs, evaluator=evaluator, evaluation_steps=10000, warmup_steps=warmup_steps, output_path=model_save_path) if args.command == 'train': data = get_datasets(in_domain_data_path) # get keys from data dict datasets = list(data.keys()) train = [] test = [] for dataset in datasets: if args.mode == 'vanilla': train += binary_cls_format(data[dataset], dataset_name=dataset, sampling=args.sampling, mode=args.mode) test += binary_cls_format(data[dataset], train=False, mode=args.mode) elif args.mode == 'implicit': train += nli_cls_format(data[dataset], name=dataset, sampling=args.sampling) test += nli_cls_format(data[dataset], name=dataset, train=False) train_batch_size = args.batch_size num_epochs = args.epochs model_save_path = join(args.output, args.sampling) # cos pretrained with 3 classes model = CrossEncoder(args.base_model, num_labels=2, automodel_args=dict(ignore_mismatched_sizes=True)) # Add end of turn token for sgd model.tokenizer.add_special_tokens({'eos_token': '[eot]'}) model.model.resize_token_embeddings(len(model.tokenizer)) random.shuffle(train) train_dataloader = DataLoader(train, shuffle=False, batch_size=train_batch_size) evaluator = CESoftmaxAccuracyEvaluator.from_input_examples(test, name='UTCD-test') warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=100000, warmup_steps=warmup_steps, output_path=model_save_path) if args.command == 'test': pred_path = join(args.model_path, 'preds/{}/'.format(args.domain)) result_path = join(args.model_path, 'results/{}/'.format(args.domain)) Path(pred_path).mkdir(parents=True, exist_ok=True) Path(result_path).mkdir(parents=True, exist_ok=True) if args.domain == 'in': data = get_datasets(in_domain_data_path) elif args.domain == 'out': data = get_datasets(out_of_domain_data_path) # get keys from data dict datasets = list(data.keys()) # load model model = CrossEncoder(args.model_path) label_map = ["false", "true"] for dataset in datasets: examples = data[dataset]["test"] labels = data[dataset]['labels'] preds = [] gold = [] correct = 0 # loop through each test example print("Evaluating dataset: {}".format(dataset)) for index, (text, gold_labels) in enumerate(tqdm(examples.items())): query = [(text, label) for label in labels] if args.mode == 'vanilla' else [(text, nli_template(label, data[dataset]['aspect'])) for label in labels] results = model.predict(query, apply_softmax=True) # compute which pred is higher pred = labels[results[:,1].argmax()] preds.append(pred) if pred in gold_labels: correct += 1 gold.append(pred) else: gold.append(gold_labels[0]) print('{} Dataset Accuracy = {}'.format(dataset, correct/len(examples))) report = classification_report(gold, preds, output_dict=True) df = pd.DataFrame(report).transpose() df.to_csv('{}/{}.csv'.format(result_path, dataset))
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/bert_nli.py
bert_nli.py
import os import math import itertools from os.path import join as os_join from typing import List, Tuple, Dict, Iterable from collections import OrderedDict import pandas as pd import torch from torch.utils.data import DataLoader from transformers import BertTokenizer from sentence_transformers.readers import InputExample from sklearn.metrics import classification_report from tqdm import tqdm from stefutil import * from zeroshot_classifier.util import * import zeroshot_classifier.util.utcd as utcd_util from zeroshot_classifier.util.load_data import get_datasets, encoder_cls_format, in_domain_data_path, out_of_domain_data_path import zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.bi as js_bi # Cannot import like this cos `bi.py` already imported, could cause duplicate `config_setup` call, loading 2 models MODEL_NAME = 'dual-bi-encoder' MD_NM_OUT = 'Dual Bi-encoder' def get_train_args() -> Dict: # Keep the same as in `zeroshot_classifier.models.bi-encoder` return dict( # To override `jskit.encoders.bi` defaults output_dir=os_join(utcd_util.get_base_path(), PROJ_DIR, MODEL_DIR, MODEL_NAME, now(for_path=True)), train_batch_size=16, # pe `bi-encoder.py` default eval_batch_size=32, learning_rate=2e-5, # not specified by `bi-encoder.py`, go with default `SentenceTransformer` num_train_epochs=3, # per `bi-encoder.py` default weight_decay=1e-2, # not specified by `bi-encoder.py`, go with default `SentenceTransformer` # not specified by `bi-encoder.py`, go with default `SentenceTransformer`, which uses `transformers.AdamW` adam_epsilon=1e-6, warmup_ratio=1e-1, # per `bi-encoder.py` ) # Note that `jskit::train_model` internally uses a linear warmup scheduler, as in `bi-encoder.py` def ie_dset2js_dset(dset: List[InputExample]) -> Tuple[List, List, List]: """ Convert the dataset format, from `sentence_transformers::InputExample` to the input format as in jskit training :return: """ n_tr = len(dset) def batched_map(edges: Tuple[int, int]) -> Tuple[List, List, List]: # see zeroshot_classifier.util.load_data` cands_tr_, conts_tr_, lbs_tr_ = [], [], [] for i in range(*edges): ie: InputExample = dset[i] cands_tr_.append(ie.texts[0]) conts_tr_.append(ie.texts[1]) lbs_tr_.append(ie.label) return cands_tr_, conts_tr_, lbs_tr_ n_cpu = os.cpu_count() if n_cpu > 1 and n_tr > 2**12: preprocess_batch = round(n_tr / n_cpu / 2) strts = list(range(0, n_tr, preprocess_batch)) ends = strts[1:] + [n_tr] # inclusive begin, exclusive end cands_tr, conts_tr, lbs_tr = [], [], [] for cd, ct, lb in conc_map(batched_map, zip(strts, ends)): cands_tr.extend(cd), conts_tr.extend(ct), lbs_tr.extend(lb) assert len(cands_tr) == n_tr else: cands_tr, conts_tr, lbs_tr = batched_map((0, n_tr)) return cands_tr, conts_tr, lbs_tr def run_train(sampling: str = 'rand'): logger = get_logger(f'Train {MD_NM_OUT}') logger.info('Training launched... ') d_dset = get_datasets(in_domain_data_path) dnms = [dnm for dnm in d_dset.keys() if dnm != 'all'] logger.info(f'Gathering datasets: {pl.i(dnms)}... ') dset_tr = sum( (encoder_cls_format( d_dset[dnm]['train'], name=dnm, sampling=sampling, neg_sample_for_multi=True, show_warnings=False ) for dnm in dnms), start=[] ) # dset_vl = sum(( # looks like `jskit.encoders.bi` doesn't support eval during training # encoder_cls_format(dset["test"], name=dnm, train=False) for dnm, dset in d_dset if dnm != 'all' # ), start=[]) n_tr = len(dset_tr) cands_tr, conts_tr, lbs_tr = ie_dset2js_dset(dset_tr) # n = 10 # for c, t, l in zip(cands_tr[:n], conts_tr[:n], lbs_tr[:n]): # Sanity check # mic(c, t, l) train_args = get_train_args() out_dir, bsz_tr, bsz_vl, lr, n_ep, decay, eps, warmup_ratio = (train_args[k] for k in ( 'output_dir', 'train_batch_size', 'eval_batch_size', 'learning_rate', 'num_train_epochs', 'weight_decay', 'adam_epsilon', 'warmup_ratio' )) assert n_tr % 3 == 0 n_step = math.ceil(n_tr/3 / bsz_tr) * n_ep # As 3 candidates per text, but only 1 for training train_params = dict( train_batch_size=bsz_tr, eval_batch_size=bsz_vl, num_train_epochs=n_ep, learning_rate=lr, weight_decay=decay, warmup_steps=round(n_step*warmup_ratio), adam_epsilon=eps ) # to `str` per `configparser` API not_shared_str = '' # for not shared weights, see [ongoing-issue](https://github.com/Jaseci-Labs/jaseci/issues/150) js_bi.set_config( training_parameters={k: str(v) for k, v in train_params.items()}, model_parameters=dict(shared=not_shared_str) ) tkzer_cnm, model_cnm = js_bi.model.__class__.__qualname__, js_bi.tokenizer.__class__.__qualname__ shared = get(js_bi.config, 'MODEL_PARAMETERS.shared') gas, sz_cand, sz_cont = (js_bi.config['TRAIN_PARAMETERS'][k] for k in ( 'gradient_accumulation_steps', 'max_candidate_length', 'max_contexts_length' )) d_model = OrderedDict([ ('model name', model_cnm), ('tokenizer name', tkzer_cnm), ('shared weights', shared != not_shared_str), ('candidate size', sz_cand), ('context size', sz_cont) ]) train_args |= dict(n_step=n_step, gradient_accumulation_steps=gas) logger.info(f'Starting training on model {pl.i(d_model)} with training args: {pl.i(train_args)}, ' f'dataset size: {pl.i(n_tr)}... ') model_ = zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.train.train_model( model_train=js_bi.model, tokenizer=js_bi.tokenizer, contexts=conts_tr, candidates=cands_tr, labels=lbs_tr, output_dir=out_dir ) def load_model() -> Tuple[BertTokenizer, zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.models.BiEncoder]: path = os_join(utcd_util.get_base_path(), PROJ_DIR, MODEL_DIR, MODEL_NAME, '2022-03-21_15-46-17') js_bi.load_model(path) return js_bi.tokenizer, js_bi.model class MyEvalDataset(zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.tokenizer.EvalDataset): def __init__(self, return_text=False, **kwargs): super().__init__(**kwargs) self.txt = kwargs['texts'] self.return_text = return_text def __getitem__(self, index): itm = super().__getitem__(index) return (self.txt[index], itm) if self.return_text else itm class EncoderWrapper: """ For evaluation, a wrapper around jskit::BiEncoder reference: `js_util.evaluate.py` """ def __init__(self, model: zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.models.BiEncoder, tokenizer: BertTokenizer): self.tokenizer, self.model = tokenizer, model self.max_cont_length = zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.evaluate.max_contexts_length self.max_cand_length = zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.evaluate.max_candidate_length def __call__( self, texts: List[str], embed_type: str, batch_size: int = 32, device: str = None, return_text=False ) -> Tuple[int, Iterable[torch.Tensor]]: """ Yields batched embeddings in the order of `txts` """ assert embed_type in ['context', 'candidate'] if embed_type == "context": dset_args = dict(context_transform=zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.tokenizer.SelectionJoinTransform( tokenizer=self.tokenizer, max_len=self.max_cont_length )) else: dset_args = dict(candidate_transform=zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.tokenizer.SelectionSequentialTransform( tokenizer=self.tokenizer, max_len=self.max_cand_length )) dset = MyEvalDataset(texts=texts, **dset_args, mode=embed_type, return_text=return_text) def collate(samples): if return_text: txts, ins = zip(*samples) return list(txts), dset.eval_str(ins) else: return dset.eval_str(samples) dl = DataLoader(dset, batch_size=batch_size, collate_fn=collate, shuffle=False, pin_memory=True) if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' def callback(): for inputs in dl: txt, inputs = inputs if return_text else (None, inputs) inputs = tuple(t.to(device) for t in inputs) input_ids, attention_masks = inputs inputs = dict(get_embedding=embed_type, mode='get_embed') if embed_type == 'context': inputs |= dict(context_input_ids=input_ids, context_input_masks=attention_masks) else: inputs |= dict(candidate_input_ids=input_ids, candidate_input_masks=attention_masks) with torch.no_grad(): outputs = self.model(**inputs).squeeze(1) # TODO: cos made changes to BiEncoder yield (txt, outputs) if return_text else outputs return len(dl), callback() def evaluate_trained(domain: str = 'in', candidate_batch_size: int = 256, context_batch_size: int = 32): ca(domain=domain) tokenizer, model = load_model() model.eval() ew = EncoderWrapper(model, tokenizer) d_dset = get_datasets(in_domain_data_path if domain == 'in' else out_of_domain_data_path) dataset_names = [dnm for dnm in d_dset.keys() if dnm != 'all'] domain_str = f'{domain} domain' output_dir = os_join(BASE_PATH, PROJ_DIR, 'evaluations', MODEL_NAME, f'{now(for_path=True)}, {domain_str}') model_cnm = model.__class__.__qualname__ d_model = OrderedDict([ ('model name', model_cnm), ('trained #epoch', 3), ('context limit', zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.evaluate.max_contexts_length), ('candidate limit', zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.evaluate.max_candidate_length), ]) d_eval = OrderedDict([ ('datasets', dataset_names), ('context max batch size', context_batch_size), ('candidate max batch size', candidate_batch_size) ]) logger_name = f'{MD_NM_OUT} Evaluation' logger = get_logger(logger_name, typ='stdout') logger_fl = get_logger( f'{logger_name} file-write', typ='file-write', file_path=os_join(output_dir, f'{logger_name}, {domain_str}.log') ) logger.info(f'Running evaluation {pl.i(domain_str)} on model {pl.i(d_model)}, with {pl.i(d_eval)}... ') logger_fl.info(f'Running evaluation {domain_str} on model {pl.nc(d_model)}, with {pl.nc(d_eval)}... ') for dnm in dataset_names: dset = d_dset[dnm]['test'] _dset = sorted(dset) # map from unique text to all possible labels; sort by text then label txt2lbs = {k: set(lb for txt, lb in v) for k, v in itertools.groupby(_dset, key=lambda pair: pair[0])} idx2lb = labels = sorted(set().union(*[v for v in txt2lbs.values()])) lb2idx = {lb: i for i, lb in enumerate(labels)} vects_lb = torch.cat([e for e in ew(labels, embed_type='candidate', batch_size=candidate_batch_size)[1]]) lst_preds, lst_labels = [], [] n, it = ew(list(txt2lbs.keys()), embed_type='candidate', return_text=True, batch_size=context_batch_size) logger.info(f'Running evaluation on dataset {pl.i(dnm)}, with labels {pl.i(labels)}, ' f'of {pl.i(len(txt2lbs))} unique texts in {pl.i(n)} batches... ') logger_fl.info( f'Running evaluation on dataset {dnm}, with labels {labels}, ' f'of {len(txt2lbs)} unique texts in {n} batches... ') for txts, vects_txt in tqdm(it, total=n): lg.its = vects_txt @ vects_lb.t() preds = lg.its.argmax(dim=-1) def get_true_label(pred, txt): pos_lb_pool = txt2lbs[txt] if idx2lb[pred] in pos_lb_pool: return pred else: # Pick one true label arbitrarily if it doesn't match prediction return next(lb2idx[lb] for lb in pos_lb_pool) lbs = torch.tensor( [get_true_label(p, txt) for p, txt in zip(preds.tolist(), txts)], dtype=torch.long, device=preds.device ) lst_preds.append(preds) lst_labels.append(lbs) preds_all, labels_all = torch.cat(lst_preds).cpu().numpy(), torch.cat(lst_labels).cpu().numpy() df = pd.DataFrame( classification_report(labels_all, preds_all, target_names=labels, output_dict=True) ).transpose() path = os_join(output_dir, f'{dnm}.csv') df.to_csv(path) logger.info(f'Evaluation on {pl.i(dnm)} written to CSV at {pl.i(path)}') logger_fl.info(f'Evaluation on {dnm} written to CSV at {path}') if __name__ == '__main__': import transformers from icecream import mic seed = sconfig('random-seed') js_bi.set_seed(seed) transformers.set_seed(seed) def import_check(): from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.bi import ( config as bi_enc_config, set_seed, tokenizer, model ) mic(config_parser2dict(bi_enc_config)) mic(tokenizer, type(model)) # import_check() # run_train() # evaluate_trained(context_batch_size=256) evaluate_trained(domain='out')
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/dual_bi_encoder/dual_bi_encoder.py
dual_bi_encoder.py
import os import configparser import torch from typing import List from fastapi import HTTPException from transformers import BertModel, BertConfig, BertTokenizer # ========================== Begin of modified ========================== from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils import CONFIG_PATH from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.evaluate import get_embeddings, get_inference from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.models import BiEncoder # ========================== End of modified ========================== import traceback import numpy as np # ========================== Begin of modified ========================== from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils.train import train_model # import jaseci.actions.remote_actions as jra # ========================== End of modified ========================== import random config = configparser.ConfigParser() model, model_name, shared, seed, tokenizer = None, None, None, None, None save_restart = False output_dir = "log_output" DEFAULT_MODEL_NAME = 'pytorch_model.bin' DEFAULT_MODEL_PATH = os.path.join(output_dir, 'pytorch_model.bin') # device = torch.device("cpu") # uncomment this if you wish to use GPU to train # this is commented out because this causes issues with # unittest on machines with GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # funtion to set seed for the module def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # function for config setup # ========================== Begin of modified ========================== # config.read('utils/config.cfg') config.read(CONFIG_PATH) # ========================== Begin of modified ========================== def config_setup(): """ Loading configurations from utils/config.cfg and initialize tokenizer and model """ global seed, model, save_restart, tokenizer, device, shared, config model_name = config['MODEL_PARAMETERS']['MODEL_NAME'] shared = config['MODEL_PARAMETERS']['SHARED'] seed = int(config['TRAIN_PARAMETERS']['SEED']) if model is None: bert_config = BertConfig() tokenizer = BertTokenizer.from_pretrained(model_name, do_lower_case=True, clean_text=False) if shared == "True": cont_bert = BertModel(bert_config) cand_bert = cont_bert print("shared model created") else: cont_bert = BertModel(bert_config) cand_bert = BertModel(bert_config) print("non shared model created") model = BiEncoder(config=bert_config, cont_bert=cont_bert, cand_bert=cand_bert, shared=shared) elif save_restart: torch.save(model.state_dict(), DEFAULT_MODEL_PATH) bert_config = BertConfig() tokenizer = BertTokenizer.from_pretrained(model_name, do_lower_case=True, clean_text=False) cont_bert = BertModel(bert_config) cand_bert = BertModel(bert_config) model = BiEncoder(config=bert_config, cont_bert=cont_bert, cand_bert=cand_bert, shared=shared) save_restart = False model.to(device) set_seed(seed) # ========================== Begin of modified ========================== # config_setup() # Will call it myself # ========================== End of modified ========================== # API for getting the cosine similarity # ========================== Begin of modified ========================== # @jra.jaseci_action(act_group=['bi_enc']) # ========================== End of modified ========================== def cosine_sim(vec_a: list, vec_b: list, meta): """ Caculate the cosine similarity score of two given vectors Param 1 - First vector Param 2 - Second vector Return - float between 0 and 1 """ result = np.dot(vec_a, vec_b) / (np.linalg.norm(vec_a) * np.linalg.norm(vec_b)) return result.astype(float) # ========================== Begin of modified ========================== # @jra.jaseci_action(act_group=['bi_enc']) # ========================== End of modified ========================== def infer(contexts: List, candidates: List): """ Take list of context, candidate and return nearest candidate to the context """ global model model.eval() predicted_candidate = get_inference(model, tokenizer, contexts=contexts, candidates=candidates) return predicted_candidate # API for training # ========================== Begin of modified ========================== # @jra.jaseci_action(act_group=['bi_enc']) # ========================== End of modified ========================== def train(contexts: List, candidates: List, labels: List[int]): """ Take list of context, candidate, labels and trains the model """ global model model.train() try: model = train_model( model_train=model, tokenizer=tokenizer, contexts=contexts, candidates=candidates, labels=labels, output_dir="model_output" ) return "Model Training is complete." except Exception as e: print(e) print(traceback.print_exc()) raise HTTPException(status_code=500, detail=str(e)) # API for geting Context Embedding # ========================== Begin of modified ========================== # @jra.jaseci_action(act_group=['bi_enc'], aliases=['encode_context']) # ========================== End of modified ========================== def get_context_emb(contexts: List): """ Take list of context and returns the embeddings """ global model, tokenizer model.eval() embedding = get_embeddings( model=model, tokenizer=tokenizer, text_data=contexts, embed_type="context") return embedding # API for geting Candidates Embedding # ========================== Begin of modified ========================== # @jra.jaseci_action(act_group=['bi_enc'], aliases=['encode_candidate']) # ========================== End of modified ========================== def get_candidate_emb(candidates: List): """ Take list of candidates and returns the embeddings """ global model, tokenizer model.eval() embedding = get_embeddings( model, tokenizer, text_data=candidates, embed_type="candidate") return embedding # API for setting the training and model parameters # ========================== Begin of modified ========================== # @jra.jaseci_action(act_group=['bi_enc']) # ========================== End of modified ========================== def set_config(training_parameters, model_parameters): """ Update the configuration file with any new incoming parameters """ global config, save_restart # ========================== Begin of modified ========================== config.read(CONFIG_PATH) # ========================== End of modified ========================== if training_parameters: config['TRAIN_PARAMETERS'].update(training_parameters) if model_parameters: config['MODEL_PARAMETERS'].update(model_parameters) save_restart = True with open(CONFIG_PATH, 'w') as configfile: config.write(configfile) config_setup() return "Config setup is complete." # ========================== Begin of modified ========================== # @jra.jaseci_action(act_group=['bi_enc']) # ========================== End of modified ========================== def save_model(model_path: str): """ saves the model to the provided model_path """ global model, tokenizer, shared, config try: if not model_path.isalnum(): raise HTTPException( status_code=400, detail='Invalid model name. Only alphanumeric chars allowed.' ) if not os.path.exists(model_path): os.makedirs(model_path) if shared == "True": model.config.to_json_file(model_path + "/config.json") tokenizer.save_vocabulary(model_path) torch.save(model.cand_bert.state_dict(), model_path+"/pytorch_model.bin") with open(model_path+"/config.cfg", 'w') as fp: config.write(fp) else: cand_bert_path = os.path.join(model_path)+"/cand_bert/" cont_bert_path = os.path.join(model_path)+"/cont_bert/" if not os.path.exists(cand_bert_path): os.makedirs(cand_bert_path) if not os.path.exists(cont_bert_path): os.makedirs(cont_bert_path) model.cand_bert.config_dict.to_json_file(cand_bert_path + "config.json") model.cont_bert.config_dict.to_json_file(cont_bert_path + "config.json") tokenizer.save_vocabulary(cand_bert_path) tokenizer.save_vocabulary(cont_bert_path) torch.save(model.cand_bert.state_dict(), cand_bert_path+"pytorch_model.bin") torch.save(model.cont_bert.state_dict(), cont_bert_path+"pytorch_model.bin") with open(model_path+"/config.cfg", 'w') as fp: config.write(fp) return (f'[Saved model at] : {model_path}') except Exception as e: print(traceback.print_exc()) raise HTTPException(status_code=500, detail=str(e)) # ========================== Begin of modified ========================== # @jra.jaseci_action(act_group=['bi_enc']) # ========================== End of modified ========================== def load_model(model_path): """ loads the model from the provided model_path """ global device, model, tokenizer, shared, config if not os.path.exists(model_path): raise HTTPException( status_code=404, detail='Model path is not available' ) try: config.read(model_path+'/config.cfg') shared = config['MODEL_PARAMETERS']['SHARED'] if shared == "True": bert_config = BertConfig() tokenizer = BertTokenizer.from_pretrained(os.path.join( model_path, "vocab.txt"), do_lower_case=True, clean_text=False) cont_bert_state_dict = torch.load( model_path+"/pytorch_model.bin", map_location="cpu") cont_bert = BertModel.from_pretrained( model_path, state_dict=cont_bert_state_dict) cand_bert = cont_bert else: cand_bert_path = os.path.join(model_path, "cand_bert") cont_bert_path = os.path.join(model_path, "cont_bert") # ========================== Begin of added ========================== tokenizer_path = os.path.join(model_path, 'tokenizer') # ========================== End of added ========================== print('Loading parameters from', cand_bert_path) cont_bert_state_dict = torch.load( cont_bert_path+"/pytorch_model.bin", map_location="cpu") cand_bert_state_dict = torch.load( cand_bert_path+"/pytorch_model.bin", map_location="cpu") cont_bert = BertModel.from_pretrained( cont_bert_path, state_dict=cont_bert_state_dict) cand_bert = BertModel.from_pretrained( cand_bert_path, state_dict=cand_bert_state_dict) # ========================== Begin of modified ========================== tokenizer = BertTokenizer.from_pretrained( tokenizer_path, do_lower_case=True, clean_text=False) # ========================== End of modified ========================== bert_config = BertConfig.from_json_file( os.path.join(cand_bert_path, 'config.json')) model = BiEncoder(config=bert_config, cont_bert=cont_bert, cand_bert=cand_bert, shared=shared) model.to(device) return (f'[loaded model from] : {model_path}') except Exception as e: print(traceback.print_exc()) raise HTTPException(status_code=500, detail=str(e)) # ========================== Begin of modified ========================== # if __name__ == "__main__": # jra.launch_server(port=8000) # ========================== End of modified ==========================
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/dual_bi_encoder/jskit/encoders/bi.py
bi.py
from fastapi.responses import JSONResponse from transformers import BertConfig, BertTokenizer import torch.nn.functional as F import torch import configparser import os from Utilities import models, evaluate, train import jaseci.actions.remote_actions as jra config = configparser.ConfigParser() model, model_name, shared, seed, tokenizer = None, None, None, None, None save_restart = False output_dir = "log_output" state_save_path = os.path.join(output_dir, 'pytorch_model.bin') def config_setup(): global model, model_name, shared, seed, save_restart, tokenizer, config config.read('Utilities/config.cfg') model_name = config['MODEL_PARAMETERS']['MODEL_NAME'] shared = config['MODEL_PARAMETERS']['SHARED'] seed = config['TRAIN_PARAMETERS']['SEED'] poly_m = config['MODEL_PARAMETERS']['POLY_M'] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if model is None: bert_config = BertConfig() tokenizer = BertTokenizer.from_pretrained( model_name, do_lower_case=True) model = models.PolyEncoderModelShared( config=bert_config, model_name=model_name, poly_m=poly_m, shared=shared) elif save_restart: torch.save(model.state_dict(), state_save_path) bert_config = BertConfig() tokenizer = BertTokenizer.from_pretrained( model_name, do_lower_case=True) model = models.PolyEncoderModelShared( config=bert_config, model_name=model_name, poly_m=poly_m, shared=shared) save_restart = False model.to(device) config_setup() @jra.jaseci_action(act_group=['poly_enc'], aliases=['get_poly_cos_sim']) def cosSimilarityScore(context_embedding, candidate_embedding): tensors = (context_embedding, candidate_embedding) context_vecs, candidates_vec = (torch.tensor( t, dtype=torch.float) for t in tensors) candidates_vec = candidates_vec.view(1, 1, -1).expand(1, 1, 64) final_context_vec = models.dot_attention( candidates_vec, context_vecs, context_vecs, None, None) final_context_vec = F.normalize(final_context_vec, 2, -1) dot_product = torch.sum(final_context_vec * candidates_vec, -1) cos_similarity = (dot_product + 1) / 2 return JSONResponse(content={"cos_score": cos_similarity.item()}) @jra.jaseci_action(act_group=['poly_enc'], aliases=['inference']) def getinference(contexts, candidates): global model model.eval() predicted_label = evaluate.get_inference( model, tokenizer, context=contexts, candidate=candidates) return JSONResponse(content={"label": predicted_label}) @jra.jaseci_action(act_group=['poly_enc'], aliases=['train']) def trainModel(contexts, candidates): global model model.train() try: model = train.train_model(model, tokenizer, contexts, candidates) return JSONResponse(content="Model Training is comnpleted", status_code=200) except Exception as e: print(e) return JSONResponse(content="Error Occured", status_code=500) @jra.jaseci_action(act_group=['poly_enc'], aliases=['getcontextembedding']) def getContextEmbedding(contexts): global model, tokenizer model.eval() embedding = evaluate.get_context_embedding( model, tokenizer, contexts) return JSONResponse(content={ "context_embed": embedding.cpu().numpy().tolist()}) @jra.jaseci_action(act_group=['poly_enc'], aliases=['getcandidateembedding']) def getCandidateEmbedding(candidates): global model, tokenizer model.eval() embedding = evaluate.get_candidate_embedding(model, tokenizer, candidates) return JSONResponse(content={ "candidate_embed": embedding.cpu().numpy().tolist()}) @jra.jaseci_action(act_group=['poly_enc'], aliases=['setconfig']) def setConfig(training_parameters, model_parameters): global config, save_restart config.read('Utilities/config.cfg') train_param = config['TRAIN_PARAMETERS'] model_param = config['MODEL_PARAMETERS'] if training_parameters: if "MAX_CONTEXTS_LENGTH" in training_parameters: train_param["MAX_CONTEXTS_LENGTH"] = training_parameters[ 'MAX_CONTEXTS_LENGTH'] if "MAX_RESPONSE_LENGTH" in training_parameters: train_param["MAX_RESPONSE_LENGTH"] = training_parameters[ 'MAX_RESPONSE_LENGTH'] if "TRAIN_BATCH_SIZE" in training_parameters: train_param["TRAIN_BATCH_SIZE"] = training_parameters[ 'TRAIN_BATCH_SIZE'] if "EVAL_BATCH_SIZE" in training_parameters: train_param["EVAL_BATCH_SIZE"] = training_parameters[ 'EVAL_BATCH_SIZE'] if "MAX_HISTORY" in training_parameters: train_param["MAX_HISTORY"] = training_parameters['MAX_HISTORY'] if "LEARNING_RATE" in training_parameters: train_param["LEARNING_RATE"] = training_parameters['LEARNING_RATE'] if "WEIGHT_DECAY" in training_parameters: train_param["WEIGHT_DECAY"] = training_parameters['WEIGHT_DECAY'] if "WARMUP_STEPS" in training_parameters: train_param["WARMUP_STEPS"] = training_parameters['WARMUP_STEPS'] if "ADAM_EPSILON" in training_parameters: train_param["ADAM_EPSILON"] = training_parameters['ADAM_EPSILON'] if "MAX_GRAD_NORM" in training_parameters: train_param["MAX_GRAD_NORM"] = training_parameters['MAX_GRAD_NORM'] if "NUM_TRAIN_EPOCHS" in training_parameters: train_param["NUM_TRAIN_EPOCHS"] = training_parameters[ 'NUM_TRAIN_EPOCHS'] if "SEED" in training_parameters: train_param["SEED"] = training_parameters['SEED'] if "GRADIENT_ACCUMULATION_STEPS" in training_parameters: train_param["GRADIENT_ACCUMULATION_STEPS"] = training_parameters[ 'GRADIENT_ACCUMULATION_STEPS'] if "FP16" in training_parameters: train_param["FP16"] = training_parameters['FP16'] if "FP16_OPT_LEVEL" in training_parameters: train_param["FP16_OPT_LEVEL"] = training_parameters[ 'FP16_OPT_LEVEL'] if "GPU" in training_parameters: train_param["GPU"] = training_parameters['GPU'] if model_parameters: if "SHARED" in model_parameters: model_param["SHARED"] = model_parameters["SHARED"] if "MODEL_NAME" in model_parameters: model_param["MODEL_NAME"] = model_parameters["MODEL_NAME"] if "POLY_M" in model_parameters: model_param["POLY_M"] = model_parameters["POLY_M"] save_restart = True with open("Utilities/config.cfg", 'w') as configfile: config.write(configfile) config_setup() return JSONResponse(content="config setup completed")
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/dual_bi_encoder/jskit/encoders/poly.py
poly.py
from typing import List from sentence_transformers import InputExample, losses from sentence_transformers import SentenceTransformer, models from sentence_transformers.util import cos_sim from torch import nn from torch.utils.data import DataLoader import nlpaug.augmenter.word as naw import torch import math from datetime import datetime import numpy as np from fastapi.responses import JSONResponse import jaseci.actions.remote_actions as jra model_name = "bert-base-uncased" device = "cuda" if torch.cuda.is_available() else "cpu" num_epochs = 2 model_save_path = 'output/sent_' + \ model_name.replace("/", "-")+'-' + \ datetime.now().strftime("%Y-%m-%d_%H-%M-%S") def create_model(model_name="bert-base-uncased", max_seq_length=256): word_embedding_model = models.Transformer( model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension()) dense_model = models.Dense( in_features=pooling_model.get_sentence_embedding_dimension(), out_features=256, activation_function=nn.Tanh()) model = SentenceTransformer( modules=[word_embedding_model, pooling_model, dense_model]) return model model = create_model(model_name=model_name, max_seq_length=256) def get_aug_sample(text1, text2): # Synonym replacement using BERT #### aug = naw.ContextualWordEmbsAug( model_path=model_name, action="insert", device=device) aug_samples = [] for sample1, sample2 in zip(text1, text2): augmented_texts = aug.augment([sample1, sample2]) print(augmented_texts) inp_example = InputExample(texts=augmented_texts, label=0) aug_samples.append(inp_example) print("Textual augmentation completed....") print("Number of silver pairs generated: {}".format(len(aug_samples))) return aug_samples @jra.jaseci_action(act_group=['sent_enc'], aliases=['train_model']) def train(text1: List[str], text2: List[str]): global model, model_name, device try: gold_samples = [] for sample1, sample2 in zip(text1, text2): inp_example = InputExample(texts=[sample1, sample2], label=1) gold_samples.append(inp_example) # generate Samples for 0 labels aug_samples = get_aug_sample(text1, text2) # Define your train dataset, the dataloader and the train loss train_dataloader = DataLoader( gold_samples + aug_samples, shuffle=True, batch_size=16) train_loss = losses.ContrastiveLoss(model) # Configure the training. # 10% of train data for warm-up warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) print("Warmup-steps: {}".format(warmup_steps)) # Tune the model model.fit(train_objectives=[ (train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path ) return JSONResponse(content="Model Training is comnpleted", status_code=200) except Exception as e: print(e) return JSONResponse(content=f"Error Occured {str(e)}", status_code=500) @ jra.jaseci_action(act_group=['sent_enc'], aliases=['inference']) def predict(text1: str, text2: List[str]): try: sim = np.zeros(len(text2)) text_embeddings = model.encode(text1) label_embeddings = model.encode(text2) for i in range(len(text2)): sim[i] = cos_sim(text_embeddings, label_embeddings[i]) print(sim) return JSONResponse( { "label": text2[np.argmax(sim)], "conf_score": sim[np.argmax(sim)] } ) except Exception as e: print(e) return JSONResponse(content=f"Error Occured : {str(e)}", status_code=500) @jra.jaseci_action(act_group=['sent_enc'], aliases=['getembeddings']) def getEmbedding(text): global model model.eval() try: embeddings = model.encode(text) return JSONResponse(content={"embed": np.squeeze( np.asarray(embeddings)).tolist()}, status_code=200) except Exception as e: print(e) return JSONResponse(content=f"Error Occured : {str(e)}", status_code=500) @jra.jaseci_action(act_group=['sent_enc'], aliases=['get_cos_sim']) def cosine_sim(vec_a: list, vec_b: list, meta): """ Caculate the cosine similarity score of two given vectors Param 1 - First vector Param 2 - Second vector Return - float between 0 and 1 """ result = np.dot(vec_a, vec_b) / (np.linalg.norm(vec_a) * np.linalg.norm(vec_b)) return result.astype(float)
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/dual_bi_encoder/jskit/encoders/sent_enc.py
sent_enc.py
import torch from torch.utils.data import DataLoader import os import time from tqdm import tqdm from transformers.optimization import AdamW, get_linear_schedule_with_warmup # ========================== Begin of modified ========================== from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils import CONFIG_PATH from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils import tokenizer as token_util # ========================== End of modified ========================== import configparser config = configparser.ConfigParser() device, max_contexts_length, max_candidate_length, train_batch_size, \ eval_batch_size, max_history, learning_rate, weight_decay, warmup_steps, \ adam_epsilon, max_grad_norm, fp16, fp16_opt_level, gpu, \ gradient_accumulation_steps, num_train_epochs = None, None, None, None, \ None, None, None, None, None, None, None, None, None, None, None, None # training setup def config_setup(): global device, basepath, max_contexts_length, max_candidate_length, \ train_batch_size, eval_batch_size, max_history, learning_rate, \ weight_decay, warmup_steps, adam_epsilon, max_grad_norm, fp16, \ fp16_opt_level, gpu, gradient_accumulation_steps, num_train_epochs, shared device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device = torch.device('cpu') # ========================== Begin of modified ========================== config.read(CONFIG_PATH) # ========================== End of modified ========================== max_contexts_length = int( config['TRAIN_PARAMETERS']['MAX_CONTEXTS_LENGTH']) max_candidate_length = int( config['TRAIN_PARAMETERS']['MAX_CANDIDATE_LENGTH']) train_batch_size = int(config['TRAIN_PARAMETERS']['TRAIN_BATCH_SIZE']) eval_batch_size = int(config['TRAIN_PARAMETERS']['EVAL_BATCH_SIZE']) max_history = int(config['TRAIN_PARAMETERS']['MAX_HISTORY']) learning_rate = float(config['TRAIN_PARAMETERS']['LEARNING_RATE']) weight_decay = float(config['TRAIN_PARAMETERS']['WEIGHT_DECAY']) warmup_steps = int(config['TRAIN_PARAMETERS']['WARMUP_STEPS']) adam_epsilon = float(config['TRAIN_PARAMETERS']['ADAM_EPSILON']) max_grad_norm = float(config['TRAIN_PARAMETERS']['MAX_GRAD_NORM']) gradient_accumulation_steps = int( config['TRAIN_PARAMETERS']['GRADIENT_ACCUMULATION_STEPS']) num_train_epochs = int(config['TRAIN_PARAMETERS']['NUM_TRAIN_EPOCHS']) fp16 = bool(config['TRAIN_PARAMETERS']['FP16']) fp16_opt_level = str(config['TRAIN_PARAMETERS']['FP16_OPT_LEVEL']) gpu = int(config['TRAIN_PARAMETERS']['GPU']) shared = bool(config['MODEL_PARAMETERS']['SHARED']) output_dir = "log_output" train_dir = "" model = None global_step, tr_loss, nb_tr_steps, epoch, device, basepath, shared = None, None, \ None, None, None, None, None # training function def train_model(model_train, tokenizer, contexts, candidates, labels, output_dir, val=False): config_setup() global model, global_step, tr_loss, nb_tr_steps, epoch, device, basepath, shared model = model_train context_transform = token_util.SelectionJoinTransform( tokenizer=tokenizer, max_len=int(max_contexts_length) ) # ========================== Begin of added ========================== # `SelectionJoinTransform` modifies the tokenizer by adding a special token # => the context model embedding size also needs to increase # this modified `tokenizer` will tokenize both context and candidate, # for now, keep context model embedding unchanged # => user responsible that the special token added does not appear in model.cont_bert.resize_token_embeddings(len(tokenizer)) model.cand_bert.resize_token_embeddings(len(tokenizer)) # ========================== End of added ========================== candidate_transform = token_util.SelectionSequentialTransform( tokenizer=tokenizer, max_len=int(max_candidate_length) ) train_dataset = token_util.SelectionDataset( contexts=contexts, candidates=candidates, labels=labels, context_transform=context_transform, candidate_transform=candidate_transform ) train_dataloader = DataLoader( train_dataset, batch_size=train_batch_size, collate_fn=train_dataset.batchify_join_str, shuffle=True ) t_total = len(train_dataloader) // train_batch_size * \ (max(5, num_train_epochs)) epoch_start = 1 global_step = 0 bert_dir = output_dir+"/bert" resp_bert_dir = output_dir+"/resp_bert" if not os.path.exists(output_dir): os.makedirs(output_dir) if not os.path.exists(bert_dir): os.makedirs(bert_dir) if not os.path.exists(resp_bert_dir): os.makedirs(resp_bert_dir) log_wf = open(os.path.join(output_dir, 'log.txt'), 'a', encoding='utf-8') if shared: state_save_path = os.path.join(output_dir, 'pytorch_model.bin') else: # ========================== Begin of modified ========================== # outdated already # state_save_path = os.path.join(bert_dir, 'pytorch_model.bin') # state_save_path_1 = os.path.join( # resp_bert_dir, 'pytorch_model.bin') cand_bert_path = os.path.join(output_dir, 'cand_bert') cont_bert_path = os.path.join(output_dir, 'cont_bert') tokenizer_path = os.path.join(output_dir, 'tokenizer') os.makedirs(cand_bert_path, exist_ok=True) os.makedirs(cont_bert_path, exist_ok=True) # ========================== End of modified ========================== state_save_path = os.path.join(output_dir, 'pytorch_model.bin') no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any( nd in n for nd in no_decay)], "weight_decay": weight_decay, }, {"params": [p for n, p in model.named_parameters() if any( nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate, eps=adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total ) fp16 = False if fp16: try: from apex import amp except ImportError: raise ImportError( '''Please install apex from https://www.github.com/nvidia/apex to use fp16 training''') model, optimizer = amp.initialize( model, optimizer, opt_level=fp16_opt_level) print_freq = 1 # ========================== Begin of modified ========================== loss_print_freq = int(1e4) # ========================== End of modified ========================== eval_freq = min(len(train_dataloader), 1000) print('Print freq:', print_freq, "Eval freq:", eval_freq) train_start_time = time.time() print(f"train_start_time : {train_start_time}") for epoch in range(epoch_start, int(num_train_epochs) + 1): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 with tqdm(total=len(train_dataloader)) as bar: for step, batch in enumerate(train_dataloader, start=1): model.train() optimizer.zero_grad() batch = tuple(t.to(device) for t in batch) context_token_ids_list_batch, context_input_masks_list_batch, \ candidate_token_ids_list_batch, candidate_input_masks_list_batch, labels_batch = batch loss = model(context_token_ids_list_batch, context_input_masks_list_batch, candidate_token_ids_list_batch, candidate_input_masks_list_batch, labels_batch) # ========================== Begin of modified ========================== # print(f"loss is : {loss}") if step % loss_print_freq == 0: print(f'epoch {epoch}, step {step}, training loss {loss}') # ========================== End of modified ========================== tr_loss += loss.item() nb_tr_examples += context_token_ids_list_batch.size(0) nb_tr_steps += 1 if fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_( model.parameters(), max_grad_norm) optimizer.step() if global_step < warmup_steps: scheduler.step() model.zero_grad() global_step += 1 if step % print_freq == 0: bar.update(min(print_freq, step)) time.sleep(0.02) # ========================== Begin of modified ========================== # print(global_step, tr_loss / nb_tr_steps) # ========================== End of modified ========================== log_wf.write('%d\t%f\n' % (global_step, tr_loss / nb_tr_steps)) log_wf.flush() pass if shared is True: torch.save(model.state_dict(), state_save_path) else: # ========================== Begin of modified ========================== # print('[Saving at]', state_save_path) # log_wf.write('[Saving at] %s\n' % state_save_path) # torch.save(model.resp_bert.state_dict(), state_save_path_1) # torch.save(model.bert.state_dict(), state_save_path) # See https://github.com/Jaseci-Labs/jaseci/issues/152 print(f'[Saving at] {tokenizer_path}, {cand_bert_path} and {cont_bert_path}') log_wf.write(f'[Saving at] {tokenizer_path}, {cand_bert_path} and {cont_bert_path}\n') # md_fnm = 'pytorch_model.bin' # torch.save(model.cont_bert.state_dict(), os.path.join(cont_bert_path, md_fnm)) # torch.save(model.cand_bert.state_dict(), os.path.join(cand_bert_path, md_fnm)) tokenizer.save_pretrained(tokenizer_path) model.cont_bert.save_pretrained(cont_bert_path) model.cand_bert.save_pretrained(cand_bert_path) # ========================== End of modified ========================== return model
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/dual_bi_encoder/jskit/encoders/utils/train.py
train.py
import torch from torch.utils.data import DataLoader # ========================== Begin of modified ========================== from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils import CONFIG_PATH from zeroshot_classifier.models.dual_bi_encoder.jskit.encoders.utils import tokenizer as token_util # ========================== End of modified ========================== import configparser config = configparser.ConfigParser() max_history, max_contexts_length, max_candidate_length, device = None, \ None, None, None # inference parameters setup def config_setup(): global max_history, max_contexts_length, max_candidate_length, device # ========================== Begin of modified ========================== config.read(CONFIG_PATH) # ========================== End of modified ========================== max_history = int(config['TRAIN_PARAMETERS']['MAX_HISTORY']) max_contexts_length = int( config['TRAIN_PARAMETERS']['MAX_CONTEXTS_LENGTH']) max_candidate_length = int( config['TRAIN_PARAMETERS']['MAX_CANDIDATE_LENGTH']) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device = torch.device('cpu') config_setup() def get_inference(model, tokenizer, contexts, candidates): global max_history, max_contexts_length, max_candidate_length, device context_transform = token_util.SelectionJoinTransform( tokenizer=tokenizer, max_len=max_contexts_length ) candidate_transform = token_util.SelectionSequentialTransform( tokenizer=tokenizer, max_len=max_candidate_length ) labels = [0] * len(candidates) test_data = token_util.SelectionDataset( contexts=contexts, candidates=candidates, context_transform=context_transform, candidate_transform=candidate_transform, mode="eval", labels=labels ) val_dataloader = DataLoader( test_data, batch_size=1, collate_fn=test_data.batchify_join_str, shuffle=False ) for step, batch in enumerate(val_dataloader, start=1): batch = tuple(t.to(device) for t in batch) context_token_ids_list_batch, context_input_masks_list_batch,\ candidate_token_ids_list_batch, candidate_input_masks_list_batch,\ labels_batch = batch with torch.no_grad(): logits = model(context_token_ids_list_batch, context_input_masks_list_batch, candidate_token_ids_list_batch, candidate_input_masks_list_batch, mode="eval") _, prediction = torch.max(logits, dim=-1) return candidates[prediction] # function provides embedding for context and candidate def get_embeddings(model, tokenizer, text_data, embed_type="context"): global max_history, max_contexts_length, max_candidate_length, device if embed_type == "context": context_transform = token_util.SelectionJoinTransform( tokenizer=tokenizer, max_len=max_contexts_length) context_data = token_util.EvalDataset( text_data, context_transform=context_transform, candidate_transform=None, mode=embed_type) else: candidate_transform = token_util.SelectionSequentialTransform( tokenizer=tokenizer, max_len=max_candidate_length) context_data = token_util.EvalDataset( text_data, context_transform=None, candidate_transform=candidate_transform, mode=embed_type) dataloader = DataLoader(context_data, batch_size=1, collate_fn=context_data.eval_str, shuffle=False, num_workers=0) for step, batch in enumerate(dataloader, start=1): batch = tuple(t.to(device) for t in batch) token_ids_list_batch, input_masks_list_batch = batch with torch.no_grad(): if embed_type == "context": embeddings = model(context_input_ids=token_ids_list_batch, context_input_masks=input_masks_list_batch, get_embedding=embed_type, mode="get_embed") else: embeddings = model(candidate_input_ids=token_ids_list_batch, candidate_input_masks=input_masks_list_batch, get_embedding=embed_type, mode="get_embed") embeddings = embeddings.squeeze(0) return embeddings.squeeze(0).detach().tolist()
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/dual_bi_encoder/jskit/encoders/utils/evaluate.py
evaluate.py
import torch from torch.utils.data import Dataset # this class transforms data in required training format and inference for text and tokens class SelectionDataset(Dataset): def __init__(self, contexts, candidates, context_transform, candidate_transform, labels=None, mode='train'): self.context_transform = context_transform self.candidate_transform = candidate_transform self.data_source = [] self.mode = mode group = { 'context': None, 'candidates': [], 'labels': [] } if mode == "eval": for text in contexts: for cand, lbl in zip(candidates, labels): group['candidates'].append(cand) group['labels'].append(lbl) group['context'] = [text] self.data_source.append(group) else: for text, cand, lbl in zip(contexts, candidates, labels): if lbl == 1 and len(group['candidates']) > 0: # ========================== Begin of added ========================== # Sanity check for 2 negative samples, ensures collator `batchify_join_str` works assert len(group['candidates']) == 3 # ========================== End of added ========================== self.data_source.append(group) group = { 'context': None, 'candidates': [], 'labels': [] } group['candidates'].append(cand) group['labels'].append(lbl) group['context'] = [text] if len(group['candidates']) > 0: self.data_source.append(group) # print(self.data_source) group = { 'context': None, 'candidates': [], 'labels': [] } if len(self.data_source) < 2 and mode != "eval": group['context'] = ["This is sample text"] group['candidates'].append("sampletext") group['labels'].append(1) if len(candidates) > 1: group['context'] = ["This is a sample text"] group['candidates'].append("notsampletext") group['labels'].append(0) self.data_source.append(group) def __len__(self): return len(self.data_source) def __getitem__(self, index): group = self.data_source[index] context, candidates, labels = group['context'], group['candidates'], group['labels'] transformed_context = self.context_transform( context) # [token_ids],[seg_ids],[masks] transformed_candidates = self.candidate_transform( candidates) # [token_ids],[seg_ids],[masks] ret = transformed_context, transformed_candidates, labels return ret def batchify_join_str(self, batch): contexts_token_ids_list_batch, contexts_input_masks_list_batch, \ candidates_token_ids_list_batch, candidates_input_masks_list_batch = [], [], [], [] labels_batch = [] for sample in batch: (contexts_token_ids_list, contexts_input_masks_list), ( candidates_token_ids_list, candidates_input_masks_list) = sample[:2] contexts_token_ids_list_batch.append(contexts_token_ids_list) contexts_input_masks_list_batch.append( contexts_input_masks_list) candidates_token_ids_list_batch.append(candidates_token_ids_list) candidates_input_masks_list_batch.append( candidates_input_masks_list) labels_batch.append(sample[-1]) long_tensors = [contexts_token_ids_list_batch, contexts_input_masks_list_batch, candidates_token_ids_list_batch, candidates_input_masks_list_batch] contexts_token_ids_list_batch, contexts_input_masks_list_batch, \ candidates_token_ids_list_batch, candidates_input_masks_list_batch = ( torch.tensor(t, dtype=torch.long) for t in long_tensors) labels_batch = torch.tensor(labels_batch, dtype=torch.long) return contexts_token_ids_list_batch, contexts_input_masks_list_batch, \ candidates_token_ids_list_batch, candidates_input_masks_list_batch, labels_batch # this class transforms data to generate embeddings class EvalDataset(Dataset): def __init__(self, texts, context_transform=None, candidate_transform=None, mode="context"): self.context_transform = context_transform self.candidate_transform = candidate_transform self.data_source = [] self.mode = mode # ========================== Begin of modified ========================== # group = { # "text": [] # } # for text in texts: # group['text'].append(text) # self.data_source.append(group) self.data_source = list(texts) # ========================== End of modified ========================== def __len__(self): return len(self.data_source) def __getitem__(self, index): # ========================== Begin of modified ========================== # group = self.data_source[index] # text = group["text"] text = [self.data_source[index]] # single text, to fix into the transform code # ========================== End of modified ========================== if self.mode == "context": transformed_text = self.context_transform( text) # [token_ids],[masks] else: transformed_text = self.candidate_transform( text) # [token_ids],[masks] return transformed_text def eval_str(self, batch): token_ids_list_batch, input_masks_list_batch = [], [] for sample in batch: token_ids_list, input_masks_list = sample token_ids_list_batch.append(token_ids_list) input_masks_list_batch.append( input_masks_list) long_tensors = [token_ids_list_batch, input_masks_list_batch] token_ids_list_batch, input_masks_list_batch = ( torch.tensor(t, dtype=torch.long) for t in long_tensors) return token_ids_list_batch, input_masks_list_batch # this class is for creating token data for candidate class SelectionSequentialTransform(object): def __init__(self, tokenizer, max_len): self.tokenizer = tokenizer self.max_len = max_len def __call__(self, texts): input_ids_list, segment_ids_list, input_masks_list, contexts_masks_list = [], [], [], [] for text in texts: tokenized_dict = self.tokenizer.encode_plus( text, max_length=self.max_len, pad_to_max_length=True) input_ids, input_masks = tokenized_dict['input_ids'], tokenized_dict['attention_mask'] assert len(input_ids) == self.max_len assert len(input_masks) == self.max_len input_ids_list.append(input_ids) input_masks_list.append(input_masks) return input_ids_list, input_masks_list # this class is for creating token data for context class SelectionJoinTransform(object): def __init__(self, tokenizer, max_len): self.tokenizer = tokenizer self.max_len = max_len self.cls_id = self.tokenizer.convert_tokens_to_ids('[CLS]') self.sep_id = self.tokenizer.convert_tokens_to_ids('[SEP]') self.tokenizer.add_special_tokens(['\n'], special_tokens=True) self.pad_id = 0 def __call__(self, texts): # another option is to use [SEP], but here we follow the discussion at: # https://github.com/facebookresearch/ParlAI/issues/2306#issuecomment-599180186 context = '\n'.join(texts) tokenized_dict = self.tokenizer.encode_plus(context) input_ids, input_masks = tokenized_dict['input_ids'], tokenized_dict['attention_mask'] input_ids = input_ids[-self.max_len:] input_ids[0] = self.cls_id input_masks = input_masks[-self.max_len:] input_ids += [self.pad_id] * (self.max_len - len(input_ids)) input_masks += [0] * (self.max_len - len(input_masks)) assert len(input_ids) == self.max_len assert len(input_masks) == self.max_len return input_ids, input_masks
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/dual_bi_encoder/jskit/encoders/utils/tokenizer.py
tokenizer.py
import torch import torch.nn as nn from transformers import BertModel, BertPreTrainedModel import torch.nn.functional as F def dot_attention(q, k, v, v_mask=None, dropout=None): attention_weights = torch.matmul(q, k.transpose(-1, -2)) if v_mask is not None: extended_v_mask = (1.0 - v_mask.unsqueeze(1)) * -100000.0 attention_weights += extended_v_mask attention_weights = F.softmax(attention_weights, -1) if dropout is not None: attention_weights = dropout(attention_weights) output = torch.matmul(attention_weights, v) return output class PolyEncoderModelShared(nn.Module): def __init__(self, config, model_name, shared: bool, *inputs, **kwargs): super(PolyEncoderModelShared, self).__init__() if shared is True: self.cont_model = BertModel.from_pretrained(model_name) self.cand_model = self.cont_model else: self.cont_model = BertModel.from_pretrained(model_name) self.cand_model = BertModel.from_pretrained(model_name) self.vec_dim = 64 self.poly_m = int(kwargs['poly_m']) self.poly_code_embeddings = nn.Embedding( self.poly_m + 1, config.hidden_size) try: self.dropout = nn.Dropout(config.hidden_dropout_prob) self.context_fc = nn.Linear(config.hidden_size, self.vec_dim) self.candidate_fc = nn.Linear(config.hidden_size, self.vec_dim) except Exception: self.dropout = nn.Dropout(config.dropout) self.context_fc = nn.Linear(config.dim, self.vec_dim) self.candidate_fc = nn.Linear(config.dim, self.vec_dim) def forward(self, context_data=None, candidate_data=None, labels=None, eval=False, get_embedding=False): if get_embedding and context_data is not None: context_input_ids, context_segment_ids, \ context_input_masks = context_data[ "context_input_ids"], \ context_data['context_segment_ids'], \ context_data["context_input_masks"] res_cnt, seq_length = context_input_ids.unsqueeze(0).shape state_vecs = self.cont_model(context_input_ids.unsqueeze(0), context_input_masks.unsqueeze(0), context_segment_ids.unsqueeze(0))[0] poly_code_ids = torch.arange( self.poly_m, dtype=torch.long, device=context_input_ids.device) poly_code_ids += 1 poly_code_ids = poly_code_ids.unsqueeze(0).expand(1, self.poly_m) poly_codes = self.poly_code_embeddings(poly_code_ids) context_vec = dot_attention( poly_codes, state_vecs, state_vecs, context_input_masks.unsqueeze(0), self.dropout) context_vec = self.context_fc(self.dropout(context_vec)) context_vec = F.normalize(context_vec, 2, -1) return context_vec elif get_embedding and candidate_data is not None: candidates_input_ids, candidates_segment_ids, \ candidates_input_masks = candidate_data[ "candidate_input_ids"], \ candidate_data['candidates_segment_ids'], \ candidate_data["candidate_input_masks"] res_cnt, seq_length = candidates_input_ids.shape batch_size = 1 candidates_input_ids = candidates_input_ids.view(-1, seq_length) candidates_input_masks = candidates_input_masks.view( -1, seq_length) candidates_segment_ids = candidates_segment_ids.view( -1, seq_length) state_vecs = self.cand_model( candidates_input_ids, candidates_input_masks, candidates_segment_ids)[0] poly_code_ids = torch.zeros( batch_size * res_cnt, 1, dtype=torch.long, device=candidates_input_ids.device) poly_codes = self.poly_code_embeddings(poly_code_ids) candidates_vec = dot_attention( poly_codes, state_vecs, state_vecs, candidates_input_ids, self.dropout) candidates_vec = candidates_vec.view(batch_size, res_cnt, -1) candidates_vec = self.context_fc(self.dropout(candidates_vec)) candidates_vec = F.normalize(candidates_vec, 2, -1) return candidates_vec context_input_ids, context_segment_ids, \ context_input_masks = context_data["context_input_ids"], \ context_data['context_segment_ids'], \ context_data["context_input_masks"] candidates_input_ids, candidates_segment_ids, \ candidates_input_masks = candidate_data["candidate_input_ids"], \ candidate_data['candidates_segment_ids'], \ candidate_data["candidate_input_masks"] # only select the first candidate (whose lbl==1) if labels is not None: candidates_input_ids = candidates_input_ids[:, 0, :].unsqueeze(1) candidates_segment_ids = candidates_segment_ids[:, 0, :].unsqueeze( 1) candidates_input_masks = candidates_input_masks[:, 0, :].unsqueeze( 1) state_vecs = self.cont_model( context_input_ids, context_input_masks, context_segment_ids)[0] batch_size, res_cnt, seq_length = candidates_input_ids.shape poly_code_ids = torch.arange( self.poly_m, dtype=torch.long, device=context_input_ids.device) poly_code_ids += 1 poly_code_ids = poly_code_ids.unsqueeze( 0).expand(batch_size, self.poly_m) poly_codes = self.poly_code_embeddings(poly_code_ids) context_vecs = dot_attention( poly_codes, state_vecs, state_vecs, context_input_masks, self.dropout) # candidate encoder candidates_input_ids = candidates_input_ids.view(-1, seq_length) candidates_input_masks = candidates_input_masks.view(-1, seq_length) candidates_segment_ids = candidates_segment_ids.view(-1, seq_length) state_vecs = self.cand_model( candidates_input_ids, candidates_input_masks, candidates_segment_ids)[0] # [bs, length, dim] poly_code_ids = torch.zeros( batch_size * res_cnt, 1, dtype=torch.long, device=context_input_ids.device) poly_codes = self.poly_code_embeddings(poly_code_ids) candidates_vec = dot_attention( poly_codes, state_vecs, state_vecs, candidates_input_masks, self.dropout) candidates_vec = candidates_vec.view(batch_size, res_cnt, -1) # Norm here first, which is equivalent to getting context_vec # and candidate_vec in some way context_vecs = self.context_fc(self.dropout(context_vecs)) context_vecs = F.normalize(context_vecs, 2, -1) # [bs, m, dim] candidates_vec = self.candidate_fc(self.dropout(candidates_vec)) candidates_vec = F.normalize(candidates_vec, 2, -1) # poly final context vector aggregation if labels is not None: candidates_vec = candidates_vec.view( 1, batch_size, -1).expand(batch_size, batch_size, self.vec_dim) final_context_vec = dot_attention( candidates_vec, context_vecs, context_vecs, None, self.dropout) # [bs, res_cnt, dim], res_cnt==bs when training final_context_vec = F.normalize(final_context_vec, 2, -1) # [bs, res_cnt], res_cnt==bs when training dot_product = torch.sum(final_context_vec * candidates_vec, -1) if labels is not None: mask = torch.eye(context_input_ids.size(0)).to( context_input_ids.device) loss = F.log_softmax(dot_product * 5, dim=-1) * mask loss = (-loss.sum(dim=1)).mean() return loss else: cos_similarity = (dot_product + 1) / 2 return cos_similarity class BiEncoder(BertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) # if shared is true it creates only one model (Siamese type) if kwargs['shared'] is True: self.cont_bert = kwargs['cont_bert'] self.cand_bert = self.cont_bert else: self.cont_bert = kwargs['cont_bert'] self.cand_bert = kwargs['cand_bert'] def forward(self, context_input_ids=None, context_input_masks=None, candidate_input_ids=None, candidate_input_masks=None, labels=None, get_embedding=None, mode="train", pooling="mean"): # only select the first candidate (whose lbl==1) if labels is not None: candidate_input_ids = candidate_input_ids[:, 0, :].unsqueeze(1) candidate_input_masks = candidate_input_masks[:, 0, :].unsqueeze(1) # gets the context embedding if get_embedding == "context" or mode == "train" or mode == "eval": context_vec = self.cont_bert(context_input_ids, context_input_masks)[ 0] # [bs,dim] if pooling == "mean": # Mean pooling output_vectors = [] input_mask_expanded = context_input_masks.unsqueeze( -1).expand(context_vec.size()).float() sum_embeddings = torch.sum( context_vec * input_mask_expanded, 1) sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) output_vectors.append(sum_embeddings / sum_mask) context_vec = torch.cat(output_vectors, 1) if get_embedding == "context": return context_vec # gets the candidate embedding if get_embedding == "candidate" or mode == "train" or mode == "eval": batch_size, res_cnt, seq_length = candidate_input_ids.shape candidate_input_ids = candidate_input_ids.view(-1, seq_length) candidate_input_masks = candidate_input_masks.view(-1, seq_length) candidate_vec = self.cand_bert(candidate_input_ids, candidate_input_masks)[ 0] # [bs,dim] if pooling == "mean": # Mean pooling output_vectors = [] input_mask_expanded = candidate_input_masks.unsqueeze( -1).expand(candidate_vec.size()).float() sum_embeddings = torch.sum( candidate_vec * input_mask_expanded, 1) sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) output_vectors.append(sum_embeddings / sum_mask) candidate_vec = torch.cat(output_vectors, 1) candidate_vec = candidate_vec.view(batch_size, res_cnt, -1) if get_embedding == "candidate": return candidate_vec if labels is not None and mode == "train": candidate_vec = candidate_vec.squeeze(1) dot_product = torch.matmul( context_vec, candidate_vec.t()) # [bs, bs] mask = torch.eye(context_input_ids.size(0)).to( context_input_ids.device) loss = F.log_softmax(dot_product, dim=-1) * mask loss = (-loss.sum(dim=1)).mean() return loss else: context_vec = context_vec.unsqueeze(1) dot_product = torch.matmul( context_vec, candidate_vec.permute(0, 2, 1)).squeeze() return dot_product
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/dual_bi_encoder/jskit/encoders/utils/models.py
models.py
from os.path import join as os_join from argparse import ArgumentParser import torch import transformers from transformers import GPT2TokenizerFast, GPT2ForSequenceClassification from stefutil import * from zeroshot_classifier.util import * import zeroshot_classifier.util.utcd as utcd_util from zeroshot_classifier.preprocess import get_explicit_dataset from zeroshot_classifier.models.gpt2 import MODEL_NAME as GPT2_MODEL_NAME, HF_MODEL_NAME, ZsGPT2Tokenizer from zeroshot_classifier.models.explicit.explicit_v2 import * MODEL_NAME = EXPLICIT_GPT2_MODEL_NAME TRAIN_STRATEGY = 'explicit' def parse_args(): parser = ArgumentParser() parser.add_argument('--output_dir', type=str, default=None) parser.add_argument('--normalize_aspect', type=bool, default=True) parser.add_argument('--learning_rate', type=float, default=4e-5) parser.add_argument('--gradient_accumulation_steps', type=int, default=8) parser.add_argument('--batch_size', type=int, default=4) parser.add_argument('--epochs', type=int, default=8) return parser.parse_args() if __name__ == '__main__': seed = sconfig('random-seed') def train( resume: str = None, normalize_aspect=True, learning_rate=4e-5, batch_size: int = 4, gradient_accumulation_steps: int = 8, epochs: int = 8, output_dir: str = None ): logger = get_logger(f'{MODEL_NAME} Train') logger.info('Setting up training... ') lr, bsz, gas, n_ep = learning_rate, batch_size, gradient_accumulation_steps, epochs logger.info('Loading tokenizer & model... ') tokenizer = GPT2TokenizerFast.from_pretrained(HF_MODEL_NAME) tokenizer.add_special_tokens(special_tokens_dict=dict( pad_token=ZsGPT2Tokenizer.pad_token_, additional_special_tokens=[utcd_util.EOT_TOKEN] )) config = transformers.GPT2Config.from_pretrained(HF_MODEL_NAME) config.pad_token_id = tokenizer.pad_token_id # Needed for Seq CLS config.num_labels = len(sconfig('UTCD.aspects')) model = GPT2ForSequenceClassification.from_pretrained(HF_MODEL_NAME, config=config) # Include `end-of-turn` token for sgd, cannot set `eos` for '<|endoftext|>' already defined in GPT2 model.resize_token_embeddings(len(tokenizer)) logger.info('Loading data... ') dnm = 'UTCD-in' # concatenated 9 in-domain datasets in UTCD dset_args = dict(dataset_name=dnm, tokenizer=tokenizer, shuffle_seed=seed) if normalize_aspect: dset_args.update(dict(normalize_aspect=seed, splits=['train', 'eval', 'test'])) dsets = get_explicit_dataset(**dset_args) tr, vl, ts = dsets['train'], dsets['eval'], dsets['test'] logger.info(f'Loaded #example {pl.i({k: len(v) for k, v in dsets.items()})}') transformers.set_seed(seed) path = map_model_output_path( model_name=MODEL_NAME.replace(' ', '-'), mode='explicit', sampling=None, normalize_aspect=normalize_aspect, output_dir=output_dir ) train_args = dict( output_dir=path, learning_rate=lr, per_device_train_batch_size=bsz, # to fit in memory, bsz 32 to keep same with Bin Bert pretraining per_device_eval_batch_size=bsz, gradient_accumulation_steps=gradient_accumulation_steps, fp16=torch.cuda.is_available(), num_train_epochs=n_ep, dataloader_num_workers=4 ) if normalize_aspect: train_args.update(dict( load_best_model_at_end=True, metric_for_best_model='eval_loss', greater_is_better=False )) train_args = get_train_args(model_name=GPT2_MODEL_NAME, **train_args) trainer_args = dict( model=model, args=train_args, train_dataset=tr, eval_dataset=vl, compute_metrics=compute_metrics ) trainer = ExplicitTrainer(name=f'{MODEL_NAME} Train', with_tqdm=True, **trainer_args) logger.info('Launching Training... ') if resume: trainer.train(resume_from_checkpoint=resume) else: trainer.train() save_path = os_join(trainer.args.output_dir, 'trained') trainer.save_model(save_path) tokenizer.save_pretrained(save_path) logger.info(f'Tokenizer & Model saved to {pl.i(save_path)}') # train() def command_prompt(): args = parse_args() train(**vars(args)) command_prompt()
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/explicit/gpt2_pretrain.py
gpt2_pretrain.py
import os import math import logging import datetime from os.path import join from os.path import join as os_join from typing import List, Type, Dict, Optional, Union from argparse import ArgumentParser import numpy as np import pandas as pd import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from torch.optim import Optimizer, AdamW from torch.utils.data import DataLoader from transformers import ( set_seed, BertConfig, BertModel, BertPreTrainedModel, BertTokenizer, get_scheduler ) from sklearn.metrics import classification_report from tqdm import tqdm, trange from torch.utils.tensorboard import SummaryWriter from zeroshot_classifier.util.load_data import ( get_datasets, binary_explicit_format, in_domain_data_path, out_of_domain_data_path ) from stefutil import * from zeroshot_classifier.util import * logger = logging.getLogger(__name__) set_seed(42) CLS_LOSS_ONLY = True # TODO: debugging class BertZeroShotExplicit(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.binary_cls = nn.Linear(self.config.hidden_size, 2) self.aspect_cls = None if CLS_LOSS_ONLY else nn.Linear(self.config.hidden_size, 3) # Initialize weights and apply final processing self.post_init() @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): # calls `from_pretrained` from class `PreTrainedModel` obj = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) return obj def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) binary_logits = self.binary_cls(pooled_output) # if CLS_LOSS_ONLY: # with torch.no_grad(): # aspect_logits = self.aspect_cls(pooled_output) # else: # aspect_logits = self.aspect_cls(pooled_output) aspect_logits = None if CLS_LOSS_ONLY else self.aspect_cls(pooled_output) loss = None logits = {'cls': binary_logits, 'aspect': aspect_logits} if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return loss, logits, outputs.hidden_states, outputs.attentions class ExplicitCrossEncoder: def __init__(self, name="bert-base-uncased", device: Union[str, torch.device] = 'cuda', max_length=None) -> None: self.config = BertConfig.from_pretrained(name) self.model = BertZeroShotExplicit(self.config) self.tokenizer = BertTokenizer.from_pretrained(name) self.device = device self.max_length = max_length self.writer = None self.model_meta = dict(model='BinaryBERT', mode='explicit') @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): obj = cls() obj.model = BertZeroShotExplicit.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) return obj def smart_batching_collate(self, batch): texts = [[] for _ in range(len(batch[0].texts))] labels = [] aspects = [] for example in batch: for idx, text in enumerate(example.texts): texts[idx].append(text.strip()) labels.append(example.label) aspects.append(example.aspect) tokenized = self.tokenizer(*texts, padding=True, truncation='longest_first', return_tensors="pt", max_length=self.max_length) labels = torch.tensor(labels, dtype=torch.long).to(self.device) aspects = torch.tensor(aspects, dtype=torch.long).to(self.device) for name in tokenized: tokenized[name] = tokenized[name].to(self.device) return tokenized, labels, aspects def smart_batching_collate_text_only(self, batch): texts = [[] for _ in range(len(batch[0]))] for example in batch: for idx, text in enumerate(example): texts[idx].append(text.strip()) tokenized = self.tokenizer(*texts, padding=True, truncation='longest_first', return_tensors="pt", max_length=self.max_length) for name in tokenized: tokenized[name] = tokenized[name].to(self.device) return tokenized def fit( self, train_dataloader: DataLoader, epochs: int = 1, scheduler: str = 'linear', warmup_steps: int = 10000, optimizer_class: Type[Optimizer] = AdamW, optimizer_params: Dict[str, object] = {'lr': 2e-5}, weight_decay: float = 0.01, output_path: str = None, max_grad_norm: float = 1, show_progress_bar: bool = True ): os.makedirs(output_path, exist_ok=True) mdl, md = self.model_meta['model'], self.model_meta['mode'] log_fnm = f'{now(for_path=True)}, {mdl}, md={md}, #ep={epochs}' self.writer = SummaryWriter(os_join(output_path, f'tb - {log_fnm}')) train_dataloader.collate_fn = self.smart_batching_collate self.model.to(self.device) # Prepare optimizers param_optimizer = list(self.model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params) num_training_steps = int(len(train_dataloader) * epochs) lr_scheduler = get_scheduler( name=scheduler, optimizer=optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps ) def _get_lr() -> float: return lr_scheduler.get_last_lr()[0] for epoch in trange(epochs, desc="Epoch", disable=not show_progress_bar): training_steps = 0 tr_loss = 0 self.model.zero_grad() self.model.train() with tqdm(train_dataloader, desc="Iteration", smoothing=0.05, disable=not show_progress_bar) as it: for features, labels, aspects in it: model_predictions = self.model(**features, return_dict=True) pooled_output = model_predictions[1] loss_fct = CrossEntropyLoss() # if CLS_LOSS_ONLY: # with torch.no_grad(): # task_loss_value = loss_fct(pooled_output['aspect'].view(-1, 3), aspects.view(-1)) # else: # task_loss_value = loss_fct(pooled_output['aspect'].view(-1, 3), aspects.view(-1)) task_loss_value = None if not CLS_LOSS_ONLY: task_loss_value = loss_fct(pooled_output['aspect'].view(-1, 3), aspects.view(-1)) binary_loss_value = loss_fct(pooled_output['cls'].view(-1, 2), labels.view(-1)) cls_loss = binary_loss_value.detach().item() asp_loss = None if CLS_LOSS_ONLY else task_loss_value.detach().item() it.set_postfix(cls_loss=cls_loss, asp_loss=asp_loss) step = training_steps + epoch * len(train_dataloader) self.writer.add_scalar('Train/learning rate', _get_lr(), step) self.writer.add_scalar('Train/Binary Classification Loss', cls_loss, step) if not CLS_LOSS_ONLY: self.writer.add_scalar('Train/Aspect Classification Loss', asp_loss, step) if CLS_LOSS_ONLY: loss = binary_loss_value else: loss = task_loss_value + binary_loss_value loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() training_steps += 1 tr_loss += loss.item() average_loss = tr_loss/training_steps print(f'Epoch: {epoch+1}\nAverage loss: {average_loss:f}\n Current Learning Rate: {lr_scheduler.get_last_lr()}') self.save(output_path) def predict(self, sentences: List[List[str]], batch_size: int = 32): inp_dataloader = DataLoader(sentences, batch_size=batch_size, collate_fn=self.smart_batching_collate_text_only, shuffle=False) show_progress_bar = (logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG) show_progress_bar = False iterator = inp_dataloader if show_progress_bar: iterator = tqdm(inp_dataloader, desc="Batches") pred_scores = [] self.model.eval() self.model.to(self.device) with torch.no_grad(): for features in iterator: model_predictions = self.model(**features, return_dict=True) logits = model_predictions[1]['cls'] if len(logits[0]) > 1: logits = torch.nn.functional.softmax(logits, dim=1) pred_scores.extend(logits) # pred_scores = np.asarray([score.cpu().detach().numpy() for score in pred_scores]) pred_scores = torch.stack(pred_scores, dim=0).detach().cpu() return pred_scores def save(self, path): """ Saves all model and tokenizer to path """ if path is None: return logger.info("Save model to {}".format(path)) self.model.save_pretrained(path) self.tokenizer.save_pretrained(path) def parse_args(): modes = [ 'vanilla', 'implicit', 'implicit-on-text-encode-aspect', # encode each of the 3 aspects as 3 special tokens, followed by text 'implicit-on-text-encode-sep', # encode aspects normally, but add special token between aspect and text 'explicit' ] parser = ArgumentParser() subparser = parser.add_subparsers(dest='command') parser_train = subparser.add_parser('train') parser_test = subparser.add_parser('test') # set train arguments parser_train.add_argument('--output', type=str, required=True) parser_train.add_argument('--sampling', type=str, choices=['rand', 'vect'], required=True) parser_train.add_argument('--mode', type=str, choices=modes, default='vanilla') parser_train.add_argument('--batch_size', type=int, default=16) parser_train.add_argument('--epochs', type=int, default=3) parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") # set test arguments parser_test.add_argument('--domain', type=str, choices=['in', 'out'], required=True) parser_test.add_argument('--mode', type=str, choices=modes, default='vanilla') parser_test.add_argument('--batch_size', type=int, default=32) parser_test.add_argument('--model_path', type=str, required=True) return parser.parse_args() if __name__ == "__main__": import transformers transformers.logging.set_verbosity_error() # disables `longest_first` warning args = parse_args() mode = args.mode assert mode == 'explicit' if args.command == 'train': bsz, lr, n_ep = args.batch_size, args.learning_rate, args.epochs sampling = args.sampling dirs = args.output.split(os.sep) dir_nm_last = f'{now(for_path=True)}-{dirs[-1]}-{sampling}-{args.mode}' save_path = os_join(*dirs[:-1], dir_nm_last) _logger = get_logger('BinaryBERT Explicit Training') d_log = dict(mode=mode, sampling=sampling, batch_size=bsz, epochs=n_ep, learning_rate=lr, save_path=save_path) _logger.info(f'Running training on {pl.i(d_log)}.. ') dvc = 'cuda' if torch.cuda.is_available() else 'cpu' _logger.info('Loading data & model... ') # n_sample = 1024 * 8 # TODO: debugging n_sample = None data = get_datasets(in_domain_data_path, n_sample=n_sample) # get keys from data dict datasets = list(data.keys()) train = binary_explicit_format(data) dl = DataLoader(train, shuffle=True, batch_size=bsz) model = ExplicitCrossEncoder('bert-base-uncased', device=dvc) warmup_steps_ = math.ceil(len(dl) * n_ep * 0.1) # 10% of train data for warm-up _logger.info(f'Launched training on {pl.i(len(train))} samples and {pl.i(warmup_steps_)} warmup steps... ') model.fit( train_dataloader=dl, epochs=n_ep, warmup_steps=warmup_steps_, optimizer_params={'lr': lr}, output_path=save_path ) if args.command == 'test': mode, domain, model_path, bsz = args.mode, args.domain, args.model_path, args.batch_size domain_str = 'in-domain' if domain == 'in' else 'out-of-domain' date = datetime.datetime.now().strftime('%m.%d.%Y') date = date[:-4] + date[-2:] # 2-digit year out_path = join(model_path, 'eval', f'{domain_str}, {date}') os.makedirs(out_path, exist_ok=True) data = get_datasets(in_domain_data_path if domain == 'in' else out_of_domain_data_path) model = ExplicitCrossEncoder.from_pretrained(model_path) # load model sep_token = sconfig('training.implicit-on-text.encode-sep.aspect-sep-token') aspect2aspect_token = sconfig('training.implicit-on-text.encode-aspect.aspect2aspect-token') logger = get_logger('Binary Bert Eval') d_log = dict(mode=mode, domain=domain, batch_size=bsz, path=model_path) logger.info(f'Evaluating Binary Bert with {pl.i(d_log)} and saving to {pl.i(out_path)}... ') eval_loss: Dict[str, np.array] = dict() # a sense of how badly the model makes the prediction dataset_names = [dnm for dnm, d_dset in sconfig('UTCD.datasets').items() if d_dset['domain'] == domain] for dnm in dataset_names: # loop through all datasets # if 'consumer' not in dnm: # continue dset = data[dnm] split = 'test' txts, aspect = dset[split], dset['aspect'] d_dset = sconfig(f'UTCD.datasets.{dnm}.splits.{split}') label_options, multi_label = d_dset['labels'], d_dset['multi_label'] n_options = len(label_options) label2id = {lbl: i for i, lbl in enumerate(label_options)} n_txt = sconfig(f'UTCD.datasets.{dnm}.splits.{split}.n_text') d_log = {'#text': n_txt, '#label': n_options} logger.info(f'Evaluating {pl.i(dnm)} with {pl.i(d_log)}...') arr_preds, arr_labels = np.empty(n_txt, dtype=int), np.empty(n_txt, dtype=int) txt_n_lbs2query = None if mode in ['vanilla', 'explicit']: def txt_n_lbs2query(txt: str, lbs: List[str]) -> List[List[str]]: return [[txt, lb] for lb in lbs] elif mode == 'implicit': def txt_n_lbs2query(txt: str, lbs: List[str]) -> List[List[str]]: return [[txt, f'{lb} {aspect}'] for lb in lbs] elif mode == 'implicit-on-text-encode-aspect': def txt_n_lbs2query(txt: str, lbs: List[str]) -> List[List[str]]: return [[f'{aspect2aspect_token[aspect]} {txt}', lb] for lb in lbs] elif mode == 'implicit-on-text-encode-sep': def txt_n_lbs2query(txt: str, lbs: List[str]) -> List[List[str]]: return [[f'{aspect} {sep_token} {txt}', lb] for lb in lbs] gen = group_n(txts.items(), n=bsz) # loop through each test example for i_grp, group in enumerate(tqdm(gen, desc=dnm, unit='group', total=math.ceil(n_txt/bsz))): txts_, lst_labels = zip(*group) lst_labels: List[List[int]] = [[label2id[lb] for lb in labels] for labels in lst_labels] query = sum([txt_n_lbs2query(t, label_options) for t in txts_], start=[]) # (n_options x bsz, 2) # probability for positive class logits = model.predict(query, batch_size=bsz)[:, 1] logits = logits.reshape(-1, n_options) preds = logits.argmax(axis=1) trues = torch.empty_like(preds) for i, pred, labels in zip(range(bsz), preds, lst_labels): # if false prediction, pick one of the correct labels arbitrarily trues[i] = pred if pred in labels else labels[0] idx_strt = i_grp*bsz arr_preds[idx_strt:idx_strt+bsz], arr_labels[idx_strt:idx_strt+bsz] = preds.cpu(), trues.cpu() args = dict(zero_division=0, target_names=label_options, output_dict=True) # disables warning report = classification_report(arr_labels, arr_preds, **args) acc = f'{report["accuracy"]:.3f}' logger.info(f'{pl.i(dnm)} Classification Accuracy: {pl.i(acc)}') df = pd.DataFrame(report).transpose() df.to_csv(join(out_path, f'{dnm}.csv'))
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/explicit/binary_bert.py
binary_bert.py
from os.path import join as os_join from transformers import TrainingArguments, SchedulerType from transformers.training_args import OptimizerNames from stefutil import * from zeroshot_classifier.util import * import zeroshot_classifier.util.utcd as utcd_util import zeroshot_classifier.models.binary_bert __all__ = ['EXPLICIT_BERT_MODEL_NAME', 'EXPLICIT_GPT2_MODEL_NAME', 'get_train_args'] _bert_md_nm = zeroshot_classifier.models.binary_bert.MODEL_NAME _gpt2_md_nm = zeroshot_classifier.models.gpt2.MODEL_NAME EXPLICIT_BERT_MODEL_NAME = f'Aspect Pretrain {_bert_md_nm}' EXPLICIT_GPT2_MODEL_NAME = f'Aspect Pretrain {_gpt2_md_nm}' def get_train_args(model_name: str, dir_name: str = None, **kwargs) -> TrainingArguments: ca.check_mismatch('Model Name', model_name, [_bert_md_nm, _gpt2_md_nm]) debug = False if debug: args = dict( batch_size=16, learning_rate=1e-4, weight_decay=0, lr_scheduler_type=SchedulerType.CONSTANT, num_train_epochs=4 ) else: # Keep the same as in Binary BERT vanilla training args = dict( learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=64, weight_decay=1e-2, num_train_epochs=3, lr_scheduler_type=SchedulerType.COSINE, ) if 'batch_size' in args: bsz = args.pop('batch_size') args['per_device_train_batch_size'] = bsz args['per_device_eval_batch_size'] = bsz md_nm = model_name.replace(' ', '-') dir_nm = dir_name or f'{now(for_path=True)}_{md_nm}' args.update(dict( output_dir=os_join(utcd_util.get_base_path(), u.proj_dir, u.model_dir, dir_nm), do_train=True, do_eval=True, evaluation_strategy='epoch', eval_accumulation_steps=128, # Saves GPU memory warmup_ratio=1e-1, adam_epsilon=1e-6, log_level='warning', logging_strategy='steps', logging_steps=1, save_strategy='epoch', optim=OptimizerNames.ADAMW_TORCH, report_to='none' # I have my own tensorboard logging )) args.update(kwargs) return TrainingArguments(**args)
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/explicit/explicit_v2.py
explicit_v2.py
from os.path import join as os_join from argparse import ArgumentParser import torch from torch.utils.data import DataLoader from transformers import BertTokenizer, BertTokenizerFast, AutoModelForSequenceClassification from tqdm.auto import tqdm from stefutil import * from zeroshot_classifier.util import * import zeroshot_classifier.util.utcd as utcd_util from zeroshot_classifier.preprocess import get_explicit_dataset from zeroshot_classifier.models.binary_bert import MODEL_NAME as BERT_MODEL_NAME, HF_MODEL_NAME from zeroshot_classifier.models.explicit.explicit_v2 import * MODEL_NAME = EXPLICIT_BERT_MODEL_NAME TRAIN_STRATEGY = 'explicit' def parse_args(): parser = ArgumentParser() parser.add_argument('--output_dir', type=str, default=None) parser.add_argument('--normalize_aspect', type=bool, default=True) parser.add_argument('--learning_rate', type=float, default=2e-5) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--epochs', type=int, default=3) return parser.parse_args() if __name__ == '__main__': import transformers seed = sconfig('random-seed') def train( resume: str = None, normalize_aspect=True, learning_rate: float = 2e-5, batch_size: int = 32, epochs: int = 8,output_dir: str = None ): logger = get_logger(f'{MODEL_NAME} Train') logger.info('Setting up training... ') lr, bsz, n_ep = learning_rate, batch_size, epochs logger.info('Loading tokenizer & model... ') tokenizer = BertTokenizerFast.from_pretrained(HF_MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(HF_MODEL_NAME, num_labels=len(sconfig('UTCD.aspects'))) tokenizer.add_special_tokens(dict(eos_token=utcd_util.EOT_TOKEN)) # end-of-turn for SGD model.resize_token_embeddings(len(tokenizer)) logger.info('Loading data... ') dnm = 'UTCD-in' # concatenated 9 in-domain datasets in UTCD dset_args = dict(dataset_name=dnm, tokenizer=tokenizer, shuffle_seed=seed) if normalize_aspect: dset_args.update(dict(normalize_aspect=seed, splits=['train', 'eval', 'test'])) dsets = get_explicit_dataset(**dset_args) tr, vl, ts = dsets['train'], dsets['eval'], dsets['test'] logger.info(f'Loaded #example {pl.i({k: len(v) for k, v in dsets.items()})}') transformers.set_seed(seed) path = map_model_output_path( model_name=MODEL_NAME.replace(' ', '-'), mode='explicit', sampling=None, normalize_aspect=normalize_aspect, output_dir=output_dir ) train_args = dict( output_dir=path, learning_rate=lr, per_device_train_batch_size=bsz, per_device_eval_batch_size=bsz, num_train_epochs=n_ep, dataloader_num_workers=4 ) if normalize_aspect: train_args.update(dict( load_best_model_at_end=True, metric_for_best_model='eval_loss', greater_is_better=False )) train_args = get_train_args(model_name=BERT_MODEL_NAME, **train_args) trainer_args = dict( model=model, args=train_args, train_dataset=tr, eval_dataset=vl, compute_metrics=compute_metrics ) trainer = ExplicitTrainer(name=f'{MODEL_NAME} Train', with_tqdm=True, **trainer_args) logger.info('Launching Training... ') if resume: trainer.train(resume_from_checkpoint=resume) else: trainer.train() save_path = os_join(trainer.args.output_dir, 'trained') trainer.save_model(save_path) tokenizer.save_pretrained(save_path) logger.info(f'Tokenizer & Model saved to {pl.i(save_path)}') # train() def evaluate(domain: str = 'in', batch_size: int = 32): ca(dataset_domain=domain) dir_nm = '2022-05-19_23-33-50/checkpoint-411132' path = os_join(utcd_util.get_base_path(), u.proj_dir, u.model_dir, MODEL_NAME.replace(' ', '-'), dir_nm) tokenizer = BertTokenizer.from_pretrained(HF_MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(path) if torch.cuda.is_available(): model.cuda() model.eval() dnms = [dnm for dnm, d_dset in sconfig('UTCD.datasets').items() if d_dset['domain'] == domain] def collate_fn(batch): # as in speed sanity check ret = {k: torch.stack([torch.tensor(b[k]) for b in batch]) for k in batch[0] if k != 'labels'} ret['labels'] = torch.tensor([b['labels'] for b in batch]) return ret for dnm in dnms: vl = get_explicit_dataset(dataset_name=dnm, tokenizer=tokenizer, splits='test')[0] n_sample = len(vl) dl = DataLoader(vl, batch_size=batch_size, shuffle=False, pin_memory=True, collate_fn=collate_fn) lst_preds, lst_labels = [], [] with tqdm(dl, desc=f'Eval {dnm}', unit='ba') as it: for inputs in it: if torch.cuda.is_available(): inputs = {k: v.cuda() for k, v in inputs.items()} outputs = model(**inputs) logits = outputs.logits.detach() labels = inputs['labels'].detach() preds = torch.argmax(logits, dim=-1) acc_ = (preds == labels).float().mean().item() it.set_postfix(acc=acc_) lst_preds.append(preds) lst_labels.append(labels) preds = torch.cat(lst_preds, dim=0) labels = torch.cat(lst_labels, dim=0) acc__ = (preds == labels).float().mean().item() mic(dnm, n_sample, acc__) # evaluate(domain='out', batch_size=32) def command_prompt(): args = parse_args() train(**vars(args)) command_prompt()
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/explicit/binary_bert_pretrain.py
binary_bert_pretrain.py
from typing import Tuple import torch import torch.nn as nn from transformers import BertTokenizer, BertConfig, BertForSequenceClassification from stefutil import * def load_sliced_binary_bert( model_name: str = 'bert-base-uncased', max_position_embeddings: int = 512 ) -> Tuple[BertTokenizer, nn.Module]: """ :param model_name: A hugging face model name :param max_position_embeddings: Max model token size Intended for loading a pretrained 512-token BERT model, with smaller max token length by chopping off later positional embeddings """ conf = BertConfig.from_pretrained(model_name) n_tok_ori = conf.max_position_embeddings assert max_position_embeddings < n_tok_ori, \ f'Intended for a {pl.i("max_position_embeddings")} smaller than original model size of {pl.i(n_tok_ori)}, ' \ f'but got {pl.i(max_position_embeddings)}' conf.max_position_embeddings = max_position_embeddings tokenizer = BertTokenizer.from_pretrained(model_name, model_max_length=max_position_embeddings) model = BertForSequenceClassification.from_pretrained(model_name, config=conf, ignore_mismatched_sizes=True) # Should observe 2 warnings, one expected warning for initializing BertSeqCls from pre-trained Bert # One is for the mismatched position embedding # for overriding the positional embedding; Another SeqCls warning here model_dummy = BertForSequenceClassification.from_pretrained(model_name) state_d = model_dummy.bert.embeddings.position_embeddings.state_dict() assert set(state_d.keys()) == {'weight'} # sanity check weight_pretrained = state_d['weight'] assert weight_pretrained.shape == (n_tok_ori, conf.hidden_size) del model_dummy del state_d with torch.no_grad(): # Keep the first tokens model.bert.embeddings.position_embeddings.weight[:] = weight_pretrained[:max_position_embeddings] return tokenizer, model if __name__ == '__main__': load_sliced_binary_bert(max_position_embeddings=256)
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/architecture/binary_bert.py
binary_bert.py
import logging import os import json from typing import Dict, Tuple, Iterable, Type, Callable import torch from torch import nn from torch.optim import Optimizer from torch.utils.data import DataLoader from sentence_transformers import SentenceTransformer from sentence_transformers.util import batch_to_device from sentence_transformers.model_card_templates import ModelCardTemplate from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.evaluation import SentenceEvaluator from sentence_transformers.losses import CosineSimilarityLoss from tqdm.autonotebook import tqdm, trange from stefutil import * __all__ = ['BinaryBertCrossEncoder', 'BiEncoder'] class BinaryBertCrossEncoder(CrossEncoder): logger = get_logger('Bin BERT Train') def fit( self, train_dataloader: DataLoader = None, evaluator: SentenceEvaluator = None, # ========================== Begin of added ========================== val_dataloader: DataLoader = None, logger_fl: logging.Logger = None, best_model_metric: str = 'loss', # ========================== End of added ========================== epochs: int = 1, loss_fct=None, activation_fct=nn.Identity(), scheduler: str = 'WarmupLinear', warmup_steps: int = 10000, optimizer_class: Type[Optimizer] = torch.optim.AdamW, optimizer_params: Dict[str, object] = {'lr': 2e-5}, weight_decay: float = 0.01, output_path: str = None, save_best_model: bool = True, max_grad_norm: float = 1, use_amp: bool = False, callback: Callable[[float, int, int], None] = None, show_progress_bar: bool = True ): # ========================== Begin of added ========================== ca.check_mismatch('Eval Metric for Best Model', best_model_metric, ['loss', 'accuracy']) # ========================== End of added ========================== train_dataloader.collate_fn = self.smart_batching_collate # ========================== Begin of added ========================== if val_dataloader: val_dataloader.collate_fn = self.smart_batching_collate # ========================== End of added ========================== if use_amp: from torch.cuda.amp import autocast scaler = torch.cuda.amp.GradScaler() self.model.to(self._target_device) if output_path is not None: os.makedirs(output_path, exist_ok=True) self.best_score = -9999999 num_train_steps = int(len(train_dataloader) * epochs) # Prepare optimizers param_optimizer = list(self.model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params) if isinstance(scheduler, str): scheduler = SentenceTransformer._get_scheduler(optimizer, scheduler=scheduler, warmup_steps=warmup_steps, t_total=num_train_steps) if loss_fct is None: loss_fct = nn.BCEWithLogitsLoss() if self.config.num_labels == 1 else nn.CrossEntropyLoss() # ========================== Begin of added ========================== curr_best_model = {'epoch': 0, 'best_loss': float('inf'), 'best_acc': -float('inf'), 'path': None} pretty = MlPrettier(ref=dict(step=len(train_dataloader), epoch=epochs)) # ========================== End of added ========================== skip_scheduler = False # ========================== Begin of modified ========================== # for epoch in trange(epochs, desc="Epoch", disable=not show_progress_bar): for epoch in range(epochs): epoch_str = f'Epoch {pl.i(epoch+1)}/{pl.i(epochs)}' epoch_str_nc = f'Epoch {epoch+1}/{epochs}' # ========================== End of modified ========================== training_steps = 0 self.model.zero_grad() self.model.train() # ========================== Begin of modified ========================== desc = f'Training {epoch_str}' it = tqdm(train_dataloader, desc=desc, unit='ba', smoothing=0.05, disable=not show_progress_bar) for features, labels in it: # ========================== End of modified ========================== if use_amp: with autocast(): model_predictions = self.model(**features, return_dict=True) logits = activation_fct(model_predictions.logits) if self.config.num_labels == 1: logits = logits.view(-1) loss_value = loss_fct(logits, labels) scale_before_step = scaler.get_scale() scaler.scale(loss_value).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_grad_norm) scaler.step(optimizer) scaler.update() skip_scheduler = scaler.get_scale() != scale_before_step else: model_predictions = self.model(**features, return_dict=True) logits = activation_fct(model_predictions.logits) if self.config.num_labels == 1: logits = logits.view(-1) loss_value = loss_fct(logits, labels) loss_value.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_grad_norm) optimizer.step() optimizer.zero_grad() # ========================== Begin of added ========================== # TODO: not sure why 2 lr vals, w/ same value d_log = dict(loss=loss_value.item(), lr=scheduler.get_last_lr()[0]) it.set_postfix({k: pl.i(v) for k, v in pretty(d_log).items()}) d_log = dict(epoch=epoch+1, step=training_steps+1, **d_log) logger_fl.info(pl.nc(pretty(d_log))) # ========================== End of added ========================== if not skip_scheduler: scheduler.step() training_steps += 1 # ========================== Begin of added ========================== if val_dataloader is not None: self.model.eval() val_loss = 0 val_steps = 0 n_correct, n = 0, 0 desc = f'Evaluating {epoch_str}' it = tqdm(val_dataloader, desc=desc, unit='ba', smoothing=0.05, disable=not show_progress_bar) for features, labels in it: with torch.no_grad(): model_predictions = self.model(**features, return_dict=True) logits = activation_fct(model_predictions.logits) if self.config.num_labels == 1: logits = logits.view(-1) n_correct += (logits.argmax(dim=1) == labels).sum().item() n += labels.numel() val_loss += loss_fct(logits, labels).item() val_steps += 1 val_loss /= val_steps acc = n_correct / n d_log = pretty(dict(epoch=epoch+1, eval_loss=val_loss, eval_acc=acc)) BinaryBertCrossEncoder.logger.info(pl.i(d_log)) logger_fl.info(pl.nc(d_log)) if best_model_metric == 'loss': best_val = val_loss prev_val = curr_best_model['best_loss'] better = best_val < prev_val else: # `accuracy` best_val = acc prev_val = curr_best_model['best_acc'] better = best_val > prev_val if better: curr_best_model['epoch'] = epoch+1 curr_best_model['best_loss' if best_model_metric == 'loss' else 'best_acc'] = best_val if save_best_model: curr_best_model['path'] = output_path self.save(output_path) BinaryBertCrossEncoder.logger.info(f'Best model found at {epoch_str} w/ ' f'{pl.i(best_model_metric)}={pl.i(best_val)} ') logger_fl.info(f'Best model found at {epoch_str_nc} w/ {best_model_metric}={best_val} ') # ========================== End of added ========================== # ========================== Begin of modified ========================== # No evaluator, but output path: save final model version if val_dataloader is None and output_path is not None: self.save(output_path) # ========================== End of modified ========================== class BiEncoder(SentenceTransformer): logger = get_logger('Bi-Encoder Train') def fit( self, train_objectives: Iterable[Tuple[DataLoader, nn.Module]] = None, # ========================== Begin of added ========================== val_dataloader: DataLoader = None, logger_fl: logging.Logger = None, best_model_metric: str = 'loss', # ========================== End of added ========================== epochs: int = 1, steps_per_epoch = None, scheduler: str = 'WarmupLinear', warmup_steps: int = 10000, optimizer_class: Type[Optimizer] = torch.optim.AdamW, optimizer_params : Dict[str, object]= {'lr': 2e-5}, weight_decay: float = 0.01, evaluation_steps: int = 0, output_path: str = None, save_best_model: bool = True, max_grad_norm: float = 1, use_amp: bool = False, callback: Callable[[float, int, int], None] = None, show_progress_bar: bool = True, checkpoint_path: str = None, checkpoint_save_steps: int = 500, checkpoint_save_total_limit: int = 0 ): # ========================== Begin of added ========================== ca.check_mismatch('Eval Metric for Best Model', best_model_metric, ['loss', 'accuracy']) # ========================== End of added ========================== ##Add info to model card #info_loss_functions = "\n".join(["- {} with {} training examples".format(str(loss), len(dataloader)) for dataloader, loss in train_objectives]) info_loss_functions = [] for dataloader, loss in train_objectives: info_loss_functions.extend(ModelCardTemplate.get_train_objective_info(dataloader, loss)) info_loss_functions = "\n\n".join([text for text in info_loss_functions]) info_fit_parameters = json.dumps({"evaluator": "validation_loss", "epochs": epochs, "steps_per_epoch": steps_per_epoch, "scheduler": scheduler, "warmup_steps": warmup_steps, "optimizer_class": str(optimizer_class), "optimizer_params": optimizer_params, "weight_decay": weight_decay, "evaluation_steps": evaluation_steps, "max_grad_norm": max_grad_norm }, indent=4, sort_keys=True) self._model_card_text = None self._model_card_vars['{TRAINING_SECTION}'] = ModelCardTemplate.__TRAINING_SECTION__.replace("{LOSS_FUNCTIONS}", info_loss_functions).replace("{FIT_PARAMETERS}", info_fit_parameters) if use_amp: from torch.cuda.amp import autocast scaler = torch.cuda.amp.GradScaler() self.to(self._target_device) dataloaders = [dataloader for dataloader, _ in train_objectives] # Use smart batching for dataloader in dataloaders: dataloader.collate_fn = self.smart_batching_collate # ========================== Begin of added ========================== if val_dataloader: val_dataloader.collate_fn = self.smart_batching_collate # ========================== End of added ========================== loss_models = [loss for _, loss in train_objectives] for loss_model in loss_models: loss_model.to(self._target_device) self.best_score = -9999999 if steps_per_epoch is None or steps_per_epoch == 0: steps_per_epoch = min([len(dataloader) for dataloader in dataloaders]) num_train_steps = int(steps_per_epoch * epochs) # ========================== Begin of added ========================== curr_best_model = {'epoch': 0, 'best_loss': float('inf'), 'best_acc': -float('inf'), 'path': None} pretty = MlPrettier(ref=dict(step=steps_per_epoch, epoch=epochs)) # ========================== End of added ========================== # Prepare optimizers optimizers = [] schedulers = [] for loss_model in loss_models: param_optimizer = list(loss_model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params) scheduler_obj = self._get_scheduler(optimizer, scheduler=scheduler, warmup_steps=warmup_steps, t_total=num_train_steps) optimizers.append(optimizer) schedulers.append(scheduler_obj) global_step = 0 data_iterators = [iter(dataloader) for dataloader in dataloaders] num_train_objectives = len(train_objectives) skip_scheduler = False # ========================== Begin of added ========================== # for epoch in trange(epochs, desc="Epoch", disable=not show_progress_bar): for epoch in range(epochs): epoch_str = f'Epoch {pl.i(epoch+1)}/{pl.i(epochs)}' epoch_str_nc = f'Epoch {epoch+1}/{epochs}' # ========================== End of added ========================== training_steps = 0 for loss_model in loss_models: loss_model.zero_grad() loss_model.train() # ========================== Begin of modified ========================== desc = f'Training {epoch_str}' it = trange(steps_per_epoch, desc=desc, unit='ba', smoothing=0.05, disable=not show_progress_bar) for _ in it: # ========================== End of modified ========================== for train_idx in range(num_train_objectives): loss_model = loss_models[train_idx] optimizer = optimizers[train_idx] scheduler = schedulers[train_idx] data_iterator = data_iterators[train_idx] try: data = next(data_iterator) except StopIteration: data_iterator = iter(dataloaders[train_idx]) data_iterators[train_idx] = data_iterator data = next(data_iterator) features, labels = data labels = labels.to(self._target_device) features = list(map(lambda batch: batch_to_device(batch, self._target_device), features)) if use_amp: with autocast(): loss_value = loss_model(features, labels) scale_before_step = scaler.get_scale() scaler.scale(loss_value).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm) scaler.step(optimizer) scaler.update() skip_scheduler = scaler.get_scale() != scale_before_step else: loss_value = loss_model(features, labels) loss_value.backward() torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm) optimizer.step() optimizer.zero_grad() # ========================== Begin of added ========================== d_log = dict(loss=loss_value.item(), lr=scheduler.get_last_lr()[0]) it.set_postfix({k: pl.i(v) for k, v in pretty(d_log).items()}) d_log = dict(epoch=epoch+1, step=training_steps+1, **d_log) # for k, v in d_log.items(): # mic(k, v, type(k), type(v)) logger_fl.info(pl.nc(pretty(d_log))) # ========================== End of added ========================== if not skip_scheduler: scheduler.step() training_steps += 1 global_step += 1 # ========================== Begin of added ========================== if val_dataloader is not None: self.eval() val_loss = 0 val_steps = 0 n_correct, n = 0, 0 assert len(loss_models) == 1 # sanity check loss_model = loss_models[0] assert isinstance(loss_model, CosineSimilarityLoss) desc = f'Evaluating {epoch_str}' it = tqdm(val_dataloader, desc=desc, unit='ba', smoothing=0.05, disable=not show_progress_bar) for features, labels in it: with torch.no_grad(): # See `CosineSimilarityLoss.forward` embeddings = [loss_model.model(f)['sentence_embedding'] for f in features] output = loss_model.cos_score_transformation(torch.cosine_similarity(embeddings[0], embeddings[1])) loss_value = loss_model.loss_fct(output, labels.view(-1)) pred = (output > 0.5).long() n_correct += (pred == labels).sum().item() n += labels.numel() val_loss += loss_value.item() val_steps += 1 val_loss /= val_steps acc = n_correct / n d_log = pretty(dict(epoch=epoch+1, eval_loss=val_loss, eval_acc=acc)) BiEncoder.logger.info(pl.i(d_log)) logger_fl.info(pl.nc(d_log)) if best_model_metric == 'loss': best_val = val_loss prev_val = curr_best_model['best_loss'] better = best_val < prev_val else: # `accuracy` best_val = acc prev_val = curr_best_model['best_acc'] better = best_val > prev_val if better: curr_best_model['epoch'] = epoch+1 curr_best_model['best_loss' if best_model_metric == 'loss' else 'best_acc'] = best_val if save_best_model: curr_best_model['path'] = output_path self.save(output_path) BiEncoder.logger.info(f'Best model found at {epoch_str} w/ ' f'{pl.i(best_model_metric)}={pl.i(best_val)} ') logger_fl.info(f'Best model found at {epoch_str_nc} w/ {best_model_metric}={best_val} ') # ========================== End of added ========================== # ========================== Begin of modified ========================== # No evaluator, but output path: save final model version if val_dataloader is None and output_path is not None: self.save(output_path) # ========================== End of modified ========================== if checkpoint_path is not None: self._save_checkpoint(checkpoint_path, checkpoint_save_total_limit, global_step)
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/models/architecture/sbert.py
sbert.py
import os from os.path import join as os_join from typing import List, Tuple, Dict, Callable, Union, Any, Optional from transformers import PreTrainedTokenizerBase import datasets from datasets import Dataset, DatasetDict, ClassLabel from stefutil import * from zeroshot_classifier.util import * from zeroshot_classifier.util import load_data import zeroshot_classifier.util.utcd as utcd_util __all__ = ['get_dataset', 'get_explicit_dataset'] logger = get_logger('Dataset') def _get_num_proc(dsets: Union[DatasetDict, Dict[str, Dataset]]) -> Optional[int]: n_cpu = os.cpu_count() if n_cpu >= 2 and min(len(d) for d in dsets.values()) > 4096: return n_cpu class _FilterSplit: def __init__( self, hf_dataset: DatasetDict, asp_norm_dataset: Dict[str, load_data.SplitDataset], dataset_id2name: Dict[int, str], split: str = None ): self.hf_dataset = hf_dataset self.asp_norm_dataset = asp_norm_dataset self.dataset_id2name = dataset_id2name self.split = split def __call__(self, example): dnm = self.dataset_id2name[example['dataset_id']] return example['text'] in self.asp_norm_dataset[dnm][self.split] def filter_split( hf_dataset: DatasetDict, asp_norm_dataset: Dict[str, load_data.SplitDataset], dataset_id2name: Dict[int, str], split: str = None, **filter_args ) -> Dataset: ret = hf_dataset['train'].filter(_FilterSplit(hf_dataset, asp_norm_dataset, dataset_id2name, split), **filter_args) n = len(ret) # sanity check, same # of pairs as in Chris' `load_data` assert n == sum(len(ds[split]) for ds in asp_norm_dataset.values()) logger.info(f'#{pl.i(split)} pairs: {pl.i(n)}') return ret def get_dataset( dataset_name='ag_news', normalize_aspect: bool = False, map_func: Union[Dict[str, Callable], Callable] = None, filter_func: Callable = None, remove_columns: Union[str, List[str]] = None, n_sample: int = None, shuffle_seed: int = None, fast=True, from_disk=True, splits: Union[str, List[str], Tuple[str, ...]] = ('train', 'test'), pbar: bool = False ) -> DatasetDict: logger.info(f'Loading dataset {pl.i(dataset_name)}... ') if not pbar: datasets.set_progress_bar_enabled(False) if from_disk: path = os_join(utcd_util.get_base_path(), u.proj_dir, u.dset_dir, 'processed', dataset_name) dsets = datasets.load_from_disk(path) if normalize_aspect: # TODO: ugly but works n_proc = _get_num_proc(dsets) if fast else None logger.info(f'Normalizing training data by #sample per aspect with {pl.i(normalize_aspect)}...') _data = load_data.get_datasets(domain='in', normalize_aspect=normalize_aspect) # apply #sample normalization to the training set id2nm = sconfig('UTCD.dataset_id2name') args = dict(hf_dataset=dsets, asp_norm_dataset=_data, dataset_id2name=id2nm, num_proc=n_proc) # Local function not good for dataset caching dsets['train'], dsets['eval'] = filter_split(**args, split='train'), filter_split(**args, split='eval') else: dsets = datasets.load_dataset(dataset_name) if isinstance(splits, str): splits = [splits] dsets = {s: dsets[s] for s in splits} # ordering of filter, shuffle, then select determined for debugging n_proc = _get_num_proc(dsets) if fast else None if filter_func is not None: logger.info('Filtering...') dsets = {s: dset.filter(filter_func, num_proc=n_proc) for s, dset in dsets.items()} if shuffle_seed: logger.info(f'Shuffling with seed {pl.i(shuffle_seed)}...') dsets = {s: dset.shuffle(seed=shuffle_seed) for s, dset in dsets.items()} if n_sample is not None: logger.info(f'Selecting the first {pl.i(n_sample)} samples...') dsets = {s: dset.select(range(min(n_sample, len(dset)))) for s, dset in dsets.items()} if map_func is not None: logger.info('Mapping...') if not isinstance(map_func, dict): map_func = {s: map_func for s in splits} dsets = { s: dset.map( map_func[s], batched=True, remove_columns=remove_columns, num_proc=n_proc, load_from_cache_file=False ) for s, dset in dsets.items() } datasets.set_progress_bar_enabled(True) return DatasetDict(dsets) class ExplicitMap: def __init__(self, tokenizer, dataset_name: str, dataset: Dict[str, Dataset]): self.tokenizer = tokenizer self.is_combined = 'UTCD' in dataset_name aspects: List[str] = sconfig('UTCD.aspects') aspect2id = {a: i for i, a in enumerate(aspects)} if self.is_combined: # get aspect based on dataset id # feature is the same for both `train` and `test` feat: ClassLabel = dataset['train'].features['dataset_id'] n_dset = feat.num_classes self.did2aspect_id = { i: aspect2id[sconfig(f'UTCD.datasets.{feat.int2str(i)}.aspect')] for i in range(n_dset) } else: # single dataset, the same aspect self.aspect_id = aspect2id[sconfig(f'UTCD.datasets.{dataset_name}.aspect')] def __call__(self, samples: Dict[str, List[Any]]): ret = self.tokenizer(samples['text'], padding='max_length', truncation=True) if self.is_combined: ret['labels'] = [self.did2aspect_id[asp] for asp in samples['dataset_id']] else: ret['labels'] = [self.aspect_id] * len(samples['text']) return ret def get_explicit_dataset( dataset_name: str = 'UTCD-in', tokenizer: PreTrainedTokenizerBase = None, fast: bool = True, pbar: bool = False, **kwargs ) -> DatasetDict: """ override text classification labels to be aspect labels """ # perform preprocessing outside `get_dataset` as feature from the dataset is needed dsets = get_dataset(dataset_name, **kwargs) # by split logger.info('Constructing explicit dataset... ') exp_map = ExplicitMap(tokenizer=tokenizer, dataset_name=dataset_name, dataset=dsets) rmv = ['text'] if exp_map.is_combined: rmv.append('dataset_id') if not pbar: datasets.set_progress_bar_enabled(False) ret = dsets.map(exp_map, batched=True, remove_columns=rmv, num_proc=_get_num_proc(dsets) if fast else None) datasets.set_progress_bar_enabled(True) return ret
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/preprocess/dataset.py
dataset.py
import os import sys import math import logging import datetime from os.path import join as os_join from time import sleep from typing import Dict, Tuple, List, Union, Optional from collections import OrderedDict import numpy as np import torch from torch.utils.data import DataLoader, Dataset from torch.utils.tensorboard import SummaryWriter from transformers import GPT2TokenizerFast from transformers import TrainingArguments, TrainerCallback, Trainer from transformers.trainer_utils import EvalLoopOutput from transformers.file_utils import is_torch_tpu_available if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.distributed.parallel_loader as pl from stefutil import * from zeroshot_classifier.util.util import * from zeroshot_classifier.util.training import * class MyLoggingCallback(TrainerCallback): """ Requires - Tuple of (custom compute_loss log, internal training log, internal validation log) for each step - Intended for coupled training and evaluation - Accuracy as a metric is passed to `Trainer` and training metric computed in `compute_loss` and logged """ def __init__( self, parent_trainer: Trainer, do_eval=True, name='GPT2-NVIDIA-Train', is_ddp: Union[int, bool] = False ): """ :param parent_trainer: The parent Trainer :param name: Logger name :param is_ddp: Flag for if distributed training is used So that logging step is correct, since each scrip only see 1 GPU """ self.name = name self.out_dict = None self.out_dict_tr = None self.is_compute_loss_on_train = True self.k_acc = 'acc_meta' self.k_cls = 'cls_acc_meta' # See `CustomTrainer` self.k_cls_eval = f'{self.k_cls}_eval' self.trainer = parent_trainer args, dset_tr__, dset_vl_, md_, tokzer = ( getattr(parent_trainer, k) for k in ['args', 'train_dataset', 'eval_dataset', 'model', 'tokenizer'] ) self.n_eval = len(dset_vl_) lr, n_ep = args.learning_rate, args.num_train_epochs self.bsz = args.per_device_train_batch_size * args.gradient_accumulation_steps self.is_ddp = is_ddp if is_ddp: assert isinstance(is_ddp, int), 'When DDP enabled, is_ddp must specify #GPU' self.bsz = self.bsz * is_ddp if torch.cuda.is_available() and self.trainer.args.n_gpu > 1: self.bsz *= self.trainer.args.n_gpu seq_max_len = len(dset_tr__[0]['input_ids']) n_data, md_sz = len(dset_tr__), md_.config.n_positions self.n_step = max(math.ceil(n_data / self.bsz), 1) * n_ep # #step/epoch at least 1 self.train_meta = OrderedDict([ ('#data', n_data), ('model size', md_sz), ('learning rate', lr), ('batch shape', (self.bsz, seq_max_len)), ('#epochs', n_ep), ('#steps', self.n_step), ]) self.prettier = MlPrettier(ref=self.train_meta) self.called_val_init = False self.do_eval = do_eval self.save_time = now(for_path=True) self.logger, self.logger_fl, self.tb_writer = None, None, None self.ls = None self.log_fnm = f'{name}_{{{pl.pa(dict(n=n_data, l=md_sz, a=lr, bsz=self.bsz, n_ep=n_ep))}}}' self.train_begin, self.train_end = None, None self.t_strt, self.t_end = None, None def on_train_begin(self, args: TrainingArguments, state, control, **kwargs): if self.trainer.is_local_process_zero(): # For distributed training; TODO: support multi machine? self.logger: logging.Logger = get_logger(self.name) output_dir = self.trainer.args.output_dir fl_path = os_join(output_dir, f'{self.log_fnm}.log') self.logger_fl = get_logger(name=self.name, kind='file-write', file_path=fl_path) self.tb_writer = SummaryWriter(os_join(output_dir, f'TB_{self.log_fnm}')) self.ls = LogStep( trainer=self.trainer, prettier=self.prettier, logger=self.logger, file_logger=self.logger_fl, tb_writer=self.tb_writer ) conf = self.trainer.model.config.to_dict() args = self.trainer.args.to_dict() sleep(2) # otherwise, logging messages missing self.logger.info(f'Training started on model{pl.fmt(conf)}, {pl.i(self.train_meta)} and ' f'training args: {pl.fmt(args)}... ') self.logger_fl.info(f'Training started on model{pl.id(conf)}, {pl.nc(self.train_meta)} and ' f'training args: {pl.id(args)}... ') sleep(2) self.t_strt = datetime.datetime.now() self.train_begin = True def on_train_end(self, args: TrainingArguments, state, control, **kwargs): if self.train_begin: self.train_begin = False self.train_end = True self.t_end = datetime.datetime.now() t = fmt_delta(self.t_end - self.t_strt) self.logger.info(f'Training completed in {pl.i(t)} ') self.logger_fl.info(f'Training completed in {t} ') def on_evaluate(self, args: TrainingArguments, state, control, **kwargs): if self.trainer.is_local_process_zero(): # Similarly to `on_train_begin` dl_vl: DataLoader model, dl_vl = kwargs['model'], kwargs['eval_dataloader'] dset_vl: Dataset = dl_vl.dataset n_eval = len(dset_vl) bsz = dl_vl.batch_size seq_max_len = len(dset_vl[0]['input_ids']) md_sz = model.config.n_positions n_bch = max(math.ceil(n_eval / bsz), 1) eval_meta = OrderedDict([ ('#data', n_eval), ('model size', md_sz), ('batch shape', (bsz, seq_max_len)), ('#batches', n_bch) ]) if not self.trainer.with_tqdm: self.logger.info(f'Ran evaluation with {pl.i(eval_meta)}') self.logger_fl.info(f'Ran evaluation with {pl.nc(eval_meta)}') def _acc_stats2dict(self, out_dict: Dict) -> Dict: """ Convert `acc_meta`, `classification_acc_meta` dict to stats for logging """ stats_acc = {k: sum(d[k] for d in out_dict[self.k_acc]) for k in out_dict[self.k_acc][0].keys()} del out_dict[self.k_acc] ret = dict(ntp_acc=stats_acc['n_acc'] / stats_acc['n_total']) if self.k_cls in out_dict: stats_cls_acc = { k: sum(d[k] for d in out_dict[self.k_cls]) for k in out_dict[self.k_cls][0].keys() if k in ['n_acc', 'n_total'] } del out_dict[self.k_cls] if stats_cls_acc['n_total'] == 0: cls_acc = 0 else: cls_acc = (stats_cls_acc['n_acc']/stats_cls_acc['n_total']) ret['cls_acc'] = cls_acc return ret def on_log(self, args: TrainingArguments, state, control, logs: Dict = None, **kwargs): # basically only log the main process; `state.is_local_process_zero` is wrong in DDP eval if self.trainer.is_local_process_zero(): step = state.global_step if 'src' in logs and logs['src'] == 'compute_loss': # For gradient_accumulation, many batches of `compute_loss` may be called, # before going into train logging # Loss here is per batch, not per gradient update, ignore if self.out_dict_tr is None: n_ep = logs['epoch'] self.out_dict_tr = {'step': step, 'epoch': n_ep, self.k_acc: [logs[self.k_acc]]} # Aggregate accuracy & classification accuracy counts if self.trainer.compute_cls_acc: self.out_dict_tr[self.k_cls] = [logs[self.k_cls]] else: # Later batch in the same gradient accumulation step_, n_ep = self.out_dict_tr['step'], self.out_dict_tr['epoch'] n_ep_ = logs['epoch'] assert step_ == step and n_ep_ == n_ep self.out_dict_tr[self.k_acc].append(logs[self.k_acc]) if self.trainer.compute_cls_acc: self.out_dict_tr[self.k_cls].append(logs[self.k_cls]) elif 'loss' in logs: # Trainer default training loss logging d_log = dict(epoch=state.epoch, step=step+1) # 1-indexed d_log.update(dict(lr=logs['learning_rate'], loss=logs['loss'])) if not self.trainer.disable_train_metrics: d_log.update(self._acc_stats2dict(self.out_dict_tr)) self.ls(d_log, training=True, to_console=not self.trainer.with_tqdm) self.out_dict_tr = None # Reset for next global step elif 'eval_loss' in logs: # Trainer eval output after eval metric computed n_ep = logs['epoch'] assert n_ep.is_integer() d_log = dict(epoch=int(n_ep), loss=logs['eval_loss'], cls_acc=logs['eval_cls_acc']) self.ls(d_log, training=False, to_console=not self.trainer.with_tqdm) else: self.logger.info(pl.i(logs)) self.logger_fl.info(pl.nc(logs)) class ColoredPrinterCallback(TrainerCallback): def __init__(self, name='Zero-shot GPT-2 Training'): self.logger = logging.getLogger(name) self.logger.setLevel(logging.DEBUG) had_handler = False hd_attr_nm = 'name_for_my_logging' for hd in self.logger.handlers: if hasattr(hd, hd_attr_nm) and getattr(hd, hd_attr_nm) == name: had_handler = True if not had_handler: handler = logging.StreamHandler(stream=sys.stdout) # For my own coloring handler.setLevel(logging.DEBUG) handler.setFormatter(MyFormatter()) setattr(handler, hd_attr_nm, name) self.logger.addHandler(handler) def on_log(self, args, state, control, logs=None, **kwargs): if state.is_local_process_zero: self.logger.info(pl.i(logs) if isinstance(logs, dict) else logs) def get_accs( inputs: Dict[str, torch.Tensor], logits: torch.Tensor, tokenizer: GPT2TokenizerFast, mode: str = 'train', compute_cls_acc: bool = False ) -> Dict: """ :param inputs: Dictionary of a 2D batch of input tensors, with keys [`labels`, `token_type_ids`, `dataset_id`] :param logits: logits by ZsGPT2LMHeadModel's forward pass :param tokenizer: ZsGPT2Tokenizer for getting the class label :param mode: Determines which split the labels are from, one of [`train`, `eval`] :param compute_cls_acc: Whether to compute classification accuracy :return: NTP accuracy & sample classification accuracy metadata .. note: Classification accuracy based on NTP task **during training** **assumes** predicted token id at the same location of label id """ preds = logits.argmax(dim=-1) labels_ = inputs['labels'].detach() # CLM, predicting the next token given current, so shift # Last prediction is not part of input label, 1st input is fed into model & not predicted preds, labels_ = preds[:, :-1], labels_[:, 1:] mask_non_pad = labels_ != PT_LOSS_PAD # Consider only the actual tokens for accuracy preds_non_pad, labels_non_pad = preds[mask_non_pad], labels_[mask_non_pad] matches: torch.Tensor = (preds_non_pad == labels_non_pad) d_ret = dict(acc_meta=dict(n_acc=matches.sum().item(), n_total=preds_non_pad.numel())) if compute_cls_acc: token_type_ids, dataset_id = inputs['token_type_ids'].detach(), inputs['dataset_id'].detach() id_att = tokenizer.enc_spec(tokenizer.answer_type_token) id_answ = tokenizer.enc_spec(tokenizer.boa_token) id_eos = tokenizer.enc_spec(tokenizer.eos_token) # Also shift by 1 lst_idxs_answ: List[List[int]] = [(row == id_att).nonzero().flatten().tolist() for row in token_type_ids[:, 1:]] id_sep = tokenizer.encode(tokenizer.ques_sep_token)[0] def get_label_ids(i_sample: int, idxs_answ: List[int]) -> List[Tuple[int, List[int]]]: """ Prepare for input to `get_label_id` :param i_sample: Index of sample as in `input_ids` :param idxs_answ: Indices of the answer part :return: Potentially breaks down the indices of list of labels into sublists, one for each label """ msk_sep: torch.Tensor = labels_[i_sample, idxs_answ] == id_sep if torch.any(msk_sep): idxs_sep = msk_sep.nonzero().flatten().tolist() # filters out the sep token idxs = [*idxs_sep, None] lst_idxs_answ_ = [idxs_answ[:idxs_sep[0]]] lst_idxs_answ_ += [idxs_answ[idx+1:idxs[i+1]] for i, idx in enumerate(idxs[:-1])] return [(i_sample, idxs_answ_) for idxs_answ_ in lst_idxs_answ_] else: return [(i_sample, idxs_answ)] def get_label_id(i_sample: int, idxs_answ: List[int]) -> Dict[str, int]: """ :return: classification label predicted & expected .. note:: answer tokens should be present in each row/sample """ assert len(idxs_answ) # Should always exist, see `ZsGPT2Tokenizer.__call__` token_ids_true = labels_[i_sample, idxs_answ].tolist() # Inputs are labels # Remove answer special prefix token & potentially the ending token if token_ids_true[0] == id_answ: idxs_answ, token_ids_true = idxs_answ[1:], token_ids_true[1:] assert len(token_ids_true) # Labels should always be available if token_ids_true[-1] == id_eos: idxs_answ, token_ids_true = idxs_answ[:-1], token_ids_true[:-1] assert len(token_ids_true) dset_id = dataset_id[i_sample].item() dnm_ = sconfig('UTCD.dataset_id2name')[dset_id] split = 'train' if mode == 'train' else 'test' descs = sconfig(f'UTCD.datasets.{dnm_}.splits.{split}.labels') desc_true = tokenizer.decode(token_ids_true) assert desc_true in descs # By default, the predictions and labels will not agree d_lbs_ = dict(label_id_pred=-1, label_id_true=descs.index(desc_true)) # Local label wrt dataset desc_pred = tokenizer.decode(preds[i_sample, idxs_answ]) if desc_pred in descs: d_lbs_['label_id_pred'] = descs.index(desc_pred) return d_lbs_ args = sum([get_label_ids(i_sample, idxs_answ) for i_sample, idxs_answ in enumerate(lst_idxs_answ)], start=[]) lst_idxs_n_lbs = [get_label_id(*a) for a in args] d_lbs: Dict[str, List[int]] = {k_id: [d[k_id] for d in lst_idxs_n_lbs] for k_id in lst_idxs_n_lbs[0].keys()} ids_pred, ids_true = d_lbs['label_id_pred'], d_lbs['label_id_true'] n_acc = sum(p == t for p, t in zip(ids_pred, ids_true)) # prediction ids match label ids n_total = len(ids_true) # note multi-label means potentially more classification denominator than batch size d_ret['cls_acc_meta'] = dict(n_acc=n_acc, n_total=n_total, ids_pred=ids_pred, ids_true=ids_true) return d_ret class MyTrainer(Trainer): def __init__( self, tokenizer: GPT2TokenizerFast = None, custom_logging=True, disable_train_metrics: bool = True, compute_cls_acc: bool = False, is_ddp: Union[bool, int] = False, with_tqdm: bool = True, **kwargs ): super().__init__(**kwargs) assert 'args' in kwargs self.custom_logging = custom_logging # Calling `get_accs` during training seems to reduce GPU util self.disable_train_metrics = disable_train_metrics self.compute_cls_acc = compute_cls_acc self.is_ddp = is_ddp self.with_tqdm = with_tqdm self.tokenizer = tokenizer # TODO: generalize to more tokenizers? self.mode = None self.post_init() # Sanity check for distributed training print(f'Trainer instantiated with is_local_process_zero: {pl.i(self.is_local_process_zero())}') self.logger = get_logger('GPT2 Trainer') d_log = dict( custom_logging=custom_logging, disable_train_metrics=disable_train_metrics, compute_cls_acc=compute_cls_acc, is_ddp=is_ddp, with_tqdm=with_tqdm ) self.logger.info(f'Trainer initialized w/ {pl.i(d_log)}') def post_init(self): callbacks = self.callback_handler.callbacks self.callback_handler.callbacks = [ # Remove internal callback c for c in callbacks if str(c.__class__) != "<class 'transformers.trainer_callback.PrinterCallback'>" ] if self.custom_logging: self.add_callback(MyLoggingCallback(self, do_eval=self.args.do_eval, is_ddp=self.is_ddp)) else: self.add_callback(ColoredPrinterCallback()) if self.with_tqdm: self.add_callback(MyProgressCallback()) def train(self, **kwargs): self.mode = 'train' return super().train(**kwargs) def evaluate(self, **kwargs): if not self.is_in_train: self.mode = 'eval' return super().evaluate(**kwargs) def compute_loss(self, model, inputs, return_outputs=False): """ Override `Trainer.compute_loss` for logging accuracy - Note that both training and validation calls `compute_loss` => Further logic needs to determine accuracy for which dataset Modified from https://discuss.huggingface.co/t/metrics-for-training-set-in-trainer/2461/4?u=stefanh """ if self.label_smoother is not None and "labels" in inputs: labels = inputs.pop("labels") else: labels = None outputs = model(**inputs) # ========================== Begin of added ========================== inputs: Dict[str, torch.Tensor] if self.custom_logging and model.training and 'labels' in inputs and (not self.disable_train_metrics): d_log = get_accs( inputs, outputs.logits.detach(), self.tokenizer, mode=self.mode, compute_cls_acc=self.compute_cls_acc ) d_log['src'] = 'compute_loss' self.log(d_log) # ========================== End of added ========================== # Save past state if it exists # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index] if labels is not None: loss = self.label_smoother(outputs, labels) else: # We don't use .loss here since the model may return tuples instead of # ModelOutput. loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] return (loss, outputs) if return_outputs else loss def prediction_step(self, model, inputs, prediction_loss_only: bool, ignore_keys=None): """ Override `Trainer.prediction_step` for reducing memory footprint """ # ========================== Begin of added ========================= from transformers.file_utils import is_sagemaker_mp_enabled from transformers.trainer_pt_utils import nested_detach if is_sagemaker_mp_enabled(): from transformers.trainer_pt_utils import smp_forward_only, smp_nested_concat # ========================== End of added ========================= has_labels = all(inputs.get(k) is not None for k in self.label_names) inputs = self._prepare_inputs(inputs) if ignore_keys is None: if hasattr(self.model, "config"): ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) else: ignore_keys = [] # labels may be popped when computing the loss (label smoothing for instance) so we grab them first. if has_labels: labels = nested_detach(tuple(inputs.get(name) for name in self.label_names)) if len(labels) == 1: labels = labels[0] else: labels = None with torch.no_grad(): if is_sagemaker_mp_enabled(): raw_outputs = smp_forward_only(model, inputs) if has_labels: if isinstance(raw_outputs, dict): loss_mb = raw_outputs["loss"] logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"]) else: loss_mb = raw_outputs[0] logits_mb = raw_outputs[1:] loss = loss_mb.reduce_mean().detach().cpu() logits = smp_nested_concat(logits_mb) else: loss = None if isinstance(raw_outputs, dict): logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys) else: logits_mb = raw_outputs logits = smp_nested_concat(logits_mb) else: if has_labels: with self.autocast_smart_context_manager(): loss, outputs = self.compute_loss(model, inputs, return_outputs=True) loss = loss.mean().detach() if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"]) else: logits = outputs[1:] else: loss = None with self.autocast_smart_context_manager(): outputs = model(**inputs) if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys) else: logits = outputs # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index - 1] if prediction_loss_only: return loss, None, None logits = nested_detach(logits) if len(logits) == 1: logits = logits[0] # ========================== Begin of added ========================= if not self.model.training and self.compute_cls_acc: # Compute the labels right away, # instead of potentially concatenating the original evaluation matrix of shape (#eval, #model size, #vocab) # shape now is (#eval) cos for classification # During training, the eval set has the same set of labels as the training set, # which is the sole purpose of `mode` d_acc = get_accs(inputs, logits, self.tokenizer, mode='train', compute_cls_acc=self.compute_cls_acc) args = dict(dtype=labels.dtype, device=labels.device) # For DDP # TODO: log token-level ACC too? return ( loss, torch.tensor(d_acc['cls_acc_meta']['ids_pred'], **args), torch.tensor(d_acc['cls_acc_meta']['ids_true'], **args), inputs['dataset_id'].detach() ) else: return loss, logits, labels, None # ========================== End of added ========================= def evaluation_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> EvalLoopOutput: """ For sending `dataset_id` to evaluate """ # ========================== Begin of added ========================= from transformers.deepspeed import deepspeed_init import collections from transformers.trainer_utils import denumpify_detensorize from torch.utils.data import IterableDataset from transformers.trainer_pt_utils import ( find_batch_size, nested_concat, nested_numpify, nested_truncate, IterableDatasetShard ) # ========================== End of added ========================= args = self.args prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else args.prediction_loss_only # if eval is called w/o train init deepspeed here if args.deepspeed and not self.deepspeed: # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval # from the checkpoint eventually deepspeed_engine, _, _ = deepspeed_init( self, num_training_steps=0, resume_from_checkpoint=None, inference=True ) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine model = self._wrap_model(self.model, training=False) # if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called # while ``train`` is running, cast it to the right dtype first and then put on device if not self.is_in_train: if args.fp16_full_eval: model = model.to(dtype=torch.float16, device=args.device) elif args.bf16_full_eval: model = model.to(dtype=torch.bfloat16, device=args.device) batch_size = dataloader.batch_size # ========================== Begin of added ========================= from transformers.utils import logging logger = logging.get_logger(__name__) # ========================== End of added ========================= logger.info(f"***** Running {description} *****") if isinstance(dataloader.dataset, collections.abc.Sized): logger.info(f" Num examples = {self.num_examples(dataloader)}") else: logger.info(" Num examples: Unknown") logger.info(f" Batch size = {batch_size}") model.eval() self.callback_handler.eval_dataloader = dataloader # Do this before wrapping. eval_dataset = dataloader.dataset if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [args.device]).per_device_loader(args.device) if args.past_index >= 0: self._past = None # Initialize containers # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps) losses_host = None preds_host = None labels_host = None # ========================== Begin of added ========================= dataset_ids_host = None # ========================== End of added ========================= # losses/preds/labels on CPU (final containers) all_losses = None all_preds = None all_labels = None # ========================== Begin of added ========================= all_dataset_ids = None # ========================== End of added ========================= # Will be useful when we have an iterable dataset so don't know its length. observed_num_examples = 0 # Main evaluation loop for step, inputs in enumerate(dataloader): # Update the observed num examples observed_batch_size = find_batch_size(inputs) if observed_batch_size is not None: observed_num_examples += observed_batch_size # For batch samplers, batch_size is not known by the dataloader in advance. if batch_size is None: batch_size = observed_batch_size # Prediction step loss, logits, labels, dataset_ids = self.prediction_step( model, inputs, prediction_loss_only, ignore_keys=ignore_keys ) if is_torch_tpu_available(): xm.mark_step() # Update containers on host if loss is not None: losses = self._nested_gather(loss.repeat(batch_size)) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: logits = self._pad_across_processes(logits) logits = self._nested_gather(logits) preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels = self._pad_across_processes(labels) labels = self._nested_gather(labels) labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) # ========================== Begin of added ========================= if dataset_ids is not None: dataset_ids = self._pad_across_processes(dataset_ids) dataset_ids = self._nested_gather(dataset_ids) dataset_ids_host = ( dataset_ids if dataset_ids_host is None else nested_concat(dataset_ids_host, dataset_ids, padding_index=-100) ) # ========================== End of added ========================= self.control = self.callback_handler.on_prediction_step(args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0: if losses_host is not None: losses = nested_numpify(losses_host) all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0) if preds_host is not None: logits = nested_numpify(preds_host) all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if labels_host is not None: labels = nested_numpify(labels_host) all_labels = ( labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100) ) # ========================== Begin of added ========================= if dataset_ids_host is not None: dataset_ids = nested_numpify(dataset_ids_host) all_dataset_ids = ( dataset_ids if all_dataset_ids is None else nested_concat(all_dataset_ids, dataset_ids, padding_index=-100) ) # ========================== End of added ========================= # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU if losses_host is not None: losses = nested_numpify(losses_host) all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0) if preds_host is not None: logits = nested_numpify(preds_host) all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if labels_host is not None: labels = nested_numpify(labels_host) all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100) # ========================== Begin of added ========================= if dataset_ids_host is not None: dataset_ids = nested_numpify(dataset_ids_host) all_dataset_ids = ( dataset_ids if all_dataset_ids is None else nested_concat(dataset_ids, all_dataset_ids, padding_index=-100) ) # ========================== End of added ========================= # Number of samples if not isinstance(eval_dataset, IterableDataset): num_samples = len(eval_dataset) # The instance check is weird and does not actually check for the type, but whether the dataset has the right # methods. Therefore we need to make sure it also has the attribute. elif isinstance(eval_dataset, IterableDatasetShard) and hasattr(eval_dataset, "num_examples"): num_samples = eval_dataset.num_examples else: num_samples = observed_num_examples # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of # samplers has been rounded to a multiple of batch_size, so we truncate. if all_losses is not None: all_losses = all_losses[:num_samples] if all_preds is not None: all_preds = nested_truncate(all_preds, num_samples) if all_labels is not None: all_labels = nested_truncate(all_labels, num_samples) # ========================== Begin of added ========================= if all_dataset_ids is not None: all_dataset_ids = nested_truncate(all_dataset_ids, num_samples) # ========================== End of added ========================= # Metrics! if self.compute_metrics is not None and all_preds is not None and all_labels is not None: # ========================== Begin of modified ========================= if self.is_local_process_zero(): mep = MyEvalPrediction(predictions=all_preds, label_ids=all_labels, dataset_ids=all_dataset_ids) metrics = self.compute_metrics(mep) else: metrics = {} # ========================== End of modified ========================= else: metrics = {} # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) if all_losses is not None: metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/util/gpt2_train.py
gpt2_train.py
import os import math import json import configparser from os.path import join as os_join from typing import List, Tuple, Dict, Iterable, Optional from zipfile import ZipFile import numpy as np import pandas as pd import sklearn from datasets import load_metric import matplotlib.pyplot as plt import gdown from stefutil import * from zeroshot_classifier.util.data_path import BASE_PATH, PROJ_DIR, DSET_DIR, PKG_NM, MODEL_DIR __all__ = [ 'in_domain_url', 'out_of_domain_url', 'in_domain_dir_nm', 'out_of_domain_dir_nm', 'download_data', 'sconfig', 'u', 'save_fig', 'plot_points', 'on_great_lakes', 'get_base_path', 'map_model_dir_nm', 'map_model_output_path', 'domain2eval_dir_nm', 'TrainStrategy2PairMap', 'eval_res2df', 'compute_metrics' ] logger = get_logger('Util') in_domain_url = 'https://drive.google.com/uc?id=1V7IzdZ9HQbFUQz9NzBDjmqYBdPd9Yfe3' out_of_domain_url = 'https://drive.google.com/uc?id=1nd32_UrFbgoCgH4bDtFFD_YFZhzcts3x' in_domain_dir_nm = 'in-domain' out_of_domain_dir_nm = 'out-of-domain' def download_data(domain: str = 'in'): # Needed for writing config assert domain in ['in', 'out'] if domain == 'in': fnm, url = f'{in_domain_dir_nm}.zip', in_domain_url else: # `out` fnm, url = f'{out_of_domain_dir_nm}.zip', out_of_domain_url base_path = os.path.join(BASE_PATH, PROJ_DIR, DSET_DIR) os.makedirs(base_path, exist_ok=True) fl_path = os_join(base_path, fnm) domain_str = 'in-domain' if domain == 'in' else 'out-of-domain' logger.info(f'Downloading {pl.i(domain_str)} data from GDrive to {pl.i(fl_path)}...') gdown.download(url, fl_path, quiet=False) with ZipFile(fl_path, 'r') as zfl: zfl.extractall(base_path) zfl.close() def _download_all_data(): dset_path = os_join(BASE_PATH, PROJ_DIR, DSET_DIR) path_in = os_join(dset_path, in_domain_dir_nm) if not os.path.exists(path_in): download_data(domain='in') path_out = os_join(dset_path, out_of_domain_dir_nm) if not os.path.exists(path_out): download_data(domain='out') _download_all_data() # Needed for writing config config_path = os_join(BASE_PATH, PROJ_DIR, PKG_NM, 'util', 'config.json') if not os.path.exists(config_path): from zeroshot_classifier.util.config import ConfigDict logger.info(f'Writing config file to {pl.i(config_path)}... ') config_dict = ConfigDict(fast=True).d with open(config_path, 'w') as f: json.dump(config_dict, f, indent=4) sconfig = StefConfig(config_file=config_path).__call__ u = StefUtil( base_path=BASE_PATH, project_dir=PROJ_DIR, package_name=PKG_NM, dataset_dir=DSET_DIR, model_dir=MODEL_DIR ) u.plot_path = os_join(BASE_PATH, PROJ_DIR, 'plot') save_fig = u.save_fig for _d in sconfig('check-arg'): ca.cache_mismatch(**_d) def plot_points(arr, **kwargs): """ :param arr: Array of 2d points to plot :param kwargs: Arguments are forwarded to `matplotlib.axes.Axes.plot` """ arr = np.asarray(arr) kwargs_ = dict(marker='.', lw=0.5, ms=1, c='orange') kwargs = {**kwargs_, **kwargs} # python3.6 compatibility plt.plot(arr[:, 0], arr[:, 1], **kwargs) def on_great_lakes(): return 'arc-ts' in get_hostname() def get_base_path(): # For remote machines, save heavy-duty data somewhere else to save `/home` disk space hnm = get_hostname() if 'clarity' in hnm: # Clarity lab return '/data' elif on_great_lakes(): # Great Lakes; `profmars0` picked arbitrarily among [`profmars0`, `profmars1`] # Per https://arc.umich.edu/greatlakes/user-guide/ return os_join('/scratch', 'profmars_root', 'profmars0', 'stefanhg') else: return BASE_PATH def config_parser2dict(conf: configparser.ConfigParser) -> Dict: return {sec: dict(conf[sec]) for sec in conf.sections()} def map_model_dir_nm( model_name: str = None, name: str = None, mode: Optional[str] = 'vanilla', sampling: Optional[str] = 'rand', normalize_aspect: bool = False ) -> str: out = f'{now(for_path=True)}_{model_name}' if name: out = f'{out}_{name}' d = dict() if mode: # see config::training.strategies nms = mode.split('-') if len(nms) == 1: d['md'] = mode[:3] else: nf, nl = nms[0], nms[-1] d['md'] = f'{nf[:3]}-{nl[:3]}' if sampling: d['sp'] = sampling[0] if normalize_aspect: d['na'] = 'T' if d: out = f'{out}_{pl.pa(d)}' return out def map_model_output_path( model_name: str = None, output_path: str = None, output_dir: str = None, mode: Optional[str] = 'vanilla', sampling: Optional[str] = 'rand', normalize_aspect: bool = False ) -> str: def _map(dir_nm_): return map_model_dir_nm(model_name, dir_nm_, mode, sampling, normalize_aspect) assert (output_path or output_dir) and not (output_path and output_dir) # sanity check mutually exclusive if output_path: paths = output_path.split(os.sep) output_dir = _map(paths[-1]) return os_join(*paths[:-1], output_dir) else: dir_nm = _map(None) if output_dir: dir_nm = f'{dir_nm}_{output_dir}' return os_join(get_base_path(), u.proj_dir, u.model_dir, dir_nm) def domain2eval_dir_nm(domain: str = 'in'): domain_str = 'in-domain' if domain == 'in' else 'out-of-domain' date = now(fmt='short-date') return f'{date}_{domain_str}' class TrainStrategy2PairMap: sep_token = sconfig('training.implicit-on-text.encode-sep.aspect-sep-token') aspect2aspect_token = sconfig('training.implicit-on-text.encode-aspect.aspect2aspect-token') def __init__(self, train_strategy: str = 'vanilla'): self.train_strategy = train_strategy ca(training_strategy=train_strategy) def __call__(self, aspect: str = None): if self.train_strategy in ['vanilla', 'explicit']: def txt_n_lbs2query(txt: str, lbs: List[str]) -> List[List[str]]: return [[txt, lb] for lb in lbs] elif self.train_strategy == 'implicit': def txt_n_lbs2query(txt: str, lbs: List[str]) -> List[List[str]]: return [[txt, f'{lb} {aspect}'] for lb in lbs] elif self.train_strategy == 'implicit-on-text-encode-aspect': def txt_n_lbs2query(txt: str, lbs: List[str]) -> List[List[str]]: return [[f'{TrainStrategy2PairMap.aspect2aspect_token[aspect]} {txt}', lb] for lb in lbs] else: assert self.train_strategy == 'implicit-on-text-encode-sep' def txt_n_lbs2query(txt: str, lbs: List[str]) -> List[List[str]]: return [[f'{aspect} {TrainStrategy2PairMap.sep_token} {txt}', lb] for lb in lbs] return txt_n_lbs2query def map_label(self, label: str, aspect: str = None): if self.train_strategy == 'implicit': assert aspect is not None return f'{label} {aspect}' else: return label def map_text(self, text: str, aspect: str = None): if self.train_strategy in ['implicit-on-text-encode-aspect', 'implicit-on-text-encode-sep']: assert aspect is not None if self.train_strategy == 'implicit-on-text-encode-aspect': return f'{TrainStrategy2PairMap.aspect2aspect_token[aspect]} {text}' else: return f'{aspect} {TrainStrategy2PairMap.sep_token} {text}' else: return text def eval_res2df(labels: Iterable, preds: Iterable, report_args: Dict = None, pretty: bool = True) -> Tuple[pd.DataFrame, float]: report = sklearn.metrics.classification_report(labels, preds, **(report_args or dict())) if 'accuracy' in report: acc = report['accuracy'] else: vals = [v for k, v in report['micro avg'].items() if k != 'support'] assert all(math.isclose(v, vals[0], abs_tol=1e-8) for v in vals) acc = vals[0] return pd.DataFrame(report).transpose(), round(acc, 3) if pretty else acc def compute_metrics(eval_pred): if not hasattr(compute_metrics, 'acc'): compute_metrics.acc = load_metric('accuracy') logits, labels = eval_pred preds = np.argmax(logits, axis=-1) return dict(acc=compute_metrics.acc.compute(predictions=preds, references=labels)['accuracy']) if __name__ == '__main__': from stefutil import * def check_gl(): mic(on_great_lakes()) mic(get_base_path()) check_gl()
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/util/util.py
util.py
import os import json import math import pickle from os.path import join as os_join from typing import List, Tuple, Dict, Iterable, Callable, Any, Union from zipfile import ZipFile from statistics import harmonic_mean from collections import Counter, namedtuple, defaultdict import numpy as np import pandas as pd import torch from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.manifold import TSNE from datasets import Value, Features, ClassLabel, Sequence, Dataset, DatasetDict from sentence_transformers import SentenceTransformer import spacy import matplotlib.pyplot as plt from matplotlib import transforms from matplotlib.patches import Ellipse from matplotlib.colors import to_rgba from matplotlib.patheffects import withStroke import seaborn as sns from tqdm.auto import tqdm import gdown from stefutil import * from zeroshot_classifier.util.util import * from zeroshot_classifier.util import load_data from zeroshot_classifier.util.data_path import BASE_PATH, PROJ_DIR, DSET_DIR LOAD_TSNE = False if LOAD_TSNE and torch.cuda.is_available(): from tsnecuda import TSNE as cuTSNE logger = get_logger('UTCD') EOT_TOKEN = '[eot]' # end of turn token for sgd def get_utcd_from_gdrive(domain: str = 'in'): ca(dataset_domain=domain) path = os_join(u.proj_path, u.dset_dir, 'UTCD') os.makedirs(path, exist_ok=True) if domain == 'in': url = 'https://drive.google.com/uc?id=1V7IzdZ9HQbFUQz9NzBDjmqYBdPd9Yfe3' fnm = os_join(path, 'in-domain') else: url = 'https://drive.google.com/uc?id=1nd32_UrFbgoCgH4bDtFFD_YFZhzcts3x' fnm = os_join(path, 'out-of-domain') fnm = f'{fnm}.zip' logger.info(f'Downloading from GDrive url {pl.i(url)} to {pl.i(fnm)}... ') gdown.download(url=url, output=fnm, quiet=False) logger.info(f'Extracting {pl.i(fnm)} to {pl.i(path)}... ') with ZipFile(fnm, 'r') as zip_: zip_.extractall(path) zip_.close() def dataset2hf_dataset( dataset: load_data.Dataset = None, labels: List[str] = None, multi_label: bool = False ) -> Dataset: # Map to **local** integer labels; index is label per `lbs_` ordering, same with `datasets.ClassLabel` lb2id = {lb: i for i, lb in enumerate(labels)} # if not multi-label, `Sequence` of single element df = pd.DataFrame([dict(text=txt, labels=[lb2id[lb] for lb in lbs]) for txt, lbs in dataset.items()]) length = -1 if multi_label else 1 lbs = Sequence(feature=ClassLabel(names=labels), length=length) feats = Features(text=Value(dtype='string'), labels=lbs) return Dataset.from_pandas(df, features=feats) def subsample_dataset(dataset_name: str = None, split: str = 'train', n_tgt: int = 5000, seed: int = None) -> Dataset: d = sconfig(f'UTCD.datasets.{dataset_name}') domain = d['domain'] dset = load_data.get_datasets(domain=domain, dataset_names=dataset_name)[dataset_name][split] dset: Dict[str, List[str]] # text => list of labels d = get(d, f'splits.{split}') dset = load_data.subsample_dataset(dataset=dset, n_src=d['n_pair'], n_tgt=n_tgt, seed=seed) return dataset2hf_dataset(dataset=dset, labels=d['labels'], multi_label=d['multi_label']) def process_utcd_dataset(domain: str = 'in', join=False): """ :param domain: One of [`in`, `out`] If 'in', process all the in-domain datasets; otherwise, process all the out-of-domain datasets :param join: If true, all datasets are joined to a single dataset .. note:: 1. The original dataset format is dictionary mapping text to list of label 2. the datasets are processed to a multi-label format always Save processed datasets to disk """ ca(dataset_domain=domain) output_dir = 'UTCD-in' if domain == 'in' else 'UTCD-out' path_dsets = os_join(u.proj_path, u.dset_dir) domain_str = 'in-domain' if domain == 'in' else 'out-of-domain' if not os.path.exists(os_join(path_dsets, 'UTCD', domain_str)): get_utcd_from_gdrive(domain=domain) path_out = os_join(get_base_path(), PROJ_DIR, DSET_DIR, 'processed') logger.info(f'Processing UTCD datasets with {pl.i(dict(domain=domain, join=join))}... ') def path2dsets(dnm: str, d_dset: Dict) -> Union[DatasetDict, Dict[str, pd.DataFrame]]: logger.info(f'Processing dataset {pl.i(dnm)}... ') path_ = d_dset['path'] path_ = os_join(path_dsets, f'{path_}.json') with open(path_) as f: dsets_: Dict = json.load(f) def json2dset(split: str, dset: load_data.Dataset) -> Union[Dataset, pd.DataFrame]: assert split in ['train', 'test'] if join: # will convert to global integers later, see below return pd.DataFrame([dict(text=txt, labels=lbs) for txt, lbs in dset.items()]) else: d = sconfig(f'UTCD.datasets.{dnm}.splits.{split}') return dataset2hf_dataset(dataset=dset, labels=d['labels'], multi_label=d['multi_label']) return DatasetDict( {key: json2dset(key, dset) for key, dset in dsets_.items() if key not in ['labels', 'aspect']} ) d_dsets = { dnm: path2dsets(dnm, d) for dnm, d in sconfig('UTCD.datasets').items() if d['domain'] == domain } if join: dnm2id = sconfig('UTCD.dataset_name2id') # Global label across all datasets, all splits # Needed for inversely mapping to local label regardless of joined split, e.g. train/test, # in case some label only in certain split lbs_global = [ sconfig(f'UTCD.datasets.{dnm}.splits.{split}.labels') for dnm in d_dsets.keys() for split in ['train', 'test'] ] lbs_global = sorted(set().union(*lbs_global)) lb2id_global = {lb: i for i, lb in enumerate(lbs_global)} # cos definitely multi-label lbs_global = Sequence(feature=ClassLabel(names=lbs_global), length=-1) def map_labels(lbs: List[str]) -> List[int]: return [lb2id_global[lb] for lb in lbs] def prep_single(dnm: str, df_: pd.DataFrame) -> pd.DataFrame: df_['dataset_id'] = [dnm2id[dnm]] * len(df_) # Add dataset source information to each row df_.labels = df_.labels.apply(map_labels) return df_ def dfs2dset(dfs: Iterable[pd.DataFrame]) -> Dataset: df = pd.concat(dfs) # The string labels **may overlap** across the datasets # Keep internal feature label ordering same as dataset id lbs_dset = sorted(dnm2id, key=dnm2id.get) features = Features(text=Value(dtype='string'), labels=lbs_global, dataset_id=ClassLabel(names=lbs_dset)) return Dataset.from_pandas(df, features=features) tr = dfs2dset([prep_single(dnm, dsets['train']) for dnm, dsets in d_dsets.items()]) vl = dfs2dset([prep_single(dnm, dsets['test']) for dnm, dsets in d_dsets.items()]) dsets = DatasetDict(train=tr, test=vl) path = os_join(path_out, output_dir) dsets.save_to_disk(path) logger.info(f'{pl.i("Joined")} Dataset saved to {pl.i(path)} ') else: for dnm, dsets in d_dsets.items(): dsets.save_to_disk(os_join(path_out, dnm)) logger.info(f'Dataset {pl.i(dnm)} saved to {pl.i(path_out)}') def map_ag_news(): dnm = 'ag_news' d_dset = sconfig(f'UTCD.datasets.{dnm}') ext = sconfig('UTCD.dataset_ext') path_dset = os_join(BASE_PATH, PROJ_DIR, DSET_DIR) path = d_dset['path'] path = os_join(path_dset, f'{path}.{ext}') with open(path) as f: dsets: Dict = json.load(f) d_lb2desc = sconfig(f'baselines.gpt2-nvidia.label-descriptors.{dnm}') for split, dset in dsets.items(): dsets[split] = [[txt, d_lb2desc[lb]] for txt, lb in dset] with open(os_join(path_dset, f'{dnm}.json'), 'w') as f: json.dump(dsets, f, indent=4) def get_utcd_info() -> pd.DataFrame: """ Metadata about each dataset in UTCD """ k_avg_tok = [f'{mode}-{text_type}_avg_tokens' for text_type in ['txt', 'lb'] for mode in ['re', 'bert', 'gpt2']] infos = [ dict(dataset_name=dnm, aspect=d_dset['aspect'], domain=d_dset['domain']) | {f'{split}-{k}': v for split, d_info in d_dset['splits'].items() for k, v in d_info.items()} | {k: d_dset[k] for k in k_avg_tok} for dnm, d_dset in sconfig('UTCD.datasets').items() ] return pd.DataFrame(infos) def get_dataset_names(domain: str = 'in'): return [dnm for dnm, d_dset in sconfig('UTCD.datasets').items() if d_dset['domain'] == domain] def get_eval_dataset_names(domain: str = 'in', dataset_name: str = 'all') -> List[str]: all_dset = dataset_name == 'all' if not all_dset: _dom = sconfig(f'UTCD.datasets.{dataset_name}.domain') if domain is not None: domain = _dom else: assert domain == _dom return get_dataset_names(domain) if all_dset else [dataset_name] UtcdDatasetNames = namedtuple('UtcdDatasetNames', ['in_domain', 'out_of_domain']) def _get_utcd_dnms() -> UtcdDatasetNames: return UtcdDatasetNames(in_domain=get_dataset_names('in'), out_of_domain=get_dataset_names('out')) def get_dataset(dnm: str, split: str) -> Dict[str, List[str]]: d = sconfig(f'UTCD.datasets.{dnm}') path = os_join(BASE_PATH, PROJ_DIR, DSET_DIR, f'{d["path"]}.json') with open(path) as fl: return json.load(fl)[split] def get_add_special_tokens_args(tokenizer, train_strategy: str = 'vanilla') -> Dict: """ :return: If need to modify tokenizer & model, `Tokenizer.add_special_tokens` arg; otherwise None """ ca(training_strategy=train_strategy) modify = False # Include `end-of-turn` token for sgd, cannot set `eos` for '<|endoftext|>' already defined in GPT2 # for consistency with BERT tokenizer, not override `eos` for BERT too add_spec_toks = [] if train_strategy == 'explicit': # sanity check, SGD EOT should be added already added_vocab = tokenizer.get_added_vocab() assert list(added_vocab.keys()) == [EOT_TOKEN] else: add_spec_toks.append(EOT_TOKEN) modify = True if train_strategy == 'implicit-on-text-encode-aspect': add_spec_toks += list(sconfig('training.implicit-on-text.encode-aspect.aspect2aspect-token').values()) elif train_strategy == 'implicit-on-text-encode-sep': add_spec_toks += [sconfig('training.implicit-on-text.encode-sep.aspect-sep-token')] spec_tok_args = dict() if add_spec_toks: spec_tok_args['additional_special_tokens'] = add_spec_toks modify = True if modify: return spec_tok_args class VisualizeOverlap: path_dset = os_join(BASE_PATH, PROJ_DIR, DSET_DIR) in_dnms, out_dnms = _get_utcd_dnms() # for in-domain, the training split, for out-of-domain, the test split dnm2n_txt = {dnm: sconfig(f'UTCD.datasets.{dnm}.splits.train.n_text') for dnm in in_dnms} dnm2n_txt.update({dnm: sconfig(f'UTCD.datasets.{dnm}.splits.test.n_text') for dnm in out_dnms}) def __init__(self): pass @staticmethod def dnm2samples_n_total(dnm: str, kind: str, split: str) -> Tuple[Union[Iterable[str], List[str]], int]: if kind == 'label': it = sconfig(f'UTCD.datasets.{dnm}.splits.{split}.labels') return it, len(it) else: # text d = sconfig(f'UTCD.datasets.{dnm}') path = os_join(VisualizeOverlap.path_dset, f'{d["path"]}.json') with open(path) as fl: return json.load(fl)[split].keys(), VisualizeOverlap.dnm2n_txt[dnm] @staticmethod def get_utcd_overlap( kind: str = 'label', metric: str = 'harmonic', stat='tfidf', stat_args: Dict = None, weighted_average: bool = True ) -> pd.DataFrame: """ A normalized score for overlap, between each out-of-domain dataset, with each in-domain datasets and aggregated across all in-domain datasets Intended to get a sense of performance over overlap """ ca.check_mismatch('Sample Type', kind, ['label', 'text']) ca.check_mismatch('Overlap Metric', metric, ['harmonic', 'absolute']) ca.check_mismatch('Word Statistics', stat, ['count', 'tfidf']) logger.info(f'Getting UTCD Overlap for {pl.i(kind=kind, metric=metric, stat=stat, stat_args=stat_args)}') if stat == 'tfidf': def tokenize(pbar) -> Callable: def _tokenize(txt: str) -> List[str]: lst = [tok.lemma_ for tok in nlp(txt) if not tok.is_stop] pbar.update(1) return lst return _tokenize # TODO: tweak? stat_args: Dict[str, Any] = stat_args if stat_args is not None else dict(max_df=0.8, min_df=3) assert 'token_pattern' not in stat_args and 'tokenizer' not in stat_args stat_args['token_pattern'] = None elif stat_args is not None: raise NotImplementedError(f'{pl.i("stat_args")} supported for {pl.i("tfidf")} only') nlp = spacy.load('en_core_web_sm') nlp.max_length *= 10 # for `multi_eurlex` def _dnm2lemma_count(dnm_: str, split: str) -> Union[Counter, TfidfVectorizer]: it, total = VisualizeOverlap.dnm2samples_n_total(dnm_, kind, split) in_domain = dnm_ in VisualizeOverlap.in_dnms domain_str = 'in-domain' if in_domain else 'out-of-domain' split = 'train' if in_domain else 'test' pbar_args = dict(desc=f'Lemmatizing {domain_str} {dnm_} {split}', unit='sample', total=total, miniters=64) if stat == 'count': c = Counter() for s in tqdm(it, **pbar_args): # TODO: 1) `&` isn't a stop word? 2) lowercase everything? 3) remove characters? c.update(tok.lemma_ for tok in nlp(s) if not tok.is_stop) return c else: # tfidf pbar = tqdm(**pbar_args) stat_args['tokenizer'] = tokenize(pbar) v = TfidfVectorizer(**stat_args) v.fit(it) pbar.close() return v dnm2lemma_count = dict() in_dnms, out_dnms = VisualizeOverlap.in_dnms, VisualizeOverlap.out_dnms for dnm in in_dnms: dnm2lemma_count[dnm] = _dnm2lemma_count(dnm, 'train') logger.info(f'Lemmatizing {pl.i("in-domain")} dataset {pl.i(dnm)}, {pl.i("train")} split') for dnm in out_dnms: dnm2lemma_count[dnm] = _dnm2lemma_count(dnm, 'test') logger.info(f'Lemmatizing {pl.i("out-of-domain")} dataset {pl.i(dnm)}, {pl.i("test")} split') lst_rows = [] # See below, weighted by #samples for each in-domain dataset; TODO: weight also by label support? in_dnm2n_pr = {dnm: sconfig(f'UTCD.datasets.{dnm}.splits.train.n_pair') for dnm in in_dnms} for dnm_out in out_dnms: d_row = dict() for dnm_in in in_dnms: if stat == 'count': c_in: Counter = dnm2lemma_count[dnm_in] c_out: Counter = dnm2lemma_count[dnm_out] inter = set(c_in) & set(c_out) n_inter_in, n_in = sum(c_in[i] for i in inter), sum(c_in.values()) n_inter_out, n_out = sum(c_out[i] for i in inter), sum(c_out.values()) else: # tfidf v_in: TfidfVectorizer = dnm2lemma_count[dnm_in] v_out: TfidfVectorizer = dnm2lemma_count[dnm_out] inter = set(v_in.get_feature_names_out()) & set(v_out.get_feature_names_out()) idxs_in, idxs_out = [v_in.vocabulary_[i] for i in inter], [v_out.vocabulary_[i] for i in inter] n_inter_in, n_in = v_in.idf_[idxs_in].sum(), v_in.idf_.sum() n_inter_out, n_out = v_out.idf_[idxs_out].sum(), v_out.idf_.sum() # Considers the count for both datasets; also ensure in range [0, 1] if metric == 'harmonic': d_row[dnm_in] = harmonic_mean([n_inter_in / n_in, n_inter_out / n_out]) else: assert metric == 'absolute' d_row[dnm_in] = (n_inter_in + n_inter_out) / (n_in + n_out) dnms, vals = zip(*d_row.items()) d_row['average'] = np.mean(vals) if weighted_average: d_row['weighted_average'] = np.average(vals, weights=[in_dnm2n_pr[dnm] for dnm in dnms]) d_row['dataset_name'] = dnm_out lst_rows.append(d_row) return pd.DataFrame(lst_rows).set_index('dataset_name') @staticmethod def plot_utcd_overlap( kind: str = 'label', save: bool = False, title: str = None, get_overlap_args: Dict = None, fig_args: Dict = None, cbar_ax: bool = True ) -> None: d_dset = sconfig('UTCD.datasets') def dnm2dnm_print(dnm: str) -> str: if dnm in d_dset: # words = dnm.split('_') # return '\n'.join(w.capitalize() for w in words) return sconfig(f'UTCD.datasets.{dnm}.name_compact') else: words = dnm.split('_') return '\n'.join(rf'$\it{{{wd}}}$' for wd in words) df = VisualizeOverlap.get_utcd_overlap(kind=kind, **(get_overlap_args or dict())) df *= 100 df.rename(lambda s: dnm2dnm_print(s), axis=1, inplace=True) df.rename(lambda s: dnm2dnm_print(s), axis=0, inplace=True) _fig_args = dict(nrows=1, ncols=2 if cbar_ax else 1, figsize=(10 + 0.25, 8)) if fig_args: _fig_args.update(fig_args) if cbar_ax: if 'gridspec_kw' not in _fig_args: w, h = _fig_args['figsize'] _fig_args['gridspec_kw'] = dict(width_ratios=[w-0.25, 0.25]) fig, (ax, ax_cbar) = plt.subplots(**_fig_args) else: assert 'gridspec_kw' not in _fig_args (fig, ax), ax_cbar = plt.subplots(**_fig_args), None ax = sns.heatmap(df, annot=True, cmap='mako', fmt='.1f', square=True, ax=ax, cbar_ax=ax_cbar) ax.xaxis.set_ticks_position('top') ax.xaxis.set_label_position('top') ax.tick_params(axis='y', labelrotation=0) ax.tick_params(axis='x', top=False) # hide tick marks title_ = f'Out-of-domain eval datasets {kind.capitalize()} overlap against In-domain training datasets' if title == 'none': title = title_ # for filename export else: title = title or title_ plt.suptitle(title) ax.set_xlabel('In-domain dataset', fontsize=12, labelpad=10) ax.set_ylabel('Out-of-domain dataset', fontsize=12) if cbar_ax: ax_cbar.set_ylabel('Overlap Score (%)') if save: # see `get_utcd_overlap` mt_, st_ = get_overlap_args.get('metric', 'harmonic'), get_overlap_args.get('stat', 'tfidf') mt_ = 'harm' if mt_ == 'harmonic' else 'abs' st_ = 'ti' if st_ == 'tfidf' else 'ct' save_fig(f'{title}, mt={mt_}, st={st_}') else: plt.show() @staticmethod def get_utcd_embeddings( kind: str = 'label', aspect: str = None, batch_size: int = 16, cache: str = None ) -> Dict[str, np.ndarray]: """ Plot sample embeddings in lower dimension and hopefully the overlap between each dataset cluster lines up with performance """ def _get(): return VisualizeOverlap._get_utcd_embeddings(kind=kind, aspect=aspect, batch_size=batch_size) if cache: fnm = f'{cache}.pkl' path = os_join(BASE_PATH, PROJ_DIR, 'cache') os.makedirs(path, exist_ok=True) path = os_join(path, fnm) if os.path.exists(path): with open(path, 'rb') as f: return pickle.load(f) else: d = _get() with open(path, 'wb') as f: pickle.dump(d, f) return d else: return _get() @staticmethod def _get_utcd_embeddings(kind, aspect, batch_size): # per SBert package, the one with the highest quality model = SentenceTransformer('all-mpnet-base-v2', device='cuda' if torch.cuda.is_available() else 'cpu') in_dnms, out_dnms = VisualizeOverlap.in_dnms, VisualizeOverlap.out_dnms ret = dict() dnms = in_dnms + out_dnms if aspect is not None: dnms = [dnm for dnm in dnms if sconfig(f'UTCD.datasets.{dnm}.aspect') == aspect] for dnm in dnms: split = 'train' if dnm in in_dnms else 'test' it, total = VisualizeOverlap.dnm2samples_n_total(dnm, kind, split) total = math.ceil(total/batch_size) desc = f'Encoding {dnm:>21} {kind:>5} {split:>5}' vects = np.empty(total, dtype=object) for i, sents in enumerate(tqdm(group_n(it, batch_size), total=total, desc=desc, unit='ba')): vects[i] = model.encode(sents, batch_size=batch_size) ret[dnm] = np.concatenate(vects) return ret @staticmethod def plot_utcd_embeddings( kind: str = 'label', save=False, aspect: str = None, cs: List = None, mode: str = 'sklearn', n_sample: int = None, **kwargs ): """ :param kind: Encode either text or label :param save: If true, plot is saved :param aspect: If given, plot only one aspect :param cs: A list of colors for each cluster :param mode: t-SNE mode, one of ['sklearn', 'cuda'] :param n_sample: If given, plot a subset of each dataset randomly :param n_sample: If given, plot a subset of each dataset randomly """ from adjustText import adjust_text ca.check_mismatch('Sample Type', kind, ['label', 'text']) ca.check_mismatch('t-SNE Mode', mode, ['sklearn', 'cuda']) if aspect is not None: ca.check_mismatch('Dataset Aspect', aspect, ['sentiment', 'intent', 'topic']) d_log = dict(kind=kind, aspect=aspect, mode=mode) logger.info(f'Plotting embeddings on {pl.i(d_log)}... ') d_vect = VisualizeOverlap.get_utcd_embeddings(kind=kind, aspect=aspect, **kwargs) if n_sample: def _get_sample(dnm): idxs = np.random.permutation(len(d_vect[dnm]))[:n_sample] return d_vect[dnm][idxs] d_vect = {dnm: _get_sample(dnm) for dnm in d_vect} dnms = VisualizeOverlap.in_dnms + VisualizeOverlap.out_dnms if aspect is not None: dnms = [dnm for dnm in dnms if sconfig(f'UTCD.datasets.{dnm}.aspect') == aspect] vect = np.concatenate([d_vect[dnm] for dnm in dnms]) # TODO or `random` init? args = dict( n_components=2, perplexity=50, # learning_rate='auto', # TODO: causes numpy error??? learning_rate=1000, random_state=sconfig('random-seed') ) if mode == 'sklearn': cls = TSNE args['init'] = 'pca' else: cls = cuTSNE args['init'] = 'random' del args['random_state'] logger.info(f'Running t-SNE on {pl.i(len(vect))} vectors with args {pl.i(args)}... ') mapped = cls(**args).fit_transform(vect) logger.info('Plotting... ') k_dnm = 'dataset_name' df = pd.DataFrame(list(chain_its([dnm] * len(d_vect[dnm]) for dnm in dnms)), columns=[k_dnm]) df['x'] = mapped[:, 0] df['y'] = mapped[:, 1] aspect2domain2dset = defaultdict(lambda: defaultdict(list)) for dnm, d_dset in sconfig('UTCD.datasets').items(): aspect2domain2dset[d_dset['aspect']][d_dset['domain']].append(dnm) if not cs: n_gap = 6 n_aspect, n_dset_per_aspect = sconfig('UTCD.num_aspect'), sconfig('UTCD.num_dataset_per_aspect') if aspect is not None: n_aspect = 1 cs = sns.color_palette('husl', n_colors=n_aspect * (n_dset_per_aspect+n_gap)) cs = cs[:n_dset_per_aspect] + cs[n_dset_per_aspect+n_gap:n_dset_per_aspect*2+n_gap] + \ cs[n_dset_per_aspect*2+n_gap*2:-n_gap] dnms = [] # update order for color-coding for i_as, aspect_ in enumerate(aspect2domain2dset.keys()): if aspect is not None and aspect_ != aspect: continue for i_dm, (domain, dnms_) in enumerate(aspect2domain2dset[aspect_].items()): for i_dset, dnm in enumerate(dnms_): dnms.append(dnm) df_col2cat_col(df, k_dnm, categories=dnms) # enforce legend order dnm2count = {k: len(v) for k, v in d_vect.items()} n_sample = sum(dnm2count.values()) # now, all datasets combined fig_w, fig_h = 10, 12 ms = max(min(fig_w * fig_h * 128/n_sample, 192), 16) dnm2ms = {dnm: 1/math.log(c) * ms for dnm, c in dnm2count.items()} fig = plt.figure(figsize=(fig_w, fig_h), constrained_layout=False) ax = sns.scatterplot(data=df, x='x', y='y', hue=k_dnm, palette=cs, size=k_dnm, sizes=dnm2ms, alpha=0.3) def confidence_ellipse(xs_, ys_, n_std=1., **kws): """ Modified from https://matplotlib.org/stable/gallery/statistics/confidence_ellipse.html Create a plot of the covariance confidence ellipse of x and y :param xs_: x values :param ys_: y values :param n_std: number of standard deviations to determine the ellipse's radius' :return matplotlib.patches.Ellipse """ cov = np.cov(xs_, ys_) pearson = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1]) r_x, r_y = np.sqrt(1 + pearson), np.sqrt(1 - pearson) _args = {**dict(fc='none'), **kws} ellipse = Ellipse((0, 0), width=r_x*2, height=r_y*2, **_args) scl_x, scl_y = np.sqrt(cov[0, 0]) * n_std, np.sqrt(cov[1, 1]) * n_std mu_x, mu_y = np.mean(xs_), np.mean(ys_) tsf = transforms.Affine2D().rotate_deg(45).scale(scl_x, scl_y).translate(mu_x, mu_y) ellipse.set_transform(tsf + ax.transData) return ax.add_patch(ellipse) txt_locs, dnm2pa = [], dict() for dnm, c in zip(dnms, cs): xs, ys = df[df[k_dnm] == dnm]['x'].values, df[df[k_dnm] == dnm]['y'].values dnm2pa[dnm] = confidence_ellipse(xs, ys, n_std=1, fc=to_rgba(c, 0.1), ec=to_rgba(c, 0.6)) inv_tsf = ax.transData.inverted() txts = [] for dnm, c in zip(dnms, cs): xs, ys = df[df[k_dnm] == dnm]['x'].values, df[df[k_dnm] == dnm]['y'].values pa = dnm2pa[dnm] verts = pa.get_transform().transform_path(pa.get_path()).vertices verts = inv_tsf.transform(verts) # this is needed to get the vertices properly def close_to_added(x_, y_, threshold=1): for x__, y__ in txt_locs: if np.sqrt((x_ - x__) ** 2 + (y_ - y__) ** 2) < threshold: return True return False def in_other_ellipse(x_, y_): other_dnms = [dnm_ for dnm_ in dnms if dnm_ != dnm] for dnm_ in other_dnms: pa_ = dnm2pa[dnm_] path = pa_.get_transform().transform_path(pa_.get_path()) if inv_tsf.transform_path(path).contains_point((x_, y_)): return True return False x, y, coord_found = None, None, False # find a working coordinate to add the text verts = np.random.permutation(verts) for x, y in verts: if not close_to_added(x, y, threshold=3) and not in_other_ellipse(x, y): coord_found = True break if not coord_found: verts = np.random.permutation(verts) for x, y in verts: if not close_to_added(x, y): coord_found = True break if not coord_found: x, y = np.mean(xs), np.mean(ys) txt_locs.append((x, y)) txts.append(plt.text(x=x, y=y, s=dnm.replace('_', ' '), c=c, ha='center', va='center')) adjust_text(txts) for txt in txts: # add border-color txt.set_path_effects([withStroke(linewidth=1, foreground='w')]) def map_label(dnm: str) -> str: _d_dset = sconfig(f'UTCD.datasets.{dnm}') dm = _d_dset['domain'] asp = _d_dset['aspect'] dnm = dnm.replace('_', ' ') dm = rf'$\it{{{dm}}}$' asp = rf'$\it{{{asp}}}$' return f'{asp}::{dm}::{dnm}' ax.set_aspect('equal') ax.set_xlabel(None) ax.set_ylabel(None) title = f'UTCD dataset Embedded {kind.capitalize()} t-SNE scatter plot' if aspect: title = f'{title} on {aspect.capitalize()}' plt.suptitle(title) lgd = ax.get_legend() # need to have the seaborn legend added first lgd.remove() lgd = fig.legend(title=k_dnm.replace('_', ' '), loc='lower center', bbox_transform=fig.transFigure, ncol=3) for t in lgd.get_texts(): t.set_text(map_label(t.get_text())) legend_v_ratio = 0.15 plt.subplots_adjust(bottom=legend_v_ratio) plt.tight_layout(rect=[0, legend_v_ratio, 1, 1]) if save: title = f'{title}, md={mode}' if n_sample: title = f'{title}, n={n_sample}' save_fig(title) else: plt.show() if __name__ == '__main__': from datasets import load_from_disk mic.output_width = 256 np.random.seed(sconfig('random-seed')) def sanity_check(dsets_nm): path = os_join(get_base_path(), PROJ_DIR, DSET_DIR, 'processed', dsets_nm) mic(path) dset = load_from_disk(path) te, vl = dset['train'], dset['test'] mic(len(te), len(vl)) lbs = vl.features['labels'].feature mic(lbs) mic(vl[60]) mic(lbs.int2str(154)) # sanity_check('UTCD-in') def get_utcd_in(): process_utcd_dataset(domain='in', join=False) # sanity_check('UTCD-in') get_utcd_in() # get_utcd_from_gdrive(domain='out') def get_utcd_out(): process_utcd_dataset(domain='out', join=False) sanity_check('UTCD-out') # get_utcd_out() def output_utcd_info(): df = get_utcd_info() mic(df) df.to_csv(os_join(u.base_path, u.proj_dir, u.dset_dir, 'utcd-info.csv'), float_format='%.3f') # output_utcd_info() vs = VisualizeOverlap() def plot_token_overlap(): # mic(get_utcd_overlap()) kd = 'label' # kd = 'text' # st = 'count' st = 'tfidf' args = dict() if kd == 'text': args = None # sv = False sv = True vs.plot_utcd_overlap( kind=kd, save=sv, title='none', get_overlap_args=dict(stat=st, stat_args=args, weighted_average=False), fig_args=dict( figsize=(11, 7.5), # gridspec_kw=dict(width_ratios=[9, 0.5]) ), cbar_ax=False ) # vs.profile_runtime(lambda: get_utcd_overlap(kind=kd)) # plot_token_overlap() def plot_encoded_overlap(): kd = 'text' # kd = 'label' # mic(vs.get_utcd_embeddings(kind=kd)) # sv = False sv = True cnm = f'{kd} embedding cache' # cs = None # cs = sns.color_palette('husl', n_colors=18) # cs = sns.color_palette('hls', n_colors=18) cs = sns.color_palette(n_colors=18) md = 'cuda' # TODO: running on all data & some # subset of data gives CUDA error??? # n = None n = 3072 * 32 vs.plot_utcd_embeddings(kind=kd, cs=cs, save=sv, cache=cnm, batch_size=1024, mode=md, n_sample=n) # plot_encoded_overlap() def plot_encoded_overlap_aspect(): kd = 'label' # sv = False sv = True cnm = f'{kd} embedding cache' # aspect = None # aspect = 'topic' # aspect = 'intent' # aspect = 'sentiment' for aspect in sconfig('UTCD.aspects'): vs.plot_utcd_embeddings(kind=kd, aspect=aspect, save=sv, cache=cnm) # plot_encoded_overlap_aspect()
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/util/utcd.py
utcd.py
import os import csv import json import time import gzip import random import itertools from os import listdir from os.path import isfile, join as os_join, basename from collections import Counter, defaultdict from typing import List, Tuple, Set, Dict, Union import numpy as np from numpy import argmax, argmin import spacy from sentence_transformers.readers import InputExample from sentence_transformers import util from tqdm import tqdm from stefutil import * from zeroshot_classifier.util import * __all__ = [ 'Dataset', 'SplitDataset', 'get_datasets', 'to_aspect_normalized_datasets', 'nli_template', 'get_nli_data', 'binary_cls_format', 'nli_cls_format', 'encoder_cls_format', 'seq_cls_format', 'binary_explicit_format' ] logger = get_logger('Load Data') ASPECT_NORM_DIRNM = 'aspect-normalized' def _get_nlp(): if not hasattr(_get_nlp, 'nlp'): _get_nlp.nlp = spacy.load("en_core_web_md") _get_nlp.nlp.disable_pipes(['tagger', 'parser', 'attribute_ruler', 'lemmatizer', 'ner']) return _get_nlp.nlp category_map = { "ag_news": "category", "clinc_150": "intent", "dbpedia": "category", "emotion": "sentiment", "sentiment_tweets_2020": "sentiment", "go_emotion": "sentiment", "sgd": "intent", "slurp": "intent", "yahoo": "category", "amazon_polarity": "sentiment", "multi_eurlex": "category", "banking77": "intent", "consumer_finance": "category", "finance_sentiment": "sentiment", "nlu_evaluation": "intent", "patent": "category", "snips": "intent", "yelp": "sentiment", } Dataset = Dict[str, List[str]] # text => labels associated with that text SplitDataset = Dict[str, Union[Dataset, List[str], str]] # train & test splits + metadata including labels & aspect def get_datasets( domain: str = 'in', n_sample: int = None, normalize_aspect: Union[bool, int] = False, dataset_names: Union[str, List[str]] = None ) -> [str, SplitDataset]: """ :param n_sample: If given, a random sample of the entire dataset is selected Intended for debugging :param normalize_aspect: If true, # of training samples for each aspect is normalized via subsampling datasets in the larger aspect If int given, used as seed for sampling :param domain: Needed for aspect normalization Intended for training directly on out-of-domain data, see `zeroshot_classifier/models/bert.py` :param dataset_names: If given, only load the specified datasets """ domain_dir_nm = in_domain_dir_nm if domain == 'in' else out_of_domain_dir_nm path = os_join(u.proj_path, u.dset_dir, domain_dir_nm) if not os.path.exists(path): download_data(domain=domain) datasets = None _keys = {'train', 'test', 'aspect', 'labels'} if normalize_aspect: if isinstance(normalize_aspect, int): assert normalize_aspect == sconfig('random-seed') path = os_join(path, ASPECT_NORM_DIRNM) if not os.path.exists(path): datasets = save_aspect_normalized_datasets(domain=domain) _keys.add('eval') if not datasets: if dataset_names: if isinstance(dataset_names, str): dataset_names = [dataset_names] dataset_names = [f'{dnm}.json' for dnm in dataset_names] else: dataset_names = listdir(path) paths = [os_join(path, f) for f in dataset_names if isfile(os_join(path, f)) and f.endswith('.json')] datasets = dict() it = tqdm(paths, desc='Loading JSON datasets') for path in it: dataset_name = basename(path).split('.')[0] it.set_postfix(dataset=pl.i(dataset_name)) dset = json.load(open(path)) dset: SplitDataset assert set(dset.keys()) == _keys # sanity check datasets[dataset_name] = dset splits = ['train', 'eval', 'test'] if normalize_aspect else ['train', 'test'] if n_sample: for dnm, dsets in datasets.items(): for sp in splits: dset = dsets[sp] n = len(dset) if normalize_aspect else sconfig(f'UTCD.datasets.{dnm}.splits.{sp}.n_text') if n < n_sample: break if normalize_aspect: txts = list(dset.keys()) txts = random.sample(txts, n_sample) else: # TODO: support eval set txts = np.empty(n, dtype=object) for i, t in enumerate(dset.keys()): txts[i] = t txts = np.random.permutation(txts)[:n_sample] dsets[sp] = {t: dset[t] for t in txts} counts = {dnm: {sp: len(dsets[sp]) for sp in splits} for dnm, dsets in datasets.items()} logger.info(f'Datasets loaded w/ {pl.i(counts)}') return datasets def subsample_dataset(dataset: Dataset = None, n_src: int = None, n_tgt: int = None, seed: int = None) -> Dataset: """ Sample texts from text-labels pairs to roughly `n_sample` in total, while maintaining class distribution """ if n_src is None: n_src = sum(len(lbs) for lbs in dataset.values()) assert n_tgt < n_src ratio = n_tgt / n_src d_log = {'#source': n_src, '#target': n_tgt, 'subsample-ratio': f'{round(ratio * 100, 3)}%'} logger.info(f'Subsampling dataset w/ {pl.i(d_log)}... ') cls2txt = defaultdict(set) for txt, lbs in dataset.items(): for lb in lbs: # the same text may be added to multiple classes & hence sampled multiple times, see below cls2txt[lb].add(txt) # so that seed ensures reproducibility; TODO: too slow? cls2txt = {cls: sorted(txts) for cls, txts in cls2txt.items()} cls2count = {cls: len(txts) for cls, txts in cls2txt.items()} # normalize by #pair instead of #text for keeping output #text close to `n_sample` cls2count = {cls: round(c * ratio) for cls, c in cls2count.items()} # goal count for output ret = dict() if seed: random.seed(seed) for cls, c in cls2count.items(): to_sample = c while to_sample > 0: txts = random.sample(cls2txt[cls], to_sample) for t in txts: if t not in ret: # ensure no-duplication in # samples added, since multi-label ret[t] = dataset[t] to_sample -= 1 cls2txt[cls].remove(t) return ret def to_aspect_normalized_datasets( data: Dict[str, SplitDataset], seed: int = None, domain: str = 'in' ) -> Dict[str, SplitDataset]: """ Sample the `train` split of the 9 in-domain datasets so that each `aspect` contains same # of samples Maintain class distribution """ if seed: random.seed(seed) aspect2n_txt = defaultdict(int) for dnm, d_dset in sconfig('UTCD.datasets').items(): if d_dset['domain'] == domain: aspect2n_txt[d_dset['aspect']] += d_dset['splits']['train']['n_text'] logger.info(f'Aspect distribution: {pl.i(aspect2n_txt)}') asp_min = min(aspect2n_txt, key=aspect2n_txt.get) logger.info(f'Normalizing each aspect to ~{pl.i(aspect2n_txt[asp_min])} samples... ') for dnm, d_dset in data.items(): asp = sconfig(f'UTCD.datasets.{dnm}.aspect') if asp != asp_min: n_normed = sconfig(f'UTCD.datasets.{dnm}.splits.train.n_text') * aspect2n_txt[asp_min] / aspect2n_txt[asp] n_src = sconfig(f'UTCD.datasets.{dnm}.splits.train.n_pair') d_dset['train'] = subsample_dataset(dataset=d_dset['train'], n_src=n_src, n_tgt=round(n_normed)) dnm2count = defaultdict(dict) for dnm, d_dset in data.items(): dnm2count[sconfig(f'UTCD.datasets.{dnm}.aspect')][dnm] = len(d_dset['train']) logger.info(f'Dataset counts after normalization: {pl.fmt(dnm2count)}') return data def dataset2train_eval_split(dataset: Dataset, eval_ratio: float = 0.1, seed: int = None) -> Dict[str, Dataset]: """ Split training set into train & eval set, try to maintain class distribution in both sets """ if seed: random.seed(seed) # just like in `to_aspect_normalized_datasets::normalize_single`; the same text may be added to multiple classes cls2txt: Dict[str, Set[str]] = defaultdict(set) for txt, lbs in dataset.items(): for lb in lbs: cls2txt[lb].add(txt) tr, vl = dict(), dict() txts_added = set() # so that the same text is not added to both train & eval set for cls, txts in cls2txt.items(): n_eval = max(round(len(txts) * eval_ratio), 1) # at least 1 sample in eval for each class txts_vl = random.sample(txts, n_eval) txts_tr = txts - set(txts_vl) for t in txts_tr: if t not in txts_added: tr[t] = dataset[t] txts_added.add(t) for t in txts_vl: if t not in txts_added: vl[t] = dataset[t] txts_added.add(t) assert len(tr) + len(vl) == len(dataset) # sanity check def dset2meta(dset: Dataset): labels = set().union(*dataset.values()) return {'#text': len(dset), '#label': len(labels), 'labels': list(labels)} logger.info(f'Training set after split: {pl.i(dset2meta(tr))}') logger.info(f'Eval set after split: {pl.i(dset2meta(vl))}') return dict(train=tr, eval=vl) def save_aspect_normalized_datasets(domain: str = 'in'): seed = sconfig('random-seed') domain_dir_nm = in_domain_dir_nm if domain == 'in' else out_of_domain_dir_nm path = os_join(u.proj_path, u.dset_dir, domain_dir_nm) dsets = get_datasets(domain=domain) dsets = to_aspect_normalized_datasets(dsets, seed=seed, domain=domain) out_path = os.path.join(path, ASPECT_NORM_DIRNM) os.makedirs(out_path, exist_ok=True) ret = dict() for dnm, dsets_ in dsets.items(): dsets__ = dataset2train_eval_split(dsets_.pop('train'), seed=seed) dsets__.update(dsets_) mic(dsets__.keys()) path_out = os.path.join(out_path, f'{dnm}.json') logger.info(f'Saving normalized {pl.i(dnm)} dataset to {pl.i(path_out)}... ') with open(path, 'w') as f: json.dump(dsets__, f) ret[dnm] = dsets__ return ret def get_nli_data(): nli_dataset_path = 'dataset/AllNLI.tsv.gz' if not os.path.exists(nli_dataset_path): util.http_get('https://sbert.net/datasets/AllNLI.tsv.gz', nli_dataset_path) label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] dev_samples = [] with gzip.open(nli_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: label_id = label2int[row['label']] if row['split'] == 'train': train_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=label_id)) else: dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=label_id)) return train_samples, dev_samples def binary_cls_format( dataset: SplitDataset = None, sampling='rand', split: str = 'train', mode='vanilla' ): ca.check_mismatch('Data Negative Sampling', sampling, ['rand', 'vect']) examples = [] aspect = dataset['aspect'] if split in ['train', 'eval']: aspect_token, sep_token = None, None label_un_modified = mode != 'implicit' ca(training_strategy=mode) if mode in ['vanilla', 'implicit-on-text-encode-aspect', 'implicit-on-text-encode-sep', 'explicit']: label_list = dataset['labels'] if mode == 'implicit-on-text-encode-aspect': aspect_token = sconfig('training.implicit-on-text.encode-aspect.aspect2aspect-token')[aspect] elif mode == 'implicit-on-text-encode-sep': sep_token = sconfig('training.implicit-on-text.encode-sep.aspect-sep-token') elif mode == 'implicit': label_list = ['{} {}'.format(label, dataset['aspect']) for label in dataset['labels']] else: raise NotImplementedError(f'{pl.i(mode)} not supported yet') example_list = [x for x in dataset[split].keys()] vects, label_vectors = None, None if sampling == 'vect': nlp = _get_nlp() label_vectors = {label: nlp(label) for label in label_list} start = time.time() vects = list(nlp.pipe(example_list, n_process=4, batch_size=128)) print('Time Elapsed {} ms'.format((time.time() - start) * 1000)) for i, (text, labels) in enumerate(dataset[split].items()): if label_un_modified: true_labels = labels else: true_labels = ['{} {}'.format(label, dataset['aspect']) for label in labels] other_labels = [label for label in label_list if label not in true_labels] if mode == 'implicit-on-text-encode-aspect': text = f'{aspect_token} {text}' elif mode == 'implicit-on-text-encode-sep': text = f'{aspect} {sep_token} {text}' # Generate label for true example for label in true_labels: examples.append(InputExample(texts=[text, label], label=1)) # Generate sample based on sampling strategy if sampling == 'rand': random.seed(i) if len(other_labels) >= 2: random_label = random.sample(other_labels, k=2) # As expected by sentence-transformer::CrossEncoder examples.append(InputExample(texts=[text, random_label[0]], label=float(0))) examples.append(InputExample(texts=[text, random_label[1]], label=float(0))) elif len(other_labels) > 0: examples.append(InputExample(texts=[text, other_labels[0]], label=float(0))) elif sampling == 'vect': if len(other_labels) >= 2: text_vector = vects[i] other_label_vectors = [label_vectors[label] for label in other_labels] scores = [text_vector.similarity(vector) for vector in other_label_vectors] examples.append(InputExample(texts=[text, other_labels[argmax(scores)]], label=float(0))) examples.append(InputExample(texts=[text, other_labels[argmin(scores)]], label=float(0))) elif len(other_labels) > 0: examples.append(InputExample(texts=[text, other_labels[0]], label=float(0))) else: # test split aspect_token = sconfig('training.implicit-on-text.encode-aspect.aspect2aspect-token')[aspect] sep_token = sconfig('training.implicit-on-text.encode-sep.aspect-sep-token') for text, labels in dataset['test'].items(): for label in labels: if mode in ['vanilla', 'explicit']: pass elif mode == 'implicit': label = '{} {}'.format(label, aspect) elif mode == 'implicit-on-text-encode-aspect': text = f'{aspect_token} {text}' elif mode == 'implicit-on-text-encode-sep': text = f'{aspect} {sep_token} {text}' else: raise NotImplementedError(f'{pl.i(mode)} not supported yet') examples.append(InputExample(texts=[text, label], label=1)) return examples def nli_template(label, category): if category == 'topic': return 'This text belongs to the topic of {}'.format(label) elif category == 'intent': return 'This text expresses the intent of {}'.format(label) elif category == 'sentiment': return 'This text expresses a {} sentiment'.format(label) def nli_cls_format(data, name=None, sampling='rand', train=True): examples = [] if train: label_list = data['labels'] example_list = [x for x in data['train'].keys()] vects, label_vectors = None, None if sampling == 'vect': nlp = _get_nlp() label_vectors = {label: nlp(label) for label in label_list} start = time.time() vects = list(nlp.pipe(example_list, n_process=4, batch_size=128)) print('Time Elapsed {} ms'.format((time.time() - start) * 1000)) print('Generating {} examples'.format(name)) for i, (text, labels) in enumerate(tqdm(data['train'].items())): true_labels = labels other_labels = [label for label in label_list if label not in true_labels] # Generate label for true example for label in true_labels: examples.append(InputExample(texts=[text, nli_template(label, data['aspect'])], label=1)) # Generate sample based on sampling strategy if sampling == 'rand': random.seed(i) if len(other_labels) >= 2: random_label = random.sample(other_labels, k=2) examples.append(InputExample(texts=[text, nli_template(random_label[0], data['aspect'])], label=0)) examples.append(InputExample(texts=[text, nli_template(random_label[1], data['aspect'])], label=0)) elif len(other_labels) > 0: examples.append(InputExample(texts=[text, nli_template(other_labels[0], data['aspect'])], label=0)) elif sampling == 'vect': if len(other_labels) >= 2: text_vector = vects[i] other_label_vectors = [label_vectors[label] for label in other_labels] scores = [text_vector.similarity(vector) for vector in other_label_vectors] examples.append(InputExample( texts=[text, nli_template(other_labels[argmax(scores)], data['aspect'])], label=0)) examples.append(InputExample( texts=[text, nli_template(other_labels[argmin(scores)], data['aspect'])], label=0)) elif len(other_labels) > 0: examples.append(InputExample(texts=[text, nli_template(other_labels[0])], label=0)) else: for text, labels in data['test'].items(): for label in labels: examples.append(InputExample(texts=[text, nli_template(label, data['aspect'])], label=1)) return examples WARN_NOT_ENOUGH_NEG_LABEL = 'Not Enough Negative Label' def encoder_cls_format( arr: List[Tuple[str, str]], name=None, sampling='rand', train=True, neg_sample_for_multi=False, show_warnings=True ) -> List[InputExample]: """ :param arr: List of dataset (text, descriptive label) pairs :param name: Dataset name :param sampling: Sampling approach, one of [`rand`, `vect`] :param train: If true, negative samples are generated Intended for training :param neg_sample_for_multi: If true, negative samples are added for each positive labels for a text :param show_warnings: If true, warning for missing negative labels are logged """ examples = [] if train: nlp = _get_nlp() label_list = list(dict.fromkeys([example[1] for example in arr])) label_vectors = {label: nlp(label) for label in label_list} example_list = [x[0] for x in arr] vects = None if sampling == 'vect': start = time.time() vects = list(nlp.pipe(example_list, n_process=4, batch_size=128)) print('Time Elapsed {} ms'.format((time.time() - start) * 1000)) # count instances count = Counter(example_list) has_multi_label = any((c > 1) for c in count.values()) txt2lbs = None if has_multi_label: # Potentially all valid labels for each text arr_ = sorted(arr) # map from unique text to all possible labels txt2lbs = {k: set(lb for txt, lb in v) for k, v in itertools.groupby(arr_, key=lambda pair: pair[0])} logger.info(f'Generating examples for dataset {pl.i(name)}, with labels {pl.i(label_list)}... ') print('Generating {} examples'.format(name)) for i, element in enumerate(tqdm(arr)): true_label = element[1] other_labels = [label for label in label_list if label != element[1]] # Generate label for true example examples.append(InputExample(texts=[true_label, element[0]], label=float(1))) # Generate sample based on sampling strategy if has_multi_label and neg_sample_for_multi: assert sampling == 'rand' # TODO: vect not supported random.seed(i) txt = element[0] neg_pool = set(label_list) - txt2lbs[txt] def neg_sample2label(lb: str) -> InputExample: return InputExample(texts=[lb, txt], label=float(0)) if len(neg_pool) < 2: # Ensures 2 negative labels are sampled, intended to work with existing Jaseci training code warn_name = WARN_NOT_ENOUGH_NEG_LABEL if len(neg_pool) == 0: warn_name = f'{warn_name}, severe' neg_label = 'dummy negative label' else: neg_label = list(neg_pool)[0] examples.extend([neg_sample2label(neg_label), neg_sample2label(neg_label)]) if show_warnings: logger.warning(f'{pl.s(warn_name, c="y", bold=True)}: # negative labels for text less ' f'than {2}: {pl.i(text=txt, pos_labels=txt2lbs[txt], neg_labels=neg_pool)}') else: examples.extend([neg_sample2label(neg_label) for neg_label in random.sample(neg_pool, k=2)]) else: if sampling == 'rand' and count[element[0]] < 2: random.seed(i) random_label = random.sample(other_labels, k=2) examples.append(InputExample(texts=[random_label[0], element[0]], label=float(0))) examples.append(InputExample(texts=[random_label[1], element[0]], label=float(0))) elif sampling == 'vect' and count[element[0]] < 2: text_vector = vects[i] other_label_vectors = [label_vectors[label] for label in other_labels] scores = [text_vector.similarity(vector) for vector in other_label_vectors] examples.append(InputExample(texts=[other_labels[argmax(scores)], element[0]], label=float(0))) examples.append(InputExample(texts=[other_labels[argmin(scores)], element[0]], label=float(0))) else: for element in arr: examples.append(InputExample(texts=[element[1], element[0]], label=float(1))) return examples def seq_cls_format(data, all=False): train = [] test = [] label_map = {} if all: for dataset, item in data.items(): for label in item['labels']: if label not in label_map: label_map[label] = len(label_map) for k, v in item['train'].items(): # loop through each true label for label in v: train.append({'text': k, 'label': label_map[label], 'label_name': label}) for k, v in item['test'].items(): # loop through each true label for label in v: test.append({'text': k, 'label': label_map[label], 'label_name': label}) else: label_map = {k: i for i, k in enumerate(data['labels'])} for k, v in data['train'].items(): # loop through each true label for label in v: train.append({'text': k, 'label': label_map[label], 'label_name': label}) for k, v in data['test'].items(): # loop through each true label for label in v: test.append({'text': k, 'label': label_map[label], 'label_name': label}) return train, test, label_map class ExplicitInputExample: def __init__(self, texts, label, aspect) -> None: self.texts = texts self.label = label self.aspect = aspect def __str__(self): return "<ExplicitInputExample> label: {}, text: {}".format(str(self.label), self.text) def binary_explicit_format(dataset): aspect_map = {"sentiment": 0, "intent": 1, "topic": 2} train = [] for name, data in dataset.items(): aspect = data['aspect'] label_list = data['labels'] for i, (text, labels) in enumerate(tqdm(data['train'].items(), desc=name)): true_labels = labels other_labels = [label for label in label_list if label not in true_labels] # Generate label for true example for label in true_labels: train.append(ExplicitInputExample(texts=[text, label], label=1, aspect=aspect_map[aspect])) random.seed(i) if len(other_labels) >= 2: random_label = random.sample(other_labels, k=2) train.append( ExplicitInputExample(texts=[text, random_label[0]], label=0, aspect=aspect_map[aspect])) train.append( ExplicitInputExample(texts=[text, random_label[1]], label=0, aspect=aspect_map[aspect])) elif len(other_labels) > 0: train.append( ExplicitInputExample(texts=[text, other_labels[0]], label=0, aspect=aspect_map[aspect])) return train if __name__ == '__main__': mic.output_width = 512 random.seed(sconfig('random-seed')) def check_sampling(): data = get_datasets(domain='in') data = to_aspect_normalized_datasets(data) for dnm, d_dset in data.items(): mic(dnm, len(d_dset['train'])) c = Counter() for txt, lbs in d_dset['train'].items(): c.update(lbs) mic(c, len(c)) # check_sampling() save_aspect_normalized_datasets(domain='in') save_aspect_normalized_datasets(domain='out')
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/util/load_data.py
load_data.py
import os.path import re import math import json import itertools from os.path import join as os_join from typing import List, Tuple, Dict, Callable, Union, Optional, Any from collections import Counter import numpy as np import pandas as pd from scipy.stats import norm from transformers import AutoTokenizer import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from stefutil import * from zeroshot_classifier.util.data_path import * __all__ = ['ConfigDict'] tokenize_modes = ['re', 'bert', 'gpt2'] def _re_call() -> Callable[[str], int]: if not hasattr(_re_call, 'token_pattern'): # taken from sklearn.CountVectorizer _re_call.token_pattern = re.compile(r'(?u)\b\w+\b') return lambda x: len(_re_call.token_pattern.findall(x)) def _hf_call(model_name) -> Callable[[Union[str, List[str]]], Union[int, List[int]]]: if not hasattr(_hf_call, 'd'): _hf_call.d = {} d = _hf_call.d if model_name not in d: d[model_name] = AutoTokenizer.from_pretrained(model_name) def _call(x): ids = d[model_name](x)['input_ids'] if isinstance(x, str): return len(ids) else: return [len(i) for i in ids] return _call def get_tokenizer_len(s: Union[str, List[str]], mode: str = 're') -> Union[int, List[int]]: assert mode in ['re', 'bert', 'gpt2'] if not hasattr(get_tokenizer_len, 'd_f'): get_tokenizer_len.d_f = dict( re=_re_call(), bert=_hf_call('bert-base-cased'), gpt2=_hf_call('gpt2') ) return get_tokenizer_len.d_f[mode](s) class ConfigDict: d = { 'baselines': { 'gpt2-nvidia': { 'templates': [ 'To which category does the following document belong? : {}', 'To which category does the following text belong? : {}', 'To which category does the text belong? : {}', 'To which category does the article belong? : {}', 'How would you describe the following document? : as {}', 'How would you describe the text? : as {}', 'How would you describe the following text? : as {}', 'Which best describes the text? : {}', 'Which best describes the document? : {}', 'Which best describes the following document? : {}', 'Which best describes the following text? : {}', 'The following document is _ ? : {}', 'The following text is _ ? : {}', 'The text is _ ? : {}', 'The document is _ ? : {}', 'How is the text best described? : {}', 'How is the document best described? : {}', 'How is the following text best described? : {}', 'How is the following document best described? : {}', 'Which of these choices best describes the text? : {}', 'Which of these options best describes the text? : {}', 'Which of these choices best describes the document? : {}', 'Which of these options best describes the document? : {}', 'Which of these categories best describes the following document? : {}', 'Which of these choices best describes the following document? : {}', 'Which of these options best describes the following text? : {}' ], 'label-descriptors': dict( # string label to natural language descriptor, as in paper ag_news={ 'World': 'World News', 'Sports': 'Sports', 'Business': 'Business', 'Sci/Tech': 'Science & Technology' } ) }, 'bert-mnli': dict( templates=dict( sentiment='This text expresses a {} sentiment', intent='This text expresses the intent of {}', topic='This text belongs to the topic of {}' ) ), }, 'UTCD': dict( datasets=dict( # in-domain evaluation has the same labels as training go_emotion=dict( path='in-domain/go_emotion', aspect='sentiment', eval_labels_same=True, domain='in', name='GoEmotions', name_compact='GoEmotions' ), sentiment_tweets_2020=dict( path='in-domain/sentiment_tweets_2020', aspect='sentiment', eval_labels_same=True, domain='in', name='TweetEval', name_compact='TweetEval' ), emotion=dict( path='in-domain/emotion', aspect='sentiment', eval_labels_same=True, domain='in', name='Emotion', name_compact='Emotion' ), # not `eval_labels_same` := has some unique test labels sgd=dict( path='in-domain/sgd', aspect='intent', eval_labels_same=False, domain='in', name='Schema-Guided Dialogue', name_compact='SGD' ), clinc_150=dict( path='in-domain/clinc_150', aspect='intent', eval_labels_same=True, domain='in', name='Clinc-150', name_compact='Clinc-150' ), slurp=dict( path='in-domain/slurp', aspect='intent', eval_labels_same=False, domain='in', name='SLURP', name_compact='SLURP' ), ag_news=dict( path='in-domain/ag_news', aspect='topic', eval_labels_same=True, domain='in', name='AG News', name_compact='AG News' ), dbpedia=dict( path='in-domain/dbpedia', aspect='topic', eval_labels_same=True, domain='in', name='DBpedia', name_compact='DBpedia' ), yahoo=dict( path='in-domain/yahoo', aspect='topic', eval_labels_same=True, domain='in', name='Yahoo Answer Topics', name_compact='Yahoo' ), # Out-of-domain datasets: only test split used & intended for evaluation amazon_polarity=dict( path='out-of-domain/amazon_polarity', aspect='sentiment', eval_labels_same=True, domain='out', name='Amazon Review Polarity', name_compact='Amazon Polarity' ), finance_sentiment=dict( path='out-of-domain/finance_sentiment', aspect='sentiment', eval_labels_same=True, domain='out', name='Financial Phrase Bank', name_compact='Fin. Phrase Bank' ), yelp=dict( path='out-of-domain/yelp', aspect='sentiment', eval_labels_same=True, domain='out', name='Yelp Review', name_compact='Yelp' ), banking77=dict( path='out-of-domain/banking77', aspect='intent', eval_labels_same=True, domain='out', name='Banking77', name_compact='Banking77' ), snips=dict( path='out-of-domain/snips', aspect='intent', eval_labels_same=True, domain='out', name='SNIPS', name_compact='SNIPS' ), nlu_evaluation=dict( path='out-of-domain/nlu_evaluation', aspect='intent', eval_labels_same=True, domain='out', name='NLU Evaluation', name_compact='NLU Eval' ), multi_eurlex=dict( path='out-of-domain/multi_eurlex', aspect='topic', eval_labels_same=True, domain='out', name='MultiEURLEX', name_compact='MultiEURLEX' ), patent=dict( path='out-of-domain/patent', aspect='topic', eval_labels_same=True, domain='out', name='Big Patent', name_compact='Patent' ), consumer_finance=dict( path='out-of-domain/consumer_finance', aspect='topic', eval_labels_same=True, domain='out', name='Consumer Finance Complaints', name_compact='Consumer Finance' ) ), aspects=['sentiment', 'intent', 'topic'], domains=['in', 'out'], num_aspect=3, num_dataset_per_aspect=6, num_dataset_per_domain_per_aspect=3, num_domain=2, num_dataset_per_domain=9, dataset_ext='json' # all in json ), 'training': { 'implicit-on-text': { 'encode-aspect': { 'aspect2aspect-token': dict(sentiment='<|sentiment|>', intent='<|intent|>', topic='<|topic|>') }, 'encode-sep': {'aspect-sep-token': '<|ASPECT-SEP|>'} }, 'strategies': [ 'vanilla', 'implicit', # prepend aspect text before each label 'implicit-on-text-encode-aspect', # encode each of the 3 aspects as 3 special tokens, followed by text 'implicit-on-text-encode-sep', # encode aspects normally, but add special token between aspect and text 'explicit' # see `zeroshot_classifier.explicit.binary_bert.py` for explicit training ] }, 'random-seed': 77, 'check-arg': [ dict( display_name='Model Name', attr_name='model_name', accepted_values=[ 'bert-seq-cls', # not a Zeroshot framework, a supervised learning upperbound 'binary-bert', 'bert-nli', 'bi-encoder', 'dual-bi-encoder', 'gpt2-nvidia' ] ), dict( display_name='Dataset Domain', attr_name='dataset_domain', accepted_values=['in', 'out'] ), dict( display_name='Sampling Strategy', attr_name='sampling_strategy', accepted_values=['rand', 'vect', 'none', 'NA'] ), dict( display_name='Training strategy', attr_name='training_strategy', accepted_values=[ 'vanilla', 'implicit', 'implicit-on-text-encode-aspect', 'implicit-on-text-encode-sep', 'explicit' ] ), dict( display_name='GPT2 Training Strategy', attr_name='gpt2_training_strategy', accepted_values=['vanilla', 'implicit', 'explicit'] ) ] } def __init__(self, fast: bool = False): """ :param fast: If true, token length statistics on all datasets will not be computed Intended for fast loading """ self.fast = fast self.d = ConfigDict.d # TODO: just use the same dict self.d_n_toks = self.extract_utcd_meta() # Mutates config_dict def _path2dataset_info(self, d: Dict) -> Optional[Tuple[Dict, Dict, Dict]]: """ :return: 3-tuple of ( dataset label information per split for `config`, dataset token information per dataset for `config`, number of tokens for plot ) """ path = os_join(BASE_PATH, PROJ_DIR, DSET_DIR, f'{d["path"]}.json') assert os.path.exists(path) # datasets must be present to extract config metadata with open(path) as fl: dsets: Dict = json.load(fl) def split2info(split, dset: Dict[str, List[str]], count_token_length: bool = True) -> Dict: # Based on heuristics on how the `json` are stored # creating a list of all the strings consume memory for prohibitively large datasets n_text_, n_pair_ = len(dset.keys()), sum([len(lbs) for lbs in dset.values()]) lbs_uniq = set().union(*dset.values()) n_multi_label = sum([len(lbs_) > 1 for lbs_ in dset.values()]) txt_n_toks, lb_n_toks = None, None count_len = not self.fast and count_token_length if count_len: txt_n_toks, lb_n_toks = dict(), dict() for mode in tokenize_modes: n, desc_t, desc_l = 16, f'{split}-{mode}-text', f'{split}-{mode}-label' lb2tokenize_len = {lb: get_tokenizer_len(lb, mode) for lb in lbs_uniq} counter_txt, counter_lb = Counter(), Counter() if mode == 're': for t in tqdm(dset.keys(), total=len(dset), desc=f'{desc_t:>{n}}'): counter_txt[get_tokenizer_len(t, mode)] += 1 else: batch_size = 2048*2 for grp in tqdm( group_n(dset.keys(), batch_size), total=math.ceil(len(dset) / batch_size), desc=f'{desc_t:>{n}}' ): lens: List[int] = get_tokenizer_len(list(grp), mode) counter_txt.update(lens) for t in tqdm(dset.values(), desc=f'{desc_l:>{n}}'): for lb in t: counter_lb[lb2tokenize_len[lb]] += 1 txt_n_toks[mode], lb_n_toks[mode] = counter_txt, counter_lb ret: Dict[str, Any] = dict( labels=sorted(lbs_uniq), n_label=len(lbs_uniq), n_text=n_text_, n_pair=n_pair_, multi_label=n_text_ < n_pair_, n_multi_label=n_multi_label ) if count_len: ret.update(dict(txt_n_toks=txt_n_toks, lb_n_toks=lb_n_toks)) return ret labels, aspect = dsets.pop('labels'), dsets.pop('aspect') assert aspect == d['aspect'] d_out = { # ignore out of domain train split for potentially too large split: split2info(split, dset, count_token_length=not (split == 'train' and d['domain'] == 'out')) for split, dset in dsets.items() } # Labels for each split assert all(split in ['train', 'test'] for split in d_out.keys()) assert set(labels) == set().union(*[set(d['labels']) for d in d_out.values()]) if not self.fast: # sum over all splits of the dataset for token length computation txt_n_toks_all = [d_out.pop('txt_n_toks') for d_out in d_out.values()] lb_n_toks_all = [d_out.pop('lb_n_toks') for d_out in d_out.values()] txt_n_toks_all = [e for e in txt_n_toks_all if e] # pop from the dict, then remove them for stats lb_n_toks_all = [e for e in lb_n_toks_all if e] txt_n_toks_all = {mode: sum([c[mode] for c in txt_n_toks_all], start=Counter()) for mode in tokenize_modes} lb_n_toks_all = {mode: sum([c[mode] for c in lb_n_toks_all], start=Counter()) for mode in tokenize_modes} def counter2mean(c: Counter) -> float: lens, counts = zip(*c.items()) return np.average(lens, weights=counts) avg_toks = { **{f'{mode}-txt_avg_tokens': counter2mean(txt_n_toks_all[mode]) for mode in tokenize_modes}, **{f'{mode}-lb_avg_tokens': counter2mean(lb_n_toks_all[mode]) for mode in tokenize_modes} } d_n_tok = dict(text=txt_n_toks_all, label=lb_n_toks_all) else: avg_toks, d_n_tok = None, None if d['eval_labels_same']: assert d_out['train']['labels'] == d_out['test']['labels'] return d_out, avg_toks, d_n_tok def extract_utcd_meta(self) -> Dict: d_utcd = self.d['UTCD'] d_dsets: Dict = d_utcd['datasets'] logger = get_logger('Extracting UTCD metadata') d_n_toks = dict() it = d_dsets.items() if self.fast: it = tqdm(it, desc='Extracting UTCD metadata', total=len(d_dsets)) for dnm, d_dset in it: if self.fast: it.set_postfix(dnm=pl.i(dnm)) else: logger.info(f'Processing {pl.i(dnm)}... ') d_dset['splits'], d_avg_tok, d_n_toks[dnm] = self._path2dataset_info(d_dset) if d_avg_tok is not None: d_dset.update(d_avg_tok) dnms = sorted(d_dsets) # All datasets, in- and out-of-domain, share the same dataset <=> id mapping d_utcd['dataset_id2name'] = dnms d_utcd['dataset_name2id'] = {dnm: i for i, dnm in enumerate(dnms)} return d_n_toks def plot_utcd_n_toks(d_n_toks: Dict, domain: str, save=True): def weighted_quantile(values, quantiles, sample_weight=None, values_sorted=False, old_style=False): # Credit: https://stackoverflow.com/a/29677616/10732321 """ Very close to numpy::percentile, but supports weights. NOTE: quantiles should be in [0, 1]! :param values: numpy array with data :param quantiles: array-like with many quantiles needed :param sample_weight: array-like of the same length as `array` :param values_sorted: bool, if True, then will avoid sorting of initial array :param old_style: if True, will correct output to be consistent with numpy.percentile. :return: numpy.array with computed quantiles. """ values = np.array(values) quantiles = np.array(quantiles) if sample_weight is None: sample_weight = np.ones(len(values)) sample_weight = np.array(sample_weight) assert np.all(quantiles >= 0) and np.all(quantiles <= 1), \ 'quantiles should be in [0, 1]' if not values_sorted: sorter = np.argsort(values) values = values[sorter] sample_weight = sample_weight[sorter] weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight if old_style: # To be convenient with numpy.percentile weighted_quantiles -= weighted_quantiles[0] weighted_quantiles /= weighted_quantiles[-1] else: weighted_quantiles /= np.sum(sample_weight) return np.interp(quantiles, weighted_quantiles, values) logger = get_logger('Token Lengths Distribution Plot') d_df = dict() text_types = ['text', 'label'] for text_type, mode in itertools.product(text_types, tokenize_modes): logger.info(f'Processing {pl.i(text_type)} with {pl.i(mode)} tokenization') def dnm2dset(dnm: str) -> List[Tuple[int, int, str]]: counter = d_n_toks[dnm][text_type][mode] lens, counts = zip(*counter.items()) return [(l, c, dnm) for l, c in zip(lens, counts)] toks_unrolled = sum([dnm2dset(dnm) for dnm in d_n_toks.keys()], start=[]) # `count` is a pd.DataFrame specific attribute d_df[(text_type, mode)] = pd.DataFrame(toks_unrolled, columns=['n_token', 'counts', 'dataset_name']) fig, axes = plt.subplots(2, 3, figsize=(16, 9)) n_tt, n_tm = len(text_types), len(tokenize_modes) for i_row, i_col in itertools.product(range(n_tt), range(n_tm)): text_type, mode = text_types[i_row], tokenize_modes[i_col] logger.info(f'Plotting {pl.i(text_type)} with {pl.i(mode)} tokenization') ax = axes[i_row, i_col] df = d_df[(text_type, mode)] legend = i_row == 0 and i_col == 0 sns.histplot( data=df, x='n_token', hue='dataset_name', weights='counts', kde=text_type == 'text', kde_kws=dict(gridsize=2048), discrete=True, common_norm=False, stat='density', palette='husl', legend=legend, ax=ax ) ax.set(xlabel=None, ylabel=None) ax.set_title(f'{text_type} with {mode} tokenization') if text_type == 'text': # empirical, cos there are outliers for `text`s p = norm().cdf(3) # quantile at 3std mi = df.n_token.min() ma = round(weighted_quantile(df.n_token, [p], sample_weight=df.counts)[0]) ax.set_xlim([mi, ma]) else: xticks = ax.get_xticks() # enforce integer ticks ax.set_xticks(list(range(math.floor(xticks.min()), math.ceil(xticks.max()) + 1))) domain = 'in-domain' if domain == 'in' else 'out-of-domain eval' title = f'Tokenization length distribution across {domain} datasets' plt.suptitle(title) fig.supxlabel('#token') fig.supylabel('Density') if save: # this function is for standalone execution, importing here prevents circular import from zeroshot_classifier.util.util import save_fig save_fig(title) else: plt.show() if __name__ == '__main__': config_d = ConfigDict(fast=False) # If run standalone, compute #token stats def plot_toks(): d_n_tok = config_d.d_n_toks for dom in ['in']: # plot only in-domain data as out-of-domain tokens lengths are too long, # resulting in prohibitively large # of patches for bar-plot to terminate soon d_n_tok_ = {dnm: v for dnm, v in d_n_tok.items() if get(config_d.d, f'UTCD.datasets.{dnm}.domain') == dom} plot_utcd_n_toks(d_n_tok_, domain=dom, save=True) # plot_toks() def write_config(): mic(config_d.d) with open(os_join(BASE_PATH, PROJ_DIR, PKG_NM, 'util', 'config.json'), 'w') as f: json.dump(config_d.d, f, indent=4) write_config()
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/util/config.py
config.py
import math import datetime from os.path import join as os_join from torch.utils.tensorboard import SummaryWriter from transformers import Trainer, TrainingArguments, TrainerCallback import datasets from stefutil import * logger = get_logger('Explicit Trainer') class MyTrainer(Trainer): """ Override `compute_loss` for getting training stats """ def __init__(self, name: str = None, with_tqdm: bool = True, disable_train_metrics: bool = True, **kwargs): super().__init__(**kwargs) self.name = name self.with_tqdm = with_tqdm self.disable_train_metrics = disable_train_metrics self._replace_callback() self.acc = datasets.load_metric('accuracy') d_log = dict(with_tqdm=with_tqdm, disable_train_metrics=disable_train_metrics) self.logger = get_logger('Explicit Trainer') self.logger.info(f'Trainer initialized w/ {pl.i(d_log)}') def _replace_callback(self): callbacks = self.callback_handler.callbacks # Trainer adds a `PrinterCallback` or a `ProgressCallback`, replace all that with my own, # see `MyProgressCallback` rmv = [ "<class 'transformers.trainer_callback.ProgressCallback'>", "<class 'transformers.trainer_callback.PrinterCallback'>" ] self.callback_handler.callbacks = [c for c in callbacks if str(c.__class__) not in rmv] if self.with_tqdm: self.add_callback(MyProgressCallback()) self.add_callback(MyTrainStatsMonitorCallback(trainer=self, with_tqdm=self.with_tqdm)) def compute_loss(self, model, inputs, return_outputs=False): """ How the loss is computed by Trainer. By default, all models return the loss in the first element. Subclass and override for custom behavior. """ if self.label_smoother is not None and "labels" in inputs: labels = inputs.pop("labels") else: labels = None outputs = model(**inputs) # ========================== Begin of added ========================== if model.training and not self.disable_train_metrics: labels_, logits = inputs['labels'].detach(), outputs.logits.detach() acc = self.acc.compute(predictions=logits.argmax(dim=-1), references=labels_)['accuracy'] self.log(dict(src='compute_loss', acc=acc)) # ========================== End of added ========================== # Save past state if it exists # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index] if labels is not None: loss = self.label_smoother(outputs, labels) else: # We don't use .loss here since the model may return tuples instead of ModelOutput. loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] return (loss, outputs) if return_outputs else loss class MyTrainStatsMonitorCallback(TrainerCallback): """ Supports colored terminal output, logging file write, data sent to tensorboard for plotting Evaluation during training **not supported** """ def __init__(self, trainer: MyTrainer, with_tqdm: bool = True): self.mode = 'eval' self.t_strt, self.t_end = None, None self.trainer = trainer self.name = self.trainer.name self.logger, self.logger_fl, self.writer = None, None, None self.ls = None args = trainer.args n_ep = args.num_train_epochs bsz = args.per_device_train_batch_size * args.gradient_accumulation_steps n_data = len(trainer.train_dataset) n_step = max(math.ceil(n_data / bsz), 1) * n_ep self.prettier = MlPrettier(ref=dict(step=n_step, epoch=n_ep)) self.out_dict = None def on_train_begin(self, args: TrainingArguments, state, control, **kwargs): self.mode = 'train' self.logger = get_logger(self.name) mdl_type = self.trainer.model.__class__.__qualname__ output_dir = self.trainer.args.output_dir path_log = os_join(output_dir, f'{mdl_type} train.log') self.logger_fl = get_logger(name=self.name, kind='file-write', file_path=path_log) self.writer = SummaryWriter(os_join(output_dir, f'tb')) self.ls = LogStep( trainer=self.trainer, prettier=self.prettier, logger=self.logger, file_logger=self.logger_fl, tb_writer=self.writer ) conf = self.trainer.model.config.to_dict() train_args = self.trainer.args.to_dict() self.logger.info(f'Training launched on model {pl.i(mdl_type)}, {pl.fmt(conf)} ' f'with training args {pl.fmt(train_args)}... ') self.logger_fl.info(f'Training launched on model {pl.i(mdl_type)}, {pl.id(conf)} ' f'with training args {pl.id(train_args)}... ') self.t_strt = datetime.datetime.now() def on_train_end(self, args: TrainingArguments, state, control, **kwargs): self.t_end = datetime.datetime.now() t = fmt_delta(self.t_end - self.t_strt) self.logger.info(f'Training completed in {pl.i(t)} ') self.logger_fl.info(f'Training completed in {t} ') self.mode = 'eval' def on_log(self, args, state, control, logs=None, **kwargs): if state.is_local_process_zero: step = state.global_step in_train = self.trainer.model.training if in_train and 'src' in logs and logs['src'] == 'compute_loss': del logs['src'] self.out_dict = logs elif in_train and all('runtime' not in k for k in logs): d_log = dict(step=step, epoch=state.epoch, lr=logs['learning_rate'], loss=logs['loss']) if not self.trainer.disable_train_metrics: d_log['sp_cls_acc'] = self.out_dict['acc'] self.ls(d_log, training=in_train, to_console=not self.trainer.with_tqdm) elif not in_train and 'eval_loss' in logs: d_log = dict(step=step, epoch=int(state.epoch), loss=logs['eval_loss'], asp_cls_acc=logs['eval_acc']) self.ls(d_log, training=in_train, to_console=not self.trainer.with_tqdm) else: self.logger.info(pl.i(logs)) self.logger_fl.info(pl.nc(logs))
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/util/explicit_v2_pretrain.py
explicit_v2_pretrain.py
import json from os.path import join as os_join from typing import List, Dict, Union, Any from collections import defaultdict import numpy as np import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from stefutil import * from zeroshot_classifier.util import * def get_bad_samples(d_loss: Dict[str, np.array], k: int = 32, save: str = None) -> Dict[str, List[Dict[str, Any]]]: """ :param d_loss: The loss of each text sample in each dataset by a model, in iteration order :param k: top #samples to keep :return: A list of text samples with the respective loss that the model performs the worst on, sorted by performance :param save: Save the results to a directory path """ d_out, split = dict(), 'test' for dnm, loss in d_loss.items(): idxs_top = np.argpartition(loss, -k)[-k:] s_idxs_top = set(idxs_top) out = [] for i, (txt, lbs) in enumerate(utcd.get_dataset(dnm, split).items()): if i in s_idxs_top: out.append(dict(text=txt, labels=lbs, loss=float(loss[i]))) d_out[dnm] = sorted(out, key=lambda x: -x['loss']) if save: fnm = os_join(save, f'{now(for_path=True)}, bad_samples.json') with open(fnm, 'w') as fl: json.dump(d_out, fl, indent=4) return d_out class AttentionVisualizer: def __init__(self, model_path): self.model_path = model_path self.model = AutoModelForSequenceClassification.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.dataset_cache: Dict[str, Dict[str, List[str]]] = dict() self.model_cache = defaultdict(lambda: defaultdict(dict)) # dataset name => text => label => visualization args self.logger = get_logger('Binary BERT Attention Visualizer') def visualize(self, dataset_name: str, text: str, label: str = None, aggregate_attention: bool = True, **kwargs): """ Visualize the attention weights of a text, label pair Intended for binary bert Previously computed attention weights are cached Should be called in a notebook only per `bertviz` """ from bertviz import head_view split = 'test' if dataset_name not in self.dataset_cache: self.dataset_cache[dataset_name] = utcd.get_dataset(dataset_name, split) label_options = sconfig(f'UTCD.datasets.{dataset_name}.splits.{split}.labels') self.logger.info(f'Visualizing dataset {pl.i(dataset_name)} with label options {pl.i(label_options)}... ') if label is None: # just assume not run on this text before label, args = self._get_pair(dataset_name, text, label_options) elif label not in self.model_cache[dataset_name][text]: args = self._get_pair(dataset_name, text, label) else: args = self.model_cache[dataset_name][text][label] self.logger.info(f'Visualizing on {pl.i(text=text, label=label)} ... ') if aggregate_attention: attn = args['attention'] # snap batch dimension, stack by layer attn = torch.stack([a.squeeze() for a in attn], dim=0) # #layer x #head x #seq_len x #seq_len attn = attn.mean(dim=1) # average over all heads; L x T x T attn += torch.eye(attn.size(1)) # reverse residual connections; TODO: why diagonals?? attn /= attn.sum(dim=-1, keepdim=True) # normalize all keys for each query attn_res = torch.empty_like(attn) # get recursive contribution of each token for all layers attn_res[0] = attn[0] for i in range(1, attn.size(0)): # start from the bottom, multiply out the attentions on higher layers attn_res[i] = attn[i] @ attn[i - 1] attn_res[:, 0, 0] = 0 # ignore the score from cls to cls # attn_res[:, :, 1:] = 0 # keep only scores queried from cls args['attention'] = [a.unsqueeze(0).unsqueeze(0) for a in attn_res] head_view(**args, **kwargs) def _get_pair(self, dataset_name: str, text: str, label: Union[str, List[str]]): batched = isinstance(label, list) if batched: text_in, label_in = [text] * len(label), label else: # single label text_in, label_in = [text], [label] tok_args = dict(padding=True, truncation='longest_first', return_tensors='pt') inputs = self.tokenizer(text_in, label_in, **tok_args) input_ids, token_type_ids = inputs['input_ids'], inputs['token_type_ids'] with torch.no_grad(): outputs = self.model(**inputs, output_attentions=True) attn = outputs.attentions if batched: for i, (lb, iids, tids) in enumerate(zip(label, input_ids, token_type_ids)): toks = self.tokenizer.convert_ids_to_tokens(iids) b_strt = tids.tolist().index(1) a = tuple(a[None, i] for a in attn) self.model_cache[dataset_name][text][lb] = dict(attention=a, tokens=toks, sentence_b_start=b_strt) scores = outputs.lg.its[:, 1] lb = label[scores.argmax()] # pick the label with the highest score return lb, self.model_cache[dataset_name][text][lb] else: b_strt = token_type_ids[0].tolist().index(1) toks = self.tokenizer.convert_ids_to_tokens(input_ids[0]) # remove batch dimension arg = dict(attention=attn, tokens=toks, sentence_b_start=b_strt) self.model_cache[dataset_name][text][label] = arg # index into the 1-element list return arg if __name__ == '__main__': import pickle from stefutil import mic mic.output_width = 512 model_dir_nm = os_join('binary-bert-rand-vanilla-old-shuffle-05.03.22', 'rand') mdl_path = os_join(u.proj_path, u.model_dir, model_dir_nm) def get_bad_eg(): # dir_nm = 'in-domain, 05.09.22' dir_nm = 'out-of-domain, 05.10.22' path_eval = os_join(mdl_path, 'eval', dir_nm) with open(os_join(path_eval, 'eval_loss.pkl'), 'rb') as f: d = pickle.load(f) save_path = os_join(u.proj_path, 'eval', 'binary-bert', 'rand, vanilla', 'in-domain, 05.09.22') get_bad_samples(d, save=save_path) get_bad_eg() def visualize(): av = AttentionVisualizer(mdl_path) dnm = 'emotion' txt = 'i feel like the writer wants me to think so and proclaiming he no longer liked pulsars is a petty and ' \ 'hilarious bit of character ' lbl = 'anger' lbl = None av.visualize(dataset_name=dnm, text=txt, label=lbl) # visualize()
zeroshot-classifier
/zeroshot-classifier-0.2.3.tar.gz/zeroshot-classifier-0.2.3/zeroshot_classifier/visualize/visualize_text_sample_loss.py
visualize_text_sample_loss.py
zeroshot_topics =============== .. contents:: **Table of Contents** :backlinks: none Installation ------------ zeroshot_topics is distributed on `PyPI <https://pypi.org>`_ as a universal wheel and is available on Linux/macOS and Windows and supports Python 3.7+ and PyPy. .. code-block:: bash $ pip install zeroshot_topics License ------- zeroshot_topics is distributed under the terms of - `MIT License <https://choosealicense.com/licenses/mit>`_ - `Apache License, Version 2.0 <https://choosealicense.com/licenses/apache-2.0>`_
zeroshot-topics
/zeroshot_topics-0.1.0.tar.gz/zeroshot_topics-0.1.0/README.rst
README.rst
# Zeroshot (Python) Image classification for the masses ## Installation Install via pip: `pip install zeroshot` ## Usage First, go to usezeroshot.com and create a classifier. See [here]() for more instructions. Then, in Python (`image` should be an RGB numpy array with channels last): ```python import zeroshot # Create the classifier and preprocessing function. classifier = zeroshot.Classifier("your model string or path") preprocess_fn = zeroshot.create_preprocess_fn() # Run the model! prediction = classifier.predict(preprocess_fn(image)) print(f"The image is class {prediction}") ``` ## Read the docs PUT DOCS HERE.
zeroshot
/zeroshot-0.1.3.tar.gz/zeroshot-0.1.3/README.md
README.md
zerosms ============== Send a text message via Way2SMS to your friends and family in India. Enter your India mobile number and sms text message as parameters. Your Free SMS sending to India will be delivered instantly ---- Description: zerosms ============== It is python package to Send a text message via "Way2SMS" Send a text message to your friends and family in India. Enter your India mobile number and sms text message as parameters. Your Free SMS sending to India will be delivered instantly Requirements ============================ BeautifulSoup4 requests urllib3 1.22 NOTE ============================ use Way2Sms site credentials to send sms and future message ---- Example Code ------------ Open Python Interpreter:: >>> import zerosms >>> zerosms.sms(phno=phonenum,passwd=password,message='helloworld!!',receivernum=receiver mobile number) >>> zerosms.futuresms(phno=phno,passwd=password,set_time='17:47',set_date='15/12/2017',receivernum=receiver mobile num,message='helloworld!!')
zerosms
/zerosms-0.0.1.tar.gz/zerosms-0.0.1/README.rst
README.rst
#### downloadable items - [X] `zrc datasets:{pull,import,rm}`: list, pull, import and delete datasets archives - [X] `zrc checkpoints:{pull,import,rm}`: list pull, import and delete checkpoint archives - [X] `zrc samples:{pull,import,rm}`: list pull and, import delete samples archives #### benchmarks - [X] `zrc benchmarks`: list existing benchmarks - [X] `zrc benchmarks:info`: details on each benchmark - [X] `zrc benchmarks:run <name> <submission_dir>`: run a benchmark on a submission - [X] `zrc benchmarks:run <name> -t <task_name>`: run only some tasks of a benchmark on a submission - [X] `zrc benchmarks:run <name> -s <set_name>`: run a benchmark only on specific subsets of a submission ### Index - [X] auto-update: auto update: conditions: if local file is older than a week, if remote file has been updated - [X] manual update `zrc reset-index` #### submissions - [X] `zrc submission:init <benchmark_name> <submission_dir>`: create a submission directory - [X] TODO: deduce benchmark from meta.yaml (remove it as argument to the command) - [X] `zrc submission:params <submission_dir>`: show current parameters - [X] `zrc submission:verify <submission_dir>`: validate a submission directory # Submit - [ ] `zrc submit <submission_dir> `: upload a submission from a directory - [X] submission verification - [X] leaderboard generation - [X] zip_submission - [X] upload zip (with resume function) - [ ] TODO: connect to backend #### user - [X] `zrc user` - [X] `zrc user:login` - [X] `zrc user:clear` #### Available Benchmark list - [X] sLM21 - [X] abxLS - [X] abx17 - [X] tde17 - [ ] tts019 - [ ] TODO: eval implementation - [ ] Add dataset - [ ] Add random submission - [ ] TODO: Benchmark & task integration - [ ] TODO: Submission - [ ] TODO: Submission Validation - [ ] TODO: Leaderboard & ScoreDir #### potential extensions & plugins - extension 0: vocolab_extension: - [X] implement for leaderboard validation/management - [ ] TODO: implement for submission validation - extension 1 : extractors --> implement some basic extractor for the most used models Extractor for CPC, Bert, LSTM, etc... - extension 2 : infSim adaptor wrapper package Wrapper module that allows to use this API to allow running benchmarks on infSim architecture
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/TODO.md
TODO.md
# Zero Resource Challenge Benchmark Toolkit ![BETA](https://img.shields.io/badge/-BETA-blue) ![Upload Python Package](https://github.com/zerospeech/benchmarks/actions/workflows/pipy-pyblish.yaml/badge.svg) [![PyPI version](https://badge.fury.io/py/zerospeech-benchmarks.svg)](https://badge.fury.io/py/zerospeech-benchmarks) ![LICENCE](https://img.shields.io/badge/LICENCE-GPL%20%3E=%20V3-green) ![TESTS](https://img.shields.io/badge/TESTS-Not%20Setup-red) This repository contains a toolbox assisting in running and handling all things related to the zerospeech benchmarks. For more information on the [Zero Resource Challenge you can visit our website](https://zerospeech.com). This toolbox allows to download all resources linked with the benchmarks (datasets, model checkpoints, samples, etc..), to run the various benchmarks on your own submissions, and to upload the results to our website for them to be included in our leaderboards. The available resources can be also found directly on our repository [download.zerospeech.com](https://download.zerospeech.com) ## Installation The zerospeech benchmark toolbox is a python package, so you require a version of python installed on your system before you can start. You can use [miniconda](https://docs.conda.io/en/latest/miniconda.html) a lightweight version of anaconda or any other way of installing python you prefer. **Note that the package has been tested on python 3.8+, other versions are not recommended.** Once python is installed you can install the package using : ``` pip install "zerospeech-benchmarks[all]" ``` If you are a conda user you can use our prepackaged environment : ``` conda env create coml/zrc-toolkit ``` To verify that the toolbox is installed correctly you can try `zrc version` which should print the version information. If this is not the case you can open an issue with your errors on directly on our [github](https://github.com/zerospeech/benchmarks/issues) ## Toolbox Usage ### Downloads Installation location can be specified using the environment variable `APP_DIR`, in linux & macOS this can be done in a terminal: `$ export APP_DIR=/location/to/data` By default, all data is saved in `$HOME/zr-data` All temporary files are saved in `/tmp` this can be changed using the environment variable `TMP_DIR` #### Download benchmark datasets You can start by listing the available datasets using the command `zrc datasets` then you can download the dataset you want using the command `zrc datasets:pull [dataset-name]`. > When listing datasets the **Installed** column specifies whether the dataset has been downloaded. ![datasets-img](imgs/datasets.png) Datasets are installed in the `$APP_DIR/datasets` folder. To delete a dataset you can use the command `zrc dataset:rm [dataset-name]` #### Download model checkpoints The command `zrc checkpoints` allows you to list available checkpoints. You can then download each set by typing `zrc checkpoints:pull [name]` Checkpoints are installed in the `$APP_DIR/checkpoints` folder. ![checkpoints-img](imgs/checkpoints.png) To delete the checkpoints you can use the command : `zrc checkpoints:rm [name]` #### Download samples The command `zrc samples` allows you to list the available samples. You can then download each sample by typing `zrc samples:pull [name]`. Samples are installed in the `$APP_DIR/samples` folder. ![samples-img](imgs/samples.png) To delete a sample from your system you can use `zrc samples:rm [name]` ### Benchmarks You can list available benchmarks by typing the `zrc benchmarks` command. To create a submission you have to follow the instructions on each of our task pages [Task1](https://zerospeech.com/tasks/task_1/tasks_goals/), [Task2](https://zerospeech.com/tasks/task_2/tasks_goals/), [Task3](https://zerospeech.com/tasks/task_3/tasks_goals/), [Task4](https://zerospeech.com/tasks/task_4/tasks_goals/) **Some older benchmarks may not be available straight away, but they will be added as soon as possible.** Once the submission has been created you can run the benchmark on it with the following command : - `zrc benchmarks:run [name] [/path/to/submission] [...args]` Some benchmarks are split into sub-tasks you can run partial tasks by using the following syntax: - `zrc benchmarks:run sLM21 [/path/to/submission] -t lexical syntactic` With this syntax we run the sLM21 benchmark our submission but only for the lexical and syntactic task and we omit the semantic. In the same way we can also only run on the dev set (or the test) : - `zrc benchmarks:run sLM21 [/path/to/submission] -s dev -t lexical syntactic` We run the same tasks as previously but only on the dev set of the benchmark. For information on each benchmark you can run the `zrc benchmarks:info [name]` command or visit the corresponding section on our website [zerospeech.com](https://zerospeech.com) #### Submission Format Each benchmark has a specific format that a submission has to follow, you can initialize a submission directory by using the following syntax : `zrc submission:init [name] [/path/to/desired-location-for-submission]`, this will create a set of folders in the architecture corresponding to the benchmark name selected. For more detailed information on each benchmark you can see each Task page respectively. Once all submission files have been created your can validate your submission to see if everything is working properly. To do so use the following syntax : `zrc submission:verify [name] [/path/to/submission]` this will verify that all files are set up correctly, or show informative errors if not. **Note:** During benchmark evaluation the default behavior is to run validation on your submission, you can deactivate this by adding the option `--skip-verification`. ### Submit ![BETA](https://img.shields.io/badge/Feature-Work%20In%20Progress-orange) The submit functionality allows uploading scores to our platform, this helps us keep track of new models or new publications that happen using the benchmarks also we compile all the scores into our leaderboards to be able to compare them. > The submit functionality is a Work in progress, it will be available soon.
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/README.md
README.md
# ABX-LS submission The format of a submission is briefly explained here. For a more detailed explanation go to our website [zerospeech.com](https://zerospeech.com) ## meta.yaml ## params.yaml ## /dev-{clean, other}, /test-{clean, other} submission must contain the following subdirectories: `dev-clean`, `dev-other`, `test-clean` and `test-other`. Each `.wav` file in the dataset must have its corresponding `.npy` file in the submission under the same directory structure. For example the dataset file /path/to/dataset/phonetic/dev-clean/1272-128104-0000.wav must have its submitted file /path/to/submission/phonetic/dev-clean/1272-128104-0000.npy. > In the past .txt were used but binary npy files allow to reduce the size of the submission please prefer those Each .npy file encodes a single 2D numpy array of floats, each line encoding one features frame. For example: ``` 42.286527175400906 -107.68503050450957 59.79000088588511 -113.85831030071697 0.7872647311548775 45.33505222077471 -8.468742865224545 0 328.05422046327067 -4.495454384937348 241.186547397405 40.16161685378687 ``` - The number of columns (the features dimension) must be constant across the files. The number of lines depends on the speech sample duration. - The frame shift (the shift between two successive frames) must be given in `params.yaml` along with the metric used for evaluation of those features. - Each array must contain at least 2 frames (i.e. each file must have at least 2 lines).
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/docs/abxLS.md
abxLS.md
# sLM21 submission The format of a submission is briefly explained here. For a more detailed explanation go to our website [zerospeech.com](https://zerospeech.com) ## meta.yaml A yaml file specifying various information about the submission. ## params.yaml A yaml file specifying various runtime parameters : - quiet: a boolean specifying if the console needs to not print information and loading bars - semantic/librispeech: a boolean specifying if the use of semantic subset librispeech is to be used - semantic/synthetic: a boolean specifying if the use of semantic subset synthetic is to be used - semantic/metric: a string specifying which metric function to use (any metric supported by scipy.spatial.distance.cdist is supported) - semantic/pooling: pooling method used (must be 'min','max', 'mean', 'sum', 'last' or 'lastlast') - n_jobs: how many processes to use to speed-up certain parallelized parts of evaluation ## /lexical and /syntactic The /lexical and /syntactic folders of the submission must contain the two files dev.txt and test.txt. For each *.wav file in the dataset must correspond a line either in dev.txt or test.txt with its corresponding pseudo-probability (order does not matter). For example if the dev dataset contains: ``` /path/to/dataset/lexical/dev ├── aAAfmkmQpVz.wav ├── AaaggUZsvkR.wav ├── aAakhKfuvQI.wav ├── aAaOswLeeBL.wav ├── AaasVuoMJnS.wav ``` The submitted file dev.txt must contain entries like: ``` aAAfmkmQpVz -313.37445068359375 AaaggUZsvkR -447.8950500488281 aAakhKfuvQI -383.8902587890625 aAaOswLeeBL -430.2048645019531 AaasVuoMJnS -356.9426574707031 ``` ## /semantic The semantic folder of the submission must contain the following subdirectories: dev/synthetic, dev/librispeech, test/synthtic and test/librispeech. Each .wav file in the dataset must have its corresponding .txt file in the submission under the same directory structure. For example the dataset file /path/to/dataset/semantic/dev/synthetic/aAbcsWWKCz.wav must have its submitted file /path/to/submission/semantic/dev/synthetic/aAbcsWWKCz.txt. Each .txt file encodes a single 2D numpy array of floats, each line encoding one features frame. For example: ``` 42.286527175400906 -107.68503050450957 59.79000088588511 -113.85831030071697 0.7872647311548775 45.33505222077471 -8.468742865224545 0 328.05422046327067 -4.495454384937348 241.186547397405 40.16161685378687 ``` The number of columns (the features dimension) must be constant across the files. The number of lines depends on the speech sample duration. The metric and pooling method used for evaluation must be specified in params.yaml
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/docs/prosAudit.md
prosAudit.md
# sLM21 submission The format of a submission is briefly explained here. For a more detailed explanation go to our website [zerospeech.com](https://zerospeech.com) ## meta.yaml A yaml file specifying various information about the submission. ## params.yaml A yaml file specifying various runtime parameters : - quiet: a boolean specifying if the console needs to not print information and loading bars - semantic/librispeech: a boolean specifying if the use of semantic subset librispeech is to be used - semantic/synthetic: a boolean specifying if the use of semantic subset synthetic is to be used - semantic/metric: a string specifying which metric function to use (any metric supported by scipy.spatial.distance.cdist is supported) - semantic/pooling: pooling method used (must be 'min','max', 'mean', 'sum', 'last' or 'lastlast') - n_jobs: how many processes to use to speed-up certain parallelized parts of evaluation ## /lexical and /syntactic The /lexical and /syntactic folders of the submission must contain the two files dev.txt and test.txt. For each *.wav file in the dataset must correspond a line either in dev.txt or test.txt with its corresponding pseudo-probability (order does not matter). For example if the dev dataset contains: ``` /path/to/dataset/lexical/dev ├── aAAfmkmQpVz.wav ├── AaaggUZsvkR.wav ├── aAakhKfuvQI.wav ├── aAaOswLeeBL.wav ├── AaasVuoMJnS.wav ``` The submitted file dev.txt must contain entries like: ``` aAAfmkmQpVz -313.37445068359375 AaaggUZsvkR -447.8950500488281 aAakhKfuvQI -383.8902587890625 aAaOswLeeBL -430.2048645019531 AaasVuoMJnS -356.9426574707031 ``` ## /semantic The semantic folder of the submission must contain the following subdirectories: dev/synthetic, dev/librispeech, test/synthtic and test/librispeech. Each .wav file in the dataset must have its corresponding .txt file in the submission under the same directory structure. For example the dataset file /path/to/dataset/semantic/dev/synthetic/aAbcsWWKCz.wav must have its submitted file /path/to/submission/semantic/dev/synthetic/aAbcsWWKCz.txt. Each .txt file encodes a single 2D numpy array of floats, each line encoding one features frame. For example: ``` 42.286527175400906 -107.68503050450957 59.79000088588511 -113.85831030071697 0.7872647311548775 45.33505222077471 -8.468742865224545 0 328.05422046327067 -4.495454384937348 241.186547397405 40.16161685378687 ``` The number of columns (the features dimension) must be constant across the files. The number of lines depends on the speech sample duration. The metric and pooling method used for evaluation must be specified in params.yaml
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/docs/sLM21.md
sLM21.md
``` """ Download the benchmark dataset """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.model.datasets import DatasetsDir from zerospeech.benchmarks.datasets import AbxLSDataset # Load and download AbxLs dataset datasets_dir = DatasetsDir.load() dataset = datasets_dir.get("abxLS-dataset", cls=AbxLSDataset) if not dataset.installed: dataset.pull() """ Download a sample submission (Optional) """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.model.samples import SamplesDir # Load sample dir sample_dir = SamplesDir.load() # Download abxLS randomly generated submission random_sub = sample_dir.get("abxLS-random-submission") if not random_sub.installed: random_sub.pull() # Download the bert baseline bert_baseline_sub = sample_dir.get("abxLS-baseline-bert-submission") if not bert_baseline_sub.installed: bert_baseline_sub.pull() # Download the lstm baseline lstm_baseline_sub = sample_dir.get("abxLS-baseline-lstm-submission") if not lstm_baseline_sub.installed: lstm_baseline_sub.pull() """ Evaluate a submission """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.benchmarks import abx_LS from pathlib import Path # Path to your submission sub_location: Path = random_sub.location # load submission from disk submission_obj = abx_LS.AbxLSSubmission.load(random_sub.location) # load benchmark benchmark = abx_LS.AbxLSBenchmark() # run benchmark benchmark.run(submission_obj) # Results are in sub_location / 'scores' dir by default ```
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/examples/benchmark_examples/abxLS.ipynb
abxLS.ipynb
``` """ Download the benchmark dataset """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.model.datasets import DatasetsDir from zerospeech.benchmarks.datasets import ProsAuditLMDataset # Load and download the ProsAudit Dataset dataset_dir = DatasetsDir.load() dataset = dataset_dir.get('prosaudit-dataset', cls=ProsAuditLMDataset) if not dataset.installed: dataset.pull() """ Evaluate a submission """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.benchmarks import pros_audit from pathlib import Path # Path to your submission sub_location: Path = ... # load submission submission_obj = pros_audit.ProsodySubmission.load(sub_location) # Optional validation if not submission_obj.valid: raise ValueError('submission is not valid') # load benchmark benchmark = pros_audit.SLMProsodyBenchmark() # run benchmark benchmark.run(submission_obj) # Results are in sub_location / 'scores' dir by default ```
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/examples/benchmark_examples/prosAudit.ipynb
prosAudit.ipynb
``` """ Download the benchmark dataset """ %env APP_DIR=~/zr-data %env TMP_DIR=/tmp from zerospeech.model.datasets import DatasetsDir from zerospeech.benchmarks.datasets import SLM21Dataset # Load and download AbxLs dataset datasets_dir = DatasetsDir.load() dataset = datasets_dir.get("sLM21-dataset", cls=SLM21Dataset) if not dataset.installed: dataset.pull() """ Download a sample submission (Optional) """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.model.samples import SamplesDir # Load sample dir sample_dir = SamplesDir.load() # Download randomly generated submission random_sub = sample_dir.get("sLM-random-submission") if not random_sub.installed: random_sub.pull() # Download the bert baseline bert_baseline_sub = sample_dir.get("sLM-baseline-bert-submission") if not bert_baseline_sub.installed: bert_baseline_sub.pull() # Download the lstm baseline lstm_baseline_sub = sample_dir.get("sLM-baseline-lstm-submission") if not lstm_baseline_sub.installed: lstm_baseline_sub.pull() """ Evaluate a submission """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.benchmarks import sLM_21 from pathlib import Path # Path to your submission sub_location: Path = random_sub.location # load submission from disk submission_obj = sLM_21.SLM21Submission.load(sub_location) # load benchmark benchmark = sLM_21.SLM21Benchmark() # run benchmark benchmark.run(submission_obj) # Results are in sub_location / 'scores' dir by default ```
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/examples/benchmark_examples/sLM21.ipynb
sLM21.ipynb
``` """ Download the benchmark dataset """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.model.datasets import DatasetsDir from zerospeech.benchmarks.datasets import ZRC2017Dataset # Load and download AbxLs dataset datasets_dir = DatasetsDir.load() dataset = datasets_dir.get("zrc2017-test-dataset", cls=ZRC2017Dataset) if not dataset.installed: dataset.pull() """ Download a sample submission (Optional) """ %env APP_DIR=zr-data %env TMP_DIR=/tmp # from zerospeech.model.samples import SamplesDir # Load sample dir # sample_dir = SamplesDir.load() # todo: create sample submissions for abx17 # sample_itm = sample_dir.get("....") # if not sample_itm.installed: # sample_itm.pull() """ Evaluate a submission """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.benchmarks import abx_17 from pathlib import Path # Path to your submission sub_location: Path = ... # load submission from disk submission_obj = abx_17.ABX17Submission.load(sub_location) # load benchmark benchmark = abx_17.ABX17Benchmark() # run benchmark benchmark.run(submission_obj) # Results are in sub_location / 'scores' dir by default ```
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/examples/benchmark_examples/abx17.ipynb
abx17.ipynb
``` """ Download the benchmark dataset """ %env APP_DIR=zr-data %env TMP_DIR=/tmp from zerospeech.model.datasets import DatasetsDir from zerospeech.benchmarks.datasets import ZRC2017Dataset # Load and download AbxLs dataset datasets_dir = DatasetsDir.load() dataset = datasets_dir.get("zrc2017-test-dataset", cls=ZRC2017Dataset) if not dataset.installed: dataset.pull() """ Download a sample submission (Optional) """ %env APP_DIR=zr-data %env TMP_DIR=/tmp # from zerospeech.model.samples import SamplesDir # Load sample dir # sample_dir = SamplesDir.load() # todo: create sample submissions for tde17 # sample_itm = sample_dir.get("....") # if not sample_itm.installed: # sample_itm.pull() %env APP_DIR=zr-data from zerospeech.benchmarks import tde_17 from pathlib import Path # Path to your submission sub_location: Path = ... # load submission from disk submission_obj = tde_17.TDE17Submission.load(sub_location) # load benchmark benchmark = tde_17.TDE17Benchmark() # run benchmark benchmark.run(submission_obj) # Results are in sub_location / 'scores' dir by default ```
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/examples/benchmark_examples/tde17.ipynb
tde17.ipynb
import contextlib from types import TracebackType from typing import IO, Type, AnyStr, Iterator, Iterable, Union, Optional, List, Generator from rich.console import Console from rich.progress import ( Progress, TextColumn, BarColumn, TaskProgressColumn, TimeElapsedColumn, FileSizeColumn, TotalFileSizeColumn, SpinnerColumn ) from rich.table import Column class DevNull(IO[str]): """ Class emulating /dev/null functionality """ def close(self) -> None: """ /dev/null no interaction needed """ pass def fileno(self) -> int: """ /dev/null no interaction needed """ pass def flush(self) -> None: """ /dev/null no interaction needed """ pass def isatty(self) -> bool: """ /dev/null no interaction needed """ pass def read(self, __n: int = ...) -> AnyStr: """ /dev/null no interaction needed """ pass def readable(self) -> bool: """ /dev/null no interaction needed """ pass def readline(self, __limit: int = ...) -> AnyStr: """ /dev/null no interaction needed """ pass def readlines(self, __hint: int = ...) -> List[AnyStr]: """ /dev/null no interaction needed """ pass def seek(self, __offset: int, __whence: int = ...) -> int: """ /dev/null no interaction needed """ pass def seekable(self) -> bool: """ /dev/null no interaction needed """ pass def tell(self) -> int: """ /dev/null no interaction needed """ pass def truncate(self, __size: Union[int, None] = ...) -> int: """ /dev/null no interaction needed """ pass def writable(self) -> bool: """ /dev/null no interaction needed """ pass def writelines(self, __lines: Iterable[AnyStr]) -> None: """ /dev/null no interaction needed """ pass def __next__(self) -> AnyStr: """ /dev/null no interaction needed """ pass def __iter__(self) -> Iterator[AnyStr]: """ /dev/null no interaction needed """ pass def __enter__(self) -> IO[AnyStr]: """ /dev/null no interaction needed """ pass def __exit__(self, __t: Optional[Type[BaseException]], __value: Optional[BaseException], __traceback: Optional[TracebackType]) -> Optional[bool]: """ /dev/null no interaction needed """ pass def write(self, *_): """ /dev/null no interaction needed """ pass console = Console(log_time_format="[info]") warning_console = Console(stderr=True, style="bold yellow", log_time_format="[warning]") error_console = Console(stderr=True, style="bold red", log_time_format="[error]") void_console = Console(file=DevNull()) @contextlib.contextmanager def with_progress(show: bool = True, file_transfer: bool = False, spinner: bool = False) -> Generator[ Progress, None, None]: if show: con = console else: con = void_console bar_items = [ TextColumn("{task.description}", table_column=Column(ratio=1)), BarColumn(bar_width=None, table_column=Column(ratio=2)) ] if file_transfer: bar_items.append(FileSizeColumn()) bar_items.append(TotalFileSizeColumn()) else: bar_items.append(TaskProgressColumn()) if spinner: bar_items.append(SpinnerColumn()) bar_items.append(TimeElapsedColumn()) progress = Progress(*bar_items, console=con, expand=True, transient=True) with progress: yield progress
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/out.py
out.py
import atexit import functools import os import shutil import tempfile from datetime import datetime, timedelta from functools import lru_cache from pathlib import Path from tempfile import gettempdir from typing import Dict, Tuple, Any, Optional, Union, Callable from pydantic import ( BaseSettings, AnyHttpUrl, parse_obj_as, validator, DirectoryPath, Field, EmailStr, BaseModel, ) StrOrCallable = Union[str, Callable[..., str]] API_URL = os.environ.get('_DEV_API_URL', 'https://api.cognitive-ml.fr') class Token(BaseModel): """ Dataclass defining a session token""" username: str access_token: str token_type: str expiry: datetime = Field(default_factory=lambda: datetime.now() + timedelta(days=5)) def is_expired(self) -> bool: return datetime.now() > self.expiry class ZerospeechAPI(BaseModel): client_id: str = "zrc-commandline-benchmark-tool" client_secret: str = "wIBhXvNDTZ2xtDh3k0MJGWx+dAFohlKkGfFwV101CWo=" API_URL: AnyHttpUrl = parse_obj_as(AnyHttpUrl, API_URL) API_ROUTES = { "user_login": '/auth/login', "benchmark_info": functools.partial( lambda benchmark_id: f'/benchmarks/{benchmark_id}/info' ), "user_info": functools.partial(lambda username: f'/users/{username}/profile'), "new_model": functools.partial( lambda username, author_name: f'/users/{username}/models/create?author_name={author_name}'), "new_submission": functools.partial(lambda username: f'/users/{username}/submissions/create'), "submission_content_add": functools.partial( lambda submission_id, part_name: f'/submissions/{submission_id}/content/add?part_name={part_name}'), "submission_status": functools.partial( lambda submission_id: f"/submissions/{submission_id}/content/status" ) } @staticmethod def build_api_headers(token: Optional[Token]): """ Build correct headers for connecting with the zerospeech API""" if token is None: return dict() if token.is_expired(): raise ValueError('token is expired, please create a new session') headers = {} if token.token_type == 'bearer': headers['Authorization'] = f"Bearer {token.access_token}" return headers def request_params(self, route_name: str, token: Optional[Token] = None, **kwargs) -> Tuple[StrOrCallable, Dict[str, Any]]: """ Build params for sending request to api """ sub_route = self.API_ROUTES.get(route_name, None) if sub_route is None: raise ValueError(f'route {route_name} does not exist') if callable(sub_route): sub_route = sub_route(**kwargs) route_url = f"{self.API_URL}{sub_route}" return route_url, self.build_api_headers(token) class ZerospeechBenchmarkSettings(BaseSettings): APP_DIR: Path = Path.home() / "zr-data" TMP_DIR: DirectoryPath = Path(gettempdir()) repo_origin: AnyHttpUrl = parse_obj_as( AnyHttpUrl, "https://download.zerospeech.com/repo.json" ) admin_email: EmailStr = parse_obj_as(EmailStr, "[email protected]") api: ZerospeechAPI = ZerospeechAPI() @validator("repo_origin", pre=True) def cast_url(cls, v): """ Cast strings to AnyHttpUrl """ if isinstance(v, str): return parse_obj_as(AnyHttpUrl, v) return v @property def dataset_path(self) -> Path: """ Path to dataset storage folder """ return self.APP_DIR / "datasets" @property def samples_path(self) -> Path: """ Path to samples storage folder """ return self.APP_DIR / "samples" @property def checkpoint_path(self) -> Path: """ Path to checkpoint folder """ return self.APP_DIR / "checkpoints" @property def repository_index(self) -> Path: """ Path to local repository index """ return self.APP_DIR / "repo.json" @property def user_credentials(self): return self.APP_DIR / "creds.json" @property def submit_available_url(self) -> AnyHttpUrl: """ URL to check if submit is available """ return parse_obj_as( AnyHttpUrl, f"{str(self.api.API_URL)}/_private/submit-available" ) def mkdtemp(self, auto_clean: bool = True) -> Path: tmp_loc = Path(tempfile.mkdtemp(prefix="zeroC", dir=self.TMP_DIR)) def clean_tmp(d): shutil.rmtree(d) if auto_clean: # create an auto-clean action atexit.register(clean_tmp, d=tmp_loc) return tmp_loc @lru_cache() def get_settings() -> ZerospeechBenchmarkSettings: """ Build & return global settings """ env_file = os.environ.get("ZR_ENV", None) if env_file: return ZerospeechBenchmarkSettings( _env_file=env_file, _env_file_encoding="utf-8" ) return ZerospeechBenchmarkSettings()
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/settings.py
settings.py
import _thread as thread import contextlib import io import json import re import sys import tarfile import threading import urllib.parse from pathlib import Path from typing import Dict, List, Union, Optional, Protocol from zipfile import ZipFile import requests from Crypto.Hash import MD5 # noqa: the package name is not the same # from datasize import DataSize todo: find out why this was deleted ? maybe on unpushed thing on laptop? from pydantic import ByteSize, BaseModel try: import yaml except ImportError: yaml = None try: import tomli # noqa: is not a strict requirement except ImportError: tomli = None from .out import with_progress, void_console, console from .settings import get_settings st = get_settings() def exit_after(s): """ Decorator that kills function after s number of seconds Usage: @exit_after(10) def f(): # complex computation try: f() except KeyboardInterrupt: print('Function f could not finish in 10 seconds and was interrupted') """ def process_quit(): """ Raise a Keyboard interrupt""" thread.interrupt_main() # raises KeyboardInterrupt def outer(fn): def inner(*args, **kwargs): """ Uses a timer from threading module to raise a KeyboardInterrupt after s seconds. """ timer = threading.Timer(s, process_quit) timer.start() try: result = fn(*args, **kwargs) finally: """ Cancel timer if function finished processing """ timer.cancel() return result return inner return outer class ContextualItem(Protocol): """ Item providing context to exceptions """ def print(self, allow_warnings: bool = False): """ protocol function allowing to print context """ pass class ContextualException(Exception): """ Custom exception providing a context """ def __init__(self, msg: str, ctx: Optional[ContextualItem] = None): self._context: ContextualItem = ctx super().__init__(msg) def print_context(self, allow_warnings: bool = False): """ Prints the current context """ if self._context: self._context.print(allow_warnings) class ScoresNotFound(ContextualException): pass class MetaYamlNotValid(ContextualException): pass class InvalidSubmissionError(ContextualException): pass class SizeUnit(BaseModel): __root__: ByteSize @property def human_readable(self): return self.__root__.human_readable(decimal=True) @property def as_bytes(self): return self.__root__ def load_obj(location: Path) -> Union[Dict, List]: """ Loads an object from standard formats (.json, yaml, ...) to a standard structure (Dict, List)""" with location.open() as fp, location.open('rb') as bfp: if location.suffix == '.json': return json.load(fp) elif yaml and location.suffix in ('.yaml', '.yml'): return yaml.load(fp, Loader=yaml.FullLoader) elif tomli and location.suffix in ('.toml', '.tml'): return tomli.load(bfp) elif location.suffix in ('.txt', '.list'): return fp.readlines() else: raise ValueError('File of unknown format !!') def md5sum(file_path: Path, chunk_size: int = 8192): """ Return a md5 hash of a files content """ h = MD5.new() with file_path.open('rb') as f: while True: chunk = f.read(chunk_size) if len(chunk): h.update(chunk) else: break return h.hexdigest() def unzip(archive: Path, output: Path): """ Unzips contents of a zip archive into the output directory """ # create folder if it does not exist output.mkdir(exist_ok=True, parents=True) # open & extract with ZipFile(archive, 'r') as zipObj: zipObj.extractall(output) def untar(archive: Path, output: Path): """ Extract a tar archive (supports gzipped format) into the output directory""" # create folder if it does not exist output.mkdir(exist_ok=True, parents=True) # Open & extract with tarfile.open(archive, 'r') as tar: tar.extractall(path=output) def extract(archive: Path, output: Path): """ Extract an archive into the output directory """ if archive.suffix in ('.zip',): unzip(archive, output) elif archive.suffix in ('.tar', '.gz', '.tgz', '.bz2', '.tbz2', '.xz', '.txz'): untar(archive, output) else: raise ValueError(f'{archive.suffix}: Unsupported archive format') def zip_folder(archive_file: Path, location: Path): """ Create a zip archive from a folder """ with ZipFile(archive_file, 'w') as zip_obj: for file in filter(lambda x: x.is_file(), location.rglob("*")): zip_obj.write(file, str(file.relative_to(location))) def get_request_filename(response: requests.Response) -> str: """ Get filename from response """ if "Content-Disposition" in response.headers.keys(): return re.findall("filename=(.+)", response.headers["Content-Disposition"])[0] else: return Path(urllib.parse.unquote(response.url)).name def download_extract_archive( archive_url: str, target_location: Path, size_in_bytes: int, *, filename: str = "", md5sum_hash: str = "", quiet: bool = False, show_progress: bool = True, ): tmp_dir = st.mkdtemp() response = requests.get(archive_url, stream=True) tmp_filename = tmp_dir / get_request_filename(response) if quiet: _console = void_console show_progress = False else: _console = console with with_progress(show=show_progress, file_transfer=True) as progress: total = int(size_in_bytes) task1 = progress.add_task(f"[red]Downloading {filename}...", total=total) with tmp_filename.open("wb") as stream: for chunk in response.iter_content(chunk_size=1024): stream.write(chunk) progress.update(task1, advance=1024) progress.update(task1, completed=total, visible=False) _console.print("[green]Download completed Successfully!") if md5sum_hash != "": with _console.status("[red]Verifying md5sum from repository..."): h = md5sum(tmp_filename) if h == md5sum_hash: _console.print("[green]MD5 sum verified!") else: _console.print("[green]MD5sum Failed, Check with repository administrator.\nExiting...") sys.exit(1) with _console.status("[red]Extracting archive..."): extract(tmp_filename, target_location) def symlink_dir_contents(source: Path, dest: Path): """ create symlinks of all content in a directory into another """ dest.mkdir(exist_ok=True, parents=True) for item in source.iterdir(): (dest / item.name).symlink_to(item, target_is_directory=item.is_dir()) def download_file(url: str, dest: Path): """ Download a file from a given URL """ response = requests.get(url, allow_redirects=True) with dest.open('wb') as fb: fb.write(response.content) @contextlib.contextmanager def nostdout(): """ Redirect stdout to /dev/null """ save_stdout = sys.stdout sys.stdout = io.BytesIO() yield sys.stdout = save_stdout
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/misc.py
misc.py
import argparse import sys from pathlib import Path from rich.padding import Padding from rich.table import Table from zerospeech.generics import samples from zerospeech.misc import md5sum, extract from zerospeech.networkio import check_update_repo_index, update_repo_index from zerospeech.out import console, error_console, void_console, warning_console from zerospeech.settings import get_settings from .cli_lib import CMD st = get_settings() class SamplesCMD(CMD): """ Manipulate Samples """ COMMAND = "samples" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("--local", action="store_true", help="List local checkpoint only") def run(self, argv: argparse.Namespace): samples_dir = samples.SamplesDir.load() table = Table(show_header=True, header_style="bold magenta") table.add_column("Name") table.add_column("Origin") table.add_column("Size") table.add_column("Installed") if argv.local: dt_list = samples_dir.items else: dt_list = samples_dir.available_items for d in dt_list: dts = samples_dir.get(d) if dts.origin.type == 'internal': host = st.repo_origin.host else: host = "external" table.add_row( dts.name, host, dts.origin.size_label, f"{dts.installed}" ) console.print(Padding(f"==> RootDir: {samples_dir.root_dir}", (1, 0, 1, 0), style="bold grey70", expand=False)) console.print(table) class PullSampleCMD(CMD): """ Download a sample """ COMMAND = "pull" NAMESPACE = "samples" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument('name') parser.add_argument('-u', '--skip-verification', action='store_true', help="Skip archive verification") parser.add_argument('-q', '--quiet', action='store_true', help='Suppress download info output') def run(self, argv: argparse.Namespace): # update repo index if necessary if check_update_repo_index(): update_repo_index() sample_dir = samples.SamplesDir.load() sample_itm = sample_dir.get(argv.name, cls=samples.SampleItem) sample_itm.pull(quiet=argv.quiet, show_progress=True, verify=not argv.skip_verification) class ImportSamples(CMD): """ Import a sample from a zip archive """ COMMAND = "import" NAMESPACE = "samples" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("zip_file") parser.add_argument('-u', '--skip-verification', action='store_true', help='Do not check hash in repo index.') parser.add_argument('-q', '--quiet', action='store_true', help='Suppress download info output') def run(self, argv: argparse.Namespace): # update repo index if necessary if check_update_repo_index(): update_repo_index() sample_dir = samples.SamplesDir.load() archive = Path(argv.zip_file) std_out = console if argv.quiet: std_out = void_console if not archive.is_file() and archive.suffix != '.zip': error_console.print(f'Given archive ({archive}) does not exist or is not a valid zip archive !!!') sys.exit(1) if not argv.skip_verification: with std_out.status(f'Hashing {archive.name}'): md5hash = md5sum(archive) item = sample_dir.find_by_hash(md5hash) if item is None: error_console.print(f'Archive {archive.name} does not correspond to a registered sample') sys.exit(1) name = item.name std_out.print(f"[green]Sample {name} detected") else: name = archive.stem warning_console.print(f"Importing {name} without checking, could be naming/file mismatch") # unzip sample with std_out.status(f"Unzipping {name}..."): extract(archive, sample_dir.root_dir / name) std_out.print(f"[green]Sample {name} installed successfully !!") class RemoveSampleCMD(CMD): """ Remove a sample item """ COMMAND = "rm" NAMESPACE = "samples" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument('name') def run(self, argv: argparse.Namespace): sample_dir = samples.SamplesDir.load() smp = sample_dir.get(argv.name) if smp: smp.uninstall() console.log("[green] Sample uninstalled successfully !") else: error_console.log(f"Failed to find sample named :{argv.name}")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/samples.py
samples.py
import argparse import sys from pathlib import Path from rich.markdown import Markdown from zerospeech.benchmarks import BenchmarkList from zerospeech.out import error_console, warning_console from zerospeech.submissions import show_errors from .cli_lib import CMD class BenchmarksCMD(CMD): """ List available benchmarks """ COMMAND = "benchmarks" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): """ No extra arguments""" pass # noinspection PyUnresolvedReferences def run(self, argv: argparse.Namespace): markdown_text = """#### List of Benchmarks\n\n""" for nb, bench in enumerate(BenchmarkList): markdown_text += f"{nb + 1}) **{bench.value}**\n\n" markdown_text += f"\t{len(bench.value) * '='} documentation ===> [{bench.doc_url}]({bench.doc_url})\n" self.console.print(Markdown(markdown_text)) class BenchmarkRunCMD(CMD): """ Run a benchmark """ COMMAND = "run" NAMESPACE = "benchmarks" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("name") parser.add_argument("submission_dir") parser.add_argument('--skip-validation', action="store_true", help="Skip the validation of submission") parser.add_argument("-s", "--sets", nargs='*', action='store', default=('all',), help="Limit the sets the benchmark is run on") parser.add_argument("-t", "--tasks", nargs='*', action='store', default=('all',), help="Limit the tasks the benchmark runs") parser.add_argument('-q', '--quiet', action='store_true', default=False, help="Do not print information to stdout") def run(self, argv: argparse.Namespace): try: benchmark_type = BenchmarkList(argv.name) except ValueError: error_console.log(f"Specified benchmark ({argv.name}) does not exist !!!!") warning_console.log(f"Use one of the following : {','.join(b for b in BenchmarkList)}") sys.exit(1) # Load benchmark benchmark = benchmark_type.benchmark(quiet=argv.quiet) spinner = self.console.status("Loading submission !") spinner.start() sub_dir = Path(argv.submission_dir) if not sub_dir.is_dir(): error_console.log("Submission directory given does not exist !!!") sys.exit(1) load_args = {} if 'all' not in argv.sets and len(argv.sets) > 0: load_args['sets'] = argv.sets if 'all' not in argv.tasks and len(argv.sets) > 0: load_args['tasks'] = argv.tasks submission = benchmark.load_submission(location=sub_dir, **load_args) spinner.stop() self.console.print(":heavy_check_mark: Submission loaded successfully", style="bold green") if not argv.skip_validation: with self.console.status("Validating submission... ", spinner="aesthetic"): if not submission.valid: error_console.print(f"Found Errors in submission: {submission.location}") show_errors(submission.validation_output) sys.exit(1) self.console.print(":heavy_check_mark: Submission Valid", style="bold green") # load saved parameters self.console.print(f"Loaded parameters from :arrow_right: {submission.params_file}") submission.params_obj = submission.load_parameters() # update values from args submission.params.quiet = argv.quiet # run benchmark benchmark.run(submission) class BenchmarksInfoCMD(CMD): """ List information on a benchmark """ COMMAND = "info" NAMESPACE = "benchmarks" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("name") def run(self, argv: argparse.Namespace): try: bench = BenchmarkList(argv.name) except ValueError: error_console.log(f"Specified benchmark ({argv.name}) does not exist !!!!") warning_console.log(f"Use one of the following : {','.join(b for b in BenchmarkList)}") sys.exit(1) # print benchmark documentation self.console.print(bench.benchmark.docs())
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/benchmarks.py
benchmarks.py
import argparse import sys from pathlib import Path from zerospeech.out import error_console, console as std_console from zerospeech.settings import get_settings from zerospeech.upload import SubmissionUploader, APIHTTPException, BenchmarkClosedError from .cli_lib import CMD st = get_settings() class SubmitOnline(CMD): """ Submit your results to zerospeech.com """ COMMAND = "submit" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument('-r', '--resume', action='store_true', help='Try resuming submission from given directory') parser.add_argument('-q', '--quiet', action='store_true', help="Do not print status information") parser.add_argument('-m', '--multipart', action='store_true', help='Upload archive in multiple parts (better for large submissions)') parser.add_argument('submission_dir', type=Path, help="The directory containing the submission") def run(self, argv: argparse.Namespace): std_console.print("Feature Not Yet Available !!!", style="red bold") def _run(self, argv: argparse.Namespace): try: if argv.resume: uploader = SubmissionUploader.resume(Path(argv.submission_dir), quiet=argv.quiet) else: uploader = SubmissionUploader.from_submission( submission=Path(argv.submission_dir), quiet=argv.quiet, multipart=argv.multipart ) if not uploader.ready: error_console.print("Oups :: Submission failed to prepare for upload, please try again !!!") sys.exit(1) # Upload uploader.upload() # clean-up uploader.clean() except APIHTTPException as e: error_console.print(e) sys.exit(1) except BenchmarkClosedError as e: error_console.print(e) sys.exit(1)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/submit.py
submit.py
import abc import argparse import sys import uuid from collections import namedtuple from typing import Optional, Type from treelib import Tree, Node from zerospeech.out import console, void_console NAMESPACE_SEP = ":" LIST_OF_COMMANDS = [] class CMD(abc.ABC): COMMAND = "<cmd_name>" NAMESPACE = "<cmd-path>" quiet: bool = False def __init__(self, root): self._unique_id = f"{uuid.uuid4()}" self.__check_presets__() prog = f"{root} {self.NAMESPACE}{NAMESPACE_SEP}{self.COMMAND}" if self.NAMESPACE == '': prog = f"{root} {self.COMMAND}" self.parser = argparse.ArgumentParser( prog=prog, usage=f"{prog}[{NAMESPACE_SEP}subcommand] [<args>]", formatter_class=argparse.RawTextHelpFormatter ) # load description if self.long_description: self.parser.description = self.long_description else: self.parser.description = self.short_description @classmethod def __init_subclass__(cls, /, **kwargs): super().__init_subclass__(**kwargs) # append to global list for autodiscover LIST_OF_COMMANDS.append(cls) def __check_presets__(self): """ Verify that subclass sets default parameters """ assert self.COMMAND != "<cmd_name>", "Command not set in class" assert self.NAMESPACE != "<cmd-path>", "Command path not set in class" @property def short_description(self): return self.__doc__ @property def console(self): if self.quiet: return void_console return console @property def long_description(self): return self.run.__doc__ @property def label(self): return f"{self.COMMAND}:\t{self.short_description}" def add_epilog(self, child_info): # todo check if this works self.parser.epilog = child_info @property def name(self) -> str: return self.COMMAND @property def id(self) -> str: return self._unique_id def run_cmd(self, argv=None): """ """ self.init_parser(self.parser) # todo add argument completion # argcomplete.autocomplete(parser) argv = argv if argv is not None else sys.argv[1:] args = self.parser.parse_args(argv) # if quiet mode is set propagate it self.quiet = getattr(args, 'quiet', False) # run command self.run(args) @abc.abstractmethod def init_parser(self, parser: argparse.ArgumentParser): pass @abc.abstractmethod def run(self, argv: argparse.Namespace): pass class CommandTree: __RootNodeLabel = namedtuple('__RootNodeLabel', 'label') help_commands = ['help', 'list', 'commands', '--help', '-h'] autocomplete = '__all_cmd__' autocomplete_fn = '__auto_fn__' path_separator = NAMESPACE_SEP def is_help_cmd(self, cmd): """ Check if command is in help list """ return cmd in self.help_commands def is_auto_fn(self, cmd): """ Check if command is autocomplete_fn """ return cmd == self.autocomplete_fn def is_autocomplete(self, cmd): """Check if command is autocomplete """ return cmd == self.autocomplete def __init__(self, root_cmd: str, auto_discover: bool = True): self.root_cmd = root_cmd self.__cmd_tree = Tree() self.__cmd_tree.create_node('.', 0, data=self.__RootNodeLabel(label='.')) if auto_discover: self.add_cmds(*LIST_OF_COMMANDS) def find_cmd(self, path: str) -> Optional[Node]: """ Find a cmd in the tree """ current_node = 0 for tag in path.split(self.path_separator): if current_node is None: # todo allow empty nodes ? return None current_node = next((x.identifier for x in self.__cmd_tree.children(current_node) if x.tag == tag), None) return self.__cmd_tree.get_node(current_node) def add_cmd(self, cmd_class: Type[CMD]): """ Add a CMD to the current tree """ cmd = cmd_class(self.root_cmd) father_node = self.find_cmd(cmd.NAMESPACE) if father_node is None: father_node = self.__cmd_tree.get_node(self.__cmd_tree.root) self.__cmd_tree.create_node( tag=f"{cmd.name}", identifier=cmd.id, data=cmd, parent=father_node.identifier ) def add_cmds(self, *cmd_items): for cmd in cmd_items: self.add_cmd(cmd) def has_children(self, _id): return self.__cmd_tree.children(_id) def show(self, root=None) -> str: if root: return self.__cmd_tree.subtree(root).show(data_property="label", stdout=False) else: return self.__cmd_tree.show(data_property="label", stdout=False) def build_epilogs(self): """ Iterate over all nodes and append epilog to help message""" for node in self.__cmd_tree.all_nodes(): if node.identifier == 0: continue if not self.has_children(node.identifier): continue epilog = "---\n" \ "list of available sub-commands : \n\n" \ f"{self.show(root=node.identifier)}" node.data.add_epilog(epilog) def get_all_paths(self): paths_as_list = [] paths_as_str = [] tree = self.__cmd_tree for leaf in tree.all_nodes(): paths_as_list.append([tree.get_node(nid).tag for nid in tree.rsearch(leaf.identifier)][::-1]) for item in paths_as_list: if '.' in item: item.remove('.') paths_as_str.append(f"{self.path_separator}".join(item)) if '' in paths_as_str: paths_as_str.remove('') paths_as_str.extend(self.help_commands) paths_as_str.append(self.autocomplete) paths_as_str.append(self.autocomplete_fn) return paths_as_str class CLI: """ The Command Line Interface Builder Class """ path_separator = NAMESPACE_SEP def __init__(self, cmd_tree: CommandTree, *, description: str = "", usage: str = ""): """ :param cmd_tree: :param description: :param usage: """ self.cmd_tree = cmd_tree # Build the tree epilogs self.cmd_tree.build_epilogs() # Help epilog epilog = "---\n" \ "list of available commands : \n\n" \ f"{cmd_tree.show()}" self.parser = argparse.ArgumentParser( description=description, usage=usage, epilog=epilog, formatter_class=argparse.RawTextHelpFormatter ) self.parser.add_argument('command', help='Subcommand to run') def run(self): """ Run the Command Line Interface """ args = self.parser.parse_args(sys.argv[1:2]) # check if help is asked if self.cmd_tree.is_help_cmd(args.command): self.parser.print_help() sys.exit(0) # check if requesting cmd list for autocomplete if self.cmd_tree.is_autocomplete(args.command): print(" ".join(self.cmd_tree.get_all_paths())) sys.exit(0) # check if requesting auto complete bash function if self.cmd_tree.is_auto_fn(args.command): # print(BASH_AUTOCOMPLETE_FN) sys.exit(0) cmd_node = self.cmd_tree.find_cmd(args.command) if cmd_node is None or cmd_node.identifier == 0: print(f'Unrecognized command {args.command}\n', file=sys.stderr) self.parser.print_help() sys.exit(1) cmd = cmd_node.data if not isinstance(cmd, CMD): print(f'Unrecognized command {args.command}\n', file=sys.stderr) self.parser.print_help() sys.exit(2) # call sub-command cmd.run_cmd(argv=sys.argv[2:])
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/cli_lib.py
cli_lib.py
import argparse import sys from rich.prompt import Confirm from rich.table import Table from .cli_lib import CMD from ..out import console as std_console, error_console, warning_console from zerospeech.upload import CurrentUser class User(CMD): """ User management command """ COMMAND = "user" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): """ """ pass def run(self, argv: argparse.Namespace): std_console.print("Feature Not Yet Available !!!", style="red bold") def _run(self, argv: argparse.Namespace): current = CurrentUser.load() if current is None: error_console.print("No current user session, please use login to create a session !") sys.exit(1) table = Table(show_header=False) table.add_column("****") table.add_column("****") table.add_row("Username", current.username) table.add_row("Email", current.email) table.add_row("Affiliation", current.affiliation) table.add_row("Session Expiry", current.token.expiry.strftime("%m/%d/%Y, %H:%M:%S")) std_console.print(table) class UserLogin(CMD): """ User loging to the zerospeech.com platform """ COMMAND = "login" NAMESPACE = "user" def init_parser(self, parser: argparse.ArgumentParser): """ """ pass def run(self, argv: argparse.Namespace): std_console.print("Feature Not Yet Available !!!", style="red bold") def _run(self, argv: argparse.Namespace): if CurrentUser.session_file.is_file(): CurrentUser.clear() try: usr = CurrentUser.login() std_console.print(f"User {usr.username} was logged in successfully !", style="bold green") except ValueError: error_console.print("User authentication failed, bad credentials") class UserClear(CMD): """ Clear the saved login """ COMMAND = "clear" NAMESPACE = "user" def init_parser(self, parser: argparse.ArgumentParser): """ """ pass def run(self, argv: argparse.Namespace): if Confirm("Are you sure you want to clear the current session ?", console=warning_console): CurrentUser.clear()
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/user.py
user.py
import argparse import platform import sys import urllib.parse import webbrowser from importlib.metadata import version, PackageNotFoundError from typing import Optional import distro from rich.table import Table from .cli_lib import CMD from zerospeech.settings import get_settings from zerospeech.out import error_console, console as std_console st = get_settings() class ResetIndex(CMD): """ Reset remote index """ COMMAND = "reset-index" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): """ """ pass def run(self, argv: argparse.Namespace): st.repository_index.unlink(missing_ok=True) std_console.print("Index has been reset successfully !!", style="bold green") class Version(CMD): """ Print the current version used """ COMMAND = "version" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): """ """ pass @staticmethod def get_package_version(pkg_name: str) -> Optional[str]: try: return version(pkg_name) except PackageNotFoundError: # package is not installed return None def run(self, argv: argparse.Namespace): zr_bench = self.get_package_version("zerospeech-benchmarks") # benchmark versions abx = self.get_package_version("zerospeech-libriabx") abx2 = self.get_package_version("zerospeech-libriabx2") tde = self.get_package_version("zerospeech-tde") torch = version('torch') numpy = version('numpy') torchaudio = version('torchaudio') table = Table(show_header=False, header_style="bold magenta") table.add_column("Package") table.add_column("Version") if zr_bench is None: error_console.print("ERROR: module zerospeech-benchmark not installed locally") sys.exit(1) table.add_row("zerospeech-benchmarks", zr_bench, end_section=True) if abx: table.add_row("zerospeech-libriabx", abx) if abx2: table.add_row("zerospeech-libriabx2", abx2) if tde: table.add_row("zerospeech-tde", tde) if numpy: table.add_row("numpy", numpy) if torch: table.add_row("torch", torch) if torchaudio: table.add_row("torchaudio", torchaudio) table.add_row(end_section=True) table.add_row("python", sys.version, end_section=True) _ = platform.platform(aliased=True) # os_alias if 'linux' in platform.system().lower(): table.add_row("Operating System", f"{distro.name(pretty=True)}\n{platform.platform(aliased=True)}") else: table.add_row("Operating System", f"{platform.platform(aliased=True)}") std_console.print(table) class HelpCMD(CMD): """ """ COMMAND = "support" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): """ """ pass def run(self, argv: argparse.Namespace): """ """ pass class AskHelpCMD(CMD): """ Send an email to ask for help """ COMMAND = "email" NAMESPACE = "support" def init_parser(self, parser: argparse.ArgumentParser): pass def run(self, argv: argparse.Namespace): os_info = urllib.parse.quote(f"{platform.system()}-{platform.release()}-{platform.version()}") py_info = urllib.parse.quote(f"{sys.version}".replace('\n', '')) # todo add installed packages from pip / conda tech_info = f'%0D%0A%0D%0A%5BINFO%5D%3A%0D%0AOS%3A%20{os_info}%0D%0APYTHON%3A%20{py_info}' url = f'mailto:{st.admin_email}?subject=%5BZR-BENCHMARK%5D%5BSUPPORT%5D&body={tech_info}' webbrowser.open(url, new=1) class DocumentationCMD(CMD): """ Opens our documentation """ COMMAND = "docs" NAMESPACE = "support" def init_parser(self, parser: argparse.ArgumentParser): """ """ pass def run(self, argv: argparse.Namespace): webbrowser.open('https://zerospeech.com/', new=1)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/generic.py
generic.py
import argparse import sys from pathlib import Path from rich.padding import Padding from rich.table import Table from zerospeech.generics import checkpoints from zerospeech.misc import md5sum, extract from zerospeech.networkio import check_update_repo_index, update_repo_index from zerospeech.out import console, error_console, void_console, warning_console from zerospeech.settings import get_settings from .cli_lib import CMD st = get_settings() class CheckpointsCMD(CMD): """Manipulate Checkpoints """ COMMAND = "checkpoints" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("--local", action="store_true", help="List local checkpoint only") def run(self, argv: argparse.Namespace): checkpoints_dir = checkpoints.CheckpointDir.load() table = Table(show_header=True, header_style="bold magenta") table.add_column("Name") table.add_column("Origin") table.add_column("Size") table.add_column("Installed") if argv.local: dt_list = checkpoints_dir.items else: dt_list = checkpoints_dir.available_items for d in dt_list: dts = checkpoints_dir.get(d) if dts.origin.type == 'internal': host = st.repo_origin.host else: host = "external" table.add_row( dts.name, host, dts.origin.size_label, f"{dts.installed}" ) console.print( Padding(f"==> RootDir: {checkpoints_dir.root_dir}", (1, 0, 1, 0), style="bold grey70", expand=False)) console.print(table) class PullCheckpointCMD(CMD): """ Download a checkpoint item """ COMMAND = "pull" NAMESPACE = "checkpoints" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument('name') parser.add_argument('-u', '--skip-verification', action='store_true', help="Skip archive verification") parser.add_argument('-q', '--quiet', action='store_true', help='Suppress download info output') def run(self, argv: argparse.Namespace): # update repo index if necessary if check_update_repo_index(): update_repo_index() chkpt_dir = checkpoints.CheckpointDir.load() chkpt = chkpt_dir.get(argv.name, cls=checkpoints.CheckPointItem) chkpt.pull(quiet=argv.quiet, show_progress=True, verify=not argv.skip_verification) class ImportCheckpointCMD(CMD): """ Import checkpoints from a zip archive """ COMMAND = "import" NAMESPACE = "checkpoints" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("zip_file") parser.add_argument('-u', '--skip-verification', action='store_true', help='Do not check hash in repo index.') parser.add_argument('-q', '--quiet', action='store_true', help='Suppress download info output') def run(self, argv: argparse.Namespace): # update repo index if necessary if check_update_repo_index(): update_repo_index() chkpt_dir = checkpoints.CheckpointDir.load() archive = Path(argv.zip_file) std_out = console if argv.quiet: std_out = void_console if not archive.is_file() and archive.suffix != '.zip': error_console.print(f'Given archive ({archive}) does not exist or is not a valid zip archive !!!') sys.exit(1) if not argv.skip_verification: with std_out.status(f'Hashing {archive.name}'): md5hash = md5sum(archive) item = chkpt_dir.find_by_hash(md5hash) if item is None: error_console.print(f'Archive {archive.name} does not correspond to a registered checkpoint archive') sys.exit(1) name = item.name std_out.print(f"[green]Checkpoint {name} detected") else: name = archive.stem warning_console.print(f"Importing {name} without checking, could be naming/file mismatch") with std_out.status(f"Unzipping {name}..."): extract(archive, chkpt_dir.root_dir / name) std_out.print(f"[green]Checkpoint {name} installed successfully !!") class RemoveCheckpointCMD(CMD): """ Remove a checkpoint item """ COMMAND = "rm" NAMESPACE = "checkpoints" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument('name') def run(self, argv: argparse.Namespace): checkpoints_dir = checkpoints.CheckpointDir.load() cpt = checkpoints_dir.get(argv.name) if cpt: cpt.uninstall() console.log("[green] Checkpoint uninstalled successfully !") else: error_console.log(f"Failed to find checkpoint named :{argv.name}")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/checkpoints.py
checkpoints.py
import argparse import sys from pathlib import Path from zerospeech.benchmarks import BenchmarkList from zerospeech.out import error_console, warning_console, console as std_console from zerospeech.submissions import MetaFile, show_errors from zerospeech.tasks import BenchmarkParameters from .cli_lib import CMD class Submission(CMD): """ Submission manager subcommand """ COMMAND = "submission" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): parser.print_help() def run(self, argv: argparse.Namespace): """ """ pass class SubmissionInit(CMD): """ Initialise a directory for a specific benchmark """ COMMAND = "init" NAMESPACE = "submission" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("name") parser.add_argument("location") def run(self, argv: argparse.Namespace): try: benchmark_type = BenchmarkList(argv.name) except ValueError: error_console.log(f"Specified benchmark ({argv.name}) does not exist !!!!") warning_console.log(f"Use one of the following : {','.join(b for b in BenchmarkList)}") sys.exit(1) # Load benchmark benchmark = benchmark_type.benchmark() location = Path(argv.location) if location.is_dir(): error_console.log("Location specified already exists !!!") sys.exit(2) with std_console.status("Initialising submission dir"): benchmark.init_submission_dir(location) std_console.print(f"Submission directory created @ {location}", style="green bold") class BenchmarkParamsCMD(CMD): """ Create template params.yaml """ COMMAND = "params" NAMESPACE = "submission" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("submission_dir") parser.add_argument('-r', '--reset', action="store_true", help="Reset params.yaml to default values") def run(self, argv: argparse.Namespace): location = Path(argv.submission_dir) if not location.is_dir(): error_console("Location specified does not exist !!!") sys.exit(2) benchmark_name = None try: benchmark_name = MetaFile.benchmark_from_submission(location) if benchmark_name is None: raise TypeError("benchmark not found") benchmark_type = BenchmarkList(benchmark_name) except TypeError: error_console.log(f"Specified submission does not have a valid {MetaFile.file_stem}" f"\nCannot find benchmark type") sys.exit(1) except ValueError: error_console.log(f"Specified benchmark ({benchmark_name}) does not exist !!!!") warning_console.log(f"Use one of the following : {','.join(b for b in BenchmarkList)}") sys.exit(1) # Load benchmark benchmark = benchmark_type.benchmark(quiet=argv.quiet) if argv.reset: # remove old params file if exists (location / BenchmarkParameters.file_stem).unlink(missing_ok=True) submission = benchmark.load_submission(location) if argv.reset: self.console.log(f"Params file created/reset at @ {submission.params_file}") self.console.print(submission.params) class SubmissionVerify(CMD): """ Verify the validity of a submission """ COMMAND = "verify" NAMESPACE = "submission" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("location") def run(self, argv: argparse.Namespace): location = Path(argv.location) if not location.is_dir(): error_console("Location specified does not exist !!!") sys.exit(2) benchmark_name = None try: benchmark_name = MetaFile.benchmark_from_submission(location) if benchmark_name is None: raise TypeError("benchmark not found") benchmark_type = BenchmarkList(benchmark_name) except TypeError: error_console.log(f"Specified submission does not have a valid {MetaFile.file_stem}" f"\nCannot find benchmark type") sys.exit(1) except ValueError: error_console.log(f"Specified benchmark ({benchmark_name}) does not exist !!!!") warning_console.log(f"Use one of the following : {','.join(b for b in BenchmarkList)}") sys.exit(1) # Load benchmark benchmark = benchmark_type.benchmark(quiet=argv.quiet) submission = benchmark.load_submission(location) with std_console.status(f"Validating submission @ {location}"): _ = submission.valid if submission.valid: std_console.print(f"Submission @ {location} is a valid submission for {bench} :heavy_check_mark:", style='bold green') else: show_errors(submission.validation_output)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/submission.py
submission.py
import argparse import sys from pathlib import Path from rich.padding import Padding from rich.table import Table from zerospeech.datasets import DatasetsDir, Dataset from zerospeech.misc import md5sum, extract from zerospeech.networkio import check_update_repo_index, update_repo_index from zerospeech.out import console, error_console, warning_console, void_console from zerospeech.settings import get_settings from .cli_lib import CMD st = get_settings() class DatasetCMD(CMD): """ Manipulate Datasets """ COMMAND = "datasets" NAMESPACE = "" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument("--local", action="store_true", help="List local datasets only") def run(self, argv: argparse.Namespace): datasets_dir = DatasetsDir.load() table = Table(show_header=True, header_style="bold magenta") table.add_column("Name") table.add_column("Origin") table.add_column("Size") table.add_column("Installed") if argv.local: dt_list = datasets_dir.items else: dt_list = datasets_dir.available_items for d in dt_list: dts = datasets_dir.get(d) if dts.origin.type == 'internal': host = st.repo_origin.host else: host = "external" table.add_row( dts.origin.name, host, dts.origin.size_label, f"{dts.installed}" ) console.print(Padding(f"==> RootDir: {datasets_dir.root_dir}", (1, 0, 1, 0), style="bold grey70", expand=False)) console.print(table) class PullDatasetCMD(CMD): """ Download a dataset """ COMMAND = "pull" NAMESPACE = "datasets" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument('name') parser.add_argument('-u', '--skip-verification', action='store_true', help="Skip archive verification") parser.add_argument('-q', '--quiet', action='store_true', help='Suppress download info output') def run(self, argv: argparse.Namespace): # update repo index if necessary if check_update_repo_index(): update_repo_index() datasets_dir = DatasetsDir.load() dataset = datasets_dir.get(argv.name, cls=Dataset) dataset.pull(quiet=argv.quiet, show_progress=True, verify=not argv.skip_verification) class ImportDatasetCMD(CMD): """ Import a dataset from a zip file """ COMMAND = "import" NAMESPACE = "datasets" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument('zip_file') parser.add_argument('-u', '--skip-verification', action='store_true', help='Do not check hash in repo index.') parser.add_argument('-q', '--quiet', action='store_true', help='Suppress download info output') def run(self, argv: argparse.Namespace): datasets_dir = DatasetsDir.load() archive = Path(argv.zip_file) std_out = console if argv.quiet: std_out = void_console if not archive.is_file() and archive.suffix != '.zip': error_console.print(f'Given archive ({archive}) does not exist or is not a valid zip archive !!!') sys.exit(1) if not argv.skip_verification: with std_out.status(f'Hashing {archive.name}'): md5hash = md5sum(archive) item = datasets_dir.find_by_hash(md5hash) if item is None: error_console.print(f'Archive {archive.name} does not correspond to a registered dataset') sys.exit(1) name = item.name std_out.print(f"[green]Dataset {name} detected") else: name = archive.stem warning_console.print(f"Importing {name} without checking, could be naming/file mismatch") # unzip dataset with std_out.status(f"Unzipping {name}..."): extract(archive, datasets_dir.root_dir / name) std_out.print(f"[green]Dataset {name} installed successfully !!") class RemoveDatasetCMD(CMD): """ Remove a dataset item """ COMMAND = "rm" NAMESPACE = "datasets" def init_parser(self, parser: argparse.ArgumentParser): parser.add_argument('name') def run(self, argv: argparse.Namespace): dataset_dir = DatasetsDir.load() dts = dataset_dir.get(argv.name) if dts: dts.uninstall() console.log("[green] Dataset uninstalled successfully !") else: error_console.log(f"Failed to find dataset named :{argv.name}")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/cmd/datasets.py
datasets.py
import abc import functools import json import shutil from datetime import datetime from pathlib import Path from typing import List, Optional, Type, ClassVar, Literal, Union, Tuple, Dict, Any from pydantic import BaseModel, AnyHttpUrl, validator, parse_obj_as, DirectoryPath, ByteSize, root_validator from ..settings import get_settings st = get_settings() RepositoryItemType = Literal[ 'datasets', 'samples', 'checkpoints', 'origin_item', 'downloadable_item', 'importable_item'] ItemType = Literal['internal', 'external'] InstallAction = Literal['download', 'symlink', 'download_extract'] class RepositoryItem(BaseModel): """ An item represents a dataset inside the repository that can be pulled locally """ name: str type: ItemType zip_url: Optional[AnyHttpUrl] zip_parts: Optional[List[AnyHttpUrl]] install_config: Optional[AnyHttpUrl] md5sum: str total_size: ByteSize details_url: Optional[AnyHttpUrl] description: Optional[str] @property def origin_host(self) -> str: return self.zip_url.host @property def size_label(self) -> str: return self.total_size.human_readable(decimal=True) @validator('zip_url', pre=True) def cast_url1(cls, v): """ Cast strings to AnyHttpUrl """ if isinstance(v, str): return parse_obj_as(AnyHttpUrl, v) return v @validator('zip_parts', pre=True) def cast_url2(cls, v): """ Cast strings to AnyHttpUrl """ if isinstance(v, str): return parse_obj_as(AnyHttpUrl, v) return v @root_validator(pre=True) def validate_type(cls, values): valid_types = ('internal', 'external') current_type = values.get('type', 'internal') values['type'] = current_type assert current_type in valid_types, f'Type should be one of the following {valid_types}' if current_type == 'internal': assert values.get('zip_url') is not None \ or values.get('zip_parts') is not None, \ "Internal Items must have either a zip_url or a zip_parts value." elif values.get('type') == 'external': assert values.get('install_config') is not None, "External items must have an install_config field" return values class RepositoryIndex(BaseModel): """ Item Indexing all datasets available online various repositories.""" last_modified: datetime datasets: List[RepositoryItem] checkpoints: List[RepositoryItem] samples: List[RepositoryItem] @classmethod @functools.lru_cache def load(cls): """ Load index from disk """ with st.repository_index.open() as fp: data = json.load(fp) return cls(**data) class InstallRule(BaseModel): action: InstallAction source: Optional[AnyHttpUrl] target: Optional[str] source_target: Optional[List[Tuple[str, str]]] source_size: Optional[ByteSize] @root_validator(pre=True) def validate_actions(cls, values): actions = ('download', 'symlink', 'download_extract') if values['action'] == 'download': assert values.get('source') is not None, "Download action requires a source" assert values.get('target') is not None, "Download action requires a target" elif values['action'] == 'symlink': assert values.get('source_target') is not None, "Symlink action requires a source_target" elif values['action'] == 'download_extract': assert values.get('source') is not None, "Download_Extract action requires a source" assert values.get('target') is not None, "Download_Extract action requires a target" assert values.get('source_size') is not None, "Download_Extract action requires a source_size" else: assert values['action'] in actions, \ f"Action needs to be one of the following {actions}" class InstallConfig(BaseModel): rules: Dict[str, InstallRule] index_obj: Dict[str, Any] class OriginItem(BaseModel, abc.ABC): """ An item that has an external origin derived from the repository """ key_name: ClassVar[RepositoryItemType] = "origin_item" location: Path origin: RepositoryItem @property def installed(self) -> bool: """ Check if item is installed locally""" return self.location.is_dir() def uninstall(self): """ Uninstall item from local storage """ shutil.rmtree(self.location) @property def name(self) -> str: return self.origin.name class DownloadableItem(OriginItem, abc.ABC): """ Abstract class to define an item that can be downloaded from the repository """ @abc.abstractmethod def pull(self, *, verify: bool = True, quiet: bool = False, show_progress: bool = False): """ Pull item from origin """ pass class ImportableItem(OriginItem, abc.ABC): """Abstract class to define item that can be imported from a local resource """ @abc.abstractmethod def import_zip(self, *, archive: Path): """ Import dataset from an archive """ pass class RepoItemDir(BaseModel, abc.ABC): """ Abstract class defining a directory manager for repository items of a specific type """ root_dir: DirectoryPath item_type: ClassVar[Union[Type[DownloadableItem], Type[ImportableItem]]] @classmethod @abc.abstractmethod def load(cls): pass @property def items(self) -> List[str]: """ Returns a list of installed items """ return [d.name for d in self.root_dir.iterdir() if d.is_dir()] @property def available_items(self) -> List[str]: index = RepositoryIndex.load() item_list: List[RepositoryItem] = getattr(index, self.item_type.key_name, []) return [d.name for d in item_list] def find_by_hash(self, hash_code: str) -> Optional[RepositoryItem]: index = RepositoryIndex.load() item_list: List[RepositoryItem] = getattr(index, self.item_type.key_name, []) for d in item_list: if d.md5sum == hash_code: return d return None def find_by_name(self, name: str) -> Optional[RepositoryItem]: """Find all relevant items with the same type in repository """ index = RepositoryIndex.load() item_list: List[RepositoryItem] = getattr(index, self.item_type.key_name, []) for d in item_list: if d.name == name: return d return None def get(self, name, cls: Union[Type[DownloadableItem], Type[ImportableItem]] = None): loc = self.root_dir / name repo = self.find_by_name(name) if repo is None: return None if cls is None: return self.item_type(location=loc, origin=repo) return cls(location=loc, origin=repo)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/generics/repository.py
repository.py
from pathlib import Path from typing import Optional, Dict, Generic, Any, TypeVar, Tuple from pydantic import BaseModel, validator, Field from pydantic.generics import GenericModel from .data_items import ( Item, ItemType, FileListItem, FileItem ) T = TypeVar("T") class Namespace(GenericModel, Generic[T]): """ Simple object for storing attributes. """ store: Dict[str, T] = Field(default_factory=dict) @property def names(self) -> Tuple[str, ...]: return tuple(self.store.keys()) @property def as_dict(self) -> Dict[str, T]: """ Get Store as dict """ return self.store def get(self, name: str, default: Any = None): """ Access items by name """ return self.store.get(name, default) def __getattr__(self, name) -> Optional[T]: """ Reimplementation of getattr """ a: T = self.store.get(name, None) return a def __iter__(self): """ Allow to iterate over store """ return iter(self.store.items()) class Subset(BaseModel): """ A subset of a dataset containing various items.""" items: Namespace[Item] @property def names(self) -> Tuple[str, ...]: return self.items.names @validator("items", pre=True) def items_parse(cls, values): """ Allow items to be cast to the correct subclass """ casted_items = dict() for k, v, in values.items(): item_type = ItemType(v.get('item_type', "base_item")) if item_type == ItemType.filelist_item: casted_items[k] = FileListItem.parse_obj(v) elif item_type == ItemType.file_item: casted_items[k] = FileItem.parse_obj(v) else: v["item_type"] = item_type casted_items[k] = Item(**v) return Namespace[Item](store=casted_items) def make_relative(self, relative_to: Path): """ Convert all the items to relative paths """ for _, item in self.items: item.relative_to(relative_to) def make_absolute(self, root_dir: Path): """ Convert all items to absolute paths """ for _, item in self.items: item.absolute_to(root_dir)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/generics/named_storage.py
named_storage.py
from enum import Enum from pathlib import Path from typing import List, Callable, Iterator from pydantic import BaseModel, validator class FileTypes(str, Enum): txt = "txt" npy = "npy" csv = "csv" wav = "wav" flac = "flac" item = "item" # abx task file tsv = "tsv" json = "json" yaml = "yaml" phn = "phn" # phone alignment file wrd = "wrd" # words alignment file vad = "vad.csv" # vad segmentation file in csv format @property def ext(self) -> str: return f".{self.value}" @classmethod def dataframe_types(cls): return { cls.csv, cls.txt, cls.tsv, cls.item, cls.vad, cls.wrd, cls.phn } @classmethod def audio_types(cls): return { cls.wav, cls.flac } @classmethod def numpy_types(cls): return { cls.npy, cls.txt } class ItemType(str, Enum): base_item = "base_item" filelist_item = "filelist_item" file_item = "file_item" class Item(BaseModel): """ The Atom of the dataset an item can be a file list, a file or a datastructure """ item_type: ItemType = ItemType.base_item file_type: FileTypes relative_path: bool @validator('file_type', pre=True) def fix_file_extension(cls, v): if isinstance(v, str): return v.lstrip('.') return v def relative_to(self, path: Path): """ Convert internal path to relative paths """ self.relative_path = True def absolute_to(self, path: Path): self.relative_path = False class Config: extra = "allow" class FileListItem(Item): item_type: ItemType = ItemType.filelist_item files_list: List[Path] @classmethod def from_dir(cls, path: Path, f_type: FileTypes): """ Build a FileListItem from a directory""" temp = path rgexp = f"*{f_type.ext}" thing = temp.rglob(rgexp) file_list = list(thing) return cls( file_type=f_type, files_list=file_list, relative_path=False ) def __iter__(self) -> Iterator[Path]: return iter(self.files_list) def relative_to(self, path: Path): """ Convert all paths to relative if they are absolute """ if not self.relative_path: for i in range(len(self.files_list)): self.files_list[i] = self.files_list[i].relative_to(path) # call method in super class super(FileListItem, self).relative_to(path) def absolute_to(self, path: Path): """ Convert all paths to absolute if they are relative """ if self.relative_path: for i in range(len(self.files_list)): self.files_list[i] = path / self.files_list[i] # call method in super class super(FileListItem, self).absolute_to(path) class Config: extra = "ignore" FileValidator = Callable[["FileItem"], bool] class FileItem(Item): item_type: ItemType = ItemType.file_item file: Path @classmethod def from_file(cls, path: Path, relative: bool = False): """ Build a FileItem from a path """ suffix = path.suffix.replace('.', '') return cls( file=path, file_type=FileTypes(suffix), relative_path=relative ) def valid(self, validate: FileValidator) -> bool: # todo rethink a bit this validation pattern return self.file.resolve().is_file() and validate(self) def relative_to(self, path: Path): """ Convert all paths to relative if they are absolute """ if not self.relative_path: self.file = self.file.relative_to(path) # call method in super class super(FileItem, self).relative_to(path) def absolute_to(self, path: Path): """ Convert all paths to absolute if they are relative """ if self.relative_path: self.file = path / self.file # call method in super class super(FileItem, self).absolute_to(path) class Config: extra = "ignore"
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/generics/data_items.py
data_items.py
import abc import json import os import sys import warnings from pathlib import Path from typing import Tuple, Set, TYPE_CHECKING, NamedTuple import joblib try: from tde.measures.boundary import Boundary from tde.measures.coverage import Coverage from tde.measures.grouping import Grouping from tde.measures.ned import Ned from tde.measures.token_type import TokenType from tde.readers.disc_reader import Disc from tde.readers.gold_reader import Gold except ImportError: Boundary, Coverage, Grouping, Ned = ..., ..., ..., ... TokenType, Disc, Gold = ..., ..., ... warnings.warn('tde module was not installed') from zerospeech.misc import exit_after from zerospeech.generics import FileItem from zerospeech.tasks import Task if TYPE_CHECKING: from zerospeech.datasets import Dataset from zerospeech.submissions import Submission class TDEItems(NamedTuple): wrd_path: Path phn_path: Path input_classes: Path class TDETask(Task, abc.ABC): """ TDE Task """ _name = "tde-task" tasks: Tuple metrics: Set = {'grouping', 'matching', 'boundary', 'token_type', 'nlp'} njobs: int = 1 result_filename: str = "scores.json" grouping_max_time: int = 7200 @staticmethod def read_discovered(item: Path, gold: Gold): """ Load discovered Intervals """ # Disc class prints a bunch of nonsense, so we force it to be quiet sys.stdout = open(os.devnull, 'w') try: return Disc(str(item), gold) finally: sys.stdout = sys.__stdout__ def gather_metrics(self, gold: Gold, discovered: Disc, lang: str): scores = dict( matching=dict(), boundary=dict(), token=dict(), type=dict(), nlp=dict(), grouping=dict() ) # Boundary if 'boundary' in self.metrics: with self.console.status(f"Computing {lang} boundary"): boundary = Boundary(gold, discovered) boundary.compute_boundary() scores['boundary'].update(dict( precision=boundary.precision, recall=boundary.recall, fscore=boundary.fscore )) self.console.print(f"Boundary computed for {lang} :heavy_check_mark:", style="bold green") # Token & Type if 'token_type' in self.metrics: with self.console.status(f"Computing {lang} token & type"): token_type = TokenType(gold, discovered) token_type.compute_token_type() scores['token'] = dict() scores['type'] = dict() scores['token']['precision'], scores['type']['precision'] = token_type.precision scores['token']['recall'], scores['type']['recall'] = token_type.recall scores['token']['fscore'], scores['type']['fscore'] = token_type.fscore scores['nlp']['nwords'] = len(token_type.type_seen), self.console.print(f"Token & Type computed for {lang} :heavy_check_mark:", style="bold green") # NLP if 'nlp' in self.metrics: with self.console.status(f"Computing {lang} NLP"): coverage = Coverage(gold, discovered) coverage.compute_coverage() ned = Ned(discovered) ned.compute_ned() scores["nlp"].update(dict( ned=ned.ned, coverage=coverage.coverage, npairs=ned.n_pairs )) self.console.print(f"NLP computed for {lang} :heavy_check_mark:", style="bold green") # Grouping if 'grouping' in self.metrics: @exit_after(self.grouping_max_time) def compute_grouping(): """ Compute grouping within allocated time """ with self.console.status(f"Computing {lang} Grouping"): grouping = Grouping(discovered) grouping.compute_grouping() return dict( precision=grouping.precision, recall=grouping.recall, fscore=grouping.fscore ) try: grouping_score = compute_grouping() scores['grouping'].update(grouping_score) self.console.print(f"Grouping computed for {lang} :heavy_check_mark:", style="bold green") except KeyboardInterrupt: scores['grouping'].update(dict( precision=None, recall=None, fscore=None )) self.console.print(f"Grouping computing for {lang} was aborted due to timeout !!", style="bold red") def score_or_none(data): if len(data): return data return None return {m: score_or_none(score) for m, score in scores.items()} @staticmethod def load_gold(wrd: Path, phn: Path) -> Gold: """ Load gold object for current language set """ # load gold files return Gold( wrd_path=str(wrd), phn_path=str(phn) ) def _eval_lang(self, lang: str, items: TDEItems): """ Evaluate tde for specific language """ self.console.print(f"Loading gold for {lang}...") gold = self.load_gold(wrd=items.wrd_path, phn=items.phn_path) # load discovered intervals self.console.print(f"Loading class discovery for {lang}...") discovered = self.read_discovered( items.input_classes, gold ) self.console.print(f"Gathering metrics for {lang} ...") return lang, self.gather_metrics(gold, discovered, lang) @abc.abstractmethod def gather_items(self, lang: str, submission: "Submission", dataset: "Dataset") -> TDEItems: pass def eval(self, submission: "Submission", dataset: "Dataset"): """ Evaluate the submission """ print(f"Running with {self.njobs} cores!!") # Run evaluation with multiprocess if specified eval_items = { lang: self.gather_items(lang=lang, submission=submission, dataset=dataset) for lang in self.tasks } res = joblib.Parallel(n_jobs=self.njobs)( joblib.delayed(self._eval_lang)(lang, items) for lang, items in eval_items.items() ) scores = dict(res) self.console.print(f":pencil: writing scores {self.result_filename}", style="underline yellow4") with (submission.score_dir / self.result_filename).open('w') as fp: json.dump(scores, fp)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/tde.py
tde.py
from typing import Tuple, TYPE_CHECKING import pandas as pd from .params import LexicalParams from zerospeech.data_loaders import load_dataframe from zerospeech.generics import FileItem from zerospeech.tasks import Task if TYPE_CHECKING: from zerospeech.submissions.sLM21 import SLM21Submission from zerospeech.datasets import SLM21Dataset default_params = LexicalParams() class LexicalTask(Task): _name = "lexical" by_pair: bool = default_params.by_pair by_length: bool = default_params.by_length by_frequency: bool = default_params.by_frequency result_filenames = default_params.result_filenames sets: Tuple = ('dev', 'test') @staticmethod def load_and_format(lexical_item: FileItem, gold_item: FileItem): """ Loads & formats submission data and gold data """ gold_values = load_dataframe(gold_item, header=0, index_col='filename').astype( {'frequency': pd.Int64Dtype()}) lexical_values = load_dataframe(lexical_item, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # merge the gold and score using filenames, then remove the columns # 'phones' and 'filename' as we don't use them for evaluation data = pd.merge(gold_values, lexical_values, on='filename', how='inner') data.reset_index(inplace=True) # if all non-words have their textual version set to NaN, we take their phonemic version instead. if data[data.correct == 0]['word'].isnull().sum() == len(data[data.correct == 0]): data['word'] = data['phones'] data.drop(columns=['phones', 'filename'], inplace=True) # going from a word per line to a pair (word, non word) per line words = data.loc[data['correct'] == 1].reset_index().rename(lambda x: 'w_' + x, axis=1) non_words = data.loc[data['correct'] == 0].reset_index().rename(lambda x: 'nw_' + x, axis=1) data = pd.merge(words, non_words, left_on=['w_voice', 'w_id'], right_on=['nw_voice', 'nw_id']) data.drop( ['w_index', 'nw_index', 'nw_voice', 'nw_frequency', 'w_correct', 'nw_correct', 'nw_id', 'nw_length'], axis=1, inplace=True) data.rename( {'w_id': 'id', 'w_voice': 'voice', 'w_frequency': 'frequency', 'w_word': 'word', 'nw_word': 'non word', 'w_length': 'length', 'w_score': 'score word', 'nw_score': 'score non word'}, axis=1, inplace=True) return data @staticmethod def eval_by_pair(data: pd.DataFrame) -> pd.DataFrame: """Returns a data frame with the computed scores by (word, non word) pair Parameters ---------- data : pandas.DataFrame The result of `load_data` Returns ------- by_pair : pandas.DataFrame The evaluated (word, non word) pairs, the data frame has the columns: 'word', 'non word' 'frequency', 'length' and 'score'. """ # compute the score for each pair in an additional 'score' column, then # delete the 'score word' and 'score non word' columns that become useless score = data.loc[:, ['score word', 'score non word']].to_numpy() data['score'] = ( 0.5 * (score[:, 0] == score[:, 1]) + (score[:, 0] > score[:, 1])) data.drop(columns=['score word', 'score non word'], inplace=True) # finally get the mean score across voices for all pairs score = data.groupby('id').apply(lambda x: ( x.iat[0, 3], # word x.iat[0, 5], # non word x.iat[0, 2], # frequency x.iat[0, 4], # length x['score'].mean())) return pd.DataFrame( score.to_list(), columns=['word', 'non word', 'frequency', 'length', 'score']) @staticmethod def eval_by_frequency(data: pd.DataFrame) -> pd.DataFrame: """Returns a data frame with mean scores by frequency bands The frequency is defined as the number of occurrences of the word in the LibriSpeech dataset. The following frequency bands are considered : oov, 1-5, 6-20, 21-100 and >100. Parameters ---------- data: pandas.DataFrame The output of `evaluate_by_pair` Returns ------- by_frequency : pandas.DataFrame The score collapsed on frequency bands, the data frame has the following columns: 'frequency', 'score'. """ bands = pd.cut( data.frequency, [0, 1, 5, 20, 100, float('inf')], labels=['oov', '1-5', '6-20', '21-100', '>100'], right=False) return data.score.groupby(bands).agg( n='count', score='mean', std='std').reset_index() @staticmethod def eval_by_length(data: pd.DataFrame) -> pd.DataFrame: """Returns a data frame with mean scores by word length Parameters ---------- data: pandas.DataFrame The output of `evaluate_by_pair` Returns ------- by_length : pandas.DataFrame The score collapsed on word length, the data frame has the following columns: 'length', 'score'. """ return data.score.groupby(data.length).agg( n='count', score='mean', std='std').reset_index() def run_lexical_eval(self, lexical_item: FileItem, gold_item: FileItem): data = self.load_and_format(lexical_item, gold_item) by_pair, by_frequency, by_length = None, None, None by_pair = self.eval_by_pair(data) if self.by_frequency: by_frequency = self.eval_by_frequency(by_pair) if self.by_length: by_length = self.eval_by_length(by_pair) if self.by_pair: by_pair.drop(['frequency', 'length'], axis=1, inplace=True) else: by_pair = None return by_pair, by_frequency, by_length def eval(self, submission: "SLM21Submission", dataset: "SLM21Dataset"): """ Run the selected lexical evaluations & write results """ output_dir = submission.score_dir self.sets = submission.sets if 'dev' in self.sets: sub = submission.items.lexical_dev gold = dataset.index.subsets.lexical_dev.items.gold with self.console.status('Running lexical_dev evaluation....', spinner="aesthetic"): by_pair, by_frequency, by_length = self.run_lexical_eval(sub, gold) if by_pair is not None: filename = output_dir / f"{self.result_filenames['dev']['by_pair']}" self.console.print(f":pencil: writing {self.result_filenames['dev']['by_pair']}", style="underline yellow4") by_pair.to_csv(filename, index=False, float_format='%.4f') if by_frequency is not None: filename = output_dir / f"{self.result_filenames['dev']['by_frequency']}" self.console.print(f":pencil: writing {self.result_filenames['dev']['by_frequency']}", style="underline yellow4") by_frequency.to_csv(filename, index=False, float_format='%.4f') if by_length is not None: filename = output_dir / f"{self.result_filenames['dev']['by_length']}" self.console.print(f":pencil: writing {self.result_filenames['dev']['by_length']}", style="underline yellow4") by_length.to_csv(filename, index=False, float_format='%.4f') if 'test' in self.sets: sub = submission.items.lexical_test gold = dataset.index.subsets.lexical_test.items.gold with self.console.status('Running lexical_dev evaluation....', spinner="aesthetic"): by_pair, by_frequency, by_length = self.run_lexical_eval(sub, gold) if by_pair is not None: filename = output_dir / f"{self.result_filenames['test']['by_pair']}" self.console.print(f":pencil: writing {self.result_filenames['test']['by_pair']}", style="underline yellow4") by_pair.to_csv(filename, index=False, float_format='%.4f') if by_frequency is not None: filename = output_dir / f"{self.result_filenames['test']['by_frequency']}" self.console.print(f":pencil: writing {self.result_filenames['test']['by_frequency']}", style="underline yellow4") by_frequency.to_csv(filename, index=False, float_format='%.4f') if by_length is not None: filename = output_dir / f"{self.result_filenames['test']['by_length']}" self.console.print(f":pencil: writing {self.result_filenames['test']['by_length']}", style="underline yellow4") by_length.to_csv(filename, index=False, float_format='%.4f')
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/lm/lexical.py
lexical.py
from typing import TYPE_CHECKING import pandas as pd from zerospeech.data_loaders import load_dataframe from zerospeech.generics import FileItem from zerospeech.tasks import Task from .params import SyntacticParams if TYPE_CHECKING: from zerospeech.submissions.sLM21 import SLM21Submission from ...datasets import SLM21Dataset default_params = SyntacticParams() class SyntacticTask(Task): """Allows the computation of the score by sentences pair and by syntax type.""" _name = "syntactic" sets = ('dev', 'test') result_filenames = default_params.result_filenames @staticmethod def syntactic_by_pair(data: pd.DataFrame) -> pd.DataFrame: """Returns a data frame with the scores by (sentence, non sentence) pair""" # compute the score for each pair in an additional 'score' column, then # delete the 'score word' and 'score non word' columns that become useless score = data.loc[:, ['score sentence', 'score non sentence']].to_numpy() data['score'] = ( 0.5 * (score[:, 0] == score[:, 1]) + (score[:, 0] > score[:, 1])) data.drop(columns=['score sentence', 'score non sentence'], inplace=True) # finally get the mean score across voices for all pairs score = data.groupby(['type', 'subtype', 'id']).apply(lambda x: ( x.iat[0, 2], # type x.iat[0, 3], # subtype x.iat[0, 4], # sentence x.iat[0, 5], # non sentence x['score'].mean())) return pd.DataFrame( score.to_list(), columns=['type', 'subtype', 'sentence', 'non sentence', 'score']) @staticmethod def syntactic_by_type(data: pd.DataFrame) -> pd.DataFrame: """Returns a data frame with mean scores by syntax error type""" return data.score.groupby([data['type']]).agg( n='count', score='mean', std='std').reset_index() def run_syntactic_comparison(self, gold: FileItem, sub_file: FileItem): """ This function creates a syntactic comparison based on inputs data_formatting: Each line of the data frame contains a pair of (correct, incorrect) sentences and has the following columns: 'id', 'voice', 'type', 'sentence', 'score sentence', 'non sentence', 'score non sentence'. """ gold_df = load_dataframe(gold, header=0, index_col='filename') sub_df = load_dataframe(sub_file, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # merge the gold and score using filenames, then remove the columns # 'phones' and 'filename' as we don't use them for evaluation data = pd.concat([gold_df, sub_df], axis=1) data.reset_index(drop=True, inplace=True) # going from a word per line to a pair (word, non word) per line data = pd.concat([ data.loc[data['correct'] == 1].reset_index().rename( lambda x: 's_' + x, axis=1), data.loc[data['correct'] == 0].reset_index().rename( lambda x: 'ns_' + x, axis=1)], axis=1) data.drop( ['s_index', 'ns_index', 'ns_voice', 'ns_type', 'ns_subtype', 's_correct', 'ns_correct', 'ns_id'], axis=1, inplace=True) data.rename( {'s_id': 'id', 's_voice': 'voice', 's_type': 'type', 's_subtype': 'subtype', 's_transcription': 'sentence', 'ns_transcription': 'non sentence', 's_score': 'score sentence', 'ns_score': 'score non sentence'}, axis=1, inplace=True) by_pair = self.syntactic_by_pair(data) by_type = self.syntactic_by_type(by_pair) # remove (type, subtype) from by_pair data since by_type is complete by_pair.drop(['type', 'subtype'], axis=1, inplace=True) return by_pair, by_type def eval(self, submission: "SLM21Submission", dataset: "SLM21Dataset"): """ Executes syntactic comparison on required sets and writes results to score_dir """ output_dir = submission.score_dir self.sets = submission.sets if 'dev' in self.sets: gold_file = dataset.index.subsets.syntactic_dev.items.gold sub_file = submission.items.syntactic_dev with self.console.status('Running syntactic_dev evaluation....', spinner="aesthetic"): by_pair, by_type = self.run_syntactic_comparison(gold_file, sub_file) filename = output_dir / f"{self.result_filenames['dev']['by_pair']}" self.console.print(f":pencil: writing {self.result_filenames['dev']['by_pair']}", style="underline yellow4") by_pair.to_csv(filename, index=False, float_format='%.4f') filename = output_dir / f"{self.result_filenames['dev']['by_type']}" self.console.print(f":pencil: writing {self.result_filenames['dev']['by_type']}", style="underline yellow4") by_type.to_csv(filename, index=False, float_format='%.4f') if 'test' in self.sets: gold_file = dataset.index.subsets.syntactic_test.items.gold sub_file = submission.items.syntactic_test with self.console.status('Running syntactic_test evaluation....', spinner="aesthetic"): by_pair, by_type = self.run_syntactic_comparison(gold_file, sub_file) filename = output_dir / f"{self.result_filenames['test']['by_pair']}" self.console.print(f":pencil: writing {self.result_filenames['test']['by_pair']}", style="underline yellow4") by_pair.to_csv(filename, index=False, float_format='%.4f') filename = output_dir / f"{self.result_filenames['test']['by_type']}" self.console.print(f":pencil: writing {self.result_filenames['test']['by_type']}", style="underline yellow4") by_type.to_csv(filename, index=False, float_format='%.4f')
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/lm/syntactic.py
syntactic.py
import enum import functools import json from pathlib import Path from typing import Any, Dict, Literal import numpy as np import yaml from pydantic import BaseModel from zerospeech.tasks import BenchmarkParameters FileNameType = Dict[str, Dict[str, str]] # using metrics from scipy.spatial.distance.cdist _SciPyMetrics = ['braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'kulczynski1', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] # Enumeration of metrics used for semantics benchmark SemanticMetrics = enum.Enum('SemanticMetrics', {f"{k}": k for k in _SciPyMetrics}) class SemanticPooling(str, enum.Enum): min = 'min' max = 'max' mean = 'mean' sum = 'sum' last = 'last' lastlast = 'lastlast' off = 'off' @property def fn(self): if self == self.max: return functools.partial(np.max, axis=0) elif self == self.min: return functools.partial(np.min, axis=0) elif self == self.mean: return functools.partial(np.mean, axis=0) elif self == self.sum: return functools.partial(np.sum, axis=0) elif self == self.last: return lambda x: x[-1] elif self == self.lastlast: return lambda x: x[-2] elif self == self.off: return lambda x: x else: raise ValueError( f'pooling method must be {",".join([f.value for f in self])}' # noqa: enum typing is bad ) class SemanticParams(BaseModel): metric: SemanticMetrics = SemanticMetrics('euclidean') pooling: SemanticPooling = SemanticPooling.mean synthetic: bool = True librispeech: bool = True correlations: bool = True n_jobs: int = 1 result_filenames: FileNameType = dict( dev=dict( pairs='score_semantic_dev_pairs.csv', correlations='score_semantic_dev_correlation.csv' ), test=dict( pairs='score_semantic_test_pairs.csv', correlations='score_semantic_test_correlation.csv' ) ) class Config: json_encoders = { SemanticMetrics: lambda x: str(x.value), } class LexicalParams(BaseModel): by_pair: bool = True by_length: bool = True by_frequency: bool = True result_filenames: FileNameType = dict( dev=dict( by_pair='score_lexical_dev_by_pair.csv', by_frequency='score_lexical_dev_by_frequency.csv', by_length='score_lexical_dev_by_length.csv' ), test=dict( by_pair='score_lexical_test_by_pair.csv', by_frequency='score_lexical_test_by_frequency.csv', by_length='score_lexical_test_by_length.csv' ) ) FileTypes = Literal['.npy', '.txt'] class SyntacticParams(BaseModel): score_files_type: FileTypes = '.npy' result_filenames: FileNameType = dict( dev=dict( by_pair='score_syntactic_dev_by_pair.csv', by_type='score_syntactic_dev_by_type.csv' ), test=dict( by_pair='score_syntactic_test_by_pair.csv', by_type='score_syntactic_test_by_type.csv' ) ) class SLM21BenchmarkParameters(BenchmarkParameters): lexical: LexicalParams = LexicalParams() syntactic: SyntacticParams = SyntacticParams() semantic: SemanticParams = SemanticParams() def get_lexical(self) -> Dict[str, Any]: return { "quiet": self.quiet, **self.lexical.dict() } def get_semantic(self) -> Dict[str, Any]: return { "quiet": self.quiet, **self.semantic.dict() } def get_syntactic(self) -> Dict[str, Any]: return { "quiet": self.quiet, **self.syntactic.dict() } def to_meta(self) -> Dict[str, Any]: """ Convert into leaderboard meta entry """ # filtering non-interfaced param values excluded = { 'lexical': True, 'syntactic': True, 'semantic': {'result_filenames', 'correlations'} } return dict(self._iter(to_dict=True, exclude=excluded)) def export(self, file: Path): # filtering non-interfaced param values excluded = { 'lexical': True, 'syntactic': True, 'semantic': {'result_filenames', 'correlations'} } # conversion order self -> json -> pydict -> yaml # json is added in before pydict to leverage the pydantic serializer for # more complex types as Enum, datetimes, etc. as a simpler chain of # self -> pydict -> yaml leaves those unserialised and the yaml serializer fails. # see https://pydantic-docs.helpmanual.io/usage/types/#standard-library-types as_obj = json.loads(self.json(exclude=excluded)) with file.open('w') as fp: yaml.dump(as_obj, fp) class ProsodyLMParameters(BenchmarkParameters): """ Parameters for the prosodic benchmark """ results_filename: str = "score_prosodic_{0}_{1}_{2}.csv" def to_meta(self) -> Dict[str, Any]: """ Convert into leaderboard meta entry """ # filtering non-interfaced param values excluded = {'results_filename'} return dict(self._iter(to_dict=True, exclude=excluded)) def export(self, file: Path): # filtering non-interfaced param values excluded = {'result_filename'} # conversion order self -> json -> pydict -> yaml # json is added in before pydict to leverage the pydantic serializer for # more complex types as Enum, datetimes, etc. as a simpler chain of # self -> pydict -> yaml leaves those unserialised and the yaml serializer fails. # see https://pydantic-docs.helpmanual.io/usage/types/#standard-library-types as_obj = json.loads(self.json(exclude=excluded)) with file.open('w') as fp: yaml.dump(as_obj, fp)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/lm/params.py
params.py
from pathlib import Path from typing import Dict, Optional, TYPE_CHECKING import joblib import numpy as np import pandas as pd import scipy.spatial import scipy.stats from zerospeech.data_loaders import load_dataframe, load_numpy_array from zerospeech.generics import FileItem, FileListItem from zerospeech.tasks import Task from .params import SemanticParams, SemanticMetrics, SemanticPooling if TYPE_CHECKING: from zerospeech.submissions.sLM21 import SLM21Submission from ...datasets import SLM21Dataset default_params = SemanticParams() class SemanticTask(Task): _name = "semantic" metric: SemanticMetrics = default_params.metric pooling: SemanticPooling = default_params.pooling synthetic: bool = default_params.synthetic librispeech: bool = default_params.librispeech correlations: bool = default_params.correlations n_jobs: int = default_params.n_jobs result_filenames = default_params.result_filenames sets = ('dev', 'test') def compute_correlation(self, pairs: pd.DataFrame) -> Optional[pd.DataFrame]: """"Returns the Spearman's correlation between human and machine scores""" if not self.correlations: return None def _correlation(df): # choose 'similarity' or 'relatedness' column (the one with no NaN) human = df.similarity if df.relatedness.hasnans else df.relatedness # return spearman correlation. Humans score are similarity (high when # close) so we take the opposite to have a quantity close to a distance # (low when close) return 100 * scipy.stats.spearmanr( # noqa: bad __init__ in scipy ? - human.to_numpy(), df.score.to_numpy())[0] # for each (type/dataset) combination, compute spearman correlation series = pairs.groupby([pairs['type'], pairs['dataset']]).apply(_correlation) # transform raw result in a usable dataframe return series.to_frame().rename(columns={0: 'correlation'}).reset_index() def compute_distance(self, pairs_row: pd.Series, gold_df: pd.DataFrame, pool: pd.DataFrame): # keep only current type in gold gold_df = gold_df[gold_df['type'] == pairs_row['type']] if pairs_row['type'] == 'librispeech': # get the list of tokens corresponding to the given pair of words tokens_1 = gold_df['filename'][gold_df['word'] == pairs_row['word_1']] tokens_2 = gold_df['filename'][gold_df['word'] == pairs_row['word_2']] assert 0 < len(tokens_1) <= 10 and 0 < len(tokens_2) <= 10 x = np.asarray(pool[pool['filename'].isin(tokens_1)]['pooling'].tolist()) y = np.asarray(pool[pool['filename'].isin(tokens_2)]['pooling'].tolist()) # compute the mean distance across all pairs of tokens after pooling return scipy.spatial.distance.cdist( # noqa: bad __init__ for scipy.spatial ?? x, y, metric=str(self.metric.value)).mean() elif pairs_row['type'] == 'synthetic': # get the list of tokens corresponding to the given pair of words tokens_1 = gold_df[['filename', 'voice']][gold_df['word'] == pairs_row['word_1']] tokens_2 = gold_df[['filename', 'voice']][gold_df['word'] == pairs_row['word_2']] tokens = tokens_1.merge(tokens_2, on='voice').drop(['voice'], axis=1) # compute the mean of distances within a given voice dist = 0 for _, (filename_x, filename_y) in tokens.iterrows(): x = pool[pool['filename'] == filename_x]['pooling'].item() y = pool[pool['filename'] == filename_y]['pooling'].item() dist += scipy.spatial.distance.cdist( # noqa: bad __init__ for scipy.spatial ?? np.atleast_2d(x), np.atleast_2d(y), metric=str(self.metric.value))[0][0] return dist / len(tokens) def build_file_index( self, synthetic: FileListItem, librispeech: FileListItem ) -> Dict[str, Dict[str, Path]]: file_index = {} if self.librispeech: file_index['librispeech'] = { f"{p.stem}": p for p in librispeech } if self.synthetic: file_index['synthetic'] = { f"{p.stem}": p for p in synthetic } return file_index def semantic_eval(self, file_index: Dict[str, Dict[str, Path]], gold: FileItem, pairs: FileItem): """ Semantically evaluate a subset """ pairs_df = load_dataframe(pairs, header=0) gold_df = load_dataframe(gold, header=0) if not self.synthetic: gold_df = gold_df.drop(gold_df[gold_df['type'] == 'synthetic'].index) pairs_df = pairs_df.drop(pairs_df[pairs_df['type'] == 'synthetic'].index) if not self.librispeech: gold_df = gold_df.drop(gold_df[gold_df['type'] == 'librispeech'].index) pairs_df = pairs_df.drop(pairs_df[pairs_df['type'] == 'librispeech'].index) def compute(_row: pd.Series): """ Compute pooling from submission array """ fname = file_index.get(_row[0], {}).get(_row[1], None) if fname is None: return _row[1], _row[0], None data = load_numpy_array(fname) # values return _row[1], _row[0], self.pooling.fn(data) # compute pooling from g res = joblib.Parallel(n_jobs=self.n_jobs)(joblib.delayed(compute)(x) for _, x in gold_df.iterrows()) pool = pd.DataFrame(res, columns=['filename', 'type', 'pooling']) pairs_df['score'] = [ self.compute_distance(pairs_row, gold_df, pool) for _, pairs_row in pairs_df.iterrows() ] correlation = self.compute_correlation(pairs_df) return pairs_df, correlation def eval(self, submission: "SLM21Submission", dataset: "SLM21Dataset"): """ Run the selected semantic evaluations & write results """ outputs_dir = submission.score_dir self.sets = submission.sets if 'dev' in self.sets: gold = dataset.index.subsets.semantic_dev.items.gold pairs = dataset.index.subsets.semantic_dev.items.pairs file_index = self.build_file_index( synthetic=submission.items.semantic_dev_synthetic, librispeech=submission.items.semantic_dev_librispeech ) with self.console.status('Running semantic_dev evaluation....', spinner="aesthetic"): res_pairs, correlation = self.semantic_eval(file_index, gold, pairs) filename = outputs_dir / self.result_filenames['dev']['pairs'] self.console.print(f":pencil: writing {self.result_filenames['dev']['pairs']}", style="underline yellow4") res_pairs.to_csv(filename, index=False, float_format='%.4f') if self.correlations and correlation is not None: filename = outputs_dir / self.result_filenames['dev']['correlations'] self.console.print(f":pencil: writing {self.result_filenames['dev']['correlations']}", style="underline yellow4") correlation.to_csv(filename, index=False, float_format='%.4f') if 'test' in self.sets: gold = dataset.index.subsets.semantic_test.items.gold pairs = dataset.index.subsets.semantic_test.items.pairs file_index = self.build_file_index( synthetic=submission.items.semantic_test_synthetic, librispeech=submission.items.semantic_test_librispeech ) with self.console.status('Running semantic_test evaluation....', spinner="aesthetic"): res_pairs, correlation = self.semantic_eval(file_index, gold, pairs) filename = outputs_dir / self.result_filenames['test']['pairs'] self.console.print(f":pencil: writing {self.result_filenames['test']['pairs']}", style="underline yellow4") res_pairs.to_csv(filename, index=False, float_format='%.4f') if self.correlations and correlation is not None: filename = outputs_dir / self.result_filenames['test']['correlations'] self.console.print(f":pencil: writing {self.result_filenames['test']['correlations']}", style="underline yellow4") correlation.to_csv(filename, index=False, float_format='%.4f')
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/lm/semantic.py
semantic.py
from typing import TYPE_CHECKING import pandas as pd from zerospeech.data_loaders import load_dataframe from zerospeech.generics import FileItem from zerospeech.tasks import Task from .params import ProsodyLMParameters if TYPE_CHECKING: from zerospeech.submissions.prosAudit import ProsodySubmission from zerospeech.datasets import ProsAuditLMDataset default_params = ProsodyLMParameters() class ProsodicTask(Task): """ Allows computation of the score for the prosodic task (todo: write better desc)""" _name = "prosaudit" sets = ('dev', 'test') tasks = ('english',) result_filename: str = default_params.results_filename @staticmethod def prosodic_by_pair(data: pd.DataFrame) -> pd.DataFrame: """ Returns a dataframe with the scores by (something non something) pair""" # compute the score for each pair in an additional 'score' column, then # delete the 'score word' and 'score non word' columns that become useless score = data.loc[:, ['score sentence', 'score non sentence']].to_numpy() data['score'] = ( 0.5 * (score[:, 0] == score[:, 1]) + (score[:, 0] > score[:, 1])) data.drop(columns=['score sentence', 'score non sentence'], inplace=True) # finally get the mean score across voices for all pairs score = data.groupby(['type', 'id']).apply(lambda x: ( x.iat[0, 0], # id # x.iat[0, 1], # voice x.iat[0, 2], # type # x.iat[0, 3], # subtype # x.iat[0, 4], # sentence # x.iat[0, 5], # non sentence x['score'].mean())) return pd.DataFrame( score.to_list(), columns=['id', 'type', 'score']) @staticmethod def prosodic_by_type(data: pd.DataFrame) -> pd.DataFrame: """Returns a data frame with mean scores by syntax error type""" return data.score.groupby([data['type']]).agg( n='count', score='mean', std='std').reset_index() def run_prosodic_comparison(self, gold: FileItem, sub_file: FileItem): """ This function create a prosodic comparison based on inputs data_formatting: Each line of the data frame contains a pair of (correct, incorrect) sentences and has the following column: 'id', 'filename', 'type', 'correct' """ gold_df = load_dataframe(gold, header=0, index_col='filename') sub_df = load_dataframe(sub_file, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # merge the gold and score using filenames, then remove the columns # 'phones' and 'filename' as we don't use them for evaluation data = pd.concat([gold_df, sub_df], axis=1) data.reset_index(drop=True, inplace=True) # going from a word per line to a pair (word, non word) per line data = pd.concat([ data.loc[data['correct'] == 1].reset_index().rename( lambda x: 's_' + x, axis=1), data.loc[data['correct'] == 0].reset_index().rename( lambda x: 'ns_' + x, axis=1)], axis=1) data.drop( ['s_index', 'ns_index', 'ns_voice', 'ns_type', 'ns_subtype', 's_correct', 'ns_correct', 'ns_id'], axis=1, inplace=True) data.rename( {'s_id': 'id', 's_voice': 'voice', 's_type': 'type', 's_subtype': 'subtype', 's_transcription': 'sentence', 'ns_transcription': 'non sentence', 's_score': 'score sentence', 'ns_score': 'score non sentence'}, axis=1, inplace=True) by_pair = self.prosodic_by_pair(data) by_type = self.prosodic_by_type(by_pair) # remove (type, subtype) from by_pair data since by_type is complete # by_pair.drop(['type', 'subtype'], axis=1, inplace=True) return by_pair, by_type def eval(self, submission: "ProsodySubmission", dataset: "ProsAuditLMDataset"): """ Evaluate prosody for the given submission """ output_dir = submission.score_dir self.sets = submission.sets self.tasks = submission.tasks if 'dev' in self.sets: if 'english' in self.tasks: gold_file = dataset.index.subsets.english_dev.items.gold sub_file = submission.items.english_dev with self.console.status('Running prosodic english_dev evaluation', spinner="aesthetic"): by_pair, by_type = self.run_prosodic_comparison(gold_file, sub_file) filename = output_dir / f"{self.result_filename.format('english', 'dev', 'by_pair')}" self.console.print(f":pencil: writing {filename.name}", style="underline yellow4") by_pair.to_csv(filename, index=False, float_format='%.4f') filename = output_dir / f"{self.result_filename.format('english', 'dev', 'by_type')}" self.console.print(f":pencil: writing {filename.name}", style="underline yellow4") by_type.to_csv(filename, index=False, float_format='%.4f') if 'test' in self.sets: if 'english' in self.tasks: gold_file = dataset.index.subsets.english_test.items.gold sub_file = submission.items.english_test with self.console.status('Running prosodic english_test evaluation', spinner="aesthetic"): by_pair, by_type = self.run_prosodic_comparison(gold_file, sub_file) filename = output_dir / f"{self.result_filename.format('english', 'test', 'by_pair')}" self.console.print(f":pencil: writing {filename.name}", style="underline yellow4") by_pair.to_csv(filename, index=False, float_format='%.4f') filename = output_dir / f"{self.result_filename.format('english', 'test', 'by_type')}" self.console.print(f":pencil: writing {filename.name}", style="underline yellow4") by_type.to_csv(filename, index=False, float_format='%.4f')
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/lm/prosody.py
prosody.py
import json from enum import Enum from pathlib import Path from typing import Optional, Dict, Any, Literal import yaml from zerospeech.tasks import BenchmarkParameters class ABXMode(str, Enum): """ ABX mode of computation """ all = 'all' within = 'within' across = 'across' def as_set(self): if self == self.all: return self.within, self.across else: return self, class ABXDistanceMode(str, Enum): """ Enumeration for distance mode for abx algorithm""" euclidian = 'euclidian' cosine = 'cosine' kl = 'kl' kl_symmetric = 'kl_symmetric' FileNameType = Dict[str, Dict[str, str]] FileTypesTXT = Literal['.npy', '.txt'] class ABXParameters(BenchmarkParameters): # Path to a CPC checkpoint path_checkpoint: Optional[str] = None # size of a single feature feature_size: Optional[float] = float(0.1) # Use the GPU to compute distances cuda: bool = True # Choose the mode of the ABX score to compute mode: ABXMode = ABXMode.all # Choose the kind of distance to use to compute distance_mode: ABXDistanceMode = ABXDistanceMode.cosine # Max size of a group while computing the ABX score max_size_group: int = 10 # When computing the ABX across score, maximum # number of speaker X to sample per couple A,B. max_x_across: int = 5 # location to output the results out: Optional[str] = None score_file_type: FileTypesTXT = '.npy' result_filename: str = "score_phonetic.csv" def get_task(self): return self.dict() def to_meta(self) -> Dict[str, Any]: """ Convert into leaderboard meta entry """ excluded = {'path_checkpoint', 'out', 'result_filename'} return dict(self._iter(to_dict=True, exclude=excluded)) def export(self, file: Path): # filtering non-interfaced param values excluded = {'path_checkpoint', 'out'} # conversion order self -> json -> pydict -> yaml # json is added in before pydict to leverage the pydantic serializer for # more complex types as Enum, datetimes, etc. as a simpler chain of # self -> pydict -> yaml leaves those unserialised and the yaml serializer fails. # see https://pydantic-docs.helpmanual.io/usage/types/#standard-library-types as_obj = json.loads(self.json(exclude=excluded)) with file.open('w') as fp: yaml.dump(as_obj, fp)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/abx/abx17/params.py
params.py
import abc import warnings from pathlib import Path from typing import Optional, Tuple, Dict, List, TYPE_CHECKING import pandas as pd try: import libriabx except ImportError: libriabx = ... warnings.warn("abx17 extension not installed") from .params import ABXParameters, ABXMode, ABXDistanceMode from zerospeech.generics import FileListItem, FileItem from zerospeech.settings import get_settings from zerospeech.out import warning_console from zerospeech.tasks import Task if TYPE_CHECKING: from zerospeech.datasets import Dataset from zerospeech.submissions import Submission st = get_settings() default_params = ABXParameters() extract_return_type = Tuple[str, FileListItem, FileItem] class SimpleABXTask(Task, abc.ABC): """ Abstract abx-LS task """ _name = "abx-LS" # Path to a CPC checkpoint path_checkpoint: Optional[str] = default_params.path_checkpoint # size of a single feature feature_size: Optional[float] = default_params.feature_size # Use the GPU to compute distances cuda: bool = default_params.cuda # Choose the mode of the ABX score to compute mode: ABXMode = default_params.mode # Choose the kind of distance to use to compute distance_mode: ABXDistanceMode = default_params.distance_mode # Max size of a group while computing the ABX score max_size_group: int = default_params.max_size_group # When computing the ABX across score, maximum # number of speaker X to sample per couple A,B. max_x_across: int = default_params.max_x_across # location to output the results out: Optional[str] = default_params.out sets: Tuple = ('dev', 'test') tasks: Tuple = ('clean', 'other') result_filename = default_params.result_filename def abx_args(self, file_list: List[Path], file_ext, item_file): """ Build ABX arguments from class attributes """ if libriabx: abx_args = libriabx.AbxArguments.load_from_file_list( file_list=file_list, path_item_file=str(item_file), distance_mode=self.distance_mode, feature_size=self.feature_size, cuda=self.cuda, file_extension=file_ext, path_checkpoint=self.path_checkpoint, mode=self.mode, max_size_group=self.max_size_group, max_x_across=self.max_x_across ) # bugfix: _is_mounted is not set by constructor should be fixed in v1.0.6 abx_args._is_mounted = True return abx_args else: raise ValueError('No abx backend detected') def get_abx(self, sub_files: FileListItem, item_file: FileItem) -> Dict[str, float]: """ Run abx evaluations on a fileList using a specific .item file Returns: scores<Dict[str, float]>: where keys represent abx mode (across, within) and float represents the score. """ if None in (sub_files, item_file): return {f'{t.value}': '-' for t in self.mode.as_set()} arg_obj = self.abx_args(sub_files.files_list, sub_files.file_type.ext, item_file.file) if libriabx: res = libriabx.abx_eval(arg_obj) else: raise ValueError('No abx backend detected') return res @abc.abstractmethod def extract_sets(self, submission: "Submission", dataset: "Dataset") -> extract_return_type: """ Extract relevant data for abx from submission & dataset """ pass @abc.abstractmethod def format_results(self, results: Dict) -> pd.DataFrame: """ Format the results as a dataframe """ pass def eval(self, submission: "Submission", dataset: "Dataset"): """ Simple ABX evaluation """ output_dir = submission.score_dir results = {} abx_sets = self.extract_sets(submission, dataset) if self.cuda: warning_console.print("WARNING: gpu mode is set. You can disable this in the parameters.") for label, item_file, file_list in abx_sets: self.console.print(f'==> Calculating abx distances for {label}') results[label] = self.get_abx( sub_files=file_list, item_file=item_file ) as_df = self.format_results(results) filename = output_dir / self.result_filename self.console.print(f":pencil: writing {self.result_filename}", style="underline yellow4") as_df.to_csv(filename, index=False, float_format='%.4f')
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/abx/abx17/task.py
task.py
import json from enum import Enum from pathlib import Path from typing import Optional, Dict, Any, Literal import yaml try: from zrc_abx2.eval_ABX import SEED except ImportError: # use this default value if variable does not exist SEED = 3459 from zerospeech.tasks import BenchmarkParameters class ABXFileTypes(str, Enum): """ Input file type for abx""" pt = '.pt' npy = '.npy' txt = '.txt' wav = '.wav' flac = '.flac' mp3 = '.mp3' class ABXSpeakerMode(str, Enum): """ ABX mode of computation """ all = 'all' within = 'within' across = 'across' def as_set(self): if self == self.all: return self.within, self.across else: return self, class ContextMode(str, Enum): """ ABX context mode of computation """ all = "all" phoneme_any = "phoneme-any" phoneme_within = "phoneme-within" triphone_within = 'triphone-within' def as_set(self): if self == self.all: return self.phoneme_within, self.phoneme_any, self.triphone_within else: return self, def as_abx2_value(self) -> str: if self == self.phoneme_within: return "within" elif self == self.phoneme_any: return "any" elif self == self.triphone_within: return "within" else: raise ValueError('Current context has not representable value in abx2 module') class ABXDistanceMode(str, Enum): """ Enumeration for distance mode for abx algorithm""" euclidian = 'euclidian' cosine = 'cosine' kl = 'kl' kl_symmetric = 'kl_symmetric' class PoolingMode(str, Enum): """ Pooling method """ none = "none" mean = "mean" hamming = "hamming" FileNameType = Dict[str, Dict[str, str]] FileTypesTXT = Literal['.npy', '.txt'] class ABX2Parameters(BenchmarkParameters): # Path to a CPC checkpoint path_checkpoint: Optional[str] = None # size of a single feature feature_size: Optional[float] = float(0.01) # Use the GPU to compute distances cuda: bool = True # Choose the mode of the ABX score to compute speaker_mode: ABXSpeakerMode = ABXSpeakerMode.all # Choose the context type of the ABX score to compute context: ContextMode = ContextMode.all # Choose the kind of distance to use to compute distance_mode: ABXDistanceMode = 'cosine' # Max size of a group while computing the ABX score max_size_group: int = 10 # When computing the ABX across score, maximum # number of speaker X to sample per couple A,B. max_x_across: int = 5 # Default seed to use seed: int = SEED # location to output the results out: Optional[str] = None score_file_type: FileTypesTXT = '.npy' result_filename: str = "score_all_phonetic" def get_task(self): return self.dict() def to_meta(self) -> Dict[str, Any]: """ Convert into leaderboard meta entry """ excluded = {'path_checkpoint', 'out', 'result_filename'} return dict(self._iter(to_dict=True, exclude=excluded)) def export(self, file: Path): # filtering non-interfaced param values excluded = {'path_checkpoint', 'out'} # conversion order self -> json -> pydict -> yaml # json is added in before pydict to leverage the pydantic serializer for # more complex types as Enum, datetimes, etc. as a simpler chain of # self -> pydict -> yaml leaves those unserialised and the yaml serializer fails. # see https://pydantic-docs.helpmanual.io/usage/types/#standard-library-types as_obj = json.loads(self.json(exclude=excluded)) with file.open('w') as fp: yaml.dump(as_obj, fp)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/abx/abxLS_phoneme/params.py
params.py
import abc import json import warnings from pathlib import Path from typing import Optional, Tuple, Dict, List, Any, TYPE_CHECKING import pandas as pd try: import zrc_abx2 from vdataset import mount, unmount except ImportError: zrc_abx2 = ... mount, unmount = ..., ... warnings.warn("abxLS extension not installed") from .params import ABX2Parameters, ABXSpeakerMode, ABXDistanceMode, ContextMode from zerospeech.generics import FileItem, FileListItem from zerospeech.settings import get_settings from zerospeech.out import warning_console from zerospeech.tasks import Task if TYPE_CHECKING: from zerospeech.datasets import Dataset from zerospeech.submissions import Submission st = get_settings() default_params = ABX2Parameters() extract_return_type = Tuple[str, FileItem, FileListItem, ContextMode] class SimpleABXPhonemeTask(Task, abc.ABC): """ Abstract abx-LS task """ _name = "abx-LS" # Path to a CPC checkpoint path_checkpoint: Optional[str] = default_params.path_checkpoint # size of a single feature feature_size: Optional[float] = default_params.feature_size # Use the GPU to compute distances cuda: bool = default_params.cuda # Choose the mode of the ABX score to compute speaker_mode: ABXSpeakerMode = default_params.speaker_mode # Choose the context type of the ABX score to compute context: ContextMode = default_params.context # Choose the kind of distance to use to compute distance_mode: ABXDistanceMode = default_params.distance_mode # Max size of a group while computing the ABX score max_size_group: int = default_params.max_size_group # When computing the ABX across score, maximum # number of speaker X to sample per couple A,B. max_x_across: int = default_params.max_x_across # Default seed to use seed: int = default_params.seed # location to output the results out: Optional[str] = default_params.out sets: Tuple = ('dev', 'test') tasks: Tuple = ('clean', 'other') result_filename = default_params.result_filename def abx_args(self, file_list: List[Path], file_ext, item_file, context: ContextMode): """ Build ABX arguments from class attributes """ if zrc_abx2: path_data = mount(file_list) abx2_context = context.as_abx2_value() abx_args = zrc_abx2.EvalArgs( path_data=str(path_data), path_item_file=str(item_file), speaker_mode=self.speaker_mode, context_mode=abx2_context, distance_mode=self.distance_mode, feature_size=self.feature_size, cuda=self.cuda, file_extension=file_ext, path_checkpoint=self.path_checkpoint, max_size_group=self.max_size_group, max_x_across=self.max_x_across, seed=self.seed ) return abx_args else: raise ValueError('No abx backend detected') def get_abx( self, sub_files: FileListItem, item_file: FileItem, context: ContextMode ) -> List[Dict[str, Any]]: """ Run abx evaluations on a fileList using a specific .item file Returns: scores<Dict[str, float]>: where keys represent abx mode (across, within) and float represents the score. """ if None in (sub_files, item_file): return [{f'{t.value}': '-' for t in self.speaker_mode.as_set()}] arg_obj = self.abx_args(sub_files.files_list, sub_files.file_type.ext, item_file.file, context) if zrc_abx2: res = zrc_abx2.EvalABX().eval_abx(arg_obj) else: raise ValueError('No abx backend detected') # release folder location unmount(arg_obj.path_data) return res @abc.abstractmethod def extract_sets(self, submission: "Submission", dataset: "Dataset", context: ContextMode = ContextMode.all) -> List[extract_return_type]: """ Extract relevant data for abx from submission & dataset """ pass @abc.abstractmethod def format_results(self, results: Dict) -> pd.DataFrame: """ Format the results as a dataframe """ pass def eval(self, submission: "Submission", dataset: "Dataset"): """ Simple Phoneme ABX evaluation """ output_dir = submission.score_dir results = {} abx_sets = self.extract_sets(submission, dataset) if self.cuda: warning_console.print("WARNING: gpu mode is set. You can disable this in the parameters.") for label, item_file, file_list, context in abx_sets: self.console.print(f'==> Calculating abx distances for {label}') results[label] = self.get_abx( sub_files=file_list, item_file=item_file, context=context ) as_df = self.format_results(results) filename = output_dir / self.result_filename with filename.with_suffix('.raw.json').open('w') as fp: json.dump(results, fp, indent=4) self.console.print(f":pencil: writing {self.result_filename}", style="underline yellow4") as_df.to_csv(filename.with_suffix('.csv'), index=False, float_format='%.4f')
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/tasks/abx/abxLS_phoneme/task.py
task.py
import collections import functools import shutil from datetime import datetime from pathlib import Path from typing import Tuple, Optional import numpy as np import pandas as pd from pydantic import Field from zerospeech import validators from zerospeech.data_loaders import load_dataframe from zerospeech.datasets import ZRC2017Dataset from zerospeech.generics import ( FileTypes, FileListItem, Namespace, Item, FileItem ) from zerospeech.leaderboards import EntryDetails, LeaderboardBenchmarkName, LeaderboardEntry from zerospeech.leaderboards.abx17 import ABX17LeaderboardEntry, ABX17LeaderboardScores from zerospeech.misc import load_obj from zerospeech.tasks.abx.abx17 import ABXParameters from ._model import MetaFile, Submission, SubmissionValidation, validation_fn, add_item, ScoreDir class ABX17SubmissionValidator(SubmissionValidation): """ File Validation for an ABX17 submission""" dataset: ZRC2017Dataset = Field(default_factory=lambda: ZRC2017Dataset.load()) @staticmethod def basic_abx_checks(item_list: FileListItem, abx_item: FileItem, tag: str): # wav_list are compared to items inside item file df = pd.read_csv(abx_item.file, sep=' ') f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_stem_check, expected=[str(f) for f in df['#file']] ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ), # Verify that files have the same dimensions validators.numpy_col_comparison(1) ] results = validators.numpy_array_list_check( item_list, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item(tag, results) return results @validation_fn(target='english_1s') def validate_english_1s(self, english_1s: FileListItem): abx_item = self.dataset.index.subsets.english.items.abx_1s_item return self.basic_abx_checks(item_list=english_1s, abx_item=abx_item, tag='english_1s') @validation_fn(target='english_10s') def validate_english_10s(self, english_10s: FileListItem): abx_item = self.dataset.index.subsets.english.items.abx_10s_item return self.basic_abx_checks(item_list=english_10s, abx_item=abx_item, tag='english_10s') @validation_fn(target='english_120s') def validate_english_120s(self, english_120s: FileListItem): abx_item = self.dataset.index.subsets.english.items.abx_120s_item return self.basic_abx_checks(item_list=english_120s, abx_item=abx_item, tag='english_120s') @validation_fn(target='french_1s') def validate_french_1s(self, french_1s: FileListItem): abx_item = self.dataset.index.subsets.french.items.abx_1s_item return self.basic_abx_checks(item_list=french_1s, abx_item=abx_item, tag='french_1s') @validation_fn(target='french_10s') def validate_french_10s(self, french_10s: FileListItem): abx_item = self.dataset.index.subsets.french.items.abx_10s_item return self.basic_abx_checks(item_list=french_10s, abx_item=abx_item, tag='french_10s') @validation_fn(target='french_120s') def validate_french_120s(self, french_120s: FileListItem): abx_item = self.dataset.index.subsets.french.items.abx_120s_item return self.basic_abx_checks(item_list=french_120s, abx_item=abx_item, tag='french_120s') @validation_fn(target='mandarin_1s') def validate_mandarin_1s(self, mandarin_1s: FileListItem): abx_item = self.dataset.index.subsets.mandarin.items.abx_1s_item return self.basic_abx_checks(item_list=mandarin_1s, abx_item=abx_item, tag='mandarin_1s') @validation_fn(target='mandarin_10s') def validate_mandarin_10s(self, mandarin_10s: FileListItem): abx_item = self.dataset.index.subsets.mandarin.items.abx_10s_item return self.basic_abx_checks(item_list=mandarin_10s, abx_item=abx_item, tag='mandarin_10s') @validation_fn(target='mandarin_120s') def validate_mandarin_120s(self, mandarin_120s: FileListItem): abx_item = self.dataset.index.subsets.mandarin.items.abx_120s_item return self.basic_abx_checks(item_list=mandarin_120s, abx_item=abx_item, tag='mandarin_120s') @validation_fn(target='german_1s') def validate_german_1s(self, german_1s: FileListItem): abx_item = self.dataset.index.subsets.german.items.abx_1s_item return self.basic_abx_checks(item_list=german_1s, abx_item=abx_item, tag='german_1s') @validation_fn(target='german_10s') def validate_german_10s(self, german_10s: FileListItem): abx_item = self.dataset.index.subsets.german.items.abx_10s_item return self.basic_abx_checks(item_list=german_10s, abx_item=abx_item, tag='german_10s') @validation_fn(target='german_120s') def validate_german_120s(self, german_120s: FileListItem): abx_item = self.dataset.index.subsets.german.items.abx_120s_item return self.basic_abx_checks(item_list=german_120s, abx_item=abx_item, tag='german_120s') @validation_fn(target='wolof_1s') def validate_wolof_1s(self, wolof_1s: FileListItem): abx_item = self.dataset.index.subsets.wolof.items.abx_1s_item return self.basic_abx_checks(item_list=wolof_1s, abx_item=abx_item, tag='wolof_1s') @validation_fn(target='wolof_10s') def validate_wolof_10s(self, wolof_10s: FileListItem): abx_item = self.dataset.index.subsets.wolof.items.abx_10s_item return self.basic_abx_checks(item_list=wolof_10s, abx_item=abx_item, tag='wolof_10s') @validation_fn(target='wolof_120s') def validate_wolof_120s(self, wolof_120s: FileListItem): abx_item = self.dataset.index.subsets.wolof.items.abx_120s_item return self.basic_abx_checks(item_list=wolof_120s, abx_item=abx_item, tag='wolof_120s') class ABX17ScoreDir(ScoreDir): params: Optional[ABXParameters] = ABXParameters() @property def scores(self): csv_file = (self.location / self.params.result_filename).with_suffix('.csv') return load_dataframe(csv_file) def get_details(self) -> EntryDetails: """ Build entry details """ train_set = "" gpu_budget = "" if self.meta_file is not None: train_set = self.meta_file.model_info.train_set gpu_budget = self.meta_file.model_info.gpu_budget return EntryDetails( train_set=train_set, benchmarks=[LeaderboardBenchmarkName.ABX_17], gpu_budget=gpu_budget, parameters=self.params.to_meta() ) def build_scores(self) -> ABX17LeaderboardScores: """ extract scores from csv """ score_template = collections.defaultdict(lambda: collections.defaultdict(lambda: collections.defaultdict(dict))) for _, row in self.scores.iterrows(): score_template[row['language']][f"t_{row['duration']}"][row['type']] = row["score"] return ABX17LeaderboardScores.parse_obj(score_template) def build_meta_data(self): """ Build leaderboard metadata """ return dict( model_id=self.meta_file.model_info.model_id, submission_id="", index=None, submission_date=datetime.now(), submitted_by=self.meta_file.username, description=self.meta_file.model_info.system_description, publication=dict( author_short=self.meta_file.publication.author_label, authors=self.meta_file.publication.authors, paper_title=self.meta_file.publication.paper_title, paper_ref=self.meta_file.publication.paper_url, bib_ref=self.meta_file.publication.bib_reference, paper_url=self.meta_file.publication.paper_url, pub_year=self.meta_file.publication.publication_year, team_name=self.meta_file.publication.team, institution=self.meta_file.publication.institution, code=self.meta_file.code_url, DOI=self.meta_file.publication.DOI, open_science=self.meta_file.open_source, ), details=dict( train_set=self.meta_file.model_info.train_set, benchmarks=[], gpu_budget=self.meta_file.model_info.gpu_budget, parameters=self.params.to_meta(), ) ) def build_leaderboard(self) -> LeaderboardEntry: """ Build leaderboard entry for the current submission """ self.load_meta() return ABX17LeaderboardEntry.parse_obj( dict( **self.build_meta_data(), scores=self.build_scores() ) ) class ABX17Submission(Submission): """ Submission for ABX-17 """ sets: Tuple = ('1s', '10s', '120s') tasks: Tuple = ('english', 'french', 'mandarin', 'german', 'wolof') @classmethod def load( cls, path: Path, *, tasks=('english', 'french', 'mandarin', 'german', 'wolof'), sets=('1s', '10s', '120s') ): # submission object submission = cls( sets=sets, tasks=tasks, location=path ) # if params not set export defaults if not submission.params_file.is_file(): params = ABXParameters() params.result_filename = "scores.csv" params.export(submission.params_file) # Load items file_ext = submission.params.score_file_type.replace('.', '') file_ext = FileTypes(file_ext) items = dict() if 'english' in tasks: if '1s' in sets: items['english_1s'] = FileListItem.from_dir( path / 'english/1s', f_type=file_ext ) if '10s' in sets: items['english_10s'] = FileListItem.from_dir( path / 'english/10s', f_type=file_ext ) if '120s' in sets: items['english_120s'] = FileListItem.from_dir( path / 'english/120s', f_type=file_ext ) if 'french' in tasks: if '1s' in sets: items['french_1s'] = FileListItem.from_dir( path / 'french/1s', f_type=file_ext ) if '10s' in sets: items['french_10s'] = FileListItem.from_dir( path / 'french/10s', f_type=file_ext ) if '120s' in sets: items['french_120s'] = FileListItem.from_dir( path / 'french/120s', f_type=file_ext ) if 'mandarin' in tasks: if '1s' in sets: items['mandarin_1s'] = FileListItem.from_dir( path / 'mandarin/1s', f_type=file_ext ) if '10s' in sets: items['mandarin_10s'] = FileListItem.from_dir( path / 'mandarin/10s', f_type=file_ext ) if '120s' in sets: items['mandarin_120s'] = FileListItem.from_dir( path / 'mandarin/120s', f_type=file_ext ) if 'german' in tasks: # retro-compatibility with old format gloc = path / 'LANG1' if not gloc.is_dir(): gloc = path / 'german' if '1s' in sets: items['german_1s'] = FileListItem.from_dir( gloc / '1s', f_type=file_ext ) if '10s' in sets: items['german_10s'] = FileListItem.from_dir( gloc / '10s', f_type=file_ext ) if '120s' in sets: items['german_120s'] = FileListItem.from_dir( gloc / '120s', f_type=file_ext ) if 'wolof' in tasks: # retro-compatibility with old format gloc = path / 'LANG2' if not gloc.is_dir(): gloc = path / 'wolof' if '1s' in sets: items['wolof_1s'] = FileListItem.from_dir( gloc / '1s', f_type=file_ext ) if '10s' in sets: items['wolof_10s'] = FileListItem.from_dir( gloc / '10s', f_type=file_ext ) if '120s' in sets: items['wolof_120s'] = FileListItem.from_dir( gloc / '120s', f_type=file_ext ) submission.items = Namespace[Item](store=items) return submission def load_parameters(self) -> "ABXParameters": if self.params_file.is_file(): obj = load_obj(self.params_file) return ABXParameters.parse_obj(obj) return ABXParameters() def __validate_submission__(self): """ Run validation on the submission data """ self.validation_output += ABX17SubmissionValidator().validate(self) def get_scores(self): """ Load score Dir""" return ABX17ScoreDir( submission_dir=self.location, location=self.score_dir, params=self.params ) def __zippable__(self): return [ ("", self.meta_file), ("", self.params_file), *[("english/1s/", f) for f in self.items.english_1s], *[("english/10s/", f) for f in self.items.english_10s], *[("english/120s/", f) for f in self.items.english_120s], *[("french/1s/", f) for f in self.items.french_1s], *[("french/10s/", f) for f in self.items.french_10s], *[("french/120s/", f) for f in self.items.french_120s], *[("mandarin/1s/", f) for f in self.items.mandarin_1s], *[("mandarin/10s/", f) for f in self.items.mandarin_10s], *[("mandarin/120s/", f) for f in self.items.mandarin_120s], *[("german/1s/", f) for f in self.items.german_1s], *[("german/10s/", f) for f in self.items.german_10s], *[("german/120s/", f) for f in self.items.german_120s], *[("wolof/1s/", f) for f in self.items.wolof_1s], *[("wolof/10s/", f) for f in self.items.wolof_10s], *[("wolof/120s/", f) for f in self.items.wolof_120s], *[("scores/", f) for f in self.score_dir.iterdir()] ] @classmethod def init_dir(cls, location: Path): # create sub-directories location.mkdir(exist_ok=True, parents=True) (location / 'english' / "1s").mkdir(exist_ok=True, parents=True) (location / 'english' / "10s").mkdir(exist_ok=True, parents=True) (location / 'english' / "120s").mkdir(exist_ok=True, parents=True) (location / 'french' / "1s").mkdir(exist_ok=True, parents=True) (location / 'french' / "10s").mkdir(exist_ok=True, parents=True) (location / 'french' / "120s").mkdir(exist_ok=True, parents=True) (location / 'mandarin' / "1s").mkdir(exist_ok=True, parents=True) (location / 'mandarin' / "10s").mkdir(exist_ok=True, parents=True) (location / 'mandarin' / "120s").mkdir(exist_ok=True, parents=True) (location / 'german' / "1s").mkdir(exist_ok=True, parents=True) (location / 'german' / "10s").mkdir(exist_ok=True, parents=True) (location / 'german' / "120s").mkdir(exist_ok=True, parents=True) (location / 'wolof' / "1s").mkdir(exist_ok=True, parents=True) (location / 'wolof' / "10s").mkdir(exist_ok=True, parents=True) (location / 'wolof' / "120s").mkdir(exist_ok=True, parents=True) # scores dir (location / 'scores').mkdir(exist_ok=True, parents=True) # create parameters file ABXParameters().export(location / ABXParameters.file_stem) # create meta-template template = MetaFile.to_template(benchmark_name="abx17") template.to_yaml( file=location / MetaFile.file_stem, excluded={ "file_stem": True, "model_info": {"model_id"}, "publication": {"bib_reference", "DOI"} } ) instruction_file = Path(__file__).parent / "instructions.md" if instruction_file.is_file(): shutil.copy(instruction_file, location / 'help.md')
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/abx17.py
abx17.py
import json import os import shutil import sys from datetime import datetime from pathlib import Path from typing import Tuple, Dict, Any, Optional, Type, List import yaml from pydantic import Field from zerospeech.datasets.zrc_2017 import ZRC2017Dataset from zerospeech.generics import FileItem, Item, Namespace from zerospeech.leaderboards import EntryDetails, LeaderboardBenchmarkName, LeaderboardEntry from zerospeech.leaderboards.tde17 import TDE17Scores, TDE17Entry from zerospeech.misc import load_obj from zerospeech.tasks import BenchmarkParameters, tde from zerospeech.validators import BASE_VALIDATOR_FN_TYPE from . import ScoreDir from ._model import ( MetaFile, Submission, validation_fn, SubmissionValidation, ValidationResponse, ValidationError, ValidationOK ) class TDE17BenchmarkParams(BenchmarkParameters): """ Parameters for the TDE-17 benchmark """ # location to output the results njobs: int = 1 # CPU cores to use for eval out: Optional[str] = None result_filename: str = "scores.json" def get_task(self): return self.dict() def to_meta(self) -> Dict[str, Any]: """ Convert into leaderboard meta entry """ excluded = {'result_filename', 'out'} return dict(self._iter(to_dict=True, exclude=excluded)) def export(self, file: Path): # filtering non-interfaced param values excluded = {'result_filename', 'out'} # conversion order self -> json -> pydict -> yaml # json is added in before pydict to leverage the pydantic serializer for # more complex types as Enum, datetime, etc. as a simpler chain of # self -> pydict -> yaml leaves those unserialised and the yaml serializer fails. # see https://pydantic-docs.helpmanual.io/usage/types/#standard-library-types as_obj = json.loads(self.json(exclude=excluded)) with file.open('w') as fp: yaml.dump(as_obj, fp) def tde_class_file_check( file_location: Path, additional_checks: Optional[List[BASE_VALIDATOR_FN_TYPE]] = None ) -> List[ValidationResponse]: """ Check a TDE class file """ if not file_location.is_file(): return [ValidationError( 'Given TDE Disc file does not exist !!!', data=file_location.name, location=file_location.parent )] # Disc class prints a bunch of nonsense, so we force it to be quiet sys.stdout = open(os.devnull, 'w') try: disc = tde.Disc(str(file_location)) except Exception as e: # noqa: broad exception on purpose return [ValidationError(f'{e}', data=file_location)] finally: sys.stdout = sys.__stdout__ results = [ValidationOK('File is a Disc TDE file !', data=file_location)] if additional_checks: for fn in additional_checks: results.extend(fn(disc)) return results class TDE17SubmissionValidation(SubmissionValidation): dataset: ZRC2017Dataset = Field(default_factory=lambda: ZRC2017Dataset.load()) @property def params_class(self) -> Type[TDE17BenchmarkParams]: return TDE17BenchmarkParams @validation_fn(target='english') def validating_english(self, class_file: FileItem): return tde_class_file_check(class_file.file) @validation_fn(target='french') def validating_english(self, class_file: FileItem): return tde_class_file_check(class_file.file) @validation_fn(target='mandarin') def validating_english(self, class_file: FileItem): return tde_class_file_check(class_file.file) @validation_fn(target='german') def validating_english(self, class_file: FileItem): return tde_class_file_check(class_file.file) @validation_fn(target='wolof') def validating_english(self, class_file: FileItem): return tde_class_file_check(class_file.file) class TDE17ScoreDir(ScoreDir): params: Optional[TDE17BenchmarkParams] = TDE17BenchmarkParams() @property def scores(self): pass def get_details(self) -> EntryDetails: """ Build entry details """ train_set = "" gpu_budget = "" if self.meta_file is not None: train_set = self.meta_file.model_info.train_set gpu_budget = self.meta_file.model_info.gpu_budget return EntryDetails( train_set=train_set, benchmarks=[LeaderboardBenchmarkName.TDE_17], gpu_budget=gpu_budget, parameters=self.params.to_meta() ) def build_scores(self) -> TDE17Scores: df = self.scores # todo: compile scores into format return ... def build_meta_data(self): """ Build leaderboard metadata """ return dict( model_id=self.meta_file.model_info.model_id, submission_id="", index=None, submission_date=datetime.now(), submitted_by=self.meta_file.username, description=self.meta_file.model_info.system_description, publication=dict( author_short=self.meta_file.publication.author_label, authors=self.meta_file.publication.authors, paper_title=self.meta_file.publication.paper_title, paper_ref=self.meta_file.publication.paper_url, bib_ref=self.meta_file.publication.bib_reference, paper_url=self.meta_file.publication.paper_url, pub_year=self.meta_file.publication.publication_year, team_name=self.meta_file.publication.team, institution=self.meta_file.publication.institution, code=self.meta_file.code_url, DOI=self.meta_file.publication.DOI, open_science=self.meta_file.open_source, ), details=dict( train_set=self.meta_file.model_info.train_set, benchmarks=[], gpu_budget=self.meta_file.model_info.gpu_budget, parameters=self.params.to_meta(), ) ) def build_leaderboard(self) -> LeaderboardEntry: """ Build leaderboard entry for the current submission """ self.load_meta() return TDE17Entry.parse_obj( dict( **self.build_meta_data(), scores=self.build_scores() ) ) class TDE17Submission(Submission): """ Submission for TDE-17 """ sets: Tuple = ('1s', '10s', '120s') tasks: Tuple = ('english', 'french', 'mandarin', 'german', 'wolof') @classmethod def load( cls, path: Path, *, tasks=('english', 'french', 'mandarin', 'german', 'wolof'), sets=('1s', '10s', '120s') ): items = dict() if 'english' in tasks: items['english'] = FileItem.from_file( path / 'english.txt' ) if 'french' in tasks: items['french'] = FileItem.from_file( path / 'french.txt' ) if 'mandarin' in tasks: items['mandarin'] = FileItem.from_file( path / 'mandarin.txt' ) if 'german' in tasks: items['german'] = FileItem.from_file( path / 'german.txt' ) if 'wolof' in tasks: items['wolof'] = FileItem.from_file( path / 'wolof.txt' ) submission = cls( sets=sets, tasks=tasks, location=path, items=Namespace[Item](store=items) ) # if params not set export defaults if not submission.params_file.is_file(): TDE17BenchmarkParams().export(submission.params_file) return submission def load_parameters(self) -> "TDE17BenchmarkParams": if self.params_file.is_file(): obj = load_obj(self.params_file) return TDE17BenchmarkParams.parse_obj(obj) return TDE17BenchmarkParams() def __validate_submission__(self): """ Run validation on the submission data """ self.validation_output += TDE17SubmissionValidation().validate(self) @classmethod def init_dir(cls, location: Path): # create sub-directories location.mkdir(exist_ok=True, parents=True) # create necessary files (location / 'english.txt').touch(exist_ok=True) (location / 'french.txt').touch(exist_ok=True) (location / 'mandarin.txt').touch(exist_ok=True) (location / 'german.txt').touch(exist_ok=True) (location / 'wolof.txt').touch(exist_ok=True) # scores dir (location / 'scores').mkdir(exist_ok=True, parents=True) # create params template TDE17BenchmarkParams().export(location / TDE17BenchmarkParams.file_stem) # create meta template template = MetaFile.to_template(benchmark_name="tde17") template.to_yaml( file=location / MetaFile.file_stem, excluded={ "file_stem": True, "model_info": {"model_id"}, "publication": {"bib_reference", "DOI"} } ) instruction_file = Path(__file__).parent / "instructions.md" if instruction_file.is_file(): shutil.copy(instruction_file, location / 'help.md') def __zippable__(self): return [ ("", self.meta_file), ("", self.params_file), *[("", self.location / f"{f}.txt") for f in self.tasks], *[("scores/", f) for f in self.score_dir.iterdir()] ]
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/tde17.py
tde17.py
import datetime import functools import shutil from pathlib import Path from typing import Optional, Dict import pandas as pd from pydantic import Field from zerospeech import validators, data_loaders from zerospeech.datasets import ProsAuditLMDataset from zerospeech.generics import ( FileItem, Item, Namespace ) from zerospeech.leaderboards import LeaderboardEntry from zerospeech.leaderboards.prosaudit import ProsAuditLeaderboardEntry, ProsAuditEntryScores from zerospeech.misc import load_obj from zerospeech.tasks.lm import ProsodyLMParameters from ._model import ScoreDir, MetaFile, SubmissionValidation, validation_fn, Submission, add_item class ProsodySubmissionValidation(SubmissionValidation): """ Class that contains all function to validate a ProsAudit Submission""" dataset: ProsAuditLMDataset = Field(default_factory=lambda: ProsAuditLMDataset.load()) @validation_fn(target="english_dev") def validation_english_dev(self, english_dev: FileItem): additional_df_checks = [ # Verify that result df has expected columns functools.partial( validators.dataframe_column_check, expected_columns=['score']), # Verify that result df has all filenames in set functools.partial( validators.dataframe_index_check, expected=[f.stem for f in self.dataset.index.subsets.english_dev.items.wav_list.files_list] ), # Verify that scores are in float functools.partial( validators.dataframe_type_check, col_name='score', expected_type=float ) ] # check dataframe results = validators.dataframe_check(english_dev, additional_df_checks, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # add item tag add_item('english_dev', results) return results @validation_fn(target="english_test") def validation_english_dev(self, english_test: FileItem): additional_df_checks = [ # Verify that result df has expected columns functools.partial( validators.dataframe_column_check, expected_columns=['score']), # Verify that result df has all filenames in set functools.partial( validators.dataframe_index_check, expected=[f.stem for f in self.dataset.index.subsets.english_test.items.wav_list.files_list] ), # Verify that scores are in float functools.partial( validators.dataframe_type_check, col_name='score', expected_type=float ) ] # check dataframe results = validators.dataframe_check(english_test, additional_df_checks, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # add item tag add_item('english_test', results) return results class ProsAuditScoreDir(ScoreDir): params = ProsodyLMParameters @property def english_dev_score_by_pair(self) -> Optional[pd.DataFrame]: csv_file = self.location / self.params.results_filename.format('english', 'dev', 'by_pair') if csv_file.is_file(): return data_loaders.load_dataframe(csv_file) return None @property def english_dev_score_by_type(self) -> Optional[pd.DataFrame]: csv_file = self.location / self.params.results_filename.format('english', 'dev', 'by_type') if csv_file.is_file(): return data_loaders.load_dataframe(csv_file) return None @property def english_test_score_by_pair(self) -> Optional[pd.DataFrame]: csv_file = self.location / self.params.results_filename.format('english', 'test', 'by_pair') if csv_file.is_file(): return data_loaders.load_dataframe(csv_file) return None @property def english_test_score_by_type(self) -> Optional[pd.DataFrame]: csv_file = self.location / self.params.results_filename.format('english', 'test', 'by_type') if csv_file.is_file(): return data_loaders.load_dataframe(csv_file) return None def build_scores(self) -> ProsAuditEntryScores: """ Build scores entry from submission scores """ dev_df = self.english_dev_score_by_type dev_lexical: Dict = dev_df.loc[dev_df['type'] == 'lexical'].to_dict(orient="records")[0] dev_protosyntax: Dict = dev_df.loc[dev_df['type'] == 'protosyntax'].to_dict(orient="records")[0] test_df = self.english_test_score_by_type test_lexical: Dict = test_df.loc[test_df['type'] == 'lexical'].to_dict(orient="records")[0] test_protosyntax: Dict = test_df.loc[test_df['type'] == 'protosyntax'].to_dict(orient="records")[0] return ProsAuditEntryScores.parse_obj( dict( protosyntax=dict( dev=dict( score=dev_protosyntax.get('score'), n=dev_protosyntax.get('n'), std=dev_protosyntax.get('std'), ), test=dict( score=test_protosyntax.get('score'), n=test_protosyntax.get('n'), std=test_protosyntax.get('std'), ) ), lexical=dict( dev=dict( score=dev_lexical.get('score'), n=dev_lexical.get('n'), std=dev_lexical.get('std'), ), test=dict( score=test_lexical.get('score'), n=test_lexical.get('n'), std=test_lexical.get('std'), ) ) ) ) def build_meta_data(self): """ Build leaderboard metadata """ return dict( model_id=self.meta_file.model_info.model_id, submission_id="", index=None, submission_date=datetime.datetime.now(), submitted_by=self.meta_file.username, description=self.meta_file.model_info.system_description, publication=dict( author_short=self.meta_file.publication.author_label, authors=self.meta_file.publication.authors, paper_title=self.meta_file.publication.paper_title, paper_ref=self.meta_file.publication.paper_url, bib_ref=self.meta_file.publication.bib_reference, paper_url=self.meta_file.publication.paper_url, pub_year=self.meta_file.publication.publication_year, team_name=self.meta_file.publication.team, institution=self.meta_file.publication.institution, code=self.meta_file.code_url, DOI=self.meta_file.publication.DOI, open_science=self.meta_file.open_source, ), details=dict( train_set=self.meta_file.model_info.train_set, benchmarks=[], gpu_budget=self.meta_file.model_info.gpu_budget, parameters=dict(), ) ) def build_leaderboard(self) -> LeaderboardEntry: """ Build leaderboard entry """ self.load_meta() return ProsAuditLeaderboardEntry.parse_obj( dict( **self.build_meta_data(), scores=self.build_scores() ) ) class ProsodySubmission(Submission): sets = ('dev', 'test') tasks = ('english',) @classmethod def load(cls, path: Path, *, sets=('dev', 'test'), tasks=('english', 'french', 'japanese')): """ Load sLMProsody submission """ submission = cls( sets=sets, tasks=tasks, location=path ) if not submission.params_file.is_file(): ProsodyLMParameters().export(submission.params_file) items = dict() if 'english' in tasks: if 'dev' in sets: items['english_dev'] = FileItem.from_file(path / 'english_dev.txt') if 'test' in sets: items['english_test'] = FileItem.from_file(path / 'english_test.txt') submission.items = Namespace[Item](store=items) return submission def __zippable__(self): """ Files to include in archive """ return [ ("", self.meta_file), ("", self.params_file), ("", self.items.english_dev.file), ("", self.items.english_test.file), *[("scores/", f) for f in self.score_dir.iterdir()] ] @classmethod def init_dir(cls, location: Path): # create sub-directories location.mkdir(exist_ok=True, parents=True) (location / 'english_dev.txt').touch(exist_ok=True) (location / 'english_test.txt').touch(exist_ok=True) # scores dir (location / 'scores').mkdir(exist_ok=True, parents=True) # create parameters file # create meta-template template = MetaFile.to_template(benchmark_name="prosAudit") ProsodyLMParameters().export(location / ProsodyLMParameters.file_stem) template.to_yaml( file=location / MetaFile.file_stem, excluded={ "file_stem": True, "model_info": {"model_id"}, "publication": {"bib_reference", "DOI"} } ) instruction_file = Path(__file__).parent / "instructions.md" if instruction_file.is_file(): shutil.copy(instruction_file, location / 'help.md') def load_parameters(self) -> ProsodyLMParameters: if self.params_file.is_file(): obj = load_obj(self.params_file) return ProsodyLMParameters.parse_obj(obj) return ProsodyLMParameters() def __validate_submission__(self): """ Validate that all files are present in submission """ self.validation_output += ProsodySubmissionValidation().validate(self) def get_scores(self) -> ProsAuditScoreDir: return ProsAuditScoreDir( submission_dir=self.location, location=self.score_dir, params=self.params )
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/prosAudit.py
prosAudit.py
import functools import shutil import uuid from datetime import datetime from pathlib import Path from typing import Tuple, List, Optional, Dict import numpy as np import pandas as pd from pydantic import Extra, Field import zerospeech.validators as validators from zerospeech.data_loaders import load_dataframe from zerospeech.datasets import SLM21Dataset from zerospeech.generics import ( FileItem, Namespace, Item, FileListItem, FileTypes ) from zerospeech.leaderboards import EntryDetails, LeaderboardBenchmarkName from zerospeech.leaderboards.sLM21 import ( SLM21LeaderboardEntry, LexicalScores, ScoreTuple, LexicalExtras, SLM21Scores, SemanticScores, SemanticScoreSets, SLM21Extras, SyntacticExtras, SemanticExtras ) from zerospeech.misc import load_obj from zerospeech.tasks.lm import SLM21BenchmarkParameters from ._model import MetaFile, ScoreDir, SubmissionValidation, validation_fn, add_item, Submission class SLM21SubmissionValidator(SubmissionValidation): """ Class that contains all functions to validate a sLM21 submission """ dataset: SLM21Dataset = Field(default_factory=lambda: SLM21Dataset.load()) @validation_fn(target='lexical_dev') def validating_lexical_dev(self, lexical_dev: FileItem): additional_df_checks = [ # Verify that result df has expected columns functools.partial( validators.dataframe_column_check, expected_columns=['score']), # Verify that result df has all filenames in set functools.partial( validators.dataframe_index_check, expected=[f.stem for f in self.dataset.index.subsets.lexical_dev.items.wav_list.files_list] ), # Verify that scores are in float functools.partial( validators.dataframe_type_check, col_name='score', expected_type=float ) ] # check dataframe results = validators.dataframe_check(lexical_dev, additional_df_checks, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # add item tag add_item('lexical_dev', results) return results @validation_fn(target='lexical_test') def validating_lexical_test(self, lexical_test: FileItem): # check that file is a correct space separated list with two columns additional_df_checks = [ # Verify that result df has expected columns functools.partial( validators.dataframe_column_check, expected_columns=['score']), # Verify that result df has all filenames in set functools.partial( validators.dataframe_index_check, expected=[f.stem for f in self.dataset.index.subsets.lexical_test.items.wav_list.files_list] ), # Verify that scores are in float functools.partial( validators.dataframe_type_check, col_name='score', expected_type=float ) ] # check dataframe results = validators.dataframe_check(lexical_test, additional_df_checks, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # add item tag add_item('lexical_test', results) return results @validation_fn(target='semantic_dev_synthetic') def validating_semantic_dev_synthetic(self, semantic_dev_synthetic: FileListItem): f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_checker, expected=self.dataset.index.subsets.semantic_dev.items.synthetic_wav_list.files_list ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ) ] # Check file list results = validators.numpy_array_list_check( semantic_dev_synthetic, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item('semantic_dev_synthetic', results) return results @validation_fn(target='semantic_dev_librispeech') def validating_semantic_dev_librispeech(self, semantic_dev_librispeech: FileListItem): f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_checker, expected=self.dataset.index.subsets.semantic_dev.items.librispeech_wav_list.files_list ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ) ] # Check file list results = validators.numpy_array_list_check( semantic_dev_librispeech, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item('semantic_dev_librispeech', results) return results @validation_fn(target='semantic_test_synthetic') def validating_semantic_test_synthetic(self, semantic_test_synthetic: FileListItem): f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_checker, expected=self.dataset.index.subsets.semantic_test.items.synthetic_wav_list.files_list ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ) ] # Check file list results = validators.numpy_array_list_check( semantic_test_synthetic, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item('semantic_test_synthetic', results) return results @validation_fn(target='semantic_test_librispeech') def validating_semantic_test_librispeech(self, semantic_test_librispeech: FileListItem): f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_checker, expected=self.dataset.index.subsets.semantic_test.items.librispeech_wav_list.files_list ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ) ] # Check file list results = validators.numpy_array_list_check( semantic_test_librispeech, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item('semantic_test_librispeech', results) return results @validation_fn(target='syntactic_dev') def validating_syntactic_dev(self, syntactic_dev: FileItem): additional_df_checks = [ # Verify that result df has expected columns functools.partial( validators.dataframe_column_check, expected_columns=['score']), # Verify that result df has all filenames in set functools.partial( validators.dataframe_index_check, expected=[f.stem for f in self.dataset.index.subsets.syntactic_dev.items.wav_list.files_list] ), # Verify that scores are in float functools.partial( validators.dataframe_type_check, col_name='score', expected_type=float ) ] # check dataframe results = validators.dataframe_check(syntactic_dev, additional_df_checks, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # add item tag add_item('syntactic_dev', results) return results @validation_fn(target='syntactic_test') def validating_syntactic_test(self, syntactic_test: FileItem): additional_df_checks = [ # Verify that result df has expected columns functools.partial( validators.dataframe_column_check, expected_columns=['score']), # Verify that result df has all filenames in set functools.partial( validators.dataframe_index_check, expected=[f.stem for f in self.dataset.index.subsets.syntactic_test.items.wav_list.files_list] ), # Verify that scores are in float functools.partial( validators.dataframe_type_check, col_name='score', expected_type=float ) ] # check dataframe results = validators.dataframe_check(syntactic_test, additional_df_checks, sep=' ', header=None, names=['filename', 'score'], index_col='filename') # add item tag add_item('syntactic_test', results) return results class SLM21ScoreDir(ScoreDir): """ Data representation of the sLM21 scores directory """ params: Optional[SLM21BenchmarkParameters] = SLM21BenchmarkParameters() class Config: arbitrary_types_allowed = Extra.ignore @property def semantic_size(self) -> Dict[str, pd.DataFrame]: """ Get semantic size from original dataset """ dataset = SLM21Dataset.load() dev_size = pd.read_csv(dataset.index.subsets.semantic_dev.items.pairs.file, header=0) \ .groupby(['type', 'dataset'], as_index=False).size() test_size = pd.read_csv(dataset.index.subsets.semantic_test.items.pairs.file, header=0) \ .groupby(['type', 'dataset'], as_index=False).size() return dict(dev=dev_size, test=test_size) @property def lexical_dev_by_pair(self): csv_file = self.location / self.params.lexical.result_filenames['dev']['by_pair'] return load_dataframe(csv_file) @property def lexical_test_by_pair(self): csv_file = self.location / self.params.lexical.result_filenames['test']['by_pair'] return load_dataframe(csv_file) @property def lexical_dev_by_frequency(self): csv_file = self.location / self.params.lexical.result_filenames['dev']['by_frequency'] return load_dataframe(csv_file) @property def lexical_test_by_frequency(self): csv_file = self.location / self.params.lexical.result_filenames['test']['by_frequency'] return load_dataframe(csv_file) @property def lexical_dev_by_length(self): csv_file = self.location / self.params.lexical.result_filenames['dev']['by_length'] return load_dataframe(csv_file) @property def lexical_test_by_length(self): csv_file = self.location / self.params.lexical.result_filenames['test']['by_length'] return load_dataframe(csv_file) @property def semantic_dev_correlation(self): csv_file = self.location / self.params.semantic.result_filenames['dev']['correlations'] return load_dataframe(csv_file) @property def semantic_test_correlation(self): csv_file = self.location / self.params.semantic.result_filenames['test']['correlations'] return load_dataframe(csv_file) @property def syntactic_dev_by_pair(self): csv_file = self.location / self.params.syntactic.result_filenames['dev']['by_pair'] return load_dataframe(csv_file) @property def syntactic_test_by_pair(self): csv_file = self.location / self.params.syntactic.result_filenames['test']['by_pair'] return load_dataframe(csv_file) @property def syntactic_dev_by_type(self): csv_file = self.location / self.params.syntactic.result_filenames['dev']['by_type'] return load_dataframe(csv_file) @property def syntactic_test_by_type(self): csv_file = self.location / self.params.syntactic.result_filenames['test']['by_type'] return load_dataframe(csv_file) def lexical_scores(self) -> LexicalScores: """ Extract lexical resume of scores """ dev_score = self.lexical_dev_by_pair['score'].mean() test_score = self.lexical_test_by_pair['score'].mean() def _score_invocab(frame): # filter out OOVs frame = frame[frame['frequency'] != 'oov'] # weighted mean return np.average( frame['score'].to_numpy(), weights=frame['n'].to_numpy()) # weighted scores dev_invocab = _score_invocab(self.lexical_dev_by_frequency) test_invocab = _score_invocab(self.lexical_test_by_frequency) return LexicalScores( all=ScoreTuple(dev=dev_score, test=test_score), in_vocab=ScoreTuple(dev=dev_invocab, test=test_invocab) ) def lexical_extras(self): """ Extract lexical detailed scores """ frequency_dev = self.lexical_dev_by_frequency frequency_test = self.lexical_test_by_frequency by_frequency = pd.merge(frequency_dev, frequency_test, how="outer", on=['frequency'], suffixes=("_dev", "_test")) length_dev = self.lexical_dev_by_length length_test = self.lexical_test_by_length by_length = pd.merge(length_dev, length_test, how="outer", on=['length'], suffixes=('_dev', '_test')) return LexicalExtras.parse_obj(dict( by_length=by_length.to_dict(orient='records'), by_frequency=by_frequency.to_dict(orient='records') )) def syntactic_scores(self) -> ScoreTuple: """ Extract syntactic score resume """ dev_mean = self.syntactic_dev_by_pair['score'].mean() test_mean = self.syntactic_test_by_pair['score'].mean() return ScoreTuple(dev=dev_mean, test=test_mean) def syntactic_extras(self) -> List[SyntacticExtras]: """ Extract syntactic detailed scores """ dev_types = self.syntactic_dev_by_type test_types = self.syntactic_test_by_type # merge merged = pd.merge(dev_types, test_types, how="outer", on=["type"], suffixes=("_dev", "_test")) merged.rename(columns={'type': 'typeset'}, inplace=True) return [SyntacticExtras(**se) for se in merged.to_dict(orient='records')] def semantic_scores(self) -> SemanticScores: """ Extract semantic score resume """ dev_correlations = self.semantic_dev_correlation test_correlations = self.semantic_test_correlation # Mean dev_librispeech_mean = dev_correlations[dev_correlations['type'] == 'librispeech']['correlation'].mean() dev_synthetic_mean = dev_correlations[dev_correlations['type'] == 'synthetic']['correlation'].mean() test_librispeech_mean = test_correlations[test_correlations['type'] == 'librispeech']['correlation'].mean() test_synthetic_mean = test_correlations[test_correlations['type'] == 'synthetic']['correlation'].mean() # Weighted Mean semantic_size = self.semantic_size dev_correlations['size'] = semantic_size['dev']['size'] dev_librispeech_wmean = np.average( dev_correlations[dev_correlations['type'] == 'librispeech']['correlation'].to_numpy(), weights=dev_correlations[dev_correlations['type'] == 'librispeech']['size'].to_numpy()) dev_synthetic_wmean = np.average( dev_correlations[dev_correlations['type'] == 'synthetic']['correlation'].to_numpy(), weights=dev_correlations[dev_correlations['type'] == 'synthetic']['size'].to_numpy()) test_correlations['size'] = semantic_size['test']['size'] test_librispeech_wmean = np.average( test_correlations[test_correlations['type'] == 'librispeech']['correlation'].to_numpy(), weights=test_correlations[test_correlations['type'] == 'librispeech']['size'].to_numpy()) test_synthetic_wmean = np.average( test_correlations[test_correlations['type'] == 'synthetic']['correlation'].to_numpy(), weights=test_correlations[test_correlations['type'] == 'synthetic']['size'].to_numpy()) return SemanticScores( normal=SemanticScoreSets( synthetic=ScoreTuple(dev=dev_synthetic_mean, test=test_synthetic_mean), librispeech=ScoreTuple(dev=dev_librispeech_mean, test=test_librispeech_mean), ), weighted=SemanticScoreSets( synthetic=ScoreTuple(dev=dev_synthetic_wmean, test=test_synthetic_wmean), librispeech=ScoreTuple(dev=dev_librispeech_wmean, test=test_librispeech_wmean), ) ) def semantic_extras(self) -> List[SemanticExtras]: """ Extract semantic score resume """ dev_correlations = self.semantic_dev_correlation test_correlations = self.semantic_test_correlation ndev_correlations = dev_correlations \ .set_index(['dataset', dev_correlations.groupby('dataset').cumcount()])['correlation'] \ .unstack() \ .reset_index() ndev_correlations.columns = ['dataset', 'librispeech', 'synthetic'] ndev_correlations["set"] = "dev" ntest_correlations = test_correlations \ .set_index(['dataset', test_correlations.groupby('dataset').cumcount()])['correlation'] \ .unstack() \ .reset_index() ntest_correlations.columns = ['dataset', 'librispeech', 'synthetic'] ntest_correlations["set"] = "test" # DeprecationWarning from pandas: append is to be replaced by concat correlations = pd.concat([ndev_correlations, ntest_correlations], axis=0) # correlations = ndev_correlations.append(ntest_correlations) return [SemanticExtras(**se) for se in correlations.to_dict(orient='records')] def build_scores(self) -> SLM21Scores: """ Extract all score resume """ return SLM21Scores( lexical=self.lexical_scores(), syntactic=self.syntactic_scores(), semantic=self.semantic_scores() ) def build_extras(self) -> SLM21Extras: """ Extract all detailed scores """ return SLM21Extras( lexical=self.lexical_extras(), syntactic=self.syntactic_extras(), semantic=self.semantic_extras() ) def get_details(self) -> EntryDetails: """ Build entry details """ train_set = "" gpu_budget = "" if self.meta_file is not None: train_set = self.meta_file.model_info.train_set gpu_budget = self.meta_file.model_info.gpu_budget return EntryDetails( train_set=train_set, benchmarks=[LeaderboardBenchmarkName.sLM_21], gpu_budget=gpu_budget, parameters=self.params.to_meta() ) def build_leaderboard(self) -> SLM21LeaderboardEntry: """ Build leaderboard entry from calculated scores """ model_id = "" submission_id = str(uuid.uuid4()) submitted_by = "" description = "" if self.meta_file is not None: model_id = self.meta_file.model_info.model_id submitted_by = self.meta_file.username description = self.meta_file.model_info.system_description return SLM21LeaderboardEntry( model_id=model_id, submission_id=submission_id, index=-1, submission_date=datetime.now(), submitted_by=submitted_by, description=description, publication=self.get_publication_info(), details=self.get_details(), scores=self.build_scores(), extras=self.build_extras() ) class SLM21Submission(Submission): """ Submission for SLM21 Benchmark """ sets: Tuple = ('dev', 'test') tasks: Tuple = ('lexical', 'syntactic', 'semantic') @classmethod def load(cls, path: Path, *, tasks=('lexical', 'syntactic', 'semantic'), sets=('dev', 'test')): """ Load submission for sLM21 benchmark (filter by available tasks & sets) """ # submission object submission = cls( sets=sets, tasks=tasks, location=path ) # if params not set export defaults if not submission.params_file.is_file(): SLM21BenchmarkParameters().export(submission.params_file) # Load items items = dict() # include lexical task for each set if 'lexical' in tasks: lexical_dir = path / 'lexical' if 'dev' in sets: items['lexical_dev'] = FileItem.from_file(lexical_dir / "dev.txt") if 'test' in sets: items['lexical_test'] = FileItem.from_file(lexical_dir / "test.txt") # include syntactic for each set if 'syntactic' in tasks: syntactic_dir = path / 'syntactic' if 'dev' in sets: items['syntactic_dev'] = FileItem.from_file(syntactic_dir / "dev.txt") if 'test' in sets: items['syntactic_test'] = FileItem.from_file(syntactic_dir / "test.txt") # include semantic task for each set file_ext = submission.params.syntactic.score_files_type.replace('.', '') file_ext = FileTypes(file_ext) if 'semantic' in tasks: semantic_dir = path / 'semantic' if 'dev' in sets: items['semantic_dev_synthetic'] = FileListItem.from_dir( semantic_dir / "dev/synthetic", f_type=file_ext ) items['semantic_dev_librispeech'] = FileListItem.from_dir( semantic_dir / "dev/librispeech", f_type=file_ext ) if 'test' in sets: items['semantic_test_synthetic'] = FileListItem.from_dir( semantic_dir / "test/synthetic", f_type=file_ext ) items['semantic_test_librispeech'] = FileListItem.from_dir( semantic_dir / "test/librispeech", f_type=file_ext ) submission.items = Namespace[Item](store=items) return submission def __zippable__(self) -> List[Tuple[str, Path]]: return [ ("", self.meta_file), ("", self.params_file), ("lexical/", self.items.lexical_dev.file), ("lexical/", self.items.lexical_test.file), ("lexical/", self.items.lexical_test.file), ("syntactic/", self.items.syntactic_dev.file), ("syntactic/", self.items.syntactic_test.file), *[("semantic/dev/synthetic/", f) for f in self.items.semantic_dev_synthetic.files_list], *[("semantic/dev/librispeech/", f) for f in self.items.semantic_dev_librispeech.files_list], *[("semantic/test/synthetic/", f) for f in self.items.semantic_test_synthetic.files_list], *[("semantic/test/librispeech/", f) for f in self.items.semantic_test_librispeech.files_list], *[("scores/", f) for f in self.score_dir.iterdir()] ] @classmethod def init_dir(cls, location: Path): # create sub-directories location.mkdir(exist_ok=True, parents=True) (location / 'lexical').mkdir(exist_ok=True, parents=True) (location / 'syntactic').mkdir(exist_ok=True, parents=True) (location / 'semantic/dev/synthetic').mkdir(exist_ok=True, parents=True) (location / 'semantic/dev/librispeech').mkdir(exist_ok=True, parents=True) (location / 'semantic/dev/synthetic').mkdir(exist_ok=True, parents=True) (location / 'semantic/dev/librispeech').mkdir(exist_ok=True, parents=True) # scores dir (location / 'scores').mkdir(exist_ok=True, parents=True) # create parameters file SLM21BenchmarkParameters().export(location / SLM21BenchmarkParameters.file_stem) # create meta-template template = MetaFile.to_template(benchmark_name="sLM21") template.to_yaml( file=location / MetaFile.file_stem, excluded={ "file_stem": True, "model_info": {"model_id"}, "publication": {"bib_reference", "DOI"} } ) instruction_file = Path(__file__).parent / "instructions.md" if instruction_file.is_file(): shutil.copy(instruction_file, location / 'help.md') def load_parameters(self) -> SLM21BenchmarkParameters: if self.params_file.is_file(): obj = load_obj(self.params_file) return SLM21BenchmarkParameters.parse_obj(obj) return SLM21BenchmarkParameters() def __validate_submission__(self): """ Run validation on the submission data """ self.validation_output += SLM21SubmissionValidator().validate(self) def get_scores(self): """ """ pass
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/sLM21.py
sLM21.py
import functools import shutil from datetime import datetime from pathlib import Path from typing import Tuple, Optional, List import numpy as np from pydantic import Field import zerospeech.validators as validators from zerospeech.data_loaders import load_dataframe from zerospeech.datasets import AbxLSDataset from zerospeech.generics import ( FileListItem, Namespace, Item, FileTypes ) from zerospeech.leaderboards import EntryDetails, LeaderboardBenchmarkName, LeaderboardEntry from zerospeech.leaderboards.abxLS import ( ABXLSEntry, ABXLSScoreSubType ) from zerospeech.misc import load_obj from zerospeech.settings import get_settings from zerospeech.tasks.abx import abxLS_phoneme from ._model import ScoreDir, MetaFile, SubmissionValidation, validation_fn, add_item, Submission st = get_settings() class AbxLSSubmissionValidator(SubmissionValidation): """ File Validation for an ABXLS submission """ dataset: AbxLSDataset = Field(default_factory=lambda: AbxLSDataset.load()) @validation_fn(target='dev_clean') def validate_dev_clean(self, dev_clean: FileListItem): f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_checker, expected=self.dataset.index.subsets.dev_clean.items.wav_list.files_list ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ), # Verify that files have the same dimensions validators.numpy_col_comparison(1) ] # Check file list results = validators.numpy_array_list_check( dev_clean, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item('dev_clean', results) return results @validation_fn(target='dev_other') def validate_dev_other(self, dev_other: FileListItem): f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_checker, expected=self.dataset.index.subsets.dev_other.items.wav_list.files_list ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ), # Verify that files have the same dimensions validators.numpy_col_comparison(1) ] # Check file list results = validators.numpy_array_list_check( dev_other, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item('dev_other', results) return results @validation_fn(target='test_clean') def validate_test_clean(self, test_clean: FileListItem): f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_checker, expected=self.dataset.index.subsets.test_clean.items.wav_list.files_list ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ), # Verify that files have the same dimensions validators.numpy_col_comparison(1) ] # Check file list results = validators.numpy_array_list_check( test_clean, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item('test_clean', results) return results @validation_fn(target='test_other') def validate_test_other(self, test_other: FileListItem): f_list_checks = [ # Verify that all necessary files are present functools.partial( validators.file_list_checker, expected=self.dataset.index.subsets.test_other.items.wav_list.files_list ) ] additional_checks = [ # Verify that type of array is float functools.partial( validators.numpy_dtype_check, dtype=np.dtype('float') ), # Verify that array has 2 dimensions functools.partial( validators.numpy_dimensions_check, ndim=2 ), # Verify that files have the same dimensions validators.numpy_col_comparison(1) ] # Check file list results = validators.numpy_array_list_check( test_other, f_list_checks=f_list_checks, additional_checks=additional_checks ) # add item tag add_item('test_other', results) return results class ABXLSScoreDir(ScoreDir): params: Optional[abxLS_phoneme.ABX2Parameters] = abxLS_phoneme.ABX2Parameters() @property def scores_phonetic(self): csv_file = (self.location / self.params.result_filename).with_suffix('.csv') return load_dataframe(csv_file) def get_details(self) -> EntryDetails: """ Build entry details """ train_set = "" gpu_budget = "" if self.meta_file is not None: train_set = self.meta_file.model_info.train_set gpu_budget = self.meta_file.model_info.gpu_budget return EntryDetails( train_set=train_set, benchmarks=[LeaderboardBenchmarkName.ABX_LS], gpu_budget=gpu_budget, parameters=self.params.to_meta() ) def build_scores(self) -> List[ABXLSScoreSubType]: """ Extract & format scores """ scores = [] for _, row in self.scores_phonetic.iterrows(): try: seed = int(row['seed']) except ValueError: seed = None scores.append( ABXLSScoreSubType( subset=row['subset'], granularity=row['granularity'], speaker_mode=row['speaker_mode'], context_mode=row['context_mode'], score=row['score'], pooling=row['pooling'], seed=seed ) ) return scores def build_meta_data(self): """ Build leaderboard metadata """ return dict( model_id=self.meta_file.model_info.model_id, submission_id="", index=None, submission_date=datetime.now(), submitted_by=self.meta_file.username, description=self.meta_file.model_info.system_description, publication=dict( author_short=self.meta_file.publication.author_label, authors=self.meta_file.publication.authors, paper_title=self.meta_file.publication.paper_title, paper_ref=self.meta_file.publication.paper_url, bib_ref=self.meta_file.publication.bib_reference, paper_url=self.meta_file.publication.paper_url, pub_year=self.meta_file.publication.publication_year, team_name=self.meta_file.publication.team, institution=self.meta_file.publication.institution, code=self.meta_file.code_url, DOI=self.meta_file.publication.DOI, open_science=self.meta_file.open_source, ), details=dict( train_set=self.meta_file.model_info.train_set, benchmarks=[], gpu_budget=self.meta_file.model_info.gpu_budget, parameters=self.params.to_meta(), ) ) def build_leaderboard(self) -> LeaderboardEntry: """ Build leaderboard entry for the current submission """ self.load_meta() return ABXLSEntry.parse_obj( dict( **self.build_meta_data(), scores=self.build_scores() ) ) class AbxLSSubmission(Submission): """ Submission for ABX-LS-ROB Benchmark """ sets: Tuple = ('dev', 'test') tasks: Tuple = ('clean', 'other') @classmethod def load(cls, path: Path, *, tasks=('clean', 'other'), sets=('dev', 'test')): """ Load submission for ABX-Ls-ROB benchmark (filter by available tasks & sets) """ # submission object submission = cls( sets=sets, tasks=tasks, location=path ) # if params not set export defaults if not submission.params_file.is_file(): abxLS_phoneme.ABX2Parameters().export(submission.params_file) # Load items file_ext = submission.params.score_file_type.replace('.', '') file_ext = FileTypes(file_ext) items = dict() if 'clean' in tasks: if 'dev' in sets: items['dev_clean'] = FileListItem.from_dir( path / 'dev-clean', f_type=file_ext ) if 'test' in sets: items['test_clean'] = FileListItem.from_dir( path / 'test-clean', f_type=file_ext ) if 'other' in tasks: if 'dev' in sets: items['dev_other'] = FileListItem.from_dir( path / 'dev-other', f_type=file_ext ) if 'test' in sets: items['test_other'] = FileListItem.from_dir( path / 'test-other', f_type=file_ext ) submission.items = Namespace[Item](store=items) return submission def load_parameters(self) -> abxLS_phoneme.ABX2Parameters: if self.params_file.is_file(): obj = load_obj(self.params_file) return abxLS_phoneme.ABX2Parameters.parse_obj(obj) return abxLS_phoneme.ABX2Parameters() def __validate_submission__(self): """ Run validation on the submission data """ self.validation_output += AbxLSSubmissionValidator().validate(self) @classmethod def init_dir(cls, location: Path): """ Create template submission directory """ # create sub-directories location.mkdir(exist_ok=True, parents=True) (location / 'dev-clean').mkdir(exist_ok=True, parents=True) (location / 'dev-other').mkdir(exist_ok=True, parents=True) (location / 'test-clean').mkdir(exist_ok=True, parents=True) (location / 'test-other').mkdir(exist_ok=True, parents=True) # scores dir (location / 'scores').mkdir(exist_ok=True, parents=True) # create parameters file abxLS_phoneme.ABX2Parameters().export(location / abxLS_phoneme.ABX2Parameters.file_stem) # create meta-template template = MetaFile.to_template(benchmark_name="abxLS") template.to_yaml( file=location / MetaFile.file_stem, excluded={ "file_stem": True, "model_info": {"model_id"}, "publication": {"bib_reference", "DOI"} } ) instruction_file = Path(__file__).parent / "instructions.md" if instruction_file.is_file(): shutil.copy(instruction_file, location / 'help.md') def __zippable__(self): return [ ("", self.meta_file), ("", self.params_file), *[("dev-clean/", f) for f in self.items.dev_clean.files_list], *[("dev-other/", f) for f in self.items.dev_other.files_list], *[("test-clean/", f) for f in self.items.test_clean.files_list], *[("test-other/", f) for f in self.items.test_other.files_list], *[("scores/", f) for f in self.score_dir.iterdir()] ] def get_scores(self): """ Load score Dir""" return ABXLSScoreDir( submission_dir=self.location, location=self.score_dir, params=self.params )
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/abxLS.py
abxLS.py
import re from datetime import datetime from pathlib import Path from typing import Optional, Union, Dict, ClassVar, Literal import yaml from pydantic import BaseModel, AnyUrl, ValidationError from zerospeech.misc import load_obj from zerospeech.leaderboards import PublicationEntry from .validation_context import ValidationContext BenchmarkList = Literal[ "prosAudit", "sLM21", "abxLS", "abx17", "tde17", "test-prosAudit", "test-sLM21", "test-abxLS", "test-abx17", "test-tde17", ] def check_no_template(obj, root: str = "") -> ValidationContext: """ Check that object str fields do not have template values (in <,> tags)""" ctx = ValidationContext() if root: root = f"{root}." for key in obj.__fields__.keys(): attr = getattr(obj, key) if isinstance(attr, str): ctx.error_assertion( re.match(r'<.*>', attr) is None, msg=f"{root}{key}: has value from template" ) return ctx class PublicationInfo(BaseModel): author_label: str = "" authors: str paper_title: Optional[str] paper_url: Optional[str] publication_year: int bib_reference: Optional[str] DOI: Optional[str] institution: str team: Optional[str] def get_validation(self) -> ValidationContext: """ Get Validation of PublicationInfo""" ctx = ValidationContext() # check no template ctx += check_no_template(self, root="publication") # publication.authors (required) ctx.error_assertion( self.authors is not None and len(self.authors) > 0, msg="publication.authors : was not found or empty" ) # publication.authors (required) ctx.error_assertion( self.institution is not None and len(self.institution) > 0, msg="publication.institution : was not found or empty" ) # publication.authors (required) ctx.error_assertion( self.publication_year is not None, msg="publication.publication_year : was not found or empty" ) # publication.paper_title (recommended) ctx.warn_assertion( self.paper_title is not None and len(self.paper_title) > 0, msg="publication.paper_title : It is recommended to add the publication title " ) # publication.paper_title (recommended) ctx.warn_assertion( self.paper_title is not None and len(self.paper_title) > 0, msg="publication.paper_title : It is recommended to add the publication title " ) # publication.paper_title (recommended) ctx.warn_assertion( self.paper_url is not None and len(self.paper_url) > 0, msg="publication.paper_url : It is recommended to add the publication URL" ) return ctx class ModelInfo(BaseModel): model_id: Optional[str] system_description: str train_set: str gpu_budget: Optional[str] def get_validation(self) -> ValidationContext: """ Get Validation of ModelInfo""" ctx = ValidationContext() # check no template ctx += check_no_template(self, root="model_info") # model_info.system_description (required) ctx.error_assertion( self.system_description is not None and len(self.system_description) > 0, msg="model_info.system_description : was not found or empty" ) # model_info.train_set (required) ctx.error_assertion( self.train_set is not None and len(self.train_set) > 0, msg="model_info.train_set : was not found or empty" ) # model_info.gpu_budget (recommended) ctx.warn_assertion( self.gpu_budget is not None, msg="model_info.gpu_budget : It is recommended to add a GPU budget (GPU training time estimation)" ) return ctx class MetaFile(BaseModel): username: Optional[str] submission_id: Optional[str] benchmark_name: BenchmarkList model_info: ModelInfo publication: PublicationInfo open_source: bool code_url: Optional[Union[AnyUrl, str]] file_stem: ClassVar[str] = "meta.yaml" validation_context: ValidationContext = ValidationContext() class Config: arbitrary_types_allowed = True fields = { 'validation_context': {'exclude': True}, 'file_stem': {'exclude': True} } @classmethod def from_file(cls, file: Path, enforce: bool = False): """ Load meta from object file (YAML, JSON, etc) """ if not file.is_file() and not enforce: return None return cls.parse_obj(load_obj(file)) @classmethod def to_template(cls, benchmark_name: BenchmarkList): return cls( username="<<auto-generated(str>): username on the zerospeech.com platform>", benchmark_name=benchmark_name, model_info=ModelInfo( model_id="<auto-generated>", system_description="<required(str): a description of the system>", train_set="<required(str): the dateset used to train the system>", gpu_budget="<optional(str): the number of gpu hours used to train the system>", ), publication=PublicationInfo( author_label="<required(str): a short label used for reference (ex: author1 et al.)>", authors="<required(str): the full names of the authors of the system (separated by commas)>", paper_title="<optional(str): the title of the paper referencing the system/submission>", paper_url="<optional(str): A URL referencing the paper online (arxiv.org or other)>", publication_year=datetime.now().year, institution="<required(str): name of the institution (University, company, etc..)>", team="<optional(str): name of the team>" ), open_source=True, code_url="<optional(str): a url to a github or other with the code used to create this system>" ) def set_system_values(self, submission_location: Path, username: str, author_label: str): """ Update or set values managed by the submit system """ self.username = username self.publication.author_label = author_label # write to file self.to_yaml(submission_location / self.file_stem, excluded=dict()) def set_model_id(self, submission_location: Path, model_id: str): self.model_info.model_id = model_id # write to file self.to_yaml(submission_location / self.file_stem, excluded=dict()) def set_submission_id(self, submission_location: Path, submission_id: str): self.submission_id = submission_id # write to file self.to_yaml(submission_location / self.file_stem, excluded=dict()) def get_publication_info(self) -> PublicationEntry: pub = self.publication paper_ref = None if pub.authors and pub.paper_title: paper_ref = f"{pub.authors} ({pub.publication_year} {pub.paper_title})" return PublicationEntry( author_short=pub.author_label, authors=pub.authors, paper_title=pub.paper_title, paper_ref=paper_ref, bib_ref=pub.bib_reference, paper_url=pub.paper_url, pub_year=pub.publication_year, team_name=pub.team, institution=pub.institution, code=self.code_url, DOI=pub.DOI, open_science=self.open_source ) def to_yaml(self, file: Path, excluded: Dict): with file.open("w") as fp: yaml.dump(dict(self._iter(to_dict=True, exclude=excluded)), fp) def is_valid(self) -> bool: """Check if meta.yaml has minimal values for submission """ validation = ValidationContext() # check no template validation += check_no_template(self) # username (required) validation.error_assertion( self.username is not None and len(self.username) > 0, msg="Username is required" ) # url (recommended) validation.warn_assertion( self.code_url is not None and len(self.code_url) > 0, msg="code_url : If possible we would appreciate a URL to the code of the system" ) validation += self.model_info.get_validation() validation += self.publication.get_validation() validation.add_filename(filename=self.file_stem) self.validation_context = validation return not validation.fails() @classmethod def benchmark_from_submission(cls, location: Path) -> Optional[BenchmarkList]: """ Extract the benchmark name from a given submission """ meta_file = location / cls.file_stem if not meta_file.is_file(): return None with meta_file.open() as fp: meta_obj = yaml.load(fp, Loader=yaml.FullLoader) try: meta = cls.parse_obj(meta_obj) return meta.benchmark_name except ValidationError as e: print(e) return None
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/_model/meta_file.py
meta_file.py
import abc import copy from typing import Optional, Protocol, Literal, List, Union from zerospeech.out import error_console, warning_console class ValidationResponse(abc.ABC): """ Abstract class defining a Message object specifying validation Errors/Warnings/Checks """ def __init__(self, msg, *, data=None, item_name=None, filename=None, location=None): self.item_name = item_name self.filename = filename self.location = location self.msg = msg self.data = data def valid(self): return getattr(self, '__is_valid__', False) def warning(self): return getattr(self, '__is_warning__', False) def error(self): return getattr(self, '__is_error__', False) def ok(self): return getattr(self, '__is_ok__', False) def __str__(self): item_name = '-' if self.item_name: item_name = self.item_name filename = '[-' if self.filename: filename = f"[{self.filename}" location = ':-]' if self.location: location = f":{self.location}]" msg = '' if self.msg: msg = self.msg cls_name = self.__class__.__name__ return f'{cls_name}({item_name}){filename}{location}>> {msg}' class ValidationWarning(ValidationResponse): """ Class designating a validation warning """ __is_warning__ = True __is_valid__ = True class ValidationError(ValidationResponse): """ Class designating a validation error """ __is_error__ = True __is_valid__ = False class ValidationOK(ValidationResponse): """ Class designating a successful validation check """ __is_ok__ = True __is_valid__ = True class HasStr(Protocol): def __str__(self) -> str: """ Convert to string """ pass class ValidationContext: def __init__(self): """ Initially context is empty """ self._outputs: List[ValidationResponse] = [] def __len__(self): """ Return the number of Responses in context """ return len(self._outputs) def __invert__(self) -> List[ValidationResponse]: """ Bitwise invert extracts the context ex: ctx = ValidationContext() res: List[ValidationResponse] = ~ctx """ return self._outputs def __lshift__(self, item: Union[ValidationResponse, List[ValidationResponse]]): """ Extend outputs ex: ctx = ValidationContext() # appends a list of responses into the context res: List[ValidationResponse] = ... # do validation stuff ctx << res # append singular item to the context a_random_resp: ValidationResponse = ... # some other validation ctx << a_random_resp """ if isinstance(item, list): self._outputs.extend(item) else: if not isinstance(item, ValidationResponse): raise ValueError(f'Cannot extend item of type {type(item)}') self._outputs.append(item) def __add__(self, other: "ValidationContext") -> "ValidationContext": """ Addition creates new context ex: ctx1: ValidationContext = ... # a validation process ctx2: ValidationContext = ... # another validation process # ctx3 contains ctx1 and ctx2 responses ctx3: ValidationContext = ctx1 + ctx2 """ if not isinstance(other, self.__class__): raise ValueError(f'Cannot add item of type {type(other)}') nw_ctx = self.__class__() nw_ctx._outputs = [ *self._outputs, *other._outputs ] return nw_ctx def __iadd__(self, other: "ValidationContext") -> "ValidationContext": """ Allow += of two contexts """ if not isinstance(other, self.__class__): raise ValueError(f'Cannot add item of type {type(other)}') return self + other def assertion(self, expr: bool, as_type: Literal['error', 'warning'], msg: str, **kwargs): """ Create an assertion """ if not expr: if as_type == 'error': self._outputs.append( ValidationError( msg, item_name=kwargs.get("item_name", None), data=kwargs.get("data", None), filename=kwargs.get("filename", None), location=kwargs.get("location", None) ) ) elif as_type == 'warning': self._outputs.append( ValidationWarning( msg, item_name=kwargs.get("item_name", None), data=kwargs.get("data", None), filename=kwargs.get("filename", None), location=kwargs.get("location", None) ) ) def error_assertion( self, expr: bool, *, msg: str, item_name: Optional[str] = None, filename: Optional[str] = None, location: Optional[str] = None, data: Optional[HasStr] = None ): """ Create an error assertion """ self.assertion( expr, as_type='error', msg=msg, item_name=item_name, filename=filename, location=location, data=data ) def warn_assertion( self, expr: bool, *, msg: str, item_name: Optional[str] = None, filename: Optional[str] = None, location: Optional[str] = None, data: Optional[HasStr] = None ): """ Create an error assertion """ self.assertion( expr, as_type='warning', msg=msg, item_name=item_name, filename=filename, location=location, data=data ) def add_filename(self, filename): """ Add filename to all assertions """ for i in self._outputs: i.filename = filename def add_item(self, item_name: str): """ Add item_name to all assertions """ for i in self._outputs: i.item_name = item_name def print(self, allow_warnings: bool = True, limit: int = -1): """ Print Outputs """ error_list = [r for r in self._outputs if not r.ok()] if limit > 0: error_list = error_list[:limit] if not allow_warnings: error_list = [r for r in self._outputs if not r.warning()] for item in error_list: if item.warning() and allow_warnings: warning_console.print(item) else: error_console.print(item) def fails(self) -> bool: """ Check if Validation Fails """ # only errors fail the validation return len([r for r in self._outputs if not r.valid()]) != 0 def has_warnings(self) -> bool: """ Check if Validation has warnings """ return len([r for r in self._outputs if r.warning()]) > 0 def get_ok(self) -> "ValidationContext": """ Filter Ok Messages """ vtx = ValidationContext() vtx << [r for r in self._outputs if r.ok()] return vtx def get_warnings(self) -> "ValidationContext": """ Filter Warning Messages """ vtx = ValidationContext() vtx << [r for r in self._outputs if r.warning()] return vtx def get_errors(self) -> "ValidationContext": """Filter Error Messages """ vtx = ValidationContext() vtx << [r for r in self._outputs if r.error()] return vtx
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/_model/validation_context.py
validation_context.py
import abc from functools import wraps from pathlib import Path from typing import List, Type, TYPE_CHECKING from typing import Optional, ClassVar from pydantic import BaseModel from pydantic import Field from zerospeech.generics import Item, Namespace from zerospeech.out import error_console, warning_console from zerospeech.tasks import BenchmarkParameters from .meta_file import MetaFile from .score_dir import ScoreDir from .validation_context import ValidationResponse, ValidationWarning, ValidationContext if TYPE_CHECKING: from zerospeech.datasets import Dataset def validation_fn(target: str): """ Wrapper function to mark validation items """ def fn_wrapper(method): @wraps(method) def _impl(self, *method_args, **method_kwargs): return method(self, *method_args, **method_kwargs) _impl._validation_fn = True _impl._validation_target = target return _impl return fn_wrapper def add_item(item_name: str, resp: List[ValidationResponse]): """ Add item name to Validation Response list """ for r in resp: r.item_name = item_name def add_filename(filename: str, resp: List[ValidationResponse]): """ Add filename to a Validation Response List """ for r in resp: r.filename = filename def show_errors(resp: List[ValidationResponse], allow_warnings: bool = True): """ Print ValidationResponse Error (and warnings) """ error_list = [r for r in resp if not r.ok()] if not allow_warnings: error_list = [r for r in resp if not r.warning()] for item in error_list: if item.warning() and allow_warnings: warning_console.log(item) else: error_console.log(item) # errors only fail the validation return len([r for r in resp if not r.valid()]) != 0 class SubmissionValidation(BaseModel, abc.ABC): dataset: "Dataset" def _is_validation_fn(self, fn_name): fn = getattr(self, fn_name, {}) return getattr(fn, '_validation_fn', False) def _get_validation_target(self, fn_name): fn = getattr(self, fn_name, {}) return getattr(fn, '_validation_target') def validate(self, submission: 'Submission') -> ValidationContext: """ Run validation --> A validation context """ vd_ctx = ValidationContext() validators_items = { f"{self._get_validation_target(a)}": getattr(self, a) for a in dir(self) if self._is_validation_fn(a) } for name, item in iter(submission.items): validator = validators_items.get(name, None) if validator is not None: res = validator(item) vd_ctx << res else: vd_ctx << ValidationWarning("no validation found", item_name=name) return vd_ctx class Submission(BaseModel, abc.ABC): location: Path items: Optional[Namespace[Item]] params_obj: Optional["BenchmarkParameters"] = None meta_obj: Optional[MetaFile] = None __score_dir__: Optional[Path] = None __score_cls__: ClassVar[Type[ScoreDir]] validation_output: ValidationContext = ValidationContext() class Config: arbitrary_types_allowed = True @property def valid(self) -> bool: if len(self.validation_output) == 0: self.__validate_submission__() return not self.validation_output.fails() @property def params_file(self): return self.location / BenchmarkParameters.file_stem @property def meta_file(self): return self.location / 'meta.yaml' @property def leaderboard_file(self) -> Path: return self.score_dir / "leaderboard.json" @property def params(self): if self.params_obj is None: self.params_obj = self.load_parameters() return self.params_obj @property def meta(self): if self.meta_obj is None: self.meta_obj = MetaFile.from_file(self.meta_file) return self.meta_obj @property def score_dir(self) -> Path: """ Get scores location """ if self.__score_dir__ is None: return self.location / 'scores' return self.__score_dir__ @score_dir.setter def score_dir(self, score_location: Path): """ Set alternative scores location """ self.__score_dir__ = score_location def has_scores(self) -> bool: """ Check if score dir is emtpy """ return len(list(self.score_dir.rglob('*'))) > 0 def get_scores(self): if self.score_dir.is_dir(): return self.__score_cls__( location=self.score_dir, submission_dir=self.location, meta_file=self.meta, params=self.params ) return None @classmethod @abc.abstractmethod def load(cls, path: Path, **kwargs): pass @classmethod @abc.abstractmethod def init_dir(cls, location: Path): """ Initialise a directory for submission """ pass @abc.abstractmethod def load_parameters(self) -> BenchmarkParameters: pass @abc.abstractmethod def __validate_submission__(self): pass @abc.abstractmethod def __zippable__(self): pass
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/submissions/_model/submission.py
submission.py
from datetime import datetime from typing import List, Optional, Dict, Union from pydantic import BaseModel, AnyHttpUrl, Field, validator from ._types import LeaderboardBenchmarkName class ABXScoreTuple(BaseModel): within: Optional[float] across: Optional[float] class CatScores(BaseModel): precision: Optional[float] recall: Optional[float] fscore: Optional[float] @validator('*', pre=True) def fix_float(cls, v): """ Sometimes NoneType is not marked as None but as a string""" try: return float(v) except (ValueError, TypeError): return None class NLPScores(BaseModel): ned: Optional[float] coverage: Optional[float] nwords: Optional[int] npairs: Optional[int] @validator('ned', 'npairs', pre=True) def fix_float(cls, v): """ Sometimes NoneType is not marked as None but as a string""" try: return int(v) except (ValueError, TypeError): return None @validator('nwords', 'coverage', pre=True) def fix_int(cls, v): """ Sometimes NoneType is not marked as None but as a string""" try: return float(v) except (ValueError, TypeError): return None class TDEScoreTuple(BaseModel): grouping: Optional[CatScores] token: Optional[CatScores] type: Optional[CatScores] boundary: Optional[CatScores] matching: Optional[CatScores] nlp: Optional[NLPScores] class EntryDetails(BaseModel): train_set: Optional[str] benchmarks: List[LeaderboardBenchmarkName] gpu_budget: Optional[str] parameters: Dict = Field(default_factory=dict) class PublicationEntry(BaseModel): author_short: Optional[str] authors: Optional[str] paper_title: Optional[str] paper_ref: Optional[str] bib_ref: Optional[str] paper_url: Optional[Union[AnyHttpUrl, str]] pub_year: Optional[int] team_name: Optional[str] institution: str code: Optional[AnyHttpUrl] DOI: Optional[str] open_science: bool = False class LeaderboardScores(BaseModel): pass class LeaderboardExtras(BaseModel): pass class LeaderboardEntry(BaseModel): model_id: Optional[str] submission_id: str = "" index: Optional[int] submission_date: Optional[datetime] submitted_by: Optional[str] description: str publication: PublicationEntry details: EntryDetails scores: LeaderboardScores extras: Optional[LeaderboardExtras] class Leaderboard(BaseModel): _type: LeaderboardBenchmarkName last_modified: datetime = Field(default_factory=lambda: datetime.now()) data: List[LeaderboardEntry] def sort_by(self, key: str): """ Sort entries of leaderboard by a specific key""" self.data.sort(key=lambda x: getattr(x, key))
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/leaderboards/_models.py
_models.py
from typing import List, Optional from pydantic import BaseModel, Field from ._models import LeaderboardScores, LeaderboardEntry, LeaderboardExtras, Leaderboard from ._types import LeaderboardBenchmarkName class LexicalByLength(BaseModel): length: int dev_score: float = Field(alias="score_dev") dev_std: float = Field(alias="std_dev") dev_n: float = Field(alias="n_dev") test_score: float = Field(alias="score_test") test_std: float = Field(alias="std_test") test_n: float = Field(alias="n_test") class Config: allow_population_by_field_name = True class LexicalByFrequency(BaseModel): frequency: str dev_score: float = Field(alias="score_dev") dev_std: float = Field(alias="std_dev") dev_n: float = Field(alias="n_dev") test_score: float = Field(alias="score_test") test_std: float = Field(alias="std_test") test_n: float = Field(alias="n_test") class Config: allow_population_by_field_name = True class LexicalExtras(BaseModel): by_length: List[LexicalByLength] by_frequency: List[LexicalByFrequency] class SyntacticExtras(BaseModel): typeset: str dev_score: float = Field(alias="score_dev") dev_std: float = Field(alias="std_dev") dev_n: float = Field(alias="n_dev") test_score: float = Field(alias="score_test") test_std: float = Field(alias="std_test") test_n: float = Field(alias="n_test") class Config: allow_population_by_field_name = True class SemanticExtras(BaseModel): set: str dataset: str librispeech: float synthetic: float class SLM21Extras(LeaderboardExtras): lexical: LexicalExtras syntactic: List[SyntacticExtras] semantic: List[SemanticExtras] class ScoreTuple(BaseModel): dev: Optional[float] test: Optional[float] class LexicalScores(BaseModel): in_vocab: Optional[ScoreTuple] all: ScoreTuple class SemanticScoreSets(BaseModel): synthetic: ScoreTuple librispeech: ScoreTuple class SemanticScores(BaseModel): normal: SemanticScoreSets weighted: SemanticScoreSets class SLM21Scores(LeaderboardScores): lexical: LexicalScores syntactic: ScoreTuple semantic: SemanticScores class SLM21LeaderboardEntry(LeaderboardEntry): scores: SLM21Scores extras: SLM21Extras class SLM21Leaderboard(Leaderboard): data: List[SLM21LeaderboardEntry] _type = LeaderboardBenchmarkName.sLM_21
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/leaderboards/sLM21.py
sLM21.py
import warnings from pathlib import Path from typing import Dict, List, Any from ._models import Leaderboard from ._types import LeaderboardBenchmarkName from .abxLS import ( ABXLSLeaderboard, ABXLSEntry ) from .exporters import ABXLSExporter, Slm21Exporter, TDE17Exporter from .sLM21 import ( SLM21Leaderboard, SLM21LeaderboardEntry ) from .tde17 import ( TDE17Leaderboard, TDE17Entry ) try: from vocolab_ext import LeaderboardManager from vocolab_ext.leaderboards import LeaderboardEntryBase except ImportError: warnings.warn("vocolab_ext is not installed") # Fake variables to prevent errors LeaderboardManager = ... LeaderboardEntryBase = ... def get_benchmark(name: str) -> LeaderboardBenchmarkName: try: return LeaderboardBenchmarkName(name) except ValueError: raise ValueError("Leaderboard name not found !!!") class VocolabLeaderboardManager(LeaderboardManager): """Class that wraps the usage of leaderboards""" def __init__(self, ld: Leaderboard): self.leaderboard = ld @classmethod def load_leaderboard_from_obj(cls, name: str, obj: Dict): """Load self from an object""" bench = get_benchmark(name) if bench == LeaderboardBenchmarkName.ABX_LS: return cls(ld=ABXLSLeaderboard.parse_obj(obj)) elif bench == LeaderboardBenchmarkName.sLM_21: return cls(ld=SLM21Leaderboard.parse_obj(obj)) elif bench == LeaderboardBenchmarkName.TDE_17: return cls(ld=TDE17Leaderboard.parse_obj(obj)) raise TypeError('Unknown leaderboard type') @classmethod def load_entry_from_obj(cls, name: str, obj: Dict): """ Load entry from benchmark name """ bench = get_benchmark(name) if bench == LeaderboardBenchmarkName.ABX_LS: return ABXLSEntry.parse_obj(obj) elif bench == LeaderboardBenchmarkName.sLM_21: return SLM21LeaderboardEntry.parse_obj(obj) elif bench == LeaderboardBenchmarkName.TDE_17: return TDE17Entry.parse_obj(obj) raise TypeError('Unknown leaderboard type') @classmethod def create_from_entries(cls, name: str, entries: List[Any]): """ Create leaderboard from a list of entries""" bench = get_benchmark(name) if bench == LeaderboardBenchmarkName.ABX_LS: return cls(ld=ABXLSLeaderboard( data=entries )) elif bench == LeaderboardBenchmarkName.sLM_21: return cls(ld=SLM21Leaderboard( data=entries )) elif bench == LeaderboardBenchmarkName.TDE_17: return cls(ld=TDE17Leaderboard( data=entries )) @staticmethod def extract_base_from_entry(entry: Any) -> LeaderboardEntryBase: publication = getattr(entry, "publication", object()) return LeaderboardEntryBase( submission_id=getattr(entry, "submission_id", ""), model_id=getattr(entry, "model_id", ""), description=getattr(entry, "description", ""), authors=getattr(publication, "authors", ""), author_label=getattr(publication, "author_short", None), submission_date=getattr(entry, "submission_date", None), submitted_by=getattr(entry, "submitted_by", None) ) @staticmethod def update_entry_from_base(entry: Any, base: LeaderboardEntryBase): entry.submission_id = base.submission_id entry.model_id = base.model_id entry.description = base.description entry.submission_date = base.submission_date entry.submitted_by = base.submitted_by entry.publication.authors = base.authors entry.publication.authors_short = base.author_label return entry @staticmethod def write_entry(entry: Any, file: Path): with file.open('w') as fp: fp.write(entry.json(ident=4)) def export_as_csv(self, file: Path): """ Export leaderboard into a csv format """ if isinstance(self.leaderboard, ABXLSLeaderboard): exporter = ABXLSExporter(leaderboard=self.leaderboard, output_file=file) elif isinstance(self.leaderboard, SLM21Leaderboard): exporter = Slm21Exporter(leaderboard=self.leaderboard, output_file=file) elif isinstance(self.leaderboard, TDE17Leaderboard): exporter = TDE17Exporter(leaderboard=self.leaderboard, output_file=file) else: raise ValueError("Unknown Leaderboard Type") # export to csv exporter.to_csv() def export_as_json(self, file: Path): """ Export leaderboard into a json file """ with file.open("w") as fp: fp.write(self.leaderboard.json(indent=4))
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/leaderboards/vocolab_ext.py
vocolab_ext.py
import argparse import functools import sys from io import StringIO from pathlib import Path from typing import Optional, List, Dict import pandas as pd from rich.console import Console from zerospeech.leaderboards.tde17 import TDE17Leaderboard, TDE17Entry from zerospeech.leaderboards.utils import open_json, clean_label, format_score from .base import LeaderboardExporter, CSVExporter console = Console() void_console = Console(file=StringIO()) def restrict_entry(e: TDE17Entry) -> Dict: _format_score = functools.partial(format_score, percent=False) return dict( label=clean_label(e.publication.author_short), model_id=e.model_id, submission_di=e.submission_id, # EN en_ned=_format_score(e.scores.english.nlp.ned), en_cov=_format_score(e.scores.english.nlp.coverage), en_wrds=e.scores.english.nlp.nwords, # FR fr_ned=_format_score(e.scores.french.nlp.ned), fr_cov=_format_score(e.scores.french.nlp.coverage), fr_wrds=e.scores.french.nlp.nwords, # Mandarin cmn_ned=_format_score(e.scores.mandarin.nlp.ned), cmn_cov=_format_score(e.scores.mandarin.nlp.coverage), cmn_wrds=e.scores.mandarin.nlp.nwords, # Wolof wol_ned=_format_score(e.scores.wolof.nlp.ned), wol_cov=_format_score(e.scores.wolof.nlp.coverage), wol_wrds=e.scores.wolof.nlp.nwords, ) class TDE17Exporter(LeaderboardExporter, CSVExporter): leaderboard: TDE17Leaderboard quiet: bool = False @property def console(self): if not self.quiet: return console return void_console def restricted_entries(self): return [ restrict_entry(e) for e in self.leaderboard.data ] @classmethod def from_cmd(cls, argv: Optional[List[str]] = None): argv = argv if argv is not None else sys.argv[1:] parser = argparse.ArgumentParser("ABXLS leaderboard to CSV") parser.add_argument('location', help='Location of leaderboard (url/path)') parser.add_argument('-q', '--quiet', action='store_true') parser.add_argument('-o', '--output-file', default="tde17.csv", help="File to output results") args = parser.parse_args(argv) if not args.quiet: console.print("Loading...", style="bold orange3") ld_data = open_json(args.location) # return ld_data return cls( leaderboard=ld_data, quiet=args.quiet, output_file=Path(args.output_file) ) def to_csv(self): df = pd.DataFrame(self.restricted_entries()) self.console.print(f"Writing {self.output_file}...") df.to_csv(self.output_file) def cmd(): """ Command line entrypoint """ exp = TDE17Exporter.from_cmd() # for entry in exp['data']: # try: # _ = TDE17Entry.parse_obj(entry) # except ValidationError as e: # print(f"failed with: {entry['model_id']}") exp.export() exp.console.print("Leaderboard exported successfully", style="bold green")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/leaderboards/exporters/tde17.py
tde17.py
import argparse import functools import itertools import sys from io import StringIO from pathlib import Path from typing import Optional, List, Tuple, Dict import pandas as pd from rich.console import Console from zerospeech.leaderboards.sLM21 import SLM21Leaderboard, SLM21LeaderboardEntry from zerospeech.leaderboards.utils import open_json, clean_label, format_score from .base import LeaderboardExporter, CSVExporter console = Console() void_console = Console(file=StringIO()) def restrict_entry(e: SLM21LeaderboardEntry, percent: bool = True) -> Tuple[Dict, Dict]: _format_score = functools.partial(format_score, percent=percent) base_info = dict( label=clean_label(e.publication.author_short), model_id=e.model_id, submission_di=e.submission_id ) dev_set = dict( **base_info, set="dev", lexical_all=_format_score(e.scores.lexical.all.dev), lexical_in_vocab=_format_score(e.scores.lexical.in_vocab.dev), syntactic=_format_score(e.scores.syntactic.dev), semantic_synth=e.scores.semantic.normal.synthetic.dev, semantic_libri=e.scores.semantic.normal.librispeech.dev, semantic_w_synth=e.scores.semantic.weighted.synthetic.dev, semantic_w_libri=e.scores.semantic.weighted.librispeech.dev ) test_set = dict( **base_info, set="test", lexical_all=_format_score(e.scores.lexical.all.test), lexical_in_vocab=_format_score(e.scores.lexical.in_vocab.test), syntactic=_format_score(e.scores.syntactic.test), semantic_synth=e.scores.semantic.normal.synthetic.test, semantic_libri=e.scores.semantic.normal.librispeech.test, semantic_w_synth=e.scores.semantic.weighted.synthetic.test, semantic_w_libri=e.scores.semantic.weighted.librispeech.test ) return dev_set, test_set class Slm21Exporter(LeaderboardExporter, CSVExporter): leaderboard: SLM21Leaderboard # split dev & test set split_sets: bool = True # keep values as percentage as_percentage: bool = True quiet: bool = False @property def console(self): if not self.quiet: return console return void_console def restricted_entries(self): return [ restrict_entry(e) for e in self.leaderboard.data ] @classmethod def from_cmd(cls, argv: Optional[List[str]] = None): argv = argv if argv is not None else sys.argv[1:] parser = argparse.ArgumentParser("ABXLS leaderboard to CSV") parser.add_argument('location', help='Location of leaderboard (url/path)') parser.add_argument('-s', '--split-sets', action='store_true', help="Split dev and test") parser.add_argument('-p', '--as-percentage', action='store_true', help="Scores are shown as percentages") parser.add_argument('-q', '--quiet', action='store_true') parser.add_argument('-o', '--output-file', default="slm21.csv", help="File to output results") args = parser.parse_args(argv) if not args.quiet: console.print("Loading...", style="bold orange3") ld_data = open_json(args.location) return cls( leaderboard=ld_data, split_sets=args.split_sets, as_percentage=args.as_percentage, quiet=args.quiet, output_file=Path(args.output_file) ) def to_csv(self): entries_restricted = self.restricted_entries() dev_restricted, test_restricted = zip(*entries_restricted) if not self.split_sets: all_restricted = [ x for x in itertools.chain.from_iterable( itertools.zip_longest(dev_restricted, test_restricted) ) if x ] self.console.print(f"Writing {self.output_file}...") df_all = pd.DataFrame(all_restricted) df_all.to_csv(self.output_file) else: dev_file = self.output_file.parent / f"dev_{self.output_file.name}" self.console.print(f"Writing {dev_file}...") df_dev = pd.DataFrame(dev_restricted) del df_dev['set'] df_dev.to_csv(dev_file) test_file = self.output_file.parent / f"test_{self.output_file.name}" self.console.print(f"Writing {test_file}...") df_test = pd.DataFrame(test_restricted) del df_test['set'] df_test.to_csv(test_file) def cmd(): """ Command line entrypoint """ exp = Slm21Exporter.from_cmd() exp.export() exp.console.print("Leaderboard exported successfully", style="bold green")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/leaderboards/exporters/sLM21.py
sLM21.py
import argparse import functools import itertools import json import sys from io import StringIO from pathlib import Path from typing import Dict, Tuple, List, Optional import pandas as pd from rich.console import Console from zerospeech.leaderboards.abxLS import ABXLSLeaderboard from zerospeech.leaderboards.utils import open_json, clean_label, format_score from .base import CSVExporter, LeaderboardExporter console = Console() void_console = Console(file=StringIO()) def restrict_entry(entry: Dict, percent: bool = True) -> Tuple[Dict, Dict]: _format_score = functools.partial(format_score, percent=percent) pub_info = entry.get('publication', {}) base_info = dict( label=clean_label(pub_info.get('author_short', '-')), model_id=entry.get('model_id', '-'), submission_id=entry.get('submission_id', '-'), ) score = entry.get('scores', {}) dev_set = dict( **base_info, set="dev", # phoneme any # clean phoneme_any_clean_within=_format_score(score['phoneme']['any']['clean']['within']['dev']['score']), phoneme_any_clean_across=_format_score(score['phoneme']['any']['clean']['across']['dev']['score']), # other phoneme_any_other_within=_format_score(score['phoneme']['any']['other']['within']['dev']['score']), phoneme_any_other_across=_format_score(score['phoneme']['any']['other']['across']['dev']['score']), # phoneme within # clean phoneme_within_clean_within=_format_score(score['phoneme']['within']['clean']['within']['dev']['score']), phoneme_within_clean_across=_format_score(score['phoneme']['within']['clean']['across']['dev']['score']), # other phoneme_within_other_within=_format_score(score['phoneme']['within']['other']['within']['dev']['score']), phoneme_within_other_across=_format_score(score['phoneme']['within']['other']['across']['dev']['score']), # triphone within # clean triphone_within_clean_within=_format_score(score['triphone']['within']['clean']['within']['dev']['score']), triphone_within_clean_across=_format_score(score['triphone']['within']['clean']['across']['dev']['score']), # other triphone_within_other_within=_format_score(score['triphone']['within']['other']['within']['dev']['score']), triphone_within_other_across=_format_score(score['triphone']['within']['other']['across']['dev']['score']), ) test_set = dict( **base_info, set="test", # phoneme any # clean phoneme_any_clean_within=_format_score(score['phoneme']['any']['clean']['within']['test']['score']), phoneme_any_clean_across=_format_score(score['phoneme']['any']['clean']['across']['test']['score']), # other phoneme_any_other_within=_format_score(score['phoneme']['any']['other']['within']['test']['score']), phoneme_any_other_across=_format_score(score['phoneme']['any']['other']['across']['test']['score']), # phoneme within # clean phoneme_within_clean_within=_format_score(score['phoneme']['within']['clean']['within']['test']['score']), phoneme_within_clean_across=_format_score(score['phoneme']['within']['clean']['across']['test']['score']), # other phoneme_within_other_within=_format_score(score['phoneme']['within']['other']['within']['test']['score']), phoneme_within_other_across=_format_score(score['phoneme']['within']['other']['across']['test']['score']), # triphone within # clean triphone_within_clean_within=_format_score(score['triphone']['within']['clean']['within']['test']['score']), triphone_within_clean_across=_format_score(score['triphone']['within']['clean']['across']['test']['score']), # other triphone_within_other_within=_format_score(score['triphone']['within']['other']['within']['test']['score']), triphone_within_other_across=_format_score(score['triphone']['within']['other']['across']['test']['score']), ) return dev_set, test_set class ABXLSExporter(LeaderboardExporter, CSVExporter): leaderboard: ABXLSLeaderboard # split dev & test set split_sets: bool = True # keep values as percentage as_percentage: bool = True quiet: bool = False @property def console(self): if not self.quiet: return console return void_console @classmethod def from_cmd(cls, argv: Optional[List[str]] = None): argv = argv if argv is not None else sys.argv[1:] parser = argparse.ArgumentParser("ABXLS leaderboard to CSV") parser.add_argument('location', help='Location of leaderboard (url/path)') parser.add_argument('-s', '--split-sets', action='store_true', help="Split dev and test") parser.add_argument('-p', '--as-percentage', action='store_true', help="Scores are shown as percentages") parser.add_argument('-q', '--quiet', action='store_true') parser.add_argument('-o', '--output-file', default="abx-ls.csv", help="File to output results") args = parser.parse_args(argv) if not args.quiet: console.print("Loading...", style="bold orange3") ld_data = open_json(args.location) return cls( leaderboard=ld_data, split_sets=args.split_sets, as_percentage=args.as_percentage, quiet=args.quiet, output_file=Path(args.output_file) ) def restricted_entries(self) -> List[Tuple[Dict, Dict]]: # passthrough json to serialise all values as_dict = json.loads(self.leaderboard.json()) return [ restrict_entry(e, percent=self.as_percentage) for e in as_dict["data"] ] def to_csv(self): entries_restricted = self.restricted_entries() dev_restricted, test_restricted = zip(*entries_restricted) if not self.split_sets: all_restricted = [ x for x in itertools.chain.from_iterable( itertools.zip_longest(dev_restricted, test_restricted) ) if x ] self.console.print(f"Writing {self.output_file}...") df_all = pd.DataFrame(all_restricted) df_all.to_csv(self.output_file) else: dev_file = self.output_file.parent / f"dev_{self.output_file.name}" self.console.print(f"Writing {dev_file}...") df_dev = pd.DataFrame(dev_restricted) del df_dev['set'] df_dev.to_csv(dev_file) test_file = self.output_file.parent / f"test_{self.output_file.name}" self.console.print(f"Writing {test_file}...") df_test = pd.DataFrame(test_restricted) del df_test['set'] df_test.to_csv(test_file) def cmd(): """ Command line entrypoint """ exp = ABXLSExporter.from_cmd() exp.export() exp.console.print("Leaderboard exported successfully", style="bold green")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/leaderboards/exporters/abxLS.py
abxLS.py
import warnings from pathlib import Path from typing import List, Union, Callable, Any from zerospeech.data_loaders import load_dataframe, load_numpy_array, FileError from zerospeech.generics import FileItem, FileListItem, FileTypes from .base_validators import ValidationError, ValidationOK, ValidationResponse from .base_validators import BASE_VALIDATOR_FN_TYPE return_type = List[ValidationResponse] COMPLEX_VALIDATION_FN = Callable[[Any, List[BASE_VALIDATOR_FN_TYPE]], return_type] def dataframe_check( item: FileItem, additional_checks: List[BASE_VALIDATOR_FN_TYPE], **kwargs ) -> return_type: """ Check validity & apply additional checks to a Dataframe fileItem """ results = [] if item.file_type not in FileTypes.dataframe_types(): return [ValidationError(f'file type {item.file_type} cannot be converted into a dataframe', data=item.file)] try: df = load_dataframe(item, **kwargs) except Exception as e: # noqa: broad exception is on purpose return [ValidationError(f'{e}', data=item.file)] results.append(ValidationOK(f"File {item.file} is a valid dataframe !")) for fn in additional_checks: results.extend(fn(df)) return results def numpy_array_check(file_item: Union[FileItem, Path], additional_checks: List[BASE_VALIDATOR_FN_TYPE]) -> return_type: """ Check validity & apply additional checks to a Numpy fileItem """ warnings.filterwarnings("error") try: array = load_numpy_array(file_item) except (FileError, ValueError, UserWarning): return [ValidationError('File does not contain a numpy array', data=file_item)] results = [ValidationOK('File contains a numpy array !', data=file_item)] for fn in additional_checks: results.extend(fn(array)) return results def numpy_array_list_check( item: FileListItem, f_list_checks: List[BASE_VALIDATOR_FN_TYPE], additional_checks: List[BASE_VALIDATOR_FN_TYPE] ) -> return_type: """ Check validity & apply additional checks to a list of Numpy fileItems """ results = [] for fn in f_list_checks: r = fn(item) results.extend(r) for i in item.files_list: results.extend(numpy_array_check(i, additional_checks)) return results
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/validators/validators.py
validators.py
from pathlib import Path from typing import List, Callable, Any, Type import numpy as np import pandas as pd from zerospeech.generics import FileListItem from zerospeech.submissions import ValidationResponse, ValidationOK, ValidationError # Type for base functions BASE_VALIDATOR_FN_TYPE = Callable[[Any], List[ValidationResponse]] return_type = List[ValidationResponse] def list_checker(given: List[str], expected: List[str]) -> return_type: """ Check a list of strings to find if expected items are in it """ given = set(given) expected = set(expected) if given != expected: has_less_files = expected - given has_more_files = given - expected res = [] if len(has_more_files) > 0: for e_file in has_more_files: res.append( ValidationError( "extra file found", filename=e_file ) ) elif len(has_less_files) > 0: res = [] for e_file in has_less_files: res.append(ValidationError( "expected file not found", filename=e_file )) return res else: return [ValidationOK('expected files found')] def file_list_checker( item: FileListItem, expected: List[Path] ) -> return_type: """ Check if a file list has expected files in it (ignoring file suffix) """ file_names = [f.stem for f in item.files_list] expected_names = [f.stem for f in expected] return list_checker(given=file_names, expected=expected_names) def file_list_stem_check( item: FileListItem, expected: List[str] ) -> return_type: """ Check if a file list has expected filenames in it (ignoring file suffix)""" file_names = [f.stem for f in item.files_list] return list_checker(given=file_names, expected=expected) def dataframe_column_check(df: pd.DataFrame, expected_columns: List[str]) -> return_type: """ Check that all columns are present in a dataframe """ columns = list(df.columns) if columns != expected_columns: return [ValidationError(f'columns are not expected ' f'expected: {expected_columns}, found: {columns}')] return [ValidationOK('Columns of dataframe are valid')] def dataframe_index_check(df: pd.DataFrame, expected: List[str]) -> return_type: """ Check that specific values are contained in each row""" # check if all files from the dataset are represented in the filenames index = list(df.index) return list_checker(index, expected) def dataframe_type_check(df: pd.DataFrame, col_name: str, expected_type: Type[Any]) -> return_type: """ Verify column type matches expected type """ try: df[col_name].astype(expected_type) except ValueError: return [ValidationError(f'Column {col_name} does not march expected type {expected_type}')] return [] def numpy_dimensions_check(array: np.ndarray, ndim: int): """ Check ndarray matches specified dimensions""" if array.ndim != ndim: return [ValidationError( f'Array should be of dimensions: {ndim}')] return [] def numpy_dtype_check(array: np.ndarray, dtype: np.dtype): """ Check ndarray matches specified type """ if array.dtype != dtype: return [ValidationError( f'Array should be of type: {dtype}')] return [] def numpy_col_comparison(dim: int): ncols = [] def comparison(array: np.ndarray): ncols.append(array.shape[dim]) if len(set(ncols)) != 1: return [ ValidationError(f'Arrays do not match dimensions {dim}') ] return [] return comparison
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/validators/base_validators.py
base_validators.py
import functools from typing import Optional, ClassVar from ._model import Dataset, DatasetNotFoundError, DatasetsDir, DatasetNotInstalledError class SLM21Dataset(Dataset): """ Class interfacing usage of the sLM21 dataset""" __dataset_name__: ClassVar[str] = "sLM21-dataset" @classmethod @functools.lru_cache def load(cls, load_index: bool = True) -> Optional["SLM21Dataset"]: """ Load dataset from dir registry """ dataset = DatasetsDir.load().get(cls.__dataset_name__, cls) if dataset is None: raise DatasetNotFoundError("The sLM21-dataset does not exist") if not dataset.installed: raise DatasetNotInstalledError("The sLM21-dataset is not installed locally") if load_index: dataset.load_index() # convert all paths to absolute paths dataset.index.make_absolute() return dataset class AbxLSDataset(Dataset): """ Class interfacing usage of the ABX-LS dataset""" __dataset_name__: ClassVar[str] = "abxLS-dataset" @classmethod @functools.lru_cache def load(cls, load_index: bool = True) -> Optional["AbxLSDataset"]: """ Load """ dataset = DatasetsDir.load().get(cls.__dataset_name__, cls=cls) if dataset is None: raise DatasetNotFoundError(f"The {cls.__dataset_name__} does not exist") if not dataset.installed: raise DatasetNotInstalledError(f"The {cls.__dataset_name__} is not installed locally") if load_index: dataset.load_index() # convert all paths to absolute paths dataset.index.make_absolute() return dataset class ProsAuditLMDataset(Dataset): """ Class interfacing usage of the Prosody LM Benchmark """ __dataset_name__: ClassVar[str] = "prosaudit-dataset" @classmethod @functools.lru_cache def load(cls, load_index: bool = True) -> Optional["ProsAuditLMDataset"]: dataset = DatasetsDir.load().get(cls.__dataset_name__, cls=cls) if dataset is None: raise DatasetNotFoundError(f"The {cls.__dataset_name__} does not exist") if not dataset.installed: raise DatasetNotInstalledError(f"The {cls.__dataset_name__} is not installed locally") if load_index: dataset.load_index() # convert all paths to absolute paths dataset.index.make_absolute() return dataset
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/datasets/zrc_2021.py
zrc_2021.py
import json from pathlib import Path from typing import Optional, TypeVar, ClassVar, Type, Union from pydantic import BaseModel, validator from zerospeech.generics import ( RepoItemDir, ImportableItem, DownloadableItem, Namespace, Subset ) from zerospeech.misc import extract, download_extract_archive from zerospeech.out import console from zerospeech.settings import get_settings st = get_settings() T = TypeVar("T") class DatasetNotInstalledError(Exception): """ Exception used for a non locally installed dataset """ pass class DatasetNotFoundError(Exception): """ Exception used for a non available dataset """ pass class DatasetIndex(BaseModel): """ A metadata object indexing all items in a dataset.""" root_dir: Path subsets: Namespace[Subset] @validator("subsets", pre=True) def subsets_parse(cls, values): return Namespace[Subset](store=values) def make_relative(self): """ Convert all the subsets to relative paths """ for _, item in self.subsets: item.make_relative(self.root_dir) def make_absolute(self): """ Convert all the subsets to absolute paths """ for _, item in self.subsets: item.make_absolute(self.root_dir) class Dataset(DownloadableItem, ImportableItem): """ Generic definition of a dataset """ key_name: ClassVar[str] = "datasets" index: Optional[DatasetIndex] = None @property def name(self) -> str: """ Returns the dataset name """ return getattr(self, "__dataset_name__", '') def is_external(self) -> bool: """ Returns true if the dataset is external """ return self.origin.type == "external" @property def index_path(self): """ Path to the index file """ p = self.location / 'index.json' if not p.is_file(): raise ValueError(f'Dataset {self.origin.name} has no build-in index file') return p def load_index(self): """ Load the dataset index """ with self.index_path.open() as fp: self.index = DatasetIndex(root_dir=self.location, **json.load(fp)) def pull(self, *, verify: bool = True, quiet: bool = False, show_progress: bool = False): """ Pull a dataset from remote to the local repository.""" if self.origin.type == "external": raise ValueError("External datasets cannot be pulled from the repository !!") md5_hash = "" if verify: md5_hash = self.origin.md5sum # download & extract archive download_extract_archive(self.origin.zip_url, self.location, int(self.origin.total_size), filename=self.name, md5sum_hash=md5_hash, quiet=quiet, show_progress=show_progress) if not quiet: console.print(f"[green]Dataset {self.name} installed successfully !!") def import_zip(self, *, archive: Path): """ Import dataset from an archive """ # extract archive extract(archive, self.location) class DatasetsDir(RepoItemDir): """ Dataset directory manager """ item_type: ClassVar[Union[Type[DownloadableItem], Type[ImportableItem]]] = Dataset @classmethod def load(cls): return cls(root_dir=st.dataset_path)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/datasets/_model.py
_model.py
import abc import json import shutil from pathlib import Path from typing import Optional, List, NamedTuple import pandas as pd from Crypto.Hash import MD5 from filesplit.split import Split from pydantic import BaseModel, Extra, Field from .user_api import SubmissionRequestFileIndexItem class UploadItem(NamedTuple): """ Item used for upload iteration """ filepath: Path filehash: str filesize: int class ManifestIndexItem(BaseModel): """ Model representing a file item in the SplitManifest """ filename: str filesize: int filehash: str def __eq__(self, other: 'ManifestIndexItem'): return self.filehash == other.filehash def __hash__(self): return int(self.filehash, 16) def to_api(self) -> SubmissionRequestFileIndexItem: return SubmissionRequestFileIndexItem( filename=self.filename, filesize=self.filesize, filehash=self.filehash ) def to_item(self, root: Path) -> UploadItem: return UploadItem( filepath=root / self.filename, filehash=self.filehash, filesize=self.filesize ) @classmethod def from_item(cls, item: UploadItem) -> "ManifestIndexItem": return cls( filename=item.filepath.name, filehash=item.filehash, filesize=item.filesize ) class Config: extra = Extra.ignore # or 'allow' str def md5sum(file_path: Path, chunk_size: int = 8192): """ Return a md5 hash of a files content """ h = MD5.new() with file_path.open('rb') as f: while True: chunk = f.read(chunk_size) if len(chunk): h.update(chunk) else: break return h.hexdigest() def split_archive(zipfile: Path, chunk_max_size: int = 500000000): """ Split an archive to multiple paths """ output_dir = zipfile.parent / f'.{zipfile.stem}.parts' output_dir.mkdir(exist_ok=True, parents=True) fs = Split(inputfile=str(zipfile), outputdir=str(output_dir)) fs.bysize(size=chunk_max_size) df = pd.read_csv(output_dir / fs.manfilename) manifest = [ ManifestIndexItem.parse_obj( dict( filehash=md5sum(file_path=output_dir / Path(o['filename']).name), **o ) ) for o in df.to_dict(orient='records') ] return manifest, output_dir class FileUploadHandler(BaseModel, abc.ABC): file: Path filehash: str @property def current_dir(self) -> Path: return self.file.parent @property @abc.abstractmethod def is_multipart(self) -> bool: pass @abc.abstractmethod def api_index(self) -> Optional[List[SubmissionRequestFileIndexItem]]: pass @abc.abstractmethod def mark_completed(self, item: UploadItem): """ Function to mark item as uploaded """ pass @classmethod @abc.abstractmethod def _create(cls, target_file: Path): """ Abstract method to create manifest """ pass @abc.abstractmethod def clean(self): """ Clean upload temp files """ pass @abc.abstractmethod def __iter__(self): """ Iterate over files to upload """ pass @staticmethod def __resume_path(source: Path): """ Path builder to resume file """ return source.parent / f"{source.stem}.upload.json" @property def resume_file(self) -> Path: """ Current resume file """ return self.__resume_path(self.file) def save(self): """ Save progress to disk """ with self.resume_file.open("w") as fp: fp.write(self.json(indent=4)) @classmethod def create_or_load(cls, target_file: Path) -> Optional["FileUploadHandler"]: """ Create or load manifest """ if not target_file.is_file(): raise FileExistsError(f'{target_file} does not exist') if cls.__resume_path(target_file).is_file(): """ If resume file exists load this instead of recreating it """ with cls.__resume_path(target_file).open() as fp: return cls.parse_obj(json.load(fp)) # if no resume file build new manifest return cls._create(target_file) class MultipartUploadHandler(FileUploadHandler): """ Data Model used for the binary split function as a manifest to allow merging """ index: Optional[List[ManifestIndexItem]] uploaded: List[ManifestIndexItem] = Field(default_factory=list) parts_dir: Optional[Path] @property def is_multipart(self) -> bool: return True @property def api_index(self) -> Optional[List[SubmissionRequestFileIndexItem]]: return [ i.to_api() for i in self.index ] def __iter__(self): """ Iterate over remaining items to upload """ remaining = set(self.index) - set(self.uploaded) return iter([i.to_item(self.parts_dir) for i in remaining]) def mark_completed(self, item: UploadItem): self.uploaded.append(ManifestIndexItem.from_item(item)) self.save() @classmethod def _create(cls, target_file: Path): """ Build multipart upload manifest """ file_hash = md5sum(target_file) # split file & create upload index files_manifest, output_dir = split_archive(target_file) manifest = cls( file=target_file, filehash=file_hash, index=files_manifest, parts_dir=output_dir ) # save to disk to allow resume manifest.save() return manifest def clean(self): """ Clean upload temp files """ self.resume_file.unlink(missing_ok=True) shutil.rmtree(self.parts_dir) class SinglePartUpload(FileUploadHandler): @property def is_multipart(self) -> bool: return False @property def api_index(self) -> Optional[List[SubmissionRequestFileIndexItem]]: # in single-part upload this is not used return None def mark_completed(self, item: UploadItem): # in single-part upload this is not used # resume function always restarts the upload pass def __iter__(self): return iter([ UploadItem( filepath=self.file, filehash=self.filehash, filesize=self.file.stat().st_size ) ]) @classmethod def _create(cls, target_file: Path): """ Build single-part upload manifest """ return cls( file=target_file, filehash=md5sum(target_file) ) def clean(self): """ Clean upload temp files """ self.resume_file.unlink(missing_ok=True)
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/upload/file_split.py
file_split.py
import functools import json import shutil from pathlib import Path from typing import Tuple, Optional, Any, Union, Dict, TYPE_CHECKING from pydantic import BaseModel from rich.console import Console from zerospeech.benchmarks import BenchmarkList from zerospeech.data_loaders import zip_zippable from zerospeech.out import void_console, console as std_console, error_console from zerospeech.settings import get_settings from zerospeech.httpw import post as http_post, get as http_get, APIHTTPException from zerospeech.misc import ScoresNotFound, MetaYamlNotValid, InvalidSubmissionError from zerospeech.submissions import show_errors from .file_split import ( FileUploadHandler, MultipartUploadHandler, SinglePartUpload, md5sum, UploadItem ) from .user_api import CurrentUser, Token if TYPE_CHECKING: from zerospeech.submissions import Submission st = get_settings() class BenchmarkClosedError(Exception): """ Benchmark not active or over deadline """ pass def get_first_author(authors: str) -> Tuple[str, str]: """ Returns a tuple containing first & last name of first author """ try: raise NotImplementedError(f'Does not have an good author parser for {authors}') except (ValueError, NotImplementedError): # On failure fetch full name from user usr = CurrentUser.load() if usr: return usr.first_name, usr.last_name return "john", "doe" def upload_submission(item: UploadItem, *, submission_id: str, token: Token): """ Function that performs upload of submission content to the api backend """ route, headers = st.api.request_params( 'submission_content_add', token=token, submission_id=submission_id, part_name=item.filepath.name ) with item.filepath.open('rb') as file_data: files = dict(file=file_data) response = http_post(route, headers=headers, files=files, data={}) if response.status_code != 200: raise APIHTTPException.from_request('submission_content_add', response) return response.json() def get_submission_status(submission_id: str, token: Token) -> Dict[str, Any]: route, _ = st.api.request_params( "submission_status", token=token, submission_id=submission_id ) response = http_get(route) if response.status_code != 200: raise APIHTTPException.from_request('submission_status', response) return response.json() class UploadManifest(BaseModel): submission_location: Path multipart: bool benchmark_id: str tmp_dir: Optional[Path] = None archive_filename: Optional[str] = None submission_id: Optional[str] = None model_id: Optional[str] = None submission_validated: bool = False local_data_set: bool = False archive_created: bool = False quiet: bool = False is_test: bool = False @staticmethod def index_stem() -> str: return ".manifest" @classmethod def load(cls, location: Path): """ Load Manifest from location """ if not (location / cls.index_stem()).is_file(): raise FileNotFoundError("No Index file") with (location / cls.index_stem()).open() as fp: return cls.parse_obj(json.load(fp)) def save(self): """ Save to disk """ with (self.tmp_dir / self.index_stem()).open('w') as fp: fp.write(self.json(indent=4)) def update(self, field: str, value: Any): """ Update a field """ setattr(self, field, value) self.save() class SubmissionUploader: @classmethod def resume(cls, tmp_dir: Path, quiet: bool = False) -> 'SubmissionUploader': """ Resume Uploader from a manifest file """ man = UploadManifest.load(tmp_dir) if not quiet: std_console.print(f"Resuming upload from {tmp_dir}...") return cls( submission=man.submission_location, user_cred=None, quiet=quiet, **man.dict(exclude={'submission_location', 'user_logged_in', 'quiet'}) ) @classmethod def from_submission( cls, submission: Union[Path, "Submission"], usr: Optional[CurrentUser] = None, multipart: bool = True, quiet: bool = False ) -> 'SubmissionUploader': """ Create uploader from submission """ return cls( submission=submission, user_cred=usr, multipart=multipart, quiet=quiet) def __init__( self, submission: Union[Path, "Submission"], user_cred: Union[CurrentUser, Tuple[str, str], None] = None, tmp_dir: Optional[Path] = None, archive_filename: Optional[str] = None, multipart: bool = True, quiet: bool = False, submission_validated: bool = False, local_data_set: bool = False, archive_created: bool = False, model_id: Optional[str] = None, submission_id: Optional[str] = None, is_test: bool = False, benchmark_id: str = "" ): self._quiet = quiet with self.console.status("building artifacts"): if isinstance(submission, Path): bench = BenchmarkList.from_submission(submission) # Check benchmark is_test = bench.is_test benchmark_id = bench.name if not bench.is_active(): raise BenchmarkClosedError(f"Benchmark {bench.name} does not accept submissions") submission = bench.submission.load(submission) self.submission = submission if user_cred is None: usr = CurrentUser.load() if usr is None: creds = CurrentUser.get_credentials_from_user() usr = CurrentUser.login(creds) self.user = usr elif isinstance(user_cred, CurrentUser): self.user = user_cred else: self.user = CurrentUser.login(user_cred) if tmp_dir is None: self.tmp_dir = st.mkdtemp(auto_clean=False) else: self.tmp_dir = tmp_dir self.console.print(f"UPLOAD DIR :::> {self.tmp_dir}") self.console.print("\tUse this directory to resume upload if it fails (--resume)", style="dark_orange3 italic") if archive_filename is None: self.archive_file = self.tmp_dir / f"{self.submission.location.name}.zip" else: self.archive_file = self.tmp_dir / archive_filename self.upload_handler: Optional[FileUploadHandler] = None self._manifest = UploadManifest( submission_location=self.submission.location, submission_validated=submission_validated, multipart=multipart, tmp_dir=self.tmp_dir, archive_filename=self.archive_file.name, submission_id=submission_id, model_id=model_id, local_data_set=local_data_set, archive_created=archive_created, is_test=is_test, benchmark_id=benchmark_id ) self._manifest.save() # fetch system data & update submission with self.console.status("Building submission..."): if not self._manifest.local_data_set: self._fetch_local_data() # update manifest self._manifest.update('local_data_set', True) # check submission with self.console.status("Checking submission..."): if not self._manifest.submission_validated: self._check_submission() # update manifest self._manifest.update('submission_validated', True) with self.console.status("Checking model ID..."): if self._manifest.model_id is None: mdi = self._get_model_id() self.submission.meta.set_model_id( submission_location=self.submission.location, model_id=mdi ) # update manifest self._manifest.update('model_id', mdi) # Making archive or load if existing self._make_archive(multipart) # update manifest self._manifest.update('archive_created', True) with self.console.status("Checking Submission ID"): if self._manifest.submission_id is None: self._register_submission() # make upload function self.upload_fn = functools.partial( upload_submission, submission_id=self.submission.meta.submission_id, token=self.user.token ) self.console.print(":heavy_check_mark: Submission valid & ready for upload !!!", style="bold green") self.console.print(f"\t SUBMISSION_ID: {self._manifest.submission_id}", style="dark_orange3 italic") self.console.print(f"\t MODEL_ID: {self._manifest.model_id}", style="dark_orange3 italic") @property def console(self) -> Console: if self._quiet: return void_console return std_console @property def ready(self) -> bool: """Check if submission is ready for upload """ if self._manifest.submission_id is None: error_console.print("No Submission ID") return False if self._manifest.model_id is None: error_console.print("No Model ID") return False if not self._manifest.submission_validated: error_console.print("Submission invalid") return False if not self._manifest.local_data_set: error_console.print("Failed to set all data (check user)") return False if not self._manifest.archive_created: error_console.print("No archive created") return False return True def _get_model_id(self) -> str: model_id = self.submission.meta.model_info.model_id authors = self.submission.meta.publication.authors if model_id is None: _, first_author_lname = get_first_author(authors) model_id = self.user.new_model_id( author_name=first_author_lname, description=self.submission.meta.model_info.system_description, gpu_budget=self.submission.meta.model_info.gpu_budget, train_set=self.submission.meta.model_info.train_set, authors=authors, author_label=f"{first_author_lname} et al.", institution=self.submission.meta.publication.institution, team=self.submission.meta.publication.team, paper_url=self.submission.meta.publication.paper_url, code_url=self.submission.meta.code_url ) return model_id.replace('"', '').replace("'", "") def _fetch_local_data(self): """ Fetch all system data & update meta.yaml """ author_label = self.submission.meta.publication.author_label if "et al." not in author_label: first_author_fname, first_author_lname = get_first_author( self.submission.meta.publication.authors ) author_label = f"{first_author_lname.title()}, {first_author_fname[0].upper()}. et al." self.submission.meta.set_system_values( submission_location=self.submission.location, username=self.user.username, author_label=author_label ) def _check_submission(self): """ Performs all checks on submission before upload to API """ if not self.submission.meta.is_valid(): raise MetaYamlNotValid('meta.yaml not valid', ctx=self.submission.meta.validation_context) # validate submission if not self.submission.valid: # todo convert submission validation to use context protocol show_errors(self.submission.validation_output) raise InvalidSubmissionError('submission not valid') # check scores (has_scores) if not self.submission.has_scores(): raise ScoresNotFound('submission has no scores') # generate leaderboard scores = self.submission.get_scores() ld_data = scores.build_leaderboard() with (scores.location / scores.leaderboard_file_name).open("w") as fp: fp.write(ld_data.json(indent=4)) # check model_id def _make_archive(self, multipart: bool = True): if not self.archive_file.is_file(): with self.console.status("Creating Archive..."): zip_zippable(self.submission, self.archive_file) with self.console.status("Building manifest..."): if multipart: self.upload_handler = MultipartUploadHandler.create_or_load( self.archive_file ) else: self.upload_handler = SinglePartUpload.create_or_load( self.archive_file ) self.console.print(":heavy_check_mark: archive created !!", style="bold green") def _register_submission(self): if self.submission.meta.submission_id is None: leaderboard_file = "" if self.submission.has_scores(): leaderboard_file = str(self.submission.leaderboard_file.relative_to(self.submission.location)) filehash = md5sum(self.archive_file) resp_obj = self.user.make_new_submission( model_id=self.submission.meta.model_info.model_id, filename=self.archive_file.name, filehash=filehash, benchmark_id=self._manifest.benchmark_id, has_scores=self.submission.has_scores(), leaderboard=leaderboard_file, index=self.upload_handler.api_index, author_label=self.submission.meta.publication.author_label, is_test=self._manifest.is_test ) self.submission.meta.set_submission_id( submission_location=self.submission.location, submission_id=resp_obj ) else: sub_status = get_submission_status( self.submission.meta.submission_id, self.user.token ) status = sub_status.get("status", "") if status != "uploading": error_console.print(f"Submission {self.submission.meta.submission_id} has status '{status}' " f"and does not allow uploading") error_console.print("Remove the submission_id entry from the meta.yaml to upload to a different id") self.clean(True) raise ValueError('Cannot upload to current submission') # update manifest self._manifest.update('submission_id', self.submission.meta.submission_id) def clean(self, quiet: bool = False): """ Remove all temp files """ if not quiet: with self.console.status("Cleaning up artifacts..."): shutil.rmtree(self.tmp_dir) else: shutil.rmtree(self.tmp_dir) def upload(self): """ Upload items to backend by iterating on upload handler""" with self.console.status("Uploading..."): for item in self.upload_handler: _ = self.upload_fn(item) self.upload_handler.mark_completed(item) self.console.print(":heavy_check_mark: upload successful !!", style="bold green")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/upload/submission.py
submission.py
import json from datetime import datetime from pathlib import Path from typing import Union, Optional, Dict, Tuple, ClassVar, List from pydantic import BaseModel, EmailStr, Field, AnyHttpUrl from rich.console import Console from zerospeech.settings import get_settings, Token from zerospeech.httpw import post as http_post, get as http_get, APIHTTPException _st = get_settings() out = Console() class NewModelInfo(BaseModel): """ Info required to create a new model id""" description: str gpu_budget: str train_set: str authors: str institution: str team: str author_label: Optional[str] paper_url: Optional[AnyHttpUrl] code_url: Optional[AnyHttpUrl] created_at: datetime = Field(default_factory=lambda: datetime.now()) def clean_dict(self): return json.loads(self.json()) class SubmissionRequestFileIndexItem(BaseModel): filename: str filesize: int filehash: str = "" class NewSubmissionInfo(BaseModel): """ Info required to create a new submission """ model_id: str benchmark_id: str filename: str hash: str has_scores: bool multipart: bool author_label: Optional[str] index: Optional[List[SubmissionRequestFileIndexItem]] leaderboard: Optional[str] def clean_dict(self): return json.loads(self.json()) class _UserAPIMethods: """ Methods for communicating with the users-api on zerospeech.com """ @staticmethod def login(credentials: Union[str, EmailStr], password) -> Optional[Token]: """ Request Session token from the API by providing valid credentials """ route_url, _ = _st.api.request_params(route_name='user_login', token=None) response = http_post( route_url, data={ "grant_type": "password", "username": credentials, "password": password, "scopes": [], "client_id": _st.api.client_id, "client_secret": _st.api.client_secret } ) if response.status_code != 200: raise APIHTTPException.from_request('user_login', response) return Token.parse_obj(response.json()) @staticmethod def get_user_info(token: Token) -> Dict: route_url, headers = _st.api.request_params(route_name='user_info', token=token, username=token.username) response = http_get( route_url, headers=headers ) if response.status_code != 200: raise APIHTTPException.from_request('user_info', response) return response.json() @staticmethod def make_new_model(username: str, author_name: str, new_model_info: NewModelInfo, token: Token) -> Optional[str]: route_url, headers = _st.api.request_params( route_name='new_model', token=token, username=username, author_name=author_name) response = http_post( route_url, json=new_model_info.clean_dict(), headers=headers ) if response.status_code != 200: raise APIHTTPException.from_request('new_model', response) return response.json().get("model_id", None) @staticmethod def make_new_submission(username: str, new_sub_info: NewSubmissionInfo, token: Token) -> Optional[str]: """ Create a new submission """ route_url, headers = _st.api.request_params( route_name='new_submission', token=token, username=username) response = http_post( route_url, json=new_sub_info.clean_dict(), headers=headers ) if response.status_code != 200: raise APIHTTPException.from_request('new_submission', response) return response.json().get('submission_id', None) class CurrentUser(BaseModel): """ Dataclass Managing the current user session """ username: str affiliation: str first_name: str last_name: str email: EmailStr token: Token session_file: ClassVar[Path] = _st.user_credentials @staticmethod def get_credentials_from_user(): """ Prompt user for authentication credentials """ out.print("Required credentials to perform authentication", style="yellow") username = out.input("username/email: ") password = out.input("password: ", password=True) return username, password def save(self): """ Save session to disk""" with self.session_file.open('w') as fp: fp.write(self.json(indent=4)) @classmethod def clear(cls): """ Clear current user session """ cls.session_file.unlink(missing_ok=True) @classmethod def login(cls, credentials: Optional[Tuple[str, str]] = None, auto_save: bool = True): """ Create a new user session Parameters: credentials: allows to specify login/password tuple, if its none the user is prompted. auto_save: specify whether to save session on disk (default: True) Returns: Current session """ if credentials is None: credentials = cls.get_credentials_from_user() token = _UserAPIMethods.login(credentials[0], credentials[1]) creds = cls(token=token, **_UserAPIMethods.get_user_info(token=token)) if auto_save: creds.save() return creds @classmethod def load(cls) -> Optional["CurrentUser"]: """ Load existing session from disk """ if not cls.session_file.is_file(): return None with cls.session_file.open() as fp: return cls.parse_obj(json.load(fp)) @classmethod def load_or_create(cls, credentials: Optional[Tuple[str, str]] = None): """ Load the existing session or create a new one if it is not present """ if cls.session_file.is_file(): return cls.load() return cls.login(credentials) def new_model_id( self, *, author_name: str, description: str, gpu_budget: str, train_set: str, authors: str, institution: str, team: str, paper_url: Optional[str], code_url: Optional[str], author_label: Optional[str] ) -> str: """ Create a new model id from the given information """ model_dt = _UserAPIMethods.make_new_model( username=self.username, author_name=author_name, new_model_info=NewModelInfo.parse_obj(dict( description=description, gpu_budget=gpu_budget, train_set=train_set, authors=authors, institution=institution, team=team, paper_url=paper_url, code_url=code_url, author_label=author_label )), token=self.token ) return model_dt def make_new_submission( self, model_id: str, filename: str, filehash: str, has_scores: bool, leaderboard: str, author_label: str, benchmark_id: str, is_test: bool = False, index: Optional[List[SubmissionRequestFileIndexItem]] = None ): if is_test: benchmark_id = "test-challenge" return _UserAPIMethods.make_new_submission( username=self.username, new_sub_info=NewSubmissionInfo( model_id=model_id, benchmark_id=benchmark_id, filename=filename, hash=filehash, multipart=index is not None, author_label=author_label, has_scores=has_scores, leaderboard=leaderboard, index=index ), token=self.token )
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/upload/user_api.py
user_api.py
from typing import Tuple, List, Dict, ClassVar, Type import pandas as pd from pydantic import Field from zerospeech.datasets import ZRC2017Dataset from zerospeech.generics import FileListItem, FileItem from zerospeech.submissions import Submission from zerospeech.submissions.abx17 import ABX17Submission from zerospeech.tasks.abx.abx17 import SimpleABXTask from ._model import Benchmark return_type = List[Tuple[str, FileListItem, FileItem]] class ABX17Task(SimpleABXTask): """ ABX task for abx-17 """ def format_results(self, results: Dict) -> pd.DataFrame: results = [ (dset.split('_')[0], dset.split('_')[1], mode, score) for dset, v in results.items() for mode, score in v.items() ] return pd.DataFrame( results, columns=['language', 'duration', 'type', 'score'] ) def extract_sets(self, submission: "ABX17Submission", dataset: ZRC2017Dataset) -> return_type: self.sets = submission.sets self.tasks = submission.tasks abx_sets = [] if 'english' in self.tasks: if '1s' in self.sets: abx_sets.append(( 'english_1s', dataset.index.subsets.english.items.abx_1s_item, submission.items.english_1s )) if '10s' in self.sets: abx_sets.append(( 'english_10s', dataset.index.subsets.english.items.abx_10s_item, submission.items.english_10s )) if '120s' in self.sets: abx_sets.append(( 'english_120s', dataset.index.subsets.english.items.abx_120s_item, submission.items.english_120s )) if 'french' in self.tasks: if '1s' in self.sets: abx_sets.append(( 'french_1s', dataset.index.subsets.french.items.abx_1s_item, submission.items.french_1s )) if '10s' in self.sets: abx_sets.append(( 'french_10s', dataset.index.subsets.french.items.abx_10s_item, submission.items.french_10s )) if '120s' in self.sets: abx_sets.append(( 'french_120s', dataset.index.subsets.french.items.abx_120s_item, submission.items.french_120s )) if 'mandarin' in self.tasks: if '1s' in self.sets: abx_sets.append(( 'mandarin_1s', dataset.index.subsets.mandarin.items.abx_1s_item, submission.items.mandarin_1s )) if '10s' in self.sets: abx_sets.append(( 'mandarin_10s', dataset.index.subsets.mandarin.items.abx_10s_item, submission.items.mandarin_10s )) if '120s' in self.sets: abx_sets.append(( 'mandarin_120s', dataset.index.subsets.mandarin.items.abx_120s_item, submission.items.mandarin_120s )) if 'german' in self.tasks: if '1s' in self.sets: abx_sets.append(( 'german_1s', dataset.index.subsets.german.items.abx_1s_item, submission.items.german_1s )) if '10s' in self.sets: abx_sets.append(( 'german_10s', dataset.index.subsets.german.items.abx_10s_item, submission.items.german_10s )) if '120s' in self.sets: abx_sets.append(( 'german_120s', dataset.index.subsets.german.items.abx_120s_item, submission.items.german_120s )) if 'wolof' in self.tasks: if '1s' in self.sets: abx_sets.append(( 'wolof_1s', dataset.index.subsets.wolof.items.abx_1s_item, submission.items.wolof_1s )) if '10s' in self.sets: abx_sets.append(( 'wolof_10s', dataset.index.subsets.wolof.items.abx_10s_item, submission.items.wolof_10s )) if '120s' in self.sets: abx_sets.append(( 'wolof_120s', dataset.index.subsets.wolof.items.abx_120s_item, submission.items.wolof_120s )) return abx_sets class ABX17Benchmark(Benchmark): """abx-LS is a benchmark on acoustic Units using the ABX metric. This benchmark has 2 sub-tasks : - clean - other Each task has two subsets: dev, test For ABX measuring we use this module : https://github.com/zerospeech/libri-light-abx """ _name: ClassVar[str] = "abx17" _doc_url: ClassVar[str] = "https://zerospeech.com/tasks/task_1/tasks_goals/" __submission_cls__: Type[Submission] = ABX17Submission dataset: ZRC2017Dataset = Field(default_factory=lambda: ZRC2017Dataset.load()) def run(self, submission: "ABX17Submission"): """ Run abx-17 tasks """ params = submission.params self.console.print(f'Running {self.name} benchmark on {submission.location.name}') # create output submission.score_dir.mkdir(exist_ok=True, parents=True) task = ABX17Task.parse_obj(params.get_task()) task.eval(submission, self.dataset) self.console.print('[green]:heavy_check_mark:[/green]Evaluation of benchmark completed successfully ') self.console.print(f"Scores can be found @ {submission.score_dir}")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/benchmarks/abx17.py
abx17.py
from typing import Tuple, ClassVar, Type from pydantic import Field from zerospeech.datasets import ZRC2017Dataset from zerospeech.submissions import Submission from zerospeech.submissions.tde17 import TDE17Submission from zerospeech.tasks import tde from ._model import Benchmark class TDE17Task(tde.TDETask): tasks: Tuple = ('english', 'french', 'mandarin', 'german', 'wolof') def gather_items(self, lang: str, submission: "TDE17Submission", dataset: ZRC2017Dataset): current_data = dataset.index.subsets.get(lang) if current_data is None: raise ValueError(f'Language {lang} was not found in {dataset.name}') current_input_classes_file = submission.items.get(lang) if current_input_classes_file is None: raise ValueError(f'Language {lang} was not found in current submission : {submission.location}') return tde.TDEItems( wrd_path=current_data.items.alignment_words.file, phn_path=current_data.items.alignment_phones.file, input_classes=current_input_classes_file.file ) class TDE17Benchmark(Benchmark): """tde-17 is a benchmark on Spoken term Discovery / Word segmentation This benchmark has 5 sub-tasks (one for each language) - english - french - mandarin - german - wolof Each task has 3 subsets: 1s, 10s, 120s These subsets split the same amount of speech into different segments. - 1s has 1-second segments - 10s has 10-second segments - 120s has 120-second segments For the TDE eval we use this module : https://github.com/zerospeech/tdev2 """ _name: ClassVar[str] = "tde17" _doc_url: ClassVar[str] = "https://zerospeech.com/tasks/task_2/tasks_goals/" __submission_cls__: Type[Submission] = TDE17Submission dataset: "ZRC2017Dataset" = Field(default_factory=lambda: ZRC2017Dataset.load()) def run(self, submission: "TDE17Submission"): """ Run TDE-17 tasks """ params = submission.params self.console.print(f'Running {self.name} benchmark on {submission.location.name}') # create output dir submission.score_dir.mkdir(exist_ok=True, parents=True) task = TDE17Task.parse_obj(params.dict()) task.eval(submission, self.dataset) self.console.print('[green]:heavy_check_mark:[/green]Evaluation of benchmark completed successfully ') self.console.print(f"Scores can be found @ {submission.score_dir}")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/benchmarks/tde17.py
tde17.py
import enum from datetime import date from pathlib import Path from typing import Type, Optional, TYPE_CHECKING from pydantic import BaseModel from zerospeech.benchmarks import sLM21, abxLS, tde17, abx17, prosAudit from zerospeech.httpw import get as http_get, APIHTTPException from zerospeech.misc import InvalidSubmissionError from zerospeech.settings import get_settings from zerospeech.submissions import MetaFile from ._model import Benchmark st = get_settings() class InvalidBenchmarkError(Exception): pass class _InfoSchema(BaseModel): label: str start_date: date end_date: Optional[date] active: bool url: str evaluator: Optional[int] auto_eval: bool @property def is_open(self): """ Check if benchmark is open to submissions """ if self.end_date is not None: return self.active and self.end_date >= date.today() return self.active class BenchmarkList(str, enum.Enum): """ Simplified enum """ def __new__(cls, benchmark: Type[Benchmark]): """ Allow setting parameters on enum """ label = benchmark._name # noqa: allow private access obj = str.__new__(cls, label) obj._value_ = label obj._benchmark = benchmark obj._doc_url = benchmark._doc_url # noqa: allow private access obj.is_test = False return obj sLM21 = sLM21.SLM21Benchmark abx_LS = abxLS.AbxLSBenchmark pros_audit = prosAudit.SLMProsodyBenchmark # TODO: implement score_dir, leaderboard & validation for 2017 (tde & abx) abx_17 = abx17.ABX17Benchmark tde_17 = tde17.TDE17Benchmark @classmethod def from_submission(cls, location: Path) -> "BenchmarkList": benchmark_name = MetaFile.benchmark_from_submission(location) if benchmark_name is None: raise InvalidSubmissionError("meta.yaml not found or invalid") try: if benchmark_name.startswith("test-"): benchmark_name = benchmark_name.replace("test-", "") bench = cls(benchmark_name) bench.is_test = True else: bench = cls(benchmark_name) return bench except ValueError: raise InvalidBenchmarkError(f"{benchmark_name} is not a valid benchmark !!") @property def benchmark(self) -> Type[Benchmark]: """ Benchmark Class (used for typing mostly) """ return self._benchmark @property def doc_url(self) -> str: return self._doc_url @property def name(self) -> str: return self._value_ def info(self) -> _InfoSchema: """ Get benchmark information from back-end""" benchmark_id = self.value if self.is_test: benchmark_id = "test-challenge" route, _ = st.api.request_params('benchmark_info', benchmark_id=benchmark_id) response = http_get(route) if response.status_code != 200: raise APIHTTPException.from_request('benchmark_info', response) return _InfoSchema.parse_obj(response.json()) def is_active(self) -> bool: """ Check if benchmark accepts new submissions """ return self.info().is_open
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/benchmarks/misc.py
misc.py
import abc from pathlib import Path from typing import TYPE_CHECKING, ClassVar, Type from pydantic import BaseModel from pydantic import root_validator from zerospeech.out import console as out_console, void_console if TYPE_CHECKING: from zerospeech.submissions import Submission from zerospeech.datasets import Dataset class NoSubmissionTypeError(Exception): """ This benchmark has not specified submission type""" pass class Benchmark(BaseModel, abc.ABC): """ A Generic benchmark class """ _name: ClassVar[str] = ... _doc_url: ClassVar[str] = ... __submission_cls__: Type["Submission"] = ... dataset: "Dataset" quiet: bool = False @classmethod def docs(cls): text = getattr(cls, "__doc__", 'No information provided') url = getattr(cls, '_doc_url', None) if url: text += f"For more information visit: {url}" return text @property def name(self) -> str: return getattr(self, '_name') @property def doc_url(self) -> str: return getattr(self, '_doc_url') @property def console(self): if self.quiet: return void_console return out_console @root_validator(pre=True) def base_validation(cls, values): assert hasattr(cls, "_name"), f"A benchmark requires a name (add a _name attribute to the subclass {cls})" assert hasattr(cls, "_doc_url"), f"A benchmark requires a name (add a _doc_url attribute to the subclass {cls})" return values def load_submission(self, location: Path, **kwargs) -> "Submission": """ Load a submission using specified submission type """ if hasattr(self, '__submission_cls__'): return self.__submission_cls__.load(location, **kwargs) raise NoSubmissionTypeError(f'No submission type in benchmark {self._name}') def init_submission_dir(self, location: Path): if hasattr(self, '__submission_cls__'): return self.__submission_cls__.init_dir(location) raise NoSubmissionTypeError(f'No submission type in benchmark {self._name}') @abc.abstractmethod def run(self, submission: "Submission"): """ Run the benchmark """ pass
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/benchmarks/_model.py
_model.py
from typing import Tuple, List, Dict, ClassVar, Type import pandas import pandas as pd from pydantic import Field from zerospeech.datasets import AbxLSDataset from zerospeech.generics import ( FileItem, FileListItem ) from zerospeech.submissions.abxLS import AbxLSSubmission from zerospeech.submissions import Submission from zerospeech.tasks.abx.abxLS_phoneme import SimpleABXPhonemeTask, ContextMode from ._model import Benchmark return_type = Tuple[str, FileItem, FileListItem, ContextMode] class AbxLSTask(SimpleABXPhonemeTask): """ ABX task for abx-LS-Rob """ def format_results(self, results: Dict) -> pd.DataFrame: formatted_results = [] for key, lst in results.items(): for obj in lst: formatted_results.append( dict( subset='-'.join(key.split('-')[:2]), speaker_mode=obj.get("abx-s-condition"), context_mode=obj.get('abx-c-condition'), granularity=obj.get('dataset'), score=obj.get('score'), # item_file=Path(obj.get('item-file')).name, pooling=obj.get('pooling'), seed=obj.get('seed'), ) ) return pandas.DataFrame(formatted_results) def extract_sets( self, submission: AbxLSSubmission, dataset: AbxLSDataset, context: ContextMode = ContextMode.all) -> List[return_type]: """ Extract relevant data for abx from submission & dataset """ self.sets = submission.sets self.tasks = submission.tasks abx_sets = [] if ContextMode.triphone_within in context.as_set(): item_type = "triphone_item_file" if 'dev' in self.sets: if 'clean' in self.tasks: abx_sets.append(( 'dev-clean-triphone-within', dataset.index.subsets.dev_clean.items.get(item_type), submission.items.dev_clean, context.triphone_within )) if 'other' in self.tasks: abx_sets.append(( 'dev-other-triphone-within', dataset.index.subsets.dev_other.items.get(item_type), submission.items.dev_other, context.triphone_within )) if 'test' in self.sets: if 'clean' in self.tasks: abx_sets.append(( 'test-clean-triphone-within', dataset.index.subsets.test_clean.items.get(item_type), submission.items.test_clean, context.triphone_within )) if 'other' in self.tasks: abx_sets.append(( 'test-other-triphone-within', dataset.index.subsets.test_other.items.get(item_type), submission.items.test_other, context.triphone_within )) if ContextMode.phoneme_within in context.as_set(): item_type = "phoneme_item_file" if 'dev' in self.sets: if 'clean' in self.tasks: abx_sets.append(( 'dev-clean-phoneme-within', dataset.index.subsets.dev_clean.items.get(item_type), submission.items.dev_clean, context.phoneme_within )) if 'other' in self.tasks: abx_sets.append(( 'dev-other-phoneme-within', dataset.index.subsets.dev_other.items.get(item_type), submission.items.dev_other, context.phoneme_within )) if 'test' in self.sets: if 'clean' in self.tasks: abx_sets.append(( 'test-clean-phoneme-within', dataset.index.subsets.test_clean.items.get(item_type), submission.items.test_clean, context.phoneme_within )) if 'other' in self.tasks: abx_sets.append(( 'test-other-phoneme-within', dataset.index.subsets.test_other.items.get(item_type), submission.items.test_other, context.phoneme_within )) if ContextMode.phoneme_any in context.as_set(): item_type = "phoneme_item_file" if 'dev' in self.sets: if 'clean' in self.tasks: abx_sets.append(( 'dev-clean-phoneme-any', dataset.index.subsets.dev_clean.items.get(item_type), submission.items.dev_clean, context.phoneme_any )) if 'other' in self.tasks: abx_sets.append(( 'dev-other-phoneme-any', dataset.index.subsets.dev_other.items.get(item_type), submission.items.dev_other, context.phoneme_any )) if 'test' in self.sets: if 'clean' in self.tasks: abx_sets.append(( 'test-clean-phoneme-any', dataset.index.subsets.test_clean.items.get(item_type), submission.items.test_clean, context.phoneme_any )) if 'other' in self.tasks: abx_sets.append(( 'test-other-phoneme-any', dataset.index.subsets.test_other.items.get(item_type), submission.items.test_other, context.phoneme_any )) return abx_sets class AbxLSBenchmark(Benchmark): """ abx-LS-Phoneme is a benchmark on acoustic Units using the ABX metric. It is a reimplementation of the ABX-LS benchmark with more robust .item files This benchmark has 2 sub-tasks : - clean - other Each task has two subsets: dev, test For ABX measuring we use this module : https://github.com/zerospeech/libri-light-abx2 """ _name: ClassVar[str] = "abxLS" _doc_url: ClassVar[str] = "https://zerospeech.com/tasks/task_1/tasks_goals/" __submission_cls__: Type[Submission] = AbxLSSubmission dataset: AbxLSDataset = Field(default_factory=lambda: AbxLSDataset.load()) def run(self, submission: AbxLSSubmission): """ run ABX-LSRob tasks """ params = submission.params self.console.print(f'Running {self.name} benchmark on {submission.location.name}') # create output dir submission.score_dir.mkdir(exist_ok=True, parents=True) task = AbxLSTask.parse_obj(params.get_task()) task.eval(submission, self.dataset) self.console.print('[green]:heavy_check_mark:[/green]Evaluation of benchmark completed successfully ') self.console.print(f"Scores can be found @ {submission.score_dir}")
zerospeech-benchmarks
/zerospeech-benchmarks-0.9.4.tar.gz/zerospeech-benchmarks-0.9.4/zerospeech/benchmarks/abxLS.py
abxLS.py
from dataclasses import dataclass from enum import Enum from pathlib import Path from typing import Optional, List from vdataset import mount, unmount from .libri_light.eval_ABX import main as run_abx ABXFileTypes = Enum('ABXFileTypes', '.pt .npy .txt .wav .flac .mp3') ABXMode = Enum('ABXMode', 'all within across') ABXDistanceMode = Enum('ABXDistanceMode', 'euclidian cosine kl kl_symmetric') @dataclass class AbxArguments: """ List of arguments to provide to abx in phonetic_eval.abx""" # path to input data path_data: str # path to item file path_item_file: str # Path to a CPC checkpoint path_checkpoint: Optional[str] = None # size of a single feature feature_size: Optional[float] = float(0.1) # Use the GPU to compute distances cuda: bool = True # extension (of input files ?) file_extension: ABXFileTypes = '.txt' # Choose the mode of the ABX score to compute mode: ABXMode = 'all' # Choose the kind of distance to use to compute distance_mode: ABXDistanceMode = 'cosine' # Max size of a group while computing the ABX score max_size_group: int = 10 # When computing the ABX across score, maximum # number of speaker X to sample per couple A,B. max_x_across: int = 5 # location to output the results out: Optional[str] = None # boolean flag setting the path_data as a mounted dataset _is_mounted: bool = False @classmethod def load_from_file_list(cls, file_list: List[Path], **kwargs): """ Create a mounted folder containing all the files as symlinks """ data_loc = mount(file_list) if data_loc: return cls(path_data=str(data_loc), **kwargs) raise SystemError('Could not create temp folder') def clear_mounts(self): """ Clean mounted folder """ if self._is_mounted: unmount(self.path_data) def abx_eval(args: AbxArguments): """ Run abx evaluation """ results = run_abx(arg_obj=args) args.clear_mounts() return results
zerospeech-libriabx
/zerospeech_libriabx-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/libriabx/wrappers.py
wrappers.py
import argparse import torch import torchaudio import torch.nn as nn import torch.nn.functional as F def download_state_dict(model_name): base_url = "https://dl.fbaipublicfiles.com/librilight/CPC_checkpoints" return torch.hub.load_state_dict_from_url(f"{base_url}/{model_name}") def load_cpc_features(state_dict): config = state_dict["config"] weights = state_dict["weights"] encoder = CPCEncoder(config["hiddenEncoder"]) ar_net = CPCAR(config["hiddenEncoder"], config["hiddenGar"], False, config["nLevelsGRU"]) model = CPCModel(encoder, ar_net) model.load_state_dict(weights, strict=False) output = FeatureModule(model, False) output.config = config return output def get_features_state_dict(feature_module): config = feature_module.config if config is None: raise ValueError("The input feature_module should have config defined") weights = feature_module.model.state_dict() return {"config": config, "weights": weights} def build_feature_from_file(file_path, feature_maker, max_size_seq=64000): r""" Apply the featureMaker to the given file. Arguments: - file_path (FeatureModule): model to apply - file_path (string): path of the sequence to load - seq_norm (bool): if True, normalize the output along the time dimension to get chunks of mean zero and var 1 - max_size_seq (int): maximal size of a chunk Return: a torch vector of size 1 x Seq_size x Feature_dim """ seq = torchaudio.load(file_path)[0] sizeSeq = seq.size(1) start = 0 out = [] while start < sizeSeq: if start + max_size_seq > sizeSeq: break end = min(sizeSeq, start + max_size_seq) subseq = (seq[:, start:end]).view(1, 1, -1).cuda(device=0) with torch.no_grad(): features = feature_maker(subseq) out.append(features.detach().cpu()) start += max_size_seq if start < sizeSeq: subseq = (seq[:, -max_size_seq:]).view(1, 1, -1).cuda(device=0) with torch.no_grad(): features = feature_maker(subseq) df = subseq.size(2) // features.size(1) delta = (sizeSeq - start) // df out.append(features[:, -delta:].detach().cpu()) out = torch.cat(out, dim=1) return out.view(out.size(1), out.size(2)) ############################################################################## # Minimal code to load a CPC checkpoint ############################################################################## class ChannelNorm(nn.Module): def __init__(self, numFeatures, epsilon=1e-05, affine=True): super(ChannelNorm, self).__init__() if affine: self.weight = nn.parameter.Parameter( torch.Tensor(1, numFeatures, 1)) self.bias = nn.parameter.Parameter(torch.Tensor(1, numFeatures, 1)) else: self.weight = None self.bias = None self.epsilon = epsilon self.p = 0 self.affine = affine self.reset_parameters() def reset_parameters(self): if self.affine: torch.nn.init.ones_(self.weight) torch.nn.init.zeros_(self.bias) def forward(self, x): cumMean = x.mean(dim=1, keepdim=True) cumVar = x.var(dim=1, keepdim=True) x = (x - cumMean)*torch.rsqrt(cumVar + self.epsilon) if self.weight is not None: x = x * self.weight + self.bias return x class CPCEncoder(nn.Module): def __init__(self, sizeHidden=512): super(CPCEncoder, self).__init__() normLayer = ChannelNorm self.conv0 = nn.Conv1d(1, sizeHidden, 10, stride=5, padding=3) self.batchNorm0 = normLayer(sizeHidden) self.conv1 = nn.Conv1d(sizeHidden, sizeHidden, 8, stride=4, padding=2) self.batchNorm1 = normLayer(sizeHidden) self.conv2 = nn.Conv1d(sizeHidden, sizeHidden, 4, stride=2, padding=1) self.batchNorm2 = normLayer(sizeHidden) self.conv3 = nn.Conv1d(sizeHidden, sizeHidden, 4, stride=2, padding=1) self.batchNorm3 = normLayer(sizeHidden) self.conv4 = nn.Conv1d(sizeHidden, sizeHidden, 4, stride=2, padding=1) self.batchNorm4 = normLayer(sizeHidden) self.DOWNSAMPLING = 160 def getDimOutput(self): return self.conv4.out_channels def forward(self, x): x = F.relu(self.batchNorm0(self.conv0(x))) x = F.relu(self.batchNorm1(self.conv1(x))) x = F.relu(self.batchNorm2(self.conv2(x))) x = F.relu(self.batchNorm3(self.conv3(x))) x = F.relu(self.batchNorm4(self.conv4(x))) return x class CPCAR(nn.Module): def __init__(self, dimEncoded, dimOutput, keepHidden, nLevelsGRU): super(CPCAR, self).__init__() self.baseNet = nn.LSTM(dimEncoded, dimOutput, num_layers=nLevelsGRU, batch_first=True) self.hidden = None self.keepHidden = keepHidden def getDimOutput(self): return self.baseNet.hidden_size def forward(self, x): try: self.baseNet.flatten_parameters() except RuntimeError: pass x, h = self.baseNet(x, self.hidden) if self.keepHidden: if isinstance(h, tuple): self.hidden = tuple(x.detach() for x in h) else: self.hidden = h.detach() return x class CPCModel(nn.Module): def __init__(self, encoder, AR): super(CPCModel, self).__init__() self.gEncoder = encoder self.gAR = AR def forward(self, batchData, label): encodedData = self.gEncoder(batchData).permute(0, 2, 1) cFeature = self.gAR(encodedData) return cFeature, encodedData, label class FeatureModule(torch.nn.Module): r""" A simpler interface to handle CPC models. Useful for a smooth workflow when working with CPC trained features. """ def __init__(self, featureMaker, get_encoded, seq_norm=True): super(FeatureModule, self).__init__() self.get_encoded = get_encoded self.model = featureMaker self.seq_norm = seq_norm self.config = None def forward(self, batch_data): # Input Size : BatchSize x 1 x SeqSize # Feature size: BatchSize x SeqSize x ChannelSize if self.is_cuda: batch_data = batch_data.cuda() cFeature, encoded, _ = self.model(batch_data, None) if self.get_encoded: cFeature = encoded if self.seq_norm: mean = cFeature.mean(dim=1, keepdim=True) var = cFeature.var(dim=1, keepdim=True) cFeature = (cFeature - mean) / torch.sqrt(var + 1e-08) return cFeature def cuda(self): self.is_cuda = True super(FeatureModule, self).cuda() def cpu(self): self.is_cuda = False super(FeatureModule, self).cuda() def get_output_dim(self): if self.get_encoded: return self.config["hiddenEncoder"] return self.config["hiddenGar"] if __name__ == "__main__": parser = argparse.ArgumentParser(description='Download model') parser.add_argument('model_name', type=str, choices=["600h", "6kh", "60kh"]) parser.add_argument('output', type=str) args = parser.parse_args() CPC_MODELS_NAMES = {"60kh": "60k_epoch4-d0f474de.pt", "600h": "600h-bdd7ced6.pt", "6kh":"6k_epoch30-9df0493c.pt"} state_dict = download_state_dict(CPC_MODELS_NAMES[args.model_name]) torch.save(state_dict, args.output)
zerospeech-libriabx
/zerospeech_libriabx-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/libriabx/libri_light/CPC_loader.py
CPC_loader.py
import argparse import os import sys from pathlib import Path import numpy as np import torch from .ABX_src import abx_group_computation as abx_g from .ABX_src import abx_iterators as abx_it from .CPC_loader import load_cpc_features, build_feature_from_file def find_all_files(path_dir, extension): out = [] for root, dirs, filenames in os.walk(path_dir): for f in filenames: if f.endswith(extension): out.append(((str(Path(f).stem)), os.path.join(root, f))) return out def reduce_sparse_data(quotient, divisor): return quotient / (1e-08 * (divisor == 0) + divisor) def load_pt(x): data = torch.load(x, 'cpu') assert(len(data.size()) == 2) return data def load_npy(x): data = torch.tensor(np.load(x)) assert(len(data.size()) == 2) return data def load_txt(x): data = torch.tensor(np.loadtxt(x)) assert (len(data.size()) == 2) return data def ABX(feature_function, path_item_file, seq_list, distance_mode, step_feature, modes, cuda=False, max_x_across=5, max_size_group=30): # ABX dataset ABXDataset = abx_it.ABXFeatureLoader(path_item_file, seq_list, feature_function, step_feature, True) if cuda: ABXDataset.cuda() # Distance function distance_function = abx_g.get_distance_function_from_name(distance_mode) # Output scores = {} # ABX within if 'within' in modes: print(" > Computing ABX within speakers...") ABXIterator = ABXDataset.get_iterator('within', max_size_group) group_confusion = abx_g.get_abx_scores_dtw_on_group(ABXIterator, distance_function, ABXIterator.symmetric) n_data = group_confusion._values().size(0) index_ = torch.sparse.LongTensor(group_confusion._indices(), torch.ones((n_data), dtype=torch.float), group_confusion.size()) divisor_context = torch.sparse.sum(index_, dim=3).to_dense() group_confusion = torch.sparse.sum(group_confusion, dim=3).to_dense() group_confusion = reduce_sparse_data(group_confusion, divisor_context) S, p1, p2 = group_confusion.size() index_speaker = divisor_context > 0 divisor_speaker = index_speaker.sum(dim=0) phone_confusion = reduce_sparse_data(group_confusion.sum(dim=0), divisor_speaker) scores['within'] = (phone_confusion.sum() / (divisor_speaker > 0).sum()).item() print(f" > ...done. ABX within : {scores['within']}") # ABX across if 'across' in modes: print(" > Computing ABX across speakers...") ABXIterator = ABXDataset.get_iterator('across', max_size_group) ABXIterator.max_x = max_x_across group_confusion = abx_g.get_abx_scores_dtw_on_group(ABXIterator, distance_function, ABXIterator.symmetric) n_data = group_confusion._values().size(0) index_ = torch.sparse.LongTensor(group_confusion._indices(), torch.ones((n_data), dtype=torch.float), group_confusion.size()) divisor_context = torch.sparse.sum(index_, dim=[3, 4]).to_dense() group_confusion = torch.sparse.sum( group_confusion, dim=[3, 4]).to_dense() group_confusion = reduce_sparse_data(group_confusion, divisor_context) S, p1, p2 = group_confusion.size() index_speaker = divisor_context > 0 divisor_speaker = index_speaker.sum(dim=0) phone_confusion = reduce_sparse_data(group_confusion.sum(dim=0), divisor_speaker) scores['across'] = (phone_confusion.sum() / (divisor_speaker > 0).sum()).item() print(f" > ...done. ABX across : {scores['across']}") return scores def parse_args(argv=None): argv = argv if argv is not None else sys.argv[1:] parser = argparse.ArgumentParser(description='ABX metric') parser.add_argument('path_data', type=str, help="Path to directory containing the data") parser.add_argument('path_item_file', type=str, help="Path to the .item file") parser.add_argument('--path_checkpoint', type=str, default=None, help="Path to a CPC checkpoint. If set, the apply the " "model to the input data to compute the features") parser.add_argument('--file_extension', type=str, default='.pt', choices=['.pt', '.npy', '.wav', '.flac', '.mp3']) parser.add_argument('--feature_size', type=float, default=0.01, help="Size (in s) of one feature") parser.add_argument('--cuda', action='store_true', help="Use the GPU to compute distances") parser.add_argument('--mode', type=str, default='all', choices=['all', 'within', 'across'], help="Choose the mode of the ABX score to compute") parser.add_argument('--distance_mode', type=str, default='cosine', choices=['euclidian', 'cosine', 'kl', 'kl_symmetric'], help="Choose the kind of distance to use to compute " "the ABX score.") parser.add_argument("--max_size_group", type=int, default=10, help="Max size of a group while computing the" "ABX score. A small value will make the code " "faster but less precise.") parser.add_argument("--max_x_across", type=int, default=5, help="When computing the ABX across score, maximum" "number of speaker X to sample per couple A,B. " " A small value will make the code faster but " "less precise.") parser.add_argument("--out", type=str, default=None, help="Path where the results should be saved") # multi-gpu / multi-node return parser.parse_args(argv) def main(argv=None, arg_obj=None): if arg_obj: args = arg_obj else: args = parse_args(argv) if args.path_checkpoint is None: if args.file_extension == '.pt': feature_function = load_pt elif args.file_extension == '.npy': feature_function = load_npy elif args.file_extension == '.txt': feature_function = load_txt else: state_dict = torch.load(args.path_checkpoint) feature_maker = load_cpc_features(state_dict) feature_maker.cuda() feature_function = lambda x: build_feature_from_file(x, feature_maker) # Modes if args.mode == 'all': modes = ["within", "across"] else: modes = [args.mode] step_feature = 1 / args.feature_size # Get the list of sequences seq_list = find_all_files(args.path_data, args.file_extension) scores = ABX(feature_function, args.path_item_file, seq_list, args.distance_mode, step_feature, modes, cuda=args.cuda, max_x_across=args.max_x_across, max_size_group=args.max_size_group) return scores
zerospeech-libriabx
/zerospeech_libriabx-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/libriabx/libri_light/eval_ABX.py
eval_ABX.py
import torch import progressbar import math import random def normalize_with_singularity(x): r""" Normalize the given vector across the third dimension. Extend all vectors by eps=1e-12 to put the null vector at the maximal cosine distance from any non-null vector. """ S, H = x.size() norm_x = (x**2).sum(dim=1, keepdim=True) x /= torch.sqrt(norm_x) zero_vals = (norm_x == 0).view(S) x[zero_vals] = 1 / math.sqrt(H) border_vect = torch.zeros((S, 1), dtype=x.dtype, device=x.device) + 1e-12 border_vect[zero_vals] = -2*1e12 return torch.cat([x, border_vect], dim=1) def load_item_file(path_item_file): r""" Load a .item file indicating the triplets for the ABX score. The input file must have the following fomat: line 0 : whatever (not read) line > 0: #file_ID onset offset #phone prev-phone next-phone speaker onset : begining of the triplet (in s) onset : end of the triplet (in s) """ with open(path_item_file, 'r') as file: data = file.readlines()[1:] data = [x.replace('\n', '') for x in data] out = {} phone_match = {} speaker_match = {} context_match = {} for line in data: items = line.split() assert(len(items) == 7) fileID = items[0] if fileID not in out: out[fileID] = [] onset, offset = float(items[1]), float(items[2]) context = '+'.join([items[4], items[5]]) phone = items[3] speaker = items[6] if phone not in phone_match: s = len(phone_match) phone_match[phone] = s phone_id = phone_match[phone] if context not in context_match: s = len(context_match) context_match[context] = s context_id = context_match[context] if speaker not in speaker_match: s = len(speaker_match) speaker_match[speaker] = s speaker_id = speaker_match[speaker] out[fileID].append([onset, offset, context_id, phone_id, speaker_id]) return out, context_match, phone_match, speaker_match def get_features_group(in_data, index_order): in_index = list(range(len(in_data))) in_index.sort(key=lambda x: [in_data[x][i] for i in index_order]) out_groups = [] last_values = [in_data[in_index[0]][i] for i in index_order] i_s = 0 curr_group = [[] for i in index_order] n_orders = len(index_order) - 1 tmp = [in_data[i] for i in in_index] for index, item in enumerate(tmp): for order_index, order in enumerate(index_order): if item[order] != last_values[order_index]: curr_group[-1].append((i_s, index)) for i in range(n_orders, order_index, -1): curr_group[i-1].append(curr_group[i]) curr_group[i] = [] if order_index == 0: out_groups += curr_group[0] curr_group[0] = [] last_values = [item[i] for i in index_order] i_s = index break if i_s < len(in_data): curr_group[-1].append((i_s, len(in_data))) for i in range(n_orders, 0, -1): curr_group[i-1].append(curr_group[i]) out_groups += curr_group[0] return in_index, out_groups class ABXFeatureLoader: def __init__(self, path_item_file, seqList, featureMaker, stepFeature, normalize): r""" Args: path_item_file (str): path to the .item files containing the ABX triplets seqList (list): list of items (fileID, path) where fileID refers to the file's ID as used in path_item_file, and path is the actual path to the input audio sequence featureMaker (function): either a function or a callable object. Takes a path as input and outputs the feature sequence corresponding to the given file. normalize (bool): if True all input features will be noramlized across the channels dimension. Note: You can use this dataset with pre-computed features. For example, if you have a collection of features files in the torch .pt format then you can just set featureMaker = torch.load. """ files_data, self.context_match, self.phone_match, self.speaker_match = \ load_item_file(path_item_file) self.seqNorm = True self.stepFeature = stepFeature self.loadFromFileData(files_data, seqList, featureMaker, normalize) def loadFromFileData(self, files_data, seqList, feature_maker, normalize): # self.features[i]: index_start, size, context_id, phone_id, speaker_id self.features = [] self.INDEX_CONTEXT = 2 self.INDEX_PHONE = 3 self.INDEX_SPEAKER = 4 data = [] totSize = 0 print(" > Building the input features...") bar = progressbar.ProgressBar(prefix=' > ', max_value=len(seqList)) bar.start() for index, vals in enumerate(seqList): fileID, file_path = vals bar.update(index) if fileID not in files_data: continue features = feature_maker(file_path) if normalize: features = normalize_with_singularity(features) features = features.detach().cpu() phone_data = files_data[fileID] for phone_start, phone_end, context_id, phone_id, speaker_id in phone_data: index_start = max( 0, int(math.ceil(self.stepFeature * phone_start - 0.5))) index_end = min(features.size(0), int(math.floor(self.stepFeature * phone_end - 0.5))) if index_start >= features.size(0) or index_end <= index_start: continue loc_size = index_end - index_start self.features.append([totSize, loc_size, context_id, phone_id, speaker_id]) data.append(features[index_start:index_end]) totSize += loc_size bar.finish() self.data = torch.cat(data, dim=0) self.feature_dim = self.data.size(1) def get_data_device(self): return self.data.device def cuda(self): self.data = self.data.cuda() def cpu(self): self.data = self.data.cpu() def get_max_group_size(self, i_group, i_sub_group): id_start, id_end = self.group_index[i_group][i_sub_group] return max([self.features[i][1] for i in range(id_start, id_end)]) def get_ids(self, index): context_id, phone_id, speaker_id = self.features[index][2:] return context_id, phone_id, speaker_id def __getitem__(self, index): i_data, out_size, context_id, phone_id, speaker_id = self.features[index] return self.data[i_data:(i_data + out_size)], out_size, (context_id, phone_id, speaker_id) def __len__(self): return len(self.features) def get_n_speakers(self): return len(self.speaker_match) def get_n_context(self): return len(self.context_match) def get_n_phone(self): return len(self.phone_match) def get_n_groups(self): return len(self.group_index) def get_n_sub_group(self, index_sub_group): return len(self.group_index[index_sub_group]) def get_iterator(self, mode, max_size_group): if mode == 'within': return ABXWithinGroupIterator(self, max_size_group) if mode == 'across': return ABXAcrossGroupIterator(self, max_size_group) raise ValueError(f"Invalid mode: {mode}") class ABXIterator: r""" Base class building ABX's triplets. """ def __init__(self, abxDataset, max_size_group): self.max_size_group = max_size_group self.dataset = abxDataset self.len = 0 self.index_csp, self.groups_csp = \ get_features_group(abxDataset.features, [abxDataset.INDEX_CONTEXT, abxDataset.INDEX_SPEAKER, abxDataset.INDEX_PHONE]) def get_group(self, i_start, i_end): data = [] max_size = 0 to_take = list(range(i_start, i_end)) if i_end - i_start > self.max_size_group: to_take = random.sample(to_take, k=self.max_size_group) for i in to_take: loc_data, loc_size, loc_id = self.dataset[self.index_csp[i]] max_size = max(loc_size, max_size) data.append(loc_data) N = len(to_take) out_data = torch.zeros(N, max_size, self.dataset.feature_dim, device=self.dataset.get_data_device()) out_size = torch.zeros(N, dtype=torch.long, device=self.dataset.get_data_device()) for i in range(N): size = data[i].size(0) out_data[i, :size] = data[i] out_size[i] = size return out_data, out_size, loc_id def __len__(self): return self.len def get_board_size(self): r""" Get the output dimension of the triplet's space. """ pass class ABXWithinGroupIterator(ABXIterator): r""" Iterator giving the triplets for the ABX within score. """ def __init__(self, abxDataset, max_size_group): super(ABXWithinGroupIterator, self).__init__(abxDataset, max_size_group) self.symmetric = True for context_group in self.groups_csp: for speaker_group in context_group: if len(speaker_group) > 1: for i_start, i_end in speaker_group: if i_end - i_start > 1: self.len += (len(speaker_group) - 1) def __iter__(self): for i_c, context_group in enumerate(self.groups_csp): for i_s, speaker_group in enumerate(context_group): n_phones = len(speaker_group) if n_phones == 1: continue for i_a in range(n_phones): i_start_a, i_end_a = self.groups_csp[i_c][i_s][i_a] if i_end_a - i_start_a == 1: continue for i_b in range(n_phones): if i_b == i_a: continue i_start_b, i_end_b = self.groups_csp[i_c][i_s][i_b] data_b, size_b, id_b = self.get_group(i_start_b, i_end_b) data_a, size_a, id_a = self.get_group(i_start_a, i_end_a) out_coords = id_a[2], id_a[1], id_b[1], id_a[0] yield out_coords, (data_a, size_a), (data_b, size_b), \ (data_a, size_a) def get_board_size(self): return (self.dataset.get_n_speakers(), self.dataset.get_n_phone(), self.dataset.get_n_phone(), self.dataset.get_n_context()) class ABXAcrossGroupIterator(ABXIterator): r""" Iterator giving the triplets for the ABX across score. """ def __init__(self, abxDataset, max_size_group): super(ABXAcrossGroupIterator, self).__init__(abxDataset, max_size_group) self.symmetric = False self.get_speakers_from_cp = {} self.max_x = 5 for context_group in self.groups_csp: for speaker_group in context_group: for i_start, i_end in speaker_group: c_id, p_id, s_id = self.dataset.get_ids( self.index_csp[i_start]) if c_id not in self.get_speakers_from_cp: self.get_speakers_from_cp[c_id] = {} if p_id not in self.get_speakers_from_cp[c_id]: self.get_speakers_from_cp[c_id][p_id] = {} self.get_speakers_from_cp[c_id][p_id][s_id] = ( i_start, i_end) for context_group in self.groups_csp: for speaker_group in context_group: if len(speaker_group) > 1: for i_start, i_end in speaker_group: c_id, p_id, s_id = self.dataset.get_ids( self.index_csp[i_start]) self.len += (len(speaker_group) - 1) * (min(self.max_x, len(self.get_speakers_from_cp[c_id][p_id]) - 1)) def get_other_speakers_in_group(self, i_start_group): c_id, p_id, s_id = self.dataset.get_ids(self.index_csp[i_start_group]) return [v for k, v in self.get_speakers_from_cp[c_id][p_id].items() if k != s_id] def get_abx_triplet(self, i_a, i_b, i_x): i_start_a, i_end_a = i_a data_a, size_a, id_a = self.get_group(i_start_a, i_end_a) i_start_b, i_end_b = i_b data_b, size_b, id_b = self.get_group(i_start_b, i_end_b) i_start_x, i_end_x = i_x data_x, size_x, id_x = self.get_group(i_start_x, i_end_x) out_coords = id_a[2], id_a[1], id_b[1], id_a[0], id_x[2] return out_coords, (data_a, size_a), (data_b, size_b), \ (data_x, size_x) def __iter__(self): for i_c, context_group in enumerate(self.groups_csp): for i_s, speaker_group in enumerate(context_group): n_phones = len(speaker_group) if n_phones == 1: continue for i_a in range(n_phones): i_start_a, i_end_a = self.groups_csp[i_c][i_s][i_a] ref = self.get_other_speakers_in_group(i_start_a) if len(ref) > self.max_x: speakers_a = random.sample(ref, k=self.max_x) else: speakers_a = ref for i_start_x, i_end_x in speakers_a: for i_b in range(n_phones): if i_b == i_a: continue i_start_b, i_end_b = self.groups_csp[i_c][i_s][i_b] yield self.get_abx_triplet((i_start_a, i_end_a), (i_start_b, i_end_b), (i_start_x, i_end_x)) def get_board_size(self): return (self.dataset.get_n_speakers(), self.dataset.get_n_phone(), self.dataset.get_n_phone(), self.dataset.get_n_context(), self.dataset.get_n_speakers())
zerospeech-libriabx
/zerospeech_libriabx-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/libriabx/libri_light/ABX_src/abx_iterators.py
abx_iterators.py
import torch import math import libri_light_dtw as dtw import progressbar def get_distance_function_from_name(name_str): if name_str == 'euclidean': return get_euclidian_distance_batch if name_str == 'cosine': return get_cosine_distance_batch if name_str == 'kl': return get_kl_distance_batch if name_str == 'kl_symmetric': return get_kl_distance_symmetric_batch raise ValueError(f"Invalid distance mode") def check_dtw_group_validity(a, b, x): assert (len(a.size()) == len(b.size())) assert (len(a.size()) == len(x.size())) assert (a.size(2) == x.size(2)) assert (a.size(2) == b.size(2)) def get_kl_distance_batch(a1, a2, epsilon=1e-6): N1, S1, D = a1.size() # Batch x Seq x Channel N2, S2, D = a2.size() # Batch x Seq x Channel # (P * (P / Q).log()).sum() div = (a1.view(N1, 1, S1, 1, D) + epsilon) / (a2.view(1, N2, 1, S2, D) + epsilon) prod = (a1.view(N1, 1, S1, 1, D)) * div.log() return prod.sum(dim=4) def get_kl_distance_symmetric_batch(a1, a2, epsilon=1e-6): N1, S1, D = a1.size() N2, S2, D = a2.size() div1 = (a1.view(N1, 1, S1, 1, D) + epsilon) / (a2.view(1, N2, 1, S2, D) + epsilon) div2 = (a2.view(1, N2, 1, S2, D) + epsilon) / (a1.view(N1, 1, S1, 1, D) + epsilon) prod1 = (a1.view(N1, 1, S1, 1, D)) * div1.log() prod2 = (a2.view(1, N2, 1, S2, D)) * div2.log() return (0.5 * prod1 + 0.5 * prod2).sum(dim=4) def get_cosine_distance_batch(a1, a2, epsilon=1e-8): r""" a1 and a2 must be normalized""" N1, S1, D = a1.size() # Batch x Seq x Channel N2, S2, D = a2.size() # Batch x Seq x Channel prod = (a1.view(N1, 1, S1, 1, D)) * (a2.view(1, N2, 1, S2, D)) # Sum accross the channel dimension prod = torch.clamp(prod.sum(dim=4), -1, 1).acos() / math.pi return prod def get_euclidian_distance_batch(a1, a2): N1, S1, D = a1.size() N2, S2, D = a2.size() diff = a1.view(N1, 1, S1, 1, D) - a2.view(1, N2, 1, S2, D) return torch.sqrt((diff ** 2).sum(dim=4)) def get_distance_group_dtw(a1, a2, size1, size2, ignore_diag=False, symmetric=False, distance_function=get_cosine_distance_batch): N1, S1, D = a1.size() N2, S2, D = a2.size() if size1.size(0) != N1: print(a1.size(), size1.size()) print(a2.size(), size2.size()) assert (size1.size(0) == N1) assert (size2.size(0) == N2) distance_mat = distance_function(a1, a2).detach().cpu().numpy() return dtw.dtw_batch(a1, a2, size1, size2, distance_mat, ignore_diag, symmetric) def get_theta_group_dtw(a, b, x, sa, sb, sx, distance_function, symmetric): check_dtw_group_validity(a, b, x) dxb = get_distance_group_dtw( x, b, sx, sb, distance_function=distance_function) dxa = get_distance_group_dtw(x, a, sx, sa, ignore_diag=symmetric, symmetric=symmetric, distance_function=distance_function) Nx, Na = dxa.size() Nx, Nb = dxb.size() if symmetric: n_pos = Na * (Na - 1) max_val = dxb.max().item() for i in range(Na): dxa[i, i] = max_val + 1 else: n_pos = Na * Nx dxb = dxb.view(Nx, 1, Nb).expand(Nx, Na, Nb) dxa = dxa.view(Nx, Na, 1).expand(Nx, Na, Nb) sc = (dxa < dxb).sum() + 0.5 * (dxa == dxb).sum() sc /= (n_pos * Nb) return sc.item() def loc_dtw(data, distance_function, symmetric): coords, group_a, group_b, group_x = data group_a_data, group_a_size = group_a group_b_data, group_b_size = group_b group_x_data, group_x_size = group_x theta = get_theta_group_dtw(group_a_data, group_b_data, group_x_data, group_a_size, group_b_size, group_x_size, distance_function, symmetric) return (coords, 1 - theta) def get_abx_scores_dtw_on_group(group_iterator, distance_function, symmetric): data_list = [] coords_list = [] bar = progressbar.ProgressBar(prefix=' > ', max_value=len(group_iterator)) bar.start() with torch.no_grad(): for index, group in enumerate(group_iterator): bar.update(index) coords, abx = loc_dtw(group, distance_function, symmetric) data_list.append(abx) coords_list.append(coords) bar.finish() return torch.sparse.FloatTensor(torch.LongTensor(coords_list).t(), torch.FloatTensor(data_list), group_iterator.get_board_size())
zerospeech-libriabx
/zerospeech_libriabx-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/libriabx/libri_light/ABX_src/abx_group_computation.py
abx_group_computation.py
# libri-light-abx2 The ABX phonetic evaluation metric for unsupervised representation learning as used by the ZeroSpeech challenge, now with context-type options (on-triphone, within-context, any-context). This module is a reworking of https://github.com/zerospeech/libri-light-abx, which in turn is a wrapper around https://github.com/facebookresearch/libri-light/tree/main/eval ### Installation You can install this module from pip directly using the following command : `pip install zerospeech-libriabx2` Or you can install from source by cloning this repository and running: `pip install .` As the final alternative, you can install into a conda environment by running: `conda install -c conda-forge -c pytorch -c coml zerospeech-libriabx2 pytorch::pytorch` ### Usage ### From command line ``` usage: zrc-abx2 [-h] [--path_checkpoint PATH_CHECKPOINT] [--file_extension {.pt,.npy,.wav,.flac,.mp3,.npz,.txt}] [--feature_size FEATURE_SIZE] [--cuda] [--speaker_mode {all,within,across}] [--context_mode {all,within,any}] [--distance_mode {euclidian,euclidean,cosine,kl,kl_symmetric}] [--max_size_group MAX_SIZE_GROUP] [--max_x_across MAX_X_ACROSS] [--out OUT] [--seed SEED] [--pooling {none,mean,hamming}] [--seq_norm] [--max_size_seq MAX_SIZE_SEQ] [--strict] path_data path_item_file ABX metric positional arguments: path_data Path to directory containing the submission data path_item_file Path to the .item file containing the timestamps and transcriptions optional arguments: -h, --help show this help message and exit --path_checkpoint PATH_CHECKPOINT Path to a CPC checkpoint. If set, apply the model to the input data to compute the features --file_extension {.pt,.npy,.wav,.flac,.mp3,.npz,.txt} --feature_size FEATURE_SIZE Size (in s) of one feature --cuda Use the GPU to compute distances --speaker_mode {all,within,across} Choose the speaker mode of the ABX score to compute --context_mode {all,within,any} Choose the context mode of the ABX score to compute --distance_mode {euclidian,euclidean,cosine,kl,kl_symmetric} Choose the kind of distance to use to compute the ABX score. --max_size_group MAX_SIZE_GROUP Max size of a group while computing the ABX score. A small value will make the code faster but less precise. --max_x_across MAX_X_ACROSS When computing the ABX across score, maximum number of speaker X to sample per couple A,B. A small value will make the code faster but less precise. --out OUT Path where the results should be saved --seed SEED Seed to use in random sampling. --pooling {none,mean,hamming} Type of pooling over frame representations of items. --seq_norm Used for CPC features only. If activated, normalize each batch of feature across the time channel before computing ABX. --max_size_seq MAX_SIZE_SEQ Used for CPC features only. Maximal number of frames to consider when computing a batch of features. --strict Used for CPC features only. If activated, each batch of feature will contain exactly max_size_seq frames. ``` ### Python API You can also call the abx evaluation from python code. You can use the following example: ``` import zrc_abx2 args = zrc_abx2.EvalArgs( path_data= "/location/to/representations/", path_item_file= "/location/to/file.item", **other_options ) result = zrc_abx2.EvalABX().eval_abx(args) ``` ## Information on evaluation conditions A new variable in this ABX version is context. In the within-context condition, a, b, and x have the same surrounding context (i.e. the same preceding and following phoneme). any-context ignores the surrounding context; typically, it varies. For the within-context and any-context comparison, use an item file that extracts phonemes (rather than XYZ triphones). For the on-triphone condition, which is still available, use an item file that extracts triphones (just like in the previous abx evaluation), and then run it within-context (which was the default behavior of the previous abx evaluation). any-context is not used for the on-triphone version due to excessive noise that would be included in the representation. Like in the previous version, it is also possible to run within-speaker (a, b, x are all from the same speaker) and across-speaker (a and b are from the same speaker, x is from another) evaluations. So there are four phoneme-based evaluation combinations in total: within_s-within_c, within_s-any-c, across_s-within_c, across_s-any_c; and two triphone-based evaluation combinations: within_s-within_c, across_s-within_c.
zerospeech-libriabx2
/zerospeech-libriabx2-0.9.8.tar.gz/zerospeech-libriabx2-0.9.8/README.md
README.md
import argparse import json import os import sys import warnings from datetime import datetime from pathlib import Path from typing import Any, Callable, Dict, Literal, NamedTuple, Optional, List, Tuple import torch import numpy as np import pandas from typing_extensions import LiteralString import zrc_abx2.ABX_src.abx_group_computation as abx_g from zrc_abx2.ABX_src.ABXDataset.abx_feature_loader import ABXFeatureLoader from zrc_abx2.ABX_src.ABXIterators.abx_iterator_factory import IteratorFactory from zrc_abx2.ABX_src.models import Pooling from zrc_abx2.cpc.feature_loader import FeatureModule, buildFeature, loadModel # Default args PATH_CHECKPOINT = None FILE_EXTENSION = ".npy" FEATURE_SIZE = 0.01 CUDA = False SPEAKER_MODE = "all" CONTEXT_MODE = "all" DISTANCE_MODE = "cosine" MAX_SIZE_GROUP = 10 MAX_X_ACROSS = 5 OUT = None SEED = 3459 POOLING = "none" # CPC SEQ_NORM = False MAX_SIZE_SEQ = 64000 STRICT = False class EvalArgs(NamedTuple): # See parse_args for help # Mandatory path_data: str path_item_file: str # Args with defaults path_checkpoint: Optional[str] = PATH_CHECKPOINT file_extension: str = FILE_EXTENSION feature_size: float = FEATURE_SIZE cuda: bool = CUDA speaker_mode: str = SPEAKER_MODE context_mode: str = CONTEXT_MODE distance_mode: str = DISTANCE_MODE max_size_group: int = MAX_SIZE_GROUP max_x_across: int = MAX_X_ACROSS out: Optional[str] = OUT seed: int = SEED pooling: str = POOLING # CPC only seq_norm: bool = SEQ_NORM max_size_seq: int = MAX_SIZE_SEQ strict: bool = STRICT # Feature-loading functions, one per file format # If model loaded from checkpoint, procedure specified in eval_abx() def _load_pt(x): data = torch.load(x, "cpu") assert len(data.size()) == 2 return data def _load_npy(x): data = torch.tensor(np.load(x)) assert len(data.size()) == 2 return data def _load_txt(x): data = torch.tensor(np.loadtxt(x)) assert len(data.size()) == 2 return data def _loadCPCFeatureMaker( CPC_pathCheckpoint, encoder_layer=False, keepHidden=True, gru_level=-1, cuda=False, ): if gru_level and gru_level > 0: updateConfig = argparse.Namespace(nLevelsGRU=gru_level) else: updateConfig = None model, _, _ = loadModel([CPC_pathCheckpoint], updateConfig=updateConfig) model.gAR.keepHidden = keepHidden featureMaker = FeatureModule(model, get_encoded=encoder_layer) featureMaker.eval() if cuda: featureMaker.cuda() return featureMaker class EvalABX: # INTERFACE def eval_abx(self, args: EvalArgs) -> List[Dict[str, Any]]: print("eval_ABX args:") print(args) if args.path_checkpoint is None: if args.file_extension == ".pt": feature_function = _load_pt elif args.file_extension == ".npy" or args.file_extension == ".npz": feature_function = _load_npy elif args.file_extension == ".txt": feature_function = _load_txt else: feature_maker = _loadCPCFeatureMaker( args.path_checkpoint, encoder_layer=False, keepHidden=True, gru_level=-1, cuda=False, ) def feature_function(x): return buildFeature( feature_maker, x, strict=args.strict, maxSizeSeq=args.max_size_seq, seqNorm=args.seq_norm, )[0] # Speaker modes if args.speaker_mode == "all": speakermodes = ["within", "across"] else: speakermodes = [args.speaker_mode] # Context modes if args.context_mode == "all": contextmodes = ["within", "any"] else: contextmodes = [args.context_mode] step_feature = 1 / args.feature_size # Get the list of sequences seq_list = self._find_all_files(args.path_data, args.file_extension) scores = self._ABX( self._pooling_type(args.pooling), args.seed, feature_function, args.path_item_file, seq_list, args.distance_mode, step_feature, speakermodes, contextmodes, cuda=args.cuda, max_x_across=args.max_x_across, max_size_group=args.max_size_group, ) return self.formatted_abx_results(scores, args) def formatted_abx_results( self, scores: Dict[str, float], eval_args: EvalArgs ) -> List[Dict[str, Any]]: results: List[Dict[str, Any]] = [] for key, val in scores.items(): result: Dict[str, Any] = {} path_data = eval_args.path_data item_f = eval_args.path_item_file result["path_data"] = path_data result["item-file"] = item_f try: dataset = Path(item_f).stem.split("-") result["dataset"] = dataset[0] result["sub-dataset"] = dataset[1] except: warnings.warn( "Unable to retrieve dataset names for the results. Proceeding.", RuntimeWarning, ) result["pooling"] = eval_args.pooling result["seed"] = eval_args.seed result["run-date"] = datetime.now().strftime("%Y-%m-%d") result["score"] = val try: result["abx-s-condition"] = key.split("-")[0] result["abx-c-condition"] = key.split("-")[1] except: raise ValueError( "Unable to retrieve abx condition definitions for the results." ) results.append(result) return results def _ABX( self, pooling: Pooling, seed_n: int, feature_function: Callable, path_item_file: str, seq_list: List[Tuple[str, LiteralString]], distance_mode: str, step_feature: float, speakermodes: List[str], contextmodes: List[str], cuda=False, max_x_across=5, max_size_group=30, ) -> Dict[str, float]: # Distance function distance_function = abx_g.get_distance_function_from_name(distance_mode) # Output scores: Dict[str, float] = {} print( "Date and time of run start:", datetime.now().strftime("%Y-%m-%d %H:%M"), ) # ABX calculations differ per context mode for contextmode in contextmodes: if not contextmode in ("within", "any"): raise ValueError(f"Contextmode not supported: {contextmode}") ABXDataset = ABXFeatureLoader( pooling, path_item_file, seq_list, feature_function, step_feature, True, ).loadFromFileData() dimnwithin = None dimnacross: list[int] = [] if contextmode == "within": dimnwithin = 3 # TODO: can we make these programmatic? dimnacross = [3, 4] elif contextmode == "any": # dimnwithin not used in this condition. dimnacross = [3] if cuda: ABXDataset.cuda() # ABX within speaker if "within" in speakermodes: print(f"Computing ABX {contextmode} context within speakers...") ABXIterator = IteratorFactory.get_iterator( ABXDataset, contextmode, "within", max_size_group, seed_n ) group_confusion = abx_g.get_abx_scores_dtw_on_group( ABXIterator, distance_function, ABXIterator.symmetric, pooling ) n_data = group_confusion._values().size(0) index_ = torch.sparse.LongTensor( group_confusion._indices(), torch.ones((n_data), dtype=torch.float), group_confusion.size(), ) if contextmode == "any": divisor_context = index_.to_dense() group_confusion = group_confusion.to_dense() else: divisor_context = torch.sparse.sum( index_, dimnwithin ).to_dense() group_confusion = torch.sparse.sum( group_confusion, dimnwithin ).to_dense() group_confusion = self._reduce_sparse_data( group_confusion, divisor_context ) S, p1, p2 = group_confusion.size() index_speaker = divisor_context > 0 divisor_speaker = index_speaker.sum(dim=0) phone_confusion = self._reduce_sparse_data( group_confusion.sum(dim=0), divisor_speaker ) scores[f"within-{contextmode}"] = ( phone_confusion.sum() / (divisor_speaker > 0).sum() ).item() print( f"...done. ABX {contextmode}_context within_speaker : {scores[f'within-{contextmode}']}" ) # ABX across if "across" in speakermodes: print(f"Computing ABX {contextmode} context across speakers...") ABXIterator = IteratorFactory.get_iterator( ABXDataset, contextmode, "across", max_size_group, seed_n ) ABXIterator.max_x = max_x_across # Only used in across-speaker group_confusion = abx_g.get_abx_scores_dtw_on_group( ABXIterator, distance_function, ABXIterator.symmetric, pooling ) n_data = group_confusion._values().size(0) index_ = torch.sparse.LongTensor( group_confusion._indices(), torch.ones((n_data), dtype=torch.float), group_confusion.size(), ) divisor_context = torch.sparse.sum(index_, dimnacross).to_dense() if not dimnacross: raise ValueError("dimnacross not set") group_confusion = torch.sparse.sum( group_confusion, dimnacross ).to_dense() group_confusion = self._reduce_sparse_data( group_confusion, divisor_context ) S, p1, p2 = group_confusion.size() index_speaker = divisor_context > 0 divisor_speaker = index_speaker.sum(dim=0) phone_confusion = self._reduce_sparse_data( group_confusion.sum(dim=0), divisor_speaker ) scores[f"across-{contextmode}"] = ( phone_confusion.sum() / (divisor_speaker > 0).sum() ).item() print( f"...done. ABX {contextmode}_context across_speaker : {scores[f'across-{contextmode}']}" ) return scores def _find_all_files( self, path_dir, extension ) -> List[Tuple[str, LiteralString]]: """Returns: a list of tuples, each tuple having this format: [0]: filename (no extension); [1]: absolute path of the file. """ out: List[Tuple[str, LiteralString]] = [] for root, dirs, filenames in os.walk(path_dir): for f in filenames: if f.endswith(extension): out.append(((str(Path(f).stem)), os.path.join(root, f))) return out def _reduce_sparse_data(self, quotient, divisor): return quotient / (1e-08 * (divisor == 0) + divisor) def _pooling_type( self, pooling: str ) -> Literal[Pooling.NONE, Pooling.MEAN, Pooling.HAMMING]: if pooling == "none": return Pooling.NONE elif pooling == "mean": return Pooling.MEAN elif pooling == "hamming": return Pooling.HAMMING else: raise ValueError("Unsupported pooling type.") def parse_args(argv): parser = argparse.ArgumentParser(description="ABX metric") parser.add_argument( "path_data", type=str, help="Path to directory containing the submission data", ) parser.add_argument( "path_item_file", type=str, help="Path to the .item file containing the timestamps and transcriptions", ) parser.add_argument( "--path_checkpoint", type=str, default=PATH_CHECKPOINT, help="Path to a CPC checkpoint. If set, apply the " "model to the input data to compute the features", ) parser.add_argument( "--file_extension", type=str, default=FILE_EXTENSION, choices=[".pt", ".npy", ".wav", ".flac", ".mp3", ".npz", ".txt"], ) parser.add_argument( "--feature_size", type=float, default=FEATURE_SIZE, help="Size (in s) of one feature", ) parser.add_argument( "--cuda", action="store_true", help="Use the GPU to compute distances" ) parser.add_argument( "--speaker_mode", type=str, default=SPEAKER_MODE, choices=["all", "within", "across"], help="Choose the speaker mode of the ABX score to compute", ) parser.add_argument( "--context_mode", type=str, default=CONTEXT_MODE, choices=["all", "within", "any"], help="Choose the context mode of the ABX score to compute", ) parser.add_argument( "--distance_mode", type=str, default=DISTANCE_MODE, choices=["euclidian", "euclidean", "cosine", "kl", "kl_symmetric"], help="Choose the kind of distance to use to compute " "the ABX score.", ) parser.add_argument( "--max_size_group", type=int, default=MAX_SIZE_GROUP, help="Max size of a group while computing the" "ABX score. A small value will make the code " "faster but less precise.", ) parser.add_argument( "--max_x_across", type=int, default=MAX_X_ACROSS, help="When computing the ABX across score, maximum " "number of speaker X to sample per couple A,B. " " A small value will make the code faster but " "less precise.", ) parser.add_argument( "--out", type=str, default=OUT, help="Path where the results should be saved.", ) parser.add_argument( "--seed", type=int, default=SEED, help="Seed to use in random sampling." ) parser.add_argument( "--pooling", type=str, choices=["none", "mean", "hamming"], default=POOLING, help="Type of pooling over frame representations of items.", ) parser.add_argument( "--seq_norm", action="store_true", help="Used for CPC features only. " "If activated, normalize each batch of feature across the " "time channel before computing ABX.", ) parser.add_argument( "--max_size_seq", default=MAX_SIZE_SEQ, type=int, help="Used for CPC features only. Maximal number of frames to consider when computing a " "batch of features.", ) parser.add_argument( "--strict", action="store_true", help="Used for CPC features only. " "If activated, each batch of feature will contain exactly " "max_size_seq frames.", ) # multi-gpu / multi-node return parser.parse_args(argv) # CMDLINE def main(argv=None): if argv is None: argv = sys.argv[1:] args = parse_args(argv) eval_args = EvalArgs( path_data=args.path_data, path_item_file=args.path_item_file, path_checkpoint=args.path_checkpoint, file_extension=args.file_extension, feature_size=args.feature_size, cuda=args.cuda, speaker_mode=args.speaker_mode, context_mode=args.context_mode, distance_mode=args.distance_mode, max_x_across=args.max_x_across, out=args.out, seed=args.seed, pooling=args.pooling, seq_norm=args.seq_norm, max_size_seq=args.max_size_seq, strict=args.strict, ) abx_evaluator = EvalABX() scores = abx_evaluator.eval_abx(eval_args) if eval_args.out: out_dir = Path(eval_args.out) elif eval_args.path_checkpoint: out_dir = Path(eval_args.path_checkpoint).parent else: raise ValueError( "Unable to find output path from args.out or args.path_checkpoint." ) out_dir.mkdir(exist_ok=True) df = pandas.DataFrame(scores) with open(out_dir / f"ABX_scores.csv", "a") as file: df.to_csv(file, mode="a", index=False, header=file.tell() == 0) t = datetime.now().strftime("%Y-%m-%d_%H-%M") path_args = out_dir / f"ABX_args_{t}.json" with open(path_args, "w") as file: json.dump(vars(args), file, indent=2) if __name__ == "__main__": main()
zerospeech-libriabx2
/zerospeech-libriabx2-0.9.8.tar.gz/zerospeech-libriabx2-0.9.8/zrc_abx2/eval_ABX.py
eval_ABX.py
import argparse import json import os import numpy as np import torch import time from copy import deepcopy import random import psutil import sys import cpc.criterion as cr import cpc.model as model import cpc.utils.misc as utils import cpc.feature_loader as fl from cpc.cpc_default_config import set_default_cpc_config from cpc.dataset import AudioBatchData, findAllSeqs, filterSeqs, parseSeqLabels def getCriterion(args, downsampling, nSpeakers, nPhones): dimFeatures = args.hiddenGar if not args.onEncoder else args.hiddenEncoder if not args.supervised: if args.cpc_mode == 'none': cpcCriterion = cr.NoneCriterion() else: sizeInputSeq = (args.sizeWindow // downsampling) cpcCriterion = cr.CPCUnsupersivedCriterion(args.nPredicts, args.hiddenGar, args.hiddenEncoder, args.negativeSamplingExt, mode=args.cpc_mode, rnnMode=args.rnnMode, dropout=args.dropout, nSpeakers=nSpeakers, speakerEmbedding=args.speakerEmbedding, sizeInputSeq=sizeInputSeq) elif args.pathPhone is not None: if not args.CTC: cpcCriterion = cr.PhoneCriterion(dimFeatures, nPhones, args.onEncoder, nLayers=args.nLevelsPhone) else: cpcCriterion = cr.CTCPhoneCriterion(dimFeatures, nPhones, args.onEncoder) else: cpcCriterion = cr.SpeakerCriterion(dimFeatures, nSpeakers) return cpcCriterion def loadCriterion(pathCheckpoint, downsampling, nSpeakers, nPhones): _, _, locArgs = fl.getCheckpointData(os.path.dirname(pathCheckpoint)) criterion = getCriterion(locArgs, downsampling, nSpeakers, nPhones) state_dict = torch.load(pathCheckpoint, 'cpu') criterion.load_state_dict(state_dict["cpcCriterion"]) return criterion def trainStep(dataLoader, cpcModel, cpcCriterion, optimizer, scheduler, loggingStep): cpcModel.train() cpcCriterion.train() start_time = time.perf_counter() n_examples = 0 logs, lastlogs = {}, None iter = 0 for step, fulldata in enumerate(dataLoader): batchData, label = fulldata n_examples += batchData.size(0) batchData = batchData.cuda(non_blocking=True) label = label.cuda(non_blocking=True) c_feature, encoded_data, label = cpcModel(batchData, label) allLosses, allAcc = cpcCriterion(c_feature, encoded_data, label) totLoss = allLosses.sum() totLoss.backward() # Show grads ? optimizer.step() optimizer.zero_grad() if "locLoss_train" not in logs: logs["locLoss_train"] = np.zeros(allLosses.size(1)) logs["locAcc_train"] = np.zeros(allLosses.size(1)) iter += 1 logs["locLoss_train"] += (allLosses.mean(dim=0)).detach().cpu().numpy() logs["locAcc_train"] += (allAcc.mean(dim=0)).cpu().numpy() if (step + 1) % loggingStep == 0: new_time = time.perf_counter() elapsed = new_time - start_time print(f"Update {step + 1}") print(f"elapsed: {elapsed:.1f} s") print( f"{1000.0 * elapsed / loggingStep:.1f} ms per batch, {1000.0 * elapsed / n_examples:.1f} ms / example") locLogs = utils.update_logs(logs, loggingStep, lastlogs) lastlogs = deepcopy(logs) utils.show_logs("Training loss", locLogs) start_time, n_examples = new_time, 0 if scheduler is not None: scheduler.step() logs = utils.update_logs(logs, iter) logs["iter"] = iter utils.show_logs("Average training loss on epoch", logs) return logs def valStep(dataLoader, cpcModel, cpcCriterion): cpcCriterion.eval() cpcModel.eval() logs = {} cpcCriterion.eval() cpcModel.eval() iter = 0 for step, fulldata in enumerate(dataLoader): batchData, label = fulldata batchData = batchData.cuda(non_blocking=True) label = label.cuda(non_blocking=True) with torch.no_grad(): c_feature, encoded_data, label = cpcModel(batchData, label) allLosses, allAcc = cpcCriterion(c_feature, encoded_data, label) if "locLoss_val" not in logs: logs["locLoss_val"] = np.zeros(allLosses.size(1)) logs["locAcc_val"] = np.zeros(allLosses.size(1)) iter += 1 logs["locLoss_val"] += allLosses.mean(dim=0).cpu().numpy() logs["locAcc_val"] += allAcc.mean(dim=0).cpu().numpy() logs = utils.update_logs(logs, iter) logs["iter"] = iter utils.show_logs("Validation loss:", logs) return logs def run(trainDataset, valDataset, batchSize, samplingMode, cpcModel, cpcCriterion, nEpoch, pathCheckpoint, optimizer, scheduler, logs): print(f"Running {nEpoch} epochs") startEpoch = len(logs["epoch"]) bestAcc = 0 bestStateDict = None start_time = time.time() for epoch in range(startEpoch, nEpoch): print(f"Starting epoch {epoch}") utils.cpu_stats() trainLoader = trainDataset.getDataLoader(batchSize, samplingMode, True, numWorkers=0) valLoader = valDataset.getDataLoader(batchSize, 'sequential', False, numWorkers=0) print("Training dataset %d batches, Validation dataset %d batches, batch size %d" % (len(trainLoader), len(valLoader), batchSize)) locLogsTrain = trainStep(trainLoader, cpcModel, cpcCriterion, optimizer, scheduler, logs["logging_step"]) locLogsVal = valStep(valLoader, cpcModel, cpcCriterion) print(f'Ran {epoch + 1} epochs ' f'in {time.time() - start_time:.2f} seconds') torch.cuda.empty_cache() currentAccuracy = float(locLogsVal["locAcc_val"].mean()) if currentAccuracy > bestAcc: bestStateDict = fl.get_module(cpcModel).state_dict() for key, value in dict(locLogsTrain, **locLogsVal).items(): if key not in logs: logs[key] = [None for x in range(epoch)] if isinstance(value, np.ndarray): value = value.tolist() logs[key].append(value) logs["epoch"].append(epoch) if pathCheckpoint is not None \ and (epoch % logs["saveStep"] == 0 or epoch == nEpoch-1): modelStateDict = fl.get_module(cpcModel).state_dict() criterionStateDict = fl.get_module(cpcCriterion).state_dict() fl.save_checkpoint(modelStateDict, criterionStateDict, optimizer.state_dict(), bestStateDict, f"{pathCheckpoint}_{epoch}.pt") utils.save_logs(logs, pathCheckpoint + "_logs.json") def main(args): args = parseArgs(args) utils.set_seed(args.random_seed) logs = {"epoch": [], "iter": [], "saveStep": args.save_step} loadOptimizer = False if args.pathCheckpoint is not None and not args.restart: cdata = fl.getCheckpointData(args.pathCheckpoint) if cdata is not None: data, logs, locArgs = cdata print(f"Checkpoint detected at {data}") fl.loadArgs(args, locArgs, forbiddenAttr={"nGPU", "pathCheckpoint", "debug", "restart", "world_size", "n_nodes", "node_id", "n_gpu_per_node", "max_size_loaded"}) args.load, loadOptimizer = [data], True args.loadCriterion = True logs["logging_step"] = args.logging_step print(f'CONFIG:\n{json.dumps(vars(args), indent=4, sort_keys=True)}') print('-' * 50) seqNames, speakers = findAllSeqs(args.pathDB, extension=args.file_extension, loadCache=not args.ignore_cache) print(f'Found files: {len(seqNames)} seqs, {len(speakers)} speakers') # Datasets if args.pathTrain is not None: seqTrain = filterSeqs(args.pathTrain, seqNames) else: seqTrain = seqNames if args.pathVal is None: random.shuffle(seqTrain) sizeTrain = int(0.99 * len(seqTrain)) seqTrain, seqVal = seqTrain[:sizeTrain], seqTrain[sizeTrain:] print(f'Found files: {len(seqTrain)} train, {len(seqVal)} val') else: seqVal = filterSeqs(args.pathVal, seqNames) if args.debug: seqTrain = seqTrain[-1000:] seqVal = seqVal[-100:] phoneLabels, nPhones = None, None if args.supervised and args.pathPhone is not None: print("Loading the phone labels at " + args.pathPhone) phoneLabels, nPhones = parseSeqLabels(args.pathPhone) print(f"{nPhones} phones found") print("") print(f'Loading audio data at {args.pathDB}') print("Loading the training dataset") trainDataset = AudioBatchData(args.pathDB, args.sizeWindow, seqTrain, phoneLabels, len(speakers), nProcessLoader=args.n_process_loader, MAX_SIZE_LOADED=args.max_size_loaded) print("Training dataset loaded") print("") print("Loading the validation dataset") valDataset = AudioBatchData(args.pathDB, args.sizeWindow, seqVal, phoneLabels, len(speakers), nProcessLoader=args.n_process_loader) print("Validation dataset loaded") print("") if args.load is not None: cpcModel, args.hiddenGar, args.hiddenEncoder = \ fl.loadModel(args.load) else: # Encoder network encoderNet = fl.getEncoder(args) # AR Network arNet = fl.getAR(args) cpcModel = model.CPCModel(encoderNet, arNet) batchSize = args.nGPU * args.batchSizeGPU cpcModel.supervised = args.supervised # Training criterion if args.load is not None and args.loadCriterion: cpcCriterion = loadCriterion(args.load[0], cpcModel.gEncoder.DOWNSAMPLING, len(speakers), nPhones) else: cpcCriterion = getCriterion(args, cpcModel.gEncoder.DOWNSAMPLING, len(speakers), nPhones) if loadOptimizer: state_dict = torch.load(args.load[0], 'cpu') cpcCriterion.load_state_dict(state_dict["cpcCriterion"]) cpcCriterion.cuda() cpcModel.cuda() # Optimizer g_params = list(cpcCriterion.parameters()) + list(cpcModel.parameters()) lr = args.learningRate optimizer = torch.optim.Adam(g_params, lr=lr, betas=(args.beta1, args.beta2), eps=args.epsilon) if loadOptimizer: print("Loading optimizer " + args.load[0]) state_dict = torch.load(args.load[0], 'cpu') if "optimizer" in state_dict: optimizer.load_state_dict(state_dict["optimizer"]) # Checkpoint if args.pathCheckpoint is not None: if not os.path.isdir(args.pathCheckpoint): os.mkdir(args.pathCheckpoint) args.pathCheckpoint = os.path.join(args.pathCheckpoint, "checkpoint") scheduler = None if args.schedulerStep > 0: scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.schedulerStep, gamma=0.5) if args.schedulerRamp is not None: n_epoch = args.schedulerRamp print(f"Ramp activated. n_e = {n_epoch}") scheduler_ramp = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: utils.ramp_scheduling_function( n_epoch, epoch), last_epoch=-1) if scheduler is None: scheduler = scheduler_ramp else: scheduler = utils.SchedulerCombiner([scheduler_ramp, scheduler], [0, args.schedulerRamp]) if scheduler is not None: for i in range(len(logs["epoch"])): scheduler.step() cpcModel = torch.nn.DataParallel(cpcModel, device_ids=range(args.nGPU)).cuda() cpcCriterion = torch.nn.DataParallel(cpcCriterion, device_ids=range(args.nGPU)).cuda() run(trainDataset, valDataset, batchSize, args.samplingType, cpcModel, cpcCriterion, args.nEpoch, args.pathCheckpoint, optimizer, scheduler, logs) def parseArgs(argv): # Run parameters parser = argparse.ArgumentParser(description='Trainer') # Default arguments: parser = set_default_cpc_config(parser) group_db = parser.add_argument_group('Dataset') group_db.add_argument('--pathDB', type=str, default=None, help='Path to the directory containing the ' 'data.') group_db.add_argument('--file_extension', type=str, default=".flac", help="Extension of the audio files in the dataset.") group_db.add_argument('--pathTrain', type=str, default=None, help='Path to a .txt file containing the list of the ' 'training sequences.') group_db.add_argument('--pathVal', type=str, default=None, help='Path to a .txt file containing the list of the ' 'validation sequences.') group_db.add_argument('--n_process_loader', type=int, default=8, help='Number of processes to call to load the ' 'dataset') group_db.add_argument('--ignore_cache', action='store_true', help='Activate if the dataset has been modified ' 'since the last training session.') group_db.add_argument('--max_size_loaded', type=int, default=4000000000, help='Maximal amount of data (in byte) a dataset ' 'can hold in memory at any given time') group_supervised = parser.add_argument_group( 'Supervised mode (depreciated)') group_supervised.add_argument('--supervised', action='store_true', help='(Depreciated) Disable the CPC loss and activate ' 'the supervised mode. By default, the supervised ' 'training method is the speaker classification.') group_supervised.add_argument('--pathPhone', type=str, default=None, help='(Supervised mode only) Path to a .txt ' 'containing the phone labels of the dataset. If given ' 'and --supervised, will train the model using a ' 'phone classification task.') group_supervised.add_argument('--CTC', action='store_true') group_save = parser.add_argument_group('Save') group_save.add_argument('--pathCheckpoint', type=str, default=None, help="Path of the output directory.") group_save.add_argument('--logging_step', type=int, default=1000) group_save.add_argument('--save_step', type=int, default=5, help="Frequency (in epochs) at which a checkpoint " "should be saved") group_load = parser.add_argument_group('Load') group_load.add_argument('--load', type=str, default=None, nargs='*', help="Load an exsiting checkpoint. Should give a path " "to a .pt file. The directory containing the file to " "load should also have a 'checkpoint.logs' and a " "'checkpoint.args'") group_load.add_argument('--loadCriterion', action='store_true', help="If --load is activated, load the state of the " "training criterion as well as the state of the " "feature network (encoder + AR)") group_load.add_argument('--restart', action='store_true', help="If any checkpoint is found, ignore it and " "restart the training from scratch.") group_gpu = parser.add_argument_group('GPUs') group_gpu.add_argument('--nGPU', type=int, default=-1, help="Number of GPU to use (default: use all " "available GPUs)") group_gpu.add_argument('--batchSizeGPU', type=int, default=8, help='Number of batches per GPU.') parser.add_argument('--debug', action='store_true', help="Load only a very small amount of files for " "debugging purposes.") args = parser.parse_args(argv) if args.pathDB is None and (args.pathCheckpoint is None or args.restart): parser.print_help() print("Either provides an input dataset or a checkpoint to load") sys.exit() if args.pathCheckpoint is not None: args.pathCheckpoint = os.path.abspath(args.pathCheckpoint) if args.load is not None: args.load = [os.path.abspath(x) for x in args.load] # set it up if needed, so that it is dumped along with other args if args.random_seed is None: args.random_seed = random.randint(0, 2**31) if args.nGPU < 0: args.nGPU = torch.cuda.device_count() assert args.nGPU <= torch.cuda.device_count(),\ f"number of GPU asked: {args.nGPU}," \ f"number GPU detected: {torch.cuda.device_count()}" print(f"Let's use {args.nGPU} GPUs!") if args.arMode == 'no_ar': args.hiddenGar = args.hiddenEncoder return args if __name__ == "__main__": torch.multiprocessing.set_start_method('spawn') args = sys.argv[1:] main(args)
zerospeech-libriabx2
/zerospeech-libriabx2-0.9.8.tar.gz/zerospeech-libriabx2-0.9.8/zrc_abx2/cpc/train.py
train.py
import os import random import time import tqdm import torch import soundfile as sf from pathlib import Path from copy import deepcopy from torch.multiprocessing import Pool from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import Sampler, BatchSampler import torchaudio class AudioBatchData(Dataset): def __init__(self, path, sizeWindow, seqNames, phoneLabelsDict, nSpeakers, nProcessLoader=50, MAX_SIZE_LOADED=4000000000): """ Args: - path (string): path to the training dataset - sizeWindow (int): size of the sliding window - seqNames (list): sequences to load - phoneLabelsDict (dictionnary): if not None, a dictionnary with the following entries "step": size of a labelled window "$SEQ_NAME": list of phonem labels for the sequence $SEQ_NAME - nSpeakers (int): number of speakers to expect. - nProcessLoader (int): number of processes to call when loading the data from the disk - MAX_SIZE_LOADED (int): target maximal size of the floating array containing all loaded data. """ self.MAX_SIZE_LOADED = MAX_SIZE_LOADED self.nProcessLoader = nProcessLoader self.dbPath = Path(path) self.sizeWindow = sizeWindow self.seqNames = [(s, self.dbPath / x) for s, x in seqNames] self.reload_pool = Pool(nProcessLoader) self.prepare() self.speakers = list(range(nSpeakers)) self.data = [] self.phoneSize = 0 if phoneLabelsDict is None else \ phoneLabelsDict["step"] self.phoneStep = 0 if phoneLabelsDict is None else \ self.sizeWindow // self.phoneSize self.phoneLabelsDict = deepcopy(phoneLabelsDict) self.loadNextPack(first=True) self.loadNextPack() self.doubleLabels = False def resetPhoneLabels(self, newPhoneLabels, step): self.phoneSize = step self.phoneStep = self.sizeWindow // self.phoneSize self.phoneLabelsDict = deepcopy(newPhoneLabels) self.loadNextPack() def splitSeqTags(seqName): path = os.path.normpath(seqName) return path.split(os.sep) def getSeqNames(self): return [str(x[1]) for x in self.seqNames] def clear(self): if 'data' in self.__dict__: del self.data if 'speakerLabel' in self.__dict__: del self.speakerLabel if 'phoneLabels' in self.__dict__: del self.phoneLabels if 'seqLabel' in self.__dict__: del self.seqLabel def prepare(self): random.shuffle(self.seqNames) start_time = time.time() print("Checking length...") allLength = self.reload_pool.map(extractLength, self.seqNames) self.packageIndex, self.totSize = [], 0 start, packageSize = 0, 0 for index, length in tqdm.tqdm(enumerate(allLength)): packageSize += length if packageSize > self.MAX_SIZE_LOADED: self.packageIndex.append([start, index]) self.totSize += packageSize start, packageSize = index, 0 if packageSize > 0: self.packageIndex.append([start, len(self.seqNames)]) self.totSize += packageSize print(f"Done, elapsed: {time.time() - start_time:.3f} seconds") print(f'Scanned {len(self.seqNames)} sequences ' f'in {time.time() - start_time:.2f} seconds') print(f"{len(self.packageIndex)} chunks computed") self.currentPack = -1 self.nextPack = 0 def getNPacks(self): return len(self.packageIndex) def loadNextPack(self, first=False): self.clear() if not first: self.currentPack = self.nextPack start_time = time.time() print('Joining pool') self.r.wait() print(f'Joined process, elapsed={time.time()-start_time:.3f} secs') self.nextData = self.r.get() self.parseNextDataBlock() del self.nextData self.nextPack = (self.currentPack + 1) % len(self.packageIndex) seqStart, seqEnd = self.packageIndex[self.nextPack] if self.nextPack == 0 and len(self.packageIndex) > 1: self.prepare() self.r = self.reload_pool.map_async(loadFile, self.seqNames[seqStart:seqEnd]) def parseNextDataBlock(self): # Labels self.speakerLabel = [0] self.seqLabel = [0] self.phoneLabels = [] speakerSize = 0 indexSpeaker = 0 # To accelerate the process a bit self.nextData.sort(key=lambda x: (x[0], x[1])) tmpData = [] for speaker, seqName, seq in self.nextData: while self.speakers[indexSpeaker] < speaker: indexSpeaker += 1 self.speakerLabel.append(speakerSize) if self.speakers[indexSpeaker] != speaker: raise ValueError(f'{speaker} invalid speaker') if self.phoneLabelsDict is not None: self.phoneLabels += self.phoneLabelsDict[seqName] newSize = len(self.phoneLabelsDict[seqName]) * self.phoneSize seq = seq[:newSize] sizeSeq = seq.size(0) tmpData.append(seq) self.seqLabel.append(self.seqLabel[-1] + sizeSeq) speakerSize += sizeSeq del seq self.speakerLabel.append(speakerSize) self.data = torch.cat(tmpData, dim=0) def getPhonem(self, idx): idPhone = idx // self.phoneSize return self.phoneLabels[idPhone:(idPhone + self.phoneStep)] def getSpeakerLabel(self, idx): idSpeaker = next(x[0] for x in enumerate( self.speakerLabel) if x[1] > idx) - 1 return idSpeaker def __len__(self): return self.totSize // self.sizeWindow def __getitem__(self, idx): if idx < 0 or idx >= len(self.data) - self.sizeWindow - 1: print(idx) outData = self.data[idx:(self.sizeWindow + idx)].view(1, -1) label = torch.tensor(self.getSpeakerLabel(idx), dtype=torch.long) if self.phoneSize > 0: label_phone = torch.tensor(self.getPhonem(idx), dtype=torch.long) if not self.doubleLabels: label = label_phone else: label_phone = torch.zeros(1) if self.doubleLabels: return outData, label, label_phone return outData, label def getNSpeakers(self): return len(self.speakers) def getNSeqs(self): return len(self.seqLabel) - 1 def getNLoadsPerEpoch(self): return len(self.packageIndex) def getBaseSampler(self, type, batchSize, offset): if type == "samespeaker": return SameSpeakerSampler(batchSize, self.speakerLabel, self.sizeWindow, offset) if type == "samesequence": return SameSpeakerSampler(batchSize, self.seqLabel, self.sizeWindow, offset) if type == "sequential": return SequentialSampler(len(self.data), self.sizeWindow, offset, batchSize) sampler = UniformAudioSampler(len(self.data), self.sizeWindow, offset) return BatchSampler(sampler, batchSize, True) def getDataLoader(self, batchSize, type, randomOffset, numWorkers=0, onLoop=-1): r""" Get a batch sampler for the current dataset. Args: - batchSize (int): batch size - groupSize (int): in the case of type in ["speaker", "sequence"] number of items sharing a same label in the group (see AudioBatchSampler) - type (string): type == "speaker": grouped sampler speaker-wise type == "sequence": grouped sampler sequence-wise type == "sequential": sequential sampling else: uniform random sampling of the full audio vector - randomOffset (bool): if True add a random offset to the sampler at the begining of each iteration """ nLoops = len(self.packageIndex) totSize = self.totSize // (self.sizeWindow * batchSize) if onLoop >= 0: self.currentPack = onLoop - 1 self.loadNextPack() nLoops = 1 def samplerCall(): offset = random.randint(0, self.sizeWindow // 2) \ if randomOffset else 0 return self.getBaseSampler(type, batchSize, offset) return AudioLoader(self, samplerCall, nLoops, self.loadNextPack, totSize, numWorkers) def loadFile(data): speaker, fullPath = data seqName = fullPath.stem # Due to some issues happening when combining torchaudio.load # with torch.multiprocessing we use soundfile to load the data seq = torch.tensor(sf.read(fullPath)[0]).float() if len(seq.size()) == 2: seq = seq.mean(dim=1) return speaker, seqName, seq class AudioLoader(object): r""" A DataLoader meant to handle an AudioBatchData object. In order to handle big datasets AudioBatchData works with big chunks of audio it loads sequentially in memory: once all batches have been sampled on a chunk, the AudioBatchData loads the next one. """ def __init__(self, dataset, samplerCall, nLoop, updateCall, size, numWorkers): r""" Args: - dataset (AudioBatchData): target dataset - samplerCall (function): batch-sampler to call - nLoop (int): number of chunks to load - updateCall (function): function loading the next chunk - size (int): total number of batches - numWorkers (int): see torch.utils.data.DataLoader """ self.samplerCall = samplerCall self.updateCall = updateCall self.nLoop = nLoop self.size = size self.dataset = dataset self.numWorkers = numWorkers def __len__(self): return self.size def __iter__(self): for i in range(self.nLoop): sampler = self.samplerCall() dataloader = DataLoader(self.dataset, batch_sampler=sampler, num_workers=self.numWorkers) for x in dataloader: yield x if i < self.nLoop - 1: self.updateCall() class UniformAudioSampler(Sampler): def __init__(self, dataSize, sizeWindow, offset): self.len = dataSize // sizeWindow self.sizeWindow = sizeWindow self.offset = offset if self.offset > 0: self.len -= 1 def __iter__(self): return iter((self.offset + self.sizeWindow * torch.randperm(self.len)).tolist()) def __len__(self): return self.len class SequentialSampler(Sampler): def __init__(self, dataSize, sizeWindow, offset, batchSize): self.len = (dataSize // sizeWindow) // batchSize self.sizeWindow = sizeWindow self.offset = offset self.startBatches = [x * (dataSize // batchSize) for x in range(batchSize)] self.batchSize = batchSize if self.offset > 0: self.len -= 1 def __iter__(self): for idx in range(self.len): yield [self.offset + self.sizeWindow * idx + start for start in self.startBatches] def __len__(self): return self.len class SameSpeakerSampler(Sampler): def __init__(self, batchSize, samplingIntervals, sizeWindow, offset): self.samplingIntervals = samplingIntervals self.sizeWindow = sizeWindow self.batchSize = batchSize self.offset = offset if self.samplingIntervals[0] != 0: raise AttributeError("Sampling intervals should start at zero") nWindows = len(self.samplingIntervals) - 1 self.sizeSamplers = [(self.samplingIntervals[i+1] - self.samplingIntervals[i]) // self.sizeWindow for i in range(nWindows)] if self.offset > 0: self.sizeSamplers = [max(0, x - 1) for x in self.sizeSamplers] order = [(x, torch.randperm(val).tolist()) for x, val in enumerate(self.sizeSamplers) if val > 0] # Build Batches self.batches = [] for indexSampler, randperm in order: indexStart, sizeSampler = 0, self.sizeSamplers[indexSampler] while indexStart < sizeSampler: indexEnd = min(sizeSampler, indexStart + self.batchSize) locBatch = [self.getIndex(x, indexSampler) for x in randperm[indexStart:indexEnd]] indexStart = indexEnd self.batches.append(locBatch) def __len__(self): return len(self.batches) def getIndex(self, x, iInterval): return self.offset + x * self.sizeWindow \ + self.samplingIntervals[iInterval] def __iter__(self): random.shuffle(self.batches) return iter(self.batches) def extractLength(couple): speaker, locPath = couple info = torchaudio.info(str(locPath))[0] return info.length def findAllSeqs(dirName, extension='.flac', loadCache=False, speaker_level=1): r""" Lists all the sequences with the given extension in the dirName directory. Output: outSequences, speakers outSequence A list of tuples seq_path, speaker where: - seq_path is the relative path of each sequence relative to the parent directory - speaker is the corresponding speaker index outSpeakers The speaker labels (in order) The speaker labels are organized the following way \dirName \speaker_label \.. ... seqName.extension Adjust the value of speaker_level if you want to choose which level of directory defines the speaker label. Ex if speaker_level == 2 then the dataset should be organized in the following fashion \dirName \crappy_label \speaker_label \.. ... seqName.extension Set speaker_label == 0 if no speaker label will be retrieved no matter the organization of the dataset. """ cache_path = os.path.join(dirName, '_seqs_cache.txt') if loadCache: try: outSequences, speakers = torch.load(cache_path) print(f'Loaded from cache {cache_path} successfully') return outSequences, speakers except OSError as err: print(f'Ran in an error while loading {cache_path}: {err}') print('Could not load cache, rebuilding') if dirName[-1] != os.sep: dirName += os.sep prefixSize = len(dirName) speakersTarget = {} outSequences = [] for root, dirs, filenames in tqdm.tqdm(os.walk(dirName)): filtered_files = [f for f in filenames if f.endswith(extension)] if len(filtered_files) > 0: speakerStr = (os.sep).join( root[prefixSize:].split(os.sep)[:speaker_level]) if speakerStr not in speakersTarget: speakersTarget[speakerStr] = len(speakersTarget) speaker = speakersTarget[speakerStr] for filename in filtered_files: full_path = os.path.join(root[prefixSize:], filename) outSequences.append((speaker, full_path)) outSpeakers = [None for x in speakersTarget] for key, index in speakersTarget.items(): outSpeakers[index] = key try: torch.save((outSequences, outSpeakers), cache_path) print(f'Saved cache file at {cache_path}') except OSError as err: print(f'Ran in an error while saving {cache_path}: {err}') return outSequences, outSpeakers def parseSeqLabels(pathLabels): with open(pathLabels, 'r') as f: lines = f.readlines() output = {"step": 160} # Step in librispeech dataset is 160bits maxPhone = 0 for line in lines: data = line.split() output[data[0]] = [int(x) for x in data[1:]] maxPhone = max(maxPhone, max(output[data[0]])) return output, maxPhone + 1 def filterSeqs(pathTxt, seqCouples): with open(pathTxt, 'r') as f: inSeqs = [p.replace('\n', '') for p in f.readlines()] inSeqs.sort() seqCouples.sort(key=lambda x: os.path.basename(os.path.splitext(x[1])[0])) output, index = [], 0 for x in seqCouples: seq = os.path.basename(os.path.splitext(x[1])[0]) while index < len(inSeqs) and seq > inSeqs[index]: index += 1 if index == len(inSeqs): break if seq == inSeqs[index]: output.append(x) return output
zerospeech-libriabx2
/zerospeech-libriabx2-0.9.8.tar.gz/zerospeech-libriabx2-0.9.8/zrc_abx2/cpc/dataset.py
dataset.py