code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import functools import logbook import numpy as np import pandas as pd from pandas.tseries.tools import normalize_date from six import iteritems from . risk import ( check_entry, choose_treasury ) from empyrical import ( alpha_beta_aligned, annual_volatility, cum_returns, downside_risk, max_drawdown, sharpe_ratio, sortino_ratio, ) log = logbook.Logger('Risk Cumulative') choose_treasury = functools.partial(choose_treasury, lambda *args: '10year', compound=False) class RiskMetricsCumulative(object): """ :Usage: Instantiate RiskMetricsCumulative once. Call update() method on each dt to update the metrics. """ METRIC_NAMES = ( 'alpha', 'beta', 'sharpe', 'algorithm_volatility', 'benchmark_volatility', 'downside_risk', 'sortino', ) def __init__(self, sim_params, treasury_curves, trading_calendar, create_first_day_stats=False): self.treasury_curves = treasury_curves self.trading_calendar = trading_calendar self.start_session = sim_params.start_session self.end_session = sim_params.end_session self.sessions = trading_calendar.sessions_in_range( self.start_session, self.end_session ) # Hold on to the trading day before the start, # used for index of the zero return value when forcing returns # on the first day. self.day_before_start = self.start_session - self.sessions.freq last_day = normalize_date(sim_params.end_session) if last_day not in self.sessions: last_day = pd.tseries.index.DatetimeIndex( [last_day] ) self.sessions = self.sessions.append(last_day) self.sim_params = sim_params self.create_first_day_stats = create_first_day_stats cont_index = self.sessions self.cont_index = cont_index self.cont_len = len(self.cont_index) empty_cont = np.full(self.cont_len, np.nan) self.algorithm_returns_cont = empty_cont.copy() self.benchmark_returns_cont = empty_cont.copy() self.algorithm_cumulative_leverages_cont = empty_cont.copy() self.mean_returns_cont = empty_cont.copy() self.annualized_mean_returns_cont = empty_cont.copy() self.mean_benchmark_returns_cont = empty_cont.copy() self.annualized_mean_benchmark_returns_cont = empty_cont.copy() # The returns at a given time are read and reset from the respective # returns container. self.algorithm_returns = None self.benchmark_returns = None self.mean_returns = None self.annualized_mean_returns = None self.mean_benchmark_returns = None self.annualized_mean_benchmark_returns = None self.algorithm_cumulative_returns = empty_cont.copy() self.benchmark_cumulative_returns = empty_cont.copy() self.algorithm_cumulative_leverages = empty_cont.copy() self.excess_returns = empty_cont.copy() self.latest_dt_loc = 0 self.latest_dt = cont_index[0] self.benchmark_volatility = empty_cont.copy() self.algorithm_volatility = empty_cont.copy() self.beta = empty_cont.copy() self.alpha = empty_cont.copy() self.sharpe = empty_cont.copy() self.downside_risk = empty_cont.copy() self.sortino = empty_cont.copy() self.drawdowns = empty_cont.copy() self.max_drawdowns = empty_cont.copy() self.max_drawdown = 0 self.max_leverages = empty_cont.copy() self.max_leverage = 0 self.current_max = -np.inf self.daily_treasury = pd.Series(index=self.sessions) self.treasury_period_return = np.nan self.num_trading_days = 0 def update(self, dt, algorithm_returns, benchmark_returns, leverage): # Keep track of latest dt for use in to_dict and other methods # that report current state. self.latest_dt = dt dt_loc = self.cont_index.get_loc(dt) self.latest_dt_loc = dt_loc self.algorithm_returns_cont[dt_loc] = algorithm_returns self.algorithm_returns = self.algorithm_returns_cont[:dt_loc + 1] self.num_trading_days = len(self.algorithm_returns) if self.create_first_day_stats: if len(self.algorithm_returns) == 1: self.algorithm_returns = np.append(0.0, self.algorithm_returns) self.algorithm_cumulative_returns[dt_loc] = cum_returns( self.algorithm_returns )[-1] algo_cumulative_returns_to_date = \ self.algorithm_cumulative_returns[:dt_loc + 1] self.mean_returns_cont[dt_loc] = \ algo_cumulative_returns_to_date[dt_loc] / self.num_trading_days self.mean_returns = self.mean_returns_cont[:dt_loc + 1] self.annualized_mean_returns_cont[dt_loc] = \ self.mean_returns_cont[dt_loc] * 252 self.annualized_mean_returns = \ self.annualized_mean_returns_cont[:dt_loc + 1] if self.create_first_day_stats: if len(self.mean_returns) == 1: self.mean_returns = np.append(0.0, self.mean_returns) self.annualized_mean_returns = np.append( 0.0, self.annualized_mean_returns) self.benchmark_returns_cont[dt_loc] = benchmark_returns self.benchmark_returns = self.benchmark_returns_cont[:dt_loc + 1] if self.create_first_day_stats: if len(self.benchmark_returns) == 1: self.benchmark_returns = np.append(0.0, self.benchmark_returns) self.benchmark_cumulative_returns[dt_loc] = cum_returns( self.benchmark_returns )[-1] benchmark_cumulative_returns_to_date = \ self.benchmark_cumulative_returns[:dt_loc + 1] self.mean_benchmark_returns_cont[dt_loc] = \ benchmark_cumulative_returns_to_date[dt_loc] / \ self.num_trading_days self.mean_benchmark_returns = self.mean_benchmark_returns_cont[:dt_loc] self.annualized_mean_benchmark_returns_cont[dt_loc] = \ self.mean_benchmark_returns_cont[dt_loc] * 252 self.annualized_mean_benchmark_returns = \ self.annualized_mean_benchmark_returns_cont[:dt_loc + 1] self.algorithm_cumulative_leverages_cont[dt_loc] = leverage self.algorithm_cumulative_leverages = \ self.algorithm_cumulative_leverages_cont[:dt_loc + 1] if self.create_first_day_stats: if len(self.algorithm_cumulative_leverages) == 1: self.algorithm_cumulative_leverages = np.append( 0.0, self.algorithm_cumulative_leverages) if not len(self.algorithm_returns) and len(self.benchmark_returns): message = "Mismatch between benchmark_returns ({bm_count}) and \ algorithm_returns ({algo_count}) in range {start} : {end} on {dt}" message = message.format( bm_count=len(self.benchmark_returns), algo_count=len(self.algorithm_returns), start=self.start_session, end=self.end_session, dt=dt ) raise Exception(message) self.update_current_max() self.benchmark_volatility[dt_loc] = annual_volatility( self.benchmark_returns ) self.algorithm_volatility[dt_loc] = annual_volatility( self.algorithm_returns ) # caching the treasury rates for the minutely case is a # big speedup, because it avoids searching the treasury # curves on every minute. # In both minutely and daily, the daily curve is always used. treasury_end = dt.replace(hour=0, minute=0) if np.isnan(self.daily_treasury[treasury_end]): treasury_period_return = choose_treasury( self.treasury_curves, self.start_session, treasury_end, self.trading_calendar, ) self.daily_treasury[treasury_end] = treasury_period_return self.treasury_period_return = self.daily_treasury[treasury_end] self.excess_returns[dt_loc] = ( self.algorithm_cumulative_returns[dt_loc] - self.treasury_period_return) self.alpha[dt_loc], self.beta[dt_loc] = alpha_beta_aligned( self.algorithm_returns, self.benchmark_returns, ) self.sharpe[dt_loc] = sharpe_ratio( self.algorithm_returns, ) self.downside_risk[dt_loc] = downside_risk( self.algorithm_returns ) self.sortino[dt_loc] = sortino_ratio( self.algorithm_returns, _downside_risk=self.downside_risk[dt_loc] ) self.max_drawdown = max_drawdown( self.algorithm_returns ) self.max_drawdowns[dt_loc] = self.max_drawdown self.max_leverage = self.calculate_max_leverage() self.max_leverages[dt_loc] = self.max_leverage def to_dict(self): """ Creates a dictionary representing the state of the risk report. Returns a dict object of the form: """ dt = self.latest_dt dt_loc = self.latest_dt_loc period_label = dt.strftime("%Y-%m") rval = { 'trading_days': self.num_trading_days, 'benchmark_volatility': self.benchmark_volatility[dt_loc], 'algo_volatility': self.algorithm_volatility[dt_loc], 'treasury_period_return': self.treasury_period_return, # Though the two following keys say period return, # they would be more accurately called the cumulative return. # However, the keys need to stay the same, for now, for backwards # compatibility with existing consumers. 'algorithm_period_return': self.algorithm_cumulative_returns[dt_loc], 'benchmark_period_return': self.benchmark_cumulative_returns[dt_loc], 'beta': self.beta[dt_loc], 'alpha': self.alpha[dt_loc], 'sharpe': self.sharpe[dt_loc], 'sortino': self.sortino[dt_loc], 'excess_return': self.excess_returns[dt_loc], 'max_drawdown': self.max_drawdown, 'max_leverage': self.max_leverage, 'period_label': period_label } return {k: (None if check_entry(k, v) else v) for k, v in iteritems(rval)} def __repr__(self): statements = [] for metric in self.METRIC_NAMES: value = getattr(self, metric)[-1] if isinstance(value, list): if len(value) == 0: value = np.nan else: value = value[-1] statements.append("{m}:{v}".format(m=metric, v=value)) return '\n'.join(statements) def update_current_max(self): if len(self.algorithm_cumulative_returns) == 0: return current_cumulative_return = \ self.algorithm_cumulative_returns[self.latest_dt_loc] if self.current_max < current_cumulative_return: self.current_max = current_cumulative_return def calculate_max_leverage(self): # The leverage is defined as: the gross_exposure/net_liquidation # gross_exposure = long_exposure + abs(short_exposure) # net_liquidation = ending_cash + long_exposure + short_exposure cur_leverage = self.algorithm_cumulative_leverages_cont[ self.latest_dt_loc] return max(cur_leverage, self.max_leverage)
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/finance/risk/cumulative.py
cumulative.py
import logbook import numpy as np log = logbook.Logger('Risk') TREASURY_DURATIONS = [ '1month', '3month', '6month', '1year', '2year', '3year', '5year', '7year', '10year', '30year' ] # check if a field in rval is nan, and replace it with # None. def check_entry(key, value): if key != 'period_label': return np.isnan(value) or np.isinf(value) else: return False def get_treasury_rate(treasury_curves, treasury_duration, day): rate = None curve = treasury_curves.ix[day] # 1month note data begins in 8/2001, # so we can use 3month instead. idx = TREASURY_DURATIONS.index(treasury_duration) for duration in TREASURY_DURATIONS[idx:]: rate = curve[duration] if rate is not None: break return rate def select_treasury_duration(start_date, end_date): td = end_date - start_date if td.days <= 31: treasury_duration = '1month' elif td.days <= 93: treasury_duration = '3month' elif td.days <= 186: treasury_duration = '6month' elif td.days <= 366: treasury_duration = '1year' elif td.days <= 365 * 2 + 1: treasury_duration = '2year' elif td.days <= 365 * 3 + 1: treasury_duration = '3year' elif td.days <= 365 * 5 + 2: treasury_duration = '5year' elif td.days <= 365 * 7 + 2: treasury_duration = '7year' elif td.days <= 365 * 10 + 2: treasury_duration = '10year' else: treasury_duration = '30year' return treasury_duration def choose_treasury(select_treasury, treasury_curves, start_session, end_session, trading_calendar, compound=True): """ Find the latest known interest rate for a given duration within a date range. If we find one but it's more than a trading day ago from the date we're looking for, then we log a warning """ treasury_duration = select_treasury(start_session, end_session) search_day = None if end_session in treasury_curves.index: rate = get_treasury_rate(treasury_curves, treasury_duration, end_session) if rate is not None: search_day = end_session if not search_day: # in case end date is not a trading day or there is no treasury # data, search for the previous day with an interest rate. search_days = treasury_curves.index # Find rightmost value less than or equal to end_session i = search_days.searchsorted(end_session) for prev_day in search_days[i - 1::-1]: rate = get_treasury_rate(treasury_curves, treasury_duration, prev_day) if rate is not None: search_day = prev_day search_dist = trading_calendar.session_distance( end_session, prev_day ) break if search_day: if (search_dist is None or search_dist > 1) and \ search_days[0] <= end_session <= search_days[-1]: message = "No rate within 1 trading day of end date = \ {dt} and term = {term}. Using {search_day}. Check that date doesn't exceed \ treasury history range." message = message.format(dt=end_session, term=treasury_duration, search_day=search_day) log.warn(message) if search_day: td = end_session - start_session if compound: return rate * (td.days + 1) / 365 else: return rate message = "No rate for end date = {dt} and term = {term}. Check \ that date doesn't exceed treasury history range." message = message.format( dt=end_session, term=treasury_duration ) raise Exception(message)
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/finance/risk/risk.py
risk.py
import functools import logbook from six import iteritems import numpy as np import pandas as pd from . import risk from . risk import check_entry from empyrical import ( alpha_beta_aligned, annual_volatility, cum_returns, downside_risk, max_drawdown, sharpe_ratio, sortino_ratio ) log = logbook.Logger('Risk Period') choose_treasury = functools.partial(risk.choose_treasury, risk.select_treasury_duration) class RiskMetricsPeriod(object): def __init__(self, start_session, end_session, returns, trading_calendar, treasury_curves, benchmark_returns, algorithm_leverages=None): if treasury_curves.index[-1] >= start_session: mask = ((treasury_curves.index >= start_session) & (treasury_curves.index <= end_session)) self.treasury_curves = treasury_curves[mask] else: # our test is beyond the treasury curve history # so we'll use the last available treasury curve self.treasury_curves = treasury_curves[-1:] self._start_session = start_session self._end_session = end_session self.trading_calendar = trading_calendar trading_sessions = trading_calendar.sessions_in_range( self._start_session, self._end_session, ) self.algorithm_returns = self.mask_returns_to_period(returns, trading_sessions) # Benchmark needs to be masked to the same dates as the algo returns self.benchmark_returns = self.mask_returns_to_period( benchmark_returns, self.algorithm_returns.index ) self.algorithm_leverages = algorithm_leverages self.calculate_metrics() def calculate_metrics(self): self.benchmark_period_returns = \ cum_returns(self.benchmark_returns).iloc[-1] self.algorithm_period_returns = \ cum_returns(self.algorithm_returns).iloc[-1] if not self.algorithm_returns.index.equals( self.benchmark_returns.index ): message = "Mismatch between benchmark_returns ({bm_count}) and \ algorithm_returns ({algo_count}) in range {start} : {end}" message = message.format( bm_count=len(self.benchmark_returns), algo_count=len(self.algorithm_returns), start=self._start_session, end=self._end_session ) raise Exception(message) self.num_trading_days = len(self.benchmark_returns) self.mean_algorithm_returns = ( self.algorithm_returns.cumsum() / np.arange(1, self.num_trading_days + 1, dtype=np.float64) ) self.benchmark_volatility = annual_volatility(self.benchmark_returns) self.algorithm_volatility = annual_volatility(self.algorithm_returns) self.treasury_period_return = choose_treasury( self.treasury_curves, self._start_session, self._end_session, self.trading_calendar, ) self.sharpe = sharpe_ratio( self.algorithm_returns, ) # The consumer currently expects a 0.0 value for sharpe in period, # this differs from cumulative which was np.nan. # When factoring out the sharpe_ratio, the different return types # were collapsed into `np.nan`. # TODO: Either fix consumer to accept `np.nan` or make the # `sharpe_ratio` return type configurable. # In the meantime, convert nan values to 0.0 if pd.isnull(self.sharpe): self.sharpe = 0.0 self.downside_risk = downside_risk( self.algorithm_returns.values ) self.sortino = sortino_ratio( self.algorithm_returns.values, _downside_risk=self.downside_risk, ) self.alpha, self.beta = alpha_beta_aligned( self.algorithm_returns.values, self.benchmark_returns.values, ) self.excess_return = self.algorithm_period_returns - \ self.treasury_period_return self.max_drawdown = max_drawdown(self.algorithm_returns.values) self.max_leverage = self.calculate_max_leverage() def to_dict(self): """ Creates a dictionary representing the state of the risk report. Returns a dict object of the form: """ period_label = self._end_session.strftime("%Y-%m") rval = { 'trading_days': self.num_trading_days, 'benchmark_volatility': self.benchmark_volatility, 'algo_volatility': self.algorithm_volatility, 'treasury_period_return': self.treasury_period_return, 'algorithm_period_return': self.algorithm_period_returns, 'benchmark_period_return': self.benchmark_period_returns, 'sharpe': self.sharpe, 'sortino': self.sortino, 'beta': self.beta, 'alpha': self.alpha, 'excess_return': self.excess_return, 'max_drawdown': self.max_drawdown, 'max_leverage': self.max_leverage, 'period_label': period_label } return {k: None if check_entry(k, v) else v for k, v in iteritems(rval)} def __repr__(self): statements = [] metrics = [ "algorithm_period_returns", "benchmark_period_returns", "excess_return", "num_trading_days", "benchmark_volatility", "algorithm_volatility", "sharpe", "sortino", "beta", "alpha", "max_drawdown", "max_leverage", "algorithm_returns", "benchmark_returns", ] for metric in metrics: value = getattr(self, metric) statements.append("{m}:{v}".format(m=metric, v=value)) return '\n'.join(statements) def mask_returns_to_period(self, daily_returns, trading_days): if isinstance(daily_returns, list): returns = pd.Series([x.returns for x in daily_returns], index=[x.date for x in daily_returns]) else: # otherwise we're receiving an index already returns = daily_returns trade_day_mask = returns.index.normalize().isin(trading_days) mask = ((returns.index >= self._start_session) & (returns.index <= self._end_session) & trade_day_mask) returns = returns[mask] return returns def calculate_max_leverage(self): if self.algorithm_leverages is None: return 0.0 else: return max(self.algorithm_leverages)
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/finance/risk/period.py
period.py
import logbook import datetime from dateutil.relativedelta import relativedelta from . period import RiskMetricsPeriod log = logbook.Logger('Risk Report') class RiskReport(object): def __init__(self, algorithm_returns, sim_params, trading_calendar, treasury_curves, benchmark_returns, algorithm_leverages=None): """ algorithm_returns needs to be a list of daily_return objects sorted in date ascending order account needs to be a list of account objects sorted in date ascending order """ self.algorithm_returns = algorithm_returns self.sim_params = sim_params self.trading_calendar = trading_calendar self.treasury_curves = treasury_curves self.benchmark_returns = benchmark_returns self.algorithm_leverages = algorithm_leverages if len(self.algorithm_returns) == 0: start_session = self.sim_params.start_session end_session = self.sim_params.end_session else: start_session = self.algorithm_returns.index[0] end_session = self.algorithm_returns.index[-1] self.month_periods = self.periods_in_range( 1, start_session, end_session ) self.three_month_periods = self.periods_in_range( 3, start_session, end_session ) self.six_month_periods = self.periods_in_range( 6, start_session, end_session ) self.year_periods = self.periods_in_range( 12, start_session, end_session ) def to_dict(self): """ RiskMetrics are calculated for rolling windows in four lengths:: - 1_month - 3_month - 6_month - 12_month The return value of this function is a dictionary keyed by the above list of durations. The value of each entry is a list of RiskMetric dicts of the same duration as denoted by the top_level key. See :py:meth:`RiskMetrics.to_dict` for the detailed list of fields provided for each period. """ return { 'one_month': [x.to_dict() for x in self.month_periods], 'three_month': [x.to_dict() for x in self.three_month_periods], 'six_month': [x.to_dict() for x in self.six_month_periods], 'twelve_month': [x.to_dict() for x in self.year_periods], } def periods_in_range(self, months_per, start_session, end_session): one_day = datetime.timedelta(days=1) ends = [] cur_start = start_session.replace(day=1) # in edge cases (all sids filtered out, start/end are adjacent) # a test will not generate any returns data if len(self.algorithm_returns) == 0: return ends # ensure that we have an end at the end of a calendar month, in case # the return series ends mid-month... the_end = end_session.replace(day=1) + relativedelta(months=1) - \ one_day while True: cur_end = cur_start + relativedelta(months=months_per) - one_day if cur_end > the_end: break cur_period_metrics = RiskMetricsPeriod( start_session=cur_start, end_session=cur_end, returns=self.algorithm_returns, benchmark_returns=self.benchmark_returns, trading_calendar=self.trading_calendar, treasury_curves=self.treasury_curves, algorithm_leverages=self.algorithm_leverages, ) ends.append(cur_period_metrics) cur_start = cur_start + relativedelta(months=1) return ends
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/finance/risk/report.py
report.py
from __future__ import division import logbook import pandas as pd from pandas.tseries.tools import normalize_date from zipline.finance.performance.period import PerformancePeriod from zipline.errors import NoFurtherDataError import zipline.finance.risk as risk from . position_tracker import PositionTracker log = logbook.Logger('Performance') class PerformanceTracker(object): """ Tracks the performance of the algorithm. """ def __init__(self, sim_params, trading_calendar, env): self.sim_params = sim_params self.trading_calendar = trading_calendar self.asset_finder = env.asset_finder self.treasury_curves = env.treasury_curves self.period_start = self.sim_params.start_session self.period_end = self.sim_params.end_session self.last_close = self.sim_params.last_close self._current_session = self.sim_params.start_session self.market_open, self.market_close = \ self.trading_calendar.open_and_close_for_session( self._current_session ) self.total_session_count = len(self.sim_params.sessions) self.capital_base = self.sim_params.capital_base self.emission_rate = sim_params.emission_rate self.position_tracker = PositionTracker( data_frequency=self.sim_params.data_frequency ) if self.emission_rate == 'daily': self.all_benchmark_returns = pd.Series( index=self.sim_params.sessions ) self.cumulative_risk_metrics = \ risk.RiskMetricsCumulative( self.sim_params, self.treasury_curves, self.trading_calendar ) elif self.emission_rate == 'minute': self.all_benchmark_returns = pd.Series(index=pd.date_range( self.sim_params.first_open, self.sim_params.last_close, freq='Min') ) self.cumulative_risk_metrics = \ risk.RiskMetricsCumulative( self.sim_params, self.treasury_curves, self.trading_calendar, create_first_day_stats=True ) # this performance period will span the entire simulation from # inception. self.cumulative_performance = PerformancePeriod( # initial cash is your capital base. starting_cash=self.capital_base, data_frequency=self.sim_params.data_frequency, # the cumulative period will be calculated over the entire test. period_open=self.period_start, period_close=self.period_end, # don't save the transactions for the cumulative # period keep_transactions=False, keep_orders=False, # don't serialize positions for cumulative period serialize_positions=False, name="Cumulative" ) self.cumulative_performance.position_tracker = self.position_tracker # this performance period will span just the current market day self.todays_performance = PerformancePeriod( # initial cash is your capital base. starting_cash=self.capital_base, data_frequency=self.sim_params.data_frequency, # the daily period will be calculated for the market day period_open=self.market_open, period_close=self.market_close, keep_transactions=True, keep_orders=True, serialize_positions=True, name="Daily" ) self.todays_performance.position_tracker = self.position_tracker self.saved_dt = self.period_start # one indexed so that we reach 100% self.session_count = 0.0 self.txn_count = 0 self.account_needs_update = True self._account = None def __repr__(self): return "%s(%r)" % ( self.__class__.__name__, {'simulation parameters': self.sim_params}) @property def progress(self): if self.emission_rate == 'minute': # Fake a value return 1.0 elif self.emission_rate == 'daily': return self.session_count / self.total_session_count def set_date(self, date): if self.emission_rate == 'minute': self.saved_dt = date self.todays_performance.period_close = self.saved_dt def get_portfolio(self, performance_needs_update): if performance_needs_update: self.update_performance() self.account_needs_update = True return self.cumulative_performance.as_portfolio() def update_performance(self): # calculate performance as of last trade self.cumulative_performance.calculate_performance() self.todays_performance.calculate_performance() def get_account(self, performance_needs_update): if performance_needs_update: self.update_performance() self.account_needs_update = True if self.account_needs_update: self._update_account() return self._account def _update_account(self): self._account = self.cumulative_performance.as_account() self.account_needs_update = False def to_dict(self, emission_type=None): """ Creates a dictionary representing the state of this tracker. Returns a dict object of the form described in header comments. """ # Default to the emission rate of this tracker if no type is provided if emission_type is None: emission_type = self.emission_rate _dict = { 'period_start': self.period_start, 'period_end': self.period_end, 'capital_base': self.capital_base, 'cumulative_perf': self.cumulative_performance.to_dict(), 'progress': self.progress, 'cumulative_risk_metrics': self.cumulative_risk_metrics.to_dict() } if emission_type == 'daily': _dict['daily_perf'] = self.todays_performance.to_dict() elif emission_type == 'minute': _dict['minute_perf'] = self.todays_performance.to_dict( self.saved_dt) else: raise ValueError("Invalid emission type: %s" % emission_type) return _dict def prepare_capital_change(self, is_interday): self.cumulative_performance.initialize_subperiod_divider() if not is_interday: # Change comes in the middle of day self.todays_performance.initialize_subperiod_divider() def process_capital_change(self, capital_change_amount, is_interday): self.cumulative_performance.set_current_subperiod_starting_values( capital_change_amount) if is_interday: # Change comes between days self.todays_performance.adjust_period_starting_capital( capital_change_amount) else: # Change comes in the middle of day self.todays_performance.set_current_subperiod_starting_values( capital_change_amount) def process_transaction(self, transaction): self.txn_count += 1 self.cumulative_performance.handle_execution(transaction) self.todays_performance.handle_execution(transaction) self.position_tracker.execute_transaction(transaction) def handle_splits(self, splits): leftover_cash = self.position_tracker.handle_splits(splits) if leftover_cash > 0: self.cumulative_performance.handle_cash_payment(leftover_cash) self.todays_performance.handle_cash_payment(leftover_cash) def process_order(self, event): self.cumulative_performance.record_order(event) self.todays_performance.record_order(event) def process_commission(self, commission): asset = commission['asset'] cost = commission['cost'] self.position_tracker.handle_commission(asset, cost) self.cumulative_performance.handle_commission(cost) self.todays_performance.handle_commission(cost) def process_close_position(self, asset, dt, data_portal): txn = self.position_tracker.\ maybe_create_close_position_transaction(asset, dt, data_portal) if txn: self.process_transaction(txn) def check_upcoming_dividends(self, next_session, adjustment_reader): """ Check if we currently own any stocks with dividends whose ex_date is the next trading day. Track how much we should be payed on those dividends' pay dates. Then check if we are owed cash/stock for any dividends whose pay date is the next trading day. Apply all such benefits, then recalculate performance. """ if adjustment_reader is None: return position_tracker = self.position_tracker held_sids = set(position_tracker.positions) # Dividends whose ex_date is the next trading day. We need to check if # we own any of these stocks so we know to pay them out when the pay # date comes. if held_sids: cash_dividends = adjustment_reader.get_dividends_with_ex_date( held_sids, next_session, self.asset_finder ) stock_dividends = adjustment_reader.\ get_stock_dividends_with_ex_date( held_sids, next_session, self.asset_finder ) position_tracker.earn_dividends( cash_dividends, stock_dividends ) net_cash_payment = position_tracker.pay_dividends(next_session) if not net_cash_payment: return self.cumulative_performance.handle_dividends_paid(net_cash_payment) self.todays_performance.handle_dividends_paid(net_cash_payment) def handle_minute_close(self, dt, data_portal): """ Handles the close of the given minute in minute emission. Parameters __________ dt : Timestamp The minute that is ending Returns _______ A minute perf packet. """ self.position_tracker.sync_last_sale_prices(dt, False, data_portal) self.update_performance() todays_date = normalize_date(dt) account = self.get_account(False) bench_returns = self.all_benchmark_returns.loc[todays_date:dt] # cumulative returns bench_since_open = (1. + bench_returns).prod() - 1 self.cumulative_risk_metrics.update(todays_date, self.todays_performance.returns, bench_since_open, account.leverage) minute_packet = self.to_dict(emission_type='minute') return minute_packet def handle_market_close(self, dt, data_portal): """ Handles the close of the given day, in both minute and daily emission. In daily emission, also updates performance, benchmark and risk metrics as it would in handle_minute_close if it were minute emission. Parameters __________ dt : Timestamp The minute that is ending Returns _______ A daily perf packet. """ completed_session = self._current_session if self.emission_rate == 'daily': # this method is called for both minutely and daily emissions, but # this chunk of code here only applies for daily emissions. (since # it's done every minute, elsewhere, for minutely emission). self.position_tracker.sync_last_sale_prices(dt, False, data_portal) self.update_performance() account = self.get_account(False) benchmark_value = self.all_benchmark_returns[completed_session] self.cumulative_risk_metrics.update( completed_session, self.todays_performance.returns, benchmark_value, account.leverage) # increment the day counter before we move markers forward. self.session_count += 1.0 # Get the next trading day and, if it is past the bounds of this # simulation, return the daily perf packet try: next_session = self.trading_calendar.next_session_label( completed_session ) except NoFurtherDataError: next_session = None # Take a snapshot of our current performance to return to the # browser. daily_update = self.to_dict(emission_type='daily') # On the last day of the test, don't create tomorrow's performance # period. We may not be able to find the next trading day if we're at # the end of our historical data if self.market_close >= self.last_close: return daily_update # If the next trading day is irrelevant, then return the daily packet if (next_session is None) or (next_session >= self.last_close): return daily_update # move the market day markers forward # TODO Is this redundant with next_trading_day above? self._current_session = next_session self.market_open, self.market_close = \ self.trading_calendar.open_and_close_for_session( self._current_session ) # Roll over positions to current day. self.todays_performance.rollover() self.todays_performance.period_open = self.market_open self.todays_performance.period_close = self.market_close # Check for any dividends, then return the daily perf packet self.check_upcoming_dividends( next_session=next_session, adjustment_reader=data_portal._adjustment_reader ) return daily_update def handle_simulation_end(self): """ When the simulation is complete, run the full period risk report and send it out on the results socket. """ log_msg = "Simulated {n} trading days out of {m}." log.info(log_msg.format(n=int(self.session_count), m=self.total_session_count)) log.info("first open: {d}".format( d=self.sim_params.first_open)) log.info("last close: {d}".format( d=self.sim_params.last_close)) bms = pd.Series( index=self.cumulative_risk_metrics.cont_index, data=self.cumulative_risk_metrics.benchmark_returns_cont) ars = pd.Series( index=self.cumulative_risk_metrics.cont_index, data=self.cumulative_risk_metrics.algorithm_returns_cont) acl = self.cumulative_risk_metrics.algorithm_cumulative_leverages risk_report = risk.RiskReport( ars, self.sim_params, benchmark_returns=bms, algorithm_leverages=acl, trading_calendar=self.trading_calendar, treasury_curves=self.treasury_curves, ) return risk_report.to_dict()
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/finance/performance/tracker.py
tracker.py
from __future__ import division import logbook import numpy as np from collections import namedtuple from math import isnan from six import iteritems, itervalues from zipline.finance.performance.position import Position from zipline.finance.transaction import Transaction from zipline.utils.input_validation import expect_types import zipline.protocol as zp from zipline.assets import ( Future, Asset ) from . position import positiondict log = logbook.Logger('Performance') PositionStats = namedtuple('PositionStats', ['net_exposure', 'gross_value', 'gross_exposure', 'short_value', 'short_exposure', 'shorts_count', 'long_value', 'long_exposure', 'longs_count', 'net_value']) def calc_position_values(positions): values = [] for position in positions: if isinstance(position.asset, Future): # Futures don't have an inherent position value. values.append(0.0) else: values.append(position.last_sale_price * position.amount) return values def calc_net(values): # Returns 0.0 if there are no values. return sum(values, np.float64()) def calc_position_exposures(positions): exposures = [] for position in positions: exposure = position.amount * position.last_sale_price if isinstance(position.asset, Future): exposure *= position.asset.multiplier exposures.append(exposure) return exposures def calc_long_value(position_values): return sum(i for i in position_values if i > 0) def calc_short_value(position_values): return sum(i for i in position_values if i < 0) def calc_long_exposure(position_exposures): return sum(i for i in position_exposures if i > 0) def calc_short_exposure(position_exposures): return sum(i for i in position_exposures if i < 0) def calc_longs_count(position_exposures): return sum(1 for i in position_exposures if i > 0) def calc_shorts_count(position_exposures): return sum(1 for i in position_exposures if i < 0) def calc_gross_exposure(long_exposure, short_exposure): return long_exposure + abs(short_exposure) def calc_gross_value(long_value, short_value): return long_value + abs(short_value) class PositionTracker(object): def __init__(self, data_frequency): # asset => position object self.positions = positiondict() self._unpaid_dividends = {} self._unpaid_stock_dividends = {} self._positions_store = zp.Positions() self.data_frequency = data_frequency @expect_types(asset=Asset) def update_position(self, asset, amount=None, last_sale_price=None, last_sale_date=None, cost_basis=None): if asset not in self.positions: position = Position(asset) self.positions[asset] = position else: position = self.positions[asset] if amount is not None: position.amount = amount if last_sale_price is not None: position.last_sale_price = last_sale_price if last_sale_date is not None: position.last_sale_date = last_sale_date if cost_basis is not None: position.cost_basis = cost_basis def execute_transaction(self, txn): # Update Position # ---------------- asset = txn.asset if asset not in self.positions: position = Position(asset) self.positions[asset] = position else: position = self.positions[asset] position.update(txn) if position.amount == 0: del self.positions[asset] try: # if this position exists in our user-facing dictionary, # remove it as well. del self._positions_store[asset] except KeyError: pass @expect_types(asset=Asset) def handle_commission(self, asset, cost): # Adjust the cost basis of the stock if we own it if asset in self.positions: self.positions[asset].adjust_commission_cost_basis(asset, cost) def handle_splits(self, splits): """ Processes a list of splits by modifying any positions as needed. Parameters ---------- splits: list A list of splits. Each split is a tuple of (asset, ratio). Returns ------- int: The leftover cash from fractional sahres after modifying each position. """ total_leftover_cash = 0 for asset, ratio in splits: if asset in self.positions: # Make the position object handle the split. It returns the # leftover cash from a fractional share, if there is any. position = self.positions[asset] leftover_cash = position.handle_split(asset, ratio) total_leftover_cash += leftover_cash return total_leftover_cash def earn_dividends(self, dividends, stock_dividends): """ Given a list of dividends whose ex_dates are all the next trading day, calculate and store the cash and/or stock payments to be paid on each dividend's pay date. Parameters ---------- dividends: iterable of (asset, amount, pay_date) namedtuples stock_dividends: iterable of (asset, payment_asset, ratio, pay_date) namedtuples. """ for dividend in dividends: # Store the earned dividends so that they can be paid on the # dividends' pay_dates. div_owed = self.positions[dividend.asset].earn_dividend(dividend) try: self._unpaid_dividends[dividend.pay_date].append(div_owed) except KeyError: self._unpaid_dividends[dividend.pay_date] = [div_owed] for stock_dividend in stock_dividends: div_owed = \ self.positions[stock_dividend.asset].earn_stock_dividend( stock_dividend) try: self._unpaid_stock_dividends[stock_dividend.pay_date].\ append(div_owed) except KeyError: self._unpaid_stock_dividends[stock_dividend.pay_date] = \ [div_owed] def pay_dividends(self, next_trading_day): """ Returns a cash payment based on the dividends that should be paid out according to the accumulated bookkeeping of earned, unpaid, and stock dividends. """ net_cash_payment = 0.0 try: payments = self._unpaid_dividends[next_trading_day] # Mark these dividends as paid by dropping them from our unpaid del self._unpaid_dividends[next_trading_day] except KeyError: payments = [] # representing the fact that we're required to reimburse the owner of # the stock for any dividends paid while borrowing. for payment in payments: net_cash_payment += payment['amount'] # Add stock for any stock dividends paid. Again, the values here may # be negative in the case of short positions. try: stock_payments = self._unpaid_stock_dividends[next_trading_day] except: stock_payments = [] for stock_payment in stock_payments: payment_asset = stock_payment['payment_asset'] share_count = stock_payment['share_count'] # note we create a Position for stock dividend if we don't # already own the asset if payment_asset in self.positions: position = self.positions[payment_asset] else: position = self.positions[payment_asset] = \ Position(payment_asset) position.amount += share_count return net_cash_payment def maybe_create_close_position_transaction(self, asset, dt, data_portal): if not self.positions.get(asset): return None amount = self.positions.get(asset).amount price = data_portal.get_spot_value( asset, 'price', dt, self.data_frequency) # Get the last traded price if price is no longer available if isnan(price): price = self.positions.get(asset).last_sale_price txn = Transaction( asset=asset, amount=(-1 * amount), dt=dt, price=price, commission=0, order_id=None, ) return txn def get_positions(self): positions = self._positions_store for asset, pos in iteritems(self.positions): if pos.amount == 0: # Clear out the position if it has become empty since the last # time get_positions was called. Catching the KeyError is # faster than checking `if asset in positions`, and this can be # potentially called in a tight inner loop. try: del positions[asset] except KeyError: pass continue position = zp.Position(asset) position.amount = pos.amount position.cost_basis = pos.cost_basis position.last_sale_price = pos.last_sale_price position.last_sale_date = pos.last_sale_date # Adds the new position if we didn't have one before, or overwrite # one we have currently positions[asset] = position return positions def get_positions_list(self): positions = [] for asset, pos in iteritems(self.positions): if pos.amount != 0: positions.append(pos.to_dict()) return positions def sync_last_sale_prices(self, dt, handle_non_market_minutes, data_portal): if not handle_non_market_minutes: for asset, position in iteritems(self.positions): last_sale_price = data_portal.get_spot_value( asset, 'price', dt, self.data_frequency ) if not np.isnan(last_sale_price): position.last_sale_price = last_sale_price else: for asset, position in iteritems(self.positions): last_sale_price = data_portal.get_adjusted_value( asset, 'price', data_portal.trading_calendar.previous_minute(dt), dt, self.data_frequency ) if not np.isnan(last_sale_price): position.last_sale_price = last_sale_price def stats(self): amounts = [] last_sale_prices = [] for pos in itervalues(self.positions): amounts.append(pos.amount) last_sale_prices.append(pos.last_sale_price) position_values = calc_position_values(itervalues(self.positions)) position_exposures = calc_position_exposures( itervalues(self.positions) ) long_value = calc_long_value(position_values) short_value = calc_short_value(position_values) gross_value = calc_gross_value(long_value, short_value) long_exposure = calc_long_exposure(position_exposures) short_exposure = calc_short_exposure(position_exposures) gross_exposure = calc_gross_exposure(long_exposure, short_exposure) net_exposure = calc_net(position_exposures) longs_count = calc_longs_count(position_exposures) shorts_count = calc_shorts_count(position_exposures) net_value = calc_net(position_values) return PositionStats( long_value=long_value, gross_value=gross_value, short_value=short_value, long_exposure=long_exposure, short_exposure=short_exposure, gross_exposure=gross_exposure, net_exposure=net_exposure, longs_count=longs_count, shorts_count=shorts_count, net_value=net_value )
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/finance/performance/position_tracker.py
position_tracker.py
from __future__ import division import logbook import numpy as np from collections import namedtuple from zipline.assets import Future try: # optional cython based OrderedDict from cyordereddict import OrderedDict except ImportError: from collections import OrderedDict from six import itervalues, iteritems import zipline.protocol as zp log = logbook.Logger('Performance') TRADE_TYPE = zp.DATASOURCE_TYPE.TRADE PeriodStats = namedtuple('PeriodStats', ['net_liquidation', 'gross_leverage', 'net_leverage']) PrevSubPeriodStats = namedtuple( 'PrevSubPeriodStats', ['returns', 'pnl', 'cash_flow'] ) CurrSubPeriodStats = namedtuple( 'CurrSubPeriodStats', ['starting_value', 'starting_cash'] ) def calc_net_liquidation(ending_cash, long_value, short_value): return ending_cash + long_value + short_value def calc_leverage(exposure, net_liq): if net_liq != 0: return exposure / net_liq return np.inf def calc_period_stats(pos_stats, ending_cash): net_liq = calc_net_liquidation(ending_cash, pos_stats.long_value, pos_stats.short_value) gross_leverage = calc_leverage(pos_stats.gross_exposure, net_liq) net_leverage = calc_leverage(pos_stats.net_exposure, net_liq) return PeriodStats( net_liquidation=net_liq, gross_leverage=gross_leverage, net_leverage=net_leverage) def calc_payout(multiplier, amount, old_price, price): return (price - old_price) * multiplier * amount class PerformancePeriod(object): def __init__( self, starting_cash, data_frequency, period_open=None, period_close=None, keep_transactions=True, keep_orders=False, serialize_positions=True, name=None): self.data_frequency = data_frequency # Start and end of the entire period self.period_open = period_open self.period_close = period_close self.initialize(starting_cash=starting_cash, starting_value=0.0, starting_exposure=0.0) self.ending_value = 0.0 self.ending_exposure = 0.0 self.ending_cash = starting_cash self.subperiod_divider = None # Keyed by asset, the previous last sale price of positions with # payouts on price differences, e.g. Futures. # # This dt is not the previous minute to the minute for which the # calculation is done, but the last sale price either before the period # start, or when the price at execution. self._payout_last_sale_prices = {} self.keep_transactions = keep_transactions self.keep_orders = keep_orders self.name = name # An object to recycle via assigning new values # when returning portfolio information. # So as not to avoid creating a new object for each event self._portfolio_store = zp.Portfolio() self._account_store = zp.Account() self.serialize_positions = serialize_positions _position_tracker = None def initialize(self, starting_cash, starting_value, starting_exposure): # Performance stats for the entire period, returned externally self.pnl = 0.0 self.returns = 0.0 self.cash_flow = 0.0 self.starting_value = starting_value self.starting_exposure = starting_exposure self.starting_cash = starting_cash # The cumulative capital change occurred within the period self._total_intraperiod_capital_change = 0.0 self.processed_transactions = {} self.orders_by_modified = {} self.orders_by_id = OrderedDict() @property def position_tracker(self): return self._position_tracker @position_tracker.setter def position_tracker(self, obj): if obj is None: raise ValueError("position_tracker can not be None") self._position_tracker = obj # we only calculate perf once we inject PositionTracker self.calculate_performance() def adjust_period_starting_capital(self, capital_change): self.ending_cash += capital_change self.starting_cash += capital_change def rollover(self): # We are starting a new period self.initialize(starting_cash=self.ending_cash, starting_value=self.ending_value, starting_exposure=self.ending_exposure) self.subperiod_divider = None payout_assets = self._payout_last_sale_prices.keys() for asset in payout_assets: if asset in self._payout_last_sale_prices: self._payout_last_sale_prices[asset] = \ self.position_tracker.positions[asset].last_sale_price else: del self._payout_last_sale_prices[asset] def initialize_subperiod_divider(self): self.calculate_performance() # Initialize a subperiod divider to stash the current performance # values. Current period starting values are set to equal ending values # of the previous subperiod self.subperiod_divider = SubPeriodDivider( prev_returns=self.returns, prev_pnl=self.pnl, prev_cash_flow=self.cash_flow, curr_starting_value=self.ending_value, curr_starting_cash=self.ending_cash ) def set_current_subperiod_starting_values(self, capital_change): # Apply the capital change to the ending cash self.ending_cash += capital_change # Increment the total capital change occurred within the period self._total_intraperiod_capital_change += capital_change # Update the current subperiod starting cash to reflect the capital # change starting_value = self.subperiod_divider.curr_subperiod.starting_value self.subperiod_divider.curr_subperiod = CurrSubPeriodStats( starting_value=starting_value, starting_cash=self.ending_cash) def handle_dividends_paid(self, net_cash_payment): if net_cash_payment: self.handle_cash_payment(net_cash_payment) self.calculate_performance() def handle_cash_payment(self, payment_amount): self.adjust_cash(payment_amount) def handle_commission(self, cost): # Deduct from our total cash pool. self.adjust_cash(-cost) def adjust_cash(self, amount): self.cash_flow += amount def adjust_field(self, field, value): setattr(self, field, value) def _get_payout_total(self, positions): payouts = [] for asset, old_price in iteritems(self._payout_last_sale_prices): pos = positions[asset] amount = pos.amount payout = calc_payout( asset.multiplier, amount, old_price, pos.last_sale_price) payouts.append(payout) return sum(payouts) def calculate_performance(self): pt = self.position_tracker pos_stats = pt.stats() self.ending_value = pos_stats.net_value self.ending_exposure = pos_stats.net_exposure payout = self._get_payout_total(pt.positions) self.ending_cash = self.starting_cash + self.cash_flow + \ self._total_intraperiod_capital_change + payout total_at_end = self.ending_cash + self.ending_value # If there is a previous subperiod, the performance is calculated # from the previous and current subperiods. Otherwise, the performance # is calculated based on the start and end values of the whole period if self.subperiod_divider: starting_cash = self.subperiod_divider.curr_subperiod.starting_cash total_at_start = starting_cash + \ self.subperiod_divider.curr_subperiod.starting_value # Performance for this subperiod pnl = total_at_end - total_at_start if total_at_start != 0: returns = pnl / total_at_start else: returns = 0.0 # Performance for this whole period self.pnl = self.subperiod_divider.prev_subperiod.pnl + pnl self.returns = \ (1 + self.subperiod_divider.prev_subperiod.returns) * \ (1 + returns) - 1 else: total_at_start = self.starting_cash + self.starting_value self.pnl = total_at_end - total_at_start if total_at_start != 0: self.returns = self.pnl / total_at_start else: self.returns = 0.0 def record_order(self, order): if self.keep_orders: try: dt_orders = self.orders_by_modified[order.dt] if order.id in dt_orders: del dt_orders[order.id] except KeyError: self.orders_by_modified[order.dt] = dt_orders = OrderedDict() dt_orders[order.id] = order # to preserve the order of the orders by modified date # we delete and add back. (ordered dictionary is sorted by # first insertion date). if order.id in self.orders_by_id: del self.orders_by_id[order.id] self.orders_by_id[order.id] = order def handle_execution(self, txn): self.cash_flow += self._calculate_execution_cash_flow(txn) asset = txn.asset if isinstance(asset, Future): try: old_price = self._payout_last_sale_prices[asset] pos = self.position_tracker.positions[asset] amount = pos.amount price = txn.price cash_adj = calc_payout( asset.multiplier, amount, old_price, price) self.adjust_cash(cash_adj) if amount + txn.amount == 0: del self._payout_last_sale_prices[asset] else: self._payout_last_sale_prices[asset] = price except KeyError: self._payout_last_sale_prices[asset] = txn.price if self.keep_transactions: try: self.processed_transactions[txn.dt].append(txn) except KeyError: self.processed_transactions[txn.dt] = [txn] @staticmethod def _calculate_execution_cash_flow(txn): """ Calculates the cash flow from executing the given transaction """ if isinstance(txn.asset, Future): return 0.0 return -1 * txn.price * txn.amount # backwards compat. TODO: remove? @property def positions(self): return self.position_tracker.positions @property def position_amounts(self): return self.position_tracker.position_amounts def __core_dict(self): pos_stats = self.position_tracker.stats() period_stats = calc_period_stats(pos_stats, self.ending_cash) rval = { 'ending_value': self.ending_value, 'ending_exposure': self.ending_exposure, # this field is renamed to capital_used for backward # compatibility. 'capital_used': self.cash_flow, 'starting_value': self.starting_value, 'starting_exposure': self.starting_exposure, 'starting_cash': self.starting_cash, 'ending_cash': self.ending_cash, 'portfolio_value': self.ending_cash + self.ending_value, 'pnl': self.pnl, 'returns': self.returns, 'period_open': self.period_open, 'period_close': self.period_close, 'gross_leverage': period_stats.gross_leverage, 'net_leverage': period_stats.net_leverage, 'short_exposure': pos_stats.short_exposure, 'long_exposure': pos_stats.long_exposure, 'short_value': pos_stats.short_value, 'long_value': pos_stats.long_value, 'longs_count': pos_stats.longs_count, 'shorts_count': pos_stats.shorts_count, } return rval def to_dict(self, dt=None): """ Creates a dictionary representing the state of this performance period. See header comments for a detailed description. Kwargs: dt (datetime): If present, only return transactions for the dt. """ rval = self.__core_dict() if self.serialize_positions: positions = self.position_tracker.get_positions_list() rval['positions'] = positions # we want the key to be absent, not just empty if self.keep_transactions: if dt: # Only include transactions for given dt try: transactions = [x.to_dict() for x in self.processed_transactions[dt]] except KeyError: transactions = [] else: transactions = \ [y.to_dict() for x in itervalues(self.processed_transactions) for y in x] rval['transactions'] = transactions if self.keep_orders: if dt: # only include orders modified as of the given dt. try: orders = [x.to_dict() for x in itervalues(self.orders_by_modified[dt])] except KeyError: orders = [] else: orders = [x.to_dict() for x in itervalues(self.orders_by_id)] rval['orders'] = orders return rval def as_portfolio(self): """ The purpose of this method is to provide a portfolio object to algorithms running inside the same trading client. The data needed is captured raw in a PerformancePeriod, and in this method we rename some fields for usability and remove extraneous fields. """ # Recycles containing objects' Portfolio object # which is used for returning values. # as_portfolio is called in an inner loop, # so repeated object creation becomes too expensive portfolio = self._portfolio_store # maintaining the old name for the portfolio field for # backward compatibility portfolio.capital_used = self.cash_flow portfolio.starting_cash = self.starting_cash portfolio.portfolio_value = self.ending_cash + self.ending_value portfolio.pnl = self.pnl portfolio.returns = self.returns portfolio.cash = self.ending_cash portfolio.start_date = self.period_open portfolio.positions = self.position_tracker.get_positions() portfolio.positions_value = self.ending_value portfolio.positions_exposure = self.ending_exposure return portfolio def as_account(self): account = self._account_store pt = self.position_tracker pos_stats = pt.stats() period_stats = calc_period_stats(pos_stats, self.ending_cash) # If no attribute is found on the PerformancePeriod resort to the # following default values. If an attribute is found use the existing # value. For instance, a broker may provide updates to these # attributes. In this case we do not want to over write the broker # values with the default values. account.settled_cash = \ getattr(self, 'settled_cash', self.ending_cash) account.accrued_interest = \ getattr(self, 'accrued_interest', 0.0) account.buying_power = \ getattr(self, 'buying_power', float('inf')) account.equity_with_loan = \ getattr(self, 'equity_with_loan', self.ending_cash + self.ending_value) account.total_positions_value = \ getattr(self, 'total_positions_value', self.ending_value) account.total_positions_exposure = \ getattr(self, 'total_positions_exposure', self.ending_exposure) account.regt_equity = \ getattr(self, 'regt_equity', self.ending_cash) account.regt_margin = \ getattr(self, 'regt_margin', float('inf')) account.initial_margin_requirement = \ getattr(self, 'initial_margin_requirement', 0.0) account.maintenance_margin_requirement = \ getattr(self, 'maintenance_margin_requirement', 0.0) account.available_funds = \ getattr(self, 'available_funds', self.ending_cash) account.excess_liquidity = \ getattr(self, 'excess_liquidity', self.ending_cash) account.cushion = \ getattr(self, 'cushion', self.ending_cash / (self.ending_cash + self.ending_value)) account.day_trades_remaining = \ getattr(self, 'day_trades_remaining', float('inf')) account.leverage = getattr(self, 'leverage', period_stats.gross_leverage) account.net_leverage = getattr(self, 'net_leverage', period_stats.net_leverage) account.net_liquidation = getattr(self, 'net_liquidation', period_stats.net_liquidation) return account class SubPeriodDivider(object): """ A marker for subdividing the period at the latest intraperiod capital change. prev_subperiod and curr_subperiod hold information respective to the previous and current subperiods. """ def __init__(self, prev_returns, prev_pnl, prev_cash_flow, curr_starting_value, curr_starting_cash): self.prev_subperiod = PrevSubPeriodStats( returns=prev_returns, pnl=prev_pnl, cash_flow=prev_cash_flow) self.curr_subperiod = CurrSubPeriodStats( starting_value=curr_starting_value, starting_cash=curr_starting_cash)
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/finance/performance/period.py
period.py
from __future__ import division from math import copysign from collections import OrderedDict import numpy as np import logbook from zipline.assets import Future, Asset from zipline.utils.input_validation import expect_types log = logbook.Logger('Performance') class Position(object): @expect_types(asset=Asset) def __init__(self, asset, amount=0, cost_basis=0.0, last_sale_price=0.0, last_sale_date=None): self.asset = asset self.amount = amount self.cost_basis = cost_basis # per share self.last_sale_price = last_sale_price self.last_sale_date = last_sale_date def earn_dividend(self, dividend): """ Register the number of shares we held at this dividend's ex date so that we can pay out the correct amount on the dividend's pay date. """ return { 'amount': self.amount * dividend.amount } def earn_stock_dividend(self, stock_dividend): """ Register the number of shares we held at this dividend's ex date so that we can pay out the correct amount on the dividend's pay date. """ return { 'payment_asset': stock_dividend.payment_asset, 'share_count': np.floor( self.amount * float(stock_dividend.ratio) ) } @expect_types(asset=Asset) def handle_split(self, asset, ratio): """ Update the position by the split ratio, and return the resulting fractional share that will be converted into cash. Returns the unused cash. """ if self.asset != asset: raise Exception("updating split with the wrong asset!") # adjust the # of shares by the ratio # (if we had 100 shares, and the ratio is 3, # we now have 33 shares) # (old_share_count / ratio = new_share_count) # (old_price * ratio = new_price) # e.g., 33.333 raw_share_count = self.amount / float(ratio) # e.g., 33 full_share_count = np.floor(raw_share_count) # e.g., 0.333 fractional_share_count = raw_share_count - full_share_count # adjust the cost basis to the nearest cent, e.g., 60.0 new_cost_basis = round(self.cost_basis * ratio, 2) self.cost_basis = new_cost_basis self.amount = full_share_count return_cash = round(float(fractional_share_count * new_cost_basis), 2) log.info("after split: " + str(self)) log.info("returning cash: " + str(return_cash)) # return the leftover cash, which will be converted into cash # (rounded to the nearest cent) return return_cash def update(self, txn): if self.asset != txn.asset: raise Exception('updating position with txn for a ' 'different asset') total_shares = self.amount + txn.amount if total_shares == 0: self.cost_basis = 0.0 else: prev_direction = copysign(1, self.amount) txn_direction = copysign(1, txn.amount) if prev_direction != txn_direction: # we're covering a short or closing a position if abs(txn.amount) > abs(self.amount): # we've closed the position and gone short # or covered the short position and gone long self.cost_basis = txn.price else: prev_cost = self.cost_basis * self.amount txn_cost = txn.amount * txn.price total_cost = prev_cost + txn_cost self.cost_basis = total_cost / total_shares # Update the last sale price if txn is # best data we have so far if self.last_sale_date is None or txn.dt > self.last_sale_date: self.last_sale_price = txn.price self.last_sale_date = txn.dt self.amount = total_shares @expect_types(asset=Asset) def adjust_commission_cost_basis(self, asset, cost): """ A note about cost-basis in zipline: all positions are considered to share a cost basis, even if they were executed in different transactions with different commission costs, different prices, etc. Due to limitations about how zipline handles positions, zipline will currently spread an externally-delivered commission charge across all shares in a position. """ if asset != self.asset: raise Exception('Updating a commission for a different asset?') if cost == 0.0: return # If we no longer hold this position, there is no cost basis to # adjust. if self.amount == 0: return prev_cost = self.cost_basis * self.amount if isinstance(asset, Future): cost_to_use = cost / asset.multiplier else: cost_to_use = cost new_cost = prev_cost + cost_to_use self.cost_basis = new_cost / self.amount def __repr__(self): template = "asset: {asset}, amount: {amount}, cost_basis: {cost_basis}, \ last_sale_price: {last_sale_price}" return template.format( asset=self.asset, amount=self.amount, cost_basis=self.cost_basis, last_sale_price=self.last_sale_price ) def to_dict(self): """ Creates a dictionary representing the state of this position. Returns a dict object of the form: """ return { 'sid': self.asset, 'amount': self.amount, 'cost_basis': self.cost_basis, 'last_sale_price': self.last_sale_price } class positiondict(OrderedDict): def __missing__(self, key): return None
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/finance/performance/position.py
position.py
from textwrap import dedent from numpy import ( bool_, dtype, float32, float64, int32, int64, int16, uint16, ndarray, uint32, uint8, ) from zipline.errors import ( WindowLengthNotPositive, WindowLengthTooLong, ) from zipline.lib.labelarray import LabelArray from zipline.utils.numpy_utils import ( datetime64ns_dtype, float64_dtype, int64_dtype, uint8_dtype, ) from zipline.utils.memoize import lazyval # These class names are all the same because of our bootleg templating system. from ._float64window import AdjustedArrayWindow as Float64Window from ._int64window import AdjustedArrayWindow as Int64Window from ._labelwindow import AdjustedArrayWindow as LabelWindow from ._uint8window import AdjustedArrayWindow as UInt8Window NOMASK = None BOOL_DTYPES = frozenset( map(dtype, [bool_]), ) FLOAT_DTYPES = frozenset( map(dtype, [float32, float64]), ) INT_DTYPES = frozenset( # NOTE: uint64 not supported because it can't be safely cast to int64. map(dtype, [int16, uint16, int32, int64, uint32]), ) DATETIME_DTYPES = frozenset( map(dtype, ['datetime64[ns]', 'datetime64[D]']), ) # We use object arrays for strings. OBJECT_DTYPES = frozenset(map(dtype, ['O'])) STRING_KINDS = frozenset(['S', 'U']) REPRESENTABLE_DTYPES = BOOL_DTYPES.union( FLOAT_DTYPES, INT_DTYPES, DATETIME_DTYPES, OBJECT_DTYPES, ) def can_represent_dtype(dtype): """ Can we build an AdjustedArray for a baseline of `dtype``? """ return dtype in REPRESENTABLE_DTYPES or dtype.kind in STRING_KINDS def is_categorical(dtype): """ Do we represent this dtype with LabelArrays rather than ndarrays? """ return dtype in OBJECT_DTYPES or dtype.kind in STRING_KINDS CONCRETE_WINDOW_TYPES = { float64_dtype: Float64Window, int64_dtype: Int64Window, uint8_dtype: UInt8Window, } def _normalize_array(data, missing_value): """ Coerce buffer data for an AdjustedArray into a standard scalar representation, returning the coerced array and a dict of argument to pass to np.view to use when providing a user-facing view of the underlying data. - float* data is coerced to float64 with viewtype float64. - int32, int64, and uint32 are converted to int64 with viewtype int64. - datetime[*] data is coerced to int64 with a viewtype of datetime64[ns]. - bool_ data is coerced to uint8 with a viewtype of bool_. Parameters ---------- data : np.ndarray Returns ------- coerced, view_kwargs : (np.ndarray, np.dtype) """ if isinstance(data, LabelArray): return data, {} data_dtype = data.dtype if data_dtype == bool_: return data.astype(uint8), {'dtype': dtype(bool_)} elif data_dtype in FLOAT_DTYPES: return data.astype(float64), {'dtype': dtype(float64)} elif data_dtype in INT_DTYPES: return data.astype(int64), {'dtype': dtype(int64)} elif is_categorical(data_dtype): if not isinstance(missing_value, LabelArray.SUPPORTED_SCALAR_TYPES): raise TypeError( "Invalid missing_value for categorical array.\n" "Expected None, bytes or unicode. Got %r." % missing_value, ) return LabelArray(data, missing_value), {} elif data_dtype.kind == 'M': try: outarray = data.astype('datetime64[ns]').view('int64') return outarray, {'dtype': datetime64ns_dtype} except OverflowError: raise ValueError( "AdjustedArray received a datetime array " "not representable as datetime64[ns].\n" "Min Date: %s\n" "Max Date: %s\n" % (data.min(), data.max()) ) else: raise TypeError( "Don't know how to construct AdjustedArray " "on data of type %s." % data_dtype ) class AdjustedArray(object): """ An array that can be iterated with a variable-length window, and which can provide different views on data from different perspectives. Parameters ---------- data : np.ndarray The baseline data values. mask : np.ndarray[bool] A mask indicating the locations of missing data. adjustments : dict[int -> list[Adjustment]] A dict mapping row indices to lists of adjustments to apply when we reach that row. missing_value : object A value to use to fill missing data in yielded windows. Should be a value coercible to `data.dtype`. """ __slots__ = ( '_data', '_view_kwargs', 'adjustments', 'missing_value', '__weakref__', ) def __init__(self, data, mask, adjustments, missing_value): self._data, self._view_kwargs = _normalize_array(data, missing_value) self.adjustments = adjustments self.missing_value = missing_value if mask is not NOMASK: if mask.dtype != bool_: raise ValueError("Mask must be a bool array.") if data.shape != mask.shape: raise ValueError( "Mask shape %s != data shape %s." % (mask.shape, data.shape), ) self._data[~mask] = self.missing_value @lazyval def data(self): """ The data stored in this array. """ return self._data.view(**self._view_kwargs) @lazyval def dtype(self): """ The dtype of the data stored in this array. """ return self._view_kwargs.get('dtype') or self._data.dtype @lazyval def _iterator_type(self): """ The iterator produced when `traverse` is called on this Array. """ if isinstance(self._data, LabelArray): return LabelWindow return CONCRETE_WINDOW_TYPES[self._data.dtype] def traverse(self, window_length, offset=0, perspective_offset=0): """ Produce an iterator rolling windows rows over our data. Each emitted window will have `window_length` rows. Parameters ---------- window_length : int The number of rows in each emitted window. offset : int, optional Number of rows to skip before the first window. Default is 0. perspective_offset : int, optional Number of rows past the end of the current window from which to "view" the underlying data. """ data = self._data.copy() _check_window_params(data, window_length) return self._iterator_type( data, self._view_kwargs, self.adjustments, offset, window_length, perspective_offset, rounding_places=None, ) def inspect(self): """ Return a string representation of the data stored in this array. """ return dedent( """\ Adjusted Array ({dtype}): Data: {data!r} Adjustments: {adjustments} """ ).format( dtype=self.dtype.name, data=self.data, adjustments=self.adjustments, ) def ensure_adjusted_array(ndarray_or_adjusted_array, missing_value): if isinstance(ndarray_or_adjusted_array, AdjustedArray): return ndarray_or_adjusted_array elif isinstance(ndarray_or_adjusted_array, ndarray): return AdjustedArray( ndarray_or_adjusted_array, NOMASK, {}, missing_value, ) else: raise TypeError( "Can't convert %s to AdjustedArray" % type(ndarray_or_adjusted_array).__name__ ) def ensure_ndarray(ndarray_or_adjusted_array): """ Return the input as a numpy ndarray. This is a no-op if the input is already an ndarray. If the input is an adjusted_array, this extracts a read-only view of its internal data buffer. Parameters ---------- ndarray_or_adjusted_array : numpy.ndarray | zipline.data.adjusted_array Returns ------- out : The input, converted to an ndarray. """ if isinstance(ndarray_or_adjusted_array, ndarray): return ndarray_or_adjusted_array elif isinstance(ndarray_or_adjusted_array, AdjustedArray): return ndarray_or_adjusted_array.data else: raise TypeError( "Can't convert %s to ndarray" % type(ndarray_or_adjusted_array).__name__ ) def _check_window_params(data, window_length): """ Check that a window of length `window_length` is well-defined on `data`. Parameters ---------- data : np.ndarray[ndim=2] The array of data to check. window_length : int Length of the desired window. Returns ------- None Raises ------ WindowLengthNotPositive If window_length < 1. WindowLengthTooLong If window_length is greater than the number of rows in `data`. """ if window_length < 1: raise WindowLengthNotPositive(window_length=window_length) if window_length > data.shape[0]: raise WindowLengthTooLong( nrows=data.shape[0], window_length=window_length, )
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/lib/adjusted_array.py
adjusted_array.py
from functools import partial from operator import eq, ne import re import numpy as np from numpy import ndarray import pandas as pd from toolz import compose from zipline.utils.compat import unicode from zipline.utils.preprocess import preprocess from zipline.utils.sentinel import sentinel from zipline.utils.input_validation import ( coerce, expect_kinds, expect_types, optional, ) from zipline.utils.numpy_utils import ( bool_dtype, unsigned_int_dtype_with_size_in_bytes, is_object, ) from zipline.utils.pandas_utils import ignore_pandas_nan_categorical_warning from ._factorize import ( factorize_strings, factorize_strings_known_categories, ) def compare_arrays(left, right): "Eq check with a short-circuit for identical objects." return ( left is right or ((left.shape == right.shape) and (left == right).all()) ) def _make_unsupported_method(name): def method(*args, **kwargs): raise NotImplementedError( "Method %s is not supported on LabelArrays." % name ) method.__name__ = name method.__doc__ = "Unsupported LabelArray Method: %s" % name return method class MissingValueMismatch(ValueError): """ Error raised on attempt to perform operations between LabelArrays with mismatched missing_values. """ def __init__(self, left, right): super(MissingValueMismatch, self).__init__( "LabelArray missing_values don't match:" " left={}, right={}".format(left, right) ) class CategoryMismatch(ValueError): """ Error raised on attempt to perform operations between LabelArrays with mismatched category arrays. """ def __init__(self, left, right): (mismatches,) = np.where(left != right) assert len(mismatches), "Not actually a mismatch!" super(CategoryMismatch, self).__init__( "LabelArray categories don't match:\n" "Mismatched Indices: {mismatches}\n" "Left: {left}\n" "Right: {right}".format( mismatches=mismatches, left=left[mismatches], right=right[mismatches], ) ) _NotPassed = sentinel('_NotPassed') class LabelArray(ndarray): """ An ndarray subclass for working with arrays of strings. Factorizes the input array into integers, but overloads equality on strings to check against the factor label. Parameters ---------- values : array-like Array of values that can be passed to np.asarray with dtype=object. missing_value : str Scalar value to treat as 'missing' for operations on ``self``. categories : list[str], optional List of values to use as categories. If not supplied, categories will be inferred as the unique set of entries in ``values``. sort : bool, optional Whether to sort categories. If sort is False and categories is supplied, they are left in the order provided. If sort is False and categories is None, categories will be constructed in a random order. Attributes ---------- categories : ndarray[str] An array containing the unique labels of self. reverse_categories : dict[str -> int] Reverse lookup table for ``categories``. Stores the index in ``categories`` at which each entry each unique entry is found. missing_value : str or None A sentinel missing value with NaN semantics for comparisons. Notes ----- Consumers should be cautious when passing instances of LabelArray to numpy functions. We attempt to disallow as many meaningless operations as possible, but since a LabelArray is just an ndarray of ints with some additional metadata, many numpy functions (for example, trigonometric) will happily accept a LabelArray and treat its values as though they were integers. In a future change, we may be able to disallow more numerical operations by creating a wrapper dtype which doesn't register an implementation for most numpy ufuncs. Until that change is made, consumers of LabelArray should assume that it is undefined behavior to pass a LabelArray to any numpy ufunc that operates on semantically-numerical data. See Also -------- http://docs.scipy.org/doc/numpy-1.10.0/user/basics.subclassing.html """ SUPPORTED_SCALAR_TYPES = (bytes, unicode, type(None)) @preprocess( values=coerce(list, partial(np.asarray, dtype=object)), categories=coerce(np.ndarray, list), ) @expect_types( values=np.ndarray, missing_value=SUPPORTED_SCALAR_TYPES, categories=optional(list), ) @expect_kinds(values=("O", "S", "U")) def __new__(cls, values, missing_value, categories=None, sort=True): # Numpy's fixed-width string types aren't very efficient. Working with # object arrays is faster than bytes or unicode arrays in almost all # cases. if not is_object(values): values = values.astype(object) if categories is None: codes, categories, reverse_categories = factorize_strings( values.ravel(), missing_value=missing_value, sort=sort, ) else: codes, categories, reverse_categories = ( factorize_strings_known_categories( values.ravel(), categories=categories, missing_value=missing_value, sort=sort, ) ) categories.setflags(write=False) return cls.from_codes_and_metadata( codes=codes.reshape(values.shape), categories=categories, reverse_categories=reverse_categories, missing_value=missing_value, ) @classmethod def from_codes_and_metadata(cls, codes, categories, reverse_categories, missing_value): """ Rehydrate a LabelArray from the codes and metadata. Parameters ---------- codes : np.ndarray[integral] The codes for the label array. categories : np.ndarray[object] The unique string categories. reverse_categories : dict[str, int] The mapping from category to its code-index. missing_value : any The value used to represent missing data. """ ret = codes.view(type=cls, dtype=np.void) ret._categories = categories ret._reverse_categories = reverse_categories ret._missing_value = missing_value return ret @classmethod def from_categorical(cls, categorical, missing_value=None): """ Create a LabelArray from a pandas categorical. Parameters ---------- categorical : pd.Categorical The categorical object to convert. missing_value : bytes, unicode, or None, optional The missing value to use for this LabelArray. Returns ------- la : LabelArray The LabelArray representation of this categorical. """ return LabelArray( categorical, missing_value, categorical.categories, ) @property def categories(self): # This is a property because it should be immutable. return self._categories @property def reverse_categories(self): # This is a property because it should be immutable. return self._reverse_categories @property def missing_value(self): # This is a property because it should be immutable. return self._missing_value @property def missing_value_code(self): return self.reverse_categories[self.missing_value] def has_label(self, value): return value in self.reverse_categories def __array_finalize__(self, obj): """ Called by Numpy after array construction. There are three cases where this can happen: 1. Someone tries to directly construct a new array by doing:: >>> ndarray.__new__(LabelArray, ...) # doctest: +SKIP In this case, obj will be None. We treat this as an error case and fail. 2. Someone (most likely our own __new__) does:: >>> other_array.view(type=LabelArray) # doctest: +SKIP In this case, `self` will be the new LabelArray instance, and ``obj` will be the array on which ``view`` is being called. The caller of ``obj.view`` is responsible for setting category metadata on ``self`` after we exit. 3. Someone creates a new LabelArray by slicing an existing one. In this case, ``obj`` will be the original LabelArray. We're responsible for copying over the parent array's category metadata. """ if obj is None: raise TypeError( "Direct construction of LabelArrays is not supported." ) # See docstring for an explanation of when these will or will not be # set. self._categories = getattr(obj, 'categories', None) self._reverse_categories = getattr(obj, 'reverse_categories', None) self._missing_value = getattr(obj, 'missing_value', None) def as_int_array(self): """ Convert self into a regular ndarray of ints. This is an O(1) operation. It does not copy the underlying data. """ return self.view( type=ndarray, dtype=unsigned_int_dtype_with_size_in_bytes(self.itemsize), ) def as_string_array(self): """ Convert self back into an array of strings. This is an O(N) operation. """ return self.categories[self.as_int_array()] def as_categorical(self, name=None): """ Coerce self into a pandas categorical. This is only defined on 1D arrays, since that's all pandas supports. """ if len(self.shape) > 1: raise ValueError("Can't convert a 2D array to a categorical.") with ignore_pandas_nan_categorical_warning(): return pd.Categorical.from_codes( self.as_int_array(), # We need to make a copy because pandas >= 0.17 fails if this # buffer isn't writeable. self.categories.copy(), ordered=False, name=name, ) def as_categorical_frame(self, index, columns, name=None): """ Coerce self into a pandas DataFrame of Categoricals. """ if len(self.shape) != 2: raise ValueError( "Can't convert a non-2D LabelArray into a DataFrame." ) expected_shape = (len(index), len(columns)) if expected_shape != self.shape: raise ValueError( "Can't construct a DataFrame with provided indices:\n\n" "LabelArray shape is {actual}, but index and columns imply " "that shape should be {expected}.".format( actual=self.shape, expected=expected_shape, ) ) return pd.Series( index=pd.MultiIndex.from_product([index, columns]), data=self.ravel().as_categorical(name=name), ).unstack() def __setitem__(self, indexer, value): self_categories = self.categories if isinstance(value, LabelArray): value_categories = value.categories if compare_arrays(self_categories, value_categories): return super(LabelArray, self).__setitem__(indexer, value) else: raise CategoryMismatch(self_categories, value_categories) elif isinstance(value, self.SUPPORTED_SCALAR_TYPES): value_code = self.reverse_categories.get(value, -1) if value_code < 0: raise ValueError("%r is not in LabelArray categories." % value) self.as_int_array()[indexer] = value_code else: raise NotImplementedError( "Setting into a LabelArray with a value of " "type {type} is not yet supported.".format( type=type(value).__name__, ), ) def __setslice__(self, i, j, sequence): """ This method was deprecated in Python 2.0. It predates slice objects, but Python 2.7.11 still uses it if you implement it, which ndarray does. In newer Pythons, __setitem__ is always called, but we need to manuallly forward in py2. """ self.__setitem__(slice(i, j), sequence) def __getitem__(self, indexer): result = super(LabelArray, self).__getitem__(indexer) if result.ndim: # Result is still a LabelArray, so we can just return it. return result # Result is a scalar value, which will be an instance of np.void. # Map it back to one of our category entries. index = result.view( unsigned_int_dtype_with_size_in_bytes(self.itemsize), ) return self.categories[index] def is_missing(self): """ Like isnan, but checks for locations where we store missing values. """ return ( self.as_int_array() == self.reverse_categories[self.missing_value] ) def not_missing(self): """ Like ~isnan, but checks for locations where we store missing values. """ return ( self.as_int_array() != self.reverse_categories[self.missing_value] ) def _equality_check(op): """ Shared code for __eq__ and __ne__, parameterized on the actual comparison operator to use. """ def method(self, other): if isinstance(other, LabelArray): self_mv = self.missing_value other_mv = other.missing_value if self_mv != other_mv: raise MissingValueMismatch(self_mv, other_mv) self_categories = self.categories other_categories = other.categories if not compare_arrays(self_categories, other_categories): raise CategoryMismatch(self_categories, other_categories) return ( op(self.as_int_array(), other.as_int_array()) & self.not_missing() & other.not_missing() ) elif isinstance(other, ndarray): # Compare to ndarrays as though we were an array of strings. # This is fairly expensive, and should generally be avoided. return op(self.as_string_array(), other) & self.not_missing() elif isinstance(other, self.SUPPORTED_SCALAR_TYPES): i = self._reverse_categories.get(other, -1) return op(self.as_int_array(), i) & self.not_missing() return op(super(LabelArray, self), other) return method __eq__ = _equality_check(eq) __ne__ = _equality_check(ne) del _equality_check def view(self, dtype=_NotPassed, type=_NotPassed): if type is _NotPassed and dtype not in (_NotPassed, self.dtype): raise TypeError("Can't view LabelArray as another dtype.") # The text signature on ndarray.view makes it look like the default # values for dtype and type are `None`, but passing None explicitly has # different semantics than not passing an arg at all, so we reconstruct # the kwargs dict here to simulate the args not being passed at all. kwargs = {} if dtype is not _NotPassed: kwargs['dtype'] = dtype if type is not _NotPassed: kwargs['type'] = type return super(LabelArray, self).view(**kwargs) # In general, we support resizing, slicing, and reshaping methods, but not # numeric methods. SUPPORTED_NDARRAY_METHODS = frozenset([ 'base', 'compress', 'copy', 'data', 'diagonal', 'dtype', 'flat', 'flatten', 'item', 'itemset', 'itemsize', 'nbytes', 'ndim', 'ravel', 'repeat', 'reshape', 'resize', 'setflags', 'shape', 'size', 'squeeze', 'strides', 'swapaxes', 'take', 'trace', 'transpose', 'view' ]) PUBLIC_NDARRAY_METHODS = frozenset([ s for s in dir(ndarray) if not s.startswith('_') ]) # Generate failing wrappers for all unsupported methods. locals().update( { method: _make_unsupported_method(method) for method in PUBLIC_NDARRAY_METHODS - SUPPORTED_NDARRAY_METHODS } ) def __repr__(self): repr_lines = repr(self.as_string_array()).splitlines() repr_lines[0] = repr_lines[0].replace('array(', 'LabelArray(', 1) repr_lines[-1] = repr_lines[-1].rsplit(',', 1)[0] + ')' # The extra spaces here account for the difference in length between # 'array(' and 'LabelArray('. return '\n '.join(repr_lines) def empty_like(self, shape): """ Make an empty LabelArray with the same categories as ``self``, filled with ``self.missing_value``. """ return type(self).from_codes_and_metadata( codes=np.full( shape, self.reverse_categories[self.missing_value], dtype=unsigned_int_dtype_with_size_in_bytes(self.itemsize), ), categories=self.categories, reverse_categories=self.reverse_categories, missing_value=self.missing_value, ) def map_predicate(self, f): """ Map a function from str -> bool element-wise over ``self``. ``f`` will be applied exactly once to each non-missing unique value in ``self``. Missing values will always return False. """ # Functions passed to this are of type str -> bool. Don't ever call # them on None, which is the only non-str value we ever store in # categories. if self.missing_value is None: def f_to_use(x): return False if x is None else f(x) else: f_to_use = f # Call f on each unique value in our categories. results = np.vectorize(f_to_use, otypes=[bool_dtype])(self.categories) # missing_value should produce False no matter what results[self.reverse_categories[self.missing_value]] = False # unpack the results form each unique value into their corresponding # locations in our indices. return results[self.as_int_array()] def startswith(self, prefix): """ Element-wise startswith. Parameters ---------- prefix : str Returns ------- matches : np.ndarray[bool] An array with the same shape as self indicating whether each element of self started with ``prefix``. """ return self.map_predicate(lambda elem: elem.startswith(prefix)) def endswith(self, suffix): """ Elementwise endswith. Parameters ---------- suffix : str Returns ------- matches : np.ndarray[bool] An array with the same shape as self indicating whether each element of self ended with ``suffix`` """ return self.map_predicate(lambda elem: elem.endswith(suffix)) def has_substring(self, substring): """ Elementwise contains. Parameters ---------- substring : str Returns ------- matches : np.ndarray[bool] An array with the same shape as self indicating whether each element of self ended with ``suffix``. """ return self.map_predicate(lambda elem: substring in elem) @preprocess(pattern=coerce(from_=(bytes, unicode), to=re.compile)) def matches(self, pattern): """ Elementwise regex match. Parameters ---------- pattern : str or compiled regex Returns ------- matches : np.ndarray[bool] An array with the same shape as self indicating whether each element of self was matched by ``pattern``. """ return self.map_predicate(compose(bool, pattern.match)) # These types all implement an O(N) __contains__, so pre-emptively # coerce to `set`. @preprocess(container=coerce((list, tuple, np.ndarray), set)) def element_of(self, container): """ Check if each element of self is an of ``container``. Parameters ---------- container : object An object implementing a __contains__ to call on each element of ``self``. Returns ------- is_contained : np.ndarray[bool] An array with the same shape as self indicating whether each element of self was an element of ``container``. """ return self.map_predicate(container.__contains__)
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/lib/labelarray.py
labelarray.py
from contextlib import contextmanager import datetime from functools import partial import inspect import re from nose.tools import ( # noqa assert_almost_equal, assert_almost_equals, assert_dict_contains_subset, assert_false, assert_greater, assert_greater_equal, assert_in, assert_is, assert_is_instance, assert_is_none, assert_is_not, assert_is_not_none, assert_less, assert_less_equal, assert_multi_line_equal, assert_not_almost_equal, assert_not_almost_equals, assert_not_equal, assert_not_equals, assert_not_in, assert_not_is_instance, assert_raises, assert_raises_regexp, assert_regexp_matches, assert_true, assert_tuple_equal, ) import numpy as np import pandas as pd from pandas.util.testing import ( assert_frame_equal, assert_panel_equal, assert_series_equal, assert_index_equal, ) from six import iteritems, viewkeys, PY2 from toolz import dissoc, keyfilter import toolz.curried.operator as op from zipline.testing.core import ensure_doctest from zipline.dispatch import dispatch from zipline.lib.adjustment import Adjustment from zipline.lib.labelarray import LabelArray from zipline.utils.functional import dzip_exact, instance from zipline.utils.math_utils import tolerant_equals @instance @ensure_doctest class wildcard(object): """An object that compares equal to any other object. This is useful when using :func:`~zipline.testing.predicates.assert_equal` with a large recursive structure and some fields to be ignored. Examples -------- >>> wildcard == 5 True >>> wildcard == 'ayy' True # reflected >>> 5 == wildcard True >>> 'ayy' == wildcard True """ @staticmethod def __eq__(other): return True @staticmethod def __ne__(other): return False def __repr__(self): return '<%s>' % type(self).__name__ __str__ = __repr__ def keywords(func): """Get the argument names of a function >>> def f(x, y=2): ... pass >>> keywords(f) ['x', 'y'] Notes ----- Taken from odo.utils """ if isinstance(func, type): return keywords(func.__init__) elif isinstance(func, partial): return keywords(func.func) return inspect.getargspec(func).args def filter_kwargs(f, kwargs): """Return a dict of valid kwargs for `f` from a subset of `kwargs` Examples -------- >>> def f(a, b=1, c=2): ... return a + b + c ... >>> raw_kwargs = dict(a=1, b=3, d=4) >>> f(**raw_kwargs) Traceback (most recent call last): ... TypeError: f() got an unexpected keyword argument 'd' >>> kwargs = filter_kwargs(f, raw_kwargs) >>> f(**kwargs) 6 Notes ----- Taken from odo.utils """ return keyfilter(op.contains(keywords(f)), kwargs) def _s(word, seq, suffix='s'): """Adds a suffix to ``word`` if some sequence has anything other than exactly one element. word : str The string to add the suffix to. seq : sequence The sequence to check the length of. suffix : str, optional. The suffix to add to ``word`` Returns ------- maybe_plural : str ``word`` with ``suffix`` added if ``len(seq) != 1``. """ return word + (suffix if len(seq) != 1 else '') def _fmt_path(path): """Format the path for final display. Parameters ---------- path : iterable of str The path to the values that are not equal. Returns ------- fmtd : str The formatted path to put into the error message. """ if not path: return '' return 'path: _' + ''.join(path) def _fmt_msg(msg): """Format the message for final display. Parameters ---------- msg : str The message to show to the user to provide additional context. returns ------- fmtd : str The formatted message to put into the error message. """ if not msg: return '' return msg + '\n' def _safe_cls_name(cls): try: return cls.__name__ except AttributeError: return repr(cls) def assert_is_subclass(subcls, cls, msg=''): """Assert that ``subcls`` is a subclass of ``cls``. Parameters ---------- subcls : type The type to check. cls : type The type to check ``subcls`` against. msg : str, optional An extra assertion message to print if this fails. """ assert issubclass(subcls, cls), ( '%s is not a subclass of %s\n%s' % ( _safe_cls_name(subcls), _safe_cls_name(cls), msg, ) ) def assert_regex(result, expected, msg=''): """Assert that ``expected`` matches the result. Parameters ---------- result : str The string to search. expected : str or compiled regex The pattern to search for in ``result``. msg : str, optional An extra assertion message to print if this fails. """ assert re.search(expected, result), ( '%s%r not found in %r' % (_fmt_msg(msg), expected, result) ) @contextmanager def assert_raises_regex(exc, pattern, msg=''): """Assert that some exception is raised in a context and that the message matches some pattern. Parameters ---------- exc : type or tuple[type] The exception type or types to expect. pattern : str or compiled regex The pattern to search for in the str of the raised exception. msg : str, optional An extra assertion message to print if this fails. """ try: yield except exc as e: assert re.search(pattern, str(e)), ( '%s%r not found in %r' % (_fmt_msg(msg), pattern, str(e)) ) else: raise AssertionError('%s%s was not raised' % (_fmt_msg(msg), exc)) @dispatch(object, object) def assert_equal(result, expected, path=(), msg='', **kwargs): """Assert that two objects are equal using the ``==`` operator. Parameters ---------- result : object The result that came from the function under test. expected : object The expected result. Raises ------ AssertionError Raised when ``result`` is not equal to ``expected``. """ assert result == expected, '%s%s != %s\n%s' % ( _fmt_msg(msg), result, expected, _fmt_path(path), ) @assert_equal.register(float, float) def assert_float_equal(result, expected, path=(), msg='', float_rtol=10e-7, float_atol=10e-7, float_equal_nan=True, **kwargs): assert tolerant_equals( result, expected, rtol=float_rtol, atol=float_atol, equal_nan=float_equal_nan, ), '%s%s != %s with rtol=%s and atol=%s%s\n%s' % ( _fmt_msg(msg), result, expected, float_rtol, float_atol, (' (with nan != nan)' if not float_equal_nan else ''), _fmt_path(path), ) def _check_sets(result, expected, msg, path, type_): """Compare two sets. This is used to check dictionary keys and sets. Parameters ---------- result : set expected : set msg : str path : tuple type : str The type of an element. For dict we use ``'key'`` and for set we use ``'element'``. """ if result != expected: if result > expected: diff = result - expected msg = 'extra %s in result: %r' % (_s(type_, diff), diff) elif result < expected: diff = expected - result msg = 'result is missing %s: %r' % (_s(type_, diff), diff) else: in_result = result - expected in_expected = expected - result msg = '%s only in result: %s\n%s only in expected: %s' % ( _s(type_, in_result), in_result, _s(type_, in_expected), in_expected, ) raise AssertionError( '%s%ss do not match\n%s' % ( _fmt_msg(msg), type_, _fmt_path(path), ), ) @assert_equal.register(dict, dict) def assert_dict_equal(result, expected, path=(), msg='', **kwargs): _check_sets( viewkeys(result), viewkeys(expected), msg, path + ('.%s()' % ('viewkeys' if PY2 else 'keys'),), 'key', ) failures = [] for k, (resultv, expectedv) in iteritems(dzip_exact(result, expected)): try: assert_equal( resultv, expectedv, path=path + ('[%r]' % k,), msg=msg, **kwargs ) except AssertionError as e: failures.append(str(e)) if failures: raise AssertionError('\n'.join(failures)) @assert_equal.register(list, list) @assert_equal.register(tuple, tuple) def assert_sequence_equal(result, expected, path=(), msg='', **kwargs): result_len = len(result) expected_len = len(expected) assert result_len == expected_len, ( '%s%s lengths do not match: %d != %d\n%s' % ( _fmt_msg(msg), type(result).__name__, result_len, expected_len, _fmt_path(path), ) ) for n, (resultv, expectedv) in enumerate(zip(result, expected)): assert_equal( resultv, expectedv, path=path + ('[%d]' % n,), msg=msg, **kwargs ) @assert_equal.register(set, set) def assert_set_equal(result, expected, path=(), msg='', **kwargs): _check_sets( result, expected, msg, path, 'element', ) @assert_equal.register(np.ndarray, np.ndarray) def assert_array_equal(result, expected, path=(), msg='', array_verbose=True, array_decimal=None, **kwargs): f = ( np.testing.assert_array_equal if array_decimal is None else partial(np.testing.assert_array_almost_equal, decimal=array_decimal) ) try: f( result, expected, verbose=array_verbose, err_msg=msg, ) except AssertionError as e: raise AssertionError('\n'.join((str(e), _fmt_path(path)))) @assert_equal.register(LabelArray, LabelArray) def assert_labelarray_equal(result, expected, path=(), **kwargs): assert_equal( result.categories, expected.categories, path=path + ('.categories',), **kwargs ) assert_equal( result.as_int_array(), expected.as_int_array(), path=path + ('.as_int_array()',), **kwargs ) def _register_assert_equal_wrapper(type_, assert_eq): """Register a new check for an ndframe object. Parameters ---------- type_ : type The class to register an ``assert_equal`` dispatch for. assert_eq : callable[type_, type_] The function which checks that if the two ndframes are equal. Returns ------- assert_ndframe_equal : callable[type_, type_] The wrapped function registered with ``assert_equal``. """ @assert_equal.register(type_, type_) def assert_ndframe_equal(result, expected, path=(), msg='', **kwargs): try: assert_eq( result, expected, **filter_kwargs(assert_eq, kwargs) ) except AssertionError as e: raise AssertionError( _fmt_msg(msg) + '\n'.join((str(e), _fmt_path(path))), ) return assert_ndframe_equal assert_frame_equal = _register_assert_equal_wrapper( pd.DataFrame, assert_frame_equal, ) assert_panel_equal = _register_assert_equal_wrapper( pd.Panel, assert_panel_equal, ) assert_series_equal = _register_assert_equal_wrapper( pd.Series, assert_series_equal, ) assert_index_equal = _register_assert_equal_wrapper( pd.Index, assert_index_equal, ) @assert_equal.register(pd.Categorical, pd.Categorical) def assert_categorical_equal(result, expected, path=(), msg='', **kwargs): assert_equal( result.categories, expected.categories, path=path + ('.categories',), msg=msg, **kwargs ) assert_equal( result.codes, expected.codes, path=path + ('.codes',), msg=msg, **kwargs ) @assert_equal.register(Adjustment, Adjustment) def assert_adjustment_equal(result, expected, path=(), **kwargs): for attr in ('first_row', 'last_row', 'first_col', 'last_col', 'value'): assert_equal( getattr(result, attr), getattr(expected, attr), path=path + ('.' + attr,), **kwargs ) @assert_equal.register( (datetime.datetime, np.datetime64), (datetime.datetime, np.datetime64), ) def assert_timestamp_and_datetime_equal(result, expected, path=(), msg='', allow_datetime_coercions=False, compare_nat_equal=True, **kwargs): """ Branch for comparing python datetime (which includes pandas Timestamp) and np.datetime64 as equal. Returns raises unless ``allow_datetime_coercions`` is passed as True. """ assert allow_datetime_coercions or type(result) == type(expected), ( "%sdatetime types (%s, %s) don't match and " "allow_datetime_coercions was not set.\n%s" % ( _fmt_msg(msg), type(result), type(expected), _fmt_path(path), ) ) result = pd.Timestamp(result) expected = pd.Timestamp(result) if compare_nat_equal and pd.isnull(result) and pd.isnull(expected): return assert_equal.dispatch(object, object)( result, expected, path=path, **kwargs ) @assert_equal.register(slice, slice) def assert_slice_equal(result, expected, path=(), msg=''): diff_start = ( ('starts are not equal: %s != %s' % (result.start, result.stop)) if result.start != expected.start else '' ) diff_stop = ( ('stops are not equal: %s != %s' % (result.stop, result.stop)) if result.stop != expected.stop else '' ) diff_step = ( ('steps are not equal: %s != %s' % (result.step, result.stop)) if result.step != expected.step else '' ) diffs = diff_start, diff_stop, diff_step assert not any(diffs), '%s%s\n%s' % ( _fmt_msg(msg), '\n'.join(filter(None, diffs)), _fmt_path(path), ) def assert_isidentical(result, expected, msg=''): assert result.isidentical(expected), ( '%s%s is not identical to %s' % (_fmt_msg(msg), result, expected) ) try: # pull the dshape cases in from datashape.util.testing import assert_dshape_equal except ImportError: pass else: assert_equal.funcs.update( dissoc(assert_dshape_equal.funcs, (object, object)), )
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/testing/predicates.py
predicates.py
from itertools import repeat import os import sqlite3 from unittest import TestCase from contextlib2 import ExitStack from logbook import NullHandler, Logger from six import with_metaclass, iteritems from toolz import flip import pandas as pd import responses from .core import ( create_daily_bar_data, create_minute_bar_data, make_simple_equity_info, tmp_asset_finder, tmp_dir, ) from ..data.data_portal import ( DataPortal, DEFAULT_MINUTE_HISTORY_PREFETCH, DEFAULT_DAILY_HISTORY_PREFETCH, ) from ..data.loader import ( get_benchmark_filename, INDEX_MAPPING, ) from ..data.minute_bars import ( BcolzMinuteBarReader, BcolzMinuteBarWriter, US_EQUITIES_MINUTES_PER_DAY, FUTURES_MINUTES_PER_DAY, ) from ..data.resample import ( minute_frame_to_session_frame, MinuteResampleSessionBarReader ) from ..data.us_equity_pricing import ( BcolzDailyBarReader, BcolzDailyBarWriter, SQLiteAdjustmentReader, SQLiteAdjustmentWriter, ) from ..finance.trading import TradingEnvironment from ..utils import factory from ..utils.classproperty import classproperty from ..utils.final import FinalMeta, final import zipline from zipline.assets import Equity, Future from zipline.finance.asset_restrictions import NoRestrictions from zipline.pipeline import SimplePipelineEngine from zipline.pipeline.data import USEquityPricing from zipline.pipeline.loaders import USEquityPricingLoader from zipline.pipeline.loaders.testing import make_seeded_random_loader from zipline.protocol import BarData from zipline.utils.calendars import ( get_calendar, register_calendar) from zipline.utils.paths import ensure_directory zipline_dir = os.path.dirname(zipline.__file__) class ZiplineTestCase(with_metaclass(FinalMeta, TestCase)): """ Shared extensions to core unittest.TestCase. Overrides the default unittest setUp/tearDown functions with versions that use ExitStack to correctly clean up resources, even in the face of exceptions that occur during setUp/setUpClass. Subclasses **should not override setUp or setUpClass**! Instead, they should implement `init_instance_fixtures` for per-test-method resources, and `init_class_fixtures` for per-class resources. Resources that need to be cleaned up should be registered using either `enter_{class,instance}_context` or `add_{class,instance}_callback}. """ _in_setup = False @final @classmethod def setUpClass(cls): # Hold a set of all the "static" attributes on the class. These are # things that are not populated after the class was created like # methods or other class level attributes. cls._static_class_attributes = set(vars(cls)) cls._class_teardown_stack = ExitStack() try: cls._base_init_fixtures_was_called = False cls.init_class_fixtures() assert cls._base_init_fixtures_was_called, ( "ZiplineTestCase.init_class_fixtures() was not called.\n" "This probably means that you overrode init_class_fixtures" " without calling super()." ) except: cls.tearDownClass() raise @classmethod def init_class_fixtures(cls): """ Override and implement this classmethod to register resources that should be created and/or torn down on a per-class basis. Subclass implementations of this should always invoke this with super() to ensure that fixture mixins work properly. """ if cls._in_setup: raise ValueError( 'Called init_class_fixtures from init_instance_fixtures.' 'Did you write super(..., self).init_class_fixtures() instead' ' of super(..., self).init_instance_fixtures()?', ) cls._base_init_fixtures_was_called = True @final @classmethod def tearDownClass(cls): # We need to get this before it's deleted by the loop. stack = cls._class_teardown_stack for name in set(vars(cls)) - cls._static_class_attributes: # Remove all of the attributes that were added after the class was # constructed. This cleans up any large test data that is class # scoped while still allowing subclasses to access class level # attributes. delattr(cls, name) stack.close() @final @classmethod def enter_class_context(cls, context_manager): """ Enter a context manager to be exited during the tearDownClass """ if cls._in_setup: raise ValueError( 'Attempted to enter a class context in init_instance_fixtures.' '\nDid you mean to call enter_instance_context?', ) return cls._class_teardown_stack.enter_context(context_manager) @final @classmethod def add_class_callback(cls, callback, *args, **kwargs): """ Register a callback to be executed during tearDownClass. Parameters ---------- callback : callable The callback to invoke at the end of the test suite. """ if cls._in_setup: raise ValueError( 'Attempted to add a class callback in init_instance_fixtures.' '\nDid you mean to call add_instance_callback?', ) return cls._class_teardown_stack.callback(callback, *args, **kwargs) @final def setUp(self): type(self)._in_setup = True self._pre_setup_attrs = set(vars(self)) self._instance_teardown_stack = ExitStack() try: self._init_instance_fixtures_was_called = False self.init_instance_fixtures() assert self._init_instance_fixtures_was_called, ( "ZiplineTestCase.init_instance_fixtures() was not" " called.\n" "This probably means that you overrode" " init_instance_fixtures without calling super()." ) except: self.tearDown() raise finally: type(self)._in_setup = False def init_instance_fixtures(self): self._init_instance_fixtures_was_called = True @final def tearDown(self): # We need to get this before it's deleted by the loop. stack = self._instance_teardown_stack for attr in set(vars(self)) - self._pre_setup_attrs: delattr(self, attr) stack.close() @final def enter_instance_context(self, context_manager): """ Enter a context manager that should be exited during tearDown. """ return self._instance_teardown_stack.enter_context(context_manager) @final def add_instance_callback(self, callback): """ Register a callback to be executed during tearDown. Parameters ---------- callback : callable The callback to invoke at the end of each test. """ return self._instance_teardown_stack.callback(callback) def alias(attr_name): """Make a fixture attribute an alias of another fixture's attribute by default. Parameters ---------- attr_name : str The name of the attribute to alias. Returns ------- p : classproperty A class property that does the property aliasing. Examples -------- >>> class C(object): ... attr = 1 ... >>> class D(C): ... attr_alias = alias('attr') ... >>> D.attr 1 >>> D.attr_alias 1 >>> class E(D): ... attr_alias = 2 ... >>> E.attr 1 >>> E.attr_alias 2 """ return classproperty(flip(getattr, attr_name)) class WithDefaultDateBounds(object): """ ZiplineTestCase mixin which makes it possible to synchronize date bounds across fixtures. This fixture should always be the last fixture in bases of any fixture or test case that uses it. Attributes ---------- START_DATE : datetime END_DATE : datetime The date bounds to be used for fixtures that want to have consistent dates. """ START_DATE = pd.Timestamp('2006-01-03', tz='utc') END_DATE = pd.Timestamp('2006-12-29', tz='utc') class WithLogger(object): """ ZiplineTestCase mixin providing cls.log_handler as an instance-level fixture. After init_instance_fixtures has been called `self.log_handler` will be a new ``logbook.NullHandler``. Methods ------- make_log_handler() -> logbook.LogHandler A class method which constructs the new log handler object. By default this will construct a ``NullHandler``. """ make_log_handler = NullHandler @classmethod def init_class_fixtures(cls): super(WithLogger, cls).init_class_fixtures() cls.log = Logger() cls.log_handler = cls.enter_class_context( cls.make_log_handler().applicationbound(), ) class WithAssetFinder(WithDefaultDateBounds): """ ZiplineTestCase mixin providing cls.asset_finder as a class-level fixture. After init_class_fixtures has been called, `cls.asset_finder` is populated with an AssetFinder. Attributes ---------- ASSET_FINDER_EQUITY_SIDS : iterable[int] The default sids to construct equity data for. ASSET_FINDER_EQUITY_SYMBOLS : iterable[str] The default symbols to use for the equities. ASSET_FINDER_EQUITY_START_DATE : datetime The default start date to create equity data for. This defaults to ``START_DATE``. ASSET_FINDER_EQUITY_END_DATE : datetime The default end date to create equity data for. This defaults to ``END_DATE``. Methods ------- make_equity_info() -> pd.DataFrame A class method which constructs the dataframe of equity info to write to the class's asset db. By default this is empty. make_futures_info() -> pd.DataFrame A class method which constructs the dataframe of futures contract info to write to the class's asset db. By default this is empty. make_exchanges_info() -> pd.DataFrame A class method which constructs the dataframe of exchange information to write to the class's assets db. By default this is empty. make_root_symbols_info() -> pd.DataFrame A class method which constructs the dataframe of root symbols information to write to the class's assets db. By default this is empty. make_asset_finder_db_url() -> string A class method which returns the URL at which to create the SQLAlchemy engine. By default provides a URL for an in-memory database. make_asset_finder() -> pd.DataFrame A class method which constructs the actual asset finder object to use for the class. If this method is overridden then the ``make_*_info`` methods may not be respected. See Also -------- zipline.testing.make_simple_equity_info zipline.testing.make_jagged_equity_info zipline.testing.make_rotating_equity_info zipline.testing.make_future_info zipline.testing.make_commodity_future_info """ ASSET_FINDER_EQUITY_SIDS = ord('A'), ord('B'), ord('C') ASSET_FINDER_EQUITY_SYMBOLS = None ASSET_FINDER_EQUITY_START_DATE = alias('START_DATE') ASSET_FINDER_EQUITY_END_DATE = alias('END_DATE') @classmethod def _make_info(cls): return None make_futures_info = _make_info make_exchanges_info = _make_info make_root_symbols_info = _make_info make_equity_supplementary_mappings = _make_info del _make_info @classmethod def make_equity_info(cls): register_calendar("TEST", get_calendar("NYSE"), force=True) return make_simple_equity_info( cls.ASSET_FINDER_EQUITY_SIDS, cls.ASSET_FINDER_EQUITY_START_DATE, cls.ASSET_FINDER_EQUITY_END_DATE, cls.ASSET_FINDER_EQUITY_SYMBOLS, ) @classmethod def make_asset_finder_db_url(cls): return 'sqlite:///:memory:' @classmethod def make_asset_finder(cls): """Returns a new AssetFinder Returns ------- asset_finder : zipline.assets.AssetFinder """ return cls.enter_class_context(tmp_asset_finder( url=cls.make_asset_finder_db_url(), equities=cls.make_equity_info(), futures=cls.make_futures_info(), exchanges=cls.make_exchanges_info(), root_symbols=cls.make_root_symbols_info(), equity_supplementary_mappings=( cls.make_equity_supplementary_mappings() ), )) @classmethod def init_class_fixtures(cls): super(WithAssetFinder, cls).init_class_fixtures() cls.asset_finder = cls.make_asset_finder() class WithTradingCalendars(object): """ ZiplineTestCase mixin providing cls.trading_calendar, cls.all_trading_calendars, cls.trading_calendar_for_asset_type as a class-level fixture. After ``init_class_fixtures`` has been called: - `cls.trading_calendar` is populated with a default of the nyse trading calendar for compatibility with existing tests - `cls.all_trading_calendars` is populated with the trading calendars keyed by name, - `cls.trading_calendar_for_asset_type` is populated with the trading calendars keyed by the asset type which uses the respective calendar. Attributes ---------- TRADING_CALENDAR_STRS : iterable iterable of identifiers of the calendars to use. TRADING_CALENDAR_FOR_ASSET_TYPE : dict A dictionary which maps asset type names to the calendar associated with that asset type. """ TRADING_CALENDAR_STRS = ('NYSE',) TRADING_CALENDAR_FOR_ASSET_TYPE = {Equity: 'NYSE', Future: 'us_futures'} TRADING_CALENDAR_FOR_EXCHANGE = {} # For backwards compatibility, exisitng tests and fixtures refer to # `trading_calendar` with the assumption that the value is the NYSE # calendar. TRADING_CALENDAR_PRIMARY_CAL = 'NYSE' @classmethod def init_class_fixtures(cls): super(WithTradingCalendars, cls).init_class_fixtures() cls.trading_calendars = {} for cal_str in ( set(cls.TRADING_CALENDAR_STRS) | {cls.TRADING_CALENDAR_PRIMARY_CAL} ): # Set name to allow aliasing. calendar = get_calendar(cal_str) setattr(cls, '{0}_calendar'.format(cal_str.lower()), calendar) cls.trading_calendars[cal_str] = calendar for asset_type, cal_str in iteritems( cls.TRADING_CALENDAR_FOR_ASSET_TYPE): calendar = get_calendar(cal_str) cls.trading_calendars[asset_type] = calendar for exchange, cal_str in iteritems(cls.TRADING_CALENDAR_FOR_EXCHANGE): register_calendar(exchange, get_calendar(cal_str)) cls.trading_calendars[exchange] = get_calendar(cal_str) cls.trading_calendar = cls.trading_calendars[ cls.TRADING_CALENDAR_PRIMARY_CAL] class WithTradingEnvironment(WithAssetFinder, WithTradingCalendars, WithDefaultDateBounds): """ ZiplineTestCase mixin providing cls.env as a class-level fixture. After ``init_class_fixtures`` has been called, `cls.env` is populated with a trading environment whose `asset_finder` is the result of `cls.make_asset_finder`. Attributes ---------- TRADING_ENV_MIN_DATE : datetime The min_date to forward to the constructed TradingEnvironment. TRADING_ENV_MAX_DATE : datetime The max date to forward to the constructed TradingEnvironment. TRADING_ENV_TRADING_CALENDAR : pd.DatetimeIndex The trading calendar to use for the class's TradingEnvironment. TRADING_ENV_FUTURE_CHAIN_PREDICATES : dict The roll predicates to apply when creating contract chains. Methods ------- make_load_function() -> callable A class method that returns the ``load`` argument to pass to the constructor of ``TradingEnvironment`` for this class. The signature for the callable returned is: ``(datetime, pd.DatetimeIndex, str) -> (pd.Series, pd.DataFrame)`` make_trading_environment() -> TradingEnvironment A class method that constructs the trading environment for the class. If this is overridden then ``make_load_function`` or the class attributes may not be respected. See Also -------- :class:`zipline.finance.trading.TradingEnvironment` """ TRADING_ENV_FUTURE_CHAIN_PREDICATES = None MARKET_DATA_DIR = os.path.join(zipline_dir, 'resources', 'market_data') @classmethod def make_load_function(cls): def load(*args, **kwargs): symbol = 'SPY' filename = get_benchmark_filename(symbol) source_path = os.path.join(cls.MARKET_DATA_DIR, filename) benchmark_returns = \ pd.Series.from_csv(source_path).tz_localize('UTC') filename = INDEX_MAPPING[symbol][1] source_path = os.path.join(cls.MARKET_DATA_DIR, filename) treasury_curves = \ pd.DataFrame.from_csv(source_path).tz_localize('UTC') # The TradingEnvironment ordinarily uses cached benchmark returns # and treasury curves data, but when running the zipline tests this # cache is not always updated to include the appropriate dates # required by both the futures and equity calendars. In order to # create more reliable and consistent data throughout the entirety # of the tests, we read static benchmark returns and treasury curve # csv files from source. If a test using the TradingEnvironment # fixture attempts to run outside of the static date range of the # csv files, raise an exception warning the user to either update # the csv files in source or to use a date range within the current # bounds. static_start_date = benchmark_returns.index[0].date() static_end_date = benchmark_returns.index[-1].date() warning_message = ( 'The TradingEnvironment fixture uses static data between ' '{static_start} and {static_end}. To use a start and end date ' 'of {given_start} and {given_end} you will have to update the ' 'files in {resource_dir} to include the missing dates.'.format( static_start=static_start_date, static_end=static_end_date, given_start=cls.START_DATE.date(), given_end=cls.END_DATE.date(), resource_dir=cls.MARKET_DATA_DIR, ) ) if cls.START_DATE.date() < static_start_date or \ cls.END_DATE.date() > static_end_date: raise AssertionError(warning_message) return benchmark_returns, treasury_curves return load @classmethod def make_trading_environment(cls): return TradingEnvironment( load=cls.make_load_function(), asset_db_path=cls.asset_finder.engine, trading_calendar=cls.trading_calendar, future_chain_predicates=cls.TRADING_ENV_FUTURE_CHAIN_PREDICATES, ) @classmethod def init_class_fixtures(cls): super(WithTradingEnvironment, cls).init_class_fixtures() cls.env = cls.make_trading_environment() class WithSimParams(WithTradingEnvironment): """ ZiplineTestCase mixin providing cls.sim_params as a class level fixture. The arguments used to construct the trading environment may be overridded by putting ``SIM_PARAMS_{argname}`` in the class dict except for the trading environment which is overridden with the mechanisms provided by ``WithTradingEnvironment``. Attributes ---------- SIM_PARAMS_YEAR : int SIM_PARAMS_CAPITAL_BASE : float SIM_PARAMS_NUM_DAYS : int SIM_PARAMS_DATA_FREQUENCY : {'daily', 'minute'} SIM_PARAMS_EMISSION_RATE : {'daily', 'minute'} Forwarded to ``factory.create_simulation_parameters``. SIM_PARAMS_START : datetime SIM_PARAMS_END : datetime Forwarded to ``factory.create_simulation_parameters``. If not explicitly overridden these will be ``START_DATE`` and ``END_DATE`` See Also -------- zipline.utils.factory.create_simulation_parameters """ SIM_PARAMS_YEAR = None SIM_PARAMS_CAPITAL_BASE = 1.0e5 SIM_PARAMS_NUM_DAYS = None SIM_PARAMS_DATA_FREQUENCY = 'daily' SIM_PARAMS_EMISSION_RATE = 'daily' SIM_PARAMS_START = alias('START_DATE') SIM_PARAMS_END = alias('END_DATE') @classmethod def make_simparams(cls): return factory.create_simulation_parameters( year=cls.SIM_PARAMS_YEAR, start=cls.SIM_PARAMS_START, end=cls.SIM_PARAMS_END, num_days=cls.SIM_PARAMS_NUM_DAYS, capital_base=cls.SIM_PARAMS_CAPITAL_BASE, data_frequency=cls.SIM_PARAMS_DATA_FREQUENCY, emission_rate=cls.SIM_PARAMS_EMISSION_RATE, trading_calendar=cls.trading_calendar, ) @classmethod def init_class_fixtures(cls): super(WithSimParams, cls).init_class_fixtures() cls.sim_params = cls.make_simparams() class WithTradingSessions(WithTradingCalendars, WithDefaultDateBounds): """ ZiplineTestCase mixin providing cls.trading_days, cls.all_trading_sessions as a class-level fixture. After init_class_fixtures has been called, `cls.all_trading_sessions` is populated with a dictionary of calendar name to the DatetimeIndex containing the calendar trading days ranging from: (DATA_MAX_DAY - (cls.TRADING_DAY_COUNT) -> DATA_MAX_DAY) `cls.trading_days`, for compatibility with existing tests which make the assumption that trading days are equity only, defaults to the nyse trading sessions. Attributes ---------- DATA_MAX_DAY : datetime The most recent trading day in the calendar. TRADING_DAY_COUNT : int The number of days to put in the calendar. The default value of ``TRADING_DAY_COUNT`` is 126 (half a trading-year). Inheritors can override TRADING_DAY_COUNT to request more or less data. """ DATA_MIN_DAY = alias('START_DATE') DATA_MAX_DAY = alias('END_DATE') # For backwards compatibility, exisitng tests and fixtures refer to # `trading_days` with the assumption that the value is days of the NYSE # calendar. trading_days = alias('nyse_sessions') @classmethod def init_class_fixtures(cls): super(WithTradingSessions, cls).init_class_fixtures() cls.trading_sessions = {} for cal_str in cls.TRADING_CALENDAR_STRS: trading_calendar = cls.trading_calendars[cal_str] sessions = trading_calendar.sessions_in_range( cls.DATA_MIN_DAY, cls.DATA_MAX_DAY) # Set name for aliasing. setattr(cls, '{0}_sessions'.format(cal_str.lower()), sessions) cls.trading_sessions[cal_str] = sessions for exchange, cal_str in iteritems(cls.TRADING_CALENDAR_FOR_EXCHANGE): trading_calendar = cls.trading_calendars[cal_str] sessions = trading_calendar.sessions_in_range( cls.DATA_MIN_DAY, cls.DATA_MAX_DAY) cls.trading_sessions[exchange] = sessions class WithTmpDir(object): """ ZiplineTestCase mixing providing cls.tmpdir as a class-level fixture. After init_class_fixtures has been called, `cls.tmpdir` is populated with a `testfixtures.TempDirectory` object whose path is `cls.TMP_DIR_PATH`. Attributes ---------- TMP_DIR_PATH : str The path to the new directory to create. By default this is None which will create a unique directory in /tmp. """ TMP_DIR_PATH = None @classmethod def init_class_fixtures(cls): super(WithTmpDir, cls).init_class_fixtures() cls.tmpdir = cls.enter_class_context( tmp_dir(path=cls.TMP_DIR_PATH), ) class WithInstanceTmpDir(object): """ ZiplineTestCase mixing providing self.tmpdir as an instance-level fixture. After init_instance_fixtures has been called, `self.tmpdir` is populated with a `testfixtures.TempDirectory` object whose path is `cls.TMP_DIR_PATH`. Attributes ---------- INSTANCE_TMP_DIR_PATH : str The path to the new directory to create. By default this is None which will create a unique directory in /tmp. """ INSTANCE_TMP_DIR_PATH = None def init_instance_fixtures(self): super(WithInstanceTmpDir, self).init_instance_fixtures() self.instance_tmpdir = self.enter_instance_context( tmp_dir(path=self.INSTANCE_TMP_DIR_PATH), ) class WithEquityDailyBarData(WithTradingEnvironment): """ ZiplineTestCase mixin providing cls.make_equity_daily_bar_data. Attributes ---------- EQUITY_DAILY_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. EQUITY_DAILY_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE : bool If this flag is set, `make_equity_daily_bar_data` will read data from the minute bars defined by `WithEquityMinuteBarData`. The current default is `False`, but could be `True` in the future. Methods ------- make_equity_daily_bar_data() -> iterable[(int, pd.DataFrame)] A class method that returns an iterator of (sid, dataframe) pairs which will be written to the bcolz files that the class's ``BcolzDailyBarReader`` will read from. By default this creates some simple sythetic data with :func:`~zipline.testing.create_daily_bar_data` See Also -------- WithEquityMinuteBarData zipline.testing.create_daily_bar_data """ EQUITY_DAILY_BAR_USE_FULL_CALENDAR = False EQUITY_DAILY_BAR_START_DATE = alias('START_DATE') EQUITY_DAILY_BAR_END_DATE = alias('END_DATE') EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE = None @classproperty def EQUITY_DAILY_BAR_LOOKBACK_DAYS(cls): # If we're sourcing from minute data, then we almost certainly want the # minute bar calendar to be aligned with the daily bar calendar, so # re-use the same lookback parameter. if cls.EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE: return cls.EQUITY_MINUTE_BAR_LOOKBACK_DAYS else: return 0 @classmethod def _make_equity_daily_bar_from_minute(cls): assert issubclass(cls, WithEquityMinuteBarData), \ "Can't source daily data from minute without minute data!" assets = cls.asset_finder.retrieve_all(cls.asset_finder.equities_sids) minute_data = dict(cls.make_equity_minute_bar_data()) for asset in assets: yield asset.sid, minute_frame_to_session_frame( minute_data[asset.sid], cls.trading_calendars[Equity]) @classmethod def make_equity_daily_bar_data(cls): # Requires a WithEquityMinuteBarData to come before in the MRO. # Resample that data so that daily and minute bar data are aligned. if cls.EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE: return cls._make_equity_daily_bar_from_minute() else: return create_daily_bar_data( cls.equity_daily_bar_days, cls.asset_finder.equities_sids, ) @classmethod def init_class_fixtures(cls): super(WithEquityDailyBarData, cls).init_class_fixtures() trading_calendar = cls.trading_calendars[Equity] if cls.EQUITY_DAILY_BAR_USE_FULL_CALENDAR: days = trading_calendar.all_sessions else: if trading_calendar.is_session(cls.EQUITY_DAILY_BAR_START_DATE): first_session = cls.EQUITY_DAILY_BAR_START_DATE else: first_session = trading_calendar.minute_to_session_label( pd.Timestamp(cls.EQUITY_DAILY_BAR_START_DATE) ) if cls.EQUITY_DAILY_BAR_LOOKBACK_DAYS > 0: first_session = trading_calendar.sessions_window( first_session, -1 * cls.EQUITY_DAILY_BAR_LOOKBACK_DAYS )[0] days = trading_calendar.sessions_in_range( first_session, cls.EQUITY_DAILY_BAR_END_DATE, ) cls.equity_daily_bar_days = days class WithBcolzEquityDailyBarReader(WithEquityDailyBarData, WithTmpDir): """ ZiplineTestCase mixin providing cls.bcolz_daily_bar_path, cls.bcolz_daily_bar_ctable, and cls.bcolz_equity_daily_bar_reader class level fixtures. After init_class_fixtures has been called: - `cls.bcolz_daily_bar_path` is populated with `cls.tmpdir.getpath(cls.BCOLZ_DAILY_BAR_PATH)`. - `cls.bcolz_daily_bar_ctable` is populated with data returned from `cls.make_equity_daily_bar_data`. By default this calls :func:`zipline.pipeline.loaders.synthetic.make_equity_daily_bar_data`. - `cls.bcolz_equity_daily_bar_reader` is a daily bar reader pointing to the directory that was just written to. Attributes ---------- BCOLZ_DAILY_BAR_PATH : str The path inside the tmpdir where this will be written. EQUITY_DAILY_BAR_LOOKBACK_DAYS : int The number of days of data to add before the first day. This is used when a test needs to use history, in which case this should be set to the largest history window that will be requested. EQUITY_DAILY_BAR_USE_FULL_CALENDAR : bool If this flag is set the ``equity_daily_bar_days`` will be the full set of trading days from the trading environment. This flag overrides ``EQUITY_DAILY_BAR_LOOKBACK_DAYS``. BCOLZ_DAILY_BAR_READ_ALL_THRESHOLD : int If this flag is set, use the value as the `read_all_threshold` parameter to BcolzDailyBarReader, otherwise use the default value. EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE : bool If this flag is set, `make_equity_daily_bar_data` will read data from the minute bar reader defined by a `WithBcolzEquityMinuteBarReader`. Methods ------- make_bcolz_daily_bar_rootdir_path() -> string A class method that returns the path for the rootdir of the daily bars ctable. By default this is a subdirectory BCOLZ_DAILY_BAR_PATH in the shared temp directory. See Also -------- WithBcolzEquityMinuteBarReader WithDataPortal zipline.testing.create_daily_bar_data """ BCOLZ_DAILY_BAR_PATH = 'daily_equity_pricing.bcolz' BCOLZ_DAILY_BAR_READ_ALL_THRESHOLD = None EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE = False # allows WithBcolzEquityDailyBarReaderFromCSVs to call the # `write_csvs`method without needing to reimplement `init_class_fixtures` _write_method_name = 'write' # What to do when data being written is invalid, e.g. nan, inf, etc. # options are: 'warn', 'raise', 'ignore' INVALID_DATA_BEHAVIOR = 'warn' @classmethod def make_bcolz_daily_bar_rootdir_path(cls): return cls.tmpdir.makedir(cls.BCOLZ_DAILY_BAR_PATH) @classmethod def init_class_fixtures(cls): super(WithBcolzEquityDailyBarReader, cls).init_class_fixtures() cls.bcolz_daily_bar_path = p = cls.make_bcolz_daily_bar_rootdir_path() days = cls.equity_daily_bar_days trading_calendar = cls.trading_calendars[Equity] cls.bcolz_daily_bar_ctable = t = getattr( BcolzDailyBarWriter(p, trading_calendar, days[0], days[-1]), cls._write_method_name, )( cls.make_equity_daily_bar_data(), invalid_data_behavior=cls.INVALID_DATA_BEHAVIOR ) if cls.BCOLZ_DAILY_BAR_READ_ALL_THRESHOLD is not None: cls.bcolz_equity_daily_bar_reader = BcolzDailyBarReader( t, cls.BCOLZ_DAILY_BAR_READ_ALL_THRESHOLD) else: cls.bcolz_equity_daily_bar_reader = BcolzDailyBarReader(t) class WithBcolzEquityDailyBarReaderFromCSVs(WithBcolzEquityDailyBarReader): """ ZiplineTestCase mixin that provides cls.bcolz_equity_daily_bar_reader from a mapping of sids to CSV file paths. """ _write_method_name = 'write_csvs' def _trading_days_for_minute_bars(calendar, start_date, end_date, lookback_days): first_session = calendar.minute_to_session_label(start_date) if lookback_days > 0: first_session = calendar.sessions_window( first_session, -1 * lookback_days )[0] return calendar.sessions_in_range(first_session, end_date) class _WithMinuteBarDataBase(WithTradingEnvironment): MINUTE_BAR_LOOKBACK_DAYS = 0 MINUTE_BAR_START_DATE = alias('START_DATE') MINUTE_BAR_END_DATE = alias('END_DATE') class WithEquityMinuteBarData(_WithMinuteBarDataBase): """ ZiplineTestCase mixin providing cls.equity_minute_bar_days. After init_class_fixtures has been called: - `cls.equity_minute_bar_days` has the range over which data has been generated. Attributes ---------- EQUITY_MINUTE_BAR_LOOKBACK_DAYS : int The number of days of data to add before the first day. This is used when a test needs to use history, in which case this should be set to the largest history window that will be requested. EQUITY_MINUTE_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. EQUITY_MINUTE_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. Methods ------- make_equity_minute_bar_data() -> iterable[(int, pd.DataFrame)] Classmethod producing an iterator of (sid, minute_data) pairs. The default implementation invokes zipline.testing.core.create_minute_bar_data. See Also -------- WithEquityDailyBarData zipline.testing.create_minute_bar_data """ EQUITY_MINUTE_BAR_LOOKBACK_DAYS = alias('MINUTE_BAR_LOOKBACK_DAYS') EQUITY_MINUTE_BAR_START_DATE = alias('MINUTE_BAR_START_DATE') EQUITY_MINUTE_BAR_END_DATE = alias('MINUTE_BAR_END_DATE') @classmethod def make_equity_minute_bar_data(cls): trading_calendar = cls.trading_calendars[Equity] return create_minute_bar_data( trading_calendar.minutes_for_sessions_in_range( cls.equity_minute_bar_days[0], cls.equity_minute_bar_days[-1], ), cls.asset_finder.equities_sids, ) @classmethod def init_class_fixtures(cls): super(WithEquityMinuteBarData, cls).init_class_fixtures() trading_calendar = cls.trading_calendars[Equity] cls.equity_minute_bar_days = _trading_days_for_minute_bars( trading_calendar, pd.Timestamp(cls.EQUITY_MINUTE_BAR_START_DATE), pd.Timestamp(cls.EQUITY_MINUTE_BAR_END_DATE), cls.EQUITY_MINUTE_BAR_LOOKBACK_DAYS ) class WithFutureMinuteBarData(_WithMinuteBarDataBase): """ ZiplineTestCase mixin providing cls.future_minute_bar_days. After init_class_fixtures has been called: - `cls.future_minute_bar_days` has the range over which data has been generated. Attributes ---------- FUTURE_MINUTE_BAR_LOOKBACK_DAYS : int The number of days of data to add before the first day. This is used when a test needs to use history, in which case this should be set to the largest history window that will be requested. FUTURE_MINUTE_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. FUTURE_MINUTE_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. Methods ------- make_future_minute_bar_data() -> iterable[(int, pd.DataFrame)] A class method that returns a dict mapping sid to dataframe which will be written to into the the format of the inherited class which writes the minute bar data for use by a reader. By default this creates some simple sythetic data with :func:`~zipline.testing.create_minute_bar_data` See Also -------- zipline.testing.create_minute_bar_data """ FUTURE_MINUTE_BAR_LOOKBACK_DAYS = alias('MINUTE_BAR_LOOKBACK_DAYS') FUTURE_MINUTE_BAR_START_DATE = alias('MINUTE_BAR_START_DATE') FUTURE_MINUTE_BAR_END_DATE = alias('MINUTE_BAR_END_DATE') @classmethod def make_future_minute_bar_data(cls): trading_calendar = get_calendar('us_futures') return create_minute_bar_data( trading_calendar.minutes_for_sessions_in_range( cls.future_minute_bar_days[0], cls.future_minute_bar_days[-1], ), cls.asset_finder.futures_sids, ) @classmethod def init_class_fixtures(cls): super(WithFutureMinuteBarData, cls).init_class_fixtures() trading_calendar = get_calendar('us_futures') cls.future_minute_bar_days = _trading_days_for_minute_bars( trading_calendar, pd.Timestamp(cls.FUTURE_MINUTE_BAR_START_DATE), pd.Timestamp(cls.FUTURE_MINUTE_BAR_END_DATE), cls.FUTURE_MINUTE_BAR_LOOKBACK_DAYS ) class WithBcolzEquityMinuteBarReader(WithEquityMinuteBarData, WithTmpDir): """ ZiplineTestCase mixin providing cls.bcolz_minute_bar_path, cls.bcolz_minute_bar_ctable, and cls.bcolz_equity_minute_bar_reader class level fixtures. After init_class_fixtures has been called: - `cls.bcolz_minute_bar_path` is populated with `cls.tmpdir.getpath(cls.BCOLZ_MINUTE_BAR_PATH)`. - `cls.bcolz_minute_bar_ctable` is populated with data returned from `cls.make_equity_minute_bar_data`. By default this calls :func:`zipline.pipeline.loaders.synthetic.make_equity_minute_bar_data`. - `cls.bcolz_equity_minute_bar_reader` is a minute bar reader pointing to the directory that was just written to. Attributes ---------- BCOLZ_MINUTE_BAR_PATH : str The path inside the tmpdir where this will be written. Methods ------- make_bcolz_minute_bar_rootdir_path() -> string A class method that returns the path for the directory that contains the minute bar ctables. By default this is a subdirectory BCOLZ_MINUTE_BAR_PATH in the shared temp directory. See Also -------- WithBcolzEquityDailyBarReader WithDataPortal zipline.testing.create_minute_bar_data """ BCOLZ_EQUITY_MINUTE_BAR_PATH = 'minute_equity_pricing' @classmethod def make_bcolz_equity_minute_bar_rootdir_path(cls): return cls.tmpdir.makedir(cls.BCOLZ_EQUITY_MINUTE_BAR_PATH) @classmethod def init_class_fixtures(cls): super(WithBcolzEquityMinuteBarReader, cls).init_class_fixtures() cls.bcolz_equity_minute_bar_path = p = \ cls.make_bcolz_equity_minute_bar_rootdir_path() days = cls.equity_minute_bar_days writer = BcolzMinuteBarWriter( p, cls.trading_calendars[Equity], days[0], days[-1], US_EQUITIES_MINUTES_PER_DAY ) writer.write(cls.make_equity_minute_bar_data()) cls.bcolz_equity_minute_bar_reader = \ BcolzMinuteBarReader(p) class WithBcolzFutureMinuteBarReader(WithFutureMinuteBarData, WithTmpDir): """ ZiplineTestCase mixin providing cls.bcolz_minute_bar_path, cls.bcolz_minute_bar_ctable, and cls.bcolz_equity_minute_bar_reader class level fixtures. After init_class_fixtures has been called: - `cls.bcolz_minute_bar_path` is populated with `cls.tmpdir.getpath(cls.BCOLZ_MINUTE_BAR_PATH)`. - `cls.bcolz_minute_bar_ctable` is populated with data returned from `cls.make_equity_minute_bar_data`. By default this calls :func:`zipline.pipeline.loaders.synthetic.make_equity_minute_bar_data`. - `cls.bcolz_equity_minute_bar_reader` is a minute bar reader pointing to the directory that was just written to. Attributes ---------- BCOLZ_FUTURE_MINUTE_BAR_PATH : str The path inside the tmpdir where this will be written. Methods ------- make_bcolz_minute_bar_rootdir_path() -> string A class method that returns the path for the directory that contains the minute bar ctables. By default this is a subdirectory BCOLZ_MINUTE_BAR_PATH in the shared temp directory. See Also -------- WithBcolzEquityDailyBarReader WithDataPortal zipline.testing.create_minute_bar_data """ BCOLZ_FUTURE_MINUTE_BAR_PATH = 'minute_future_pricing' OHLC_RATIOS_PER_SID = None @classmethod def make_bcolz_future_minute_bar_rootdir_path(cls): return cls.tmpdir.makedir(cls.BCOLZ_FUTURE_MINUTE_BAR_PATH) @classmethod def init_class_fixtures(cls): super(WithBcolzFutureMinuteBarReader, cls).init_class_fixtures() trading_calendar = get_calendar('us_futures') cls.bcolz_future_minute_bar_path = p = \ cls.make_bcolz_future_minute_bar_rootdir_path() days = cls.future_minute_bar_days writer = BcolzMinuteBarWriter( p, trading_calendar, days[0], days[-1], FUTURES_MINUTES_PER_DAY, ohlc_ratios_per_sid=cls.OHLC_RATIOS_PER_SID, ) writer.write(cls.make_future_minute_bar_data()) cls.bcolz_future_minute_bar_reader = \ BcolzMinuteBarReader(p) class WithConstantEquityMinuteBarData(WithEquityMinuteBarData): EQUITY_MINUTE_CONSTANT_LOW = 3.0 EQUITY_MINUTE_CONSTANT_OPEN = 4.0 EQUITY_MINUTE_CONSTANT_CLOSE = 5.0 EQUITY_MINUTE_CONSTANT_HIGH = 6.0 EQUITY_MINUTE_CONSTANT_VOLUME = 100.0 @classmethod def make_equity_minute_bar_data(cls): trading_calendar = cls.trading_calendars[Equity] sids = cls.asset_finder.equities_sids minutes = trading_calendar.minutes_for_sessions_in_range( cls.equity_minute_bar_days[0], cls.equity_minute_bar_days[-1], ) frame = pd.DataFrame( { 'open': cls.EQUITY_MINUTE_CONSTANT_OPEN, 'high': cls.EQUITY_MINUTE_CONSTANT_HIGH, 'low': cls.EQUITY_MINUTE_CONSTANT_LOW, 'close': cls.EQUITY_MINUTE_CONSTANT_CLOSE, 'volume': cls.EQUITY_MINUTE_CONSTANT_VOLUME, }, index=minutes, ) return ((sid, frame) for sid in sids) class WithConstantFutureMinuteBarData(WithFutureMinuteBarData): FUTURE_MINUTE_CONSTANT_LOW = 3.0 FUTURE_MINUTE_CONSTANT_OPEN = 4.0 FUTURE_MINUTE_CONSTANT_CLOSE = 5.0 FUTURE_MINUTE_CONSTANT_HIGH = 6.0 FUTURE_MINUTE_CONSTANT_VOLUME = 100.0 @classmethod def make_future_minute_bar_data(cls): trading_calendar = cls.trading_calendars[Future] sids = cls.asset_finder.futures_sids minutes = trading_calendar.minutes_for_sessions_in_range( cls.future_minute_bar_days[0], cls.future_minute_bar_days[-1], ) frame = pd.DataFrame( { 'open': cls.FUTURE_MINUTE_CONSTANT_OPEN, 'high': cls.FUTURE_MINUTE_CONSTANT_HIGH, 'low': cls.FUTURE_MINUTE_CONSTANT_LOW, 'close': cls.FUTURE_MINUTE_CONSTANT_CLOSE, 'volume': cls.FUTURE_MINUTE_CONSTANT_VOLUME, }, index=minutes, ) return ((sid, frame) for sid in sids) class WithAdjustmentReader(WithBcolzEquityDailyBarReader): """ ZiplineTestCase mixin providing cls.adjustment_reader as a class level fixture. After init_class_fixtures has been called, `cls.adjustment_reader` will be populated with a new SQLiteAdjustmentReader object. The data that will be written can be passed by overriding `make_{field}_data` where field may be `splits`, `mergers` `dividends`, or `stock_dividends`. The daily bar reader used for this adjustment reader may be customized by overriding `make_adjustment_writer_equity_daily_bar_reader`. This is useful to providing a `MockDailyBarReader`. Methods ------- make_splits_data() -> pd.DataFrame A class method that returns a dataframe of splits data to write to the class's adjustment db. By default this is empty. make_mergers_data() -> pd.DataFrame A class method that returns a dataframe of mergers data to write to the class's adjustment db. By default this is empty. make_dividends_data() -> pd.DataFrame A class method that returns a dataframe of dividends data to write to the class's adjustment db. By default this is empty. make_stock_dividends_data() -> pd.DataFrame A class method that returns a dataframe of stock dividends data to write to the class's adjustment db. By default this is empty. make_adjustment_db_conn_str() -> string A class method that returns the sqlite3 connection string for the database in to which the adjustments will be written. By default this is an in-memory database. make_adjustment_writer_equity_daily_bar_reader() -> pd.DataFrame A class method that returns the daily bar reader to use for the class's adjustment writer. By default this is the class's actual ``bcolz_equity_daily_bar_reader`` as inherited from ``WithBcolzEquityDailyBarReader``. This should probably not be overridden; however, some tests used a ``MockDailyBarReader`` for this. make_adjustment_writer(conn: sqlite3.Connection) -> AdjustmentWriter A class method that constructs the adjustment which will be used to write the data into the connection to be used by the class's adjustment reader. See Also -------- zipline.testing.MockDailyBarReader """ @classmethod def _make_data(cls): return None make_splits_data = _make_data make_mergers_data = _make_data make_dividends_data = _make_data make_stock_dividends_data = _make_data del _make_data @classmethod def make_adjustment_writer(cls, conn): return SQLiteAdjustmentWriter( conn, cls.make_adjustment_writer_equity_daily_bar_reader(), cls.equity_daily_bar_days, ) @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return cls.bcolz_equity_daily_bar_reader @classmethod def make_adjustment_db_conn_str(cls): return ':memory:' @classmethod def init_class_fixtures(cls): super(WithAdjustmentReader, cls).init_class_fixtures() conn = sqlite3.connect(cls.make_adjustment_db_conn_str()) cls.make_adjustment_writer(conn).write( splits=cls.make_splits_data(), mergers=cls.make_mergers_data(), dividends=cls.make_dividends_data(), stock_dividends=cls.make_stock_dividends_data(), ) cls.adjustment_reader = SQLiteAdjustmentReader(conn) class WithEquityPricingPipelineEngine(WithAdjustmentReader, WithTradingSessions): """ Mixin providing the following as a class-level fixtures. - cls.data_root_dir - cls.findata_dir - cls.pipeline_engine - cls.adjustments_db_path """ @classmethod def init_class_fixtures(cls): cls.data_root_dir = cls.enter_class_context(tmp_dir()) cls.findata_dir = cls.data_root_dir.makedir('findata') super(WithEquityPricingPipelineEngine, cls).init_class_fixtures() loader = USEquityPricingLoader( cls.bcolz_equity_daily_bar_reader, SQLiteAdjustmentReader(cls.adjustments_db_path), ) dispatcher = dict( zip(USEquityPricing.columns, repeat(loader)) ).__getitem__ cls.pipeline_engine = SimplePipelineEngine( get_loader=dispatcher, calendar=cls.nyse_sessions, asset_finder=cls.asset_finder, ) @classmethod def make_adjustment_db_conn_str(cls): cls.adjustments_db_path = os.path.join( cls.findata_dir, 'adjustments', cls.END_DATE.strftime("%Y-%m-%d-adjustments.db") ) ensure_directory(os.path.dirname(cls.adjustments_db_path)) return cls.adjustments_db_path class WithSeededRandomPipelineEngine(WithTradingSessions, WithAssetFinder): """ ZiplineTestCase mixin providing class-level fixtures for running pipelines against deterministically-generated random data. Attributes ---------- SEEDED_RANDOM_PIPELINE_SEED : int Fixture input. Random seed used to initialize the random state loader. seeded_random_loader : SeededRandomLoader Fixture output. Loader capable of providing columns for zipline.pipeline.data.testing.TestingDataSet. seeded_random_engine : SimplePipelineEngine Fixture output. A pipeline engine that will use seeded_random_loader as its only data provider. Methods ------- run_pipeline(start_date, end_date) Run a pipeline with self.seeded_random_engine. See Also -------- zipline.pipeline.loaders.synthetic.SeededRandomLoader zipline.pipeline.loaders.testing.make_seeded_random_loader zipline.pipeline.engine.SimplePipelineEngine """ SEEDED_RANDOM_PIPELINE_SEED = 42 @classmethod def init_class_fixtures(cls): super(WithSeededRandomPipelineEngine, cls).init_class_fixtures() cls._sids = cls.asset_finder.sids cls.seeded_random_loader = loader = make_seeded_random_loader( cls.SEEDED_RANDOM_PIPELINE_SEED, cls.trading_days, cls._sids, ) cls.seeded_random_engine = SimplePipelineEngine( get_loader=lambda column: loader, calendar=cls.trading_days, asset_finder=cls.asset_finder, ) def raw_expected_values(self, column, start_date, end_date): """ Get an array containing the raw values we expect to be produced for the given dates between start_date and end_date, inclusive. """ all_values = self.seeded_random_loader.values( column.dtype, self.trading_days, self._sids, ) row_slice = self.trading_days.slice_indexer(start_date, end_date) return all_values[row_slice] def run_pipeline(self, pipeline, start_date, end_date): """ Run a pipeline with self.seeded_random_engine. """ if start_date not in self.trading_days: raise AssertionError("Start date not in calendar: %s" % start_date) if end_date not in self.trading_days: raise AssertionError("End date not in calendar: %s" % end_date) return self.seeded_random_engine.run_pipeline( pipeline, start_date, end_date, ) class WithDataPortal(WithAdjustmentReader, # Ordered so that bcolz minute reader is used first. WithBcolzEquityMinuteBarReader, WithBcolzFutureMinuteBarReader): """ ZiplineTestCase mixin providing self.data_portal as an instance level fixture. After init_instance_fixtures has been called, `self.data_portal` will be populated with a new data portal created by passing in the class's trading env, `cls.bcolz_equity_minute_bar_reader`, `cls.bcolz_equity_daily_bar_reader`, and `cls.adjustment_reader`. Attributes ---------- DATA_PORTAL_USE_DAILY_DATA : bool Should the daily bar reader be used? Defaults to True. DATA_PORTAL_USE_MINUTE_DATA : bool Should the minute bar reader be used? Defaults to True. DATA_PORTAL_USE_ADJUSTMENTS : bool Should the adjustment reader be used? Defaults to True. Methods ------- make_data_portal() -> DataPortal Method which returns the data portal to be used for each test case. If this is overridden, the ``DATA_PORTAL_USE_*`` attributes may not be respected. """ DATA_PORTAL_USE_DAILY_DATA = True DATA_PORTAL_USE_MINUTE_DATA = True DATA_PORTAL_USE_ADJUSTMENTS = True DATA_PORTAL_FIRST_TRADING_DAY = None DATA_PORTAL_LAST_AVAILABLE_SESSION = None DATA_PORTAL_LAST_AVAILABLE_MINUTE = None DATA_PORTAL_MINUTE_HISTORY_PREFETCH = DEFAULT_MINUTE_HISTORY_PREFETCH DATA_PORTAL_DAILY_HISTORY_PREFETCH = DEFAULT_DAILY_HISTORY_PREFETCH def make_data_portal(self): if self.DATA_PORTAL_FIRST_TRADING_DAY is None: if self.DATA_PORTAL_USE_MINUTE_DATA: self.DATA_PORTAL_FIRST_TRADING_DAY = ( self.bcolz_equity_minute_bar_reader. first_trading_day) elif self.DATA_PORTAL_USE_DAILY_DATA: self.DATA_PORTAL_FIRST_TRADING_DAY = ( self.bcolz_equity_daily_bar_reader. first_trading_day) return DataPortal( self.env.asset_finder, self.trading_calendar, first_trading_day=self.DATA_PORTAL_FIRST_TRADING_DAY, equity_daily_reader=( self.bcolz_equity_daily_bar_reader if self.DATA_PORTAL_USE_DAILY_DATA else None ), equity_minute_reader=( self.bcolz_equity_minute_bar_reader if self.DATA_PORTAL_USE_MINUTE_DATA else None ), adjustment_reader=( self.adjustment_reader if self.DATA_PORTAL_USE_ADJUSTMENTS else None ), future_minute_reader=( self.bcolz_future_minute_bar_reader if self.DATA_PORTAL_USE_MINUTE_DATA else None ), future_daily_reader=( MinuteResampleSessionBarReader( self.bcolz_future_minute_bar_reader.trading_calendar, self.bcolz_future_minute_bar_reader) if self.DATA_PORTAL_USE_MINUTE_DATA else None ), last_available_session=self.DATA_PORTAL_LAST_AVAILABLE_SESSION, last_available_minute=self.DATA_PORTAL_LAST_AVAILABLE_MINUTE, minute_history_prefetch_length=self. DATA_PORTAL_MINUTE_HISTORY_PREFETCH, daily_history_prefetch_length=self. DATA_PORTAL_DAILY_HISTORY_PREFETCH, ) def init_instance_fixtures(self): super(WithDataPortal, self).init_instance_fixtures() self.data_portal = self.make_data_portal() class WithResponses(object): """ ZiplineTestCase mixin that provides self.responses as an instance fixture. After init_instance_fixtures has been called, `self.responses` will be a new `responses.RequestsMock` object. Users may add new endpoints to this with the `self.responses.add` method. """ def init_instance_fixtures(self): super(WithResponses, self).init_instance_fixtures() self.responses = self.enter_instance_context( responses.RequestsMock(), ) class WithCreateBarData(WithDataPortal): CREATE_BARDATA_DATA_FREQUENCY = 'minute' def create_bardata(self, simulation_dt_func, restrictions=None): return BarData( self.data_portal, simulation_dt_func, self.CREATE_BARDATA_DATA_FREQUENCY, self.trading_calendar, restrictions or NoRestrictions() )
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/testing/fixtures.py
fixtures.py
from abc import ABCMeta, abstractmethod, abstractproperty from contextlib import contextmanager from functools import wraps import gzip from inspect import getargspec from itertools import ( combinations, count, product, ) import operator import os from os.path import abspath, dirname, join, realpath import shutil from sys import _getframe import tempfile from logbook import TestHandler from mock import patch from nose.tools import nottest from numpy.testing import assert_allclose, assert_array_equal import pandas as pd from six import itervalues, iteritems, with_metaclass from six.moves import filter, map from sqlalchemy import create_engine from testfixtures import TempDirectory from toolz import concat, curry from zipline.assets import AssetFinder, AssetDBWriter from zipline.assets.synthetic import make_simple_equity_info from zipline.data.data_portal import DataPortal from zipline.data.loader import get_benchmark_filename, INDEX_MAPPING from zipline.data.minute_bars import ( BcolzMinuteBarReader, BcolzMinuteBarWriter, US_EQUITIES_MINUTES_PER_DAY ) from zipline.data.us_equity_pricing import ( BcolzDailyBarReader, BcolzDailyBarWriter, SQLiteAdjustmentWriter, ) from zipline.finance.blotter import Blotter from zipline.finance.trading import TradingEnvironment from zipline.finance.order import ORDER_STATUS from zipline.lib.labelarray import LabelArray from zipline.pipeline.data import USEquityPricing from zipline.pipeline.engine import SimplePipelineEngine from zipline.pipeline.factors import CustomFactor from zipline.pipeline.loaders.testing import make_seeded_random_loader from zipline.utils import security_list from zipline.utils.calendars import get_calendar from zipline.utils.input_validation import expect_dimensions from zipline.utils.numpy_utils import as_column, isnat from zipline.utils.pandas_utils import timedelta_to_integral_seconds from zipline.utils.paths import ensure_directory from zipline.utils.sentinel import sentinel import numpy as np from numpy import float64 EPOCH = pd.Timestamp(0, tz='UTC') def seconds_to_timestamp(seconds): return pd.Timestamp(seconds, unit='s', tz='UTC') def to_utc(time_str): """Convert a string in US/Eastern time to UTC""" return pd.Timestamp(time_str, tz='US/Eastern').tz_convert('UTC') def str_to_seconds(s): """ Convert a pandas-intelligible string to (integer) seconds since UTC. >>> from pandas import Timestamp >>> (Timestamp('2014-01-01') - Timestamp(0)).total_seconds() 1388534400.0 >>> str_to_seconds('2014-01-01') 1388534400 """ return timedelta_to_integral_seconds(pd.Timestamp(s, tz='UTC') - EPOCH) def drain_zipline(test, zipline): output = [] transaction_count = 0 msg_counter = 0 # start the simulation for update in zipline: msg_counter += 1 output.append(update) if 'daily_perf' in update: transaction_count += \ len(update['daily_perf']['transactions']) return output, transaction_count def check_algo_results(test, results, expected_transactions_count=None, expected_order_count=None, expected_positions_count=None, sid=None): if expected_transactions_count is not None: txns = flatten_list(results["transactions"]) test.assertEqual(expected_transactions_count, len(txns)) if expected_positions_count is not None: raise NotImplementedError if expected_order_count is not None: # de-dup orders on id, because orders are put back into perf packets # whenever they a txn is filled orders = set([order['id'] for order in flatten_list(results["orders"])]) test.assertEqual(expected_order_count, len(orders)) def flatten_list(list): return [item for sublist in list for item in sublist] def assert_single_position(test, zipline): output, transaction_count = drain_zipline(test, zipline) if 'expected_transactions' in test.zipline_test_config: test.assertEqual( test.zipline_test_config['expected_transactions'], transaction_count ) else: test.assertEqual( test.zipline_test_config['order_count'], transaction_count ) # the final message is the risk report, the second to # last is the final day's results. Positions is a list of # dicts. closing_positions = output[-2]['daily_perf']['positions'] # confirm that all orders were filled. # iterate over the output updates, overwriting # orders when they are updated. Then check the status on all. orders_by_id = {} for update in output: if 'daily_perf' in update: if 'orders' in update['daily_perf']: for order in update['daily_perf']['orders']: orders_by_id[order['id']] = order for order in itervalues(orders_by_id): test.assertEqual( order['status'], ORDER_STATUS.FILLED, "") test.assertEqual( len(closing_positions), 1, "Portfolio should have one position." ) sid = test.zipline_test_config['sid'] test.assertEqual( closing_positions[0]['sid'], sid, "Portfolio should have one position in " + str(sid) ) return output, transaction_count @contextmanager def security_list_copy(): old_dir = security_list.SECURITY_LISTS_DIR new_dir = tempfile.mkdtemp() try: for subdir in os.listdir(old_dir): shutil.copytree(os.path.join(old_dir, subdir), os.path.join(new_dir, subdir)) with patch.object(security_list, 'SECURITY_LISTS_DIR', new_dir), \ patch.object(security_list, 'using_copy', True, create=True): yield finally: shutil.rmtree(new_dir, True) def add_security_data(adds, deletes): if not hasattr(security_list, 'using_copy'): raise Exception('add_security_data must be used within ' 'security_list_copy context') directory = os.path.join( security_list.SECURITY_LISTS_DIR, "leveraged_etf_list/20150127/20150125" ) if not os.path.exists(directory): os.makedirs(directory) del_path = os.path.join(directory, "delete") with open(del_path, 'w') as f: for sym in deletes: f.write(sym) f.write('\n') add_path = os.path.join(directory, "add") with open(add_path, 'w') as f: for sym in adds: f.write(sym) f.write('\n') def all_pairs_matching_predicate(values, pred): """ Return an iterator of all pairs, (v0, v1) from values such that `pred(v0, v1) == True` Parameters ---------- values : iterable pred : function Returns ------- pairs_iterator : generator Generator yielding pairs matching `pred`. Examples -------- >>> from zipline.testing import all_pairs_matching_predicate >>> from operator import eq, lt >>> list(all_pairs_matching_predicate(range(5), eq)) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] >>> list(all_pairs_matching_predicate("abcd", lt)) [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')] """ return filter(lambda pair: pred(*pair), product(values, repeat=2)) def product_upper_triangle(values, include_diagonal=False): """ Return an iterator over pairs, (v0, v1), drawn from values. If `include_diagonal` is True, returns all pairs such that v0 <= v1. If `include_diagonal` is False, returns all pairs such that v0 < v1. """ return all_pairs_matching_predicate( values, operator.le if include_diagonal else operator.lt, ) def all_subindices(index): """ Return all valid sub-indices of a pandas Index. """ return ( index[start:stop] for start, stop in product_upper_triangle(range(len(index) + 1)) ) def chrange(start, stop): """ Construct an iterable of length-1 strings beginning with `start` and ending with `stop`. Parameters ---------- start : str The first character. stop : str The last character. Returns ------- chars: iterable[str] Iterable of strings beginning with start and ending with stop. Example ------- >>> chrange('A', 'C') ['A', 'B', 'C'] """ return list(map(chr, range(ord(start), ord(stop) + 1))) def make_trade_data_for_asset_info(dates, asset_info, price_start, price_step_by_date, price_step_by_sid, volume_start, volume_step_by_date, volume_step_by_sid, frequency, writer=None): """ Convert the asset info dataframe into a dataframe of trade data for each sid, and write to the writer if provided. Write NaNs for locations where assets did not exist. Return a dict of the dataframes, keyed by sid. """ trade_data = {} sids = asset_info.index price_sid_deltas = np.arange(len(sids), dtype=float64) * price_step_by_sid price_date_deltas = (np.arange(len(dates), dtype=float64) * price_step_by_date) prices = (price_sid_deltas + as_column(price_date_deltas)) + price_start volume_sid_deltas = np.arange(len(sids)) * volume_step_by_sid volume_date_deltas = np.arange(len(dates)) * volume_step_by_date volumes = volume_sid_deltas + as_column(volume_date_deltas) + volume_start for j, sid in enumerate(sids): start_date, end_date = asset_info.loc[sid, ['start_date', 'end_date']] # Normalize here so the we still generate non-NaN values on the minutes # for an asset's last trading day. for i, date in enumerate(dates.normalize()): if not (start_date <= date <= end_date): prices[i, j] = 0 volumes[i, j] = 0 df = pd.DataFrame( { "open": prices[:, j], "high": prices[:, j], "low": prices[:, j], "close": prices[:, j], "volume": volumes[:, j], }, index=dates, ) if writer: writer.write_sid(sid, df) trade_data[sid] = df return trade_data def check_allclose(actual, desired, rtol=1e-07, atol=0, err_msg='', verbose=True): """ Wrapper around np.testing.assert_allclose that also verifies that inputs are ndarrays. See Also -------- np.assert_allclose """ if type(actual) != type(desired): raise AssertionError("%s != %s" % (type(actual), type(desired))) return assert_allclose( actual, desired, atol=atol, rtol=rtol, err_msg=err_msg, verbose=verbose, ) def check_arrays(x, y, err_msg='', verbose=True, check_dtypes=True): """ Wrapper around np.testing.assert_array_equal that also verifies that inputs are ndarrays. See Also -------- np.assert_array_equal """ assert type(x) == type(y), "{x} != {y}".format(x=type(x), y=type(y)) assert x.dtype == y.dtype, "{x.dtype} != {y.dtype}".format(x=x, y=y) if isinstance(x, LabelArray): # Check that both arrays have missing values in the same locations... assert_array_equal( x.is_missing(), y.is_missing(), err_msg=err_msg, verbose=verbose, ) # ...then check the actual values as well. x = x.as_string_array() y = y.as_string_array() elif x.dtype.kind in 'mM': x_isnat = isnat(x) y_isnat = isnat(y) assert_array_equal( x_isnat, y_isnat, err_msg="NaTs not equal", verbose=verbose, ) # Fill NaTs with zero for comparison. x = np.where(x_isnat, np.zeros_like(x), x) y = np.where(y_isnat, np.zeros_like(y), y) return assert_array_equal(x, y, err_msg=err_msg, verbose=verbose) class UnexpectedAttributeAccess(Exception): pass class ExplodingObject(object): """ Object that will raise an exception on any attribute access. Useful for verifying that an object is never touched during a function/method call. """ def __getattribute__(self, name): raise UnexpectedAttributeAccess(name) def write_minute_data(trading_calendar, tempdir, minutes, sids): first_session = trading_calendar.minute_to_session_label( minutes[0], direction="none" ) last_session = trading_calendar.minute_to_session_label( minutes[-1], direction="none" ) sessions = trading_calendar.sessions_in_range(first_session, last_session) write_bcolz_minute_data( trading_calendar, sessions, tempdir.path, create_minute_bar_data(minutes, sids), ) return tempdir.path def create_minute_bar_data(minutes, sids): length = len(minutes) for sid_idx, sid in enumerate(sids): yield sid, pd.DataFrame( { 'open': np.arange(length) + 10 + sid_idx, 'high': np.arange(length) + 15 + sid_idx, 'low': np.arange(length) + 8 + sid_idx, 'close': np.arange(length) + 10 + sid_idx, 'volume': 100 + sid_idx, }, index=minutes, ) def create_daily_bar_data(sessions, sids): length = len(sessions) for sid_idx, sid in enumerate(sids): yield sid, pd.DataFrame( { "open": (np.array(range(10, 10 + length)) + sid_idx), "high": (np.array(range(15, 15 + length)) + sid_idx), "low": (np.array(range(8, 8 + length)) + sid_idx), "close": (np.array(range(10, 10 + length)) + sid_idx), "volume": np.array(range(100, 100 + length)) + sid_idx, "day": [session.value for session in sessions] }, index=sessions, ) def write_daily_data(tempdir, sim_params, sids, trading_calendar): path = os.path.join(tempdir.path, "testdaily.bcolz") BcolzDailyBarWriter(path, trading_calendar, sim_params.start_session, sim_params.end_session).write( create_daily_bar_data(sim_params.sessions, sids), ) return path def create_data_portal(asset_finder, tempdir, sim_params, sids, trading_calendar, adjustment_reader=None): if sim_params.data_frequency == "daily": daily_path = write_daily_data(tempdir, sim_params, sids, trading_calendar) equity_daily_reader = BcolzDailyBarReader(daily_path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_daily_reader.first_trading_day, equity_daily_reader=equity_daily_reader, adjustment_reader=adjustment_reader ) else: minutes = trading_calendar.minutes_in_range( sim_params.first_open, sim_params.last_close ) minute_path = write_minute_data(trading_calendar, tempdir, minutes, sids) equity_minute_reader = BcolzMinuteBarReader(minute_path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_minute_reader.first_trading_day, equity_minute_reader=equity_minute_reader, adjustment_reader=adjustment_reader ) def write_bcolz_minute_data(trading_calendar, days, path, data): BcolzMinuteBarWriter( path, trading_calendar, days[0], days[-1], US_EQUITIES_MINUTES_PER_DAY ).write(data) def create_minute_df_for_asset(trading_calendar, start_dt, end_dt, interval=1, start_val=1, minute_blacklist=None): asset_minutes = trading_calendar.minutes_for_sessions_in_range( start_dt, end_dt ) minutes_count = len(asset_minutes) minutes_arr = np.array(range(start_val, start_val + minutes_count)) df = pd.DataFrame( { "open": minutes_arr + 1, "high": minutes_arr + 2, "low": minutes_arr - 1, "close": minutes_arr, "volume": 100 * minutes_arr, }, index=asset_minutes, ) if interval > 1: counter = 0 while counter < len(minutes_arr): df[counter:(counter + interval - 1)] = 0 counter += interval if minute_blacklist is not None: for minute in minute_blacklist: df.loc[minute] = 0 return df def create_daily_df_for_asset(trading_calendar, start_day, end_day, interval=1): days = trading_calendar.sessions_in_range(start_day, end_day) days_count = len(days) days_arr = np.arange(days_count) + 2 df = pd.DataFrame( { "open": days_arr + 1, "high": days_arr + 2, "low": days_arr - 1, "close": days_arr, "volume": days_arr * 100, }, index=days, ) if interval > 1: # only keep every 'interval' rows for idx, _ in enumerate(days_arr): if (idx + 1) % interval != 0: df["open"].iloc[idx] = 0 df["high"].iloc[idx] = 0 df["low"].iloc[idx] = 0 df["close"].iloc[idx] = 0 df["volume"].iloc[idx] = 0 return df def trades_by_sid_to_dfs(trades_by_sid, index): for sidint, trades in iteritems(trades_by_sid): opens = [] highs = [] lows = [] closes = [] volumes = [] for trade in trades: opens.append(trade.open_price) highs.append(trade.high) lows.append(trade.low) closes.append(trade.close_price) volumes.append(trade.volume) yield sidint, pd.DataFrame( { "open": opens, "high": highs, "low": lows, "close": closes, "volume": volumes, }, index=index, ) def create_data_portal_from_trade_history(asset_finder, trading_calendar, tempdir, sim_params, trades_by_sid): if sim_params.data_frequency == "daily": path = os.path.join(tempdir.path, "testdaily.bcolz") writer = BcolzDailyBarWriter( path, trading_calendar, sim_params.start_session, sim_params.end_session ) writer.write( trades_by_sid_to_dfs(trades_by_sid, sim_params.sessions), ) equity_daily_reader = BcolzDailyBarReader(path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_daily_reader.first_trading_day, equity_daily_reader=equity_daily_reader, ) else: minutes = trading_calendar.minutes_in_range( sim_params.first_open, sim_params.last_close ) length = len(minutes) assets = {} for sidint, trades in iteritems(trades_by_sid): opens = np.zeros(length) highs = np.zeros(length) lows = np.zeros(length) closes = np.zeros(length) volumes = np.zeros(length) for trade in trades: # put them in the right place idx = minutes.searchsorted(trade.dt) opens[idx] = trade.open_price * 1000 highs[idx] = trade.high * 1000 lows[idx] = trade.low * 1000 closes[idx] = trade.close_price * 1000 volumes[idx] = trade.volume assets[sidint] = pd.DataFrame({ "open": opens, "high": highs, "low": lows, "close": closes, "volume": volumes, "dt": minutes }).set_index("dt") write_bcolz_minute_data( trading_calendar, sim_params.sessions, tempdir.path, assets ) equity_minute_reader = BcolzMinuteBarReader(tempdir.path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_minute_reader.first_trading_day, equity_minute_reader=equity_minute_reader, ) class FakeDataPortal(DataPortal): def __init__(self, env, trading_calendar=None, first_trading_day=None): if trading_calendar is None: trading_calendar = get_calendar("NYSE") super(FakeDataPortal, self).__init__(env.asset_finder, trading_calendar, first_trading_day) def get_spot_value(self, asset, field, dt, data_frequency): if field == "volume": return 100 else: return 1.0 def get_history_window(self, assets, end_dt, bar_count, frequency, field, data_frequency, ffill=True): if frequency == "1d": end_idx = \ self.trading_calendar.all_sessions.searchsorted(end_dt) days = self.trading_calendar.all_sessions[ (end_idx - bar_count + 1):(end_idx + 1) ] df = pd.DataFrame( np.full((bar_count, len(assets)), 100.0), index=days, columns=assets ) return df class FetcherDataPortal(DataPortal): """ Mock dataportal that returns fake data for history and non-fetcher spot value. """ def __init__(self, asset_finder, trading_calendar, first_trading_day=None): super(FetcherDataPortal, self).__init__(asset_finder, trading_calendar, first_trading_day) def get_spot_value(self, asset, field, dt, data_frequency): # if this is a fetcher field, exercise the regular code path if self._is_extra_source(asset, field, self._augmented_sources_map): return super(FetcherDataPortal, self).get_spot_value( asset, field, dt, data_frequency) # otherwise just return a fixed value return int(asset) # XXX: These aren't actually the methods that are used by the superclasses, # so these don't do anything, and this class will likely produce unexpected # results for history(). def _get_daily_window_for_sid(self, asset, field, days_in_window, extra_slot=True): return np.arange(days_in_window, dtype=np.float64) def _get_minute_window_for_asset(self, asset, field, minutes_for_window): return np.arange(minutes_for_window, dtype=np.float64) class tmp_assets_db(object): """Create a temporary assets sqlite database. This is meant to be used as a context manager. Parameters ---------- url : string The URL for the database connection. **frames The frames to pass to the AssetDBWriter. By default this maps equities: ('A', 'B', 'C') -> map(ord, 'ABC') See Also -------- empty_assets_db tmp_asset_finder """ _default_equities = sentinel('_default_equities') def __init__(self, url='sqlite:///:memory:', equities=_default_equities, **frames): self._url = url self._eng = None if equities is self._default_equities: equities = make_simple_equity_info( list(map(ord, 'ABC')), pd.Timestamp(0), pd.Timestamp('2015'), ) frames['equities'] = equities self._frames = frames self._eng = None # set in enter and exit def __enter__(self): self._eng = eng = create_engine(self._url) AssetDBWriter(eng).write(**self._frames) return eng def __exit__(self, *excinfo): assert self._eng is not None, '_eng was not set in __enter__' self._eng.dispose() self._eng = None def empty_assets_db(): """Context manager for creating an empty assets db. See Also -------- tmp_assets_db """ return tmp_assets_db(equities=None) class tmp_asset_finder(tmp_assets_db): """Create a temporary asset finder using an in memory sqlite db. Parameters ---------- url : string The URL for the database connection. finder_cls : type, optional The type of asset finder to create from the assets db. **frames Forwarded to ``tmp_assets_db``. See Also -------- tmp_assets_db """ def __init__(self, url='sqlite:///:memory:', finder_cls=AssetFinder, **frames): self._finder_cls = finder_cls super(tmp_asset_finder, self).__init__(url=url, **frames) def __enter__(self): return self._finder_cls(super(tmp_asset_finder, self).__enter__()) def empty_asset_finder(): """Context manager for creating an empty asset finder. See Also -------- empty_assets_db tmp_assets_db tmp_asset_finder """ return tmp_asset_finder(equities=None) class tmp_trading_env(tmp_asset_finder): """Create a temporary trading environment. Parameters ---------- load : callable, optional Function that returns benchmark returns and treasury curves. finder_cls : type, optional The type of asset finder to create from the assets db. **frames Forwarded to ``tmp_assets_db``. See Also -------- empty_trading_env tmp_asset_finder """ def __init__(self, load=None, *args, **kwargs): super(tmp_trading_env, self).__init__(*args, **kwargs) self._load = load def __enter__(self): return TradingEnvironment( load=self._load, asset_db_path=super(tmp_trading_env, self).__enter__().engine, ) def empty_trading_env(): return tmp_trading_env(equities=None) class SubTestFailures(AssertionError): def __init__(self, *failures): self.failures = failures def __str__(self): return 'failures:\n %s' % '\n '.join( '\n '.join(( ', '.join('%s=%r' % item for item in scope.items()), '%s: %s' % (type(exc).__name__, exc), )) for scope, exc in self.failures, ) @nottest def subtest(iterator, *_names): """ Construct a subtest in a unittest. Consider using ``zipline.testing.parameter_space`` when subtests are constructed over a single input or over the cross-product of multiple inputs. ``subtest`` works by decorating a function as a subtest. The decorated function will be run by iterating over the ``iterator`` and *unpacking the values into the function. If any of the runs fail, the result will be put into a set and the rest of the tests will be run. Finally, if any failed, all of the results will be dumped as one failure. Parameters ---------- iterator : iterable[iterable] The iterator of arguments to pass to the function. *name : iterator[str] The names to use for each element of ``iterator``. These will be used to print the scope when a test fails. If not provided, it will use the integer index of the value as the name. Examples -------- :: class MyTest(TestCase): def test_thing(self): # Example usage inside another test. @subtest(([n] for n in range(100000)), 'n') def subtest(n): self.assertEqual(n % 2, 0, 'n was not even') subtest() @subtest(([n] for n in range(100000)), 'n') def test_decorated_function(self, n): # Example usage to parameterize an entire function. self.assertEqual(n % 2, 1, 'n was not odd') Notes ----- We use this when we: * Will never want to run each parameter individually. * Have a large parameter space we are testing (see tests/utils/test_events.py). ``nose_parameterized.expand`` will create a test for each parameter combination which bloats the test output and makes the travis pages slow. We cannot use ``unittest2.TestCase.subTest`` because nose, pytest, and nose2 do not support ``addSubTest``. See Also -------- zipline.testing.parameter_space """ def dec(f): @wraps(f) def wrapped(*args, **kwargs): names = _names failures = [] for scope in iterator: scope = tuple(scope) try: f(*args + scope, **kwargs) except Exception as e: if not names: names = count() failures.append((dict(zip(names, scope)), e)) if failures: raise SubTestFailures(*failures) return wrapped return dec class MockDailyBarReader(object): def get_value(self, col, sid, dt): return 100 def create_mock_adjustment_data(splits=None, dividends=None, mergers=None): if splits is None: splits = create_empty_splits_mergers_frame() elif not isinstance(splits, pd.DataFrame): splits = pd.DataFrame(splits) if mergers is None: mergers = create_empty_splits_mergers_frame() elif not isinstance(mergers, pd.DataFrame): mergers = pd.DataFrame(mergers) if dividends is None: dividends = create_empty_dividends_frame() elif not isinstance(dividends, pd.DataFrame): dividends = pd.DataFrame(dividends) return splits, mergers, dividends def create_mock_adjustments(tempdir, days, splits=None, dividends=None, mergers=None): path = tempdir.getpath("test_adjustments.db") SQLiteAdjustmentWriter(path, MockDailyBarReader(), days).write( *create_mock_adjustment_data(splits, dividends, mergers) ) return path def assert_timestamp_equal(left, right, compare_nat_equal=True, msg=""): """ Assert that two pandas Timestamp objects are the same. Parameters ---------- left, right : pd.Timestamp The values to compare. compare_nat_equal : bool, optional Whether to consider `NaT` values equal. Defaults to True. msg : str, optional A message to forward to `pd.util.testing.assert_equal`. """ if compare_nat_equal and left is pd.NaT and right is pd.NaT: return return pd.util.testing.assert_equal(left, right, msg=msg) def powerset(values): """ Return the power set (i.e., the set of all subsets) of entries in `values`. """ return concat(combinations(values, i) for i in range(len(values) + 1)) def to_series(knowledge_dates, earning_dates): """ Helper for converting a dict of strings to a Series of datetimes. This is just for making the test cases more readable. """ return pd.Series( index=pd.to_datetime(knowledge_dates), data=pd.to_datetime(earning_dates), ) def gen_calendars(start, stop, critical_dates): """ Generate calendars to use as inputs. """ all_dates = pd.date_range(start, stop, tz='utc') for to_drop in map(list, powerset(critical_dates)): # Have to yield tuples. yield (all_dates.drop(to_drop),) # Also test with the trading calendar. trading_days = get_calendar("NYSE").all_days yield (trading_days[trading_days.slice_indexer(start, stop)],) @contextmanager def temp_pipeline_engine(calendar, sids, random_seed, symbols=None): """ A contextManager that yields a SimplePipelineEngine holding a reference to an AssetFinder generated via tmp_asset_finder. Parameters ---------- calendar : pd.DatetimeIndex Calendar to pass to the constructed PipelineEngine. sids : iterable[int] Sids to use for the temp asset finder. random_seed : int Integer used to seed instances of SeededRandomLoader. symbols : iterable[str], optional Symbols for constructed assets. Forwarded to make_simple_equity_info. """ equity_info = make_simple_equity_info( sids=sids, start_date=calendar[0], end_date=calendar[-1], symbols=symbols, ) loader = make_seeded_random_loader(random_seed, calendar, sids) def get_loader(column): return loader with tmp_asset_finder(equities=equity_info) as finder: yield SimplePipelineEngine(get_loader, calendar, finder) def parameter_space(__fail_fast=False, **params): """ Wrapper around subtest that allows passing keywords mapping names to iterables of values. The decorated test function will be called with the cross-product of all possible inputs Usage ----- >>> from unittest import TestCase >>> class SomeTestCase(TestCase): ... @parameter_space(x=[1, 2], y=[2, 3]) ... def test_some_func(self, x, y): ... # Will be called with every possible combination of x and y. ... self.assertEqual(somefunc(x, y), expected_result(x, y)) See Also -------- zipline.testing.subtest """ def decorator(f): argspec = getargspec(f) if argspec.varargs: raise AssertionError("parameter_space() doesn't support *args") if argspec.keywords: raise AssertionError("parameter_space() doesn't support **kwargs") if argspec.defaults: raise AssertionError("parameter_space() doesn't support defaults.") # Skip over implicit self. argnames = argspec.args if argnames[0] == 'self': argnames = argnames[1:] extra = set(params) - set(argnames) if extra: raise AssertionError( "Keywords %s supplied to parameter_space() are " "not in function signature." % extra ) unspecified = set(argnames) - set(params) if unspecified: raise AssertionError( "Function arguments %s were not " "supplied to parameter_space()." % extra ) def make_param_sets(): return product(*(params[name] for name in argnames)) if __fail_fast: @wraps(f) def wrapped(self): for args in make_param_sets(): f(self, *args) return wrapped else: @wraps(f) def wrapped(*args, **kwargs): subtest(make_param_sets(), *argnames)(f)(*args, **kwargs) return wrapped return decorator def create_empty_dividends_frame(): return pd.DataFrame( np.array( [], dtype=[ ('ex_date', 'datetime64[ns]'), ('pay_date', 'datetime64[ns]'), ('record_date', 'datetime64[ns]'), ('declared_date', 'datetime64[ns]'), ('amount', 'float64'), ('sid', 'int32'), ], ), index=pd.DatetimeIndex([], tz='UTC'), ) def create_empty_splits_mergers_frame(): return pd.DataFrame( np.array( [], dtype=[ ('effective_date', 'int64'), ('ratio', 'float64'), ('sid', 'int64'), ], ), index=pd.DatetimeIndex([]), ) def make_alternating_boolean_array(shape, first_value=True): """ Create a 2D numpy array with the given shape containing alternating values of False, True, False, True,... along each row and each column. Examples -------- >>> make_alternating_boolean_array((4,4)) array([[ True, False, True, False], [False, True, False, True], [ True, False, True, False], [False, True, False, True]], dtype=bool) >>> make_alternating_boolean_array((4,3), first_value=False) array([[False, True, False], [ True, False, True], [False, True, False], [ True, False, True]], dtype=bool) """ if len(shape) != 2: raise ValueError( 'Shape must be 2-dimensional. Given shape was {}'.format(shape) ) alternating = np.empty(shape, dtype=np.bool) for row in alternating: row[::2] = first_value row[1::2] = not(first_value) first_value = not(first_value) return alternating def make_cascading_boolean_array(shape, first_value=True): """ Create a numpy array with the given shape containing cascading boolean values, with `first_value` being the top-left value. Examples -------- >>> make_cascading_boolean_array((4,4)) array([[ True, True, True, False], [ True, True, False, False], [ True, False, False, False], [False, False, False, False]], dtype=bool) >>> make_cascading_boolean_array((4,2)) array([[ True, False], [False, False], [False, False], [False, False]], dtype=bool) >>> make_cascading_boolean_array((2,4)) array([[ True, True, True, False], [ True, True, False, False]], dtype=bool) """ if len(shape) != 2: raise ValueError( 'Shape must be 2-dimensional. Given shape was {}'.format(shape) ) cascading = np.full(shape, not(first_value), dtype=np.bool) ending_col = shape[1] - 1 for row in cascading: if ending_col > 0: row[:ending_col] = first_value ending_col -= 1 else: break return cascading @expect_dimensions(array=2) def permute_rows(seed, array): """ Shuffle each row in ``array`` based on permutations generated by ``seed``. Parameters ---------- seed : int Seed for numpy.RandomState array : np.ndarray[ndim=2] Array over which to apply permutations. """ rand = np.random.RandomState(seed) return np.apply_along_axis(rand.permutation, 1, array) @nottest def make_test_handler(testcase, *args, **kwargs): """ Returns a TestHandler which will be used by the given testcase. This handler can be used to test log messages. Parameters ---------- testcase: unittest.TestCase The test class in which the log handler will be used. *args, **kwargs Forwarded to the new TestHandler object. Returns ------- handler: logbook.TestHandler The handler to use for the test case. """ handler = TestHandler(*args, **kwargs) testcase.addCleanup(handler.close) return handler def write_compressed(path, content): """ Write a compressed (gzipped) file to `path`. """ with gzip.open(path, 'wb') as f: f.write(content) def read_compressed(path): """ Write a compressed (gzipped) file from `path`. """ with gzip.open(path, 'rb') as f: return f.read() zipline_git_root = abspath( join(realpath(dirname(__file__)), '..', '..'), ) @nottest def test_resource_path(*path_parts): return os.path.join(zipline_git_root, 'tests', 'resources', *path_parts) @contextmanager def patch_os_environment(remove=None, **values): """ Context manager for patching the operating system environment. """ old_values = {} remove = remove or [] for key in remove: old_values[key] = os.environ.pop(key) for key, value in values.iteritems(): old_values[key] = os.getenv(key) os.environ[key] = value try: yield finally: for old_key, old_value in old_values.iteritems(): if old_value is None: # Value was not present when we entered, so del it out if it's # still present. try: del os.environ[key] except KeyError: pass else: # Restore the old value. os.environ[old_key] = old_value class tmp_dir(TempDirectory, object): """New style class that wrapper for TempDirectory in python 2. """ pass class _TmpBarReader(with_metaclass(ABCMeta, tmp_dir)): """A helper for tmp_bcolz_equity_minute_bar_reader and tmp_bcolz_equity_daily_bar_reader. Parameters ---------- env : TradingEnvironment The trading env. days : pd.DatetimeIndex The days to write for. data : dict[int -> pd.DataFrame] The data to write. path : str, optional The path to the directory to write the data into. If not given, this will be a unique name. """ @abstractproperty def _reader_cls(self): raise NotImplementedError('_reader') @abstractmethod def _write(self, env, days, path, data): raise NotImplementedError('_write') def __init__(self, env, days, data, path=None): super(_TmpBarReader, self).__init__(path=path) self._env = env self._days = days self._data = data def __enter__(self): tmpdir = super(_TmpBarReader, self).__enter__() env = self._env try: self._write( env, self._days, tmpdir.path, self._data, ) return self._reader_cls(tmpdir.path) except: self.__exit__(None, None, None) raise class tmp_bcolz_equity_minute_bar_reader(_TmpBarReader): """A temporary BcolzMinuteBarReader object. Parameters ---------- env : TradingEnvironment The trading env. days : pd.DatetimeIndex The days to write for. data : iterable[(int, pd.DataFrame)] The data to write. path : str, optional The path to the directory to write the data into. If not given, this will be a unique name. See Also -------- tmp_bcolz_equity_daily_bar_reader """ _reader_cls = BcolzMinuteBarReader _write = staticmethod(write_bcolz_minute_data) class tmp_bcolz_equity_daily_bar_reader(_TmpBarReader): """A temporary BcolzDailyBarReader object. Parameters ---------- env : TradingEnvironment The trading env. days : pd.DatetimeIndex The days to write for. data : dict[int -> pd.DataFrame] The data to write. path : str, optional The path to the directory to write the data into. If not given, this will be a unique name. See Also -------- tmp_bcolz_equity_daily_bar_reader """ _reader_cls = BcolzDailyBarReader @staticmethod def _write(env, days, path, data): BcolzDailyBarWriter(path, days).write(data) @contextmanager def patch_read_csv(url_map, module=pd, strict=False): """Patch pandas.read_csv to map lookups from url to another. Parameters ---------- url_map : mapping[str or file-like object -> str or file-like object] The mapping to use to redirect read_csv calls. module : module, optional The module to patch ``read_csv`` on. By default this is ``pandas``. This should be set to another module if ``read_csv`` is early-bound like ``from pandas import read_csv`` instead of late-bound like: ``import pandas as pd; pd.read_csv``. strict : bool, optional If true, then this will assert that ``read_csv`` is only called with elements in the ``url_map``. """ read_csv = pd.read_csv def patched_read_csv(filepath_or_buffer, *args, **kwargs): if filepath_or_buffer in url_map: return read_csv(url_map[filepath_or_buffer], *args, **kwargs) elif not strict: return read_csv(filepath_or_buffer, *args, **kwargs) else: raise AssertionError( 'attempted to call read_csv on %r which not in the url map' % filepath_or_buffer, ) with patch.object(module, 'read_csv', patched_read_csv): yield def copy_market_data(src_market_data_dir, dest_root_dir): symbol = 'SPY' filenames = (get_benchmark_filename(symbol), INDEX_MAPPING[symbol][1]) ensure_directory(os.path.join(dest_root_dir, 'data')) for filename in filenames: shutil.copyfile( os.path.join(src_market_data_dir, filename), os.path.join(dest_root_dir, 'data', filename) ) @curry def ensure_doctest(f, name=None): """Ensure that an object gets doctested. This is useful for instances of objects like curry or partial which are not discovered by default. Parameters ---------- f : any The thing to doctest. name : str, optional The name to use in the doctest function mapping. If this is None, Then ``f.__name__`` will be used. Returns ------- f : any ``f`` unchanged. """ _getframe(2).f_globals.setdefault('__test__', {})[ f.__name__ if name is None else name ] = f return f class RecordBatchBlotter(Blotter): """Blotter that tracks how its batch_order method was called. """ def __init__(self, data_frequency): super(RecordBatchBlotter, self).__init__(data_frequency) self.order_batch_called = [] def batch_order(self, *args, **kwargs): self.order_batch_called.append((args, kwargs)) return super(RecordBatchBlotter, self).batch_order(*args, **kwargs) #################################### # Shared factors for pipeline tests. #################################### class AssetID(CustomFactor): """ CustomFactor that returns the AssetID of each asset. Useful for providing a Factor that produces a different value for each asset. """ window_length = 1 inputs = () def compute(self, today, assets, out): out[:] = assets class AssetIDPlusDay(CustomFactor): window_length = 1 inputs = () def compute(self, today, assets, out): out[:] = assets + today.day class OpenPrice(CustomFactor): window_length = 1 inputs = [USEquityPricing.open] def compute(self, today, assets, out, open): out[:] = open
zipline-live
/zipline-live-1.1.0.5.tar.gz/zipline-live-1.1.0.5/zipline/testing/core.py
core.py
.. image:: ./images/zipline-live2.small.png :target: https://github.com/shlomikushchi/zipline-live2 :width: 212px :align: center :alt: zipline-live ************************************************************************************ zipline-live2 is now continued under https://github.com/shlomikushchi/zipline-trader ************************************************************************************ zipline-live2 ============= Welcome to zipline-live2, the on-premise trading platform built on top of Quantopian's `zipline <https://github.com/quantopian/zipline>`_. zipline-live2 is based on the `zipline-live <http://www.zipline-live.io>`_ project. zipline-live2 is designed to be an extensible, drop-in replacement for zipline with multiple brokerage support to enable on premise trading of zipline algorithms. we recommend using python 3.6+ but python 2.7 is also supported. Installation ============ use a fresh virtual env .. code-block:: batch pip install virtualenv virtualenv venv activate: Mac OS / Linux source venv/bin/activate Windows venv\Scripts\activate installing the package: .. code-block:: batch pip install zipline-live2 .. image:: ./images/youtube/installing.png :target: https://www.youtube.com/watch?v=Zh9Vs_yanXY :width: 212px :align: center :alt: zipline-live for advanced capabilities recommended way to use this package with docker using this command: .. code-block:: docker docker build -t quantopian/zipline . (if your algo requires more packages, you could extend the dockerfile-dev and install using: docker build -f dockerfile-dev-t quantopian/zipline .) you could run everything on a local machine with whatever OS you want. but you may experience package installation issues. this is the best way to ensure that you are using the same version everyone else use. Ingest data =========== the quantopian-quandl is a free daily bundle. every day you should execute this when live trading in order to get the most updated data .. code-block:: batch zipline ingest -b quantopian-quandl there is no free minute data. you could use paid services and create a custom bundle for that. if you do have the data, the package supports minute algo-trading. Running Backtests ================= you can run a backtest with this command: .. code-block:: batch zipline run -f zipline_repo/zipline/examples/dual_moving_average.py --start 2015-1-1 --end 2018-1-1 --bundle quantopian-quandl -o out.pickle --capital-base 10000 .. image:: ./images/youtube/command_line_backtest.png :target: https://youtu.be/jeuiCpx9k7Q :width: 212px :align: center :alt: zipline-live Run the cli tool ================ .. code-block:: batch zipline run -f ~/zipline-algos/demo.py --state-file ~/zipline-algos/demo.state --realtime-bar-target ~/zipline-algos/realtime-bars/ --broker ib --broker-uri localhost:7496:1232 --bundle quantopian-quandl --data-frequency minute
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/README.rst
README.rst
from __future__ import print_function try: import configparser except ImportError: import ConfigParser as configparser import errno import json import os import re import subprocess import sys class VersioneerConfig: pass def get_root(): # we require that all commands are run from the project root, i.e. the # directory that contains setup.py, setup.cfg, and versioneer.py . root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): # allow 'python path/to/setup.py COMMAND' root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = ("Versioneer was unable to run the project root directory. " "Versioneer requires setup.py to be executed from " "its immediate directory (like 'python setup.py COMMAND'), " "or in a way that lets it use sys.argv[0] to find the root " "(like 'python path/to/setup.py COMMAND').") raise VersioneerBadRootError(err) try: # Certain runtime workflows (setup.py install/develop in a setuptools # tree) execute all dependencies in a single python process, so # "versioneer" may be imported multiple times, and python's shared # module-import table will cache the first one. So we can't use # os.path.dirname(__file__), as that will find whichever # versioneer.py was first imported, even in later projects. me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print("Warning: build in %s is using versioneer.py from %s" % (os.path.dirname(me), versioneer_py)) except NameError: pass return root def get_config_from_root(root): # This might raise EnvironmentError (if setup.cfg is missing), or # configparser.NoSectionError (if it lacks a [versioneer] section), or # configparser.NoOptionError (if it lacks "VCS="). See the docstring at # the top of versioneer.py for instructions on writing your setup.cfg . setup_cfg = os.path.join(root, "setup.cfg") parser = configparser.SafeConfigParser() with open(setup_cfg, "r") as f: parser.readfp(f) VCS = parser.get("versioneer", "VCS") # mandatory def get(parser, name): if parser.has_option("versioneer", name): return parser.get("versioneer", name) return None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, "style") or "" cfg.versionfile_source = get(parser, "versionfile_source") cfg.versionfile_build = get(parser, "versionfile_build") cfg.tag_prefix = get(parser, "tag_prefix") cfg.parentdir_prefix = get(parser, "parentdir_prefix") cfg.verbose = get(parser, "verbose") return cfg class NotThisMethod(Exception): pass # these dictionaries contain VCS-specific tools LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator def decorate(f): if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) return None return stdout LONG_VERSION_PY['git'] = ''' # This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.15 (https://github.com/warner/python-versioneer) import errno import os import re import subprocess import sys def get_keywords(): # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "%(DOLLAR)sFormat:%%d%(DOLLAR)s" git_full = "%(DOLLAR)sFormat:%%H%(DOLLAR)s" keywords = {"refnames": git_refnames, "full": git_full} return keywords class VersioneerConfig: pass def get_config(): # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "%(STYLE)s" cfg.tag_prefix = "%(TAG_PREFIX)s" cfg.parentdir_prefix = "%(PARENTDIR_PREFIX)s" cfg.versionfile_source = "%(VERSIONFILE_SOURCE)s" cfg.verbose = False return cfg class NotThisMethod(Exception): pass LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator def decorate(f): if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %%s" %% dispcmd) print(e) return None else: if verbose: print("unable to find command, tried %%s" %% (commands,)) return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %%s (error)" %% dispcmd) return None return stdout def versions_from_parentdir(parentdir_prefix, root, verbose): # Source tarballs conventionally unpack into a directory that includes # both the project name and a version string. dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '%%s', but '%%s' doesn't start with " "prefix '%%s'" %% (root, dirname, parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %%d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%%s', no digits" %% ",".join(refs-tags)) if verbose: print("likely tags: %%s" %% ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %%s" %% r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): # this runs 'git' from the root of the source tree. This only gets called # if the git-archive 'subst' keywords were *not* expanded, and # _version.py hasn't already been rewritten with a short version string, # meaning we're inside a checked out source tree. if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in %%s" %% root) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag, this yields TAG-NUM-gHEX[-dirty] # if there are no tags, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long"], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%%s'" %% describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%%s' doesn't start with prefix '%%s'" print(fmt %% (full_tag, tag_prefix)) pieces["error"] = ("tag '%%s' doesn't start with prefix '%%s'" %% (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def plus_or_dot(pieces): if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): # now build up version string, with post-release "local version # identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you # get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty # exceptions: # 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): # TAG[.post.devDISTANCE] . No -dirty # exceptions: # 1: no tags. 0.post.devDISTANCE if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%%d" %% pieces["distance"] else: # exception #1 rendered = "0.post.dev%%d" %% pieces["distance"] return rendered def render_pep440_post(pieces): # TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that # .dev0 sorts backwards (a dirty tree will appear "older" than the # corresponding clean one), but you shouldn't be releasing software with # -dirty anyways. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%%s" %% pieces["short"] else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%%s" %% pieces["short"] return rendered def render_pep440_old(pieces): # TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): # TAG[-DISTANCE-gHEX][-dirty], like 'git describe --tags --dirty # --always' # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): # TAG-DISTANCE-gHEX[-dirty], like 'git describe --tags --dirty # --always -long'. The distance/hash is unconditional. # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%%s'" %% style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} def get_versions(): # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree"} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"} ''' @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs-tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): # this runs 'git' from the root of the source tree. This only gets called # if the git-archive 'subst' keywords were *not* expanded, and # _version.py hasn't already been rewritten with a short version string, # meaning we're inside a checked out source tree. if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in %s" % root) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag, this yields TAG-NUM-gHEX[-dirty] # if there are no tags, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long"], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def do_vcs_install(manifest_in, versionfile_source, ipy): GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] files = [manifest_in, versionfile_source] if ipy: files.append(ipy) try: me = __file__ if me.endswith(".pyc") or me.endswith(".pyo"): me = os.path.splitext(me)[0] + ".py" versioneer_file = os.path.relpath(me) except NameError: versioneer_file = "versioneer.py" files.append(versioneer_file) present = False try: f = open(".gitattributes", "r") for line in f.readlines(): if line.strip().startswith(versionfile_source): if "export-subst" in line.strip().split()[1:]: present = True f.close() except EnvironmentError: pass if not present: f = open(".gitattributes", "a+") f.write("%s export-subst\n" % versionfile_source) f.close() files.append(".gitattributes") run_command(GITS, ["add", "--"] + files) def versions_from_parentdir(parentdir_prefix, root, verbose): # Source tarballs conventionally unpack into a directory that includes # both the project name and a version string. dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '%s', but '%s' doesn't start with " "prefix '%s'" % (root, dirname, parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} SHORT_VERSION_PY = """ # This file was generated by 'versioneer.py' (0.15) from # revision-control system data, or from the parent directory name of an # unpacked source archive. Distribution tarballs contain a pre-generated copy # of this file. import json import sys version_json = ''' %s ''' # END VERSION_JSON def get_versions(): return json.loads(version_json) """ def versions_from_file(filename): try: with open(filename) as f: contents = f.read() except EnvironmentError: raise NotThisMethod("unable to read _version.py") mo = re.search(r"version_json = '''\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: raise NotThisMethod("no version_json in _version.py") return json.loads(mo.group(1)) def write_to_version_file(filename, versions): os.unlink(filename) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(",", ": ")) with open(filename, "w") as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (filename, versions["version"])) def plus_or_dot(pieces): if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): # now build up version string, with post-release "local version # identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you # get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty # exceptions: # 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): # TAG[.post.devDISTANCE] . No -dirty # exceptions: # 1: no tags. 0.post.devDISTANCE if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): # TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that # .dev0 sorts backwards (a dirty tree will appear "older" than the # corresponding clean one), but you shouldn't be releasing software with # -dirty anyways. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): # TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): # TAG[-DISTANCE-gHEX][-dirty], like 'git describe --tags --dirty # --always' # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): # TAG-DISTANCE-gHEX[-dirty], like 'git describe --tags --dirty # --always -long'. The distance/hash is unconditional. # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} class VersioneerBadRootError(Exception): pass def get_versions(verbose=False): # returns dict with two keys: 'version' and 'full' if "versioneer" in sys.modules: # see the discussion in cmdclass.py:get_cmdclass() del sys.modules["versioneer"] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, "please set [versioneer]VCS= in setup.cfg" handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, \ "please set versioneer.versionfile_source" assert cfg.tag_prefix is not None, "please set versioneer.tag_prefix" versionfile_abs = os.path.join(root, cfg.versionfile_source) # extract version from first of: _version.py, VCS command (e.g. 'git # describe'), parentdir. This is meant to work for developers using a # source checkout, for users of a tarball created by 'setup.py sdist', # and for users of a tarball/zipball created by 'git archive' or github's # download-from-tag feature or the equivalent in other VCSes. get_keywords_f = handlers.get("get_keywords") from_keywords_f = handlers.get("keywords") if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print("got version from expanded keyword %s" % ver) return ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print("got version from file %s %s" % (versionfile_abs, ver)) return ver except NotThisMethod: pass from_vcs_f = handlers.get("pieces_from_vcs") if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print("got version from VCS %s" % ver) return ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print("got version from parentdir %s" % ver) return ver except NotThisMethod: pass if verbose: print("unable to compute version") return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"} def get_version(): return get_versions()["version"] def get_cmdclass(): if "versioneer" in sys.modules: del sys.modules["versioneer"] # this fixes the "python setup.py develop" case (also 'install' and # 'easy_install .'), in which subdependencies of the main project are # built (using setup.py bdist_egg) in the same python process. Assume # a main project A and a dependency B, which use different versions # of Versioneer. A's setup.py imports A's Versioneer, leaving it in # sys.modules by the time B's setup.py is executed, causing B to run # with the wrong versioneer. Setuptools wraps the sub-dep builds in a # sandbox that restores sys.modules to it's pre-build state, so the # parent is protected against the child's "import versioneer". By # removing ourselves from sys.modules here, before the child build # happens, we protect the child from the parent's versioneer too. # Also see https://github.com/warner/python-versioneer/issues/52 cmds = {} # we add "version" to both distutils and setuptools from distutils.core import Command class cmd_version(Command): description = "report generated version string" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): vers = get_versions(verbose=True) print("Version: %s" % vers["version"]) print(" full-revisionid: %s" % vers.get("full-revisionid")) print(" dirty: %s" % vers.get("dirty")) if vers["error"]: print(" error: %s" % vers["error"]) cmds["version"] = cmd_version # we override "build_py" in both distutils and setuptools # # most invocation pathways end up running build_py: # distutils/build -> build_py # distutils/install -> distutils/build ->.. # setuptools/bdist_wheel -> distutils/install ->.. # setuptools/bdist_egg -> distutils/install_lib -> build_py # setuptools/install -> bdist_egg ->.. # setuptools/develop -> ? from distutils.command.build_py import build_py as _build_py class cmd_build_py(_build_py): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() _build_py.run(self) # now locate _version.py in the new build/ directory and replace # it with an updated value if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) cmds["build_py"] = cmd_build_py if "cx_Freeze" in sys.modules: # cx_freeze enabled? from cx_Freeze.dist import build_exe as _build_exe class cmd_build_exe(_build_exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _build_exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["build_exe"] = cmd_build_exe del cmds["build_py"] # we override different "sdist" commands for both environments if "setuptools" in sys.modules: from setuptools.command.sdist import sdist as _sdist else: from distutils.command.sdist import sdist as _sdist class cmd_sdist(_sdist): def run(self): versions = get_versions() self._versioneer_generated_versions = versions # unless we update this, the command will keep using the old # version self.distribution.metadata.version = versions["version"] return _sdist.run(self) def make_release_tree(self, base_dir, files): root = get_root() cfg = get_config_from_root(root) _sdist.make_release_tree(self, base_dir, files) # now locate _version.py in the new base_dir directory # (remembering that it may be a hardlink) and replace it with an # updated value target_versionfile = os.path.join(base_dir, cfg.versionfile_source) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, self._versioneer_generated_versions) cmds["sdist"] = cmd_sdist return cmds CONFIG_ERROR = """ setup.cfg is missing the necessary Versioneer configuration. You need a section like: [versioneer] VCS = git style = pep440 versionfile_source = src/myproject/_version.py versionfile_build = myproject/_version.py tag_prefix = "" parentdir_prefix = myproject- You will also need to edit your setup.py to use the results: import versioneer setup(version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), ...) Please read the docstring in ./versioneer.py for configuration instructions, edit setup.cfg, and re-run the installer or 'python versioneer.py setup'. """ SAMPLE_CONFIG = """ # See the docstring in versioneer.py for instructions. Note that you must # re-run 'versioneer.py setup' after changing this section, and commit the # resulting files. [versioneer] #VCS = git #style = pep440 #versionfile_source = #versionfile_build = #tag_prefix = #parentdir_prefix = """ INIT_PY_SNIPPET = """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions """ def do_setup(): root = get_root() try: cfg = get_config_from_root(root) except (EnvironmentError, configparser.NoSectionError, configparser.NoOptionError) as e: if isinstance(e, (EnvironmentError, configparser.NoSectionError)): print("Adding sample versioneer config to setup.cfg", file=sys.stderr) with open(os.path.join(root, "setup.cfg"), "a") as f: f.write(SAMPLE_CONFIG) print(CONFIG_ERROR, file=sys.stderr) return 1 print(" creating %s" % cfg.versionfile_source) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) ipy = os.path.join(os.path.dirname(cfg.versionfile_source), "__init__.py") if os.path.exists(ipy): try: with open(ipy, "r") as f: old = f.read() except EnvironmentError: old = "" if INIT_PY_SNIPPET not in old: print(" appending to %s" % ipy) with open(ipy, "a") as f: f.write(INIT_PY_SNIPPET) else: print(" %s unmodified" % ipy) else: print(" %s doesn't exist, ok" % ipy) ipy = None # Make sure both the top-level "versioneer.py" and versionfile_source # (PKG/_version.py, used by runtime code) are in MANIFEST.in, so # they'll be copied into source distributions. Pip won't be able to # install the package without this. manifest_in = os.path.join(root, "MANIFEST.in") simple_includes = set() try: with open(manifest_in, "r") as f: for line in f: if line.startswith("include "): for include in line.split()[1:]: simple_includes.add(include) except EnvironmentError: pass # That doesn't cover everything MANIFEST.in can do # (http://docs.python.org/2/distutils/sourcedist.html#commands), so # it might give some false negatives. Appending redundant 'include' # lines is safe, though. if "versioneer.py" not in simple_includes: print(" appending 'versioneer.py' to MANIFEST.in") with open(manifest_in, "a") as f: f.write("include versioneer.py\n") else: print(" 'versioneer.py' already in MANIFEST.in") if cfg.versionfile_source not in simple_includes: print(" appending versionfile_source ('%s') to MANIFEST.in" % cfg.versionfile_source) with open(manifest_in, "a") as f: f.write("include %s\n" % cfg.versionfile_source) else: print(" versionfile_source already in MANIFEST.in") # Make VCS-specific changes. For git, this means creating/changing # .gitattributes to mark _version.py for export-time keyword # substitution. do_vcs_install(manifest_in, cfg.versionfile_source, ipy) return 0 def scan_setup_py(): found = set() setters = False errors = 0 with open("setup.py", "r") as f: for line in f.readlines(): if "import versioneer" in line: found.add("import") if "versioneer.get_cmdclass()" in line: found.add("cmdclass") if "versioneer.get_version()" in line: found.add("get_version") if "versioneer.VCS" in line: setters = True if "versioneer.versionfile_source" in line: setters = True if len(found) != 3: print("") print("Your setup.py appears to be missing some important items") print("(but I might be wrong). Please make sure it has something") print("roughly like the following:") print("") print(" import versioneer") print(" setup( version=versioneer.get_version(),") print(" cmdclass=versioneer.get_cmdclass(), ...)") print("") errors += 1 if setters: print("You should remove lines like 'versioneer.VCS = ' and") print("'versioneer.versionfile_source = ' . This configuration") print("now lives in setup.cfg, and should be removed from setup.py") print("") errors += 1 return errors if __name__ == "__main__": cmd = sys.argv[1] if cmd == "setup": errors = do_setup() errors += scan_setup_py() if errors: sys.exit(1)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/versioneer.py
versioneer.py
import errno import os from importlib import import_module # from functools import wraps import click import logbook import pandas as pd from six import text_type import zipline import pkgutil from zipline.data import bundles as bundles_module from trading_calendars import get_calendar from zipline.utils.compat import wraps from zipline.utils.cli import Date, Timestamp from zipline.utils.run_algo import _run, load_extensions from zipline.extensions import create_args from zipline.gens import brokers try: __IPYTHON__ except NameError: __IPYTHON__ = False @click.group() @click.option( '-e', '--extension', multiple=True, help='File or module path to a zipline extension to load.', ) @click.option( '--strict-extensions/--non-strict-extensions', is_flag=True, help='If --strict-extensions is passed then zipline will not run if it' ' cannot load all of the specified extensions. If this is not passed or' ' --non-strict-extensions is passed then the failure will be logged but' ' execution will continue.', ) @click.option( '--default-extension/--no-default-extension', is_flag=True, default=True, help="Don't load the default zipline extension.py file in $ZIPLINE_HOME.", ) @click.option( '-x', multiple=True, help='Any custom command line arguments to define, in key=value form.' ) def main(extension, strict_extensions, default_extension, x): """Top level zipline entry point. """ # install a logbook handler before performing any other operations logbook.StderrHandler().push_application() create_args(x, zipline.extension_args) load_extensions( default_extension, extension, strict_extensions, os.environ, ) def extract_option_object(option): """Convert a click.option call into a click.Option object. Parameters ---------- option : decorator A click.option decorator. Returns ------- option_object : click.Option The option object that this decorator will create. """ @option def opt(): pass return opt.__click_params__[0] def ipython_only(option): """Mark that an option should only be exposed in IPython. Parameters ---------- option : decorator A click.option decorator. Returns ------- ipython_only_dec : decorator A decorator that correctly applies the argument even when not using IPython mode. """ if __IPYTHON__: return option argname = extract_option_object(option).name def d(f): @wraps(f) def _(*args, **kwargs): kwargs[argname] = None return f(*args, **kwargs) return _ return d @main.command() @click.option( '-f', '--algofile', default=None, type=click.File('r'), help='The file that contains the algorithm to run.', ) @click.option( '-t', '--algotext', help='The algorithm script to run.', ) @click.option( '-D', '--define', multiple=True, help="Define a name to be bound in the namespace before executing" " the algotext. For example '-Dname=value'. The value may be any python" " expression. These are evaluated in order so they may refer to previously" " defined names.", ) @click.option( '--data-frequency', type=click.Choice({'daily', 'minute'}), default='daily', show_default=True, help='The data frequency of the simulation.', ) @click.option( '--capital-base', type=float, default=10e6, show_default=True, help='The starting capital for the simulation.', ) @click.option( '-b', '--bundle', default='quandl', metavar='BUNDLE-NAME', show_default=True, help='The data bundle to use for the simulation.', ) @click.option( '--bundle-timestamp', type=Timestamp(), default=pd.Timestamp.utcnow(), show_default=False, help='The date to lookup data on or before.\n' '[default: <current-time>]' ) @click.option( '-s', '--start', type=Date(tz='utc', as_timestamp=True), help='The start date of the simulation.', ) @click.option( '-e', '--end', type=Date(tz='utc', as_timestamp=True), help='The end date of the simulation.', ) @click.option( '-o', '--output', default='-', metavar='FILENAME', show_default=True, help="The location to write the perf data. If this is '-' the perf will" " be written to stdout.", ) @click.option( '--trading-calendar', metavar='TRADING-CALENDAR', default='NYSE', help="The calendar you want to use e.g. LSE. NYSE is the default." ) @click.option( '--print-algo/--no-print-algo', is_flag=True, default=False, help='Print the algorithm to stdout.', ) @click.option( '--metrics-set', default='default', help='The metrics set to use. New metrics sets may be registered in your' ' extension.py.', ) @click.option( '--blotter', default='default', help="The blotter to use.", show_default=True, ) @ipython_only(click.option( '--local-namespace/--no-local-namespace', is_flag=True, default=None, help='Should the algorithm methods be resolved in the local namespace.' )) @click.option( '--broker', default=None, help='Broker' ) @click.option( '--broker-uri', default=None, metavar='BROKER-URI', show_default=True, help='Connection to broker', ) @click.option( '--state-file', default=None, metavar='FILENAME', help='Filename where the state will be stored' ) @click.option( '--realtime-bar-target', default=None, metavar='DIRNAME', help='Directory where the realtime collected minutely bars are saved' ) @click.option( '--list-brokers', is_flag=True, help='Get list of available brokers' ) @click.pass_context def run(ctx, algofile, algotext, define, data_frequency, capital_base, bundle, bundle_timestamp, start, end, output, trading_calendar, print_algo, metrics_set, local_namespace, blotter, broker, broker_uri, state_file, realtime_bar_target, list_brokers): """Run a backtest for the given algorithm. """ if list_brokers: click.echo("Supported brokers:") for _, name, _ in pkgutil.iter_modules(brokers.__path__): if name != 'broker': click.echo(name) return # check that the start and end dates are passed correctly if not broker and start is None and end is None: # check both at the same time to avoid the case where a user # does not pass either of these and then passes the first only # to be told they need to pass the second argument also ctx.fail( "must specify dates with '-s' / '--start' and '-e' / '--end'", ) if not broker and start is None: ctx.fail("must specify a start date with '-s' / '--start'") if not broker and end is None: ctx.fail("must specify an end date with '-e' / '--end'") if broker and broker_uri is None: ctx.fail("must specify broker-uri if broker is specified") if broker and state_file is None: ctx.fail("must specify state-file with live trading") if broker and realtime_bar_target is None: ctx.fail("must specify realtime-bar-target with live trading") brokerobj = None if broker: mod_name = 'zipline.gens.brokers.%s_broker' % broker.lower() try: bmod = import_module(mod_name) except ImportError: ctx.fail("unsupported broker: can't import module %s" % mod_name) cl_name = '%sBroker' % broker.upper() try: bclass = getattr(bmod, cl_name) except AttributeError: ctx.fail("unsupported broker: can't import class %s from %s" % (cl_name, mod_name)) brokerobj = bclass(broker_uri) if end is None: end = pd.Timestamp.utcnow() + pd.Timedelta(days=1, seconds=1) # Add 1-second to assure that end is > 1day if (algotext is not None) == (algofile is not None): ctx.fail( "must specify exactly one of '-f' / '--algofile' or" " '-t' / '--algotext'", ) trading_calendar = get_calendar(trading_calendar) perf = _run( initialize=None, handle_data=None, before_trading_start=None, analyze=None, teardown=None, algofile=algofile, algotext=algotext, defines=define, data_frequency=data_frequency, capital_base=capital_base, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output=output, trading_calendar=trading_calendar, print_algo=print_algo, metrics_set=metrics_set, local_namespace=local_namespace, environ=os.environ, blotter=blotter, benchmark_returns=None, broker=brokerobj, state_filename=state_file, realtime_bar_target=realtime_bar_target, performance_callback=None, stop_execution_callback=None, execution_id=None ) if output == '-': click.echo(str(perf)) elif output != os.devnull: # make the zipline magic not write any data perf.to_pickle(output) return perf def zipline_magic(line, cell=None): """The zipline IPython cell magic. """ load_extensions( default=True, extensions=[], strict=True, environ=os.environ, ) try: return run.main( # put our overrides at the start of the parameter list so that # users may pass values with higher precedence [ '--algotext', cell, '--output', os.devnull, # don't write the results by default ] + ([ # these options are set when running in line magic mode # set a non None algo text to use the ipython user_ns '--algotext', '', '--local-namespace', ] if cell is None else []) + line.split(), '%s%%zipline' % ((cell or '') and '%'), # don't use system exit and propogate errors to the caller standalone_mode=False, ) except SystemExit as e: # https://github.com/mitsuhiko/click/pull/533 # even in standalone_mode=False `--help` really wants to kill us ;_; if e.code: raise ValueError('main returned non-zero status code: %d' % e.code) @main.command() @click.option( '-b', '--bundle', default='quandl', metavar='BUNDLE-NAME', show_default=True, help='The data bundle to ingest.', ) @click.option( '--assets-version', type=int, multiple=True, help='Version of the assets db to which to downgrade.', ) @click.option( '--show-progress/--no-show-progress', default=True, help='Print progress information to the terminal.' ) @click.option( '--file-logging/--no-file-logging', default=False, help='Duplicate log to file.' ) def ingest(bundle, assets_version, show_progress, file_logging): """Ingest the data for the given bundle. """ from logbook import FileHandler import datetime from zipline.utils.paths import zipline_root if file_logging: log_file = zipline_root() + f'/ingest{datetime.datetime.now().strftime("%d%m%Y%H%M")}.log' FileHandler(log_file, bubble=True).push_application() bundles_module.ingest( bundle, os.environ, pd.Timestamp.utcnow(), assets_version, show_progress, ) @main.command() @click.option( '-b', '--bundle', default='quandl', metavar='BUNDLE-NAME', show_default=True, help='The data bundle to ingest.', ) @click.option( '--assets-version', type=int, multiple=True, help='Version of the assets db to which to downgrade.', ) @click.option( '--show-progress/--no-show-progress', default=True, help='Print progress information to the terminal.' ) @click.option( '--file-logging/--no-file-logging', default=False, help='Duplicate log to file.' ) def exclude_and_ingest(bundle, assets_version, show_progress, file_logging): """Ingest the data for the given bundle. """ from logbook import FileHandler import datetime from zipline.data.bundles.excluder import exclude_from_web from zipline.utils.paths import zipline_root if file_logging: log_file = zipline_root() + f'/ingest_{bundle}_{datetime.datetime.now().strftime("%d%m%Y%H%M")}.log' FileHandler(log_file, bubble=True).push_application() exclude_from_web(bundle_module=bundle.replace('-', '_'), look_for_file=True) bundles_module.ingest( bundle, os.environ, pd.Timestamp.utcnow(), assets_version, show_progress, ) @main.command() @click.option( '-s', '--start-date', default='2013-01-01', help='Starting date fundamentals download.', ) @click.option( '--file-logging/--no-file-logging', default=False, help='Duplicate log to file.' ) def ingest_fundamentals(start_date, file_logging): """Ingest the data for the given bundle. """ from logbook import FileHandler import datetime from zipline.utils.paths import zipline_root if file_logging: log_file = zipline_root() + f'/ingest_fundamentals_{datetime.datetime.now().strftime("%d%m%Y%H%M")}.log' FileHandler(log_file, bubble=True).push_application() bundles_module.quandl_fundamentals.download_all(start_date) @main.command() @click.option( '-b', '--bundle', default='quandl', metavar='BUNDLE-NAME', show_default=True, help='The data bundle to clean.', ) @click.option( '-e', '--before', type=Timestamp(), help='Clear all data before TIMESTAMP.' ' This may not be passed with -k / --keep-last', ) @click.option( '-a', '--after', type=Timestamp(), help='Clear all data after TIMESTAMP' ' This may not be passed with -k / --keep-last', ) @click.option( '-k', '--keep-last', type=int, metavar='N', help='Clear all but the last N downloads.' ' This may not be passed with -e / --before or -a / --after', ) def clean(bundle, before, after, keep_last): """Clean up data downloaded with the ingest command. """ bundles_module.clean( bundle, before, after, keep_last, ) @main.command() def bundles(): """List all of the available data bundles. """ for bundle in sorted(bundles_module.bundles.keys()): if bundle.startswith('.'): # hide the test data continue try: ingestions = list( map(text_type, bundles_module.ingestions_for_bundle(bundle)) ) except OSError as e: if e.errno != errno.ENOENT: raise ingestions = [] # If we got no ingestions, either because the directory didn't exist or # because there were no entries, print a single message indicating that # no ingestions have yet been made. for timestamp in ingestions or ["<no ingestions>"]: click.echo("%s %s" % (bundle, timestamp)) if __name__ == '__main__': main()
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/__main__.py
__main__.py
import os.path from datetime import datetime, timedelta import logbook import pandas as pd import numpy as np import pytz from dateutil.relativedelta import relativedelta from zipline.finance.blotter.blotter_live import BlotterLive from zipline.algorithm import TradingAlgorithm from zipline.errors import ScheduleFunctionOutsideTradingStart from zipline.gens.realtimeclock import RealtimeClock from zipline.gens.tradesimulation import AlgorithmSimulator from zipline.utils.api_support import ZiplineAPI, \ allowed_only_in_before_trading_start, api_method from zipline.utils.pandas_utils import normalize_date from zipline.utils.serialization_utils import load_context, store_context from zipline.finance.metrics import MetricsTracker, load as load_metrics_set log = logbook.Logger("Live Trading") # how many minutes before Trading starts needs the function before_trading_starts # be launched _minutes_before_trading_starts = 60*4 class LiveAlgorithmExecutor(AlgorithmSimulator): def __init__(self, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) def _cleanup_expired_assets(self, dt, position_assets): # In simulation this is used to close assets in the simulation end date, which makes a lot of sense. # in our case, "simulation end" is set to 1 day from now (we might want to fix that in the future too) BUT, # we don't really have a simulation end date, and we should let the algorithm decide when to close the assets. pass class LiveTradingAlgorithm(TradingAlgorithm): def __init__(self, *args, **kwargs): self.broker = kwargs.pop('broker', None) self.orders = {} self.algo_filename = kwargs.get('algo_filename', "<algorithm>") self.state_filename = kwargs.pop('state_filename', None) self.realtime_bar_target = kwargs.pop('realtime_bar_target', None) # Persistence blacklist/whitelist and excludes gives a way to include/ # exclude (so do not persist on disk if initiated or excluded from the serialization # function that reinstate or save the context variable to its last state). # trading client can never be serialized, the initialized function and # perf tracker remember the context variables and the past performance # and need to be whitelisted self._context_persistence_blacklist = ['trading_client'] self._context_persistence_whitelist = ['initialized', 'perf_tracker'] self._context_persistence_excludes = [] # blotter is always initialized to SimulationBlotter in run_algo.py. # we override it here to use the LiveBlotter for live algos blotter_live = BlotterLive( data_frequency=kwargs['sim_params'].data_frequency, broker=self.broker) kwargs['blotter'] = blotter_live super(self.__class__, self).__init__(*args, **kwargs) log.info("initialization done") def initialize(self, *args, **kwargs): self._context_persistence_excludes = \ self._context_persistence_blacklist + \ [e for e in self.__dict__.keys() if e not in self._context_persistence_whitelist] if os.path.isfile(self.state_filename): log.info("Loading state from {}".format(self.state_filename)) load_context(self.state_filename, context=self, checksum=self.algo_filename) return with ZiplineAPI(self): super(self.__class__, self).initialize(*args, **kwargs) store_context(self.state_filename, context=self, checksum=self.algo_filename, exclude_list=self._context_persistence_excludes) def handle_data(self, data): super(self.__class__, self).handle_data(data) store_context(self.state_filename, context=self, checksum=self.algo_filename, exclude_list=self._context_persistence_excludes) def teardown(self): super(self.__class__, self).teardown() store_context(self.state_filename, context=self, checksum=self.algo_filename, exclude_list=self._context_persistence_excludes) def _create_clock(self): # This method is taken from TradingAlgorithm. # The clock has been replaced to use RealtimeClock trading_o_and_c = self.trading_calendar.schedule.ix[ self.sim_params.sessions] assert self.sim_params.emission_rate == 'minute' minutely_emission = True market_opens = trading_o_and_c['market_open'] market_closes = trading_o_and_c['market_close'] # The calendar's execution times are the minutes over which we actually # want to run the clock. Typically the execution times simply adhere to # the market open and close times. In the case of the futures calendar, # for example, we only want to simulate over a subset of the full 24 # hour calendar, so the execution times dictate a market open time of # 6:31am US/Eastern and a close of 5:00pm US/Eastern. execution_opens = \ self.trading_calendar.execution_time_from_open(market_opens) execution_closes = \ self.trading_calendar.execution_time_from_close(market_closes) before_trading_start_minutes = ((pd.to_datetime(execution_opens.values) .tz_localize('UTC').tz_convert('US/Eastern') - timedelta(minutes=_minutes_before_trading_starts)) .tz_convert('UTC')) return RealtimeClock( self.sim_params.sessions, execution_opens, execution_closes, before_trading_start_minutes, minute_emission=minutely_emission, time_skew=self.broker.time_skew, is_broker_alive=self.broker.is_alive, execution_id=self.sim_params._execution_id if hasattr(self.sim_params, "_execution_id") else None, stop_execution_callback=self._stop_execution_callback ) def _create_generator(self, sim_params): # Call the simulation trading algorithm for side-effects: # it creates the perf tracker TradingAlgorithm._create_generator(self, self.sim_params) # capital base is the ammount of money the algo can use # it must be set with run_algorithm, and it's optional in cli mode with default value of 10 million # please note that in python: 10**7 or 10e6 is 10 million or 10000000 # note2: the default value is defined in zipline/__main__.py under `--capital-base` option # we need to support these scenarios: # 1. cli mode with default param - we need to replace 10e6 with value from broker # 2. run_algorithm or cli with specified value - if I have more than one algo running and I want to allocate # a specific value for each algo, I cannot override it with value from broker because it will set to max val # so, we will check if it's default value - assuming at this stage capital used for one algo will be less # than 10e6, we will override it with value from broker. if it's specified to something else we will not change # anything. if self.metrics_tracker._capital_base == 10e6: # should be changed in the future with a centralized value # the capital base is held in the metrics_tracker then the ledger then the Portfolio, so the best # way to handle this, since it's used in many spots, is creating a new metrics_tracker with the new # value. and ofc intialized relevant parts. this is copied from TradingAlgorithm._create_generator self.metrics_tracker = metrics_tracker = self._create_live_metrics_tracker() benchmark_source = self._create_benchmark_source() metrics_tracker.handle_start_of_simulation(benchmark_source) # attach metrics_tracker to broker self.broker.set_metrics_tracker(self.metrics_tracker) self.trading_client = LiveAlgorithmExecutor( self, sim_params, self.data_portal, self.trading_client.clock, self._create_benchmark_source(), self.restrictions, universe_func=self._calculate_universe ) return self.trading_client.transform() def _create_live_metrics_tracker(self): """ creating the metrics_tracker but setting values from the broker and not from the simulatio params :return: """ account = self.broker.get_account_from_broker() capital_base = float(account['NetLiquidation']) return MetricsTracker( trading_calendar=self.trading_calendar, first_session=self.sim_params.start_session, last_session=self.sim_params.end_session, capital_base=capital_base, emission_rate=self.sim_params.emission_rate, data_frequency=self.sim_params.data_frequency, asset_finder=self.asset_finder, metrics=self._metrics_set, ) def updated_portfolio(self): return self.broker.portfolio def updated_account(self): return self.broker.account @api_method @allowed_only_in_before_trading_start( ScheduleFunctionOutsideTradingStart()) def schedule_function(self, func, date_rule=None, time_rule=None, half_days=True, calendar=None): # If the scheduled_function() is called from initalize() # then the state persistence would need to take care of storing and # restoring the scheduled functions too (as initialize() only called # once in the algorithm's life). Persisting scheduled functions are # difficult as they are not serializable by default. # We enforce scheduled functions to be called only from # before_trading_start() in live trading with a decorator. super(self.__class__, self).schedule_function(func, date_rule, time_rule, half_days, calendar) @api_method def symbol(self, symbol_str): # This method works around the problem of not being able to trade # assets which does not have ingested data for the day of trade. # Normally historical data is loaded to bundle and the asset's # end_date and auto_close_date is set based on the last entry from # the bundle db. LiveTradingAlgorithm does not override order_value(), # order_percent() & order_target(). Those higher level ordering # functions provide a safety net to not to trade de-listed assets. # If the asset is returned as it was ingested (end_date=yesterday) # then CannotOrderDelistedAsset exception will be raised from the # higher level order functions. # # Hence, we are increasing the asset's end_date by 10 years. # VK: it is not clear why 10 years is used - we can easily include # delisted assets into pipeline by doing that. Thus extending lifetimes # only until current live trading date. asset = super(self.__class__, self).symbol(symbol_str) tradeable_asset = asset.to_dict() live_today = pd.Timestamp(datetime.utcnow().date()).replace(tzinfo=pytz.UTC) if tradeable_asset['end_date'] + pd.offsets.BDay(1) >= live_today: tradeable_asset['end_date'] = live_today tradeable_asset['auto_close_date'] = live_today # end_date = pd.Timestamp((datetime.utcnow() + relativedelta(years=10)).date()).replace(tzinfo=pytz.UTC) # tradeable_asset['end_date'] = end_date # tradeable_asset['auto_close_date'] = end_date log.info('Extended lifetime of asset {} to {}'.format(symbol_str, tradeable_asset['end_date'])) # asset = asset.from_dict(tradeable_asset) return asset.from_dict(tradeable_asset) # return asset def run(self, *args, **kwargs): daily_stats = super(self.__class__, self).run(*args, **kwargs) self.on_exit() return daily_stats def on_exit(self): self.teardown() if not self.realtime_bar_target: return log.info("Storing realtime bars to: {}".format( self.realtime_bar_target)) today = str(pd.to_datetime('today').date()) subscribed_assets = self.broker.subscribed_assets realtime_history = self.broker.get_realtime_bars(subscribed_assets, '1m') if not os.path.exists(self.realtime_bar_target): os.mkdir(self.realtime_bar_target) for asset in subscribed_assets: filename = "ZL-%s-%s.csv" % (asset.symbol, today) path = os.path.join(self.realtime_bar_target, filename) realtime_history[asset].to_csv(path, mode='a', index_label='datetime', header=not os.path.exists(path)) def _pipeline_output(self, pipeline, chunks, name): # This method is taken from TradingAlgorithm. """ Internal implementation of `pipeline_output`. For Live Algo's we have to get the previous session as the Pipeline wont work without, it will extrapolate such that it tries to get data for get_datetime which is today """ today = normalize_date(self.get_datetime()) prev_session = normalize_date(self.trading_calendar.previous_open(today)) log.info('today in _pipeline_output : {}'.format(prev_session)) live_today = pd.Timestamp(datetime.utcnow().date()).replace(tzinfo=pytz.UTC) lifetimes_extended = False try: data = self._pipeline_cache.get(name, prev_session) except KeyError: # Calculate the next block. data, valid_until = self.run_pipeline( pipeline, prev_session, next(chunks), ) # If live trading then shifting the end date to today. # Doing that for assets with the up to date end_date only. dates_kept = np.array(data.index.get_level_values(0)) assets_kept = np.array(data.index.get_level_values(1)) for i, asset in enumerate(assets_kept): if asset.end_date + pd.offsets.BDay(1) >= live_today: lifetimes_extended = True asset_dict = asset.to_dict() asset_dict['end_date'] = live_today asset_dict['auto_close_date'] = live_today assets_kept[i] = asset.from_dict(asset_dict) index = pd.MultiIndex.from_arrays([dates_kept, assets_kept]) data.index = index self._pipeline_cache.set(name, data, valid_until) if lifetimes_extended: log.info('Extended lifetime of the pipeline assets to {}'.format(live_today)) # Now that we have a cached result, try to return the data for today. try: return data.loc[prev_session] except KeyError: # This happens if no assets passed the pipeline screen on a given # day. return pd.DataFrame(index=[], columns=data.columns) def _sync_last_sale_prices(self, dt=None): """ we get the updates from the broker so we don't need to use this method which tries to get it from the ingested data :param dt: :return: """ pass
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/algorithm_live.py
algorithm_live.py
import re import six from toolz import curry def create_args(args, root): """ Encapsulates a set of custom command line arguments in key=value or key.namespace=value form into a chain of Namespace objects, where each next level is an attribute of the Namespace object on the current level Parameters ---------- args : list A list of strings representing arguments in key=value form root : Namespace The top-level element of the argument tree """ extension_args = {} for arg in args: parse_extension_arg(arg, extension_args) for name in sorted(extension_args, key=len): path = name.split('.') update_namespace(root, path, extension_args[name]) def parse_extension_arg(arg, arg_dict): """ Converts argument strings in key=value or key.namespace=value form to dictionary entries Parameters ---------- arg : str The argument string to parse, which must be in key=value or key.namespace=value form. arg_dict : dict The dictionary into which the key/value pair will be added """ match = re.match(r'^(([^\d\W]\w*)(\.[^\d\W]\w*)*)=(.*)$', arg) if match is None: raise ValueError( "invalid extension argument '%s', must be in key=value form" % arg ) name = match.group(1) value = match.group(4) arg_dict[name] = value def update_namespace(namespace, path, name): """ A recursive function that takes a root element, list of namespaces, and the value being stored, and assigns namespaces to the root object via a chain of Namespace objects, connected through attributes Parameters ---------- namespace : Namespace The object onto which an attribute will be added path : list A list of strings representing namespaces name : str The value to be stored at the bottom level """ if len(path) == 1: setattr(namespace, path[0], name) else: if hasattr(namespace, path[0]): if isinstance(getattr(namespace, path[0]), six.string_types): raise ValueError("Conflicting assignments at namespace" " level '%s'" % path[0]) else: a = Namespace() setattr(namespace, path[0], a) update_namespace(getattr(namespace, path[0]), path[1:], name) class Namespace(object): """ A placeholder object representing a namespace level """ class Registry(object): """ Responsible for managing all instances of custom subclasses of a given abstract base class - only one instance needs to be created per abstract base class, and should be created through the create_registry function/decorator. All management methods for a given base class can be called through the global wrapper functions rather than through the object instance itself. Parameters ---------- interface : type The abstract base class to manage. """ def __init__(self, interface): self.interface = interface self._factories = {} def load(self, name): """Construct an object from a registered factory. Parameters ---------- name : str Name with which the factory was registered. """ try: return self._factories[name]() except KeyError: raise ValueError( "no %s factory registered under name %r, options are: %r" % (self.interface.__name__, name, sorted(self._factories)), ) def is_registered(self, name): """Check whether we have a factory registered under ``name``. """ return name in self._factories @curry def register(self, name, factory): if self.is_registered(name): raise ValueError( "%s factory with name %r is already registered" % (self.interface.__name__, name) ) self._factories[name] = factory return factory def unregister(self, name): try: del self._factories[name] except KeyError: raise ValueError( "%s factory %r was not already registered" % (self.interface.__name__, name) ) def clear(self): self._factories.clear() # Public wrapper methods for Registry: def get_registry(interface): """ Getter method for retrieving the registry instance for a given extendable type Parameters ---------- interface : type extendable type (base class) Returns ------- manager : Registry The corresponding registry """ try: return custom_types[interface] except KeyError: raise ValueError("class specified is not an extendable type") def load(interface, name): """ Retrieves a custom class whose name is given. Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the class to be retrieved. Returns ------- obj : object An instance of the desired class. """ return get_registry(interface).load(name) @curry def register(interface, name, custom_class): """ Registers a class for retrieval by the load method Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the subclass custom_class : type The class to register, which must be a subclass of the abstract base class in self.dtype """ return get_registry(interface).register(name, custom_class) def unregister(interface, name): """ If a class is registered with the given name, it is unregistered. Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the class to be unregistered. """ get_registry(interface).unregister(name) def clear(interface): """ Unregisters all current registered classes Parameters ---------- interface : type The base class for which to perform this operation """ get_registry(interface).clear() def create_registry(interface): """ Create a new registry for an extensible interface. Parameters ---------- interface : type The abstract data type for which to create a registry, which will manage registration of factories for this type. Returns ------- interface : type The data type specified/decorated, unaltered. """ if interface in custom_types: raise ValueError('there is already a Registry instance ' 'for the specified type') custom_types[interface] = Registry(interface) return interface extensible = create_registry # A global dictionary for storing instances of Registry: custom_types = {}
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/extensions.py
extensions.py
from textwrap import dedent from zipline.utils.memoize import lazyval class ZiplineError(Exception): msg = None def __init__(self, **kwargs): self.kwargs = kwargs @lazyval def message(self): return str(self) def __str__(self): msg = self.msg.format(**self.kwargs) return msg __unicode__ = __str__ __repr__ = __str__ class NoTradeDataAvailable(ZiplineError): pass class NoTradeDataAvailableTooEarly(NoTradeDataAvailable): msg = "{sid} does not exist on {dt}. It started trading on {start_dt}." class NoTradeDataAvailableTooLate(NoTradeDataAvailable): msg = "{sid} does not exist on {dt}. It stopped trading on {end_dt}." class BenchmarkAssetNotAvailableTooEarly(NoTradeDataAvailableTooEarly): pass class BenchmarkAssetNotAvailableTooLate(NoTradeDataAvailableTooLate): pass class InvalidBenchmarkAsset(ZiplineError): msg = """ {sid} cannot be used as the benchmark because it has a stock \ dividend on {dt}. Choose another asset to use as the benchmark. """.strip() class WrongDataForTransform(ZiplineError): """ Raised whenever a rolling transform is called on an event that does not have the necessary properties. """ msg = "{transform} requires {fields}. Event cannot be processed." class UnsupportedSlippageModel(ZiplineError): """ Raised if a user script calls the set_slippage magic with a slipage object that isn't a VolumeShareSlippage or FixedSlipapge """ msg = """ You attempted to set slippage with an unsupported class. \ Please use VolumeShareSlippage or FixedSlippage. """.strip() class IncompatibleSlippageModel(ZiplineError): """ Raised if a user tries to set a futures slippage model for equities or vice versa. """ msg = """ You attempted to set an incompatible slippage model for {asset_type}. \ The slippage model '{given_model}' only supports {supported_asset_types}. """.strip() class SetSlippagePostInit(ZiplineError): # Raised if a users script calls set_slippage magic # after the initialize method has returned. msg = """ You attempted to set slippage outside of `initialize`. \ You may only call 'set_slippage' in your initialize method. """.strip() class SetCancelPolicyPostInit(ZiplineError): # Raised if a users script calls set_cancel_policy # after the initialize method has returned. msg = """ You attempted to set the cancel policy outside of `initialize`. \ You may only call 'set_cancel_policy' in your initialize method. """.strip() class RegisterTradingControlPostInit(ZiplineError): # Raised if a user's script register's a trading control after initialize # has been run. msg = """ You attempted to set a trading control outside of `initialize`. \ Trading controls may only be set in your initialize method. """.strip() class RegisterAccountControlPostInit(ZiplineError): # Raised if a user's script register's a trading control after initialize # has been run. msg = """ You attempted to set an account control outside of `initialize`. \ Account controls may only be set in your initialize method. """.strip() class UnsupportedCommissionModel(ZiplineError): """ Raised if a user script calls the set_commission magic with a commission object that isn't a PerShare, PerTrade or PerDollar commission """ msg = """ You attempted to set commission with an unsupported class. \ Please use PerShare or PerTrade. """.strip() class IncompatibleCommissionModel(ZiplineError): """ Raised if a user tries to set a futures commission model for equities or vice versa. """ msg = """ You attempted to set an incompatible commission model for {asset_type}. \ The commission model '{given_model}' only supports {supported_asset_types}. """.strip() class UnsupportedCancelPolicy(ZiplineError): """ Raised if a user script calls set_cancel_policy with an object that isn't a CancelPolicy. """ msg = """ You attempted to set the cancel policy with an unsupported class. Please use an instance of CancelPolicy. """.strip() class SetCommissionPostInit(ZiplineError): """ Raised if a users script calls set_commission magic after the initialize method has returned. """ msg = """ You attempted to override commission outside of `initialize`. \ You may only call 'set_commission' in your initialize method. """.strip() class TransactionWithNoVolume(ZiplineError): """ Raised if a transact call returns a transaction with zero volume. """ msg = """ Transaction {txn} has a volume of zero. """.strip() class TransactionWithWrongDirection(ZiplineError): """ Raised if a transact call returns a transaction with a direction that does not match the order. """ msg = """ Transaction {txn} not in same direction as corresponding order {order}. """.strip() class TransactionWithNoAmount(ZiplineError): """ Raised if a transact call returns a transaction with zero amount. """ msg = """ Transaction {txn} has an amount of zero. """.strip() class TransactionVolumeExceedsOrder(ZiplineError): """ Raised if a transact call returns a transaction with a volume greater than the corresponding order. """ msg = """ Transaction volume of {txn} exceeds the order volume of {order}. """.strip() class UnsupportedOrderParameters(ZiplineError): """ Raised if a set of mutually exclusive parameters are passed to an order call. """ msg = "{msg}" class CannotOrderDelistedAsset(ZiplineError): """ Raised if an order is for a delisted asset. """ msg = "{msg}" class BadOrderParameters(ZiplineError): """ Raised if any impossible parameters (nan, negative limit/stop) are passed to an order call. """ msg = "{msg}" class OrderDuringInitialize(ZiplineError): """ Raised if order is called during initialize() """ msg = "{msg}" class SetBenchmarkOutsideInitialize(ZiplineError): """ Raised if set_benchmark is called outside initialize() """ msg = "'set_benchmark' can only be called within initialize function." class ZeroCapitalError(ZiplineError): """ Raised if initial capital is set at or below zero """ msg = "initial capital base must be greater than zero" class AccountControlViolation(ZiplineError): """ Raised if the account violates a constraint set by a AccountControl. """ msg = """ Account violates account constraint {constraint}. """.strip() class TradingControlViolation(ZiplineError): """ Raised if an order would violate a constraint set by a TradingControl. """ msg = """ Order for {amount} shares of {asset} at {datetime} violates trading constraint {constraint}. """.strip() class IncompatibleHistoryFrequency(ZiplineError): """ Raised when a frequency is given to history which is not supported. At least, not yet. """ msg = """ Requested history at frequency '{frequency}' cannot be created with data at frequency '{data_frequency}'. """.strip() class HistoryInInitialize(ZiplineError): """ Raised when an algorithm calls history() in initialize. """ msg = "history() should only be called in handle_data()" class OrderInBeforeTradingStart(ZiplineError): """ Raised when an algorithm calls an order method in before_trading_start. """ msg = "Cannot place orders inside before_trading_start." class ScheduleFunctionOutsideTradingStart(ZiplineError): """ Raised when an algorithm schedules functions outside of before_trading_start() """ msg = "schedule_function() should only be called in before_trading_start()" class MultipleSymbolsFound(ZiplineError): """ Raised when a symbol() call contains a symbol that changed over time and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple symbols with the name '{symbol}' found. Use the as_of_date' argument to to specify when the date symbol-lookup should be valid. Possible options: {options} """.strip() class SymbolNotFound(ZiplineError): """ Raised when a symbol() call contains a non-existant symbol. """ msg = """ Symbol '{symbol}' was not found. """.strip() class RootSymbolNotFound(ZiplineError): """ Raised when a lookup_future_chain() call contains a non-existant symbol. """ msg = """ Root symbol '{root_symbol}' was not found. """.strip() class ValueNotFoundForField(ZiplineError): """ Raised when a lookup_by_supplementary_mapping() call contains a value does not exist for the specified mapping type. """ msg = """ Value '{value}' was not found for field '{field}'. """.strip() class MultipleValuesFoundForField(ZiplineError): """ Raised when a lookup_by_supplementary_mapping() call contains a value that changed over time for the specified field and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple occurrences of the value '{value}' found for field '{field}'. Use the 'as_of_date' or 'country_code' argument to specify when or where the lookup should be valid. Possible options: {options} """.strip() class NoValueForSid(ZiplineError): """ Raised when a get_supplementary_field() call contains a sid that does not have a value for the specified mapping type. """ msg = """ No '{field}' value found for sid '{sid}'. """.strip() class MultipleValuesFoundForSid(ZiplineError): """ Raised when a get_supplementary_field() call contains a value that changed over time for the specified field and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple '{field}' values found for sid '{sid}'. Use the as_of_date' argument to specify when the lookup should be valid. Possible options: {options} """.strip() class SidsNotFound(ZiplineError): """ Raised when a retrieve_asset() or retrieve_all() call contains a non-existent sid. """ @lazyval def plural(self): return len(self.sids) > 1 @lazyval def sids(self): return self.kwargs['sids'] @lazyval def msg(self): if self.plural: return "No assets found for sids: {sids}." return "No asset found for sid: {sids[0]}." class EquitiesNotFound(SidsNotFound): """ Raised when a call to `retrieve_equities` fails to find an asset. """ @lazyval def msg(self): if self.plural: return "No equities found for sids: {sids}." return "No equity found for sid: {sids[0]}." class FutureContractsNotFound(SidsNotFound): """ Raised when a call to `retrieve_futures_contracts` fails to find an asset. """ @lazyval def msg(self): if self.plural: return "No future contracts found for sids: {sids}." return "No future contract found for sid: {sids[0]}." class ConsumeAssetMetaDataError(ZiplineError): """ Raised when AssetFinder.consume() is called on an invalid object. """ msg = """ AssetFinder can not consume metadata of type {obj}. Metadata must be a dict, a DataFrame, or a tables.Table. If the provided metadata is a Table, the rows must contain both or one of 'sid' or 'symbol'. """.strip() class MapAssetIdentifierIndexError(ZiplineError): """ Raised when AssetMetaData.map_identifier_index_to_sids() is called on an index of invalid objects. """ msg = """ AssetFinder can not map an index with values of type {obj}. Asset indices of DataFrames or Panels must be integer sids, string symbols, or Asset objects. """.strip() class SidAssignmentError(ZiplineError): """ Raised when an AssetFinder tries to build an Asset that does not have a sid and that AssetFinder is not permitted to assign sids. """ msg = """ AssetFinder metadata is missing a SID for identifier '{identifier}'. """.strip() class NoSourceError(ZiplineError): """ Raised when no source is given to the pipeline """ msg = """ No data source given. """.strip() class PipelineDateError(ZiplineError): """ Raised when only one date is passed to the pipeline """ msg = """ Only one simulation date given. Please specify both the 'start' and 'end' for the simulation, or neither. If neither is given, the start and end of the DataSource will be used. Given start = '{start}', end = '{end}' """.strip() class WindowLengthTooLong(ZiplineError): """ Raised when a trailing window is instantiated with a lookback greater than the length of the underlying array. """ msg = ( "Can't construct a rolling window of length " "{window_length} on an array of length {nrows}." ).strip() class WindowLengthNotPositive(ZiplineError): """ Raised when a trailing window would be instantiated with a length less than 1. """ msg = ( "Expected a window_length greater than 0, got {window_length}." ).strip() class NonWindowSafeInput(ZiplineError): """ Raised when a Pipeline API term that is not deemed window safe is specified as an input to another windowed term. This is an error because it's generally not safe to compose windowed functions on split/dividend adjusted data. """ msg = ( "Can't compute windowed expression {parent} with " "windowed input {child}." ) class TermInputsNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying inputs and that term does not have class-level default inputs. """ msg = "{termname} requires inputs, but no inputs list was passed." class NonPipelineInputs(ZiplineError): """ Raised when a non-pipeline object is passed as input to a ComputableTerm """ def __init__(self, term, inputs): self.term = term self.inputs = inputs def __str__(self): return ( "Unexpected input types in {}. " "Inputs to Pipeline expressions must be Filters, Factors, " "Classifiers, or BoundColumns.\n" "Got the following type(s) instead: {}".format( type(self.term).__name__, sorted(set(map(type, self.inputs)), key=lambda t: t.__name__), ) ) class TermOutputsEmpty(ZiplineError): """ Raised if a user attempts to construct a term with an empty outputs list. """ msg = ( "{termname} requires at least one output when passed an outputs " "argument." ) class InvalidOutputName(ZiplineError): """ Raised if a term's output names conflict with any of its attributes. """ msg = ( "{output_name!r} cannot be used as an output name for {termname}. " "Output names cannot start with an underscore or be contained in the " "following list: {disallowed_names}." ) class WindowLengthNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying window length and that term does not have a class-level default window length. """ msg = ( "{termname} requires a window_length, but no window_length was passed." ) class InvalidTermParams(ZiplineError): """ Raised if a user attempts to construct a Term using ParameterizedTermMixin without specifying a `params` list in the class body. """ msg = ( "Expected a list of strings as a class-level attribute for " "{termname}.params, but got {value} instead." ) class DTypeNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying dtype and that term does not have class-level default dtype. """ msg = ( "{termname} requires a dtype, but no dtype was passed." ) class NotDType(ZiplineError): """ Raised when a pipeline Term is constructed with a dtype that isn't a numpy dtype object. """ msg = ( "{termname} expected a numpy dtype " "object for a dtype, but got {dtype} instead." ) class UnsupportedDType(ZiplineError): """ Raised when a pipeline Term is constructed with a dtype that's not supported. """ msg = ( "Failed to construct {termname}.\n" "Pipeline terms of dtype {dtype} are not yet supported." ) class BadPercentileBounds(ZiplineError): """ Raised by API functions accepting percentile bounds when the passed bounds are invalid. """ msg = ( "Percentile bounds must fall between 0.0 and {upper_bound}, and min " "must be less than max." "\nInputs were min={min_percentile}, max={max_percentile}." ) class UnknownRankMethod(ZiplineError): """ Raised during construction of a Rank factor when supplied a bad Rank method. """ msg = ( "Unknown ranking method: '{method}'. " "`method` must be one of {choices}" ) class AttachPipelineAfterInitialize(ZiplineError): """ Raised when a user tries to call add_pipeline outside of initialize. """ msg = ( "Attempted to attach a pipeline after initialize()." "attach_pipeline() can only be called during initialize." ) class PipelineOutputDuringInitialize(ZiplineError): """ Raised when a user tries to call `pipeline_output` during initialize. """ msg = ( "Attempted to call pipeline_output() during initialize. " "pipeline_output() can only be called once initialize has completed." ) class NoSuchPipeline(ZiplineError, KeyError): """ Raised when a user tries to access a non-existent pipeline by name. """ msg = ( "No pipeline named '{name}' exists. Valid pipeline names are {valid}. " "Did you forget to call attach_pipeline()?" ) class DuplicatePipelineName(ZiplineError): """ Raised when a user tries to attach a pipeline with a name that already exists for another attached pipeline. """ msg = ( "Attempted to attach pipeline named {name!r}, but the name already " "exists for another pipeline. Please use a different name for this " "pipeline." ) class UnsupportedDataType(ZiplineError): """ Raised by CustomFactors with unsupported dtypes. """ def __init__(self, hint='', **kwargs): if hint: hint = ' ' + hint kwargs['hint'] = hint super(UnsupportedDataType, self).__init__(**kwargs) msg = "{typename} instances with dtype {dtype} are not supported.{hint}" class NoFurtherDataError(ZiplineError): """ Raised by calendar operations that would ask for dates beyond the extent of our known data. """ # This accepts an arbitrary message string because it's used in more places # that can be usefully templated. msg = '{msg}' @classmethod def from_lookback_window(cls, initial_message, first_date, lookback_start, lookback_length): return cls( msg=dedent( """ {initial_message} lookback window started at {lookback_start} earliest known date was {first_date} {lookback_length} extra rows of data were required """ ).format( initial_message=initial_message, first_date=first_date, lookback_start=lookback_start, lookback_length=lookback_length, ) ) class UnsupportedDatetimeFormat(ZiplineError): """ Raised when an unsupported datetime is passed to an API method. """ msg = ("The input '{input}' passed to '{method}' is not " "coercible to a pandas.Timestamp object.") class AssetDBVersionError(ZiplineError): """ Raised by an AssetDBWriter or AssetFinder if the version number in the versions table does not match the ASSET_DB_VERSION in asset_writer.py. """ msg = ( "The existing Asset database has an incorrect version: {db_version}. " "Expected version: {expected_version}. Try rebuilding your asset " "database or updating your version of Zipline." ) class AssetDBImpossibleDowngrade(ZiplineError): msg = ( "The existing Asset database is version: {db_version} which is lower " "than the desired downgrade version: {desired_version}." ) class HistoryWindowStartsBeforeData(ZiplineError): msg = ( "History window extends before {first_trading_day}. To use this " "history window, start the backtest on or after {suggested_start_day}." ) class NonExistentAssetInTimeFrame(ZiplineError): msg = ( "The target asset '{asset}' does not exist for the entire timeframe " "between {start_date} and {end_date}." ) class InvalidCalendarName(ZiplineError): """ Raised when a calendar with an invalid name is requested. """ msg = ( "The requested TradingCalendar, {calendar_name}, does not exist." ) class CalendarNameCollision(ZiplineError): """ Raised when the static calendar registry already has a calendar with a given name. """ msg = ( "A calendar with the name {calendar_name} is already registered." ) class CyclicCalendarAlias(ZiplineError): """ Raised when calendar aliases form a cycle. """ msg = "Cycle in calendar aliases: [{cycle}]" class ScheduleFunctionWithoutCalendar(ZiplineError): """ Raised when schedule_function is called but there is not a calendar to be used in the construction of an event rule. """ # TODO update message when new TradingSchedules are built msg = ( "To use schedule_function, the TradingAlgorithm must be running on an " "ExchangeTradingSchedule, rather than {schedule}." ) class ScheduleFunctionInvalidCalendar(ZiplineError): """ Raised when schedule_function is called with an invalid calendar argument. """ msg = ( "Invalid calendar '{given_calendar}' passed to schedule_function. " "Allowed options are {allowed_calendars}." ) class UnsupportedPipelineOutput(ZiplineError): """ Raised when a 1D term is added as a column to a pipeline. """ msg = ( "Cannot add column {column_name!r} with term {term}. Adding slices or " "single-column-output terms as pipeline columns is not currently " "supported." ) class NonSliceableTerm(ZiplineError): """ Raised when attempting to index into a non-sliceable term, e.g. instances of `zipline.pipeline.term.LoadableTerm`. """ msg = "Taking slices of {term} is not currently supported." class IncompatibleTerms(ZiplineError): """ Raised when trying to compute correlations/regressions between two 2D factors with different masks. """ msg = ( "{term_1} and {term_2} must have the same mask in order to compute " "correlations and regressions asset-wise." )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/errors.py
errors.py
from warnings import warn import pandas as pd from .assets import Asset from .utils.enum import enum from ._protocol import BarData, InnerPosition # noqa class MutableView(object): """A mutable view over an "immutable" object. Parameters ---------- ob : any The object to take a view over. """ # add slots so we don't accidentally add attributes to the view instead of # ``ob`` __slots__ = ('_mutable_view_ob',) def __init__(self, ob): object.__setattr__(self, '_mutable_view_ob', ob) def __getattr__(self, attr): return getattr(self._mutable_view_ob, attr) def __setattr__(self, attr, value): vars(self._mutable_view_ob)[attr] = value def __repr__(self): return '%s(%r)' % (type(self).__name__, self._mutable_view_ob) # Datasource type should completely determine the other fields of a # message with its type. DATASOURCE_TYPE = enum( 'AS_TRADED_EQUITY', 'MERGER', 'SPLIT', 'DIVIDEND', 'TRADE', 'TRANSACTION', 'ORDER', 'EMPTY', 'DONE', 'CUSTOM', 'BENCHMARK', 'COMMISSION', 'CLOSE_POSITION' ) # Expected fields/index values for a dividend Series. DIVIDEND_FIELDS = [ 'declared_date', 'ex_date', 'gross_amount', 'net_amount', 'pay_date', 'payment_sid', 'ratio', 'sid', ] # Expected fields/index values for a dividend payment Series. DIVIDEND_PAYMENT_FIELDS = [ 'id', 'payment_sid', 'cash_amount', 'share_count', ] class Event(object): def __init__(self, initial_values=None): if initial_values: self.__dict__.update(initial_values) def keys(self): return self.__dict__.keys() def __eq__(self, other): return hasattr(other, '__dict__') and self.__dict__ == other.__dict__ def __contains__(self, name): return name in self.__dict__ def __repr__(self): return "Event({0})".format(self.__dict__) def to_series(self, index=None): return pd.Series(self.__dict__, index=index) def _deprecated_getitem_method(name, attrs): """Create a deprecated ``__getitem__`` method that tells users to use getattr instead. Parameters ---------- name : str The name of the object in the warning message. attrs : iterable[str] The set of allowed attributes. Returns ------- __getitem__ : callable[any, str] The ``__getitem__`` method to put in the class dict. """ attrs = frozenset(attrs) msg = ( "'{name}[{attr!r}]' is deprecated, please use" " '{name}.{attr}' instead" ) def __getitem__(self, key): """``__getitem__`` is deprecated, please use attribute access instead. """ warn(msg.format(name=name, attr=key), DeprecationWarning, stacklevel=2) if key in attrs: return getattr(self, key) raise KeyError(key) return __getitem__ class Order(Event): # If you are adding new attributes, don't update this set. This method # is deprecated to normal attribute access so we don't want to encourage # new usages. __getitem__ = _deprecated_getitem_method( 'order', { 'dt', 'sid', 'amount', 'stop', 'limit', 'id', 'filled', 'commission', 'stop_reached', 'limit_reached', 'created', }, ) class Portfolio(object): """The portfolio at a given time. Parameters ---------- start_date : pd.Timestamp The start date for the period being recorded. capital_base : float The starting value for the portfolio. This will be used as the starting cash, current cash, and portfolio value. """ def __init__(self, start_date=None, capital_base=0.0): self_ = MutableView(self) self_.cash_flow = 0.0 self_.starting_cash = capital_base self_.portfolio_value = capital_base self_.pnl = 0.0 self_.returns = 0.0 self_.cash = capital_base self_.positions = Positions() self_.start_date = start_date self_.positions_value = 0.0 self_.positions_exposure = 0.0 @property def capital_used(self): return self.cash_flow def __setattr__(self, attr, value): raise AttributeError('cannot mutate Portfolio objects') def __repr__(self): return "Portfolio({0})".format(self.__dict__) # If you are adding new attributes, don't update this set. This method # is deprecated to normal attribute access so we don't want to encourage # new usages. __getitem__ = _deprecated_getitem_method( 'portfolio', { 'capital_used', 'starting_cash', 'portfolio_value', 'pnl', 'returns', 'cash', 'positions', 'start_date', 'positions_value', }, ) @property def current_portfolio_weights(self): """ Compute each asset's weight in the portfolio by calculating its held value divided by the total value of all positions. Each equity's value is its price times the number of shares held. Each futures contract's value is its unit price times number of shares held times the multiplier. """ position_values = pd.Series({ asset: ( position.last_sale_price * position.amount * asset.price_multiplier ) for asset, position in self.positions.items() }) return position_values / self.portfolio_value class Account(object): """ The account object tracks information about the trading account. The values are updated as the algorithm runs and its keys remain unchanged. If connected to a broker, one can update these values with the trading account values as reported by the broker. """ def __init__(self): self_ = MutableView(self) self_.settled_cash = 0.0 self_.accrued_interest = 0.0 self_.buying_power = float('inf') self_.equity_with_loan = 0.0 self_.total_positions_value = 0.0 self_.total_positions_exposure = 0.0 self_.regt_equity = 0.0 self_.regt_margin = float('inf') self_.initial_margin_requirement = 0.0 self_.maintenance_margin_requirement = 0.0 self_.available_funds = 0.0 self_.excess_liquidity = 0.0 self_.cushion = 0.0 self_.day_trades_remaining = float('inf') self_.leverage = 0.0 self_.net_leverage = 0.0 self_.net_liquidation = 0.0 def __setattr__(self, attr, value): raise AttributeError('cannot mutate Account objects') def __repr__(self): return "Account({0})".format(self.__dict__) # If you are adding new attributes, don't update this set. This method # is deprecated to normal attribute access so we don't want to encourage # new usages. __getitem__ = _deprecated_getitem_method( 'account', { 'settled_cash', 'accrued_interest', 'buying_power', 'equity_with_loan', 'total_positions_value', 'total_positions_exposure', 'regt_equity', 'regt_margin', 'initial_margin_requirement', 'maintenance_margin_requirement', 'available_funds', 'excess_liquidity', 'cushion', 'day_trades_remaining', 'leverage', 'net_leverage', 'net_liquidation', }, ) class Position(object): __slots__ = ('_underlying_position',) def __init__(self, underlying_position): object.__setattr__(self, '_underlying_position', underlying_position) def __getattr__(self, attr): return getattr(self._underlying_position, attr) def __setattr__(self, attr, value): raise AttributeError('cannot mutate Position objects') @property def sid(self): # for backwards compatibility return self.asset def __repr__(self): return 'Position(%r)' % { k: getattr(self, k) for k in ( 'asset', 'amount', 'cost_basis', 'last_sale_price', 'last_sale_date', ) } # If you are adding new attributes, don't update this set. This method # is deprecated to normal attribute access so we don't want to encourage # new usages. __getitem__ = _deprecated_getitem_method( 'position', { 'sid', 'amount', 'cost_basis', 'last_sale_price', 'last_sale_date', }, ) # Copied from Position and renamed. This is used to handle cases where a user # does something like `context.portfolio.positions[100]` instead of # `context.portfolio.positions[sid(100)]`. class _DeprecatedSidLookupPosition(object): def __init__(self, sid): self.sid = sid self.amount = 0 self.cost_basis = 0.0 # per share self.last_sale_price = 0.0 self.last_sale_date = None def __repr__(self): return "_DeprecatedSidLookupPosition({0})".format(self.__dict__) # If you are adding new attributes, don't update this set. This method # is deprecated to normal attribute access so we don't want to encourage # new usages. __getitem__ = _deprecated_getitem_method( 'position', { 'sid', 'amount', 'cost_basis', 'last_sale_price', 'last_sale_date', }, ) class Positions(dict): def __missing__(self, key): if isinstance(key, Asset): return Position(InnerPosition(key)) elif isinstance(key, int): warn("Referencing positions by integer is deprecated." " Use an asset instead.") else: warn("Position lookup expected a value of type Asset but got {0}" " instead.".format(type(key).__name__)) return _DeprecatedSidLookupPosition(key)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/protocol.py
protocol.py
from distutils.version import StrictVersion import os import numpy as np # This is *not* a place to dump arbitrary classes/modules for convenience, # it is a place to expose the public interfaces. from trading_calendars import get_calendar from . import data from . import finance from . import gens from . import utils from .utils.numpy_utils import numpy_version from .utils.pandas_utils import new_pandas from .utils.run_algo import run_algorithm from ._version import get_versions # These need to happen after the other imports. from . algorithm import TradingAlgorithm from . import api from zipline import extensions as ext from zipline.finance.blotter import Blotter # PERF: Fire a warning if calendars were instantiated during zipline import. # Having calendars doesn't break anything per-se, but it makes zipline imports # noticeably slower, which becomes particularly noticeable in the Zipline CLI. from trading_calendars.calendar_utils import global_calendar_dispatcher if global_calendar_dispatcher._calendars: import warnings warnings.warn( "Found TradingCalendar instances after zipline import.\n" "Zipline startup will be much slower until this is fixed!", ) del warnings del global_calendar_dispatcher __version__ = get_versions()['version'] del get_versions extension_args = ext.Namespace() def load_ipython_extension(ipython): from .__main__ import zipline_magic ipython.register_magic_function(zipline_magic, 'line_cell', 'zipline') if os.name == 'nt': # we need to be able to write to our temp directoy on windows so we # create a subdir in %TMP% that has write access and use that as %TMP% def _(): import atexit import tempfile tempfile.tempdir = tempdir = tempfile.mkdtemp() @atexit.register def cleanup_tempdir(): import shutil shutil.rmtree(tempdir) _() del _ __all__ = [ 'Blotter', 'TradingAlgorithm', 'api', 'data', 'finance', 'get_calendar', 'gens', 'run_algorithm', 'utils', 'extension_args' ] def setup(self, np=np, numpy_version=numpy_version, StrictVersion=StrictVersion, new_pandas=new_pandas): """Lives in zipline.__init__ for doctests.""" legacy_version = '1.13' if numpy_version > StrictVersion(legacy_version): self.old_opts = np.get_printoptions() np.set_printoptions(legacy=legacy_version) else: self.old_opts = None if new_pandas: self.old_err = np.geterr() # old pandas has numpy compat that sets this np.seterr(all='ignore') else: self.old_err = None def teardown(self, np=np): """Lives in zipline.__init__ for doctests.""" if self.old_err is not None: np.seterr(**self.old_err) if self.old_opts is not None: np.set_printoptions(**self.old_opts) del os del np del numpy_version del StrictVersion del new_pandas
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/__init__.py
__init__.py
from collections import Iterable, namedtuple from copy import copy import warnings from datetime import tzinfo, time, timedelta import logbook import pytz import pandas as pd from contextlib2 import ExitStack import numpy as np from itertools import chain, repeat from six import ( exec_, iteritems, itervalues, string_types, ) from trading_calendars.utils.pandas_utils import days_at_time from trading_calendars import get_calendar from zipline._protocol import handle_non_market_minutes from zipline.errors import ( AttachPipelineAfterInitialize, CannotOrderDelistedAsset, DuplicatePipelineName, HistoryInInitialize, IncompatibleCommissionModel, IncompatibleSlippageModel, NoSuchPipeline, OrderDuringInitialize, OrderInBeforeTradingStart, PipelineOutputDuringInitialize, RegisterAccountControlPostInit, RegisterTradingControlPostInit, ScheduleFunctionInvalidCalendar, SetBenchmarkOutsideInitialize, SetCancelPolicyPostInit, SetCommissionPostInit, SetSlippagePostInit, UnsupportedCancelPolicy, UnsupportedDatetimeFormat, UnsupportedOrderParameters, ZeroCapitalError ) from zipline.finance.blotter import SimulationBlotter from zipline.finance.controls import ( LongOnly, MaxOrderCount, MaxOrderSize, MaxPositionSize, MaxLeverage, MinLeverage, RestrictedListOrder ) from zipline.finance.execution import ( LimitOrder, MarketOrder, StopLimitOrder, StopOrder, ) from zipline.finance.asset_restrictions import Restrictions from zipline.finance.cancel_policy import NeverCancel, CancelPolicy from zipline.finance.asset_restrictions import ( NoRestrictions, StaticRestrictions, SecurityListRestrictions, ) from zipline.assets import Asset, Equity, Future from zipline.gens.tradesimulation import AlgorithmSimulator from zipline.finance.metrics import MetricsTracker, load as load_metrics_set from zipline.pipeline import Pipeline from zipline.pipeline.engine import ( ExplodingPipelineEngine, SimplePipelineEngine, ) from zipline.utils.api_support import ( api_method, require_initialized, require_not_initialized, ZiplineAPI, disallowed_in_before_trading_start) from zipline.utils.input_validation import ( coerce_string, ensure_upper_case, error_keywords, expect_dtypes, expect_types, optional, optionally, ) from zipline.utils.numpy_utils import int64_dtype from zipline.utils.pandas_utils import normalize_date from zipline.utils.cache import ExpiringCache from zipline.utils.pandas_utils import clear_dataframe_indexer_caches import zipline.utils.events from zipline.utils.events import ( EventManager, make_eventrule, date_rules, time_rules, calendars, AfterOpen, BeforeClose ) from zipline.utils.math_utils import ( tolerant_equals, round_if_near_integer, ) from zipline.utils.preprocess import preprocess from zipline.utils.security_list import SecurityList import zipline.protocol from zipline.sources.requests_csv import PandasRequestsCSV from zipline.gens.sim_engine import MinuteSimulationClock from zipline.sources.benchmark_source import BenchmarkSource from zipline.zipline_warnings import ZiplineDeprecationWarning log = logbook.Logger("ZiplineLog") # For creating and storing pipeline instances AttachedPipeline = namedtuple('AttachedPipeline', 'pipe chunks eager') class TradingAlgorithm(object): """A class that represents a trading strategy and parameters to execute the strategy. Parameters ---------- *args, **kwargs Forwarded to ``initialize`` unless listed below. initialize : callable[context -> None], optional Function that is called at the start of the simulation to setup the initial context. handle_data : callable[(context, data) -> None], optional Function called on every bar. This is where most logic should be implemented. before_trading_start : callable[(context, data) -> None], optional Function that is called before any bars have been processed each day. analyze : callable[(context, DataFrame) -> None], optional Function that is called at the end of the backtest. This is passed the context and the performance results for the backtest. teardown : algo method like handle_data() or before_trading_start() that is called when the algo execution stops and allows the developer to nicely kill the algo execution. script : str, optional Algoscript that contains the definitions for the four algorithm lifecycle functions and any supporting code. namespace : dict, optional The namespace to execute the algoscript in. By default this is an empty namespace that will include only python built ins. algo_filename : str, optional The filename for the algoscript. This will be used in exception tracebacks. default: '<string>'. data_frequency : {'daily', 'minute'}, optional The duration of the bars. performance_callback : callback[(perf) -> None], optional A callback to send performance results everyday and not only at the end of the backtest. this allows to run live, and monitor the performance of the algorithm daily stop_execution_callback : callback[() -> bool], optional A callback to check if execution should be stopped. it is used to be able to stop live trading (also simulation could be stopped using this) execution. if the callback returns True, then algo execution will be aborted. equities_metadata : dict or DataFrame or file-like object, optional If dict is provided, it must have the following structure: * keys are the identifiers * values are dicts containing the metadata, with the metadata field name as the key If pandas.DataFrame is provided, it must have the following structure: * column names must be the metadata fields * index must be the different asset identifiers * array contents should be the metadata value If an object with a ``read`` method is provided, ``read`` must return rows containing at least one of 'sid' or 'symbol' along with the other metadata fields. futures_metadata : dict or DataFrame or file-like object, optional The same layout as ``equities_metadata`` except that it is used for futures information. identifiers : list, optional Any asset identifiers that are not provided in the equities_metadata, but will be traded by this TradingAlgorithm. get_pipeline_loader : callable[BoundColumn -> PipelineLoader], optional The function that maps pipeline columns to their loaders. create_event_context : callable[BarData -> context manager], optional A function used to create a context mananger that wraps the execution of all events that are scheduled for a bar. This function will be passed the data for the bar and should return the actual context manager that will be entered. history_container_class : type, optional The type of history container to use. default: HistoryContainer platform : str, optional The platform the simulation is running on. This can be queried for in the simulation with ``get_environment``. This allows algorithms to conditionally execute code based on platform it is running on. default: 'zipline' adjustment_reader : AdjustmentReader The interface to the adjustments. """ def __init__(self, sim_params, data_portal=None, asset_finder=None, # Algorithm API namespace=None, script=None, algo_filename=None, initialize=None, handle_data=None, before_trading_start=None, analyze=None, teardown=None, # trading_calendar=None, metrics_set=None, blotter=None, blotter_class=None, cancel_policy=None, benchmark_sid=None, benchmark_returns=None, platform='zipline', capital_changes=None, get_pipeline_loader=None, create_event_context=None, performance_callback=None, stop_execution_callback=None, **initialize_kwargs): # List of trading controls to be used to validate orders. self.trading_controls = [] # List of account controls to be checked on each bar. self.account_controls = [] self._recorded_vars = {} self.namespace = namespace or {} self._platform = platform self.logger = None # XXX: This is kind of a mess. # We support passing a data_portal in `run`, but we need an asset # finder earlier than that to look up assets for things like # set_benchmark. self.data_portal = data_portal if self.data_portal is None: if asset_finder is None: raise ValueError( "Must pass either data_portal or asset_finder " "to TradingAlgorithm()" ) self.asset_finder = asset_finder else: # Raise an error if we were passed two different asset finders. # There's no world where that's a good idea. if asset_finder is not None \ and asset_finder is not data_portal.asset_finder: raise ValueError( "Inconsistent asset_finders in TradingAlgorithm()" ) self.asset_finder = data_portal.asset_finder self.benchmark_returns = benchmark_returns # XXX: This is also a mess. We should remove all of this and only allow # one way to pass a calendar. # # We have a required sim_params argument as well as an optional # trading_calendar argument, but sim_params has a trading_calendar # attribute. If the user passed trading_calendar explicitly, make sure # it matches their sim_params. Otherwise, just use what's in their # sim_params. self.sim_params = sim_params if trading_calendar is None: self.trading_calendar = sim_params.trading_calendar elif trading_calendar.name == sim_params.trading_calendar.name: self.trading_calendar = sim_params.trading_calendar else: raise ValueError( "Conflicting calendars: trading_calendar={}, but " "sim_params.trading_calendar={}".format( trading_calendar.name, self.sim_params.trading_calendar.name, ) ) self.metrics_tracker = None self._last_sync_time = pd.NaT self._metrics_set = metrics_set if self._metrics_set is None: self._metrics_set = load_metrics_set('default') # Initialize Pipeline API data. self.init_engine(get_pipeline_loader) self._pipelines = {} # Create an already-expired cache so that we compute the first time # data is requested. self._pipeline_cache = ExpiringCache( cleanup=clear_dataframe_indexer_caches ) if blotter is not None: self.blotter = blotter else: cancel_policy = cancel_policy or NeverCancel() blotter_class = blotter_class or SimulationBlotter self.blotter = blotter_class(cancel_policy=cancel_policy) # The symbol lookup date specifies the date to use when resolving # symbols to sids, and can be set using set_symbol_lookup_date() self._symbol_lookup_date = None # If string is passed in, execute and get reference to # functions. self.algoscript = script self._initialize = None self._before_trading_start = None self._analyze = None self._performance_callback = None self._stop_execution_callback = None self._in_before_trading_start = False self.event_manager = EventManager(create_event_context) self._handle_data = None def noop(*args, **kwargs): pass if self.algoscript is not None: unexpected_api_methods = set() if initialize is not None: unexpected_api_methods.add('initialize') if handle_data is not None: unexpected_api_methods.add('handle_data') if before_trading_start is not None: unexpected_api_methods.add('before_trading_start') if analyze is not None: unexpected_api_methods.add('analyze') if teardown is not None: unexpected_api_methods.add('teardown') if unexpected_api_methods: raise ValueError( "TradingAlgorithm received a script and the following API" " methods as functions:\n{funcs}".format( funcs=unexpected_api_methods, ) ) if algo_filename is None: algo_filename = '<string>' code = compile(self.algoscript, algo_filename, 'exec') exec_(code, self.namespace) self._initialize = self.namespace.get('initialize', noop) self._handle_data = self.namespace.get('handle_data', noop) self._before_trading_start = self.namespace.get( 'before_trading_start', ) # Optional analyze function, gets called after run self._analyze = self.namespace.get('analyze') self._teardown = self.namespace.get('teardown') else: self._initialize = initialize or (lambda self: None) self._handle_data = handle_data self._before_trading_start = before_trading_start self._analyze = analyze self._teardown = teardown self._performance_callback = performance_callback self._stop_execution_callback = stop_execution_callback self.event_manager.add_event( zipline.utils.events.Event( zipline.utils.events.Always(), # We pass handle_data.__func__ to get the unbound method. # We will explicitly pass the algorithm to bind it again. self.handle_data.__func__, ), prepend=True, ) if self.sim_params.capital_base <= 0: raise ZeroCapitalError() # Prepare the algo for initialization self.initialized = False self.initialize_kwargs = initialize_kwargs or {} self.benchmark_sid = benchmark_sid # A dictionary of capital changes, keyed by timestamp, indicating the # target/delta of the capital changes, along with values self.capital_changes = capital_changes or {} # A dictionary of the actual capital change deltas, keyed by timestamp self.capital_change_deltas = {} self.restrictions = NoRestrictions() self._backwards_compat_universe = None def init_engine(self, get_loader): """ Construct and store a PipelineEngine from loader. If get_loader is None, constructs an ExplodingPipelineEngine """ if get_loader is not None: self.engine = SimplePipelineEngine( get_loader, self.trading_calendar.all_sessions, self.asset_finder, ) else: self.engine = ExplodingPipelineEngine() def initialize(self, *args, **kwargs): """ Call self._initialize with `self` made available to Zipline API functions. """ with ZiplineAPI(self): self._initialize(self, *args, **kwargs) def before_trading_start(self, data): self.compute_eager_pipelines() if hasattr(self, "broker"): # we are live, we need to updated our portfolio from the broker before we start self.broker._get_positions_from_broker() if self._before_trading_start is None: return self._in_before_trading_start = True with handle_non_market_minutes(data) if \ self.data_frequency == "minute" else ExitStack(): self._before_trading_start(self, data) self._in_before_trading_start = False def handle_data(self, data): if self._handle_data: self._handle_data(self, data) def teardown(self): if self._teardown: self._teardown(self) def analyze(self, perf): if self._analyze is None: return with ZiplineAPI(self): self._analyze(self, perf) def __repr__(self): """ N.B. this does not yet represent a string that can be used to instantiate an exact copy of an algorithm. However, it is getting close, and provides some value as something that can be inspected interactively. """ return """ {class_name}( capital_base={capital_base} sim_params={sim_params}, initialized={initialized}, slippage_models={slippage_models}, commission_models={commission_models}, blotter={blotter}, recorded_vars={recorded_vars}) """.strip().format(class_name=self.__class__.__name__, capital_base=self.sim_params.capital_base, sim_params=repr(self.sim_params), initialized=self.initialized, slippage_models=repr(self.blotter.slippage_models), commission_models=repr(self.blotter.commission_models), blotter=repr(self.blotter), recorded_vars=repr(self.recorded_vars)) def _create_clock(self): """ If the clock property is not set, then create one based on frequency. """ trading_o_and_c = self.trading_calendar.schedule.ix[ self.sim_params.sessions] market_closes = trading_o_and_c['market_close'] minutely_emission = False if self.sim_params.data_frequency == 'minute': market_opens = trading_o_and_c['market_open'] minutely_emission = self.sim_params.emission_rate == "minute" # The calendar's execution times are the minutes over which we # actually want to run the clock. Typically the execution times # simply adhere to the market open and close times. In the case of # the futures calendar, for example, we only want to simulate over # a subset of the full 24 hour calendar, so the execution times # dictate a market open time of 6:31am US/Eastern and a close of # 5:00pm US/Eastern. execution_opens = \ self.trading_calendar.execution_time_from_open(market_opens) execution_closes = \ self.trading_calendar.execution_time_from_close(market_closes) else: # in daily mode, we want to have one bar per session, timestamped # as the last minute of the session. execution_closes = \ self.trading_calendar.execution_time_from_close(market_closes) execution_opens = execution_closes # FIXME generalize these values before_trading_start_minutes = days_at_time( self.sim_params.sessions, time(8, 45), "US/Eastern" ) return MinuteSimulationClock( self.sim_params.sessions, execution_opens, execution_closes, before_trading_start_minutes, minute_emission=minutely_emission, ) def _create_benchmark_source(self): if self.benchmark_sid is not None: benchmark_asset = self.asset_finder.retrieve_asset( self.benchmark_sid ) benchmark_returns = None else: if self.benchmark_returns is None: raise ValueError("Must specify either benchmark_sid " "or benchmark_returns.") benchmark_asset = None # get benchmark info from trading environment, which defaults to # downloading data from IEX Trading. benchmark_returns = self.benchmark_returns return BenchmarkSource( benchmark_asset=benchmark_asset, benchmark_returns=benchmark_returns, trading_calendar=self.trading_calendar, sessions=self.sim_params.sessions, data_portal=self.data_portal, emission_rate=self.sim_params.emission_rate, ) def _create_metrics_tracker(self): return MetricsTracker( trading_calendar=self.trading_calendar, first_session=self.sim_params.start_session, last_session=self.sim_params.end_session, capital_base=self.sim_params.capital_base, emission_rate=self.sim_params.emission_rate, data_frequency=self.sim_params.data_frequency, asset_finder=self.asset_finder, metrics=self._metrics_set, ) def _create_generator(self, sim_params): if sim_params is not None: self.sim_params = sim_params self.metrics_tracker = metrics_tracker = self._create_metrics_tracker() # Set the dt initially to the period start by forcing it to change. self.on_dt_changed(self.sim_params.start_session) if not self.initialized: self.initialize(**self.initialize_kwargs) self.initialized = True benchmark_source = self._create_benchmark_source() self.trading_client = AlgorithmSimulator( self, sim_params, self.data_portal, self._create_clock(), benchmark_source, self.restrictions, universe_func=self._calculate_universe ) metrics_tracker.handle_start_of_simulation(benchmark_source) return self.trading_client.transform() def _calculate_universe(self): # this exists to provide backwards compatibility for older, # deprecated APIs, particularly around the iterability of # BarData (ie, 'for sid in data`). if self._backwards_compat_universe is None: self._backwards_compat_universe = ( self.asset_finder.retrieve_all(self.asset_finder.sids) ) return self._backwards_compat_universe def compute_eager_pipelines(self): """ Compute any pipelines attached with eager=True. """ for name, pipe in self._pipelines.items(): if pipe.eager: self.pipeline_output(name) def get_generator(self): """ Override this method to add new logic to the construction of the generator. Overrides can use the _create_generator method to get a standard construction generator. """ return self._create_generator(self.sim_params) def run(self, data_portal=None): """Run the algorithm. """ # HACK: I don't think we really want to support passing a data portal # this late in the long term, but this is needed for now for backwards # compat downstream. if data_portal is not None: self.data_portal = data_portal self.asset_finder = data_portal.asset_finder elif self.data_portal is None: raise RuntimeError( "No data portal in TradingAlgorithm.run().\n" "Either pass a DataPortal to TradingAlgorithm() or to run()." ) else: assert self.asset_finder is not None, \ "Have data portal without asset_finder." # Create zipline and loop through simulated_trading. # Each iteration returns a perf dictionary try: perfs = [] for perf in self.get_generator(): perfs.append(perf) if self._performance_callback: # this is called daily self._performance_callback(perf) # convert perf dict to pandas dataframe daily_stats = self._create_daily_stats(perfs) self.analyze(daily_stats) finally: self.data_portal = None self.metrics_tracker = None return daily_stats def _create_daily_stats(self, perfs): # create daily and cumulative stats dataframe daily_perfs = [] # TODO: the loop here could overwrite expected properties # of daily_perf. Could potentially raise or log a # warning. for perf in perfs: if perf and 'daily_perf' in perf: perf['daily_perf'].update( perf['daily_perf'].pop('recorded_vars') ) perf['daily_perf'].update(perf['cumulative_risk_metrics']) daily_perfs.append(perf['daily_perf']) else: self.risk_report = perf daily_dts = pd.DatetimeIndex( [p['period_close'] for p in daily_perfs], tz='UTC' ) daily_stats = pd.DataFrame(daily_perfs, index=daily_dts) return daily_stats def calculate_capital_changes(self, dt, emission_rate, is_interday, portfolio_value_adjustment=0.0): """ If there is a capital change for a given dt, this means the the change occurs before `handle_data` on the given dt. In the case of the change being a target value, the change will be computed on the portfolio value according to prices at the given dt `portfolio_value_adjustment`, if specified, will be removed from the portfolio_value of the cumulative performance when calculating deltas from target capital changes. """ try: capital_change = self.capital_changes[dt] except KeyError: return self._sync_last_sale_prices() if capital_change['type'] == 'target': target = capital_change['value'] capital_change_amount = ( target - ( self.portfolio.portfolio_value - portfolio_value_adjustment ) ) log.info('Processing capital change to target %s at %s. Capital ' 'change delta is %s' % (target, dt, capital_change_amount)) elif capital_change['type'] == 'delta': target = None capital_change_amount = capital_change['value'] log.info('Processing capital change of delta %s at %s' % (capital_change_amount, dt)) else: log.error("Capital change %s does not indicate a valid type " "('target' or 'delta')" % capital_change) return self.capital_change_deltas.update({dt: capital_change_amount}) self.metrics_tracker.capital_change(capital_change_amount) yield { 'capital_change': {'date': dt, 'type': 'cash', 'target': target, 'delta': capital_change_amount} } @api_method def get_environment(self, field='platform'): """Query the execution environment. Parameters ---------- field : {'platform', 'arena', 'data_frequency', 'start', 'end', 'capital_base', 'platform', '*'} The field to query. The options have the following meanings: arena : str The arena from the simulation parameters. This will normally be ``'backtest'`` but some systems may use this distinguish live trading from backtesting. data_frequency : {'daily', 'minute'} data_frequency tells the algorithm if it is running with daily data or minute data. start : datetime The start date for the simulation. end : datetime The end date for the simulation. capital_base : float The starting capital for the simulation. platform : str The platform that the code is running on. By default this will be the string 'zipline'. This can allow algorithms to know if they are running on the Quantopian platform instead. * : dict[str -> any] Returns all of the fields in a dictionary. Returns ------- val : any The value for the field queried. See above for more information. Raises ------ ValueError Raised when ``field`` is not a valid option. """ env = { 'arena': self.sim_params.arena, 'data_frequency': self.sim_params.data_frequency, 'start': self.sim_params.first_open, 'end': self.sim_params.last_close, 'capital_base': self.sim_params.capital_base, 'platform': self._platform } if field == '*': return env else: try: return env[field] except KeyError: raise ValueError( '%r is not a valid field for get_environment' % field, ) @api_method def fetch_csv(self, url, pre_func=None, post_func=None, date_column='date', date_format=None, timezone=pytz.utc.zone, symbol=None, mask=True, symbol_column=None, special_params_checker=None, **kwargs): """Fetch a csv from a remote url and register the data so that it is queryable from the ``data`` object. Parameters ---------- url : str The url of the csv file to load. pre_func : callable[pd.DataFrame -> pd.DataFrame], optional A callback to allow preprocessing the raw data returned from fetch_csv before dates are paresed or symbols are mapped. post_func : callable[pd.DataFrame -> pd.DataFrame], optional A callback to allow postprocessing of the data after dates and symbols have been mapped. date_column : str, optional The name of the column in the preprocessed dataframe containing datetime information to map the data. date_format : str, optional The format of the dates in the ``date_column``. If not provided ``fetch_csv`` will attempt to infer the format. For information about the format of this string, see :func:`pandas.read_csv`. timezone : tzinfo or str, optional The timezone for the datetime in the ``date_column``. symbol : str, optional If the data is about a new asset or index then this string will be the name used to identify the values in ``data``. For example, one may use ``fetch_csv`` to load data for VIX, then this field could be the string ``'VIX'``. mask : bool, optional Drop any rows which cannot be symbol mapped. symbol_column : str If the data is attaching some new attribute to each asset then this argument is the name of the column in the preprocessed dataframe containing the symbols. This will be used along with the date information to map the sids in the asset finder. **kwargs Forwarded to :func:`pandas.read_csv`. Returns ------- csv_data_source : zipline.sources.requests_csv.PandasRequestsCSV A requests source that will pull data from the url specified. """ # Show all the logs every time fetcher is used. csv_data_source = PandasRequestsCSV( url, pre_func, post_func, self.asset_finder, self.trading_calendar.day, self.sim_params.start_session, self.sim_params.end_session, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency=self.data_frequency, special_params_checker=special_params_checker, **kwargs ) # ingest this into dataportal self.data_portal.handle_extra_source(csv_data_source.df, self.sim_params) return csv_data_source def add_event(self, rule, callback): """Adds an event to the algorithm's EventManager. Parameters ---------- rule : EventRule The rule for when the callback should be triggered. callback : callable[(context, data) -> None] The function to execute when the rule is triggered. """ self.event_manager.add_event( zipline.utils.events.Event(rule, callback), ) @api_method def schedule_function(self, func, date_rule=None, time_rule=None, half_days=True, calendar=None): """Schedules a function to be called according to some timed rules. Parameters ---------- func : callable[(context, data) -> None] The function to execute when the rule is triggered. date_rule : EventRule, optional The rule for the dates to execute this function. time_rule : EventRule, optional The rule for the times to execute this function. half_days : bool, optional Should this rule fire on half days? calendar : Sentinel, optional Calendar used to reconcile date and time rules. See Also -------- :class:`zipline.api.date_rules` :class:`zipline.api.time_rules` """ # When the user calls schedule_function(func, <time_rule>), assume that # the user meant to specify a time rule but no date rule, instead of # a date rule and no time rule as the signature suggests if isinstance(date_rule, (AfterOpen, BeforeClose)) and not time_rule: warnings.warn('Got a time rule for the second positional argument ' 'date_rule. You should use keyword argument ' 'time_rule= when calling schedule_function without ' 'specifying a date_rule', stacklevel=3) date_rule = date_rule or date_rules.every_day() time_rule = ((time_rule or time_rules.every_minute()) if self.sim_params.data_frequency == 'minute' else # If we are in daily mode the time_rule is ignored. time_rules.every_minute()) # Check the type of the algorithm's schedule before pulling calendar # Note that the ExchangeTradingSchedule is currently the only # TradingSchedule class, so this is unlikely to be hit if calendar is None: cal = self.trading_calendar elif calendar is calendars.US_EQUITIES: cal = get_calendar('NYSE') elif calendar is calendars.US_FUTURES: cal = get_calendar('us_futures') else: raise ScheduleFunctionInvalidCalendar( given_calendar=calendar, allowed_calendars=( '[calendars.US_EQUITIES, calendars.US_FUTURES]' ), ) self.add_event( make_eventrule(date_rule, time_rule, cal, half_days), func, ) @api_method def record(self, *args, **kwargs): """Track and record values each day. Parameters ---------- **kwargs The names and values to record. Notes ----- These values will appear in the performance packets and the performance dataframe passed to ``analyze`` and returned from :func:`~zipline.run_algorithm`. """ # Make 2 objects both referencing the same iterator args = [iter(args)] * 2 # Zip generates list entries by calling `next` on each iterator it # receives. In this case the two iterators are the same object, so the # call to next on args[0] will also advance args[1], resulting in zip # returning (a,b) (c,d) (e,f) rather than (a,a) (b,b) (c,c) etc. positionals = zip(*args) for name, value in chain(positionals, iteritems(kwargs)): self._recorded_vars[name] = value @api_method def set_benchmark(self, benchmark): """Set the benchmark asset. Parameters ---------- benchmark : Asset The asset to set as the new benchmark. Notes ----- Any dividends payed out for that new benchmark asset will be automatically reinvested. """ if self.initialized: raise SetBenchmarkOutsideInitialize() self.benchmark_sid = benchmark @api_method @preprocess(root_symbol_str=ensure_upper_case) def continuous_future(self, root_symbol_str, offset=0, roll='volume', adjustment='mul'): """Create a specifier for a continuous contract. Parameters ---------- root_symbol_str : str The root symbol for the future chain. offset : int, optional The distance from the primary contract. Default is 0. roll_style : str, optional How rolls are determined. Default is 'volume'. adjustment : str, optional Method for adjusting lookback prices between rolls. Options are 'mul', 'add', and None. Default is 'mul'. Returns ------- continuous_future : ContinuousFuture The continuous future specifier. """ return self.asset_finder.create_continuous_future( root_symbol_str, offset, roll, adjustment, ) @api_method @preprocess( symbol_str=ensure_upper_case, country_code=optionally(ensure_upper_case), ) def symbol(self, symbol_str, country_code=None): """Lookup an Equity by its ticker symbol. Parameters ---------- symbol_str : str The ticker symbol for the equity to lookup. country_code : str or None, optional A country to limit symbol searches to. Returns ------- equity : Equity The equity that held the ticker symbol on the current symbol lookup date. Raises ------ SymbolNotFound Raised when the symbols was not held on the current lookup date. See Also -------- :func:`zipline.api.set_symbol_lookup_date` """ # If the user has not set the symbol lookup date, # use the end_session as the date for symbol->sid resolution. _lookup_date = self._symbol_lookup_date \ if self._symbol_lookup_date is not None \ else self.sim_params.end_session return self.asset_finder.lookup_symbol( symbol_str, as_of_date=_lookup_date, country_code=country_code, ) @api_method def symbols(self, *args, **kwargs): """Lookup multuple Equities as a list. Parameters ---------- *args : iterable[str] The ticker symbols to lookup. country_code : str or None, optional A country to limit symbol searches to. Returns ------- equities : list[Equity] The equities that held the given ticker symbols on the current symbol lookup date. Raises ------ SymbolNotFound Raised when one of the symbols was not held on the current lookup date. See Also -------- :func:`zipline.api.set_symbol_lookup_date` """ return [self.symbol(identifier, **kwargs) for identifier in args] @api_method def sid(self, sid): """Lookup an Asset by its unique asset identifier. Parameters ---------- sid : int The unique integer that identifies an asset. Returns ------- asset : Asset The asset with the given ``sid``. Raises ------ SidsNotFound When a requested ``sid`` does not map to any asset. """ return self.asset_finder.retrieve_asset(sid) @api_method @preprocess(symbol=ensure_upper_case) def future_symbol(self, symbol): """Lookup a futures contract with a given symbol. Parameters ---------- symbol : str The symbol of the desired contract. Returns ------- future : Future The future that trades with the name ``symbol``. Raises ------ SymbolNotFound Raised when no contract named 'symbol' is found. """ return self.asset_finder.lookup_future_symbol(symbol) def _calculate_order_value_amount(self, asset, value): """ Calculates how many shares/contracts to order based on the type of asset being ordered. """ # Make sure the asset exists, and that there is a last price for it. # FIXME: we should use BarData's can_trade logic here, but I haven't # yet found a good way to do that. normalized_date = normalize_date(self.datetime) if normalized_date < asset.start_date: raise CannotOrderDelistedAsset( msg="Cannot order {0}, as it started trading on" " {1}.".format(asset.symbol, asset.start_date) ) elif normalized_date > asset.end_date: raise CannotOrderDelistedAsset( msg="Cannot order {0}, as it stopped trading on" " {1}.".format(asset.symbol, asset.end_date) ) else: last_price = \ self.trading_client.current_data.current(asset, "price") if np.isnan(last_price): raise CannotOrderDelistedAsset( msg="Cannot order {0} on {1} as there is no last " "price for the security.".format(asset.symbol, self.datetime) ) if tolerant_equals(last_price, 0): zero_message = "Price of 0 for {psid}; can't infer value".format( psid=asset ) if self.logger: self.logger.debug(zero_message) # Don't place any order return 0 value_multiplier = asset.price_multiplier return value / (last_price * value_multiplier) def _can_order_asset(self, asset): if not isinstance(asset, Asset): raise UnsupportedOrderParameters( msg="Passing non-Asset argument to 'order()' is not supported." " Use 'sid()' or 'symbol()' methods to look up an Asset." ) if asset.auto_close_date: day = normalize_date(self.get_datetime()) end_date = min(asset.end_date, asset.auto_close_date) if isinstance(end_date, str): from dateutil import parser end_date = parser.parse(end_date).replace(tzinfo=pytz.UTC) # when we use pipeline live the end date is always yesterday so we add 5 days to still keep this condition # but also allowing to use pipeline live as well. 5 is a good number for weekends/holidays if day > end_date + timedelta(days=5): # If we are after the asset's end date or auto close date, warn # the user that they can't place an order for this asset, and # return None. log.warn("Cannot place order for {0}, as it has de-listed. " "Any existing positions for this asset will be " "liquidated on " "{1}.".format(asset.symbol, asset.auto_close_date)) return False return True @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order(self, asset, amount, limit_price=None, stop_price=None, style=None): """Place an order. Parameters ---------- asset : Asset The asset that this order is for. amount : int The amount of shares to order. If ``amount`` is positive, this is the number of shares to buy or cover. If ``amount`` is negative, this is the number of shares to sell or short. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle, optional The execution style for the order. Returns ------- order_id : str or None The unique identifier for this order, or None if no order was placed. Notes ----- The ``limit_price`` and ``stop_price`` arguments provide shorthands for passing common execution styles. Passing ``limit_price=N`` is equivalent to ``style=LimitOrder(N)``. Similarly, passing ``stop_price=M`` is equivalent to ``style=StopOrder(M)``, and passing ``limit_price=N`` and ``stop_price=M`` is equivalent to ``style=StopLimitOrder(N, M)``. It is an error to pass both a ``style`` and ``limit_price`` or ``stop_price``. See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order_value` :func:`zipline.api.order_percent` """ if not self._can_order_asset(asset): return None amount, style = self._calculate_order(asset, amount, limit_price, stop_price, style) return self.blotter.order(asset, amount, style) def _calculate_order(self, asset, amount, limit_price=None, stop_price=None, style=None): amount = self.round_order(amount) # Raises a ZiplineError if invalid parameters are detected. self.validate_order_params(asset, amount, limit_price, stop_price, style) # Convert deprecated limit_price and stop_price parameters to use # ExecutionStyle objects. style = self.__convert_order_params_for_blotter(asset, limit_price, stop_price, style) return amount, style @staticmethod def round_order(amount): """ Convert number of shares to an integer. By default, truncates to the integer share count that's either within .0001 of amount or closer to zero. E.g. 3.9999 -> 4.0; 5.5 -> 5.0; -5.5 -> -5.0 """ return int(round_if_near_integer(amount)) def validate_order_params(self, asset, amount, limit_price, stop_price, style): """ Helper method for validating parameters to the order API function. Raises an UnsupportedOrderParameters if invalid arguments are found. """ if not self.initialized: raise OrderDuringInitialize( msg="order() can only be called from within handle_data()" ) if style: if limit_price: raise UnsupportedOrderParameters( msg="Passing both limit_price and style is not supported." ) if stop_price: raise UnsupportedOrderParameters( msg="Passing both stop_price and style is not supported." ) for control in self.trading_controls: control.validate(asset, amount, self.portfolio, self.get_datetime(), self.trading_client.current_data) @staticmethod def __convert_order_params_for_blotter(asset, limit_price, stop_price, style): """ Helper method for converting deprecated limit_price and stop_price arguments into ExecutionStyle instances. This function assumes that either style == None or (limit_price, stop_price) == (None, None). """ if style: assert (limit_price, stop_price) == (None, None) return style if limit_price and stop_price: return StopLimitOrder(limit_price, stop_price, asset=asset) if limit_price: return LimitOrder(limit_price, asset=asset) if stop_price: return StopOrder(stop_price, asset=asset) else: return MarketOrder() @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_value(self, asset, value, limit_price=None, stop_price=None, style=None): """Place an order by desired value rather than desired number of shares. Parameters ---------- asset : Asset The asset that this order is for. value : float If the requested asset exists, the requested value is divided by its price to imply the number of shares to transact. If the Asset being ordered is a Future, the 'value' calculated is actually the exposure, as Futures have no 'value'. value > 0 :: Buy/Cover value < 0 :: Sell/Short limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_percent` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_value_amount(asset, value) return self.order(asset, amount, limit_price=limit_price, stop_price=stop_price, style=style) @property def recorded_vars(self): return copy(self._recorded_vars) def _sync_last_sale_prices(self, dt=None): """Sync the last sale prices on the metrics tracker to a given datetime. Parameters ---------- dt : datetime The time to sync the prices to. Notes ----- This call is cached by the datetime. Repeated calls in the same bar are cheap. """ if dt is None: dt = self.datetime if dt != self._last_sync_time: self.metrics_tracker.sync_last_sale_prices( dt, self.data_portal, ) self._last_sync_time = dt @property def portfolio(self): self._sync_last_sale_prices() return self.metrics_tracker.portfolio @property def account(self): self._sync_last_sale_prices() return self.metrics_tracker.account def set_logger(self, logger): self.logger = logger def on_dt_changed(self, dt): """ Callback triggered by the simulation loop whenever the current dt changes. Any logic that should happen exactly once at the start of each datetime group should happen here. """ self.datetime = dt self.blotter.set_date(dt) @api_method @preprocess(tz=coerce_string(pytz.timezone)) @expect_types(tz=optional(tzinfo)) def get_datetime(self, tz=None): """ Returns the current simulation datetime. Parameters ---------- tz : tzinfo or str, optional The timezone to return the datetime in. This defaults to utc. Returns ------- dt : datetime The current simulation datetime converted to ``tz``. """ dt = self.datetime assert dt.tzinfo == pytz.utc, "Algorithm should have a utc datetime" if tz is not None: dt = dt.astimezone(tz) return dt @api_method def set_slippage(self, us_equities=None, us_futures=None): """Set the slippage models for the simulation. Parameters ---------- us_equities : EquitySlippageModel The slippage model to use for trading US equities. us_futures : FutureSlippageModel The slippage model to use for trading US futures. See Also -------- :class:`zipline.finance.slippage.SlippageModel` """ if self.initialized: raise SetSlippagePostInit() if us_equities is not None: if Equity not in us_equities.allowed_asset_types: raise IncompatibleSlippageModel( asset_type='equities', given_model=us_equities, supported_asset_types=us_equities.allowed_asset_types, ) self.blotter.slippage_models[Equity] = us_equities if us_futures is not None: if Future not in us_futures.allowed_asset_types: raise IncompatibleSlippageModel( asset_type='futures', given_model=us_futures, supported_asset_types=us_futures.allowed_asset_types, ) self.blotter.slippage_models[Future] = us_futures @api_method def set_commission(self, us_equities=None, us_futures=None): """Sets the commission models for the simulation. Parameters ---------- us_equities : EquityCommissionModel The commission model to use for trading US equities. us_futures : FutureCommissionModel The commission model to use for trading US futures. See Also -------- :class:`zipline.finance.commission.PerShare` :class:`zipline.finance.commission.PerTrade` :class:`zipline.finance.commission.PerDollar` """ if self.initialized: raise SetCommissionPostInit() if us_equities is not None: if Equity not in us_equities.allowed_asset_types: raise IncompatibleCommissionModel( asset_type='equities', given_model=us_equities, supported_asset_types=us_equities.allowed_asset_types, ) self.blotter.commission_models[Equity] = us_equities if us_futures is not None: if Future not in us_futures.allowed_asset_types: raise IncompatibleCommissionModel( asset_type='futures', given_model=us_futures, supported_asset_types=us_futures.allowed_asset_types, ) self.blotter.commission_models[Future] = us_futures @api_method def set_cancel_policy(self, cancel_policy): """Sets the order cancellation policy for the simulation. Parameters ---------- cancel_policy : CancelPolicy The cancellation policy to use. See Also -------- :class:`zipline.api.EODCancel` :class:`zipline.api.NeverCancel` """ if not isinstance(cancel_policy, CancelPolicy): raise UnsupportedCancelPolicy() if self.initialized: raise SetCancelPolicyPostInit() self.blotter.cancel_policy = cancel_policy @api_method def set_symbol_lookup_date(self, dt): """Set the date for which symbols will be resolved to their assets (symbols may map to different firms or underlying assets at different times) Parameters ---------- dt : datetime The new symbol lookup date. """ try: self._symbol_lookup_date = pd.Timestamp(dt, tz='UTC') except ValueError: raise UnsupportedDatetimeFormat(input=dt, method='set_symbol_lookup_date') # Remain backwards compatibility @property def data_frequency(self): return self.sim_params.data_frequency @data_frequency.setter def data_frequency(self, value): assert value in ('daily', 'minute') self.sim_params.data_frequency = value @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_percent(self, asset, percent, limit_price=None, stop_price=None, style=None): """Place an order in the specified asset corresponding to the given percent of the current portfolio value. Parameters ---------- asset : Asset The asset that this order is for. percent : float The percentage of the portfolio value to allocate to ``asset``. This is specified as a decimal, for example: 0.50 means 50%. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_percent_amount(asset, percent) return self.order(asset, amount, limit_price=limit_price, stop_price=stop_price, style=style) def _calculate_order_percent_amount(self, asset, percent): value = self.portfolio.portfolio_value * percent return self._calculate_order_value_amount(asset, value) @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target(self, asset, target, limit_price=None, stop_price=None, style=None): """Place an order to adjust a position to a target number of shares. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target number of shares and the current number of shares. Parameters ---------- asset : Asset The asset that this order is for. target : int The desired number of shares of ``asset``. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target`` does not take into account any open orders. For example: .. code-block:: python order_target(sid(0), 10) order_target(sid(0), 10) This code will result in 20 shares of ``sid(0)`` because the first call to ``order_target`` will not have been filled when the second ``order_target`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target_percent` :func:`zipline.api.order_target_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_target_amount(asset, target) return self.order(asset, amount, limit_price=limit_price, stop_price=stop_price, style=style) def _calculate_order_target_amount(self, asset, target): if asset in self.portfolio.positions: current_position = self.portfolio.positions[asset].amount target -= current_position return target @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target_value(self, asset, target, limit_price=None, stop_price=None, style=None): """Place an order to adjust a position to a target value. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target value and the current value. If the Asset being ordered is a Future, the 'target value' calculated is actually the target exposure, as Futures have no 'value'. Parameters ---------- asset : Asset The asset that this order is for. target : float The desired total value of ``asset``. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target_value`` does not take into account any open orders. For example: .. code-block:: python order_target_value(sid(0), 10) order_target_value(sid(0), 10) This code will result in 20 dollars of ``sid(0)`` because the first call to ``order_target_value`` will not have been filled when the second ``order_target_value`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target` :func:`zipline.api.order_target_percent` """ if not self._can_order_asset(asset): return None target_amount = self._calculate_order_value_amount(asset, target) amount = self._calculate_order_target_amount(asset, target_amount) return self.order(asset, amount, limit_price=limit_price, stop_price=stop_price, style=style) @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target_percent(self, asset, target, limit_price=None, stop_price=None, style=None): """Place an order to adjust a position to a target percent of the current portfolio value. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target percent and the current percent. Parameters ---------- asset : Asset The asset that this order is for. target : float The desired percentage of the portfolio value to allocate to ``asset``. This is specified as a decimal, for example: 0.50 means 50%. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target_value`` does not take into account any open orders. For example: .. code-block:: python order_target_percent(sid(0), 10) order_target_percent(sid(0), 10) This code will result in 20% of the portfolio being allocated to sid(0) because the first call to ``order_target_percent`` will not have been filled when the second ``order_target_percent`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target` :func:`zipline.api.order_target_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_target_percent_amount(asset, target) return self.order(asset, amount, limit_price=limit_price, stop_price=stop_price, style=style) def _calculate_order_target_percent_amount(self, asset, target): target_amount = self._calculate_order_percent_amount(asset, target) return self._calculate_order_target_amount(asset, target_amount) @api_method @expect_types(share_counts=pd.Series) @expect_dtypes(share_counts=int64_dtype) def batch_market_order(self, share_counts): """Place a batch market order for multiple assets. Parameters ---------- share_counts : pd.Series[Asset -> int] Map from asset to number of shares to order for that asset. Returns ------- order_ids : pd.Index[str] Index of ids for newly-created orders. """ style = MarketOrder() order_args = [ (asset, amount, style) for (asset, amount) in iteritems(share_counts) if amount ] return self.blotter.batch_order(order_args) @error_keywords(sid='Keyword argument `sid` is no longer supported for ' 'get_open_orders. Use `asset` instead.') @api_method def get_open_orders(self, asset=None): """Retrieve all of the current open orders. Parameters ---------- asset : Asset If passed and not None, return only the open orders for the given asset instead of all open orders. Returns ------- open_orders : dict[list[Order]] or list[Order] If no asset is passed this will return a dict mapping Assets to a list containing all the open orders for the asset. If an asset is passed then this will return a list of the open orders for this asset. """ if asset is None: return { key: [order.to_api_obj() for order in orders] for key, orders in iteritems(self.blotter.open_orders) if orders } if asset in self.blotter.open_orders: orders = self.blotter.open_orders[asset] return [order.to_api_obj() for order in orders] return [] @api_method def get_order(self, order_id): """Lookup an order based on the order id returned from one of the order functions. Parameters ---------- order_id : str The unique identifier for the order. Returns ------- order : Order The order object. """ if order_id in self.blotter.orders: return self.blotter.orders[order_id].to_api_obj() @api_method def cancel_order(self, order_param): """Cancel an open order. Parameters ---------- order_param : str or Order The order_id or order object to cancel. """ order_id = order_param if isinstance(order_param, zipline.protocol.Order): order_id = order_param.id self.blotter.cancel(order_id) @api_method @require_initialized(HistoryInInitialize()) def history(self, bar_count, frequency, field, ffill=True): """DEPRECATED: use ``data.history`` instead. """ warnings.warn( "The `history` method is deprecated. Use `data.history` instead.", category=ZiplineDeprecationWarning, stacklevel=4 ) return self.get_history_window( bar_count, frequency, self._calculate_universe(), field, ffill ) def get_history_window(self, bar_count, frequency, assets, field, ffill): if not self._in_before_trading_start: return self.data_portal.get_history_window( assets, self.datetime, bar_count, frequency, field, self.data_frequency, ffill, ) else: # If we are in before_trading_start, we need to get the window # as of the previous market minute adjusted_dt = \ self.trading_calendar.previous_minute( self.datetime ) window = self.data_portal.get_history_window( assets, adjusted_dt, bar_count, frequency, field, self.data_frequency, ffill, ) # Get the adjustments between the last market minute and the # current before_trading_start dt and apply to the window adjs = self.data_portal.get_adjustments( assets, field, adjusted_dt, self.datetime ) window = window * adjs return window #################### # Account Controls # #################### def register_account_control(self, control): """ Register a new AccountControl to be checked on each bar. """ if self.initialized: raise RegisterAccountControlPostInit() self.account_controls.append(control) def validate_account_controls(self): for control in self.account_controls: control.validate(self.portfolio, self.account, self.get_datetime(), self.trading_client.current_data) @api_method def set_max_leverage(self, max_leverage): """Set a limit on the maximum leverage of the algorithm. Parameters ---------- max_leverage : float The maximum leverage for the algorithm. If not provided there will be no maximum. """ control = MaxLeverage(max_leverage) self.register_account_control(control) @api_method def set_min_leverage(self, min_leverage, grace_period): """Set a limit on the minimum leverage of the algorithm. Parameters ---------- min_leverage : float The minimum leverage for the algorithm. grace_period : pd.Timedelta The offset from the start date used to enforce a minimum leverage. """ deadline = self.sim_params.start_session + grace_period control = MinLeverage(min_leverage, deadline) self.register_account_control(control) #################### # Trading Controls # #################### def register_trading_control(self, control): """ Register a new TradingControl to be checked prior to order calls. """ if self.initialized: raise RegisterTradingControlPostInit() self.trading_controls.append(control) @api_method def set_max_position_size(self, asset=None, max_shares=None, max_notional=None, on_error='fail'): """Set a limit on the number of shares and/or dollar value held for the given sid. Limits are treated as absolute values and are enforced at the time that the algo attempts to place an order for sid. This means that it's possible to end up with more than the max number of shares due to splits/dividends, and more than the max notional due to price improvement. If an algorithm attempts to place an order that would result in increasing the absolute value of shares/dollar value exceeding one of these limits, raise a TradingControlException. Parameters ---------- asset : Asset, optional If provided, this sets the guard only on positions in the given asset. max_shares : int, optional The maximum number of shares to hold for an asset. max_notional : float, optional The maximum value to hold for an asset. """ control = MaxPositionSize(asset=asset, max_shares=max_shares, max_notional=max_notional, on_error=on_error) self.register_trading_control(control) @api_method def set_max_order_size(self, asset=None, max_shares=None, max_notional=None, on_error='fail'): """Set a limit on the number of shares and/or dollar value of any single order placed for sid. Limits are treated as absolute values and are enforced at the time that the algo attempts to place an order for sid. If an algorithm attempts to place an order that would result in exceeding one of these limits, raise a TradingControlException. Parameters ---------- asset : Asset, optional If provided, this sets the guard only on positions in the given asset. max_shares : int, optional The maximum number of shares that can be ordered at one time. max_notional : float, optional The maximum value that can be ordered at one time. """ control = MaxOrderSize(asset=asset, max_shares=max_shares, max_notional=max_notional, on_error=on_error) self.register_trading_control(control) @api_method def set_max_order_count(self, max_count, on_error='fail'): """Set a limit on the number of orders that can be placed in a single day. Parameters ---------- max_count : int The maximum number of orders that can be placed on any single day. """ control = MaxOrderCount(on_error, max_count) self.register_trading_control(control) @api_method def set_do_not_order_list(self, restricted_list, on_error='fail'): """Set a restriction on which assets can be ordered. Parameters ---------- restricted_list : container[Asset], SecurityList The assets that cannot be ordered. """ if isinstance(restricted_list, SecurityList): warnings.warn( "`set_do_not_order_list(security_lists.leveraged_etf_list)` " "is deprecated. Use `set_asset_restrictions(" "security_lists.restrict_leveraged_etfs)` instead.", category=ZiplineDeprecationWarning, stacklevel=2 ) restrictions = SecurityListRestrictions(restricted_list) else: warnings.warn( "`set_do_not_order_list(container_of_assets)` is deprecated. " "Create a zipline.finance.asset_restrictions." "StaticRestrictions object with a container of assets and use " "`set_asset_restrictions(StaticRestrictions(" "container_of_assets))` instead.", category=ZiplineDeprecationWarning, stacklevel=2 ) restrictions = StaticRestrictions(restricted_list) self.set_asset_restrictions(restrictions, on_error) @api_method @expect_types( restrictions=Restrictions, on_error=str, ) def set_asset_restrictions(self, restrictions, on_error='fail'): """Set a restriction on which assets can be ordered. Parameters ---------- restricted_list : Restrictions An object providing information about restricted assets. See Also -------- zipline.finance.asset_restrictions.Restrictions """ control = RestrictedListOrder(on_error, restrictions) self.register_trading_control(control) self.restrictions |= restrictions @api_method def set_long_only(self, on_error='fail'): """Set a rule specifying that this algorithm cannot take short positions. """ self.register_trading_control(LongOnly(on_error)) ############## # Pipeline API ############## @api_method @expect_types( pipeline=Pipeline, name=string_types, chunks=(int, Iterable, type(None)), ) def attach_pipeline(self, pipeline, name, chunks=None, eager=True): """Register a pipeline to be computed at the start of each day. Parameters ---------- pipeline : Pipeline The pipeline to have computed. name : str The name of the pipeline. chunks : int or iterator, optional The number of days to compute pipeline results for. Increasing this number will make it longer to get the first results but may improve the total runtime of the simulation. If an iterator is passed, we will run in chunks based on values of the iterator. Default is True. eager : bool, optional Whether or not to compute this pipeline prior to before_trading_start. Returns ------- pipeline : Pipeline Returns the pipeline that was attached unchanged. See Also -------- :func:`zipline.api.pipeline_output` """ if chunks is None: # Make the first chunk smaller to get more immediate results: # (one week, then every half year) chunks = chain([5], repeat(126)) elif isinstance(chunks, int): chunks = repeat(chunks) if name in self._pipelines: raise DuplicatePipelineName(name=name) self._pipelines[name] = AttachedPipeline(pipeline, iter(chunks), eager) log.info('Pipeline {} attached'.format(name)) # Return the pipeline to allow expressions like # p = attach_pipeline(Pipeline(), 'name') return pipeline @api_method @require_initialized(PipelineOutputDuringInitialize()) def pipeline_output(self, name): """Get the results of the pipeline that was attached with the name: ``name``. Parameters ---------- name : str Name of the pipeline for which results are requested. Returns ------- results : pd.DataFrame DataFrame containing the results of the requested pipeline for the current simulation date. Raises ------ NoSuchPipeline Raised when no pipeline with the name `name` has been registered. See Also -------- :func:`zipline.api.attach_pipeline` :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ try: pipe, chunks, _ = self._pipelines[name] except KeyError: raise NoSuchPipeline( name=name, valid=list(self._pipelines.keys()), ) return self._pipeline_output(pipe, chunks, name) def _pipeline_output(self, pipeline, chunks, name): """ Internal implementation of `pipeline_output`. """ today = normalize_date(self.get_datetime()) try: data = self._pipeline_cache.get(name, today) except KeyError: # Calculate the next block. data, valid_until = self.run_pipeline( pipeline, today, next(chunks), ) self._pipeline_cache.set(name, data, valid_until) # Now that we have a cached result, try to return the data for today. try: return data.loc[today] except KeyError: # This happens if no assets passed the pipeline screen on a given # day. return pd.DataFrame(index=[], columns=data.columns) def run_pipeline(self, pipeline, start_session, chunksize): """ Compute `pipeline`, providing values for at least `start_date`. Produces a DataFrame containing data for days between `start_date` and `end_date`, where `end_date` is defined by: `end_date = min(start_date + chunksize trading days, simulation_end)` Returns ------- (data, valid_until) : tuple (pd.DataFrame, pd.Timestamp) See Also -------- PipelineEngine.run_pipeline """ sessions = self.trading_calendar.all_sessions # Load data starting from the previous trading day... start_date_loc = sessions.get_loc(start_session) # ...continuing until either the day before the simulation end, or # until chunksize days of data have been loaded. sim_end_session = self.sim_params.end_session end_loc = min( start_date_loc + chunksize, sessions.get_loc(sim_end_session) ) end_session = sessions[end_loc] return \ self.engine.run_pipeline(pipeline, start_session, end_session), \ end_session ################## # End Pipeline API ################## @classmethod def all_api_methods(cls): """ Return a list of all the TradingAlgorithm API methods. """ return [ fn for fn in itervalues(vars(cls)) if getattr(fn, 'is_api_method', False) ]
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/algorithm.py
algorithm.py
from contextlib2 import ExitStack from copy import copy from logbook import Logger, Processor from zipline.finance.order import ORDER_STATUS from zipline.protocol import BarData from zipline.utils.api_support import ZiplineAPI from six import viewkeys from zipline.gens.sim_engine import ( BAR, SESSION_START, SESSION_END, MINUTE_END, BEFORE_TRADING_START_BAR, MARKETS_CLOSED, ) log = Logger('Trade Simulation') class AlgorithmSimulator(object): EMISSION_TO_PERF_KEY_MAP = { 'minute': 'minute_perf', 'daily': 'daily_perf' } def __init__(self, algo, sim_params, data_portal, clock, benchmark_source, restrictions, universe_func): # ============== # Simulation # Param Setup # ============== self.sim_params = sim_params self.data_portal = data_portal self.restrictions = restrictions # ============== # Algo Setup # ============== self.algo = algo # ============== # Snapshot Setup # ============== # This object is the way that user algorithms interact with OHLCV data, # fetcher data, and some API methods like `data.can_trade`. self.current_data = self._create_bar_data(universe_func) # We don't have a datetime for the current snapshot until we # receive a message. self.simulation_dt = None self.clock = clock self.benchmark_source = benchmark_source # ============= # Logging Setup # ============= # Processor function for injecting the algo_dt into # user prints/logs. def inject_algo_dt(record): if 'algo_dt' not in record.extra: record.extra['algo_dt'] = self.simulation_dt self.processor = Processor(inject_algo_dt) def get_simulation_dt(self): return self.simulation_dt def _create_bar_data(self, universe_func): return BarData( data_portal=self.data_portal, simulation_dt_func=self.get_simulation_dt, data_frequency=self.sim_params.data_frequency, trading_calendar=self.algo.trading_calendar, restrictions=self.restrictions, universe_func=universe_func ) def transform(self): """ Main generator work loop. """ algo = self.algo metrics_tracker = algo.metrics_tracker emission_rate = metrics_tracker.emission_rate def every_bar(dt_to_use, current_data=self.current_data, handle_data=algo.event_manager.handle_data): for capital_change in calculate_minute_capital_changes(dt_to_use): yield capital_change self.simulation_dt = dt_to_use # called every tick (minute or day). algo.on_dt_changed(dt_to_use) blotter = algo.blotter # handle any transactions and commissions coming out new orders # placed in the last bar new_transactions, new_commissions, closed_orders = \ blotter.get_transactions(current_data) blotter.prune_orders(closed_orders) for transaction in new_transactions: metrics_tracker.process_transaction(transaction) # since this order was modified, record it order = blotter.orders[transaction.order_id] metrics_tracker.process_order(order) for commission in new_commissions: metrics_tracker.process_commission(commission) handle_data(algo, current_data, dt_to_use) # grab any new orders from the blotter, then clear the list. # this includes cancelled orders. new_orders = blotter.new_orders blotter.new_orders = [] # if we have any new orders, record them so that we know # in what perf period they were placed. for new_order in new_orders: metrics_tracker.process_order(new_order) def once_a_day(midnight_dt, current_data=self.current_data, data_portal=self.data_portal): # process any capital changes that came overnight for capital_change in algo.calculate_capital_changes( midnight_dt, emission_rate=emission_rate, is_interday=True): yield capital_change # set all the timestamps self.simulation_dt = midnight_dt algo.on_dt_changed(midnight_dt) metrics_tracker.handle_market_open( midnight_dt, algo.data_portal, ) # handle any splits that impact any positions or any open orders. assets_we_care_about = ( viewkeys(metrics_tracker.positions) | viewkeys(algo.blotter.open_orders) ) if assets_we_care_about: splits = data_portal.get_splits(assets_we_care_about, midnight_dt) if splits: algo.blotter.process_splits(splits) metrics_tracker.handle_splits(splits) def on_exit(): # Remove references to algo, data portal, et al to break cycles # and ensure deterministic cleanup of these objects when the # simulation finishes. self.algo = None self.benchmark_source = self.current_data = self.data_portal = None with ExitStack() as stack: stack.callback(on_exit) stack.enter_context(self.processor) stack.enter_context(ZiplineAPI(self.algo)) if algo.data_frequency == 'minute': def execute_order_cancellation_policy(): algo.blotter.execute_cancel_policy(SESSION_END) def calculate_minute_capital_changes(dt): # process any capital changes that came between the last # and current minutes return algo.calculate_capital_changes( dt, emission_rate=emission_rate, is_interday=False) else: def execute_order_cancellation_policy(): pass def calculate_minute_capital_changes(dt): return [] for dt, action in self.clock: if action == BAR: self.algo.markets_open = True for capital_change_packet in every_bar(dt): yield capital_change_packet elif action == SESSION_START: for capital_change_packet in once_a_day(dt): yield capital_change_packet elif action == SESSION_END: # End of the session. positions = metrics_tracker.positions position_assets = algo.asset_finder.retrieve_all(positions) self._cleanup_expired_assets(dt, position_assets) execute_order_cancellation_policy() algo.validate_account_controls() yield self._get_daily_message(dt, algo, metrics_tracker) elif action == BEFORE_TRADING_START_BAR: self.simulation_dt = dt algo.on_dt_changed(dt) algo.before_trading_start(self.current_data) elif action == MINUTE_END: minute_msg = self._get_minute_message( dt, algo, metrics_tracker, ) yield minute_msg elif action == MARKETS_CLOSED: #log.info("Markets are closed!") self.algo.markets_open = False for capital_change_packet in every_bar(dt): yield capital_change_packet pass risk_message = metrics_tracker.handle_simulation_end( self.data_portal, ) yield risk_message def _cleanup_expired_assets(self, dt, position_assets): """ Clear out any assets that have expired before starting a new sim day. Performs two functions: 1. Finds all assets for which we have open orders and clears any orders whose assets are on or after their auto_close_date. 2. Finds all assets for which we have positions and generates close_position events for any assets that have reached their auto_close_date. """ algo = self.algo def past_auto_close_date(asset): acd = asset.auto_close_date return acd is not None and acd <= dt # Remove positions in any sids that have reached their auto_close date. assets_to_clear = \ [asset for asset in position_assets if past_auto_close_date(asset)] metrics_tracker = algo.metrics_tracker data_portal = self.data_portal for asset in assets_to_clear: metrics_tracker.process_close_position(asset, dt, data_portal) # Remove open orders for any sids that have reached their auto close # date. These orders get processed immediately because otherwise they # would not be processed until the first bar of the next day. blotter = algo.blotter assets_to_cancel = [ asset for asset in blotter.open_orders if past_auto_close_date(asset) ] for asset in assets_to_cancel: blotter.cancel_all_orders_for_asset(asset) # Make a copy here so that we are not modifying the list that is being # iterated over. for order in copy(blotter.new_orders): if order.status == ORDER_STATUS.CANCELLED: metrics_tracker.process_order(order) blotter.new_orders.remove(order) def _get_daily_message(self, dt, algo, metrics_tracker): """ Get a perf message for the given datetime. """ perf_message = metrics_tracker.handle_market_close( dt, self.data_portal, ) perf_message['daily_perf']['recorded_vars'] = algo.recorded_vars return perf_message def _get_minute_message(self, dt, algo, metrics_tracker): """ Get a perf message for the given datetime. """ rvars = algo.recorded_vars minute_message = metrics_tracker.handle_minute_close( dt, self.data_portal, ) minute_message['minute_perf']['recorded_vars'] = rvars return minute_message
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/gens/tradesimulation.py
tradesimulation.py
from time import sleep from logbook import Logger import pandas as pd from zipline.gens.sim_engine import ( BAR, SESSION_START, SESSION_END, MINUTE_END, BEFORE_TRADING_START_BAR, MARKETS_CLOSED ) log = Logger('Realtime Clock') class RealtimeClock(object): """ Realtime clock for live trading. This class is a drop-in replacement for :class:`zipline.gens.sim_engine.MinuteSimulationClock`. The key difference between the two is that the RealtimeClock's event emission is synchronized to the (broker's) wall time clock, while MinuteSimulationClock yields a new event on every iteration (regardless of wall clock). The :param:`time_skew` parameter represents the time difference between the Broker and the live trading machine's clock. """ def __init__(self, sessions, execution_opens, execution_closes, before_trading_start_minutes, minute_emission, time_skew=pd.Timedelta("0s"), is_broker_alive=None, execution_id=None, stop_execution_callback=None): today = pd.to_datetime('now', utc=True).date() beginning_of_today = pd.to_datetime(today, utc=True) self.sessions = sessions[(beginning_of_today <= sessions)] self.execution_opens = execution_opens[(beginning_of_today <= execution_opens)] self.execution_closes = execution_closes[(beginning_of_today <= execution_closes)] self.before_trading_start_minutes = before_trading_start_minutes[ (beginning_of_today <= before_trading_start_minutes)] self.minute_emission = minute_emission self.time_skew = time_skew self.is_broker_alive = is_broker_alive or (lambda: True) self._last_emit = None self._before_trading_start_bar_yielded = False self._execution_id = execution_id self._stop_execution_callback = stop_execution_callback def __iter__(self): # yield from self.work_when_out_of_trading_hours() # return if not len(self.sessions): return for index, session in enumerate(self.sessions): self._before_trading_start_bar_yielded = False yield session, SESSION_START if self._stop_execution_callback: if self._stop_execution_callback(self._execution_id): break while self.is_broker_alive(): if self._stop_execution_callback: # put it here too, to break inner loop as well if self._stop_execution_callback(self._execution_id): break current_time = pd.to_datetime('now', utc=True) server_time = (current_time + self.time_skew).floor('1 min') if (server_time >= self.before_trading_start_minutes[index] and not self._before_trading_start_bar_yielded): self._last_emit = server_time self._before_trading_start_bar_yielded = True yield server_time, BEFORE_TRADING_START_BAR elif (server_time < self.execution_opens[index].tz_localize('UTC') and index == 0) or \ (self.execution_closes[index - 1].tz_localize('UTC') <= server_time < self.execution_opens[index].tz_localize('UTC')): # sleep anywhere between yesterday's close and today's open sleep(1) # self._last_emit = server_time # yield server_time, MARKETS_CLOSED if (self._last_emit is None or server_time - self._last_emit >= pd.Timedelta('1 minute')): self._last_emit = server_time yield server_time, MARKETS_CLOSED # if self.minute_emission: # yield server_time, MINUTE_END else: sleep(1) elif (self.execution_opens[index].tz_localize('UTC') <= server_time < self.execution_closes[index].tz_localize('UTC')): if (self._last_emit is None or server_time - self._last_emit >= pd.Timedelta('1 minute')): self._last_emit = server_time yield server_time, BAR if self.minute_emission: yield server_time, MINUTE_END else: sleep(1) elif server_time == self.execution_closes[index].tz_localize('UTC'): self._last_emit = server_time yield server_time, BAR if self.minute_emission: yield server_time, MINUTE_END yield server_time, SESSION_END break elif server_time > self.execution_closes[index].tz_localize('UTC'): break else: # We should never end up in this branch raise RuntimeError("Invalid state in RealtimeClock") def work_when_out_of_trading_hours(self): """ a debugging method to work while outside trading hours, so we are still able to make the engine work :return: """ from datetime import timedelta num_days = 5 from trading_calendars import get_calendar self.sessions = get_calendar("NYSE").sessions_in_range( str(pd.to_datetime('now', utc=True).date() - timedelta(days=num_days * 2)), str(pd.to_datetime('now', utc=True).date() + timedelta(days=num_days * 2)) ) # for day in range(num_days, 0, -1): for day in range(0, 1): # current_time = pd.to_datetime('now', utc=True) current_time = pd.to_datetime('2018/08/25', utc=True) # server_time = (current_time + self.time_skew).floor('1 min') - timedelta(days=day) server_time = (current_time + self.time_skew).floor('1 min') + timedelta(days=day) # yield self.sessions[-1 - day], SESSION_START yield self.sessions[day], SESSION_START yield server_time, BEFORE_TRADING_START_BAR should_end_day = True counter = 0 num_minutes = 6 * 60 minute_list = [] for i in range(num_minutes + 1): minute_list.append(pd.to_datetime("13:31", utc=True) + timedelta(minutes=i)) while self.is_broker_alive(): # current_time = pd.to_datetime('now', utc=True) # server_time = (current_time + self.time_skew).floor('1 min') # server_time = minute_list[counter] - timedelta(days=day) server_time = minute_list[counter] + timedelta(days=day) if counter >= num_minutes and should_end_day: if self.minute_emission: yield server_time, MINUTE_END yield server_time, SESSION_END break if self._stop_execution_callback: if self._stop_execution_callback(self._execution_id): break if (self._last_emit is None or server_time - self._last_emit >= pd.Timedelta('1 minute')): self._last_emit = server_time yield server_time, BAR counter += 1 if self.minute_emission: yield server_time, MINUTE_END sleep(0.5)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/gens/realtimeclock.py
realtimeclock.py
import alpaca_trade_api as tradeapi from zipline.gens.brokers.broker import Broker import zipline.protocol as zp from zipline.finance.order import (Order as ZPOrder, ORDER_STATUS as ZP_ORDER_STATUS) from zipline.finance.execution import (MarketOrder, LimitOrder, StopOrder, StopLimitOrder) from zipline.finance.transaction import Transaction from zipline.api import symbol as symbol_lookup from zipline.errors import SymbolNotFound import pandas as pd import numpy as np import uuid from logbook import Logger import sys if sys.version_info > (3,): long = int log = Logger('Alpaca Broker') NY = 'America/New_York' class ALPACABroker(Broker): ''' Broker class for Alpaca. The uri parameter is not used. Instead, the API key must be set via environment variables (APCA_API_KEY_ID and APCA_API_SECRET_KEY). Orders are identified by the UUID (v4) generated here and associated in the broker side using client_order_id attribute. Currently this class makes use of REST API only, but websocket streaming can possibly used too. ''' def __init__(self, uri): self._api = tradeapi.REST() def subscribe_to_market_data(self, asset): '''Do nothing to comply the interface''' pass def subscribed_assets(self): '''Do nothing to comply the interface''' return [] @property def positions(self): z_positions = zp.Positions() positions = self._api.list_positions() position_map = {} symbols = [] for pos in positions: symbol = pos.symbol try: z_position = zp.Position(symbol_lookup(symbol)) except SymbolNotFound: continue z_position.amount = pos.qty z_position.cost_basis = float(pos.cost_basis) z_position.last_sale_price = None z_position.last_sale_date = None z_positions[symbol_lookup(symbol)] = z_position symbols.append(symbol) position_map[symbol] = z_position quotes = self._api.list_quotes(symbols) for quote in quotes: price = quote.last dt = quote.last_timestamp z_position = position_map[quote.symbol] z_position.last_sale_price = float(price) z_position.last_sale_date = dt return z_positions @property def portfolio(self): account = self._api.get_account() z_portfolio = zp.Portfolio() z_portfolio.cash = float(account.cash) z_portfolio.positions = self.positions z_portfolio.positions_value = float( account.portfolio_value) - float(account.cash) z_portfolio.portfolio_value = float(account.portfolio_value) return z_portfolio @property def account(self): account = self._api.get_account() z_account = zp.Account() z_account.buying_power = float(account.cash) z_account.total_position_value = float( account.portfolio_value) - float(account.cash) z_account.net_liquidation = account.portfolio_value return z_account @property def time_skew(self): return pd.Timedelta('0 sec') # TODO: use clock API def is_alive(self): try: self._api.get_account() return True except BaseException: return False def _order2zp(self, order): zp_order = ZPOrder( id=order.client_order_id, asset=symbol_lookup(order.symbol), amount=int(order.qty) if order.side == 'buy' else -int(order.qty), stop=float(order.stop_price) if order.stop_price else None, limit=float(order.limit_price) if order.limit_price else None, dt=order.submitted_at, commission=0, ) zp_order.status = ZP_ORDER_STATUS.OPEN if order.canceled_at: zp_order.status = ZP_ORDER_STATUS.CANCELLED if order.failed_at: zp_order.status = ZP_ORDER_STATUS.REJECTED if order.filled_at: zp_order.status = ZP_ORDER_STATUS.FILLED zp_order.filled = int(order.filled_qty) return zp_order def _new_order_id(self): return uuid.uuid4().hex def order(self, asset, amount, style): symbol = asset.symbol qty = amount if amount > 0 else -amount side = 'buy' if amount > 0 else 'sell' order_type = 'market' if isinstance(style, MarketOrder): order_type = 'market' elif isinstance(style, LimitOrder): order_type = 'limit' elif isinstance(style, StopOrder): order_type = 'stop' elif isinstance(style, StopLimitOrder): order_type = 'stop_limit' limit_price = style.get_limit_price(side == 'buy') or None stop_price = style.get_stop_price(side == 'buy') or None zp_order_id = self._new_order_id() dt = pd.to_datetime('now', utc=True) zp_order = ZPOrder( dt=dt, asset=asset, amount=amount, stop=stop_price, limit=limit_price, id=zp_order_id, ) order = self._api.submit_order( symbol=symbol, qty=qty, side=side, type=order_type, time_in_force='day', limit_price=limit_price, stop_price=stop_price, client_order_id=zp_order.id, ) zp_order = self._order2zp(order) return zp_order @property def orders(self): return { o.client_order_id: self._order2zp(o) for o in self._api.list_orders('all') } @property def transactions(self): orders = self._api.list_orders(status='closed') results = {} for order in orders: if order.filled_at is None: continue tx = Transaction( asset=symbol_lookup(order.symbol), amount=int(order.filled_qty), dt=order.filled_at, price=float(order.filled_avg_price), order_id=order.client_order_id) results[order.client_order_id] = tx return results def cancel_order(self, zp_order_id): try: order = self._api.get_order_by_client_order_id(zp_order_id) self._api.cancel_order(order.id) except Exception as e: log.error(e) return def get_last_traded_dt(self, asset): quote = self._api.get_quote(asset.symbol) return pd.Timestamp(quote.last_timestamp) def get_spot_value(self, assets, field, dt, data_frequency): assert(field in ( 'open', 'high', 'low', 'close', 'volume', 'price', 'last_traded')) assets_is_scalar = not isinstance(assets, (list, set, tuple)) if assets_is_scalar: symbols = [assets.symbol] else: symbols = [asset.symbol for asset in assets] if field in ('price', 'last_traded'): quotes = self._api.list_quotes(symbols) if assets_is_scalar: if field == 'price': if len(quotes) == 0: return np.nan return quotes[-1].last else: if len(quotes) == 0: return pd.NaT return quotes[-1].last_timestamp else: return [ quote.last if field == 'price' else quote.last_timestamp for quote in quotes ] bars_list = self._api.list_bars(symbols, '1Min', limit=1) if assets_is_scalar: if len(bars_list) == 0: return np.nan return bars_list[0].bars[-1]._raw[field] bars_map = {a.symbol: a for a in bars_list} return [ bars_map[symbol].bars[-1]._raw[field] for symbol in symbols ] def get_realtime_bars(self, assets, data_frequency): # TODO: cache the result. The caller # (DataPortalLive#get_history_window) makes use of only one # column at a time. assets_is_scalar = not isinstance(assets, (list, set, tuple)) is_daily = 'd' in data_frequency # 'daily' or '1d' if assets_is_scalar: symbols = [assets.symbol] else: symbols = [asset.symbol for asset in assets] timeframe = '1D' if is_daily else '1Min' bars_list = self._api.list_bars(symbols, timeframe, limit=500) bars_map = {a.symbol: a for a in bars_list} dfs = [] for asset in assets if not assets_is_scalar else [assets]: symbol = asset.symbol df = bars_map[symbol].df.copy() if df.index.tz is None: df.index = df.index.tz_localize( 'utc').tz_convert('America/New_York') df.columns = pd.MultiIndex.from_product([[asset, ], df.columns]) dfs.append(df) return pd.concat(dfs, axis=1)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/gens/brokers/alpaca_broker.py
alpaca_broker.py
from logbook import Logger from collections import namedtuple, defaultdict, OrderedDict from ib_insync import * import pandas as pd import numpy as np import pytz from zipline.finance.order import (Order as ZPOrder, ORDER_STATUS as ZP_ORDER_STATUS) from zipline.finance.execution import (MarketOrder, LimitOrder, StopOrder, StopLimitOrder) from zipline.api import symbol as symbol_lookup from zipline.errors import SymbolNotFound from six import iteritems, itervalues from zipline.finance.transaction import Transaction import zipline.protocol as zp from zipline.protocol import MutableView from math import fabs import sys log = Logger('IB Broker (ib_insync)') Position = namedtuple('Position', ['contract', 'position', 'market_price', 'market_value', 'average_cost', 'unrealized_pnl', 'realized_pnl', 'account_name']) symbol_to_exchange = defaultdict(lambda: 'SMART') symbol_to_exchange['VIX'] = 'CBOE' symbol_to_exchange['SPX'] = 'CBOE' symbol_to_exchange['VIX3M'] = 'CBOE' symbol_to_exchange['VXST'] = 'CBOE' symbol_to_exchange['VXMT'] = 'CBOE' symbol_to_exchange['GVZ'] = 'CBOE' symbol_to_exchange['GLD'] = 'ARCA' symbol_to_exchange['GDX'] = 'ARCA' symbol_to_exchange['GPRO'] = 'SMART/NASDAQ' symbol_to_exchange['MSFT'] = 'SMART/NASDAQ' symbol_to_exchange['CSCO'] = 'SMART/NASDAQ' symbol_to_sec_type = defaultdict(lambda: 'STK') symbol_to_sec_type['VIX'] = 'IND' symbol_to_sec_type['VIX3M'] = 'IND' symbol_to_sec_type['VXST'] = 'IND' symbol_to_sec_type['VXMT'] = 'IND' symbol_to_sec_type['GVZ'] = 'IND' symbol_to_sec_type['SPX'] = 'IND' wait_step = 0.1 max_wait_cycles = 100 class IBBroker(IB): def __init__(self, tws_uri, account_id=None, marketDataType=3): # watchout - market data type is set to 'delayed' by default! super(self.__class__, self).__init__() self._tws_uri = tws_uri self.host, self.port, self.client_id = self._tws_uri.split(':') self._orders = {} self._transactions = {} self._next_ticker_id = 0 self._next_order_id = None self.symbol_to_ticker_id = {} self.ticker_id_to_symbol = {} self.metrics_tracker = None self.currency = 'USD' self.time_skew = None self.account_id = None self.open_orders = {} self.order_statuses = {} self.executions = defaultdict(OrderedDict) self.commissions = defaultdict(OrderedDict) self._execution_to_order_id = {} self._subscribed_assets = [] self.openOrderEvent += self.openOrder self.orderStatusEvent += self.orderStatus self.execDetailsEvent += self.execDetails self.commissionReportEvent += self.commissionReport self.errorEvent += self.error try: self.connect(self.host, self.port, self.client_id) except Exception as e: log.error(f"Can't connect to TWS") return self.managed_accounts = self.managedAccounts() log.info("Managed accounts: {}".format(self.managed_accounts)) time = self.reqCurrentTime() self.time_skew = (pd.to_datetime('now', utc=True) - time.replace(tzinfo=pytz.utc)) log.info("Local-Broker Time Skew: {}".format(self.time_skew)) self.account_id = (self.client.getAccounts()[0] if account_id is None else account_id) self.reqMarketDataType(marketDataType) def error(self, reqId, errorCode, errorString, contract): # this is just the error-handler pass # log.info(f'{reqId}: {errorCode}: {errorString}' + '' if not contract else f'{contract}') def execDetails(self, trade, fill): order_id, exec_id = fill.execution.orderId, fill.execution.execId self.executions[order_id][exec_id] = dict (req_id = order_id, contract = fill.contract, exec_detail = fill.execution) self._execution_to_order_id[exec_id] = order_id log.info( "Order-{order_id} executed @ {exec_time}: " "{symbol} current: {shares} @ ${price} " "total: {cum_qty} @ ${avg_price} " "exec_id: {exec_id} by client-{client_id}".format( order_id=order_id, exec_id=exec_id, exec_time=pd.to_datetime(fill.execution.time), symbol=fill.contract.symbol, shares=fill.execution.shares, price=fill.execution.price, cum_qty=fill.execution.cumQty, avg_price=fill.execution.avgPrice, client_id=fill.execution.clientId)) def commissionReport(self, trade, fill, commission_report): exec_id = commission_report.execId # we need this check for the case when IB is sending report for the # order which was placed by another session out of market hours # in this case current session does not have info on the exec_id self.execDetails (trade, fill) order_id = self._execution_to_order_id[commission_report.execId] self.commissions[order_id][exec_id] = commission_report log.debug( "Order-{order_id} report: " "realized_pnl: ${realized_pnl} " "commission: ${commission} yield: {yield_} " "exec_id: {exec_id}".format( order_id=order_id, exec_id=commission_report.execId, realized_pnl=commission_report.realizedPNL if commission_report.realizedPNL != sys.float_info.max else 0, commission=commission_report.commission, yield_=commission_report.yield_ if commission_report.yield_ != sys.float_info.max else 0) ) def openOrder(self, trade): self.open_orders[trade.order.orderId] = dict (state = trade.orderStatus, order = trade.order, contract = trade.contract, order_id = trade.order.orderId, ) log.debug( "Order-{order_id} {status}: " "{order_action} {order_count} {symbol} with {order_type} order. " "limit_price={limit_price} stop_price={stop_price}".format( order_id=trade.order.orderId, status=trade.orderStatus.status, order_action=trade.order.action, order_count=trade.order.totalQuantity, symbol=trade.contract.symbol, order_type=trade.order.orderType, limit_price=trade.order.lmtPrice, stop_price=trade.order.auxPrice)) def orderStatus(self, trade): self.order_statuses[trade.order.orderId] = dict (why_held = trade.orderStatus.whyHeld, client_id=trade.orderStatus.clientId, last_fill_price=trade.orderStatus.lastFillPrice, parent_id=trade.orderStatus.parentId, perm_id=trade.order.permId, avg_fill_price=trade.orderStatus.avgFillPrice, remaining=trade.orderStatus.remaining, filled=trade.orderStatus.filled, status=trade.orderStatus.status, order_id=trade.order.orderId, ) log.debug( "Order-{order_id} {status}: " "filled={filled} remaining={remaining} " "avg_fill_price={avg_fill_price} " "last_fill_price={last_fill_price} ".format( order_id=trade.order.orderId, status=self.order_statuses[trade.order.orderId]['status'], filled=self.order_statuses[trade.order.orderId]['filled'], remaining=self.order_statuses[trade.order.orderId]['remaining'], avg_fill_price=self.order_statuses[trade.order.orderId]['avg_fill_price'], last_fill_price=self.order_statuses[trade.order.orderId]['last_fill_price'])) @property def next_order_id(self): order_id = self.client.getReqId() return order_id def is_alive(self): return self.isConnected() @property def next_ticker_id(self): ticker_id = self._next_ticker_id self._next_ticker_id += 1 return ticker_id def subscribe_to_market_data (self, symbol, tick_list='232'): contract = Contract() contract.symbol = symbol contract.secType = symbol_to_sec_type[symbol] contract.exchange = symbol_to_exchange[symbol] contract.currency = self.currency ticker = self.reqMktData(contract, tick_list) for i in range(0, max_wait_cycles): self.sleep(wait_step) if not pd.isna(ticker.close) or not pd.isna(ticker.last): break return ticker def get_spot_value(self, assets, field, dt, data_frequency): symbol = str(assets.symbol) ticker_id = self.next_ticker_id self.symbol_to_ticker_id[symbol] = ticker_id self.ticker_id_to_symbol[ticker_id] = symbol ticker = self.subscribe_to_market_data(symbol) self._subscribed_assets.append (assets) if not ticker.time: log.error(f"No data retrieved on symbol {symbol}!") return pd.NaT if field == 'last_traded' else np.NaN if field == 'price': return ticker.last if not pd.isna(ticker.last) and ticker.last > 0 else ticker.close if field == 'last_traded': return pd.NaT if field == 'open': return ticker.open if field == 'close': return ticker.close if field == 'high': return ticker.high if field == 'low': return ticker.low if field == 'volume': return ticker.volume def set_metrics_tracker(self, metrics_tracker): self.metrics_tracker = metrics_tracker def _update_orders(self): def _update_from_order_status(zp_order, ib_order_id): if ib_order_id in self.open_orders: open_order_state = self.open_orders[ib_order_id]['state'] zp_status = self._ib_to_zp_status(open_order_state.status) if zp_status is None: log.warning( "Order-{order_id}: " "unknown order status: {order_status}.".format( order_id=ib_order_id, order_status=open_order_state.status)) else: zp_order.status = zp_status if ib_order_id in self.order_statuses: order_status = self.order_statuses[ib_order_id] zp_order.filled = order_status['filled'] zp_status = self._ib_to_zp_status(order_status['status']) if zp_status: zp_order.status = zp_status else: log.warning("Order-{order_id}: " "unknown order status: {order_status}." .format(order_id=ib_order_id, order_status=order_status['status'])) def _update_from_execution(zp_order, ib_order_id): if ib_order_id in self.executions and \ ib_order_id not in self.open_orders: zp_order.status = ZP_ORDER_STATUS.FILLED executions = self.executions[ib_order_id] last_exec_detail = \ list(executions.values())[-1]['exec_detail'] zp_order.filled = last_exec_detail.cumQty all_ib_order_ids = (set([e.broker_order_id for e in self._orders.values()]) | set(self.open_orders.keys()) | set(self.order_statuses.keys()) | set(self.executions.keys()) | set(self.commissions.keys())) for ib_order_id in all_ib_order_ids: zp_order = self._get_or_create_zp_order(ib_order_id) if zp_order: _update_from_execution(zp_order, ib_order_id) _update_from_order_status(zp_order, ib_order_id) @property def orders(self): self._update_orders() return self._orders @staticmethod def _safe_symbol_lookup(symbol): try: return symbol_lookup(symbol) except SymbolNotFound: return None def _ib_to_zp_order_id(self, ib_order_id): return "IB-{date}-{account_id}-{client_id}-{order_id}".format( date=str(pd.to_datetime('today').date()), account_id=self.account_id, client_id=self.client_id, order_id=ib_order_id) @staticmethod def _action_qty_to_amount(action, qty): return qty if action == 'BUY' else -1 * qty _zl_order_ref_magic = '!ZL' @classmethod def _create_order_ref(cls, ib_order:Order, dt=pd.to_datetime('now', utc=True)): order_type = ib_order.orderType.replace(' ', '_') return \ "A:{action} Q:{qty} T:{order_type} " \ "L:{limit_price} S:{stop_price} D:{date} {magic}".format( action=ib_order.action, qty=ib_order.totalQuantity, order_type=order_type, limit_price=ib_order.lmtPrice, stop_price=ib_order.auxPrice, date=int(dt.value / 1e9), magic=cls._zl_order_ref_magic) @classmethod def _parse_order_ref(cls, ib_order_ref): if not ib_order_ref or \ not ib_order_ref.endswith(cls._zl_order_ref_magic): return None try: action, qty, order_type, limit_price, stop_price, dt, _ = \ ib_order_ref.split(' ') if not all( [action.startswith('A:'), qty.startswith('Q:'), order_type.startswith('T:'), limit_price.startswith('L:'), stop_price.startswith('S:'), dt.startswith('D:')]): return None return { 'action': action[2:], 'qty': int(qty[2:]), 'order_type': order_type[2:].replace('_', ' '), 'limit_price': float(limit_price[2:]), 'stop_price': float(stop_price[2:]), 'dt': pd.to_datetime(dt[2:], unit='s', utc=True)} except ValueError: log.warning("Error parsing order metadata: {}".format( ib_order_ref)) return None @staticmethod def _ib_to_zp_status(ib_status): ib_status = ib_status.lower() if ib_status == 'submitted': return ZP_ORDER_STATUS.OPEN elif ib_status in ('pendingsubmit', 'pendingcancel', 'presubmitted'): return ZP_ORDER_STATUS.HELD elif ib_status == 'cancelled': return ZP_ORDER_STATUS.CANCELLED elif ib_status == 'filled': return ZP_ORDER_STATUS.FILLED elif ib_status == 'inactive': return ZP_ORDER_STATUS.REJECTED else: return None def _get_or_create_zp_order(self, ib_order_id, ib_order=None, ib_contract=None): zp_order_id = self._ib_to_zp_order_id(ib_order_id) if zp_order_id in self._orders: return self._orders[zp_order_id] # Try to reconstruct the order from the given information: # open order state and execution state symbol, order_details = None, None if ib_order and ib_contract: symbol = ib_contract.symbol order_details = self._parse_order_ref(ib_order.orderRef) if not order_details and ib_order_id in self.open_orders: open_order = self.open_orders[ib_order_id] symbol = open_order['contract'].symbol order_details = self._parse_order_ref( open_order['order'].orderRef) if not order_details and ib_order_id in self.executions: executions = self.executions[ib_order_id] last_exec_detail = list(executions.values())[-1]['exec_detail'] last_exec_contract = list(executions.values())[-1]['contract'] symbol = last_exec_contract.symbol order_details = self._parse_order_ref(last_exec_detail.orderRef) asset = self._safe_symbol_lookup(symbol) if not asset: log.warning( "Ignoring symbol {symbol} which has associated " "order but it is not registered in bundle".format( symbol=symbol)) return None if order_details: amount = self._action_qty_to_amount(order_details['action'], order_details['qty']) stop_price = order_details['stop_price'] limit_price = order_details['limit_price'] dt = order_details['dt'] else: dt = pd.to_datetime('now', utc=True) amount, stop_price, limit_price = 0, None, None if ib_order_id in self.open_orders: open_order = self.open_orders[ib_order_id]['order'] amount = self._action_qty_to_amount( open_order.action, open_order.totalQuantity) stop_price = open_order.auxPrice limit_price = open_order.lmtPrice stop_price = None if stop_price == 0 else stop_price limit_price = None if limit_price == 0 else limit_price self._orders[zp_order_id] = ZPOrder( dt=dt, asset=asset, amount=amount, stop=stop_price, limit=limit_price, id=zp_order_id) self._orders[zp_order_id].broker_order_id = ib_order_id return self._orders[zp_order_id] @property def transactions(self): self._update_transactions() return self._transactions def _update_transactions(self): all_orders = list(self.orders.values()) for ib_order_id, executions in iteritems(self.executions): orders = [order for order in all_orders if order.broker_order_id == ib_order_id] if not orders: log.warning("No order found for executions: {}".format( executions)) continue assert len(orders) == 1 order = orders[0] for exec_id, execution in iteritems(executions): if exec_id in self._transactions: continue try: commission = self.commissions[ib_order_id][exec_id] \ .commission except KeyError: log.warning( "Commission not found for execution: {}".format( exec_id)) commission = 0 exec_detail = execution['exec_detail'] is_buy = order.amount > 0 amount = (exec_detail.shares if is_buy else -1 * exec_detail.shares) tx = Transaction( asset=order.asset, amount=amount, dt=pd.to_datetime(exec_detail.time, utc=True), price=exec_detail.price, order_id=order.id ) self._transactions[exec_id] = tx @property def positions(self): self._get_positions_from_broker() return self.metrics_tracker.positions @property def subscribed_assets(self): return self._subscribed_assets def _get_positions_from_broker(self): """ get the positions from the broker and update zipline objects ( the ledger ) should be used once at startup and once every time we want to refresh the positions array """ cur_pos_in_tracker = self.metrics_tracker.positions ib_positions = IB.positions(self, self.account_id) for ib_position in ib_positions: try: z_position = zp.Position(zp.InnerPosition(symbol_lookup(ib_position.contract.symbol))) editable_position = MutableView(z_position) except SymbolNotFound: # The symbol might not have been ingested to the db therefore # it needs to be skipped. log.warning('Wanted to subscribe to %s, but this asset is probably not ingested' % symbol) continue editable_position._underlying_position.amount = int(ib_position.position) editable_position._underlying_position.cost_basis = float(ib_position.avgCost) ticker = self.subscribe_to_market_data(ib_position.contract.symbol) editable_position._underlying_position.last_sale_price = \ ticker.last if not pd.isna(ticker.last) and ticker.last > 0 else ticker.close editable_position._underlying_position.last_sale_date = \ ticker.time if len(ticker.ticks)==0 else ticker.ticks[-1].time self.metrics_tracker.update_position(z_position.asset, amount=z_position.amount, last_sale_price=z_position.last_sale_price, last_sale_date=z_position.last_sale_date, cost_basis=z_position.cost_basis) for asset in cur_pos_in_tracker: if asset.symbol not in [p.contract.symbol for p in ib_positions]: # if asset.symbol not in self.positions: # deleting object from the metrcs_tracker as its not in the portfolio self.metrics_tracker.update_position(asset, amount=0) # # for some reason, the metrics tracker has self.positions AND self.portfolio.positions. let's make sure # # these objects are consistent # # (self.portfolio.positions is self.metrics_tracker._ledger._portfolio.positions) # # (self.metrics_tracker.positions is self.metrics_tracker._ledger.position_tracker.positions) self.metrics_tracker._ledger._portfolio.positions = self.metrics_tracker.positions @property def portfolio(self): positions = self.positions return self.metrics_tracker.portfolio def order(self, asset, amount, style): contract = Contract() contract.symbol = str(asset.symbol) contract.currency = self.currency contract.exchange = symbol_to_exchange[str(asset.symbol)] contract.secType = symbol_to_sec_type[str(asset.symbol)] order = Order() order.totalQuantity = int(fabs(amount)) order.action = "BUY" if amount > 0 else "SELL" is_buy = (amount > 0) order.lmtPrice = style.get_limit_price(is_buy) or 0 order.auxPrice = style.get_stop_price(is_buy) or 0 if isinstance(style, MarketOrder): order.orderType = "MKT" elif isinstance(style, LimitOrder): order.orderType = "LMT" elif isinstance(style, StopOrder): order.orderType = "STP" elif isinstance(style, StopLimitOrder): order.orderType = "STP LMT" # TODO: Support GTC orders both here and at blotter_live order.tif = "DAY" order.orderRef = self._create_order_ref(order) ib_order_id = self.next_order_id order.orderId = ib_order_id zp_order = self._get_or_create_zp_order(ib_order_id, order, contract) log.info( "Placing order-{order_id}: " "{action} {qty} {symbol} with {order_type} order. " "limit_price={limit_price} stop_price={stop_price} {tif}".format( order_id=ib_order_id, action=order.action, qty=order.totalQuantity, symbol=contract.symbol, order_type=order.orderType, limit_price=order.lmtPrice, stop_price=order.auxPrice, tif=order.tif )) self.placeOrder(contract, order) return zp_order def get_last_traded_dt(self, asset): ticker = self.subscribe_to_market_data(asset) return ticker.time if len(ticker.ticks)==0 else ticker.ticks[-1].time def get_realtime_bars(self, assets, frequency): if frequency == '1m': resample_freq = '1 Min' elif frequency == '1d': resample_freq = '24 H' else: raise ValueError("Invalid frequency specified: %s" % frequency) df = pd.DataFrame() a=self.subscribe_to_market_data('AAWW') for asset in assets: symbol = str(asset.symbol) ticker = self.subscribe_to_market_data(symbol) trade_prices = ticker.last trade_sizes = ticker.lastSize ohlcv = trade_prices.resample(resample_freq).ohlc() ohlcv['volume'] = trade_sizes.resample(resample_freq).sum() # Add asset as level 0 column; ohlcv will be used as level 1 cols ohlcv.columns = pd.MultiIndex.from_product([[asset, ], ohlcv.columns]) df = pd.concat([df, ohlcv], axis=1) return df
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/gens/brokers/ib_broker2.py
ib_broker2.py
import sys from collections import namedtuple, defaultdict, OrderedDict from time import sleep from math import fabs from six import iteritems, itervalues import polling import pandas as pd import numpy as np from zipline.gens.brokers.broker import Broker from zipline.finance.order import (Order as ZPOrder, ORDER_STATUS as ZP_ORDER_STATUS) from zipline.finance.execution import (MarketOrder, LimitOrder, StopOrder, StopLimitOrder) from zipline.finance.transaction import Transaction import zipline.protocol as zp from zipline.protocol import MutableView from zipline.api import symbol as symbol_lookup from zipline.errors import SymbolNotFound from ib.ext.EClientSocket import EClientSocket from ib.ext.EWrapper import EWrapper from ib.ext.Contract import Contract from ib.ext.Order import Order from ib.ext.ExecutionFilter import ExecutionFilter from ib.ext.EClientErrors import EClientErrors from logbook import Logger if sys.version_info > (3,): long = int log = Logger('IB Broker') Position = namedtuple('Position', ['contract', 'position', 'market_price', 'market_value', 'average_cost', 'unrealized_pnl', 'realized_pnl', 'account_name']) _max_wait_subscribe = 10 # how many cycles to wait _connection_timeout = 15 # Seconds _poll_frequency = 0.1 symbol_to_exchange = defaultdict(lambda: 'SMART') symbol_to_exchange['VIX'] = 'CBOE' symbol_to_exchange['SPX'] = 'CBOE' symbol_to_exchange['VIX3M'] = 'CBOE' symbol_to_exchange['VXST'] = 'CBOE' symbol_to_exchange['VXMT'] = 'CBOE' symbol_to_exchange['GVZ'] = 'CBOE' symbol_to_exchange['GLD'] = 'ARCA' symbol_to_exchange['GDX'] = 'ARCA' symbol_to_exchange['GPRO'] = 'SMART/NASDAQ' symbol_to_exchange['MSFT'] = 'SMART/NASDAQ' symbol_to_exchange['CSCO'] = 'SMART/NASDAQ' symbol_to_sec_type = defaultdict(lambda: 'STK') symbol_to_sec_type['VIX'] = 'IND' symbol_to_sec_type['VIX3M'] = 'IND' symbol_to_sec_type['VXST'] = 'IND' symbol_to_sec_type['VXMT'] = 'IND' symbol_to_sec_type['GVZ'] = 'IND' symbol_to_sec_type['SPX'] = 'IND' def log_message(message, mapping): try: del (mapping['self']) except (KeyError,): pass items = list(mapping.items()) items.sort() log.debug(('### %s' % (message,))) for k, v in items: log.debug((' %s:%s' % (k, v))) def _method_params_to_dict(args): return {k: v for k, v in iteritems(args) if k != 'self'} class TWSConnection(EClientSocket, EWrapper): def __init__(self, tws_uri): """ :param tws_uri: host:listening_port:client_id - host ip of running tws or ibgw - port, default for tws 7496 and for ibgw 4002 - your client id, could be any number as long as it's not already used """ EWrapper.__init__(self) EClientSocket.__init__(self, anyWrapper=self) self.tws_uri = tws_uri host, port, client_id = self.tws_uri.split(':') self._host = host self._port = int(port) self.client_id = int(client_id) self._next_ticker_id = 0 self._next_request_id = 0 self._next_order_id = None self.managed_accounts = None self.symbol_to_ticker_id = {} self.ticker_id_to_symbol = {} self.last_tick = defaultdict(dict) self.bars = {} # accounts structure: accounts[account_id][currency][value] self.accounts = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: np.NaN))) self.accounts_download_complete = False self.positions = {} self.portfolio = {} self.open_orders = {} self.order_statuses = {} self.executions = defaultdict(OrderedDict) self.commissions = defaultdict(OrderedDict) self._execution_to_order_id = {} self.time_skew = None self.unrecoverable_error = False self.connect() def connect(self): log.info("Connecting: {}:{}:{}".format(self._host, self._port, self.client_id)) self.eConnect(self._host, self._port, self.client_id) timeout = _connection_timeout while timeout and not self.isConnected(): sleep(_poll_frequency) timeout -= _poll_frequency else: if not self.isConnected(): raise SystemError("Connection timeout during TWS connection!") self._download_account_details() log.info("Managed accounts: {}".format(self.managed_accounts)) self.reqCurrentTime() self.reqIds(1) while self.time_skew is None or self._next_order_id is None: sleep(_poll_frequency) log.info("Local-Broker Time Skew: {}".format(self.time_skew)) def _download_account_details(self): exec_filter = ExecutionFilter() exec_filter.m_clientId = self.client_id self.reqExecutions(self.next_request_id, exec_filter) self.reqManagedAccts() while self.managed_accounts is None: sleep(_poll_frequency) for account in self.managed_accounts: self.reqAccountUpdates(subscribe=True, acctCode=account) while self.accounts_download_complete is False: sleep(_poll_frequency) @property def next_ticker_id(self): ticker_id = self._next_ticker_id self._next_ticker_id += 1 return ticker_id @property def next_request_id(self): request_id = self._next_request_id self._next_request_id += 1 return request_id @property def next_order_id(self): order_id = self._next_order_id self._next_order_id += 1 return order_id def subscribe_to_market_data(self, symbol, sec_type='STK', exchange='SMART', currency='USD'): if symbol in self.symbol_to_ticker_id: # Already subscribed to market data return contract = Contract() contract.m_symbol = symbol contract.m_secType = symbol_to_sec_type[symbol] contract.m_exchange = symbol_to_exchange[symbol] contract.m_currency = currency ticker_id = self.next_ticker_id self.symbol_to_ticker_id[symbol] = ticker_id self.ticker_id_to_symbol[ticker_id] = symbol # INDEX tickers cannot be requested with market data. The data can, # however, be requested with realtimeBars. This change will make # sure we can request data from INDEX tickers like SPX, VIX, etc. if contract.m_secType == 'IND': self.reqRealTimeBars(ticker_id, contract, 60, 'TRADES', True) else: tick_list = "233" # RTVolume, return tick_type == 48 self.reqMktData(ticker_id, contract, tick_list, False) sleep(11) def _process_tick(self, ticker_id, tick_type, value): try: symbol = self.ticker_id_to_symbol[ticker_id] except KeyError: log.error("Tick {} for id={} is not registered".format(tick_type, ticker_id)) return if tick_type == 48: # RT Volume Bar. Format: # Last trade price; Last trade size;Last trade time;Total volume;\ # VWAP;Single trade flag # e.g.: 701.28;1;1348075471534;67854;701.46918464;true (last_trade_price, last_trade_size, last_trade_time, total_volume, vwap, single_trade_flag) = value.split(';') # Ignore this update if last_trade_price is empty: # tickString: tickerId=0 tickType=48/RTVolume ;0;1469805548873;\ # 240304;216.648653;true if len(last_trade_price) == 0: return last_trade_dt = pd.to_datetime(float(last_trade_time), unit='ms', utc=True) self._add_bar(symbol, float(last_trade_price), int(last_trade_size), last_trade_dt, int(total_volume), float(vwap), single_trade_flag) def _add_bar(self, symbol, last_trade_price, last_trade_size, last_trade_time, total_volume, vwap, single_trade_flag): bar = pd.DataFrame(index=pd.DatetimeIndex([last_trade_time]), data={'last_trade_price': last_trade_price, 'last_trade_size': last_trade_size, 'total_volume': total_volume, 'vwap': vwap, 'single_trade_flag': single_trade_flag}) if symbol not in self.bars: self.bars[symbol] = bar else: self.bars[symbol] = self.bars[symbol].append(bar) def tickPrice(self, ticker_id, field, price, can_auto_execute): self._process_tick(ticker_id, tick_type=field, value=price) def tickSize(self, ticker_id, field, size): self._process_tick(ticker_id, tick_type=field, value=size) def tickOptionComputation(self, ticker_id, field, implied_vol, delta, opt_price, pv_dividend, gamma, vega, theta, und_price): log_message('tickOptionComputation', vars()) def tickGeneric(self, ticker_id, tick_type, value): self._process_tick(ticker_id, tick_type=tick_type, value=value) def tickString(self, ticker_id, tick_type, value): self._process_tick(ticker_id, tick_type=tick_type, value=value) def tickEFP(self, ticker_id, tick_type, basis_points, formatted_basis_points, implied_future, hold_days, future_expiry, dividend_impact, dividends_to_expiry): log_message('tickEFP', vars()) def updateAccountValue(self, key, value, currency, account_name): self.accounts[account_name][currency][key] = value def updatePortfolio(self, contract, position, market_price, market_value, average_cost, unrealized_pnl, realized_pnl, account_name): symbol = contract.m_symbol position = Position(contract=contract, position=position, market_price=market_price, market_value=market_value, average_cost=average_cost, unrealized_pnl=unrealized_pnl, realized_pnl=realized_pnl, account_name=account_name) self.positions[symbol] = position def updateAccountTime(self, time_stamp): pass def accountDownloadEnd(self, account_name): self.accounts_download_complete = True def nextValidId(self, order_id): self._next_order_id = order_id def contractDetails(self, req_id, contract_details): log_message('contractDetails', vars()) def contractDetailsEnd(self, req_id): log_message('contractDetailsEnd', vars()) def bondContractDetails(self, req_id, contract_details): log_message('bondContractDetails', vars()) def orderStatus(self, order_id, status, filled, remaining, avg_fill_price, perm_id, parent_id, last_fill_price, client_id, why_held): self.order_statuses[order_id] = _method_params_to_dict(vars()) log.debug( "Order-{order_id} {status}: " "filled={filled} remaining={remaining} " "avg_fill_price={avg_fill_price} " "last_fill_price={last_fill_price} ".format( order_id=order_id, status=self.order_statuses[order_id]['status'], filled=self.order_statuses[order_id]['filled'], remaining=self.order_statuses[order_id]['remaining'], avg_fill_price=self.order_statuses[order_id]['avg_fill_price'], last_fill_price=self.order_statuses[order_id]['last_fill_price'])) def openOrder(self, order_id, contract, order, state): self.open_orders[order_id] = _method_params_to_dict(vars()) log.debug( "Order-{order_id} {status}: " "{order_action} {order_count} {symbol} with {order_type} order. " "limit_price={limit_price} stop_price={stop_price}".format( order_id=order_id, status=state.m_status, order_action=order.m_action, order_count=order.m_totalQuantity, symbol=contract.m_symbol, order_type=order.m_orderType, limit_price=order.m_lmtPrice, stop_price=order.m_auxPrice)) def openOrderEnd(self): pass def execDetails(self, req_id, contract, exec_detail): order_id, exec_id = exec_detail.m_orderId, exec_detail.m_execId self.executions[order_id][exec_id] = _method_params_to_dict(vars()) self._execution_to_order_id[exec_id] = order_id log.info( "Order-{order_id} executed @ {exec_time}: " "{symbol} current: {shares} @ ${price} " "total: {cum_qty} @ ${avg_price} " "exec_id: {exec_id} by client-{client_id}".format( order_id=order_id, exec_id=exec_id, exec_time=pd.to_datetime(exec_detail.m_time), symbol=contract.m_symbol, shares=exec_detail.m_shares, price=exec_detail.m_price, cum_qty=exec_detail.m_cumQty, avg_price=exec_detail.m_avgPrice, client_id=exec_detail.m_clientId)) def execDetailsEnd(self, req_id): log.debug( "Execution details completed for request {req_id}".format( req_id=req_id)) def commissionReport(self, commission_report): exec_id = commission_report.m_execId # we need this check for the case when IB is sending report for the # order which was placed by another session out of market hours # in this case current session does not have info on the exec_id if commission_report.m_execId in self._execution_to_order_id: # we do have info on the report within session order_id = self._execution_to_order_id[commission_report.m_execId] self.commissions[order_id][exec_id] = commission_report log.debug( "Order-{order_id} report: " "realized_pnl: ${realized_pnl} " "commission: ${commission} yield: {yield_} " "exec_id: {exec_id}".format( order_id=order_id, exec_id=commission_report.m_execId, realized_pnl=commission_report.m_realizedPNL if commission_report.m_realizedPNL != sys.float_info.max else 0, commission=commission_report.m_commission, yield_=commission_report.m_yield if commission_report.m_yield != sys.float_info.max else 0) ) else: # we do have info on the report within session log.debug( "Commission report is sent by TWS however exec_id is not found within current session" "exec_id: {exec_id}".format( exec_id=commission_report.m_execId, ) ) pass def connectionClosed(self): self.unrecoverable_error = True log.error("IB Connection closed") def error(self, id_=None, error_code=None, error_msg=None): if isinstance(id_, Exception): # XXX: for an unknown reason 'log' is None in this branch, # therefore it needs to be instantiated before use global log if not log: log = Logger('IB Broker') log.exception(id_) if isinstance(error_code, EClientErrors.CodeMsgPair): error_msg = error_code.msg() error_code = error_code.code() if isinstance(error_code, int): if error_code in (502, 503, 326): # 502: Couldn't connect to TWS. # 503: The TWS is out of date and must be upgraded. # 326: Unable connect as the client id is already in use. self.unrecoverable_error = True if error_code < 1000: log.error("[{}] {} ({})".format(error_code, error_msg, id_)) else: log.info("[{}] {} ({})".format(error_code, error_msg, id_)) else: log.error("[{}] {} ({})".format(error_code, error_msg, id_)) def updateMktDepth(self, ticker_id, position, operation, side, price, size): log_message('updateMktDepth', vars()) def updateMktDepthL2(self, ticker_id, position, market_maker, operation, side, price, size): log_message('updateMktDepthL2', vars()) def updateNewsBulletin(self, msg_id, msg_type, message, orig_exchange): log_message('updateNewsBulletin', vars()) def managedAccounts(self, accounts_list): self.managed_accounts = accounts_list.split(',') def receiveFA(self, fa_data_type, xml): log_message('receiveFA', vars()) def historicalData(self, req_id, date, open_, high, low, close, volume, count, wap, has_gaps): log_message('historicalData', vars()) def scannerParameters(self, xml): log_message('scannerParameters', vars()) def scannerData(self, req_id, rank, contract_details, distance, benchmark, projection, legs_str): log_message('scannerData', vars()) def currentTime(self, time): self.time_skew = (pd.to_datetime('now', utc=True) - pd.to_datetime(long(time), unit='s', utc=True)) def deltaNeutralValidation(self, req_id, under_comp): log_message('deltaNeutralValidation', vars()) def fundamentalData(self, req_id, data): log_message('fundamentalData', vars()) def marketDataType(self, req_id, market_data_type): log_message('marketDataType', vars()) def realtimeBar(self, req_id, time, open_, high, low, close, volume, wap, count): value = (";".join([str(close), str(count), str(time), str(volume), str(wap), "true"])) self._process_tick(req_id, tick_type=48, value=value) def scannerDataEnd(self, req_id): log_message('scannerDataEnd', vars()) def tickSnapshotEnd(self, req_id): log_message('tickSnapshotEnd', vars()) def position(self, account, contract, pos, avg_cost): log_message('position', vars()) def positionEnd(self): log_message('positionEnd', vars()) def accountSummary(self, req_id, account, tag, value, currency): log_message('accountSummary', vars()) def accountSummaryEnd(self, req_id): log_message('accountSummaryEnd', vars()) class IBBroker(Broker): def __init__(self, tws_uri, account_id=None): """ :param tws_uri: host:listening_port:client_id - host ip of running tws or ibgw - port, default for tws 7496 and for ibgw 4002 - your client id, could be any number as long as it's not already used """ self._tws_uri = tws_uri self._orders = {} self._transactions = {} self._tws = TWSConnection(tws_uri) self.account_id = (self._tws.managed_accounts[0] if account_id is None else account_id) self.currency = 'USD' self._subscribed_assets = [] super(self.__class__, self).__init__() @property def subscribed_assets(self): return self._subscribed_assets def subscribe_to_market_data(self, asset): if asset not in self.subscribed_assets: log.info("Subscribing to market data for {}".format( asset)) # remove str() cast to have a fun debugging journey self._tws.subscribe_to_market_data(str(asset.symbol)) self._subscribed_assets.append(asset) try: polling.poll( lambda: asset.symbol in self._tws.bars, timeout=_max_wait_subscribe, step=_poll_frequency) except polling.TimeoutException as te: log.warning('!!!WARNING: I did not manage to subscribe to %s ' % str(asset.symbol)) else: log.debug("Subscription completed") @property def positions(self): self._get_positions_from_broker() return self.metrics_tracker.positions def _get_positions_from_broker(self): """ get the positions from the broker and update zipline objects ( the ledger ) should be used once at startup and once every time we want to refresh the positions array """ cur_pos_in_tracker = self.metrics_tracker.positions for symbol in self._tws.positions: ib_position = self._tws.positions[symbol] try: z_position = zp.Position(zp.InnerPosition(symbol_lookup(symbol))) editable_position = MutableView(z_position) except SymbolNotFound: # The symbol might not have been ingested to the db therefore # it needs to be skipped. log.warning('Wanted to subscribe to %s, but this asset is probably not ingested' % symbol) continue editable_position._underlying_position.amount = int(ib_position.position) editable_position._underlying_position.cost_basis = float(ib_position.average_cost) # Check if symbol exists in bars df if symbol in self._tws.bars: editable_position._underlying_position.last_sale_price = \ float(self._tws.bars[symbol].last_trade_price.iloc[-1]) editable_position._underlying_position.last_sale_date = \ self._tws.bars[symbol].index.values[-1] else: # editable_position._underlying_position.last_sale_price = None # this cannot be set to None. only numbers. editable_position._underlying_position.last_sale_date = None self.metrics_tracker.update_position(z_position.asset, amount=z_position.amount, last_sale_price=z_position.last_sale_price, last_sale_date=z_position.last_sale_date, cost_basis=z_position.cost_basis) for asset in cur_pos_in_tracker: if asset.symbol not in self._tws.positions: # deleting object from the metrcs_tracker as its not in the portfolio self.metrics_tracker.update_position(asset, amount=0) # for some reason, the metrics tracker has self.positions AND self.portfolio.positions. let's make sure # these objects are consistent # (self.portfolio.positions is self.metrics_tracker._ledger._portfolio.positions) # (self.metrics_tracker.positions is self.metrics_tracker._ledger.position_tracker.positions) self.metrics_tracker._ledger._portfolio.positions = self.metrics_tracker.positions @property def portfolio(self): positions = self.positions return self.metrics_tracker.portfolio def get_account_from_broker(self): ib_account = self._tws.accounts[self.account_id][self.currency] return ib_account def set_metrics_tracker(self, metrics_tracker): self.metrics_tracker = metrics_tracker @property def account(self): ib_account = self._tws.accounts[self.account_id][self.currency] self.metrics_tracker.override_account_fields( settled_cash=float(ib_account['CashBalance']), accrued_interest=float(ib_account['AccruedCash']), buying_power=float(ib_account['BuyingPower']), equity_with_loan=float(ib_account['EquityWithLoanValue']), total_positions_value=float(ib_account['StockMarketValue']), total_positions_exposure=float( (float(ib_account['StockMarketValue']) / (float(ib_account['StockMarketValue']) + float(ib_account['TotalCashValue'])))), regt_equity=float(ib_account['RegTEquity']), regt_margin=float(ib_account['RegTMargin']), initial_margin_requirement=float( ib_account['FullInitMarginReq']), maintenance_margin_requirement=float( ib_account['FullMaintMarginReq']), available_funds=float(ib_account['AvailableFunds']), excess_liquidity=float(ib_account['ExcessLiquidity']), cushion=float( self._tws.accounts[self.account_id]['']['Cushion']), day_trades_remaining=float( self._tws.accounts[self.account_id]['']['DayTradesRemaining']), leverage=float( self._tws.accounts[self.account_id]['']['Leverage-S']), net_leverage=( float(ib_account['StockMarketValue']) / (float(ib_account['TotalCashValue']) + float(ib_account['StockMarketValue']))), net_liquidation=float(ib_account['NetLiquidation']) ) return self.metrics_tracker.account @property def time_skew(self): return self._tws.time_skew def is_alive(self): return not self._tws.unrecoverable_error @staticmethod def _safe_symbol_lookup(symbol): try: return symbol_lookup(symbol) except SymbolNotFound: return None _zl_order_ref_magic = '!ZL' @classmethod def _create_order_ref(cls, ib_order, dt=pd.to_datetime('now', utc=True)): order_type = ib_order.m_orderType.replace(' ', '_') return \ "A:{action} Q:{qty} T:{order_type} " \ "L:{limit_price} S:{stop_price} D:{date} {magic}".format( action=ib_order.m_action, qty=ib_order.m_totalQuantity, order_type=order_type, limit_price=ib_order.m_lmtPrice, stop_price=ib_order.m_auxPrice, date=int(dt.value / 1e9), magic=cls._zl_order_ref_magic) @classmethod def _parse_order_ref(cls, ib_order_ref): if not ib_order_ref or \ not ib_order_ref.endswith(cls._zl_order_ref_magic): return None try: action, qty, order_type, limit_price, stop_price, dt, _ = \ ib_order_ref.split(' ') if not all( [action.startswith('A:'), qty.startswith('Q:'), order_type.startswith('T:'), limit_price.startswith('L:'), stop_price.startswith('S:'), dt.startswith('D:')]): return None return { 'action': action[2:], 'qty': int(qty[2:]), 'order_type': order_type[2:].replace('_', ' '), 'limit_price': float(limit_price[2:]), 'stop_price': float(stop_price[2:]), 'dt': pd.to_datetime(dt[2:], unit='s', utc=True)} except ValueError: log.warning("Error parsing order metadata: {}".format( ib_order_ref)) return None def order(self, asset, amount, style): contract = Contract() contract.m_symbol = str(asset.symbol) contract.m_currency = self.currency contract.m_exchange = symbol_to_exchange[str(asset.symbol)] contract.m_secType = symbol_to_sec_type[str(asset.symbol)] order = Order() order.m_totalQuantity = int(fabs(amount)) order.m_action = "BUY" if amount > 0 else "SELL" is_buy = (amount > 0) order.m_lmtPrice = style.get_limit_price(is_buy) or 0 order.m_auxPrice = style.get_stop_price(is_buy) or 0 if isinstance(style, MarketOrder): order.m_orderType = "MKT" elif isinstance(style, LimitOrder): order.m_orderType = "LMT" elif isinstance(style, StopOrder): order.m_orderType = "STP" elif isinstance(style, StopLimitOrder): order.m_orderType = "STP LMT" # TODO: Support GTC orders both here and at blotter_live order.m_tif = "DAY" order.m_orderRef = self._create_order_ref(order) ib_order_id = self._tws.next_order_id zp_order = self._get_or_create_zp_order(ib_order_id, order, contract) log.info( "Placing order-{order_id}: " "{action} {qty} {symbol} with {order_type} order. " "limit_price={limit_price} stop_price={stop_price} {tif}".format( order_id=ib_order_id, action=order.m_action, qty=order.m_totalQuantity, symbol=contract.m_symbol, order_type=order.m_orderType, limit_price=order.m_lmtPrice, stop_price=order.m_auxPrice, tif=order.m_tif )) self._tws.placeOrder(ib_order_id, contract, order) return zp_order @property def orders(self): self._update_orders() return self._orders def _ib_to_zp_order_id(self, ib_order_id): return "IB-{date}-{account_id}-{client_id}-{order_id}".format( date=str(pd.to_datetime('today').date()), account_id=self.account_id, client_id=self._tws.client_id, order_id=ib_order_id) @staticmethod def _action_qty_to_amount(action, qty): return qty if action == 'BUY' else -1 * qty def _get_or_create_zp_order(self, ib_order_id, ib_order=None, ib_contract=None): zp_order_id = self._ib_to_zp_order_id(ib_order_id) if zp_order_id in self._orders: return self._orders[zp_order_id] # Try to reconstruct the order from the given information: # open order state and execution state symbol, order_details = None, None if ib_order and ib_contract: symbol = ib_contract.m_symbol order_details = self._parse_order_ref(ib_order.m_orderRef) if not order_details and ib_order_id in self._tws.open_orders: open_order = self._tws.open_orders[ib_order_id] symbol = open_order['contract'].m_symbol order_details = self._parse_order_ref( open_order['order'].m_orderRef) if not order_details and ib_order_id in self._tws.executions: executions = self._tws.executions[ib_order_id] last_exec_detail = list(executions.values())[-1]['exec_detail'] last_exec_contract = list(executions.values())[-1]['contract'] symbol = last_exec_contract.m_symbol order_details = self._parse_order_ref(last_exec_detail.m_orderRef) asset = self._safe_symbol_lookup(symbol) if not asset: log.warning( "Ignoring symbol {symbol} which has associated " "order but it is not registered in bundle".format( symbol=symbol)) return None if order_details: amount = self._action_qty_to_amount(order_details['action'], order_details['qty']) stop_price = order_details['stop_price'] limit_price = order_details['limit_price'] dt = order_details['dt'] else: dt = pd.to_datetime('now', utc=True) amount, stop_price, limit_price = 0, None, None if ib_order_id in self._tws.open_orders: open_order = self._tws.open_orders[ib_order_id]['order'] amount = self._action_qty_to_amount( open_order.m_action, open_order.m_totalQuantity) stop_price = open_order.m_auxPrice limit_price = open_order.m_lmtPrice stop_price = None if stop_price == 0 else stop_price limit_price = None if limit_price == 0 else limit_price self._orders[zp_order_id] = ZPOrder( dt=dt, asset=asset, amount=amount, stop=stop_price, limit=limit_price, id=zp_order_id) self._orders[zp_order_id].broker_order_id = ib_order_id return self._orders[zp_order_id] @staticmethod def _ib_to_zp_status(ib_status): ib_status = ib_status.lower() if ib_status == 'submitted': return ZP_ORDER_STATUS.OPEN elif ib_status in ('pendingsubmit', 'pendingcancel', 'presubmitted'): return ZP_ORDER_STATUS.HELD elif ib_status == 'cancelled': return ZP_ORDER_STATUS.CANCELLED elif ib_status == 'filled': return ZP_ORDER_STATUS.FILLED elif ib_status == 'inactive': return ZP_ORDER_STATUS.REJECTED else: return None def _update_orders(self): def _update_from_order_status(zp_order, ib_order_id): if ib_order_id in self._tws.open_orders: open_order_state = self._tws.open_orders[ib_order_id]['state'] zp_status = self._ib_to_zp_status(open_order_state.m_status) if zp_status is None: log.warning( "Order-{order_id}: " "unknown order status: {order_status}.".format( order_id=ib_order_id, order_status=open_order_state.m_status)) else: zp_order.status = zp_status if ib_order_id in self._tws.order_statuses: order_status = self._tws.order_statuses[ib_order_id] zp_order.filled = order_status['filled'] zp_status = self._ib_to_zp_status(order_status['status']) if zp_status: zp_order.status = zp_status else: log.warning("Order-{order_id}: " "unknown order status: {order_status}." .format(order_id=ib_order_id, order_status=order_status['status'])) def _update_from_execution(zp_order, ib_order_id): if ib_order_id in self._tws.executions and \ ib_order_id not in self._tws.open_orders: zp_order.status = ZP_ORDER_STATUS.FILLED executions = self._tws.executions[ib_order_id] last_exec_detail = \ list(executions.values())[-1]['exec_detail'] zp_order.filled = last_exec_detail.m_cumQty all_ib_order_ids = (set([e.broker_order_id for e in self._orders.values()]) | set(self._tws.open_orders.keys()) | set(self._tws.order_statuses.keys()) | set(self._tws.executions.keys()) | set(self._tws.commissions.keys())) for ib_order_id in all_ib_order_ids: zp_order = self._get_or_create_zp_order(ib_order_id) if zp_order: _update_from_execution(zp_order, ib_order_id) _update_from_order_status(zp_order, ib_order_id) @property def transactions(self): self._update_transactions() return self._transactions def _update_transactions(self): all_orders = list(self.orders.values()) for ib_order_id, executions in iteritems(self._tws.executions): orders = [order for order in all_orders if order.broker_order_id == ib_order_id] if not orders: log.warning("No order found for executions: {}".format( executions)) continue assert len(orders) == 1 order = orders[0] for exec_id, execution in iteritems(executions): if exec_id in self._transactions: continue try: commission = self._tws.commissions[ib_order_id][exec_id] \ .m_commission except KeyError: log.warning( "Commission not found for execution: {}".format( exec_id)) commission = 0 exec_detail = execution['exec_detail'] is_buy = order.amount > 0 amount = (exec_detail.m_shares if is_buy else -1 * exec_detail.m_shares) tx = Transaction( asset=order.asset, amount=amount, dt=pd.to_datetime(exec_detail.m_time, utc=True), price=exec_detail.m_price, order_id=order.id ) self._transactions[exec_id] = tx def cancel_order(self, zp_order_id): ib_order_id = self.orders[zp_order_id].broker_order_id self._tws.cancelOrder(ib_order_id) def get_spot_value(self, assets, field, dt, data_frequency): symbol = str(assets.symbol) self.subscribe_to_market_data(assets) bars = self._tws.bars[symbol] last_event_time = bars.index[-1] minute_start = (last_event_time - pd.Timedelta('1 min')) \ .time() minute_end = last_event_time.time() if bars.empty: return pd.NaT if field == 'last_traded' else np.NaN else: if field == 'price': return bars.last_trade_price.iloc[-1] elif field == 'last_traded': return last_event_time or pd.NaT minute_df = bars.between_time(minute_start, minute_end, include_start=True, include_end=True) if minute_df.empty: return np.NaN else: if field == 'open': return minute_df.last_trade_price.iloc[0] elif field == 'close': return minute_df.last_trade_price.iloc[-1] elif field == 'high': return minute_df.last_trade_price.max() elif field == 'low': return minute_df.last_trade_price.min() elif field == 'volume': return minute_df.last_trade_size.sum() def get_last_traded_dt(self, asset): self.subscribe_to_market_data(asset) return self._tws.bars[asset.symbol].index[-1] def get_realtime_bars(self, assets, frequency): if frequency == '1m': resample_freq = '1 Min' elif frequency == '1d': resample_freq = '24 H' else: raise ValueError("Invalid frequency specified: %s" % frequency) df = pd.DataFrame() for asset in assets: symbol = str(asset.symbol) self.subscribe_to_market_data(asset) trade_prices = self._tws.bars[symbol]['last_trade_price'] trade_sizes = self._tws.bars[symbol]['last_trade_size'] ohlcv = trade_prices.resample(resample_freq).ohlc() ohlcv['volume'] = trade_sizes.resample(resample_freq).sum() # Add asset as level 0 column; ohlcv will be used as level 1 cols ohlcv.columns = pd.MultiIndex.from_product([[asset, ], ohlcv.columns]) df = pd.concat([df, ohlcv], axis=1) return df
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/gens/brokers/ib_broker.py
ib_broker.py
from textwrap import dedent from numpy import ( array, full, recarray, vstack, ) from pandas import NaT as pd_NaT from zipline.errors import ( WindowLengthNotPositive, UnsupportedDataType, NoFurtherDataError, ) from zipline.utils.context_tricks import nop_context from zipline.utils.input_validation import expect_types from zipline.utils.sharedoc import ( format_docstring, PIPELINE_ALIAS_NAME_DOC, PIPELINE_DOWNSAMPLING_FREQUENCY_DOC, ) from zipline.utils.pandas_utils import nearest_unequal_elements from .downsample_helpers import ( select_sampling_indices, expect_downsample_frequency, ) from .sentinels import NotSpecified from .term import Term class PositiveWindowLengthMixin(object): """ Validation mixin enforcing that a Term gets a positive WindowLength """ def _validate(self): super(PositiveWindowLengthMixin, self)._validate() if not self.windowed: raise WindowLengthNotPositive(window_length=self.window_length) class SingleInputMixin(object): """ Validation mixin enforcing that a Term gets a length-1 inputs list. """ def _validate(self): super(SingleInputMixin, self)._validate() num_inputs = len(self.inputs) if num_inputs != 1: raise ValueError( "{typename} expects only one input, " "but received {num_inputs} instead.".format( typename=type(self).__name__, num_inputs=num_inputs ) ) class StandardOutputs(object): """ Validation mixin enforcing that a Term cannot produce non-standard outputs. """ def _validate(self): super(StandardOutputs, self)._validate() if self.outputs is not NotSpecified: raise ValueError( "{typename} does not support custom outputs," " but received custom outputs={outputs}.".format( typename=type(self).__name__, outputs=self.outputs, ) ) class RestrictedDTypeMixin(object): """ Validation mixin enforcing that a term has a specific dtype. """ ALLOWED_DTYPES = NotSpecified def _validate(self): super(RestrictedDTypeMixin, self)._validate() assert self.ALLOWED_DTYPES is not NotSpecified, ( "ALLOWED_DTYPES not supplied on subclass " "of RestrictedDTypeMixin: %s." % type(self).__name__ ) if self.dtype not in self.ALLOWED_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, ) class CustomTermMixin(object): """ Mixin for user-defined rolling-window Terms. Implements `_compute` in terms of a user-defined `compute` function, which is mapped over the input windows. Used by CustomFactor, CustomFilter, CustomClassifier, etc. """ ctx = nop_context def __new__(cls, inputs=NotSpecified, outputs=NotSpecified, window_length=NotSpecified, mask=NotSpecified, dtype=NotSpecified, missing_value=NotSpecified, ndim=NotSpecified, **kwargs): unexpected_keys = set(kwargs) - set(cls.params) if unexpected_keys: raise TypeError( "{termname} received unexpected keyword " "arguments {unexpected}".format( termname=cls.__name__, unexpected={k: kwargs[k] for k in unexpected_keys}, ) ) return super(CustomTermMixin, cls).__new__( cls, inputs=inputs, outputs=outputs, window_length=window_length, mask=mask, dtype=dtype, missing_value=missing_value, ndim=ndim, **kwargs ) def compute(self, today, assets, out, *arrays): """ Override this method with a function that writes a value into `out`. """ raise NotImplementedError( "{name} must define a compute method".format( name=type(self).__name__ ) ) def _allocate_output(self, windows, shape): """ Allocate an output array whose rows should be passed to `self.compute`. The resulting array must have a shape of ``shape``. If we have standard outputs (i.e. self.outputs is NotSpecified), the default is an empty ndarray whose dtype is ``self.dtype``. If we have an outputs tuple, the default is an empty recarray with ``self.outputs`` as field names. Each field will have dtype ``self.dtype``. This can be overridden to control the kind of array constructed (e.g. to produce a LabelArray instead of an ndarray). """ missing_value = self.missing_value outputs = self.outputs if outputs is not NotSpecified: out = recarray( shape, formats=[self.dtype.str] * len(outputs), names=outputs, ) out[:] = missing_value else: out = full(shape, missing_value, dtype=self.dtype) return out def _format_inputs(self, windows, column_mask): inputs = [] for input_ in windows: window = next(input_) if window.shape[1] == 1: # Do not mask single-column inputs. inputs.append(window) else: inputs.append(window[:, column_mask]) return inputs def _compute(self, windows, dates, assets, mask): """ Call the user's `compute` function on each window with a pre-built output array. """ format_inputs = self._format_inputs compute = self.compute params = self.params ndim = self.ndim shape = (len(mask), 1) if ndim == 1 else mask.shape out = self._allocate_output(windows, shape) with self.ctx: for idx, date in enumerate(dates): # Never apply a mask to 1D outputs. out_mask = array([True]) if ndim == 1 else mask[idx] # Mask our inputs as usual. inputs_mask = mask[idx] masked_assets = assets[inputs_mask] out_row = out[idx][out_mask] inputs = format_inputs(windows, inputs_mask) compute(date, masked_assets, out_row, *inputs, **params) out[idx][out_mask] = out_row return out def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return type(self).__name__ + ':\l window_length: %d\l' % \ self.window_length class LatestMixin(SingleInputMixin): """ Mixin for behavior shared by Custom{Factor,Filter,Classifier}. """ window_length = 1 def compute(self, today, assets, out, data): out[:] = data[-1] def _validate(self): super(LatestMixin, self)._validate() if self.inputs[0].dtype != self.dtype: raise TypeError( "{name} expected an input of dtype {expected}, " "but got {actual} instead.".format( name=type(self).__name__, expected=self.dtype, actual=self.inputs[0].dtype, ) ) def graph_repr(self): return "Latest" class AliasedMixin(SingleInputMixin): """ Mixin for aliased terms. """ def __new__(cls, term, name): return super(AliasedMixin, cls).__new__( cls, inputs=(term,), outputs=term.outputs, window_length=0, name=name, dtype=term.dtype, missing_value=term.missing_value, ndim=term.ndim, window_safe=term.window_safe, ) def _init(self, name, *args, **kwargs): self.name = name return super(AliasedMixin, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, name, *args, **kwargs): return ( super(AliasedMixin, cls)._static_identity(*args, **kwargs), name, ) def _compute(self, inputs, dates, assets, mask): return inputs[0] def __repr__(self): return '{type}({inner_type}(...), name={name!r})'.format( type=type(self).__name__, inner_type=type(self.inputs[0]).__name__, name=self.name, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return self.name @classmethod def make_aliased_type(cls, other_base): """ Factory for making Aliased{Filter,Factor,Classifier}. """ docstring = dedent( """ A {t} that names another {t}. Parameters ---------- term : {t} {{name}} """ ).format(t=other_base.__name__) doc = format_docstring( owner_name=other_base.__name__, docstring=docstring, formatters={'name': PIPELINE_ALIAS_NAME_DOC}, ) return type( 'Aliased' + other_base.__name__, (cls, other_base), {'__doc__': doc, '__module__': other_base.__module__}, ) class DownsampledMixin(StandardOutputs): """ Mixin for behavior shared by Downsampled{Factor,Filter,Classifier} A downsampled term is a wrapper around the "real" term that performs actual computation. The downsampler is responsible for calling the real term's `compute` method at selected intervals and forward-filling the computed values. Downsampling is not currently supported for terms with multiple outputs. """ # There's no reason to take a window of a downsampled term. The whole # point is that you're re-using the same result multiple times. window_safe = False @expect_types(term=Term) @expect_downsample_frequency def __new__(cls, term, frequency): return super(DownsampledMixin, cls).__new__( cls, inputs=term.inputs, outputs=term.outputs, window_length=term.window_length, mask=term.mask, frequency=frequency, wrapped_term=term, dtype=term.dtype, missing_value=term.missing_value, ndim=term.ndim, ) def _init(self, frequency, wrapped_term, *args, **kwargs): self._frequency = frequency self._wrapped_term = wrapped_term return super(DownsampledMixin, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, frequency, wrapped_term, *args, **kwargs): return ( super(DownsampledMixin, cls)._static_identity(*args, **kwargs), frequency, wrapped_term, ) def compute_extra_rows(self, all_dates, start_date, end_date, min_extra_rows): """ Ensure that min_extra_rows pushes us back to a computation date. Parameters ---------- all_dates : pd.DatetimeIndex The trading sessions against which ``self`` will be computed. start_date : pd.Timestamp The first date for which final output is requested. end_date : pd.Timestamp The last date for which final output is requested. min_extra_rows : int The minimum number of extra rows required of ``self``, as determined by other terms that depend on ``self``. Returns ------- extra_rows : int The number of extra rows to compute. This will be the minimum number of rows required to make our computed start_date fall on a recomputation date. """ try: current_start_pos = all_dates.get_loc(start_date) - min_extra_rows if current_start_pos < 0: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=all_dates[0], lookback_start=start_date, lookback_length=min_extra_rows, ) except KeyError: before, after = nearest_unequal_elements(all_dates, start_date) raise ValueError( "Pipeline start_date {start_date} is not in calendar.\n" "Latest date before start_date is {before}.\n" "Earliest date after start_date is {after}.".format( start_date=start_date, before=before, after=after, ) ) # Our possible target dates are all the dates on or before the current # starting position. # TODO: Consider bounding this below by self.window_length candidates = all_dates[:current_start_pos + 1] # Choose the latest date in the candidates that is the start of a new # period at our frequency. choices = select_sampling_indices(candidates, self._frequency) # If we have choices, the last choice is the first date if the # period containing current_start_date. Choose it. new_start_date = candidates[choices[-1]] # Add the difference between the new and old start dates to get the # number of rows for the new start_date. new_start_pos = all_dates.get_loc(new_start_date) assert new_start_pos <= current_start_pos, \ "Computed negative extra rows!" return min_extra_rows + (current_start_pos - new_start_pos) def _compute(self, inputs, dates, assets, mask): """ Compute by delegating to self._wrapped_term._compute on sample dates. On non-sample dates, forward-fill from previously-computed samples. """ to_sample = dates[select_sampling_indices(dates, self._frequency)] assert to_sample[0] == dates[0], \ "Misaligned sampling dates in %s." % type(self).__name__ real_compute = self._wrapped_term._compute # Inputs will contain different kinds of values depending on whether or # not we're a windowed computation. # If we're windowed, then `inputs` is a list of iterators of ndarrays. # If we're not windowed, then `inputs` is just a list of ndarrays. # There are two things we care about doing with the input: # 1. Preparing an input to be passed to our wrapped term. # 2. Skipping an input if we're going to use an already-computed row. # We perform these actions differently based on the expected kind of # input, and we encapsulate these actions with closures so that we # don't clutter the code below with lots of branching. if self.windowed: # If we're windowed, inputs are stateful AdjustedArrays. We don't # need to do any preparation before forwarding to real_compute, but # we need to call `next` on them if we want to skip an iteration. def prepare_inputs(): return inputs def skip_this_input(): for w in inputs: next(w) else: # If we're not windowed, inputs are just ndarrays. We need to # slice out a single row when forwarding to real_compute, but we # don't need to do anything to skip an input. def prepare_inputs(): # i is the loop iteration variable below. return [a[[i]] for a in inputs] def skip_this_input(): pass results = [] samples = iter(to_sample) next_sample = next(samples) for i, compute_date in enumerate(dates): if next_sample == compute_date: results.append( real_compute( prepare_inputs(), dates[i:i + 1], assets, mask[i:i + 1], ) ) try: next_sample = next(samples) except StopIteration: # No more samples to take. Set next_sample to Nat, which # compares False with any other datetime. next_sample = pd_NaT else: skip_this_input() # Copy results from previous sample period. results.append(results[-1]) # We should have exhausted our sample dates. try: next_sample = next(samples) except StopIteration: pass else: raise AssertionError("Unconsumed sample date: %s" % next_sample) # Concatenate stored results. return vstack(results) @classmethod def make_downsampled_type(cls, other_base): """ Factory for making Downsampled{Filter,Factor,Classifier}. """ docstring = dedent( """ A {t} that defers to another {t} at lower-than-daily frequency. Parameters ---------- term : {t} {{frequency}} """ ).format(t=other_base.__name__) doc = format_docstring( owner_name=other_base.__name__, docstring=docstring, formatters={'frequency': PIPELINE_DOWNSAMPLING_FREQUENCY_DOC}, ) return type( 'Downsampled' + other_base.__name__, (cls, other_base,), {'__doc__': doc, '__module__': other_base.__module__}, )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/mixins.py
mixins.py
from __future__ import unicode_literals from contextlib import contextmanager import errno from functools import partial from io import BytesIO from subprocess import Popen, PIPE from networkx import topological_sort from six import iteritems from zipline.pipeline.data import BoundColumn from zipline.pipeline import Filter, Factor, Classifier, Term from zipline.pipeline.term import AssetExists class NoIPython(Exception): pass def delimit(delimiters, content): """ Surround `content` with the first and last characters of `delimiters`. >>> delimit('[]', "foo") # doctest: +SKIP '[foo]' >>> delimit('""', "foo") # doctest: +SKIP '"foo"' """ if len(delimiters) != 2: raise ValueError( "`delimiters` must be of length 2. Got %r" % delimiters ) return ''.join([delimiters[0], content, delimiters[1]]) quote = partial(delimit, '""') bracket = partial(delimit, '[]') def begin_graph(f, name, **attrs): writeln(f, "strict digraph %s {" % name) writeln(f, "graph {}".format(format_attrs(attrs))) def begin_cluster(f, name, **attrs): attrs.setdefault("label", quote(name)) writeln(f, "subgraph cluster_%s {" % name) writeln(f, "graph {}".format(format_attrs(attrs))) def end_graph(f): writeln(f, '}') @contextmanager def graph(f, name, **attrs): begin_graph(f, name, **attrs) yield end_graph(f) @contextmanager def cluster(f, name, **attrs): begin_cluster(f, name, **attrs) yield end_graph(f) def roots(g): "Get nodes from graph G with indegree 0" return set(n for n, d in iteritems(g.in_degree()) if d == 0) def filter_nodes(include_asset_exists, nodes): if include_asset_exists: return nodes return filter(lambda n: n is not AssetExists(), nodes) def _render(g, out, format_, include_asset_exists=False): """ Draw `g` as a graph to `out`, in format `format`. Parameters ---------- g : zipline.pipeline.graph.TermGraph Graph to render. out : file-like object format_ : str {'png', 'svg'} Output format. include_asset_exists : bool Whether to filter out `AssetExists()` nodes. """ graph_attrs = {'rankdir': 'TB', 'splines': 'ortho'} cluster_attrs = {'style': 'filled', 'color': 'lightgoldenrod1'} in_nodes = g.loadable_terms out_nodes = list(g.outputs.values()) f = BytesIO() with graph(f, "G", **graph_attrs): # Write outputs cluster. with cluster(f, 'Output', labelloc='b', **cluster_attrs): for term in filter_nodes(include_asset_exists, out_nodes): add_term_node(f, term) # Write inputs cluster. with cluster(f, 'Input', **cluster_attrs): for term in filter_nodes(include_asset_exists, in_nodes): add_term_node(f, term) # Write intermediate results. for term in filter_nodes(include_asset_exists, topological_sort(g.graph)): if term in in_nodes or term in out_nodes: continue add_term_node(f, term) # Write edges for source, dest in g.graph.edges(): if source is AssetExists() and not include_asset_exists: continue add_edge(f, id(source), id(dest)) cmd = ['dot', '-T', format_] try: proc = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) except OSError as e: if e.errno == errno.ENOENT: raise RuntimeError( "Couldn't find `dot` graph layout program. " "Make sure Graphviz is installed and `dot` is on your path." ) else: raise f.seek(0) proc_stdout, proc_stderr = proc.communicate(f.read()) if proc_stderr: raise RuntimeError( "Error(s) while rendering graph: %s" % proc_stderr.decode('utf-8') ) out.write(proc_stdout) def display_graph(g, format='svg', include_asset_exists=False): """ Display a TermGraph interactively from within IPython. """ try: import IPython.display as display except ImportError: raise NoIPython("IPython is not installed. Can't display graph.") if format == 'svg': display_cls = display.SVG elif format in ("jpeg", "png"): display_cls = partial(display.Image, format=format, embed=True) out = BytesIO() _render(g, out, format, include_asset_exists=include_asset_exists) return display_cls(data=out.getvalue()) def writeln(f, s): f.write((s + '\n').encode('utf-8')) def fmt(obj): if isinstance(obj, Term): r = obj.graph_repr() else: r = obj return '"%s"' % r def add_term_node(f, term): declare_node(f, id(term), attrs_for_node(term)) def declare_node(f, name, attributes): writeln(f, "{0} {1};".format(name, format_attrs(attributes))) def add_edge(f, source, dest): writeln(f, "{0} -> {1};".format(source, dest)) def attrs_for_node(term, **overrides): attrs = { 'shape': 'box', 'colorscheme': 'pastel19', 'style': 'filled', 'label': fmt(term), } if isinstance(term, BoundColumn): attrs['fillcolor'] = '1' if isinstance(term, Factor): attrs['fillcolor'] = '2' elif isinstance(term, Filter): attrs['fillcolor'] = '3' elif isinstance(term, Classifier): attrs['fillcolor'] = '4' attrs.update(**overrides or {}) return attrs def format_attrs(attrs): """ Format key, value pairs from attrs into graphviz attrs format Examples -------- >>> format_attrs({'key1': 'value1', 'key2': 'value2'}) # doctest: +SKIP '[key1=value1, key2=value2]' """ if not attrs: return '' entries = ['='.join((key, value)) for key, value in iteritems(attrs)] return '[' + ', '.join(entries) + ']'
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/visualize.py
visualize.py
import re from itertools import chain from numbers import Number import numexpr from numexpr.necompiler import getExprNames from numpy import ( full, inf, ) from zipline.pipeline.term import Term, ComputableTerm from zipline.utils.numpy_utils import bool_dtype _VARIABLE_NAME_RE = re.compile("^(x_)([0-9]+)$") # Map from op symbol to equivalent Python magic method name. ops_to_methods = { '+': '__add__', '-': '__sub__', '*': '__mul__', '/': '__div__', '%': '__mod__', '**': '__pow__', '&': '__and__', '|': '__or__', '^': '__xor__', '<': '__lt__', '<=': '__le__', '==': '__eq__', '!=': '__ne__', '>=': '__ge__', '>': '__gt__', } # Map from method name to op symbol. methods_to_ops = {v: k for k, v in ops_to_methods.items()} # Map from op symbol to equivalent Python magic method name after flipping # arguments. ops_to_commuted_methods = { '+': '__radd__', '-': '__rsub__', '*': '__rmul__', '/': '__rdiv__', '%': '__rmod__', '**': '__rpow__', '&': '__rand__', '|': '__ror__', '^': '__rxor__', '<': '__gt__', '<=': '__ge__', '==': '__eq__', '!=': '__ne__', '>=': '__le__', '>': '__lt__', } unary_ops_to_methods = { '-': '__neg__', '~': '__invert__', } UNARY_OPS = {'-'} MATH_BINOPS = {'+', '-', '*', '/', '**', '%'} FILTER_BINOPS = {'&', '|'} # NumExpr doesn't support xor. COMPARISONS = {'<', '<=', '!=', '>=', '>', '=='} NUMEXPR_MATH_FUNCS = { 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'log', 'log10', 'log1p', 'exp', 'expm1', 'sqrt', 'abs', } def _ensure_element(tup, elem): """ Create a tuple containing all elements of tup, plus elem. Returns the new tuple and the index of elem in the new tuple. """ try: return tup, tup.index(elem) except ValueError: return tuple(chain(tup, (elem,))), len(tup) class BadBinaryOperator(TypeError): """ Called when a bad binary operation is encountered. Parameters ---------- op : str The attempted operation left : zipline.computable.Term The left hand side of the operation. right : zipline.computable.Term The right hand side of the operation. """ def __init__(self, op, left, right): super(BadBinaryOperator, self).__init__( "Can't compute {left} {op} {right}".format( op=op, left=type(left).__name__, right=type(right).__name__, ) ) def method_name_for_op(op, commute=False): """ Get the name of the Python magic method corresponding to `op`. Parameters ---------- op : str {'+','-','*', '/','**','&','|','^','<','<=','==','!=','>=','>'} The requested operation. commute : bool Whether to return the name of an equivalent method after flipping args. Returns ------- method_name : str The name of the Python magic method corresponding to `op`. If `commute` is True, returns the name of a method equivalent to `op` with inputs flipped. Examples -------- >>> method_name_for_op('+') '__add__' >>> method_name_for_op('+', commute=True) '__radd__' >>> method_name_for_op('>') '__gt__' >>> method_name_for_op('>', commute=True) '__lt__' """ if commute: return ops_to_commuted_methods[op] return ops_to_methods[op] def unary_op_name(op): return unary_ops_to_methods[op] def is_comparison(op): return op in COMPARISONS class NumericalExpression(ComputableTerm): """ Term binding to a numexpr expression. Parameters ---------- expr : string A string suitable for passing to numexpr. All variables in 'expr' should be of the form "x_i", where i is the index of the corresponding factor input in 'binds'. binds : tuple A tuple of factors to use as inputs. dtype : np.dtype The dtype for the expression. """ window_length = 0 def __new__(cls, expr, binds, dtype): # We always allow filters to be used in windowed computations. # Otherwise, an expression is window_safe if all its constituents are # window_safe. window_safe = ( (dtype == bool_dtype) or all(t.window_safe for t in binds) ) return super(NumericalExpression, cls).__new__( cls, inputs=binds, expr=expr, dtype=dtype, window_safe=window_safe, ) def _init(self, expr, *args, **kwargs): self._expr = expr return super(NumericalExpression, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, expr, *args, **kwargs): return ( super(NumericalExpression, cls)._static_identity(*args, **kwargs), expr, ) def _validate(self): """ Ensure that our expression string has variables of the form x_0, x_1, ... x_(N - 1), where N is the length of our inputs. """ variable_names, _unused = getExprNames(self._expr, {}) expr_indices = [] for name in variable_names: if name == 'inf': continue match = _VARIABLE_NAME_RE.match(name) if not match: raise ValueError("%r is not a valid variable name" % name) expr_indices.append(int(match.group(2))) expr_indices.sort() expected_indices = list(range(len(self.inputs))) if expr_indices != expected_indices: raise ValueError( "Expected %s for variable indices, but got %s" % ( expected_indices, expr_indices, ) ) super(NumericalExpression, self)._validate() def _compute(self, arrays, dates, assets, mask): """ Compute our stored expression string with numexpr. """ out = full(mask.shape, self.missing_value, dtype=self.dtype) # This writes directly into our output buffer. numexpr.evaluate( self._expr, local_dict={ "x_%d" % idx: array for idx, array in enumerate(arrays) }, global_dict={'inf': inf}, out=out, ) return out def _rebind_variables(self, new_inputs): """ Return self._expr with all variables rebound to the indices implied by new_inputs. """ expr = self._expr # If we have 11+ variables, some of our variable names may be # substrings of other variable names. For example, we might have x_1, # x_10, and x_100. By enumerating in reverse order, we ensure that # every variable name which is a substring of another variable name is # processed after the variable of which it is a substring. This # guarantees that the substitution of any given variable index only # ever affects exactly its own index. For example, if we have variables # with indices going up to 100, we will process all of the x_1xx names # before x_1x, which will be before x_1, so the substitution of x_1 # will not affect x_1x, which will not affect x_1xx. for idx, input_ in reversed(list(enumerate(self.inputs))): old_varname = "x_%d" % idx # Temporarily rebind to x_temp_N so that we don't overwrite the # same value multiple times. temp_new_varname = "x_temp_%d" % new_inputs.index(input_) expr = expr.replace(old_varname, temp_new_varname) # Clear out the temp variables now that we've finished iteration. return expr.replace("_temp_", "_") def _merge_expressions(self, other): """ Merge the inputs of two NumericalExpressions into a single input tuple, rewriting their respective string expressions to make input names resolve correctly. Returns a tuple of (new_self_expr, new_other_expr, new_inputs) """ new_inputs = tuple(set(self.inputs).union(other.inputs)) new_self_expr = self._rebind_variables(new_inputs) new_other_expr = other._rebind_variables(new_inputs) return new_self_expr, new_other_expr, new_inputs def build_binary_op(self, op, other): """ Compute new expression strings and a new inputs tuple for combining self and other with a binary operator. """ if isinstance(other, NumericalExpression): self_expr, other_expr, new_inputs = self._merge_expressions(other) elif isinstance(other, Term): self_expr = self._expr new_inputs, other_idx = _ensure_element(self.inputs, other) other_expr = "x_%d" % other_idx elif isinstance(other, Number): self_expr = self._expr other_expr = str(other) new_inputs = self.inputs else: raise BadBinaryOperator(op, other) return self_expr, other_expr, new_inputs @property def bindings(self): return { "x_%d" % i: input_ for i, input_ in enumerate(self.inputs) } def __repr__(self): return "{typename}(expr='{expr}', bindings={bindings})".format( typename=type(self).__name__, expr=self._expr, bindings=self.bindings, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" # Replace any floating point numbers in the expression # with their scientific notation final = re.sub(r"[-+]?\d*\.\d+", lambda x: format(float(x.group(0)), '.2E'), self._expr) return "Expression:\l {}\l".format( final, )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/expression.py
expression.py
from zipline.errors import UnsupportedPipelineOutput from zipline.utils.input_validation import ( expect_element, expect_types, optional, ) from .graph import ExecutionPlan, TermGraph from .filters import Filter from .term import AssetExists, ComputableTerm, Term class Pipeline(object): """ A Pipeline object represents a collection of named expressions to be compiled and executed by a PipelineEngine. A Pipeline has two important attributes: 'columns', a dictionary of named `Term` instances, and 'screen', a Filter representing criteria for including an asset in the results of a Pipeline. To compute a pipeline in the context of a TradingAlgorithm, users must call ``attach_pipeline`` in their ``initialize`` function to register that the pipeline should be computed each trading day. The outputs of a pipeline on a given day can be accessed by calling ``pipeline_output`` in ``handle_data`` or ``before_trading_start``. Parameters ---------- columns : dict, optional Initial columns. screen : zipline.pipeline.term.Filter, optional Initial screen. """ __slots__ = ('_columns', '_screen', '__weakref__') @expect_types( columns=optional(dict), screen=optional(Filter), ) def __init__(self, columns=None, screen=None): if columns is None: columns = {} validate_column = self.validate_column for column_name, term in columns.items(): validate_column(column_name, term) if not isinstance(term, ComputableTerm): raise TypeError( "Column {column_name!r} contains an invalid pipeline term " "({term}). Did you mean to append '.latest'?".format( column_name=column_name, term=term, ) ) self._columns = columns self._screen = screen @property def columns(self): """ The columns registered with this pipeline. """ return self._columns @property def screen(self): """ The screen applied to the rows of this pipeline. """ return self._screen @expect_types(term=Term, name=str) def add(self, term, name, overwrite=False): """ Add a column. The results of computing `term` will show up as a column in the DataFrame produced by running this pipeline. Parameters ---------- column : zipline.pipeline.Term A Filter, Factor, or Classifier to add to the pipeline. name : str Name of the column to add. overwrite : bool Whether to overwrite the existing entry if we already have a column named `name`. """ self.validate_column(name, term) columns = self.columns if name in columns: if overwrite: self.remove(name) else: raise KeyError("Column '{}' already exists.".format(name)) if not isinstance(term, ComputableTerm): raise TypeError( "{term} is not a valid pipeline column. Did you mean to " "append '.latest'?".format(term=term) ) self._columns[name] = term @expect_types(name=str) def remove(self, name): """ Remove a column. Parameters ---------- name : str The name of the column to remove. Raises ------ KeyError If `name` is not in self.columns. Returns ------- removed : zipline.pipeline.term.Term The removed term. """ return self.columns.pop(name) @expect_types(screen=Filter, overwrite=(bool, int)) def set_screen(self, screen, overwrite=False): """ Set a screen on this Pipeline. Parameters ---------- filter : zipline.pipeline.Filter The filter to apply as a screen. overwrite : bool Whether to overwrite any existing screen. If overwrite is False and self.screen is not None, we raise an error. """ if self._screen is not None and not overwrite: raise ValueError( "set_screen() called with overwrite=False and screen already " "set.\n" "If you want to apply multiple filters as a screen use " "set_screen(filter1 & filter2 & ...).\n" "If you want to replace the previous screen with a new one, " "use set_screen(new_filter, overwrite=True)." ) self._screen = screen def to_execution_plan(self, screen_name, default_screen, all_dates, start_date, end_date): """ Compile into an ExecutionPlan. Parameters ---------- screen_name : str Name to supply for self.screen. default_screen : zipline.pipeline.term.Term Term to use as a screen if self.screen is None. all_dates : pd.DatetimeIndex A calendar of dates to use to calculate starts and ends for each term. start_date : pd.Timestamp The first date of requested output. end_date : pd.Timestamp The last date of requested output. """ return ExecutionPlan( self._prepare_graph_terms(screen_name, default_screen), all_dates, start_date, end_date, ) def to_simple_graph(self, screen_name, default_screen): """ Compile into a simple TermGraph with no extra row metadata. Parameters ---------- screen_name : str Name to supply for self.screen. default_screen : zipline.pipeline.term.Term Term to use as a screen if self.screen is None. """ return TermGraph( self._prepare_graph_terms(screen_name, default_screen) ) def _prepare_graph_terms(self, screen_name, default_screen): """Helper for to_graph and to_execution_plan.""" columns = self.columns.copy() screen = self.screen if screen is None: screen = default_screen columns[screen_name] = screen return columns @expect_element(format=('svg', 'png', 'jpeg')) def show_graph(self, format='svg'): """ Render this Pipeline as a DAG. Parameters ---------- format : {'svg', 'png', 'jpeg'} Image format to render with. Default is 'svg'. """ g = self.to_simple_graph('', AssetExists()) if format == 'svg': return g.svg elif format == 'png': return g.png elif format == 'jpeg': return g.jpeg else: # We should never get here because of the expect_element decorator # above. raise AssertionError("Unknown graph format %r." % format) @staticmethod @expect_types(term=Term, column_name=str) def validate_column(column_name, term): if term.ndim == 1: raise UnsupportedPipelineOutput(column_name=column_name, term=term)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/pipeline.py
pipeline.py
from abc import ( ABCMeta, abstractmethod, ) from uuid import uuid4 from six import ( iteritems, with_metaclass, ) from numpy import array from pandas import DataFrame, MultiIndex from toolz import groupby, juxt from toolz.curried.operator import getitem from zipline.lib.adjusted_array import ensure_adjusted_array, ensure_ndarray from zipline.errors import NoFurtherDataError from zipline.utils.numpy_utils import ( as_column, repeat_first_axis, repeat_last_axis, ) from zipline.utils.pandas_utils import explode from .term import AssetExists, InputDates, LoadableTerm from zipline.utils.date_utils import compute_date_range_chunks from zipline.utils.pandas_utils import categorical_df_concat from zipline.utils.sharedoc import copydoc class PipelineEngine(with_metaclass(ABCMeta)): @abstractmethod def run_pipeline(self, pipeline, start_date, end_date): """ Compute values for ``pipeline`` between ``start_date`` and ``end_date``. Returns a DataFrame with a MultiIndex of (date, asset) pairs. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. """ raise NotImplementedError("run_pipeline") @abstractmethod def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): """ Compute values for `pipeline` in number of days equal to `chunksize` and return stitched up result. Computing in chunks is useful for pipelines computed over a long period of time. Parameters ---------- pipeline : Pipeline The pipeline to run. start_date : pd.Timestamp The start date to run the pipeline for. end_date : pd.Timestamp The end date to run the pipeline for. chunksize : int The number of days to execute at a time. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ raise NotImplementedError("run_chunked_pipeline") class NoEngineRegistered(Exception): """ Raised if a user tries to call pipeline_output in an algorithm that hasn't set up a pipeline engine. """ class ExplodingPipelineEngine(PipelineEngine): """ A PipelineEngine that doesn't do anything. """ def run_pipeline(self, pipeline, start_date, end_date): raise NoEngineRegistered( "Attempted to run a pipeline but no pipeline " "resources were registered." ) def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): raise NoEngineRegistered( "Attempted to run a chunked pipeline but no pipeline " "resources were registered." ) def default_populate_initial_workspace(initial_workspace, root_mask_term, execution_plan, dates, assets): """The default implementation for ``populate_initial_workspace``. This function returns the ``initial_workspace`` argument without making any modifications. Parameters ---------- initial_workspace : dict[array-like] The initial workspace before we have populated it with any cached terms. root_mask_term : Term The root mask term, normally ``AssetExists()``. This is needed to compute the dates for individual terms. execution_plan : ExecutionPlan The execution plan for the pipeline being run. dates : pd.DatetimeIndex All of the dates being requested in this pipeline run including the extra dates for look back windows. assets : pd.Int64Index All of the assets that exist for the window being computed. Returns ------- populated_initial_workspace : dict[term, array-like] The workspace to begin computations with. """ return initial_workspace class SimplePipelineEngine(PipelineEngine): """ PipelineEngine class that computes each term independently. Parameters ---------- get_loader : callable A function that is given a loadable term and returns a PipelineLoader to use to retrieve raw data for that term. calendar : DatetimeIndex Array of dates to consider as trading days when computing a range between a fixed start and end. asset_finder : zipline.assets.AssetFinder An AssetFinder instance. We depend on the AssetFinder to determine which assets are in the top-level universe at any point in time. populate_initial_workspace : callable, optional A function which will be used to populate the initial workspace when computing a pipeline. See :func:`zipline.pipeline.engine.default_populate_initial_workspace` for more info. See Also -------- :func:`zipline.pipeline.engine.default_populate_initial_workspace` """ __slots__ = ( '_get_loader', '_calendar', '_finder', '_root_mask_term', '_root_mask_dates_term', '_populate_initial_workspace', ) def __init__(self, get_loader, calendar, asset_finder, populate_initial_workspace=None): self._get_loader = get_loader self._calendar = calendar self._finder = asset_finder self._root_mask_term = AssetExists() self._root_mask_dates_term = InputDates() self._populate_initial_workspace = ( populate_initial_workspace or default_populate_initial_workspace ) def run_pipeline(self, pipeline, start_date, end_date): """ Compute a pipeline. The algorithm implemented here can be broken down into the following stages: 0. Build a dependency graph of all terms in `pipeline`. Topologically sort the graph to determine an order in which we can compute the terms. 1. Ask our AssetFinder for a "lifetimes matrix", which should contain, for each date between start_date and end_date, a boolean value for each known asset indicating whether the asset existed on that date. 2. Compute each term in the dependency order determined in (0), caching the results in a a dictionary to that they can be fed into future terms. 3. For each date, determine the number of assets passing pipeline.screen. The sum, N, of all these values is the total number of rows in our output frame, so we pre-allocate an output array of length N for each factor in `terms`. 4. Fill in the arrays allocated in (3) by copying computed values from our output cache into the corresponding rows. 5. Stick the values computed in (4) into a DataFrame and return it. Step 0 is performed by ``Pipeline.to_graph``. Step 1 is performed in ``SimplePipelineEngine._compute_root_mask``. Step 2 is performed in ``SimplePipelineEngine.compute_chunk``. Steps 3, 4, and 5 are performed in ``SimplePiplineEngine._to_narrow``. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` :meth:`zipline.pipeline.engine.PipelineEngine.run_chunked_pipeline` """ if end_date < start_date: raise ValueError( "start_date must be before or equal to end_date \n" "start_date=%s, end_date=%s" % (start_date, end_date) ) screen_name = uuid4().hex graph = pipeline.to_execution_plan( screen_name, self._root_mask_term, self._calendar, start_date, end_date, ) extra_rows = graph.extra_rows[self._root_mask_term] root_mask = self._compute_root_mask(start_date, end_date, extra_rows) dates, assets, root_mask_values = explode(root_mask) initial_workspace = self._populate_initial_workspace( { self._root_mask_term: root_mask_values, self._root_mask_dates_term: as_column(dates.values) }, self._root_mask_term, graph, dates, assets, ) results = self.compute_chunk( graph, dates, assets, initial_workspace, ) return self._to_narrow( graph.outputs, results, results.pop(screen_name), dates[extra_rows:], assets, ) @copydoc(PipelineEngine.run_chunked_pipeline) def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): ranges = compute_date_range_chunks( self._calendar, start_date, end_date, chunksize, ) chunks = [self.run_pipeline(pipeline, s, e) for s, e in ranges] if len(chunks) == 1: # OPTIMIZATION: Don't make an extra copy in `categorical_df_concat` # if we don't have to. return chunks[0] return categorical_df_concat(chunks, inplace=True) def _compute_root_mask(self, start_date, end_date, extra_rows): """ Compute a lifetimes matrix from our AssetFinder, then drop columns that didn't exist at all during the query dates. Parameters ---------- start_date : pd.Timestamp Base start date for the matrix. end_date : pd.Timestamp End date for the matrix. extra_rows : int Number of extra rows to compute before `start_date`. Extra rows are needed by terms like moving averages that require a trailing window of data. Returns ------- lifetimes : pd.DataFrame Frame of dtype `bool` containing dates from `extra_rows` days before `start_date`, continuing through to `end_date`. The returned frame contains as columns all assets in our AssetFinder that existed for at least one day between `start_date` and `end_date`. """ calendar = self._calendar finder = self._finder start_idx, end_idx = self._calendar.slice_locs(start_date, end_date) if start_idx < extra_rows: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=calendar[0], lookback_start=start_date, lookback_length=extra_rows, ) # Build lifetimes matrix reaching back to `extra_rows` days before # `start_date.` lifetimes = finder.lifetimes( calendar[start_idx - extra_rows:end_idx], include_start_date=False, # TODO: update this when we add domains. country_codes={'??', 'US'}, ) if lifetimes.index[extra_rows] != start_date: raise ValueError( 'The first date of the lifetimes matrix does not match the' ' start date of the pipeline. Did you forget to align the' ' start_date to the trading calendar?' ) if lifetimes.index[-1] != end_date: raise ValueError( 'The last date of the lifetimes matrix does not match the' ' start date of the pipeline. Did you forget to align the' ' end_date to the trading calendar?' ) if not lifetimes.columns.unique: columns = lifetimes.columns duplicated = columns[columns.duplicated()].unique() raise AssertionError("Duplicated sids: %d" % duplicated) # Filter out columns that didn't exist from the farthest look back # window through the end of the requested dates. existed = lifetimes.any() ret = lifetimes.loc[:, existed] shape = ret.shape if shape[0] * shape[1] == 0: raise ValueError( "Found only empty asset-days between {} and {}.\n" "This probably means that either your asset db is out of date" " or that you're trying to run a Pipeline during a period with" " no market days.".format(start_date, end_date), ) return ret @staticmethod def _inputs_for_term(term, workspace, graph): """ Compute inputs for the given term. This is mostly complicated by the fact that for each input we store as many rows as will be necessary to serve **any** computation requiring that input. """ offsets = graph.offset out = [] if term.windowed: # If term is windowed, then all input data should be instances of # AdjustedArray. for input_ in term.inputs: adjusted_array = ensure_adjusted_array( workspace[input_], input_.missing_value, ) out.append( adjusted_array.traverse( window_length=term.window_length, offset=offsets[term, input_], ) ) else: # If term is not windowed, input_data may be an AdjustedArray or # np.ndarray. Coerce the former to the latter. for input_ in term.inputs: input_data = ensure_ndarray(workspace[input_]) offset = offsets[term, input_] # OPTIMIZATION: Don't make a copy by doing input_data[0:] if # offset is zero. if offset: input_data = input_data[offset:] out.append(input_data) return out def get_loader(self, term): return self._get_loader(term) def compute_chunk(self, graph, dates, assets, initial_workspace): """ Compute the Pipeline terms in the graph for the requested start and end dates. Parameters ---------- graph : zipline.pipeline.graph.TermGraph dates : pd.DatetimeIndex Row labels for our root mask. assets : pd.Int64Index Column labels for our root mask. initial_workspace : dict Map from term -> output. Must contain at least entry for `self._root_mask_term` whose shape is `(len(dates), len(assets))`, but may contain additional pre-computed terms for testing or optimization purposes. Returns ------- results : dict Dictionary mapping requested results to outputs. """ self._validate_compute_chunk_params(dates, assets, initial_workspace) get_loader = self.get_loader # Copy the supplied initial workspace so we don't mutate it in place. workspace = initial_workspace.copy() refcounts = graph.initial_refcounts(workspace) execution_order = graph.execution_order(refcounts) # If loadable terms share the same loader and extra_rows, load them all # together. loadable_terms = graph.loadable_terms loader_group_key = juxt(get_loader, getitem(graph.extra_rows)) loader_groups = groupby( loader_group_key, # Only produce loader groups for the terms we expect to load. This # ensures that we can run pipelines for graphs where we don't have # a loader registered for an atomic term if all the dependencies of # that term were supplied in the initial workspace. (t for t in execution_order if t in loadable_terms), ) for term in graph.execution_order(refcounts): # `term` may have been supplied in `initial_workspace`, and in the # future we may pre-compute loadable terms coming from the same # dataset. In either case, we will already have an entry for this # term, which we shouldn't re-compute. if term in workspace: continue # Asset labels are always the same, but date labels vary by how # many extra rows are needed. mask, mask_dates = graph.mask_and_dates_for_term( term, self._root_mask_term, workspace, dates, ) if isinstance(term, LoadableTerm): to_load = sorted( loader_groups[loader_group_key(term)], key=lambda t: t.dataset ) loader = get_loader(term) loaded = loader.load_adjusted_array( to_load, mask_dates, assets, mask, ) assert set(loaded) == set(to_load), ( 'loader did not return an AdjustedArray for each column\n' 'expected: %r\n' 'got: %r' % (sorted(to_load), sorted(loaded)) ) workspace.update(loaded) else: workspace[term] = term._compute( self._inputs_for_term(term, workspace, graph), mask_dates, assets, mask, ) if term.ndim == 2: assert workspace[term].shape == mask.shape else: assert workspace[term].shape == (mask.shape[0], 1) # Decref dependencies of ``term``, and clear any terms whose # refcounts hit 0. for garbage_term in graph.decref_dependencies(term, refcounts): del workspace[garbage_term] out = {} graph_extra_rows = graph.extra_rows for name, term in iteritems(graph.outputs): # Truncate off extra rows from outputs. out[name] = workspace[term][graph_extra_rows[term]:] return out def _to_narrow(self, terms, data, mask, dates, assets): """ Convert raw computed pipeline results into a DataFrame for public APIs. Parameters ---------- terms : dict[str -> Term] Dict mapping column names to terms. data : dict[str -> ndarray[ndim=2]] Dict mapping column names to computed results for those names. mask : ndarray[bool, ndim=2] Mask array of values to keep. dates : ndarray[datetime64, ndim=1] Row index for arrays `data` and `mask` assets : ndarray[int64, ndim=2] Column index for arrays `data` and `mask` Returns ------- results : pd.DataFrame The indices of `results` are as follows: index : two-tiered MultiIndex of (date, asset). Contains an entry for each (date, asset) pair corresponding to a `True` value in `mask`. columns : Index of str One column per entry in `data`. If mask[date, asset] is True, then result.loc[(date, asset), colname] will contain the value of data[colname][date, asset]. """ if not mask.any(): # Manually handle the empty DataFrame case. This is a workaround # to pandas failing to tz_localize an empty dataframe with a # MultiIndex. It also saves us the work of applying a known-empty # mask to each array. # # Slicing `dates` here to preserve pandas metadata. empty_dates = dates[:0] empty_assets = array([], dtype=object) return DataFrame( data={ name: array([], dtype=arr.dtype) for name, arr in iteritems(data) }, index=MultiIndex.from_arrays([empty_dates, empty_assets]), ) resolved_assets = array(self._finder.retrieve_all(assets)) dates_kept = repeat_last_axis(dates.values, len(assets))[mask] assets_kept = repeat_first_axis(resolved_assets, len(dates))[mask] final_columns = {} for name in data: # Each term that computed an output has its postprocess method # called on the filtered result. # # As of Mon May 2 15:38:47 2016, we only use this to convert # LabelArrays into categoricals. final_columns[name] = terms[name].postprocess(data[name][mask]) return DataFrame( data=final_columns, index=MultiIndex.from_arrays([dates_kept, assets_kept]), ).tz_localize('UTC', level=0) def _validate_compute_chunk_params(self, dates, assets, initial_workspace): """ Verify that the values passed to compute_chunk are well-formed. """ root = self._root_mask_term clsname = type(self).__name__ # Writing this out explicitly so this errors in testing if we change # the name without updating this line. compute_chunk_name = self.compute_chunk.__name__ if root not in initial_workspace: raise AssertionError( "root_mask values not supplied to {cls}.{method}".format( cls=clsname, method=compute_chunk_name, ) ) shape = initial_workspace[root].shape implied_shape = len(dates), len(assets) if shape != implied_shape: raise AssertionError( "root_mask shape is {shape}, but received dates/assets " "imply that shape should be {implied}".format( shape=shape, implied=implied_shape, ) )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/engine.py
engine.py
from networkx import ( DiGraph, topological_sort, ) from six import iteritems, itervalues from zipline.utils.memoize import lazyval from zipline.pipeline.visualize import display_graph from .term import LoadableTerm class CyclicDependency(Exception): pass class TermGraph(object): """ An abstract representation of Pipeline Term dependencies. This class does not keep any additional metadata about any term relations other than dependency ordering. As such it is only useful in contexts where you care exclusively about order properties (for example, when drawing visualizations of execution order). Parameters ---------- terms : dict A dict mapping names to final output terms. Attributes ---------- outputs Methods ------- ordered() Return a topologically-sorted iterator over the terms in self. See Also -------- ExecutionPlan """ def __init__(self, terms): self.graph = DiGraph() self._frozen = False parents = set() for term in itervalues(terms): self._add_to_graph(term, parents) # No parents should be left between top-level terms. assert not parents self._outputs = terms # Mark that no more terms should be added to the graph. self._frozen = True def _add_to_graph(self, term, parents): """ Add a term and all its children to ``graph``. ``parents`` is the set of all the parents of ``term` that we've added so far. It is only used to detect dependency cycles. """ if self._frozen: raise ValueError( "Can't mutate %s after construction." % type(self).__name__ ) # If we've seen this node already as a parent of the current traversal, # it means we have an unsatisifiable dependency. This should only be # possible if the term's inputs are mutated after construction. if term in parents: raise CyclicDependency(term) parents.add(term) self.graph.add_node(term) for dependency in term.dependencies: self._add_to_graph(dependency, parents) self.graph.add_edge(dependency, term) parents.remove(term) @property def outputs(self): """ Dict mapping names to designated output terms. """ return self._outputs def execution_order(self, refcounts): """ Return a topologically-sorted iterator over the terms in ``self`` which need to be computed. """ return iter(topological_sort( self.graph.subgraph( {term for term, refcount in refcounts.items() if refcount > 0}, ), )) def ordered(self): return iter(topological_sort(self.graph)) @lazyval def loadable_terms(self): return {term for term in self.graph if isinstance(term, LoadableTerm)} @lazyval def jpeg(self): return display_graph(self, 'jpeg') @lazyval def png(self): return display_graph(self, 'png') @lazyval def svg(self): return display_graph(self, 'svg') def _repr_png_(self): return self.png.data def initial_refcounts(self, initial_terms): """ Calculate initial refcounts for execution of this graph. Parameters ---------- initial_terms : iterable[Term] An iterable of terms that were pre-computed before graph execution. Each node starts with a refcount equal to its outdegree, and output nodes get one extra reference to ensure that they're still in the graph at the end of execution. """ refcounts = self.graph.out_degree() for t in self.outputs.values(): refcounts[t] += 1 for t in initial_terms: self._decref_depencies_recursive(t, refcounts, set()) return refcounts def _decref_depencies_recursive(self, term, refcounts, garbage): """ Decrement terms recursively. Notes ----- This should only be used to build the initial workspace, after that we should use: :meth:`~zipline.pipeline.graph.TermGraph.decref_dependencies` """ # Edges are tuple of (from, to). for parent, _ in self.graph.in_edges([term]): refcounts[parent] -= 1 # No one else depends on this term. Remove it from the # workspace to conserve memory. if refcounts[parent] == 0: garbage.add(parent) self._decref_depencies_recursive(parent, refcounts, garbage) def decref_dependencies(self, term, refcounts): """ Decrement in-edges for ``term`` after computation. Parameters ---------- term : zipline.pipeline.Term The term whose parents should be decref'ed. refcounts : dict[Term -> int] Dictionary of refcounts. Return ------ garbage : set[Term] Terms whose refcounts hit zero after decrefing. """ garbage = set() # Edges are tuple of (from, to). for parent, _ in self.graph.in_edges([term]): refcounts[parent] -= 1 # No one else depends on this term. Remove it from the # workspace to conserve memory. if refcounts[parent] == 0: garbage.add(parent) return garbage class ExecutionPlan(TermGraph): """ Graph represention of Pipeline Term dependencies that includes metadata about extra rows required to perform computations. Each node in the graph has an `extra_rows` attribute, indicating how many, if any, extra rows we should compute for the node. Extra rows are most often needed when a term is an input to a rolling window computation. For example, if we compute a 30 day moving average of price from day X to day Y, we need to load price data for the range from day (X - 29) to day Y. Parameters ---------- terms : dict A dict mapping names to final output terms. all_dates : pd.DatetimeIndex An index of all known trading days for which ``terms`` will be computed. start_date : pd.Timestamp The first date for which output is requested for ``terms``. end_date : pd.Timestamp The last date for which output is requested for ``terms``. Attributes ---------- outputs offset extra_rows Methods ------- ordered() Return a topologically-sorted iterator over the terms in self. """ def __init__(self, terms, all_dates, start_date, end_date, min_extra_rows=0): super(ExecutionPlan, self).__init__(terms) for term in terms.values(): self.set_extra_rows( term, all_dates, start_date, end_date, min_extra_rows=min_extra_rows, ) def set_extra_rows(self, term, all_dates, start_date, end_date, min_extra_rows): """ Compute ``extra_rows`` for transitive dependencies of ``root_terms`` """ # A term can require that additional extra rows beyond the minimum be # computed. This is most often used with downsampled terms, which need # to ensure that the first date is a computation date. extra_rows_for_term = term.compute_extra_rows( all_dates, start_date, end_date, min_extra_rows, ) if extra_rows_for_term < min_extra_rows: raise ValueError( "term %s requested fewer rows than the minimum of %d" % ( term, min_extra_rows, ) ) self._ensure_extra_rows(term, extra_rows_for_term) for dependency, additional_extra_rows in term.dependencies.items(): self.set_extra_rows( dependency, all_dates, start_date, end_date, min_extra_rows=extra_rows_for_term + additional_extra_rows, ) @lazyval def offset(self): """ For all pairs (term, input) such that `input` is an input to `term`, compute a mapping:: (term, input) -> offset(term, input) where ``offset(term, input)`` is the number of rows that ``term`` should truncate off the raw array produced for ``input`` before using it. We compute this value as follows:: offset(term, input) = (extra_rows_computed(input) - extra_rows_computed(term) - requested_extra_rows(term, input)) Examples -------- Case 1 ~~~~~~ Factor A needs 5 extra rows of USEquityPricing.close, and Factor B needs 3 extra rows of the same. Factor A also requires 5 extra rows of USEquityPricing.high, which no other Factor uses. We don't require any extra rows of Factor A or Factor B We load 5 extra rows of both `price` and `high` to ensure we can service Factor A, and the following offsets get computed:: offset[Factor A, USEquityPricing.close] == (5 - 0) - 5 == 0 offset[Factor A, USEquityPricing.high] == (5 - 0) - 5 == 0 offset[Factor B, USEquityPricing.close] == (5 - 0) - 3 == 2 offset[Factor B, USEquityPricing.high] raises KeyError. Case 2 ~~~~~~ Factor A needs 5 extra rows of USEquityPricing.close, and Factor B needs 3 extra rows of Factor A, and Factor B needs 2 extra rows of USEquityPricing.close. We load 8 extra rows of USEquityPricing.close (enough to load 5 extra rows of Factor A), and the following offsets get computed:: offset[Factor A, USEquityPricing.close] == (8 - 3) - 5 == 0 offset[Factor B, USEquityPricing.close] == (8 - 0) - 2 == 6 offset[Factor B, Factor A] == (3 - 0) - 3 == 0 Notes ----- `offset(term, input) >= 0` for all valid pairs, since `input` must be an input to `term` if the pair appears in the mapping. This value is useful because we load enough rows of each input to serve all possible dependencies. However, for any given dependency, we only want to compute using the actual number of required extra rows for that dependency. We can do so by truncating off the first `offset` rows of the loaded data for `input`. See Also -------- zipline.pipeline.graph.TermGraph.offset zipline.pipeline.engine.SimplePipelineEngine._inputs_for_term zipline.pipeline.engine.SimplePipelineEngine._mask_and_dates_for_term """ extra = self.extra_rows return { # Another way of thinking about this is: # How much bigger is the array for ``dep`` compared to ``term``? # How much of that difference did I ask for. (term, dep): (extra[dep] - extra[term]) - requested_extra_rows for term in self.graph for dep, requested_extra_rows in term.dependencies.items() } @lazyval def extra_rows(self): """ A dict mapping `term` -> `# of extra rows to load/compute of `term`. Notes ---- This value depends on the other terms in the graph that require `term` **as an input**. This is not to be confused with `term.dependencies`, which describes how many additional rows of `term`'s inputs we need to load, and which is determined entirely by `Term` itself. Examples -------- Our graph contains the following terms: A = SimpleMovingAverage([USEquityPricing.high], window_length=5) B = SimpleMovingAverage([USEquityPricing.high], window_length=10) C = SimpleMovingAverage([USEquityPricing.low], window_length=8) To compute N rows of A, we need N + 4 extra rows of `high`. To compute N rows of B, we need N + 9 extra rows of `high`. To compute N rows of C, we need N + 7 extra rows of `low`. We store the following extra_row requirements: self.extra_rows[high] = 9 # Ensures that we can service B. self.extra_rows[low] = 7 See Also -------- zipline.pipeline.graph.TermGraph.offset zipline.pipeline.term.Term.dependencies """ return { term: attrs['extra_rows'] for term, attrs in iteritems(self.graph.node) } def _ensure_extra_rows(self, term, N): """ Ensure that we're going to compute at least N extra rows of `term`. """ attrs = self.graph.node[term] attrs['extra_rows'] = max(N, attrs.get('extra_rows', 0)) def mask_and_dates_for_term(self, term, root_mask_term, workspace, all_dates): """ Load mask and mask row labels for term. Parameters ---------- term : Term The term to load the mask and labels for. root_mask_term : Term The term that represents the root asset exists mask. workspace : dict[Term, any] The values that have been computed for each term. all_dates : pd.DatetimeIndex All of the dates that are being computed for in the pipeline. Returns ------- mask : np.ndarray The correct mask for this term. dates : np.ndarray The slice of dates for this term. """ mask = term.mask mask_offset = self.extra_rows[mask] - self.extra_rows[term] # This offset is computed against root_mask_term because that is what # determines the shape of the top-level dates array. dates_offset = ( self.extra_rows[root_mask_term] - self.extra_rows[term] ) return workspace[mask][mask_offset:], all_dates[dates_offset:]
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/graph.py
graph.py
from abc import ABCMeta, abstractproperty from bisect import insort from collections import Mapping from weakref import WeakValueDictionary from numpy import ( array, dtype as dtype_class, ndarray, searchsorted, ) from six import with_metaclass from zipline.assets import Asset from zipline.errors import ( DTypeNotSpecified, InvalidOutputName, NonExistentAssetInTimeFrame, NonSliceableTerm, NonWindowSafeInput, NotDType, NonPipelineInputs, TermInputsNotSpecified, TermOutputsEmpty, UnsupportedDType, WindowLengthNotSpecified, ) from zipline.lib.adjusted_array import can_represent_dtype from zipline.lib.labelarray import LabelArray from zipline.utils.input_validation import expect_types from zipline.utils.memoize import lazyval from zipline.utils.numpy_utils import ( bool_dtype, categorical_dtype, datetime64ns_dtype, default_missing_value_for_dtype, ) from zipline.utils.sharedoc import ( templated_docstring, PIPELINE_ALIAS_NAME_DOC, PIPELINE_DOWNSAMPLING_FREQUENCY_DOC, ) from .downsample_helpers import expect_downsample_frequency from .sentinels import NotSpecified class Term(with_metaclass(ABCMeta, object)): """ Base class for terms in a Pipeline API compute graph. """ # These are NotSpecified because a subclass is required to provide them. dtype = NotSpecified domain = NotSpecified missing_value = NotSpecified # Subclasses aren't required to provide `params`. The default behavior is # no params. params = () # Determines if a term is safe to be used as a windowed input. window_safe = False # The dimensions of the term's output (1D or 2D). ndim = 2 _term_cache = WeakValueDictionary() def __new__(cls, domain=domain, dtype=dtype, missing_value=missing_value, window_safe=NotSpecified, ndim=NotSpecified, # params is explicitly not allowed to be passed to an instance. *args, **kwargs): """ Memoized constructor for Terms. Caching previously-constructed Terms is useful because it allows us to only compute equivalent sub-expressions once when traversing a Pipeline dependency graph. Caching previously-constructed Terms is **sane** because terms and their inputs are both conceptually immutable. """ # Subclasses can set override these class-level attributes to provide # default values. if domain is NotSpecified: domain = cls.domain if dtype is NotSpecified: dtype = cls.dtype if missing_value is NotSpecified: missing_value = cls.missing_value if ndim is NotSpecified: ndim = cls.ndim if window_safe is NotSpecified: window_safe = cls.window_safe dtype, missing_value = validate_dtype( cls.__name__, dtype, missing_value, ) params = cls._pop_params(kwargs) identity = cls._static_identity( domain=domain, dtype=dtype, missing_value=missing_value, window_safe=window_safe, ndim=ndim, params=params, *args, **kwargs ) try: return cls._term_cache[identity] except KeyError: new_instance = cls._term_cache[identity] = \ super(Term, cls).__new__(cls)._init( domain=domain, dtype=dtype, missing_value=missing_value, window_safe=window_safe, ndim=ndim, params=params, *args, **kwargs ) return new_instance @classmethod def _pop_params(cls, kwargs): """ Pop entries from the `kwargs` passed to cls.__new__ based on the values in `cls.params`. Parameters ---------- kwargs : dict The kwargs passed to cls.__new__. Returns ------- params : list[(str, object)] A list of string, value pairs containing the entries in cls.params. Raises ------ TypeError Raised if any parameter values are not passed or not hashable. """ params = cls.params if not isinstance(params, Mapping): params = {k: NotSpecified for k in params} param_values = [] for key, default_value in params.items(): try: value = kwargs.pop(key, default_value) if value is NotSpecified: raise KeyError(key) # Check here that the value is hashable so that we fail here # instead of trying to hash the param values tuple later. hash(value) except KeyError: raise TypeError( "{typename} expected a keyword parameter {name!r}.".format( typename=cls.__name__, name=key ) ) except TypeError: # Value wasn't hashable. raise TypeError( "{typename} expected a hashable value for parameter " "{name!r}, but got {value!r} instead.".format( typename=cls.__name__, name=key, value=value, ) ) param_values.append((key, value)) return tuple(param_values) def __init__(self, *args, **kwargs): """ Noop constructor to play nicely with our caching __new__. Subclasses should implement _init instead of this method. When a class' __new__ returns an instance of that class, Python will automatically call __init__ on the object, even if a new object wasn't actually constructed. Because we memoize instances, we often return an object that was already initialized from __new__, in which case we don't want to call __init__ again. Subclasses that need to initialize new instances should override _init, which is guaranteed to be called only once. """ pass @expect_types(key=Asset) def __getitem__(self, key): if isinstance(self, LoadableTerm): raise NonSliceableTerm(term=self) return Slice(self, key) @classmethod def _static_identity(cls, domain, dtype, missing_value, window_safe, ndim, params): """ Return the identity of the Term that would be constructed from the given arguments. Identities that compare equal will cause us to return a cached instance rather than constructing a new one. We do this primarily because it makes dependency resolution easier. This is a classmethod so that it can be called from Term.__new__ to determine whether to produce a new instance. """ return (cls, domain, dtype, missing_value, window_safe, ndim, params) def _init(self, domain, dtype, missing_value, window_safe, ndim, params): """ Parameters ---------- domain : object Unused placeholder. dtype : np.dtype Dtype of this term's output. params : tuple[(str, hashable)] Tuple of key/value pairs of additional parameters. """ self.domain = domain self.dtype = dtype self.missing_value = missing_value self.window_safe = window_safe self.ndim = ndim for name, value in params: if hasattr(self, name): raise TypeError( "Parameter {name!r} conflicts with already-present" " attribute with value {value!r}.".format( name=name, value=getattr(self, name), ) ) # TODO: Consider setting these values as attributes and replacing # the boilerplate in NumericalExpression, Rank, and # PercentileFilter. self.params = dict(params) # Make sure that subclasses call super() in their _validate() methods # by setting this flag. The base class implementation of _validate # should set this flag to True. self._subclass_called_super_validate = False self._validate() assert self._subclass_called_super_validate, ( "Term._validate() was not called.\n" "This probably means that you overrode _validate" " without calling super()." ) del self._subclass_called_super_validate return self def _validate(self): """ Assert that this term is well-formed. This should be called exactly once, at the end of Term._init(). """ # mark that we got here to enforce that subclasses overriding _validate # call super(). self._subclass_called_super_validate = True def compute_extra_rows(self, all_dates, start_date, end_date, min_extra_rows): """ Calculate the number of extra rows needed to compute ``self``. Must return at least ``min_extra_rows``, and the default implementation is to just return ``min_extra_rows``. This is overridden by downsampled terms to ensure that the first date computed is a recomputation date. Parameters ---------- all_dates : pd.DatetimeIndex The trading sessions against which ``self`` will be computed. start_date : pd.Timestamp The first date for which final output is requested. end_date : pd.Timestamp The last date for which final output is requested. min_extra_rows : int The minimum number of extra rows required of ``self``, as determined by other terms that depend on ``self``. Returns ------- extra_rows : int The number of extra rows to compute. Must be at least ``min_extra_rows``. """ return min_extra_rows @abstractproperty def inputs(self): """ A tuple of other Terms needed as direct inputs for this Term. """ raise NotImplementedError('inputs') @abstractproperty def windowed(self): """ Boolean indicating whether this term is a trailing-window computation. """ raise NotImplementedError('windowed') @abstractproperty def mask(self): """ A Filter representing asset/date pairs to include while computing this Term. (True means include; False means exclude.) """ raise NotImplementedError('mask') @abstractproperty def dependencies(self): """ A dictionary mapping terms that must be computed before `self` to the number of extra rows needed for those terms. """ raise NotImplementedError('dependencies') def graph_repr(self): """A short repr to use when rendering GraphViz graphs. """ # Default graph_repr is just the name of the type. return type(self).__name__ def recursive_repr(self): """A short repr to use when recursively rendering terms with inputs. """ # Default recursive_repr is just the name of the type. return type(self).__name__ class AssetExists(Term): """ Pseudo-filter describing whether or not an asset existed on a given day. This is the default mask for all terms that haven't been passed a mask explicitly. This is morally a Filter, in the sense that it produces a boolean value for every asset on every date. We don't subclass Filter, however, because `AssetExists` is computed directly by the PipelineEngine. This term is guaranteed to be available as an input for any term computed by SimplePipelineEngine.run_pipeline(). See Also -------- zipline.assets.AssetFinder.lifetimes """ dtype = bool_dtype dataset = None inputs = () dependencies = {} mask = None windowed = False def __repr__(self): return "AssetExists()" graph_repr = __repr__ def _compute(self, today, assets, out): raise NotImplementedError( "AssetExists cannot be computed directly." " Check your PipelineEngine configuration." ) class InputDates(Term): """ 1-Dimensional term providing date labels for other term inputs. This term is guaranteed to be available as an input for any term computed by SimplePipelineEngine.run_pipeline(). """ ndim = 1 dataset = None dtype = datetime64ns_dtype inputs = () dependencies = {} mask = None windowed = False window_safe = True def __repr__(self): return "InputDates()" graph_repr = __repr__ def _compute(self, today, assets, out): raise NotImplementedError( "InputDates cannot be computed directly." " Check your PipelineEngine configuration." ) class LoadableTerm(Term): """ A Term that should be loaded from an external resource by a PipelineLoader. This is the base class for :class:`zipline.pipeline.data.BoundColumn`. """ windowed = False inputs = () @lazyval def dependencies(self): return {self.mask: 0} class ComputableTerm(Term): """ A Term that should be computed from a tuple of inputs. This is the base class for :class:`zipline.pipeline.Factor`, :class:`zipline.pipeline.Filter`, and :class:`zipline.pipeline.Classifier`. """ inputs = NotSpecified outputs = NotSpecified window_length = NotSpecified mask = NotSpecified def __new__(cls, inputs=inputs, outputs=outputs, window_length=window_length, mask=mask, *args, **kwargs): if inputs is NotSpecified: inputs = cls.inputs # Having inputs = NotSpecified is an error, but we handle it later # in self._validate rather than here. if inputs is not NotSpecified: # Allow users to specify lists as class-level defaults, but # normalize to a tuple so that inputs is hashable. inputs = tuple(inputs) # Make sure all our inputs are valid pipeline objects before trying # to infer a domain. for input_ in inputs: non_terms = [t for t in inputs if not isinstance(t, Term)] if non_terms: raise NonPipelineInputs(cls.__name__, non_terms) if outputs is NotSpecified: outputs = cls.outputs if outputs is not NotSpecified: outputs = tuple(outputs) if mask is NotSpecified: mask = cls.mask if mask is NotSpecified: mask = AssetExists() if window_length is NotSpecified: window_length = cls.window_length return super(ComputableTerm, cls).__new__( cls, inputs=inputs, outputs=outputs, mask=mask, window_length=window_length, *args, **kwargs ) def _init(self, inputs, outputs, window_length, mask, *args, **kwargs): self.inputs = inputs self.outputs = outputs self.window_length = window_length self.mask = mask return super(ComputableTerm, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, inputs, outputs, window_length, mask, *args, **kwargs): return ( super(ComputableTerm, cls)._static_identity(*args, **kwargs), inputs, outputs, window_length, mask, ) def _validate(self): super(ComputableTerm, self)._validate() if self.inputs is NotSpecified: raise TermInputsNotSpecified(termname=type(self).__name__) if self.outputs is NotSpecified: pass elif not self.outputs: raise TermOutputsEmpty(termname=type(self).__name__) else: # Raise an exception if there are any naming conflicts between the # term's output names and certain attributes. disallowed_names = [ attr for attr in dir(ComputableTerm) if not attr.startswith('_') ] # The name 'compute' is an added special case that is disallowed. # Use insort to add it to the list in alphabetical order. insort(disallowed_names, 'compute') for output in self.outputs: if output.startswith('_') or output in disallowed_names: raise InvalidOutputName( output_name=output, termname=type(self).__name__, disallowed_names=disallowed_names, ) if self.window_length is NotSpecified: raise WindowLengthNotSpecified(termname=type(self).__name__) if self.mask is NotSpecified: # This isn't user error, this is a bug in our code. raise AssertionError("{term} has no mask".format(term=self)) if self.window_length: for child in self.inputs: if not child.window_safe: raise NonWindowSafeInput(parent=self, child=child) def _compute(self, inputs, dates, assets, mask): """ Subclasses should implement this to perform actual computation. This is named ``_compute`` rather than just ``compute`` because ``compute`` is reserved for user-supplied functions in CustomFilter/CustomFactor/CustomClassifier. """ raise NotImplementedError() @lazyval def windowed(self): """ Whether or not this term represents a trailing window computation. If term.windowed is truthy, its compute_from_windows method will be called with instances of AdjustedArray as inputs. If term.windowed is falsey, its compute_from_baseline will be called with instances of np.ndarray as inputs. """ return ( self.window_length is not NotSpecified and self.window_length > 0 ) @lazyval def dependencies(self): """ The number of extra rows needed for each of our inputs to compute this term. """ extra_input_rows = max(0, self.window_length - 1) out = {} for term in self.inputs: out[term] = extra_input_rows out[self.mask] = 0 return out @expect_types(data=ndarray) def postprocess(self, data): """ Called with an result of ``self``, unravelled (i.e. 1-dimensional) after any user-defined screens have been applied. This is mostly useful for transforming the dtype of an output, e.g., to convert a LabelArray into a pandas Categorical. The default implementation is to just return data unchanged. """ return data def to_workspace_value(self, result, assets): """ Called with a column of the result of a pipeline. This needs to put the data into a format that can be used in a workspace to continue doing computations. Parameters ---------- result : pd.Series A multiindexed series with (dates, assets) whose values are the results of running this pipeline term over the dates. assets : pd.Index All of the assets being requested. This allows us to correctly shape the workspace value. Returns ------- workspace_value : array-like An array like value that the engine can consume. """ return result.unstack().fillna(self.missing_value).reindex( columns=assets, fill_value=self.missing_value, ).values def _downsampled_type(self, *args, **kwargs): """ The expression type to return from self.downsample(). """ raise NotImplementedError( "downsampling is not yet implemented " "for instances of %s." % type(self).__name__ ) @expect_downsample_frequency @templated_docstring(frequency=PIPELINE_DOWNSAMPLING_FREQUENCY_DOC) def downsample(self, frequency): """ Make a term that computes from ``self`` at lower-than-daily frequency. Parameters ---------- {frequency} """ return self._downsampled_type(term=self, frequency=frequency) def _aliased_type(self, *args, **kwargs): """ The expression type to return from self.alias(). """ raise NotImplementedError( "alias is not yet implemented " "for instances of %s." % type(self).__name__ ) @templated_docstring(name=PIPELINE_ALIAS_NAME_DOC) def alias(self, name): """ Make a term from ``self`` that names the expression. Parameters ---------- {name} Returns ------- aliased : Aliased ``self`` with a name. Notes ----- This is useful for giving a name to a numerical or boolean expression. """ return self._aliased_type(term=self, name=name) def __repr__(self): return ( "{type}([{inputs}], {window_length})" ).format( type=type(self).__name__, inputs=', '.join(i.recursive_repr() for i in self.inputs), window_length=self.window_length, ) def recursive_repr(self): return type(self).__name__ + '(...)' class Slice(ComputableTerm): """ Term for extracting a single column of a another term's output. Parameters ---------- term : zipline.pipeline.term.Term The term from which to extract a column of data. asset : zipline.assets.Asset The asset corresponding to the column of `term` to be extracted. Notes ----- Users should rarely construct instances of `Slice` directly. Instead, they should construct instances via indexing, e.g. `MyFactor()[Asset(24)]`. """ def __new__(cls, term, asset): return super(Slice, cls).__new__( cls, asset=asset, inputs=[term], window_length=0, mask=term.mask, dtype=term.dtype, missing_value=term.missing_value, window_safe=term.window_safe, ndim=1, ) def __repr__(self): return "{parent_term}[{asset}])".format( type=type(self).__name__, parent_term=self.inputs[0].__name__, asset=self._asset, ) def _init(self, asset, *args, **kwargs): self._asset = asset return super(Slice, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, asset, *args, **kwargs): return (super(Slice, cls)._static_identity(*args, **kwargs), asset) def _compute(self, windows, dates, assets, mask): asset = self._asset asset_column = searchsorted(assets.values, asset.sid) if assets[asset_column] != asset.sid: raise NonExistentAssetInTimeFrame( asset=asset, start_date=dates[0], end_date=dates[-1], ) # Return a 2D array with one column rather than a 1D array of the # column. return windows[0][:, [asset_column]] @property def asset(self): """Get the asset whose data is selected by this slice. """ return self._asset @property def _downsampled_type(self): raise NotImplementedError( 'downsampling of slices is not yet supported' ) def validate_dtype(termname, dtype, missing_value): """ Validate a `dtype` and `missing_value` passed to Term.__new__. Ensures that we know how to represent ``dtype``, and that missing_value is specified for types without default missing values. Returns ------- validated_dtype, validated_missing_value : np.dtype, any The dtype and missing_value to use for the new term. Raises ------ DTypeNotSpecified When no dtype was passed to the instance, and the class doesn't provide a default. NotDType When either the class or the instance provides a value not coercible to a numpy dtype. NoDefaultMissingValue When dtype requires an explicit missing_value, but ``missing_value`` is NotSpecified. """ if dtype is NotSpecified: raise DTypeNotSpecified(termname=termname) try: dtype = dtype_class(dtype) except TypeError: raise NotDType(dtype=dtype, termname=termname) if not can_represent_dtype(dtype): raise UnsupportedDType(dtype=dtype, termname=termname) if missing_value is NotSpecified: missing_value = default_missing_value_for_dtype(dtype) try: if (dtype == categorical_dtype): # This check is necessary because we use object dtype for # categoricals, and numpy will allow us to promote numerical # values to object even though we don't support them. _assert_valid_categorical_missing_value(missing_value) # For any other type, we can check if the missing_value is safe by # making an array of that value and trying to safely convert it to # the desired type. # 'same_kind' allows casting between things like float32 and # float64, but not str and int. array([missing_value]).astype(dtype=dtype, casting='same_kind') except TypeError as e: raise TypeError( "Missing value {value!r} is not a valid choice " "for term {termname} with dtype {dtype}.\n\n" "Coercion attempt failed with: {error}".format( termname=termname, value=missing_value, dtype=dtype, error=e, ) ) return dtype, missing_value def _assert_valid_categorical_missing_value(value): """ Check that value is a valid categorical missing_value. Raises a TypeError if the value is cannot be used as the missing_value for a categorical_dtype Term. """ label_types = LabelArray.SUPPORTED_SCALAR_TYPES if not isinstance(value, label_types): raise TypeError( "Categorical terms must have missing values of type " "{types}.".format( types=' or '.join([t.__name__ for t in label_types]), ) )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/term.py
term.py
from __future__ import division from numpy import ( abs, average, clip, diff, dstack, inf, ) from numexpr import evaluate from zipline.pipeline.data import USEquityPricing from zipline.pipeline.factors import CustomFactor from zipline.pipeline.mixins import SingleInputMixin from zipline.utils.input_validation import expect_bounded from zipline.utils.math_utils import ( nanargmax, nanargmin, nanmax, nanmean, nanstd, nanmin, ) from zipline.utils.numpy_utils import rolling_window from .basic import exponential_weights from .basic import ( # noqa reexport # These are re-exported here for backwards compatibility with the old # definition site. LinearWeightedMovingAverage, MaxDrawdown, SimpleMovingAverage, VWAP, WeightedAverageValue ) class RSI(CustomFactor, SingleInputMixin): """ Relative Strength Index **Default Inputs**: [USEquityPricing.close] **Default Window Length**: 15 """ window_length = 15 inputs = (USEquityPricing.close,) window_safe = True def compute(self, today, assets, out, closes): diffs = diff(closes, axis=0) ups = nanmean(clip(diffs, 0, inf), axis=0) downs = abs(nanmean(clip(diffs, -inf, 0), axis=0)) return evaluate( "100 - (100 / (1 + (ups / downs)))", local_dict={'ups': ups, 'downs': downs}, global_dict={}, out=out, ) class BollingerBands(CustomFactor): """ Bollinger Bands technical indicator. https://en.wikipedia.org/wiki/Bollinger_Bands **Default Inputs:** :data:`zipline.pipeline.data.USEquityPricing.close` Parameters ---------- inputs : length-1 iterable[BoundColumn] The expression over which to compute bollinger bands. window_length : int > 0 Length of the lookback window over which to compute the bollinger bands. k : float The number of standard deviations to add or subtract to create the upper and lower bands. """ params = ('k',) inputs = (USEquityPricing.close,) outputs = 'lower', 'middle', 'upper' def compute(self, today, assets, out, close, k): difference = k * nanstd(close, axis=0) out.middle = middle = nanmean(close, axis=0) out.upper = middle + difference out.lower = middle - difference class Aroon(CustomFactor): """ Aroon technical indicator. https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/aroon-indicator # noqa **Defaults Inputs:** USEquityPricing.low, USEquityPricing.high Parameters ---------- window_length : int > 0 Length of the lookback window over which to compute the Aroon indicator. """ inputs = (USEquityPricing.low, USEquityPricing.high) outputs = ('down', 'up') def compute(self, today, assets, out, lows, highs): wl = self.window_length high_date_index = nanargmax(highs, axis=0) low_date_index = nanargmin(lows, axis=0) evaluate( '(100 * high_date_index) / (wl - 1)', local_dict={ 'high_date_index': high_date_index, 'wl': wl, }, out=out.up, ) evaluate( '(100 * low_date_index) / (wl - 1)', local_dict={ 'low_date_index': low_date_index, 'wl': wl, }, out=out.down, ) class FastStochasticOscillator(CustomFactor): """ Fast Stochastic Oscillator Indicator [%K, Momentum Indicator] https://wiki.timetotrade.eu/Stochastic This stochastic is considered volatile, and varies a lot when used in market analysis. It is recommended to use the slow stochastic oscillator or a moving average of the %K [%D]. **Default Inputs:** :data: `zipline.pipeline.data.USEquityPricing.close` :data: `zipline.pipeline.data.USEquityPricing.low` :data: `zipline.pipeline.data.USEquityPricing.high` **Default Window Length:** 14 Returns ------- out: %K oscillator """ inputs = (USEquityPricing.close, USEquityPricing.low, USEquityPricing.high) window_safe = True window_length = 14 def compute(self, today, assets, out, closes, lows, highs): highest_highs = nanmax(highs, axis=0) lowest_lows = nanmin(lows, axis=0) today_closes = closes[-1] evaluate( '((tc - ll) / (hh - ll)) * 100', local_dict={ 'tc': today_closes, 'll': lowest_lows, 'hh': highest_highs, }, global_dict={}, out=out, ) class IchimokuKinkoHyo(CustomFactor): """Compute the various metrics for the Ichimoku Kinko Hyo (Ichimoku Cloud). http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud # noqa **Default Inputs:** :data:`zipline.pipeline.data.USEquityPricing.high` :data:`zipline.pipeline.data.USEquityPricing.low` :data:`zipline.pipeline.data.USEquityPricing.close` **Default Window Length:** 52 Parameters ---------- window_length : int > 0 The length the the window for the senkou span b. tenkan_sen_length : int >= 0, <= window_length The length of the window for the tenkan-sen. kijun_sen_length : int >= 0, <= window_length The length of the window for the kijou-sen. chikou_span_length : int >= 0, <= window_length The lag for the chikou span. """ params = { 'tenkan_sen_length': 9, 'kijun_sen_length': 26, 'chikou_span_length': 26, } inputs = (USEquityPricing.high, USEquityPricing.low, USEquityPricing.close) outputs = ( 'tenkan_sen', 'kijun_sen', 'senkou_span_a', 'senkou_span_b', 'chikou_span', ) window_length = 52 def _validate(self): super(IchimokuKinkoHyo, self)._validate() for k, v in self.params.items(): if v > self.window_length: raise ValueError( '%s must be <= the window_length: %s > %s' % ( k, v, self.window_length, ), ) def compute(self, today, assets, out, high, low, close, tenkan_sen_length, kijun_sen_length, chikou_span_length): out.tenkan_sen = tenkan_sen = ( high[-tenkan_sen_length:].max(axis=0) + low[-tenkan_sen_length:].min(axis=0) ) / 2 out.kijun_sen = kijun_sen = ( high[-kijun_sen_length:].max(axis=0) + low[-kijun_sen_length:].min(axis=0) ) / 2 out.senkou_span_a = (tenkan_sen + kijun_sen) / 2 out.senkou_span_b = (high.max(axis=0) + low.min(axis=0)) / 2 out.chikou_span = close[chikou_span_length] class RateOfChangePercentage(CustomFactor): """ Rate of change Percentage ROC measures the percentage change in price from one period to the next. The ROC calculation compares the current price with the price `n` periods ago. Formula for calculation: ((price - prevPrice) / prevPrice) * 100 price - the current price prevPrice - the price n days ago, equals window length """ def compute(self, today, assets, out, close): today_close = close[-1] prev_close = close[0] evaluate('((tc - pc) / pc) * 100', local_dict={ 'tc': today_close, 'pc': prev_close }, global_dict={}, out=out, ) class TrueRange(CustomFactor): """ True Range A technical indicator originally developed by J. Welles Wilder, Jr. Indicates the true degree of daily price change in an underlying. **Default Inputs:** :data:`zipline.pipeline.data.USEquityPricing.high` :data:`zipline.pipeline.data.USEquityPricing.low` :data:`zipline.pipeline.data.USEquityPricing.close` **Default Window Length:** 2 """ inputs = ( USEquityPricing.high, USEquityPricing.low, USEquityPricing.close, ) window_length = 2 def compute(self, today, assets, out, highs, lows, closes): high_to_low = highs[1:] - lows[1:] high_to_prev_close = abs(highs[1:] - closes[:-1]) low_to_prev_close = abs(lows[1:] - closes[:-1]) out[:] = nanmax( dstack(( high_to_low, high_to_prev_close, low_to_prev_close, )), 2 ) class MovingAverageConvergenceDivergenceSignal(CustomFactor): """ Moving Average Convergence/Divergence (MACD) Signal line https://en.wikipedia.org/wiki/MACD A technical indicator originally developed by Gerald Appel in the late 1970's. MACD shows the relationship between two moving averages and reveals changes in the strength, direction, momentum, and duration of a trend in a stock's price. **Default Inputs:** :data:`zipline.pipeline.data.USEquityPricing.close` Parameters ---------- fast_period : int > 0, optional The window length for the "fast" EWMA. Default is 12. slow_period : int > 0, > fast_period, optional The window length for the "slow" EWMA. Default is 26. signal_period : int > 0, < fast_period, optional The window length for the signal line. Default is 9. Notes ----- Unlike most pipeline expressions, this factor does not accept a ``window_length`` parameter. ``window_length`` is inferred from ``slow_period`` and ``signal_period``. """ inputs = (USEquityPricing.close,) # We don't use the default form of `params` here because we want to # dynamically calculate `window_length` from the period lengths in our # __new__. params = ('fast_period', 'slow_period', 'signal_period') @expect_bounded( __funcname='MACDSignal', fast_period=(1, None), # These must all be >= 1. slow_period=(1, None), signal_period=(1, None), ) def __new__(cls, fast_period=12, slow_period=26, signal_period=9, *args, **kwargs): if slow_period <= fast_period: raise ValueError( "'slow_period' must be greater than 'fast_period', but got\n" "slow_period={slow}, fast_period={fast}".format( slow=slow_period, fast=fast_period, ) ) return super(MovingAverageConvergenceDivergenceSignal, cls).__new__( cls, fast_period=fast_period, slow_period=slow_period, signal_period=signal_period, window_length=slow_period + signal_period - 1, *args, **kwargs ) def _ewma(self, data, length): decay_rate = 1.0 - (2.0 / (1.0 + length)) return average( data, axis=1, weights=exponential_weights(length, decay_rate) ) def compute(self, today, assets, out, close, fast_period, slow_period, signal_period): slow_EWMA = self._ewma( rolling_window(close, slow_period), slow_period ) fast_EWMA = self._ewma( rolling_window(close, fast_period)[-signal_period:], fast_period ) macd = fast_EWMA - slow_EWMA out[:] = self._ewma(macd.T, signal_period) # Convenience aliases. MACDSignal = MovingAverageConvergenceDivergenceSignal
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/factors/technical.py
technical.py
import numpy as np from numpy import broadcast_arrays from scipy.stats import ( linregress, pearsonr, spearmanr, ) from zipline.assets import Asset from zipline.errors import IncompatibleTerms from zipline.pipeline.factors import CustomFactor from zipline.pipeline.filters import SingleAsset from zipline.pipeline.mixins import SingleInputMixin, StandardOutputs from zipline.pipeline.sentinels import NotSpecified from zipline.pipeline.term import AssetExists from zipline.utils.input_validation import ( expect_bounded, expect_dtypes, expect_types, ) from zipline.utils.math_utils import nanmean from zipline.utils.numpy_utils import ( float64_dtype, int64_dtype, ) from .basic import Returns ALLOWED_DTYPES = (float64_dtype, int64_dtype) class _RollingCorrelation(CustomFactor, SingleInputMixin): @expect_dtypes(base_factor=ALLOWED_DTYPES, target=ALLOWED_DTYPES) @expect_bounded(correlation_length=(2, None)) def __new__(cls, base_factor, target, correlation_length, mask=NotSpecified): if target.ndim == 2 and base_factor.mask is not target.mask: raise IncompatibleTerms(term_1=base_factor, term_2=target) return super(_RollingCorrelation, cls).__new__( cls, inputs=[base_factor, target], window_length=correlation_length, mask=mask, ) class RollingPearson(_RollingCorrelation): """ A Factor that computes pearson correlation coefficients between the columns of a given Factor and either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- base_factor : zipline.pipeline.factors.Factor The factor for which to compute correlations of each of its columns with `target`. target : zipline.pipeline.Term with a numeric dtype The term with which to compute correlations against each column of data produced by `base_factor`. This term may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `base_factor` should have their correlation with `target` computed each day. See Also -------- :func:`scipy.stats.pearsonr` :meth:`Factor.pearsonr` :class:`zipline.pipeline.factors.RollingPearsonOfReturns` Notes ----- Most users should call Factor.pearsonr rather than directly construct an instance of this class. """ window_safe = True def compute(self, today, assets, out, base_data, target_data): # If `target_data` is a Slice or single column of data, broadcast it # out to the same shape as `base_data`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. target_data = broadcast_arrays(target_data, base_data)[0] for i in range(len(out)): out[i] = pearsonr(base_data[:, i], target_data[:, i])[0] class RollingSpearman(_RollingCorrelation): """ A Factor that computes spearman rank correlation coefficients between the columns of a given Factor and either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- base_factor : zipline.pipeline.factors.Factor The factor for which to compute correlations of each of its columns with `target`. target : zipline.pipeline.Term with a numeric dtype The term with which to compute correlations against each column of data produced by `base_factor`. This term may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `base_factor` should have their correlation with `target` computed each day. See Also -------- :func:`scipy.stats.spearmanr` :meth:`Factor.spearmanr` :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` Notes ----- Most users should call Factor.spearmanr rather than directly construct an instance of this class. """ window_safe = True def compute(self, today, assets, out, base_data, target_data): # If `target_data` is a Slice or single column of data, broadcast it # out to the same shape as `base_data`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. target_data = broadcast_arrays(target_data, base_data)[0] for i in range(len(out)): out[i] = spearmanr(base_data[:, i], target_data[:, i])[0] class RollingLinearRegression(CustomFactor, SingleInputMixin): """ A Factor that performs an ordinary least-squares regression predicting the columns of a given Factor from either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- dependent : zipline.pipeline.factors.Factor The factor whose columns are the predicted/dependent variable of each regression with `independent`. independent : zipline.pipeline.slice.Slice or zipline.pipeline.Factor The factor/slice whose columns are the predictor/independent variable of each regression with `dependent`. If `independent` is a Factor, regressions are computed asset-wise. regression_length : int Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `dependent` should be regressed against `independent` each day. See Also -------- :func:`scipy.stats.linregress` :meth:`Factor.linear_regression` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` Notes ----- Most users should call Factor.linear_regression rather than directly construct an instance of this class. """ outputs = ['alpha', 'beta', 'r_value', 'p_value', 'stderr'] @expect_dtypes(dependent=ALLOWED_DTYPES, independent=ALLOWED_DTYPES) @expect_bounded(regression_length=(2, None)) def __new__(cls, dependent, independent, regression_length, mask=NotSpecified): if independent.ndim == 2 and dependent.mask is not independent.mask: raise IncompatibleTerms(term_1=dependent, term_2=independent) return super(RollingLinearRegression, cls).__new__( cls, inputs=[dependent, independent], window_length=regression_length, mask=mask, ) def compute(self, today, assets, out, dependent, independent): alpha = out.alpha beta = out.beta r_value = out.r_value p_value = out.p_value stderr = out.stderr def regress(y, x): regr_results = linregress(y=y, x=x) # `linregress` returns its results in the following order: # slope, intercept, r-value, p-value, stderr alpha[i] = regr_results[1] beta[i] = regr_results[0] r_value[i] = regr_results[2] p_value[i] = regr_results[3] stderr[i] = regr_results[4] # If `independent` is a Slice or single column of data, broadcast it # out to the same shape as `dependent`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. independent = broadcast_arrays(independent, dependent)[0] for i in range(len(out)): regress(y=dependent[:, i], x=independent[:, i]) class RollingPearsonOfReturns(RollingPearson): """ Calculates the Pearson product-moment correlation coefficient of the returns of the given asset with the returns of all other assets. Pearson correlation is what most people mean when they say "correlation coefficient" or "R-value". Parameters ---------- target : zipline.assets.Asset The asset to correlate with all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. correlation_length : int >= 1 Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target asset computed each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which correlations are computed. Examples -------- Let the following be example 10-day returns for three different assets:: SPY MSFT FB 2017-03-13 -.03 .03 .04 2017-03-14 -.02 -.03 .02 2017-03-15 -.01 .02 .01 2017-03-16 0 -.02 .01 2017-03-17 .01 .04 -.01 2017-03-20 .02 -.03 -.02 2017-03-21 .03 .01 -.02 2017-03-22 .04 -.02 -.02 Suppose we are interested in SPY's rolling returns correlation with each stock from 2017-03-17 to 2017-03-22, using a 5-day look back window (that is, we calculate each correlation coefficient over 5 days of data). We can achieve this by doing:: rolling_correlations = RollingPearsonOfReturns( target=sid(8554), returns_length=10, correlation_length=5, ) The result of computing ``rolling_correlations`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 1 .15 -.96 2017-03-20 1 .10 -.96 2017-03-21 1 -.16 -.94 2017-03-22 1 -.16 -.85 Note that the column for SPY is all 1's, as the correlation of any data series with itself is always 1. To understand how each of the other values were calculated, take for example the .15 in MSFT's column. This is the correlation coefficient between SPY's returns looking back from 2017-03-17 (-.03, -.02, -.01, 0, .01) and MSFT's returns (.03, -.03, .02, -.02, .04). See Also -------- :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ def __new__(cls, target, returns_length, correlation_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingPearsonOfReturns, cls).__new__( cls, base_factor=returns, target=returns[target], correlation_length=correlation_length, mask=mask, ) class RollingSpearmanOfReturns(RollingSpearman): """ Calculates the Spearman rank correlation coefficient of the returns of the given asset with the returns of all other assets. Parameters ---------- target : zipline.assets.Asset The asset to correlate with all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. correlation_length : int >= 1 Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target asset computed each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which correlations are computed. See Also -------- :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ def __new__(cls, target, returns_length, correlation_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingSpearmanOfReturns, cls).__new__( cls, base_factor=returns, target=returns[target], correlation_length=correlation_length, mask=mask, ) class RollingLinearRegressionOfReturns(RollingLinearRegression): """ Perform an ordinary least-squares regression predicting the returns of all other assets on the given asset. Parameters ---------- target : zipline.assets.Asset The asset to regress against all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. regression_length : int >= 1 Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets should be regressed against the target asset each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which regressions are computed. This factor is designed to return five outputs: - alpha, a factor that computes the intercepts of each regression. - beta, a factor that computes the slopes of each regression. - r_value, a factor that computes the correlation coefficient of each regression. - p_value, a factor that computes, for each regression, the two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. - stderr, a factor that computes the standard error of the estimate of each regression. For more help on factors with multiple outputs, see :class:`zipline.pipeline.factors.CustomFactor`. Examples -------- Let the following be example 10-day returns for three different assets:: SPY MSFT FB 2017-03-13 -.03 .03 .04 2017-03-14 -.02 -.03 .02 2017-03-15 -.01 .02 .01 2017-03-16 0 -.02 .01 2017-03-17 .01 .04 -.01 2017-03-20 .02 -.03 -.02 2017-03-21 .03 .01 -.02 2017-03-22 .04 -.02 -.02 Suppose we are interested in predicting each stock's returns from SPY's over rolling 5-day look back windows. We can compute rolling regression coefficients (alpha and beta) from 2017-03-17 to 2017-03-22 by doing:: regression_factor = RollingRegressionOfReturns( target=sid(8554), returns_length=10, regression_length=5, ) alpha = regression_factor.alpha beta = regression_factor.beta The result of computing ``alpha`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 0 .011 .003 2017-03-20 0 -.004 .004 2017-03-21 0 .007 .006 2017-03-22 0 .002 .008 And the result of computing ``beta`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 1 .3 -1.1 2017-03-20 1 .2 -1 2017-03-21 1 -.3 -1 2017-03-22 1 -.3 -.9 Note that SPY's column for alpha is all 0's and for beta is all 1's, as the regression line of SPY with itself is simply the function y = x. To understand how each of the other values were calculated, take for example MSFT's ``alpha`` and ``beta`` values on 2017-03-17 (.011 and .3, respectively). These values are the result of running a linear regression predicting MSFT's returns from SPY's returns, using values starting at 2017-03-17 and looking back 5 days. That is, the regression was run with x = [-.03, -.02, -.01, 0, .01] and y = [.03, -.03, .02, -.02, .04], and it produced a slope of .3 and an intercept of .011. See Also -------- :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` """ window_safe = True def __new__(cls, target, returns_length, regression_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingLinearRegressionOfReturns, cls).__new__( cls, dependent=returns, independent=returns[target], regression_length=regression_length, mask=mask, ) class SimpleBeta(CustomFactor, StandardOutputs): """ Factor producing the slope of a regression line between each asset's daily returns to the daily returns of a single "target" asset. Parameters ---------- target : zipline.Asset Asset against which other assets should be regressed. regression_length : int Number of days of daily returns to use for the regression. allowed_missing_percentage : float, optional Percentage of returns observations (between 0 and 1) that are allowed to be missing when calculating betas. Assets with more than this percentage of returns observations missing will produce values of NaN. Default behavior is that 25% of inputs can be missing. """ window_safe = True dtype = float64_dtype params = ('allowed_missing_count',) @expect_types( target=Asset, regression_length=int, allowed_missing_percentage=(int, float), __funcname='SimpleBeta', ) @expect_bounded( regression_length=(3, None), allowed_missing_percentage=(0.0, 1.0), __funcname='SimpleBeta', ) def __new__(cls, target, regression_length, allowed_missing_percentage=0.25): daily_returns = Returns( window_length=2, mask=(AssetExists() | SingleAsset(asset=target)), ) allowed_missing_count = int( allowed_missing_percentage * regression_length ) return super(SimpleBeta, cls).__new__( cls, inputs=[daily_returns, daily_returns[target]], window_length=regression_length, allowed_missing_count=allowed_missing_count, ) def compute(self, today, assets, out, all_returns, target_returns, allowed_missing_count): vectorized_beta( dependents=all_returns, independent=target_returns, allowed_missing=allowed_missing_count, out=out, ) def graph_repr(self): return "{}({!r}, {}, {})".format( type(self).__name__, str(self.target.symbol), # coerce from unicode to str in py2. self.window_length, self.params['allowed_missing_count'], ) @property def target(self): """Get the target of the beta calculation. """ return self.inputs[1].asset def __repr__(self): return "{}({}, length={}, allowed_missing={})".format( type(self).__name__, self.target, self.window_length, self.params['allowed_missing_count'], ) def vectorized_beta(dependents, independent, allowed_missing, out=None): """ Compute slopes of linear regressions between columns of ``dependents`` and ``independent``. Parameters ---------- dependents : np.array[N, M] Array with columns of data to be regressed against ``independent``. independent : np.array[N, 1] Independent variable of the regression allowed_missing : int Number of allowed missing (NaN) observations per column. Columns with more than this many non-nan observations in both ``dependents`` and ``independents`` will output NaN as the regression coefficient. Returns ------- slopes : np.array[M] Linear regression coefficients for each column of ``dependents``. """ # Cache these as locals since we're going to call them multiple times. nan = np.nan isnan = np.isnan N, M = dependents.shape if out is None: out = np.full(M, nan) # Copy N times as a column vector and fill with nans to have the same # missing value pattern as the dependent variable. # # PERF_TODO: We could probably avoid the space blowup by doing this in # Cython. # shape: (N, M) independent = np.where( isnan(dependents), nan, independent, ) # Calculate beta as Cov(X, Y) / Cov(X, X). # https://en.wikipedia.org/wiki/Simple_linear_regression#Fitting_the_regression_line # noqa # # NOTE: The usual formula for covariance is:: # # mean((X - mean(X)) * (Y - mean(Y))) # # However, we don't actually need to take the mean of both sides of the # product, because of the folllowing equivalence:: # # Let X_res = (X - mean(X)). # We have: # # mean(X_res * (Y - mean(Y))) = mean(X_res * (Y - mean(Y))) # (1) = mean((X_res * Y) - (X_res * mean(Y))) # (2) = mean(X_res * Y) - mean(X_res * mean(Y)) # (3) = mean(X_res * Y) - mean(X_res) * mean(Y) # (4) = mean(X_res * Y) - 0 * mean(Y) # (5) = mean(X_res * Y) # # # The tricky step in the above derivation is step (4). We know that # mean(X_res) is zero because, for any X: # # mean(X - mean(X)) = mean(X) - mean(X) = 0. # # The upshot of this is that we only have to center one of `independent` # and `dependent` when calculating covariances. Since we need the centered # `independent` to calculate its variance in the next step, we choose to # center `independent`. # shape: (N, M) ind_residual = independent - nanmean(independent, axis=0) # shape: (M,) covariances = nanmean(ind_residual * dependents, axis=0) # We end up with different variances in each column here because each # column may have a different subset of the data dropped due to missing # data in the corresponding dependent column. # shape: (M,) independent_variances = nanmean(ind_residual ** 2, axis=0) # shape: (M,) np.divide(covariances, independent_variances, out=out) # Write nans back to locations where we have more then allowed number of # missing entries. nanlocs = isnan(independent).sum(axis=0) > allowed_missing out[nanlocs] = nan return out
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/factors/statistical.py
statistical.py
from operator import attrgetter from numbers import Number from math import ceil from numpy import empty_like, inf, isnan, nan, where from scipy.stats import rankdata from zipline.utils.compat import wraps from zipline.errors import ( BadPercentileBounds, UnknownRankMethod, UnsupportedDataType, ) from zipline.lib.normalize import naive_grouped_rowwise_apply from zipline.lib.rank import masked_rankdata_2d, rankdata_1d_descending from zipline.pipeline.api_utils import restrict_to_dtype from zipline.pipeline.classifiers import Classifier, Everything, Quantiles from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.expression import ( BadBinaryOperator, COMPARISONS, is_comparison, MATH_BINOPS, method_name_for_op, NumericalExpression, NUMEXPR_MATH_FUNCS, UNARY_OPS, unary_op_name, ) from zipline.pipeline.filters import ( Filter, NumExprFilter, PercentileFilter, MaximumFilter, NotNullFilter, NullFilter, ) from zipline.pipeline.mixins import ( AliasedMixin, CustomTermMixin, DownsampledMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, ) from zipline.pipeline.sentinels import NotSpecified, NotSpecifiedType from zipline.pipeline.term import ComputableTerm, Term from zipline.utils.functional import with_doc, with_name from zipline.utils.input_validation import expect_types from zipline.utils.math_utils import nanmean, nanstd from zipline.utils.memoize import classlazyval from zipline.utils.numpy_utils import ( bool_dtype, coerce_to_dtype, float64_dtype, ) _RANK_METHODS = frozenset(['average', 'min', 'max', 'dense', 'ordinal']) def coerce_numbers_to_my_dtype(f): """ A decorator for methods whose signature is f(self, other) that coerces ``other`` to ``self.dtype``. This is used to make comparison operations between numbers and `Factor` instances work independently of whether the user supplies a float or integer literal. For example, if I write:: my_filter = my_factor > 3 my_factor probably has dtype float64, but 3 is an int, so we want to coerce to float64 before doing the comparison. """ @wraps(f) def method(self, other): if isinstance(other, Number): other = coerce_to_dtype(self.dtype, other) return f(self, other) return method def binop_return_type(op): if is_comparison(op): return NumExprFilter else: return NumExprFactor def binop_return_dtype(op, left, right): """ Compute the expected return dtype for the given binary operator. Parameters ---------- op : str Operator symbol, (e.g. '+', '-', ...). left : numpy.dtype Dtype of left hand side. right : numpy.dtype Dtype of right hand side. Returns ------- outdtype : numpy.dtype The dtype of the result of `left <op> right`. """ if is_comparison(op): if left != right: raise TypeError( "Don't know how to compute {left} {op} {right}.\n" "Comparisons are only supported between Factors of equal " "dtypes.".format(left=left, op=op, right=right) ) return bool_dtype elif left != float64_dtype or right != float64_dtype: raise TypeError( "Don't know how to compute {left} {op} {right}.\n" "Arithmetic operators are only supported between Factors of " "dtype 'float64'.".format( left=left.name, op=op, right=right.name, ) ) return float64_dtype def binary_operator(op): """ Factory function for making binary operator methods on a Factor subclass. Returns a function, "binary_operator" suitable for implementing functions like __add__. """ # When combining a Factor with a NumericalExpression, we use this # attrgetter instance to defer to the commuted implementation of the # NumericalExpression operator. commuted_method_getter = attrgetter(method_name_for_op(op, commute=True)) @with_doc("Binary Operator: '%s'" % op) @with_name(method_name_for_op(op)) @coerce_numbers_to_my_dtype def binary_operator(self, other): # This can't be hoisted up a scope because the types returned by # binop_return_type aren't defined when the top-level function is # invoked in the class body of Factor. return_type = binop_return_type(op) if isinstance(self, NumExprFactor): self_expr, other_expr, new_inputs = self.build_binary_op( op, other, ) return return_type( "({left}) {op} ({right})".format( left=self_expr, op=op, right=other_expr, ), new_inputs, dtype=binop_return_dtype(op, self.dtype, other.dtype), ) elif isinstance(other, NumExprFactor): # NumericalExpression overrides ops to correctly handle merging of # inputs. Look up and call the appropriate reflected operator with # ourself as the input. return commuted_method_getter(other)(self) elif isinstance(other, Term): if self is other: return return_type( "x_0 {op} x_0".format(op=op), (self,), dtype=binop_return_dtype(op, self.dtype, other.dtype), ) return return_type( "x_0 {op} x_1".format(op=op), (self, other), dtype=binop_return_dtype(op, self.dtype, other.dtype), ) elif isinstance(other, Number): return return_type( "x_0 {op} ({constant})".format(op=op, constant=other), binds=(self,), # .dtype access is safe here because coerce_numbers_to_my_dtype # will convert any input numbers to numpy equivalents. dtype=binop_return_dtype(op, self.dtype, other.dtype) ) raise BadBinaryOperator(op, self, other) return binary_operator def reflected_binary_operator(op): """ Factory function for making binary operator methods on a Factor. Returns a function, "reflected_binary_operator" suitable for implementing functions like __radd__. """ assert not is_comparison(op) @with_name(method_name_for_op(op, commute=True)) @coerce_numbers_to_my_dtype def reflected_binary_operator(self, other): if isinstance(self, NumericalExpression): self_expr, other_expr, new_inputs = self.build_binary_op( op, other ) return NumExprFactor( "({left}) {op} ({right})".format( left=other_expr, right=self_expr, op=op, ), new_inputs, dtype=binop_return_dtype(op, other.dtype, self.dtype) ) # Only have to handle the numeric case because in all other valid cases # the corresponding left-binding method will be called. elif isinstance(other, Number): return NumExprFactor( "{constant} {op} x_0".format(op=op, constant=other), binds=(self,), dtype=binop_return_dtype(op, other.dtype, self.dtype), ) raise BadBinaryOperator(op, other, self) return reflected_binary_operator def unary_operator(op): """ Factory function for making unary operator methods for Factors. """ # Only negate is currently supported. valid_ops = {'-'} if op not in valid_ops: raise ValueError("Invalid unary operator %s." % op) @with_doc("Unary Operator: '%s'" % op) @with_name(unary_op_name(op)) def unary_operator(self): if self.dtype != float64_dtype: raise TypeError( "Can't apply unary operator {op!r} to instance of " "{typename!r} with dtype {dtypename!r}.\n" "{op!r} is only supported for Factors of dtype " "'float64'.".format( op=op, typename=type(self).__name__, dtypename=self.dtype.name, ) ) # This can't be hoisted up a scope because the types returned by # unary_op_return_type aren't defined when the top-level function is # invoked. if isinstance(self, NumericalExpression): return NumExprFactor( "{op}({expr})".format(op=op, expr=self._expr), self.inputs, dtype=float64_dtype, ) else: return NumExprFactor( "{op}x_0".format(op=op), (self,), dtype=float64_dtype, ) return unary_operator def function_application(func): """ Factory function for producing function application methods for Factor subclasses. """ if func not in NUMEXPR_MATH_FUNCS: raise ValueError("Unsupported mathematical function '%s'" % func) @with_doc(func) @with_name(func) def mathfunc(self): if isinstance(self, NumericalExpression): return NumExprFactor( "{func}({expr})".format(func=func, expr=self._expr), self.inputs, dtype=float64_dtype, ) else: return NumExprFactor( "{func}(x_0)".format(func=func), (self,), dtype=float64_dtype, ) return mathfunc # Decorators for Factor methods. if_not_float64_tell_caller_to_use_isnull = restrict_to_dtype( dtype=float64_dtype, message_template=( "{method_name}() was called on a factor of dtype {received_dtype}.\n" "{method_name}() is only defined for dtype {expected_dtype}." "To filter missing data, use isnull() or notnull()." ) ) float64_only = restrict_to_dtype( dtype=float64_dtype, message_template=( "{method_name}() is only defined on Factors of dtype {expected_dtype}," " but it was called on a Factor of dtype {received_dtype}." ) ) class Factor(RestrictedDTypeMixin, ComputableTerm): """ Pipeline API expression producing a numerical or date-valued output. Factors are the most commonly-used Pipeline term, representing the result of any computation producing a numerical result. Factors can be combined, both with other Factors and with scalar values, via any of the builtin mathematical operators (``+``, ``-``, ``*``, etc). This makes it easy to write complex expressions that combine multiple Factors. For example, constructing a Factor that computes the average of two other Factors is simply:: >>> f1 = SomeFactor(...) # doctest: +SKIP >>> f2 = SomeOtherFactor(...) # doctest: +SKIP >>> average = (f1 + f2) / 2.0 # doctest: +SKIP Factors can also be converted into :class:`zipline.pipeline.Filter` objects via comparison operators: (``<``, ``<=``, ``!=``, ``eq``, ``>``, ``>=``). There are many natural operators defined on Factors besides the basic numerical operators. These include methods identifying missing or extreme-valued outputs (isnull, notnull, isnan, notnan), methods for normalizing outputs (rank, demean, zscore), and methods for constructing Filters based on rank-order properties of results (top, bottom, percentile_between). """ ALLOWED_DTYPES = FACTOR_DTYPES # Used by RestrictedDTypeMixin # Dynamically add functions for creating NumExprFactor/NumExprFilter # instances. clsdict = locals() clsdict.update( { method_name_for_op(op): binary_operator(op) # Don't override __eq__ because it breaks comparisons on tuples of # Factors. for op in MATH_BINOPS.union(COMPARISONS - {'=='}) } ) clsdict.update( { method_name_for_op(op, commute=True): reflected_binary_operator(op) for op in MATH_BINOPS } ) clsdict.update( { unary_op_name(op): unary_operator(op) for op in UNARY_OPS } ) clsdict.update( { funcname: function_application(funcname) for funcname in NUMEXPR_MATH_FUNCS } ) __truediv__ = clsdict['__div__'] __rtruediv__ = clsdict['__rdiv__'] del clsdict # don't pollute the class namespace with this. eq = binary_operator('==') @expect_types( mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def demean(self, mask=NotSpecified, groupby=NotSpecified): """ Construct a Factor that computes ``self`` and subtracts the mean from row of the result. If ``mask`` is supplied, ignore values where ``mask`` returns False when computing row means, and output NaN anywhere the mask is False. If ``groupby`` is supplied, compute by partitioning each row based on the values produced by ``groupby``, de-meaning the partitioned arrays, and stitching the sub-results back together. Parameters ---------- mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when computing means. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to compute means. Examples -------- Let ``f`` be a Factor which would produce the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 2.0 3.0 4.0 2017-03-14 1.5 2.5 3.5 1.0 2017-03-15 2.0 3.0 4.0 1.5 2017-03-16 2.5 3.5 1.0 2.0 Let ``c`` be a Classifier producing the following output:: AAPL MSFT MCD BK 2017-03-13 1 1 2 2 2017-03-14 1 1 2 2 2017-03-15 1 1 2 2 2017-03-16 1 1 2 2 Let ``m`` be a Filter producing the following output:: AAPL MSFT MCD BK 2017-03-13 False True True True 2017-03-14 True False True True 2017-03-15 True True False True 2017-03-16 True True True False Then ``f.demean()`` will subtract the mean from each row produced by ``f``. :: AAPL MSFT MCD BK 2017-03-13 -1.500 -0.500 0.500 1.500 2017-03-14 -0.625 0.375 1.375 -1.125 2017-03-15 -0.625 0.375 1.375 -1.125 2017-03-16 0.250 1.250 -1.250 -0.250 ``f.demean(mask=m)`` will subtract the mean from each row, but means will be calculated ignoring values on the diagonal, and NaNs will written to the diagonal in the output. Diagonal values are ignored because they are the locations where the mask ``m`` produced False. :: AAPL MSFT MCD BK 2017-03-13 NaN -1.000 0.000 1.000 2017-03-14 -0.500 NaN 1.500 -1.000 2017-03-15 -0.166 0.833 NaN -0.666 2017-03-16 0.166 1.166 -1.333 NaN ``f.demean(groupby=c)`` will subtract the group-mean of AAPL/MSFT and MCD/BK from their respective entries. The AAPL/MSFT are grouped together because both assets always produce 1 in the output of the classifier ``c``. Similarly, MCD/BK are grouped together because they always produce 2. :: AAPL MSFT MCD BK 2017-03-13 -0.500 0.500 -0.500 0.500 2017-03-14 -0.500 0.500 1.250 -1.250 2017-03-15 -0.500 0.500 1.250 -1.250 2017-03-16 -0.500 0.500 -0.500 0.500 ``f.demean(mask=m, groupby=c)`` will also subtract the group-mean of AAPL/MSFT and MCD/BK, but means will be calculated ignoring values on the diagonal , and NaNs will be written to the diagonal in the output. :: AAPL MSFT MCD BK 2017-03-13 NaN 0.000 -0.500 0.500 2017-03-14 0.000 NaN 1.250 -1.250 2017-03-15 -0.500 0.500 NaN 0.000 2017-03-16 -0.500 0.500 0.000 NaN Notes ----- Mean is sensitive to the magnitudes of outliers. When working with factor that can potentially produce large outliers, it is often useful to use the ``mask`` parameter to discard values at the extremes of the distribution:: >>> base = MyFactor(...) # doctest: +SKIP >>> normalized = base.demean( ... mask=base.percentile_between(1, 99), ... ) # doctest: +SKIP ``demean()`` is only supported on Factors of dtype float64. See Also -------- :meth:`pandas.DataFrame.groupby` """ return GroupedRowTransform( transform=demean, transform_args=(), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, window_safe=self.window_safe, mask=mask, ) @expect_types( mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def zscore(self, mask=NotSpecified, groupby=NotSpecified): """ Construct a Factor that Z-Scores each day's results. The Z-Score of a row is defined as:: (row - row.mean()) / row.stddev() If ``mask`` is supplied, ignore values where ``mask`` returns False when computing row means and standard deviations, and output NaN anywhere the mask is False. If ``groupby`` is supplied, compute by partitioning each row based on the values produced by ``groupby``, z-scoring the partitioned arrays, and stitching the sub-results back together. Parameters ---------- mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when Z-Scoring. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to compute Z-Scores. Returns ------- zscored : zipline.pipeline.Factor A Factor producing that z-scores the output of self. Notes ----- Mean and standard deviation are sensitive to the magnitudes of outliers. When working with factor that can potentially produce large outliers, it is often useful to use the ``mask`` parameter to discard values at the extremes of the distribution:: >>> base = MyFactor(...) # doctest: +SKIP >>> normalized = base.zscore( ... mask=base.percentile_between(1, 99), ... ) # doctest: +SKIP ``zscore()`` is only supported on Factors of dtype float64. Examples -------- See :meth:`~zipline.pipeline.factors.Factor.demean` for an in-depth example of the semantics for ``mask`` and ``groupby``. See Also -------- :meth:`pandas.DataFrame.groupby` """ return GroupedRowTransform( transform=zscore, transform_args=(), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, mask=mask, window_safe=True, ) def rank(self, method='ordinal', ascending=True, mask=NotSpecified, groupby=NotSpecified): """ Construct a new Factor representing the sorted rank of each column within each row. Parameters ---------- method : str, {'ordinal', 'min', 'max', 'dense', 'average'} The method used to assign ranks to tied elements. See `scipy.stats.rankdata` for a full description of the semantics for each ranking method. Default is 'ordinal'. ascending : bool, optional Whether to return sorted rank in ascending or descending order. Default is True. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, ranks are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- ranks : zipline.pipeline.factors.Rank A new factor that will compute the ranking of the data produced by `self`. Notes ----- The default value for `method` is different from the default for `scipy.stats.rankdata`. See that function's documentation for a full description of the valid inputs to `method`. Missing or non-existent data on a given day will cause an asset to be given a rank of NaN for that day. See Also -------- :func:`scipy.stats.rankdata` :class:`zipline.pipeline.factors.factor.Rank` """ if groupby is NotSpecified: return Rank(self, method=method, ascending=ascending, mask=mask) return GroupedRowTransform( transform=rankdata if ascending else rankdata_1d_descending, transform_args=(method,), factor=self, groupby=groupby, dtype=float64_dtype, missing_value=nan, mask=mask, window_safe=True, ) @expect_types( target=Term, correlation_length=int, mask=(Filter, NotSpecifiedType), ) def pearsonr(self, target, correlation_length, mask=NotSpecified): """ Construct a new Factor that computes rolling pearson correlation coefficients between `target` and the columns of `self`. This method can only be called on factors which are deemed safe for use as inputs to other factors. This includes `Returns` and any factors created from `Factor.rank` or `Factor.zscore`. Parameters ---------- target : zipline.pipeline.Term with a numeric dtype The term used to compute correlations against each column of data produced by `self`. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target slice computed each day. Returns ------- correlations : zipline.pipeline.factors.RollingPearson A new Factor that will compute correlations between `target` and the columns of `self`. Examples -------- Suppose we want to create a factor that computes the correlation between AAPL's 10-day returns and the 10-day returns of all other assets, computing each correlation over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_correlations = returns.pearsonr( target=returns_slice, correlation_length=30, ) This is equivalent to doing:: aapl_correlations = RollingPearsonOfReturns( target=sid(24), returns_length=10, correlation_length=30, ) See Also -------- :func:`scipy.stats.pearsonr` :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :meth:`Factor.spearmanr` """ from .statistical import RollingPearson return RollingPearson( base_factor=self, target=target, correlation_length=correlation_length, mask=mask, ) @expect_types( target=Term, correlation_length=int, mask=(Filter, NotSpecifiedType), ) def spearmanr(self, target, correlation_length, mask=NotSpecified): """ Construct a new Factor that computes rolling spearman rank correlation coefficients between `target` and the columns of `self`. This method can only be called on factors which are deemed safe for use as inputs to other factors. This includes `Returns` and any factors created from `Factor.rank` or `Factor.zscore`. Parameters ---------- target : zipline.pipeline.Term with a numeric dtype The term used to compute correlations against each column of data produced by `self`. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target slice computed each day. Returns ------- correlations : zipline.pipeline.factors.RollingSpearman A new Factor that will compute correlations between `target` and the columns of `self`. Examples -------- Suppose we want to create a factor that computes the correlation between AAPL's 10-day returns and the 10-day returns of all other assets, computing each correlation over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_correlations = returns.spearmanr( target=returns_slice, correlation_length=30, ) This is equivalent to doing:: aapl_correlations = RollingSpearmanOfReturns( target=sid(24), returns_length=10, correlation_length=30, ) See Also -------- :func:`scipy.stats.spearmanr` :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` :meth:`Factor.pearsonr` """ from .statistical import RollingSpearman return RollingSpearman( base_factor=self, target=target, correlation_length=correlation_length, mask=mask, ) @expect_types( target=Term, regression_length=int, mask=(Filter, NotSpecifiedType), ) def linear_regression(self, target, regression_length, mask=NotSpecified): """ Construct a new Factor that performs an ordinary least-squares regression predicting the columns of `self` from `target`. This method can only be called on factors which are deemed safe for use as inputs to other factors. This includes `Returns` and any factors created from `Factor.rank` or `Factor.zscore`. Parameters ---------- target : zipline.pipeline.Term with a numeric dtype The term to use as the predictor/independent variable in each regression. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, regressions are computed asset-wise. regression_length : int Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets should be regressed with the target slice each day. Returns ------- regressions : zipline.pipeline.factors.RollingLinearRegression A new Factor that will compute linear regressions of `target` against the columns of `self`. Examples -------- Suppose we want to create a factor that regresses AAPL's 10-day returns against the 10-day returns of all other assets, computing each regression over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_regressions = returns.linear_regression( target=returns_slice, regression_length=30, ) This is equivalent to doing:: aapl_regressions = RollingLinearRegressionOfReturns( target=sid(24), returns_length=10, regression_length=30, ) See Also -------- :func:`scipy.stats.linregress` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ from .statistical import RollingLinearRegression return RollingLinearRegression( dependent=self, independent=target, regression_length=regression_length, mask=mask, ) @expect_types( min_percentile=(int, float), max_percentile=(int, float), mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def winsorize(self, min_percentile, max_percentile, mask=NotSpecified, groupby=NotSpecified): """ Construct a new factor that winsorizes the result of this factor. Winsorizing changes values ranked less than the minimum percentile to the value at the minimum percentile. Similarly, values ranking above the maximum percentile are changed to the value at the maximum percentile. Winsorizing is useful for limiting the impact of extreme data points without completely removing those points. If ``mask`` is supplied, ignore values where ``mask`` returns False when computing percentile cutoffs, and output NaN anywhere the mask is False. If ``groupby`` is supplied, winsorization is applied separately separately to each group defined by ``groupby``. Parameters ---------- min_percentile: float, int Entries with values at or below this percentile will be replaced with the (len(input) * min_percentile)th lowest value. If low values should not be clipped, use 0. max_percentile: float, int Entries with values at or above this percentile will be replaced with the (len(input) * max_percentile)th lowest value. If high values should not be clipped, use 1. mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when winsorizing. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to winsorize. Returns ------- winsorized : zipline.pipeline.Factor A Factor producing a winsorized version of self. Examples -------- .. code-block:: python price = USEquityPricing.close.latest columns={ 'PRICE': price, 'WINSOR_1: price.winsorize( min_percentile=0.25, max_percentile=0.75 ), 'WINSOR_2': price.winsorize( min_percentile=0.50, max_percentile=1.0 ), 'WINSOR_3': price.winsorize( min_percentile=0.0, max_percentile=0.5 ), } Given a pipeline with columns, defined above, the result for a given day could look like: :: 'PRICE' 'WINSOR_1' 'WINSOR_2' 'WINSOR_3' Asset_1 1 2 4 3 Asset_2 2 2 4 3 Asset_3 3 3 4 3 Asset_4 4 4 4 4 Asset_5 5 5 5 4 Asset_6 6 5 5 4 See Also -------- :func:`scipy.stats.mstats.winsorize` :meth:`pandas.DataFrame.groupby` """ if not 0.0 <= min_percentile < max_percentile <= 1.0: raise BadPercentileBounds( min_percentile=min_percentile, max_percentile=max_percentile, upper_bound=1.0, ) return GroupedRowTransform( transform=winsorize, transform_args=(min_percentile, max_percentile), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, mask=mask, window_safe=self.window_safe, ) @expect_types(bins=int, mask=(Filter, NotSpecifiedType)) def quantiles(self, bins, mask=NotSpecified): """ Construct a Classifier computing quantiles of the output of ``self``. Every non-NaN data point the output is labelled with an integer value from 0 to (bins - 1). NaNs are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- bins : int Number of bins labels to compute. mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quantiles. Returns ------- quantiles : zipline.pipeline.classifiers.Quantiles A Classifier producing integer labels ranging from 0 to (bins - 1). """ if mask is NotSpecified: mask = self.mask return Quantiles(inputs=(self,), bins=bins, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def quartiles(self, mask=NotSpecified): """ Construct a Classifier computing quartiles over the output of ``self``. Every non-NaN data point the output is labelled with a value of either 0, 1, 2, or 3, corresponding to the first, second, third, or fourth quartile over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quartiles. Returns ------- quartiles : zipline.pipeline.classifiers.Quantiles A Classifier producing integer labels ranging from 0 to 3. """ return self.quantiles(bins=4, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def quintiles(self, mask=NotSpecified): """ Construct a Classifier computing quintile labels on ``self``. Every non-NaN data point the output is labelled with a value of either 0, 1, 2, or 3, 4, corresonding to quintiles over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quintiles. Returns ------- quintiles : zipline.pipeline.classifiers.Quantiles A Classifier producing integer labels ranging from 0 to 4. """ return self.quantiles(bins=5, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def deciles(self, mask=NotSpecified): """ Construct a Classifier computing decile labels on ``self``. Every non-NaN data point the output is labelled with a value from 0 to 9 corresonding to deciles over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing deciles. Returns ------- deciles : zipline.pipeline.classifiers.Quantiles A Classifier producing integer labels ranging from 0 to 9. """ return self.quantiles(bins=10, mask=mask) def top(self, N, mask=NotSpecified, groupby=NotSpecified): """ Construct a Filter matching the top N asset values of self each day. If ``groupby`` is supplied, returns a Filter matching the top N asset values for each group. Parameters ---------- N : int Number of assets passing the returned filter each day. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, top values are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- filter : zipline.pipeline.filters.Filter """ if N == 1: # Special case: if N == 1, we can avoid doing a full sort on every # group, which is a big win. return self._maximum(mask=mask, groupby=groupby) return self.rank(ascending=False, mask=mask, groupby=groupby) <= N def bottom(self, N, mask=NotSpecified, groupby=NotSpecified): """ Construct a Filter matching the bottom N asset values of self each day. If ``groupby`` is supplied, returns a Filter matching the bottom N asset values for each group. Parameters ---------- N : int Number of assets passing the returned filter each day. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, bottom values are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- filter : zipline.pipeline.Filter """ return self.rank(ascending=True, mask=mask, groupby=groupby) <= N def _maximum(self, mask=NotSpecified, groupby=NotSpecified): return MaximumFilter(self, groupby=groupby, mask=mask) def percentile_between(self, min_percentile, max_percentile, mask=NotSpecified): """ Construct a new Filter representing entries from the output of this Factor that fall within the percentile range defined by min_percentile and max_percentile. Parameters ---------- min_percentile : float [0.0, 100.0] Return True for assets falling above this percentile in the data. max_percentile : float [0.0, 100.0] Return True for assets falling below this percentile in the data. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when percentile calculating thresholds. If mask is supplied, percentile cutoffs are computed each day using only assets for which ``mask`` returns True. Assets for which ``mask`` produces False will produce False in the output of this Factor as well. Returns ------- out : zipline.pipeline.filters.PercentileFilter A new filter that will compute the specified percentile-range mask. See Also -------- zipline.pipeline.filters.filter.PercentileFilter """ return PercentileFilter( self, min_percentile=min_percentile, max_percentile=max_percentile, mask=mask, ) def isnull(self): """ A Filter producing True for values where this Factor has missing data. Equivalent to self.isnan() when ``self.dtype`` is float64. Otherwise equivalent to ``self.eq(self.missing_value)``. Returns ------- filter : zipline.pipeline.filters.Filter """ if self.dtype == float64_dtype: # Using isnan is more efficient when possible because we can fold # the isnan computation with other NumExpr expressions. return self.isnan() else: return NullFilter(self) def notnull(self): """ A Filter producing True for values where this Factor has complete data. Equivalent to ``~self.isnan()` when ``self.dtype`` is float64. Otherwise equivalent to ``(self != self.missing_value)``. """ return NotNullFilter(self) @if_not_float64_tell_caller_to_use_isnull def isnan(self): """ A Filter producing True for all values where this Factor is NaN. Returns ------- nanfilter : zipline.pipeline.filters.Filter """ return self != self @if_not_float64_tell_caller_to_use_isnull def notnan(self): """ A Filter producing True for values where this Factor is not NaN. Returns ------- nanfilter : zipline.pipeline.filters.Filter """ return ~self.isnan() @if_not_float64_tell_caller_to_use_isnull def isfinite(self): """ A Filter producing True for values where this Factor is anything but NaN, inf, or -inf. """ return (-inf < self) & (self < inf) @classlazyval def _downsampled_type(self): return DownsampledMixin.make_downsampled_type(Factor) @classlazyval def _aliased_type(self): return AliasedMixin.make_aliased_type(Factor) class NumExprFactor(NumericalExpression, Factor): """ Factor computed from a numexpr expression. Parameters ---------- expr : string A string suitable for passing to numexpr. All variables in 'expr' should be of the form "x_i", where i is the index of the corresponding factor input in 'binds'. binds : tuple A tuple of factors to use as inputs. Notes ----- NumExprFactors are constructed by numerical operators like `+` and `-`. Users should rarely need to construct a NumExprFactor directly. """ pass class GroupedRowTransform(Factor): """ A Factor that transforms an input factor by applying a row-wise shape-preserving transformation on classifier-defined groups of that Factor. This is most often useful for normalization operators like ``zscore`` or ``demean`` or for performing ranking using ``rank``. Parameters ---------- transform : function[ndarray[ndim=1] -> ndarray[ndim=1]] Function to apply over each row group. factor : zipline.pipeline.Factor The factor providing baseline data to transform. mask : zipline.pipeline.Filter Mask of entries to ignore when calculating transforms. groupby : zipline.pipeline.Classifier Classifier partitioning ``factor`` into groups to use when calculating means. transform_args : tuple[hashable] Additional positional arguments to forward to ``transform``. Notes ----- Users should rarely construct instances of this factor directly. Instead, they should construct instances via factor normalization methods like ``zscore`` and ``demean`` or using ``rank`` with ``groupby``. See Also -------- zipline.pipeline.factors.Factor.zscore zipline.pipeline.factors.Factor.demean zipline.pipeline.factors.Factor.rank """ window_length = 0 def __new__(cls, transform, transform_args, factor, groupby, dtype, missing_value, mask, **kwargs): if mask is NotSpecified: mask = factor.mask else: mask = mask & factor.mask if groupby is NotSpecified: groupby = Everything(mask=mask) return super(GroupedRowTransform, cls).__new__( GroupedRowTransform, transform=transform, transform_args=transform_args, inputs=(factor, groupby), missing_value=missing_value, mask=mask, dtype=dtype, **kwargs ) def _init(self, transform, transform_args, *args, **kwargs): self._transform = transform self._transform_args = transform_args return super(GroupedRowTransform, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, transform, transform_args, *args, **kwargs): return ( super(GroupedRowTransform, cls)._static_identity(*args, **kwargs), transform, transform_args, ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] group_labels, null_label = self.inputs[1]._to_integral(arrays[1]) # Make a copy with the null code written to masked locations. group_labels = where(mask, group_labels, null_label) return where( group_labels != null_label, naive_grouped_rowwise_apply( data=data, group_labels=group_labels, func=self._transform, func_args=self._transform_args, out=empty_like(data, dtype=self.dtype), ), self.missing_value, ) @property def transform_name(self): return self._transform.__name__ def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return type(self).__name__ + '(%r)' % self.transform_name class Rank(SingleInputMixin, Factor): """ A Factor representing the row-wise rank data of another Factor. Parameters ---------- factor : zipline.pipeline.factors.Factor The factor on which to compute ranks. method : str, {'average', 'min', 'max', 'dense', 'ordinal'} The method used to assign ranks to tied elements. See `scipy.stats.rankdata` for a full description of the semantics for each ranking method. See Also -------- :func:`scipy.stats.rankdata` :class:`Factor.rank` Notes ----- Most users should call Factor.rank rather than directly construct an instance of this class. """ window_length = 0 dtype = float64_dtype window_safe = True def __new__(cls, factor, method, ascending, mask): return super(Rank, cls).__new__( cls, inputs=(factor,), method=method, ascending=ascending, mask=mask, ) def _init(self, method, ascending, *args, **kwargs): self._method = method self._ascending = ascending return super(Rank, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, method, ascending, *args, **kwargs): return ( super(Rank, cls)._static_identity(*args, **kwargs), method, ascending, ) def _validate(self): """ Verify that the stored rank method is valid. """ if self._method not in _RANK_METHODS: raise UnknownRankMethod( method=self._method, choices=set(_RANK_METHODS), ) return super(Rank, self)._validate() def _compute(self, arrays, dates, assets, mask): """ For each row in the input, compute a like-shaped array of per-row ranks. """ return masked_rankdata_2d( arrays[0], mask, self.inputs[0].missing_value, self._method, self._ascending, ) def __repr__(self): return "{type}({input_}, method='{method}', mask={mask})".format( type=type(self).__name__, input_=self.inputs[0], method=self._method, mask=self.mask, ) def graph_repr(self): return "Rank:\l method: {!r}\l mask: {}\l".format( self._method, type(self.mask).__name__, ) class CustomFactor(PositiveWindowLengthMixin, CustomTermMixin, Factor): ''' Base class for user-defined Factors. Parameters ---------- inputs : iterable, optional An iterable of `BoundColumn` instances (e.g. USEquityPricing.close), describing the data to load and pass to `self.compute`. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `inputs`. outputs : iterable[str], optional An iterable of strings which represent the names of each output this factor should compute and return. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `outputs`. window_length : int, optional Number of rows to pass for each input. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `window_length`. mask : zipline.pipeline.Filter, optional A Filter describing the assets on which we should compute each day. Each call to ``CustomFactor.compute`` will only receive assets for which ``mask`` produced True on the day for which compute is being called. Notes ----- Users implementing their own Factors should subclass CustomFactor and implement a method named `compute` with the following signature: .. code-block:: python def compute(self, today, assets, out, *inputs): ... On each simulation date, ``compute`` will be called with the current date, an array of sids, an output array, and an input array for each expression passed as inputs to the CustomFactor constructor. The specific types of the values passed to `compute` are as follows:: today : np.datetime64[ns] Row label for the last row of all arrays passed as `inputs`. assets : np.array[int64, ndim=1] Column labels for `out` and`inputs`. out : np.array[self.dtype, ndim=1] Output array of the same shape as `assets`. `compute` should write its desired return values into `out`. If multiple outputs are specified, `compute` should write its desired return values into `out.<output_name>` for each output name in `self.outputs`. *inputs : tuple of np.array Raw data arrays corresponding to the values of `self.inputs`. ``compute`` functions should expect to be passed NaN values for dates on which no data was available for an asset. This may include dates on which an asset did not yet exist. For example, if a CustomFactor requires 10 rows of close price data, and asset A started trading on Monday June 2nd, 2014, then on Tuesday, June 3rd, 2014, the column of input data for asset A will have 9 leading NaNs for the preceding days on which data was not yet available. Examples -------- A CustomFactor with pre-declared defaults: .. code-block:: python class TenDayRange(CustomFactor): """ Computes the difference between the highest high in the last 10 days and the lowest low. Pre-declares high and low as default inputs and `window_length` as 10. """ inputs = [USEquityPricing.high, USEquityPricing.low] window_length = 10 def compute(self, today, assets, out, highs, lows): from numpy import nanmin, nanmax highest_highs = nanmax(highs, axis=0) lowest_lows = nanmin(lows, axis=0) out[:] = highest_highs - lowest_lows # Doesn't require passing inputs or window_length because they're # pre-declared as defaults for the TenDayRange class. ten_day_range = TenDayRange() A CustomFactor without defaults: .. code-block:: python class MedianValue(CustomFactor): """ Computes the median value of an arbitrary single input over an arbitrary window.. Does not declare any defaults, so values for `window_length` and `inputs` must be passed explicitly on every construction. """ def compute(self, today, assets, out, data): from numpy import nanmedian out[:] = data.nanmedian(data, axis=0) # Values for `inputs` and `window_length` must be passed explicitly to # MedianValue. median_close10 = MedianValue([USEquityPricing.close], window_length=10) median_low15 = MedianValue([USEquityPricing.low], window_length=15) A CustomFactor with multiple outputs: .. code-block:: python class MultipleOutputs(CustomFactor): inputs = [USEquityPricing.close] outputs = ['alpha', 'beta'] window_length = N def compute(self, today, assets, out, close): computed_alpha, computed_beta = some_function(close) out.alpha[:] = computed_alpha out.beta[:] = computed_beta # Each output is returned as its own Factor upon instantiation. alpha, beta = MultipleOutputs() # Equivalently, we can create a single factor instance and access each # output as an attribute of that instance. multiple_outputs = MultipleOutputs() alpha = multiple_outputs.alpha beta = multiple_outputs.beta Note: If a CustomFactor has multiple outputs, all outputs must have the same dtype. For instance, in the example above, if alpha is a float then beta must also be a float. ''' dtype = float64_dtype def _validate(self): try: super(CustomFactor, self)._validate() except UnsupportedDataType: if self.dtype in CLASSIFIER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint='Did you mean to create a CustomClassifier?', ) elif self.dtype in FILTER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint='Did you mean to create a CustomFilter?', ) raise def __getattribute__(self, name): outputs = object.__getattribute__(self, 'outputs') if outputs is NotSpecified: return super(CustomFactor, self).__getattribute__(name) elif name in outputs: return RecarrayField(factor=self, attribute=name) else: try: return super(CustomFactor, self).__getattribute__(name) except AttributeError: raise AttributeError( 'Instance of {factor} has no output named {attr!r}. ' 'Possible choices are: {choices}.'.format( factor=type(self).__name__, attr=name, choices=self.outputs, ) ) def __iter__(self): if self.outputs is NotSpecified: raise ValueError( '{factor} does not have multiple outputs.'.format( factor=type(self).__name__, ) ) return (RecarrayField(self, attr) for attr in self.outputs) class RecarrayField(SingleInputMixin, Factor): """ A single field from a multi-output factor. """ def __new__(cls, factor, attribute): return super(RecarrayField, cls).__new__( cls, attribute=attribute, inputs=[factor], window_length=0, mask=factor.mask, dtype=factor.dtype, missing_value=factor.missing_value, window_safe=factor.window_safe ) def _init(self, attribute, *args, **kwargs): self._attribute = attribute return super(RecarrayField, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, attribute, *args, **kwargs): return ( super(RecarrayField, cls)._static_identity(*args, **kwargs), attribute, ) def _compute(self, windows, dates, assets, mask): return windows[0][self._attribute] def graph_repr(self): return "{}.{}".format(self.inputs[0].graph_repr(), self._attribute) class Latest(LatestMixin, CustomFactor): """ Factor producing the most recently-known value of `inputs[0]` on each day. The `.latest` attribute of DataSet columns returns an instance of this Factor. """ window_length = 1 def compute(self, today, assets, out, data): out[:] = data[-1] # Functions to be passed to GroupedRowTransform. These aren't defined inline # because the transformation function is part of the instance hash key. def demean(row): return row - nanmean(row) def zscore(row): return (row - nanmean(row)) / nanstd(row) def winsorize(row, min_percentile, max_percentile): """ This implementation is based on scipy.stats.mstats.winsorize """ a = row.copy() nan_count = isnan(row).sum() nonnan_count = a.size - nan_count # NOTE: argsort() sorts nans to the end of the array. idx = a.argsort() # Set values at indices below the min percentile to the value of the entry # at the cutoff. if min_percentile > 0: lower_cutoff = int(min_percentile * nonnan_count) a[idx[:lower_cutoff]] = a[idx[lower_cutoff]] # Set values at indices above the max percentile to the value of the entry # at the cutoff. if max_percentile < 1: upper_cutoff = int(ceil(nonnan_count * max_percentile)) # if max_percentile is close to 1, then upper_cutoff might not # remove any values. if upper_cutoff < nonnan_count: start_of_nans = (-nan_count) if nan_count else None a[idx[upper_cutoff:start_of_nans]] = a[idx[upper_cutoff - 1]] return a
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/factors/factor.py
factor.py
from numbers import Number from numpy import ( arange, average, exp, fmax, full, isnan, log, NINF, sqrt, sum as np_sum, ) from zipline.pipeline.data import USEquityPricing from zipline.utils.input_validation import expect_types from zipline.utils.math_utils import ( nanargmax, nanmax, nanmean, nanstd, nansum, ) from zipline.utils.numpy_utils import ( float64_dtype, ignore_nanwarnings, ) from .factor import CustomFactor from ..mixins import SingleInputMixin class Returns(CustomFactor): """ Calculates the percent change in close price over the given window_length. **Default Inputs**: [USEquityPricing.close] """ inputs = [USEquityPricing.close] window_safe = True def _validate(self): super(Returns, self)._validate() if self.window_length < 2: raise ValueError( "'Returns' expected a window length of at least 2, but was " "given {window_length}. For daily returns, use a window " "length of 2.".format(window_length=self.window_length) ) def compute(self, today, assets, out, close): out[:] = (close[-1] - close[0]) / close[0] class DailyReturns(Returns): """ Calculates daily percent change in close price. **Default Inputs**: [USEquityPricing.close] """ inputs = [USEquityPricing.close] window_safe = True window_length = 2 class SimpleMovingAverage(CustomFactor, SingleInputMixin): """ Average Value of an arbitrary column **Default Inputs**: None **Default Window Length**: None """ # numpy's nan functions throw warnings when passed an array containing only # nans, but they still returns the desired value (nan), so we ignore the # warning. ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): out[:] = nanmean(data, axis=0) class WeightedAverageValue(CustomFactor): """ Helper for VWAP-like computations. **Default Inputs:** None **Default Window Length:** None """ def compute(self, today, assets, out, base, weight): out[:] = nansum(base * weight, axis=0) / nansum(weight, axis=0) class VWAP(WeightedAverageValue): """ Volume Weighted Average Price **Default Inputs:** [USEquityPricing.close, USEquityPricing.volume] **Default Window Length:** None """ inputs = (USEquityPricing.close, USEquityPricing.volume) class MaxDrawdown(CustomFactor, SingleInputMixin): """ Max Drawdown **Default Inputs:** None **Default Window Length:** None """ ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): drawdowns = fmax.accumulate(data, axis=0) - data drawdowns[isnan(drawdowns)] = NINF drawdown_ends = nanargmax(drawdowns, axis=0) # TODO: Accelerate this loop in Cython or Numba. for i, end in enumerate(drawdown_ends): peak = nanmax(data[:end + 1, i]) out[i] = (peak - data[end, i]) / data[end, i] class AverageDollarVolume(CustomFactor): """ Average Daily Dollar Volume **Default Inputs:** [USEquityPricing.close, USEquityPricing.volume] **Default Window Length:** None """ inputs = [USEquityPricing.close, USEquityPricing.volume] def compute(self, today, assets, out, close, volume): out[:] = nansum(close * volume, axis=0) / len(close) def exponential_weights(length, decay_rate): """ Build a weight vector for an exponentially-weighted statistic. The resulting ndarray is of the form:: [decay_rate ** length, ..., decay_rate ** 2, decay_rate] Parameters ---------- length : int The length of the desired weight vector. decay_rate : float The rate at which entries in the weight vector increase or decrease. Returns ------- weights : ndarray[float64] """ return full(length, decay_rate, float64_dtype) ** arange(length + 1, 1, -1) class _ExponentialWeightedFactor(SingleInputMixin, CustomFactor): """ Base class for factors implementing exponential-weighted operations. **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list or tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Methods ------- weights from_span from_halflife from_center_of_mass """ params = ('decay_rate',) @classmethod @expect_types(span=Number) def from_span(cls, inputs, window_length, span, **kwargs): """ Convenience constructor for passing `decay_rate` in terms of `span`. Forwards `decay_rate` as `1 - (2.0 / (1 + span))`. This provides the behavior equivalent to passing `span` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[USEquityPricing.close], # window_length=30, # decay_rate=(1 - (2.0 / (1 + 15.0))), # ) my_ewma = EWMA.from_span( inputs=[USEquityPricing.close], window_length=30, span=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ if span <= 1: raise ValueError( "`span` must be a positive number. %s was passed." % span ) decay_rate = (1.0 - (2.0 / (1.0 + span))) assert 0.0 < decay_rate <= 1.0 return cls( inputs=inputs, window_length=window_length, decay_rate=decay_rate, **kwargs ) @classmethod @expect_types(halflife=Number) def from_halflife(cls, inputs, window_length, halflife, **kwargs): """ Convenience constructor for passing ``decay_rate`` in terms of half life. Forwards ``decay_rate`` as ``exp(log(.5) / halflife)``. This provides the behavior equivalent to passing `halflife` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[USEquityPricing.close], # window_length=30, # decay_rate=np.exp(np.log(0.5) / 15), # ) my_ewma = EWMA.from_halflife( inputs=[USEquityPricing.close], window_length=30, halflife=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ if halflife <= 0: raise ValueError( "`span` must be a positive number. %s was passed." % halflife ) decay_rate = exp(log(.5) / halflife) assert 0.0 < decay_rate <= 1.0 return cls( inputs=inputs, window_length=window_length, decay_rate=decay_rate, **kwargs ) @classmethod def from_center_of_mass(cls, inputs, window_length, center_of_mass, **kwargs): """ Convenience constructor for passing `decay_rate` in terms of center of mass. Forwards `decay_rate` as `1 - (1 / 1 + center_of_mass)`. This provides behavior equivalent to passing `center_of_mass` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[USEquityPricing.close], # window_length=30, # decay_rate=(1 - (1 / 15.0)), # ) my_ewma = EWMA.from_center_of_mass( inputs=[USEquityPricing.close], window_length=30, center_of_mass=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ return cls( inputs=inputs, window_length=window_length, decay_rate=(1.0 - (1.0 / (1.0 + center_of_mass))), **kwargs ) class ExponentialWeightedMovingAverage(_ExponentialWeightedFactor): """ Exponentially Weighted Moving Average **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list/tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Notes ----- - This class can also be imported under the name ``EWMA``. See Also -------- :func:`pandas.ewma` """ def compute(self, today, assets, out, data, decay_rate): out[:] = average( data, axis=0, weights=exponential_weights(len(data), decay_rate), ) class ExponentialWeightedMovingStdDev(_ExponentialWeightedFactor): """ Exponentially Weighted Moving Standard Deviation **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list/tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Notes ----- - This class can also be imported under the name ``EWMSTD``. See Also -------- :func:`pandas.ewmstd` """ def compute(self, today, assets, out, data, decay_rate): weights = exponential_weights(len(data), decay_rate) mean = average(data, axis=0, weights=weights) variance = average((data - mean) ** 2, axis=0, weights=weights) squared_weight_sum = (np_sum(weights) ** 2) bias_correction = ( squared_weight_sum / (squared_weight_sum - np_sum(weights ** 2)) ) out[:] = sqrt(variance * bias_correction) class LinearWeightedMovingAverage(CustomFactor, SingleInputMixin): """ Weighted Average Value of an arbitrary column **Default Inputs**: None **Default Window Length**: None """ # numpy's nan functions throw warnings when passed an array containing only # nans, but they still returns the desired value (nan), so we ignore the # warning. ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): ndays = data.shape[0] # Initialize weights array weights = arange(1, ndays + 1, dtype=float64_dtype).reshape(ndays, 1) # Compute normalizer normalizer = (ndays * (ndays + 1)) / 2 # Weight the data weighted_data = data * weights # Compute weighted averages out[:] = nansum(weighted_data, axis=0) / normalizer class AnnualizedVolatility(CustomFactor): """ Volatility. The degree of variation of a series over time as measured by the standard deviation of daily returns. https://en.wikipedia.org/wiki/Volatility_(finance) **Default Inputs:** :data:`zipline.pipeline.factors.Returns(window_length=2)` # noqa Parameters ---------- annualization_factor : float, optional The number of time units per year. Defaults is 252, the number of NYSE trading days in a normal year. """ inputs = [Returns(window_length=2)] params = {'annualization_factor': 252.0} window_length = 252 def compute(self, today, assets, out, returns, annualization_factor): out[:] = nanstd(returns, axis=0) * (annualization_factor ** .5) # Convenience aliases EWMA = ExponentialWeightedMovingAverage EWMSTD = ExponentialWeightedMovingStdDev
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/factors/basic.py
basic.py
from numpy import newaxis from zipline.utils.numpy_utils import ( NaTD, busday_count_mask_NaT, datetime64D_dtype, float64_dtype, ) from .factor import Factor class BusinessDaysSincePreviousEvent(Factor): """ Abstract class for business days since a previous event. Returns the number of **business days** (not trading days!) since the most recent event date for each asset. This doesn't use trading days for symmetry with BusinessDaysUntilNextEarnings. Assets which announced or will announce the event today will produce a value of 0.0. Assets that announced the event on the previous business day will produce a value of 1.0. Assets for which the event date is `NaT` will produce a value of `NaN`. """ window_length = 0 dtype = float64_dtype def _compute(self, arrays, dates, assets, mask): # Coerce from [ns] to [D] for numpy busday_count. announce_dates = arrays[0].astype(datetime64D_dtype) # Set masked values to NaT. announce_dates[~mask] = NaTD # Convert row labels into a column vector for broadcasted comparison. reference_dates = dates.values.astype(datetime64D_dtype)[:, newaxis] return busday_count_mask_NaT(announce_dates, reference_dates) class BusinessDaysUntilNextEvent(Factor): """ Abstract class for business days since a next event. Returns the number of **business days** (not trading days!) until the next known event date for each asset. This doesn't use trading days because the trading calendar includes information that may not have been available to the algorithm at the time when `compute` is called. For example, the NYSE closings September 11th 2001, would not have been known to the algorithm on September 10th. Assets that announced or will announce the event today will produce a value of 0.0. Assets that will announce the event on the next upcoming business day will produce a value of 1.0. Assets for which the event date is `NaT` will produce a value of `NaN`. """ window_length = 0 dtype = float64_dtype def _compute(self, arrays, dates, assets, mask): # Coerce from [ns] to [D] for numpy busday_count. announce_dates = arrays[0].astype(datetime64D_dtype) # Set masked values to NaT. announce_dates[~mask] = NaTD # Convert row labels into a column vector for broadcasted comparison. reference_dates = dates.values.astype(datetime64D_dtype)[:, newaxis] return busday_count_mask_NaT(reference_dates, announce_dates)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/factors/events.py
events.py
from functools import partial from numbers import Number import operator import re from numpy import where, isnan, nan, zeros import pandas as pd from zipline.errors import UnsupportedDataType from zipline.lib.labelarray import LabelArray from zipline.lib.quantiles import quantiles from zipline.pipeline.api_utils import restrict_to_dtype from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.sentinels import NotSpecified from zipline.pipeline.term import ComputableTerm from zipline.utils.compat import unicode from zipline.utils.input_validation import expect_types, expect_dtypes from zipline.utils.memoize import classlazyval from zipline.utils.numpy_utils import ( categorical_dtype, int64_dtype, vectorized_is_element, ) from ..filters import ArrayPredicate, NotNullFilter, NullFilter, NumExprFilter from ..mixins import ( AliasedMixin, CustomTermMixin, DownsampledMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, StandardOutputs, ) string_classifiers_only = restrict_to_dtype( dtype=categorical_dtype, message_template=( "{method_name}() is only defined on Classifiers producing strings" " but it was called on a Classifier of dtype {received_dtype}." ) ) class Classifier(RestrictedDTypeMixin, ComputableTerm): """ A Pipeline expression computing a categorical output. Classifiers are most commonly useful for describing grouping keys for complex transformations on Factor outputs. For example, Factor.demean() and Factor.zscore() can be passed a Classifier in their ``groupby`` argument, indicating that means/standard deviations should be computed on assets for which the classifier produced the same label. """ # Used by RestrictedDTypeMixin ALLOWED_DTYPES = CLASSIFIER_DTYPES categories = NotSpecified def isnull(self): """ A Filter producing True for values where this term has missing data. """ return NullFilter(self) def notnull(self): """ A Filter producing True for values where this term has complete data. """ return NotNullFilter(self) # We explicitly don't support classifier to classifier comparisons, since # the stored values likely don't mean the same thing. This may be relaxed # in the future, but for now we're starting conservatively. def eq(self, other): """ Construct a Filter returning True for asset/date pairs where the output of ``self`` matches ``other``. """ # We treat this as an error because missing_values have NaN semantics, # which means this would return an array of all False, which is almost # certainly not what the user wants. if other == self.missing_value: raise ValueError( "Comparison against self.missing_value ({value!r}) in" " {typename}.eq().\n" "Missing values have NaN semantics, so the " "requested comparison would always produce False.\n" "Use the isnull() method to check for missing values.".format( value=other, typename=(type(self).__name__), ) ) if isinstance(other, Number) != (self.dtype == int64_dtype): raise InvalidClassifierComparison(self, other) if isinstance(other, Number): return NumExprFilter.create( "x_0 == {other}".format(other=int(other)), binds=(self,), ) else: return ArrayPredicate( term=self, op=operator.eq, opargs=(other,), ) def __ne__(self, other): """ Construct a Filter returning True for asset/date pairs where the output of ``self`` matches ``other. """ if isinstance(other, Number) != (self.dtype == int64_dtype): raise InvalidClassifierComparison(self, other) if isinstance(other, Number): return NumExprFilter.create( "((x_0 != {other}) & (x_0 != {missing}))".format( other=int(other), missing=self.missing_value, ), binds=(self,), ) else: # Numexpr doesn't know how to use LabelArrays. return ArrayPredicate(term=self, op=operator.ne, opargs=(other,)) def bad_compare(opname, other): raise TypeError('cannot compare classifiers with %s' % opname) __gt__ = partial(bad_compare, '>') __ge__ = partial(bad_compare, '>=') __le__ = partial(bad_compare, '<=') __lt__ = partial(bad_compare, '<') del bad_compare @string_classifiers_only @expect_types(prefix=(bytes, unicode)) def startswith(self, prefix): """ Construct a Filter matching values starting with ``prefix``. Parameters ---------- prefix : str String prefix against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string starting with ``prefix``. """ return ArrayPredicate( term=self, op=LabelArray.startswith, opargs=(prefix,), ) @string_classifiers_only @expect_types(suffix=(bytes, unicode)) def endswith(self, suffix): """ Construct a Filter matching values ending with ``suffix``. Parameters ---------- suffix : str String suffix against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string ending with ``prefix``. """ return ArrayPredicate( term=self, op=LabelArray.endswith, opargs=(suffix,), ) @string_classifiers_only @expect_types(substring=(bytes, unicode)) def has_substring(self, substring): """ Construct a Filter matching values containing ``substring``. Parameters ---------- substring : str Sub-string against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string containing ``substring``. """ return ArrayPredicate( term=self, op=LabelArray.has_substring, opargs=(substring,), ) @string_classifiers_only @expect_types(pattern=(bytes, unicode, type(re.compile('')))) def matches(self, pattern): """ Construct a Filter that checks regex matches against ``pattern``. Parameters ---------- pattern : str Regex pattern against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string matched by ``pattern``. See Also -------- :mod:`Python Regular Expressions <re>` """ return ArrayPredicate( term=self, op=LabelArray.matches, opargs=(pattern,), ) # TODO: Support relabeling for integer dtypes. @string_classifiers_only def relabel(self, relabeler): """ Convert ``self`` into a new classifier by mapping a function over each element produced by ``self``. Parameters ---------- relabeler : function[str -> str or None] A function to apply to each unique value produced by ``self``. Returns ------- relabeled : Classifier A classifier produced by applying ``relabeler`` to each unique value produced by ``self``. """ return Relabel(term=self, relabeler=relabeler) def element_of(self, choices): """ Construct a Filter indicating whether values are in ``choices``. Parameters ---------- choices : iterable[str or int] An iterable of choices. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces an entry in ``choices``. """ try: choices = frozenset(choices) except Exception as e: raise TypeError( "Expected `choices` to be an iterable of hashable values," " but got {} instead.\n" "This caused the following error: {!r}.".format(choices, e) ) if self.missing_value in choices: raise ValueError( "Found self.missing_value ({mv!r}) in choices supplied to" " {typename}.{meth_name}().\n" "Missing values have NaN semantics, so the" " requested comparison would always produce False.\n" "Use the isnull() method to check for missing values.\n" "Received choices were {choices}.".format( mv=self.missing_value, typename=(type(self).__name__), choices=sorted(choices), meth_name=self.element_of.__name__, ) ) def only_contains(type_, values): return all(isinstance(v, type_) for v in values) if self.dtype == int64_dtype: if only_contains(int, choices): return ArrayPredicate( term=self, op=vectorized_is_element, opargs=(choices,), ) else: raise TypeError( "Found non-int in choices for {typename}.element_of.\n" "Supplied choices were {choices}.".format( typename=type(self).__name__, choices=choices, ) ) elif self.dtype == categorical_dtype: if only_contains((bytes, unicode), choices): return ArrayPredicate( term=self, op=LabelArray.element_of, opargs=(choices,), ) else: raise TypeError( "Found non-string in choices for {typename}.element_of.\n" "Supplied choices were {choices}.".format( typename=type(self).__name__, choices=choices, ) ) assert False, "Unknown dtype in Classifier.element_of %s." % self.dtype def postprocess(self, data): if self.dtype == int64_dtype: return data if not isinstance(data, LabelArray): raise AssertionError("Expected a LabelArray, got %s." % type(data)) return data.as_categorical() def to_workspace_value(self, result, assets): """ Called with the result of a pipeline. This needs to return an object which can be put into the workspace to continue doing computations. This is the inverse of :func:`~zipline.pipeline.term.Term.postprocess`. """ if self.dtype == int64_dtype: return super(Classifier, self).to_workspace_value(result, assets) assert isinstance(result.values, pd.Categorical), ( 'Expected a Categorical, got %r.' % type(result.values) ) with_missing = pd.Series( data=pd.Categorical( result.values, result.values.categories.union([self.missing_value]), ), index=result.index, ) return LabelArray( super(Classifier, self).to_workspace_value( with_missing, assets, ), self.missing_value, ) @classlazyval def _downsampled_type(self): return DownsampledMixin.make_downsampled_type(Classifier) @classlazyval def _aliased_type(self): return AliasedMixin.make_aliased_type(Classifier) def _to_integral(self, output_array): """ Convert an array produced by this classifier into an array of integer labels and a missing value label. """ if self.dtype == int64_dtype: group_labels = output_array null_label = self.missing_value elif self.dtype == categorical_dtype: # Coerce LabelArray into an isomorphic array of ints. This is # necessary because np.where doesn't know about LabelArrays or the # void dtype. group_labels = output_array.as_int_array() null_label = output_array.missing_value_code else: raise AssertionError( "Unexpected Classifier dtype: %s." % self.dtype ) return group_labels, null_label class Everything(Classifier): """ A trivial classifier that classifies everything the same. """ dtype = int64_dtype window_length = 0 inputs = () missing_value = -1 def _compute(self, arrays, dates, assets, mask): return where( mask, zeros(shape=mask.shape, dtype=int64_dtype), self.missing_value, ) class Quantiles(SingleInputMixin, Classifier): """ A classifier computing quantiles over an input. """ params = ('bins',) dtype = int64_dtype window_length = 0 missing_value = -1 def _compute(self, arrays, dates, assets, mask): data = arrays[0] bins = self.params['bins'] to_bin = where(mask, data, nan) result = quantiles(to_bin, bins) # Write self.missing_value into nan locations, whether they were # generated by our input mask or not. result[isnan(result)] = self.missing_value return result.astype(int64_dtype) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return type(self).__name__ + '(%d)' % self.params['bins'] class Relabel(SingleInputMixin, Classifier): """ A classifier applying a relabeling function on the result of another classifier. Parameters ---------- arg : zipline.pipeline.Classifier Term produceing the input to be relabeled. relabel_func : function(LabelArray) -> LabelArray Function to apply to the result of `term`. """ window_length = 0 params = ('relabeler',) # TODO: Support relabeling for integer dtypes. @expect_dtypes(term=categorical_dtype) @expect_types(term=Classifier) def __new__(cls, term, relabeler): return super(Relabel, cls).__new__( cls, inputs=(term,), dtype=term.dtype, mask=term.mask, relabeler=relabeler, ) def _compute(self, arrays, dates, assets, mask): relabeler = self.params['relabeler'] data = arrays[0] if isinstance(data, LabelArray): result = data.map(relabeler) result[~mask] = data.missing_value else: raise NotImplementedError( "Relabeling is not currently supported for " "int-dtype classifiers." ) return result class CustomClassifier(PositiveWindowLengthMixin, StandardOutputs, CustomTermMixin, Classifier): """ Base class for user-defined Classifiers. Does not suppport multiple outputs. See Also -------- zipline.pipeline.CustomFactor zipline.pipeline.CustomFilter """ def _validate(self): try: super(CustomClassifier, self)._validate() except UnsupportedDataType: if self.dtype in FACTOR_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint='Did you mean to create a CustomFactor?', ) elif self.dtype in FILTER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint='Did you mean to create a CustomFilter?', ) raise def _allocate_output(self, windows, shape): """ Override the default array allocation to produce a LabelArray when we have a string-like dtype. """ if self.dtype == int64_dtype: return super(CustomClassifier, self)._allocate_output( windows, shape, ) # This is a little bit of a hack. We might not know what the # categories for a LabelArray are until it's actually been loaded, so # we need to look at the underlying data. return windows[0].data.empty_like(shape) class Latest(LatestMixin, CustomClassifier): """ A classifier producing the latest value of an input. See Also -------- zipline.pipeline.data.dataset.BoundColumn.latest zipline.pipeline.factors.factor.Latest zipline.pipeline.filters.filter.Latest """ pass class InvalidClassifierComparison(TypeError): def __init__(self, classifier, compval): super(InvalidClassifierComparison, self).__init__( "Can't compare classifier of dtype" " {dtype} to value {value} of type {type}.".format( dtype=classifier.dtype, value=compval, type=type(compval).__name__, ) )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/classifiers/classifier.py
classifier.py
from functools import total_ordering from six import ( iteritems, with_metaclass, ) from toolz import first from zipline.pipeline.classifiers import Classifier, Latest as LatestClassifier from zipline.pipeline.factors import Factor, Latest as LatestFactor from zipline.pipeline.filters import Filter, Latest as LatestFilter from zipline.pipeline.sentinels import NotSpecified from zipline.pipeline.term import ( AssetExists, LoadableTerm, validate_dtype, ) from zipline.utils.input_validation import ensure_dtype from zipline.utils.numpy_utils import NoDefaultMissingValue from zipline.utils.preprocess import preprocess class Column(object): """ An abstract column of data, not yet associated with a dataset. """ @preprocess(dtype=ensure_dtype) def __init__(self, dtype, missing_value=NotSpecified, doc=None, metadata=None): self.dtype = dtype self.missing_value = missing_value self.doc = doc self.metadata = metadata.copy() if metadata is not None else {} def bind(self, name): """ Bind a `Column` object to its name. """ return _BoundColumnDescr( dtype=self.dtype, missing_value=self.missing_value, name=name, doc=self.doc, metadata=self.metadata, ) class _BoundColumnDescr(object): """ Intermediate class that sits on `DataSet` objects and returns memoized `BoundColumn` objects when requested. This exists so that subclasses of DataSets don't share columns with their parent classes. """ def __init__(self, dtype, missing_value, name, doc, metadata): # Validating and calculating default missing values here guarantees # that we fail quickly if the user passes an unsupporte dtype or fails # to provide a missing value for a dtype that requires one # (e.g. int64), but still enables us to provide an error message that # points to the name of the failing column. try: self.dtype, self.missing_value = validate_dtype( termname="Column(name={name!r})".format(name=name), dtype=dtype, missing_value=missing_value, ) except NoDefaultMissingValue: # Re-raise with a more specific message. raise NoDefaultMissingValue( "Failed to create Column with name {name!r} and" " dtype {dtype} because no missing_value was provided\n\n" "Columns with dtype {dtype} require a missing_value.\n" "Please pass missing_value to Column() or use a different" " dtype.".format(dtype=dtype, name=name) ) self.name = name self.doc = doc self.metadata = metadata def __get__(self, instance, owner): """ Produce a concrete BoundColumn object when accessed. We don't bind to datasets at class creation time so that subclasses of DataSets produce different BoundColumns. """ return BoundColumn( dtype=self.dtype, missing_value=self.missing_value, dataset=owner, name=self.name, doc=self.doc, metadata=self.metadata, ) class BoundColumn(LoadableTerm): """ A column of data that's been concretely bound to a particular dataset. Instances of this class are dynamically created upon access to attributes of DataSets (for example, USEquityPricing.close is an instance of this class). Attributes ---------- dtype : numpy.dtype The dtype of data produced when this column is loaded. latest : zipline.pipeline.data.Factor or zipline.pipeline.data.Filter A Filter, Factor, or Classifier computing the most recently known value of this column on each date. Produces a Filter if self.dtype == ``np.bool_``. Produces a Classifier if self.dtype == ``np.int64`` Otherwise produces a Factor. dataset : zipline.pipeline.data.DataSet The dataset to which this column is bound. name : str The name of this column. metadata : dict Extra metadata associated with this column. """ mask = AssetExists() window_safe = True def __new__(cls, dtype, missing_value, dataset, name, doc, metadata): return super(BoundColumn, cls).__new__( cls, domain=dataset.domain, dtype=dtype, missing_value=missing_value, dataset=dataset, name=name, ndim=dataset.ndim, doc=doc, metadata=metadata, ) def _init(self, dataset, name, doc, metadata, *args, **kwargs): self._dataset = dataset self._name = name self.__doc__ = doc self._metadata = metadata return super(BoundColumn, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, dataset, name, doc, metadata, *args, **kwargs): return ( super(BoundColumn, cls)._static_identity(*args, **kwargs), dataset, name, doc, frozenset(sorted(metadata.items(), key=first)), ) @property def dataset(self): """ The dataset to which this column is bound. """ return self._dataset @property def name(self): """ The name of this column. """ return self._name @property def metadata(self): """ A copy of the metadata for this column. """ return self._metadata.copy() @property def qualname(self): """ The fully-qualified name of this column. Generated by doing '.'.join([self.dataset.__name__, self.name]). """ return '.'.join([self.dataset.__name__, self.name]) @property def latest(self): dtype = self.dtype if dtype in Filter.ALLOWED_DTYPES: Latest = LatestFilter elif dtype in Classifier.ALLOWED_DTYPES: Latest = LatestClassifier else: assert dtype in Factor.ALLOWED_DTYPES, "Unknown dtype %s." % dtype Latest = LatestFactor return Latest( inputs=(self,), dtype=dtype, missing_value=self.missing_value, ndim=self.ndim, ) def __repr__(self): return "{qualname}::{dtype}".format( qualname=self.qualname, dtype=self.dtype.name, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return "BoundColumn:\l Dataset: {}\l Column: {}\l".format( self.dataset.__name__, self.name ) def recursive_repr(self): """Short repr used to render in recursive contexts.""" return self.qualname @total_ordering class DataSetMeta(type): """ Metaclass for DataSets Supplies name and dataset information to Column attributes. """ def __new__(mcls, name, bases, dict_): newtype = super(DataSetMeta, mcls).__new__(mcls, name, bases, dict_) # collect all of the column names that we inherit from our parents column_names = set().union( *(getattr(base, '_column_names', ()) for base in bases) ) for maybe_colname, maybe_column in iteritems(dict_): if isinstance(maybe_column, Column): # add column names defined on our class bound_column_descr = maybe_column.bind(maybe_colname) setattr(newtype, maybe_colname, bound_column_descr) column_names.add(maybe_colname) newtype._column_names = frozenset(column_names) return newtype @property def columns(self): return frozenset( getattr(self, colname) for colname in self._column_names ) def __lt__(self, other): return id(self) < id(other) def __repr__(self): return '<DataSet: %r>' % self.__name__ class DataSet(with_metaclass(DataSetMeta, object)): """ Base class for describing inputs to Pipeline expressions. A DataSet is a collection of :class:`zipline.pipeline.data.Column` that describes a collection of logically-related inputs to the Pipeline API. To create a new Pipeline dataset, subclass from this class and create columns at class scope for each attribute of your dataset. Each column requires a dtype that describes the type of data that should be produced by a loader for the dataset. Integer columns must also provide a ``missing_value`` to be used when no value is available for a given asset/date combination. Examples -------- The built-in USEquityPricing dataset is defined as follows:: class EquityPricing(DataSet): open = Column(float) high = Column(float) low = Column(float) close = Column(float) volume = Column(float) Columns can have types other than float. A dataset containing assorted company metadata might be defined like this:: class CompanyMetadata(DataSet): # Use float for semantically-numeric data, even if it's always # integral valued (see Notes section below). The default missing # value for floats is NaN. shares_outstanding = Column(float) # Use object-dtype for string columns. The default missing value # for object-dtype columns is None. ticker = Column(object) # Use integers for integer-valued categorical data like sector or # industry codes. Integer-dtype columns require an explicit missing # value. sector_code = Column(int, missing_value=-1) # The default missing value for bool-dtype columns is False. is_primary_share = Column(bool) Notes ----- Because numpy has no native support for integers with missing values, users are strongly encouraged to use floats for any data that's semantically numeric. Doing so enables the use of `NaN` as a natural missing value, which has useful propagation semantics. """ domain = None ndim = 2
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/data/dataset.py
dataset.py
from itertools import chain from operator import attrgetter from numpy import ( any as np_any, float64, nan, nanpercentile, uint8, ) from zipline.errors import ( BadPercentileBounds, NonExistentAssetInTimeFrame, UnsupportedDataType, ) from zipline.lib.labelarray import LabelArray from zipline.lib.rank import is_missing, grouped_masked_is_maximal from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.expression import ( BadBinaryOperator, FILTER_BINOPS, method_name_for_op, NumericalExpression, ) from zipline.pipeline.mixins import ( AliasedMixin, CustomTermMixin, DownsampledMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, StandardOutputs, ) from zipline.pipeline.term import ComputableTerm, Term from zipline.utils.input_validation import expect_types from zipline.utils.memoize import classlazyval from zipline.utils.numpy_utils import ( bool_dtype, int64_dtype, repeat_first_axis, ) from ..sentinels import NotSpecified def concat_tuples(*tuples): """ Concatenate a sequence of tuples into one tuple. """ return tuple(chain(*tuples)) def binary_operator(op): """ Factory function for making binary operator methods on a Filter subclass. Returns a function "binary_operator" suitable for implementing functions like __and__ or __or__. """ # When combining a Filter with a NumericalExpression, we use this # attrgetter instance to defer to the commuted interpretation of the # NumericalExpression operator. commuted_method_getter = attrgetter(method_name_for_op(op, commute=True)) def binary_operator(self, other): if isinstance(self, NumericalExpression): self_expr, other_expr, new_inputs = self.build_binary_op( op, other, ) return NumExprFilter.create( "({left}) {op} ({right})".format( left=self_expr, op=op, right=other_expr, ), new_inputs, ) elif isinstance(other, NumericalExpression): # NumericalExpression overrides numerical ops to correctly handle # merging of inputs. Look up and call the appropriate # right-binding operator with ourself as the input. return commuted_method_getter(other)(self) elif isinstance(other, Term): if other.dtype != bool_dtype: raise BadBinaryOperator(op, self, other) if self is other: return NumExprFilter.create( "x_0 {op} x_0".format(op=op), (self,), ) return NumExprFilter.create( "x_0 {op} x_1".format(op=op), (self, other), ) elif isinstance(other, int): # Note that this is true for bool as well return NumExprFilter.create( "x_0 {op} {constant}".format(op=op, constant=int(other)), binds=(self,), ) raise BadBinaryOperator(op, self, other) binary_operator.__doc__ = "Binary Operator: '%s'" % op return binary_operator def unary_operator(op): """ Factory function for making unary operator methods for Filters. """ valid_ops = {'~'} if op not in valid_ops: raise ValueError("Invalid unary operator %s." % op) def unary_operator(self): # This can't be hoisted up a scope because the types returned by # unary_op_return_type aren't defined when the top-level function is # invoked. if isinstance(self, NumericalExpression): return NumExprFilter.create( "{op}({expr})".format(op=op, expr=self._expr), self.inputs, ) else: return NumExprFilter.create("{op}x_0".format(op=op), (self,)) unary_operator.__doc__ = "Unary Operator: '%s'" % op return unary_operator class Filter(RestrictedDTypeMixin, ComputableTerm): """ Pipeline expression computing a boolean output. Filters are most commonly useful for describing sets of assets to include or exclude for some particular purpose. Many Pipeline API functions accept a ``mask`` argument, which can be supplied a Filter indicating that only values passing the Filter should be considered when performing the requested computation. For example, :meth:`zipline.pipeline.Factor.top` accepts a mask indicating that ranks should be computed only on assets that passed the specified Filter. The most common way to construct a Filter is via one of the comparison operators (``<``, ``<=``, ``!=``, ``eq``, ``>``, ``>=``) of :class:`~zipline.pipeline.Factor`. For example, a natural way to construct a Filter for stocks with a 10-day VWAP less than $20.0 is to first construct a Factor computing 10-day VWAP and compare it to the scalar value 20.0:: >>> from zipline.pipeline.factors import VWAP >>> vwap_10 = VWAP(window_length=10) >>> vwaps_under_20 = (vwap_10 <= 20) Filters can also be constructed via comparisons between two Factors. For example, to construct a Filter producing True for asset/date pairs where the asset's 10-day VWAP was greater than it's 30-day VWAP:: >>> short_vwap = VWAP(window_length=10) >>> long_vwap = VWAP(window_length=30) >>> higher_short_vwap = (short_vwap > long_vwap) Filters can be combined via the ``&`` (and) and ``|`` (or) operators. ``&``-ing together two filters produces a new Filter that produces True if **both** of the inputs produced True. ``|``-ing together two filters produces a new Filter that produces True if **either** of its inputs produced True. The ``~`` operator can be used to invert a Filter, swapping all True values with Falses and vice-versa. Filters may be set as the ``screen`` attribute of a Pipeline, indicating asset/date pairs for which the filter produces False should be excluded from the Pipeline's output. This is useful both for reducing noise in the output of a Pipeline and for reducing memory consumption of Pipeline results. """ # Filters are window-safe by default, since a yes/no decision means the # same thing from all temporal perspectives. window_safe = True # Used by RestrictedDTypeMixin ALLOWED_DTYPES = FILTER_DTYPES dtype = bool_dtype clsdict = locals() clsdict.update( { method_name_for_op(op): binary_operator(op) for op in FILTER_BINOPS } ) clsdict.update( { method_name_for_op(op, commute=True): binary_operator(op) for op in FILTER_BINOPS } ) __invert__ = unary_operator('~') def _validate(self): # Run superclass validation first so that we handle `dtype not passed` # before this. retval = super(Filter, self)._validate() if self.dtype != bool_dtype: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype ) return retval @classlazyval def _downsampled_type(self): return DownsampledMixin.make_downsampled_type(Filter) @classlazyval def _aliased_type(self): return AliasedMixin.make_aliased_type(Filter) class NumExprFilter(NumericalExpression, Filter): """ A Filter computed from a numexpr expression. """ @classmethod def create(cls, expr, binds): """ Helper for creating new NumExprFactors. This is just a wrapper around NumericalExpression.__new__ that always forwards `bool` as the dtype, since Filters can only be of boolean dtype. """ return cls(expr=expr, binds=binds, dtype=bool_dtype) def _compute(self, arrays, dates, assets, mask): """ Compute our result with numexpr, then re-apply `mask`. """ return super(NumExprFilter, self)._compute( arrays, dates, assets, mask, ) & mask class NullFilter(SingleInputMixin, Filter): """ A Filter indicating whether input values are missing from an input. Parameters ---------- factor : zipline.pipeline.Term The factor to compare against its missing_value. """ window_length = 0 def __new__(cls, term): return super(NullFilter, cls).__new__( cls, inputs=(term,), ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] if isinstance(data, LabelArray): return data.is_missing() return is_missing(arrays[0], self.inputs[0].missing_value) class NotNullFilter(SingleInputMixin, Filter): """ A Filter indicating whether input values are **not** missing from an input. Parameters ---------- factor : zipline.pipeline.Term The factor to compare against its missing_value. """ window_length = 0 def __new__(cls, term): return super(NotNullFilter, cls).__new__( cls, inputs=(term,), ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] if isinstance(data, LabelArray): return ~data.is_missing() return ~is_missing(arrays[0], self.inputs[0].missing_value) class PercentileFilter(SingleInputMixin, Filter): """ A Filter representing assets falling between percentile bounds of a Factor. Parameters ---------- factor : zipline.pipeline.factor.Factor The factor over which to compute percentile bounds. min_percentile : float [0.0, 1.0] The minimum percentile rank of an asset that will pass the filter. max_percentile : float [0.0, 1.0] The maxiumum percentile rank of an asset that will pass the filter. """ window_length = 0 def __new__(cls, factor, min_percentile, max_percentile, mask): return super(PercentileFilter, cls).__new__( cls, inputs=(factor,), mask=mask, min_percentile=min_percentile, max_percentile=max_percentile, ) def _init(self, min_percentile, max_percentile, *args, **kwargs): self._min_percentile = min_percentile self._max_percentile = max_percentile return super(PercentileFilter, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, min_percentile, max_percentile, *args, **kwargs): return ( super(PercentileFilter, cls)._static_identity(*args, **kwargs), min_percentile, max_percentile, ) def _validate(self): """ Ensure that our percentile bounds are well-formed. """ if not 0.0 <= self._min_percentile < self._max_percentile <= 100.0: raise BadPercentileBounds( min_percentile=self._min_percentile, max_percentile=self._max_percentile, upper_bound=100.0 ) return super(PercentileFilter, self)._validate() def _compute(self, arrays, dates, assets, mask): """ For each row in the input, compute a mask of all values falling between the given percentiles. """ # TODO: Review whether there's a better way of handling small numbers # of columns. data = arrays[0].copy().astype(float64) data[~mask] = nan # FIXME: np.nanpercentile **should** support computing multiple bounds # at once, but there's a bug in the logic for multiple bounds in numpy # 1.9.2. It will be fixed in 1.10. # c.f. https://github.com/numpy/numpy/pull/5981 lower_bounds = nanpercentile( data, self._min_percentile, axis=1, keepdims=True, ) upper_bounds = nanpercentile( data, self._max_percentile, axis=1, keepdims=True, ) return (lower_bounds <= data) & (data <= upper_bounds) def graph_repr(self): return "{}:\l min: {}, max: {}\l".format( type(self).__name__, self._min_percentile, self._max_percentile, ) class CustomFilter(PositiveWindowLengthMixin, CustomTermMixin, Filter): """ Base class for user-defined Filters. Parameters ---------- inputs : iterable, optional An iterable of `BoundColumn` instances (e.g. USEquityPricing.close), describing the data to load and pass to `self.compute`. If this argument is passed to the CustomFilter constructor, we look for a class-level attribute named `inputs`. window_length : int, optional Number of rows to pass for each input. If this argument is not passed to the CustomFilter constructor, we look for a class-level attribute named `window_length`. Notes ----- Users implementing their own Filters should subclass CustomFilter and implement a method named `compute` with the following signature: .. code-block:: python def compute(self, today, assets, out, *inputs): ... On each simulation date, ``compute`` will be called with the current date, an array of sids, an output array, and an input array for each expression passed as inputs to the CustomFilter constructor. The specific types of the values passed to `compute` are as follows:: today : np.datetime64[ns] Row label for the last row of all arrays passed as `inputs`. assets : np.array[int64, ndim=1] Column labels for `out` and`inputs`. out : np.array[bool, ndim=1] Output array of the same shape as `assets`. `compute` should write its desired return values into `out`. *inputs : tuple of np.array Raw data arrays corresponding to the values of `self.inputs`. See the documentation for :class:`~zipline.pipeline.factors.factor.CustomFactor` for more details on implementing a custom ``compute`` method. See Also -------- zipline.pipeline.factors.factor.CustomFactor """ def _validate(self): try: super(CustomFilter, self)._validate() except UnsupportedDataType: if self.dtype in CLASSIFIER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint='Did you mean to create a CustomClassifier?', ) elif self.dtype in FACTOR_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint='Did you mean to create a CustomFactor?', ) raise class ArrayPredicate(SingleInputMixin, Filter): """ A filter applying a function from (ndarray, *args) -> ndarray[bool]. Parameters ---------- term : zipline.pipeline.Term Term producing the array over which the predicate will be computed. op : function(ndarray, *args) -> ndarray[bool] Function to apply to the result of `term`. opargs : tuple[hashable] Additional argument to apply to ``op``. """ params = ('op', 'opargs') window_length = 0 @expect_types(term=Term, opargs=tuple) def __new__(cls, term, op, opargs): hash(opargs) # fail fast if opargs isn't hashable. return super(ArrayPredicate, cls).__new__( ArrayPredicate, op=op, opargs=opargs, inputs=(term,), mask=term.mask, ) def _compute(self, arrays, dates, assets, mask): params = self.params data = arrays[0] return params['op'](data, *params['opargs']) & mask def graph_repr(self): return "{}:\l op: {}.{}()".format( type(self).__name__, self.params['op'].__module__, self.params['op'].__name__, ) class Latest(LatestMixin, CustomFilter): """ Filter producing the most recently-known value of `inputs[0]` on each day. """ pass class SingleAsset(Filter): """ A Filter that computes to True only for the given asset. """ inputs = [] window_length = 1 def __new__(cls, asset): return super(SingleAsset, cls).__new__(cls, asset=asset) def _init(self, asset, *args, **kwargs): self._asset = asset return super(SingleAsset, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, asset, *args, **kwargs): return ( super(SingleAsset, cls)._static_identity(*args, **kwargs), asset, ) def _compute(self, arrays, dates, assets, mask): is_my_asset = (assets == self._asset.sid) out = repeat_first_axis(is_my_asset, len(mask)) # Raise an exception if `self._asset` does not exist for the entirety # of the timeframe over which we are computing. if (is_my_asset.sum() != 1) or ((out & mask).sum() != len(mask)): raise NonExistentAssetInTimeFrame( asset=self._asset, start_date=dates[0], end_date=dates[-1], ) return out def graph_repr(self): return "SingleAsset:\l asset: {!r}\l".format(self._asset) class StaticSids(Filter): """ A Filter that computes True for a specific set of predetermined sids. ``StaticSids`` is mostly useful for debugging or for interactively computing pipeline terms for a fixed set of sids that are known ahead of time. Parameters ---------- sids : iterable[int] An iterable of sids for which to filter. """ inputs = () window_length = 0 params = ('sids',) def __new__(cls, sids): sids = frozenset(sids) return super(StaticSids, cls).__new__(cls, sids=sids) def _compute(self, arrays, dates, sids, mask): my_columns = sids.isin(self.params['sids']) return repeat_first_axis(my_columns, len(mask)) & mask class StaticAssets(StaticSids): """ A Filter that computes True for a specific set of predetermined assets. ``StaticAssets`` is mostly useful for debugging or for interactively computing pipeline terms for a fixed set of assets that are known ahead of time. Parameters ---------- assets : iterable[Asset] An iterable of assets for which to filter. """ def __new__(cls, assets): sids = frozenset(asset.sid for asset in assets) return super(StaticAssets, cls).__new__(cls, sids) class AllPresent(CustomFilter, SingleInputMixin, StandardOutputs): """Pipeline filter indicating input term has data for a given window. """ def _validate(self): if isinstance(self.inputs[0], Filter): raise TypeError( "Input to filter `AllPresent` cannot be a Filter." ) return super(AllPresent, self)._validate() def compute(self, today, assets, out, value): if isinstance(value, LabelArray): out[:] = ~np_any(value.is_missing(), axis=0) else: out[:] = ~np_any( is_missing(value, self.inputs[0].missing_value), axis=0, ) class MaximumFilter(Filter, StandardOutputs): """Pipeline filter that selects the top asset, possibly grouped and masked. """ window_length = 0 def __new__(cls, factor, groupby, mask): if groupby is NotSpecified: from zipline.pipeline.classifiers import Everything groupby = Everything() return super(MaximumFilter, cls).__new__( cls, inputs=(factor, groupby), mask=mask, ) def _compute(self, arrays, dates, assets, mask): # XXX: We're doing a lot of unncessary work here if `groupby` isn't # specified. data = arrays[0] group_labels, null_label = self.inputs[1]._to_integral(arrays[1]) effective_mask = ( mask & (group_labels != null_label) & ~is_missing(data, self.inputs[0].missing_value) ).view(uint8) return grouped_masked_is_maximal( # Unconditionally view the data as int64. # This is safe because casting from float64 to int64 is an # order-preserving operation. data.view(int64_dtype), # PERF: Consider supporting different sizes of group labels. group_labels.astype(int64_dtype), effective_mask, ) def __repr__(self): return "Maximum({!r}, groupby={!r}, mask={!r})".format( self.inputs[0], self.inputs[1], self.mask, ) def graph_repr(self): return "Maximum:\l groupby: {}\l mask: {}\l".format( type(self.inputs[1]).__name__, type(self.mask).__name__, )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/filters/filter.py
filter.py
from numpy import ( iinfo, uint32, ) from trading_calendars import get_calendar from zipline.data.us_equity_pricing import ( BcolzDailyBarReader, SQLiteAdjustmentReader, ) from zipline.lib.adjusted_array import AdjustedArray from .base import PipelineLoader from .utils import shift_dates UINT32_MAX = iinfo(uint32).max class USEquityPricingLoader(PipelineLoader): """ PipelineLoader for US Equity Pricing data Delegates loading of baselines and adjustments. """ def __init__(self, raw_price_loader, adjustments_loader): self.raw_price_loader = raw_price_loader self.adjustments_loader = adjustments_loader cal = self.raw_price_loader.trading_calendar or \ get_calendar("NYSE") self._all_sessions = cal.all_sessions @classmethod def from_files(cls, pricing_path, adjustments_path): """ Create a loader from a bcolz equity pricing dir and a SQLite adjustments path. Parameters ---------- pricing_path : str Path to a bcolz directory written by a BcolzDailyBarWriter. adjusments_path : str Path to an adjusments db written by a SQLiteAdjustmentWriter. """ return cls( BcolzDailyBarReader(pricing_path), SQLiteAdjustmentReader(adjustments_path) ) def load_adjusted_array(self, columns, dates, assets, mask): # load_adjusted_array is called with dates on which the user's algo # will be shown data, which means we need to return the data that would # be known at the start of each date. We assume that the latest data # known on day N is the data from day (N - 1), so we shift all query # dates back by a day. start_date, end_date = shift_dates( self._all_sessions, dates[0], dates[-1], shift=1, ) colnames = [c.name for c in columns] raw_arrays = self.raw_price_loader.load_raw_arrays( colnames, start_date, end_date, assets, ) adjustments = self.adjustments_loader.load_adjustments( colnames, dates, assets, ) out = {} for c, c_raw, c_adjs in zip(columns, raw_arrays, adjustments): out[c] = AdjustedArray( c_raw.astype(c.dtype), c_adjs, c.missing_value, ) return out
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/equity_pricing_loader.py
equity_pricing_loader.py
from numpy import ( arange, array, eye, float64, full, iinfo, uint32, ) from numpy.random import RandomState from pandas import DataFrame, Timestamp from six import iteritems from sqlite3 import connect as sqlite3_connect from .base import PipelineLoader from .frame import DataFrameLoader from zipline.data.us_equity_pricing import ( SQLiteAdjustmentReader, SQLiteAdjustmentWriter, US_EQUITY_PRICING_BCOLZ_COLUMNS, ) from zipline.utils.numpy_utils import ( bool_dtype, datetime64ns_dtype, float64_dtype, int64_dtype, object_dtype, ) UINT_32_MAX = iinfo(uint32).max def nanos_to_seconds(nanos): return nanos / (1000 * 1000 * 1000) class PrecomputedLoader(PipelineLoader): """ Synthetic PipelineLoader that uses a pre-computed array for each column. Parameters ---------- values : dict Map from column to values to use for that column. Values can be anything that can be passed as the first positional argument to a DataFrame whose indices are ``dates`` and ``sids`` dates : iterable[datetime-like] Row labels for input data. Can be anything that pd.DataFrame will coerce to a DatetimeIndex. sids : iterable[int-like] Column labels for input data. Can be anything that pd.DataFrame will coerce to an Int64Index. Notes ----- Adjustments are unsupported by this loader. """ def __init__(self, constants, dates, sids): loaders = {} for column, const in iteritems(constants): frame = DataFrame( const, index=dates, columns=sids, dtype=column.dtype, ) loaders[column] = DataFrameLoader( column=column, baseline=frame, adjustments=None, ) self._loaders = loaders def load_adjusted_array(self, columns, dates, assets, mask): """ Load by delegating to sub-loaders. """ out = {} for col in columns: try: loader = self._loaders[col] except KeyError: raise ValueError("Couldn't find loader for %s" % col) out.update( loader.load_adjusted_array([col], dates, assets, mask) ) return out class EyeLoader(PrecomputedLoader): """ A PrecomputedLoader that emits arrays containing 1s on the diagonal and 0s elsewhere. Parameters ---------- columns : list[BoundColumn] Columns that this loader should know about. dates : iterable[datetime-like] Same as PrecomputedLoader. sids : iterable[int-like] Same as PrecomputedLoader """ def __init__(self, columns, dates, sids): shape = (len(dates), len(sids)) super(EyeLoader, self).__init__( {column: eye(shape, dtype=column.dtype) for column in columns}, dates, sids, ) class SeededRandomLoader(PrecomputedLoader): """ A PrecomputedLoader that emits arrays randomly-generated with a given seed. Parameters ---------- seed : int Seed for numpy.random.RandomState. columns : list[BoundColumn] Columns that this loader should know about. dates : iterable[datetime-like] Same as PrecomputedLoader. sids : iterable[int-like] Same as PrecomputedLoader """ def __init__(self, seed, columns, dates, sids): self._seed = seed super(SeededRandomLoader, self).__init__( {c: self.values(c.dtype, dates, sids) for c in columns}, dates, sids, ) def values(self, dtype, dates, sids): """ Make a random array of shape (len(dates), len(sids)) with ``dtype``. """ shape = (len(dates), len(sids)) return { datetime64ns_dtype: self._datetime_values, float64_dtype: self._float_values, int64_dtype: self._int_values, bool_dtype: self._bool_values, object_dtype: self._object_values, }[dtype](shape) @property def state(self): """ Make a new RandomState from our seed. This ensures that every call to _*_values produces the same output every time for a given SeededRandomLoader instance. """ return RandomState(self._seed) def _float_values(self, shape): """ Return uniformly-distributed floats between -0.0 and 100.0. """ return self.state.uniform(low=0.0, high=100.0, size=shape) def _int_values(self, shape): """ Return uniformly-distributed integers between 0 and 100. """ return (self.state.randint(low=0, high=100, size=shape) .astype('int64')) # default is system int def _datetime_values(self, shape): """ Return uniformly-distributed dates in 2014. """ start = Timestamp('2014', tz='UTC').asm8 offsets = self.state.randint( low=0, high=364, size=shape, ).astype('timedelta64[D]') return start + offsets def _bool_values(self, shape): """ Return uniformly-distributed True/False values. """ return self.state.randn(*shape) < 0 def _object_values(self, shape): res = self._int_values(shape).astype(str).astype(object) return res OHLCV = ('open', 'high', 'low', 'close', 'volume') OHLC = ('open', 'high', 'low', 'close') PSEUDO_EPOCH = Timestamp('2000-01-01', tz='UTC') def asset_start(asset_info, asset): ret = asset_info.loc[asset]['start_date'] if ret.tz is None: ret = ret.tz_localize('UTC') assert ret.tzname() == 'UTC', "Unexpected non-UTC timestamp" return ret def asset_end(asset_info, asset): ret = asset_info.loc[asset]['end_date'] if ret.tz is None: ret = ret.tz_localize('UTC') assert ret.tzname() == 'UTC', "Unexpected non-UTC timestamp" return ret def make_bar_data(asset_info, calendar): """ For a given asset/date/column combination, we generate a corresponding raw value using the following formula for OHLCV columns: data(asset, date, column) = (100,000 * asset_id) + (10,000 * column_num) + (date - Jan 1 2000).days # ~6000 for 2015 where: column_num('open') = 0 column_num('high') = 1 column_num('low') = 2 column_num('close') = 3 column_num('volume') = 4 We use days since Jan 1, 2000 to guarantee that there are no collisions while also the produced values smaller than UINT32_MAX / 1000. For 'day' and 'id', we use the standard format expected by the base class. Parameters ---------- asset_info : DataFrame DataFrame with asset_id as index and 'start_date'/'end_date' columns. calendar : pd.DatetimeIndex The trading calendar to use. Yields ------ p : (int, pd.DataFrame) A sid, data pair to be passed to BcolzDailyDailyBarWriter.write """ assert ( # Using .value here to avoid having to care about UTC-aware dates. PSEUDO_EPOCH.value < calendar.normalize().min().value <= asset_info['start_date'].min().value ), "calendar.min(): %s\nasset_info['start_date'].min(): %s" % ( calendar.min(), asset_info['start_date'].min(), ) assert (asset_info['start_date'] < asset_info['end_date']).all() def _raw_data_for_asset(asset_id): """ Generate 'raw' data that encodes information about the asset. See docstring for a description of the data format. """ # Get the dates for which this asset existed according to our asset # info. datetimes = calendar[calendar.slice_indexer( asset_start(asset_info, asset_id), asset_end(asset_info, asset_id), )] data = full( (len(datetimes), len(US_EQUITY_PRICING_BCOLZ_COLUMNS)), asset_id * 100 * 1000, dtype=uint32, ) # Add 10,000 * column-index to OHLCV columns data[:, :5] += arange(5, dtype=uint32) * 1000 # Add days since Jan 1 2001 for OHLCV columns. data[:, :5] += (datetimes - PSEUDO_EPOCH).days[:, None].astype(uint32) frame = DataFrame( data, index=datetimes, columns=US_EQUITY_PRICING_BCOLZ_COLUMNS, ) frame['day'] = nanos_to_seconds(datetimes.asi8) frame['id'] = asset_id return frame for asset in asset_info.index: yield asset, _raw_data_for_asset(asset) def expected_bar_value(asset_id, date, colname): """ Check that the raw value for an asset/date/column triple is as expected. Used by tests to verify data written by a writer. """ from_asset = asset_id * 100000 from_colname = OHLCV.index(colname) * 1000 from_date = (date - PSEUDO_EPOCH).days return from_asset + from_colname + from_date def expected_bar_values_2d(dates, asset_info, colname): """ Return an 2D array containing cls.expected_value(asset_id, date, colname) for each date/asset pair in the inputs. Values before/after an assets lifetime are filled with 0 for volume and NaN for price columns. """ if colname == 'volume': dtype = uint32 missing = 0 else: dtype = float64 missing = float('nan') assets = asset_info.index data = full((len(dates), len(assets)), missing, dtype=dtype) for j, asset in enumerate(assets): start = asset_start(asset_info, asset) end = asset_end(asset_info, asset) for i, date in enumerate(dates): # No value expected for dates outside the asset's start/end # date. if not (start <= date <= end): continue data[i, j] = expected_bar_value(asset, date, colname) return data class NullAdjustmentReader(SQLiteAdjustmentReader): """ A SQLiteAdjustmentReader that stores no adjustments and uses in-memory SQLite. """ def __init__(self): conn = sqlite3_connect(':memory:') writer = SQLiteAdjustmentWriter(conn, None, None) empty = DataFrame({ 'sid': array([], dtype=uint32), 'effective_date': array([], dtype=uint32), 'ratio': array([], dtype=float), }) empty_dividends = DataFrame({ 'sid': array([], dtype=uint32), 'amount': array([], dtype=float64), 'record_date': array([], dtype='datetime64[ns]'), 'ex_date': array([], dtype='datetime64[ns]'), 'declared_date': array([], dtype='datetime64[ns]'), 'pay_date': array([], dtype='datetime64[ns]'), }) writer.write(splits=empty, mergers=empty, dividends=empty_dividends) super(NullAdjustmentReader, self).__init__(conn)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/synthetic.py
synthetic.py
from functools import partial from numpy import ( ix_, zeros, ) from pandas import ( DataFrame, DatetimeIndex, Index, Int64Index, ) from zipline.lib.adjusted_array import AdjustedArray from zipline.lib.adjustment import make_adjustment_from_labels from zipline.utils.numpy_utils import as_column from .base import PipelineLoader ADJUSTMENT_COLUMNS = Index([ 'sid', 'value', 'kind', 'start_date', 'end_date', 'apply_date', ]) class DataFrameLoader(PipelineLoader): """ A PipelineLoader that reads its input from DataFrames. Mostly useful for testing, but can also be used for real work if your data fits in memory. Parameters ---------- column : zipline.pipeline.data.BoundColumn The column whose data is loadable by this loader. baseline : pandas.DataFrame A DataFrame with index of type DatetimeIndex and columns of type Int64Index. Dates should be labelled with the first date on which a value would be **available** to an algorithm. This means that OHLCV data should generally be shifted back by a trading day before being supplied to this class. adjustments : pandas.DataFrame, default=None A DataFrame with the following columns: sid : int value : any kind : int (zipline.pipeline.loaders.frame.ADJUSTMENT_TYPES) start_date : datetime64 (can be NaT) end_date : datetime64 (must be set) apply_date : datetime64 (must be set) The default of None is interpreted as "no adjustments to the baseline". """ def __init__(self, column, baseline, adjustments=None): self.column = column self.baseline = baseline.values.astype(self.column.dtype) self.dates = baseline.index self.assets = baseline.columns if adjustments is None: adjustments = DataFrame( index=DatetimeIndex([]), columns=ADJUSTMENT_COLUMNS, ) else: # Ensure that columns are in the correct order. adjustments = adjustments.reindex_axis(ADJUSTMENT_COLUMNS, axis=1) adjustments.sort_values(['apply_date', 'sid'], inplace=True) self.adjustments = adjustments self.adjustment_apply_dates = DatetimeIndex(adjustments.apply_date) self.adjustment_end_dates = DatetimeIndex(adjustments.end_date) self.adjustment_sids = Int64Index(adjustments.sid) def format_adjustments(self, dates, assets): """ Build a dict of Adjustment objects in the format expected by AdjustedArray. Returns a dict of the form: { # Integer index into `dates` for the date on which we should # apply the list of adjustments. 1 : [ Float64Multiply(first_row=2, last_row=4, col=3, value=0.5), Float64Overwrite(first_row=3, last_row=5, col=1, value=2.0), ... ], ... } """ make_adjustment = partial(make_adjustment_from_labels, dates, assets) min_date, max_date = dates[[0, -1]] # TODO: Consider porting this to Cython. if len(self.adjustments) == 0: return {} # Mask for adjustments whose apply_dates are in the requested window of # dates. date_bounds = self.adjustment_apply_dates.slice_indexer( min_date, max_date, ) dates_filter = zeros(len(self.adjustments), dtype='bool') dates_filter[date_bounds] = True # Ignore adjustments whose apply_date is in range, but whose end_date # is out of range. dates_filter &= (self.adjustment_end_dates >= min_date) # Mask for adjustments whose sids are in the requested assets. sids_filter = self.adjustment_sids.isin(assets.values) adjustments_to_use = self.adjustments.loc[ dates_filter & sids_filter ].set_index('apply_date') # For each apply_date on which we have an adjustment, compute # the integer index of that adjustment's apply_date in `dates`. # Then build a list of Adjustment objects for that apply_date. # This logic relies on the sorting applied on the previous line. out = {} previous_apply_date = object() for row in adjustments_to_use.itertuples(): # This expansion depends on the ordering of the DataFrame columns, # defined above. apply_date, sid, value, kind, start_date, end_date = row if apply_date != previous_apply_date: # Get the next apply date if no exact match. row_loc = dates.get_loc(apply_date, method='bfill') current_date_adjustments = out[row_loc] = [] previous_apply_date = apply_date # Look up the approprate Adjustment constructor based on the value # of `kind`. current_date_adjustments.append( make_adjustment(start_date, end_date, sid, kind, value) ) return out def load_adjusted_array(self, columns, dates, assets, mask): """ Load data from our stored baseline. """ column = self.column if len(columns) != 1: raise ValueError( "Can't load multiple columns with DataFrameLoader" ) elif columns[0] != column: raise ValueError("Can't load unknown column %s" % columns[0]) date_indexer = self.dates.get_indexer(dates) assets_indexer = self.assets.get_indexer(assets) # Boolean arrays with True on matched entries good_dates = (date_indexer != -1) good_assets = (assets_indexer != -1) data = self.baseline[ix_(date_indexer, assets_indexer)] mask = (good_assets & as_column(good_dates)) & mask # Mask out requested columns/rows that didn't match. data[~mask] = column.missing_value return { column: AdjustedArray( # Pull out requested columns/rows from our baseline data. data=data, adjustments=self.format_adjustments(dates, assets), missing_value=column.missing_value, ), }
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/frame.py
frame.py
import datetime import numpy as np import pandas as pd from zipline.errors import NoFurtherDataError from zipline.pipeline.common import TS_FIELD_NAME, SID_FIELD_NAME from zipline.utils.numpy_utils import categorical_dtype from zipline.utils.pandas_utils import mask_between_time def is_sorted_ascending(a): """Check if a numpy array is sorted.""" return (np.fmax.accumulate(a) <= a).all() def validate_event_metadata(event_dates, event_timestamps, event_sids): assert is_sorted_ascending(event_dates), "event dates must be sorted" assert len(event_sids) == len(event_dates) == len(event_timestamps), \ "mismatched arrays: %d != %d != %d" % ( len(event_sids), len(event_dates), len(event_timestamps), ) def next_event_indexer(all_dates, all_sids, event_dates, event_timestamps, event_sids): """ Construct an index array that, when applied to an array of values, produces a 2D array containing the values associated with the next event for each sid at each moment in time. Locations where no next event was known will be filled with -1. Parameters ---------- all_dates : ndarray[datetime64[ns], ndim=1] Row labels for the target output. all_sids : ndarray[int, ndim=1] Column labels for the target output. event_dates : ndarray[datetime64[ns], ndim=1] Dates on which each input events occurred/will occur. ``event_dates`` must be in sorted order, and may not contain any NaT values. event_timestamps : ndarray[datetime64[ns], ndim=1] Dates on which we learned about each input event. event_sids : ndarray[int, ndim=1] Sids assocated with each input event. Returns ------- indexer : ndarray[int, ndim=2] An array of shape (len(all_dates), len(all_sids)) of indices into ``event_{dates,timestamps,sids}``. """ validate_event_metadata(event_dates, event_timestamps, event_sids) out = np.full((len(all_dates), len(all_sids)), -1, dtype=np.int64) sid_ixs = all_sids.searchsorted(event_sids) # side='right' here ensures that we include the event date itself # if it's in all_dates. dt_ixs = all_dates.searchsorted(event_dates, side='right') ts_ixs = all_dates.searchsorted(event_timestamps) # Walk backward through the events, writing the index of the event into # slots ranging from the event's timestamp to its asof. This depends for # correctness on the fact that event_dates is sorted in ascending order, # because we need to overwrite later events with earlier ones if their # eligible windows overlap. for i in range(len(event_sids) - 1, -1, -1): start_ix = ts_ixs[i] end_ix = dt_ixs[i] out[start_ix:end_ix, sid_ixs[i]] = i return out def previous_event_indexer(all_dates, all_sids, event_dates, event_timestamps, event_sids): """ Construct an index array that, when applied to an array of values, produces a 2D array containing the values associated with the previous event for each sid at each moment in time. Locations where no previous event was known will be filled with -1. Parameters ---------- all_dates : ndarray[datetime64[ns], ndim=1] Row labels for the target output. all_sids : ndarray[int, ndim=1] Column labels for the target output. event_dates : ndarray[datetime64[ns], ndim=1] Dates on which each input events occurred/will occur. ``event_dates`` must be in sorted order, and may not contain any NaT values. event_timestamps : ndarray[datetime64[ns], ndim=1] Dates on which we learned about each input event. event_sids : ndarray[int, ndim=1] Sids assocated with each input event. Returns ------- indexer : ndarray[int, ndim=2] An array of shape (len(all_dates), len(all_sids)) of indices into ``event_{dates,timestamps,sids}``. """ validate_event_metadata(event_dates, event_timestamps, event_sids) out = np.full((len(all_dates), len(all_sids)), -1, dtype=np.int64) eff_dts = np.maximum(event_dates, event_timestamps) sid_ixs = all_sids.searchsorted(event_sids) dt_ixs = all_dates.searchsorted(eff_dts) # Walk backwards through the events, writing the index of the event into # slots ranging from max(event_date, event_timestamp) to the start of the # previously-written event. This depends for correctness on the fact that # event_dates is sorted in ascending order, because we need to have written # later events so we know where to stop forward-filling earlier events. last_written = {} for i in range(len(event_dates) - 1, -1, -1): sid_ix = sid_ixs[i] dt_ix = dt_ixs[i] out[dt_ix:last_written.get(sid_ix, None), sid_ix] = i last_written[sid_ix] = dt_ix return out def normalize_data_query_time(dt, time, tz): """Apply the correct time and timezone to a date. Parameters ---------- dt : pd.Timestamp The original datetime that represents the date. time : datetime.time The time of day to use as the cutoff point for new data. Data points that you learn about after this time will become available to your algorithm on the next trading day. tz : tzinfo The timezone to normalize your dates to before comparing against `time`. Returns ------- query_dt : pd.Timestamp The timestamp with the correct time and date in utc. """ # merge the correct date with the time in the given timezone then convert # back to utc return pd.Timestamp( datetime.datetime.combine(dt.date(), time), tz=tz, ).tz_convert('utc') def normalize_data_query_bounds(lower, upper, time, tz): """Adjust the first and last dates in the requested datetime index based on the provided query time and tz. lower : pd.Timestamp The lower date requested. upper : pd.Timestamp The upper date requested. time : datetime.time The time of day to use as the cutoff point for new data. Data points that you learn about after this time will become available to your algorithm on the next trading day. tz : tzinfo The timezone to normalize your dates to before comparing against `time`. """ # Subtract one day to grab things that happened on the first day we are # requesting. This doesn't need to be a trading day, we are only adding # a lower bound to limit the amount of in memory filtering that needs # to happen. lower -= datetime.timedelta(days=1) if time is not None: return normalize_data_query_time( lower, time, tz, ), normalize_data_query_time( upper, time, tz, ) return lower, upper _midnight = datetime.time(0, 0) def normalize_timestamp_to_query_time(df, time, tz, inplace=False, ts_field='timestamp'): """Update the timestamp field of a dataframe to normalize dates around some data query time/timezone. Parameters ---------- df : pd.DataFrame The dataframe to update. This needs a column named ``ts_field``. time : datetime.time The time of day to use as the cutoff point for new data. Data points that you learn about after this time will become available to your algorithm on the next trading day. tz : tzinfo The timezone to normalize your dates to before comparing against `time`. inplace : bool, optional Update the dataframe in place. ts_field : str, optional The name of the timestamp field in ``df``. Returns ------- df : pd.DataFrame The dataframe with the timestamp field normalized. If ``inplace`` is true, then this will be the same object as ``df`` otherwise this will be a copy. """ if not inplace: # don't mutate the dataframe in place df = df.copy() # There is a pandas bug (0.18.1) where if the timestamps in a # normalized DatetimeIndex are not sorted and one calls `tz_localize(None)` # on tha DatetimeIndex, some of the dates will be shifted by an hour # (similarly to the previously mentioned bug). Therefore, we must sort # the df here to ensure that we get the normalize correctly. df.sort_values(ts_field, inplace=True) dtidx = pd.DatetimeIndex(df.loc[:, ts_field], tz='utc') dtidx_local_time = dtidx.tz_convert(tz) to_roll_forward = mask_between_time( dtidx_local_time, time, _midnight, include_end=False, ) # For all of the times that are greater than our query time add 1 # day and truncate to the date. # We normalize twice here because of a bug in pandas 0.16.1 that causes # tz_localize() to shift some timestamps by an hour if they are not grouped # together by DST/EST. df.loc[to_roll_forward, ts_field] = ( dtidx_local_time[to_roll_forward] + datetime.timedelta(days=1) ).normalize().tz_localize(None).tz_localize('utc').normalize() df.loc[~to_roll_forward, ts_field] = dtidx[~to_roll_forward].normalize() return df def check_data_query_args(data_query_time, data_query_tz): """Checks the data_query_time and data_query_tz arguments for loaders and raises a standard exception if one is None and the other is not. Parameters ---------- data_query_time : datetime.time or None data_query_tz : tzinfo or None Raises ------ ValueError Raised when only one of the arguments is None. """ if (data_query_time is None) ^ (data_query_tz is None): raise ValueError( "either 'data_query_time' and 'data_query_tz' must both be" " None or neither may be None (got %r, %r)" % ( data_query_time, data_query_tz, ), ) def last_in_date_group(df, dates, assets, reindex=True, have_sids=True, extra_groupers=None): """ Determine the last piece of information known on each date in the date index for each group. Input df MUST be sorted such that the correct last item is chosen from each group. Parameters ---------- df : pd.DataFrame The DataFrame containing the data to be grouped. Must be sorted so that the correct last item is chosen from each group. dates : pd.DatetimeIndex The dates to use for grouping and reindexing. assets : pd.Int64Index The assets that should be included in the column multiindex. reindex : bool Whether or not the DataFrame should be reindexed against the date index. This will add back any dates to the index that were grouped away. have_sids : bool Whether or not the DataFrame has sids. If it does, they will be used in the groupby. extra_groupers : list of str Any extra field names that should be included in the groupby. Returns ------- last_in_group : pd.DataFrame A DataFrame with dates as the index and fields used in the groupby as levels of a multiindex of columns. """ idx = [dates[dates.searchsorted( df[TS_FIELD_NAME].values.astype('datetime64[D]') )]] if have_sids: idx += [SID_FIELD_NAME] if extra_groupers is None: extra_groupers = [] idx += extra_groupers last_in_group = df.drop(TS_FIELD_NAME, axis=1).groupby( idx, sort=False, ).last() # For the number of things that we're grouping by (except TS), unstack # the df. Done this way because of an unresolved pandas bug whereby # passing a list of levels with mixed dtypes to unstack causes the # resulting DataFrame to have all object-type columns. for _ in range(len(idx) - 1): last_in_group = last_in_group.unstack(-1) if reindex: if have_sids: cols = last_in_group.columns last_in_group = last_in_group.reindex( index=dates, columns=pd.MultiIndex.from_product( tuple(cols.levels[0:len(extra_groupers) + 1]) + (assets,), names=cols.names, ), ) else: last_in_group = last_in_group.reindex(dates) return last_in_group def ffill_across_cols(df, columns, name_map): """ Forward fill values in a DataFrame with special logic to handle cases that pd.DataFrame.ffill cannot and cast columns to appropriate types. Parameters ---------- df : pd.DataFrame The DataFrame to do forward-filling on. columns : list of BoundColumn The BoundColumns that correspond to columns in the DataFrame to which special filling and/or casting logic should be applied. name_map: map of string -> string Mapping from the name of each BoundColumn to the associated column name in `df`. """ df.ffill(inplace=True) # Fill in missing values specified by each column. This is made # significantly more complex by the fact that we need to work around # two pandas issues: # 1) When we have sids, if there are no records for a given sid for any # dates, pandas will generate a column full of NaNs for that sid. # This means that some of the columns in `dense_output` are now # float instead of the intended dtype, so we have to coerce back to # our expected type and convert NaNs into the desired missing value. # 2) DataFrame.ffill assumes that receiving None as a fill-value means # that no value was passed. Consequently, there's no way to tell # pandas to replace NaNs in an object column with None using fillna, # so we have to roll our own instead using df.where. for column in columns: column_name = name_map[column.name] # Special logic for strings since `fillna` doesn't work if the # missing value is `None`. if column.dtype == categorical_dtype: df[column_name] = df[ column.name ].where(pd.notnull(df[column_name]), column.missing_value) else: # We need to execute `fillna` before `astype` in case the # column contains NaNs and needs to be cast to bool or int. # This is so that the NaNs are replaced first, since pandas # can't convert NaNs for those types. df[column_name] = df[ column_name ].fillna(column.missing_value).astype(column.dtype) def shift_dates(dates, start_date, end_date, shift): """ Shift dates of a pipeline query back by `shift` days. load_adjusted_array is called with dates on which the user's algo will be shown data, which means we need to return the data that would be known at the start of each date. This is often labeled with a previous date in the underlying data (e.g. at the start of today, we have the data as of yesterday). In this case, we can shift the query dates back to query the appropriate values. Parameters ---------- dates : DatetimeIndex All known dates. start_date : pd.Timestamp Start date of the pipeline query. end_date : pd.Timestamp End date of the pipeline query. shift : int The number of days to shift back the query dates. """ try: start = dates.get_loc(start_date) except KeyError: if start_date < dates[0]: raise NoFurtherDataError( msg=( "Pipeline Query requested data starting on {query_start}, " "but first known date is {calendar_start}" ).format( query_start=str(start_date), calendar_start=str(dates[0]), ) ) else: raise ValueError("Query start %s not in calendar" % start_date) # Make sure that shifting doesn't push us out of the calendar. if start < shift: raise NoFurtherDataError( msg=( "Pipeline Query requested data from {shift}" " days before {query_start}, but first known date is only " "{start} days earlier." ).format(shift=shift, query_start=start_date, start=start), ) try: end = dates.get_loc(end_date) except KeyError: if end_date > dates[-1]: raise NoFurtherDataError( msg=( "Pipeline Query requesting data up to {query_end}, " "but last known date is {calendar_end}" ).format( query_end=end_date, calendar_end=dates[-1], ) ) else: raise ValueError("Query end %s not in calendar" % end_date) return dates[start - shift], dates[end - shift]
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/utils.py
utils.py
from abc import abstractmethod, abstractproperty import numpy as np import pandas as pd from six import viewvalues from toolz import groupby from zipline.lib.adjusted_array import AdjustedArray from zipline.lib.adjustment import ( Datetime641DArrayOverwrite, Datetime64Overwrite, Float641DArrayOverwrite, Float64Multiply, Float64Overwrite, ) from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.loaders.base import PipelineLoader from zipline.utils.numpy_utils import datetime64ns_dtype, float64_dtype from zipline.pipeline.loaders.utils import ( ffill_across_cols, last_in_date_group ) INVALID_NUM_QTRS_MESSAGE = "Passed invalid number of quarters %s; " \ "must pass a number of quarters >= 0" NEXT_FISCAL_QUARTER = 'next_fiscal_quarter' NEXT_FISCAL_YEAR = 'next_fiscal_year' NORMALIZED_QUARTERS = 'normalized_quarters' PREVIOUS_FISCAL_QUARTER = 'previous_fiscal_quarter' PREVIOUS_FISCAL_YEAR = 'previous_fiscal_year' SHIFTED_NORMALIZED_QTRS = 'shifted_normalized_quarters' SIMULATION_DATES = 'dates' def normalize_quarters(years, quarters): return years * 4 + quarters - 1 def split_normalized_quarters(normalized_quarters): years = normalized_quarters // 4 quarters = normalized_quarters % 4 return years, quarters + 1 # These metadata columns are used to align event indexers. metadata_columns = frozenset({ TS_FIELD_NAME, SID_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, }) def required_estimates_fields(columns): """ Compute the set of resource columns required to serve `columns`. """ # We also expect any of the field names that our loadable columns # are mapped to. return metadata_columns.union(viewvalues(columns)) def validate_column_specs(events, columns): """ Verify that the columns of ``events`` can be used by a EarningsEstimatesLoader to serve the BoundColumns described by `columns`. """ required = required_estimates_fields(columns) received = set(events.columns) missing = required - received if missing: raise ValueError( "EarningsEstimatesLoader missing required columns {missing}.\n" "Got Columns: {received}\n" "Expected Columns: {required}".format( missing=sorted(missing), received=sorted(received), required=sorted(required), ) ) def add_new_adjustments(adjustments_dict, adjustments, column_name, ts): try: adjustments_dict[column_name][ts].extend(adjustments) except KeyError: adjustments_dict[column_name][ts] = adjustments class EarningsEstimatesLoader(PipelineLoader): """ An abstract pipeline loader for estimates data that can load data a variable number of quarters forwards/backwards from calendar dates depending on the `num_announcements` attribute of the columns' dataset. If split adjustments are to be applied, a loader, split-adjusted columns, and the split-adjusted asof-date must be supplied. Parameters ---------- estimates : pd.DataFrame The raw estimates data. ``estimates`` must contain at least 5 columns: sid : int64 The asset id associated with each estimate. event_date : datetime64[ns] The date on which the event that the estimate is for will/has occurred.. timestamp : datetime64[ns] The date on which we learned about the estimate. fiscal_quarter : int64 The quarter during which the event has/will occur. fiscal_year : int64 The year during which the event has/will occur. name_map : dict[str -> str] A map of names of BoundColumns that this loader will load to the names of the corresponding columns in `events`. """ def __init__(self, estimates, name_map): validate_column_specs( estimates, name_map ) self.estimates = estimates[ estimates[EVENT_DATE_FIELD_NAME].notnull() & estimates[FISCAL_QUARTER_FIELD_NAME].notnull() & estimates[FISCAL_YEAR_FIELD_NAME].notnull() ] self.estimates[NORMALIZED_QUARTERS] = normalize_quarters( self.estimates[FISCAL_YEAR_FIELD_NAME], self.estimates[FISCAL_QUARTER_FIELD_NAME], ) self.array_overwrites_dict = { datetime64ns_dtype: Datetime641DArrayOverwrite, float64_dtype: Float641DArrayOverwrite, } self.scalar_overwrites_dict = { datetime64ns_dtype: Datetime64Overwrite, float64_dtype: Float64Overwrite, } self.name_map = name_map @abstractmethod def get_zeroth_quarter_idx(self, stacked_last_per_qtr): raise NotImplementedError('get_zeroth_quarter_idx') @abstractmethod def get_shifted_qtrs(self, zero_qtrs, num_announcements): raise NotImplementedError('get_shifted_qtrs') @abstractmethod def create_overwrite_for_estimate(self, column, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments, split_adjusted_asof_idx): raise NotImplementedError('create_overwrite_for_estimate') @abstractproperty def searchsorted_side(self): return NotImplementedError('searchsorted_side') def get_requested_quarter_data(self, zero_qtr_data, zeroth_quarter_idx, stacked_last_per_qtr, num_announcements, dates): """ Selects the requested data for each date. Parameters ---------- zero_qtr_data : pd.DataFrame The 'time zero' data for each calendar date per sid. zeroth_quarter_idx : pd.Index An index of calendar dates, sid, and normalized quarters, for only the rows that have a next or previous earnings estimate. stacked_last_per_qtr : pd.DataFrame The latest estimate known with the dates, normalized quarter, and sid as the index. num_announcements : int The number of annoucements out the user requested relative to each date in the calendar dates. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. Returns -------- requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns; `dates` are the index and columns are a MultiIndex with sids at the top level and the dataset columns on the bottom. """ zero_qtr_data_idx = zero_qtr_data.index requested_qtr_idx = pd.MultiIndex.from_arrays( [ zero_qtr_data_idx.get_level_values(0), zero_qtr_data_idx.get_level_values(1), self.get_shifted_qtrs( zeroth_quarter_idx.get_level_values( NORMALIZED_QUARTERS, ), num_announcements, ), ], names=[ zero_qtr_data_idx.names[0], zero_qtr_data_idx.names[1], SHIFTED_NORMALIZED_QTRS, ], ) requested_qtr_data = stacked_last_per_qtr.loc[requested_qtr_idx] requested_qtr_data = requested_qtr_data.reset_index( SHIFTED_NORMALIZED_QTRS, ) # Calculate the actual year/quarter being requested and add those in # as columns. (requested_qtr_data[FISCAL_YEAR_FIELD_NAME], requested_qtr_data[FISCAL_QUARTER_FIELD_NAME]) = \ split_normalized_quarters( requested_qtr_data[SHIFTED_NORMALIZED_QTRS] ) # Once we're left with just dates as the index, we can reindex by all # dates so that we have a value for each calendar date. return requested_qtr_data.unstack(SID_FIELD_NAME).reindex(dates) def get_split_adjusted_asof_idx(self, dates): """ Compute the index in `dates` where the split-adjusted-asof-date falls. This is the date up to which, and including which, we will need to unapply all adjustments for and then re-apply them as they come in. After this date, adjustments are applied as normal. Parameters ---------- dates : pd.DatetimeIndex The calendar dates over which the Pipeline is being computed. Returns ------- split_adjusted_asof_idx : int The index in `dates` at which the data should be split. """ split_adjusted_asof_idx = dates.searchsorted( self._split_adjusted_asof ) # The split-asof date is after the date index. if split_adjusted_asof_idx == len(dates): split_adjusted_asof_idx = len(dates) - 1 elif self._split_adjusted_asof < dates[0].tz_localize(None): split_adjusted_asof_idx = -1 return split_adjusted_asof_idx def collect_overwrites_for_sid(self, group, dates, requested_qtr_data, last_per_qtr, sid_idx, columns, all_adjustments_for_sid, sid): """ Given a sid, collect all overwrites that should be applied for this sid at each quarter boundary. Parameters ---------- group : pd.DataFrame The data for `sid`. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. sid_idx : int The sid's index in the asset index. columns : list of BoundColumn The columns for which the overwrites should be computed. all_adjustments_for_sid : dict[int -> AdjustedArray] A dictionary of the integer index of each timestamp into the date index, mapped to adjustments that should be applied at that index for the given sid (`sid`). This dictionary is modified as adjustments are collected. sid : int The sid for which overwrites should be computed. """ # If data was requested for only 1 date, there can never be any # overwrites, so skip the extra work. if len(dates) == 1: return next_qtr_start_indices = dates.searchsorted( group[EVENT_DATE_FIELD_NAME].values, side=self.searchsorted_side, ) qtrs_with_estimates = group.index.get_level_values( NORMALIZED_QUARTERS ).values for idx in next_qtr_start_indices: if 0 < idx < len(dates): # Find the quarter being requested in the quarter we're # crossing into. requested_quarter = requested_qtr_data[ SHIFTED_NORMALIZED_QTRS, sid, ].iloc[idx] # Only add adjustments if the next quarter starts somewhere # in our date index for this sid. Our 'next' quarter can # never start at index 0; a starting index of 0 means that # the next quarter's event date was NaT. self.create_overwrites_for_quarter( all_adjustments_for_sid, idx, last_per_qtr, qtrs_with_estimates, requested_quarter, sid, sid_idx, columns ) def get_adjustments_for_sid(self, group, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, **kwargs): """ Parameters ---------- group : pd.DataFrame The data for the given sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. sid_to_idx : dict[int -> int] A dictionary mapping sid to he sid's index in the asset index. columns : list of BoundColumn The columns for which the overwrites should be computed. col_to_all_adjustments : dict[int -> AdjustedArray] A dictionary of the integer index of each timestamp into the date index, mapped to adjustments that should be applied at that index. This dictionary is for adjustments for ALL sids. It is modified as adjustments are collected. kwargs : Additional arguments used in collecting adjustments; unused here. """ # Collect all adjustments for a given sid. all_adjustments_for_sid = {} sid = int(group.name) self.collect_overwrites_for_sid(group, dates, requested_qtr_data, last_per_qtr, sid_to_idx[sid], columns, all_adjustments_for_sid, sid) self.merge_into_adjustments_for_all_sids( all_adjustments_for_sid, col_to_all_adjustments ) def merge_into_adjustments_for_all_sids(self, all_adjustments_for_sid, col_to_all_adjustments): """ Merge adjustments for a particular sid into a dictionary containing adjustments for all sids. Parameters ---------- all_adjustments_for_sid : dict[int -> AdjustedArray] All adjustments for a particular sid. col_to_all_adjustments : dict[int -> AdjustedArray] All adjustments for all sids. """ for col_name in all_adjustments_for_sid: if col_name not in col_to_all_adjustments: col_to_all_adjustments[col_name] = {} for ts in all_adjustments_for_sid[col_name]: adjs = all_adjustments_for_sid[col_name][ts] add_new_adjustments(col_to_all_adjustments, adjs, col_name, ts) def get_adjustments(self, zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, **kwargs): """ Creates an AdjustedArray from the given estimates data for the given dates. Parameters ---------- zero_qtr_data : pd.DataFrame The 'time zero' data for each calendar date per sid. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. assets : pd.Int64Index An index of all the assets from the raw data. columns : list of BoundColumn The columns for which adjustments need to be calculated. kwargs : Additional keyword arguments that should be forwarded to `get_adjustments_for_sid` and to be used in computing adjustments for each sid. Returns ------- col_to_all_adjustments : dict[int -> AdjustedArray] A dictionary of all adjustments that should be applied. """ zero_qtr_data.sort_index(inplace=True) # Here we want to get the LAST record from each group of records # corresponding to a single quarter. This is to ensure that we select # the most up-to-date event date in case the event date changes. quarter_shifts = zero_qtr_data.groupby( level=[SID_FIELD_NAME, NORMALIZED_QUARTERS] ).nth(-1) col_to_all_adjustments = {} sid_to_idx = dict(zip(assets, range(len(assets)))) quarter_shifts.groupby(level=SID_FIELD_NAME).apply( self.get_adjustments_for_sid, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, **kwargs ) return col_to_all_adjustments def create_overwrites_for_quarter(self, col_to_overwrites, next_qtr_start_idx, last_per_qtr, quarters_with_estimates_for_sid, requested_quarter, sid, sid_idx, columns): """ Add entries to the dictionary of columns to adjustments for the given sid and the given quarter. Parameters ---------- col_to_overwrites : dict [column_name -> list of ArrayAdjustment] A dictionary mapping column names to all overwrites for those columns. next_qtr_start_idx : int The index of the first day of the next quarter in the calendar dates. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter; this is particularly useful for getting adjustments for 'next' estimates. quarters_with_estimates_for_sid : np.array An array of all quarters for which there are estimates for the given sid. requested_quarter : float The quarter for which the overwrite should be created. sid : int The sid for which to create overwrites. sid_idx : int The index of the sid in `assets`. columns : list of BoundColumn The columns for which to create overwrites. """ for col in columns: column_name = self.name_map[col.name] if column_name not in col_to_overwrites: col_to_overwrites[column_name] = {} # If there are estimates for the requested quarter, # overwrite all values going up to the starting index of # that quarter with estimates for that quarter. if requested_quarter in quarters_with_estimates_for_sid: adjs = self.create_overwrite_for_estimate( col, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, ) add_new_adjustments(col_to_overwrites, adjs, column_name, next_qtr_start_idx) # There are no estimates for the quarter. Overwrite all # values going up to the starting index of that quarter # with the missing value for this column. else: adjs = [self.overwrite_with_null( col, next_qtr_start_idx, sid_idx)] add_new_adjustments(col_to_overwrites, adjs, column_name, next_qtr_start_idx) def overwrite_with_null(self, column, next_qtr_start_idx, sid_idx): return self.scalar_overwrites_dict[column.dtype]( 0, next_qtr_start_idx - 1, sid_idx, sid_idx, column.missing_value ) def load_adjusted_array(self, columns, dates, assets, mask): # Separate out getting the columns' datasets and the datasets' # num_announcements attributes to ensure that we're catching the right # AttributeError. col_to_datasets = {col: col.dataset for col in columns} try: groups = groupby(lambda col: col_to_datasets[col].num_announcements, col_to_datasets) except AttributeError: raise AttributeError("Datasets loaded via the " "EarningsEstimatesLoader must define a " "`num_announcements` attribute that defines " "how many quarters out the loader should load" " the data relative to `dates`.") if any(num_qtr < 0 for num_qtr in groups): raise ValueError( INVALID_NUM_QTRS_MESSAGE % ','.join( str(qtr) for qtr in groups if qtr < 0 ) ) out = {} # To optimize performance, only work below on assets that are # actually in the raw data. assets_with_data = set(assets) & set(self.estimates[SID_FIELD_NAME]) last_per_qtr, stacked_last_per_qtr = self.get_last_data_per_qtr( assets_with_data, columns, dates ) # Determine which quarter is immediately next/previous for each # date. zeroth_quarter_idx = self.get_zeroth_quarter_idx(stacked_last_per_qtr) zero_qtr_data = stacked_last_per_qtr.loc[zeroth_quarter_idx] for num_announcements, columns in groups.items(): requested_qtr_data = self.get_requested_quarter_data( zero_qtr_data, zeroth_quarter_idx, stacked_last_per_qtr, num_announcements, dates, ) # Calculate all adjustments for the given quarter and accumulate # them for each column. col_to_adjustments = self.get_adjustments( zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns ) # Lookup the asset indexer once, this is so we can reindex # the assets returned into the assets requested for each column. # This depends on the fact that our column multiindex has the same # sids for each field. This allows us to do the lookup once on # level 1 instead of doing the lookup each time per value in # level 0. asset_indexer = assets.get_indexer_for( requested_qtr_data.columns.levels[1], ) for col in columns: column_name = self.name_map[col.name] # allocate the empty output with the correct missing value output_array = np.full( (len(dates), len(assets)), col.missing_value, dtype=col.dtype, ) # overwrite the missing value with values from the computed # data output_array[ :, asset_indexer, ] = requested_qtr_data[column_name].values out[col] = AdjustedArray( output_array, # There may not be any adjustments at all (e.g. if # len(date) == 1), so provide a default. dict(col_to_adjustments.get(column_name, {})), col.missing_value, ) return out def get_last_data_per_qtr(self, assets_with_data, columns, dates): """ Determine the last piece of information we know for each column on each date in the index for each sid and quarter. Parameters ---------- assets_with_data : pd.Index Index of all assets that appear in the raw data given to the loader. columns : iterable of BoundColumn The columns that need to be loaded from the raw data. dates : pd.DatetimeIndex The calendar of dates for which data should be loaded. Returns ------- stacked_last_per_qtr : pd.DataFrame A DataFrame indexed by [dates, sid, normalized_quarters] that has the latest information for each row of the index, sorted by event date. last_per_qtr : pd.DataFrame A DataFrame with columns that are a MultiIndex of [ self.estimates.columns, normalized_quarters, sid]. """ # Get a DataFrame indexed by date with a MultiIndex of columns of [ # self.estimates.columns, normalized_quarters, sid], where each cell # contains the latest data for that day. last_per_qtr = last_in_date_group( self.estimates, dates, assets_with_data, reindex=True, extra_groupers=[NORMALIZED_QUARTERS], ) # Forward fill values for each quarter/sid/dataset column. ffill_across_cols(last_per_qtr, columns, self.name_map) # Stack quarter and sid into the index. stacked_last_per_qtr = last_per_qtr.stack( [SID_FIELD_NAME, NORMALIZED_QUARTERS], ) # Set date index name for ease of reference stacked_last_per_qtr.index.set_names( SIMULATION_DATES, level=0, inplace=True, ) stacked_last_per_qtr = stacked_last_per_qtr.sort_values( EVENT_DATE_FIELD_NAME, ) stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] = pd.to_datetime( stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] ) return last_per_qtr, stacked_last_per_qtr class NextEarningsEstimatesLoader(EarningsEstimatesLoader): searchsorted_side = 'right' def create_overwrite_for_estimate(self, column, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments=None, split_adjusted_asof_idx=None): return [self.array_overwrites_dict[column.dtype]( 0, next_qtr_start_idx - 1, sid_idx, sid_idx, last_per_qtr[ column_name, requested_quarter, sid, ].values[:next_qtr_start_idx], )] def get_shifted_qtrs(self, zero_qtrs, num_announcements): return zero_qtrs + (num_announcements - 1) def get_zeroth_quarter_idx(self, stacked_last_per_qtr): """ Filters for releases that are on or after each simulation date and determines the next quarter by picking out the upcoming release for each date in the index. Parameters ---------- stacked_last_per_qtr : pd.DataFrame A DataFrame with index of calendar dates, sid, and normalized quarters with each row being the latest estimate for the row's index values, sorted by event date. Returns ------- next_releases_per_date_index : pd.MultiIndex An index of calendar dates, sid, and normalized quarters, for only the rows that have a next event. """ next_releases_per_date = stacked_last_per_qtr.loc[ stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] >= stacked_last_per_qtr.index.get_level_values(SIMULATION_DATES) ].groupby( level=[SIMULATION_DATES, SID_FIELD_NAME], as_index=False, # Here we take advantage of the fact that `stacked_last_per_qtr` is # sorted by event date. ).nth(0) return next_releases_per_date.index class PreviousEarningsEstimatesLoader(EarningsEstimatesLoader): searchsorted_side = 'left' def create_overwrite_for_estimate(self, column, column_name, dates, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments=None, split_adjusted_asof_idx=None, split_dict=None): return [self.overwrite_with_null( column, next_qtr_start_idx, sid_idx, )] def get_shifted_qtrs(self, zero_qtrs, num_announcements): return zero_qtrs - (num_announcements - 1) def get_zeroth_quarter_idx(self, stacked_last_per_qtr): """ Filters for releases that are on or after each simulation date and determines the previous quarter by picking out the most recent release relative to each date in the index. Parameters ---------- stacked_last_per_qtr : pd.DataFrame A DataFrame with index of calendar dates, sid, and normalized quarters with each row being the latest estimate for the row's index values, sorted by event date. Returns ------- previous_releases_per_date_index : pd.MultiIndex An index of calendar dates, sid, and normalized quarters, for only the rows that have a previous event. """ previous_releases_per_date = stacked_last_per_qtr.loc[ stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] <= stacked_last_per_qtr.index.get_level_values(SIMULATION_DATES) ].groupby( level=[SIMULATION_DATES, SID_FIELD_NAME], as_index=False, # Here we take advantage of the fact that `stacked_last_per_qtr` is # sorted by event date. ).nth(-1) return previous_releases_per_date.index def validate_split_adjusted_column_specs(name_map, columns): to_be_split = set(columns) available = set(name_map.keys()) extra = to_be_split - available if extra: raise ValueError( "EarningsEstimatesLoader got the following extra columns to be " "split-adjusted: {extra}.\n" "Got Columns: {to_be_split}\n" "Available Columns: {available}".format( extra=sorted(extra), to_be_split=sorted(to_be_split), available=sorted(available), ) ) class SplitAdjustedEstimatesLoader(EarningsEstimatesLoader): """ Estimates loader that loads data that needs to be split-adjusted. Parameters ---------- split_adjustments_loader : SQLiteAdjustmentReader The loader to use for reading split adjustments. split_adjusted_column_names : iterable of str The column names that should be split-adjusted. split_adjusted_asof : pd.Timestamp The date that separates data into 2 halves: the first half is the set of dates up to and including the split_adjusted_asof date. All adjustments occurring during this first half are applied to all dates in this first half. The second half is the set of dates after the split_adjusted_asof date. All adjustments occurring during this second half are applied sequentially as they appear in the timeline. """ def __init__(self, estimates, name_map, split_adjustments_loader, split_adjusted_column_names, split_adjusted_asof): validate_split_adjusted_column_specs(name_map, split_adjusted_column_names) self._split_adjustments = split_adjustments_loader self._split_adjusted_column_names = split_adjusted_column_names self._split_adjusted_asof = split_adjusted_asof self._split_adjustment_dict = {} super(SplitAdjustedEstimatesLoader, self).__init__( estimates, name_map ) @abstractmethod def collect_split_adjustments(self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns): raise NotImplementedError('collect_split_adjustments') def get_adjustments_for_sid(self, group, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, split_adjusted_asof_idx=None, split_adjusted_cols_for_group=None): """ Collects both overwrites and adjustments for a particular sid. Parameters ---------- split_adjusted_asof_idx : int The integer index of the date on which the data was split-adjusted. split_adjusted_cols_for_group : list of str The names of requested columns that should also be split-adjusted. """ all_adjustments_for_sid = {} sid = int(group.name) self.collect_overwrites_for_sid(group, dates, requested_qtr_data, last_per_qtr, sid_to_idx[sid], columns, all_adjustments_for_sid, sid) (pre_adjustments, post_adjustments) = self.retrieve_split_adjustment_data_for_sid( dates, sid, split_adjusted_asof_idx ) sid_estimates = self.estimates[ self.estimates[SID_FIELD_NAME] == sid ] # We might not have any overwrites but still have # adjustments, and we will need to manually add columns if # that is the case. for col_name in split_adjusted_cols_for_group: if col_name not in all_adjustments_for_sid: all_adjustments_for_sid[col_name] = {} self.collect_split_adjustments( all_adjustments_for_sid, requested_qtr_data, dates, sid, sid_to_idx[sid], sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, split_adjusted_cols_for_group ) self.merge_into_adjustments_for_all_sids( all_adjustments_for_sid, col_to_all_adjustments ) def get_adjustments(self, zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, **kwargs): """ Calculates both split adjustments and overwrites for all sids. """ split_adjusted_cols_for_group = [ self.name_map[col.name] for col in columns if self.name_map[col.name] in self._split_adjusted_column_names ] # Add all splits to the adjustment dict for this sid. split_adjusted_asof_idx = self.get_split_adjusted_asof_idx( dates ) return super(SplitAdjustedEstimatesLoader, self).get_adjustments( zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, split_adjusted_cols_for_group=split_adjusted_cols_for_group, split_adjusted_asof_idx=split_adjusted_asof_idx ) def determine_end_idx_for_adjustment(self, adjustment_ts, dates, upper_bound, requested_quarter, sid_estimates): """ Determines the date until which the adjustment at the given date index should be applied for the given quarter. Parameters ---------- adjustment_ts : pd.Timestamp The timestamp at which the adjustment occurs. dates : pd.DatetimeIndex The calendar dates over which the Pipeline is being computed. upper_bound : int The index of the upper bound in the calendar dates. This is the index until which the adjusment will be applied unless there is information for the requested quarter that comes in on or before that date. requested_quarter : float The quarter for which we are determining how the adjustment should be applied. sid_estimates : pd.DataFrame The DataFrame of estimates data for the sid for which we're applying the given adjustment. Returns ------- end_idx : int The last index to which the adjustment should be applied for the given quarter/sid. """ end_idx = upper_bound # Find the next newest kd that happens on or after # the date of this adjustment newest_kd_for_qtr = sid_estimates[ (sid_estimates[NORMALIZED_QUARTERS] == requested_quarter) & (sid_estimates[TS_FIELD_NAME] >= adjustment_ts) ][TS_FIELD_NAME].min() if pd.notnull(newest_kd_for_qtr): newest_kd_idx = dates.searchsorted( newest_kd_for_qtr ) # We have fresh information that comes in # before the end of the overwrite and # presumably is already split-adjusted to the # current split. We should stop applying the # adjustment the day before this new # information comes in. if newest_kd_idx <= upper_bound: end_idx = newest_kd_idx - 1 return end_idx def collect_pre_split_asof_date_adjustments( self, split_adjusted_asof_date_idx, sid_idx, pre_adjustments, requested_split_adjusted_columns ): """ Collect split adjustments that occur before the split-adjusted-asof-date. All those adjustments must first be UN-applied at the first date index and then re-applied on the appropriate dates in order to match point in time share pricing data. Parameters ---------- split_adjusted_asof_date_idx : int The index in the calendar dates as-of which all data was split-adjusted. sid_idx : int The index of the sid for which adjustments should be collected in the adjusted array. pre_adjustments : tuple(list(float), list(int)) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str The requested split adjusted columns. Returns ------- col_to_split_adjustments : dict[str -> dict[int -> list of Adjustment]] The adjustments for this sid that occurred on or before the split-asof-date. """ col_to_split_adjustments = {} if len(pre_adjustments[0]): adjustment_values, date_indexes = pre_adjustments for column_name in requested_split_adjusted_columns: col_to_split_adjustments[column_name] = {} # We need to undo all adjustments that happen before the # split_asof_date here by reversing the split ratio. col_to_split_adjustments[column_name][0] = [Float64Multiply( 0, split_adjusted_asof_date_idx, sid_idx, sid_idx, 1 / future_adjustment ) for future_adjustment in adjustment_values] for adjustment, date_index in zip(adjustment_values, date_indexes): adj = Float64Multiply( 0, split_adjusted_asof_date_idx, sid_idx, sid_idx, adjustment ) add_new_adjustments(col_to_split_adjustments, [adj], column_name, date_index) return col_to_split_adjustments def collect_post_asof_split_adjustments(self, post_adjustments, requested_qtr_data, sid, sid_idx, sid_estimates, requested_split_adjusted_columns): """ Collect split adjustments that occur after the split-adjusted-asof-date. Each adjustment needs to be applied to all dates on which knowledge for the requested quarter was older than the date of the adjustment. Parameters ---------- post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for this sid. requested_split_adjusted_columns : list of str The requested split adjusted columns. Returns ------- col_to_split_adjustments : dict[str -> dict[int -> list of Adjustment]] The adjustments for this sid that occurred after the split-asof-date. """ col_to_split_adjustments = {} if post_adjustments: # Get an integer index requested_qtr_timeline = requested_qtr_data[ SHIFTED_NORMALIZED_QTRS ][sid].reset_index() requested_qtr_timeline = requested_qtr_timeline[ requested_qtr_timeline[sid].notnull() ] # Split the data into range by quarter and determine which quarter # was being requested in each range. # Split integer indexes up by quarter range qtr_ranges_idxs = np.split( requested_qtr_timeline.index, np.where(np.diff(requested_qtr_timeline[sid]) != 0)[0] + 1 ) requested_quarters_per_range = [requested_qtr_timeline[sid][r[0]] for r in qtr_ranges_idxs] # Try to apply each adjustment to each quarter range. for i, qtr_range in enumerate(qtr_ranges_idxs): for adjustment, date_index, timestamp in zip( *post_adjustments ): # In the default case, apply through the end of the quarter upper_bound = qtr_range[-1] # Find the smallest KD in estimates that is on or after the # date of the given adjustment. Apply the given adjustment # until that KD. end_idx = self.determine_end_idx_for_adjustment( timestamp, requested_qtr_data.index, upper_bound, requested_quarters_per_range[i], sid_estimates ) # In the default case, apply adjustment on the first day of # the quarter. start_idx = qtr_range[0] # If the adjustment happens during this quarter, apply the # adjustment on the day it happens. if date_index > start_idx: start_idx = date_index # We only want to apply the adjustment if we have any stale # data to apply it to. if qtr_range[0] <= end_idx: for column_name in requested_split_adjusted_columns: if column_name not in col_to_split_adjustments: col_to_split_adjustments[column_name] = {} adj = Float64Multiply( # Always apply from first day of qtr qtr_range[0], end_idx, sid_idx, sid_idx, adjustment ) add_new_adjustments( col_to_split_adjustments, [adj], column_name, start_idx ) return col_to_split_adjustments def retrieve_split_adjustment_data_for_sid(self, dates, sid, split_adjusted_asof_idx): """ dates : pd.DatetimeIndex The calendar dates. sid : int The sid for which we want to retrieve adjustments. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. Returns ------- pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. """ adjustments = self._split_adjustments.get_adjustments_for_sid( 'splits', sid ) sorted(adjustments, key=lambda adj: adj[0]) # Get rid of any adjustments that happen outside of our date index. adjustments = list(filter(lambda x: dates[0] <= x[0] <= dates[-1], adjustments)) adjustment_values = np.array([adj[1] for adj in adjustments]) timestamps = pd.DatetimeIndex([adj[0] for adj in adjustments]) # We need the first date on which we would have known about each # adjustment. date_indexes = dates.searchsorted(timestamps) pre_adjustment_idxs = np.where( date_indexes <= split_adjusted_asof_idx )[0] last_adjustment_split_asof_idx = -1 if len(pre_adjustment_idxs): last_adjustment_split_asof_idx = pre_adjustment_idxs.max() pre_adjustments = ( adjustment_values[:last_adjustment_split_asof_idx + 1], date_indexes[:last_adjustment_split_asof_idx + 1] ) post_adjustments = ( adjustment_values[last_adjustment_split_asof_idx + 1:], date_indexes[last_adjustment_split_asof_idx + 1:], timestamps[last_adjustment_split_asof_idx + 1:] ) return pre_adjustments, post_adjustments def _collect_adjustments(self, requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns): pre_adjustments_dict = self.collect_pre_split_asof_date_adjustments( split_adjusted_asof_idx, sid_idx, pre_adjustments, requested_split_adjusted_columns ) post_adjustments_dict = self.collect_post_asof_split_adjustments( post_adjustments, requested_qtr_data, sid, sid_idx, sid_estimates, requested_split_adjusted_columns ) return pre_adjustments_dict, post_adjustments_dict def merge_split_adjustments_with_overwrites( self, pre, post, overwrites, requested_split_adjusted_columns ): """ Merge split adjustments with the dict containing overwrites. Parameters ---------- pre : dict[str -> dict[int -> list]] The adjustments that occur before the split-adjusted-asof-date. post : dict[str -> dict[int -> list]] The adjustments that occur after the split-adjusted-asof-date. overwrites : dict[str -> dict[int -> list]] The overwrites across all time. Adjustments will be merged into this dictionary. requested_split_adjusted_columns : list of str List of names of split adjusted columns that are being requested. """ for column_name in requested_split_adjusted_columns: # We can do a merge here because the timestamps in 'pre' and # 'post' are guaranteed to not overlap. if pre: # Either empty or contains all columns. for ts in pre[column_name]: add_new_adjustments( overwrites, pre[column_name][ts], column_name, ts ) if post: # Either empty or contains all columns. for ts in post[column_name]: add_new_adjustments( overwrites, post[column_name][ts], column_name, ts ) class PreviousSplitAdjustedEarningsEstimatesLoader( SplitAdjustedEstimatesLoader, PreviousEarningsEstimatesLoader ): def collect_split_adjustments(self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns): """ Collect split adjustments for previous quarters and apply them to the given dictionary of splits for the given sid. Since overwrites just replace all estimates before the new quarter with NaN, we don't need to worry about re-applying split adjustments. Parameters ---------- adjustments_for_sid : dict[str -> dict[int -> list]] The dictionary of adjustments to which splits need to be added. Initially it contains only overwrites. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for the given sid. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str List of requested split adjusted column names. """ (pre_adjustments_dict, post_adjustments_dict) = self._collect_adjustments( requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns ) self.merge_split_adjustments_with_overwrites( pre_adjustments_dict, post_adjustments_dict, adjustments_for_sid, requested_split_adjusted_columns ) class NextSplitAdjustedEarningsEstimatesLoader( SplitAdjustedEstimatesLoader, NextEarningsEstimatesLoader ): def collect_split_adjustments(self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns): """ Collect split adjustments for future quarters. Re-apply adjustments that would be overwritten by overwrites. Merge split adjustments with overwrites into the given dictionary of splits for the given sid. Parameters ---------- adjustments_for_sid : dict[str -> dict[int -> list]] The dictionary of adjustments to which splits need to be added. Initially it contains only overwrites. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for the given sid. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str List of requested split adjusted column names. """ (pre_adjustments_dict, post_adjustments_dict) = self._collect_adjustments( requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ) for column_name in requested_split_adjusted_columns: for overwrite_ts in adjustments_for_sid[column_name]: # We need to cumulatively re-apply all adjustments up to the # split-adjusted-asof-date. We might not have any # pre-adjustments, so we should check for that. if overwrite_ts <= split_adjusted_asof_idx \ and pre_adjustments_dict: for split_ts in pre_adjustments_dict[column_name]: # The split has to have occurred during the span of # the overwrite. if split_ts < overwrite_ts: # Create new adjustments here so that we can # re-apply all applicable adjustments to ONLY # the dates being overwritten. adjustments_for_sid[ column_name ][overwrite_ts].extend([ Float64Multiply( 0, overwrite_ts - 1, sid_idx, sid_idx, adjustment.value ) for adjustment in pre_adjustments_dict[ column_name ][split_ts] ]) # After the split-adjusted-asof-date, we need to re-apply all # adjustments that occur after that date and within the # bounds of the overwrite. They need to be applied starting # from the first date and until an end date. The end date is # the date of the newest information we get about # `requested_quarter` that is >= `split_ts`, or if there is no # new knowledge before `overwrite_ts`, then it is the date # before `overwrite_ts`. else: # Overwrites happen at the first index of a new quarter, # so determine here which quarter that is. requested_quarter = requested_qtr_data[ SHIFTED_NORMALIZED_QTRS, sid ].iloc[overwrite_ts] for adjustment_value, date_index, timestamp in zip( *post_adjustments ): if split_adjusted_asof_idx < date_index < overwrite_ts: # Assume the entire overwrite contains stale data upper_bound = overwrite_ts - 1 end_idx = self.determine_end_idx_for_adjustment( timestamp, dates, upper_bound, requested_quarter, sid_estimates ) adjustments_for_sid[ column_name ][overwrite_ts].append( Float64Multiply( 0, end_idx, sid_idx, sid_idx, adjustment_value ) ) self.merge_split_adjustments_with_overwrites( pre_adjustments_dict, post_adjustments_dict, adjustments_for_sid, requested_split_adjusted_columns )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/earnings_estimates.py
earnings_estimates.py
import numpy as np import pandas as pd from six import viewvalues from toolz import groupby, merge from .base import PipelineLoader from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.loaders.frame import DataFrameLoader from zipline.pipeline.loaders.utils import ( next_event_indexer, previous_event_indexer, ) def required_event_fields(next_value_columns, previous_value_columns): """ Compute the set of resource columns required to serve ``next_value_columns`` and ``previous_value_columns``. """ # These metadata columns are used to align event indexers. return { TS_FIELD_NAME, SID_FIELD_NAME, EVENT_DATE_FIELD_NAME, }.union( # We also expect any of the field names that our loadable columns # are mapped to. viewvalues(next_value_columns), viewvalues(previous_value_columns), ) def validate_column_specs(events, next_value_columns, previous_value_columns): """ Verify that the columns of ``events`` can be used by an EventsLoader to serve the BoundColumns described by ``next_value_columns`` and ``previous_value_columns``. """ required = required_event_fields(next_value_columns, previous_value_columns) received = set(events.columns) missing = required - received if missing: raise ValueError( "EventsLoader missing required columns {missing}.\n" "Got Columns: {received}\n" "Expected Columns: {required}".format( missing=sorted(missing), received=sorted(received), required=sorted(required), ) ) class EventsLoader(PipelineLoader): """ Base class for PipelineLoaders that supports loading the next and previous value of an event field. Does not currently support adjustments. Parameters ---------- events : pd.DataFrame A DataFrame representing events (e.g. share buybacks or earnings announcements) associated with particular companies. ``events`` must contain at least three columns:: sid : int64 The asset id associated with each event. event_date : datetime64[ns] The date on which the event occurred. timestamp : datetime64[ns] The date on which we learned about the event. next_value_columns : dict[BoundColumn -> str] Map from dataset columns to raw field names that should be used when searching for a next event value. previous_value_columns : dict[BoundColumn -> str] Map from dataset columns to raw field names that should be used when searching for a previous event value. """ def __init__(self, events, next_value_columns, previous_value_columns): validate_column_specs( events, next_value_columns, previous_value_columns, ) events = events[events[EVENT_DATE_FIELD_NAME].notnull()] # We always work with entries from ``events`` directly as numpy arrays, # so we coerce from a frame to a dict of arrays here. self.events = { name: np.asarray(series) for name, series in ( events.sort_values(EVENT_DATE_FIELD_NAME).iteritems() ) } # Columns to load with self.load_next_events. self.next_value_columns = next_value_columns # Columns to load with self.load_previous_events. self.previous_value_columns = previous_value_columns def split_next_and_previous_event_columns(self, requested_columns): """ Split requested columns into columns that should load the next known value and columns that should load the previous known value. Parameters ---------- requested_columns : iterable[BoundColumn] Returns ------- next_cols, previous_cols : iterable[BoundColumn], iterable[BoundColumn] ``requested_columns``, partitioned into sub-sequences based on whether the column should produce values from the next event or the previous event """ def next_or_previous(c): if c in self.next_value_columns: return 'next' elif c in self.previous_value_columns: return 'previous' raise ValueError( "{c} not found in next_value_columns " "or previous_value_columns".format(c=c) ) groups = groupby(next_or_previous, requested_columns) return groups.get('next', ()), groups.get('previous', ()) def next_event_indexer(self, dates, sids): return next_event_indexer( dates, sids, self.events[EVENT_DATE_FIELD_NAME], self.events[TS_FIELD_NAME], self.events[SID_FIELD_NAME], ) def previous_event_indexer(self, dates, sids): return previous_event_indexer( dates, sids, self.events[EVENT_DATE_FIELD_NAME], self.events[TS_FIELD_NAME], self.events[SID_FIELD_NAME], ) def load_next_events(self, columns, dates, sids, mask): if not columns: return {} return self._load_events( name_map=self.next_value_columns, indexer=self.next_event_indexer(dates, sids), columns=columns, dates=dates, sids=sids, mask=mask, ) def load_previous_events(self, columns, dates, sids, mask): if not columns: return {} return self._load_events( name_map=self.previous_value_columns, indexer=self.previous_event_indexer(dates, sids), columns=columns, dates=dates, sids=sids, mask=mask, ) def _load_events(self, name_map, indexer, columns, dates, sids, mask): def to_frame(array): return pd.DataFrame(array, index=dates, columns=sids) assert indexer.shape == (len(dates), len(sids)) out = {} for c in columns: # Array holding the value for column `c` for every event we have. col_array = self.events[name_map[c]] if not len(col_array): # We don't have **any** events, so return col.missing_value # every day for every sid. We have to special case empty events # because in normal branch we depend on being able to index # with -1 for missing values, which fails if there are no # events at all. raw = np.full( (len(dates), len(sids)), c.missing_value, dtype=c.dtype ) else: # Slot event values into sid/date locations using `indexer`. # This produces a 2D array of the same shape as `indexer`, # which must be (len(dates), len(sids))`. raw = col_array[indexer] # indexer will be -1 for locations where we don't have a known # value. Overwrite those locations with c.missing_value. raw[indexer < 0] = c.missing_value # Delegate the actual array formatting logic to a DataFrameLoader. loader = DataFrameLoader(c, to_frame(raw), adjustments=None) out[c] = loader.load_adjusted_array([c], dates, sids, mask)[c] return out def load_adjusted_array(self, columns, dates, sids, mask): n, p = self.split_next_and_previous_event_columns(columns) return merge( self.load_next_events(n, dates, sids, mask), self.load_previous_events(p, dates, sids, mask), )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/events.py
events.py
from __future__ import division, absolute_import from abc import ABCMeta, abstractproperty from collections import namedtuple from functools import partial from itertools import count import warnings from weakref import WeakKeyDictionary import blaze as bz from datashape import ( Date, DateTime, Option, String, isrecord, isscalar, integral, ) import numpy as np from odo import odo import pandas as pd from six import with_metaclass, PY2, itervalues, iteritems from toolz import ( complement, compose, first, flip, groupby, memoize, merge, ) import toolz.curried.operator as op from toolz.curried.operator import getitem from zipline.pipeline.common import ( AD_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME ) from zipline.pipeline.data.dataset import DataSet, Column from zipline.pipeline.loaders.utils import ( check_data_query_args, normalize_data_query_bounds, ) from zipline.pipeline.sentinels import NotSpecified from zipline.lib.adjusted_array import can_represent_dtype from zipline.utils.input_validation import ( expect_element, ensure_timezone, optionally, ) from zipline.utils.pool import SequentialPool from zipline.utils.preprocess import preprocess from ._core import ( # noqa adjusted_arrays_from_rows_with_assets, adjusted_arrays_from_rows_without_assets, baseline_arrays_from_rows_with_assets, # reexport baseline_arrays_from_rows_without_assets, # reexport getname, ) valid_deltas_node_types = ( bz.expr.Field, bz.expr.ReLabel, bz.expr.Symbol, ) traversable_nodes = ( bz.expr.Field, bz.expr.Label, ) is_invalid_deltas_node = complement(flip(isinstance, valid_deltas_node_types)) get__name__ = op.attrgetter('__name__') class InvalidField(with_metaclass(ABCMeta)): """A field that raises an exception indicating that the field was invalid. Parameters ---------- field : str The name of the field. type_ : dshape The shape of the field. """ @abstractproperty def error_format(self): # pragma: no cover raise NotImplementedError('error_format') def __init__(self, field, type_): self._field = field self._type = type_ def __get__(self, instance, owner): raise AttributeError( self.error_format.format(field=self._field, type_=self._type), ) class NonNumpyField(InvalidField): error_format = ( "field '{field}' was a non numpy compatible type: '{type_}'" ) class NonPipelineField(InvalidField): error_format = ( "field '{field}' was a non Pipeline API compatible type: '{type_}'" ) _new_names = ('BlazeDataSet_%d' % n for n in count()) def datashape_type_to_numpy(type_): """ Given a datashape type, return the associated numpy type. Maps datashape's DateTime type to numpy's `datetime64[ns]` dtype, since the numpy datetime returned by datashape isn't supported by pipeline. Parameters ---------- type_: datashape.coretypes.Type The datashape type. Returns ------- type_ np.dtype The numpy dtype. """ if isinstance(type_, Option): type_ = type_.ty if isinstance(type_, DateTime): return np.dtype('datetime64[ns]') if isinstance(type_, String): return np.dtype(object) if type_ in integral: return np.dtype('int64') else: return type_.to_numpy_dtype() @memoize def new_dataset(expr, missing_values): """ Creates or returns a dataset from a blaze expression. Parameters ---------- expr : Expr The blaze expression representing the values. missing_values : frozenset((name, value) pairs Association pairs column name and missing_value for that column. This needs to be a frozenset rather than a dict or tuple of tuples because we want a collection that's unordered but still hashable. Returns ------- ds : type A new dataset type. Notes ----- This function is memoized. repeated calls with the same inputs will return the same type. """ missing_values = dict(missing_values) class_dict = {'ndim': 2 if SID_FIELD_NAME in expr.fields else 1} for name, type_ in expr.dshape.measure.fields: # Don't generate a column for sid or timestamp, since they're # implicitly the labels if the arrays that will be passed to pipeline # Terms. if name in (SID_FIELD_NAME, TS_FIELD_NAME): continue type_ = datashape_type_to_numpy(type_) if can_represent_dtype(type_): col = Column( type_, missing_values.get(name, NotSpecified), ) else: col = NonPipelineField(name, type_) class_dict[name] = col name = expr._name if name is None: name = next(_new_names) # unicode is a name error in py3 but the branch is only hit # when we are in python 2. if PY2 and isinstance(name, unicode): # pragma: no cover # noqa name = name.encode('utf-8') return type(name, (DataSet,), class_dict) def _check_resources(name, expr, resources): """Validate that the expression and resources passed match up. Parameters ---------- name : str The name of the argument we are checking. expr : Expr The potentially bound expr. resources The explicitly passed resources to compute expr. Raises ------ ValueError If the resources do not match for an expression. """ if expr is None: return bound = expr._resources() if not bound and resources is None: raise ValueError('no resources provided to compute %s' % name) if bound and resources: raise ValueError( 'explicit and implicit resources provided to compute %s' % name, ) def _check_datetime_field(name, measure): """Check that a field is a datetime inside some measure. Parameters ---------- name : str The name of the field to check. measure : Record The record to check the field of. Raises ------ TypeError If the field is not a datetime inside ``measure``. """ if not isinstance(measure[name], (Date, DateTime)): raise TypeError( "'{name}' field must be a '{dt}', not: '{dshape}'".format( name=name, dt=DateTime(), dshape=measure[name], ), ) class NoMetaDataWarning(UserWarning): """Warning used to signal that no deltas or checkpoints could be found and none were provided. Parameters ---------- expr : Expr The expression that was searched. field : {'deltas', 'checkpoints'} The field that was looked up. """ def __init__(self, expr, field): self._expr = expr self._field = field def __str__(self): return 'No %s could be inferred from expr: %s' % ( self._field, self._expr, ) no_metadata_rules = frozenset({'warn', 'raise', 'ignore'}) def _get_metadata(field, expr, metadata_expr, no_metadata_rule): """Find the correct metadata expression for the expression. Parameters ---------- field : {'deltas', 'checkpoints'} The kind of metadata expr to lookup. expr : Expr The baseline expression. metadata_expr : Expr, 'auto', or None The metadata argument. If this is 'auto', then the metadata table will be searched for by walking up the expression tree. If this cannot be reflected, then an action will be taken based on the ``no_metadata_rule``. no_metadata_rule : {'warn', 'raise', 'ignore'} How to handle the case where the metadata_expr='auto' but no expr could be found. Returns ------- metadata : Expr or None The deltas or metadata table to use. """ if isinstance(metadata_expr, bz.Expr) or metadata_expr is None: return metadata_expr try: return expr._child['_'.join(((expr._name or ''), field))] except (ValueError, AttributeError): if no_metadata_rule == 'raise': raise ValueError( "no %s table could be reflected for %s" % (field, expr) ) elif no_metadata_rule == 'warn': warnings.warn(NoMetaDataWarning(expr, field), stacklevel=4) return None def _ad_as_ts(expr): """Duplicate the asof_date column as the timestamp column. Parameters ---------- expr : Expr or None The expression to change the columns of. Returns ------- transformed : Expr or None The transformed expression or None if ``expr`` is None. """ return ( None if expr is None else bz.transform(expr, **{TS_FIELD_NAME: expr[AD_FIELD_NAME]}) ) def _ensure_timestamp_field(dataset_expr, deltas, checkpoints): """Verify that the baseline and deltas expressions have a timestamp field. If there is not a ``TS_FIELD_NAME`` on either of the expressions, it will be copied from the ``AD_FIELD_NAME``. If one is provided, then we will verify that it is the correct dshape. Parameters ---------- dataset_expr : Expr The baseline expression. deltas : Expr or None The deltas expression if any was provided. checkpoints : Expr or None The checkpoints expression if any was provided. Returns ------- dataset_expr, deltas : Expr The new baseline and deltas expressions to use. """ measure = dataset_expr.dshape.measure if TS_FIELD_NAME not in measure.names: dataset_expr = bz.transform( dataset_expr, **{TS_FIELD_NAME: dataset_expr[AD_FIELD_NAME]} ) deltas = _ad_as_ts(deltas) checkpoints = _ad_as_ts(checkpoints) else: _check_datetime_field(TS_FIELD_NAME, measure) return dataset_expr, deltas, checkpoints @expect_element( no_deltas_rule=no_metadata_rules, no_checkpoints_rule=no_metadata_rules, ) def from_blaze(expr, deltas='auto', checkpoints='auto', loader=None, resources=None, odo_kwargs=None, missing_values=None, no_deltas_rule='warn', no_checkpoints_rule='warn'): """Create a Pipeline API object from a blaze expression. Parameters ---------- expr : Expr The blaze expression to use. deltas : Expr, 'auto' or None, optional The expression to use for the point in time adjustments. If the string 'auto' is passed, a deltas expr will be looked up by stepping up the expression tree and looking for another field with the name of ``expr._name`` + '_deltas'. If None is passed, no deltas will be used. checkpoints : Expr, 'auto' or None, optional The expression to use for the forward fill checkpoints. If the string 'auto' is passed, a checkpoints expr will be looked up by stepping up the expression tree and looking for another field with the name of ``expr._name`` + '_checkpoints'. If None is passed, no checkpoints will be used. loader : BlazeLoader, optional The blaze loader to attach this pipeline dataset to. If None is passed, the global blaze loader is used. resources : dict or any, optional The data to execute the blaze expressions against. This is used as the scope for ``bz.compute``. odo_kwargs : dict, optional The keyword arguments to pass to odo when evaluating the expressions. missing_values : dict[str -> any], optional A dict mapping column names to missing values for those columns. Missing values are required for integral columns. no_deltas_rule : {'warn', 'raise', 'ignore'}, optional What should happen if ``deltas='auto'`` but no deltas can be found. 'warn' says to raise a warning but continue. 'raise' says to raise an exception if no deltas can be found. 'ignore' says take no action and proceed with no deltas. no_checkpoints_rule : {'warn', 'raise', 'ignore'}, optional What should happen if ``checkpoints='auto'`` but no checkpoints can be found. 'warn' says to raise a warning but continue. 'raise' says to raise an exception if no deltas can be found. 'ignore' says take no action and proceed with no deltas. Returns ------- pipeline_api_obj : DataSet or BoundColumn Either a new dataset or bound column based on the shape of the expr passed in. If a table shaped expression is passed, this will return a ``DataSet`` that represents the whole table. If an array-like shape is passed, a ``BoundColumn`` on the dataset that would be constructed from passing the parent is returned. """ if 'auto' in {deltas, checkpoints}: invalid_nodes = tuple(filter(is_invalid_deltas_node, expr._subterms())) if invalid_nodes: raise TypeError( 'expression with auto %s may only contain (%s) nodes,' " found: %s" % ( ' or '.join( ['deltas'] if deltas is not None else [] + ['checkpoints'] if checkpoints is not None else [], ), ', '.join(map(get__name__, valid_deltas_node_types)), ', '.join( set(map(compose(get__name__, type), invalid_nodes)), ), ), ) deltas = _get_metadata( 'deltas', expr, deltas, no_deltas_rule, ) checkpoints = _get_metadata( 'checkpoints', expr, checkpoints, no_checkpoints_rule, ) # Check if this is a single column out of a dataset. if bz.ndim(expr) != 1: raise TypeError( 'expression was not tabular or array-like,' ' %s dimensions: %d' % ( 'too many' if bz.ndim(expr) > 1 else 'not enough', bz.ndim(expr), ), ) single_column = None if isscalar(expr.dshape.measure): # This is a single column. Record which column we are to return # but create the entire dataset. single_column = rename = expr._name field_hit = False if not isinstance(expr, traversable_nodes): raise TypeError( "expression '%s' was array-like but not a simple field of" " some larger table" % str(expr), ) while isinstance(expr, traversable_nodes): if isinstance(expr, bz.expr.Field): if not field_hit: field_hit = True else: break rename = expr._name expr = expr._child dataset_expr = expr.relabel({rename: single_column}) else: dataset_expr = expr measure = dataset_expr.dshape.measure if not isrecord(measure) or AD_FIELD_NAME not in measure.names: raise TypeError( "The dataset must be a collection of records with at least an" " '{ad}' field. Fields provided: '{fields}'\nhint: maybe you need" " to use `relabel` to change your field names".format( ad=AD_FIELD_NAME, fields=measure, ), ) _check_datetime_field(AD_FIELD_NAME, measure) dataset_expr, deltas, checkpoints = _ensure_timestamp_field( dataset_expr, deltas, checkpoints, ) if deltas is not None and (sorted(deltas.dshape.measure.fields) != sorted(measure.fields)): raise TypeError( 'baseline measure != deltas measure:\n%s != %s' % ( measure, deltas.dshape.measure, ), ) if (checkpoints is not None and (sorted(checkpoints.dshape.measure.fields) != sorted(measure.fields))): raise TypeError( 'baseline measure != checkpoints measure:\n%s != %s' % ( measure, checkpoints.dshape.measure, ), ) # Ensure that we have a data resource to execute the query against. _check_resources('expr', dataset_expr, resources) _check_resources('deltas', deltas, resources) _check_resources('checkpoints', checkpoints, resources) # Create or retrieve the Pipeline API dataset. if missing_values is None: missing_values = {} ds = new_dataset(dataset_expr, frozenset(missing_values.items())) # Register our new dataset with the loader. (loader if loader is not None else global_loader).register_dataset( ds, bind_expression_to_resources(dataset_expr, resources), bind_expression_to_resources(deltas, resources) if deltas is not None else None, bind_expression_to_resources(checkpoints, resources) if checkpoints is not None else None, odo_kwargs=odo_kwargs, ) if single_column is not None: # We were passed a single column, extract and return it. return getattr(ds, single_column) return ds getdataset = op.attrgetter('dataset') _expr_data_base = namedtuple( 'ExprData', 'expr deltas checkpoints odo_kwargs' ) class ExprData(_expr_data_base): """A pair of expressions and data resources. The expressions will be computed using the resources as the starting scope. Parameters ---------- expr : Expr The baseline values. deltas : Expr, optional The deltas for the data. checkpoints : Expr, optional The forward fill checkpoints for the data. odo_kwargs : dict, optional The keyword arguments to forward to the odo calls internally. """ def __new__(cls, expr, deltas=None, checkpoints=None, odo_kwargs=None): return super(ExprData, cls).__new__( cls, expr, deltas, checkpoints, odo_kwargs or {}, ) def __repr__(self): # If the expressions have _resources() then the repr will # drive computation so we take the str here. cls = type(self) return super(ExprData, cls).__repr__(cls( str(self.expr), str(self.deltas), str(self.checkpoints), self.odo_kwargs, )) def __hash__(self): return id(self) def __eq__(self, other): return self is other class BlazeLoader(object): """A PipelineLoader for datasets constructed with ``from_blaze``. Parameters ---------- dsmap : mapping, optional An initial mapping of datasets to ``ExprData`` objects. NOTE: Further mutations to this map will not be reflected by this object. data_query_time : time, optional The time to use for the data query cutoff. data_query_tz : tzinfo or str, optional The timezeone to use for the data query cutoff. pool : Pool, optional The pool to use to run blaze queries concurrently. This object must support ``imap_unordered``, ``apply`` and ``apply_async`` methods. Attributes ---------- pool : Pool The pool to use to run blaze queries concurrently. This object must support ``imap_unordered``, ``apply`` and ``apply_async`` methods. It is possible to change the pool after the loader has been constructed. This allows us to set a new pool for the ``global_loader`` like: ``global_loader.pool = multiprocessing.Pool(4)``. See Also -------- :class:`zipline.utils.pool.SequentialPool` :class:`multiprocessing.Pool` """ @preprocess(data_query_tz=optionally(ensure_timezone)) def __init__(self, dsmap=None, data_query_time=None, data_query_tz=None, pool=SequentialPool()): check_data_query_args(data_query_time, data_query_tz) self._data_query_time = data_query_time self._data_query_tz = data_query_tz # explicitly public self.pool = pool self._table_expressions = (dsmap or {}).copy() @classmethod @memoize(cache=WeakKeyDictionary()) def global_instance(cls): return cls() def __hash__(self): return id(self) def __contains__(self, column): return column in self._table_expressions def __getitem__(self, column): return self._table_expressions[column] def __iter__(self): return iter(self._table_expressions) def __len__(self): return len(self._table_expressions) def __call__(self, column): if column in self: return self raise KeyError(column) def register_dataset(self, dataset, expr, deltas=None, checkpoints=None, odo_kwargs=None): """Explicitly map a datset to a collection of blaze expressions. Parameters ---------- dataset : DataSet The pipeline dataset to map to the given expressions. expr : Expr The baseline values. deltas : Expr, optional The deltas for the data. checkpoints : Expr, optional The forward fill checkpoints for the data. odo_kwargs : dict, optional The keyword arguments to forward to the odo calls internally. See Also -------- :func:`zipline.pipeline.loaders.blaze.from_blaze` """ expr_data = ExprData( expr, deltas, checkpoints, odo_kwargs, ) for column in dataset.columns: self._table_expressions[column] = expr_data def register_column(self, column, expr, deltas=None, checkpoints=None, odo_kwargs=None): """Explicitly map a single bound column to a collection of blaze expressions. The expressions need to have ``timestamp`` and ``as_of`` columns. Parameters ---------- column : BoundColumn The pipeline dataset to map to the given expressions. expr : Expr The baseline values. deltas : Expr, optional The deltas for the data. checkpoints : Expr, optional The forward fill checkpoints for the data. odo_kwargs : dict, optional The keyword arguments to forward to the odo calls internally. See Also -------- :func:`zipline.pipeline.loaders.blaze.from_blaze` """ self._table_expressions[column] = ExprData( expr, deltas, checkpoints, odo_kwargs, ) def load_adjusted_array(self, columns, dates, assets, mask): return merge( self.pool.imap_unordered( partial(self._load_dataset, dates, assets, mask), itervalues(groupby(getitem(self._table_expressions), columns)), ), ) def _load_dataset(self, dates, assets, mask, columns): try: (expr_data,) = {self._table_expressions[c] for c in columns} except ValueError: raise AssertionError( 'all columns must share the same expression data', ) expr, deltas, checkpoints, odo_kwargs = expr_data have_sids = (first(columns).dataset.ndim == 2) added_query_fields = {AD_FIELD_NAME, TS_FIELD_NAME} | ( {SID_FIELD_NAME} if have_sids else set() ) requested_columns = set(map(getname, columns)) colnames = sorted(added_query_fields | requested_columns) data_query_time = self._data_query_time data_query_tz = self._data_query_tz lower_dt, upper_dt = normalize_data_query_bounds( dates[0], dates[-1], data_query_time, data_query_tz, ) def collect_expr(e, lower): """Materialize the expression as a dataframe. Parameters ---------- e : Expr The baseline or deltas expression. lower : datetime The lower time bound to query. Returns ------- result : pd.DataFrame The resulting dataframe. Notes ----- This can return more data than needed. The in memory reindex will handle this. """ predicate = e[TS_FIELD_NAME] < upper_dt if lower is not None: predicate &= e[TS_FIELD_NAME] >= lower return odo(e[predicate][colnames], pd.DataFrame, **odo_kwargs) lower, materialized_checkpoints = get_materialized_checkpoints( checkpoints, colnames, lower_dt, odo_kwargs ) materialized_expr_deferred = self.pool.apply_async( collect_expr, (expr, lower), ) materialized_deltas = ( self.pool.apply(collect_expr, (deltas, lower)) if deltas is not None else None ) all_rows = pd.concat( filter( lambda df: df is not None, ( materialized_checkpoints, materialized_expr_deferred.get(), materialized_deltas, ), ), ignore_index=True, copy=False, ) all_rows[TS_FIELD_NAME] = all_rows[TS_FIELD_NAME].astype( 'datetime64[ns]', ) all_rows.sort_values([TS_FIELD_NAME, AD_FIELD_NAME], inplace=True) if have_sids: return adjusted_arrays_from_rows_with_assets( dates, data_query_time, data_query_tz, assets, columns, all_rows, ) else: return adjusted_arrays_from_rows_without_assets( dates, data_query_time, data_query_tz, columns, all_rows, ) global_loader = BlazeLoader.global_instance() def bind_expression_to_resources(expr, resources): """ Bind a Blaze expression to resources. Parameters ---------- expr : bz.Expr The expression to which we want to bind resources. resources : dict[bz.Symbol -> any] Mapping from the loadable terms of ``expr`` to actual data resources. Returns ------- bound_expr : bz.Expr ``expr`` with bound resources. """ # bind the resources into the expression if resources is None: resources = {} # _subs stands for substitute. It's not actually private, blaze just # prefixes symbol-manipulation methods with underscores to prevent # collisions with data column names. return expr._subs({ k: bz.data(v, dshape=k.dshape) for k, v in iteritems(resources) }) def get_materialized_checkpoints(checkpoints, colnames, lower_dt, odo_kwargs): """ Computes a lower bound and a DataFrame checkpoints. Parameters ---------- checkpoints : Expr Bound blaze expression for a checkpoints table from which to get a computed lower bound. colnames : iterable of str The names of the columns for which checkpoints should be computed. lower_dt : pd.Timestamp The lower date being queried for that serves as an upper bound for checkpoints. odo_kwargs : dict, optional The extra keyword arguments to pass to ``odo``. """ if checkpoints is not None: ts = checkpoints[TS_FIELD_NAME] checkpoints_ts = odo( ts[ts <= lower_dt].max(), pd.Timestamp, **odo_kwargs ) if pd.isnull(checkpoints_ts): # We don't have a checkpoint for before our start date so just # don't constrain the lower date. materialized_checkpoints = pd.DataFrame(columns=colnames) lower = None else: materialized_checkpoints = odo( checkpoints[ts == checkpoints_ts][colnames], pd.DataFrame, **odo_kwargs ) lower = checkpoints_ts else: materialized_checkpoints = pd.DataFrame(columns=colnames) lower = None # we don't have a good lower date constraint return lower, materialized_checkpoints def ffill_query_in_range(expr, lower, upper, checkpoints=None, odo_kwargs=None, ts_field=TS_FIELD_NAME): """Query a blaze expression in a given time range properly forward filling from values that fall before the lower date. Parameters ---------- expr : Expr Bound blaze expression. lower : datetime The lower date to query for. upper : datetime The upper date to query for. checkpoints : Expr, optional Bound blaze expression for a checkpoints table from which to get a computed lower bound. odo_kwargs : dict, optional The extra keyword arguments to pass to ``odo``. ts_field : str, optional The name of the timestamp field in the given blaze expression. Returns ------- raw : pd.DataFrame A strict dataframe for the data in the given date range. This may start before the requested start date if a value is needed to ffill. """ odo_kwargs = odo_kwargs or {} computed_lower, materialized_checkpoints = get_materialized_checkpoints( checkpoints, expr.fields, lower, odo_kwargs, ) pred = expr[ts_field] <= upper if computed_lower is not None: # only constrain the lower date if we computed a new lower date pred &= expr[ts_field] >= computed_lower raw = pd.concat( ( materialized_checkpoints, odo( expr[pred], pd.DataFrame, **odo_kwargs ), ), ignore_index=True, ) raw.loc[:, ts_field] = raw.loc[:, ts_field].astype('datetime64[ns]') return raw
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/blaze/core.py
core.py
from datashape import istabular from .core import ( bind_expression_to_resources, ) from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.loaders.base import PipelineLoader from zipline.pipeline.loaders.blaze.utils import load_raw_data from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, PreviousEarningsEstimatesLoader, required_estimates_fields, metadata_columns, PreviousSplitAdjustedEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader) from zipline.pipeline.loaders.utils import ( check_data_query_args, ) from zipline.utils.input_validation import ensure_timezone, optionally from zipline.utils.preprocess import preprocess class BlazeEstimatesLoader(PipelineLoader): """An abstract pipeline loader for the estimates datasets that loads data from a blaze expression. Parameters ---------- expr : Expr The expression representing the data to load. columns : dict[str -> str] A dict mapping BoundColumn names to the associated names in `expr`. resources : dict, optional Mapping from the loadable terms of ``expr`` to actual data resources. odo_kwargs : dict, optional Extra keyword arguments to pass to odo when executing the expression. data_query_time : time, optional The time to use for the data query cutoff. data_query_tz : tzinfo or str The timezeone to use for the data query cutoff. checkpoints : Expr, optional The expression representing checkpointed data to be used for faster forward-filling of data from `expr`. Notes ----- The expression should have a tabular dshape of:: Dim * {{ {SID_FIELD_NAME}: int64, {TS_FIELD_NAME}: datetime, {FISCAL_YEAR_FIELD_NAME}: float64, {FISCAL_QUARTER_FIELD_NAME}: float64, {EVENT_DATE_FIELD_NAME}: datetime, }} And other dataset-specific fields, where each row of the table is a record including the sid to identify the company, the timestamp where we learned about the announcement, and the date of the event. If the '{TS_FIELD_NAME}' field is not included it is assumed that we start the backtest with knowledge of all announcements. """ __doc__ = __doc__.format( SID_FIELD_NAME=SID_FIELD_NAME, TS_FIELD_NAME=TS_FIELD_NAME, FISCAL_YEAR_FIELD_NAME=FISCAL_YEAR_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME=FISCAL_QUARTER_FIELD_NAME, EVENT_DATE_FIELD_NAME=EVENT_DATE_FIELD_NAME, ) @preprocess(data_query_tz=optionally(ensure_timezone)) def __init__(self, expr, columns, resources=None, odo_kwargs=None, data_query_time=None, data_query_tz=None, checkpoints=None): dshape = expr.dshape if not istabular(dshape): raise ValueError( 'expression dshape must be tabular, got: %s' % dshape, ) required_cols = list( required_estimates_fields(columns) ) self._expr = bind_expression_to_resources( expr[required_cols], resources, ) self._columns = columns self._odo_kwargs = odo_kwargs if odo_kwargs is not None else {} check_data_query_args(data_query_time, data_query_tz) self._data_query_time = data_query_time self._data_query_tz = data_query_tz self._checkpoints = checkpoints def load_adjusted_array(self, columns, dates, assets, mask): # Only load requested columns. requested_column_names = [self._columns[column.name] for column in columns] raw = load_raw_data( assets, dates, self._data_query_time, self._data_query_tz, self._expr[sorted(metadata_columns.union(requested_column_names))], self._odo_kwargs, checkpoints=self._checkpoints, ) return self.loader( raw, {column.name: self._columns[column.name] for column in columns}, ).load_adjusted_array( columns, dates, assets, mask, ) class BlazeNextEstimatesLoader(BlazeEstimatesLoader): loader = NextEarningsEstimatesLoader class BlazePreviousEstimatesLoader(BlazeEstimatesLoader): loader = PreviousEarningsEstimatesLoader class BlazeSplitAdjustedEstimatesLoader(BlazeEstimatesLoader): def __init__(self, expr, columns, split_adjustments_loader, split_adjusted_column_names, split_adjusted_asof, **kwargs): self._split_adjustments = split_adjustments_loader self._split_adjusted_column_names = split_adjusted_column_names self._split_adjusted_asof = split_adjusted_asof super(BlazeSplitAdjustedEstimatesLoader, self).__init__( expr, columns, **kwargs ) def load_adjusted_array(self, columns, dates, assets, mask): # Only load requested columns. requested_column_names = [self._columns[column.name] for column in columns] requested_spilt_adjusted_columns = [ column_name for column_name in self._split_adjusted_column_names if column_name in requested_column_names ] raw = load_raw_data( assets, dates, self._data_query_time, self._data_query_tz, self._expr[sorted(metadata_columns.union(requested_column_names))], self._odo_kwargs, checkpoints=self._checkpoints, ) return self.loader( raw, {column.name: self._columns[column.name] for column in columns}, self._split_adjustments, requested_spilt_adjusted_columns, self._split_adjusted_asof, ).load_adjusted_array( columns, dates, assets, mask, ) class BlazeNextSplitAdjustedEstimatesLoader(BlazeSplitAdjustedEstimatesLoader): loader = NextSplitAdjustedEarningsEstimatesLoader class BlazePreviousSplitAdjustedEstimatesLoader( BlazeSplitAdjustedEstimatesLoader ): loader = PreviousSplitAdjustedEarningsEstimatesLoader
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/blaze/estimates.py
estimates.py
from zipline.pipeline.common import SID_FIELD_NAME, TS_FIELD_NAME from zipline.pipeline.loaders.blaze.core import ffill_query_in_range from zipline.pipeline.loaders.utils import ( normalize_data_query_bounds, normalize_timestamp_to_query_time, ) def load_raw_data(assets, dates, data_query_time, data_query_tz, expr, odo_kwargs, checkpoints=None): """ Given an expression representing data to load, perform normalization and forward-filling and return the data, materialized. Only accepts data with a `sid` field. Parameters ---------- assets : pd.int64index the assets to load data for. dates : pd.datetimeindex the simulation dates to load data for. data_query_time : datetime.time the time used as cutoff for new information. data_query_tz : tzinfo the timezone to normalize your dates to before comparing against `time`. expr : expr the expression representing the data to load. odo_kwargs : dict extra keyword arguments to pass to odo when executing the expression. checkpoints : expr, optional the expression representing the checkpointed data for `expr`. Returns ------- raw : pd.dataframe The result of computing expr and materializing the result as a dataframe. """ lower_dt, upper_dt = normalize_data_query_bounds( dates[0], dates[-1], data_query_time, data_query_tz, ) raw = ffill_query_in_range( expr, lower_dt, upper_dt, checkpoints=checkpoints, odo_kwargs=odo_kwargs, ) sids = raw[SID_FIELD_NAME] raw.drop( sids[~sids.isin(assets)].index, inplace=True ) if data_query_time is not None: normalize_timestamp_to_query_time( raw, data_query_time, data_query_tz, inplace=True, ts_field=TS_FIELD_NAME, ) return raw
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/blaze/utils.py
utils.py
from datashape import istabular from .core import ( bind_expression_to_resources, ) from zipline.pipeline.common import SID_FIELD_NAME, TS_FIELD_NAME, \ EVENT_DATE_FIELD_NAME from zipline.pipeline.loaders.base import PipelineLoader from zipline.pipeline.loaders.blaze.utils import load_raw_data from zipline.pipeline.loaders.events import ( EventsLoader, required_event_fields, ) from zipline.pipeline.loaders.utils import ( check_data_query_args, ) from zipline.utils.input_validation import ensure_timezone, optionally from zipline.utils.preprocess import preprocess class BlazeEventsLoader(PipelineLoader): """An abstract pipeline loader for the events datasets that loads data from a blaze expression. Parameters ---------- expr : Expr The expression representing the data to load. next_value_columns : dict[BoundColumn -> raw column name] A dict mapping 'next' BoundColumns to their column names in `expr`. previous_value_columns : dict[BoundColumn -> raw column name] A dict mapping 'previous' BoundColumns to their column names in `expr`. resources : dict, optional Mapping from the loadable terms of ``expr`` to actual data resources. odo_kwargs : dict, optional Extra keyword arguments to pass to odo when executing the expression. data_query_time : time, optional The time to use for the data query cutoff. data_query_tz : tzinfo or str The timezone to use for the data query cutoff. Notes ----- The expression should have a tabular dshape of:: Dim * {{ {SID_FIELD_NAME}: int64, {TS_FIELD_NAME}: datetime, {EVENT_DATE_FIELD_NAME}: datetime, }} And other dataset-specific fields, where each row of the table is a record including the sid to identify the company, the timestamp where we learned about the announcement, and the event date. If the '{TS_FIELD_NAME}' field is not included it is assumed that we start the backtest with knowledge of all announcements. """ __doc__ = __doc__.format(SID_FIELD_NAME=SID_FIELD_NAME, TS_FIELD_NAME=TS_FIELD_NAME, EVENT_DATE_FIELD_NAME=EVENT_DATE_FIELD_NAME) @preprocess(data_query_tz=optionally(ensure_timezone)) def __init__(self, expr, next_value_columns, previous_value_columns, resources=None, odo_kwargs=None, data_query_time=None, data_query_tz=None): dshape = expr.dshape if not istabular(dshape): raise ValueError( 'expression dshape must be tabular, got: %s' % dshape, ) required_cols = list( required_event_fields(next_value_columns, previous_value_columns) ) self._expr = bind_expression_to_resources( expr[required_cols], resources, ) self._next_value_columns = next_value_columns self._previous_value_columns = previous_value_columns self._odo_kwargs = odo_kwargs if odo_kwargs is not None else {} check_data_query_args(data_query_time, data_query_tz) self._data_query_time = data_query_time self._data_query_tz = data_query_tz def load_adjusted_array(self, columns, dates, assets, mask): raw = load_raw_data(assets, dates, self._data_query_time, self._data_query_tz, self._expr, self._odo_kwargs) return EventsLoader( events=raw, next_value_columns=self._next_value_columns, previous_value_columns=self._previous_value_columns, ).load_adjusted_array( columns, dates, assets, mask, )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/pipeline/loaders/blaze/events.py
events.py
from abc import ABCMeta import array import binascii from collections import deque, namedtuple from functools import partial from numbers import Integral from operator import itemgetter, attrgetter import struct from logbook import Logger import numpy as np import pandas as pd from pandas import isnull from six import with_metaclass, string_types, viewkeys, iteritems import sqlalchemy as sa from toolz import ( compose, concat, concatv, curry, groupby, merge, partition_all, sliding_window, valmap, ) from toolz.curried import operator as op from zipline.errors import ( EquitiesNotFound, FutureContractsNotFound, MapAssetIdentifierIndexError, MultipleSymbolsFound, MultipleValuesFoundForField, MultipleValuesFoundForSid, NoValueForSid, ValueNotFoundForField, SidsNotFound, SymbolNotFound, ) from . import ( Asset, Equity, Future, ) from . continuous_futures import ( ADJUSTMENT_STYLES, CHAIN_PREDICATES, ContinuousFuture, OrderedContracts, ) from .asset_writer import ( check_version_info, split_delimited_symbol, asset_db_table_names, symbol_columns, SQLITE_MAX_VARIABLE_NUMBER, ) from .asset_db_schema import ( ASSET_DB_VERSION ) from .exchange_info import ExchangeInfo from zipline.utils.functional import invert from zipline.utils.memoize import lazyval from zipline.utils.numpy_utils import as_column from zipline.utils.preprocess import preprocess from zipline.utils.sqlite_utils import group_into_chunks, coerce_string_to_eng log = Logger('assets.py') # A set of fields that need to be converted to strings before building an # Asset to avoid unicode fields _asset_str_fields = frozenset({ 'symbol', 'asset_name', 'exchange', }) # A set of fields that need to be converted to timestamps in UTC _asset_timestamp_fields = frozenset({ 'start_date', 'end_date', 'first_traded', 'notice_date', 'expiration_date', 'auto_close_date', }) OwnershipPeriod = namedtuple('OwnershipPeriod', 'start end sid value') def merge_ownership_periods(mappings): """ Given a dict of mappings where the values are lists of OwnershipPeriod objects, returns a dict with the same structure with new OwnershipPeriod objects adjusted so that the periods have no gaps. Orders the periods chronologically, and pushes forward the end date of each period to match the start date of the following period. The end date of the last period pushed forward to the max Timestamp. """ return valmap( lambda v: tuple( OwnershipPeriod( a.start, b.start, a.sid, a.value, ) for a, b in sliding_window( 2, concatv( sorted(v), # concat with a fake ownership object to make the last # end date be max timestamp [OwnershipPeriod( pd.Timestamp.max.tz_localize('utc'), None, None, None, )], ), ) ), mappings, ) def _build_ownership_map_from_rows(rows, key_from_row, value_from_row): mappings = {} for row in rows: mappings.setdefault( key_from_row(row), [], ).append( OwnershipPeriod( pd.Timestamp(row.start_date, unit='ns', tz='utc'), pd.Timestamp(row.end_date, unit='ns', tz='utc'), row.sid, value_from_row(row), ), ) return merge_ownership_periods(mappings) def build_ownership_map(table, key_from_row, value_from_row): """ Builds a dict mapping to lists of OwnershipPeriods, from a db table. """ return _build_ownership_map_from_rows( sa.select(table.c).execute().fetchall(), key_from_row, value_from_row, ) def build_grouped_ownership_map(table, key_from_row, value_from_row, group_key): """ Builds a dict mapping group keys to maps of keys to to lists of OwnershipPeriods, from a db table. """ grouped_rows = groupby( group_key, sa.select(table.c).execute().fetchall(), ) return { key: _build_ownership_map_from_rows( rows, key_from_row, value_from_row, ) for key, rows in grouped_rows.items() } @curry def _filter_kwargs(names, dict_): """Filter out kwargs from a dictionary. Parameters ---------- names : set[str] The names to select from ``dict_``. dict_ : dict[str, any] The dictionary to select from. Returns ------- kwargs : dict[str, any] ``dict_`` where the keys intersect with ``names`` and the values are not None. """ return {k: v for k, v in dict_.items() if k in names and v is not None} _filter_future_kwargs = _filter_kwargs(Future._kwargnames) _filter_equity_kwargs = _filter_kwargs(Equity._kwargnames) def _convert_asset_timestamp_fields(dict_): """ Takes in a dict of Asset init args and converts dates to pd.Timestamps """ for key in _asset_timestamp_fields & viewkeys(dict_): value = pd.Timestamp(dict_[key], tz='UTC') dict_[key] = None if isnull(value) else value return dict_ SID_TYPE_IDS = { # Asset would be 0, ContinuousFuture: 1, } CONTINUOUS_FUTURE_ROLL_STYLE_IDS = { 'calendar': 0, 'volume': 1, } CONTINUOUS_FUTURE_ADJUSTMENT_STYLE_IDS = { None: 0, 'div': 1, 'add': 2, } def _encode_continuous_future_sid(root_symbol, offset, roll_style, adjustment_style): s = struct.Struct("B 2B B B B 2B") # B - sid type # 2B - root symbol # B - offset (could be packed smaller since offsets of greater than 12 are # probably unneeded.) # B - roll type # B - adjustment # 2B - empty space left for parameterized roll types # The root symbol currently supports 2 characters. If 3 char root symbols # are needed, the size of the root symbol does not need to change, however # writing the string directly will need to change to a scheme of writing # the A-Z values in 5-bit chunks. a = array.array('B', [0] * s.size) rs = bytearray(root_symbol, 'ascii') values = (SID_TYPE_IDS[ContinuousFuture], rs[0], rs[1], offset, CONTINUOUS_FUTURE_ROLL_STYLE_IDS[roll_style], CONTINUOUS_FUTURE_ADJUSTMENT_STYLE_IDS[adjustment_style], 0, 0) s.pack_into(a, 0, *values) return int(binascii.hexlify(a), 16) class AssetFinder(object): """ An AssetFinder is an interface to a database of Asset metadata written by an ``AssetDBWriter``. This class provides methods for looking up assets by unique integer id or by symbol. For historical reasons, we refer to these unique ids as 'sids'. Parameters ---------- engine : str or SQLAlchemy.engine An engine with a connection to the asset database to use, or a string that can be parsed by SQLAlchemy as a URI. future_chain_predicates : dict A dict mapping future root symbol to a predicate function which accepts a contract as a parameter and returns whether or not the contract should be included in the chain. See Also -------- :class:`zipline.assets.AssetDBWriter` """ @preprocess(engine=coerce_string_to_eng(require_exists=True)) def __init__(self, engine, future_chain_predicates=CHAIN_PREDICATES): self.engine = engine metadata = sa.MetaData(bind=engine) metadata.reflect(only=asset_db_table_names) for table_name in asset_db_table_names: setattr(self, table_name, metadata.tables[table_name]) # Check the version info of the db for compatibility check_version_info(engine, self.version_info, ASSET_DB_VERSION) # Cache for lookup of assets by sid, the objects in the asset lookup # may be shared with the results from equity and future lookup caches. # # The top level cache exists to minimize lookups on the asset type # routing. # # The caches are read through, i.e. accessing an asset through # retrieve_asset will populate the cache on first retrieval. self._asset_cache = {} self._asset_type_cache = {} self._caches = (self._asset_cache, self._asset_type_cache) self._future_chain_predicates = future_chain_predicates \ if future_chain_predicates is not None else {} self._ordered_contracts = {} # Populated on first call to `lifetimes`. self._asset_lifetimes = {} @lazyval def exchange_info(self): es = sa.select(self.exchanges.c).execute().fetchall() return { name: ExchangeInfo(name, canonical_name, country_code) for name, canonical_name, country_code in es } def _reset_caches(self): """ Reset our asset caches. You probably shouldn't call this method. """ # This method exists as a workaround for the in-place mutating behavior # of `TradingAlgorithm._write_and_map_id_index_to_sids`. No one else # should be calling this. for cache in self._caches: cache.clear() self.reload_symbol_maps() del type(self).exchanges[self] def reload_symbol_maps(self): """Clear the in memory symbol lookup maps. This will make any changes to the underlying db available to the symbol maps. """ # clear the lazyval caches, the next access will requery for attr in dir(type(self)): value = getattr(self, attr) if isinstance(value, lazyval): del value[self] @lazyval def symbol_ownership_map(self): out = {} for mappings in self.symbol_ownership_maps_by_country_code.values(): for key, ownership_periods in mappings.items(): out.setdefault(key, []).extend(ownership_periods) return out @lazyval def symbol_ownership_maps_by_country_code(self): sid_to_country_code = dict( sa.select(( self.equities.c.sid, self.exchanges.c.country_code, )).where( self.equities.c.exchange == self.exchanges.c.exchange ).execute().fetchall(), ) return build_grouped_ownership_map( table=self.equity_symbol_mappings, key_from_row=( lambda row: (row.company_symbol, row.share_class_symbol) ), value_from_row=lambda row: row.symbol, group_key=lambda row: sid_to_country_code[row.sid], ) @staticmethod def _fuzzify_symbol_ownership_map(ownership_map): fuzzy_mappings = {} for (cs, scs), owners in iteritems(ownership_map): fuzzy_owners = fuzzy_mappings.setdefault( cs + scs, [], ) fuzzy_owners.extend(owners) fuzzy_owners.sort() return fuzzy_mappings @lazyval def fuzzy_symbol_ownership_map(self): return self._fuzzify_symbol_ownership_map(self.symbol_ownership_map) @lazyval def fuzzy_symbol_ownership_maps_by_country_code(self): return valmap( self._fuzzify_symbol_ownership_map, self.symbol_ownership_maps_by_country_code, ) @lazyval def equity_supplementary_map(self): return build_ownership_map( table=self.equity_supplementary_mappings, key_from_row=lambda row: (row.field, row.value), value_from_row=lambda row: row.value, ) @lazyval def equity_supplementary_map_by_sid(self): return build_ownership_map( table=self.equity_supplementary_mappings, key_from_row=lambda row: (row.field, row.sid), value_from_row=lambda row: row.value, ) def lookup_asset_types(self, sids): """ Retrieve asset types for a list of sids. Parameters ---------- sids : list[int] Returns ------- types : dict[sid -> str or None] Asset types for the provided sids. """ found = {} missing = set() for sid in sids: try: found[sid] = self._asset_type_cache[sid] except KeyError: missing.add(sid) if not missing: return found router_cols = self.asset_router.c for assets in group_into_chunks(missing): query = sa.select((router_cols.sid, router_cols.asset_type)).where( self.asset_router.c.sid.in_(map(int, assets)) ) for sid, type_ in query.execute().fetchall(): missing.remove(sid) found[sid] = self._asset_type_cache[sid] = type_ for sid in missing: found[sid] = self._asset_type_cache[sid] = None return found def group_by_type(self, sids): """ Group a list of sids by asset type. Parameters ---------- sids : list[int] Returns ------- types : dict[str or None -> list[int]] A dict mapping unique asset types to lists of sids drawn from sids. If we fail to look up an asset, we assign it a key of None. """ return invert(self.lookup_asset_types(sids)) def retrieve_asset(self, sid, default_none=False): """ Retrieve the Asset for a given sid. """ try: asset = self._asset_cache[sid] if asset is None and not default_none: raise SidsNotFound(sids=[sid]) return asset except KeyError: return self.retrieve_all((sid,), default_none=default_none)[0] def retrieve_all(self, sids, default_none=False): """ Retrieve all assets in `sids`. Parameters ---------- sids : iterable of int Assets to retrieve. default_none : bool If True, return None for failed lookups. If False, raise `SidsNotFound`. Returns ------- assets : list[Asset or None] A list of the same length as `sids` containing Assets (or Nones) corresponding to the requested sids. Raises ------ SidsNotFound When a requested sid is not found and default_none=False. """ sids = list(sids) hits, missing, failures = {}, set(), [] for sid in sids: try: asset = self._asset_cache[sid] if not default_none and asset is None: # Bail early if we've already cached that we don't know # about an asset. raise SidsNotFound(sids=[sid]) hits[sid] = asset except KeyError: missing.add(sid) # All requests were cache hits. Return requested sids in order. if not missing: return [hits[sid] for sid in sids] update_hits = hits.update # Look up cache misses by type. type_to_assets = self.group_by_type(missing) # Handle failures failures = {failure: None for failure in type_to_assets.pop(None, ())} update_hits(failures) self._asset_cache.update(failures) if failures and not default_none: raise SidsNotFound(sids=list(failures)) # We don't update the asset cache here because it should already be # updated by `self.retrieve_equities`. update_hits(self.retrieve_equities(type_to_assets.pop('equity', ()))) update_hits( self.retrieve_futures_contracts(type_to_assets.pop('future', ())) ) # We shouldn't know about any other asset types. if type_to_assets: raise AssertionError( "Found asset types: %s" % list(type_to_assets.keys()) ) return [hits[sid] for sid in sids] def retrieve_equities(self, sids): """ Retrieve Equity objects for a list of sids. Users generally shouldn't need to this method (instead, they should prefer the more general/friendly `retrieve_assets`), but it has a documented interface and tests because it's used upstream. Parameters ---------- sids : iterable[int] Returns ------- equities : dict[int -> Equity] Raises ------ EquitiesNotFound When any requested asset isn't found. """ return self._retrieve_assets(sids, self.equities, Equity) def _retrieve_equity(self, sid): return self.retrieve_equities((sid,))[sid] def retrieve_futures_contracts(self, sids): """ Retrieve Future objects for an iterable of sids. Users generally shouldn't need to this method (instead, they should prefer the more general/friendly `retrieve_assets`), but it has a documented interface and tests because it's used upstream. Parameters ---------- sids : iterable[int] Returns ------- equities : dict[int -> Equity] Raises ------ EquitiesNotFound When any requested asset isn't found. """ return self._retrieve_assets(sids, self.futures_contracts, Future) @staticmethod def _select_assets_by_sid(asset_tbl, sids): return sa.select([asset_tbl]).where( asset_tbl.c.sid.in_(map(int, sids)) ) @staticmethod def _select_asset_by_symbol(asset_tbl, symbol): return sa.select([asset_tbl]).where(asset_tbl.c.symbol == symbol) def _select_most_recent_symbols_chunk(self, sid_group): """Retrieve the most recent symbol for a set of sids. Parameters ---------- sid_group : iterable[int] The sids to lookup. The length of this sequence must be less than or equal to SQLITE_MAX_VARIABLE_NUMBER because the sids will be passed in as sql bind params. Returns ------- sel : Selectable The sqlalchemy selectable that will query for the most recent symbol for each sid. Notes ----- This is implemented as an inner select of the columns of interest ordered by the end date of the (sid, symbol) mapping. We then group that inner select on the sid with no aggregations to select the last row per group which gives us the most recently active symbol for all of the sids. """ symbol_cols = self.equity_symbol_mappings.c inner = sa.select( (symbol_cols.sid,) + tuple(map( op.getitem(symbol_cols), symbol_columns, )), ).where( symbol_cols.sid.in_(map(int, sid_group)), ).order_by( symbol_cols.end_date.asc(), ) return sa.select(inner.c).group_by(inner.c.sid) def _lookup_most_recent_symbols(self, sids): symbols = { row.sid: {c: row[c] for c in symbol_columns} for row in concat( self.engine.execute( self._select_most_recent_symbols_chunk(sid_group), ).fetchall() for sid_group in partition_all( SQLITE_MAX_VARIABLE_NUMBER, sids ), ) } if len(symbols) != len(sids): raise EquitiesNotFound( sids=set(sids) - set(symbols), plural=True, ) return symbols def _retrieve_asset_dicts(self, sids, asset_tbl, querying_equities): if not sids: return if querying_equities: def mkdict(row, exchanges=self.exchange_info, symbols=self._lookup_most_recent_symbols(sids)): d = dict(row) d['exchange_info'] = exchanges[d.pop('exchange')] return merge(d, symbols[row['sid']]) else: def mkdict(row, exchanges=self.exchange_info): d = dict(row) d['exchange_info'] = exchanges[d.pop('exchange')] return d for assets in group_into_chunks(sids): # Load misses from the db. query = self._select_assets_by_sid(asset_tbl, assets) for row in query.execute().fetchall(): yield _convert_asset_timestamp_fields(mkdict(row)) def _retrieve_assets(self, sids, asset_tbl, asset_type): """ Internal function for loading assets from a table. This should be the only method of `AssetFinder` that writes Assets into self._asset_cache. Parameters --------- sids : iterable of int Asset ids to look up. asset_tbl : sqlalchemy.Table Table from which to query assets. asset_type : type Type of asset to be constructed. Returns ------- assets : dict[int -> Asset] Dict mapping requested sids to the retrieved assets. """ # Fastpath for empty request. if not sids: return {} cache = self._asset_cache hits = {} querying_equities = issubclass(asset_type, Equity) filter_kwargs = ( _filter_equity_kwargs if querying_equities else _filter_future_kwargs ) rows = self._retrieve_asset_dicts(sids, asset_tbl, querying_equities) for row in rows: sid = row['sid'] asset = asset_type(**filter_kwargs(row)) hits[sid] = cache[sid] = asset # If we get here, it means something in our code thought that a # particular sid was an equity/future and called this function with a # concrete type, but we couldn't actually resolve the asset. This is # an error in our code, not a user-input error. misses = tuple(set(sids) - viewkeys(hits)) if misses: if querying_equities: raise EquitiesNotFound(sids=misses) else: raise FutureContractsNotFound(sids=misses) return hits def _lookup_symbol_strict(self, ownership_map, multi_country, symbol, as_of_date): """ Resolve a symbol to an asset object without fuzzy matching. Parameters ---------- ownership_map : dict[(str, str), list[OwnershipPeriod]] The mapping from split symbols to ownership periods. multi_country : bool Does this mapping span multiple countries? symbol : str The symbol to look up. as_of_date : datetime or None If multiple assets have held this sid, which day should the resolution be checked against? If this value is None and multiple sids have held the ticker, then a MultipleSymbolsFound error will be raised. Returns ------- asset : Asset The asset that held the given symbol. Raises ------ SymbolNotFound Raised when the symbol or symbol as_of_date pair do not map to any assets. MultipleSymbolsFound Raised when multiple assets held the symbol. This happens if multiple assets held the symbol at disjoint times and ``as_of_date`` is None, or if multiple assets held the symbol at the same time and``multi_country`` is True. Notes ----- The resolution algorithm is as follows: - Split the symbol into the company and share class component. - Do a dictionary lookup of the ``(company_symbol, share_class_symbol)`` in the provided ownership map. - If there is no entry in the dictionary, we don't know about this symbol so raise a ``SymbolNotFound`` error. - If ``as_of_date`` is None: - If more there is more than one owner, raise ``MultipleSymbolsFound`` - Otherwise, because the list mapped to a symbol cannot be empty, return the single asset. - Iterate through all of the owners: - If the ``as_of_date`` is between the start and end of the ownership period: - If multi_country is False, return the found asset. - Otherwise, put the asset in a list. - At the end of the loop, if there are no candidate assets, raise a ``SymbolNotFound``. - If there is exactly one candidate, return it. - Othewise, raise ``MultipleSymbolsFound`` because the ticker is not unique across countries. """ # split the symbol into the components, if there are no # company/share class parts then share_class_symbol will be empty company_symbol, share_class_symbol = split_delimited_symbol(symbol) try: owners = ownership_map[company_symbol, share_class_symbol] assert owners, 'empty owners list for %r' % symbol except KeyError: # no equity has ever held this symbol raise SymbolNotFound(symbol=symbol) if not as_of_date: if len(owners) > 1: # more than one equity has held this ticker, this is ambigious # without the date raise MultipleSymbolsFound( symbol=symbol, options=set(map( compose(self.retrieve_asset, attrgetter('sid')), owners, )), ) # exactly one equity has ever held this symbol, we may resolve # without the date return self.retrieve_asset(owners[0].sid) options = [] for start, end, sid, _ in owners: if start <= as_of_date < end: # find the equity that owned it on the given asof date asset = self.retrieve_asset(sid) if not multi_country: return asset else: options.append(asset) if len(options) == 1: return options[0] if not options: # no equity held the ticker on the given asof date raise SymbolNotFound(symbol=symbol) raise MultipleSymbolsFound(symbol=symbol, options=options) def _lookup_symbol_fuzzy(self, ownership_map, multi_country, symbol, as_of_date): symbol = symbol.upper() company_symbol, share_class_symbol = split_delimited_symbol(symbol) try: owners = ownership_map[company_symbol + share_class_symbol] assert owners, 'empty owners list for %r' % symbol except KeyError: # no equity has ever held a symbol matching the fuzzy symbol raise SymbolNotFound(symbol=symbol) if not as_of_date: if len(owners) == 1: # only one valid match return self.retrieve_asset(owners[0].sid) options = [] for _, _, sid, sym in owners: if sym == symbol: # there are multiple options, look for exact matches options.append(self.retrieve_asset(sid)) if len(options) == 1: # there was only one exact match return options[0] # there are more than one exact match for this fuzzy symbol raise MultipleSymbolsFound( symbol=symbol, options=self.retrieve_all(owner.sid for owner in owners), ) options = {} for start, end, sid, sym in owners: if start <= as_of_date < end: # see which fuzzy symbols were owned on the asof date. options[sid] = sym if not options: # no equity owned the fuzzy symbol on the date requested raise SymbolNotFound(symbol=symbol) sid_keys = list(options.keys()) # If there was only one owner, or there is a fuzzy and non-fuzzy which # map to the same sid, return it. if len(options) == 1: return self.retrieve_asset(sid_keys[0]) exact_options = [] for sid, sym in options.items(): # Possible to have a scenario where multiple fuzzy matches have the # same date. Want to find the one where symbol and share class # match. if ((company_symbol, share_class_symbol) == split_delimited_symbol(sym)): asset = self.retrieve_asset(sid) if not multi_country: return asset else: exact_options.append(asset) if len(exact_options) == 1: return exact_options[0] # multiple equities held tickers matching the fuzzy ticker but # there are no exact matches raise MultipleSymbolsFound( symbol=symbol, options=self.retrieve_all(owner.sid for owner in owners), ) def _choose_fuzzy_symbol_ownership_map(self, country_code): if country_code is None: return self.fuzzy_symbol_ownership_map return self.fuzzy_symbol_ownership_maps_by_country_code.get( country_code, ) def _choose_symbol_ownership_map(self, country_code): if country_code is None: return self.symbol_ownership_map return self.symbol_ownership_maps_by_country_code.get(country_code) def lookup_symbol(self, symbol, as_of_date, fuzzy=False, country_code=None): """Lookup an equity by symbol. Parameters ---------- symbol : str The ticker symbol to resolve. as_of_date : datetime or None Look up the last owner of this symbol as of this datetime. If ``as_of_date`` is None, then this can only resolve the equity if exactly one equity has ever owned the ticker. fuzzy : bool, optional Should fuzzy symbol matching be used? Fuzzy symbol matching attempts to resolve differences in representations for shareclasses. For example, some people may represent the ``A`` shareclass of ``BRK`` as ``BRK.A``, where others could write ``BRK_A``. country_code : str or None, optional The country to limit searches to. If not provided, the search will span all countries which increases the likelihood of an ambiguous lookup. Returns ------- equity : Equity The equity that held ``symbol`` on the given ``as_of_date``, or the only equity to hold ``symbol`` if ``as_of_date`` is None. Raises ------ SymbolNotFound Raised when no equity has ever held the given symbol. MultipleSymbolsFound Raised when no ``as_of_date`` is given and more than one equity has held ``symbol``. This is also raised when ``fuzzy=True`` and there are multiple candidates for the given ``symbol`` on the ``as_of_date``. Also raised when no ``country_code`` is given and the symbol is ambiguous across multiple countries. """ if symbol is None: raise TypeError("Cannot lookup asset for symbol of None for " "as of date %s." % as_of_date) if fuzzy: f = self._lookup_symbol_fuzzy mapping = self._choose_fuzzy_symbol_ownership_map(country_code) else: f = self._lookup_symbol_strict mapping = self._choose_symbol_ownership_map(country_code) if mapping is None: raise SymbolNotFound(symbol=symbol) return f( mapping, country_code is None, symbol, as_of_date, ) def lookup_symbols(self, symbols, as_of_date, fuzzy=False, country_code=None): """ Lookup a list of equities by symbol. Equivalent to:: [finder.lookup_symbol(s, as_of, fuzzy) for s in symbols] but potentially faster because repeated lookups are memoized. Parameters ---------- symbols : sequence[str] Sequence of ticker symbols to resolve. as_of_date : pd.Timestamp Forwarded to ``lookup_symbol``. fuzzy : bool, optional Forwarded to ``lookup_symbol``. country_code : str or None, optional The country to limit searches to. If not provided, the search will span all countries which increases the likelihood of an ambiguous lookup. Returns ------- equities : list[Equity] """ if not symbols: return [] multi_country = country_code is None if fuzzy: f = self._lookup_symbol_fuzzy mapping = self._choose_fuzzy_symbol_ownership_map(country_code) else: f = self._lookup_symbol_strict mapping = self._choose_symbol_ownership_map(country_code) if mapping is None: raise SymbolNotFound(symbol=symbols[0]) memo = {} out = [] append_output = out.append for sym in symbols: if sym in memo: append_output(memo[sym]) else: equity = memo[sym] = f( mapping, multi_country, sym, as_of_date, ) append_output(equity) return out def lookup_future_symbol(self, symbol): """Lookup a future contract by symbol. Parameters ---------- symbol : str The symbol of the desired contract. Returns ------- future : Future The future contract referenced by ``symbol``. Raises ------ SymbolNotFound Raised when no contract named 'symbol' is found. """ data = self._select_asset_by_symbol(self.futures_contracts, symbol)\ .execute().fetchone() # If no data found, raise an exception if not data: raise SymbolNotFound(symbol=symbol) return self.retrieve_asset(data['sid']) def lookup_by_supplementary_field(self, field_name, value, as_of_date): try: owners = self.equity_supplementary_map[ field_name, value, ] assert owners, 'empty owners list for %r' % (field_name, value) except KeyError: # no equity has ever held this value raise ValueNotFoundForField(field=field_name, value=value) if not as_of_date: if len(owners) > 1: # more than one equity has held this value, this is ambigious # without the date raise MultipleValuesFoundForField( field=field_name, value=value, options=set(map( compose(self.retrieve_asset, attrgetter('sid')), owners, )), ) # exactly one equity has ever held this value, we may resolve # without the date return self.retrieve_asset(owners[0].sid) for start, end, sid, _ in owners: if start <= as_of_date < end: # find the equity that owned it on the given asof date return self.retrieve_asset(sid) # no equity held the value on the given asof date raise ValueNotFoundForField(field=field_name, value=value) def get_supplementary_field( self, sid, field_name, as_of_date, ): """Get the value of a supplementary field for an asset. Parameters ---------- sid : int The sid of the asset to query. field_name : str Name of the supplementary field. as_of_date : pd.Timestamp, None The last known value on this date is returned. If None, a value is returned only if we've only ever had one value for this sid. If None and we've had multiple values, MultipleValuesFoundForSid is raised. Raises ------ NoValueForSid If we have no values for this asset, or no values was known on this as_of_date. MultipleValuesFoundForSid If we have had multiple values for this asset over time, and None was passed for as_of_date. """ try: periods = self.equity_supplementary_map_by_sid[ field_name, sid, ] assert periods, 'empty periods list for %r' % (field_name, sid) except KeyError: raise NoValueForSid(field=field_name, sid=sid) if not as_of_date: if len(periods) > 1: # This equity has held more than one value, this is ambigious # without the date raise MultipleValuesFoundForSid( field=field_name, sid=sid, options={p.value for p in periods}, ) # this equity has only ever held this value, we may resolve # without the date return periods[0].value for start, end, _, value in periods: if start <= as_of_date < end: return value # Could not find a value for this sid on the as_of_date. raise NoValueForSid(field=field_name, sid=sid) def _get_contract_sids(self, root_symbol): fc_cols = self.futures_contracts.c return [r.sid for r in list(sa.select((fc_cols.sid,)).where( (fc_cols.root_symbol == root_symbol) & (fc_cols.start_date != pd.NaT.value)).order_by( fc_cols.sid).execute().fetchall())] def _get_root_symbol_exchange(self, root_symbol): fc_cols = self.futures_root_symbols.c fields = (fc_cols.exchange,) exchange = sa.select(fields).where( fc_cols.root_symbol == root_symbol).execute().scalar() if exchange is not None: return exchange else: raise SymbolNotFound(symbol=root_symbol) def get_ordered_contracts(self, root_symbol): try: return self._ordered_contracts[root_symbol] except KeyError: contract_sids = self._get_contract_sids(root_symbol) contracts = deque(self.retrieve_all(contract_sids)) chain_predicate = self._future_chain_predicates.get(root_symbol, None) oc = OrderedContracts(root_symbol, contracts, chain_predicate) self._ordered_contracts[root_symbol] = oc return oc def create_continuous_future(self, root_symbol, offset, roll_style, adjustment): if adjustment not in ADJUSTMENT_STYLES: raise ValueError( 'Invalid adjustment style {!r}. Allowed adjustment styles are ' '{}.'.format(adjustment, list(ADJUSTMENT_STYLES)) ) oc = self.get_ordered_contracts(root_symbol) exchange = self._get_root_symbol_exchange(root_symbol) sid = _encode_continuous_future_sid(root_symbol, offset, roll_style, None) mul_sid = _encode_continuous_future_sid(root_symbol, offset, roll_style, 'div') add_sid = _encode_continuous_future_sid(root_symbol, offset, roll_style, 'add') cf_template = partial( ContinuousFuture, root_symbol=root_symbol, offset=offset, roll_style=roll_style, start_date=oc.start_date, end_date=oc.end_date, exchange_info=self.exchange_info[exchange], ) cf = cf_template(sid=sid) mul_cf = cf_template(sid=mul_sid, adjustment='mul') add_cf = cf_template(sid=add_sid, adjustment='add') self._asset_cache[cf.sid] = cf self._asset_cache[mul_cf.sid] = mul_cf self._asset_cache[add_cf.sid] = add_cf return {None: cf, 'mul': mul_cf, 'add': add_cf}[adjustment] def _make_sids(tblattr): def _(self): return tuple(map( itemgetter('sid'), sa.select(( getattr(self, tblattr).c.sid, )).execute().fetchall(), )) return _ sids = property( _make_sids('asset_router'), doc='All the sids in the asset finder.', ) equities_sids = property( _make_sids('equities'), doc='All of the sids for equities in the asset finder.', ) futures_sids = property( _make_sids('futures_contracts'), doc='All of the sids for futures consracts in the asset finder.', ) del _make_sids @lazyval def _symbol_lookups(self): """ An iterable of symbol lookup functions to use with ``lookup_generic`` Attempts equities lookup, then futures. """ return ( self.lookup_symbol, # lookup_future_symbol method does not use as_of date, since # symbols are unique. # # Wrap the function in a lambda so that both methods share a # signature, so that when the functions are iterated over # the consumer can use the same arguments with both methods. lambda symbol, _: self.lookup_future_symbol(symbol) ) def _lookup_generic_scalar(self, asset_convertible, as_of_date, matches, missing): """ Convert asset_convertible to an asset. On success, append to matches. On failure, append to missing. """ if isinstance(asset_convertible, Asset): matches.append(asset_convertible) elif isinstance(asset_convertible, Integral): try: result = self.retrieve_asset(int(asset_convertible)) except SidsNotFound: missing.append(asset_convertible) return None matches.append(result) elif isinstance(asset_convertible, string_types): for lookup in self._symbol_lookups: try: matches.append(lookup(asset_convertible, as_of_date)) return except SymbolNotFound: continue else: missing.append(asset_convertible) return None else: raise NotAssetConvertible( "Input was %s, not AssetConvertible." % asset_convertible ) def lookup_generic(self, asset_convertible_or_iterable, as_of_date): """ Convert a AssetConvertible or iterable of AssetConvertibles into a list of Asset objects. This method exists primarily as a convenience for implementing user-facing APIs that can handle multiple kinds of input. It should not be used for internal code where we already know the expected types of our inputs. Returns a pair of objects, the first of which is the result of the conversion, and the second of which is a list containing any values that couldn't be resolved. """ matches = [] missing = [] # Interpret input as scalar. if isinstance(asset_convertible_or_iterable, AssetConvertible): self._lookup_generic_scalar( asset_convertible=asset_convertible_or_iterable, as_of_date=as_of_date, matches=matches, missing=missing, ) try: return matches[0], missing except IndexError: if hasattr(asset_convertible_or_iterable, '__int__'): raise SidsNotFound(sids=[asset_convertible_or_iterable]) else: raise SymbolNotFound(symbol=asset_convertible_or_iterable) # If the input is a ContinuousFuture just return it as-is. elif isinstance(asset_convertible_or_iterable, ContinuousFuture): return asset_convertible_or_iterable, missing # Interpret input as iterable. try: iterator = iter(asset_convertible_or_iterable) except TypeError: raise NotAssetConvertible( "Input was not a AssetConvertible " "or iterable of AssetConvertible." ) for obj in iterator: if isinstance(obj, ContinuousFuture): matches.append(obj) else: self._lookup_generic_scalar(obj, as_of_date, matches, missing) return matches, missing def map_identifier_index_to_sids(self, index, as_of_date): """ This method is for use in sanitizing a user's DataFrame or Panel inputs. Takes the given index of identifiers, checks their types, builds assets if necessary, and returns a list of the sids that correspond to the input index. Parameters ---------- index : Iterable An iterable containing ints, strings, or Assets as_of_date : pandas.Timestamp A date to be used to resolve any dual-mapped symbols Returns ------- List A list of integer sids corresponding to the input index """ # This method assumes that the type of the objects in the index is # consistent and can, therefore, be taken from the first identifier first_identifier = index[0] # Ensure that input is AssetConvertible (integer, string, or Asset) if not isinstance(first_identifier, AssetConvertible): raise MapAssetIdentifierIndexError(obj=first_identifier) # If sids are provided, no mapping is necessary if isinstance(first_identifier, Integral): return index # Look up all Assets for mapping matches = [] missing = [] for identifier in index: self._lookup_generic_scalar(identifier, as_of_date, matches, missing) if missing: raise ValueError("Missing assets for identifiers: %s" % missing) # Return a list of the sids of the found assets return [asset.sid for asset in matches] def _compute_asset_lifetimes(self, country_codes): """ Compute and cache a recarray of asset lifetimes. """ equities_cols = self.equities.c if country_codes: buf = np.array( tuple( sa.select(( equities_cols.sid, equities_cols.start_date, equities_cols.end_date, )).where( (self.exchanges.c.exchange == equities_cols.exchange) & (self.exchanges.c.country_code.in_(country_codes)) ).execute(), ), dtype='f8', # use doubles so we get NaNs ) else: buf = np.array([], dtype='f8') lifetimes = np.recarray( buf=buf, shape=(len(buf),), dtype=[ ('sid', 'f8'), ('start', 'f8'), ('end', 'f8') ], ) start = lifetimes.start end = lifetimes.end start[np.isnan(start)] = 0 # convert missing starts to 0 end[np.isnan(end)] = np.iinfo(int).max # convert missing end to INTMAX # Cast the results back down to int. return lifetimes.astype([ ('sid', 'i8'), ('start', 'i8'), ('end', 'i8'), ]) def lifetimes(self, dates, include_start_date, country_codes): """ Compute a DataFrame representing asset lifetimes for the specified date range. Parameters ---------- dates : pd.DatetimeIndex The dates for which to compute lifetimes. include_start_date : bool Whether or not to count the asset as alive on its start_date. This is useful in a backtesting context where `lifetimes` is being used to signify "do I have data for this asset as of the morning of this date?" For many financial metrics, (e.g. daily close), data isn't available for an asset until the end of the asset's first day. country_codes : iterable[str] The country codes to get lifetimes for. Returns ------- lifetimes : pd.DataFrame A frame of dtype bool with `dates` as index and an Int64Index of assets as columns. The value at `lifetimes.loc[date, asset]` will be True iff `asset` existed on `date`. If `include_start_date` is False, then lifetimes.loc[date, asset] will be false when date == asset.start_date. See Also -------- numpy.putmask zipline.pipeline.engine.SimplePipelineEngine._compute_root_mask """ # normalize this to a cache-key country_codes = frozenset(country_codes) # This is a less than ideal place to do this, because if someone adds # assets to the finder after we've touched lifetimes we won't have # those new assets available. Mutability is not my favorite # programming feature. lifetimes = self._asset_lifetimes.get(country_codes) if lifetimes is None: self._asset_lifetimes[country_codes] = lifetimes = ( self._compute_asset_lifetimes(country_codes) ) raw_dates = as_column(dates.asi8) if include_start_date: mask = lifetimes.start <= raw_dates else: mask = lifetimes.start < raw_dates mask &= (raw_dates <= lifetimes.end) return pd.DataFrame(mask, index=dates, columns=lifetimes.sid) class AssetConvertible(with_metaclass(ABCMeta)): """ ABC for types that are convertible to integer-representations of Assets. Includes Asset, six.string_types, and Integral """ pass AssetConvertible.register(Integral) AssetConvertible.register(Asset) # Use six.string_types for Python2/3 compatibility for _type in string_types: AssetConvertible.register(_type) class NotAssetConvertible(ValueError): pass class PricingDataAssociable(with_metaclass(ABCMeta)): """ ABC for types that can be associated with pricing data. Includes Asset, Future, ContinuousFuture """ pass PricingDataAssociable.register(Asset) PricingDataAssociable.register(Future) PricingDataAssociable.register(ContinuousFuture) def was_active(reference_date_value, asset): """ Whether or not `asset` was active at the time corresponding to `reference_date_value`. Parameters ---------- reference_date_value : int Date, represented as nanoseconds since EPOCH, for which we want to know if `asset` was alive. This is generally the result of accessing the `value` attribute of a pandas Timestamp. asset : Asset The asset object to check. Returns ------- was_active : bool Whether or not the `asset` existed at the specified time. """ return ( asset.start_date.value <= reference_date_value <= asset.end_date.value ) def only_active_assets(reference_date_value, assets): """ Filter an iterable of Asset objects down to just assets that were alive at the time corresponding to `reference_date_value`. Parameters ---------- reference_date_value : int Date, represented as nanoseconds since EPOCH, for which we want to know if `asset` was alive. This is generally the result of accessing the `value` attribute of a pandas Timestamp. assets : iterable[Asset] The assets to filter. Returns ------- active_assets : list List of the active assets from `assets` on the requested date. """ return [a for a in assets if was_active(reference_date_value, a)]
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/assets/assets.py
assets.py
from itertools import product from string import ascii_uppercase import pandas as pd from pandas.tseries.offsets import MonthBegin from six import iteritems from .futures import CME_CODE_TO_MONTH def make_rotating_equity_info(num_assets, first_start, frequency, periods_between_starts, asset_lifetime, exchange='TEST'): """ Create a DataFrame representing lifetimes of assets that are constantly rotating in and out of existence. Parameters ---------- num_assets : int How many assets to create. first_start : pd.Timestamp The start date for the first asset. frequency : str or pd.tseries.offsets.Offset (e.g. trading_day) Frequency used to interpret next two arguments. periods_between_starts : int Create a new asset every `frequency` * `periods_between_new` asset_lifetime : int Each asset exists for `frequency` * `asset_lifetime` days. exchange : str, optional The exchange name. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ return pd.DataFrame( { 'symbol': [chr(ord('A') + i) for i in range(num_assets)], # Start a new asset every `periods_between_starts` days. 'start_date': pd.date_range( first_start, freq=(periods_between_starts * frequency), periods=num_assets, ), # Each asset lasts for `asset_lifetime` days. 'end_date': pd.date_range( first_start + (asset_lifetime * frequency), freq=(periods_between_starts * frequency), periods=num_assets, ), 'exchange': exchange, }, index=range(num_assets), ) def make_simple_equity_info(sids, start_date, end_date, symbols=None, names=None, exchange='TEST'): """ Create a DataFrame representing assets that exist for the full duration between `start_date` and `end_date`. Parameters ---------- sids : array-like of int start_date : pd.Timestamp, optional end_date : pd.Timestamp, optional symbols : list, optional Symbols to use for the assets. If not provided, symbols are generated from the sequence 'A', 'B', ... names : list, optional Names to use for the assets. If not provided, names are generated by adding " INC." to each of the symbols (which might also be auto-generated). exchange : str, optional The exchange name. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ num_assets = len(sids) if symbols is None: symbols = list(ascii_uppercase[:num_assets]) else: symbols = list(symbols) if names is None: names = [str(s) + " INC." for s in symbols] return pd.DataFrame( { 'symbol': symbols, 'start_date': pd.to_datetime([start_date] * num_assets), 'end_date': pd.to_datetime([end_date] * num_assets), 'asset_name': list(names), 'exchange': exchange, }, index=sids, columns=( 'start_date', 'end_date', 'symbol', 'exchange', 'asset_name', ), ) def make_jagged_equity_info(num_assets, start_date, first_end, frequency, periods_between_ends, auto_close_delta): """ Create a DataFrame representing assets that all begin at the same start date, but have cascading end dates. Parameters ---------- num_assets : int How many assets to create. start_date : pd.Timestamp The start date for all the assets. first_end : pd.Timestamp The date at which the first equity will end. frequency : str or pd.tseries.offsets.Offset (e.g. trading_day) Frequency used to interpret the next argument. periods_between_ends : int Starting after the first end date, end each asset every `frequency` * `periods_between_ends`. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ frame = pd.DataFrame( { 'symbol': [chr(ord('A') + i) for i in range(num_assets)], 'start_date': start_date, 'end_date': pd.date_range( first_end, freq=(periods_between_ends * frequency), periods=num_assets, ), 'exchange': 'TEST', }, index=range(num_assets), ) # Explicitly pass None to disable setting the auto_close_date column. if auto_close_delta is not None: frame['auto_close_date'] = frame['end_date'] + auto_close_delta return frame def make_future_info(first_sid, root_symbols, years, notice_date_func, expiration_date_func, start_date_func, month_codes=None, multiplier=500): """ Create a DataFrame representing futures for `root_symbols` during `year`. Generates a contract per triple of (symbol, year, month) supplied to `root_symbols`, `years`, and `month_codes`. Parameters ---------- first_sid : int The first sid to use for assigning sids to the created contracts. root_symbols : list[str] A list of root symbols for which to create futures. years : list[int or str] Years (e.g. 2014), for which to produce individual contracts. notice_date_func : (Timestamp) -> Timestamp Function to generate notice dates from first of the month associated with asset month code. Return NaT to simulate futures with no notice date. expiration_date_func : (Timestamp) -> Timestamp Function to generate expiration dates from first of the month associated with asset month code. start_date_func : (Timestamp) -> Timestamp, optional Function to generate start dates from first of the month associated with each asset month code. Defaults to a start_date one year prior to the month_code date. month_codes : dict[str -> [1..12]], optional Dictionary of month codes for which to create contracts. Entries should be strings mapped to values from 1 (January) to 12 (December). Default is zipline.futures.CME_CODE_TO_MONTH multiplier : int The contract multiplier. Returns ------- futures_info : pd.DataFrame DataFrame of futures data suitable for passing to an AssetDBWriter. """ if month_codes is None: month_codes = CME_CODE_TO_MONTH year_strs = list(map(str, years)) years = [pd.Timestamp(s, tz='UTC') for s in year_strs] # Pairs of string/date like ('K06', 2006-05-01) contract_suffix_to_beginning_of_month = tuple( (month_code + year_str[-2:], year + MonthBegin(month_num)) for ((year, year_str), (month_code, month_num)) in product( zip(years, year_strs), iteritems(month_codes), ) ) contracts = [] parts = product(root_symbols, contract_suffix_to_beginning_of_month) for sid, (root_sym, (suffix, month_begin)) in enumerate(parts, first_sid): contracts.append({ 'sid': sid, 'root_symbol': root_sym, 'symbol': root_sym + suffix, 'start_date': start_date_func(month_begin), 'notice_date': notice_date_func(month_begin), 'expiration_date': notice_date_func(month_begin), 'multiplier': multiplier, 'exchange': "TEST", }) return pd.DataFrame.from_records(contracts, index='sid') def make_commodity_future_info(first_sid, root_symbols, years, month_codes=None, multiplier=500): """ Make futures testing data that simulates the notice/expiration date behavior of physical commodities like oil. Parameters ---------- first_sid : int The first sid to use for assigning sids to the created contracts. root_symbols : list[str] A list of root symbols for which to create futures. years : list[int or str] Years (e.g. 2014), for which to produce individual contracts. month_codes : dict[str -> [1..12]], optional Dictionary of month codes for which to create contracts. Entries should be strings mapped to values from 1 (January) to 12 (December). Default is zipline.futures.CME_CODE_TO_MONTH multiplier : int The contract multiplier. Expiration dates are on the 20th of the month prior to the month code. Notice dates are are on the 20th two months prior to the month code. Start dates are one year before the contract month. See Also -------- make_future_info """ nineteen_days = pd.Timedelta(days=19) one_year = pd.Timedelta(days=365) return make_future_info( first_sid=first_sid, root_symbols=root_symbols, years=years, notice_date_func=lambda dt: dt - MonthBegin(2) + nineteen_days, expiration_date_func=lambda dt: dt - MonthBegin(1) + nineteen_days, start_date_func=lambda dt: dt - one_year, month_codes=month_codes, multiplier=multiplier, )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/assets/synthetic.py
synthetic.py
from collections import namedtuple import re from contextlib2 import ExitStack import numpy as np import pandas as pd import sqlalchemy as sa from toolz import first from zipline.errors import AssetDBVersionError from zipline.assets.asset_db_schema import ( ASSET_DB_VERSION, asset_db_table_names, asset_router, equities as equities_table, equity_symbol_mappings, equity_supplementary_mappings as equity_supplementary_mappings_table, futures_contracts as futures_contracts_table, exchanges as exchanges_table, futures_root_symbols, metadata, version_info, ) from zipline.utils.preprocess import preprocess from zipline.utils.range import from_tuple, intersecting_ranges from zipline.utils.sqlite_utils import coerce_string_to_eng # Define a namedtuple for use with the load_data and _load_data methods AssetData = namedtuple( 'AssetData', ( 'equities', 'equities_mappings', 'futures', 'exchanges', 'root_symbols', 'equity_supplementary_mappings', ), ) SQLITE_MAX_VARIABLE_NUMBER = 999 symbol_columns = frozenset({ 'symbol', 'company_symbol', 'share_class_symbol', }) mapping_columns = symbol_columns | {'start_date', 'end_date'} def _default_none(df, column): return None def _no_default(df, column): if not df.empty: raise ValueError('no default value for column %r' % column) # Default values for the equities DataFrame _equities_defaults = { 'symbol': _default_none, 'asset_name': _default_none, 'start_date': lambda df, col: 0, 'end_date': lambda df, col: np.iinfo(np.int64).max, 'first_traded': _default_none, 'auto_close_date': _default_none, # the full exchange name 'exchange': _no_default, } # Default values for the futures DataFrame _futures_defaults = { 'symbol': _default_none, 'root_symbol': _default_none, 'asset_name': _default_none, 'start_date': lambda df, col: 0, 'end_date': lambda df, col: np.iinfo(np.int64).max, 'first_traded': _default_none, 'exchange': _default_none, 'notice_date': _default_none, 'expiration_date': _default_none, 'auto_close_date': _default_none, 'tick_size': _default_none, 'multiplier': lambda df, col: 1, } # Default values for the exchanges DataFrame _exchanges_defaults = { 'canonical_name': lambda df, col: df.index, 'country_code': lambda df, col: '??', } # Default values for the root_symbols DataFrame _root_symbols_defaults = { 'root_symbol_id': _default_none, 'sector': _default_none, 'description': _default_none, 'exchange': _default_none, } # Default values for the equity_supplementary_mappings DataFrame _equity_supplementary_mappings_defaults = { 'sid': _default_none, 'value': _default_none, 'field': _default_none, 'start_date': lambda df, col: 0, 'end_date': lambda df, col: np.iinfo(np.int64).max, } # Fuzzy symbol delimiters that may break up a company symbol and share class _delimited_symbol_delimiters_regex = re.compile(r'[./\-_]') _delimited_symbol_default_triggers = frozenset({np.nan, None, ''}) def split_delimited_symbol(symbol): """ Takes in a symbol that may be delimited and splits it in to a company symbol and share class symbol. Also returns the fuzzy symbol, which is the symbol without any fuzzy characters at all. Parameters ---------- symbol : str The possibly-delimited symbol to be split Returns ------- company_symbol : str The company part of the symbol. share_class_symbol : str The share class part of a symbol. """ # return blank strings for any bad fuzzy symbols, like NaN or None if symbol in _delimited_symbol_default_triggers: return '', '' symbol = symbol.upper() split_list = re.split( pattern=_delimited_symbol_delimiters_regex, string=symbol, maxsplit=1, ) # Break the list up in to its two components, the company symbol and the # share class symbol company_symbol = split_list[0] if len(split_list) > 1: share_class_symbol = split_list[1] else: share_class_symbol = '' return company_symbol, share_class_symbol def _generate_output_dataframe(data_subset, defaults): """ Generates an output dataframe from the given subset of user-provided data, the given column names, and the given default values. Parameters ---------- data_subset : DataFrame A DataFrame, usually from an AssetData object, that contains the user's input metadata for the asset type being processed defaults : dict A dict where the keys are the names of the columns of the desired output DataFrame and the values are a function from dataframe and column name to the default values to insert in the DataFrame if no user data is provided Returns ------- DataFrame A DataFrame containing all user-provided metadata, and default values wherever user-provided metadata was missing """ # The columns provided. cols = set(data_subset.columns) desired_cols = set(defaults) # Drop columns with unrecognised headers. data_subset.drop(cols - desired_cols, axis=1, inplace=True) # Get those columns which we need but # for which no data has been supplied. for col in desired_cols - cols: # write the default value for any missing columns data_subset[col] = defaults[col](data_subset, col) return data_subset def _check_asset_group(group): row = group.sort_values('end_date').iloc[-1] row.start_date = group.start_date.min() row.end_date = group.end_date.max() row.drop(list(symbol_columns), inplace=True) return row def _format_range(r): return ( str(pd.Timestamp(r.start, unit='ns')), str(pd.Timestamp(r.stop, unit='ns')), ) def _split_symbol_mappings(df, exchanges): """Split out the symbol: sid mappings from the raw data. Parameters ---------- df : pd.DataFrame The dataframe with multiple rows for each symbol: sid pair. Returns ------- asset_info : pd.DataFrame The asset info with one row per asset. symbol_mappings : pd.DataFrame The dataframe of just symbol: sid mappings. The index will be the sid, then there will be three columns: symbol, start_date, and end_date. """ mappings = df[list(mapping_columns)].copy() mappings['country_code'] = exchanges['country_code'][df['exchange']].values ambigious = {} def check_intersections(persymbol): intersections = list(intersecting_ranges(map( from_tuple, zip(persymbol.start_date, persymbol.end_date), ))) if intersections: data = persymbol[ ['start_date', 'end_date'] ].astype('datetime64[ns]') # indent the dataframe string, also compute this early because # ``persymbol`` is a view and ``astype`` doesn't copy the index # correctly in pandas 0.22 msg_component = '\n '.join(str(data).splitlines()) ambigious[persymbol.name] = intersections, msg_component mappings.groupby(['symbol', 'country_code']).apply(check_intersections) if ambigious: raise ValueError( 'Ambiguous ownership for %d symbol%s, multiple assets held the' ' following symbols:\n%s' % ( len(ambigious), '' if len(ambigious) == 1 else 's', '\n'.join( '%s (%s):\n intersections: %s\n %s' % ( symbol, country_code, tuple(map(_format_range, intersections)), cs, ) for (symbol, country_code), (intersections, cs) in sorted( ambigious.items(), key=first, ), ), ) ) return ( df.groupby(level=0).apply(_check_asset_group), df[list(mapping_columns)], ) def _dt_to_epoch_ns(dt_series): """Convert a timeseries into an Int64Index of nanoseconds since the epoch. Parameters ---------- dt_series : pd.Series The timeseries to convert. Returns ------- idx : pd.Int64Index The index converted to nanoseconds since the epoch. """ index = pd.to_datetime(dt_series.values) if index.tzinfo is None: index = index.tz_localize('UTC') else: index = index.tz_convert('UTC') return index.view(np.int64) def check_version_info(conn, version_table, expected_version): """ Checks for a version value in the version table. Parameters ---------- conn : sa.Connection The connection to use to perform the check. version_table : sa.Table The version table of the asset database expected_version : int The expected version of the asset database Raises ------ AssetDBVersionError If the version is in the table and not equal to ASSET_DB_VERSION. """ # Read the version out of the table version_from_table = conn.execute( sa.select((version_table.c.version,)), ).scalar() # A db without a version is considered v0 if version_from_table is None: version_from_table = 0 # Raise an error if the versions do not match if (version_from_table != expected_version): raise AssetDBVersionError(db_version=version_from_table, expected_version=expected_version) def write_version_info(conn, version_table, version_value): """ Inserts the version value in to the version table. Parameters ---------- conn : sa.Connection The connection to use to execute the insert. version_table : sa.Table The version table of the asset database version_value : int The version to write in to the database """ conn.execute(sa.insert(version_table, values={'version': version_value})) class _empty(object): columns = () class AssetDBWriter(object): """Class used to write data to an assets db. Parameters ---------- engine : Engine or str An SQLAlchemy engine or path to a SQL database. """ DEFAULT_CHUNK_SIZE = SQLITE_MAX_VARIABLE_NUMBER @preprocess(engine=coerce_string_to_eng(require_exists=False)) def __init__(self, engine): self.engine = engine def write(self, equities=None, futures=None, exchanges=None, root_symbols=None, equity_supplementary_mappings=None, chunk_size=DEFAULT_CHUNK_SIZE): """Write asset metadata to a sqlite database. Parameters ---------- equities : pd.DataFrame, optional The equity metadata. The columns for this dataframe are: symbol : str The ticker symbol for this equity. asset_name : str The full name for this asset. start_date : datetime The date when this asset was created. end_date : datetime, optional The last date we have trade data for this asset. first_traded : datetime, optional The first date we have trade data for this asset. auto_close_date : datetime, optional The date on which to close any positions in this asset. exchange : str The exchange where this asset is traded. The index of this dataframe should contain the sids. futures : pd.DataFrame, optional The future contract metadata. The columns for this dataframe are: symbol : str The ticker symbol for this futures contract. root_symbol : str The root symbol, or the symbol with the expiration stripped out. asset_name : str The full name for this asset. start_date : datetime, optional The date when this asset was created. end_date : datetime, optional The last date we have trade data for this asset. first_traded : datetime, optional The first date we have trade data for this asset. exchange : str The exchange where this asset is traded. notice_date : datetime The date when the owner of the contract may be forced to take physical delivery of the contract's asset. expiration_date : datetime The date when the contract expires. auto_close_date : datetime The date when the broker will automatically close any positions in this contract. tick_size : float The minimum price movement of the contract. multiplier: float The amount of the underlying asset represented by this contract. exchanges : pd.DataFrame, optional The exchanges where assets can be traded. The columns of this dataframe are: exchange : str The full name of the exchange. canonical_name : str The canonical name of the exchange. country_code : str The ISO 3166 alpha-2 country code of the exchange. root_symbols : pd.DataFrame, optional The root symbols for the futures contracts. The columns for this dataframe are: root_symbol : str The root symbol name. root_symbol_id : int The unique id for this root symbol. sector : string, optional The sector of this root symbol. description : string, optional A short description of this root symbol. exchange : str The exchange where this root symbol is traded. equity_supplementary_mappings : pd.DataFrame, optional Additional mappings from values of abitrary type to assets. chunk_size : int, optional The amount of rows to write to the SQLite table at once. This defaults to the default number of bind params in sqlite. If you have compiled sqlite3 with more bind or less params you may want to pass that value here. See Also -------- zipline.assets.asset_finder """ if exchanges is None: exchange_names = [ df['exchange'] for df in (equities, futures, root_symbols) if df is not None ] if exchange_names: exchanges = pd.DataFrame({ 'exchange': pd.concat(exchange_names).unique(), }) with self.engine.begin() as conn: # Ensure that the foreign key constraints are enforced on inserts. # The ``foreign_keys`` pragma only applies to a given connection, # not the whole database. # conn.execute('PRAGMA foreign_keys = ON') # Create SQL tables if they do not exist. self.init_db(conn) # Get the data to add to SQL. data = self._load_data( equities if equities is not None else pd.DataFrame(), futures if futures is not None else pd.DataFrame(), exchanges if exchanges is not None else pd.DataFrame(), root_symbols if root_symbols is not None else pd.DataFrame(), ( equity_supplementary_mappings if equity_supplementary_mappings is not None else pd.DataFrame() ), ) # Write the data to SQL. self._write_df_to_table( exchanges_table, data.exchanges, conn, chunk_size, ) self._write_df_to_table( futures_root_symbols, data.root_symbols, conn, chunk_size, ) self._write_df_to_table( equity_supplementary_mappings_table, data.equity_supplementary_mappings, conn, chunk_size, idx=False, ) self._write_assets( 'future', data.futures, conn, chunk_size, ) self._write_assets( 'equity', data.equities, conn, chunk_size, mapping_data=data.equities_mappings, ) def _write_df_to_table( self, tbl, df, txn, chunk_size, idx=True, idx_label=None, ): df.to_sql( tbl.name, txn.connection, index=idx, index_label=( idx_label if idx_label is not None else first(tbl.primary_key.columns).name ), if_exists='append', chunksize=chunk_size, ) def _write_assets(self, asset_type, assets, txn, chunk_size, mapping_data=None): if asset_type == 'future': tbl = futures_contracts_table if mapping_data is not None: raise TypeError('no mapping data expected for futures') elif asset_type == 'equity': tbl = equities_table if mapping_data is None: raise TypeError('mapping data required for equities') # write the symbol mapping data. self._write_df_to_table( equity_symbol_mappings, mapping_data, txn, chunk_size, idx_label='sid', ) else: raise ValueError( "asset_type must be in {'future', 'equity'}, got: %s" % asset_type, ) self._write_df_to_table(tbl, assets, txn, chunk_size) pd.DataFrame({ asset_router.c.sid.name: assets.index.values, asset_router.c.asset_type.name: asset_type, }).to_sql( asset_router.name, txn.connection, if_exists='append', index=False, chunksize=chunk_size ) def _all_tables_present(self, txn): """ Checks if any tables are present in the current assets database. Parameters ---------- txn : Transaction The open transaction to check in. Returns ------- has_tables : bool True if any tables are present, otherwise False. """ conn = txn.connect() for table_name in asset_db_table_names: if txn.dialect.has_table(conn, table_name): return True return False def init_db(self, txn=None): """Connect to database and create tables. Parameters ---------- txn : sa.engine.Connection, optional The transaction to execute in. If this is not provided, a new transaction will be started with the engine provided. Returns ------- metadata : sa.MetaData The metadata that describes the new assets db. """ with ExitStack() as stack: if txn is None: txn = stack.enter_context(self.engine.begin()) tables_already_exist = self._all_tables_present(txn) # Create the SQL tables if they do not already exist. metadata.create_all(txn, checkfirst=True) if tables_already_exist: check_version_info(txn, version_info, ASSET_DB_VERSION) else: write_version_info(txn, version_info, ASSET_DB_VERSION) def _normalize_equities(self, equities, exchanges): # HACK: If 'company_name' is provided, map it to asset_name if ('company_name' in equities.columns and 'asset_name' not in equities.columns): equities['asset_name'] = equities['company_name'] # remap 'file_name' to 'symbol' if provided if 'file_name' in equities.columns: equities['symbol'] = equities['file_name'] equities_output = _generate_output_dataframe( data_subset=equities, defaults=_equities_defaults, ) # Split symbols to company_symbols and share_class_symbols tuple_series = equities_output['symbol'].apply(split_delimited_symbol) split_symbols = pd.DataFrame( tuple_series.tolist(), columns=['company_symbol', 'share_class_symbol'], index=tuple_series.index ) equities_output = pd.concat((equities_output, split_symbols), axis=1) # Upper-case all symbol data for col in symbol_columns: equities_output[col] = equities_output[col].str.upper() # Convert date columns to UNIX Epoch integers (nanoseconds) for col in ('start_date', 'end_date', 'first_traded', 'auto_close_date'): equities_output[col] = _dt_to_epoch_ns(equities_output[col]) return _split_symbol_mappings(equities_output, exchanges) def _normalize_futures(self, futures): futures_output = _generate_output_dataframe( data_subset=futures, defaults=_futures_defaults, ) for col in ('symbol', 'root_symbol'): futures_output[col] = futures_output[col].str.upper() for col in ('start_date', 'end_date', 'first_traded', 'notice_date', 'expiration_date', 'auto_close_date'): futures_output[col] = _dt_to_epoch_ns(futures_output[col]) return futures_output def _normalize_equity_supplementary_mappings(self, mappings): mappings_output = _generate_output_dataframe( data_subset=mappings, defaults=_equity_supplementary_mappings_defaults, ) for col in ('start_date', 'end_date'): mappings_output[col] = _dt_to_epoch_ns(mappings_output[col]) return mappings_output def _load_data( self, equities, futures, exchanges, root_symbols, equity_supplementary_mappings, ): """ Returns a standard set of pandas.DataFrames: equities, futures, exchanges, root_symbols """ # Check whether identifier columns have been provided. # If they have, set the index to this column. # If not, assume the index already cotains the identifier information. for df, id_col in [(equities, 'sid'), (futures, 'sid'), (exchanges, 'exchange'), (root_symbols, 'root_symbol')]: if id_col in df.columns: df.set_index(id_col, inplace=True) futures_output = self._normalize_futures(futures) equity_supplementary_mappings_output = ( self._normalize_equity_supplementary_mappings( equity_supplementary_mappings, ) ) exchanges_output = _generate_output_dataframe( data_subset=exchanges, defaults=_exchanges_defaults, ) equities_output, equities_mappings = self._normalize_equities( equities, exchanges_output, ) root_symbols_output = _generate_output_dataframe( data_subset=root_symbols, defaults=_root_symbols_defaults, ) return AssetData( equities=equities_output, equities_mappings=equities_mappings, futures=futures_output, exchanges=exchanges_output, root_symbols=root_symbols_output, equity_supplementary_mappings=equity_supplementary_mappings_output, )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/assets/asset_writer.py
asset_writer.py
from alembic.migration import MigrationContext from alembic.operations import Operations import sqlalchemy as sa from toolz.curried import do, operator from zipline.assets.asset_writer import write_version_info from zipline.utils.compat import wraps from zipline.errors import AssetDBImpossibleDowngrade from zipline.utils.preprocess import preprocess from zipline.utils.sqlite_utils import coerce_string_to_eng def alter_columns(op, name, *columns, **kwargs): """Alter columns from a table. Parameters ---------- name : str The name of the table. *columns The new columns to have. selection_string : str, optional The string to use in the selection. If not provided, it will select all of the new columns from the old table. Notes ----- The columns are passed explicitly because this should only be used in a downgrade where ``zipline.assets.asset_db_schema`` could change. """ selection_string = kwargs.pop('selection_string', None) if kwargs: raise TypeError( 'alter_columns received extra arguments: %r' % sorted(kwargs), ) if selection_string is None: selection_string = ', '.join(column.name for column in columns) tmp_name = '_alter_columns_' + name op.rename_table(name, tmp_name) for column in columns: # Clear any indices that already exist on this table, otherwise we will # fail to create the table because the indices will already be present. # When we create the table below, the indices that we want to preserve # will just get recreated. for table in name, tmp_name: try: op.drop_index('ix_%s_%s' % (table, column.name)) except sa.exc.OperationalError: pass op.create_table(name, *columns) op.execute( 'insert into %s select %s from %s' % ( name, selection_string, tmp_name, ), ) op.drop_table(tmp_name) @preprocess(engine=coerce_string_to_eng(require_exists=True)) def downgrade(engine, desired_version): """Downgrades the assets db at the given engine to the desired version. Parameters ---------- engine : Engine An SQLAlchemy engine to the assets database. desired_version : int The desired resulting version for the assets database. """ # Check the version of the db at the engine with engine.begin() as conn: metadata = sa.MetaData(conn) metadata.reflect() version_info_table = metadata.tables['version_info'] starting_version = sa.select((version_info_table.c.version,)).scalar() # Check for accidental upgrade if starting_version < desired_version: raise AssetDBImpossibleDowngrade(db_version=starting_version, desired_version=desired_version) # Check if the desired version is already the db version if starting_version == desired_version: # No downgrade needed return # Create alembic context ctx = MigrationContext.configure(conn) op = Operations(ctx) # Integer keys of downgrades to run # E.g.: [5, 4, 3, 2] would downgrade v6 to v2 downgrade_keys = range(desired_version, starting_version)[::-1] # Disable foreign keys until all downgrades are complete _pragma_foreign_keys(conn, False) # Execute the downgrades in order for downgrade_key in downgrade_keys: _downgrade_methods[downgrade_key](op, conn, version_info_table) # Re-enable foreign keys _pragma_foreign_keys(conn, True) def _pragma_foreign_keys(connection, on): """Sets the PRAGMA foreign_keys state of the SQLite database. Disabling the pragma allows for batch modification of tables with foreign keys. Parameters ---------- connection : Connection A SQLAlchemy connection to the db on : bool If true, PRAGMA foreign_keys will be set to ON. Otherwise, the PRAGMA foreign_keys will be set to OFF. """ connection.execute("PRAGMA foreign_keys=%s" % ("ON" if on else "OFF")) # This dict contains references to downgrade methods that can be applied to an # assets db. The resulting db's version is the key. # e.g. The method at key '0' is the downgrade method from v1 to v0 _downgrade_methods = {} def downgrades(src): """Decorator for marking that a method is a downgrade to a version to the previous version. Parameters ---------- src : int The version this downgrades from. Returns ------- decorator : callable[(callable) -> callable] The decorator to apply. """ def _(f): destination = src - 1 @do(operator.setitem(_downgrade_methods, destination)) @wraps(f) def wrapper(op, conn, version_info_table): conn.execute(version_info_table.delete()) # clear the version f(op) write_version_info(conn, version_info_table, destination) return wrapper return _ @downgrades(1) def _downgrade_v1(op): """ Downgrade assets db by removing the 'tick_size' column and renaming the 'multiplier' column. """ # Drop indices before batch # This is to prevent index collision when creating the temp table op.drop_index('ix_futures_contracts_root_symbol') op.drop_index('ix_futures_contracts_symbol') # Execute batch op to allow column modification in SQLite with op.batch_alter_table('futures_contracts') as batch_op: # Rename 'multiplier' batch_op.alter_column(column_name='multiplier', new_column_name='contract_multiplier') # Delete 'tick_size' batch_op.drop_column('tick_size') # Recreate indices after batch op.create_index('ix_futures_contracts_root_symbol', table_name='futures_contracts', columns=['root_symbol']) op.create_index('ix_futures_contracts_symbol', table_name='futures_contracts', columns=['symbol'], unique=True) @downgrades(2) def _downgrade_v2(op): """ Downgrade assets db by removing the 'auto_close_date' column. """ # Drop indices before batch # This is to prevent index collision when creating the temp table op.drop_index('ix_equities_fuzzy_symbol') op.drop_index('ix_equities_company_symbol') # Execute batch op to allow column modification in SQLite with op.batch_alter_table('equities') as batch_op: batch_op.drop_column('auto_close_date') # Recreate indices after batch op.create_index('ix_equities_fuzzy_symbol', table_name='equities', columns=['fuzzy_symbol']) op.create_index('ix_equities_company_symbol', table_name='equities', columns=['company_symbol']) @downgrades(3) def _downgrade_v3(op): """ Downgrade assets db by adding a not null constraint on ``equities.first_traded`` """ op.create_table( '_new_equities', sa.Column( 'sid', sa.Integer, unique=True, nullable=False, primary_key=True, ), sa.Column('symbol', sa.Text), sa.Column('company_symbol', sa.Text), sa.Column('share_class_symbol', sa.Text), sa.Column('fuzzy_symbol', sa.Text), sa.Column('asset_name', sa.Text), sa.Column('start_date', sa.Integer, default=0, nullable=False), sa.Column('end_date', sa.Integer, nullable=False), sa.Column('first_traded', sa.Integer, nullable=False), sa.Column('auto_close_date', sa.Integer), sa.Column('exchange', sa.Text), ) op.execute( """ insert into _new_equities select * from equities where equities.first_traded is not null """, ) op.drop_table('equities') op.rename_table('_new_equities', 'equities') # we need to make sure the indices have the proper names after the rename op.create_index( 'ix_equities_company_symbol', 'equities', ['company_symbol'], ) op.create_index( 'ix_equities_fuzzy_symbol', 'equities', ['fuzzy_symbol'], ) @downgrades(4) def _downgrade_v4(op): """ Downgrades assets db by copying the `exchange_full` column to `exchange`, then dropping the `exchange_full` column. """ op.drop_index('ix_equities_fuzzy_symbol') op.drop_index('ix_equities_company_symbol') op.execute("UPDATE equities SET exchange = exchange_full") with op.batch_alter_table('equities') as batch_op: batch_op.drop_column('exchange_full') op.create_index('ix_equities_fuzzy_symbol', table_name='equities', columns=['fuzzy_symbol']) op.create_index('ix_equities_company_symbol', table_name='equities', columns=['company_symbol']) @downgrades(5) def _downgrade_v5(op): op.create_table( '_new_equities', sa.Column( 'sid', sa.Integer, unique=True, nullable=False, primary_key=True, ), sa.Column('symbol', sa.Text), sa.Column('company_symbol', sa.Text), sa.Column('share_class_symbol', sa.Text), sa.Column('fuzzy_symbol', sa.Text), sa.Column('asset_name', sa.Text), sa.Column('start_date', sa.Integer, default=0, nullable=False), sa.Column('end_date', sa.Integer, nullable=False), sa.Column('first_traded', sa.Integer), sa.Column('auto_close_date', sa.Integer), sa.Column('exchange', sa.Text), sa.Column('exchange_full', sa.Text) ) op.execute( """ insert into _new_equities select equities.sid as sid, sym.symbol as symbol, sym.company_symbol as company_symbol, sym.share_class_symbol as share_class_symbol, sym.company_symbol || sym.share_class_symbol as fuzzy_symbol, equities.asset_name as asset_name, equities.start_date as start_date, equities.end_date as end_date, equities.first_traded as first_traded, equities.auto_close_date as auto_close_date, equities.exchange as exchange, equities.exchange_full as exchange_full from equities inner join -- Nested select here to take the most recently held ticker -- for each sid. The group by with no aggregation function will -- take the last element in the group, so we first order by -- the end date ascending to ensure that the groupby takes -- the last ticker. (select * from (select * from equity_symbol_mappings order by equity_symbol_mappings.end_date asc) group by sid) sym on equities.sid == sym.sid """, ) op.drop_table('equity_symbol_mappings') op.drop_table('equities') op.rename_table('_new_equities', 'equities') # we need to make sure the indicies have the proper names after the rename op.create_index( 'ix_equities_company_symbol', 'equities', ['company_symbol'], ) op.create_index( 'ix_equities_fuzzy_symbol', 'equities', ['fuzzy_symbol'], ) @downgrades(6) def _downgrade_v6(op): op.drop_table('equity_supplementary_mappings') @downgrades(7) def _downgrade_v7(op): tmp_name = '_new_equities' op.create_table( tmp_name, sa.Column( 'sid', sa.Integer, unique=True, nullable=False, primary_key=True, ), sa.Column('asset_name', sa.Text), sa.Column('start_date', sa.Integer, default=0, nullable=False), sa.Column('end_date', sa.Integer, nullable=False), sa.Column('first_traded', sa.Integer), sa.Column('auto_close_date', sa.Integer), # remove foreign key to exchange sa.Column('exchange', sa.Text), # add back exchange full column sa.Column('exchange_full', sa.Text), ) op.execute( """ insert into _new_equities select eq.sid, eq.asset_name, eq.start_date, eq.end_date, eq.first_traded, eq.auto_close_date, ex.canonical_name, ex.exchange from equities eq inner join exchanges ex on eq.exchange == ex.exchange where ex.country_code in ('US', '??') """, ) op.drop_table('equities') op.rename_table(tmp_name, 'equities') # rebuild all tables without a foreign key to ``exchanges`` alter_columns( op, 'futures_root_symbols', sa.Column( 'root_symbol', sa.Text, unique=True, nullable=False, primary_key=True, ), sa.Column('root_symbol_id', sa.Integer), sa.Column('sector', sa.Text), sa.Column('description', sa.Text), sa.Column('exchange', sa.Text), ) alter_columns( op, 'futures_contracts', sa.Column( 'sid', sa.Integer, unique=True, nullable=False, primary_key=True, ), sa.Column('symbol', sa.Text, unique=True, index=True), sa.Column('root_symbol', sa.Text, index=True), sa.Column('asset_name', sa.Text), sa.Column('start_date', sa.Integer, default=0, nullable=False), sa.Column('end_date', sa.Integer, nullable=False), sa.Column('first_traded', sa.Integer), sa.Column('exchange', sa.Text), sa.Column('notice_date', sa.Integer, nullable=False), sa.Column('expiration_date', sa.Integer, nullable=False), sa.Column('auto_close_date', sa.Integer, nullable=False), sa.Column('multiplier', sa.Float), sa.Column('tick_size', sa.Float), ) # drop the ``country_code`` and ``canonical_name`` columns alter_columns( op, 'exchanges', sa.Column( 'exchange', sa.Text, unique=True, nullable=False, primary_key=True, ), sa.Column('timezone', sa.Text), # Set the timezone to NULL because we don't know what it was before. # Nothing in zipline reads the timezone so it doesn't matter. selection_string="exchange, NULL", ) op.rename_table('exchanges', 'futures_exchanges') # add back the foreign keys that previously existed alter_columns( op, 'futures_root_symbols', sa.Column( 'root_symbol', sa.Text, unique=True, nullable=False, primary_key=True, ), sa.Column('root_symbol_id', sa.Integer), sa.Column('sector', sa.Text), sa.Column('description', sa.Text), sa.Column( 'exchange', sa.Text, sa.ForeignKey('futures_exchanges.exchange'), ), ) alter_columns( op, 'futures_contracts', sa.Column( 'sid', sa.Integer, unique=True, nullable=False, primary_key=True, ), sa.Column('symbol', sa.Text, unique=True, index=True), sa.Column( 'root_symbol', sa.Text, sa.ForeignKey('futures_root_symbols.root_symbol'), index=True ), sa.Column('asset_name', sa.Text), sa.Column('start_date', sa.Integer, default=0, nullable=False), sa.Column('end_date', sa.Integer, nullable=False), sa.Column('first_traded', sa.Integer), sa.Column( 'exchange', sa.Text, sa.ForeignKey('futures_exchanges.exchange'), ), sa.Column('notice_date', sa.Integer, nullable=False), sa.Column('expiration_date', sa.Integer, nullable=False), sa.Column('auto_close_date', sa.Integer, nullable=False), sa.Column('multiplier', sa.Float), sa.Column('tick_size', sa.Float), )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/assets/asset_db_migrations.py
asset_db_migrations.py
from abc import ABCMeta, abstractmethod from six import with_metaclass # Number of days over which to compute rolls when finding the current contract # for a volume-rolling contract chain. For more details on why this is needed, # see `VolumeRollFinder.get_contract_center`. ROLL_DAYS_FOR_CURRENT_CONTRACT = 90 class RollFinder(with_metaclass(ABCMeta, object)): """ Abstract base class for calculating when futures contracts are the active contract. """ @abstractmethod def _active_contract(self, oc, front, back, dt): raise NotImplementedError def _get_active_contract_at_offset(self, root_symbol, dt, offset): """ For the given root symbol, find the contract that is considered active on a specific date at a specific offset. """ oc = self.asset_finder.get_ordered_contracts(root_symbol) session = self.trading_calendar.minute_to_session_label(dt) front = oc.contract_before_auto_close(session.value) back = oc.contract_at_offset(front, 1, dt.value) if back is None: return front primary = self._active_contract(oc, front, back, session) return oc.contract_at_offset(primary, offset, session.value) def get_contract_center(self, root_symbol, dt, offset): """ Parameters ---------- root_symbol : str The root symbol for the contract chain. dt : Timestamp The datetime for which to retrieve the current contract. offset : int The offset from the primary contract. 0 is the primary, 1 is the secondary, etc. Returns ------- Future The active future contract at the given dt. """ return self._get_active_contract_at_offset(root_symbol, dt, offset) def get_rolls(self, root_symbol, start, end, offset): """ Get the rolls, i.e. the session at which to hop from contract to contract in the chain. Parameters ---------- root_symbol : str The root symbol for which to calculate rolls. start : Timestamp Start of the date range. end : Timestamp End of the date range. offset : int Offset from the primary. Returns ------- rolls - list[tuple(sid, roll_date)] A list of rolls, where first value is the first active `sid`, and the `roll_date` on which to hop to the next contract. The last pair in the chain has a value of `None` since the roll is after the range. """ oc = self.asset_finder.get_ordered_contracts(root_symbol) front = self._get_active_contract_at_offset(root_symbol, end, 0) back = oc.contract_at_offset(front, 1, end.value) if back is not None: end_session = self.trading_calendar.minute_to_session_label(end) first = self._active_contract(oc, front, back, end_session) else: first = front first_contract = oc.sid_to_contract[first] rolls = [((first_contract >> offset).contract.sid, None)] tc = self.trading_calendar sessions = tc.sessions_in_range(tc.minute_to_session_label(start), tc.minute_to_session_label(end)) freq = sessions.freq if first == front: # This is a bit tricky to grasp. Once we have the active contract # on the given end date, we want to start walking backwards towards # the start date and checking for rolls. For this, we treat the # previous month's contract as the 'first' contract, and the # contract we just found to be active as the 'back'. As we walk # towards the start date, if the 'back' is no longer active, we add # that date as a roll. curr = first_contract << 1 else: curr = first_contract << 2 session = sessions[-1] while session > start and curr is not None: front = curr.contract.sid back = rolls[0][0] prev_c = curr.prev while session > start: prev = session - freq if prev_c is not None: if prev < prev_c.contract.auto_close_date: break if back != self._active_contract(oc, front, back, prev): # TODO: Instead of listing each contract with its roll date # as tuples, create a series which maps every day to the # active contract on that day. rolls.insert(0, ((curr >> offset).contract.sid, session)) break session = prev curr = curr.prev if curr is not None: session = min(session, curr.contract.auto_close_date + freq) return rolls class CalendarRollFinder(RollFinder): """ The CalendarRollFinder calculates contract rolls based purely on the contract's auto close date. """ def __init__(self, trading_calendar, asset_finder): self.trading_calendar = trading_calendar self.asset_finder = asset_finder def _active_contract(self, oc, front, back, dt): contract = oc.sid_to_contract[front].contract auto_close_date = contract.auto_close_date auto_closed = dt >= auto_close_date return back if auto_closed else front class VolumeRollFinder(RollFinder): """ The CalendarRollFinder calculates contract rolls based on when volume activity transfers from one contract to another. """ GRACE_DAYS = 7 THRESHOLD = 0.10 def __init__(self, trading_calendar, asset_finder, session_reader): self.trading_calendar = trading_calendar self.asset_finder = asset_finder self.session_reader = session_reader def _active_contract(self, oc, front, back, dt): """ Return the active contract based on the previous trading day's volume. In the rare case that a double volume switch occurs we treat the first switch as the roll. Take the following case for example: | +++++ _____ | + __ / <--- 'G' | ++/++\++++/++ | _/ \__/ + | / + | ____/ + <--- 'F' |_________|__|___|________ a b c <--- Switches We should treat 'a' as the roll date rather than 'c' because from the perspective of 'a', if a switch happens and we are pretty close to the auto-close date, we would probably assume it is time to roll. This means that for every date after 'a', `data.current(cf, 'contract')` should return the 'G' contract. """ front_contract = oc.sid_to_contract[front].contract back_contract = oc.sid_to_contract[back].contract tc = self.trading_calendar trading_day = tc.day prev = dt - trading_day get_value = self.session_reader.get_value # If the front contract is past its auto close date it cannot be the # active contract, so return the back contract. Similarly, if the back # contract has not even started yet, just return the front contract. # The reason for using 'prev' to see if the contracts are alive instead # of using 'dt' is because we need to get each contract's volume on the # previous day, so we need to make sure that each contract exists on # 'prev' in order to call 'get_value' below. if dt > min(front_contract.auto_close_date, front_contract.end_date): return back elif front_contract.start_date > prev: return back elif dt > min(back_contract.auto_close_date, back_contract.end_date): return front elif back_contract.start_date > prev: return front front_vol = get_value(front, prev, 'volume') back_vol = get_value(back, prev, 'volume') if back_vol > front_vol: return back gap_start = max( back_contract.start_date, front_contract.auto_close_date - (trading_day * self.GRACE_DAYS), ) gap_end = prev - trading_day if dt < gap_start: return front # If we are within `self.GRACE_DAYS` of the front contract's auto close # date, and a volume flip happened during that period, return the back # contract as the active one. sessions = tc.sessions_in_range( tc.minute_to_session_label(gap_start), tc.minute_to_session_label(gap_end), ) for session in sessions: front_vol = get_value(front, session, 'volume') back_vol = get_value(back, session, 'volume') if back_vol > front_vol: return back return front def get_contract_center(self, root_symbol, dt, offset): """ Parameters ---------- root_symbol : str The root symbol for the contract chain. dt : Timestamp The datetime for which to retrieve the current contract. offset : int The offset from the primary contract. 0 is the primary, 1 is the secondary, etc. Returns ------- Future The active future contract at the given dt. """ # When determining the center contract on a specific day using volume # rolls, simply picking the contract with the highest volume could # cause flip-flopping between active contracts each day if the front # and back contracts are close in volume. Therefore, information about # the surrounding rolls is required. The `get_rolls` logic prevents # contracts from being considered active once they have rolled, so # incorporating that logic here prevents flip-flopping. day = self.trading_calendar.day end_date = min( dt + (ROLL_DAYS_FOR_CURRENT_CONTRACT * day), self.session_reader.last_available_dt, ) rolls = self.get_rolls( root_symbol=root_symbol, start=dt, end=end_date, offset=offset, ) sid, acd = rolls[0] return self.asset_finder.retrieve_asset(sid)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/assets/roll_finder.py
roll_finder.py
import sys import logbook import numpy as np from zipline.finance import commission, slippage zipline_logging = logbook.NestedSetup([ logbook.NullHandler(), logbook.StreamHandler(sys.stdout, level=logbook.INFO), logbook.StreamHandler(sys.stderr, level=logbook.ERROR), ]) zipline_logging.push_application() STOCKS = ['AMD', 'CERN', 'COST', 'DELL', 'GPS', 'INTC', 'MMM'] # On-Line Portfolio Moving Average Reversion # More info can be found in the corresponding paper: # http://icml.cc/2012/papers/168.pdf def initialize(algo, eps=1, window_length=5): algo.stocks = STOCKS algo.sids = [algo.symbol(symbol) for symbol in algo.stocks] algo.m = len(algo.stocks) algo.price = {} algo.b_t = np.ones(algo.m) / algo.m algo.last_desired_port = np.ones(algo.m) / algo.m algo.eps = eps algo.init = True algo.days = 0 algo.window_length = window_length algo.set_commission(commission.PerShare(cost=0, min_trade_cost=1.0)) algo.set_slippage(slippage.VolumeShareSlippage()) def handle_data(algo, data): algo.days += 1 if algo.days < algo.window_length: return if algo.init: rebalance_portfolio(algo, data, algo.b_t) algo.init = False return m = algo.m x_tilde = np.zeros(m) # find relative moving average price for each asset mavgs = data.history(algo.sids, 'price', algo.window_length, '1d').mean() for i, sid in enumerate(algo.sids): price = data.current(sid, "price") # Relative mean deviation x_tilde[i] = mavgs[sid] / price ########################### # Inside of OLMAR (algo 2) x_bar = x_tilde.mean() # market relative deviation mark_rel_dev = x_tilde - x_bar # Expected return with current portfolio exp_return = np.dot(algo.b_t, x_tilde) weight = algo.eps - exp_return variability = (np.linalg.norm(mark_rel_dev)) ** 2 # test for divide-by-zero case if variability == 0.0: step_size = 0 else: step_size = max(0, weight / variability) b = algo.b_t + step_size * mark_rel_dev b_norm = simplex_projection(b) np.testing.assert_almost_equal(b_norm.sum(), 1) rebalance_portfolio(algo, data, b_norm) # update portfolio algo.b_t = b_norm def rebalance_portfolio(algo, data, desired_port): # rebalance portfolio desired_amount = np.zeros_like(desired_port) current_amount = np.zeros_like(desired_port) prices = np.zeros_like(desired_port) if algo.init: positions_value = algo.portfolio.starting_cash else: positions_value = algo.portfolio.positions_value + \ algo.portfolio.cash for i, sid in enumerate(algo.sids): current_amount[i] = algo.portfolio.positions[sid].amount prices[i] = data.current(sid, "price") desired_amount = np.round(desired_port * positions_value / prices) algo.last_desired_port = desired_port diff_amount = desired_amount - current_amount for i, sid in enumerate(algo.sids): algo.order(sid, diff_amount[i]) def simplex_projection(v, b=1): """Projection vectors to the simplex domain Implemented according to the paper: Efficient projections onto the l1-ball for learning in high dimensions, John Duchi, et al. ICML 2008. Implementation Time: 2011 June 17 by Bin@libin AT pmail.ntu.edu.sg Optimization Problem: min_{w}\| w - v \|_{2}^{2} s.t. sum_{i=1}^{m}=z, w_{i}\geq 0 Input: A vector v \in R^{m}, and a scalar z > 0 (default=1) Output: Projection vector w :Example: >>> proj = simplex_projection([.4 ,.3, -.4, .5]) >>> proj # doctest: +NORMALIZE_WHITESPACE array([ 0.33333333, 0.23333333, 0. , 0.43333333]) >>> print(proj.sum()) 1.0 Original matlab implementation: John Duchi ([email protected]) Python-port: Copyright 2013 by Thomas Wiecki ([email protected]). """ v = np.asarray(v) p = len(v) # Sort v into u in descending order v = (v > 0) * v u = np.sort(v)[::-1] sv = np.cumsum(u) rho = np.where(u > (sv - b) / np.arange(1, p + 1))[0][-1] theta = np.max([0, (sv[rho] - b) / (rho + 1)]) w = (v - theta) w[w < 0] = 0 return w # Note: this function can be removed if running # this algorithm on quantopian.com def analyze(context=None, results=None): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) results.portfolio_value.plot(ax=ax) ax.set_ylabel('Portfolio value (USD)') plt.show() def _test_args(): """Extra arguments to use when zipline's automated tests run this example. """ import pandas as pd return { 'start': pd.Timestamp('2004', tz='utc'), 'end': pd.Timestamp('2008', tz='utc'), }
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/examples/olmar.py
olmar.py
from zipline.api import order, record, symbol from zipline.finance import commission, slippage # Import exponential moving average from talib wrapper from talib import EMA def initialize(context): context.asset = symbol('AAPL') # To keep track of whether we invested in the stock or not context.invested = False # Explicitly set the commission/slippage to the "old" value until we can # rebuild example data. # github.com/quantopian/zipline/blob/master/tests/resources/ # rebuild_example_data#L105 context.set_commission(commission.PerShare(cost=.0075, min_trade_cost=1.0)) context.set_slippage(slippage.VolumeShareSlippage()) def handle_data(context, data): trailing_window = data.history(context.asset, 'price', 40, '1d') if trailing_window.isnull().values.any(): return short_ema = EMA(trailing_window.values, timeperiod=20) long_ema = EMA(trailing_window.values, timeperiod=40) buy = False sell = False if (short_ema[-1] > long_ema[-1]) and not context.invested: order(context.asset, 100) context.invested = True buy = True elif (short_ema[-1] < long_ema[-1]) and context.invested: order(context.asset, -100) context.invested = False sell = True record(AAPL=data.current(context.asset, "price"), short_ema=short_ema[-1], long_ema=long_ema[-1], buy=buy, sell=sell) # Note: this function can be removed if running # this algorithm on quantopian.com def analyze(context=None, results=None): import matplotlib.pyplot as plt import logbook logbook.StderrHandler().push_application() log = logbook.Logger('Algorithm') fig = plt.figure() ax1 = fig.add_subplot(211) results.portfolio_value.plot(ax=ax1) ax1.set_ylabel('Portfolio value (USD)') ax2 = fig.add_subplot(212) ax2.set_ylabel('Price (USD)') # If data has been record()ed, then plot it. # Otherwise, log the fact that no data has been recorded. if 'AAPL' in results and 'short_ema' in results and 'long_ema' in results: results[['AAPL', 'short_ema', 'long_ema']].plot(ax=ax2) ax2.plot( results.index[results.buy], results.loc[results.buy, 'long_ema'], '^', markersize=10, color='m', ) ax2.plot( results.index[results.sell], results.loc[results.sell, 'short_ema'], 'v', markersize=10, color='k', ) plt.legend(loc=0) plt.gcf().set_size_inches(18, 8) else: msg = 'AAPL, short_ema and long_ema data not captured using record().' ax2.annotate(msg, xy=(0.1, 0.5)) log.info(msg) plt.show() def _test_args(): """Extra arguments to use when zipline's automated tests run this example. """ import pandas as pd return { 'start': pd.Timestamp('2014-01-01', tz='utc'), 'end': pd.Timestamp('2014-11-01', tz='utc'), }
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/examples/dual_ema_talib.py
dual_ema_talib.py
from six import viewkeys from zipline.api import ( attach_pipeline, date_rules, order_target_percent, pipeline_output, record, schedule_function, ) from zipline.finance import commission, slippage from zipline.pipeline import Pipeline from zipline.pipeline.factors import RSI def make_pipeline(): rsi = RSI() return Pipeline( columns={ 'longs': rsi.top(3), 'shorts': rsi.bottom(3), }, ) def rebalance(context, data): # Pipeline data will be a dataframe with boolean columns named 'longs' and # 'shorts'. pipeline_data = context.pipeline_data all_assets = pipeline_data.index longs = all_assets[pipeline_data.longs] shorts = all_assets[pipeline_data.shorts] record(universe_size=len(all_assets)) # Build a 2x-leveraged, equal-weight, long-short portfolio. one_third = 1.0 / 3.0 for asset in longs: order_target_percent(asset, one_third) for asset in shorts: order_target_percent(asset, -one_third) # Remove any assets that should no longer be in our portfolio. portfolio_assets = longs | shorts positions = context.portfolio.positions for asset in viewkeys(positions) - set(portfolio_assets): # This will fail if the asset was removed from our portfolio because it # was delisted. if data.can_trade(asset): order_target_percent(asset, 0) def initialize(context): attach_pipeline(make_pipeline(), 'my_pipeline') # Rebalance each day. In daily mode, this is equivalent to putting # `rebalance` in our handle_data, but in minute mode, it's equivalent to # running at the start of the day each day. schedule_function(rebalance, date_rules.every_day()) # Explicitly set the commission/slippage to the "old" value until we can # rebuild example data. # github.com/quantopian/zipline/blob/master/tests/resources/ # rebuild_example_data#L105 context.set_commission(commission.PerShare(cost=.0075, min_trade_cost=1.0)) context.set_slippage(slippage.VolumeShareSlippage()) def before_trading_start(context, data): context.pipeline_data = pipeline_output('my_pipeline') def _test_args(): """ Extra arguments to use when zipline's automated tests run this example. Notes for testers: Gross leverage should be roughly 2.0 on every day except the first. Net leverage should be roughly 2.0 on every day except the first. Longs Count should always be 3 after the first day. Shorts Count should be 3 after the first day, except on 2013-10-30, when it dips to 2 for a day because DELL is delisted. """ import pandas as pd return { # We run through october of 2013 because DELL is in the test data and # it went private on 2013-10-29. 'start': pd.Timestamp('2013-10-07', tz='utc'), 'end': pd.Timestamp('2013-11-30', tz='utc'), 'capital_base': 100000, }
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/examples/momentum_pipeline.py
momentum_pipeline.py
from importlib import import_module import os from toolz import merge from trading_calendars import register_calendar, get_calendar from zipline import run_algorithm # These are used by test_examples.py to discover the examples to run. EXAMPLE_MODULES = {} for f in os.listdir(os.path.dirname(__file__)): if not f.endswith('.py') or f == '__init__.py': continue modname = f[:-len('.py')] mod = import_module('.' + modname, package=__name__) EXAMPLE_MODULES[modname] = mod globals()[modname] = mod # Remove noise from loop variables. del f, modname, mod # Columns that we expect to be able to reliably deterministic # Doesn't include fields that have UUIDS. _cols_to_check = [ 'algo_volatility', 'algorithm_period_return', 'alpha', 'benchmark_period_return', 'benchmark_volatility', 'beta', 'capital_used', 'ending_cash', 'ending_exposure', 'ending_value', 'excess_return', 'gross_leverage', 'long_exposure', 'long_value', 'longs_count', 'max_drawdown', 'max_leverage', 'net_leverage', 'period_close', 'period_label', 'period_open', 'pnl', 'portfolio_value', 'positions', 'returns', 'short_exposure', 'short_value', 'shorts_count', 'sortino', 'starting_cash', 'starting_exposure', 'starting_value', 'trading_days', 'treasury_period_return', ] def run_example(example_name, environ): """ Run an example module from zipline.examples. """ mod = EXAMPLE_MODULES[example_name] register_calendar("YAHOO", get_calendar("NYSE"), force=True) return run_algorithm( initialize=getattr(mod, 'initialize', None), handle_data=getattr(mod, 'handle_data', None), before_trading_start=getattr(mod, 'before_trading_start', None), analyze=getattr(mod, 'analyze', None), bundle='test', environ=environ, # Provide a default capital base, but allow the test to override. **merge({'capital_base': 1e7}, mod._test_args()) )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/examples/__init__.py
__init__.py
from zipline.api import order_target, record, symbol from zipline.finance import commission, slippage def initialize(context): context.sym = symbol('GOOG') context.i = 0 # Explicitly set the commission/slippage to the "old" value until we can # rebuild example data. # github.com/quantopian/zipline/blob/master/tests/resources/ # rebuild_example_data#L105 context.set_commission(commission.PerShare(cost=.0075, min_trade_cost=1.0)) context.set_slippage(slippage.VolumeShareSlippage()) def handle_data(context, data): # Skip first 300 days to get full windows context.i += 1 if context.i < 300: return # Compute averages # history() has to be called with the same params # from above and returns a pandas dataframe. short_mavg = data.history(context.sym, 'price', 100, '1d').mean() long_mavg = data.history(context.sym, 'price', 300, '1d').mean() # Trading logic if short_mavg > long_mavg: # order_target orders as many shares as needed to # achieve the desired number of shares. order_target(context.sym, 100) elif short_mavg < long_mavg: order_target(context.sym, 0) # Save values for later inspection record(GOOG=data.current(context.sym, "price"), short_mavg=short_mavg, long_mavg=long_mavg) # Note: this function can be removed if running # this algorithm on quantopian.com def analyze(context=None, results=None): import matplotlib.pyplot as plt import logbook logbook.StderrHandler().push_application() log = logbook.Logger('Algorithm') fig = plt.figure() ax1 = fig.add_subplot(211) results.portfolio_value.plot(ax=ax1) ax1.set_ylabel('Portfolio value (USD)') ax2 = fig.add_subplot(212) ax2.set_ylabel('Price (USD)') # If data has been record()ed, then plot it. # Otherwise, log the fact that no data has been recorded. if ('GOOG' in results and 'short_mavg' in results and 'long_mavg' in results): results['GOOG'].plot(ax=ax2) results[['short_mavg', 'long_mavg']].plot(ax=ax2) trans = results.ix[[t != [] for t in results.transactions]] buys = trans.ix[[t[0]['amount'] > 0 for t in trans.transactions]] sells = trans.ix[ [t[0]['amount'] < 0 for t in trans.transactions]] ax2.plot(buys.index, results.short_mavg.ix[buys.index], '^', markersize=10, color='m') ax2.plot(sells.index, results.short_mavg.ix[sells.index], 'v', markersize=10, color='k') plt.legend(loc=0) else: msg = 'GOOG, short_mavg & long_mavg data not captured using record().' ax2.annotate(msg, xy=(0.1, 0.5)) log.info(msg) plt.show() def _test_args(): """Extra arguments to use when zipline's automated tests run this example. """ import pandas as pd return { 'start': pd.Timestamp('2011', tz='utc'), 'end': pd.Timestamp('2013', tz='utc'), }
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/examples/dual_moving_average.py
dual_moving_average.py
import pandas as pd from zipline.errors import ( InvalidBenchmarkAsset, BenchmarkAssetNotAvailableTooEarly, BenchmarkAssetNotAvailableTooLate ) class BenchmarkSource(object): def __init__(self, benchmark_asset, trading_calendar, sessions, data_portal, emission_rate="daily", benchmark_returns=None): self.benchmark_asset = benchmark_asset self.sessions = sessions self.emission_rate = emission_rate self.data_portal = data_portal if len(sessions) == 0: self._precalculated_series = pd.Series() elif benchmark_asset is not None: self._validate_benchmark(benchmark_asset) (self._precalculated_series, self._daily_returns) = self._initialize_precalculated_series( benchmark_asset, trading_calendar, sessions, data_portal ) elif benchmark_returns is not None: self._daily_returns = daily_series = benchmark_returns.reindex( sessions, ).fillna(0) if self.emission_rate == "minute": # we need to take the env's benchmark returns, which are daily, # and resample them to minute minutes = trading_calendar.minutes_for_sessions_in_range( sessions[0], sessions[-1] ) minute_series = daily_series.reindex( index=minutes, method="ffill" ) self._precalculated_series = minute_series else: self._precalculated_series = daily_series else: raise Exception("Must provide either benchmark_asset or " "benchmark_returns.") def get_value(self, dt): """Look up the returns for a given dt. Parameters ---------- dt : datetime The label to look up. Returns ------- returns : float The returns at the given dt or session. See Also -------- :class:`zipline.sources.benchmark_source.BenchmarkSource.daily_returns` .. warning:: This method expects minute inputs if ``emission_rate == 'minute'`` and session labels when ``emission_rate == 'daily``. """ return self._precalculated_series.loc[dt] def get_range(self, start_dt, end_dt): """Look up the returns for a given period. Parameters ---------- start_dt : datetime The inclusive start label. end_dt : datetime The inclusive end label. Returns ------- returns : pd.Series The series of returns. See Also -------- :class:`zipline.sources.benchmark_source.BenchmarkSource.daily_returns` .. warning:: This method expects minute inputs if ``emission_rate == 'minute'`` and session labels when ``emission_rate == 'daily``. """ return self._precalculated_series.loc[start_dt:end_dt] def daily_returns(self, start, end=None): """Returns the daily returns for the given period. Parameters ---------- start : datetime The inclusive starting session label. end : datetime, optional The inclusive ending session label. If not provided, treat ``start`` as a scalar key. Returns ------- returns : pd.Series or float The returns in the given period. The index will be the trading calendar in the range [start, end]. If just ``start`` is provided, return the scalar value on that day. """ if end is None: return self._daily_returns[start] return self._daily_returns[start:end] def _validate_benchmark(self, benchmark_asset): # check if this security has a stock dividend. if so, raise an # error suggesting that the user pick a different asset to use # as benchmark. stock_dividends = \ self.data_portal.get_stock_dividends(self.benchmark_asset, self.sessions) if len(stock_dividends) > 0: raise InvalidBenchmarkAsset( sid=str(self.benchmark_asset), dt=stock_dividends[0]["ex_date"] ) if benchmark_asset.start_date > self.sessions[0]: # the asset started trading after the first simulation day raise BenchmarkAssetNotAvailableTooEarly( sid=str(self.benchmark_asset), dt=self.sessions[0], start_dt=benchmark_asset.start_date ) if benchmark_asset.end_date < self.sessions[-1]: # the asset stopped trading before the last simulation day raise BenchmarkAssetNotAvailableTooLate( sid=str(self.benchmark_asset), dt=self.sessions[-1], end_dt=benchmark_asset.end_date ) @staticmethod def _compute_daily_returns(g): return (g[-1] - g[0]) / g[0] @classmethod def downsample_minute_return_series(cls, trading_calendar, minutely_returns): sessions = trading_calendar.minute_index_to_session_labels( minutely_returns.index, ) closes = trading_calendar.session_closes_in_range( sessions[0], sessions[-1], ) daily_returns = minutely_returns[closes].pct_change() daily_returns.index = closes.index return daily_returns.iloc[1:] def _initialize_precalculated_series(self, asset, trading_calendar, trading_days, data_portal): """ Internal method that pre-calculates the benchmark return series for use in the simulation. Parameters ---------- asset: Asset to use trading_calendar: TradingCalendar trading_days: pd.DateTimeIndex data_portal: DataPortal Notes ----- If the benchmark asset started trading after the simulation start, or finished trading before the simulation end, exceptions are raised. If the benchmark asset started trading the same day as the simulation start, the first available minute price on that day is used instead of the previous close. We use history to get an adjusted price history for each day's close, as of the look-back date (the last day of the simulation). Prices are fully adjusted for dividends, splits, and mergers. Returns ------- returns : pd.Series indexed by trading day, whose values represent the % change from close to close. daily_returns : pd.Series the partial daily returns for each minute """ if self.emission_rate == "minute": minutes = trading_calendar.minutes_for_sessions_in_range( self.sessions[0], self.sessions[-1] ) benchmark_series = data_portal.get_history_window( [asset], minutes[-1], bar_count=len(minutes) + 1, frequency="1m", field="price", data_frequency=self.emission_rate, ffill=True )[asset] return ( benchmark_series.pct_change()[1:], self.downsample_minute_return_series( trading_calendar, benchmark_series, ), ) start_date = asset.start_date if start_date < trading_days[0]: # get the window of close prices for benchmark_asset from the # last trading day of the simulation, going up to one day # before the simulation start day (so that we can get the % # change on day 1) benchmark_series = data_portal.get_history_window( [asset], trading_days[-1], bar_count=len(trading_days) + 1, frequency="1d", field="price", data_frequency=self.emission_rate, ffill=True )[asset] returns = benchmark_series.pct_change()[1:] return returns, returns elif start_date == trading_days[0]: # Attempt to handle case where stock data starts on first # day, in this case use the open to close return. benchmark_series = data_portal.get_history_window( [asset], trading_days[-1], bar_count=len(trading_days), frequency="1d", field="price", data_frequency=self.emission_rate, ffill=True )[asset] # get a minute history window of the first day first_open = data_portal.get_spot_value( asset, 'open', trading_days[0], 'daily', ) first_close = data_portal.get_spot_value( asset, 'close', trading_days[0], 'daily', ) first_day_return = (first_close - first_open) / first_open returns = benchmark_series.pct_change()[:] returns[0] = first_day_return return returns, returns else: raise ValueError( 'cannot set benchmark to asset that does not exist during' ' the simulation period (asset start date=%r)' % start_date )
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/sources/benchmark_source.py
benchmark_source.py
from abc import ABCMeta, abstractmethod from collections import namedtuple import hashlib from textwrap import dedent import warnings from logbook import Logger import numpy import pandas as pd from pandas import read_csv import pytz import requests from six import StringIO, iteritems, with_metaclass from zipline.errors import ( MultipleSymbolsFound, SymbolNotFound, ZiplineError ) from zipline.protocol import ( DATASOURCE_TYPE, Event ) from zipline.assets import Equity logger = Logger('Requests Source Logger') def roll_dts_to_midnight(dts, trading_day): if len(dts) == 0: return dts return pd.DatetimeIndex( (dts.tz_convert('US/Eastern') - pd.Timedelta(hours=16)).date, tz='UTC', ) + trading_day class FetcherEvent(Event): pass class FetcherCSVRedirectError(ZiplineError): msg = dedent( """\ Attempt to fetch_csv from a redirected url. {url} must be changed to {new_url} """ ) def __init__(self, *args, **kwargs): self.url = kwargs["url"] self.new_url = kwargs["new_url"] self.extra = kwargs["extra"] super(FetcherCSVRedirectError, self).__init__(*args, **kwargs) # The following optional arguments are supported for # requests backed data sources. # see http://docs.python-requests.org/en/latest/api/#main-interface # for a full list. ALLOWED_REQUESTS_KWARGS = { 'params', 'headers', 'auth', 'cert' } # The following optional arguments are supported for pandas' read_csv # function, and may be passed as kwargs to the datasource below. # see http://pandas.pydata.org/ # pandas-docs/stable/generated/pandas.io.parsers.read_csv.html ALLOWED_READ_CSV_KWARGS = { 'sep', 'dialect', 'doublequote', 'escapechar', 'quotechar', 'quoting', 'skipinitialspace', 'lineterminator', 'header', 'index_col', 'names', 'prefix', 'skiprows', 'skipfooter', 'skip_footer', 'na_values', 'true_values', 'false_values', 'delimiter', 'converters', 'dtype', 'delim_whitespace', 'as_recarray', 'na_filter', 'compact_ints', 'use_unsigned', 'buffer_lines', 'warn_bad_lines', 'error_bad_lines', 'keep_default_na', 'thousands', 'comment', 'decimal', 'keep_date_col', 'nrows', 'chunksize', 'encoding', 'usecols' } SHARED_REQUESTS_KWARGS = { 'stream': True, 'allow_redirects': False, } def mask_requests_args(url, validating=False, params_checker=None, **kwargs): requests_kwargs = {key: val for (key, val) in iteritems(kwargs) if key in ALLOWED_REQUESTS_KWARGS} if params_checker is not None: url, s_params = params_checker(url) if s_params: if 'params' in requests_kwargs: requests_kwargs['params'].update(s_params) else: requests_kwargs['params'] = s_params # Giving the connection 30 seconds. This timeout does not # apply to the download of the response body. # (Note that Quandl links can take >10 seconds to return their # first byte on occasion) requests_kwargs['timeout'] = 1.0 if validating else 30.0 requests_kwargs.update(SHARED_REQUESTS_KWARGS) request_pair = namedtuple("RequestPair", ("requests_kwargs", "url")) return request_pair(requests_kwargs, url) class PandasCSV(with_metaclass(ABCMeta, object)): def __init__(self, pre_func, post_func, asset_finder, trading_day, start_date, end_date, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency, **kwargs): self.start_date = start_date self.end_date = end_date self.date_column = date_column self.date_format = date_format self.timezone = timezone self.mask = mask self.symbol_column = symbol_column or "symbol" self.data_frequency = data_frequency invalid_kwargs = set(kwargs) - ALLOWED_READ_CSV_KWARGS if invalid_kwargs: raise TypeError( "Unexpected keyword arguments: %s" % invalid_kwargs, ) self.pandas_kwargs = self.mask_pandas_args(kwargs) self.symbol = symbol self.finder = asset_finder self.trading_day = trading_day self.pre_func = pre_func self.post_func = post_func @property def fields(self): return self.df.columns.tolist() def get_hash(self): return self.namestring @abstractmethod def fetch_data(self): return @staticmethod def parse_date_str_series(format_str, tz, date_str_series, data_frequency, trading_day): """ Efficient parsing for a 1d Pandas/numpy object containing string representations of dates. Note: pd.to_datetime is significantly faster when no format string is passed, and in pandas 0.12.0 the %p strptime directive is not correctly handled if a format string is explicitly passed, but AM/PM is handled properly if format=None. Moreover, we were previously ignoring this parameter unintentionally because we were incorrectly passing it as a positional. For all these reasons, we ignore the format_str parameter when parsing datetimes. """ # Explicitly ignoring this parameter. See note above. if format_str is not None: logger.warn( "The 'format_str' parameter to fetch_csv is deprecated. " "Ignoring and defaulting to pandas default date parsing." ) format_str = None tz_str = str(tz) if tz_str == pytz.utc.zone: parsed = pd.to_datetime( date_str_series.values, format=format_str, utc=True, errors='coerce', ) else: parsed = pd.to_datetime( date_str_series.values, format=format_str, errors='coerce', ).tz_localize(tz_str).tz_convert('UTC') if data_frequency == 'daily': parsed = roll_dts_to_midnight(parsed, trading_day) return parsed def mask_pandas_args(self, kwargs): pandas_kwargs = {key: val for (key, val) in iteritems(kwargs) if key in ALLOWED_READ_CSV_KWARGS} if 'usecols' in pandas_kwargs: usecols = pandas_kwargs['usecols'] if usecols and self.date_column not in usecols: # make a new list so we don't modify user's, # and to ensure it is mutable with_date = list(usecols) with_date.append(self.date_column) pandas_kwargs['usecols'] = with_date # No strings in the 'symbol' column should be interpreted as NaNs pandas_kwargs.setdefault('keep_default_na', False) pandas_kwargs.setdefault('na_values', {'symbol': []}) return pandas_kwargs def _lookup_unconflicted_symbol(self, symbol): """ Attempt to find a unique asset whose symbol is the given string. If multiple assets have held the given symbol, return a 0. If no asset has held the given symbol, return a NaN. """ try: uppered = symbol.upper() except AttributeError: # The mapping fails because symbol was a non-string return numpy.nan try: return self.finder.lookup_symbol(uppered, as_of_date=None) except MultipleSymbolsFound: # Fill conflicted entries with zeros to mark that they need to be # resolved by date. return 0 except SymbolNotFound: # Fill not found entries with nans. return numpy.nan def load_df(self): df = self.fetch_data() if self.pre_func: df = self.pre_func(df) # Batch-convert the user-specifed date column into timestamps. df['dt'] = self.parse_date_str_series( self.date_format, self.timezone, df[self.date_column], self.data_frequency, self.trading_day, ).values # ignore rows whose dates we couldn't parse df = df[df['dt'].notnull()] if self.symbol is not None: df['sid'] = self.symbol elif self.finder: df.sort_values(by=self.symbol_column, inplace=True) # Pop the 'sid' column off of the DataFrame, just in case the user # has assigned it, and throw a warning try: df.pop('sid') warnings.warn( "Assignment of the 'sid' column of a DataFrame is " "not supported by Fetcher. The 'sid' column has been " "overwritten.", category=UserWarning, stacklevel=2, ) except KeyError: # There was no 'sid' column, so no warning is necessary pass # Fill entries for any symbols that don't require a date to # uniquely identify. Entries for which multiple securities exist # are replaced with zeroes, while entries for which no asset # exists are replaced with NaNs. unique_symbols = df[self.symbol_column].unique() sid_series = pd.Series( data=map(self._lookup_unconflicted_symbol, unique_symbols), index=unique_symbols, name='sid', ) df = df.join(sid_series, on=self.symbol_column) # Fill any zero entries left in our sid column by doing a lookup # using both symbol and the row date. conflict_rows = df[df['sid'] == 0] for row_idx, row in conflict_rows.iterrows(): try: asset = self.finder.lookup_symbol( row[self.symbol_column], # Replacing tzinfo here is necessary because of the # timezone metadata bug described below. row['dt'].replace(tzinfo=pytz.utc), # It's possible that no asset comes back here if our # lookup date is from before any asset held the # requested symbol. Mark such cases as NaN so that # they get dropped in the next step. ) or numpy.nan except SymbolNotFound: asset = numpy.nan # Assign the resolved asset to the cell df.ix[row_idx, 'sid'] = asset # Filter out rows containing symbols that we failed to find. length_before_drop = len(df) df = df[df['sid'].notnull()] no_sid_count = length_before_drop - len(df) if no_sid_count: logger.warn( "Dropped {} rows from fetched csv.".format(no_sid_count), no_sid_count, extra={'syslog': True}, ) else: df['sid'] = df['symbol'] # Dates are localized to UTC when they come out of # parse_date_str_series, but we need to re-localize them here because # of a bug that wasn't fixed until # https://github.com/pydata/pandas/pull/7092. # We should be able to remove the call to tz_localize once we're on # pandas 0.14.0 # We don't set 'dt' as the index until here because the Symbol parsing # operations above depend on having a unique index for the dataframe, # and the 'dt' column can contain multiple dates for the same entry. df.drop_duplicates(["sid", "dt"]) df.set_index(['dt'], inplace=True) df = df.tz_localize('UTC') df.sort_index(inplace=True) cols_to_drop = [self.date_column] if self.symbol is None: cols_to_drop.append(self.symbol_column) df = df[df.columns.drop(cols_to_drop)] if self.post_func: df = self.post_func(df) return df def __iter__(self): asset_cache = {} for dt, series in self.df.iterrows(): if dt < self.start_date: continue if dt > self.end_date: return event = FetcherEvent() # when dt column is converted to be the dataframe's index # the dt column is dropped. So, we need to manually copy # dt into the event. event.dt = dt for k, v in series.iteritems(): # convert numpy integer types to # int. This assumes we are on a 64bit # platform that will not lose information # by casting. # TODO: this is only necessary on the # amazon qexec instances. would be good # to figure out how to use the numpy dtypes # without this check and casting. if isinstance(v, numpy.integer): v = int(v) setattr(event, k, v) # If it has start_date, then it's already an Asset # object from asset_for_symbol, and we don't have to # transform it any further. Checking for start_date is # faster than isinstance. if event.sid in asset_cache: event.sid = asset_cache[event.sid] elif hasattr(event.sid, 'start_date'): # Clone for user algo code, if we haven't already. asset_cache[event.sid] = event.sid elif self.finder and isinstance(event.sid, int): asset = self.finder.retrieve_asset(event.sid, default_none=True) if asset: # Clone for user algo code. event.sid = asset_cache[asset] = asset elif self.mask: # When masking drop all non-mappable values. continue elif self.symbol is None: # If the event's sid property is an int we coerce # it into an Equity. event.sid = asset_cache[event.sid] = Equity(event.sid) event.type = DATASOURCE_TYPE.CUSTOM event.source_id = self.namestring yield event class PandasRequestsCSV(PandasCSV): # maximum 100 megs to prevent DDoS MAX_DOCUMENT_SIZE = (1024 * 1024) * 100 # maximum number of bytes to read in at a time CONTENT_CHUNK_SIZE = 4096 def __init__(self, url, pre_func, post_func, asset_finder, trading_day, start_date, end_date, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency, special_params_checker=None, **kwargs): # Peel off extra requests kwargs, forwarding the remaining kwargs to # the superclass. # Also returns possible https updated url if sent to http quandl ds # If url hasn't changed, will just return the original. self._requests_kwargs, self.url =\ mask_requests_args(url, params_checker=special_params_checker, **kwargs) remaining_kwargs = { k: v for k, v in iteritems(kwargs) if k not in self.requests_kwargs } self.namestring = type(self).__name__ super(PandasRequestsCSV, self).__init__( pre_func, post_func, asset_finder, trading_day, start_date, end_date, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency, **remaining_kwargs ) self.fetch_size = None self.fetch_hash = None self.df = self.load_df() self.special_params_checker = special_params_checker @property def requests_kwargs(self): return self._requests_kwargs def fetch_url(self, url): info = "checking {url} with {params}" logger.info(info.format(url=url, params=self.requests_kwargs)) # setting decode_unicode=True sometimes results in a # UnicodeEncodeError exception, so instead we'll use # pandas logic for decoding content try: response = requests.get(url, **self.requests_kwargs) except requests.exceptions.ConnectionError: raise Exception('Could not connect to %s' % url) if not response.ok: raise Exception('Problem reaching %s' % url) elif response.is_redirect: # On the offchance we don't catch a redirect URL # in validation, this will catch it. new_url = response.headers['location'] raise FetcherCSVRedirectError( url=url, new_url=new_url, extra={ 'old_url': url, 'new_url': new_url } ) content_length = 0 logger.info('{} connection established in {:.1f} seconds'.format( url, response.elapsed.total_seconds())) # use the decode_unicode flag to ensure that the output of this is # a string, and not bytes. for chunk in response.iter_content(self.CONTENT_CHUNK_SIZE, decode_unicode=True): if content_length > self.MAX_DOCUMENT_SIZE: raise Exception('Document size too big.') if chunk: content_length += len(chunk) yield chunk return def fetch_data(self): # create a data frame directly from the full text of # the response from the returned file-descriptor. data = self.fetch_url(self.url) fd = StringIO() if isinstance(data, str): fd.write(data) else: for chunk in data: fd.write(chunk) self.fetch_size = fd.tell() fd.seek(0) try: # see if pandas can parse csv data frames = read_csv(fd, **self.pandas_kwargs) frames_hash = hashlib.md5(str(fd.getvalue()).encode('utf-8')) self.fetch_hash = frames_hash.hexdigest() except pd.parser.CParserError: # could not parse the data, raise exception raise Exception('Error parsing remote CSV data.') finally: fd.close() return frames
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/sources/requests_csv.py
requests_csv.py
from abc import ( ABCMeta, abstractmethod, abstractproperty, ) from numpy import concatenate from lru import LRU from pandas import isnull from toolz import sliding_window from six import with_metaclass from zipline.assets import Equity, Future from zipline.assets.continuous_futures import ContinuousFuture from zipline.lib._int64window import AdjustedArrayWindow as Int64Window from zipline.lib._float64window import AdjustedArrayWindow as Float64Window from zipline.lib.adjustment import Float64Multiply, Float64Add from zipline.utils.cache import ExpiringCache from zipline.utils.math_utils import number_of_decimal_places from zipline.utils.memoize import lazyval from zipline.utils.numpy_utils import float64_dtype from zipline.utils.pandas_utils import find_in_sorted_index, normalize_date # Default number of decimal places used for rounding asset prices. DEFAULT_ASSET_PRICE_DECIMALS = 3 class HistoryCompatibleUSEquityAdjustmentReader(object): def __init__(self, adjustment_reader): self._adjustments_reader = adjustment_reader def load_adjustments(self, columns, dts, assets): """ Returns ------- adjustments : list[dict[int -> Adjustment]] A list, where each element corresponds to the `columns`, of mappings from index to adjustment objects to apply at that index. """ out = [None] * len(columns) for i, column in enumerate(columns): adjs = {} for asset in assets: adjs.update(self._get_adjustments_in_range( asset, dts, column)) out[i] = adjs return out def _get_adjustments_in_range(self, asset, dts, field): """ Get the Float64Multiply objects to pass to an AdjustedArrayWindow. For the use of AdjustedArrayWindow in the loader, which looks back from current simulation time back to a window of data the dictionary is structured with: - the key into the dictionary for adjustments is the location of the day from which the window is being viewed. - the start of all multiply objects is always 0 (in each window all adjustments are overlapping) - the end of the multiply object is the location before the calendar location of the adjustment action, making all days before the event adjusted. Parameters ---------- asset : Asset The assets for which to get adjustments. dts : iterable of datetime64-like The dts for which adjustment data is needed. field : str OHLCV field for which to get the adjustments. Returns ------- out : dict[loc -> Float64Multiply] The adjustments as a dict of loc -> Float64Multiply """ sid = int(asset) start = normalize_date(dts[0]) end = normalize_date(dts[-1]) adjs = {} if field != 'volume': mergers = self._adjustments_reader.get_adjustments_for_sid( 'mergers', sid) for m in mergers: dt = m[0] if start < dt <= end: end_loc = dts.searchsorted(dt) adj_loc = end_loc mult = Float64Multiply(0, end_loc - 1, 0, 0, m[1]) try: adjs[adj_loc].append(mult) except KeyError: adjs[adj_loc] = [mult] divs = self._adjustments_reader.get_adjustments_for_sid( 'dividends', sid) for d in divs: dt = d[0] if start < dt <= end: end_loc = dts.searchsorted(dt) adj_loc = end_loc mult = Float64Multiply(0, end_loc - 1, 0, 0, d[1]) try: adjs[adj_loc].append(mult) except KeyError: adjs[adj_loc] = [mult] splits = self._adjustments_reader.get_adjustments_for_sid( 'splits', sid) for s in splits: dt = s[0] if start < dt <= end: if field == 'volume': ratio = 1.0 / s[1] else: ratio = s[1] end_loc = dts.searchsorted(dt) adj_loc = end_loc mult = Float64Multiply(0, end_loc - 1, 0, 0, ratio) try: adjs[adj_loc].append(mult) except KeyError: adjs[adj_loc] = [mult] return adjs class ContinuousFutureAdjustmentReader(object): """ Calculates adjustments for continuous futures, based on the close and open of the contracts on the either side of each roll. """ def __init__(self, trading_calendar, asset_finder, bar_reader, roll_finders, frequency): self._trading_calendar = trading_calendar self._asset_finder = asset_finder self._bar_reader = bar_reader self._roll_finders = roll_finders self._frequency = frequency def load_adjustments(self, columns, dts, assets): """ Returns ------- adjustments : list[dict[int -> Adjustment]] A list, where each element corresponds to the `columns`, of mappings from index to adjustment objects to apply at that index. """ out = [None] * len(columns) for i, column in enumerate(columns): adjs = {} for asset in assets: adjs.update(self._get_adjustments_in_range( asset, dts, column)) out[i] = adjs return out def _make_adjustment(self, adjustment_type, front_close, back_close, end_loc): adj_base = back_close - front_close if adjustment_type == 'mul': adj_value = 1.0 + adj_base / front_close adj_class = Float64Multiply elif adjustment_type == 'add': adj_value = adj_base adj_class = Float64Add return adj_class(0, end_loc, 0, 0, adj_value) def _get_adjustments_in_range(self, cf, dts, field): if field == 'volume' or field == 'sid': return {} if cf.adjustment is None: return {} rf = self._roll_finders[cf.roll_style] partitions = [] rolls = rf.get_rolls(cf.root_symbol, dts[0], dts[-1], cf.offset) tc = self._trading_calendar adjs = {} for front, back in sliding_window(2, rolls): front_sid, roll_dt = front back_sid = back[0] dt = tc.previous_session_label(roll_dt) if self._frequency == 'minute': dt = tc.open_and_close_for_session(dt)[1] roll_dt = tc.open_and_close_for_session(roll_dt)[0] partitions.append((front_sid, back_sid, dt, roll_dt)) for partition in partitions: front_sid, back_sid, dt, roll_dt = partition last_front_dt = self._bar_reader.get_last_traded_dt( self._asset_finder.retrieve_asset(front_sid), dt) last_back_dt = self._bar_reader.get_last_traded_dt( self._asset_finder.retrieve_asset(back_sid), dt) if isnull(last_front_dt) or isnull(last_back_dt): continue front_close = self._bar_reader.get_value( front_sid, last_front_dt, 'close') back_close = self._bar_reader.get_value( back_sid, last_back_dt, 'close') adj_loc = dts.searchsorted(roll_dt) end_loc = adj_loc - 1 adj = self._make_adjustment(cf.adjustment, front_close, back_close, end_loc) try: adjs[adj_loc].append(adj) except KeyError: adjs[adj_loc] = [adj] return adjs class SlidingWindow(object): """ Wrapper around an AdjustedArrayWindow which supports monotonically increasing (by datetime) requests for a sized window of data. Parameters ---------- window : AdjustedArrayWindow Window of pricing data with prefetched values beyond the current simulation dt. cal_start : int Index in the overall calendar at which the window starts. """ def __init__(self, window, size, cal_start, offset): self.window = window self.cal_start = cal_start self.current = next(window) self.offset = offset self.most_recent_ix = self.cal_start + size def get(self, end_ix): """ Returns ------- out : A np.ndarray of the equity pricing up to end_ix after adjustments and rounding have been applied. """ if self.most_recent_ix == end_ix: return self.current target = end_ix - self.cal_start - self.offset + 1 self.current = self.window.seek(target) self.most_recent_ix = end_ix return self.current class HistoryLoader(with_metaclass(ABCMeta)): """ Loader for sliding history windows, with support for adjustments. Parameters ---------- trading_calendar: TradingCalendar Contains the grouping logic needed to assign minutes to periods. reader : DailyBarReader, MinuteBarReader Reader for pricing bars. adjustment_reader : SQLiteAdjustmentReader Reader for adjustment data. """ FIELDS = ('open', 'high', 'low', 'close', 'volume', 'sid') def __init__(self, trading_calendar, reader, equity_adjustment_reader, asset_finder, roll_finders=None, sid_cache_size=1000, prefetch_length=0): self.trading_calendar = trading_calendar self._asset_finder = asset_finder self._reader = reader self._adjustment_readers = {} if equity_adjustment_reader is not None: self._adjustment_readers[Equity] = \ HistoryCompatibleUSEquityAdjustmentReader( equity_adjustment_reader) if roll_finders: self._adjustment_readers[ContinuousFuture] =\ ContinuousFutureAdjustmentReader(trading_calendar, asset_finder, reader, roll_finders, self._frequency) self._window_blocks = { field: ExpiringCache(LRU(sid_cache_size)) for field in self.FIELDS } self._prefetch_length = prefetch_length @abstractproperty def _frequency(self): pass @abstractproperty def _calendar(self): pass @abstractmethod def _array(self, start, end, assets, field): pass def _decimal_places_for_asset(self, asset, reference_date): if isinstance(asset, Future) and asset.tick_size: return number_of_decimal_places(asset.tick_size) elif isinstance(asset, ContinuousFuture): # Tick size should be the same for all contracts of a continuous # future, so arbitrarily get the contract with next upcoming auto # close date. oc = self._asset_finder.get_ordered_contracts(asset.root_symbol) contract_sid = oc.contract_before_auto_close(reference_date.value) if contract_sid is not None: contract = self._asset_finder.retrieve_asset(contract_sid) if contract.tick_size: return number_of_decimal_places(contract.tick_size) return DEFAULT_ASSET_PRICE_DECIMALS def _ensure_sliding_windows(self, assets, dts, field, is_perspective_after): """ Ensure that there is a Float64Multiply window for each asset that can provide data for the given parameters. If the corresponding window for the (assets, len(dts), field) does not exist, then create a new one. If a corresponding window does exist for (assets, len(dts), field), but can not provide data for the current dts range, then create a new one and replace the expired window. Parameters ---------- assets : iterable of Assets The assets in the window dts : iterable of datetime64-like The datetimes for which to fetch data. Makes an assumption that all dts are present and contiguous, in the calendar. field : str The OHLCV field for which to retrieve data. is_perspective_after : bool see: `PricingHistoryLoader.history` Returns ------- out : list of Float64Window with sufficient data so that each asset's window can provide `get` for the index corresponding with the last value in `dts` """ end = dts[-1] size = len(dts) asset_windows = {} needed_assets = [] cal = self._calendar assets = self._asset_finder.retrieve_all(assets) end_ix = find_in_sorted_index(cal, end) for asset in assets: try: window = self._window_blocks[field].get( (asset, size, is_perspective_after), end) except KeyError: needed_assets.append(asset) else: if end_ix < window.most_recent_ix: # Window needs reset. Requested end index occurs before the # end index from the previous history call for this window. # Grab new window instead of rewinding adjustments. needed_assets.append(asset) else: asset_windows[asset] = window if needed_assets: offset = 0 start_ix = find_in_sorted_index(cal, dts[0]) prefetch_end_ix = min(end_ix + self._prefetch_length, len(cal) - 1) prefetch_end = cal[prefetch_end_ix] prefetch_dts = cal[start_ix:prefetch_end_ix + 1] if is_perspective_after: adj_end_ix = min(prefetch_end_ix + 1, len(cal) - 1) adj_dts = cal[start_ix:adj_end_ix + 1] else: adj_dts = prefetch_dts prefetch_len = len(prefetch_dts) array = self._array(prefetch_dts, needed_assets, field) if field == 'sid': window_type = Int64Window else: window_type = Float64Window view_kwargs = {} if field == 'volume': array = array.astype(float64_dtype) for i, asset in enumerate(needed_assets): adj_reader = None try: adj_reader = self._adjustment_readers[type(asset)] except KeyError: adj_reader = None if adj_reader is not None: adjs = adj_reader.load_adjustments( [field], adj_dts, [asset])[0] else: adjs = {} window = window_type( array[:, i].reshape(prefetch_len, 1), view_kwargs, adjs, offset, size, int(is_perspective_after), self._decimal_places_for_asset(asset, dts[-1]), ) sliding_window = SlidingWindow(window, size, start_ix, offset) asset_windows[asset] = sliding_window self._window_blocks[field].set( (asset, size, is_perspective_after), sliding_window, prefetch_end) return [asset_windows[asset] for asset in assets] def history(self, assets, dts, field, is_perspective_after): """ A window of pricing data with adjustments applied assuming that the end of the window is the day before the current simulation time. Parameters ---------- assets : iterable of Assets The assets in the window. dts : iterable of datetime64-like The datetimes for which to fetch data. Makes an assumption that all dts are present and contiguous, in the calendar. field : str The OHLCV field for which to retrieve data. is_perspective_after : bool True, if the window is being viewed immediately after the last dt in the sliding window. False, if the window is viewed on the last dt. This flag is used for handling the case where the last dt in the requested window immediately precedes a corporate action, e.g.: - is_perspective_after is True When the viewpoint is after the last dt in the window, as when a daily history window is accessed from a simulation that uses a minute data frequency, the history call to this loader will not include the current simulation dt. At that point in time, the raw data for the last day in the window will require adjustment, so the most recent adjustment with respect to the simulation time is applied to the last dt in the requested window. An example equity which has a 0.5 split ratio dated for 05-27, with the dts for a history call of 5 bars with a '1d' frequency at 05-27 9:31. Simulation frequency is 'minute'. (In this case this function is called with 4 daily dts, and the calling function is responsible for stitching back on the 'current' dt) | | | | | last dt | <-- viewer is here | | | 05-23 | 05-24 | 05-25 | 05-26 | 05-27 9:31 | | raw | 10.10 | 10.20 | 10.30 | 10.40 | | | adj | 5.05 | 5.10 | 5.15 | 5.25 | | The adjustment is applied to the last dt, 05-26, and all previous dts. - is_perspective_after is False, daily When the viewpoint is the same point in time as the last dt in the window, as when a daily history window is accessed from a simulation that uses a daily data frequency, the history call will include the current dt. At that point in time, the raw data for the last day in the window will be post-adjustment, so no adjustment is applied to the last dt. An example equity which has a 0.5 split ratio dated for 05-27, with the dts for a history call of 5 bars with a '1d' frequency at 05-27 0:00. Simulation frequency is 'daily'. | | | | | | <-- viewer is here | | | | | | | last dt | | | 05-23 | 05-24 | 05-25 | 05-26 | 05-27 | | raw | 10.10 | 10.20 | 10.30 | 10.40 | 5.25 | | adj | 5.05 | 5.10 | 5.15 | 5.20 | 5.25 | Adjustments are applied 05-23 through 05-26 but not to the last dt, 05-27 Returns ------- out : np.ndarray with shape(len(days between start, end), len(assets)) """ block = self._ensure_sliding_windows(assets, dts, field, is_perspective_after) end_ix = self._calendar.searchsorted(dts[-1]) return concatenate( [window.get(end_ix) for window in block], axis=1, ) class DailyHistoryLoader(HistoryLoader): @property def _frequency(self): return 'daily' @property def _calendar(self): return self._reader.sessions def _array(self, dts, assets, field): return self._reader.load_raw_arrays( [field], dts[0], dts[-1], assets, )[0] class MinuteHistoryLoader(HistoryLoader): @property def _frequency(self): return 'minute' @lazyval def _calendar(self): mm = self.trading_calendar.all_minutes start = mm.searchsorted(self._reader.first_trading_day) end = mm.searchsorted(self._reader.last_available_dt, side='right') return mm[start:end] def _array(self, dts, assets, field): return self._reader.load_raw_arrays( [field], dts[0], dts[-1], assets, )[0]
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/history_loader.py
history_loader.py
from abc import ABCMeta, abstractmethod from numpy import ( full, nan, int64, zeros ) from six import iteritems, with_metaclass from zipline.utils.memoize import lazyval class AssetDispatchBarReader(with_metaclass(ABCMeta)): """ Parameters ---------- - trading_calendar : zipline.utils.trading_calendar.TradingCalendar - asset_finder : zipline.assets.AssetFinder - readers : dict A dict mapping Asset type to the corresponding [Minute|Session]BarReader - last_available_dt : pd.Timestamp or None, optional If not provided, infers it by using the min of the last_available_dt values of the underlying readers. """ def __init__( self, trading_calendar, asset_finder, readers, last_available_dt=None, ): self._trading_calendar = trading_calendar self._asset_finder = asset_finder self._readers = readers self._last_available_dt = last_available_dt for t, r in iteritems(self._readers): assert trading_calendar == r.trading_calendar, \ "All readers must share target trading_calendar. " \ "Reader={0} for type={1} uses calendar={2} which does not " \ "match the desired shared calendar={3} ".format( r, t, r.trading_calendar, trading_calendar) @abstractmethod def _dt_window_size(self, start_dt, end_dt): pass @property def _asset_types(self): return self._readers.keys() def _make_raw_array_shape(self, start_dt, end_dt, num_sids): return self._dt_window_size(start_dt, end_dt), num_sids def _make_raw_array_out(self, field, shape): if field != 'volume' and field != 'sid': out = full(shape, nan) else: out = zeros(shape, dtype=int64) return out @property def trading_calendar(self): return self._trading_calendar @lazyval def last_available_dt(self): if self._last_available_dt is not None: return self._last_available_dt else: return max(r.last_available_dt for r in self._readers.values()) @lazyval def first_trading_day(self): return min(r.first_trading_day for r in self._readers.values()) def get_value(self, sid, dt, field): asset = self._asset_finder.retrieve_asset(sid) r = self._readers[type(asset)] return r.get_value(asset, dt, field) def get_last_traded_dt(self, asset, dt): r = self._readers[type(asset)] return r.get_last_traded_dt(asset, dt) def load_raw_arrays(self, fields, start_dt, end_dt, sids): asset_types = self._asset_types sid_groups = {t: [] for t in asset_types} out_pos = {t: [] for t in asset_types} assets = self._asset_finder.retrieve_all(sids) for i, asset in enumerate(assets): t = type(asset) sid_groups[t].append(asset) out_pos[t].append(i) batched_arrays = { t: self._readers[t].load_raw_arrays(fields, start_dt, end_dt, sid_groups[t]) for t in asset_types if sid_groups[t]} results = [] shape = self._make_raw_array_shape(start_dt, end_dt, len(sids)) for i, field in enumerate(fields): out = self._make_raw_array_out(field, shape) for t, arrays in iteritems(batched_arrays): out[:, out_pos[t]] = arrays[i] results.append(out) return results class AssetDispatchMinuteBarReader(AssetDispatchBarReader): def _dt_window_size(self, start_dt, end_dt): return len(self.trading_calendar.minutes_in_range(start_dt, end_dt)) class AssetDispatchSessionBarReader(AssetDispatchBarReader): def _dt_window_size(self, start_dt, end_dt): return len(self.trading_calendar.sessions_in_range(start_dt, end_dt)) @lazyval def sessions(self): return self.trading_calendar.sessions_in_range( self.first_trading_day, self.last_available_dt)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/dispatch_bar_reader.py
dispatch_bar_reader.py
from abc import ABCMeta, abstractmethod import json import os from glob import glob from os.path import join from textwrap import dedent from lru import LRU import bcolz from bcolz import ctable from intervaltree import IntervalTree import logbook import numpy as np import pandas as pd from pandas import HDFStore import tables from six import with_metaclass from toolz import keymap, valmap from trading_calendars import get_calendar from zipline.data._minute_bar_internal import ( minute_value, find_position_of_minute, find_last_traded_position_internal ) from zipline.gens.sim_engine import NANOS_IN_MINUTE from zipline.data.bar_reader import BarReader, NoDataForSid, NoDataOnDate from zipline.data.us_equity_pricing import check_uint32_safe from zipline.utils.cli import maybe_show_progress from zipline.utils.compat import mappingproxy from zipline.utils.memoize import lazyval logger = logbook.Logger('MinuteBars') US_EQUITIES_MINUTES_PER_DAY = 390 FUTURES_MINUTES_PER_DAY = 1440 DEFAULT_EXPECTEDLEN = US_EQUITIES_MINUTES_PER_DAY * 252 * 15 OHLC_RATIO = 1000 class BcolzMinuteOverlappingData(Exception): pass class BcolzMinuteWriterColumnMismatch(Exception): pass class MinuteBarReader(BarReader): @property def data_frequency(self): return "minute" def _calc_minute_index(market_opens, minutes_per_day): minutes = np.zeros(len(market_opens) * minutes_per_day, dtype='datetime64[ns]') deltas = np.arange(0, minutes_per_day, dtype='timedelta64[m]') for i, market_open in enumerate(market_opens): start = market_open.asm8 minute_values = start + deltas start_ix = minutes_per_day * i end_ix = start_ix + minutes_per_day minutes[start_ix:end_ix] = minute_values return pd.to_datetime(minutes, utc=True, box=True) def _sid_subdir_path(sid): """ Format subdir path to limit the number directories in any given subdirectory to 100. The number in each directory is designed to support at least 100000 equities. Parameters ---------- sid : int Asset identifier. Returns ------- out : string A path for the bcolz rootdir, including subdirectory prefixes based on the padded string representation of the given sid. e.g. 1 is formatted as 00/00/000001.bcolz """ padded_sid = format(sid, '06') return os.path.join( # subdir 1 00/XX padded_sid[0:2], # subdir 2 XX/00 padded_sid[2:4], "{0}.bcolz".format(str(padded_sid)) ) def convert_cols(cols, scale_factor, sid, invalid_data_behavior): """Adapt OHLCV columns into uint32 columns. Parameters ---------- cols : dict A dict mapping each column name (open, high, low, close, volume) to a float column to convert to uint32. scale_factor : int Factor to use to scale float values before converting to uint32. sid : int Sid of the relevant asset, for logging. invalid_data_behavior : str Specifies behavior when data cannot be converted to uint32. If 'raise', raises an exception. If 'warn', logs a warning and filters out incompatible values. If 'ignore', silently filters out incompatible values. """ scaled_opens = np.nan_to_num(cols['open']) * scale_factor scaled_highs = np.nan_to_num(cols['high']) * scale_factor scaled_lows = np.nan_to_num(cols['low']) * scale_factor scaled_closes = np.nan_to_num(cols['close']) * scale_factor exclude_mask = np.zeros_like(scaled_opens, dtype=bool) for col_name, scaled_col in [ ('open', scaled_opens), ('high', scaled_highs), ('low', scaled_lows), ('close', scaled_closes), ]: max_val = scaled_col.max() try: check_uint32_safe(max_val, col_name) except ValueError: if invalid_data_behavior == 'raise': raise if invalid_data_behavior == 'warn': logger.warn( 'Values for sid={}, col={} contain some too large for ' 'uint32 (max={}), filtering them out', sid, col_name, max_val, ) # We want to exclude all rows that have an unsafe value in # this column. exclude_mask &= (scaled_col >= np.iinfo(np.uint32).max) # Convert all cols to uint32. opens = scaled_opens.astype(np.uint32) highs = scaled_highs.astype(np.uint32) lows = scaled_lows.astype(np.uint32) closes = scaled_closes.astype(np.uint32) volumes = cols['volume'].astype(np.uint32) # Exclude rows with unsafe values by setting to zero. opens[exclude_mask] = 0 highs[exclude_mask] = 0 lows[exclude_mask] = 0 closes[exclude_mask] = 0 volumes[exclude_mask] = 0 return opens, highs, lows, closes, volumes class BcolzMinuteBarMetadata(object): """ Parameters ---------- ohlc_ratio : int The factor by which the pricing data is multiplied so that the float data can be stored as an integer. calendar : trading_calendars.trading_calendar.TradingCalendar The TradingCalendar on which the minute bars are based. start_session : datetime The first trading session in the data set. end_session : datetime The last trading session in the data set. minutes_per_day : int The number of minutes per each period. """ FORMAT_VERSION = 3 METADATA_FILENAME = 'metadata.json' @classmethod def metadata_path(cls, rootdir): return os.path.join(rootdir, cls.METADATA_FILENAME) @classmethod def read(cls, rootdir): path = cls.metadata_path(rootdir) with open(path) as fp: raw_data = json.load(fp) try: version = raw_data['version'] except KeyError: # Version was first written with version 1, assume 0, # if version does not match. version = 0 default_ohlc_ratio = raw_data['ohlc_ratio'] if version >= 1: minutes_per_day = raw_data['minutes_per_day'] else: # version 0 always assumed US equities. minutes_per_day = US_EQUITIES_MINUTES_PER_DAY if version >= 2: calendar = get_calendar(raw_data['calendar_name']) start_session = pd.Timestamp( raw_data['start_session'], tz='UTC') end_session = pd.Timestamp(raw_data['end_session'], tz='UTC') else: # No calendar info included in older versions, so # default to NYSE. calendar = get_calendar('NYSE') start_session = pd.Timestamp( raw_data['first_trading_day'], tz='UTC') end_session = calendar.minute_to_session_label( pd.Timestamp( raw_data['market_closes'][-1], unit='m', tz='UTC') ) if version >= 3: ohlc_ratios_per_sid = raw_data['ohlc_ratios_per_sid'] if ohlc_ratios_per_sid is not None: ohlc_ratios_per_sid = keymap(int, ohlc_ratios_per_sid) else: ohlc_ratios_per_sid = None return cls( default_ohlc_ratio, ohlc_ratios_per_sid, calendar, start_session, end_session, minutes_per_day, version=version, ) def __init__( self, default_ohlc_ratio, ohlc_ratios_per_sid, calendar, start_session, end_session, minutes_per_day, version=FORMAT_VERSION, ): self.calendar = calendar self.start_session = start_session self.end_session = end_session self.default_ohlc_ratio = default_ohlc_ratio self.ohlc_ratios_per_sid = ohlc_ratios_per_sid self.minutes_per_day = minutes_per_day self.version = version def write(self, rootdir): """ Write the metadata to a JSON file in the rootdir. Values contained in the metadata are: version : int The value of FORMAT_VERSION of this class. ohlc_ratio : int The default ratio by which to multiply the pricing data to convert the floats from floats to an integer to fit within the np.uint32. If ohlc_ratios_per_sid is None or does not contain a mapping for a given sid, this ratio is used. ohlc_ratios_per_sid : dict A dict mapping each sid in the output to the factor by which the pricing data is multiplied so that the float data can be stored as an integer. minutes_per_day : int The number of minutes per each period. calendar_name : str The name of the TradingCalendar on which the minute bars are based. start_session : datetime 'YYYY-MM-DD' formatted representation of the first trading session in the data set. end_session : datetime 'YYYY-MM-DD' formatted representation of the last trading session in the data set. Deprecated, but included for backwards compatibility: first_trading_day : string 'YYYY-MM-DD' formatted representation of the first trading day available in the dataset. market_opens : list List of int64 values representing UTC market opens as minutes since epoch. market_closes : list List of int64 values representing UTC market closes as minutes since epoch. """ calendar = self.calendar slicer = calendar.schedule.index.slice_indexer( self.start_session, self.end_session, ) schedule = calendar.schedule[slicer] market_opens = schedule.market_open market_closes = schedule.market_close metadata = { 'version': self.version, 'ohlc_ratio': self.default_ohlc_ratio, 'ohlc_ratios_per_sid': self.ohlc_ratios_per_sid, 'minutes_per_day': self.minutes_per_day, 'calendar_name': self.calendar.name, 'start_session': str(self.start_session.date()), 'end_session': str(self.end_session.date()), # Write these values for backwards compatibility 'first_trading_day': str(self.start_session.date()), 'market_opens': ( market_opens.values.astype('datetime64[m]'). astype(np.int64).tolist()), 'market_closes': ( market_closes.values.astype('datetime64[m]'). astype(np.int64).tolist()), } with open(self.metadata_path(rootdir), 'w+') as fp: json.dump(metadata, fp) class BcolzMinuteBarWriter(object): """ Class capable of writing minute OHLCV data to disk into bcolz format. Parameters ---------- rootdir : string Path to the root directory into which to write the metadata and bcolz subdirectories. calendar : trading_calendars.trading_calendar.TradingCalendar The trading calendar on which to base the minute bars. Used to get the market opens used as a starting point for each periodic span of minutes in the index, and the market closes that correspond with the market opens. minutes_per_day : int The number of minutes per each period. Defaults to 390, the mode of minutes in NYSE trading days. start_session : datetime The first trading session in the data set. end_session : datetime The last trading session in the data set. default_ohlc_ratio : int, optional The default ratio by which to multiply the pricing data to convert from floats to integers that fit within np.uint32. If ohlc_ratios_per_sid is None or does not contain a mapping for a given sid, this ratio is used. Default is OHLC_RATIO (1000). ohlc_ratios_per_sid : dict, optional A dict mapping each sid in the output to the ratio by which to multiply the pricing data to convert the floats from floats to an integer to fit within the np.uint32. expectedlen : int, optional The expected length of the dataset, used when creating the initial bcolz ctable. If the expectedlen is not used, the chunksize and corresponding compression ratios are not ideal. Defaults to supporting 15 years of NYSE equity market data. see: http://bcolz.blosc.org/opt-tips.html#informing-about-the-length-of-your-carrays # noqa write_metadata : bool, optional If True, writes the minute bar metadata (on init of the writer). If False, no metadata is written (existing metadata is retained). Default is True. Notes ----- Writes a bcolz directory for each individual sid, all contained within a root directory which also contains metadata about the entire dataset. Each individual asset's data is stored as a bcolz table with a column for each pricing field: (open, high, low, close, volume) The open, high, low, and close columns are integers which are 1000 times the quoted price, so that the data can represented and stored as an np.uint32, supporting market prices quoted up to the thousands place. volume is a np.uint32 with no mutation of the tens place. The 'index' for each individual asset are a repeating period of minutes of length `minutes_per_day` starting from each market open. The file format does not account for half-days. e.g.: 2016-01-19 14:31 2016-01-19 14:32 ... 2016-01-19 20:59 2016-01-19 21:00 2016-01-20 14:31 2016-01-20 14:32 ... 2016-01-20 20:59 2016-01-20 21:00 All assets are written with a common 'index', sharing a common first trading day. Assets that do not begin trading until after the first trading day will have zeros for all pricing data up and until data is traded. 'index' is in quotations, because bcolz does not provide an index. The format allows index-like behavior by writing each minute's data into the corresponding position of the enumeration of the aforementioned datetime index. The datetimes which correspond to each position are written in the metadata as integer nanoseconds since the epoch into the `minute_index` key. See Also -------- zipline.data.minute_bars.BcolzMinuteBarReader """ COL_NAMES = ('open', 'high', 'low', 'close', 'volume') def __init__(self, rootdir, calendar, start_session, end_session, minutes_per_day, default_ohlc_ratio=OHLC_RATIO, ohlc_ratios_per_sid=None, expectedlen=DEFAULT_EXPECTEDLEN, write_metadata=True): self._rootdir = rootdir self._start_session = start_session self._end_session = end_session self._calendar = calendar slicer = ( calendar.schedule.index.slice_indexer(start_session, end_session)) self._schedule = calendar.schedule[slicer] self._session_labels = self._schedule.index self._minutes_per_day = minutes_per_day self._expectedlen = expectedlen self._default_ohlc_ratio = default_ohlc_ratio self._ohlc_ratios_per_sid = ohlc_ratios_per_sid self._minute_index = _calc_minute_index( self._schedule.market_open, self._minutes_per_day) if write_metadata: metadata = BcolzMinuteBarMetadata( self._default_ohlc_ratio, self._ohlc_ratios_per_sid, self._calendar, self._start_session, self._end_session, self._minutes_per_day, ) metadata.write(self._rootdir) @classmethod def open(cls, rootdir, end_session=None): """ Open an existing ``rootdir`` for writing. Parameters ---------- end_session : Timestamp (optional) When appending, the intended new ``end_session``. """ metadata = BcolzMinuteBarMetadata.read(rootdir) return BcolzMinuteBarWriter( rootdir, metadata.calendar, metadata.start_session, end_session if end_session is not None else metadata.end_session, metadata.minutes_per_day, metadata.default_ohlc_ratio, metadata.ohlc_ratios_per_sid, write_metadata=end_session is not None ) @property def first_trading_day(self): return self._start_session def ohlc_ratio_for_sid(self, sid): if self._ohlc_ratios_per_sid is not None: try: return self._ohlc_ratios_per_sid[sid] except KeyError: pass # If no ohlc_ratios_per_sid dict is passed, or if the specified # sid is not in the dict, fallback to the general ohlc_ratio. return self._default_ohlc_ratio def sidpath(self, sid): """ Parameters ---------- sid : int Asset identifier. Returns ------- out : string Full path to the bcolz rootdir for the given sid. """ sid_subdir = _sid_subdir_path(sid) return join(self._rootdir, sid_subdir) def last_date_in_output_for_sid(self, sid): """ Parameters ---------- sid : int Asset identifier. Returns ------- out : pd.Timestamp The midnight of the last date written in to the output for the given sid. """ sizes_path = "{0}/close/meta/sizes".format(self.sidpath(sid)) if not os.path.exists(sizes_path): return pd.NaT with open(sizes_path, mode='r') as f: sizes = f.read() data = json.loads(sizes) # use integer division so that the result is an int # for pandas index later https://github.com/pandas-dev/pandas/blob/master/pandas/tseries/base.py#L247 # noqa num_days = data['shape'][0] // self._minutes_per_day if num_days == 0: # empty container return pd.NaT return self._session_labels[num_days - 1] def _init_ctable(self, path): """ Create empty ctable for given path. Parameters ---------- path : string The path to rootdir of the new ctable. """ # Only create the containing subdir on creation. # This is not to be confused with the `.bcolz` directory, but is the # directory up one level from the `.bcolz` directories. sid_containing_dirname = os.path.dirname(path) if not os.path.exists(sid_containing_dirname): # Other sids may have already created the containing directory. os.makedirs(sid_containing_dirname) initial_array = np.empty(0, np.uint32) table = ctable( rootdir=path, columns=[ initial_array, initial_array, initial_array, initial_array, initial_array, ], names=[ 'open', 'high', 'low', 'close', 'volume' ], expectedlen=self._expectedlen, mode='w', ) table.flush() return table def _ensure_ctable(self, sid): """Ensure that a ctable exists for ``sid``, then return it.""" sidpath = self.sidpath(sid) if not os.path.exists(sidpath): return self._init_ctable(sidpath) return bcolz.ctable(rootdir=sidpath, mode='a') def _zerofill(self, table, numdays): # Compute the number of minutes to be filled, accounting for the # possibility of a partial day's worth of minutes existing for # the previous day. minute_offset = len(table) % self._minutes_per_day num_to_prepend = numdays * self._minutes_per_day - minute_offset prepend_array = np.zeros(num_to_prepend, np.uint32) # Fill all OHLCV with zeros. table.append([prepend_array] * 5) table.flush() def pad(self, sid, date): """ Fill sid container with empty data through the specified date. If the last recorded trade is not at the close, then that day will be padded with zeros until its close. Any day after that (up to and including the specified date) will be padded with `minute_per_day` worth of zeros Parameters ---------- sid : int The asset identifier for the data being written. date : datetime-like The date used to calculate how many slots to be pad. The padding is done through the date, i.e. after the padding is done the `last_date_in_output_for_sid` will be equal to `date` """ table = self._ensure_ctable(sid) last_date = self.last_date_in_output_for_sid(sid) tds = self._session_labels if date <= last_date or date < tds[0]: # No need to pad. return if last_date == pd.NaT: # If there is no data, determine how many days to add so that # desired days are written to the correct slots. days_to_zerofill = tds[tds.slice_indexer(end=date)] else: days_to_zerofill = tds[tds.slice_indexer( start=last_date + tds.freq, end=date)] self._zerofill(table, len(days_to_zerofill)) new_last_date = self.last_date_in_output_for_sid(sid) assert new_last_date == date, "new_last_date={0} != date={1}".format( new_last_date, date) def set_sid_attrs(self, sid, **kwargs): """Write all the supplied kwargs as attributes of the sid's file. """ table = self._ensure_ctable(sid) for k, v in kwargs.items(): table.attrs[k] = v def write(self, data, show_progress=False, invalid_data_behavior='warn'): """Write a stream of minute data. Parameters ---------- data : iterable[(int, pd.DataFrame)] The data to write. Each element should be a tuple of sid, data where data has the following format: columns : ('open', 'high', 'low', 'close', 'volume') open : float64 high : float64 low : float64 close : float64 volume : float64|int64 index : DatetimeIndex of market minutes. A given sid may appear more than once in ``data``; however, the dates must be strictly increasing. show_progress : bool, optional Whether or not to show a progress bar while writing. """ ctx = maybe_show_progress( data, show_progress=show_progress, item_show_func=lambda e: e if e is None else str(e[0]), label="Merging minute equity files:", ) write_sid = self.write_sid with ctx as it: for e in it: write_sid(*e, invalid_data_behavior=invalid_data_behavior) def write_sid(self, sid, df, invalid_data_behavior='warn'): """ Write the OHLCV data for the given sid. If there is no bcolz ctable yet created for the sid, create it. If the length of the bcolz ctable is not exactly to the date before the first day provided, fill the ctable with 0s up to that date. Parameters ---------- sid : int The asset identifer for the data being written. df : pd.DataFrame DataFrame of market data with the following characteristics. columns : ('open', 'high', 'low', 'close', 'volume') open : float64 high : float64 low : float64 close : float64 volume : float64|int64 index : DatetimeIndex of market minutes. """ cols = { 'open': df.open.values, 'high': df.high.values, 'low': df.low.values, 'close': df.close.values, 'volume': df.volume.values, } dts = df.index.values # Call internal method, since DataFrame has already ensured matching # index and value lengths. self._write_cols(sid, dts, cols, invalid_data_behavior) def write_cols(self, sid, dts, cols, invalid_data_behavior='warn'): """ Write the OHLCV data for the given sid. If there is no bcolz ctable yet created for the sid, create it. If the length of the bcolz ctable is not exactly to the date before the first day provided, fill the ctable with 0s up to that date. Parameters ---------- sid : int The asset identifier for the data being written. dts : datetime64 array The dts corresponding to values in cols. cols : dict of str -> np.array dict of market data with the following characteristics. keys are ('open', 'high', 'low', 'close', 'volume') open : float64 high : float64 low : float64 close : float64 volume : float64|int64 """ if not all(len(dts) == len(cols[name]) for name in self.COL_NAMES): raise BcolzMinuteWriterColumnMismatch( "Length of dts={0} should match cols: {1}".format( len(dts), " ".join("{0}={1}".format(name, len(cols[name])) for name in self.COL_NAMES))) self._write_cols(sid, dts, cols, invalid_data_behavior) def _write_cols(self, sid, dts, cols, invalid_data_behavior): """ Internal method for `write_cols` and `write`. Parameters ---------- sid : int The asset identifier for the data being written. dts : datetime64 array The dts corresponding to values in cols. cols : dict of str -> np.array dict of market data with the following characteristics. keys are ('open', 'high', 'low', 'close', 'volume') open : float64 high : float64 low : float64 close : float64 volume : float64|int64 """ table = self._ensure_ctable(sid) tds = self._session_labels input_first_day = self._calendar.minute_to_session_label( pd.Timestamp(dts[0]), direction='previous') last_date = self.last_date_in_output_for_sid(sid) day_before_input = input_first_day - tds.freq self.pad(sid, day_before_input) table = self._ensure_ctable(sid) # Get the number of minutes already recorded in this sid's ctable num_rec_mins = table.size all_minutes = self._minute_index # Get the latest minute we wish to write to the ctable last_minute_to_write = pd.Timestamp(dts[-1], tz='UTC') # In the event that we've already written some minutely data to the # ctable, guard against overwriting that data. if num_rec_mins > 0: last_recorded_minute = all_minutes[num_rec_mins - 1] if last_minute_to_write <= last_recorded_minute: raise BcolzMinuteOverlappingData(dedent(""" Data with last_date={0} already includes input start={1} for sid={2}""".strip()).format(last_date, input_first_day, sid)) latest_min_count = all_minutes.get_loc(last_minute_to_write) # Get all the minutes we wish to write (all market minutes after the # latest currently written, up to and including last_minute_to_write) all_minutes_in_window = all_minutes[num_rec_mins:latest_min_count + 1] minutes_count = all_minutes_in_window.size open_col = np.zeros(minutes_count, dtype=np.uint32) high_col = np.zeros(minutes_count, dtype=np.uint32) low_col = np.zeros(minutes_count, dtype=np.uint32) close_col = np.zeros(minutes_count, dtype=np.uint32) vol_col = np.zeros(minutes_count, dtype=np.uint32) dt_ixs = np.searchsorted(all_minutes_in_window.values, dts.astype('datetime64[ns]')) ohlc_ratio = self.ohlc_ratio_for_sid(sid) ( open_col[dt_ixs], high_col[dt_ixs], low_col[dt_ixs], close_col[dt_ixs], vol_col[dt_ixs], ) = convert_cols(cols, ohlc_ratio, sid, invalid_data_behavior) table.append([ open_col, high_col, low_col, close_col, vol_col ]) table.flush() def data_len_for_day(self, day): """ Return the number of data points up to and including the provided day. """ day_ix = self._session_labels.get_loc(day) # Add one to the 0-indexed day_ix to get the number of days. num_days = day_ix + 1 return num_days * self._minutes_per_day def truncate(self, date): """Truncate data beyond this date in all ctables.""" truncate_slice_end = self.data_len_for_day(date) glob_path = os.path.join(self._rootdir, "*", "*", "*.bcolz") sid_paths = sorted(glob(glob_path)) for sid_path in sid_paths: file_name = os.path.basename(sid_path) try: table = bcolz.open(rootdir=sid_path) except IOError: continue if table.len <= truncate_slice_end: logger.info("{0} not past truncate date={1}.", file_name, date) continue logger.info( "Truncating {0} at end_date={1}", file_name, date.date() ) table.resize(truncate_slice_end) # Update end session in metadata. metadata = BcolzMinuteBarMetadata.read(self._rootdir) metadata.end_session = date metadata.write(self._rootdir) class BcolzMinuteBarReader(MinuteBarReader): """ Reader for data written by BcolzMinuteBarWriter Parameters ---------- rootdir : string The root directory containing the metadata and asset bcolz directories. See Also -------- zipline.data.minute_bars.BcolzMinuteBarWriter """ FIELDS = ('open', 'high', 'low', 'close', 'volume') DEFAULT_MINUTELY_SID_CACHE_SIZES = { 'close': 3000, 'open': 1550, 'high': 1550, 'low': 1550, 'volume': 1550, } assert set(FIELDS) == set(DEFAULT_MINUTELY_SID_CACHE_SIZES), \ "FIELDS should match DEFAULT_MINUTELY_SID_CACHE_SIZES keys" # Wrap the defaults in proxy so that we don't accidentally mutate them in # place in the constructor. If a user wants to change the defaults, they # can do so by mutating DEFAULT_MINUTELY_SID_CACHE_SIZES. _default_proxy = mappingproxy(DEFAULT_MINUTELY_SID_CACHE_SIZES) def __init__(self, rootdir, sid_cache_sizes=_default_proxy): self._rootdir = rootdir metadata = self._get_metadata() self._start_session = metadata.start_session self._end_session = metadata.end_session self.calendar = metadata.calendar slicer = self.calendar.schedule.index.slice_indexer( self._start_session, self._end_session, ) self._schedule = self.calendar.schedule[slicer] self._market_opens = self._schedule.market_open self._market_open_values = self._market_opens.values.\ astype('datetime64[m]').astype(np.int64) self._market_closes = self._schedule.market_close self._market_close_values = self._market_closes.values.\ astype('datetime64[m]').astype(np.int64) self._default_ohlc_inverse = 1.0 / metadata.default_ohlc_ratio ohlc_ratios = metadata.ohlc_ratios_per_sid if ohlc_ratios: self._ohlc_inverses_per_sid = ( valmap(lambda x: 1.0 / x, ohlc_ratios)) else: self._ohlc_inverses_per_sid = None self._minutes_per_day = metadata.minutes_per_day self._carrays = { field: LRU(sid_cache_sizes[field]) for field in self.FIELDS } self._last_get_value_dt_position = None self._last_get_value_dt_value = None # This is to avoid any bad data or other performance-killing situation # where there a consecutive streak of 0 (no volume) starting at an # asset's start date. # if asset 1 started on 2015-01-03 but its first trade is 2015-01-06 # 10:31 AM US/Eastern, this dict would store {1: 23675971}, # which is the minute epoch of that date. self._known_zero_volume_dict = {} def _get_metadata(self): return BcolzMinuteBarMetadata.read(self._rootdir) @property def trading_calendar(self): return self.calendar @lazyval def last_available_dt(self): _, close = self.calendar.open_and_close_for_session(self._end_session) return close @property def first_trading_day(self): return self._start_session def _ohlc_ratio_inverse_for_sid(self, sid): if self._ohlc_inverses_per_sid is not None: try: return self._ohlc_inverses_per_sid[sid] except KeyError: pass # If we can not get a sid-specific OHLC inverse for this sid, # fallback to the default. return self._default_ohlc_inverse def _minutes_to_exclude(self): """ Calculate the minutes which should be excluded when a window occurs on days which had an early close, i.e. days where the close based on the regular period of minutes per day and the market close do not match. Returns ------- List of DatetimeIndex representing the minutes to exclude because of early closes. """ market_opens = self._market_opens.values.astype('datetime64[m]') market_closes = self._market_closes.values.astype('datetime64[m]') minutes_per_day = (market_closes - market_opens).astype(np.int64) early_indices = np.where( minutes_per_day != self._minutes_per_day - 1)[0] early_opens = self._market_opens[early_indices] early_closes = self._market_closes[early_indices] minutes = [(market_open, early_close) for market_open, early_close in zip(early_opens, early_closes)] return minutes @lazyval def _minute_exclusion_tree(self): """ Build an interval tree keyed by the start and end of each range of positions should be dropped from windows. (These are the minutes between an early close and the minute which would be the close based on the regular period if there were no early close.) The value of each node is the same start and end position stored as a tuple. The data is stored as such in support of a fast answer to the question, does a given start and end position overlap any of the exclusion spans? Returns ------- IntervalTree containing nodes which represent the minutes to exclude because of early closes. """ itree = IntervalTree() for market_open, early_close in self._minutes_to_exclude(): start_pos = self._find_position_of_minute(early_close) + 1 end_pos = ( self._find_position_of_minute(market_open) + self._minutes_per_day - 1 ) data = (start_pos, end_pos) itree[start_pos:end_pos + 1] = data return itree def _exclusion_indices_for_range(self, start_idx, end_idx): """ Returns ------- List of tuples of (start, stop) which represent the ranges of minutes which should be excluded when a market minute window is requested. """ itree = self._minute_exclusion_tree if itree.overlaps(start_idx, end_idx): ranges = [] intervals = itree[start_idx:end_idx] for interval in intervals: ranges.append(interval.data) return sorted(ranges) else: return None def _get_carray_path(self, sid, field): sid_subdir = _sid_subdir_path(sid) # carrays are subdirectories of the sid's rootdir return os.path.join(self._rootdir, sid_subdir, field) def _open_minute_file(self, field, sid): sid = int(sid) try: carray = self._carrays[field][sid] except KeyError: try: carray = self._carrays[field][sid] = bcolz.carray( rootdir=self._get_carray_path(sid, field), mode='r', ) except IOError: raise NoDataForSid('No minute data for sid {}.'.format(sid)) return carray def table_len(self, sid): """Returns the length of the underlying table for this sid.""" return len(self._open_minute_file('close', sid)) def get_sid_attr(self, sid, name): sid_subdir = _sid_subdir_path(sid) sid_path = os.path.join(self._rootdir, sid_subdir) attrs = bcolz.attrs.attrs(sid_path, 'r') try: return attrs[name] except KeyError: return None def get_value(self, sid, dt, field): """ Retrieve the pricing info for the given sid, dt, and field. Parameters ---------- sid : int Asset identifier. dt : datetime-like The datetime at which the trade occurred. field : string The type of pricing data to retrieve. ('open', 'high', 'low', 'close', 'volume') Returns ------- out : float|int The market data for the given sid, dt, and field coordinates. For OHLC: Returns a float if a trade occurred at the given dt. If no trade occurred, a np.nan is returned. For volume: Returns the integer value of the volume. (A volume of 0 signifies no trades for the given dt.) """ if self._last_get_value_dt_value == dt.value: minute_pos = self._last_get_value_dt_position else: try: minute_pos = self._find_position_of_minute(dt) except ValueError: raise NoDataOnDate() self._last_get_value_dt_value = dt.value self._last_get_value_dt_position = minute_pos try: value = self._open_minute_file(field, sid)[minute_pos] except IndexError: value = 0 if value == 0: if field == 'volume': return 0 else: return np.nan if field != 'volume': value *= self._ohlc_ratio_inverse_for_sid(sid) return value def get_last_traded_dt(self, asset, dt): minute_pos = self._find_last_traded_position(asset, dt) if minute_pos == -1: return pd.NaT return self._pos_to_minute(minute_pos) def _find_last_traded_position(self, asset, dt): volumes = self._open_minute_file('volume', asset) start_date_minute = asset.start_date.value / NANOS_IN_MINUTE dt_minute = dt.value / NANOS_IN_MINUTE try: # if we know of a dt before which this asset has no volume, # don't look before that dt earliest_dt_to_search = self._known_zero_volume_dict[asset.sid] except KeyError: earliest_dt_to_search = start_date_minute if dt_minute < earliest_dt_to_search: return -1 pos = find_last_traded_position_internal( self._market_open_values, self._market_close_values, dt_minute, earliest_dt_to_search, volumes, self._minutes_per_day, ) if pos == -1: # if we didn't find any volume before this dt, save it to avoid # work in the future. try: self._known_zero_volume_dict[asset.sid] = max( dt_minute, self._known_zero_volume_dict[asset.sid] ) except KeyError: self._known_zero_volume_dict[asset.sid] = dt_minute return pos def _pos_to_minute(self, pos): minute_epoch = minute_value( self._market_open_values, pos, self._minutes_per_day ) return pd.Timestamp(minute_epoch, tz='UTC', unit="m") def _find_position_of_minute(self, minute_dt): """ Internal method that returns the position of the given minute in the list of every trading minute since market open of the first trading day. Adjusts non market minutes to the last close. ex. this method would return 1 for 2002-01-02 9:32 AM Eastern, if 2002-01-02 is the first trading day of the dataset. Parameters ---------- minute_dt: pd.Timestamp The minute whose position should be calculated. Returns ------- int: The position of the given minute in the list of all trading minutes since market open on the first trading day. """ return find_position_of_minute( self._market_open_values, self._market_close_values, minute_dt.value / NANOS_IN_MINUTE, self._minutes_per_day, False, ) def load_raw_arrays(self, fields, start_dt, end_dt, sids): """ Parameters ---------- fields : list of str 'open', 'high', 'low', 'close', or 'volume' start_dt: Timestamp Beginning of the window range. end_dt: Timestamp End of the window range. sids : list of int The asset identifiers in the window. Returns ------- list of np.ndarray A list with an entry per field of ndarrays with shape (minutes in range, sids) with a dtype of float64, containing the values for the respective field over start and end dt range. """ start_idx = self._find_position_of_minute(start_dt) end_idx = self._find_position_of_minute(end_dt) num_minutes = (end_idx - start_idx + 1) results = [] indices_to_exclude = self._exclusion_indices_for_range( start_idx, end_idx) if indices_to_exclude is not None: for excl_start, excl_stop in indices_to_exclude: length = excl_stop - excl_start + 1 num_minutes -= length shape = num_minutes, len(sids) for field in fields: if field != 'volume': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.uint32) for i, sid in enumerate(sids): carray = self._open_minute_file(field, sid) values = carray[start_idx:end_idx + 1] if indices_to_exclude is not None: for excl_start, excl_stop in indices_to_exclude[::-1]: excl_slice = np.s_[ excl_start - start_idx:excl_stop - start_idx + 1] values = np.delete(values, excl_slice) where = values != 0 # first slice down to len(where) because we might not have # written data for all the minutes requested if field != 'volume': out[:len(where), i][where] = ( values[where] * self._ohlc_ratio_inverse_for_sid(sid)) else: out[:len(where), i][where] = values[where] results.append(out) return results class MinuteBarUpdateReader(with_metaclass(ABCMeta, object)): """ Abstract base class for minute update readers. """ @abstractmethod def read(self, dts, sids): """ Read and return pricing update data. Parameters ---------- dts : DatetimeIndex The minutes for which to read the pricing updates. sids : iter[int] The sids for which to read the pricing updates. Returns ------- data : iter[(int, DataFrame)] Returns an iterable of ``sid`` to the corresponding OHLCV data. """ raise NotImplementedError() class H5MinuteBarUpdateWriter(object): """ Writer for files containing minute bar updates for consumption by a writer for a ``MinuteBarReader`` format. Parameters ---------- path : str The destination path. complevel : int, optional The HDF5 complevel, defaults to ``5``. complib : str, optional The HDF5 complib, defaults to ``zlib``. """ FORMAT_VERSION = 0 _COMPLEVEL = 5 _COMPLIB = 'zlib' def __init__(self, path, complevel=None, complib=None): self._complevel = complevel if complevel \ is not None else self._COMPLEVEL self._complib = complib if complib \ is not None else self._COMPLIB self._path = path def write(self, frames): """ Write the frames to the target HDF5 file, using the format used by ``pd.Panel.to_hdf`` Parameters ---------- frames : iter[(int, DataFrame)] or dict[int -> DataFrame] An iterable or other mapping of sid to the corresponding OHLCV pricing data. """ with HDFStore(self._path, 'w', complevel=self._complevel, complib=self._complib) \ as store: panel = pd.Panel.from_dict(dict(frames)) panel.to_hdf(store, 'updates') with tables.open_file(self._path, mode='r+') as h5file: h5file.set_node_attr('/', 'version', 0) class H5MinuteBarUpdateReader(MinuteBarUpdateReader): """ Reader for minute bar updates stored in HDF5 files. Parameters ---------- path : str The path of the HDF5 file from which to source data. """ def __init__(self, path): self._panel = pd.read_hdf(path) def read(self, dts, sids): panel = self._panel[sids, dts, :] return panel.iteritems()
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/minute_bars.py
minute_bars.py
from operator import itemgetter import re import numpy as np import pandas as pd get_unit_and_periods = itemgetter('unit', 'periods') def parse_treasury_csv_column(column): """ Parse a treasury CSV column into a more human-readable format. Columns start with 'RIFLGFC', followed by Y or M (year or month), followed by a two-digit number signifying number of years/months, followed by _N.B. We only care about the middle two entries, which we turn into a string like 3month or 30year. """ column_re = re.compile( r"^(?P<prefix>RIFLGFC)" "(?P<unit>[YM])" "(?P<periods>[0-9]{2})" "(?P<suffix>_N.B)$" ) match = column_re.match(column) if match is None: raise ValueError("Couldn't parse CSV column %r." % column) unit, periods = get_unit_and_periods(match.groupdict()) # Roundtrip through int to coerce '06' into '6'. return str(int(periods)) + ('year' if unit == 'Y' else 'month') def earliest_possible_date(): """ The earliest date for which we can load data from this module. """ # The US Treasury actually has data going back further than this, but it's # pretty rare to find pricing data going back that far, and there's no # reason to make people download benchmarks back to 1950 that they'll never # be able to use. return pd.Timestamp('1980', tz='UTC') def get_treasury_data(start_date, end_date): return pd.read_csv( "https://www.federalreserve.gov/datadownload/Output.aspx" "?rel=H15" "&series=bf17364827e38702b42a58cf8eaa3f78" "&lastObs=" "&from=" # An unbounded query is ~2x faster than specifying dates. "&to=" "&filetype=csv" "&label=include" "&layout=seriescolumn" "&type=package", skiprows=5, # First 5 rows are useless headers. parse_dates=['Time Period'], na_values=['ND'], # Presumably this stands for "No Data". index_col=0, ).loc[ start_date:end_date ].dropna( how='all' ).rename( columns=parse_treasury_csv_column ).tz_localize('UTC') * 0.01 # Convert from 2.57% to 0.0257. def dataconverter(s): try: return float(s) / 100 except: return np.nan def get_daily_10yr_treasury_data(): """Download daily 10 year treasury rates from the Federal Reserve and return a pandas.Series.""" url = "https://www.federalreserve.gov/datadownload/Output.aspx?rel=H15" \ "&series=bcb44e57fb57efbe90002369321bfb3f&lastObs=&from=&to=" \ "&filetype=csv&label=include&layout=seriescolumn" return pd.read_csv(url, header=5, index_col=0, names=['DATE', 'BC_10YEAR'], parse_dates=True, converters={1: dataconverter}, squeeze=True)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/treasuries.py
treasuries.py
from operator import mul from logbook import Logger import numpy as np from numpy import float64, int64, nan import pandas as pd from pandas import isnull from six import iteritems from six.moves import reduce from zipline.assets import ( Asset, AssetConvertible, Equity, Future, PricingDataAssociable, ) from zipline.assets.continuous_futures import ContinuousFuture from zipline.data.continuous_future_reader import ( ContinuousFutureSessionBarReader, ContinuousFutureMinuteBarReader ) from zipline.assets.roll_finder import ( CalendarRollFinder, VolumeRollFinder ) from zipline.data.dispatch_bar_reader import ( AssetDispatchMinuteBarReader, AssetDispatchSessionBarReader ) from zipline.data.resample import ( DailyHistoryAggregator, ReindexMinuteBarReader, ReindexSessionBarReader, ) from zipline.data.history_loader import ( DailyHistoryLoader, MinuteHistoryLoader, ) from zipline.data.us_equity_pricing import NoDataOnDate from zipline.utils.math_utils import ( nansum, nanmean, nanstd ) from zipline.utils.memoize import remember_last, weak_lru_cache from zipline.utils.pandas_utils import ( normalize_date, timedelta_to_integral_minutes, ) from zipline.errors import HistoryWindowStartsBeforeData log = Logger('DataPortal') BASE_FIELDS = frozenset([ "open", "high", "low", "close", "volume", "price", "contract", "sid", "last_traded", ]) OHLCV_FIELDS = frozenset([ "open", "high", "low", "close", "volume" ]) OHLCVP_FIELDS = frozenset([ "open", "high", "low", "close", "volume", "price" ]) HISTORY_FREQUENCIES = set(["1m", "1d"]) DEFAULT_MINUTE_HISTORY_PREFETCH = 1560 DEFAULT_DAILY_HISTORY_PREFETCH = 40 _DEF_M_HIST_PREFETCH = DEFAULT_MINUTE_HISTORY_PREFETCH _DEF_D_HIST_PREFETCH = DEFAULT_DAILY_HISTORY_PREFETCH class DataPortal(object): """Interface to all of the data that a zipline simulation needs. This is used by the simulation runner to answer questions about the data, like getting the prices of assets on a given day or to service history calls. Parameters ---------- asset_finder : zipline.assets.assets.AssetFinder The AssetFinder instance used to resolve assets. trading_calendar: zipline.utils.calendar.exchange_calendar.TradingCalendar The calendar instance used to provide minute->session information. first_trading_day : pd.Timestamp The first trading day for the simulation. equity_daily_reader : BcolzDailyBarReader, optional The daily bar reader for equities. This will be used to service daily data backtests or daily history calls in a minute backetest. If a daily bar reader is not provided but a minute bar reader is, the minutes will be rolled up to serve the daily requests. equity_minute_reader : BcolzMinuteBarReader, optional The minute bar reader for equities. This will be used to service minute data backtests or minute history calls. This can be used to serve daily calls if no daily bar reader is provided. future_daily_reader : BcolzDailyBarReader, optional The daily bar ready for futures. This will be used to service daily data backtests or daily history calls in a minute backetest. If a daily bar reader is not provided but a minute bar reader is, the minutes will be rolled up to serve the daily requests. future_minute_reader : BcolzFutureMinuteBarReader, optional The minute bar reader for futures. This will be used to service minute data backtests or minute history calls. This can be used to serve daily calls if no daily bar reader is provided. adjustment_reader : SQLiteAdjustmentWriter, optional The adjustment reader. This is used to apply splits, dividends, and other adjustment data to the raw data from the readers. last_available_session : pd.Timestamp, optional The last session to make available in session-level data. last_available_minute : pd.Timestamp, optional The last minute to make available in minute-level data. """ def __init__(self, asset_finder, trading_calendar, first_trading_day, equity_daily_reader=None, equity_minute_reader=None, future_daily_reader=None, future_minute_reader=None, adjustment_reader=None, last_available_session=None, last_available_minute=None, minute_history_prefetch_length=_DEF_M_HIST_PREFETCH, daily_history_prefetch_length=_DEF_D_HIST_PREFETCH): self.trading_calendar = trading_calendar self.asset_finder = asset_finder self._adjustment_reader = adjustment_reader # caches of sid -> adjustment list self._splits_dict = {} self._mergers_dict = {} self._dividends_dict = {} # Handle extra sources, like Fetcher. self._augmented_sources_map = {} self._extra_source_df = None self._first_available_session = first_trading_day if last_available_session: self._last_available_session = last_available_session else: # Infer the last session from the provided readers. last_sessions = [ reader.last_available_dt for reader in [equity_daily_reader, future_daily_reader] if reader is not None ] if last_sessions: self._last_available_session = min(last_sessions) else: self._last_available_session = None if last_available_minute: self._last_available_minute = last_available_minute else: # Infer the last minute from the provided readers. last_minutes = [ reader.last_available_dt for reader in [equity_minute_reader, future_minute_reader] if reader is not None ] if last_minutes: self._last_available_minute = max(last_minutes) else: self._last_available_minute = None aligned_equity_minute_reader = self._ensure_reader_aligned( equity_minute_reader) aligned_equity_session_reader = self._ensure_reader_aligned( equity_daily_reader) aligned_future_minute_reader = self._ensure_reader_aligned( future_minute_reader) aligned_future_session_reader = self._ensure_reader_aligned( future_daily_reader) self._roll_finders = { 'calendar': CalendarRollFinder(self.trading_calendar, self.asset_finder), } aligned_minute_readers = {} aligned_session_readers = {} if aligned_equity_minute_reader is not None: aligned_minute_readers[Equity] = aligned_equity_minute_reader if aligned_equity_session_reader is not None: aligned_session_readers[Equity] = aligned_equity_session_reader if aligned_future_minute_reader is not None: aligned_minute_readers[Future] = aligned_future_minute_reader aligned_minute_readers[ContinuousFuture] = \ ContinuousFutureMinuteBarReader( aligned_future_minute_reader, self._roll_finders, ) if aligned_future_session_reader is not None: aligned_session_readers[Future] = aligned_future_session_reader self._roll_finders['volume'] = VolumeRollFinder( self.trading_calendar, self.asset_finder, aligned_future_session_reader, ) aligned_session_readers[ContinuousFuture] = \ ContinuousFutureSessionBarReader( aligned_future_session_reader, self._roll_finders, ) _dispatch_minute_reader = AssetDispatchMinuteBarReader( self.trading_calendar, self.asset_finder, aligned_minute_readers, self._last_available_minute, ) _dispatch_session_reader = AssetDispatchSessionBarReader( self.trading_calendar, self.asset_finder, aligned_session_readers, self._last_available_session, ) self._pricing_readers = { 'minute': _dispatch_minute_reader, 'daily': _dispatch_session_reader, } self._daily_aggregator = DailyHistoryAggregator( self.trading_calendar.schedule.market_open, _dispatch_minute_reader, self.trading_calendar ) self._history_loader = DailyHistoryLoader( self.trading_calendar, _dispatch_session_reader, self._adjustment_reader, self.asset_finder, self._roll_finders, prefetch_length=daily_history_prefetch_length, ) self._minute_history_loader = MinuteHistoryLoader( self.trading_calendar, _dispatch_minute_reader, self._adjustment_reader, self.asset_finder, self._roll_finders, prefetch_length=minute_history_prefetch_length, ) self._first_trading_day = first_trading_day # Get the first trading minute self._first_trading_minute, _ = ( self.trading_calendar.open_and_close_for_session( self._first_trading_day ) if self._first_trading_day is not None else (None, None) ) # Store the locs of the first day and first minute self._first_trading_day_loc = ( self.trading_calendar.all_sessions.get_loc(self._first_trading_day) if self._first_trading_day is not None else None ) def _ensure_reader_aligned(self, reader): if reader is None: return if reader.trading_calendar.name == self.trading_calendar.name: return reader elif reader.data_frequency == 'minute': return ReindexMinuteBarReader( self.trading_calendar, reader, self._first_available_session, self._last_available_session ) elif reader.data_frequency == 'session': return ReindexSessionBarReader( self.trading_calendar, reader, self._first_available_session, self._last_available_session ) def _reindex_extra_source(self, df, source_date_index): return df.reindex(index=source_date_index, method='ffill') def handle_extra_source(self, source_df, sim_params): """ Extra sources always have a sid column. We expand the given data (by forward filling) to the full range of the simulation dates, so that lookup is fast during simulation. """ if source_df is None: return # Normalize all the dates in the df source_df.index = source_df.index.normalize() # source_df's sid column can either consist of assets we know about # (such as sid(24)) or of assets we don't know about (such as # palladium). # # In both cases, we break up the dataframe into individual dfs # that only contain a single asset's information. ie, if source_df # has data for PALLADIUM and GOLD, we split source_df into two # dataframes, one for each. (same applies if source_df has data for # AAPL and IBM). # # We then take each child df and reindex it to the simulation's date # range by forward-filling missing values. this makes reads simpler. # # Finally, we store the data. For each column, we store a mapping in # self.augmented_sources_map from the column to a dictionary of # asset -> df. In other words, # self.augmented_sources_map['days_to_cover']['AAPL'] gives us the df # holding that data. source_date_index = self.trading_calendar.sessions_in_range( sim_params.start_session, sim_params.end_session ) # Break the source_df up into one dataframe per sid. This lets # us (more easily) calculate accurate start/end dates for each sid, # de-dup data, and expand the data to fit the backtest start/end date. grouped_by_sid = source_df.groupby(["sid"]) group_names = grouped_by_sid.groups.keys() group_dict = {} for group_name in group_names: group_dict[group_name] = grouped_by_sid.get_group(group_name) # This will be the dataframe which we query to get fetcher assets at # any given time. Get's overwritten every time there's a new fetcher # call extra_source_df = pd.DataFrame() for identifier, df in iteritems(group_dict): # Since we know this df only contains a single sid, we can safely # de-dupe by the index (dt). If minute granularity, will take the # last data point on any given day df = df.groupby(level=0).last() # Reindex the dataframe based on the backtest start/end date. # This makes reads easier during the backtest. df = self._reindex_extra_source(df, source_date_index) for col_name in df.columns.difference(['sid']): if col_name not in self._augmented_sources_map: self._augmented_sources_map[col_name] = {} self._augmented_sources_map[col_name][identifier] = df # Append to extra_source_df the reindexed dataframe for the single # sid extra_source_df = extra_source_df.append(df) self._extra_source_df = extra_source_df def _get_pricing_reader(self, data_frequency): return self._pricing_readers[data_frequency] def get_last_traded_dt(self, asset, dt, data_frequency): """ Given an asset and dt, returns the last traded dt from the viewpoint of the given dt. If there is a trade on the dt, the answer is dt provided. """ return self._get_pricing_reader(data_frequency).get_last_traded_dt( asset, dt) @staticmethod def _is_extra_source(asset, field, map): """ Internal method that determines if this asset/field combination represents a fetcher value or a regular OHLCVP lookup. """ # If we have an extra source with a column called "price", only look # at it if it's on something like palladium and not AAPL (since our # own price data always wins when dealing with assets). return not (field in BASE_FIELDS and (isinstance(asset, (Asset, ContinuousFuture)))) def _get_fetcher_value(self, asset, field, dt): day = normalize_date(dt) try: return \ self._augmented_sources_map[field][asset].loc[day, field] except KeyError: return np.NaN def _get_single_asset_value(self, session_label, asset, field, dt, data_frequency): if self._is_extra_source( asset, field, self._augmented_sources_map): return self._get_fetcher_value(asset, field, dt) if field not in BASE_FIELDS: raise KeyError("Invalid column: " + str(field)) if dt < asset.start_date or \ (data_frequency == "daily" and session_label > asset.end_date) or \ (data_frequency == "minute" and session_label > asset.end_date): if field == "volume": return 0 elif field == "contract": return None elif field != "last_traded": return np.NaN if data_frequency == "daily": if field == "contract": return self._get_current_contract(asset, session_label) else: return self._get_daily_spot_value( asset, field, session_label, ) else: if field == "last_traded": return self.get_last_traded_dt(asset, dt, 'minute') elif field == "price": return self._get_minute_spot_value( asset, "close", dt, ffill=True, ) elif field == "contract": return self._get_current_contract(asset, dt) else: return self._get_minute_spot_value(asset, field, dt) def get_spot_value(self, assets, field, dt, data_frequency): """ Public API method that returns a scalar value representing the value of the desired asset's field at either the given dt. Parameters ---------- assets : Asset, ContinuousFuture, or iterable of same. The asset or assets whose data is desired. field : {'open', 'high', 'low', 'close', 'volume', 'price', 'last_traded'} The desired field of the asset. dt : pd.Timestamp The timestamp for the desired value. data_frequency : str The frequency of the data to query; i.e. whether the data is 'daily' or 'minute' bars Returns ------- value : float, int, or pd.Timestamp The spot value of ``field`` for ``asset`` The return type is based on the ``field`` requested. If the field is one of 'open', 'high', 'low', 'close', or 'price', the value will be a float. If the ``field`` is 'volume' the value will be a int. If the ``field`` is 'last_traded' the value will be a Timestamp. """ assets_is_scalar = False if isinstance(assets, (AssetConvertible, PricingDataAssociable)): assets_is_scalar = True else: # If 'assets' was not one of the expected types then it should be # an iterable. try: iter(assets) except TypeError: raise TypeError( "Unexpected 'assets' value of type {}." .format(type(assets)) ) session_label = self.trading_calendar.minute_to_session_label(dt) if assets_is_scalar: return self._get_single_asset_value( session_label, assets, field, dt, data_frequency, ) else: get_single_asset_value = self._get_single_asset_value return [ get_single_asset_value( session_label, asset, field, dt, data_frequency, ) for asset in assets ] def get_scalar_asset_spot_value(self, asset, field, dt, data_frequency): """ Public API method that returns a scalar value representing the value of the desired asset's field at either the given dt. Parameters ---------- assets : Asset The asset or assets whose data is desired. This cannot be an arbitrary AssetConvertible. field : {'open', 'high', 'low', 'close', 'volume', 'price', 'last_traded'} The desired field of the asset. dt : pd.Timestamp The timestamp for the desired value. data_frequency : str The frequency of the data to query; i.e. whether the data is 'daily' or 'minute' bars Returns ------- value : float, int, or pd.Timestamp The spot value of ``field`` for ``asset`` The return type is based on the ``field`` requested. If the field is one of 'open', 'high', 'low', 'close', or 'price', the value will be a float. If the ``field`` is 'volume' the value will be a int. If the ``field`` is 'last_traded' the value will be a Timestamp. """ return self._get_single_asset_value( self.trading_calendar.minute_to_session_label(dt), asset, field, dt, data_frequency, ) def get_adjustments(self, assets, field, dt, perspective_dt): """ Returns a list of adjustments between the dt and perspective_dt for the given field and list of assets Parameters ---------- assets : list of type Asset, or Asset The asset, or assets whose adjustments are desired. field : {'open', 'high', 'low', 'close', 'volume', \ 'price', 'last_traded'} The desired field of the asset. dt : pd.Timestamp The timestamp for the desired value. perspective_dt : pd.Timestamp The timestamp from which the data is being viewed back from. Returns ------- adjustments : list[Adjustment] The adjustments to that field. """ if isinstance(assets, Asset): assets = [assets] adjustment_ratios_per_asset = [] def split_adj_factor(x): return x if field != 'volume' else 1.0 / x for asset in assets: adjustments_for_asset = [] split_adjustments = self._get_adjustment_list( asset, self._splits_dict, "SPLITS" ) for adj_dt, adj in split_adjustments: if dt < adj_dt <= perspective_dt: adjustments_for_asset.append(split_adj_factor(adj)) elif adj_dt > perspective_dt: break if field != 'volume': merger_adjustments = self._get_adjustment_list( asset, self._mergers_dict, "MERGERS" ) for adj_dt, adj in merger_adjustments: if dt < adj_dt <= perspective_dt: adjustments_for_asset.append(adj) elif adj_dt > perspective_dt: break dividend_adjustments = self._get_adjustment_list( asset, self._dividends_dict, "DIVIDENDS", ) for adj_dt, adj in dividend_adjustments: if dt < adj_dt <= perspective_dt: adjustments_for_asset.append(adj) elif adj_dt > perspective_dt: break ratio = reduce(mul, adjustments_for_asset, 1.0) adjustment_ratios_per_asset.append(ratio) return adjustment_ratios_per_asset def get_adjusted_value(self, asset, field, dt, perspective_dt, data_frequency, spot_value=None): """ Returns a scalar value representing the value of the desired asset's field at the given dt with adjustments applied. Parameters ---------- asset : Asset The asset whose data is desired. field : {'open', 'high', 'low', 'close', 'volume', \ 'price', 'last_traded'} The desired field of the asset. dt : pd.Timestamp The timestamp for the desired value. perspective_dt : pd.Timestamp The timestamp from which the data is being viewed back from. data_frequency : str The frequency of the data to query; i.e. whether the data is 'daily' or 'minute' bars Returns ------- value : float, int, or pd.Timestamp The value of the given ``field`` for ``asset`` at ``dt`` with any adjustments known by ``perspective_dt`` applied. The return type is based on the ``field`` requested. If the field is one of 'open', 'high', 'low', 'close', or 'price', the value will be a float. If the ``field`` is 'volume' the value will be a int. If the ``field`` is 'last_traded' the value will be a Timestamp. """ if spot_value is None: # if this a fetcher field, we want to use perspective_dt (not dt) # because we want the new value as of midnight (fetcher only works # on a daily basis, all timestamps are on midnight) if self._is_extra_source(asset, field, self._augmented_sources_map): spot_value = self.get_spot_value(asset, field, perspective_dt, data_frequency) else: spot_value = self.get_spot_value(asset, field, dt, data_frequency) if isinstance(asset, Equity): ratio = self.get_adjustments(asset, field, dt, perspective_dt)[0] spot_value *= ratio return spot_value def _get_minute_spot_value(self, asset, column, dt, ffill=False): reader = self._get_pricing_reader('minute') if not ffill: try: return reader.get_value(asset.sid, dt, column) except NoDataOnDate: if column != 'volume': return np.nan else: return 0 # At this point the pairing of column='close' and ffill=True is # assumed. try: # Optimize the best case scenario of a liquid asset # returning a valid price. result = reader.get_value(asset.sid, dt, column) if not pd.isnull(result): return result except NoDataOnDate: # Handling of no data for the desired date is done by the # forward filling logic. # The last trade may occur on a previous day. pass # If forward filling, we want the last minute with values (up to # and including dt). query_dt = reader.get_last_traded_dt(asset, dt) if pd.isnull(query_dt): # no last traded dt, bail return np.nan result = reader.get_value(asset.sid, query_dt, column) if (dt == query_dt) or (dt.date() == query_dt.date()): return result # the value we found came from a different day, so we have to # adjust the data if there are any adjustments on that day barrier return self.get_adjusted_value( asset, column, query_dt, dt, "minute", spot_value=result ) def _get_daily_spot_value(self, asset, column, dt): reader = self._get_pricing_reader('daily') if column == "last_traded": last_traded_dt = reader.get_last_traded_dt(asset, dt) if isnull(last_traded_dt): return pd.NaT else: return last_traded_dt elif column in OHLCV_FIELDS: # don't forward fill try: return reader.get_value(asset, dt, column) except NoDataOnDate: return np.nan elif column == "price": found_dt = dt while True: try: value = reader.get_value( asset, found_dt, "close" ) if not isnull(value): if dt == found_dt: return value else: # adjust if needed return self.get_adjusted_value( asset, column, found_dt, dt, "minute", spot_value=value ) else: found_dt -= self.trading_calendar.day except NoDataOnDate: return np.nan @remember_last def _get_days_for_window(self, end_date, bar_count): tds = self.trading_calendar.all_sessions end_loc = tds.get_loc(end_date) start_loc = end_loc - bar_count + 1 if start_loc < self._first_trading_day_loc: raise HistoryWindowStartsBeforeData( first_trading_day=self._first_trading_day.date(), bar_count=bar_count, suggested_start_day=tds[ self._first_trading_day_loc + bar_count ].date(), ) return tds[start_loc:end_loc + 1] def _get_history_daily_window(self, assets, end_dt, bar_count, field_to_use, data_frequency): """ Internal method that returns a dataframe containing history bars of daily frequency for the given sids. """ session = self.trading_calendar.minute_to_session_label(end_dt) days_for_window = self._get_days_for_window(session, bar_count) if len(assets) == 0: return pd.DataFrame(None, index=days_for_window, columns=None) data = self._get_history_daily_window_data( assets, days_for_window, end_dt, field_to_use, data_frequency ) return pd.DataFrame( data, index=days_for_window, columns=assets ) def _get_history_daily_window_data(self, assets, days_for_window, end_dt, field_to_use, data_frequency): if data_frequency == 'daily': # two cases where we use daily data for the whole range: # 1) the history window ends at midnight utc. # 2) the last desired day of the window is after the # last trading day, use daily data for the whole range. return self._get_daily_window_data( assets, field_to_use, days_for_window, extra_slot=False ) else: # minute mode, requesting '1d' daily_data = self._get_daily_window_data( assets, field_to_use, days_for_window[0:-1] ) if field_to_use == 'open': minute_value = self._daily_aggregator.opens( assets, end_dt) elif field_to_use == 'high': minute_value = self._daily_aggregator.highs( assets, end_dt) elif field_to_use == 'low': minute_value = self._daily_aggregator.lows( assets, end_dt) elif field_to_use == 'close': minute_value = self._daily_aggregator.closes( assets, end_dt) elif field_to_use == 'volume': minute_value = self._daily_aggregator.volumes( assets, end_dt) elif field_to_use == 'sid': minute_value = [ int(self._get_current_contract(asset, end_dt)) for asset in assets] # append the partial day. daily_data[-1] = minute_value return daily_data def _handle_minute_history_out_of_bounds(self, bar_count): cal = self.trading_calendar first_trading_minute_loc = ( cal.all_minutes.get_loc( self._first_trading_minute ) if self._first_trading_minute is not None else None ) suggested_start_day = cal.minute_to_session_label( cal.all_minutes[ first_trading_minute_loc + bar_count ] + cal.day ) raise HistoryWindowStartsBeforeData( first_trading_day=self._first_trading_day.date(), bar_count=bar_count, suggested_start_day=suggested_start_day.date(), ) def _get_history_minute_window(self, assets, end_dt, bar_count, field_to_use): """ Internal method that returns a dataframe containing history bars of minute frequency for the given sids. """ # get all the minutes for this window try: minutes_for_window = self.trading_calendar.minutes_window( end_dt, -bar_count ) except KeyError: self._handle_minute_history_out_of_bounds(bar_count) if minutes_for_window[0] < self._first_trading_minute: self._handle_minute_history_out_of_bounds(bar_count) asset_minute_data = self._get_minute_window_data( assets, field_to_use, minutes_for_window, ) return pd.DataFrame( asset_minute_data, index=minutes_for_window, columns=assets ) def get_history_window(self, assets, end_dt, bar_count, frequency, field, data_frequency, ffill=True): """ Public API method that returns a dataframe containing the requested history window. Data is fully adjusted. Parameters ---------- assets : list of zipline.data.Asset objects The assets whose data is desired. bar_count: int The number of bars desired. frequency: string "1d" or "1m" field: string The desired field of the asset. data_frequency: string The frequency of the data to query; i.e. whether the data is 'daily' or 'minute' bars. ffill: boolean Forward-fill missing values. Only has effect if field is 'price'. Returns ------- A dataframe containing the requested data. """ if field not in OHLCVP_FIELDS and field != 'sid': raise ValueError("Invalid field: {0}".format(field)) if bar_count < 1: raise ValueError( "bar_count must be >= 1, but got {}".format(bar_count) ) if frequency == "1d": if field == "price": df = self._get_history_daily_window(assets, end_dt, bar_count, "close", data_frequency) else: df = self._get_history_daily_window(assets, end_dt, bar_count, field, data_frequency) elif frequency == "1m": if field == "price": df = self._get_history_minute_window(assets, end_dt, bar_count, "close") else: df = self._get_history_minute_window(assets, end_dt, bar_count, field) else: raise ValueError("Invalid frequency: {0}".format(frequency)) # forward-fill price if ffill and field == "price": if frequency == "1m": ffill_data_frequency = 'minute' elif frequency == "1d": ffill_data_frequency = 'daily' else: raise Exception( "Only 1d and 1m are supported for forward-filling.") assets_with_leading_nan = np.where(isnull(df.iloc[0]))[0] history_start, history_end = df.index[[0, -1]] if ffill_data_frequency == 'daily' and data_frequency == 'minute': # When we're looking for a daily value, but we haven't seen any # volume in today's minute bars yet, we need to use the # previous day's ffilled daily price. Using today's daily price # could yield a value from later today. history_start -= self.trading_calendar.day initial_values = [] for asset in df.columns[assets_with_leading_nan]: last_traded = self.get_last_traded_dt( asset, history_start, ffill_data_frequency, ) if isnull(last_traded): initial_values.append(nan) else: initial_values.append( self.get_adjusted_value( asset, field, dt=last_traded, perspective_dt=history_end, data_frequency=ffill_data_frequency, ) ) # Set leading values for assets that were missing data, then ffill. df.ix[0, assets_with_leading_nan] = np.array( initial_values, dtype=np.float64 ) df.fillna(method='ffill', inplace=True) # forward-filling will incorrectly produce values after the end of # an asset's lifetime, so write NaNs back over the asset's # end_date. normed_index = df.index.normalize() for asset in df.columns: if history_end >= asset.end_date: # if the window extends past the asset's end date, set # all post-end-date values to NaN in that asset's series df.loc[normed_index > asset.end_date, asset] = nan return df def _get_minute_window_data(self, assets, field, minutes_for_window): """ Internal method that gets a window of adjusted minute data for an asset and specified date range. Used to support the history API method for minute bars. Missing bars are filled with NaN. Parameters ---------- assets : iterable[Asset] The assets whose data is desired. field: string The specific field to return. "open", "high", "close_price", etc. minutes_for_window: pd.DateTimeIndex The list of minutes representing the desired window. Each minute is a pd.Timestamp. Returns ------- A numpy array with requested values. """ return self._minute_history_loader.history(assets, minutes_for_window, field, False) def _get_daily_window_data(self, assets, field, days_in_window, extra_slot=True): """ Internal method that gets a window of adjusted daily data for a sid and specified date range. Used to support the history API method for daily bars. Parameters ---------- asset : Asset The asset whose data is desired. start_dt: pandas.Timestamp The start of the desired window of data. bar_count: int The number of days of data to return. field: string The specific field to return. "open", "high", "close_price", etc. extra_slot: boolean Whether to allocate an extra slot in the returned numpy array. This extra slot will hold the data for the last partial day. It's much better to create it here than to create a copy of the array later just to add a slot. Returns ------- A numpy array with requested values. Any missing slots filled with nan. """ bar_count = len(days_in_window) # create an np.array of size bar_count dtype = float64 if field != 'sid' else int64 if extra_slot: return_array = np.zeros((bar_count + 1, len(assets)), dtype=dtype) else: return_array = np.zeros((bar_count, len(assets)), dtype=dtype) if field != "volume": # volumes default to 0, so we don't need to put NaNs in the array return_array[:] = np.NAN if bar_count != 0: data = self._history_loader.history(assets, days_in_window, field, extra_slot) if extra_slot: return_array[:len(return_array) - 1, :] = data else: return_array[:len(data)] = data return return_array def _get_adjustment_list(self, asset, adjustments_dict, table_name): """ Internal method that returns a list of adjustments for the given sid. Parameters ---------- asset : Asset The asset for which to return adjustments. adjustments_dict: dict A dictionary of sid -> list that is used as a cache. table_name: string The table that contains this data in the adjustments db. Returns ------- adjustments: list A list of [multiplier, pd.Timestamp], earliest first """ if self._adjustment_reader is None: return [] sid = int(asset) try: adjustments = adjustments_dict[sid] except KeyError: adjustments = adjustments_dict[sid] = self._adjustment_reader.\ get_adjustments_for_sid(table_name, sid) return adjustments def get_splits(self, assets, dt): """ Returns any splits for the given sids and the given dt. Parameters ---------- assets : container Assets for which we want splits. dt : pd.Timestamp The date for which we are checking for splits. Note: this is expected to be midnight UTC. Returns ------- splits : list[(asset, float)] List of splits, where each split is a (asset, ratio) tuple. """ if self._adjustment_reader is None or not assets: return [] # convert dt to # of seconds since epoch, because that's what we use # in the adjustments db seconds = int(dt.value / 1e9) splits = self._adjustment_reader.conn.execute( "SELECT sid, ratio FROM SPLITS WHERE effective_date = ?", (seconds,)).fetchall() splits = [split for split in splits if split[0] in assets] splits = [(self.asset_finder.retrieve_asset(split[0]), split[1]) for split in splits] return splits def get_stock_dividends(self, sid, trading_days): """ Returns all the stock dividends for a specific sid that occur in the given trading range. Parameters ---------- sid: int The asset whose stock dividends should be returned. trading_days: pd.DatetimeIndex The trading range. Returns ------- list: A list of objects with all relevant attributes populated. All timestamp fields are converted to pd.Timestamps. """ if self._adjustment_reader is None: return [] if len(trading_days) == 0: return [] start_dt = trading_days[0].value / 1e9 end_dt = trading_days[-1].value / 1e9 dividends = self._adjustment_reader.conn.execute( "SELECT * FROM stock_dividend_payouts WHERE sid = ? AND " "ex_date > ? AND pay_date < ?", (int(sid), start_dt, end_dt,)).\ fetchall() dividend_info = [] for dividend_tuple in dividends: dividend_info.append({ "declared_date": dividend_tuple[1], "ex_date": pd.Timestamp(dividend_tuple[2], unit="s"), "pay_date": pd.Timestamp(dividend_tuple[3], unit="s"), "payment_sid": dividend_tuple[4], "ratio": dividend_tuple[5], "record_date": pd.Timestamp(dividend_tuple[6], unit="s"), "sid": dividend_tuple[7] }) return dividend_info def contains(self, asset, field): return field in BASE_FIELDS or \ (field in self._augmented_sources_map and asset in self._augmented_sources_map[field]) def get_fetcher_assets(self, dt): """ Returns a list of assets for the current date, as defined by the fetcher data. Returns ------- list: a list of Asset objects. """ # return a list of assets for the current date, as defined by the # fetcher source if self._extra_source_df is None: return [] day = normalize_date(dt) if day in self._extra_source_df.index: assets = self._extra_source_df.loc[day]['sid'] else: return [] if isinstance(assets, pd.Series): return [x for x in assets if isinstance(x, Asset)] else: return [assets] if isinstance(assets, Asset) else [] # cache size picked somewhat loosely. this code exists purely to # handle deprecated API. @weak_lru_cache(20) def _get_minute_count_for_transform(self, ending_minute, days_count): # This function works in three steps. # Step 1. Count the minutes from ``ending_minute`` to the start of its # session. # Step 2. Count the minutes from the prior ``days_count - 1`` sessions. # Step 3. Return the sum of the results from steps (1) and (2). # Example (NYSE Calendar) # ending_minute = 2016-12-28 9:40 AM US/Eastern # days_count = 3 # Step 1. Calculate that there are 10 minutes in the ending session. # Step 2. Calculate that there are 390 + 210 = 600 minutes in the prior # two sessions. (Prior sessions are 2015-12-23 and 2015-12-24.) # 2015-12-24 is a half day. # Step 3. Return 600 + 10 = 610. cal = self.trading_calendar ending_session = cal.minute_to_session_label( ending_minute, direction="none", # It's an error to pass a non-trading minute. ) # Assume that calendar days are always full of contiguous minutes, # which means we can just take 1 + (number of minutes between the last # minute and the start of the session). We add one so that we include # the ending minute in the total. ending_session_minute_count = timedelta_to_integral_minutes( ending_minute - cal.open_and_close_for_session(ending_session)[0] ) + 1 if days_count == 1: # We just need sessions for the active day. return ending_session_minute_count # XXX: We're subtracting 2 here to account for two offsets: # 1. We only want ``days_count - 1`` sessions, since we've already # accounted for the ending session above. # 2. The API of ``sessions_window`` is to return one more session than # the requested number. I don't think any consumers actually want # that behavior, but it's the tested and documented behavior right # now, so we have to request one less session than we actually want. completed_sessions = cal.sessions_window( cal.previous_session_label(ending_session), 2 - days_count, ) completed_sessions_minute_count = ( self.trading_calendar.minutes_count_for_sessions_in_range( completed_sessions[0], completed_sessions[-1] ) ) return ending_session_minute_count + completed_sessions_minute_count def get_simple_transform(self, asset, transform_name, dt, data_frequency, bars=None): if transform_name == "returns": # returns is always calculated over the last 2 days, regardless # of the simulation's data frequency. hst = self.get_history_window( [asset], dt, 2, "1d", "price", data_frequency, ffill=True, )[asset] return (hst.iloc[-1] - hst.iloc[0]) / hst.iloc[0] if bars is None: raise ValueError("bars cannot be None!") if data_frequency == "minute": freq_str = "1m" calculated_bar_count = int(self._get_minute_count_for_transform( dt, bars )) else: freq_str = "1d" calculated_bar_count = bars price_arr = self.get_history_window( [asset], dt, calculated_bar_count, freq_str, "price", data_frequency, ffill=True, )[asset] if transform_name == "mavg": return nanmean(price_arr) elif transform_name == "stddev": return nanstd(price_arr, ddof=1) elif transform_name == "vwap": volume_arr = self.get_history_window( [asset], dt, calculated_bar_count, freq_str, "volume", data_frequency, ffill=True, )[asset] vol_sum = nansum(volume_arr) try: ret = nansum(price_arr * volume_arr) / vol_sum except ZeroDivisionError: ret = np.nan return ret def get_current_future_chain(self, continuous_future, dt): """ Retrieves the future chain for the contract at the given `dt` according the `continuous_future` specification. Returns ------- future_chain : list[Future] A list of active futures, where the first index is the current contract specified by the continuous future definition, the second is the next upcoming contract and so on. """ rf = self._roll_finders[continuous_future.roll_style] session = self.trading_calendar.minute_to_session_label(dt) contract_center = rf.get_contract_center( continuous_future.root_symbol, session, continuous_future.offset) oc = self.asset_finder.get_ordered_contracts( continuous_future.root_symbol) chain = oc.active_chain(contract_center, session.value) return self.asset_finder.retrieve_all(chain) def _get_current_contract(self, continuous_future, dt): rf = self._roll_finders[continuous_future.roll_style] contract_sid = rf.get_contract_center(continuous_future.root_symbol, dt, continuous_future.offset) if contract_sid is None: return None return self.asset_finder.retrieve_asset(contract_sid) @property def adjustment_reader(self): return self._adjustment_reader
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/data_portal.py
data_portal.py
from collections import OrderedDict from abc import ABCMeta, abstractmethod import numpy as np import pandas as pd from six import with_metaclass from zipline.data._resample import ( _minute_to_session_open, _minute_to_session_high, _minute_to_session_low, _minute_to_session_close, _minute_to_session_volume, ) from zipline.data.bar_reader import NoDataOnDate from zipline.data.minute_bars import MinuteBarReader from zipline.data.session_bars import SessionBarReader from zipline.utils.memoize import lazyval _MINUTE_TO_SESSION_OHCLV_HOW = OrderedDict(( ('open', 'first'), ('high', 'max'), ('low', 'min'), ('close', 'last'), ('volume', 'sum'), )) def minute_frame_to_session_frame(minute_frame, calendar): """ Resample a DataFrame with minute data into the frame expected by a BcolzDailyBarWriter. Parameters ---------- minute_frame : pd.DataFrame A DataFrame with the columns `open`, `high`, `low`, `close`, `volume`, and `dt` (minute dts) calendar : trading_calendars.trading_calendar.TradingCalendar A TradingCalendar on which session labels to resample from minute to session. Return ------ session_frame : pd.DataFrame A DataFrame with the columns `open`, `high`, `low`, `close`, `volume`, and `day` (datetime-like). """ how = OrderedDict((c, _MINUTE_TO_SESSION_OHCLV_HOW[c]) for c in minute_frame.columns) labels = calendar.minute_index_to_session_labels(minute_frame.index) return minute_frame.groupby(labels).agg(how) def minute_to_session(column, close_locs, data, out): """ Resample an array with minute data into an array with session data. This function assumes that the minute data is the exact length of all minutes in the sessions in the output. Parameters ---------- column : str The `open`, `high`, `low`, `close`, or `volume` column. close_locs : array[intp] The locations in `data` which are the market close minutes. data : array[float64|uint32] The minute data to be sampled into session data. The first value should align with the market open of the first session, containing values for all minutes for all sessions. With the last value being the market close of the last session. out : array[float64|uint32] The output array into which to write the sampled sessions. """ if column == 'open': _minute_to_session_open(close_locs, data, out) elif column == 'high': _minute_to_session_high(close_locs, data, out) elif column == 'low': _minute_to_session_low(close_locs, data, out) elif column == 'close': _minute_to_session_close(close_locs, data, out) elif column == 'volume': _minute_to_session_volume(close_locs, data, out) return out class DailyHistoryAggregator(object): """ Converts minute pricing data into a daily summary, to be used for the last slot in a call to history with a frequency of `1d`. This summary is the same as a daily bar rollup of minute data, with the distinction that the summary is truncated to the `dt` requested. i.e. the aggregation slides forward during a the course of simulation day. Provides aggregation for `open`, `high`, `low`, `close`, and `volume`. The aggregation rules for each price type is documented in their respective """ def __init__(self, market_opens, minute_reader, trading_calendar): self._market_opens = market_opens self._minute_reader = minute_reader self._trading_calendar = trading_calendar # The caches are structured as (date, market_open, entries), where # entries is a dict of asset -> (last_visited_dt, value) # # Whenever an aggregation method determines the current value, # the entry for the respective asset should be overwritten with a new # entry for the current dt.value (int) and aggregation value. # # When the requested dt's date is different from date the cache is # flushed, so that the cache entries do not grow unbounded. # # Example cache: # cache = (date(2016, 3, 17), # pd.Timestamp('2016-03-17 13:31', tz='UTC'), # { # 1: (1458221460000000000, np.nan), # 2: (1458221460000000000, 42.0), # }) self._caches = { 'open': None, 'high': None, 'low': None, 'close': None, 'volume': None } # The int value is used for deltas to avoid extra computation from # creating new Timestamps. self._one_min = pd.Timedelta('1 min').value def _prelude(self, dt, field): session = self._trading_calendar.minute_to_session_label(dt) dt_value = dt.value cache = self._caches[field] if cache is None or cache[0] != session: market_open = self._market_opens.loc[session] cache = self._caches[field] = (session, market_open, {}) _, market_open, entries = cache market_open = market_open.tz_localize('UTC') if dt != market_open: prev_dt = dt_value - self._one_min else: prev_dt = None return market_open, prev_dt, dt_value, entries def opens(self, assets, dt): """ The open field's aggregation returns the first value that occurs for the day, if there has been no data on or before the `dt` the open is `nan`. Once the first non-nan open is seen, that value remains constant per asset for the remainder of the day. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'open') opens = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): opens.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'open') entries[asset] = (dt_value, val) opens.append(val) continue else: try: last_visited_dt, first_open = entries[asset] if last_visited_dt == dt_value: opens.append(first_open) continue elif not pd.isnull(first_open): opens.append(first_open) entries[asset] = (dt_value, first_open) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['open'], after_last, dt, [asset], )[0] nonnan = window[~pd.isnull(window)] if len(nonnan): val = nonnan[0] else: val = np.nan entries[asset] = (dt_value, val) opens.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['open'], market_open, dt, [asset], )[0] nonnan = window[~pd.isnull(window)] if len(nonnan): val = nonnan[0] else: val = np.nan entries[asset] = (dt_value, val) opens.append(val) continue return np.array(opens) def highs(self, assets, dt): """ The high field's aggregation returns the largest high seen between the market open and the current dt. If there has been no data on or before the `dt` the high is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'high') highs = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): highs.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'high') entries[asset] = (dt_value, val) highs.append(val) continue else: try: last_visited_dt, last_max = entries[asset] if last_visited_dt == dt_value: highs.append(last_max) continue elif last_visited_dt == prev_dt: curr_val = self._minute_reader.get_value( asset, dt, 'high') if pd.isnull(curr_val): val = last_max elif pd.isnull(last_max): val = curr_val else: val = max(last_max, curr_val) entries[asset] = (dt_value, val) highs.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['high'], after_last, dt, [asset], )[0].T val = np.nanmax(np.append(window, last_max)) entries[asset] = (dt_value, val) highs.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['high'], market_open, dt, [asset], )[0].T val = np.nanmax(window) entries[asset] = (dt_value, val) highs.append(val) continue return np.array(highs) def lows(self, assets, dt): """ The low field's aggregation returns the smallest low seen between the market open and the current dt. If there has been no data on or before the `dt` the low is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'low') lows = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): lows.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'low') entries[asset] = (dt_value, val) lows.append(val) continue else: try: last_visited_dt, last_min = entries[asset] if last_visited_dt == dt_value: lows.append(last_min) continue elif last_visited_dt == prev_dt: curr_val = self._minute_reader.get_value( asset, dt, 'low') val = np.nanmin([last_min, curr_val]) entries[asset] = (dt_value, val) lows.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['low'], after_last, dt, [asset], )[0].T val = np.nanmin(np.append(window, last_min)) entries[asset] = (dt_value, val) lows.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['low'], market_open, dt, [asset], )[0].T val = np.nanmin(window) entries[asset] = (dt_value, val) lows.append(val) continue return np.array(lows) def closes(self, assets, dt): """ The close field's aggregation returns the latest close at the given dt. If the close for the given dt is `nan`, the most recent non-nan `close` is used. If there has been no data on or before the `dt` the close is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'close') closes = [] session_label = self._trading_calendar.minute_to_session_label(dt) def _get_filled_close(asset): """ Returns the most recent non-nan close for the asset in this session. If there has been no data in this session on or before the `dt`, returns `nan` """ window = self._minute_reader.load_raw_arrays( ['close'], market_open, dt, [asset], )[0] try: return window[~np.isnan(window)][-1] except IndexError: return np.NaN for asset in assets: if not asset.is_alive_for_session(session_label): closes.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'close') entries[asset] = (dt_value, val) closes.append(val) continue else: try: last_visited_dt, last_close = entries[asset] if last_visited_dt == dt_value: closes.append(last_close) continue elif last_visited_dt == prev_dt: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = last_close entries[asset] = (dt_value, val) closes.append(val) continue else: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = _get_filled_close(asset) entries[asset] = (dt_value, val) closes.append(val) continue except KeyError: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = _get_filled_close(asset) entries[asset] = (dt_value, val) closes.append(val) continue return np.array(closes) def volumes(self, assets, dt): """ The volume field's aggregation returns the sum of all volumes between the market open and the `dt` If there has been no data on or before the `dt` the volume is 0. Returns ------- np.array with dtype=int64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'volume') volumes = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): volumes.append(0) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'volume') entries[asset] = (dt_value, val) volumes.append(val) continue else: try: last_visited_dt, last_total = entries[asset] if last_visited_dt == dt_value: volumes.append(last_total) continue elif last_visited_dt == prev_dt: val = self._minute_reader.get_value( asset, dt, 'volume') val += last_total entries[asset] = (dt_value, val) volumes.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['volume'], after_last, dt, [asset], )[0] val = np.nansum(window) + last_total entries[asset] = (dt_value, val) volumes.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['volume'], market_open, dt, [asset], )[0] val = np.nansum(window) entries[asset] = (dt_value, val) volumes.append(val) continue return np.array(volumes) class MinuteResampleSessionBarReader(SessionBarReader): def __init__(self, calendar, minute_bar_reader): self._calendar = calendar self._minute_bar_reader = minute_bar_reader def _get_resampled(self, columns, start_session, end_session, assets): range_open = self._calendar.session_open(start_session) range_close = self._calendar.session_close(end_session) minute_data = self._minute_bar_reader.load_raw_arrays( columns, range_open, range_close, assets, ) # Get the index of the close minute for each session in the range. # If the range contains only one session, the only close in the range # is the last minute in the data. Otherwise, we need to get all the # session closes and find their indices in the range of minutes. if start_session == end_session: close_ilocs = np.array([len(minute_data[0]) - 1], dtype=np.int64) else: minutes = self._calendar.minutes_in_range( range_open, range_close, ) session_closes = self._calendar.session_closes_in_range( start_session, end_session, ) close_ilocs = minutes.searchsorted(session_closes.values) results = [] shape = (len(close_ilocs), len(assets)) for col in columns: if col != 'volume': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.uint32) results.append(out) for i in range(len(assets)): for j, column in enumerate(columns): data = minute_data[j][:, i] minute_to_session(column, close_ilocs, data, results[j][:, i]) return results @property def trading_calendar(self): return self._calendar def load_raw_arrays(self, columns, start_dt, end_dt, sids): return self._get_resampled(columns, start_dt, end_dt, sids) def get_value(self, sid, session, colname): # WARNING: This will need caching or other optimization if used in a # tight loop. # This was developed to complete interface, but has not been tuned # for real world use. return self._get_resampled([colname], session, session, [sid])[0][0][0] @lazyval def sessions(self): cal = self._calendar first = self._minute_bar_reader.first_trading_day last = cal.minute_to_session_label( self._minute_bar_reader.last_available_dt) return cal.sessions_in_range(first, last) @lazyval def last_available_dt(self): return self.trading_calendar.minute_to_session_label( self._minute_bar_reader.last_available_dt ) @property def first_trading_day(self): return self._minute_bar_reader.first_trading_day def get_last_traded_dt(self, asset, dt): return self.trading_calendar.minute_to_session_label( self._minute_bar_reader.get_last_traded_dt(asset, dt)) class ReindexBarReader(with_metaclass(ABCMeta)): """ A base class for readers which reindexes results, filling in the additional indices with empty data. Used to align the reading assets which trade on different calendars. Currently only supports a ``trading_calendar`` which is a superset of the ``reader``'s calendar. Parameters ---------- - trading_calendar : zipline.utils.trading_calendar.TradingCalendar The calendar to use when indexing results from the reader. - reader : MinuteBarReader|SessionBarReader The reader which has a calendar that is a subset of the desired ``trading_calendar``. - first_trading_session : pd.Timestamp The first trading session the reader should provide. Must be specified, since the ``reader``'s first session may not exactly align with the desired calendar. Specifically, in the case where the first session on the target calendar is a holiday on the ``reader``'s calendar. - last_trading_session : pd.Timestamp The last trading session the reader should provide. Must be specified, since the ``reader``'s last session may not exactly align with the desired calendar. Specifically, in the case where the last session on the target calendar is a holiday on the ``reader``'s calendar. """ def __init__(self, trading_calendar, reader, first_trading_session, last_trading_session): self._trading_calendar = trading_calendar self._reader = reader self._first_trading_session = first_trading_session self._last_trading_session = last_trading_session @property def last_available_dt(self): return self._reader.last_available_dt def get_last_traded_dt(self, sid, dt): return self._reader.get_last_traded_dt(sid, dt) @property def first_trading_day(self): return self._reader.first_trading_day def get_value(self, sid, dt, field): # Give an empty result if no data is present. try: return self._reader.get_value(sid, dt, field) except NoDataOnDate: if field == 'volume': return 0 else: return np.nan @abstractmethod def _outer_dts(self, start_dt, end_dt): raise NotImplementedError @abstractmethod def _inner_dts(self, start_dt, end_dt): raise NotImplementedError @property def trading_calendar(self): return self._trading_calendar @lazyval def sessions(self): return self.trading_calendar.sessions_in_range( self._first_trading_session, self._last_trading_session ) def load_raw_arrays(self, fields, start_dt, end_dt, sids): outer_dts = self._outer_dts(start_dt, end_dt) inner_dts = self._inner_dts(start_dt, end_dt) indices = outer_dts.searchsorted(inner_dts) shape = len(outer_dts), len(sids) outer_results = [] if len(inner_dts) > 0: inner_results = self._reader.load_raw_arrays( fields, inner_dts[0], inner_dts[-1], sids) else: inner_results = None for i, field in enumerate(fields): if field != 'volume': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.uint32) if inner_results is not None: out[indices] = inner_results[i] outer_results.append(out) return outer_results class ReindexMinuteBarReader(ReindexBarReader, MinuteBarReader): """ See: ``ReindexBarReader`` """ def _outer_dts(self, start_dt, end_dt): return self._trading_calendar.minutes_in_range(start_dt, end_dt) def _inner_dts(self, start_dt, end_dt): return self._reader.calendar.minutes_in_range(start_dt, end_dt) class ReindexSessionBarReader(ReindexBarReader, SessionBarReader): """ See: ``ReindexBarReader`` """ def _outer_dts(self, start_dt, end_dt): return self.trading_calendar.sessions_in_range(start_dt, end_dt) def _inner_dts(self, start_dt, end_dt): return self._reader.trading_calendar.sessions_in_range( start_dt, end_dt)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/resample.py
resample.py
import os import logbook import pandas as pd from six.moves.urllib_error import HTTPError from trading_calendars import get_calendar from .benchmarks import get_benchmark_returns from . import treasuries, treasuries_can from ..utils.paths import ( cache_root, data_root, ) logger = logbook.Logger('Loader') # Mapping from index symbol to appropriate bond data INDEX_MAPPING = { 'SPY': (treasuries, 'treasury_curves.csv', 'www.federalreserve.gov'), '^GSPTSE': (treasuries_can, 'treasury_curves_can.csv', 'bankofcanada.ca'), '^FTSE': # use US treasuries until UK bonds implemented (treasuries, 'treasury_curves.csv', 'www.federalreserve.gov'), } ONE_HOUR = pd.Timedelta(hours=1) def last_modified_time(path): """ Get the last modified time of path as a Timestamp. """ return pd.Timestamp(os.path.getmtime(path), unit='s', tz='UTC') def get_data_filepath(name, environ=None): """ Returns a handle to data file. Creates containing directory, if needed. """ dr = data_root(environ) if not os.path.exists(dr): os.makedirs(dr) return os.path.join(dr, name) def get_cache_filepath(name): cr = cache_root() if not os.path.exists(cr): os.makedirs(cr) return os.path.join(cr, name) def get_benchmark_filename(symbol): return "%s_benchmark.csv" % symbol def has_data_for_dates(series_or_df, first_date, last_date): """ Does `series_or_df` have data on or before first_date and on or after last_date? """ dts = series_or_df.index if not isinstance(dts, pd.DatetimeIndex): raise TypeError("Expected a DatetimeIndex, but got %s." % type(dts)) first, last = dts[[0, -1]] return (first <= first_date) and (last >= last_date) def load_market_data(trading_day=None, trading_days=None, bm_symbol='SPY', environ=None): """ Load benchmark returns and treasury yield curves for the given calendar and benchmark symbol. Benchmarks are downloaded as a Series from IEX Trading. Treasury curves are US Treasury Bond rates and are downloaded from 'www.federalreserve.gov' by default. For Canadian exchanges, a loader for Canadian bonds from the Bank of Canada is also available. Results downloaded from the internet are cached in ~/.zipline/data. Subsequent loads will attempt to read from the cached files before falling back to redownload. Parameters ---------- trading_day : pandas.CustomBusinessDay, optional A trading_day used to determine the latest day for which we expect to have data. Defaults to an NYSE trading day. trading_days : pd.DatetimeIndex, optional A calendar of trading days. Also used for determining what cached dates we should expect to have cached. Defaults to the NYSE calendar. bm_symbol : str, optional Symbol for the benchmark index to load. Defaults to 'SPY', the ticker for the S&P 500, provided by IEX Trading. Returns ------- (benchmark_returns, treasury_curves) : (pd.Series, pd.DataFrame) Notes ----- Both return values are DatetimeIndexed with values dated to midnight in UTC of each stored date. The columns of `treasury_curves` are: '1month', '3month', '6month', '1year','2year','3year','5year','7year','10year','20year','30year' """ if trading_day is None: trading_day = get_calendar('NYSE').day if trading_days is None: trading_days = get_calendar('NYSE').all_sessions first_date = trading_days[0] now = pd.Timestamp.utcnow() # we will fill missing benchmark data through latest trading date last_date = trading_days[trading_days.get_loc(now, method='ffill')] br = ensure_benchmark_data( bm_symbol, first_date, last_date, now, # We need the trading_day to figure out the close prior to the first # date so that we can compute returns for the first date. trading_day, environ, ) tc = ensure_treasury_data( bm_symbol, first_date, last_date, now, environ, ) # combine dt indices and reindex using ffill then bfill all_dt = br.index.union(tc.index) br = br.reindex(all_dt, method='ffill').fillna(method='bfill') tc = tc.reindex(all_dt, method='ffill').fillna(method='bfill') benchmark_returns = br[br.index.slice_indexer(first_date, last_date)] treasury_curves = tc[tc.index.slice_indexer(first_date, last_date)] return benchmark_returns, treasury_curves def ensure_benchmark_data(symbol, first_date, last_date, now, trading_day, environ=None): """ Ensure we have benchmark data for `symbol` from `first_date` to `last_date` Parameters ---------- symbol : str The symbol for the benchmark to load. first_date : pd.Timestamp First required date for the cache. last_date : pd.Timestamp Last required date for the cache. now : pd.Timestamp The current time. This is used to prevent repeated attempts to re-download data that isn't available due to scheduling quirks or other failures. trading_day : pd.CustomBusinessDay A trading day delta. Used to find the day before first_date so we can get the close of the day prior to first_date. We attempt to download data unless we already have data stored at the data cache for `symbol` whose first entry is before or on `first_date` and whose last entry is on or after `last_date`. """ filename = get_benchmark_filename(symbol) data = _load_cached_data(filename, first_date, last_date, now, 'benchmark', environ) if data is not None: return data # If no cached data was found or it was missing any dates then download the # necessary data. logger.info( ('Downloading benchmark data for {symbol!r} ' 'from {first_date} to {last_date}'), symbol=symbol, first_date=first_date - trading_day, last_date=last_date ) try: data = get_benchmark_returns(symbol, first_date, last_date) data.to_csv(get_data_filepath(filename, environ)) except (OSError, IOError, HTTPError): logger.exception('Failed to cache the new benchmark returns') raise if not has_data_for_dates(data, first_date, last_date): logger.warn( ("Still don't have expected benchmark data for {symbol!r} " "from {first_date} to {last_date} after redownload!"), symbol=symbol, first_date=first_date - trading_day, last_date=last_date ) return data def ensure_treasury_data(symbol, first_date, last_date, now, environ=None): """ Ensure we have treasury data from treasury module associated with `symbol`. Parameters ---------- symbol : str Benchmark symbol for which we're loading associated treasury curves. first_date : pd.Timestamp First date required to be in the cache. last_date : pd.Timestamp Last date required to be in the cache. now : pd.Timestamp The current time. This is used to prevent repeated attempts to re-download data that isn't available due to scheduling quirks or other failures. We attempt to download data unless we already have data stored in the cache for `module_name` whose first entry is before or on `first_date` and whose last entry is on or after `last_date`. If we perform a download and the cache criteria are not satisfied, we wait at least one hour before attempting a redownload. This is determined by comparing the current time to the result of os.path.getmtime on the cache path. """ loader_module, filename, source = INDEX_MAPPING.get( symbol, INDEX_MAPPING['SPY'], ) first_date = max(first_date, loader_module.earliest_possible_date()) data = _load_cached_data(filename, first_date, last_date, now, 'treasury', environ) if data is not None: return data # If no cached data was found or it was missing any dates then download the # necessary data. logger.info( ('Downloading treasury data for {symbol!r} ' 'from {first_date} to {last_date}'), symbol=symbol, first_date=first_date, last_date=last_date ) try: data = loader_module.get_treasury_data(first_date, last_date) data.to_csv(get_data_filepath(filename, environ)) except (OSError, IOError, HTTPError): logger.exception('failed to cache treasury data') if not has_data_for_dates(data, first_date, last_date): logger.warn( ("Still don't have expected treasury data for {symbol!r} " "from {first_date} to {last_date} after redownload!"), symbol=symbol, first_date=first_date, last_date=last_date ) return data def _load_cached_data(filename, first_date, last_date, now, resource_name, environ=None): if resource_name == 'benchmark': def from_csv(path): return pd.read_csv( path, parse_dates=[0], index_col=0, header=None, # Pass squeeze=True so that we get a series instead of a frame. squeeze=True, ).tz_localize('UTC') else: def from_csv(path): return pd.read_csv( path, parse_dates=[0], index_col=0, ).tz_localize('UTC') # Path for the cache. path = get_data_filepath(filename, environ) # If the path does not exist, it means the first download has not happened # yet, so don't try to read from 'path'. if os.path.exists(path): try: data = from_csv(path) if has_data_for_dates(data, first_date, last_date): return data # Don't re-download if we've successfully downloaded and written a # file in the last hour. last_download_time = last_modified_time(path) if (now - last_download_time) <= ONE_HOUR: logger.warn( "Refusing to download new {resource} data because a " "download succeeded at {time}.", resource=resource_name, time=last_download_time, ) return data except (OSError, IOError, ValueError) as e: # These can all be raised by various versions of pandas on various # classes of malformed input. Treat them all as cache misses. logger.info( "Loading data for {path} failed with error [{error}].", path=path, error=e, ) logger.info( "Cache at {path} does not have data from {start} to {end}.\n", start=first_date, end=last_date, path=path, ) return None def load_prices_from_csv(filepath, identifier_col, tz='UTC'): data = pd.read_csv(filepath, index_col=identifier_col) data.index = pd.DatetimeIndex(data.index, tz=tz) data.sort_index(inplace=True) return data def load_prices_from_csv_folder(folderpath, identifier_col, tz='UTC'): data = None for file in os.listdir(folderpath): if '.csv' not in file: continue raw = load_prices_from_csv(os.path.join(folderpath, file), identifier_col, tz) if data is None: data = raw else: data = pd.concat([data, raw], axis=1) return data
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/loader.py
loader.py
import numpy as np import pandas as pd from zipline.data.session_bars import SessionBarReader class ContinuousFutureSessionBarReader(SessionBarReader): def __init__(self, bar_reader, roll_finders): self._bar_reader = bar_reader self._roll_finders = roll_finders def load_raw_arrays(self, columns, start_date, end_date, assets): """ Parameters ---------- fields : list of str 'sid' start_dt: Timestamp Beginning of the window range. end_dt: Timestamp End of the window range. sids : list of int The asset identifiers in the window. Returns ------- list of np.ndarray A list with an entry per field of ndarrays with shape (minutes in range, sids) with a dtype of float64, containing the values for the respective field over start and end dt range. """ rolls_by_asset = {} for asset in assets: rf = self._roll_finders[asset.roll_style] rolls_by_asset[asset] = rf.get_rolls( asset.root_symbol, start_date, end_date, asset.offset ) num_sessions = len( self.trading_calendar.sessions_in_range(start_date, end_date) ) shape = num_sessions, len(assets) results = [] tc = self._bar_reader.trading_calendar sessions = tc.sessions_in_range(start_date, end_date) # Get partitions partitions_by_asset = {} for asset in assets: partitions = [] partitions_by_asset[asset] = partitions rolls = rolls_by_asset[asset] start = start_date for roll in rolls: sid, roll_date = roll start_loc = sessions.get_loc(start) if roll_date is not None: end = roll_date - sessions.freq end_loc = sessions.get_loc(end) else: end = end_date end_loc = len(sessions) - 1 partitions.append((sid, start, end, start_loc, end_loc)) if roll_date is not None: start = sessions[end_loc + 1] for column in columns: if column != 'volume' and column != 'sid': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.int64) for i, asset in enumerate(assets): partitions = partitions_by_asset[asset] for sid, start, end, start_loc, end_loc in partitions: if column != 'sid': result = self._bar_reader.load_raw_arrays( [column], start, end, [sid])[0][:, 0] else: result = int(sid) out[start_loc:end_loc + 1, i] = result results.append(out) return results @property def last_available_dt(self): """ Returns ------- dt : pd.Timestamp The last session for which the reader can provide data. """ return self._bar_reader.last_available_dt @property def trading_calendar(self): """ Returns the zipline.utils.calendar.trading_calendar used to read the data. Can be None (if the writer didn't specify it). """ return self._bar_reader.trading_calendar @property def first_trading_day(self): """ Returns ------- dt : pd.Timestamp The first trading day (session) for which the reader can provide data. """ return self._bar_reader.first_trading_day def get_value(self, continuous_future, dt, field): """ Retrieve the value at the given coordinates. Parameters ---------- sid : int The asset identifier. dt : pd.Timestamp The timestamp for the desired data point. field : string The OHLVC name for the desired data point. Returns ------- value : float|int The value at the given coordinates, ``float`` for OHLC, ``int`` for 'volume'. Raises ------ NoDataOnDate If the given dt is not a valid market minute (in minute mode) or session (in daily mode) according to this reader's tradingcalendar. """ rf = self._roll_finders[continuous_future.roll_style] sid = (rf.get_contract_center(continuous_future.root_symbol, dt, continuous_future.offset)) return self._bar_reader.get_value(sid, dt, field) def get_last_traded_dt(self, asset, dt): """ Get the latest minute on or before ``dt`` in which ``asset`` traded. If there are no trades on or before ``dt``, returns ``pd.NaT``. Parameters ---------- asset : zipline.asset.Asset The asset for which to get the last traded minute. dt : pd.Timestamp The minute at which to start searching for the last traded minute. Returns ------- last_traded : pd.Timestamp The dt of the last trade for the given asset, using the input dt as a vantage point. """ rf = self._roll_finders[asset.roll_style] sid = (rf.get_contract_center(asset.root_symbol, dt, asset.offset)) if sid is None: return pd.NaT contract = rf.asset_finder.retrieve_asset(sid) return self._bar_reader.get_last_traded_dt(contract, dt) @property def sessions(self): """ Returns ------- sessions : DatetimeIndex All session labels (unionining the range for all assets) which the reader can provide. """ return self._bar_reader.sessions class ContinuousFutureMinuteBarReader(SessionBarReader): def __init__(self, bar_reader, roll_finders): self._bar_reader = bar_reader self._roll_finders = roll_finders def load_raw_arrays(self, columns, start_date, end_date, assets): """ Parameters ---------- fields : list of str 'open', 'high', 'low', 'close', or 'volume' start_dt: Timestamp Beginning of the window range. end_dt: Timestamp End of the window range. sids : list of int The asset identifiers in the window. Returns ------- list of np.ndarray A list with an entry per field of ndarrays with shape (minutes in range, sids) with a dtype of float64, containing the values for the respective field over start and end dt range. """ rolls_by_asset = {} tc = self.trading_calendar start_session = tc.minute_to_session_label(start_date) end_session = tc.minute_to_session_label(end_date) for asset in assets: rf = self._roll_finders[asset.roll_style] rolls_by_asset[asset] = rf.get_rolls( asset.root_symbol, start_session, end_session, asset.offset) sessions = tc.sessions_in_range(start_date, end_date) minutes = tc.minutes_in_range(start_date, end_date) num_minutes = len(minutes) shape = num_minutes, len(assets) results = [] # Get partitions partitions_by_asset = {} for asset in assets: partitions = [] partitions_by_asset[asset] = partitions rolls = rolls_by_asset[asset] start = start_date for roll in rolls: sid, roll_date = roll start_loc = minutes.searchsorted(start) if roll_date is not None: _, end = tc.open_and_close_for_session( roll_date - sessions.freq) end_loc = minutes.searchsorted(end) else: end = end_date end_loc = len(minutes) - 1 partitions.append((sid, start, end, start_loc, end_loc)) if roll[-1] is not None: start, _ = tc.open_and_close_for_session( tc.minute_to_session_label(minutes[end_loc + 1])) for column in columns: if column != 'volume': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.uint32) for i, asset in enumerate(assets): partitions = partitions_by_asset[asset] for sid, start, end, start_loc, end_loc in partitions: if column != 'sid': result = self._bar_reader.load_raw_arrays( [column], start, end, [sid])[0][:, 0] else: result = int(sid) out[start_loc:end_loc + 1, i] = result results.append(out) return results @property def last_available_dt(self): """ Returns ------- dt : pd.Timestamp The last session for which the reader can provide data. """ return self._bar_reader.last_available_dt @property def trading_calendar(self): """ Returns the zipline.utils.calendar.trading_calendar used to read the data. Can be None (if the writer didn't specify it). """ return self._bar_reader.trading_calendar @property def first_trading_day(self): """ Returns ------- dt : pd.Timestamp The first trading day (session) for which the reader can provide data. """ return self._bar_reader.first_trading_day def get_value(self, continuous_future, dt, field): """ Retrieve the value at the given coordinates. Parameters ---------- sid : int The asset identifier. dt : pd.Timestamp The timestamp for the desired data point. field : string The OHLVC name for the desired data point. Returns ------- value : float|int The value at the given coordinates, ``float`` for OHLC, ``int`` for 'volume'. Raises ------ NoDataOnDate If the given dt is not a valid market minute (in minute mode) or session (in daily mode) according to this reader's tradingcalendar. """ rf = self._roll_finders[continuous_future.roll_style] sid = (rf.get_contract_center(continuous_future.root_symbol, dt, continuous_future.offset)) return self._bar_reader.get_value(sid, dt, field) def get_last_traded_dt(self, asset, dt): """ Get the latest minute on or before ``dt`` in which ``asset`` traded. If there are no trades on or before ``dt``, returns ``pd.NaT``. Parameters ---------- asset : zipline.asset.Asset The asset for which to get the last traded minute. dt : pd.Timestamp The minute at which to start searching for the last traded minute. Returns ------- last_traded : pd.Timestamp The dt of the last trade for the given asset, using the input dt as a vantage point. """ rf = self._roll_finders[asset.roll_style] sid = (rf.get_contract_center(asset.root_symbol, dt, asset.offset)) if sid is None: return pd.NaT contract = rf.asset_finder.retrieve_asset(sid) return self._bar_reader.get_last_traded_dt(contract, dt) @property def sessions(self): return self._bar_reader.sessions
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/continuous_future_reader.py
continuous_future_reader.py
from errno import ENOENT from functools import partial from os import remove import sqlite3 import warnings from bcolz import ( carray, ctable, ) from collections import namedtuple import logbook import numpy as np from numpy import ( array, int64, float64, full, iinfo, integer, issubdtype, nan, uint32, ) from pandas import ( DataFrame, DatetimeIndex, isnull, NaT, read_csv, read_sql, to_datetime, Timestamp, ) from six import ( iteritems, string_types, viewkeys, ) from toolz import compose from trading_calendars import get_calendar from zipline.data.session_bars import SessionBarReader from zipline.data.bar_reader import ( NoDataAfterDate, NoDataBeforeDate, NoDataOnDate, ) from zipline.utils.functional import apply from zipline.utils.input_validation import ( expect_element, preprocess, ) from zipline.utils.numpy_utils import iNaT from zipline.utils.sqlite_utils import group_into_chunks, coerce_string_to_conn from zipline.utils.memoize import lazyval from zipline.utils.cli import maybe_show_progress from ._equities import _compute_row_slices, _read_bcolz_data from ._adjustments import load_adjustments_from_sqlite logger = logbook.Logger('UsEquityPricing') OHLC = frozenset(['open', 'high', 'low', 'close']) US_EQUITY_PRICING_BCOLZ_COLUMNS = ( 'open', 'high', 'low', 'close', 'volume', 'day', 'id' ) SQLITE_ADJUSTMENT_COLUMN_DTYPES = { 'effective_date': integer, 'ratio': float, 'sid': integer, } SQLITE_ADJUSTMENT_TABLENAMES = frozenset(['splits', 'dividends', 'mergers']) SQLITE_DIVIDEND_PAYOUT_COLUMN_DTYPES = { 'sid': integer, 'ex_date': integer, 'declared_date': integer, 'record_date': integer, 'pay_date': integer, 'amount': float, } SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMN_DTYPES = { 'sid': integer, 'ex_date': integer, 'declared_date': integer, 'record_date': integer, 'pay_date': integer, 'payment_sid': integer, 'ratio': float, } UINT32_MAX = iinfo(uint32).max def check_uint32_safe(value, colname): if value >= UINT32_MAX: raise ValueError( "Value %s from column '%s' is too large" % (value, colname) ) @expect_element(invalid_data_behavior={'warn', 'raise', 'ignore'}) def winsorise_uint32(df, invalid_data_behavior, column, *columns): """Drops any record where a value would not fit into a uint32. Parameters ---------- df : pd.DataFrame The dataframe to winsorise. invalid_data_behavior : {'warn', 'raise', 'ignore'} What to do when data is outside the bounds of a uint32. *columns : iterable[str] The names of the columns to check. Returns ------- truncated : pd.DataFrame ``df`` with values that do not fit into a uint32 zeroed out. """ columns = list((column,) + columns) mask = df[columns] > UINT32_MAX if invalid_data_behavior != 'ignore': mask |= df[columns].isnull() else: # we are not going to generate a warning or error for this so just use # nan_to_num df[columns] = np.nan_to_num(df[columns]) mv = mask.values if mv.any(): if invalid_data_behavior == 'raise': raise ValueError( '%d values out of bounds for uint32: %r' % ( mv.sum(), df[mask.any(axis=1)], ), ) if invalid_data_behavior == 'warn': warnings.warn( 'Ignoring %d values because they are out of bounds for' ' uint32: %r' % ( mv.sum(), df[mask.any(axis=1)], ), stacklevel=3, # one extra frame for `expect_element` ) df[mask] = 0 return df class BcolzDailyBarWriter(object): """ Class capable of writing daily OHLCV data to disk in a format that can be read efficiently by BcolzDailyOHLCVReader. Parameters ---------- filename : str The location at which we should write our output. calendar : zipline.utils.calendar.trading_calendar Calendar to use to compute asset calendar offsets. start_session: pd.Timestamp Midnight UTC session label. end_session: pd.Timestamp Midnight UTC session label. See Also -------- zipline.data.us_equity_pricing.BcolzDailyBarReader """ _csv_dtypes = { 'open': float64, 'high': float64, 'low': float64, 'close': float64, 'volume': float64, } def __init__(self, filename, calendar, start_session, end_session): self._filename = filename if start_session != end_session: if not calendar.is_session(start_session): raise ValueError( "Start session %s is invalid!" % start_session ) if not calendar.is_session(end_session): raise ValueError( "End session %s is invalid!" % end_session ) self._start_session = start_session self._end_session = end_session self._calendar = calendar @property def progress_bar_message(self): return "Merging daily equity files:" def progress_bar_item_show_func(self, value): return value if value is None else str(value[0]) def write(self, data, assets=None, show_progress=False, invalid_data_behavior='warn'): """ Parameters ---------- data : iterable[tuple[int, pandas.DataFrame or bcolz.ctable]] The data chunks to write. Each chunk should be a tuple of sid and the data for that asset. assets : set[int], optional The assets that should be in ``data``. If this is provided we will check ``data`` against the assets and provide better progress information. show_progress : bool, optional Whether or not to show a progress bar while writing. invalid_data_behavior : {'warn', 'raise', 'ignore'}, optional What to do when data is encountered that is outside the range of a uint32. Returns ------- table : bcolz.ctable The newly-written table. """ ctx = maybe_show_progress( ( (sid, self.to_ctable(df, invalid_data_behavior)) for sid, df in data ), show_progress=show_progress, item_show_func=self.progress_bar_item_show_func, label=self.progress_bar_message, length=len(assets) if assets is not None else None, ) with ctx as it: return self._write_internal(it, assets) def write_csvs(self, asset_map, show_progress=False, invalid_data_behavior='warn'): """Read CSVs as DataFrames from our asset map. Parameters ---------- asset_map : dict[int -> str] A mapping from asset id to file path with the CSV data for that asset show_progress : bool Whether or not to show a progress bar while writing. invalid_data_behavior : {'warn', 'raise', 'ignore'} What to do when data is encountered that is outside the range of a uint32. """ read = partial( read_csv, parse_dates=['day'], index_col='day', dtype=self._csv_dtypes, ) return self.write( ((asset, read(path)) for asset, path in iteritems(asset_map)), assets=viewkeys(asset_map), show_progress=show_progress, invalid_data_behavior=invalid_data_behavior, ) def _write_internal(self, iterator, assets): """ Internal implementation of write. `iterator` should be an iterator yielding pairs of (asset, ctable). """ total_rows = 0 first_row = {} last_row = {} calendar_offset = {} # Maps column name -> output carray. columns = { k: carray(array([], dtype=uint32)) for k in US_EQUITY_PRICING_BCOLZ_COLUMNS } earliest_date = None sessions = self._calendar.sessions_in_range( self._start_session, self._end_session ) if assets is not None: @apply def iterator(iterator=iterator, assets=set(assets)): for asset_id, table in iterator: if asset_id not in assets: raise ValueError('unknown asset id %r' % asset_id) yield asset_id, table for asset_id, table in iterator: nrows = len(table) for column_name in columns: if column_name == 'id': # We know what the content of this column is, so don't # bother reading it. columns['id'].append( full((nrows,), asset_id, dtype='uint32'), ) continue columns[column_name].append(table[column_name]) if earliest_date is None: earliest_date = table["day"][0] else: earliest_date = min(earliest_date, table["day"][0]) # Bcolz doesn't support ints as keys in `attrs`, so convert # assets to strings for use as attr keys. asset_key = str(asset_id) # Calculate the index into the array of the first and last row # for this asset. This allows us to efficiently load single # assets when querying the data back out of the table. first_row[asset_key] = total_rows last_row[asset_key] = total_rows + nrows - 1 total_rows += nrows table_day_to_session = compose( self._calendar.minute_to_session_label, partial(Timestamp, unit='s', tz='UTC'), ) asset_first_day = table_day_to_session(table['day'][0]) asset_last_day = table_day_to_session(table['day'][-1]) asset_sessions = sessions[ sessions.slice_indexer(asset_first_day, asset_last_day) ] assert len(table) == len(asset_sessions), ( 'Got {} rows for daily bars table with first day={}, last ' 'day={}, expected {} rows.\n' 'Missing sessions: {}\n' 'Extra sessions: {}'.format( len(table), asset_first_day.date(), asset_last_day.date(), len(asset_sessions), asset_sessions.difference( to_datetime( np.array(table['day']), unit='s', utc=True, ) ).tolist(), to_datetime( np.array(table['day']), unit='s', utc=True, ).difference(asset_sessions).tolist(), ) ) # Calculate the number of trading days between the first date # in the stored data and the first date of **this** asset. This # offset used for output alignment by the reader. calendar_offset[asset_key] = sessions.get_loc(asset_first_day) # This writes the table to disk. full_table = ctable( columns=[ columns[colname] for colname in US_EQUITY_PRICING_BCOLZ_COLUMNS ], names=US_EQUITY_PRICING_BCOLZ_COLUMNS, rootdir=self._filename, mode='w', ) full_table.attrs['first_trading_day'] = ( earliest_date if earliest_date is not None else iNaT ) full_table.attrs['first_row'] = first_row full_table.attrs['last_row'] = last_row full_table.attrs['calendar_offset'] = calendar_offset full_table.attrs['calendar_name'] = self._calendar.name full_table.attrs['start_session_ns'] = self._start_session.value full_table.attrs['end_session_ns'] = self._end_session.value full_table.flush() return full_table @expect_element(invalid_data_behavior={'warn', 'raise', 'ignore'}) def to_ctable(self, raw_data, invalid_data_behavior): if isinstance(raw_data, ctable): # we already have a ctable so do nothing return raw_data winsorise_uint32(raw_data, invalid_data_behavior, 'volume', *OHLC) processed = (raw_data[list(OHLC)] * 1000).astype('uint32') dates = raw_data.index.values.astype('datetime64[s]') check_uint32_safe(dates.max().view(np.int64), 'day') processed['day'] = dates.astype('uint32') processed['volume'] = raw_data.volume.astype('uint32') return ctable.fromdataframe(processed) class BcolzDailyBarReader(SessionBarReader): """ Reader for raw pricing data written by BcolzDailyOHLCVWriter. Parameters ---------- table : bcolz.ctable The ctable contaning the pricing data, with attrs corresponding to the Attributes list below. read_all_threshold : int The number of equities at which; below, the data is read by reading a slice from the carray per asset. above, the data is read by pulling all of the data for all assets into memory and then indexing into that array for each day and asset pair. Used to tune performance of reads when using a small or large number of equities. Attributes ---------- The table with which this loader interacts contains the following attributes: first_row : dict Map from asset_id -> index of first row in the dataset with that id. last_row : dict Map from asset_id -> index of last row in the dataset with that id. calendar_offset : dict Map from asset_id -> calendar index of first row. start_session_ns: int Epoch ns of the first session used in this dataset. end_session_ns: int Epoch ns of the last session used in this dataset. calendar_name: str String identifier of trading calendar used (ie, "NYSE"). We use first_row and last_row together to quickly find ranges of rows to load when reading an asset's data into memory. We use calendar_offset and calendar to orient loaded blocks within a range of queried dates. Notes ------ A Bcolz CTable is comprised of Columns and Attributes. The table with which this loader interacts contains the following columns: ['open', 'high', 'low', 'close', 'volume', 'day', 'id']. The data in these columns is interpreted as follows: - Price columns ('open', 'high', 'low', 'close') are interpreted as 1000 * as-traded dollar value. - Volume is interpreted as as-traded volume. - Day is interpreted as seconds since midnight UTC, Jan 1, 1970. - Id is the asset id of the row. The data in each column is grouped by asset and then sorted by day within each asset block. The table is built to represent a long time range of data, e.g. ten years of equity data, so the lengths of each asset block is not equal to each other. The blocks are clipped to the known start and end date of each asset to cut down on the number of empty values that would need to be included to make a regular/cubic dataset. When read across the open, high, low, close, and volume with the same index should represent the same asset and day. See Also -------- zipline.data.us_equity_pricing.BcolzDailyBarWriter """ def __init__(self, table, read_all_threshold=3000): self._maybe_table_rootdir = table # Cache of fully read np.array for the carrays in the daily bar table. # raw_array does not use the same cache, but it could. # Need to test keeping the entire array in memory for the course of a # process first. self._spot_cols = {} self.PRICE_ADJUSTMENT_FACTOR = 0.001 self._read_all_threshold = read_all_threshold @lazyval def _table(self): maybe_table_rootdir = self._maybe_table_rootdir if isinstance(maybe_table_rootdir, ctable): return maybe_table_rootdir return ctable(rootdir=maybe_table_rootdir, mode='r') @lazyval def sessions(self): if 'calendar' in self._table.attrs.attrs: # backwards compatibility with old formats, will remove return DatetimeIndex(self._table.attrs['calendar'], tz='UTC') else: cal = get_calendar(self._table.attrs['calendar_name']) start_session_ns = self._table.attrs['start_session_ns'] start_session = Timestamp(start_session_ns, tz='UTC') end_session_ns = self._table.attrs['end_session_ns'] end_session = Timestamp(end_session_ns, tz='UTC') sessions = cal.sessions_in_range(start_session, end_session) return sessions @lazyval def _first_rows(self): return { int(asset_id): start_index for asset_id, start_index in iteritems( self._table.attrs['first_row'], ) } @lazyval def _last_rows(self): return { int(asset_id): end_index for asset_id, end_index in iteritems( self._table.attrs['last_row'], ) } @lazyval def _calendar_offsets(self): return { int(id_): offset for id_, offset in iteritems( self._table.attrs['calendar_offset'], ) } @lazyval def first_trading_day(self): try: return Timestamp( self._table.attrs['first_trading_day'], unit='s', tz='UTC' ) except KeyError: return None @lazyval def trading_calendar(self): if 'calendar_name' in self._table.attrs.attrs: return get_calendar(self._table.attrs['calendar_name']) else: return None @property def last_available_dt(self): return self.sessions[-1] def _compute_slices(self, start_idx, end_idx, assets): """ Compute the raw row indices to load for each asset on a query for the given dates after applying a shift. Parameters ---------- start_idx : int Index of first date for which we want data. end_idx : int Index of last date for which we want data. assets : pandas.Int64Index Assets for which we want to compute row indices Returns ------- A 3-tuple of (first_rows, last_rows, offsets): first_rows : np.array[intp] Array with length == len(assets) containing the index of the first row to load for each asset in `assets`. last_rows : np.array[intp] Array with length == len(assets) containing the index of the last row to load for each asset in `assets`. offset : np.array[intp] Array with length == (len(asset) containing the index in a buffer of length `dates` corresponding to the first row of each asset. The value of offset[i] will be 0 if asset[i] existed at the start of a query. Otherwise, offset[i] will be equal to the number of entries in `dates` for which the asset did not yet exist. """ # The core implementation of the logic here is implemented in Cython # for efficiency. return _compute_row_slices( self._first_rows, self._last_rows, self._calendar_offsets, start_idx, end_idx, assets, ) def load_raw_arrays(self, columns, start_date, end_date, assets): # Assumes that the given dates are actually in calendar. start_idx = self.sessions.get_loc(start_date) end_idx = self.sessions.get_loc(end_date) first_rows, last_rows, offsets = self._compute_slices( start_idx, end_idx, assets, ) read_all = len(assets) > self._read_all_threshold return _read_bcolz_data( self._table, (end_idx - start_idx + 1, len(assets)), list(columns), first_rows, last_rows, offsets, read_all, ) def _spot_col(self, colname): """ Get the colname from daily_bar_table and read all of it into memory, caching the result. Parameters ---------- colname : string A name of a OHLCV carray in the daily_bar_table Returns ------- array (uint32) Full read array of the carray in the daily_bar_table with the given colname. """ try: col = self._spot_cols[colname] except KeyError: col = self._spot_cols[colname] = self._table[colname] return col def get_last_traded_dt(self, asset, day): volumes = self._spot_col('volume') search_day = day while True: try: ix = self.sid_day_index(asset, search_day) except NoDataBeforeDate: return NaT except NoDataAfterDate: prev_day_ix = self.sessions.get_loc(search_day) - 1 if prev_day_ix > -1: search_day = self.sessions[prev_day_ix] continue except NoDataOnDate: return NaT if volumes[ix] != 0: return search_day prev_day_ix = self.sessions.get_loc(search_day) - 1 if prev_day_ix > -1: search_day = self.sessions[prev_day_ix] else: return NaT def sid_day_index(self, sid, day): """ Parameters ---------- sid : int The asset identifier. day : datetime64-like Midnight of the day for which data is requested. Returns ------- int Index into the data tape for the given sid and day. Raises a NoDataOnDate exception if the given day and sid is before or after the date range of the equity. """ try: day_loc = self.sessions.get_loc(day) except: raise NoDataOnDate("day={0} is outside of calendar={1}".format( day, self.sessions)) offset = day_loc - self._calendar_offsets[sid] if offset < 0: raise NoDataBeforeDate( "No data on or before day={0} for sid={1}".format( day, sid)) ix = self._first_rows[sid] + offset if ix > self._last_rows[sid]: raise NoDataAfterDate( "No data on or after day={0} for sid={1}".format( day, sid)) return ix def get_value(self, sid, dt, field): """ Parameters ---------- sid : int The asset identifier. day : datetime64-like Midnight of the day for which data is requested. colname : string The price field. e.g. ('open', 'high', 'low', 'close', 'volume') Returns ------- float The spot price for colname of the given sid on the given day. Raises a NoDataOnDate exception if the given day and sid is before or after the date range of the equity. Returns -1 if the day is within the date range, but the price is 0. """ ix = self.sid_day_index(sid, dt) price = self._spot_col(field)[ix] if field != 'volume': if price == 0: return nan else: return price * 0.001 else: return price class SQLiteAdjustmentWriter(object): """ Writer for data to be read by SQLiteAdjustmentReader Parameters ---------- conn_or_path : str or sqlite3.Connection A handle to the target sqlite database. equity_daily_bar_reader : BcolzDailyBarReader Daily bar reader to use for dividend writes. overwrite : bool, optional, default=False If True and conn_or_path is a string, remove any existing files at the given path before connecting. See Also -------- zipline.data.us_equity_pricing.SQLiteAdjustmentReader """ def __init__(self, conn_or_path, equity_daily_bar_reader, calendar, overwrite=False): if isinstance(conn_or_path, sqlite3.Connection): self.conn = conn_or_path elif isinstance(conn_or_path, string_types): if overwrite: try: remove(conn_or_path) except OSError as e: if e.errno != ENOENT: raise self.conn = sqlite3.connect(conn_or_path) self.uri = conn_or_path else: raise TypeError("Unknown connection type %s" % type(conn_or_path)) self._equity_daily_bar_reader = equity_daily_bar_reader self._calendar = calendar def _write(self, tablename, expected_dtypes, frame): if frame is None or frame.empty: # keeping the dtypes correct for empty frames is not easy frame = DataFrame( np.array([], dtype=list(expected_dtypes.items())), ) else: if frozenset(frame.columns) != frozenset(expected_dtypes): raise ValueError( "Unexpected frame columns:\n" "Expected Columns: %s\n" "Received Columns: %s" % ( set(expected_dtypes), frame.columns.tolist(), ) ) actual_dtypes = frame.dtypes for colname, expected in iteritems(expected_dtypes): actual = actual_dtypes[colname] if not issubdtype(actual, expected): raise TypeError( "Expected data of type {expected} for column" " '{colname}', but got '{actual}'.".format( expected=expected, colname=colname, actual=actual, ), ) frame.to_sql( tablename, self.conn, if_exists='append', chunksize=50000, ) def write_frame(self, tablename, frame): if tablename not in SQLITE_ADJUSTMENT_TABLENAMES: raise ValueError( "Adjustment table %s not in %s" % ( tablename, SQLITE_ADJUSTMENT_TABLENAMES, ) ) if not (frame is None or frame.empty): frame = frame.copy() frame['effective_date'] = frame['effective_date'].values.astype( 'datetime64[s]', ).astype('int64') return self._write( tablename, SQLITE_ADJUSTMENT_COLUMN_DTYPES, frame, ) def write_dividend_payouts(self, frame): """ Write dividend payout data to SQLite table `dividend_payouts`. """ return self._write( 'dividend_payouts', SQLITE_DIVIDEND_PAYOUT_COLUMN_DTYPES, frame, ) def write_stock_dividend_payouts(self, frame): return self._write( 'stock_dividend_payouts', SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMN_DTYPES, frame, ) def calc_dividend_ratios(self, dividends): """ Calculate the ratios to apply to equities when looking back at pricing history so that the price is smoothed over the ex_date, when the market adjusts to the change in equity value due to upcoming dividend. Returns ------- DataFrame A frame in the same format as splits and mergers, with keys - sid, the id of the equity - effective_date, the date in seconds on which to apply the ratio. - ratio, the ratio to apply to backwards looking pricing data. """ if dividends is None or dividends.empty: return DataFrame(np.array( [], dtype=[ ('sid', uint32), ('effective_date', uint32), ('ratio', float64), ], )) ex_dates = dividends.ex_date.values sids = dividends.sid.values amounts = dividends.amount.values ratios = full(len(amounts), nan) equity_daily_bar_reader = self._equity_daily_bar_reader effective_dates = full(len(amounts), -1, dtype=int64) calendar = self._calendar # Calculate locs against a tz-naive cal, as the ex_dates are tz- # naive. # # TODO: A better approach here would be to localize ex_date to # the tz of the calendar, but currently get_indexer does not # preserve tz of the target when method='bfill', which throws # off the comparison. tz_naive_calendar = calendar.tz_localize(None) day_locs = tz_naive_calendar.get_indexer(ex_dates, method='bfill') for i, amount in enumerate(amounts): sid = sids[i] ex_date = ex_dates[i] day_loc = day_locs[i] prev_close_date = calendar[day_loc - 1] try: prev_close = equity_daily_bar_reader.get_value( sid, prev_close_date, 'close') if not isnull(prev_close): ratio = 1.0 - amount / prev_close ratios[i] = ratio # only assign effective_date when data is found effective_dates[i] = ex_date except NoDataOnDate: logger.warn("Couldn't compute ratio for dividend %s" % { 'sid': sid, 'ex_date': ex_date, 'amount': amount, }) continue # Create a mask to filter out indices in the effective_date, sid, and # ratio vectors for which a ratio was not calculable. effective_mask = effective_dates != -1 effective_dates = effective_dates[effective_mask] effective_dates = effective_dates.astype('datetime64[ns]').\ astype('datetime64[s]').astype(uint32) sids = sids[effective_mask] ratios = ratios[effective_mask] return DataFrame({ 'sid': sids, 'effective_date': effective_dates, 'ratio': ratios, }) def _write_dividends(self, dividends): if dividends is None: dividend_payouts = None else: dividend_payouts = dividends.copy() dividend_payouts['ex_date'] = dividend_payouts['ex_date'].values.\ astype('datetime64[s]').astype(integer) dividend_payouts['record_date'] = \ dividend_payouts['record_date'].values.\ astype('datetime64[s]').astype(integer) dividend_payouts['declared_date'] = \ dividend_payouts['declared_date'].values.\ astype('datetime64[s]').astype(integer) dividend_payouts['pay_date'] = \ dividend_payouts['pay_date'].values.astype('datetime64[s]').\ astype(integer) self.write_dividend_payouts(dividend_payouts) def _write_stock_dividends(self, stock_dividends): if stock_dividends is None: stock_dividend_payouts = None else: stock_dividend_payouts = stock_dividends.copy() stock_dividend_payouts['ex_date'] = \ stock_dividend_payouts['ex_date'].values.\ astype('datetime64[s]').astype(integer) stock_dividend_payouts['record_date'] = \ stock_dividend_payouts['record_date'].values.\ astype('datetime64[s]').astype(integer) stock_dividend_payouts['declared_date'] = \ stock_dividend_payouts['declared_date'].\ values.astype('datetime64[s]').astype(integer) stock_dividend_payouts['pay_date'] = \ stock_dividend_payouts['pay_date'].\ values.astype('datetime64[s]').astype(integer) self.write_stock_dividend_payouts(stock_dividend_payouts) def write_dividend_data(self, dividends, stock_dividends=None): """ Write both dividend payouts and the derived price adjustment ratios. """ # First write the dividend payouts. self._write_dividends(dividends) self._write_stock_dividends(stock_dividends) # Second from the dividend payouts, calculate ratios. dividend_ratios = self.calc_dividend_ratios(dividends) self.write_frame('dividends', dividend_ratios) def __enter__(self): return self def __exit__(self, *exc_info): self.close() def write(self, splits=None, mergers=None, dividends=None, stock_dividends=None): """ Writes data to a SQLite file to be read by SQLiteAdjustmentReader. Parameters ---------- splits : pandas.DataFrame, optional Dataframe containing split data. The format of this dataframe is: effective_date : int The date, represented as seconds since Unix epoch, on which the adjustment should be applied. ratio : float A value to apply to all data earlier than the effective date. For open, high, low, and close those values are multiplied by the ratio. Volume is divided by this value. sid : int The asset id associated with this adjustment. mergers : pandas.DataFrame, optional DataFrame containing merger data. The format of this dataframe is: effective_date : int The date, represented as seconds since Unix epoch, on which the adjustment should be applied. ratio : float A value to apply to all data earlier than the effective date. For open, high, low, and close those values are multiplied by the ratio. Volume is unaffected. sid : int The asset id associated with this adjustment. dividends : pandas.DataFrame, optional DataFrame containing dividend data. The format of the dataframe is: sid : int The asset id associated with this adjustment. ex_date : datetime64 The date on which an equity must be held to be eligible to receive payment. declared_date : datetime64 The date on which the dividend is announced to the public. pay_date : datetime64 The date on which the dividend is distributed. record_date : datetime64 The date on which the stock ownership is checked to determine distribution of dividends. amount : float The cash amount paid for each share. Dividend ratios are calculated as: ``1.0 - (dividend_value / "close on day prior to ex_date")`` stock_dividends : pandas.DataFrame, optional DataFrame containing stock dividend data. The format of the dataframe is: sid : int The asset id associated with this adjustment. ex_date : datetime64 The date on which an equity must be held to be eligible to receive payment. declared_date : datetime64 The date on which the dividend is announced to the public. pay_date : datetime64 The date on which the dividend is distributed. record_date : datetime64 The date on which the stock ownership is checked to determine distribution of dividends. payment_sid : int The asset id of the shares that should be paid instead of cash. ratio : float The ratio of currently held shares in the held sid that should be paid with new shares of the payment_sid. See Also -------- zipline.data.us_equity_pricing.SQLiteAdjustmentReader """ self.write_frame('splits', splits) self.write_frame('mergers', mergers) self.write_dividend_data(dividends, stock_dividends) self.conn.execute( "CREATE INDEX splits_sids " "ON splits(sid)" ) self.conn.execute( "CREATE INDEX splits_effective_date " "ON splits(effective_date)" ) self.conn.execute( "CREATE INDEX mergers_sids " "ON mergers(sid)" ) self.conn.execute( "CREATE INDEX mergers_effective_date " "ON mergers(effective_date)" ) self.conn.execute( "CREATE INDEX dividends_sid " "ON dividends(sid)" ) self.conn.execute( "CREATE INDEX dividends_effective_date " "ON dividends(effective_date)" ) self.conn.execute( "CREATE INDEX dividend_payouts_sid " "ON dividend_payouts(sid)" ) self.conn.execute( "CREATE INDEX dividends_payouts_ex_date " "ON dividend_payouts(ex_date)" ) self.conn.execute( "CREATE INDEX stock_dividend_payouts_sid " "ON stock_dividend_payouts(sid)" ) self.conn.execute( "CREATE INDEX stock_dividends_payouts_ex_date " "ON stock_dividend_payouts(ex_date)" ) def close(self): self.conn.close() UNPAID_QUERY_TEMPLATE = """ SELECT sid, amount, pay_date from dividend_payouts WHERE ex_date=? AND sid IN ({0}) """ Dividend = namedtuple('Dividend', ['asset', 'amount', 'pay_date']) UNPAID_STOCK_DIVIDEND_QUERY_TEMPLATE = """ SELECT sid, payment_sid, ratio, pay_date from stock_dividend_payouts WHERE ex_date=? AND sid IN ({0}) """ StockDividend = namedtuple( 'StockDividend', ['asset', 'payment_asset', 'ratio', 'pay_date']) class SQLiteAdjustmentReader(object): """ Loads adjustments based on corporate actions from a SQLite database. Expects data written in the format output by `SQLiteAdjustmentWriter`. Parameters ---------- conn : str or sqlite3.Connection Connection from which to load data. See Also -------- :class:`zipline.data.us_equity_pricing.SQLiteAdjustmentWriter` """ @preprocess(conn=coerce_string_to_conn(require_exists=True)) def __init__(self, conn): self.conn = conn # Given the tables in the adjustments.db file, dict which knows which # col names contain dates that have been coerced into ints. self._datetime_int_cols = { 'dividend_payouts': ('declared_date', 'ex_date', 'pay_date', 'record_date'), 'dividends': ('effective_date',), 'mergers': ('effective_date',), 'splits': ('effective_date',), 'stock_dividend_payouts': ('declared_date', 'ex_date', 'pay_date', 'record_date') } def load_adjustments(self, columns, dates, assets): return load_adjustments_from_sqlite( self.conn, list(columns), dates, assets, ) def get_adjustments_for_sid(self, table_name, sid): t = (sid,) c = self.conn.cursor() adjustments_for_sid = c.execute( "SELECT effective_date, ratio FROM %s WHERE sid = ?" % table_name, t).fetchall() c.close() return [[Timestamp(adjustment[0], unit='s', tz='UTC'), adjustment[1]] for adjustment in adjustments_for_sid] def get_dividends_with_ex_date(self, assets, date, asset_finder): seconds = date.value / int(1e9) c = self.conn.cursor() divs = [] for chunk in group_into_chunks(assets): query = UNPAID_QUERY_TEMPLATE.format( ",".join(['?' for _ in chunk])) t = (seconds,) + tuple(map(lambda x: int(x), chunk)) c.execute(query, t) rows = c.fetchall() for row in rows: div = Dividend( asset_finder.retrieve_asset(row[0]), row[1], Timestamp(row[2], unit='s', tz='UTC')) divs.append(div) c.close() return divs def get_stock_dividends_with_ex_date(self, assets, date, asset_finder): seconds = date.value / int(1e9) c = self.conn.cursor() stock_divs = [] for chunk in group_into_chunks(assets): query = UNPAID_STOCK_DIVIDEND_QUERY_TEMPLATE.format( ",".join(['?' for _ in chunk])) t = (seconds,) + tuple(map(lambda x: int(x), chunk)) c.execute(query, t) rows = c.fetchall() for row in rows: stock_div = StockDividend( asset_finder.retrieve_asset(row[0]), # asset asset_finder.retrieve_asset(row[1]), # payment_asset row[2], Timestamp(row[3], unit='s', tz='UTC')) stock_divs.append(stock_div) c.close() return stock_divs def unpack_db_to_component_dfs(self, convert_dates=False): """Returns the set of known tables in the adjustments file in DataFrame form. Parameters ---------- convert_dates : bool, optional By default, dates are returned in seconds since EPOCH. If convert_dates is True, all ints in date columns will be converted to datetimes. Returns ------- dfs : dict{str->DataFrame} Dictionary which maps table name to the corresponding DataFrame version of the table, where all date columns have been coerced back from int to datetime. """ def _get_df_from_table(table_name, date_cols): # Dates are stored in second resolution as ints in adj.db tables. # Need to specifically convert them as UTC, not local time. kwargs = ( {'parse_dates': {col: {'unit': 's', 'utc': True} for col in date_cols} } if convert_dates else {} ) return read_sql( 'select * from "{}"'.format(table_name), self.conn, index_col='index', **kwargs ).rename_axis(None) return { t_name: _get_df_from_table( t_name, date_cols ) for t_name, date_cols in self._datetime_int_cols.items() }
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/us_equity_pricing.py
us_equity_pricing.py
import pandas as pd from zipline.data.data_portal import DataPortal from logbook import Logger log = Logger('DataPortalLive') class DataPortalLive(DataPortal): def __init__(self, broker, *args, **kwargs): self.broker = broker super(DataPortalLive, self).__init__(*args, **kwargs) def get_last_traded_dt(self, asset, dt, data_frequency): return self.broker.get_last_traded_dt(asset) def get_spot_value(self, assets, field, dt, data_frequency): return self.broker.get_spot_value(assets, field, dt, data_frequency) def get_history_window(self, assets, end_dt, bar_count, frequency, field, data_frequency, ffill=True): # This method is responsible for merging the ingested historical data # with the real-time collected data through the Broker. # DataPortal.get_history_window() is called with ffill=False to mark # the missing fields with NaNs. After merge on the historical and # real-time data the missing values (NaNs) are filled based on their # next available values in the requested time window. # # Warning: setting ffill=True in DataPortal.get_history_window() call # results a wrong behavior: The last available value reported by # get_spot_value() will be used to fill the missing data - which is # always representing the current spot price presented by Broker. historical_bars = super(DataPortalLive, self).get_history_window( assets, end_dt, bar_count, frequency, field, data_frequency, ffill=False) realtime_bars = self.broker.get_realtime_bars( assets, frequency) # Broker.get_realtime_history() returns the asset as level 0 column, # open, high, low, close, volume returned as level 1 columns. # To filter for field the levels needs to be swapped realtime_bars = realtime_bars.swaplevel(0, 1, axis=1) ohlcv_field = 'close' if field == 'price' else field # TODO: end_dt is ignored when historical & realtime bars are merged. # Should not cause issues as end_dt is set to current time in live # trading, but would be more proper if merge would make use of it. combined_bars = historical_bars.combine_first( realtime_bars[ohlcv_field]) if ffill and field == 'price': # Simple forward fill is not enough here as the last ingested # value might be outside of the requested time window. That case # the time series starts with NaN and forward filling won't help. # To provide values for such cases we backward fill. # Backward fill as a second operation will have no effect if the # forward-fill was successful. combined_bars.fillna(method='ffill', inplace=True) combined_bars.fillna(method='bfill', inplace=True) return combined_bars[-bar_count:] def get_scalar_asset_spot_value(self, asset, field, dt, data_frequency): """ Public API method that returns a scalar value representing the value of the desired asset's field at either the given dt. Parameters ---------- assets : Asset The asset or assets whose data is desired. This cannot be an arbitrary AssetConvertible. field : {'open', 'high', 'low', 'close', 'volume', 'price', 'last_traded'} The desired field of the asset. dt : pd.Timestamp The timestamp for the desired value. data_frequency : str The frequency of the data to query; i.e. whether the data is 'daily' or 'minute' bars Returns ------- value : float, int, or pd.Timestamp The spot value of ``field`` for ``asset`` The return type is based on the ``field`` requested. If the field is one of 'open', 'high', 'low', 'close', or 'price', the value will be a float. If the ``field`` is 'volume' the value will be a int. If the ``field`` is 'last_traded' the value will be a Timestamp. """ if data_frequency == 'minute': data_frequency = '1m' elif data_frequency == 'daily': data_frequency = '1d' prices = self.broker.get_realtime_bars([asset], data_frequency) if field == 'last_traded': return pd.Timestamp(prices[asset][-1:].index.get_values()[0]) elif field == 'volume': return prices[asset][field][-1] * 100 elif field == 'price': return prices[asset]['close'][-1] else: return prices[asset][field][-1]
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/data_portal_live.py
data_portal_live.py
from abc import ABCMeta, abstractmethod, abstractproperty from six import with_metaclass class NoDataOnDate(Exception): """ Raised when a spot price cannot be found for the sid and date. """ pass class NoDataBeforeDate(NoDataOnDate): pass class NoDataAfterDate(NoDataOnDate): pass class NoDataForSid(Exception): """ Raised when the requested sid is missing from the pricing data. """ pass class BarReader(with_metaclass(ABCMeta, object)): @abstractproperty def data_frequency(self): pass @abstractmethod def load_raw_arrays(self, columns, start_date, end_date, assets): """ Parameters ---------- fields : list of str 'open', 'high', 'low', 'close', or 'volume' start_dt: Timestamp Beginning of the window range. end_dt: Timestamp End of the window range. sids : list of int The asset identifiers in the window. Returns ------- list of np.ndarray A list with an entry per field of ndarrays with shape (minutes in range, sids) with a dtype of float64, containing the values for the respective field over start and end dt range. """ pass @abstractproperty def last_available_dt(self): """ Returns ------- dt : pd.Timestamp The last session for which the reader can provide data. """ pass @abstractproperty def trading_calendar(self): """ Returns the zipline.utils.calendar.trading_calendar used to read the data. Can be None (if the writer didn't specify it). """ pass @abstractproperty def first_trading_day(self): """ Returns ------- dt : pd.Timestamp The first trading day (session) for which the reader can provide data. """ pass @abstractmethod def get_value(self, sid, dt, field): """ Retrieve the value at the given coordinates. Parameters ---------- sid : int The asset identifier. dt : pd.Timestamp The timestamp for the desired data point. field : string The OHLVC name for the desired data point. Returns ------- value : float|int The value at the given coordinates, ``float`` for OHLC, ``int`` for 'volume'. Raises ------ NoDataOnDate If the given dt is not a valid market minute (in minute mode) or session (in daily mode) according to this reader's tradingcalendar. """ pass @abstractmethod def get_last_traded_dt(self, asset, dt): """ Get the latest minute on or before ``dt`` in which ``asset`` traded. If there are no trades on or before ``dt``, returns ``pd.NaT``. Parameters ---------- asset : zipline.asset.Asset The asset for which to get the last traded minute. dt : pd.Timestamp The minute at which to start searching for the last traded minute. Returns ------- last_traded : pd.Timestamp The dt of the last trade for the given asset, using the input dt as a vantage point. """ pass
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bar_reader.py
bar_reader.py
import pandas as pd import six from toolz import curry from toolz.curried.operator import add as prepend COLUMN_NAMES = { "V39063": '1month', "V39065": '3month', "V39066": '6month', "V39067": '1year', "V39051": '2year', "V39052": '3year', "V39053": '5year', "V39054": '7year', "V39055": '10year', # Bank of Canada refers to this as 'Long' Rate, approximately 30 years. "V39056": '30year', } BILL_IDS = ['V39063', 'V39065', 'V39066', 'V39067'] BOND_IDS = ['V39051', 'V39052', 'V39053', 'V39054', 'V39055', 'V39056'] @curry def _format_url(instrument_type, instrument_ids, start_date, end_date, earliest_allowed_date): """ Format a URL for loading data from Bank of Canada. """ return ( "http://www.bankofcanada.ca/stats/results/csv" "?lP=lookup_{instrument_type}_yields.php" "&sR={restrict}" "&se={instrument_ids}" "&dF={start}" "&dT={end}".format( instrument_type=instrument_type, instrument_ids='-'.join(map(prepend("L_"), instrument_ids)), restrict=earliest_allowed_date.strftime("%Y-%m-%d"), start=start_date.strftime("%Y-%m-%d"), end=end_date.strftime("%Y-%m-%d"), ) ) format_bill_url = _format_url('tbill', BILL_IDS) format_bond_url = _format_url('bond', BOND_IDS) def load_frame(url, skiprows): """ Load a DataFrame of data from a Bank of Canada site. """ return pd.read_csv( url, skiprows=skiprows, skipinitialspace=True, na_values=["Bank holiday", "Not available"], parse_dates=["Date"], index_col="Date", ).dropna(how='all') \ .tz_localize('UTC') \ .rename(columns=COLUMN_NAMES) def check_known_inconsistencies(bill_data, bond_data): """ There are a couple quirks in the data provided by Bank of Canada. Check that no new quirks have been introduced in the latest download. """ inconsistent_dates = bill_data.index.sym_diff(bond_data.index) known_inconsistencies = [ # bill_data has an entry for 2010-02-15, which bond_data doesn't. # bond_data has an entry for 2006-09-04, which bill_data doesn't. # Both of these dates are bank holidays (Flag Day and Labor Day, # respectively). pd.Timestamp('2006-09-04', tz='UTC'), pd.Timestamp('2010-02-15', tz='UTC'), # 2013-07-25 comes back as "Not available" from the bills endpoint. # This date doesn't seem to be a bank holiday, but the previous # calendar implementation dropped this entry, so we drop it as well. # If someone cares deeply about the integrity of the Canadian trading # calendar, they may want to consider forward-filling here rather than # dropping the row. pd.Timestamp('2013-07-25', tz='UTC'), ] unexpected_inconsistences = inconsistent_dates.drop(known_inconsistencies) if len(unexpected_inconsistences): in_bills = bill_data.index.difference(bond_data.index).difference( known_inconsistencies ) in_bonds = bond_data.index.difference(bill_data.index).difference( known_inconsistencies ) raise ValueError( "Inconsistent dates for Canadian treasury bills vs bonds. \n" "Dates with bills but not bonds: {in_bills}.\n" "Dates with bonds but not bills: {in_bonds}.".format( in_bills=in_bills, in_bonds=in_bonds, ) ) def earliest_possible_date(): """ The earliest date for which we can load data from this module. """ today = pd.Timestamp('now', tz='UTC').normalize() # Bank of Canada only has the last 10 years of data at any given time. return today.replace(year=today.year - 10) def get_treasury_data(start_date, end_date): bill_data = load_frame( format_bill_url(start_date, end_date, start_date), # We skip fewer rows here because we query for fewer bill fields, # which makes the header smaller. skiprows=18, ) bond_data = load_frame( format_bond_url(start_date, end_date, start_date), skiprows=22, ) check_known_inconsistencies(bill_data, bond_data) # dropna('any') removes the rows for which we only had data for one of # bills/bonds. out = pd.concat([bond_data, bill_data], axis=1).dropna(how='any') assert set(out.columns) == set(six.itervalues(COLUMN_NAMES)) # Multiply by 0.01 to convert from percentages to expected output format. return out * 0.01
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/treasuries_can.py
treasuries_can.py
import datetime import quandl import os from zipline.data.bundles.core import load import pandas as pd import numpy as np from zipline.utils.paths import zipline_root from logbook import Logger, StderrHandler from zipline.pipeline.factors import CustomFactor from os import environ import sys import pickle KERNEL_BUNDLE = 'sharadar-prices' # fundamentals are downloaded for symbols from this bundle DATA_FILE = zipline_root() + '/data/SF1.npy' # the file name to be used when storing this in ~/.zipline/data FUNDAMENTAL_FIELDS_FILE = zipline_root() + '/data/SF1.pkl' log = Logger('quandl_fundamentals.py') def set_api_key(): """read QUANDL_API_KEY env variable, and set it.""" try: api_key = environ["QUANDL_API_KEY"] except KeyError: print("could not read the env variable: QUANDL_API_KEY") sys.exit() quandl.ApiConfig.api_key = api_key class SparseDataFactor(CustomFactor): """Abstract Base Class to be used for computing sparse data. The data is packed and persisted into a NumPy binary data file in a previous step. This class must be subclassed with class variable 'outputs' set. The fields in 'outputs' should match those persisted.""" inputs = [] window_length = 1 def __init__(self, *args, **kwargs): self.time_index = None self.curr_date = None # date for which time_index is accurate self.last_date_seen = 0 # earliest date possible self.data = None self.data_path = "please_specify_.npy_file" def bs(self, arr): """Binary Search""" if len(arr) == 1: if self.curr_date < arr[0]: return 0 else: return 1 mid = int(len(arr) / 2) if self.curr_date < arr[mid]: return self.bs(arr[:mid]) else: return mid + self.bs(arr[mid:]) def bs_sparse_time(self, sid): """For each security find the best range in the sparse data.""" dates_for_sid = self.data.date[sid] if np.isnan(dates_for_sid[0]): return 0 # do a binary search of the dates array finding the index # where self.curr_date will lie. non_nan_dates = dates_for_sid[~np.isnan(dates_for_sid)] return self.bs(non_nan_dates) - 1 def cold_start(self, today, assets): if self.data is None: # need the change allow_pickle=True due to allow_pickle # default value change after numpy upgrade self.data = np.load(self.data_path, allow_pickle=True) self.M = self.data.date.shape[1] # for each sid, do binary search of date array to find current index # the results can be shared across all factors that inherit from SparseDataFactor # this sets an array of ints: time_index self.time_index = np.full(self.N, -1, np.dtype('int64')) self.curr_date = today.value for asset in assets: # asset is numpy.int64 self.time_index[asset] = self.bs_sparse_time(asset) def update_time_index(self, today, assets): """Ratchet update. for each asset check if today >= dates[self.time_index] if so then increment self.time_index[asset.sid] += 1""" ind_p1 = self.time_index.copy() np.add.at(ind_p1, ind_p1 != (self.M - 1), 1) sids_to_increment = today.value >= self.data.date[np.arange(self.N), ind_p1] sids_not_max = self.time_index != (self.M - 1) # create mask of non-maxed self.time_index[sids_to_increment & sids_not_max] += 1 self.curr_date = today.value def compute(self, today, assets, out, *arrays, **params): # for each asset in assets determine index from date (today) if self.time_index is None or today < self.last_date_seen: self.cold_start(today, assets) else: self.update_time_index(today, assets) self.last_date_seen = today ti_used_today = self.time_index[assets] for field in self.__class__.outputs: out[field][:] = self.data[field][assets, ti_used_today] class Fundamentals(SparseDataFactor): params = ('algo_bundle',) try: with open(FUNDAMENTAL_FIELDS_FILE, 'rb') as f: outputs = pickle.load(f) except: outputs = [] def __init__(self, *args, **kwargs): super(Fundamentals, self).__init__(*args, **kwargs) self.data_path = DATA_FILE bundle_data = load(KERNEL_BUNDLE) self.kernel_sids = bundle_data.asset_finder.sids self.kernel_assets = bundle_data.asset_finder.retrieve_all(self.kernel_sids) self.N = len(self.kernel_assets) self.algo_bundle = kwargs['algo_bundle'] if 'algo_bundle' in kwargs else KERNEL_BUNDLE self.alternative_bundle = self.algo_bundle != KERNEL_BUNDLE self.kernel_sid_symbol_map = {} self.algo_to_kernel_sids = {} if self.alternative_bundle: for asset in self.kernel_assets: self.kernel_sid_symbol_map[asset.symbol] = asset.sid bundle_data = load(self.algo_bundle) self.algo_sids = bundle_data.asset_finder.sids self.algo_assets = bundle_data.asset_finder.retrieve_all(self.algo_sids) for asset in self.algo_assets: if asset.symbol in self.kernel_sid_symbol_map: self.algo_to_kernel_sids[asset.sid] = self.kernel_sid_symbol_map[asset.symbol] def algo_to_kernel_assets(self, assets): kernel_assets = [self.algo_to_kernel_sids[asset] for asset in assets if asset in self.algo_to_kernel_sids] return pd.Int64Index(kernel_assets) def compute(self, today, assets, out, *arrays, **params): if self.alternative_bundle: algo_to_kernel_assets = self.algo_to_kernel_assets (assets) if self.time_index is None or today < self.last_date_seen: self.cold_start(today, algo_to_kernel_assets) else: self.update_time_index(today, algo_to_kernel_assets) self.last_date_seen = today ti_used_today = self.time_index[algo_to_kernel_assets] for field in self.__class__.outputs: out[field][algo_to_kernel_assets] = self.data[field][algo_to_kernel_assets, ti_used_today] else: super(Fundamentals, self).compute(today, assets, out, *arrays, **params) def get_tickers_from_bundle(bundle_name): """Gets a list of tickers from a given bundle""" bundle_data = load(bundle_name, os.environ, None) # we can request equities or futures separately changing the filters parameter all_sids = bundle_data.asset_finder.sids # retreive all assets in the bundle all_assets = bundle_data.asset_finder.retrieve_all(all_sids) return [a.symbol for a in all_assets] def download_fundamendals_data (bundle, start_date = '2007-01-01', end_date = datetime.datetime.today().strftime('%Y-%m-%d'), tickers = None, dataset = 'SHARADAR/SF1', fields = None, dimensions = None, drop_dimensions = ('MRT', 'MRQ', 'MRY'), data_file = DATA_FILE, ): tickers_universe = get_tickers_from_bundle(bundle) N = len (tickers_universe) tickers = tickers if tickers else tickers_universe log.info (f"Downloading data for {len(tickers) if tickers else 'ALL'} tickers") header_columns = ['ticker', 'dimension', 'datekey', 'reportperiod', 'lastupdated', 'calendardate'] df = quandl.get_table(dataset, calendardate={'gte': start_date, 'lte': end_date}, ticker=tickers, qopts={'columns': header_columns + fields} if fields else None, paginate=True) df = df.rename(columns={'datekey': 'Date'}).set_index('Date') dfs = [None] * N fields = [f.upper() for f in df.columns if f not in header_columns] dimensions = dimensions if dimensions \ else [d for d in df['dimension'].unique() if not d in drop_dimensions] max_len = -1 for i, ticker in enumerate (tickers): log.info (f"Pre-processing {ticker} ({i+1} / {len (tickers)})...") ticker_df = df[df.ticker==ticker] ticker_series = [] for field in fields: for dim in dimensions: field_dim_series = ticker_df[ticker_df.dimension==dim][field.lower()] field_dim_series.name = field + '_' + dim ticker_series.append (field_dim_series) ticker_processed_df = pd.concat(ticker_series, axis=1) max_len = max(max_len, ticker_processed_df.shape[0]) dfs[tickers_universe.index(ticker)] = ticker_processed_df log.info ("Packing data...") dtypes = [('date', '<f8')] fundamental_fields = [f'{f}_{d}' for f in fields for d in dimensions] with open(FUNDAMENTAL_FIELDS_FILE, 'wb') as f: pickle.dump(fundamental_fields, f) buff = np.full((len(fundamental_fields)+1, N, max_len), np.nan) for field in fundamental_fields: dtypes.append((field, '<f8')) data = np.recarray(shape=(N, max_len), buf=buff, dtype=dtypes) for i, df in enumerate(dfs): if df is None: continue else: df = pd.DataFrame(df) ind_len = df.index.shape[0] data.date[i, :ind_len] = df.index for field in fundamental_fields: data[field][i, :ind_len] = df[field] log.info (f"Saving to {data_file}...") data.dump(data_file) # can be read back with np.load() log.info ("Done!") return data def download (bundle = KERNEL_BUNDLE, start_date = '2013-01-01', tickers = None, fields = None, dimensions = None, ): """ this method is a top-level executor of the download download volume could be reduced by setting start_date, tickers, fields, dimensions parameters with all parameters set as default will need couple of hours to complete the task for each field it gets each dimension available - thus returns fields X dimension values :param bundle: bundle which to be used to get the universe of tickers, sharadar-prices by default :param start_date: first date of the set :param tickers: list of tickers, all tickers by default :param fields: list of fields, all fields by default :param dimensions: list of dimensions, all dimensions by default (skipping MRs) """ log.info(f"Downloading fundamentals data since {start_date}") set_api_key() data = download_fundamendals_data(bundle = bundle, start_date = start_date, tickers = tickers, fields = fields, dimensions = dimensions, ) return data def test (): start_date = '2015-01-01' fields = [ 'netinc', 'marketcap', ] dimensions = [ 'ARQ', ] tickers = [ 'AAPL', 'MSFT', 'PAAS', ] data = download(tickers = tickers, fields = fields, start_date = start_date, dimensions = dimensions, ) return data def download_all (start_date = '2013-01-01'): """ this is the top-level executor of the fundamentals download - just downloads everything since 2007 you may want to schedule download_all to be executed daily within out-of-market hours """ data = download(start_date=start_date) return data if __name__ == '__main__': download_all()
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bundles/quandl_fundamentals.py
quandl_fundamentals.py
from io import BytesIO from zipfile import ZipFile from click import progressbar from logbook import Logger import pandas as pd import requests from six.moves.urllib.parse import urlencode from six import iteritems from trading_calendars import register_calendar_alias from zipline.data.bundles import core as bundles # looking in .zipline/extensions.py import numpy as np from zipline.utils.paths import zipline_root import pickle # Code from: # Quantopian Zipline Issues: # "Cannot find data bundle during ingest #2275" # https://github.com/quantopian/zipline/issues/2275 log = Logger(__name__) ONE_MEGABYTE = 1024 * 1024 QUANDL_DATA_URL = ( 'https://www.quandl.com/api/v3/datatables/SHARADAR/SEP.csv?' ) QUANDL_EQUITIES_DATA_URL = ( 'https://www.quandl.com/api/v3/datatables/SHARADAR/SEP.csv?' ) QUANDL_FUNDS_DATA_URL = ( 'https://www.quandl.com/api/v3/datatables/SHARADAR/SFP.csv?' ) QUANDL_URLS = [dict(url=QUANDL_EQUITIES_DATA_URL, desc='Equities'), dict(url=QUANDL_FUNDS_DATA_URL, desc='Funds'), ] EXCLUSIONS_FILE = zipline_root() + '/data/exclusions.pkl' @bundles.register('sharadar-ext') def sharadar_prices_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir): api_key = environ.get('QUANDL_API_KEY') if api_key is None: raise ValueError( "Please set your QUANDL_API_KEY environment variable and retry." ) ###ticker2sid_map = {} raw_data = fetch_data_table( api_key, show_progress, environ.get('QUANDL_DOWNLOAD_ATTEMPTS', 5) ) asset_metadata = gen_asset_metadata( raw_data[['symbol', 'date']], show_progress ) asset_db_writer.write(asset_metadata) symbol_map = asset_metadata.symbol sessions = calendar.sessions_in_range(start_session, end_session) raw_data.set_index(['date', 'symbol'], inplace=True) daily_bar_writer.write( parse_pricing_and_vol( raw_data, sessions, symbol_map ), show_progress=show_progress ) raw_data.reset_index(inplace=True) # raw_data.index = pd.DatetimeIndex(raw_data.date) ###ajjc changes raw_data['symbol'] = raw_data['symbol'].astype('category') raw_data['sid'] = raw_data.symbol.cat.codes # read in Dividend History # ajjc pharrin---------------------- ###uv = raw_data.symbol.unique() # get unique m_tickers (Zacks primary key) # iterate over all the unique securities and pack data, and metadata # for writing # counter of valid securites, this will be our primary key ###sec_counter = 0 ###for tkr in uv: ### #df_tkr = raw_data[raw_data['symbol'] == tkr] ### ticker2sid_map[tkr] = sec_counter # record the sid for use later ### sec_counter += 1 ### dfd = pd.read_csv(file_name, index_col='date', ### parse_dates=['date'], na_values=['NA']) # drop rows where dividends == 0.0 raw_data = raw_data[raw_data["dividends"] != 0.0] raw_data.set_index(['date', 'sid'], inplace=True) # raw_data.loc[:, 'ex_date'] = raw_data.loc[:, 'record_date'] = raw_data.date # raw_data.loc[:, 'declared_date'] = raw_data.loc[:, 'pay_date'] = raw_data.date raw_data.loc[:, 'ex_date'] = raw_data.loc[:, 'record_date'] = raw_data.index.get_level_values('date') raw_data.loc[:, 'declared_date'] = raw_data.loc[:, 'pay_date'] = raw_data.index.get_level_values('date') # raw_data.loc[:, 'sid'] = raw_data.loc[:, 'symbol'].apply(lambda x: ticker2sid_map[x]) raw_data = raw_data.rename(columns={'dividends': 'amount'}) # raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume','symbol'], axis=1) raw_data.reset_index(inplace=True) raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume', 'symbol', 'date'], axis=1) # raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume', 'lastupdated', 'ticker', 'closeunadj'], axis=1) # # format dfd to have sid adjustment_writer.write(dividends=raw_data) # ajjc ---------------------------------- def format_metadata_url(api_key, url = QUANDL_DATA_URL): """ Build the query URL for Quandl Prices metadata. """ query_params = [('api_key', api_key), ('qopts.export', 'true')] return ( url + urlencode(query_params) ) def load_data_table(file, index_col, show_progress=False, check_exclusions=True): """ Load data table from zip file provided by Quandl. """ with ZipFile(file) as zip_file: file_names = zip_file.namelist() assert len(file_names) == 1, "Expected a single file from Quandl." wiki_prices = file_names.pop() with zip_file.open(wiki_prices) as table_file: if show_progress: log.info('Parsing raw data.') data_table = pd.read_csv( table_file, parse_dates=['date'], index_col=index_col, usecols=[ 'ticker', 'date', 'open', 'high', 'low', 'close', 'volume', 'dividends', ##'closeunadj', ##'lastupdated' #prune last two columns for zipline bundle load ], ) data_table.rename( columns={ 'ticker': 'symbol' }, inplace=True, copy=False, ) initial_size = data_table.size if check_exclusions: data_table = data_table[~data_table.symbol.isin(load_exclusions())] if show_progress: log.info(f"Excluding {initial_size - data_table.size} \ ({(initial_size - data_table.size)/initial_size*100:.1f}%) lines based on exclusions.pkl") return data_table def fetch_data_table(api_key, show_progress, retries, check_exclusions=True): for _ in range(retries): data_tables = [] try: for url in QUANDL_URLS: if show_progress: log.info(f'Downloading Sharadar Price metadata for: {url["desc"]}.') metadata = pd.read_csv( format_metadata_url(api_key, url=url["url"]) ) # Extract link from metadata and download zip file. table_url = metadata.loc[0, 'file.link'] if show_progress: raw_file = download_with_progress( table_url, chunk_size=ONE_MEGABYTE, label="Downloading Prices table from Quandl Sharadar" ) else: raw_file = download_without_progress(table_url) data_table = load_data_table( file=raw_file, index_col=None, show_progress=show_progress, check_exclusions=check_exclusions, ) data_tables.append(data_table) return pd.concat(data_tables) except Exception: log.exception("Exception raised reading Quandl data. Retrying.") else: raise ValueError( "Failed to download Quandl data after %d attempts." % (retries) ) def gen_asset_metadata(data, show_progress): if show_progress: log.info('Generating asset metadata.') data = data.groupby( by='symbol' ).agg( {'date': [np.min, np.max]} ) data.reset_index(inplace=True) data['start_date'] = data.date.amin data['end_date'] = data.date.amax del data['date'] data.columns = data.columns.get_level_values(0) data['exchange'] = 'QUANDL' data['auto_close_date'] = data['end_date'].values + pd.Timedelta(days=1) return data def parse_pricing_and_vol(data, sessions, symbol_map): for asset_id, symbol in iteritems(symbol_map): asset_data = data.xs( symbol, level=1 ).reindex( sessions.tz_localize(None) ).fillna(0.0) yield asset_id, asset_data def download_with_progress(url, chunk_size, **progress_kwargs): """ Download streaming data from a URL, printing progress information to the terminal. Parameters ---------- url : str A URL that can be understood by ``requests.get``. chunk_size : int Number of bytes to read at a time from requests. **progress_kwargs Forwarded to click.progressbar. Returns ------- data : BytesIO A BytesIO containing the downloaded data. """ resp = requests.get(url, stream=True) resp.raise_for_status() total_size = int(resp.headers['content-length']) data = BytesIO() with progressbar(length=total_size, **progress_kwargs) as pbar: for chunk in resp.iter_content(chunk_size=chunk_size): data.write(chunk) pbar.update(len(chunk)) data.seek(0) return data def download_without_progress(url): """ Download data from a URL, returning a BytesIO containing the loaded data. Parameters ---------- url : str A URL that can be understood by ``requests.get``. Returns ------- data : BytesIO A BytesIO containing the downloaded data. """ resp = requests.get(url) resp.raise_for_status() return BytesIO(resp.content) def load_exclusions(): EXCLUSIONS_FILE = zipline_root() + '/data/exclusions.pkl' try: with open(EXCLUSIONS_FILE, 'rb') as f: exclusions = pickle.load(f) except: exclusions = [] return exclusions register_calendar_alias("sharadar-ext", "NYSE")
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bundles/sharadar_ext.py
sharadar_ext.py
import os import sys from logbook import Logger, StreamHandler from numpy import empty from pandas import DataFrame, read_csv, Index, Timedelta, NaT from trading_calendars import register_calendar_alias from zipline.utils.cli import maybe_show_progress from . import core as bundles handler = StreamHandler(sys.stdout, format_string=" | {record.message}") logger = Logger(__name__) logger.handlers.append(handler) def csvdir_equities(tframes=None, csvdir=None): """ Generate an ingest function for custom data bundle This function can be used in ~/.zipline/extension.py to register bundle with custom parameters, e.g. with a custom trading calendar. Parameters ---------- tframes: tuple, optional The data time frames, supported timeframes: 'daily' and 'minute' csvdir : string, optional, default: CSVDIR environment variable The path to the directory of this structure: <directory>/<timeframe1>/<symbol1>.csv <directory>/<timeframe1>/<symbol2>.csv <directory>/<timeframe1>/<symbol3>.csv <directory>/<timeframe2>/<symbol1>.csv <directory>/<timeframe2>/<symbol2>.csv <directory>/<timeframe2>/<symbol3>.csv Returns ------- ingest : callable The bundle ingest function Examples -------- This code should be added to ~/.zipline/extension.py .. code-block:: python from zipline.data.bundles import csvdir_equities, register register('custom-csvdir-bundle', csvdir_equities(["daily", "minute"], '/full/path/to/the/csvdir/directory')) """ return CSVDIRBundle(tframes, csvdir).ingest class CSVDIRBundle: """ Wrapper class to call csvdir_bundle with provided list of time frames and a path to the csvdir directory """ def __init__(self, tframes=None, csvdir=None): self.tframes = tframes self.csvdir = csvdir def ingest(self, environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir): csvdir_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir, self.tframes, self.csvdir) @bundles.register("csvdir") def csvdir_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir, tframes=None, csvdir=None): """ Build a zipline data bundle from the directory with csv files. """ if not csvdir: csvdir = environ.get('CSVDIR') if not csvdir: raise ValueError("CSVDIR environment variable is not set") if not os.path.isdir(csvdir): raise ValueError("%s is not a directory" % csvdir) if not tframes: tframes = set(["daily", "minute"]).intersection(os.listdir(csvdir)) if not tframes: raise ValueError("'daily' and 'minute' directories " "not found in '%s'" % csvdir) divs_splits = {'divs': DataFrame(columns=['sid', 'amount', 'ex_date', 'record_date', 'declared_date', 'pay_date']), 'splits': DataFrame(columns=['sid', 'ratio', 'effective_date'])} for tframe in tframes: ddir = os.path.join(csvdir, tframe) symbols = sorted(item.split('.csv')[0] for item in os.listdir(ddir) if '.csv' in item) if not symbols: raise ValueError("no <symbol>.csv* files found in %s" % ddir) dtype = [('start_date', 'datetime64[ns]'), ('end_date', 'datetime64[ns]'), ('auto_close_date', 'datetime64[ns]'), ('symbol', 'object')] metadata = DataFrame(empty(len(symbols), dtype=dtype)) if tframe == 'minute': writer = minute_bar_writer else: writer = daily_bar_writer writer.write(_pricing_iter(ddir, symbols, metadata, divs_splits, show_progress), show_progress=show_progress) # Hardcode the exchange to "CSVDIR" for all assets and (elsewhere) # register "CSVDIR" to resolve to the NYSE calendar, because these # are all equities and thus can use the NYSE calendar. metadata['exchange'] = "CSVDIR" asset_db_writer.write(equities=metadata) divs_splits['divs']['sid'] = divs_splits['divs']['sid'].astype(int) divs_splits['splits']['sid'] = divs_splits['splits']['sid'].astype(int) adjustment_writer.write(splits=divs_splits['splits'], dividends=divs_splits['divs']) def _pricing_iter(csvdir, symbols, metadata, divs_splits, show_progress): with maybe_show_progress(symbols, show_progress, label='Loading custom pricing data: ') as it: files = os.listdir(csvdir) for sid, symbol in enumerate(it): logger.debug('%s: sid %s' % (symbol, sid)) try: fname = [fname for fname in files if '%s.csv' % symbol in fname][0] except IndexError: raise ValueError("%s.csv file is not in %s" % (symbol, csvdir)) dfr = read_csv(os.path.join(csvdir, fname), parse_dates=[0], infer_datetime_format=True, index_col=0).sort_index() start_date = dfr.index[0] end_date = dfr.index[-1] # The auto_close date is the day after the last trade. ac_date = end_date + Timedelta(days=1) metadata.iloc[sid] = start_date, end_date, ac_date, symbol if 'split' in dfr.columns: tmp = 1. / dfr[dfr['split'] != 1.0]['split'] split = DataFrame(data=tmp.index.tolist(), columns=['effective_date']) split['ratio'] = tmp.tolist() split['sid'] = sid splits = divs_splits['splits'] index = Index(range(splits.shape[0], splits.shape[0] + split.shape[0])) split.set_index(index, inplace=True) divs_splits['splits'] = splits.append(split) if 'dividend' in dfr.columns: # ex_date amount sid record_date declared_date pay_date tmp = dfr[dfr['dividend'] != 0.0]['dividend'] div = DataFrame(data=tmp.index.tolist(), columns=['ex_date']) div['record_date'] = NaT div['declared_date'] = NaT div['pay_date'] = NaT div['amount'] = tmp.tolist() div['sid'] = sid divs = divs_splits['divs'] ind = Index(range(divs.shape[0], divs.shape[0] + div.shape[0])) div.set_index(ind, inplace=True) divs_splits['divs'] = divs.append(div) yield sid, dfr register_calendar_alias("CSVDIR", "NYSE")
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bundles/csvdir.py
csvdir.py
from collections import namedtuple import errno import os import shutil import warnings from contextlib2 import ExitStack import click import pandas as pd from trading_calendars import get_calendar from toolz import curry, complement, take from ..us_equity_pricing import ( BcolzDailyBarReader, BcolzDailyBarWriter, SQLiteAdjustmentReader, SQLiteAdjustmentWriter, ) from ..minute_bars import ( BcolzMinuteBarReader, BcolzMinuteBarWriter, ) from zipline.assets import AssetDBWriter, AssetFinder, ASSET_DB_VERSION from zipline.assets.asset_db_migrations import downgrade from zipline.utils.cache import ( dataframe_cache, working_dir, working_file, ) from zipline.utils.compat import mappingproxy from zipline.utils.input_validation import ensure_timestamp, optionally import zipline.utils.paths as pth from zipline.utils.preprocess import preprocess def asset_db_path(bundle_name, timestr, environ=None, db_version=None): return pth.data_path( asset_db_relative(bundle_name, timestr, environ, db_version), environ=environ, ) def minute_equity_path(bundle_name, timestr, environ=None): return pth.data_path( minute_equity_relative(bundle_name, timestr, environ), environ=environ, ) def daily_equity_path(bundle_name, timestr, environ=None): return pth.data_path( daily_equity_relative(bundle_name, timestr, environ), environ=environ, ) def adjustment_db_path(bundle_name, timestr, environ=None): return pth.data_path( adjustment_db_relative(bundle_name, timestr, environ), environ=environ, ) def cache_path(bundle_name, environ=None): return pth.data_path( cache_relative(bundle_name, environ), environ=environ, ) def adjustment_db_relative(bundle_name, timestr, environ=None): return bundle_name, timestr, 'adjustments.sqlite' def cache_relative(bundle_name, timestr, environ=None): return bundle_name, '.cache' def daily_equity_relative(bundle_name, timestr, environ=None): return bundle_name, timestr, 'daily_equities.bcolz' def minute_equity_relative(bundle_name, timestr, environ=None): return bundle_name, timestr, 'minute_equities.bcolz' def asset_db_relative(bundle_name, timestr, environ=None, db_version=None): db_version = ASSET_DB_VERSION if db_version is None else db_version return bundle_name, timestr, 'assets-%d.sqlite' % db_version def to_bundle_ingest_dirname(ts): """Convert a pandas Timestamp into the name of the directory for the ingestion. Parameters ---------- ts : pandas.Timestamp The time of the ingestions Returns ------- name : str The name of the directory for this ingestion. """ return ts.isoformat().replace(':', ';') def from_bundle_ingest_dirname(cs): """Read a bundle ingestion directory name into a pandas Timestamp. Parameters ---------- cs : str The name of the directory. Returns ------- ts : pandas.Timestamp The time when this ingestion happened. """ return pd.Timestamp(cs.replace(';', ':')) def ingestions_for_bundle(bundle, environ=None): return sorted( (from_bundle_ingest_dirname(ing) for ing in os.listdir(pth.data_path([bundle], environ)) if not pth.hidden(ing)), reverse=True, ) RegisteredBundle = namedtuple( 'RegisteredBundle', ['calendar_name', 'start_session', 'end_session', 'minutes_per_day', 'ingest', 'create_writers'] ) BundleData = namedtuple( 'BundleData', 'asset_finder equity_minute_bar_reader equity_daily_bar_reader ' 'adjustment_reader', ) BundleCore = namedtuple( 'BundleCore', 'bundles register unregister ingest load clean', ) class UnknownBundle(click.ClickException, LookupError): """Raised if no bundle with the given name was registered. """ exit_code = 1 def __init__(self, name): super(UnknownBundle, self).__init__( 'No bundle registered with the name %r' % name, ) self.name = name def __str__(self): return self.message class BadClean(click.ClickException, ValueError): """Exception indicating that an invalid argument set was passed to ``clean``. Parameters ---------- before, after, keep_last : any The bad arguments to ``clean``. See Also -------- clean """ def __init__(self, before, after, keep_last): super(BadClean, self).__init__( 'Cannot pass a combination of `before` and `after` with' '`keep_last`. Got: before=%r, after=%r, keep_n=%r\n' % ( before, after, keep_last, ), ) def __str__(self): return self.message def _make_bundle_core(): """Create a family of data bundle functions that read from the same bundle mapping. Returns ------- bundles : mappingproxy The mapping of bundles to bundle payloads. register : callable The function which registers new bundles in the ``bundles`` mapping. unregister : callable The function which deregisters bundles from the ``bundles`` mapping. ingest : callable The function which downloads and write data for a given data bundle. load : callable The function which loads the ingested bundles back into memory. clean : callable The function which cleans up data written with ``ingest``. """ _bundles = {} # the registered bundles # Expose _bundles through a proxy so that users cannot mutate this # accidentally. Users may go through `register` to update this which will # warn when trampling another bundle. bundles = mappingproxy(_bundles) @curry def register(name, f, calendar_name='NYSE', start_session=None, end_session=None, minutes_per_day=390, create_writers=True): """Register a data bundle ingest function. Parameters ---------- name : str The name of the bundle. f : callable The ingest function. This function will be passed: environ : mapping The environment this is being run with. asset_db_writer : AssetDBWriter The asset db writer to write into. minute_bar_writer : BcolzMinuteBarWriter The minute bar writer to write into. daily_bar_writer : BcolzDailyBarWriter The daily bar writer to write into. adjustment_writer : SQLiteAdjustmentWriter The adjustment db writer to write into. calendar : trading_calendars.TradingCalendar The trading calendar to ingest for. start_session : pd.Timestamp The first session of data to ingest. end_session : pd.Timestamp The last session of data to ingest. cache : DataFrameCache A mapping object to temporarily store dataframes. This should be used to cache intermediates in case the load fails. This will be automatically cleaned up after a successful load. show_progress : bool Show the progress for the current load where possible. calendar_name : str, optional The name of a calendar used to align bundle data. Default is 'NYSE'. start_session : pd.Timestamp, optional The first session for which we want data. If not provided, or if the date lies outside the range supported by the calendar, the first_session of the calendar is used. end_session : pd.Timestamp, optional The last session for which we want data. If not provided, or if the date lies outside the range supported by the calendar, the last_session of the calendar is used. minutes_per_day : int, optional The number of minutes in each normal trading day. create_writers : bool, optional Should the ingest machinery create the writers for the ingest function. This can be disabled as an optimization for cases where they are not needed, like the ``quantopian-quandl`` bundle. Notes ----- This function my be used as a decorator, for example: .. code-block:: python @register('quandl') def quandl_ingest_function(...): ... See Also -------- zipline.data.bundles.bundles """ if name in bundles: warnings.warn( 'Overwriting bundle with name %r' % name, stacklevel=3, ) # NOTE: We don't eagerly compute calendar values here because # `register` is called at module scope in zipline, and creating a # calendar currently takes between 0.5 and 1 seconds, which causes a # noticeable delay on the zipline CLI. _bundles[name] = RegisteredBundle( calendar_name=calendar_name, start_session=start_session, end_session=end_session, minutes_per_day=minutes_per_day, ingest=f, create_writers=create_writers, ) return f def unregister(name): """Unregister a bundle. Parameters ---------- name : str The name of the bundle to unregister. Raises ------ UnknownBundle Raised when no bundle has been registered with the given name. See Also -------- zipline.data.bundles.bundles """ try: del _bundles[name] except KeyError: raise UnknownBundle(name) def ingest(name, environ=os.environ, timestamp=None, assets_versions=(), show_progress=False): """Ingest data for a given bundle. Parameters ---------- name : str The name of the bundle. environ : mapping, optional The environment variables. By default this is os.environ. timestamp : datetime, optional The timestamp to use for the load. By default this is the current time. assets_versions : Iterable[int], optional Versions of the assets db to which to downgrade. show_progress : bool, optional Tell the ingest function to display the progress where possible. """ try: bundle = bundles[name] except KeyError: raise UnknownBundle(name) calendar = get_calendar(bundle.calendar_name) start_session = bundle.start_session end_session = bundle.end_session if start_session is None or start_session < calendar.first_session: start_session = calendar.first_session if end_session is None or end_session > calendar.last_session: end_session = calendar.last_session if timestamp is None: timestamp = pd.Timestamp.utcnow() timestamp = timestamp.tz_convert('utc').tz_localize(None) timestr = to_bundle_ingest_dirname(timestamp) cachepath = cache_path(name, environ=environ) pth.ensure_directory(pth.data_path([name, timestr], environ=environ)) pth.ensure_directory(cachepath) with dataframe_cache(cachepath, clean_on_failure=False) as cache, \ ExitStack() as stack: # we use `cleanup_on_failure=False` so that we don't purge the # cache directory if the load fails in the middle if bundle.create_writers: wd = stack.enter_context(working_dir( pth.data_path([], environ=environ)) ) daily_bars_path = wd.ensure_dir( *daily_equity_relative( name, timestr, environ=environ, ) ) daily_bar_writer = BcolzDailyBarWriter( daily_bars_path, calendar, start_session, end_session, ) # Do an empty write to ensure that the daily ctables exist # when we create the SQLiteAdjustmentWriter below. The # SQLiteAdjustmentWriter needs to open the daily ctables so # that it can compute the adjustment ratios for the dividends. daily_bar_writer.write(()) minute_bar_writer = BcolzMinuteBarWriter( wd.ensure_dir(*minute_equity_relative( name, timestr, environ=environ) ), calendar, start_session, end_session, minutes_per_day=bundle.minutes_per_day, ) assets_db_path = wd.getpath(*asset_db_relative( name, timestr, environ=environ, )) asset_db_writer = AssetDBWriter(assets_db_path) adjustment_db_writer = stack.enter_context( SQLiteAdjustmentWriter( wd.getpath(*adjustment_db_relative( name, timestr, environ=environ)), BcolzDailyBarReader(daily_bars_path), calendar.all_sessions, overwrite=True, ) ) else: daily_bar_writer = None minute_bar_writer = None asset_db_writer = None adjustment_db_writer = None if assets_versions: raise ValueError('Need to ingest a bundle that creates ' 'writers in order to downgrade the assets' ' db.') bundle.ingest( environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_db_writer, calendar, start_session, end_session, cache, show_progress, pth.data_path([name, timestr], environ=environ), ) for version in sorted(set(assets_versions), reverse=True): version_path = wd.getpath(*asset_db_relative( name, timestr, environ=environ, db_version=version, )) with working_file(version_path) as wf: shutil.copy2(assets_db_path, wf.path) downgrade(wf.path, version) def most_recent_data(bundle_name, timestamp, environ=None): """Get the path to the most recent data after ``date``for the given bundle. Parameters ---------- bundle_name : str The name of the bundle to lookup. timestamp : datetime The timestamp to begin searching on or before. environ : dict, optional An environment dict to forward to zipline_root. """ if bundle_name not in bundles: raise UnknownBundle(bundle_name) try: candidates = os.listdir( pth.data_path([bundle_name], environ=environ), ) return pth.data_path( [bundle_name, max( filter(complement(pth.hidden), candidates), key=from_bundle_ingest_dirname, )], environ=environ, ) except (ValueError, OSError) as e: if getattr(e, 'errno', errno.ENOENT) != errno.ENOENT: raise raise ValueError( 'no data for bundle {bundle!r} on or before {timestamp}\n' 'maybe you need to run: $ zipline ingest -b {bundle}'.format( bundle=bundle_name, timestamp=timestamp, ), ) def load(name, environ=os.environ, timestamp=None): """Loads a previously ingested bundle. Parameters ---------- name : str The name of the bundle. environ : mapping, optional The environment variables. Defaults of os.environ. timestamp : datetime, optional The timestamp of the data to lookup. Defaults to the current time. Returns ------- bundle_data : BundleData The raw data readers for this bundle. """ if timestamp is None: timestamp = pd.Timestamp.utcnow() timestr = most_recent_data(name, timestamp, environ=environ) return BundleData( asset_finder=AssetFinder( asset_db_path(name, timestr, environ=environ), ), equity_minute_bar_reader=BcolzMinuteBarReader( minute_equity_path(name, timestr, environ=environ), ), equity_daily_bar_reader=BcolzDailyBarReader( daily_equity_path(name, timestr, environ=environ), ), adjustment_reader=SQLiteAdjustmentReader( adjustment_db_path(name, timestr, environ=environ), ), ) @preprocess( before=optionally(ensure_timestamp), after=optionally(ensure_timestamp), ) def clean(name, before=None, after=None, keep_last=None, environ=os.environ): """Clean up data that was created with ``ingest`` or ``$ python -m zipline ingest`` Parameters ---------- name : str The name of the bundle to remove data for. before : datetime, optional Remove data ingested before this date. This argument is mutually exclusive with: keep_last after : datetime, optional Remove data ingested after this date. This argument is mutually exclusive with: keep_last keep_last : int, optional Remove all but the last ``keep_last`` ingestions. This argument is mutually exclusive with: before after environ : mapping, optional The environment variables. Defaults of os.environ. Returns ------- cleaned : set[str] The names of the runs that were removed. Raises ------ BadClean Raised when ``before`` and or ``after`` are passed with ``keep_last``. This is a subclass of ``ValueError``. """ try: all_runs = sorted( filter( complement(pth.hidden), os.listdir(pth.data_path([name], environ=environ)), ), key=from_bundle_ingest_dirname, ) except OSError as e: if e.errno != errno.ENOENT: raise raise UnknownBundle(name) if ((before is not None or after is not None) and keep_last is not None): raise BadClean(before, after, keep_last) if keep_last is None: def should_clean(name): dt = from_bundle_ingest_dirname(name) return ( (before is not None and dt < before) or (after is not None and dt > after) ) elif keep_last >= 0: last_n_dts = set(take(keep_last, reversed(all_runs))) def should_clean(name): return name not in last_n_dts else: raise BadClean(before, after, keep_last) cleaned = set() for run in all_runs: if should_clean(run): path = pth.data_path([name, run], environ=environ) shutil.rmtree(path) cleaned.add(path) return cleaned return BundleCore(bundles, register, unregister, ingest, load, clean) bundles, register, unregister, ingest, load, clean = _make_bundle_core()
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bundles/core.py
core.py
from zipline.data import bundles from zipline.gens.brokers.ib_broker2 import IBBroker import pandas as pd from datetime import datetime import pytz import pickle from zipline.data.bundles.sharadar_ext import EXCLUSIONS_FILE import os def exclude_from_local(bundle='sharadar-ext', ): from logbook import Logger log = Logger(__name__) tws_uri = 'localhost:7496:1' broker = IBBroker(tws_uri) bundle_data = bundles.load( bundle, ) all_sids = bundle_data.asset_finder.sids all_assets = bundle_data.asset_finder.retrieve_all(all_sids) exclusions = [] for i, asset in enumerate(all_assets): live_today = pd.Timestamp(datetime.utcnow().date()).replace(tzinfo=pytz.UTC) symbol = asset.symbol if asset.to_dict()['end_date'] + pd.offsets.BDay(1) >= live_today: print(f'Checking {asset.symbol} symbol ({i+1}/{len(all_assets)})') contracts = None while contracts is None: contracts = broker.reqMatchingSymbols(symbol) if symbol not in [c.contract.symbol for c in contracts] and '^' not in symbol: log.warning(f'!!!No IB ticker data for {symbol}!!!') exclusions.append(symbol) continue ticker = broker.subscribe_to_market_data(symbol) broker.cancelMktData(ticker.contract) if pd.isna(ticker.last) and pd.isna(ticker.close) and '^' not in symbol: log.warning(f'!!!No IB market data for {symbol}!!!') exclusions.append(symbol) else: log.info(f'Skipping check for {asset.symbol} as it is not traded any more') with open(EXCLUSIONS_FILE, 'wb') as f: pickle.dump(exclusions, f) print(f'{len(exclusions)} exclusions found!') def exclude_from_web(bundle_module='sharadar_ext', look_for_file=False, ): import importlib from logbook import Logger log = Logger(__name__) if look_for_file and os.path.exists(EXCLUSIONS_FILE): log.info('No need to run excluder, exclusions file has been found!') return full_bundle_module_name = 'zipline.data.bundles.' + bundle_module bundle_module_ref = importlib.import_module(full_bundle_module_name) tws_uri = 'localhost:7496:1' broker = IBBroker(tws_uri) exclusions = [] api_key = os.environ.get('QUANDL_API_KEY') raw_data = bundle_module_ref.fetch_data_table(api_key=api_key, show_progress=True, retries=1, check_exclusions=False, ) asset_metadata = bundle_module_ref.gen_asset_metadata(raw_data[['symbol', 'date']], True ) for i, asset in asset_metadata.iterrows(): live_today = pd.Timestamp(datetime.utcnow().date()).replace(tzinfo=pytz.UTC) asset_end_date = pd.Timestamp(asset['end_date']).replace(tzinfo=pytz.UTC) symbol = asset['symbol'] if asset_end_date + pd.offsets.BDay(1) >= live_today: log.info(f'Checking {symbol} symbol ({i+1}/{len(asset_metadata)})') contracts = None while contracts is None: contracts = broker.reqMatchingSymbols(symbol) if symbol not in [c.contract.symbol for c in contracts] and '^' not in symbol: log.warning(f'!!!No IB ticker data for {symbol}!!!') exclusions.append(symbol) continue ticker = broker.subscribe_to_market_data(symbol) broker.cancelMktData(ticker.contract) if pd.isna(ticker.last) and pd.isna(ticker.close) and '^' not in symbol: log.warning(f'!!!No IB market data for {symbol}!!!') exclusions.append(symbol) else: log.info(f'Skipping check for {symbol} as it is not traded any more: asset_end_date is {asset_end_date}') with open(EXCLUSIONS_FILE, 'wb') as f: pickle.dump(exclusions, f) log.info(f'{len(exclusions)} exclusions found!')
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bundles/excluder.py
excluder.py
from io import BytesIO import tarfile from zipfile import ZipFile from click import progressbar from logbook import Logger import pandas as pd import requests from six.moves.urllib.parse import urlencode from six import iteritems from trading_calendars import register_calendar_alias from zipline.utils.deprecate import deprecated from . import core as bundles import numpy as np log = Logger(__name__) ONE_MEGABYTE = 1024 * 1024 QUANDL_DATA_URL = ( 'https://www.quandl.com/api/v3/datatables/WIKI/PRICES.csv?' ) def format_metadata_url(api_key): """ Build the query URL for Quandl WIKI Prices metadata. """ query_params = [('api_key', api_key), ('qopts.export', 'true')] return ( QUANDL_DATA_URL + urlencode(query_params) ) def load_data_table(file, index_col, show_progress=False): """ Load data table from zip file provided by Quandl. """ with ZipFile(file) as zip_file: file_names = zip_file.namelist() assert len(file_names) == 1, "Expected a single file from Quandl." wiki_prices = file_names.pop() with zip_file.open(wiki_prices) as table_file: if show_progress: log.info('Parsing raw data.') data_table = pd.read_csv( table_file, parse_dates=['date'], index_col=index_col, usecols=[ 'ticker', 'date', 'open', 'high', 'low', 'close', 'volume', 'ex-dividend', 'split_ratio', ], ) data_table.rename( columns={ 'ticker': 'symbol', 'ex-dividend': 'ex_dividend', }, inplace=True, copy=False, ) return data_table def fetch_data_table(api_key, show_progress, retries): """ Fetch WIKI Prices data table from Quandl """ for _ in range(retries): try: if show_progress: log.info('Downloading WIKI metadata.') metadata = pd.read_csv( format_metadata_url(api_key) ) # Extract link from metadata and download zip file. table_url = metadata.loc[0, 'file.link'] if show_progress: raw_file = download_with_progress( table_url, chunk_size=ONE_MEGABYTE, label="Downloading WIKI Prices table from Quandl" ) else: raw_file = download_without_progress(table_url) return load_data_table( file=raw_file, index_col=None, show_progress=show_progress, ) except Exception: log.exception("Exception raised reading Quandl data. Retrying.") else: raise ValueError( "Failed to download Quandl data after %d attempts." % (retries) ) def gen_asset_metadata(data, show_progress): if show_progress: log.info('Generating asset metadata.') data = data.groupby( by='symbol' ).agg( {'date': [np.min, np.max]} ) data.reset_index(inplace=True) data['start_date'] = data.date.amin data['end_date'] = data.date.amax del data['date'] data.columns = data.columns.get_level_values(0) data['exchange'] = 'QUANDL' data['auto_close_date'] = data['end_date'].values + pd.Timedelta(days=1) return data def parse_splits(data, show_progress): if show_progress: log.info('Parsing split data.') data['split_ratio'] = 1.0 / data.split_ratio data.rename( columns={ 'split_ratio': 'ratio', 'date': 'effective_date', }, inplace=True, copy=False, ) return data def parse_dividends(data, show_progress): if show_progress: log.info('Parsing dividend data.') data['record_date'] = data['declared_date'] = data['pay_date'] = pd.NaT data.rename( columns={ 'ex_dividend': 'amount', 'date': 'ex_date', }, inplace=True, copy=False, ) return data def parse_pricing_and_vol(data, sessions, symbol_map): for asset_id, symbol in iteritems(symbol_map): asset_data = data.xs( symbol, level=1 ).reindex( sessions.tz_localize(None) ).fillna(0.0) yield asset_id, asset_data @bundles.register('quandl') def quandl_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir): """ quandl_bundle builds a daily dataset using Quandl's WIKI Prices dataset. For more information on Quandl's API and how to obtain an API key, please visit https://docs.quandl.com/docs#section-authentication """ api_key = environ.get('QUANDL_API_KEY') if api_key is None: raise ValueError( "Please set your QUANDL_API_KEY environment variable and retry." ) raw_data = fetch_data_table( api_key, show_progress, environ.get('QUANDL_DOWNLOAD_ATTEMPTS', 5) ) asset_metadata = gen_asset_metadata( raw_data[['symbol', 'date']], show_progress ) asset_db_writer.write(asset_metadata) symbol_map = asset_metadata.symbol sessions = calendar.sessions_in_range(start_session, end_session) raw_data.set_index(['date', 'symbol'], inplace=True) daily_bar_writer.write( parse_pricing_and_vol( raw_data, sessions, symbol_map ), show_progress=show_progress ) raw_data.reset_index(inplace=True) raw_data['symbol'] = raw_data['symbol'].astype('category') raw_data['sid'] = raw_data.symbol.cat.codes adjustment_writer.write( splits=parse_splits( raw_data[[ 'sid', 'date', 'split_ratio', ]].loc[raw_data.split_ratio != 1], show_progress=show_progress ), dividends=parse_dividends( raw_data[[ 'sid', 'date', 'ex_dividend', ]].loc[raw_data.ex_dividend != 0], show_progress=show_progress ) ) def download_with_progress(url, chunk_size, **progress_kwargs): """ Download streaming data from a URL, printing progress information to the terminal. Parameters ---------- url : str A URL that can be understood by ``requests.get``. chunk_size : int Number of bytes to read at a time from requests. **progress_kwargs Forwarded to click.progressbar. Returns ------- data : BytesIO A BytesIO containing the downloaded data. """ resp = requests.get(url, stream=True) resp.raise_for_status() total_size = int(resp.headers['content-length']) data = BytesIO() with progressbar(length=total_size, **progress_kwargs) as pbar: for chunk in resp.iter_content(chunk_size=chunk_size): data.write(chunk) pbar.update(len(chunk)) data.seek(0) return data def download_without_progress(url): """ Download data from a URL, returning a BytesIO containing the loaded data. Parameters ---------- url : str A URL that can be understood by ``requests.get``. Returns ------- data : BytesIO A BytesIO containing the downloaded data. """ resp = requests.get(url) resp.raise_for_status() return BytesIO(resp.content) QUANTOPIAN_QUANDL_URL = ( 'https://s3.amazonaws.com/quantopian-public-zipline-data/quandl' ) @bundles.register('quantopian-quandl', create_writers=False) @deprecated( 'quantopian-quandl has been deprecated and ' 'will be removed in a future release.' ) def quantopian_quandl_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir): if show_progress: data = download_with_progress( QUANTOPIAN_QUANDL_URL, chunk_size=ONE_MEGABYTE, label="Downloading Bundle: quantopian-quandl", ) else: data = download_without_progress(QUANTOPIAN_QUANDL_URL) with tarfile.open('r', fileobj=data) as tar: if show_progress: log.info("Writing data to %s." % output_dir) tar.extractall(output_dir) register_calendar_alias("QUANDL", "NYSE")
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bundles/quandl.py
quandl.py
from io import BytesIO from zipfile import ZipFile from click import progressbar from logbook import Logger import pandas as pd import requests from six.moves.urllib.parse import urlencode from six import iteritems from trading_calendars import register_calendar_alias from zipline.data.bundles import core as bundles # looking in .zipline/extensions.py import numpy as np # Code from: # Quantopian Zipline Issues: # "Cannot find data bundle during ingest #2275" # https://github.com/quantopian/zipline/issues/2275 log = Logger(__name__) ONE_MEGABYTE = 1024 * 1024 QUANDL_DATA_URL = ( 'https://www.quandl.com/api/v3/datatables/SHARADAR/SEP.csv?' ) @bundles.register('sharadar-prices') def sharadar_prices_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir): api_key = environ.get('QUANDL_API_KEY') if api_key is None: raise ValueError( "Please set your QUANDL_API_KEY environment variable and retry." ) ###ticker2sid_map = {} raw_data = fetch_data_table( api_key, show_progress, environ.get('QUANDL_DOWNLOAD_ATTEMPTS', 5) ) asset_metadata = gen_asset_metadata( raw_data[['symbol', 'date']], show_progress ) asset_db_writer.write(asset_metadata) symbol_map = asset_metadata.symbol sessions = calendar.sessions_in_range(start_session, end_session) raw_data.set_index(['date', 'symbol'], inplace=True) daily_bar_writer.write( parse_pricing_and_vol( raw_data, sessions, symbol_map ), show_progress=show_progress ) raw_data.reset_index(inplace=True) # raw_data.index = pd.DatetimeIndex(raw_data.date) ###ajjc changes raw_data['symbol'] = raw_data['symbol'].astype('category') raw_data['sid'] = raw_data.symbol.cat.codes # read in Dividend History # ajjc pharrin---------------------- ###uv = raw_data.symbol.unique() # get unique m_tickers (Zacks primary key) # iterate over all the unique securities and pack data, and metadata # for writing # counter of valid securites, this will be our primary key ###sec_counter = 0 ###for tkr in uv: ### #df_tkr = raw_data[raw_data['symbol'] == tkr] ### ticker2sid_map[tkr] = sec_counter # record the sid for use later ### sec_counter += 1 ### dfd = pd.read_csv(file_name, index_col='date', ### parse_dates=['date'], na_values=['NA']) # drop rows where dividends == 0.0 raw_data = raw_data[raw_data["dividends"] != 0.0] raw_data.set_index(['date', 'sid'], inplace=True) # raw_data.loc[:, 'ex_date'] = raw_data.loc[:, 'record_date'] = raw_data.date # raw_data.loc[:, 'declared_date'] = raw_data.loc[:, 'pay_date'] = raw_data.date raw_data.loc[:, 'ex_date'] = raw_data.loc[:, 'record_date'] = raw_data.index.get_level_values('date') raw_data.loc[:, 'declared_date'] = raw_data.loc[:, 'pay_date'] = raw_data.index.get_level_values('date') # raw_data.loc[:, 'sid'] = raw_data.loc[:, 'symbol'].apply(lambda x: ticker2sid_map[x]) raw_data = raw_data.rename(columns={'dividends': 'amount'}) # raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume','symbol'], axis=1) raw_data.reset_index(inplace=True) raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume', 'symbol', 'date'], axis=1) # raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume', 'lastupdated', 'ticker', 'closeunadj'], axis=1) # # format dfd to have sid adjustment_writer.write(dividends=raw_data) # ajjc ---------------------------------- def format_metadata_url(api_key): """ Build the query URL for Quandl Prices metadata. """ query_params = [('api_key', api_key), ('qopts.export', 'true')] return ( QUANDL_DATA_URL + urlencode(query_params) ) def load_data_table(file, index_col, show_progress=False): """ Load data table from zip file provided by Quandl. """ with ZipFile(file) as zip_file: file_names = zip_file.namelist() assert len(file_names) == 1, "Expected a single file from Quandl." wiki_prices = file_names.pop() with zip_file.open(wiki_prices) as table_file: if show_progress: log.info('Parsing raw data.') data_table = pd.read_csv( table_file, parse_dates=['date'], index_col=index_col, usecols=[ 'ticker', 'date', 'open', 'high', 'low', 'close', 'volume', 'dividends', ##'closeunadj', ##'lastupdated' #prune last two columns for zipline bundle load ], ) data_table.rename( columns={ 'ticker': 'symbol' }, inplace=True, copy=False, ) return data_table def fetch_data_table(api_key, show_progress, retries): for _ in range(retries): try: if show_progress: log.info('Downloading Sharadar Price metadata.') metadata = pd.read_csv( format_metadata_url(api_key) ) # Extract link from metadata and download zip file. table_url = metadata.loc[0, 'file.link'] if show_progress: raw_file = download_with_progress( table_url, chunk_size=ONE_MEGABYTE, label="Downloading Prices table from Quandl Sharadar" ) else: raw_file = download_without_progress(table_url) return load_data_table( file=raw_file, index_col=None, show_progress=show_progress, ) except Exception: log.exception("Exception raised reading Quandl data. Retrying.") else: raise ValueError( "Failed to download Quandl data after %d attempts." % (retries) ) def gen_asset_metadata(data, show_progress): if show_progress: log.info('Generating asset metadata.') data = data.groupby( by='symbol' ).agg( {'date': [np.min, np.max]} ) data.reset_index(inplace=True) data['start_date'] = data.date.amin data['end_date'] = data.date.amax del data['date'] data.columns = data.columns.get_level_values(0) data['exchange'] = 'QUANDL' data['auto_close_date'] = data['end_date'].values + pd.Timedelta(days=1) return data def parse_pricing_and_vol(data, sessions, symbol_map): for asset_id, symbol in iteritems(symbol_map): asset_data = data.xs( symbol, level=1 ).reindex( sessions.tz_localize(None) ).fillna(0.0) yield asset_id, asset_data def download_with_progress(url, chunk_size, **progress_kwargs): """ Download streaming data from a URL, printing progress information to the terminal. Parameters ---------- url : str A URL that can be understood by ``requests.get``. chunk_size : int Number of bytes to read at a time from requests. **progress_kwargs Forwarded to click.progressbar. Returns ------- data : BytesIO A BytesIO containing the downloaded data. """ resp = requests.get(url, stream=True) resp.raise_for_status() total_size = int(resp.headers['content-length']) data = BytesIO() with progressbar(length=total_size, **progress_kwargs) as pbar: for chunk in resp.iter_content(chunk_size=chunk_size): data.write(chunk) pbar.update(len(chunk)) data.seek(0) return data def download_without_progress(url): """ Download data from a URL, returning a BytesIO containing the loaded data. Parameters ---------- url : str A URL that can be understood by ``requests.get``. Returns ------- data : BytesIO A BytesIO containing the downloaded data. """ resp = requests.get(url) resp.raise_for_status() return BytesIO(resp.content) register_calendar_alias("sharadar-prices", "NYSE")
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bundles/sharadar.py
sharadar.py
from io import BytesIO from zipfile import ZipFile from click import progressbar from logbook import Logger import pandas as pd import requests from six.moves.urllib.parse import urlencode from six import iteritems from trading_calendars import register_calendar_alias from zipline.data.bundles import core as bundles # looking in .zipline/extensions.py import numpy as np # Code from: # Quantopian Zipline Issues: # "Cannot find data bundle during ingest #2275" # https://github.com/quantopian/zipline/issues/2275 log = Logger(__name__) ONE_MEGABYTE = 1024 * 1024 QUANDL_DATA_URL = ( 'https://www.quandl.com/api/v3/datatables/SHARADAR/SFP.csv?' ) @bundles.register('sharadar-funds') def sharadar_prices_bundle(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir): api_key = environ.get('QUANDL_API_KEY') if api_key is None: raise ValueError( "Please set your QUANDL_API_KEY environment variable and retry." ) ###ticker2sid_map = {} raw_data = fetch_data_table( api_key, show_progress, environ.get('QUANDL_DOWNLOAD_ATTEMPTS', 5) ) asset_metadata = gen_asset_metadata( raw_data[['symbol', 'date']], show_progress ) asset_db_writer.write(asset_metadata) symbol_map = asset_metadata.symbol sessions = calendar.sessions_in_range(start_session, end_session) raw_data.set_index(['date', 'symbol'], inplace=True) daily_bar_writer.write( parse_pricing_and_vol( raw_data, sessions, symbol_map ), show_progress=show_progress ) raw_data.reset_index(inplace=True) # raw_data.index = pd.DatetimeIndex(raw_data.date) ###ajjc changes raw_data['symbol'] = raw_data['symbol'].astype('category') raw_data['sid'] = raw_data.symbol.cat.codes # read in Dividend History # ajjc pharrin---------------------- ###uv = raw_data.symbol.unique() # get unique m_tickers (Zacks primary key) # iterate over all the unique securities and pack data, and metadata # for writing # counter of valid securites, this will be our primary key ###sec_counter = 0 ###for tkr in uv: ### #df_tkr = raw_data[raw_data['symbol'] == tkr] ### ticker2sid_map[tkr] = sec_counter # record the sid for use later ### sec_counter += 1 ### dfd = pd.read_csv(file_name, index_col='date', ### parse_dates=['date'], na_values=['NA']) # drop rows where dividends == 0.0 raw_data = raw_data[raw_data["dividends"] != 0.0] raw_data.set_index(['date', 'sid'], inplace=True) # raw_data.loc[:, 'ex_date'] = raw_data.loc[:, 'record_date'] = raw_data.date # raw_data.loc[:, 'declared_date'] = raw_data.loc[:, 'pay_date'] = raw_data.date raw_data.loc[:, 'ex_date'] = raw_data.loc[:, 'record_date'] = raw_data.index.get_level_values('date') raw_data.loc[:, 'declared_date'] = raw_data.loc[:, 'pay_date'] = raw_data.index.get_level_values('date') # raw_data.loc[:, 'sid'] = raw_data.loc[:, 'symbol'].apply(lambda x: ticker2sid_map[x]) raw_data = raw_data.rename(columns={'dividends': 'amount'}) # raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume','symbol'], axis=1) raw_data.reset_index(inplace=True) raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume', 'symbol', 'date'], axis=1) # raw_data = raw_data.drop(['open', 'high', 'low', 'close', 'volume', 'lastupdated', 'ticker', 'closeunadj'], axis=1) # # format dfd to have sid adjustment_writer.write(dividends=raw_data) # ajjc ---------------------------------- def format_metadata_url(api_key): """ Build the query URL for Quandl Prices metadata. """ query_params = [('api_key', api_key), ('qopts.export', 'true')] return ( QUANDL_DATA_URL + urlencode(query_params) ) def load_data_table(file, index_col, show_progress=False): """ Load data table from zip file provided by Quandl. """ with ZipFile(file) as zip_file: file_names = zip_file.namelist() assert len(file_names) == 1, "Expected a single file from Quandl." wiki_prices = file_names.pop() with zip_file.open(wiki_prices) as table_file: if show_progress: log.info('Parsing raw data.') data_table = pd.read_csv( table_file, parse_dates=['date'], index_col=index_col, usecols=[ 'ticker', 'date', 'open', 'high', 'low', 'close', 'volume', 'dividends', ##'closeunadj', ##'lastupdated' #prune last two columns for zipline bundle load ], ) data_table.rename( columns={ 'ticker': 'symbol' }, inplace=True, copy=False, ) return data_table def fetch_data_table(api_key, show_progress, retries): for _ in range(retries): try: if show_progress: log.info('Downloading Sharadar Price metadata.') metadata = pd.read_csv( format_metadata_url(api_key) ) # Extract link from metadata and download zip file. table_url = metadata.loc[0, 'file.link'] if show_progress: raw_file = download_with_progress( table_url, chunk_size=ONE_MEGABYTE, label="Downloading Prices table from Quandl Sharadar" ) else: raw_file = download_without_progress(table_url) return load_data_table( file=raw_file, index_col=None, show_progress=show_progress, ) except Exception: log.exception("Exception raised reading Quandl data. Retrying.") else: raise ValueError( "Failed to download Quandl data after %d attempts." % (retries) ) def gen_asset_metadata(data, show_progress): if show_progress: log.info('Generating asset metadata.') data = data.groupby( by='symbol' ).agg( {'date': [np.min, np.max]} ) data.reset_index(inplace=True) data['start_date'] = data.date.amin data['end_date'] = data.date.amax del data['date'] data.columns = data.columns.get_level_values(0) data['exchange'] = 'QUANDL' data['auto_close_date'] = data['end_date'].values + pd.Timedelta(days=1) return data def parse_pricing_and_vol(data, sessions, symbol_map): for asset_id, symbol in iteritems(symbol_map): asset_data = data.xs( symbol, level=1 ).reindex( sessions.tz_localize(None) ).fillna(0.0) yield asset_id, asset_data def download_with_progress(url, chunk_size, **progress_kwargs): """ Download streaming data from a URL, printing progress information to the terminal. Parameters ---------- url : str A URL that can be understood by ``requests.get``. chunk_size : int Number of bytes to read at a time from requests. **progress_kwargs Forwarded to click.progressbar. Returns ------- data : BytesIO A BytesIO containing the downloaded data. """ resp = requests.get(url, stream=True) resp.raise_for_status() total_size = int(resp.headers['content-length']) data = BytesIO() with progressbar(length=total_size, **progress_kwargs) as pbar: for chunk in resp.iter_content(chunk_size=chunk_size): data.write(chunk) pbar.update(len(chunk)) data.seek(0) return data def download_without_progress(url): """ Download data from a URL, returning a BytesIO containing the loaded data. Parameters ---------- url : str A URL that can be understood by ``requests.get``. Returns ------- data : BytesIO A BytesIO containing the downloaded data. """ resp = requests.get(url) resp.raise_for_status() return BytesIO(resp.content) register_calendar_alias("sharadar-funds", "NYSE")
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/data/bundles/sharadar_funds.py
sharadar_funds.py
import sys from textwrap import dedent class _Sentinel(object): """Base class for Sentinel objects. """ __slots__ = ('__weakref__',) def is_sentinel(obj): return isinstance(obj, _Sentinel) def sentinel(name, doc=None): try: value = sentinel._cache[name] # memoized except KeyError: pass else: if doc == value.__doc__: return value raise ValueError(dedent( """\ New sentinel value %r conflicts with an existing sentinel of the same name. Old sentinel docstring: %r New sentinel docstring: %r The old sentinel was created at: %s Resolve this conflict by changing the name of one of the sentinels. """, ) % (name, value.__doc__, doc, value._created_at)) try: frame = sys._getframe(1) except ValueError: frame = None if frame is None: created_at = '<unknown>' else: created_at = '%s:%s' % (frame.f_code.co_filename, frame.f_lineno) @object.__new__ # bind a single instance to the name 'Sentinel' class Sentinel(_Sentinel): __doc__ = doc __name__ = name # store created_at so that we can report this in case of a duplicate # name violation _created_at = created_at def __new__(cls): raise TypeError('cannot create %r instances' % name) def __repr__(self): return 'sentinel(%r)' % name def __reduce__(self): return sentinel, (name, doc) def __deepcopy__(self, _memo): return self def __copy__(self): return self cls = type(Sentinel) try: cls.__module__ = frame.f_globals['__name__'] except (AttributeError, KeyError): # Couldn't get the name from the calling scope, just use None. # AttributeError is when frame is None, KeyError is when f_globals # doesn't hold '__name__' cls.__module__ = None sentinel._cache[name] = Sentinel # cache result return Sentinel sentinel._cache = {}
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/sentinel.py
sentinel.py
import datetime from copy import deepcopy import numpy as np import pandas as pd def _ensure_index(x): if not isinstance(x, pd.Index): x = pd.Index(sorted(x)) return x class RollingPanel(object): """ Preallocation strategies for rolling window over expanding data set Restrictions: major_axis can only be a DatetimeIndex for now """ def __init__(self, window, items, sids, cap_multiple=2, dtype=np.float64, initial_dates=None): self._pos = window self._window = window self.items = _ensure_index(items) self.minor_axis = _ensure_index(sids) self.cap_multiple = cap_multiple self.dtype = dtype if initial_dates is None: self.date_buf = np.empty(self.cap, dtype='M8[ns]') * pd.NaT elif len(initial_dates) != window: raise ValueError('initial_dates must be of length window') else: self.date_buf = np.hstack( ( initial_dates, np.empty( window * (cap_multiple - 1), dtype='datetime64[ns]', ), ), ) self.buffer = self._create_buffer() @property def cap(self): return self.cap_multiple * self._window @property def _start_index(self): return self._pos - self._window @property def start_date(self): return self.date_buf[self._start_index] def oldest_frame(self, raw=False): """ Get the oldest frame in the panel. """ if raw: return self.buffer.values[:, self._start_index, :] return self.buffer.iloc[:, self._start_index, :] def set_minor_axis(self, minor_axis): self.minor_axis = _ensure_index(minor_axis) self.buffer = self.buffer.reindex(minor_axis=self.minor_axis) def set_items(self, items): self.items = _ensure_index(items) self.buffer = self.buffer.reindex(items=self.items) def _create_buffer(self): panel = pd.Panel( items=self.items, minor_axis=self.minor_axis, major_axis=range(self.cap), dtype=self.dtype, ) return panel def extend_back(self, missing_dts): """ Resizes the buffer to hold a new window with a new cap_multiple. If cap_multiple is None, then the old cap_multiple is used. """ delta = len(missing_dts) if not delta: raise ValueError( 'missing_dts must be a non-empty index', ) self._window += delta self._pos += delta self.date_buf = self.date_buf.copy() self.date_buf.resize(self.cap) self.date_buf = np.roll(self.date_buf, delta) old_vals = self.buffer.values shape = old_vals.shape nan_arr = np.empty((shape[0], delta, shape[2])) nan_arr.fill(np.nan) new_vals = np.column_stack( (nan_arr, old_vals, np.empty((shape[0], delta * (self.cap_multiple - 1), shape[2]))), ) self.buffer = pd.Panel( data=new_vals, items=self.items, minor_axis=self.minor_axis, major_axis=np.arange(self.cap), dtype=self.dtype, ) # Fill the delta with the dates we calculated. where = slice(self._start_index, self._start_index + delta) self.date_buf[where] = missing_dts def add_frame(self, tick, frame, minor_axis=None, items=None): """ """ if self._pos == self.cap: self._roll_data() values = frame if isinstance(frame, pd.DataFrame): values = frame.values self.buffer.values[:, self._pos, :] = values.astype(self.dtype) self.date_buf[self._pos] = tick self._pos += 1 def get_current(self, item=None, raw=False, start=None, end=None): """ Get a Panel that is the current data in view. It is not safe to persist these objects because internal data might change """ item_indexer = slice(None) if item: item_indexer = self.items.get_loc(item) start_index = self._start_index end_index = self._pos # get inital date window where = slice(start_index, end_index) current_dates = self.date_buf[where] def convert_datelike_to_long(dt): if isinstance(dt, pd.Timestamp): return dt.asm8 if isinstance(dt, datetime.datetime): return np.datetime64(dt) return dt # constrict further by date if start: start = convert_datelike_to_long(start) start_index += current_dates.searchsorted(start) if end: end = convert_datelike_to_long(end) _end = current_dates.searchsorted(end, 'right') end_index -= len(current_dates) - _end where = slice(start_index, end_index) values = self.buffer.values[item_indexer, where, :] current_dates = self.date_buf[where] if raw: # return copy so we can change it without side effects here return values.copy() major_axis = pd.DatetimeIndex(deepcopy(current_dates), tz='utc') if values.ndim == 3: return pd.Panel(values, self.items, major_axis, self.minor_axis, dtype=self.dtype) elif values.ndim == 2: return pd.DataFrame(values, major_axis, self.minor_axis, dtype=self.dtype) def set_current(self, panel): """ Set the values stored in our current in-view data to be values of the passed panel. The passed panel must have the same indices as the panel that would be returned by self.get_current. """ where = slice(self._start_index, self._pos) self.buffer.values[:, where, :] = panel.values def current_dates(self): where = slice(self._start_index, self._pos) return pd.DatetimeIndex(deepcopy(self.date_buf[where]), tz='utc') def _roll_data(self): """ Roll window worth of data up to position zero. Save the effort of having to expensively roll at each iteration """ self.buffer.values[:, :self._window, :] = \ self.buffer.values[:, -self._window:, :] self.date_buf[:self._window] = self.date_buf[-self._window:] self._pos = self._window @property def window_length(self): return self._window class MutableIndexRollingPanel(object): """ A version of RollingPanel that exists for backwards compatibility with batch_transform. This is a copy to allow behavior of RollingPanel to drift away from this without breaking this class. This code should be considered frozen, and should not be used in the future. Instead, see RollingPanel. """ def __init__(self, window, items, sids, cap_multiple=2, dtype=np.float64): self._pos = 0 self._window = window self.items = _ensure_index(items) self.minor_axis = _ensure_index(sids) self.cap_multiple = cap_multiple self.cap = cap_multiple * window self.dtype = dtype self.date_buf = np.empty(self.cap, dtype='M8[ns]') self.buffer = self._create_buffer() def _oldest_frame_idx(self): return max(self._pos - self._window, 0) def oldest_frame(self, raw=False): """ Get the oldest frame in the panel. """ if raw: return self.buffer.values[:, self._oldest_frame_idx(), :] return self.buffer.iloc[:, self._oldest_frame_idx(), :] def set_sids(self, sids): self.minor_axis = _ensure_index(sids) self.buffer = self.buffer.reindex(minor_axis=self.minor_axis) def _create_buffer(self): panel = pd.Panel( items=self.items, minor_axis=self.minor_axis, major_axis=range(self.cap), dtype=self.dtype, ) return panel def get_current(self): """ Get a Panel that is the current data in view. It is not safe to persist these objects because internal data might change """ where = slice(self._oldest_frame_idx(), self._pos) major_axis = pd.DatetimeIndex(deepcopy(self.date_buf[where]), tz='utc') return pd.Panel(self.buffer.values[:, where, :], self.items, major_axis, self.minor_axis, dtype=self.dtype) def set_current(self, panel): """ Set the values stored in our current in-view data to be values of the passed panel. The passed panel must have the same indices as the panel that would be returned by self.get_current. """ where = slice(self._oldest_frame_idx(), self._pos) self.buffer.values[:, where, :] = panel.values def current_dates(self): where = slice(self._oldest_frame_idx(), self._pos) return pd.DatetimeIndex(deepcopy(self.date_buf[where]), tz='utc') def _roll_data(self): """ Roll window worth of data up to position zero. Save the effort of having to expensively roll at each iteration """ self.buffer.values[:, :self._window, :] = \ self.buffer.values[:, -self._window:, :] self.date_buf[:self._window] = self.date_buf[-self._window:] self._pos = self._window def add_frame(self, tick, frame, minor_axis=None, items=None): """ """ if self._pos == self.cap: self._roll_data() if isinstance(frame, pd.DataFrame): minor_axis = frame.columns items = frame.index if set(minor_axis).difference(set(self.minor_axis)) or \ set(items).difference(set(self.items)): self._update_buffer(frame) vals = frame.T.astype(self.dtype) self.buffer.loc[:, self._pos, :] = vals self.date_buf[self._pos] = tick self._pos += 1 def _update_buffer(self, frame): # Get current frame as we only need to care about the data that is in # the active window old_buffer = self.get_current() if self._pos >= self._window: # Don't count the last major_axis entry if we're past our window, # since it's about to roll off the end of the panel. old_buffer = old_buffer.iloc[:, 1:, :] nans = pd.isnull(old_buffer) # Find minor_axes that have only nans # Note that minor is axis 2 non_nan_cols = set(old_buffer.minor_axis[~np.all(nans, axis=(0, 1))]) # Determine new columns to be added new_cols = set(frame.columns).difference(non_nan_cols) # Update internal minor axis self.minor_axis = _ensure_index(new_cols.union(non_nan_cols)) # Same for items (fields) # Find items axes that have only nans # Note that items is axis 0 non_nan_items = set(old_buffer.items[~np.all(nans, axis=(1, 2))]) new_items = set(frame.index).difference(non_nan_items) self.items = _ensure_index(new_items.union(non_nan_items)) # :NOTE: # There is a simpler and 10x faster way to do this: # # Reindex buffer to update axes (automatically adds nans) # self.buffer = self.buffer.reindex(items=self.items, # major_axis=np.arange(self.cap), # minor_axis=self.minor_axis) # # However, pandas==0.12.0, for which we remain backwards compatible, # has a bug in .reindex() that this triggers. Using .update() as before # seems to work fine. new_buffer = self._create_buffer() new_buffer.update( self.buffer.loc[non_nan_items, :, non_nan_cols]) self.buffer = new_buffer
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/data.py
data.py
from functools import reduce from pprint import pformat from six import viewkeys, iteritems from six.moves import map, zip from toolz import curry, flip from .sentinel import sentinel @curry def apply(f, *args, **kwargs): """Apply a function to arguments. Parameters ---------- f : callable The function to call. *args, **kwargs **kwargs Arguments to feed to the callable. Returns ------- a : any The result of ``f(*args, **kwargs)`` Examples -------- >>> from toolz.curried.operator import add, sub >>> fs = add(1), sub(1) >>> tuple(map(apply, fs, (1, 2))) (2, -1) Class decorator >>> instance = apply >>> @instance ... class obj: ... def f(self): ... return 'f' ... >>> obj.f() 'f' >>> issubclass(obj, object) Traceback (most recent call last): ... TypeError: issubclass() arg 1 must be a class >>> isinstance(obj, type) False See Also -------- unpack_apply mapply """ return f(*args, **kwargs) # Alias for use as a class decorator. instance = apply def mapall(funcs, seq): """ Parameters ---------- funcs : iterable[function] Sequence of functions to map over `seq`. seq : iterable Sequence over which to map funcs. Yields ------ elem : object Concatenated result of mapping each ``func`` over ``seq``. Examples -------- >>> list(mapall([lambda x: x + 1, lambda x: x - 1], [1, 2, 3])) [2, 3, 4, 0, 1, 2] """ for func in funcs: for elem in seq: yield func(elem) def same(*values): """ Check if all values in a sequence are equal. Returns True on empty sequences. Examples -------- >>> same(1, 1, 1, 1) True >>> same(1, 2, 1) False >>> same() True """ if not values: return True first, rest = values[0], values[1:] return all(value == first for value in rest) def _format_unequal_keys(dicts): return pformat([sorted(d.keys()) for d in dicts]) def dzip_exact(*dicts): """ Parameters ---------- *dicts : iterable[dict] A sequence of dicts all sharing the same keys. Returns ------- zipped : dict A dict whose keys are the union of all keys in *dicts, and whose values are tuples of length len(dicts) containing the result of looking up each key in each dict. Raises ------ ValueError If dicts don't all have the same keys. Examples -------- >>> result = dzip_exact({'a': 1, 'b': 2}, {'a': 3, 'b': 4}) >>> result == {'a': (1, 3), 'b': (2, 4)} True """ if not same(*map(viewkeys, dicts)): raise ValueError( "dict keys not all equal:\n\n%s" % _format_unequal_keys(dicts) ) return {k: tuple(d[k] for d in dicts) for k in dicts[0]} def _gen_unzip(it, elem_len): """Helper for unzip which checks the lengths of each element in it. Parameters ---------- it : iterable[tuple] An iterable of tuples. ``unzip`` should map ensure that these are already tuples. elem_len : int or None The expected element length. If this is None it is infered from the length of the first element. Yields ------ elem : tuple Each element of ``it``. Raises ------ ValueError Raised when the lengths do not match the ``elem_len``. """ elem = next(it) first_elem_len = len(elem) if elem_len is not None and elem_len != first_elem_len: raise ValueError( 'element at index 0 was length %d, expected %d' % ( first_elem_len, elem_len, ) ) else: elem_len = first_elem_len yield elem for n, elem in enumerate(it, 1): if len(elem) != elem_len: raise ValueError( 'element at index %d was length %d, expected %d' % ( n, len(elem), elem_len, ), ) yield elem def unzip(seq, elem_len=None): """Unzip a length n sequence of length m sequences into m seperate length n sequences. Parameters ---------- seq : iterable[iterable] The sequence to unzip. elem_len : int, optional The expected length of each element of ``seq``. If not provided this will be infered from the length of the first element of ``seq``. This can be used to ensure that code like: ``a, b = unzip(seq)`` does not fail even when ``seq`` is empty. Returns ------- seqs : iterable[iterable] The new sequences pulled out of the first iterable. Raises ------ ValueError Raised when ``seq`` is empty and ``elem_len`` is not provided. Raised when elements of ``seq`` do not match the given ``elem_len`` or the length of the first element of ``seq``. Examples -------- >>> seq = [('a', 1), ('b', 2), ('c', 3)] >>> cs, ns = unzip(seq) >>> cs ('a', 'b', 'c') >>> ns (1, 2, 3) # checks that the elements are the same length >>> seq = [('a', 1), ('b', 2), ('c', 3, 'extra')] >>> cs, ns = unzip(seq) Traceback (most recent call last): ... ValueError: element at index 2 was length 3, expected 2 # allows an explicit element length instead of infering >>> seq = [('a', 1, 'extra'), ('b', 2), ('c', 3)] >>> cs, ns = unzip(seq, 2) Traceback (most recent call last): ... ValueError: element at index 0 was length 3, expected 2 # handles empty sequences when a length is given >>> cs, ns = unzip([], elem_len=2) >>> cs == ns == () True Notes ----- This function will force ``seq`` to completion. """ ret = tuple(zip(*_gen_unzip(map(tuple, seq), elem_len))) if ret: return ret if elem_len is None: raise ValueError("cannot unzip empty sequence without 'elem_len'") return ((),) * elem_len _no_default = sentinel('_no_default') def getattrs(value, attrs, default=_no_default): """ Perform a chained application of ``getattr`` on ``value`` with the values in ``attrs``. If ``default`` is supplied, return it if any of the attribute lookups fail. Parameters ---------- value : object Root of the lookup chain. attrs : iterable[str] Sequence of attributes to look up. default : object, optional Value to return if any of the lookups fail. Returns ------- result : object Result of the lookup sequence. Examples -------- >>> class EmptyObject(object): ... pass ... >>> obj = EmptyObject() >>> obj.foo = EmptyObject() >>> obj.foo.bar = "value" >>> getattrs(obj, ('foo', 'bar')) 'value' >>> getattrs(obj, ('foo', 'buzz')) Traceback (most recent call last): ... AttributeError: 'EmptyObject' object has no attribute 'buzz' >>> getattrs(obj, ('foo', 'buzz'), 'default') 'default' """ try: for attr in attrs: value = getattr(value, attr) except AttributeError: if default is _no_default: raise value = default return value @curry def set_attribute(name, value): """ Decorator factory for setting attributes on a function. Doesn't change the behavior of the wrapped function. Examples -------- >>> @set_attribute('__name__', 'foo') ... def bar(): ... return 3 ... >>> bar() 3 >>> bar.__name__ 'foo' """ def decorator(f): setattr(f, name, value) return f return decorator # Decorators for setting the __name__ and __doc__ properties of a decorated # function. # Example: with_name = set_attribute('__name__') with_doc = set_attribute('__doc__') def foldr(f, seq, default=_no_default): """Fold a function over a sequence with right associativity. Parameters ---------- f : callable[any, any] The function to reduce the sequence with. The first argument will be the element of the sequence; the second argument will be the accumulator. seq : iterable[any] The sequence to reduce. default : any, optional The starting value to reduce with. If not provided, the sequence cannot be empty, and the last value of the sequence will be used. Returns ------- folded : any The folded value. Notes ----- This functions works by reducing the list in a right associative way. For example, imagine we are folding with ``operator.add`` or ``+``: .. code-block:: python foldr(add, seq) -> seq[0] + (seq[1] + (seq[2] + (...seq[-1], default))) In the more general case with an arbitrary function, ``foldr`` will expand like so: .. code-block:: python foldr(f, seq) -> f(seq[0], f(seq[1], f(seq[2], ...f(seq[-1], default)))) For a more in depth discussion of left and right folds, see: `https://en.wikipedia.org/wiki/Fold_(higher-order_function)`_ The images in that page are very good for showing the differences between ``foldr`` and ``foldl`` (``reduce``). .. note:: For performance reasons is is best to pass a strict (non-lazy) sequence, for example, a list. See Also -------- :func:`functools.reduce` :func:`sum` """ return reduce( flip(f), reversed(seq), *(default,) if default is not _no_default else () ) def invert(d): """ Invert a dictionary into a dictionary of sets. >>> invert({'a': 1, 'b': 2, 'c': 1}) # doctest: +SKIP {1: {'a', 'c'}, 2: {'b'}} """ out = {} for k, v in iteritems(d): try: out[v].add(k) except KeyError: out[v] = {k} return out
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/functional.py
functional.py
from six.moves import map as imap from toolz import compose, identity class ApplyAsyncResult(object): """An object that boxes results for calls to :meth:`~zipline.utils.pool.SequentialPool.apply_async`. Parameters ---------- value : any The result of calling the function, or any exception that was raised. successful : bool If ``True``, ``value`` is the return value of the function. If ``False``, ``value`` is the exception that was raised when calling the functions. """ def __init__(self, value, successful): self._value = value self._successful = successful def successful(self): """Did the function execute without raising an exception? """ return self._successful def get(self): """Return the result of calling the function or reraise any exceptions that were raised. """ if not self._successful: raise self._value return self._value def ready(self): """Has the function finished executing. Notes ----- In the :class:`~zipline.utils.pool.SequentialPool` case, this is always ``True``. """ return True def wait(self): """Wait until the function is finished executing. Notes ----- In the :class:`~zipline.utils.pool.SequentialPool` case, this is a nop because the function is computed eagerly in the same thread as the call to :meth:`~zipline.utils.pool.SequentialPool.apply_async`. """ pass class SequentialPool(object): """A dummy pool object that iterates sequentially in a single thread. Methods ------- map(f: callable[A, B], iterable: iterable[A]) -> list[B] Apply a function to each of the elements of ``iterable``. imap(f: callable[A, B], iterable: iterable[A]) -> iterable[B] Lazily apply a function to each of the elements of ``iterable``. imap_unordered(f: callable[A, B], iterable: iterable[A]) -> iterable[B] Lazily apply a function to each of the elements of ``iterable`` but yield values as they become available. The resulting iterable is unordered. Notes ----- This object is useful for testing to mock out the ``Pool`` interface provided by gevent or multiprocessing. See Also -------- :class:`multiprocessing.Pool` """ map = staticmethod(compose(list, imap)) imap = imap_unordered = staticmethod(imap) @staticmethod def apply_async(f, args=(), kwargs=None, callback=None): """Apply a function but emulate the API of an asynchronous call. Parameters ---------- f : callable The function to call. args : tuple, optional The positional arguments. kwargs : dict, optional The keyword arguments. Returns ------- future : ApplyAsyncResult The result of calling the function boxed in a future-like api. Notes ----- This calls the function eagerly but wraps it so that ``SequentialPool`` can be used where a :class:`multiprocessing.Pool` or :class:`gevent.pool.Pool` would be used. """ try: value = (identity if callback is None else callback)( f(*args, **kwargs or {}), ) successful = True except Exception as e: value = e successful = False return ApplyAsyncResult(value, successful) @staticmethod def apply(f, args=(), kwargs=None): """Apply a function. Parameters ---------- f : callable The function to call. args : tuple, optional The positional arguments. kwargs : dict, optional The keyword arguments. Returns ------- result : any f(*args, **kwargs) """ return f(*args, **kwargs or {}) @staticmethod def close(): pass @staticmethod def join(): pass
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/pool.py
pool.py
import re from six import iteritems from textwrap import dedent from toolz import curry PIPELINE_DOWNSAMPLING_FREQUENCY_DOC = dedent( """\ frequency : {'year_start', 'quarter_start', 'month_start', 'week_start'} A string indicating desired sampling dates: * 'year_start' -> first trading day of each year * 'quarter_start' -> first trading day of January, April, July, October * 'month_start' -> first trading day of each month * 'week_start' -> first trading_day of each week """ ) PIPELINE_ALIAS_NAME_DOC = dedent( """\ name : str The name to alias this term as. """, ) def pad_lines_after_first(prefix, s): """Apply a prefix to each line in s after the first.""" return ('\n' + prefix).join(s.splitlines()) def format_docstring(owner_name, docstring, formatters): """ Template ``formatters`` into ``docstring``. Parameters ---------- owner_name : str The name of the function or class whose docstring is being templated. Only used for error messages. docstring : str The docstring to template. formatters : dict[str -> str] Parameters for a a str.format() call on ``docstring``. Multi-line values in ``formatters`` will have leading whitespace padded to match the leading whitespace of the substitution string. """ # Build a dict of parameters to a vanilla format() call by searching for # each entry in **formatters and applying any leading whitespace to each # line in the desired substitution. format_params = {} for target, doc_for_target in iteritems(formatters): # Search for '{name}', with optional leading whitespace. regex = re.compile('^(\s*)' + '({' + target + '})$', re.MULTILINE) matches = regex.findall(docstring) if not matches: raise ValueError( "Couldn't find template for parameter {!r} in docstring " "for {}." "\nParameter name must be alone on a line surrounded by " "braces.".format(target, owner_name), ) elif len(matches) > 1: raise ValueError( "Couldn't found multiple templates for parameter {!r}" "in docstring for {}." "\nParameter should only appear once.".format( target, owner_name ) ) (leading_whitespace, _) = matches[0] format_params[target] = pad_lines_after_first( leading_whitespace, doc_for_target, ) return docstring.format(**format_params) def templated_docstring(**docs): """ Decorator allowing the use of templated docstrings. Examples -------- >>> @templated_docstring(foo='bar') ... def my_func(self, foo): ... '''{foo}''' ... >>> my_func.__doc__ 'bar' """ def decorator(f): f.__doc__ = format_docstring(f.__name__, f.__doc__, docs) return f return decorator @curry def copydoc(from_, to): """Copies the docstring from one function to another. Parameters ---------- from_ : any The object to copy the docstring from. to : any The object to copy the docstring to. Returns ------- to : any ``to`` with the docstring from ``from_`` """ to.__doc__ = from_.__doc__ return to
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/sharedoc.py
sharedoc.py
from abc import ABCMeta, abstractmethod from six import with_metaclass, iteritems # Consistent error to be thrown in various cases regarding overriding # `final` attributes. _type_error = TypeError('Cannot override final attribute') def bases_mro(bases): """ Yield classes in the order that methods should be looked up from the base classes of an object. """ for base in bases: for class_ in base.__mro__: yield class_ def is_final(name, mro): """ Checks if `name` is a `final` object in the given `mro`. We need to check the mro because we need to directly go into the __dict__ of the classes. Because `final` objects are descriptor, we need to grab them _BEFORE_ the `__call__` is invoked. """ return any(isinstance(getattr(c, '__dict__', {}).get(name), final) for c in bases_mro(mro)) class FinalMeta(type): """A metaclass template for classes the want to prevent subclassess from overriding a some methods or attributes. """ def __new__(mcls, name, bases, dict_): for k, v in iteritems(dict_): if is_final(k, bases): raise _type_error setattr_ = dict_.get('__setattr__') if setattr_ is None: # No `__setattr__` was explicitly defined, look up the super # class's. `bases[0]` will have a `__setattr__` because # `object` does so we don't need to worry about the mro. setattr_ = bases[0].__setattr__ if not is_final('__setattr__', bases) \ and not isinstance(setattr_, final): # implicitly make the `__setattr__` a `final` object so that # users cannot just avoid the descriptor protocol. dict_['__setattr__'] = final(setattr_) return super(FinalMeta, mcls).__new__(mcls, name, bases, dict_) def __setattr__(self, name, value): """This stops the `final` attributes from being reassigned on the class object. """ if is_final(name, self.__mro__): raise _type_error super(FinalMeta, self).__setattr__(name, value) class final(with_metaclass(ABCMeta)): """ An attribute that cannot be overridden. This is like the final modifier in Java. Example usage: >>> from six import with_metaclass >>> class C(with_metaclass(FinalMeta, object)): ... @final ... def f(self): ... return 'value' ... This constructs a class with final method `f`. This cannot be overridden on the class object or on any instance. You cannot override this by subclassing `C`; attempting to do so will raise a `TypeError` at class construction time. """ def __new__(cls, attr): # Decide if this is a method wrapper or an attribute wrapper. # We are going to cache the `callable` check by creating a # method or attribute wrapper. if hasattr(attr, '__get__'): return object.__new__(finaldescriptor) else: return object.__new__(finalvalue) def __init__(self, attr): self._attr = attr def __set__(self, instance, value): """ `final` objects cannot be reassigned. This is the most import concept about `final`s. Unlike a `property` object, this will raise a `TypeError` when you attempt to reassign it. """ raise _type_error @abstractmethod def __get__(self, instance, owner): raise NotImplementedError('__get__') class finalvalue(final): """ A wrapper for a non-descriptor attribute. """ def __get__(self, instance, owner): return self._attr class finaldescriptor(final): """ A final wrapper around a descriptor. """ def __get__(self, instance, owner): return self._attr.__get__(instance, owner)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/final.py
final.py
import warnings from datetime import datetime from os import listdir import os.path import pandas as pd import pytz import zipline from zipline.errors import SymbolNotFound from zipline.finance.asset_restrictions import SecurityListRestrictions from zipline.zipline_warnings import ZiplineDeprecationWarning DATE_FORMAT = "%Y%m%d" zipline_dir = os.path.dirname(zipline.__file__) SECURITY_LISTS_DIR = os.path.join(zipline_dir, 'resources', 'security_lists') class SecurityList(object): def __init__(self, data, current_date_func, asset_finder): """ data: a nested dictionary: knowledge_date -> lookup_date -> {add: [symbol list], 'delete': []}, delete: [symbol list]} current_date_func: function taking no parameters, returning current datetime """ self.data = data self._cache = {} self._knowledge_dates = self.make_knowledge_dates(self.data) self.current_date = current_date_func self.count = 0 self._current_set = set() self.asset_finder = asset_finder def make_knowledge_dates(self, data): knowledge_dates = sorted( [pd.Timestamp(k) for k in data.keys()]) return knowledge_dates def __iter__(self): warnings.warn( 'Iterating over security_lists is deprecated. Use ' '`for sid in <security_list>.current_securities(dt)` instead.', category=ZiplineDeprecationWarning, stacklevel=2 ) return iter(self.current_securities(self.current_date())) def __contains__(self, item): warnings.warn( 'Evaluating inclusion in security_lists is deprecated. Use ' '`sid in <security_list>.current_securities(dt)` instead.', category=ZiplineDeprecationWarning, stacklevel=2 ) return item in self.current_securities(self.current_date()) def current_securities(self, dt): for kd in self._knowledge_dates: if dt < kd: break if kd in self._cache: self._current_set = self._cache[kd] continue for effective_date, changes in iter(self.data[kd].items()): self.update_current( effective_date, changes['add'], self._current_set.add ) self.update_current( effective_date, changes['delete'], self._current_set.remove ) self._cache[kd] = self._current_set return self._current_set def update_current(self, effective_date, symbols, change_func): for symbol in symbols: try: asset = self.asset_finder.lookup_symbol( symbol, as_of_date=effective_date ) # Pass if no Asset exists for the symbol except SymbolNotFound: continue change_func(asset.sid) class SecurityListSet(object): # provide a cut point to substitute other security # list implementations. security_list_type = SecurityList def __init__(self, current_date_func, asset_finder): self.current_date_func = current_date_func self.asset_finder = asset_finder self._leveraged_etf = None @property def leveraged_etf_list(self): if self._leveraged_etf is None: self._leveraged_etf = self.security_list_type( load_from_directory('leveraged_etf_list'), self.current_date_func, asset_finder=self.asset_finder ) return self._leveraged_etf @property def restrict_leveraged_etfs(self): return SecurityListRestrictions(self.leveraged_etf_list) def load_from_directory(list_name): """ To resolve the symbol in the LEVERAGED_ETF list, the date on which the symbol was in effect is needed. Furthermore, to maintain a point in time record of our own maintenance of the restricted list, we need a knowledge date. Thus, restricted lists are dictionaries of datetime->symbol lists. new symbols should be entered as a new knowledge date entry. This method assumes a directory structure of: SECURITY_LISTS_DIR/listname/knowledge_date/lookup_date/add.txt SECURITY_LISTS_DIR/listname/knowledge_date/lookup_date/delete.txt The return value is a dictionary with: knowledge_date -> lookup_date -> {add: [symbol list], 'delete': [symbol list]} """ data = {} dir_path = os.path.join(SECURITY_LISTS_DIR, list_name) for kd_name in listdir(dir_path): kd = datetime.strptime(kd_name, DATE_FORMAT).replace( tzinfo=pytz.utc) data[kd] = {} kd_path = os.path.join(dir_path, kd_name) for ld_name in listdir(kd_path): ld = datetime.strptime(ld_name, DATE_FORMAT).replace( tzinfo=pytz.utc) data[kd][ld] = {} ld_path = os.path.join(kd_path, ld_name) for fname in listdir(ld_path): fpath = os.path.join(ld_path, fname) with open(fpath) as f: symbols = f.read().splitlines() data[kd][ld][fname] = symbols return data
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/security_list.py
security_list.py
import pandas as pd import pytz # import warnings from datetime import datetime from dateutil import rrule from functools import partial # from zipline.zipline_warnings import ZiplineDeprecationWarning # IMPORTANT: This module is deprecated and is only here for temporary backwards # compatibility. Look at the `trading-calendars` # module, as well as the calendar definitions in `trading_calendars`. # TODO: The new calendar API is currently in flux, so the deprecation # warning for this module is currently disabled. Re-enable once # the new API is stabilized. # # warnings.warn( # "The `tradingcalendar` module is deprecated. See the " # "`trading-calendars` module, as well as the " # "calendar definitions in `trading-calendars`.", # category=ZiplineDeprecationWarning, # stacklevel=1, # ) start = pd.Timestamp('1990-01-01', tz='UTC') end_base = pd.Timestamp('today', tz='UTC') # Give an aggressive buffer for logic that needs to use the next trading # day or minute. end = end_base + pd.Timedelta(days=365) def canonicalize_datetime(dt): # Strip out any HHMMSS or timezone info in the user's datetime, so that # all the datetimes we return will be 00:00:00 UTC. return datetime(dt.year, dt.month, dt.day, tzinfo=pytz.utc) def get_non_trading_days(start, end): non_trading_rules = [] start = canonicalize_datetime(start) end = canonicalize_datetime(end) weekends = rrule.rrule( rrule.YEARLY, byweekday=(rrule.SA, rrule.SU), cache=True, dtstart=start, until=end ) non_trading_rules.append(weekends) new_years = rrule.rrule( rrule.MONTHLY, byyearday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years) new_years_sunday = rrule.rrule( rrule.MONTHLY, byyearday=2, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years_sunday) mlk_day = rrule.rrule( rrule.MONTHLY, bymonth=1, byweekday=(rrule.MO(+3)), cache=True, dtstart=datetime(1998, 1, 1, tzinfo=pytz.utc), until=end ) non_trading_rules.append(mlk_day) presidents_day = rrule.rrule( rrule.MONTHLY, bymonth=2, byweekday=(rrule.MO(3)), cache=True, dtstart=start, until=end ) non_trading_rules.append(presidents_day) good_friday = rrule.rrule( rrule.DAILY, byeaster=-2, cache=True, dtstart=start, until=end ) non_trading_rules.append(good_friday) memorial_day = rrule.rrule( rrule.MONTHLY, bymonth=5, byweekday=(rrule.MO(-1)), cache=True, dtstart=start, until=end ) non_trading_rules.append(memorial_day) july_4th = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=4, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th) july_4th_sunday = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th_sunday) july_4th_saturday = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th_saturday) labor_day = rrule.rrule( rrule.MONTHLY, bymonth=9, byweekday=(rrule.MO(1)), cache=True, dtstart=start, until=end ) non_trading_rules.append(labor_day) thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, byweekday=(rrule.TH(4)), cache=True, dtstart=start, until=end ) non_trading_rules.append(thanksgiving) christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=25, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas) christmas_sunday = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas_sunday) # If Christmas is a Saturday then 24th, a Friday is observed. christmas_saturday = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas_saturday) non_trading_ruleset = rrule.rruleset() for rule in non_trading_rules: non_trading_ruleset.rrule(rule) non_trading_days = non_trading_ruleset.between(start, end, inc=True) # Add September 11th closings # http://en.wikipedia.org/wiki/Aftermath_of_the_September_11_attacks # Due to the terrorist attacks, the stock market did not open on 9/11/2001 # It did not open again until 9/17/2001. # # September 2001 # Su Mo Tu We Th Fr Sa # 1 # 2 3 4 5 6 7 8 # 9 10 11 12 13 14 15 # 16 17 18 19 20 21 22 # 23 24 25 26 27 28 29 # 30 for day_num in range(11, 17): non_trading_days.append( datetime(2001, 9, day_num, tzinfo=pytz.utc)) # Add closings due to Hurricane Sandy in 2012 # http://en.wikipedia.org/wiki/Hurricane_sandy # # The stock exchange was closed due to Hurricane Sandy's # impact on New York. # It closed on 10/29 and 10/30, reopening on 10/31 # October 2012 # Su Mo Tu We Th Fr Sa # 1 2 3 4 5 6 # 7 8 9 10 11 12 13 # 14 15 16 17 18 19 20 # 21 22 23 24 25 26 27 # 28 29 30 31 for day_num in range(29, 31): non_trading_days.append( datetime(2012, 10, day_num, tzinfo=pytz.utc)) # Misc closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # National Days of Mourning # - President Richard Nixon non_trading_days.append(datetime(1994, 4, 27, tzinfo=pytz.utc)) # - President Ronald W. Reagan - June 11, 2004 non_trading_days.append(datetime(2004, 6, 11, tzinfo=pytz.utc)) # - President Gerald R. Ford - Jan 2, 2007 non_trading_days.append(datetime(2007, 1, 2, tzinfo=pytz.utc)) non_trading_days.sort() return pd.DatetimeIndex(non_trading_days) non_trading_days = get_non_trading_days(start, end) trading_day = pd.tseries.offsets.CDay(holidays=non_trading_days) def get_trading_days(start, end, trading_day=trading_day): return pd.date_range(start=start.date(), end=end.date(), freq=trading_day).tz_localize('UTC') trading_days = get_trading_days(start, end) def get_early_closes(start, end): # 1:00 PM close rules based on # http://quant.stackexchange.com/questions/4083/nyse-early-close-rules-july-4th-and-dec-25th # noqa # and verified against http://www.nyse.com/pdfs/closings.pdf # These rules are valid starting in 1993 start = canonicalize_datetime(start) end = canonicalize_datetime(end) start = max(start, datetime(1993, 1, 1, tzinfo=pytz.utc)) end = max(end, datetime(1993, 1, 1, tzinfo=pytz.utc)) # Not included here are early closes prior to 1993 # or unplanned early closes early_close_rules = [] day_after_thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, # 4th Friday isn't correct if month starts on Friday, so restrict to # day range: byweekday=(rrule.FR), bymonthday=range(23, 30), cache=True, dtstart=start, until=end ) early_close_rules.append(day_after_thanksgiving) christmas_eve = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=(rrule.MO, rrule.TU, rrule.WE, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(christmas_eve) friday_after_christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.FR, cache=True, dtstart=start, # valid 1993-2007 until=min(end, datetime(2007, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(friday_after_christmas) day_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=(rrule.MO, rrule.TU, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(day_before_independence_day) day_after_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.FR, cache=True, dtstart=start, # starting in 2013: wednesday before independence day until=min(end, datetime(2012, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(day_after_independence_day) wednesday_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.WE, cache=True, # starting in 2013 dtstart=max(start, datetime(2013, 1, 1, tzinfo=pytz.utc)), until=max(end, datetime(2013, 1, 1, tzinfo=pytz.utc)) ) early_close_rules.append(wednesday_before_independence_day) early_close_ruleset = rrule.rruleset() for rule in early_close_rules: early_close_ruleset.rrule(rule) early_closes = early_close_ruleset.between(start, end, inc=True) # Misc early closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # New Year's Eve nye_1999 = datetime(1999, 12, 31, tzinfo=pytz.utc) if start <= nye_1999 and nye_1999 <= end: early_closes.append(nye_1999) early_closes.sort() return pd.DatetimeIndex(early_closes) early_closes = get_early_closes(start, end) def get_open_and_close(day, early_closes): market_open = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=9, minute=31), tz='US/Eastern').tz_convert('UTC') # 1 PM if early close, 4 PM otherwise close_hour = 13 if day in early_closes else 16 market_close = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=close_hour), tz='US/Eastern').tz_convert('UTC') return market_open, market_close def get_open_and_closes(trading_days, early_closes, get_open_and_close): open_and_closes = pd.DataFrame(index=trading_days, columns=('market_open', 'market_close')) get_o_and_c = partial(get_open_and_close, early_closes=early_closes) open_and_closes['market_open'], open_and_closes['market_close'] = \ zip(*open_and_closes.index.map(get_o_and_c)) return open_and_closes open_and_closes = get_open_and_closes(trading_days, early_closes, get_open_and_close)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/tradingcalendar.py
tradingcalendar.py
from ctypes import ( Structure, c_ubyte, c_uint, c_ulong, c_ulonglong, c_ushort, sizeof, ) import numpy as np import pandas as pd from six.moves import range _inttypes_map = { sizeof(t) - 1: t for t in { c_ubyte, c_uint, c_ulong, c_ulonglong, c_ushort } } _inttypes = list( pd.Series(_inttypes_map).reindex( range(max(_inttypes_map.keys())), method='bfill', ), ) def enum(option, *options): """ Construct a new enum object. Parameters ---------- *options : iterable of str The names of the fields for the enum. Returns ------- enum A new enum collection. Examples -------- >>> e = enum('a', 'b', 'c') >>> e <enum: ('a', 'b', 'c')> >>> e.a 0 >>> e.b 1 >>> e.a in e True >>> tuple(e) (0, 1, 2) Notes ----- Identity checking is not guaranteed to work with enum members, instead equality checks should be used. From CPython's documentation: "The current implementation keeps an array of integer objects for all integers between -5 and 256, when you create an int in that range you actually just get back a reference to the existing object. So it should be possible to change the value of 1. I suspect the behaviour of Python in this case is undefined. :-)" """ options = (option,) + options rangeob = range(len(options)) try: inttype = _inttypes[int(np.log2(len(options) - 1)) // 8] except IndexError: raise OverflowError( 'Cannot store enums with more than sys.maxsize elements, got %d' % len(options), ) class _enum(Structure): _fields_ = [(o, inttype) for o in options] def __iter__(self): return iter(rangeob) def __contains__(self, value): return 0 <= value < len(options) def __repr__(self): return '<enum: %s>' % ( ('%d fields' % len(options)) if len(options) > 10 else repr(options) ) return _enum(*rangeob)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/enum.py
enum.py
from operator import attrgetter import six def compose_types(a, *cs): """Compose multiple classes together. Parameters ---------- *mcls : tuple[type] The classes that you would like to compose Returns ------- cls : type A type that subclasses all of the types in ``mcls``. Notes ----- A common use case for this is to build composed metaclasses, for example, imagine you have some simple metaclass ``M`` and some instance of ``M`` named ``C`` like so: .. code-block:: python >>> class M(type): ... def __new__(mcls, name, bases, dict_): ... dict_['ayy'] = 'lmao' ... return super(M, mcls).__new__(mcls, name, bases, dict_) >>> from six import with_metaclass >>> class C(with_metaclass(M, object)): ... pass We now want to create a sublclass of ``C`` that is also an abstract class. We can use ``compose_types`` to create a new metaclass that is a subclass of ``M`` and ``ABCMeta``. This is needed because a subclass of a class with a metaclass must have a metaclass which is a subclass of the metaclass of the superclass. .. code-block:: python >>> from abc import ABCMeta, abstractmethod >>> class D(with_metaclass(compose_types(M, ABCMeta), C)): ... @abstractmethod ... def f(self): ... raise NotImplementedError('f') We can see that this class has both metaclasses applied to it: .. code-block:: python >>> D.ayy 'lmao' >>> D() Traceback (most recent call last): ... TypeError: Can't instantiate abstract class D with abstract methods f An important note here is that ``M`` did not use ``type.__new__`` and instead used ``super()``. This is to support cooperative multiple inheritence which is needed for ``compose_types`` to work as intended. After we have composed these types ``M.__new__``\'s super will actually go to ``ABCMeta.__new__`` and not ``type.__new__``. Always using ``super()`` to dispatch to your superclass is best practices anyways so most classes should compose without much special considerations. """ if not cs: # if there are no types to compose then just return the single type return a mcls = (a,) + cs return type( 'compose_types(%s)' % ', '.join(map(attrgetter('__name__'), mcls)), mcls, {}, ) def with_metaclasses(metaclasses, *bases): """Make a class inheriting from ``bases`` whose metaclass inherits from all of ``metaclasses``. Like :func:`six.with_metaclass`, but allows multiple metaclasses. Parameters ---------- metaclasses : iterable[type] A tuple of types to use as metaclasses. *bases : tuple[type] A tuple of types to use as bases. Returns ------- base : type A subtype of ``bases`` whose metaclass is a subtype of ``metaclasses``. Notes ----- The metaclasses must be written to support cooperative multiple inheritance. This means that they must delegate all calls to ``super()`` instead of inlining their super class by name. """ return six.with_metaclass(compose_types(*metaclasses), *bases)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/metautils.py
metautils.py
from collections import OrderedDict from datetime import datetime from distutils.version import StrictVersion from warnings import ( catch_warnings, filterwarnings, ) import numpy as np from numpy import ( broadcast, busday_count, datetime64, diff, dtype, empty, flatnonzero, hstack, isnan, nan, vectorize, where ) from numpy.lib.stride_tricks import as_strided from toolz import flip numpy_version = StrictVersion(np.__version__) uint8_dtype = dtype('uint8') bool_dtype = dtype('bool') int64_dtype = dtype('int64') float32_dtype = dtype('float32') float64_dtype = dtype('float64') complex128_dtype = dtype('complex128') datetime64D_dtype = dtype('datetime64[D]') datetime64ns_dtype = dtype('datetime64[ns]') object_dtype = dtype('O') # We use object arrays for strings. categorical_dtype = object_dtype make_datetime64ns = flip(datetime64, 'ns') make_datetime64D = flip(datetime64, 'D') NaTmap = { dtype('datetime64[%s]' % unit): datetime64('NaT', unit) for unit in ('ns', 'us', 'ms', 's', 'm', 'D') } def NaT_for_dtype(dtype): """Retrieve NaT with the same units as ``dtype``. Parameters ---------- dtype : dtype-coercable The dtype to lookup the NaT value for. Returns ------- NaT : dtype The NaT value for the given dtype. """ return NaTmap[np.dtype(dtype)] NaTns = NaT_for_dtype(datetime64ns_dtype) NaTD = NaT_for_dtype(datetime64D_dtype) _FILLVALUE_DEFAULTS = { bool_dtype: False, float32_dtype: nan, float64_dtype: nan, datetime64ns_dtype: NaTns, object_dtype: None, } INT_DTYPES_BY_SIZE_BYTES = OrderedDict([ (1, dtype('int8')), (2, dtype('int16')), (4, dtype('int32')), (8, dtype('int64')), ]) UNSIGNED_INT_DTYPES_BY_SIZE_BYTES = OrderedDict([ (1, dtype('uint8')), (2, dtype('uint16')), (4, dtype('uint32')), (8, dtype('uint64')), ]) def int_dtype_with_size_in_bytes(size): try: return INT_DTYPES_BY_SIZE_BYTES[size] except KeyError: raise ValueError("No integral dtype whose size is %d bytes." % size) def unsigned_int_dtype_with_size_in_bytes(size): try: return UNSIGNED_INT_DTYPES_BY_SIZE_BYTES[size] except KeyError: raise ValueError( "No unsigned integral dtype whose size is %d bytes." % size ) class NoDefaultMissingValue(Exception): pass def make_kind_check(python_types, numpy_kind): """ Make a function that checks whether a scalar or array is of a given kind (e.g. float, int, datetime, timedelta). """ def check(value): if hasattr(value, 'dtype'): return value.dtype.kind == numpy_kind return isinstance(value, python_types) return check is_float = make_kind_check(float, 'f') is_int = make_kind_check(int, 'i') is_datetime = make_kind_check(datetime, 'M') is_object = make_kind_check(object, 'O') def coerce_to_dtype(dtype, value): """ Make a value with the specified numpy dtype. Only datetime64[ns] and datetime64[D] are supported for datetime dtypes. """ name = dtype.name if name.startswith('datetime64'): if name == 'datetime64[D]': return make_datetime64D(value) elif name == 'datetime64[ns]': return make_datetime64ns(value) else: raise TypeError( "Don't know how to coerce values of dtype %s" % dtype ) return dtype.type(value) def default_missing_value_for_dtype(dtype): """ Get the default fill value for `dtype`. """ try: return _FILLVALUE_DEFAULTS[dtype] except KeyError: raise NoDefaultMissingValue( "No default value registered for dtype %s." % dtype ) def repeat_first_axis(array, count): """ Restride `array` to repeat `count` times along the first axis. Parameters ---------- array : np.array The array to restride. count : int Number of times to repeat `array`. Returns ------- result : array Array of shape (count,) + array.shape, composed of `array` repeated `count` times along the first axis. Example ------- >>> from numpy import arange >>> a = arange(3); a array([0, 1, 2]) >>> repeat_first_axis(a, 2) array([[0, 1, 2], [0, 1, 2]]) >>> repeat_first_axis(a, 4) array([[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]) Notes ---- The resulting array will share memory with `array`. If you need to assign to the input or output, you should probably make a copy first. See Also -------- repeat_last_axis """ return as_strided(array, (count,) + array.shape, (0,) + array.strides) def repeat_last_axis(array, count): """ Restride `array` to repeat `count` times along the last axis. Parameters ---------- array : np.array The array to restride. count : int Number of times to repeat `array`. Returns ------- result : array Array of shape array.shape + (count,) composed of `array` repeated `count` times along the last axis. Example ------- >>> from numpy import arange >>> a = arange(3); a array([0, 1, 2]) >>> repeat_last_axis(a, 2) array([[0, 0], [1, 1], [2, 2]]) >>> repeat_last_axis(a, 4) array([[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]]) Notes ---- The resulting array will share memory with `array`. If you need to assign to the input or output, you should probably make a copy first. See Also -------- repeat_last_axis """ return as_strided(array, array.shape + (count,), array.strides + (0,)) def rolling_window(array, length): """ Restride an array of shape (X_0, ... X_N) into an array of shape (length, X_0 - length + 1, ... X_N) where each slice at index i along the first axis is equivalent to result[i] = array[length * i:length * (i + 1)] Parameters ---------- array : np.ndarray The base array. length : int Length of the synthetic first axis to generate. Returns ------- out : np.ndarray Example ------- >>> from numpy import arange >>> a = arange(25).reshape(5, 5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) >>> rolling_window(a, 2) array([[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9]], <BLANKLINE> [[ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]], <BLANKLINE> [[10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], <BLANKLINE> [[15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]]) """ orig_shape = array.shape if not orig_shape: raise IndexError("Can't restride a scalar.") elif orig_shape[0] <= length: raise IndexError( "Can't restride array of shape {shape} with" " a window length of {len}".format( shape=orig_shape, len=length, ) ) num_windows = (orig_shape[0] - length + 1) new_shape = (num_windows, length) + orig_shape[1:] new_strides = (array.strides[0],) + array.strides return as_strided(array, new_shape, new_strides) # Sentinel value that isn't NaT. _notNaT = make_datetime64D(0) iNaT = int(NaTns.view(int64_dtype)) assert iNaT == NaTD.view(int64_dtype), "iNaTns != iNaTD" def isnat(obj): """ Check if a value is np.NaT. """ if obj.dtype.kind not in ('m', 'M'): raise ValueError("%s is not a numpy datetime or timedelta") return obj.view(int64_dtype) == iNaT def is_missing(data, missing_value): """ Generic is_missing function that handles NaN and NaT. """ if is_float(data) and isnan(missing_value): return isnan(data) elif is_datetime(data) and isnat(missing_value): return isnat(data) return (data == missing_value) def busday_count_mask_NaT(begindates, enddates, out=None): """ Simple of numpy.busday_count that returns `float` arrays rather than int arrays, and handles `NaT`s by returning `NaN`s where the inputs were `NaT`. Doesn't support custom weekdays or calendars, but probably should in the future. See Also -------- np.busday_count """ if out is None: out = empty(broadcast(begindates, enddates).shape, dtype=float) beginmask = isnat(begindates) endmask = isnat(enddates) out = busday_count( # Temporarily fill in non-NaT values. where(beginmask, _notNaT, begindates), where(endmask, _notNaT, enddates), out=out, ) # Fill in entries where either comparison was NaT with nan in the output. out[beginmask | endmask] = nan return out class WarningContext(object): """ Re-usable contextmanager for contextually managing warnings. """ def __init__(self, *warning_specs): self._warning_specs = warning_specs self._catchers = [] def __enter__(self): catcher = catch_warnings() catcher.__enter__() self._catchers.append(catcher) for args, kwargs in self._warning_specs: filterwarnings(*args, **kwargs) return self def __exit__(self, *exc_info): catcher = self._catchers.pop() return catcher.__exit__(*exc_info) def ignore_nanwarnings(): """ Helper for building a WarningContext that ignores warnings from numpy's nanfunctions. """ return WarningContext( ( ('ignore',), {'category': RuntimeWarning, 'module': 'numpy.lib.nanfunctions'}, ) ) def vectorized_is_element(array, choices): """ Check if each element of ``array`` is in choices. Parameters ---------- array : np.ndarray choices : object Object implementing __contains__. Returns ------- was_element : np.ndarray[bool] Array indicating whether each element of ``array`` was in ``choices``. """ return vectorize(choices.__contains__, otypes=[bool])(array) def as_column(a): """ Convert an array of shape (N,) into an array of shape (N, 1). This is equivalent to `a[:, np.newaxis]`. Parameters ---------- a : np.ndarray Example ------- >>> import numpy as np >>> a = np.arange(5) >>> a array([0, 1, 2, 3, 4]) >>> as_column(a) array([[0], [1], [2], [3], [4]]) >>> as_column(a).shape (5, 1) """ if a.ndim != 1: raise ValueError( "as_column expected an 1-dimensional array, " "but got an array of shape %s" % a.shape ) return a[:, None] def changed_locations(a, include_first): """ Compute indices of values in ``a`` that differ from the previous value. Parameters ---------- a : np.ndarray The array on which to indices of change. include_first : bool Whether or not to consider the first index of the array as "changed". Example ------- >>> import numpy as np >>> changed_locations(np.array([0, 0, 5, 5, 1, 1]), include_first=False) array([2, 4]) >>> changed_locations(np.array([0, 0, 5, 5, 1, 1]), include_first=True) array([0, 2, 4]) """ if a.ndim > 1: raise ValueError("indices_of_changed_values only supports 1D arrays.") indices = flatnonzero(diff(a)) + 1 if not include_first: return indices return hstack([[0], indices])
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/numpy_utils.py
numpy_utils.py
import functools from operator import methodcaller import sys from six import PY2 if PY2: from abc import ABCMeta from types import DictProxyType from ctypes import py_object, pythonapi _new_mappingproxy = pythonapi.PyDictProxy_New _new_mappingproxy.argtypes = [py_object] _new_mappingproxy.restype = py_object # Make mappingproxy a "class" so that we can use multipledispatch # with it or do an ``isinstance(ob, mappingproxy)`` check in Python 2. # You will never actually get an instance of this object, you will just # get instances of ``types.DictProxyType``; however, ``mappingproxy`` is # registered as a virtual super class so ``isinstance`` and ``issubclass`` # will work as expected. The only thing that will appear strange is that: # ``type(mappingproxy({})) is not mappingproxy``, but you shouldn't do # that. class mappingproxy(object): __metaclass__ = ABCMeta def __new__(cls, *args, **kwargs): return _new_mappingproxy(*args, **kwargs) mappingproxy.register(DictProxyType) # clear names not imported in the other branch del DictProxyType del ABCMeta del py_object del pythonapi def exc_clear(): sys.exc_clear() def consistent_round(val): return round(val) def update_wrapper(wrapper, wrapped, assigned=functools.WRAPPER_ASSIGNMENTS, updated=functools.WRAPPER_UPDATES): """Backport of Python 3's functools.update_wrapper for __wrapped__. """ for attr in assigned: try: value = getattr(wrapped, attr) except AttributeError: pass else: setattr(wrapper, attr, value) for attr in updated: getattr(wrapper, attr).update(getattr(wrapped, attr, {})) # Issue #17482: set __wrapped__ last so we don't inadvertently copy it # from the wrapped function when updating __dict__ wrapper.__wrapped__ = wrapped # Return the wrapper so this can be used as a decorator via partial() return wrapper def wraps(wrapped, assigned=functools.WRAPPER_ASSIGNMENTS, updated=functools.WRAPPER_UPDATES): """Decorator factory to apply update_wrapper() to a wrapper function Returns a decorator that invokes update_wrapper() with the decorated function as the wrapper argument and the arguments to wraps() as the remaining arguments. Default arguments are as for update_wrapper(). This is a convenience function to simplify applying partial() to update_wrapper(). """ return functools.partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated) values_as_list = methodcaller('values') else: from types import MappingProxyType as mappingproxy from math import ceil def exc_clear(): # exc_clear was removed in Python 3. The except statement automatically # clears the exception. pass def consistent_round(val): if (val % 1) >= 0.5: return ceil(val) else: return round(val) update_wrapper = functools.update_wrapper wraps = functools.wraps def values_as_list(dictionary): """Return the dictionary values as a list without forcing a copy in Python 2. """ return list(dictionary.values()) unicode = type(u'') __all__ = [ 'PY2', 'exc_clear', 'mappingproxy', 'unicode', 'update_wrapper', 'values_as_list', 'wraps', 'consistent_round', ]
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/compat.py
compat.py
from collections import MutableMapping import errno from functools import partial import os import pickle from distutils import dir_util from shutil import rmtree, move from tempfile import mkdtemp, NamedTemporaryFile import pandas as pd from .compat import PY2 from .context_tricks import nop_context from .paths import ensure_directory from .sentinel import sentinel class Expired(Exception): """Marks that a :class:`CachedObject` has expired. """ ExpiredCachedObject = sentinel('ExpiredCachedObject') AlwaysExpired = sentinel('AlwaysExpired') class CachedObject(object): """ A simple struct for maintaining a cached object with an expiration date. Parameters ---------- value : object The object to cache. expires : datetime-like Expiration date of `value`. The cache is considered invalid for dates **strictly greater** than `expires`. Examples -------- >>> from pandas import Timestamp, Timedelta >>> expires = Timestamp('2014', tz='UTC') >>> obj = CachedObject(1, expires) >>> obj.unwrap(expires - Timedelta('1 minute')) 1 >>> obj.unwrap(expires) 1 >>> obj.unwrap(expires + Timedelta('1 minute')) ... # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Expired: 2014-01-01 00:00:00+00:00 """ def __init__(self, value, expires): self._value = value self._expires = expires @classmethod def expired(cls): """Construct a CachedObject that's expired at any time. """ return cls(ExpiredCachedObject, expires=AlwaysExpired) def unwrap(self, dt): """ Get the cached value. Returns ------- value : object The cached value. Raises ------ Expired Raised when `dt` is greater than self.expires. """ expires = self._expires if expires is AlwaysExpired or expires < dt: raise Expired(self._expires) return self._value def _unsafe_get_value(self): """You almost certainly shouldn't use this.""" return self._value class ExpiringCache(object): """ A cache of multiple CachedObjects, which returns the wrapped the value or raises and deletes the CachedObject if the value has expired. Parameters ---------- cache : dict-like, optional An instance of a dict-like object which needs to support at least: `__del__`, `__getitem__`, `__setitem__` If `None`, than a dict is used as a default. cleanup : callable, optional A method that takes a single argument, a cached object, and is called upon expiry of the cached object, prior to deleting the object. If not provided, defaults to a no-op. Examples -------- >>> from pandas import Timestamp, Timedelta >>> expires = Timestamp('2014', tz='UTC') >>> value = 1 >>> cache = ExpiringCache() >>> cache.set('foo', value, expires) >>> cache.get('foo', expires - Timedelta('1 minute')) 1 >>> cache.get('foo', expires + Timedelta('1 minute')) Traceback (most recent call last): ... KeyError: 'foo' """ def __init__(self, cache=None, cleanup=lambda value_to_clean: None): if cache is not None: self._cache = cache else: self._cache = {} self.cleanup = cleanup def get(self, key, dt): """Get the value of a cached object. Parameters ---------- key : any The key to lookup. dt : datetime The time of the lookup. Returns ------- result : any The value for ``key``. Raises ------ KeyError Raised if the key is not in the cache or the value for the key has expired. """ try: return self._cache[key].unwrap(dt) except Expired: self.cleanup(self._cache[key]._unsafe_get_value()) del self._cache[key] raise KeyError(key) def set(self, key, value, expiration_dt): """Adds a new key value pair to the cache. Parameters ---------- key : any The key to use for the pair. value : any The value to store under the name ``key``. expiration_dt : datetime When should this mapping expire? The cache is considered invalid for dates **strictly greater** than ``expiration_dt``. """ self._cache[key] = CachedObject(value, expiration_dt) class dataframe_cache(MutableMapping): """A disk-backed cache for dataframes. ``dataframe_cache`` is a mutable mapping from string names to pandas DataFrame objects. This object may be used as a context manager to delete the cache directory on exit. Parameters ---------- path : str, optional The directory path to the cache. Files will be written as ``path/<keyname>``. lock : Lock, optional Thread lock for multithreaded/multiprocessed access to the cache. If not provided no locking will be used. clean_on_failure : bool, optional Should the directory be cleaned up if an exception is raised in the context manager. serialize : {'msgpack', 'pickle:<n>'}, optional How should the data be serialized. If ``'pickle'`` is passed, an optional pickle protocol can be passed like: ``'pickle:3'`` which says to use pickle protocol 3. Notes ----- The syntax ``cache[:]`` will load all key:value pairs into memory as a dictionary. The cache uses a temporary file format that is subject to change between versions of zipline. """ def __init__(self, path=None, lock=None, clean_on_failure=True, serialization='msgpack'): self.path = path if path is not None else mkdtemp() self.lock = lock if lock is not None else nop_context self.clean_on_failure = clean_on_failure if serialization == 'msgpack': self.serialize = pd.DataFrame.to_msgpack self.deserialize = pd.read_msgpack self._protocol = None else: s = serialization.split(':', 1) if s[0] != 'pickle': raise ValueError( "'serialization' must be either 'msgpack' or 'pickle[:n]'", ) self._protocol = int(s[1]) if len(s) == 2 else None self.serialize = self._serialize_pickle self.deserialize = ( pickle.load if PY2 else partial(pickle.load, encoding='latin-1') ) ensure_directory(self.path) def _serialize_pickle(self, df, path): with open(path, 'wb') as f: pickle.dump(df, f, protocol=self._protocol) def _keypath(self, key): return os.path.join(self.path, key) def __enter__(self): return self def __exit__(self, type_, value, tb): if not (self.clean_on_failure or value is None): # we are not cleaning up after a failure and there was an exception return with self.lock: rmtree(self.path) def __getitem__(self, key): if key == slice(None): return dict(self.items()) with self.lock: try: with open(self._keypath(key), 'rb') as f: return self.deserialize(f) except IOError as e: if e.errno != errno.ENOENT: raise raise KeyError(key) def __setitem__(self, key, value): with self.lock: self.serialize(value, self._keypath(key)) def __delitem__(self, key): with self.lock: try: os.remove(self._keypath(key)) except OSError as e: if e.errno == errno.ENOENT: # raise a keyerror if this directory did not exist raise KeyError(key) # reraise the actual oserror otherwise raise def __iter__(self): return iter(os.listdir(self.path)) def __len__(self): return len(os.listdir(self.path)) def __repr__(self): return '<%s: keys={%s}>' % ( type(self).__name__, ', '.join(map(repr, sorted(self))), ) class working_file(object): """A context manager for managing a temporary file that will be moved to a non-temporary location if no exceptions are raised in the context. Parameters ---------- final_path : str The location to move the file when committing. *args, **kwargs Forwarded to NamedTemporaryFile. Notes ----- The file is moved on __exit__ if there are no exceptions. ``working_file`` uses :func:`shutil.move` to move the actual files, meaning it has as strong of guarantees as :func:`shutil.move`. """ def __init__(self, final_path, *args, **kwargs): self._tmpfile = NamedTemporaryFile(delete=False, *args, **kwargs) self._final_path = final_path @property def path(self): """Alias for ``name`` to be consistent with :class:`~zipline.utils.cache.working_dir`. """ return self._tmpfile.name def _commit(self): """Sync the temporary file to the final path. """ move(self.path, self._final_path) def __enter__(self): self._tmpfile.__enter__() return self def __exit__(self, *exc_info): self._tmpfile.__exit__(*exc_info) if exc_info[0] is None: self._commit() class working_dir(object): """A context manager for managing a temporary directory that will be moved to a non-temporary location if no exceptions are raised in the context. Parameters ---------- final_path : str The location to move the file when committing. *args, **kwargs Forwarded to tmp_dir. Notes ----- The file is moved on __exit__ if there are no exceptions. ``working_dir`` uses :func:`dir_util.copy_tree` to move the actual files, meaning it has as strong of guarantees as :func:`dir_util.copy_tree`. """ def __init__(self, final_path, *args, **kwargs): self.path = mkdtemp() self._final_path = final_path def ensure_dir(self, *path_parts): """Ensures a subdirectory of the working directory. Parameters ---------- path_parts : iterable[str] The parts of the path after the working directory. """ path = self.getpath(*path_parts) ensure_directory(path) return path def getpath(self, *path_parts): """Get a path relative to the working directory. Parameters ---------- path_parts : iterable[str] The parts of the path after the working directory. """ return os.path.join(self.path, *path_parts) def _commit(self): """Sync the temporary directory to the final path. """ dir_util.copy_tree(self.path, self._final_path) def __enter__(self): return self def __exit__(self, *exc_info): if exc_info[0] is None: self._commit() rmtree(self.path)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/cache.py
cache.py
from contextlib import contextmanager from copy import deepcopy from itertools import product import operator as op import warnings import numpy as np import pandas as pd from distutils.version import StrictVersion from trading_calendars.utils.pandas_utils import days_at_time # noqa: reexport pandas_version = StrictVersion(pd.__version__) new_pandas = pandas_version >= StrictVersion('0.19') skip_pipeline_new_pandas = \ 'Pipeline categoricals are not yet compatible with pandas >=0.19' if pandas_version >= StrictVersion('0.20'): def normalize_date(dt): """ Normalize datetime.datetime value to midnight. Returns datetime.date as a datetime.datetime at midnight Returns ------- normalized : datetime.datetime or Timestamp """ return dt.normalize() else: from pandas.tseries.tools import normalize_date # noqa def july_5th_holiday_observance(datetime_index): return datetime_index[datetime_index.year != 2013] def explode(df): """ Take a DataFrame and return a triple of (df.index, df.columns, df.values) """ return df.index, df.columns, df.values def _time_to_micros(time): """Convert a time into microseconds since midnight. Parameters ---------- time : datetime.time The time to convert. Returns ------- us : int The number of microseconds since midnight. Notes ----- This does not account for leap seconds or daylight savings. """ seconds = time.hour * 60 * 60 + time.minute * 60 + time.second return 1000000 * seconds + time.microsecond _opmap = dict(zip( product((True, False), repeat=3), product((op.le, op.lt), (op.le, op.lt), (op.and_, op.or_)), )) def mask_between_time(dts, start, end, include_start=True, include_end=True): """Return a mask of all of the datetimes in ``dts`` that are between ``start`` and ``end``. Parameters ---------- dts : pd.DatetimeIndex The index to mask. start : time Mask away times less than the start. end : time Mask away times greater than the end. include_start : bool, optional Inclusive on ``start``. include_end : bool, optional Inclusive on ``end``. Returns ------- mask : np.ndarray[bool] A bool array masking ``dts``. See Also -------- :meth:`pandas.DatetimeIndex.indexer_between_time` """ # This function is adapted from # `pandas.Datetime.Index.indexer_between_time` which was originally # written by Wes McKinney, Chang She, and Grant Roch. time_micros = dts._get_time_micros() start_micros = _time_to_micros(start) end_micros = _time_to_micros(end) left_op, right_op, join_op = _opmap[ bool(include_start), bool(include_end), start_micros <= end_micros, ] return join_op( left_op(start_micros, time_micros), right_op(time_micros, end_micros), ) def find_in_sorted_index(dts, dt): """ Find the index of ``dt`` in ``dts``. This function should be used instead of `dts.get_loc(dt)` if the index is large enough that we don't want to initialize a hash table in ``dts``. In particular, this should always be used on minutely trading calendars. Parameters ---------- dts : pd.DatetimeIndex Index in which to look up ``dt``. **Must be sorted**. dt : pd.Timestamp ``dt`` to be looked up. Returns ------- ix : int Integer index such that dts[ix] == dt. Raises ------ KeyError If dt is not in ``dts``. """ ix = dts.searchsorted(dt) if ix == len(dts) or dts[ix] != dt: raise LookupError("{dt} is not in {dts}".format(dt=dt, dts=dts)) return ix def nearest_unequal_elements(dts, dt): """ Find values in ``dts`` closest but not equal to ``dt``. Returns a pair of (last_before, first_after). When ``dt`` is less than any element in ``dts``, ``last_before`` is None. When ``dt`` is greater any element in ``dts``, ``first_after`` is None. ``dts`` must be unique and sorted in increasing order. Parameters ---------- dts : pd.DatetimeIndex Dates in which to search. dt : pd.Timestamp Date for which to find bounds. """ if not dts.is_unique: raise ValueError("dts must be unique") if not dts.is_monotonic_increasing: raise ValueError("dts must be sorted in increasing order") if not len(dts): return None, None sortpos = dts.searchsorted(dt, side='left') try: sortval = dts[sortpos] except IndexError: # dt is greater than any value in the array. return dts[-1], None if dt < sortval: lower_ix = sortpos - 1 upper_ix = sortpos elif dt == sortval: lower_ix = sortpos - 1 upper_ix = sortpos + 1 else: lower_ix = sortpos upper_ix = sortpos + 1 lower_value = dts[lower_ix] if lower_ix >= 0 else None upper_value = dts[upper_ix] if upper_ix < len(dts) else None return lower_value, upper_value def timedelta_to_integral_seconds(delta): """ Convert a pd.Timedelta to a number of seconds as an int. """ return int(delta.total_seconds()) def timedelta_to_integral_minutes(delta): """ Convert a pd.Timedelta to a number of minutes as an int. """ return timedelta_to_integral_seconds(delta) // 60 @contextmanager def ignore_pandas_nan_categorical_warning(): with warnings.catch_warnings(): # Pandas >= 0.18 doesn't like null-ish values in categories, but # avoiding that requires a broader change to how missing values are # handled in pipeline, so for now just silence the warning. warnings.filterwarnings( 'ignore', category=FutureWarning, ) yield _INDEXER_NAMES = [ '_' + name for (name, _) in pd.core.indexing.get_indexers_list() ] def clear_dataframe_indexer_caches(df): """ Clear cached attributes from a pandas DataFrame. By default pandas memoizes indexers (`iloc`, `loc`, `ix`, etc.) objects on DataFrames, resulting in refcycles that can lead to unexpectedly long-lived DataFrames. This function attempts to clear those cycles by deleting the cached indexers from the frame. Parameters ---------- df : pd.DataFrame """ for attr in _INDEXER_NAMES: try: delattr(df, attr) except AttributeError: pass def categorical_df_concat(df_list, inplace=False): """ Prepare list of pandas DataFrames to be used as input to pd.concat. Ensure any columns of type 'category' have the same categories across each dataframe. Parameters ---------- df_list : list List of dataframes with same columns. inplace : bool True if input list can be modified. Default is False. Returns ------- concatenated : df Dataframe of concatenated list. """ if not inplace: df_list = deepcopy(df_list) # Assert each dataframe has the same columns/dtypes df = df_list[0] if not all([(df.dtypes.equals(df_i.dtypes)) for df_i in df_list[1:]]): raise ValueError("Input DataFrames must have the same columns/dtypes.") categorical_columns = df.columns[df.dtypes == 'category'] for col in categorical_columns: new_categories = sorted( set().union( *(frame[col].cat.categories for frame in df_list) ) ) with ignore_pandas_nan_categorical_warning(): for df in df_list: df[col].cat.set_categories(new_categories, inplace=True) return pd.concat(df_list) def empty_dataframe(*columns): """Create an empty dataframe with columns of particular types. Parameters ---------- *columns The (column_name, column_dtype) pairs. Returns ------- typed_dataframe : pd.DataFrame The empty typed dataframe. Examples -------- >>> df = empty_dataframe( ... ('a', 'int64'), ... ('b', 'float64'), ... ('c', 'datetime64[ns]'), ... ) >>> df Empty DataFrame Columns: [a, b, c] Index: [] df.dtypes a int64 b float64 c datetime64[ns] dtype: object """ return pd.DataFrame(np.array([], dtype=list(columns)))
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/pandas_utils.py
pandas_utils.py
from errno import EEXIST import os from os.path import exists, expanduser, join import pandas as pd def hidden(path): """Check if a path is hidden. Parameters ---------- path : str A filepath. """ return os.path.split(path)[1].startswith('.') def ensure_directory(path): """ Ensure that a directory named "path" exists. """ try: os.makedirs(path) except OSError as exc: if exc.errno == EEXIST and os.path.isdir(path): return raise def ensure_directory_containing(path): """ Ensure that the directory containing `path` exists. This is just a convenience wrapper for doing:: ensure_directory(os.path.dirname(path)) """ ensure_directory(os.path.dirname(path)) def ensure_file(path): """ Ensure that a file exists. This will create any parent directories needed and create an empty file if it does not exist. Parameters ---------- path : str The file path to ensure exists. """ ensure_directory_containing(path) open(path, 'a+').close() # touch the file def update_modified_time(path, times=None): """ Updates the modified time of an existing file. This will create any parent directories needed and create an empty file if it does not exist. Parameters ---------- path : str The file path to update. times : tuple A tuple of size two; access time and modified time """ ensure_directory_containing(path) os.utime(path, times) def last_modified_time(path): """ Get the last modified time of path as a Timestamp. """ return pd.Timestamp(os.path.getmtime(path), unit='s', tz='UTC') def modified_since(path, dt): """ Check whether `path` was modified since `dt`. Returns False if path doesn't exist. Parameters ---------- path : str Path to the file to be checked. dt : pd.Timestamp The date against which to compare last_modified_time(path). Returns ------- was_modified : bool Will be ``False`` if path doesn't exists, or if its last modified date is earlier than or equal to `dt` """ return exists(path) and last_modified_time(path) > dt def zipline_root(environ=None): """ Get the root directory for all zipline-managed files. For testing purposes, this accepts a dictionary to interpret as the os environment. Parameters ---------- environ : dict, optional A dict to interpret as the os environment. Returns ------- root : string Path to the zipline root dir. """ if environ is None: environ = os.environ root = environ.get('ZIPLINE_ROOT', None) if root is None: root = expanduser('~/.zipline') return root def zipline_path(paths, environ=None): """ Get a path relative to the zipline root. Parameters ---------- paths : list[str] List of requested path pieces. environ : dict, optional An environment dict to forward to zipline_root. Returns ------- newpath : str The requested path joined with the zipline root. """ return join(zipline_root(environ=environ), *paths) def default_extension(environ=None): """ Get the path to the default zipline extension file. Parameters ---------- environ : dict, optional An environment dict to forwart to zipline_root. Returns ------- default_extension_path : str The file path to the default zipline extension file. """ return zipline_path(['extension.py'], environ=environ) def data_root(environ=None): """ The root directory for zipline data files. Parameters ---------- environ : dict, optional An environment dict to forward to zipline_root. Returns ------- data_root : str The zipline data root. """ return zipline_path(['data'], environ=environ) def ensure_data_root(environ=None): """ Ensure that the data root exists. """ ensure_directory(data_root(environ=environ)) def data_path(paths, environ=None): """ Get a path relative to the zipline data directory. Parameters ---------- paths : iterable[str] List of requested path pieces. environ : dict, optional An environment dict to forward to zipline_root. Returns ------- newpath : str The requested path joined with the zipline data root. """ return zipline_path(['data'] + list(paths), environ=environ) def cache_root(environ=None): """ The root directory for zipline cache files. Parameters ---------- environ : dict, optional An environment dict to forward to zipline_root. Returns ------- cache_root : str The zipline cache root. """ return zipline_path(['cache'], environ=environ) def ensure_cache_root(environ=None): """ Ensure that the data root exists. """ ensure_directory(cache_root(environ=environ)) def cache_path(paths, environ=None): """ Get a path relative to the zipline cache directory. Parameters ---------- paths : iterable[str] List of requested path pieces. environ : dict, optional An environment dict to forward to zipline_root. Returns ------- newpath : str The requested path joined with the zipline cache root. """ return zipline_path(['cache'] + list(paths), environ=environ)
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/paths.py
paths.py
from collections import namedtuple import inspect from itertools import chain from six.moves import map, zip_longest from zipline.errors import ZiplineError Argspec = namedtuple('Argspec', ['args', 'starargs', 'kwargs']) def singleton(cls): instances = {} def getinstance(): if cls not in instances: instances[cls] = cls() return instances[cls] return getinstance @singleton class Ignore(object): def __str__(self): return 'Argument.ignore' __repr__ = __str__ @singleton class NoDefault(object): def __str__(self): return 'Argument.no_default' __repr__ = __str__ @singleton class AnyDefault(object): def __str__(self): return 'Argument.any_default' __repr__ = __str__ class Argument(namedtuple('Argument', ['name', 'default'])): """ An argument to a function. Argument.no_default is a value representing no default to the argument. Argument.ignore is a value that says you should ignore the default value. """ no_default = NoDefault() any_default = AnyDefault() ignore = Ignore() def __new__(cls, name=ignore, default=ignore): return super(Argument, cls).__new__(cls, name, default) def __str__(self): if self.has_no_default(self) or self.ignore_default(self): return str(self.name) else: return '='.join([str(self.name), str(self.default)]) def __repr__(self): return 'Argument(%s, %s)' % (repr(self.name), repr(self.default)) def _defaults_match(self, arg): return any(map(Argument.ignore_default, [self, arg])) \ or (self.default is Argument.any_default and arg.default is not Argument.no_default) \ or (arg.default is Argument.any_default and self.default is not Argument.no_default) \ or self.default == arg.default def _names_match(self, arg): return self.name == arg.name \ or self.name is Argument.ignore \ or arg.name is Argument.ignore def matches(self, arg): return self._names_match(arg) and self._defaults_match(arg) __eq__ = matches @staticmethod def parse_argspec(callable_): """ Takes a callable and returns a tuple with the list of Argument objects, the name of *args, and the name of **kwargs. If *args or **kwargs is not present, it will be None. This returns a namedtuple called Argspec that has three fields named: args, starargs, and kwargs. """ args, varargs, keywords, defaults = inspect.getargspec(callable_) defaults = list(defaults or []) if getattr(callable_, '__self__', None) is not None: # This is a bound method, drop the self param. args = args[1:] first_default = len(args) - len(defaults) return Argspec( [Argument(arg, Argument.no_default if n < first_default else defaults[n - first_default]) for n, arg in enumerate(args)], varargs, keywords, ) @staticmethod def has_no_default(arg): return arg.default is Argument.no_default @staticmethod def ignore_default(arg): return arg.default is Argument.ignore def _expect_extra(expected, present, exc_unexpected, exc_missing, exc_args): """ Checks for the presence of an extra to the argument list. Raises expections if this is unexpected or if it is missing and expected. """ if present: if not expected: raise exc_unexpected(*exc_args) elif expected and expected is not Argument.ignore: raise exc_missing(*exc_args) def verify_callable_argspec(callable_, expected_args=Argument.ignore, expect_starargs=Argument.ignore, expect_kwargs=Argument.ignore): """ Checks the callable_ to make sure that it satisfies the given expectations. expected_args should be an iterable of Arguments in the order you expect to receive them. expect_starargs means that the function should or should not take a *args param. expect_kwargs says the callable should or should not take **kwargs param. If expected_args, expect_starargs, or expect_kwargs is Argument.ignore, then the checks related to that argument will not occur. Example usage: callable_check( f, [Argument('a'), Argument('b', 1)], expect_starargs=True, expect_kwargs=Argument.ignore ) """ if not callable(callable_): raise NotCallable(callable_) expected_arg_list = list( expected_args if expected_args is not Argument.ignore else [] ) args, starargs, kwargs = Argument.parse_argspec(callable_) exc_args = callable_, args, starargs, kwargs # Check the *args. _expect_extra( expect_starargs, starargs, UnexpectedStarargs, NoStarargs, exc_args, ) # Check the **kwargs. _expect_extra( expect_kwargs, kwargs, UnexpectedKwargs, NoKwargs, exc_args, ) if expected_args is Argument.ignore: # Ignore the argument list checks. return if len(args) < len(expected_arg_list): # One or more argument that we expected was not present. raise NotEnoughArguments( callable_, args, starargs, kwargs, [arg for arg in expected_arg_list if arg not in args], ) elif len(args) > len(expected_arg_list): raise TooManyArguments( callable_, args, starargs, kwargs ) # Empty argument that will not match with any actual arguments. missing_arg = Argument(object(), object()) for expected, provided in zip_longest(expected_arg_list, args, fillvalue=missing_arg): if not expected.matches(provided): raise MismatchedArguments( callable_, args, starargs, kwargs ) class BadCallable(TypeError, AssertionError, ZiplineError): """ The given callable is not structured in the expected way. """ _lambda_name = (lambda: None).__name__ def __init__(self, callable_, args, starargs, kwargs): self.callable_ = callable_ self.args = args self.starargs = starargs self.kwargsname = kwargs self.kwargs = {} def format_callable(self): if self.callable_.__name__ == self._lambda_name: fmt = '%s %s' name = 'lambda' else: fmt = '%s(%s)' name = self.callable_.__name__ return fmt % ( name, ', '.join( chain( (str(arg) for arg in self.args), ('*' + sa for sa in (self.starargs,) if sa is not None), ('**' + ka for ka in (self.kwargsname,) if ka is not None), ) ) ) @property def msg(self): return str(self) class NoStarargs(BadCallable): def __str__(self): return '%s does not allow for *args' % self.format_callable() class UnexpectedStarargs(BadCallable): def __str__(self): return '%s should not allow for *args' % self.format_callable() class NoKwargs(BadCallable): def __str__(self): return '%s does not allow for **kwargs' % self.format_callable() class UnexpectedKwargs(BadCallable): def __str__(self): return '%s should not allow for **kwargs' % self.format_callable() class NotCallable(BadCallable): """ The provided 'callable' is not actually a callable. """ def __init__(self, callable_): self.callable_ = callable_ def __str__(self): return '%s is not callable' % self.format_callable() def format_callable(self): try: return self.callable_.__name__ except AttributeError: return str(self.callable_) class NotEnoughArguments(BadCallable): """ The callback does not accept enough arguments. """ def __init__(self, callable_, args, starargs, kwargs, missing_args): super(NotEnoughArguments, self).__init__( callable_, args, starargs, kwargs ) self.missing_args = missing_args def __str__(self): missing_args = list(map(str, self.missing_args)) return '%s is missing argument%s: %s' % ( self.format_callable(), 's' if len(missing_args) > 1 else '', ', '.join(missing_args), ) class TooManyArguments(BadCallable): """ The callback cannot be called by passing the expected number of arguments. """ def __str__(self): return '%s accepts too many arguments' % self.format_callable() class MismatchedArguments(BadCallable): """ The argument lists are of the same lengths, but not in the correct order. """ def __str__(self): return '%s accepts mismatched parameters' % self.format_callable()
zipline-live2-vk
/zipline-live2-vk-1.3.0.7.0.18.tar.gz/zipline-live2-vk-1.3.0.7.0.18/zipline/utils/argcheck.py
argcheck.py