code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
from six.moves import map as imap from toolz import compose, identity class ApplyAsyncResult(object): """An object that boxes results for calls to :meth:`~zipline.utils.pool.SequentialPool.apply_async`. Parameters ---------- value : any The result of calling the function, or any exception that was raised. successful : bool If ``True``, ``value`` is the return value of the function. If ``False``, ``value`` is the exception that was raised when calling the functions. """ def __init__(self, value, successful): self._value = value self._successful = successful def successful(self): """Did the function execute without raising an exception? """ return self._successful def get(self): """Return the result of calling the function or reraise any exceptions that were raised. """ if not self._successful: raise self._value return self._value def ready(self): """Has the function finished executing. Notes ----- In the :class:`~zipline.utils.pool.SequentialPool` case, this is always ``True``. """ return True def wait(self): """Wait until the function is finished executing. Notes ----- In the :class:`~zipline.utils.pool.SequentialPool` case, this is a nop because the function is computed eagerly in the same thread as the call to :meth:`~zipline.utils.pool.SequentialPool.apply_async`. """ pass class SequentialPool(object): """A dummy pool object that iterates sequentially in a single thread. Methods ------- map(f: callable[A, B], iterable: iterable[A]) -> list[B] Apply a function to each of the elements of ``iterable``. imap(f: callable[A, B], iterable: iterable[A]) -> iterable[B] Lazily apply a function to each of the elements of ``iterable``. imap_unordered(f: callable[A, B], iterable: iterable[A]) -> iterable[B] Lazily apply a function to each of the elements of ``iterable`` but yield values as they become available. The resulting iterable is unordered. Notes ----- This object is useful for testing to mock out the ``Pool`` interface provided by gevent or multiprocessing. See Also -------- :class:`multiprocessing.Pool` """ map = staticmethod(compose(list, imap)) imap = imap_unordered = staticmethod(imap) @staticmethod def apply_async(f, args=(), kwargs=None, callback=None): """Apply a function but emulate the API of an asynchronous call. Parameters ---------- f : callable The function to call. args : tuple, optional The positional arguments. kwargs : dict, optional The keyword arguments. Returns ------- future : ApplyAsyncResult The result of calling the function boxed in a future-like api. Notes ----- This calls the function eagerly but wraps it so that ``SequentialPool`` can be used where a :class:`multiprocessing.Pool` or :class:`gevent.pool.Pool` would be used. """ try: value = (identity if callback is None else callback)( f(*args, **kwargs or {}), ) successful = True except Exception as e: value = e successful = False return ApplyAsyncResult(value, successful) @staticmethod def apply(f, args=(), kwargs=None): """Apply a function. Parameters ---------- f : callable The function to call. args : tuple, optional The positional arguments. kwargs : dict, optional The keyword arguments. Returns ------- result : any f(*args, **kwargs) """ return f(*args, **kwargs or {}) @staticmethod def close(): pass @staticmethod def join(): pass
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/pool.py
pool.py
import re from six import iteritems from textwrap import dedent from toolz import curry PIPELINE_DOWNSAMPLING_FREQUENCY_DOC = dedent( """\ frequency : {'year_start', 'quarter_start', 'month_start', 'week_start'} A string indicating desired sampling dates: * 'year_start' -> first trading day of each year * 'quarter_start' -> first trading day of January, April, July, October * 'month_start' -> first trading day of each month * 'week_start' -> first trading_day of each week """ ) PIPELINE_ALIAS_NAME_DOC = dedent( """\ name : str The name to alias this term as. """, ) def pad_lines_after_first(prefix, s): """Apply a prefix to each line in s after the first.""" return ('\n' + prefix).join(s.splitlines()) def format_docstring(owner_name, docstring, formatters): """ Template ``formatters`` into ``docstring``. Parameters ---------- owner_name : str The name of the function or class whose docstring is being templated. Only used for error messages. docstring : str The docstring to template. formatters : dict[str -> str] Parameters for a a str.format() call on ``docstring``. Multi-line values in ``formatters`` will have leading whitespace padded to match the leading whitespace of the substitution string. """ # Build a dict of parameters to a vanilla format() call by searching for # each entry in **formatters and applying any leading whitespace to each # line in the desired substitution. format_params = {} for target, doc_for_target in iteritems(formatters): # Search for '{name}', with optional leading whitespace. regex = re.compile('^(\s*)' + '({' + target + '})$', re.MULTILINE) matches = regex.findall(docstring) if not matches: raise ValueError( "Couldn't find template for parameter {!r} in docstring " "for {}." "\nParameter name must be alone on a line surrounded by " "braces.".format(target, owner_name), ) elif len(matches) > 1: raise ValueError( "Couldn't found multiple templates for parameter {!r}" "in docstring for {}." "\nParameter should only appear once.".format( target, owner_name ) ) (leading_whitespace, _) = matches[0] format_params[target] = pad_lines_after_first( leading_whitespace, doc_for_target, ) return docstring.format(**format_params) def templated_docstring(**docs): """ Decorator allowing the use of templated docstrings. Examples -------- >>> @templated_docstring(foo='bar') ... def my_func(self, foo): ... '''{foo}''' ... >>> my_func.__doc__ 'bar' """ def decorator(f): f.__doc__ = format_docstring(f.__name__, f.__doc__, docs) return f return decorator @curry def copydoc(from_, to): """Copies the docstring from one function to another. Parameters ---------- from_ : any The object to copy the docstring from. to : any The object to copy the docstring to. Returns ------- to : any ``to`` with the docstring from ``from_`` """ to.__doc__ = from_.__doc__ return to
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/sharedoc.py
sharedoc.py
from abc import ABCMeta, abstractmethod from six import with_metaclass, iteritems # Consistent error to be thrown in various cases regarding overriding # `final` attributes. _type_error = TypeError('Cannot override final attribute') def bases_mro(bases): """ Yield classes in the order that methods should be looked up from the base classes of an object. """ for base in bases: for class_ in base.__mro__: yield class_ def is_final(name, mro): """ Checks if `name` is a `final` object in the given `mro`. We need to check the mro because we need to directly go into the __dict__ of the classes. Because `final` objects are descriptor, we need to grab them _BEFORE_ the `__call__` is invoked. """ return any(isinstance(getattr(c, '__dict__', {}).get(name), final) for c in bases_mro(mro)) class FinalMeta(type): """A metaclass template for classes the want to prevent subclassess from overriding a some methods or attributes. """ def __new__(mcls, name, bases, dict_): for k, v in iteritems(dict_): if is_final(k, bases): raise _type_error setattr_ = dict_.get('__setattr__') if setattr_ is None: # No `__setattr__` was explicitly defined, look up the super # class's. `bases[0]` will have a `__setattr__` because # `object` does so we don't need to worry about the mro. setattr_ = bases[0].__setattr__ if not is_final('__setattr__', bases) \ and not isinstance(setattr_, final): # implicitly make the `__setattr__` a `final` object so that # users cannot just avoid the descriptor protocol. dict_['__setattr__'] = final(setattr_) return super(FinalMeta, mcls).__new__(mcls, name, bases, dict_) def __setattr__(self, name, value): """This stops the `final` attributes from being reassigned on the class object. """ if is_final(name, self.__mro__): raise _type_error super(FinalMeta, self).__setattr__(name, value) class final(with_metaclass(ABCMeta)): """ An attribute that cannot be overridden. This is like the final modifier in Java. Example usage: >>> from six import with_metaclass >>> class C(with_metaclass(FinalMeta, object)): ... @final ... def f(self): ... return 'value' ... This constructs a class with final method `f`. This cannot be overridden on the class object or on any instance. You cannot override this by subclassing `C`; attempting to do so will raise a `TypeError` at class construction time. """ def __new__(cls, attr): # Decide if this is a method wrapper or an attribute wrapper. # We are going to cache the `callable` check by creating a # method or attribute wrapper. if hasattr(attr, '__get__'): return object.__new__(finaldescriptor) else: return object.__new__(finalvalue) def __init__(self, attr): self._attr = attr def __set__(self, instance, value): """ `final` objects cannot be reassigned. This is the most import concept about `final`s. Unlike a `property` object, this will raise a `TypeError` when you attempt to reassign it. """ raise _type_error @abstractmethod def __get__(self, instance, owner): raise NotImplementedError('__get__') class finalvalue(final): """ A wrapper for a non-descriptor attribute. """ def __get__(self, instance, owner): return self._attr class finaldescriptor(final): """ A final wrapper around a descriptor. """ def __get__(self, instance, owner): return self._attr.__get__(instance, owner)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/final.py
final.py
import warnings from datetime import datetime from os import listdir import os.path import pandas as pd import pytz import zipline from zipline.errors import SymbolNotFound from zipline.finance.asset_restrictions import SecurityListRestrictions from zipline.zipline_warnings import ZiplineDeprecationWarning DATE_FORMAT = "%Y%m%d" zipline_dir = os.path.dirname(zipline.__file__) SECURITY_LISTS_DIR = os.path.join(zipline_dir, 'resources', 'security_lists') class SecurityList(object): def __init__(self, data, current_date_func, asset_finder): """ data: a nested dictionary: knowledge_date -> lookup_date -> {add: [symbol list], 'delete': []}, delete: [symbol list]} current_date_func: function taking no parameters, returning current datetime """ self.data = data self._cache = {} self._knowledge_dates = self.make_knowledge_dates(self.data) self.current_date = current_date_func self.count = 0 self._current_set = set() self.asset_finder = asset_finder def make_knowledge_dates(self, data): knowledge_dates = sorted( [pd.Timestamp(k) for k in data.keys()]) return knowledge_dates def __iter__(self): warnings.warn( 'Iterating over security_lists is deprecated. Use ' '`for sid in <security_list>.current_securities(dt)` instead.', category=ZiplineDeprecationWarning, stacklevel=2 ) return iter(self.current_securities(self.current_date())) def __contains__(self, item): warnings.warn( 'Evaluating inclusion in security_lists is deprecated. Use ' '`sid in <security_list>.current_securities(dt)` instead.', category=ZiplineDeprecationWarning, stacklevel=2 ) return item in self.current_securities(self.current_date()) def current_securities(self, dt): for kd in self._knowledge_dates: if dt < kd: break if kd in self._cache: self._current_set = self._cache[kd] continue for effective_date, changes in iter(self.data[kd].items()): self.update_current( effective_date, changes['add'], self._current_set.add ) self.update_current( effective_date, changes['delete'], self._current_set.remove ) self._cache[kd] = self._current_set return self._current_set def update_current(self, effective_date, symbols, change_func): for symbol in symbols: try: asset = self.asset_finder.lookup_symbol( symbol, as_of_date=effective_date ) # Pass if no Asset exists for the symbol except SymbolNotFound: continue change_func(asset.sid) class SecurityListSet(object): # provide a cut point to substitute other security # list implementations. security_list_type = SecurityList def __init__(self, current_date_func, asset_finder): self.current_date_func = current_date_func self.asset_finder = asset_finder self._leveraged_etf = None @property def leveraged_etf_list(self): if self._leveraged_etf is None: self._leveraged_etf = self.security_list_type( load_from_directory('leveraged_etf_list'), self.current_date_func, asset_finder=self.asset_finder ) return self._leveraged_etf @property def restrict_leveraged_etfs(self): return SecurityListRestrictions(self.leveraged_etf_list) def load_from_directory(list_name): """ To resolve the symbol in the LEVERAGED_ETF list, the date on which the symbol was in effect is needed. Furthermore, to maintain a point in time record of our own maintenance of the restricted list, we need a knowledge date. Thus, restricted lists are dictionaries of datetime->symbol lists. new symbols should be entered as a new knowledge date entry. This method assumes a directory structure of: SECURITY_LISTS_DIR/listname/knowledge_date/lookup_date/add.txt SECURITY_LISTS_DIR/listname/knowledge_date/lookup_date/delete.txt The return value is a dictionary with: knowledge_date -> lookup_date -> {add: [symbol list], 'delete': [symbol list]} """ data = {} dir_path = os.path.join(SECURITY_LISTS_DIR, list_name) for kd_name in listdir(dir_path): kd = datetime.strptime(kd_name, DATE_FORMAT).replace( tzinfo=pytz.utc) data[kd] = {} kd_path = os.path.join(dir_path, kd_name) for ld_name in listdir(kd_path): ld = datetime.strptime(ld_name, DATE_FORMAT).replace( tzinfo=pytz.utc) data[kd][ld] = {} ld_path = os.path.join(kd_path, ld_name) for fname in listdir(ld_path): fpath = os.path.join(ld_path, fname) with open(fpath) as f: symbols = f.read().splitlines() data[kd][ld][fname] = symbols return data
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/security_list.py
security_list.py
import pandas as pd import pytz # import warnings from datetime import datetime from dateutil import rrule from functools import partial # from zipline.zipline_warnings import ZiplineDeprecationWarning # IMPORTANT: This module is deprecated and is only here for temporary backwards # compatibility. Look at the `trading-calendars` # module, as well as the calendar definitions in `trading_calendars`. # TODO: The new calendar API is currently in flux, so the deprecation # warning for this module is currently disabled. Re-enable once # the new API is stabilized. # # warnings.warn( # "The `tradingcalendar` module is deprecated. See the " # "`trading-calendars` module, as well as the " # "calendar definitions in `trading-calendars`.", # category=ZiplineDeprecationWarning, # stacklevel=1, # ) start = pd.Timestamp('1990-01-01', tz='UTC') end_base = pd.Timestamp('today', tz='UTC') # Give an aggressive buffer for logic that needs to use the next trading # day or minute. end = end_base + pd.Timedelta(days=365) def canonicalize_datetime(dt): # Strip out any HHMMSS or timezone info in the user's datetime, so that # all the datetimes we return will be 00:00:00 UTC. return datetime(dt.year, dt.month, dt.day, tzinfo=pytz.utc) def get_non_trading_days(start, end): non_trading_rules = [] start = canonicalize_datetime(start) end = canonicalize_datetime(end) weekends = rrule.rrule( rrule.YEARLY, byweekday=(rrule.SA, rrule.SU), cache=True, dtstart=start, until=end ) non_trading_rules.append(weekends) new_years = rrule.rrule( rrule.MONTHLY, byyearday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years) new_years_sunday = rrule.rrule( rrule.MONTHLY, byyearday=2, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years_sunday) mlk_day = rrule.rrule( rrule.MONTHLY, bymonth=1, byweekday=(rrule.MO(+3)), cache=True, dtstart=datetime(1998, 1, 1, tzinfo=pytz.utc), until=end ) non_trading_rules.append(mlk_day) presidents_day = rrule.rrule( rrule.MONTHLY, bymonth=2, byweekday=(rrule.MO(3)), cache=True, dtstart=start, until=end ) non_trading_rules.append(presidents_day) good_friday = rrule.rrule( rrule.DAILY, byeaster=-2, cache=True, dtstart=start, until=end ) non_trading_rules.append(good_friday) memorial_day = rrule.rrule( rrule.MONTHLY, bymonth=5, byweekday=(rrule.MO(-1)), cache=True, dtstart=start, until=end ) non_trading_rules.append(memorial_day) july_4th = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=4, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th) july_4th_sunday = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th_sunday) july_4th_saturday = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th_saturday) labor_day = rrule.rrule( rrule.MONTHLY, bymonth=9, byweekday=(rrule.MO(1)), cache=True, dtstart=start, until=end ) non_trading_rules.append(labor_day) thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, byweekday=(rrule.TH(4)), cache=True, dtstart=start, until=end ) non_trading_rules.append(thanksgiving) christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=25, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas) christmas_sunday = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas_sunday) # If Christmas is a Saturday then 24th, a Friday is observed. christmas_saturday = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas_saturday) non_trading_ruleset = rrule.rruleset() for rule in non_trading_rules: non_trading_ruleset.rrule(rule) non_trading_days = non_trading_ruleset.between(start, end, inc=True) # Add September 11th closings # http://en.wikipedia.org/wiki/Aftermath_of_the_September_11_attacks # Due to the terrorist attacks, the stock market did not open on 9/11/2001 # It did not open again until 9/17/2001. # # September 2001 # Su Mo Tu We Th Fr Sa # 1 # 2 3 4 5 6 7 8 # 9 10 11 12 13 14 15 # 16 17 18 19 20 21 22 # 23 24 25 26 27 28 29 # 30 for day_num in range(11, 17): non_trading_days.append( datetime(2001, 9, day_num, tzinfo=pytz.utc)) # Add closings due to Hurricane Sandy in 2012 # http://en.wikipedia.org/wiki/Hurricane_sandy # # The stock exchange was closed due to Hurricane Sandy's # impact on New York. # It closed on 10/29 and 10/30, reopening on 10/31 # October 2012 # Su Mo Tu We Th Fr Sa # 1 2 3 4 5 6 # 7 8 9 10 11 12 13 # 14 15 16 17 18 19 20 # 21 22 23 24 25 26 27 # 28 29 30 31 for day_num in range(29, 31): non_trading_days.append( datetime(2012, 10, day_num, tzinfo=pytz.utc)) # Misc closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # National Days of Mourning # - President Richard Nixon non_trading_days.append(datetime(1994, 4, 27, tzinfo=pytz.utc)) # - President Ronald W. Reagan - June 11, 2004 non_trading_days.append(datetime(2004, 6, 11, tzinfo=pytz.utc)) # - President Gerald R. Ford - Jan 2, 2007 non_trading_days.append(datetime(2007, 1, 2, tzinfo=pytz.utc)) non_trading_days.sort() return pd.DatetimeIndex(non_trading_days) non_trading_days = get_non_trading_days(start, end) trading_day = pd.tseries.offsets.CDay(holidays=non_trading_days) def get_trading_days(start, end, trading_day=trading_day): return pd.date_range(start=start.date(), end=end.date(), freq=trading_day).tz_localize('UTC') trading_days = get_trading_days(start, end) def get_early_closes(start, end): # 1:00 PM close rules based on # http://quant.stackexchange.com/questions/4083/nyse-early-close-rules-july-4th-and-dec-25th # noqa # and verified against http://www.nyse.com/pdfs/closings.pdf # These rules are valid starting in 1993 start = canonicalize_datetime(start) end = canonicalize_datetime(end) start = max(start, datetime(1993, 1, 1, tzinfo=pytz.utc)) end = max(end, datetime(1993, 1, 1, tzinfo=pytz.utc)) # Not included here are early closes prior to 1993 # or unplanned early closes early_close_rules = [] day_after_thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, # 4th Friday isn't correct if month starts on Friday, so restrict to # day range: byweekday=(rrule.FR), bymonthday=range(23, 30), cache=True, dtstart=start, until=end ) early_close_rules.append(day_after_thanksgiving) christmas_eve = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=(rrule.MO, rrule.TU, rrule.WE, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(christmas_eve) friday_after_christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.FR, cache=True, dtstart=start, # valid 1993-2007 until=min(end, datetime(2007, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(friday_after_christmas) day_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=(rrule.MO, rrule.TU, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(day_before_independence_day) day_after_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.FR, cache=True, dtstart=start, # starting in 2013: wednesday before independence day until=min(end, datetime(2012, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(day_after_independence_day) wednesday_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.WE, cache=True, # starting in 2013 dtstart=max(start, datetime(2013, 1, 1, tzinfo=pytz.utc)), until=max(end, datetime(2013, 1, 1, tzinfo=pytz.utc)) ) early_close_rules.append(wednesday_before_independence_day) early_close_ruleset = rrule.rruleset() for rule in early_close_rules: early_close_ruleset.rrule(rule) early_closes = early_close_ruleset.between(start, end, inc=True) # Misc early closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # New Year's Eve nye_1999 = datetime(1999, 12, 31, tzinfo=pytz.utc) if start <= nye_1999 and nye_1999 <= end: early_closes.append(nye_1999) early_closes.sort() return pd.DatetimeIndex(early_closes) early_closes = get_early_closes(start, end) def get_open_and_close(day, early_closes): market_open = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=9, minute=31), tz='US/Eastern').tz_convert('UTC') # 1 PM if early close, 4 PM otherwise close_hour = 13 if day in early_closes else 16 market_close = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=close_hour), tz='US/Eastern').tz_convert('UTC') return market_open, market_close def get_open_and_closes(trading_days, early_closes, get_open_and_close): open_and_closes = pd.DataFrame(index=trading_days, columns=('market_open', 'market_close')) get_o_and_c = partial(get_open_and_close, early_closes=early_closes) open_and_closes['market_open'], open_and_closes['market_close'] = \ zip(*open_and_closes.index.map(get_o_and_c)) return open_and_closes open_and_closes = get_open_and_closes(trading_days, early_closes, get_open_and_close)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/tradingcalendar.py
tradingcalendar.py
from ctypes import ( Structure, c_ubyte, c_uint, c_ulong, c_ulonglong, c_ushort, sizeof, ) import numpy as np import pandas as pd from six.moves import range _inttypes_map = { sizeof(t) - 1: t for t in { c_ubyte, c_uint, c_ulong, c_ulonglong, c_ushort } } _inttypes = list( pd.Series(_inttypes_map).reindex( range(max(_inttypes_map.keys())), method='bfill', ), ) def enum(option, *options): """ Construct a new enum object. Parameters ---------- *options : iterable of str The names of the fields for the enum. Returns ------- enum A new enum collection. Examples -------- >>> e = enum('a', 'b', 'c') >>> e <enum: ('a', 'b', 'c')> >>> e.a 0 >>> e.b 1 >>> e.a in e True >>> tuple(e) (0, 1, 2) Notes ----- Identity checking is not guaranteed to work with enum members, instead equality checks should be used. From CPython's documentation: "The current implementation keeps an array of integer objects for all integers between -5 and 256, when you create an int in that range you actually just get back a reference to the existing object. So it should be possible to change the value of 1. I suspect the behaviour of Python in this case is undefined. :-)" """ options = (option,) + options rangeob = range(len(options)) try: inttype = _inttypes[int(np.log2(len(options) - 1)) // 8] except IndexError: raise OverflowError( 'Cannot store enums with more than sys.maxsize elements, got %d' % len(options), ) class _enum(Structure): _fields_ = [(o, inttype) for o in options] def __iter__(self): return iter(rangeob) def __contains__(self, value): return 0 <= value < len(options) def __repr__(self): return '<enum: %s>' % ( ('%d fields' % len(options)) if len(options) > 10 else repr(options) ) return _enum(*rangeob)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/enum.py
enum.py
from operator import attrgetter import six def compose_types(a, *cs): """Compose multiple classes together. Parameters ---------- *mcls : tuple[type] The classes that you would like to compose Returns ------- cls : type A type that subclasses all of the types in ``mcls``. Notes ----- A common use case for this is to build composed metaclasses, for example, imagine you have some simple metaclass ``M`` and some instance of ``M`` named ``C`` like so: .. code-block:: python >>> class M(type): ... def __new__(mcls, name, bases, dict_): ... dict_['ayy'] = 'lmao' ... return super(M, mcls).__new__(mcls, name, bases, dict_) >>> from six import with_metaclass >>> class C(with_metaclass(M, object)): ... pass We now want to create a sublclass of ``C`` that is also an abstract class. We can use ``compose_types`` to create a new metaclass that is a subclass of ``M`` and ``ABCMeta``. This is needed because a subclass of a class with a metaclass must have a metaclass which is a subclass of the metaclass of the superclass. .. code-block:: python >>> from abc import ABCMeta, abstractmethod >>> class D(with_metaclass(compose_types(M, ABCMeta), C)): ... @abstractmethod ... def f(self): ... raise NotImplementedError('f') We can see that this class has both metaclasses applied to it: .. code-block:: python >>> D.ayy 'lmao' >>> D() Traceback (most recent call last): ... TypeError: Can't instantiate abstract class D with abstract methods f An important note here is that ``M`` did not use ``type.__new__`` and instead used ``super()``. This is to support cooperative multiple inheritence which is needed for ``compose_types`` to work as intended. After we have composed these types ``M.__new__``\'s super will actually go to ``ABCMeta.__new__`` and not ``type.__new__``. Always using ``super()`` to dispatch to your superclass is best practices anyways so most classes should compose without much special considerations. """ if not cs: # if there are no types to compose then just return the single type return a mcls = (a,) + cs return type( 'compose_types(%s)' % ', '.join(map(attrgetter('__name__'), mcls)), mcls, {}, ) def with_metaclasses(metaclasses, *bases): """Make a class inheriting from ``bases`` whose metaclass inherits from all of ``metaclasses``. Like :func:`six.with_metaclass`, but allows multiple metaclasses. Parameters ---------- metaclasses : iterable[type] A tuple of types to use as metaclasses. *bases : tuple[type] A tuple of types to use as bases. Returns ------- base : type A subtype of ``bases`` whose metaclass is a subtype of ``metaclasses``. Notes ----- The metaclasses must be written to support cooperative multiple inheritance. This means that they must delegate all calls to ``super()`` instead of inlining their super class by name. """ return six.with_metaclass(compose_types(*metaclasses), *bases)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/metautils.py
metautils.py
from collections import OrderedDict from datetime import datetime from distutils.version import StrictVersion from warnings import ( catch_warnings, filterwarnings, ) import numpy as np from numpy import ( broadcast, busday_count, datetime64, diff, dtype, empty, flatnonzero, hstack, isnan, nan, vectorize, where ) from numpy.lib.stride_tricks import as_strided from toolz import flip numpy_version = StrictVersion(np.__version__) uint8_dtype = dtype('uint8') bool_dtype = dtype('bool') int64_dtype = dtype('int64') float32_dtype = dtype('float32') float64_dtype = dtype('float64') complex128_dtype = dtype('complex128') datetime64D_dtype = dtype('datetime64[D]') datetime64ns_dtype = dtype('datetime64[ns]') object_dtype = dtype('O') # We use object arrays for strings. categorical_dtype = object_dtype make_datetime64ns = flip(datetime64, 'ns') make_datetime64D = flip(datetime64, 'D') NaTmap = { dtype('datetime64[%s]' % unit): datetime64('NaT', unit) for unit in ('ns', 'us', 'ms', 's', 'm', 'D') } def NaT_for_dtype(dtype): """Retrieve NaT with the same units as ``dtype``. Parameters ---------- dtype : dtype-coercable The dtype to lookup the NaT value for. Returns ------- NaT : dtype The NaT value for the given dtype. """ return NaTmap[np.dtype(dtype)] NaTns = NaT_for_dtype(datetime64ns_dtype) NaTD = NaT_for_dtype(datetime64D_dtype) _FILLVALUE_DEFAULTS = { bool_dtype: False, float32_dtype: nan, float64_dtype: nan, datetime64ns_dtype: NaTns, object_dtype: None, } INT_DTYPES_BY_SIZE_BYTES = OrderedDict([ (1, dtype('int8')), (2, dtype('int16')), (4, dtype('int32')), (8, dtype('int64')), ]) UNSIGNED_INT_DTYPES_BY_SIZE_BYTES = OrderedDict([ (1, dtype('uint8')), (2, dtype('uint16')), (4, dtype('uint32')), (8, dtype('uint64')), ]) def int_dtype_with_size_in_bytes(size): try: return INT_DTYPES_BY_SIZE_BYTES[size] except KeyError: raise ValueError("No integral dtype whose size is %d bytes." % size) def unsigned_int_dtype_with_size_in_bytes(size): try: return UNSIGNED_INT_DTYPES_BY_SIZE_BYTES[size] except KeyError: raise ValueError( "No unsigned integral dtype whose size is %d bytes." % size ) class NoDefaultMissingValue(Exception): pass def make_kind_check(python_types, numpy_kind): """ Make a function that checks whether a scalar or array is of a given kind (e.g. float, int, datetime, timedelta). """ def check(value): if hasattr(value, 'dtype'): return value.dtype.kind == numpy_kind return isinstance(value, python_types) return check is_float = make_kind_check(float, 'f') is_int = make_kind_check(int, 'i') is_datetime = make_kind_check(datetime, 'M') is_object = make_kind_check(object, 'O') def coerce_to_dtype(dtype, value): """ Make a value with the specified numpy dtype. Only datetime64[ns] and datetime64[D] are supported for datetime dtypes. """ name = dtype.name if name.startswith('datetime64'): if name == 'datetime64[D]': return make_datetime64D(value) elif name == 'datetime64[ns]': return make_datetime64ns(value) else: raise TypeError( "Don't know how to coerce values of dtype %s" % dtype ) return dtype.type(value) def default_missing_value_for_dtype(dtype): """ Get the default fill value for `dtype`. """ try: return _FILLVALUE_DEFAULTS[dtype] except KeyError: raise NoDefaultMissingValue( "No default value registered for dtype %s." % dtype ) def repeat_first_axis(array, count): """ Restride `array` to repeat `count` times along the first axis. Parameters ---------- array : np.array The array to restride. count : int Number of times to repeat `array`. Returns ------- result : array Array of shape (count,) + array.shape, composed of `array` repeated `count` times along the first axis. Example ------- >>> from numpy import arange >>> a = arange(3); a array([0, 1, 2]) >>> repeat_first_axis(a, 2) array([[0, 1, 2], [0, 1, 2]]) >>> repeat_first_axis(a, 4) array([[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]) Notes ---- The resulting array will share memory with `array`. If you need to assign to the input or output, you should probably make a copy first. See Also -------- repeat_last_axis """ return as_strided(array, (count,) + array.shape, (0,) + array.strides) def repeat_last_axis(array, count): """ Restride `array` to repeat `count` times along the last axis. Parameters ---------- array : np.array The array to restride. count : int Number of times to repeat `array`. Returns ------- result : array Array of shape array.shape + (count,) composed of `array` repeated `count` times along the last axis. Example ------- >>> from numpy import arange >>> a = arange(3); a array([0, 1, 2]) >>> repeat_last_axis(a, 2) array([[0, 0], [1, 1], [2, 2]]) >>> repeat_last_axis(a, 4) array([[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]]) Notes ---- The resulting array will share memory with `array`. If you need to assign to the input or output, you should probably make a copy first. See Also -------- repeat_last_axis """ return as_strided(array, array.shape + (count,), array.strides + (0,)) def rolling_window(array, length): """ Restride an array of shape (X_0, ... X_N) into an array of shape (length, X_0 - length + 1, ... X_N) where each slice at index i along the first axis is equivalent to result[i] = array[length * i:length * (i + 1)] Parameters ---------- array : np.ndarray The base array. length : int Length of the synthetic first axis to generate. Returns ------- out : np.ndarray Example ------- >>> from numpy import arange >>> a = arange(25).reshape(5, 5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) >>> rolling_window(a, 2) array([[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9]], <BLANKLINE> [[ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]], <BLANKLINE> [[10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], <BLANKLINE> [[15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]]) """ orig_shape = array.shape if not orig_shape: raise IndexError("Can't restride a scalar.") elif orig_shape[0] <= length: raise IndexError( "Can't restride array of shape {shape} with" " a window length of {len}".format( shape=orig_shape, len=length, ) ) num_windows = (orig_shape[0] - length + 1) new_shape = (num_windows, length) + orig_shape[1:] new_strides = (array.strides[0],) + array.strides return as_strided(array, new_shape, new_strides) # Sentinel value that isn't NaT. _notNaT = make_datetime64D(0) iNaT = int(NaTns.view(int64_dtype)) assert iNaT == NaTD.view(int64_dtype), "iNaTns != iNaTD" def isnat(obj): """ Check if a value is np.NaT. """ if obj.dtype.kind not in ('m', 'M'): raise ValueError("%s is not a numpy datetime or timedelta") return obj.view(int64_dtype) == iNaT def is_missing(data, missing_value): """ Generic is_missing function that handles NaN and NaT. """ if is_float(data) and isnan(missing_value): return isnan(data) elif is_datetime(data) and isnat(missing_value): return isnat(data) return (data == missing_value) def busday_count_mask_NaT(begindates, enddates, out=None): """ Simple of numpy.busday_count that returns `float` arrays rather than int arrays, and handles `NaT`s by returning `NaN`s where the inputs were `NaT`. Doesn't support custom weekdays or calendars, but probably should in the future. See Also -------- np.busday_count """ if out is None: out = empty(broadcast(begindates, enddates).shape, dtype=float) beginmask = isnat(begindates) endmask = isnat(enddates) out = busday_count( # Temporarily fill in non-NaT values. where(beginmask, _notNaT, begindates), where(endmask, _notNaT, enddates), out=out, ) # Fill in entries where either comparison was NaT with nan in the output. out[beginmask | endmask] = nan return out class WarningContext(object): """ Re-usable contextmanager for contextually managing warnings. """ def __init__(self, *warning_specs): self._warning_specs = warning_specs self._catchers = [] def __enter__(self): catcher = catch_warnings() catcher.__enter__() self._catchers.append(catcher) for args, kwargs in self._warning_specs: filterwarnings(*args, **kwargs) return self def __exit__(self, *exc_info): catcher = self._catchers.pop() return catcher.__exit__(*exc_info) def ignore_nanwarnings(): """ Helper for building a WarningContext that ignores warnings from numpy's nanfunctions. """ return WarningContext( ( ('ignore',), {'category': RuntimeWarning, 'module': 'numpy.lib.nanfunctions'}, ) ) def vectorized_is_element(array, choices): """ Check if each element of ``array`` is in choices. Parameters ---------- array : np.ndarray choices : object Object implementing __contains__. Returns ------- was_element : np.ndarray[bool] Array indicating whether each element of ``array`` was in ``choices``. """ return vectorize(choices.__contains__, otypes=[bool])(array) def as_column(a): """ Convert an array of shape (N,) into an array of shape (N, 1). This is equivalent to `a[:, np.newaxis]`. Parameters ---------- a : np.ndarray Example ------- >>> import numpy as np >>> a = np.arange(5) >>> a array([0, 1, 2, 3, 4]) >>> as_column(a) array([[0], [1], [2], [3], [4]]) >>> as_column(a).shape (5, 1) """ if a.ndim != 1: raise ValueError( "as_column expected an 1-dimensional array, " "but got an array of shape %s" % a.shape ) return a[:, None] def changed_locations(a, include_first): """ Compute indices of values in ``a`` that differ from the previous value. Parameters ---------- a : np.ndarray The array on which to indices of change. include_first : bool Whether or not to consider the first index of the array as "changed". Example ------- >>> import numpy as np >>> changed_locations(np.array([0, 0, 5, 5, 1, 1]), include_first=False) array([2, 4]) >>> changed_locations(np.array([0, 0, 5, 5, 1, 1]), include_first=True) array([0, 2, 4]) """ if a.ndim > 1: raise ValueError("indices_of_changed_values only supports 1D arrays.") indices = flatnonzero(diff(a)) + 1 if not include_first: return indices return hstack([[0], indices])
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/numpy_utils.py
numpy_utils.py
import functools from operator import methodcaller import sys from six import PY2 if PY2: from abc import ABCMeta from types import DictProxyType from ctypes import py_object, pythonapi _new_mappingproxy = pythonapi.PyDictProxy_New _new_mappingproxy.argtypes = [py_object] _new_mappingproxy.restype = py_object # Make mappingproxy a "class" so that we can use multipledispatch # with it or do an ``isinstance(ob, mappingproxy)`` check in Python 2. # You will never actually get an instance of this object, you will just # get instances of ``types.DictProxyType``; however, ``mappingproxy`` is # registered as a virtual super class so ``isinstance`` and ``issubclass`` # will work as expected. The only thing that will appear strange is that: # ``type(mappingproxy({})) is not mappingproxy``, but you shouldn't do # that. class mappingproxy(object): __metaclass__ = ABCMeta def __new__(cls, *args, **kwargs): return _new_mappingproxy(*args, **kwargs) mappingproxy.register(DictProxyType) # clear names not imported in the other branch del DictProxyType del ABCMeta del py_object del pythonapi def exc_clear(): sys.exc_clear() def consistent_round(val): return round(val) def update_wrapper(wrapper, wrapped, assigned=functools.WRAPPER_ASSIGNMENTS, updated=functools.WRAPPER_UPDATES): """Backport of Python 3's functools.update_wrapper for __wrapped__. """ for attr in assigned: try: value = getattr(wrapped, attr) except AttributeError: pass else: setattr(wrapper, attr, value) for attr in updated: getattr(wrapper, attr).update(getattr(wrapped, attr, {})) # Issue #17482: set __wrapped__ last so we don't inadvertently copy it # from the wrapped function when updating __dict__ wrapper.__wrapped__ = wrapped # Return the wrapper so this can be used as a decorator via partial() return wrapper def wraps(wrapped, assigned=functools.WRAPPER_ASSIGNMENTS, updated=functools.WRAPPER_UPDATES): """Decorator factory to apply update_wrapper() to a wrapper function Returns a decorator that invokes update_wrapper() with the decorated function as the wrapper argument and the arguments to wraps() as the remaining arguments. Default arguments are as for update_wrapper(). This is a convenience function to simplify applying partial() to update_wrapper(). """ return functools.partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated) values_as_list = methodcaller('values') else: from types import MappingProxyType as mappingproxy from math import ceil def exc_clear(): # exc_clear was removed in Python 3. The except statement automatically # clears the exception. pass def consistent_round(val): if (val % 1) >= 0.5: return ceil(val) else: return round(val) update_wrapper = functools.update_wrapper wraps = functools.wraps def values_as_list(dictionary): """Return the dictionary values as a list without forcing a copy in Python 2. """ return list(dictionary.values()) unicode = type(u'') __all__ = [ 'PY2', 'exc_clear', 'mappingproxy', 'unicode', 'update_wrapper', 'values_as_list', 'wraps', 'consistent_round', ]
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/compat.py
compat.py
from collections import MutableMapping import errno from functools import partial import os import pickle from distutils import dir_util from shutil import rmtree, move from tempfile import mkdtemp, NamedTemporaryFile import pandas as pd from .compat import PY2 from .context_tricks import nop_context from .paths import ensure_directory from .sentinel import sentinel class Expired(Exception): """Marks that a :class:`CachedObject` has expired. """ ExpiredCachedObject = sentinel('ExpiredCachedObject') AlwaysExpired = sentinel('AlwaysExpired') class CachedObject(object): """ A simple struct for maintaining a cached object with an expiration date. Parameters ---------- value : object The object to cache. expires : datetime-like Expiration date of `value`. The cache is considered invalid for dates **strictly greater** than `expires`. Examples -------- >>> from pandas import Timestamp, Timedelta >>> expires = Timestamp('2014', tz='UTC') >>> obj = CachedObject(1, expires) >>> obj.unwrap(expires - Timedelta('1 minute')) 1 >>> obj.unwrap(expires) 1 >>> obj.unwrap(expires + Timedelta('1 minute')) ... # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Expired: 2014-01-01 00:00:00+00:00 """ def __init__(self, value, expires): self._value = value self._expires = expires @classmethod def expired(cls): """Construct a CachedObject that's expired at any time. """ return cls(ExpiredCachedObject, expires=AlwaysExpired) def unwrap(self, dt): """ Get the cached value. Returns ------- value : object The cached value. Raises ------ Expired Raised when `dt` is greater than self.expires. """ expires = self._expires if expires is AlwaysExpired or expires < dt: raise Expired(self._expires) return self._value def _unsafe_get_value(self): """You almost certainly shouldn't use this.""" return self._value class ExpiringCache(object): """ A cache of multiple CachedObjects, which returns the wrapped the value or raises and deletes the CachedObject if the value has expired. Parameters ---------- cache : dict-like, optional An instance of a dict-like object which needs to support at least: `__del__`, `__getitem__`, `__setitem__` If `None`, than a dict is used as a default. cleanup : callable, optional A method that takes a single argument, a cached object, and is called upon expiry of the cached object, prior to deleting the object. If not provided, defaults to a no-op. Examples -------- >>> from pandas import Timestamp, Timedelta >>> expires = Timestamp('2014', tz='UTC') >>> value = 1 >>> cache = ExpiringCache() >>> cache.set('foo', value, expires) >>> cache.get('foo', expires - Timedelta('1 minute')) 1 >>> cache.get('foo', expires + Timedelta('1 minute')) Traceback (most recent call last): ... KeyError: 'foo' """ def __init__(self, cache=None, cleanup=lambda value_to_clean: None): if cache is not None: self._cache = cache else: self._cache = {} self.cleanup = cleanup def get(self, key, dt): """Get the value of a cached object. Parameters ---------- key : any The key to lookup. dt : datetime The time of the lookup. Returns ------- result : any The value for ``key``. Raises ------ KeyError Raised if the key is not in the cache or the value for the key has expired. """ try: return self._cache[key].unwrap(dt) except Expired: self.cleanup(self._cache[key]._unsafe_get_value()) del self._cache[key] raise KeyError(key) def set(self, key, value, expiration_dt): """Adds a new key value pair to the cache. Parameters ---------- key : any The key to use for the pair. value : any The value to store under the name ``key``. expiration_dt : datetime When should this mapping expire? The cache is considered invalid for dates **strictly greater** than ``expiration_dt``. """ self._cache[key] = CachedObject(value, expiration_dt) class dataframe_cache(MutableMapping): """A disk-backed cache for dataframes. ``dataframe_cache`` is a mutable mapping from string names to pandas DataFrame objects. This object may be used as a context manager to delete the cache directory on exit. Parameters ---------- path : str, optional The directory path to the cache. Files will be written as ``path/<keyname>``. lock : Lock, optional Thread lock for multithreaded/multiprocessed access to the cache. If not provided no locking will be used. clean_on_failure : bool, optional Should the directory be cleaned up if an exception is raised in the context manager. serialize : {'msgpack', 'pickle:<n>'}, optional How should the data be serialized. If ``'pickle'`` is passed, an optional pickle protocol can be passed like: ``'pickle:3'`` which says to use pickle protocol 3. Notes ----- The syntax ``cache[:]`` will load all key:value pairs into memory as a dictionary. The cache uses a temporary file format that is subject to change between versions of zipline. """ def __init__(self, path=None, lock=None, clean_on_failure=True, serialization='msgpack'): self.path = path if path is not None else mkdtemp() self.lock = lock if lock is not None else nop_context self.clean_on_failure = clean_on_failure if serialization == 'msgpack': self.serialize = pd.DataFrame.to_msgpack self.deserialize = pd.read_msgpack self._protocol = None else: s = serialization.split(':', 1) if s[0] != 'pickle': raise ValueError( "'serialization' must be either 'msgpack' or 'pickle[:n]'", ) self._protocol = int(s[1]) if len(s) == 2 else None self.serialize = self._serialize_pickle self.deserialize = ( pickle.load if PY2 else partial(pickle.load, encoding='latin-1') ) ensure_directory(self.path) def _serialize_pickle(self, df, path): with open(path, 'wb') as f: pickle.dump(df, f, protocol=self._protocol) def _keypath(self, key): return os.path.join(self.path, key) def __enter__(self): return self def __exit__(self, type_, value, tb): if not (self.clean_on_failure or value is None): # we are not cleaning up after a failure and there was an exception return with self.lock: rmtree(self.path) def __getitem__(self, key): if key == slice(None): return dict(self.items()) with self.lock: try: with open(self._keypath(key), 'rb') as f: return self.deserialize(f) except IOError as e: if e.errno != errno.ENOENT: raise raise KeyError(key) def __setitem__(self, key, value): with self.lock: self.serialize(value, self._keypath(key)) def __delitem__(self, key): with self.lock: try: os.remove(self._keypath(key)) except OSError as e: if e.errno == errno.ENOENT: # raise a keyerror if this directory did not exist raise KeyError(key) # reraise the actual oserror otherwise raise def __iter__(self): return iter(os.listdir(self.path)) def __len__(self): return len(os.listdir(self.path)) def __repr__(self): return '<%s: keys={%s}>' % ( type(self).__name__, ', '.join(map(repr, sorted(self))), ) class working_file(object): """A context manager for managing a temporary file that will be moved to a non-temporary location if no exceptions are raised in the context. Parameters ---------- final_path : str The location to move the file when committing. *args, **kwargs Forwarded to NamedTemporaryFile. Notes ----- The file is moved on __exit__ if there are no exceptions. ``working_file`` uses :func:`shutil.move` to move the actual files, meaning it has as strong of guarantees as :func:`shutil.move`. """ def __init__(self, final_path, *args, **kwargs): self._tmpfile = NamedTemporaryFile(delete=False, *args, **kwargs) self._final_path = final_path @property def path(self): """Alias for ``name`` to be consistent with :class:`~zipline.utils.cache.working_dir`. """ return self._tmpfile.name def _commit(self): """Sync the temporary file to the final path. """ move(self.path, self._final_path) def __enter__(self): self._tmpfile.__enter__() return self def __exit__(self, *exc_info): self._tmpfile.__exit__(*exc_info) if exc_info[0] is None: self._commit() class working_dir(object): """A context manager for managing a temporary directory that will be moved to a non-temporary location if no exceptions are raised in the context. Parameters ---------- final_path : str The location to move the file when committing. *args, **kwargs Forwarded to tmp_dir. Notes ----- The file is moved on __exit__ if there are no exceptions. ``working_dir`` uses :func:`dir_util.copy_tree` to move the actual files, meaning it has as strong of guarantees as :func:`dir_util.copy_tree`. """ def __init__(self, final_path, *args, **kwargs): self.path = mkdtemp() self._final_path = final_path def ensure_dir(self, *path_parts): """Ensures a subdirectory of the working directory. Parameters ---------- path_parts : iterable[str] The parts of the path after the working directory. """ path = self.getpath(*path_parts) ensure_directory(path) return path def getpath(self, *path_parts): """Get a path relative to the working directory. Parameters ---------- path_parts : iterable[str] The parts of the path after the working directory. """ return os.path.join(self.path, *path_parts) def _commit(self): """Sync the temporary directory to the final path. """ dir_util.copy_tree(self.path, self._final_path) def __enter__(self): return self def __exit__(self, *exc_info): if exc_info[0] is None: self._commit() rmtree(self.path)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/cache.py
cache.py
from contextlib import contextmanager from copy import deepcopy from itertools import product import operator as op import warnings import numpy as np import pandas as pd from distutils.version import StrictVersion from trading_calendars.utils.pandas_utils import days_at_time # noqa: reexport pandas_version = StrictVersion(pd.__version__) new_pandas = pandas_version >= StrictVersion('0.19') skip_pipeline_new_pandas = \ 'Pipeline categoricals are not yet compatible with pandas >=0.19' if pandas_version >= StrictVersion('0.20'): def normalize_date(dt): """ Normalize datetime.datetime value to midnight. Returns datetime.date as a datetime.datetime at midnight Returns ------- normalized : datetime.datetime or Timestamp """ return dt.normalize() else: from pandas.tseries.tools import normalize_date # noqa def july_5th_holiday_observance(datetime_index): return datetime_index[datetime_index.year != 2013] def explode(df): """ Take a DataFrame and return a triple of (df.index, df.columns, df.values) """ return df.index, df.columns, df.values def _time_to_micros(time): """Convert a time into microseconds since midnight. Parameters ---------- time : datetime.time The time to convert. Returns ------- us : int The number of microseconds since midnight. Notes ----- This does not account for leap seconds or daylight savings. """ seconds = time.hour * 60 * 60 + time.minute * 60 + time.second return 1000000 * seconds + time.microsecond _opmap = dict(zip( product((True, False), repeat=3), product((op.le, op.lt), (op.le, op.lt), (op.and_, op.or_)), )) def mask_between_time(dts, start, end, include_start=True, include_end=True): """Return a mask of all of the datetimes in ``dts`` that are between ``start`` and ``end``. Parameters ---------- dts : pd.DatetimeIndex The index to mask. start : time Mask away times less than the start. end : time Mask away times greater than the end. include_start : bool, optional Inclusive on ``start``. include_end : bool, optional Inclusive on ``end``. Returns ------- mask : np.ndarray[bool] A bool array masking ``dts``. See Also -------- :meth:`pandas.DatetimeIndex.indexer_between_time` """ # This function is adapted from # `pandas.Datetime.Index.indexer_between_time` which was originally # written by Wes McKinney, Chang She, and Grant Roch. time_micros = dts._get_time_micros() start_micros = _time_to_micros(start) end_micros = _time_to_micros(end) left_op, right_op, join_op = _opmap[ bool(include_start), bool(include_end), start_micros <= end_micros, ] return join_op( left_op(start_micros, time_micros), right_op(time_micros, end_micros), ) def find_in_sorted_index(dts, dt): """ Find the index of ``dt`` in ``dts``. This function should be used instead of `dts.get_loc(dt)` if the index is large enough that we don't want to initialize a hash table in ``dts``. In particular, this should always be used on minutely trading calendars. Parameters ---------- dts : pd.DatetimeIndex Index in which to look up ``dt``. **Must be sorted**. dt : pd.Timestamp ``dt`` to be looked up. Returns ------- ix : int Integer index such that dts[ix] == dt. Raises ------ KeyError If dt is not in ``dts``. """ ix = dts.searchsorted(dt) if ix == len(dts) or dts[ix] != dt: raise LookupError("{dt} is not in {dts}".format(dt=dt, dts=dts)) return ix def nearest_unequal_elements(dts, dt): """ Find values in ``dts`` closest but not equal to ``dt``. Returns a pair of (last_before, first_after). When ``dt`` is less than any element in ``dts``, ``last_before`` is None. When ``dt`` is greater any element in ``dts``, ``first_after`` is None. ``dts`` must be unique and sorted in increasing order. Parameters ---------- dts : pd.DatetimeIndex Dates in which to search. dt : pd.Timestamp Date for which to find bounds. """ if not dts.is_unique: raise ValueError("dts must be unique") if not dts.is_monotonic_increasing: raise ValueError("dts must be sorted in increasing order") if not len(dts): return None, None sortpos = dts.searchsorted(dt, side='left') try: sortval = dts[sortpos] except IndexError: # dt is greater than any value in the array. return dts[-1], None if dt < sortval: lower_ix = sortpos - 1 upper_ix = sortpos elif dt == sortval: lower_ix = sortpos - 1 upper_ix = sortpos + 1 else: lower_ix = sortpos upper_ix = sortpos + 1 lower_value = dts[lower_ix] if lower_ix >= 0 else None upper_value = dts[upper_ix] if upper_ix < len(dts) else None return lower_value, upper_value def timedelta_to_integral_seconds(delta): """ Convert a pd.Timedelta to a number of seconds as an int. """ return int(delta.total_seconds()) def timedelta_to_integral_minutes(delta): """ Convert a pd.Timedelta to a number of minutes as an int. """ return timedelta_to_integral_seconds(delta) // 60 @contextmanager def ignore_pandas_nan_categorical_warning(): with warnings.catch_warnings(): # Pandas >= 0.18 doesn't like null-ish values in categories, but # avoiding that requires a broader change to how missing values are # handled in pipeline, so for now just silence the warning. warnings.filterwarnings( 'ignore', category=FutureWarning, ) yield _INDEXER_NAMES = [ '_' + name for (name, _) in pd.core.indexing.get_indexers_list() ] def clear_dataframe_indexer_caches(df): """ Clear cached attributes from a pandas DataFrame. By default pandas memoizes indexers (`iloc`, `loc`, `ix`, etc.) objects on DataFrames, resulting in refcycles that can lead to unexpectedly long-lived DataFrames. This function attempts to clear those cycles by deleting the cached indexers from the frame. Parameters ---------- df : pd.DataFrame """ for attr in _INDEXER_NAMES: try: delattr(df, attr) except AttributeError: pass def categorical_df_concat(df_list, inplace=False): """ Prepare list of pandas DataFrames to be used as input to pd.concat. Ensure any columns of type 'category' have the same categories across each dataframe. Parameters ---------- df_list : list List of dataframes with same columns. inplace : bool True if input list can be modified. Default is False. Returns ------- concatenated : df Dataframe of concatenated list. """ if not inplace: df_list = deepcopy(df_list) # Assert each dataframe has the same columns/dtypes df = df_list[0] if not all([(df.dtypes.equals(df_i.dtypes)) for df_i in df_list[1:]]): raise ValueError("Input DataFrames must have the same columns/dtypes.") categorical_columns = df.columns[df.dtypes == 'category'] for col in categorical_columns: new_categories = sorted( set().union( *(frame[col].cat.categories for frame in df_list) ) ) with ignore_pandas_nan_categorical_warning(): for df in df_list: df[col].cat.set_categories(new_categories, inplace=True) return pd.concat(df_list) def empty_dataframe(*columns): """Create an empty dataframe with columns of particular types. Parameters ---------- *columns The (column_name, column_dtype) pairs. Returns ------- typed_dataframe : pd.DataFrame The empty typed dataframe. Examples -------- >>> df = empty_dataframe( ... ('a', 'int64'), ... ('b', 'float64'), ... ('c', 'datetime64[ns]'), ... ) >>> df Empty DataFrame Columns: [a, b, c] Index: [] df.dtypes a int64 b float64 c datetime64[ns] dtype: object """ return pd.DataFrame(np.array([], dtype=list(columns)))
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/pandas_utils.py
pandas_utils.py
from errno import EEXIST import os from os.path import exists, expanduser, join import pandas as pd def hidden(path): """Check if a path is hidden. Parameters ---------- path : str A filepath. """ return os.path.split(path)[1].startswith('.') def ensure_directory(path): """ Ensure that a directory named "path" exists. """ try: os.makedirs(path) except OSError as exc: if exc.errno == EEXIST and os.path.isdir(path): return raise def ensure_directory_containing(path): """ Ensure that the directory containing `path` exists. This is just a convenience wrapper for doing:: ensure_directory(os.path.dirname(path)) """ ensure_directory(os.path.dirname(path)) def ensure_file(path): """ Ensure that a file exists. This will create any parent directories needed and create an empty file if it does not exist. Parameters ---------- path : str The file path to ensure exists. """ ensure_directory_containing(path) open(path, 'a+').close() # touch the file def update_modified_time(path, times=None): """ Updates the modified time of an existing file. This will create any parent directories needed and create an empty file if it does not exist. Parameters ---------- path : str The file path to update. times : tuple A tuple of size two; access time and modified time """ ensure_directory_containing(path) os.utime(path, times) def last_modified_time(path): """ Get the last modified time of path as a Timestamp. """ return pd.Timestamp(os.path.getmtime(path), unit='s', tz='UTC') def modified_since(path, dt): """ Check whether `path` was modified since `dt`. Returns False if path doesn't exist. Parameters ---------- path : str Path to the file to be checked. dt : pd.Timestamp The date against which to compare last_modified_time(path). Returns ------- was_modified : bool Will be ``False`` if path doesn't exists, or if its last modified date is earlier than or equal to `dt` """ return exists(path) and last_modified_time(path) > dt def zipline_root(environ=None): """ Get the root directory for all zipline-managed files. For testing purposes, this accepts a dictionary to interpret as the os environment. Parameters ---------- environ : dict, optional A dict to interpret as the os environment. Returns ------- root : string Path to the zipline root dir. """ if environ is None: environ = os.environ root = environ.get('ZIPLINE_ROOT', None) if root is None: root = expanduser('~/.zipline') return root def zipline_path(paths, environ=None): """ Get a path relative to the zipline root. Parameters ---------- paths : list[str] List of requested path pieces. environ : dict, optional An environment dict to forward to zipline_root. Returns ------- newpath : str The requested path joined with the zipline root. """ return join(zipline_root(environ=environ), *paths) def default_extension(environ=None): """ Get the path to the default zipline extension file. Parameters ---------- environ : dict, optional An environment dict to forwart to zipline_root. Returns ------- default_extension_path : str The file path to the default zipline extension file. """ return zipline_path(['extension.py'], environ=environ) def data_root(environ=None): """ The root directory for zipline data files. Parameters ---------- environ : dict, optional An environment dict to forward to zipline_root. Returns ------- data_root : str The zipline data root. """ return zipline_path(['data'], environ=environ) def ensure_data_root(environ=None): """ Ensure that the data root exists. """ ensure_directory(data_root(environ=environ)) def data_path(paths, environ=None): """ Get a path relative to the zipline data directory. Parameters ---------- paths : iterable[str] List of requested path pieces. environ : dict, optional An environment dict to forward to zipline_root. Returns ------- newpath : str The requested path joined with the zipline data root. """ return zipline_path(['data'] + list(paths), environ=environ) def cache_root(environ=None): """ The root directory for zipline cache files. Parameters ---------- environ : dict, optional An environment dict to forward to zipline_root. Returns ------- cache_root : str The zipline cache root. """ return zipline_path(['cache'], environ=environ) def ensure_cache_root(environ=None): """ Ensure that the data root exists. """ ensure_directory(cache_root(environ=environ)) def cache_path(paths, environ=None): """ Get a path relative to the zipline cache directory. Parameters ---------- paths : iterable[str] List of requested path pieces. environ : dict, optional An environment dict to forward to zipline_root. Returns ------- newpath : str The requested path joined with the zipline cache root. """ return zipline_path(['cache'] + list(paths), environ=environ)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/paths.py
paths.py
from collections import namedtuple import inspect from itertools import chain from six.moves import map, zip_longest from zipline.errors import ZiplineError Argspec = namedtuple('Argspec', ['args', 'starargs', 'kwargs']) def singleton(cls): instances = {} def getinstance(): if cls not in instances: instances[cls] = cls() return instances[cls] return getinstance @singleton class Ignore(object): def __str__(self): return 'Argument.ignore' __repr__ = __str__ @singleton class NoDefault(object): def __str__(self): return 'Argument.no_default' __repr__ = __str__ @singleton class AnyDefault(object): def __str__(self): return 'Argument.any_default' __repr__ = __str__ class Argument(namedtuple('Argument', ['name', 'default'])): """ An argument to a function. Argument.no_default is a value representing no default to the argument. Argument.ignore is a value that says you should ignore the default value. """ no_default = NoDefault() any_default = AnyDefault() ignore = Ignore() def __new__(cls, name=ignore, default=ignore): return super(Argument, cls).__new__(cls, name, default) def __str__(self): if self.has_no_default(self) or self.ignore_default(self): return str(self.name) else: return '='.join([str(self.name), str(self.default)]) def __repr__(self): return 'Argument(%s, %s)' % (repr(self.name), repr(self.default)) def _defaults_match(self, arg): return any(map(Argument.ignore_default, [self, arg])) \ or (self.default is Argument.any_default and arg.default is not Argument.no_default) \ or (arg.default is Argument.any_default and self.default is not Argument.no_default) \ or self.default == arg.default def _names_match(self, arg): return self.name == arg.name \ or self.name is Argument.ignore \ or arg.name is Argument.ignore def matches(self, arg): return self._names_match(arg) and self._defaults_match(arg) __eq__ = matches @staticmethod def parse_argspec(callable_): """ Takes a callable and returns a tuple with the list of Argument objects, the name of *args, and the name of **kwargs. If *args or **kwargs is not present, it will be None. This returns a namedtuple called Argspec that has three fields named: args, starargs, and kwargs. """ args, varargs, keywords, defaults = inspect.getargspec(callable_) defaults = list(defaults or []) if getattr(callable_, '__self__', None) is not None: # This is a bound method, drop the self param. args = args[1:] first_default = len(args) - len(defaults) return Argspec( [Argument(arg, Argument.no_default if n < first_default else defaults[n - first_default]) for n, arg in enumerate(args)], varargs, keywords, ) @staticmethod def has_no_default(arg): return arg.default is Argument.no_default @staticmethod def ignore_default(arg): return arg.default is Argument.ignore def _expect_extra(expected, present, exc_unexpected, exc_missing, exc_args): """ Checks for the presence of an extra to the argument list. Raises expections if this is unexpected or if it is missing and expected. """ if present: if not expected: raise exc_unexpected(*exc_args) elif expected and expected is not Argument.ignore: raise exc_missing(*exc_args) def verify_callable_argspec(callable_, expected_args=Argument.ignore, expect_starargs=Argument.ignore, expect_kwargs=Argument.ignore): """ Checks the callable_ to make sure that it satisfies the given expectations. expected_args should be an iterable of Arguments in the order you expect to receive them. expect_starargs means that the function should or should not take a *args param. expect_kwargs says the callable should or should not take **kwargs param. If expected_args, expect_starargs, or expect_kwargs is Argument.ignore, then the checks related to that argument will not occur. Example usage: callable_check( f, [Argument('a'), Argument('b', 1)], expect_starargs=True, expect_kwargs=Argument.ignore ) """ if not callable(callable_): raise NotCallable(callable_) expected_arg_list = list( expected_args if expected_args is not Argument.ignore else [] ) args, starargs, kwargs = Argument.parse_argspec(callable_) exc_args = callable_, args, starargs, kwargs # Check the *args. _expect_extra( expect_starargs, starargs, UnexpectedStarargs, NoStarargs, exc_args, ) # Check the **kwargs. _expect_extra( expect_kwargs, kwargs, UnexpectedKwargs, NoKwargs, exc_args, ) if expected_args is Argument.ignore: # Ignore the argument list checks. return if len(args) < len(expected_arg_list): # One or more argument that we expected was not present. raise NotEnoughArguments( callable_, args, starargs, kwargs, [arg for arg in expected_arg_list if arg not in args], ) elif len(args) > len(expected_arg_list): raise TooManyArguments( callable_, args, starargs, kwargs ) # Empty argument that will not match with any actual arguments. missing_arg = Argument(object(), object()) for expected, provided in zip_longest(expected_arg_list, args, fillvalue=missing_arg): if not expected.matches(provided): raise MismatchedArguments( callable_, args, starargs, kwargs ) class BadCallable(TypeError, AssertionError, ZiplineError): """ The given callable is not structured in the expected way. """ _lambda_name = (lambda: None).__name__ def __init__(self, callable_, args, starargs, kwargs): self.callable_ = callable_ self.args = args self.starargs = starargs self.kwargsname = kwargs self.kwargs = {} def format_callable(self): if self.callable_.__name__ == self._lambda_name: fmt = '%s %s' name = 'lambda' else: fmt = '%s(%s)' name = self.callable_.__name__ return fmt % ( name, ', '.join( chain( (str(arg) for arg in self.args), ('*' + sa for sa in (self.starargs,) if sa is not None), ('**' + ka for ka in (self.kwargsname,) if ka is not None), ) ) ) @property def msg(self): return str(self) class NoStarargs(BadCallable): def __str__(self): return '%s does not allow for *args' % self.format_callable() class UnexpectedStarargs(BadCallable): def __str__(self): return '%s should not allow for *args' % self.format_callable() class NoKwargs(BadCallable): def __str__(self): return '%s does not allow for **kwargs' % self.format_callable() class UnexpectedKwargs(BadCallable): def __str__(self): return '%s should not allow for **kwargs' % self.format_callable() class NotCallable(BadCallable): """ The provided 'callable' is not actually a callable. """ def __init__(self, callable_): self.callable_ = callable_ def __str__(self): return '%s is not callable' % self.format_callable() def format_callable(self): try: return self.callable_.__name__ except AttributeError: return str(self.callable_) class NotEnoughArguments(BadCallable): """ The callback does not accept enough arguments. """ def __init__(self, callable_, args, starargs, kwargs, missing_args): super(NotEnoughArguments, self).__init__( callable_, args, starargs, kwargs ) self.missing_args = missing_args def __str__(self): missing_args = list(map(str, self.missing_args)) return '%s is missing argument%s: %s' % ( self.format_callable(), 's' if len(missing_args) > 1 else '', ', '.join(missing_args), ) class TooManyArguments(BadCallable): """ The callback cannot be called by passing the expected number of arguments. """ def __str__(self): return '%s accepts too many arguments' % self.format_callable() class MismatchedArguments(BadCallable): """ The argument lists are of the same lengths, but not in the correct order. """ def __str__(self): return '%s accepts mismatched parameters' % self.format_callable()
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/argcheck.py
argcheck.py
@object.__new__ class nop_context(object): """A nop context manager. """ def __enter__(self): pass def __exit__(self, *excinfo): pass def _nop(*args, **kwargs): pass class CallbackManager(object): """Create a context manager from a pre-execution callback and a post-execution callback. Parameters ---------- pre : (...) -> any, optional A pre-execution callback. This will be passed ``*args`` and ``**kwargs``. post : (...) -> any, optional A post-execution callback. This will be passed ``*args`` and ``**kwargs``. Notes ----- The enter value of this context manager will be the result of calling ``pre(*args, **kwargs)`` Examples -------- >>> def pre(where): ... print('entering %s block' % where) >>> def post(where): ... print('exiting %s block' % where) >>> manager = CallbackManager(pre, post) >>> with manager('example'): ... print('inside example block') entering example block inside example block exiting example block These are reusable with different args: >>> with manager('another'): ... print('inside another block') entering another block inside another block exiting another block """ def __init__(self, pre=None, post=None): self.pre = pre if pre is not None else _nop self.post = post if post is not None else _nop def __call__(self, *args, **kwargs): return _ManagedCallbackContext(self.pre, self.post, args, kwargs) # special case, if no extra args are passed make this a context manager # which forwards no args to pre and post def __enter__(self): return self.pre() def __exit__(self, *excinfo): self.post() class _ManagedCallbackContext(object): def __init__(self, pre, post, args, kwargs): self._pre = pre self._post = post self._args = args self._kwargs = kwargs def __enter__(self): return self._pre(*self._args, **self._kwargs) def __exit__(self, *excinfo): self._post(*self._args, **self._kwargs)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/context_tricks.py
context_tricks.py
import operator as op from six import PY2 from toolz import peek from zipline.utils.functional import foldr if PY2: class range(object): """Lazy range object with constant time containment check. The arguments are the same as ``range``. """ __slots__ = 'start', 'stop', 'step' def __init__(self, stop, *args): if len(args) > 2: raise TypeError( 'range takes at most 3 arguments (%d given)' % len(args) ) if not args: self.start = 0 self.stop = stop self.step = 1 else: self.start = stop self.stop = args[0] try: self.step = args[1] except IndexError: self.step = 1 if self.step == 0: raise ValueError('range step must not be zero') def __iter__(self): """ Examples -------- >>> list(range(1)) [0] >>> list(range(5)) [0, 1, 2, 3, 4] >>> list(range(1, 5)) [1, 2, 3, 4] >>> list(range(0, 5, 2)) [0, 2, 4] >>> list(range(5, 0, -1)) [5, 4, 3, 2, 1] >>> list(range(5, 0, 1)) [] """ n = self.start stop = self.stop step = self.step cmp_ = op.lt if step > 0 else op.gt while cmp_(n, stop): yield n n += step _ops = ( (op.gt, op.ge), (op.le, op.lt), ) def __contains__(self, other, _ops=_ops): # Algorithm taken from CPython # Objects/rangeobject.c:range_contains_long start = self.start step = self.step cmp_start, cmp_stop = _ops[step > 0] return ( cmp_start(start, other) and cmp_stop(other, self.stop) and (other - start) % step == 0 ) del _ops def __len__(self): """ Examples -------- >>> len(range(1)) 1 >>> len(range(5)) 5 >>> len(range(1, 5)) 4 >>> len(range(0, 5, 2)) 3 >>> len(range(5, 0, -1)) 5 >>> len(range(5, 0, 1)) 0 """ # Algorithm taken from CPython # rangeobject.c:compute_range_length step = self.step if step > 0: low = self.start high = self.stop else: low = self.stop high = self.start step = -step if low >= high: return 0 return (high - low - 1) // step + 1 def __repr__(self): return '%s(%s, %s%s)' % ( type(self).__name__, self.start, self.stop, (', ' + str(self.step)) if self.step != 1 else '', ) def __hash__(self): return hash((type(self), self.start, self.stop, self.step)) def __eq__(self, other): """ Examples -------- >>> range(1) == range(1) True >>> range(0, 5, 2) == range(0, 5, 2) True >>> range(5, 0, -2) == range(5, 0, -2) True >>> range(1) == range(2) False >>> range(0, 5, 2) == range(0, 5, 3) False """ return all( getattr(self, attr) == getattr(other, attr) for attr in self.__slots__ ) else: range = range def from_tuple(tup): """Convert a tuple into a range with error handling. Parameters ---------- tup : tuple (len 2 or 3) The tuple to turn into a range. Returns ------- range : range The range from the tuple. Raises ------ ValueError Raised when the tuple length is not 2 or 3. """ if len(tup) not in (2, 3): raise ValueError( 'tuple must contain 2 or 3 elements, not: %d (%r' % ( len(tup), tup, ), ) return range(*tup) def maybe_from_tuple(tup_or_range): """Convert a tuple into a range but pass ranges through silently. This is useful to ensure that input is a range so that attributes may be accessed with `.start`, `.stop` or so that containment checks are constant time. Parameters ---------- tup_or_range : tuple or range A tuple to pass to from_tuple or a range to return. Returns ------- range : range The input to convert to a range. Raises ------ ValueError Raised when the input is not a tuple or a range. ValueError is also raised if the input is a tuple whose length is not 2 or 3. """ if isinstance(tup_or_range, tuple): return from_tuple(tup_or_range) elif isinstance(tup_or_range, range): return tup_or_range raise ValueError( 'maybe_from_tuple expects a tuple or range, got %r: %r' % ( type(tup_or_range).__name__, tup_or_range, ), ) def _check_steps(a, b): """Check that the steps of ``a`` and ``b`` are both 1. Parameters ---------- a : range The first range to check. b : range The second range to check. Raises ------ ValueError Raised when either step is not 1. """ if a.step != 1: raise ValueError('a.step must be equal to 1, got: %s' % a.step) if b.step != 1: raise ValueError('b.step must be equal to 1, got: %s' % b.step) def overlap(a, b): """Check if two ranges overlap. Parameters ---------- a : range The first range. b : range The second range. Returns ------- overlaps : bool Do these ranges overlap. Notes ----- This function does not support ranges with step != 1. """ _check_steps(a, b) return a.stop >= b.start and b.stop >= a.start def merge(a, b): """Merge two ranges with step == 1. Parameters ---------- a : range The first range. b : range The second range. """ _check_steps(a, b) return range(min(a.start, b.start), max(a.stop, b.stop)) def _combine(n, rs): """helper for ``_group_ranges`` """ try: r, rs = peek(rs) except StopIteration: yield n return if overlap(n, r): yield merge(n, r) next(rs) for r in rs: yield r else: yield n for r in rs: yield r def group_ranges(ranges): """Group any overlapping ranges into a single range. Parameters ---------- ranges : iterable[ranges] A sorted sequence of ranges to group. Returns ------- grouped : iterable[ranges] A sorted sequence of ranges with overlapping ranges merged together. """ return foldr(_combine, ranges, ()) def sorted_diff(rs, ss): try: r, rs = peek(rs) except StopIteration: return try: s, ss = peek(ss) except StopIteration: for r in rs: yield r return rtup = (r.start, r.stop) stup = (s.start, s.stop) if rtup == stup: next(rs) next(ss) elif rtup < stup: yield next(rs) else: next(ss) for t in sorted_diff(rs, ss): yield t def intersecting_ranges(ranges): """Return any ranges that intersect. Parameters ---------- ranges : iterable[ranges] A sequence of ranges to check for intersections. Returns ------- intersections : iterable[ranges] A sequence of all of the ranges that intersected in ``ranges``. Examples -------- >>> ranges = [range(0, 1), range(2, 5), range(4, 7)] >>> list(intersecting_ranges(ranges)) [range(2, 5), range(4, 7)] >>> ranges = [range(0, 1), range(2, 3)] >>> list(intersecting_ranges(ranges)) [] >>> ranges = [range(0, 1), range(1, 2)] >>> list(intersecting_ranges(ranges)) [range(0, 1), range(1, 2)] """ ranges = sorted(ranges, key=op.attrgetter('start')) return sorted_diff(ranges, group_ranges(ranges))
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/range.py
range.py
import click import os import sys import warnings from functools import partial import pandas as pd try: from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import TerminalFormatter PYGMENTS = True except ImportError: PYGMENTS = False import six from toolz import concatv from trading_calendars import get_calendar from zipline.data import bundles from zipline.data.loader import load_market_data from zipline.data.data_portal import DataPortal from zipline.data.data_portal_live import DataPortalLive from zipline.finance import metrics from zipline.finance.trading import SimulationParameters from zipline.pipeline.data import USEquityPricing from zipline.pipeline.loaders import USEquityPricingLoader import zipline.utils.paths as pth from zipline.extensions import load from zipline.algorithm import TradingAlgorithm from zipline.algorithm_live import LiveTradingAlgorithm from zipline.finance.blotter import Blotter class _RunAlgoError(click.ClickException, ValueError): """Signal an error that should have a different message if invoked from the cli. Parameters ---------- pyfunc_msg : str The message that will be shown when called as a python function. cmdline_msg : str, optional The message that will be shown on the command line. If not provided, this will be the same as ``pyfunc_msg` """ exit_code = 1 def __init__(self, pyfunc_msg, cmdline_msg=None): if cmdline_msg is None: cmdline_msg = pyfunc_msg super(_RunAlgoError, self).__init__(cmdline_msg) self.pyfunc_msg = pyfunc_msg def __str__(self): return self.pyfunc_msg def _run(handle_data, initialize, before_trading_start, analyze, algofile, algotext, defines, data_frequency, capital_base, bundle, bundle_timestamp, start, end, output, trading_calendar, print_algo, metrics_set, local_namespace, environ, blotter, benchmark_returns, broker, state_filename, realtime_bar_target, performance_callback, stop_execution_callback, teardown, execution_id): """ Run a backtest for the given algorithm. This is shared between the cli and :func:`zipline.run_algo`. zipline-live additions: broker - wrapper to connect to a real broker state_filename - saving the context of the algo to be able to restart performance_callback - a callback to send performance results everyday and not only at the end of the backtest. this allows to run live, and monitor the performance of the algorithm stop_execution_callback - A callback to check if execution should be stopped. it is used to be able to stop live trading (also simulation could be stopped using this) execution. if the callback returns True, then algo execution will be aborted. teardown - algo method like handle_data() or before_trading_start() that is called when the algo execution stops execution_id - unique id to identify this execution (backtest or live instance) """ if benchmark_returns is None: benchmark_returns, _ = load_market_data(environ=environ) emission_rate = 'daily' if broker: emission_rate = 'minute' # if we run zipline as a command line tool, these will probably not be initiated if not start: start = pd.Timestamp.utcnow() if not end: # in cli mode, sessions are 1 day only. and it will be re-ran each day by user end = start + pd.Timedelta('1 day') if algotext is not None: if local_namespace: ip = get_ipython() # noqa namespace = ip.user_ns else: namespace = {} for assign in defines: try: name, value = assign.split('=', 2) except ValueError: raise ValueError( 'invalid define %r, should be of the form name=value' % assign, ) try: # evaluate in the same namespace so names may refer to # eachother namespace[name] = eval(value, namespace) except Exception as e: raise ValueError( 'failed to execute definition for name %r: %s' % (name, e), ) elif defines: raise _RunAlgoError( 'cannot pass define without `algotext`', "cannot pass '-D' / '--define' without '-t' / '--algotext'", ) else: namespace = {} if algofile is not None: algotext = algofile.read() if print_algo: if PYGMENTS: highlight( algotext, PythonLexer(), TerminalFormatter(), outfile=sys.stdout, ) else: click.echo(algotext) if trading_calendar is None: trading_calendar = get_calendar('NYSE') # date parameter validation if trading_calendar.session_distance(start, end) < 1: raise _RunAlgoError( 'There are no trading days between %s and %s' % ( start.date(), end.date(), ), ) bundle_data = bundles.load( bundle, environ, bundle_timestamp, ) first_trading_day = \ bundle_data.equity_minute_bar_reader.first_trading_day DataPortalClass = (partial(DataPortalLive, broker) if broker else DataPortal) data = DataPortalClass( bundle_data.asset_finder, trading_calendar=trading_calendar, first_trading_day=first_trading_day, equity_minute_reader=bundle_data.equity_minute_bar_reader, equity_daily_reader=bundle_data.equity_daily_bar_reader, adjustment_reader=bundle_data.adjustment_reader, ) pipeline_loader = USEquityPricingLoader( bundle_data.equity_daily_bar_reader, bundle_data.adjustment_reader, ) def choose_loader(column): if column in USEquityPricing.columns: return pipeline_loader raise ValueError( "No PipelineLoader registered for column %s." % column ) if isinstance(metrics_set, six.string_types): try: metrics_set = metrics.load(metrics_set) except ValueError as e: raise _RunAlgoError(str(e)) if isinstance(blotter, six.string_types): try: blotter = load(Blotter, blotter) except ValueError as e: raise _RunAlgoError(str(e)) TradingAlgorithmClass = (partial(LiveTradingAlgorithm, broker=broker, state_filename=state_filename, realtime_bar_target=realtime_bar_target) if broker else TradingAlgorithm) perf = TradingAlgorithmClass( namespace=namespace, data_portal=data, get_pipeline_loader=choose_loader, trading_calendar=trading_calendar, sim_params=SimulationParameters( start_session=start, end_session=end, trading_calendar=trading_calendar, capital_base=capital_base, emission_rate=emission_rate, data_frequency=data_frequency, execution_id=execution_id ), metrics_set=metrics_set, blotter=blotter, benchmark_returns=benchmark_returns, performance_callback=performance_callback, stop_execution_callback=stop_execution_callback, **{ 'initialize': initialize, 'handle_data': handle_data, 'before_trading_start': before_trading_start, 'analyze': analyze, 'teardown': teardown, } if algotext is None else { 'algo_filename': getattr(algofile, 'name', '<algorithm>'), 'script': algotext, } ).run() if output == '-': click.echo(str(perf)) elif output != os.devnull: # make the zipline magic not write any data perf.to_pickle(output) return perf # All of the loaded extensions. We don't want to load an extension twice. _loaded_extensions = set() def load_extensions(default, extensions, strict, environ, reload=False): """Load all of the given extensions. This should be called by run_algo or the cli. Parameters ---------- default : bool Load the default exension (~/.zipline/extension.py)? extension : iterable[str] The paths to the extensions to load. If the path ends in ``.py`` it is treated as a script and executed. If it does not end in ``.py`` it is treated as a module to be imported. strict : bool Should failure to load an extension raise. If this is false it will still warn. environ : mapping The environment to use to find the default extension path. reload : bool, optional Reload any extensions that have already been loaded. """ if default: default_extension_path = pth.default_extension(environ=environ) pth.ensure_file(default_extension_path) # put the default extension first so other extensions can depend on # the order they are loaded extensions = concatv([default_extension_path], extensions) for ext in extensions: if ext in _loaded_extensions and not reload: continue try: # load all of the zipline extensionss if ext.endswith('.py'): with open(ext) as f: ns = {} six.exec_(compile(f.read(), ext, 'exec'), ns, ns) else: __import__(ext) except Exception as e: if strict: # if `strict` we should raise the actual exception and fail raise # without `strict` we should just log the failure warnings.warn( 'Failed to load extension: %r\n%s' % (ext, e), stacklevel=2 ) else: _loaded_extensions.add(ext) def run_algorithm(start, end, initialize, capital_base, handle_data=None, before_trading_start=None, analyze=None, teardown=None, data_frequency='daily', bundle='quantopian-quandl', bundle_timestamp=None, trading_calendar=None, metrics_set='default', benchmark_returns=None, default_extension=True, extensions=(), strict_extensions=True, environ=os.environ, blotter='default', live_trading=False, tws_uri=None, broker=None, performance_callback=None, stop_execution_callback=None, execution_id=None, state_filename=None, realtime_bar_target=None ): """ Run a trading algorithm. Parameters ---------- start : datetime The start date of the backtest. end : datetime The end date of the backtest.. initialize : callable[context -> None] The initialize function to use for the algorithm. This is called once at the very begining of the backtest and should be used to set up any state needed by the algorithm. capital_base : float The starting capital for the backtest. handle_data : callable[(context, BarData) -> None], optional The handle_data function to use for the algorithm. This is called every minute when ``data_frequency == 'minute'`` or every day when ``data_frequency == 'daily'``. before_trading_start : callable[(context, BarData) -> None], optional The before_trading_start function for the algorithm. This is called once before each trading day (after initialize on the first day). analyze : callable[(context, pd.DataFrame) -> None], optional The analyze function to use for the algorithm. This function is called once at the end of the backtest and is passed the context and the performance data. data_frequency : {'daily', 'minute'}, optional The data frequency to run the algorithm at. bundle : str, optional The name of the data bundle to use to load the data to run the backtest with. This defaults to 'quantopian-quandl'. bundle_timestamp : datetime, optional The datetime to lookup the bundle data for. This defaults to the current time. trading_calendar : TradingCalendar, optional The trading calendar to use for your backtest. metrics_set : iterable[Metric] or str, optional The set of metrics to compute in the simulation. If a string is passed, resolve the set with :func:`zipline.finance.metrics.load`. default_extension : bool, optional Should the default zipline extension be loaded. This is found at ``$ZIPLINE_ROOT/extension.py`` extensions : iterable[str], optional The names of any other extensions to load. Each element may either be a dotted module path like ``a.b.c`` or a path to a python file ending in ``.py`` like ``a/b/c.py``. strict_extensions : bool, optional Should the run fail if any extensions fail to load. If this is false, a warning will be raised instead. environ : mapping[str -> str], optional The os environment to use. Many extensions use this to get parameters. This defaults to ``os.environ``. blotter : str or zipline.finance.blotter.Blotter, optional Blotter to use with this algorithm. If passed as a string, we look for a blotter construction function registered with ``zipline.extensions.register`` and call it with no parameters. Default is a :class:`zipline.finance.blotter.SimulationBlotter` that never cancels orders. live_trading : boolean, indicating are we running forward (live) and not backwards (backtesting) tws_uri : ip:listening_port:client id e.g "localhost:4002:1232" broker : instance of zipline.gens.brokers.broker.Broker performance_callback : a callback to send performance results everyday and not only at the end of the backtest. this allows to run live, and monitor the performance of the algorithm stop_execution_callback : A callback to check if execution should be stopped. it is used to be able to stop live trading (also simulation could be stopped using this) execution. if the callback returns True, then algo execution will be aborted. teardown : algo method like handle_data() or before_trading_start() that is called when the algo execution stops and allows the developer to nicely kill the algo execution execution_id : unique id to identify this execution instance (backtest or live) will be used to mark and get logs for this specific execution instance. state_filename : path to pickle file storing the algorithm "context" (similar to self) Returns ------- perf : pd.DataFrame The daily performance of the algorithm. See Also -------- zipline.data.bundles.bundles : The available data bundles. """ load_extensions(default_extension, extensions, strict_extensions, environ) return _run( handle_data=handle_data, initialize=initialize, before_trading_start=before_trading_start, analyze=analyze, teardown=teardown, algofile=None, algotext=None, defines=(), data_frequency=data_frequency, capital_base=capital_base, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output=os.devnull, trading_calendar=trading_calendar, print_algo=False, metrics_set=metrics_set, local_namespace=False, environ=environ, blotter=blotter, benchmark_returns=benchmark_returns, broker=broker, state_filename=state_filename, realtime_bar_target=realtime_bar_target, performance_callback=performance_callback, stop_execution_callback=stop_execution_callback, execution_id=execution_id )
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/run_algo.py
run_algo.py
from datetime import tzinfo from functools import partial from operator import attrgetter from numpy import dtype import pandas as pd from pytz import timezone from six import iteritems, string_types, PY3 from toolz import valmap, complement, compose import toolz.curried.operator as op from zipline.utils.compat import wraps from zipline.utils.functional import getattrs from zipline.utils.preprocess import call, preprocess if PY3: _qualified_name = attrgetter('__qualname__') else: def _qualified_name(obj): """ Return the fully-qualified name (ignoring inner classes) of a type. """ module = obj.__module__ if module in ('__builtin__', '__main__', 'builtins'): return obj.__name__ return '.'.join([module, obj.__name__]) def verify_indices_all_unique(obj): """ Check that all axes of a pandas object are unique. Parameters ---------- obj : pd.Series / pd.DataFrame / pd.Panel The object to validate. Returns ------- obj : pd.Series / pd.DataFrame / pd.Panel The validated object, unchanged. Raises ------ ValueError If any axis has duplicate entries. """ axis_names = [ ('index',), # Series ('index', 'columns'), # DataFrame ('items', 'major_axis', 'minor_axis') # Panel ][obj.ndim - 1] # ndim = 1 should go to entry 0, for axis_name, index in zip(axis_names, obj.axes): if index.is_unique: continue raise ValueError( "Duplicate entries in {type}.{axis}: {dupes}.".format( type=type(obj).__name__, axis=axis_name, dupes=sorted(index[index.duplicated()]), ) ) return obj def optionally(preprocessor): """Modify a preprocessor to explicitly allow `None`. Parameters ---------- preprocessor : callable[callable, str, any -> any] A preprocessor to delegate to when `arg is not None`. Returns ------- optional_preprocessor : callable[callable, str, any -> any] A preprocessor that delegates to `preprocessor` when `arg is not None`. Examples -------- >>> def preprocessor(func, argname, arg): ... if not isinstance(arg, int): ... raise TypeError('arg must be int') ... return arg ... >>> @preprocess(a=optionally(preprocessor)) ... def f(a): ... return a ... >>> f(1) # call with int 1 >>> f('a') # call with not int Traceback (most recent call last): ... TypeError: arg must be int >>> f(None) is None # call with explicit None True """ @wraps(preprocessor) def wrapper(func, argname, arg): return arg if arg is None else preprocessor(func, argname, arg) return wrapper def ensure_upper_case(func, argname, arg): if isinstance(arg, string_types): return arg.upper() else: raise TypeError( "{0}() expected argument '{1}' to" " be a string, but got {2} instead.".format( func.__name__, argname, arg, ), ) def ensure_dtype(func, argname, arg): """ Argument preprocessor that converts the input into a numpy dtype. Examples -------- >>> import numpy as np >>> from zipline.utils.preprocess import preprocess >>> @preprocess(dtype=ensure_dtype) ... def foo(dtype): ... return dtype ... >>> foo(float) dtype('float64') """ try: return dtype(arg) except TypeError: raise TypeError( "{func}() couldn't convert argument " "{argname}={arg!r} to a numpy dtype.".format( func=_qualified_name(func), argname=argname, arg=arg, ), ) def ensure_timezone(func, argname, arg): """Argument preprocessor that converts the input into a tzinfo object. Examples -------- >>> from zipline.utils.preprocess import preprocess >>> @preprocess(tz=ensure_timezone) ... def foo(tz): ... return tz >>> foo('utc') <UTC> """ if isinstance(arg, tzinfo): return arg if isinstance(arg, string_types): return timezone(arg) raise TypeError( "{func}() couldn't convert argument " "{argname}={arg!r} to a timezone.".format( func=_qualified_name(func), argname=argname, arg=arg, ), ) def ensure_timestamp(func, argname, arg): """Argument preprocessor that converts the input into a pandas Timestamp object. Examples -------- >>> from zipline.utils.preprocess import preprocess >>> @preprocess(ts=ensure_timestamp) ... def foo(ts): ... return ts >>> foo('2014-01-01') Timestamp('2014-01-01 00:00:00') """ try: return pd.Timestamp(arg) except ValueError as e: raise TypeError( "{func}() couldn't convert argument " "{argname}={arg!r} to a pandas Timestamp.\n" "Original error was: {t}: {e}".format( func=_qualified_name(func), argname=argname, arg=arg, t=_qualified_name(type(e)), e=e, ), ) def expect_dtypes(__funcname=_qualified_name, **named): """ Preprocessing decorator that verifies inputs have expected numpy dtypes. Examples -------- >>> from numpy import dtype, arange, int8, float64 >>> @expect_dtypes(x=dtype(int8)) ... def foo(x, y): ... return x, y ... >>> foo(arange(3, dtype=int8), 'foo') (array([0, 1, 2], dtype=int8), 'foo') >>> foo(arange(3, dtype=float64), 'foo') # doctest: +NORMALIZE_WHITESPACE ... # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: ...foo() expected a value with dtype 'int8' for argument 'x', but got 'float64' instead. """ for name, type_ in iteritems(named): if not isinstance(type_, (dtype, tuple)): raise TypeError( "expect_dtypes() expected a numpy dtype or tuple of dtypes" " for argument {name!r}, but got {dtype} instead.".format( name=name, dtype=dtype, ) ) if isinstance(__funcname, str): def get_funcname(_): return __funcname else: get_funcname = __funcname @preprocess(dtypes=call(lambda x: x if isinstance(x, tuple) else (x,))) def _expect_dtype(dtypes): """ Factory for dtype-checking functions that work with the @preprocess decorator. """ def error_message(func, argname, value): # If the bad value has a dtype, but it's wrong, show the dtype # name. Otherwise just show the value. try: value_to_show = value.dtype.name except AttributeError: value_to_show = value return ( "{funcname}() expected a value with dtype {dtype_str} " "for argument {argname!r}, but got {value!r} instead." ).format( funcname=get_funcname(func), dtype_str=' or '.join(repr(d.name) for d in dtypes), argname=argname, value=value_to_show, ) def _actual_preprocessor(func, argname, argvalue): if getattr(argvalue, 'dtype', object()) not in dtypes: raise TypeError(error_message(func, argname, argvalue)) return argvalue return _actual_preprocessor return preprocess(**valmap(_expect_dtype, named)) def expect_kinds(**named): """ Preprocessing decorator that verifies inputs have expected dtype kinds. Examples -------- >>> from numpy import int64, int32, float32 >>> @expect_kinds(x='i') ... def foo(x): ... return x ... >>> foo(int64(2)) 2 >>> foo(int32(2)) 2 >>> foo(float32(2)) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... TypeError: ...foo() expected a numpy object of kind 'i' for argument 'x', but got 'f' instead. """ for name, kind in iteritems(named): if not isinstance(kind, (str, tuple)): raise TypeError( "expect_dtype_kinds() expected a string or tuple of strings" " for argument {name!r}, but got {kind} instead.".format( name=name, kind=dtype, ) ) @preprocess(kinds=call(lambda x: x if isinstance(x, tuple) else (x,))) def _expect_kind(kinds): """ Factory for kind-checking functions that work the @preprocess decorator. """ def error_message(func, argname, value): # If the bad value has a dtype, but it's wrong, show the dtype # kind. Otherwise just show the value. try: value_to_show = value.dtype.kind except AttributeError: value_to_show = value return ( "{funcname}() expected a numpy object of kind {kinds} " "for argument {argname!r}, but got {value!r} instead." ).format( funcname=_qualified_name(func), kinds=' or '.join(map(repr, kinds)), argname=argname, value=value_to_show, ) def _actual_preprocessor(func, argname, argvalue): if getattrs(argvalue, ('dtype', 'kind'), object()) not in kinds: raise TypeError(error_message(func, argname, argvalue)) return argvalue return _actual_preprocessor return preprocess(**valmap(_expect_kind, named)) def expect_types(__funcname=_qualified_name, **named): """ Preprocessing decorator that verifies inputs have expected types. Examples -------- >>> @expect_types(x=int, y=str) ... def foo(x, y): ... return x, y ... >>> foo(2, '3') (2, '3') >>> foo(2.0, '3') # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... TypeError: ...foo() expected a value of type int for argument 'x', but got float instead. Notes ----- A special argument, __funcname, can be provided as a string to override the function name shown in error messages. This is most often used on __init__ or __new__ methods to make errors refer to the class name instead of the function name. """ for name, type_ in iteritems(named): if not isinstance(type_, (type, tuple)): raise TypeError( "expect_types() expected a type or tuple of types for " "argument '{name}', but got {type_} instead.".format( name=name, type_=type_, ) ) def _expect_type(type_): # Slightly different messages for type and tuple of types. _template = ( "%(funcname)s() expected a value of type {type_or_types} " "for argument '%(argname)s', but got %(actual)s instead." ) if isinstance(type_, tuple): template = _template.format( type_or_types=' or '.join(map(_qualified_name, type_)) ) else: template = _template.format(type_or_types=_qualified_name(type_)) return make_check( exc_type=TypeError, template=template, pred=lambda v: not isinstance(v, type_), actual=compose(_qualified_name, type), funcname=__funcname, ) return preprocess(**valmap(_expect_type, named)) def make_check(exc_type, template, pred, actual, funcname): """ Factory for making preprocessing functions that check a predicate on the input value. Parameters ---------- exc_type : Exception The exception type to raise if the predicate fails. template : str A template string to use to create error messages. Should have %-style named template parameters for 'funcname', 'argname', and 'actual'. pred : function[object -> bool] A function to call on the argument being preprocessed. If the predicate returns `True`, we raise an instance of `exc_type`. actual : function[object -> object] A function to call on bad values to produce the value to display in the error message. funcname : str or callable Name to use in error messages, or function to call on decorated functions to produce a name. Passing an explicit name is useful when creating checks for __init__ or __new__ methods when you want the error to refer to the class name instead of the method name. """ if isinstance(funcname, str): def get_funcname(_): return funcname else: get_funcname = funcname def _check(func, argname, argvalue): if pred(argvalue): raise exc_type( template % { 'funcname': get_funcname(func), 'argname': argname, 'actual': actual(argvalue), }, ) return argvalue return _check def optional(type_): """ Helper for use with `expect_types` when an input can be `type_` or `None`. Returns an object such that both `None` and instances of `type_` pass checks of the form `isinstance(obj, optional(type_))`. Parameters ---------- type_ : type Type for which to produce an option. Examples -------- >>> isinstance({}, optional(dict)) True >>> isinstance(None, optional(dict)) True >>> isinstance(1, optional(dict)) False """ return (type_, type(None)) def expect_element(__funcname=_qualified_name, **named): """ Preprocessing decorator that verifies inputs are elements of some expected collection. Examples -------- >>> @expect_element(x=('a', 'b')) ... def foo(x): ... return x.upper() ... >>> foo('a') 'A' >>> foo('b') 'B' >>> foo('c') # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ...foo() expected a value in ('a', 'b') for argument 'x', but got 'c' instead. Notes ----- A special argument, __funcname, can be provided as a string to override the function name shown in error messages. This is most often used on __init__ or __new__ methods to make errors refer to the class name instead of the function name. This uses the `in` operator (__contains__) to make the containment check. This allows us to use any custom container as long as the object supports the container protocol. """ def _expect_element(collection): if isinstance(collection, (set, frozenset)): # Special case the error message for set and frozen set to make it # less verbose. collection_for_error_message = tuple(sorted(collection)) else: collection_for_error_message = collection template = ( "%(funcname)s() expected a value in {collection} " "for argument '%(argname)s', but got %(actual)s instead." ).format(collection=collection_for_error_message) return make_check( ValueError, template, complement(op.contains(collection)), repr, funcname=__funcname, ) return preprocess(**valmap(_expect_element, named)) def expect_bounded(__funcname=_qualified_name, **named): """ Preprocessing decorator verifying that inputs fall INCLUSIVELY between bounds. Bounds should be passed as a pair of ``(min_value, max_value)``. ``None`` may be passed as ``min_value`` or ``max_value`` to signify that the input is only bounded above or below. Examples -------- >>> @expect_bounded(x=(1, 5)) ... def foo(x): ... return x + 1 ... >>> foo(1) 2 >>> foo(5) 6 >>> foo(6) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ...foo() expected a value inclusively between 1 and 5 for argument 'x', but got 6 instead. >>> @expect_bounded(x=(2, None)) ... def foo(x): ... return x ... >>> foo(100000) 100000 >>> foo(1) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ...foo() expected a value greater than or equal to 2 for argument 'x', but got 1 instead. >>> @expect_bounded(x=(None, 5)) ... def foo(x): ... return x ... >>> foo(6) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ...foo() expected a value less than or equal to 5 for argument 'x', but got 6 instead. """ def _make_bounded_check(bounds): (lower, upper) = bounds if lower is None: def should_fail(value): return value > upper predicate_descr = "less than or equal to " + str(upper) elif upper is None: def should_fail(value): return value < lower predicate_descr = "greater than or equal to " + str(lower) else: def should_fail(value): return not (lower <= value <= upper) predicate_descr = "inclusively between %s and %s" % bounds template = ( "%(funcname)s() expected a value {predicate}" " for argument '%(argname)s', but got %(actual)s instead." ).format(predicate=predicate_descr) return make_check( exc_type=ValueError, template=template, pred=should_fail, actual=repr, funcname=__funcname, ) return _expect_bounded(_make_bounded_check, __funcname=__funcname, **named) def expect_strictly_bounded(__funcname=_qualified_name, **named): """ Preprocessing decorator verifying that inputs fall EXCLUSIVELY between bounds. Bounds should be passed as a pair of ``(min_value, max_value)``. ``None`` may be passed as ``min_value`` or ``max_value`` to signify that the input is only bounded above or below. Examples -------- >>> @expect_strictly_bounded(x=(1, 5)) ... def foo(x): ... return x + 1 ... >>> foo(2) 3 >>> foo(4) 5 >>> foo(5) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ...foo() expected a value exclusively between 1 and 5 for argument 'x', but got 5 instead. >>> @expect_strictly_bounded(x=(2, None)) ... def foo(x): ... return x ... >>> foo(100000) 100000 >>> foo(2) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ...foo() expected a value strictly greater than 2 for argument 'x', but got 2 instead. >>> @expect_strictly_bounded(x=(None, 5)) ... def foo(x): ... return x ... >>> foo(5) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ...foo() expected a value strictly less than 5 for argument 'x', but got 5 instead. """ def _make_bounded_check(bounds): (lower, upper) = bounds if lower is None: def should_fail(value): return value >= upper predicate_descr = "strictly less than " + str(upper) elif upper is None: def should_fail(value): return value <= lower predicate_descr = "strictly greater than " + str(lower) else: def should_fail(value): return not (lower < value < upper) predicate_descr = "exclusively between %s and %s" % bounds template = ( "%(funcname)s() expected a value {predicate}" " for argument '%(argname)s', but got %(actual)s instead." ).format(predicate=predicate_descr) return make_check( exc_type=ValueError, template=template, pred=should_fail, actual=repr, funcname=__funcname, ) return _expect_bounded(_make_bounded_check, __funcname=__funcname, **named) def _expect_bounded(make_bounded_check, __funcname, **named): def valid_bounds(t): return ( isinstance(t, tuple) and len(t) == 2 and t != (None, None) ) for name, bounds in iteritems(named): if not valid_bounds(bounds): raise TypeError( "expect_bounded() expected a tuple of bounds for" " argument '{name}', but got {bounds} instead.".format( name=name, bounds=bounds, ) ) return preprocess(**valmap(make_bounded_check, named)) def expect_dimensions(__funcname=_qualified_name, **dimensions): """ Preprocessing decorator that verifies inputs are numpy arrays with a specific dimensionality. Examples -------- >>> from numpy import array >>> @expect_dimensions(x=1, y=2) ... def foo(x, y): ... return x[0] + y[0, 0] ... >>> foo(array([1, 1]), array([[1, 1], [2, 2]])) 2 >>> foo(array([1, 1]), array([1, 1])) # doctest: +NORMALIZE_WHITESPACE ... # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: ...foo() expected a 2-D array for argument 'y', but got a 1-D array instead. """ if isinstance(__funcname, str): def get_funcname(_): return __funcname else: get_funcname = __funcname def _expect_dimension(expected_ndim): def _check(func, argname, argvalue): actual_ndim = argvalue.ndim if actual_ndim != expected_ndim: if actual_ndim == 0: actual_repr = 'scalar' else: actual_repr = "%d-D array" % actual_ndim raise ValueError( "{func}() expected a {expected:d}-D array" " for argument {argname!r}, but got a {actual}" " instead.".format( func=get_funcname(func), expected=expected_ndim, argname=argname, actual=actual_repr, ) ) return argvalue return _check return preprocess(**valmap(_expect_dimension, dimensions)) def coerce(from_, to, **to_kwargs): """ A preprocessing decorator that coerces inputs of a given type by passing them to a callable. Parameters ---------- from : type or tuple or types Inputs types on which to call ``to``. to : function Coercion function to call on inputs. **to_kwargs Additional keywords to forward to every call to ``to``. Examples -------- >>> @preprocess(x=coerce(float, int), y=coerce(float, int)) ... def floordiff(x, y): ... return x - y ... >>> floordiff(3.2, 2.5) 1 >>> @preprocess(x=coerce(str, int, base=2), y=coerce(str, int, base=2)) ... def add_binary_strings(x, y): ... return bin(x + y)[2:] ... >>> add_binary_strings('101', '001') '110' """ def preprocessor(func, argname, arg): if isinstance(arg, from_): return to(arg, **to_kwargs) return arg return preprocessor def coerce_types(**kwargs): """ Preprocessing decorator that applies type coercions. Parameters ---------- **kwargs : dict[str -> (type, callable)] Keyword arguments mapping function parameter names to pairs of (from_type, to_type). Examples -------- >>> @coerce_types(x=(float, int), y=(int, str)) ... def func(x, y): ... return (x, y) ... >>> func(1.0, 3) (1, '3') """ def _coerce(types): return coerce(*types) return preprocess(**valmap(_coerce, kwargs)) class error_keywords(object): def __init__(self, *args, **kwargs): self.messages = kwargs def __call__(self, func): @wraps(func) def assert_keywords_and_call(*args, **kwargs): for field, message in iteritems(self.messages): if field in kwargs: raise TypeError(message) return func(*args, **kwargs) return assert_keywords_and_call coerce_string = partial(coerce, string_types)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/input_validation.py
input_validation.py
from textwrap import dedent from types import CodeType from inspect import getargspec from uuid import uuid4 from toolz.curried.operator import getitem from six import viewkeys, exec_, PY3 from zipline.utils.compat import wraps _code_argorder = ( ('co_argcount', 'co_kwonlyargcount') if PY3 else ('co_argcount',) ) + ( 'co_nlocals', 'co_stacksize', 'co_flags', 'co_code', 'co_consts', 'co_names', 'co_varnames', 'co_filename', 'co_name', 'co_firstlineno', 'co_lnotab', 'co_freevars', 'co_cellvars', ) NO_DEFAULT = object() def preprocess(*_unused, **processors): """ Decorator that applies pre-processors to the arguments of a function before calling the function. Parameters ---------- **processors : dict Map from argument name -> processor function. A processor function takes three arguments: (func, argname, argvalue). `func` is the the function for which we're processing args. `argname` is the name of the argument we're processing. `argvalue` is the value of the argument we're processing. Examples -------- >>> def _ensure_tuple(func, argname, arg): ... if isinstance(arg, tuple): ... return argvalue ... try: ... return tuple(arg) ... except TypeError: ... raise TypeError( ... "%s() expected argument '%s' to" ... " be iterable, but got %s instead." % ( ... func.__name__, argname, arg, ... ) ... ) ... >>> @preprocess(arg=_ensure_tuple) ... def foo(arg): ... return arg ... >>> foo([1, 2, 3]) (1, 2, 3) >>> foo("a") ('a',) >>> foo(2) Traceback (most recent call last): ... TypeError: foo() expected argument 'arg' to be iterable, but got 2 instead. """ if _unused: raise TypeError("preprocess() doesn't accept positional arguments") def _decorator(f): args, varargs, varkw, defaults = argspec = getargspec(f) if defaults is None: defaults = () no_defaults = (NO_DEFAULT,) * (len(args) - len(defaults)) args_defaults = list(zip(args, no_defaults + defaults)) if varargs: args_defaults.append((varargs, NO_DEFAULT)) if varkw: args_defaults.append((varkw, NO_DEFAULT)) argset = set(args) | {varargs, varkw} - {None} # Arguments can be declared as tuples in Python 2. if not all(isinstance(arg, str) for arg in args): raise TypeError( "Can't validate functions using tuple unpacking: %s" % (argspec,) ) # Ensure that all processors map to valid names. bad_names = viewkeys(processors) - argset if bad_names: raise TypeError( "Got processors for unknown arguments: %s." % bad_names ) return _build_preprocessed_function( f, processors, args_defaults, varargs, varkw, ) return _decorator def call(f): """ Wrap a function in a processor that calls `f` on the argument before passing it along. Useful for creating simple arguments to the `@preprocess` decorator. Parameters ---------- f : function Function accepting a single argument and returning a replacement. Examples -------- >>> @preprocess(x=call(lambda x: x + 1)) ... def foo(x): ... return x ... >>> foo(1) 2 """ @wraps(f) def processor(func, argname, arg): return f(arg) return processor def _build_preprocessed_function(func, processors, args_defaults, varargs, varkw): """ Build a preprocessed function with the same signature as `func`. Uses `exec` internally to build a function that actually has the same signature as `func. """ format_kwargs = {'func_name': func.__name__} def mangle(name): return 'a' + uuid4().hex + name format_kwargs['mangled_func'] = mangled_funcname = mangle(func.__name__) def make_processor_assignment(arg, processor_name): template = "{arg} = {processor}({func}, '{arg}', {arg})" return template.format( arg=arg, processor=processor_name, func=mangled_funcname, ) exec_globals = {mangled_funcname: func, 'wraps': wraps} defaults_seen = 0 default_name_template = 'a' + uuid4().hex + '_%d' signature = [] call_args = [] assignments = [] star_map = { varargs: '*', varkw: '**', } def name_as_arg(arg): return star_map.get(arg, '') + arg for arg, default in args_defaults: if default is NO_DEFAULT: signature.append(name_as_arg(arg)) else: default_name = default_name_template % defaults_seen exec_globals[default_name] = default signature.append('='.join([name_as_arg(arg), default_name])) defaults_seen += 1 if arg in processors: procname = mangle('_processor_' + arg) exec_globals[procname] = processors[arg] assignments.append(make_processor_assignment(arg, procname)) call_args.append(name_as_arg(arg)) exec_str = dedent( """\ @wraps({wrapped_funcname}) def {func_name}({signature}): {assignments} return {wrapped_funcname}({call_args}) """ ).format( func_name=func.__name__, signature=', '.join(signature), assignments='\n '.join(assignments), wrapped_funcname=mangled_funcname, call_args=', '.join(call_args), ) compiled = compile( exec_str, func.__code__.co_filename, mode='exec', ) exec_locals = {} exec_(compiled, exec_globals, exec_locals) new_func = exec_locals[func.__name__] code = new_func.__code__ args = { attr: getattr(code, attr) for attr in dir(code) if attr.startswith('co_') } # Copy the firstlineno out of the underlying function so that exceptions # get raised with the correct traceback. # This also makes dynamic source inspection (like IPython `??` operator) # work as intended. try: # Try to get the pycode object from the underlying function. original_code = func.__code__ except AttributeError: try: # The underlying callable was not a function, try to grab the # `__func__.__code__` which exists on method objects. original_code = func.__func__.__code__ except AttributeError: # The underlying callable does not have a `__code__`. There is # nothing for us to correct. return new_func args['co_firstlineno'] = original_code.co_firstlineno new_func.__code__ = CodeType(*map(getitem(args), _code_argorder)) return new_func
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/preprocess.py
preprocess.py
from abc import ABCMeta, abstractmethod from collections import namedtuple import six import warnings import datetime import numpy as np import pandas as pd import pytz from toolz import curry from zipline.utils.input_validation import preprocess from zipline.utils.memoize import lazyval from zipline.utils.sentinel import sentinel from .context_tricks import nop_context __all__ = [ 'EventManager', 'Event', 'EventRule', 'StatelessRule', 'ComposedRule', 'Always', 'Never', 'AfterOpen', 'BeforeClose', 'NotHalfDay', 'NthTradingDayOfWeek', 'NDaysBeforeLastTradingDayOfWeek', 'NthTradingDayOfMonth', 'NDaysBeforeLastTradingDayOfMonth', 'StatefulRule', 'OncePerDay', # Factory API 'date_rules', 'time_rules', 'calendars', 'make_eventrule', ] MAX_MONTH_RANGE = 23 MAX_WEEK_RANGE = 5 def naive_to_utc(ts): """ Converts a UTC tz-naive timestamp to a tz-aware timestamp. """ # Drop the nanoseconds field. warn=False suppresses the warning # that we are losing the nanoseconds; however, this is intended. return pd.Timestamp(ts.to_pydatetime(warn=False), tz='UTC') def ensure_utc(time, tz='UTC'): """ Normalize a time. If the time is tz-naive, assume it is UTC. """ if not time.tzinfo: time = time.replace(tzinfo=pytz.timezone(tz)) return time.replace(tzinfo=pytz.utc) def _out_of_range_error(a, b=None, var='offset'): start = 0 if b is None: end = a - 1 else: start = a end = b - 1 return ValueError( '{var} must be in between {start} and {end} inclusive'.format( var=var, start=start, end=end, ) ) def _td_check(td): seconds = td.total_seconds() # 43200 seconds = 12 hours if 60 <= seconds <= 43200: return td else: raise ValueError('offset must be in between 1 minute and 12 hours, ' 'inclusive.') def _build_offset(offset, kwargs, default): """ Builds the offset argument for event rules. """ if offset is None: if not kwargs: return default # use the default. else: return _td_check(datetime.timedelta(**kwargs)) elif kwargs: raise ValueError('Cannot pass kwargs and an offset') elif isinstance(offset, datetime.timedelta): return _td_check(offset) else: raise TypeError("Must pass 'hours' and/or 'minutes' as keywords") def _build_date(date, kwargs): """ Builds the date argument for event rules. """ if date is None: if not kwargs: raise ValueError('Must pass a date or kwargs') else: return datetime.date(**kwargs) elif kwargs: raise ValueError('Cannot pass kwargs and a date') else: return date def _build_time(time, kwargs): """ Builds the time argument for event rules. """ tz = kwargs.pop('tz', 'UTC') if time: if kwargs: raise ValueError('Cannot pass kwargs and a time') else: return ensure_utc(time, tz) elif not kwargs: raise ValueError('Must pass a time or kwargs') else: return datetime.time(**kwargs) @curry def lossless_float_to_int(funcname, func, argname, arg): """ A preprocessor that coerces integral floats to ints. Receipt of non-integral floats raises a TypeError. """ if not isinstance(arg, float): return arg arg_as_int = int(arg) if arg == arg_as_int: warnings.warn( "{f} expected an int for argument {name!r}, but got float {arg}." " Coercing to int.".format( f=funcname, name=argname, arg=arg, ), ) return arg_as_int raise TypeError(arg) class EventManager(object): """Manages a list of Event objects. This manages the logic for checking the rules and dispatching to the handle_data function of the Events. Parameters ---------- create_context : (BarData) -> context manager, optional An optional callback to produce a context manager to wrap the calls to handle_data. This will be passed the current BarData. """ def __init__(self, create_context=None): self._events = [] self._create_context = ( create_context if create_context is not None else lambda *_: nop_context ) def add_event(self, event, prepend=False): """ Adds an event to the manager. """ if prepend: self._events.insert(0, event) else: self._events.append(event) def handle_data(self, context, data, dt): with self._create_context(data): for event in self._events: event.handle_data( context, data, dt, ) class Event(namedtuple('Event', ['rule', 'callback'])): """ An event is a pairing of an EventRule and a callable that will be invoked with the current algorithm context, data, and datetime only when the rule is triggered. """ def __new__(cls, rule, callback=None): callback = callback or (lambda *args, **kwargs: None) return super(cls, cls).__new__(cls, rule=rule, callback=callback) def handle_data(self, context, data, dt): """ Calls the callable only when the rule is triggered. """ if self.rule.should_trigger(dt): self.callback(context, data) class EventRule(six.with_metaclass(ABCMeta)): # Instances of EventRule are assigned a calendar instance when scheduling # a function. _cal = None @property def cal(self): return self._cal @cal.setter def cal(self, value): self._cal = value @abstractmethod def should_trigger(self, dt): """ Checks if the rule should trigger with its current state. This method should be pure and NOT mutate any state on the object. """ raise NotImplementedError('should_trigger') class StatelessRule(EventRule): """ A stateless rule has no observable side effects. This is reentrant and will always give the same result for the same datetime. Because these are pure, they can be composed to create new rules. """ def and_(self, rule): """ Logical and of two rules, triggers only when both rules trigger. This follows the short circuiting rules for normal and. """ return ComposedRule(self, rule, ComposedRule.lazy_and) __and__ = and_ class ComposedRule(StatelessRule): """ A rule that composes the results of two rules with some composing function. The composing function should be a binary function that accepts the results first(dt) and second(dt) as positional arguments. For example, operator.and_. If lazy=True, then the lazy composer is used instead. The lazy composer expects a function that takes the two should_trigger functions and the datetime. This is useful of you don't always want to call should_trigger for one of the rules. For example, this is used to implement the & and | operators so that they will have the same short circuit logic that is expected. """ def __init__(self, first, second, composer): if not (isinstance(first, StatelessRule) and isinstance(second, StatelessRule)): raise ValueError('Only two StatelessRules can be composed') self.first = first self.second = second self.composer = composer def should_trigger(self, dt): """ Composes the two rules with a lazy composer. """ return self.composer( self.first.should_trigger, self.second.should_trigger, dt ) @staticmethod def lazy_and(first_should_trigger, second_should_trigger, dt): """ Lazily ands the two rules. This will NOT call the should_trigger of the second rule if the first one returns False. """ return first_should_trigger(dt) and second_should_trigger(dt) @property def cal(self): return self.first.cal @cal.setter def cal(self, value): # Thread the calendar through to the underlying rules. self.first.cal = self.second.cal = value class Always(StatelessRule): """ A rule that always triggers. """ @staticmethod def always_trigger(dt): """ A should_trigger implementation that will always trigger. """ return True should_trigger = always_trigger class Never(StatelessRule): """ A rule that never triggers. """ @staticmethod def never_trigger(dt): """ A should_trigger implementation that will never trigger. """ return False should_trigger = never_trigger class AfterOpen(StatelessRule): """ A rule that triggers for some offset after the market opens. Example that triggers after 30 minutes of the market opening: >>> AfterOpen(minutes=30) # doctest: +ELLIPSIS <zipline.utils.events.AfterOpen object at ...> """ def __init__(self, offset=None, **kwargs): self.offset = _build_offset( offset, kwargs, datetime.timedelta(minutes=1), # Defaults to the first minute. ) self._period_start = None self._period_end = None self._period_close = None self._one_minute = datetime.timedelta(minutes=1) def calculate_dates(self, dt): """ Given a date, find that day's open and period end (open + offset). """ period_start, period_close = self.cal.open_and_close_for_session( self.cal.minute_to_session_label(dt), ) # Align the market open and close times here with the execution times # used by the simulation clock. This ensures that scheduled functions # trigger at the correct times. self._period_start = self.cal.execution_time_from_open(period_start) self._period_close = self.cal.execution_time_from_close(period_close) self._period_end = self._period_start + self.offset - self._one_minute def should_trigger(self, dt): # There are two reasons why we might want to recalculate the dates. # One is the first time we ever call should_trigger, when # self._period_start is none. The second is when we're on a new day, # and need to recalculate the dates. For performance reasons, we rely # on the fact that our clock only ever ticks forward, since it's # cheaper to do dt1 <= dt2 than dt1.date() != dt2.date(). This means # that we will NOT correctly recognize a new date if we go backwards # in time(which should never happen in a simulation, or in live # trading) if ( self._period_start is None or self._period_close <= dt ): self.calculate_dates(dt) return dt == self._period_end class BeforeClose(StatelessRule): """ A rule that triggers for some offset time before the market closes. Example that triggers for the last 30 minutes every day: >>> BeforeClose(minutes=30) # doctest: +ELLIPSIS <zipline.utils.events.BeforeClose object at ...> """ def __init__(self, offset=None, **kwargs): self.offset = _build_offset( offset, kwargs, datetime.timedelta(minutes=1), # Defaults to the last minute. ) self._period_start = None self._period_close = None self._period_end = None self._one_minute = datetime.timedelta(minutes=1) def calculate_dates(self, dt): """ Given a dt, find that day's close and period start (close - offset). """ period_end = self.cal.open_and_close_for_session( self.cal.minute_to_session_label(dt), )[1] # Align the market close time here with the execution time used by the # simulation clock. This ensures that scheduled functions trigger at # the correct times. self._period_end = self.cal.execution_time_from_close(period_end) self._period_start = self._period_end - self.offset self._period_close = self._period_end def should_trigger(self, dt): # There are two reasons why we might want to recalculate the dates. # One is the first time we ever call should_trigger, when # self._period_start is none. The second is when we're on a new day, # and need to recalculate the dates. For performance reasons, we rely # on the fact that our clock only ever ticks forward, since it's # cheaper to do dt1 <= dt2 than dt1.date() != dt2.date(). This means # that we will NOT correctly recognize a new date if we go backwards # in time(which should never happen in a simulation, or in live # trading) if self._period_start is None or self._period_close <= dt: self.calculate_dates(dt) return self._period_start == dt class NotHalfDay(StatelessRule): """ A rule that only triggers when it is not a half day. """ def should_trigger(self, dt): return self.cal.minute_to_session_label(dt) \ not in self.cal.early_closes class TradingDayOfWeekRule(six.with_metaclass(ABCMeta, StatelessRule)): @preprocess(n=lossless_float_to_int('TradingDayOfWeekRule')) def __init__(self, n, invert): if not 0 <= n < MAX_WEEK_RANGE: raise _out_of_range_error(MAX_WEEK_RANGE) self.td_delta = (-n - 1) if invert else n def should_trigger(self, dt): # is this market minute's period in the list of execution periods? val = self.cal.minute_to_session_label(dt, direction="none").value return val in self.execution_period_values @lazyval def execution_period_values(self): # calculate the list of periods that match the given criteria sessions = self.cal.all_sessions return set( pd.Series(data=sessions) .groupby([sessions.year, sessions.weekofyear]) .nth(self.td_delta) .astype(np.int64) ) class NthTradingDayOfWeek(TradingDayOfWeekRule): """ A rule that triggers on the nth trading day of the week. This is zero-indexed, n=0 is the first trading day of the week. """ def __init__(self, n): super(NthTradingDayOfWeek, self).__init__(n, invert=False) class NDaysBeforeLastTradingDayOfWeek(TradingDayOfWeekRule): """ A rule that triggers n days before the last trading day of the week. """ def __init__(self, n): super(NDaysBeforeLastTradingDayOfWeek, self).__init__(n, invert=True) class TradingDayOfMonthRule(six.with_metaclass(ABCMeta, StatelessRule)): @preprocess(n=lossless_float_to_int('TradingDayOfMonthRule')) def __init__(self, n, invert): if not 0 <= n < MAX_MONTH_RANGE: raise _out_of_range_error(MAX_MONTH_RANGE) if invert: self.td_delta = -n - 1 else: self.td_delta = n def should_trigger(self, dt): # is this market minute's period in the list of execution periods? value = self.cal.minute_to_session_label(dt, direction="none").value return value in self.execution_period_values @lazyval def execution_period_values(self): # calculate the list of periods that match the given criteria sessions = self.cal.all_sessions return set( pd.Series(data=sessions) .groupby([sessions.year, sessions.month]) .nth(self.td_delta) .astype(np.int64) ) class NthTradingDayOfMonth(TradingDayOfMonthRule): """ A rule that triggers on the nth trading day of the month. This is zero-indexed, n=0 is the first trading day of the month. """ def __init__(self, n): super(NthTradingDayOfMonth, self).__init__(n, invert=False) class NDaysBeforeLastTradingDayOfMonth(TradingDayOfMonthRule): """ A rule that triggers n days before the last trading day of the month. """ def __init__(self, n): super(NDaysBeforeLastTradingDayOfMonth, self).__init__(n, invert=True) # Stateful rules class StatefulRule(EventRule): """ A stateful rule has state. This rule will give different results for the same datetimes depending on the internal state that this holds. StatefulRules wrap other rules as state transformers. """ def __init__(self, rule=None): self.rule = rule or Always() @property def cal(self): return self.rule.cal @cal.setter def cal(self, value): # Thread the calendar through to the underlying rule. self.rule.cal = value class OncePerDay(StatefulRule): def __init__(self, rule=None): self.triggered = False self.date = None self.next_date = None super(OncePerDay, self).__init__(rule) def should_trigger(self, dt): if self.date is None or dt >= self.next_date: # initialize or reset for new date self.triggered = False self.date = dt # record the timestamp for the next day, so that we can use it # to know if we've moved to the next day self.next_date = dt + pd.Timedelta(1, unit="d") if not self.triggered and self.rule.should_trigger(dt): self.triggered = True return True # Factory API class date_rules(object): every_day = Always @staticmethod def month_start(days_offset=0): return NthTradingDayOfMonth(n=days_offset) @staticmethod def month_end(days_offset=0): return NDaysBeforeLastTradingDayOfMonth(n=days_offset) @staticmethod def week_start(days_offset=0): return NthTradingDayOfWeek(n=days_offset) @staticmethod def week_end(days_offset=0): return NDaysBeforeLastTradingDayOfWeek(n=days_offset) class time_rules(object): market_open = AfterOpen market_close = BeforeClose every_minute = Always class calendars(object): US_EQUITIES = sentinel('US_EQUITIES') US_FUTURES = sentinel('US_FUTURES') def _invert(d): return dict(zip(d.values(), d.keys())) _uncalled_rules = _invert(vars(date_rules)) _uncalled_rules.update(_invert(vars(time_rules))) def _check_if_not_called(v): try: name = _uncalled_rules[v] except KeyError: if not issubclass(v, EventRule): return name = getattr(v, '__name__', None) msg = 'invalid rule: %r' % (v,) if name is not None: msg += ' (hint: did you mean %s())' % name raise TypeError(msg) def make_eventrule(date_rule, time_rule, cal, half_days=True): """ Constructs an event rule from the factory api. """ _check_if_not_called(date_rule) _check_if_not_called(time_rule) if half_days: inner_rule = date_rule & time_rule else: inner_rule = date_rule & time_rule & NotHalfDay() opd = OncePerDay(rule=inner_rule) # This is where a scheduled function's rule is associated with a calendar. opd.cal = cal return opd
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/events.py
events.py
from collections import OrderedDict, Sequence from itertools import compress from weakref import WeakKeyDictionary, ref from six.moves._thread import allocate_lock as Lock from toolz.sandbox import unzip from trading_calendars.utils.memoize import lazyval from zipline.utils.compat import wraps class classlazyval(lazyval): """ Decorator that marks that an attribute of a class should not be computed until needed, and that the value should be memoized. Example ------- >>> from zipline.utils.memoize import classlazyval >>> class C(object): ... count = 0 ... @classlazyval ... def val(cls): ... cls.count += 1 ... return "val" ... >>> C.count 0 >>> C.val, C.count ('val', 1) >>> C.val, C.count ('val', 1) """ # We don't reassign the name on the class to implement the caching because # then we would need to use a metaclass to track the name of the # descriptor. def __get__(self, instance, owner): return super(classlazyval, self).__get__(owner, owner) def _weak_lru_cache(maxsize=100): """ Users should only access the lru_cache through its public API: cache_info, cache_clear The internals of the lru_cache are encapsulated for thread safety and to allow the implementation to change. """ def decorating_function( user_function, tuple=tuple, sorted=sorted, len=len, KeyError=KeyError): hits, misses = [0], [0] kwd_mark = (object(),) # separates positional and keyword args lock = Lock() # needed because OrderedDict isn't threadsafe if maxsize is None: cache = _WeakArgsDict() # cache without ordering or size limit @wraps(user_function) def wrapper(*args, **kwds): key = args if kwds: key += kwd_mark + tuple(sorted(kwds.items())) try: result = cache[key] hits[0] += 1 return result except KeyError: pass result = user_function(*args, **kwds) cache[key] = result misses[0] += 1 return result else: # ordered least recent to most recent cache = _WeakArgsOrderedDict() cache_popitem = cache.popitem cache_renew = cache.move_to_end @wraps(user_function) def wrapper(*args, **kwds): key = args if kwds: key += kwd_mark + tuple(sorted(kwds.items())) with lock: try: result = cache[key] cache_renew(key) # record recent use of this key hits[0] += 1 return result except KeyError: pass result = user_function(*args, **kwds) with lock: cache[key] = result # record recent use of this key misses[0] += 1 if len(cache) > maxsize: # purge least recently used cache entry cache_popitem(False) return result def cache_info(): """Report cache statistics""" with lock: return hits[0], misses[0], maxsize, len(cache) def cache_clear(): """Clear the cache and cache statistics""" with lock: cache.clear() hits[0] = misses[0] = 0 wrapper.cache_info = cache_info wrapper.cache_clear = cache_clear return wrapper return decorating_function class _WeakArgs(Sequence): """ Works with _WeakArgsDict to provide a weak cache for function args. When any of those args are gc'd, the pair is removed from the cache. """ def __init__(self, items, dict_remove=None): def remove(k, selfref=ref(self), dict_remove=dict_remove): self = selfref() if self is not None and dict_remove is not None: dict_remove(self) self._items, self._selectors = unzip(self._try_ref(item, remove) for item in items) self._items = tuple(self._items) self._selectors = tuple(self._selectors) def __getitem__(self, index): return self._items[index] def __len__(self): return len(self._items) @staticmethod def _try_ref(item, callback): try: return ref(item, callback), True except TypeError: return item, False @property def alive(self): return all(item() is not None for item in compress(self._items, self._selectors)) def __eq__(self, other): return self._items == other._items def __hash__(self): try: return self.__hash except AttributeError: h = self.__hash = hash(self._items) return h class _WeakArgsDict(WeakKeyDictionary, object): def __delitem__(self, key): del self.data[_WeakArgs(key)] def __getitem__(self, key): return self.data[_WeakArgs(key)] def __repr__(self): return '%s(%r)' % (type(self).__name__, self.data) def __setitem__(self, key, value): self.data[_WeakArgs(key, self._remove)] = value def __contains__(self, key): try: wr = _WeakArgs(key) except TypeError: return False return wr in self.data def pop(self, key, *args): return self.data.pop(_WeakArgs(key), *args) class _WeakArgsOrderedDict(_WeakArgsDict, object): def __init__(self): super(_WeakArgsOrderedDict, self).__init__() self.data = OrderedDict() def popitem(self, last=True): while True: key, value = self.data.popitem(last) if key.alive: return tuple(key), value def move_to_end(self, key): """Move an existing element to the end. Raises KeyError if the element does not exist. """ self[key] = self.pop(key) def weak_lru_cache(maxsize=100): """Weak least-recently-used cache decorator. If *maxsize* is set to None, the LRU features are disabled and the cache can grow without bound. Arguments to the cached function must be hashable. Any that are weak- referenceable will be stored by weak reference. Once any of the args have been garbage collected, the entry will be removed from the cache. View the cache statistics named tuple (hits, misses, maxsize, currsize) with f.cache_info(). Clear the cache and statistics with f.cache_clear(). See: http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used """ class desc(lazyval): def __get__(self, instance, owner): if instance is None: return self try: return self._cache[instance] except KeyError: inst = ref(instance) @_weak_lru_cache(maxsize) @wraps(self._get) def wrapper(*args, **kwargs): return self._get(inst(), *args, **kwargs) self._cache[instance] = wrapper return wrapper @_weak_lru_cache(maxsize) def __call__(self, *args, **kwargs): return self._get(*args, **kwargs) return desc remember_last = weak_lru_cache(1)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/memoize.py
memoize.py
import zipline.api from zipline.utils.compat import wraps from zipline.utils.algo_instance import get_algo_instance, set_algo_instance class ZiplineAPI(object): """ Context manager for making an algorithm instance available to zipline API functions within a scoped block. """ def __init__(self, algo_instance): self.algo_instance = algo_instance def __enter__(self): """ Set the given algo instance, storing any previously-existing instance. """ self.old_algo_instance = get_algo_instance() set_algo_instance(self.algo_instance) def __exit__(self, _type, _value, _tb): """ Restore the algo instance stored in __enter__. """ set_algo_instance(self.old_algo_instance) def api_method(f): # Decorator that adds the decorated class method as a callable # function (wrapped) to zipline.api @wraps(f) def wrapped(*args, **kwargs): # Get the instance and call the method algo_instance = get_algo_instance() if algo_instance is None: raise RuntimeError( 'zipline api method %s must be called during a simulation.' % f.__name__ ) return getattr(algo_instance, f.__name__)(*args, **kwargs) # Add functor to zipline.api setattr(zipline.api, f.__name__, wrapped) zipline.api.__all__.append(f.__name__) f.is_api_method = True return f def require_not_initialized(exception): """ Decorator for API methods that should only be called during or before TradingAlgorithm.initialize. `exception` will be raised if the method is called after initialize. Examples -------- @require_not_initialized(SomeException("Don't do that!")) def method(self): # Do stuff that should only be allowed during initialize. """ def decorator(method): @wraps(method) def wrapped_method(self, *args, **kwargs): if self.initialized: raise exception return method(self, *args, **kwargs) return wrapped_method return decorator def require_initialized(exception): """ Decorator for API methods that should only be called after TradingAlgorithm.initialize. `exception` will be raised if the method is called before initialize has completed. Examples -------- @require_initialized(SomeException("Don't do that!")) def method(self): # Do stuff that should only be allowed after initialize. """ def decorator(method): @wraps(method) def wrapped_method(self, *args, **kwargs): if not self.initialized: raise exception return method(self, *args, **kwargs) return wrapped_method return decorator def disallowed_in_before_trading_start(exception): """ Decorator for API methods that cannot be called from within TradingAlgorithm.before_trading_start. `exception` will be raised if the method is called inside `before_trading_start`. Examples -------- @disallowed_in_before_trading_start(SomeException("Don't do that!")) def method(self): # Do stuff that is not allowed inside before_trading_start. """ def decorator(method): @wraps(method) def wrapped_method(self, *args, **kwargs): if self._in_before_trading_start: raise exception return method(self, *args, **kwargs) return wrapped_method return decorator def allowed_only_in_before_trading_start(exception): """ Decorator for API methods that can be called only from within TradingAlgorithm.before_trading_start. `exception` will be raised if the method is called outside `before_trading_start`. Usage ----- @allowed_only_in_before_trading_start(SomeException("Don't do that!")) def method(self): # Do stuff that is only allowed inside before_trading_start. """ def decorator(method): @wraps(method) def wrapped_method(self, *args, **kwargs): if not self._in_before_trading_start: raise exception return method(self, *args, **kwargs) return wrapped_method return decorator
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/api_support.py
api_support.py
import pandas as pd import numpy as np from datetime import timedelta, datetime from trading_calendars import get_calendar from zipline.sources import SpecificEquityTrades from zipline.finance.trading import SimulationParameters from zipline.sources.test_source import create_trade def create_simulation_parameters(year=2006, start=None, end=None, capital_base=float("1.0e5"), num_days=None, data_frequency='daily', emission_rate='daily', trading_calendar=None): if not trading_calendar: trading_calendar = get_calendar("NYSE") if start is None: start = pd.Timestamp("{0}-01-01".format(year), tz='UTC') elif type(start) == datetime: start = pd.Timestamp(start) if end is None: if num_days: start_index = trading_calendar.all_sessions.searchsorted(start) end = trading_calendar.all_sessions[start_index + num_days - 1] else: end = pd.Timestamp("{0}-12-31".format(year), tz='UTC') elif type(end) == datetime: end = pd.Timestamp(end) sim_params = SimulationParameters( start_session=start, end_session=end, capital_base=capital_base, data_frequency=data_frequency, emission_rate=emission_rate, trading_calendar=trading_calendar, ) return sim_params def get_next_trading_dt(current, interval, trading_calendar): next_dt = pd.Timestamp(current).tz_convert(trading_calendar.tz) while True: # Convert timestamp to naive before adding day, otherwise the when # stepping over EDT an hour is added. next_dt = pd.Timestamp(next_dt.replace(tzinfo=None)) next_dt = next_dt + interval next_dt = pd.Timestamp(next_dt, tz=trading_calendar.tz) next_dt_utc = next_dt.tz_convert('UTC') if trading_calendar.is_open_on_minute(next_dt_utc): break next_dt = next_dt_utc.tz_convert(trading_calendar.tz) return next_dt_utc def create_trade_history(sid, prices, amounts, interval, sim_params, trading_calendar, source_id="test_factory"): trades = [] current = sim_params.first_open oneday = timedelta(days=1) use_midnight = interval >= oneday for price, amount in zip(prices, amounts): if use_midnight: trade_dt = current.replace(hour=0, minute=0) else: trade_dt = current trade = create_trade(sid, price, amount, trade_dt, source_id) trades.append(trade) current = get_next_trading_dt(current, interval, trading_calendar) assert len(trades) == len(prices) return trades def create_returns_from_range(sim_params): return pd.Series(index=sim_params.sessions, data=np.random.rand(len(sim_params.sessions))) def create_returns_from_list(returns, sim_params): return pd.Series(index=sim_params.sessions[:len(returns)], data=returns) def create_daily_trade_source(sids, sim_params, asset_finder, trading_calendar, concurrent=False): """ creates trade_count trades for each sid in sids list. first trade will be on sim_params.start_session, and daily thereafter for each sid. Thus, two sids should result in two trades per day. """ return create_trade_source( sids, timedelta(days=1), sim_params, asset_finder, trading_calendar=trading_calendar, concurrent=concurrent, ) def create_trade_source(sids, trade_time_increment, sim_params, asset_finder, trading_calendar, concurrent=False): # If the sim_params define an end that is during market hours, that will be # used as the end of the data source if trading_calendar.is_open_on_minute(sim_params.end_session): end = sim_params.end_session # Otherwise, the last_close after the end_session is used as the end of the # data source else: end = sim_params.last_close args = tuple() kwargs = { 'sids': sids, 'start': sim_params.first_open, 'end': end, 'delta': trade_time_increment, 'filter': sids, 'concurrent': concurrent, 'trading_calendar': trading_calendar, 'asset_finder': asset_finder, } source = SpecificEquityTrades(*args, **kwargs) return source
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/factory.py
factory.py
import click import pandas as pd from .context_tricks import CallbackManager def maybe_show_progress(it, show_progress, **kwargs): """Optionally show a progress bar for the given iterator. Parameters ---------- it : iterable The underlying iterator. show_progress : bool Should progress be shown. **kwargs Forwarded to the click progress bar. Returns ------- itercontext : context manager A context manager whose enter is the actual iterator to use. Examples -------- .. code-block:: python with maybe_show_progress([1, 2, 3], True) as ns: for n in ns: ... """ if show_progress: return click.progressbar(it, **kwargs) # context manager that just return `it` when we enter it return CallbackManager(lambda it=it: it) class _DatetimeParam(click.ParamType): def __init__(self, tz=None): self.tz = tz def parser(self, value): return pd.Timestamp(value, tz=self.tz) @property def name(self): return type(self).__name__.upper() def convert(self, value, param, ctx): try: return self.parser(value) except ValueError: self.fail( '%s is not a valid %s' % (value, self.name.lower()), param, ctx, ) class Timestamp(_DatetimeParam): """A click parameter that parses the value into pandas.Timestamp objects. Parameters ---------- tz : timezone-coercable, optional The timezone to parse the string as. By default the timezone will be infered from the string or naiive. """ class Date(_DatetimeParam): """A click parameter that parses the value into datetime.date objects. Parameters ---------- tz : timezone-coercable, optional The timezone to parse the string as. By default the timezone will be infered from the string or naiive. as_timestamp : bool, optional If True, return the value as a pd.Timestamp object normalized to midnight. """ def __init__(self, tz=None, as_timestamp=False): super(Date, self).__init__(tz=tz) self.as_timestamp = as_timestamp def parser(self, value): ts = super(Date, self).parser(value) return ts.normalize() if self.as_timestamp else ts.date() class Time(_DatetimeParam): """A click parameter that parses the value into timetime.time objects. Parameters ---------- tz : timezone-coercable, optional The timezone to parse the string as. By default the timezone will be infered from the string or naiive. """ def parser(self, value): return super(Time, self).parser(value).time() class Timedelta(_DatetimeParam): """A click parameter that parses values into pd.Timedelta objects. Parameters ---------- unit : {'D', 'h', 'm', 's', 'ms', 'us', 'ns'}, optional Denotes the unit of the input if the input is an integer. """ def __init__(self, unit='ns'): self.unit = unit def parser(self, value): return pd.Timedelta(value, unit=self.unit)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/utils/cli.py
cli.py
import abc import logbook from datetime import datetime import pandas as pd from six import with_metaclass from zipline.errors import ( AccountControlViolation, TradingControlViolation, ) from zipline.utils.input_validation import ( expect_bounded, expect_types, ) log = logbook.Logger('TradingControl') class TradingControl(with_metaclass(abc.ABCMeta)): """ Abstract base class representing a fail-safe control on the behavior of any algorithm. """ def __init__(self, on_error, **kwargs): """ Track any arguments that should be printed in the error message generated by self.fail. """ self.on_error = on_error self.__fail_args = kwargs @abc.abstractmethod def validate(self, asset, amount, portfolio, algo_datetime, algo_current_data): """ Before any order is executed by TradingAlgorithm, this method should be called *exactly once* on each registered TradingControl object. If the specified asset and amount do not violate this TradingControl's restraint given the information in `portfolio`, this method should return None and have no externally-visible side-effects. If the desired order violates this TradingControl's contraint, this method should call self.fail(asset, amount). """ raise NotImplementedError def _constraint_msg(self, metadata): constraint = repr(self) if metadata: constraint = "{constraint} (Metadata: {metadata})".format( constraint=constraint, metadata=metadata ) return constraint def handle_violation(self, asset, amount, datetime, metadata=None): """ Handle a TradingControlViolation, either by raising or logging and error with information about the failure. If dynamic information should be displayed as well, pass it in via `metadata`. """ constraint = self._constraint_msg(metadata) if self.on_error == 'fail': raise TradingControlViolation( asset=asset, amount=amount, datetime=datetime, constraint=constraint) elif self.on_error == 'log': log.error("Order for {amount} shares of {asset} at {dt} " "violates trading constraint {constraint}", amount=amount, asset=asset, dt=datetime, constraint=constraint) def __repr__(self): return "{name}({attrs})".format(name=self.__class__.__name__, attrs=self.__fail_args) class MaxOrderCount(TradingControl): """ TradingControl representing a limit on the number of orders that can be placed in a given trading day. """ def __init__(self, on_error, max_count): super(MaxOrderCount, self).__init__(on_error, max_count=max_count) self.orders_placed = 0 self.max_count = max_count self.current_date = None def validate(self, asset, amount, portfolio, algo_datetime, algo_current_data): """ Fail if we've already placed self.max_count orders today. """ algo_date = algo_datetime.date() # Reset order count if it's a new day. if self.current_date and self.current_date != algo_date: self.orders_placed = 0 self.current_date = algo_date if self.orders_placed >= self.max_count: self.handle_violation(asset, amount, algo_datetime) self.orders_placed += 1 class RestrictedListOrder(TradingControl): """TradingControl representing a restricted list of assets that cannot be ordered by the algorithm. Parameters ---------- restrictions : zipline.finance.asset_restrictions.Restrictions Object representing restrictions of a group of assets. """ def __init__(self, on_error, restrictions): super(RestrictedListOrder, self).__init__(on_error) self.restrictions = restrictions def validate(self, asset, amount, portfolio, algo_datetime, algo_current_data): """ Fail if the asset is in the restricted_list. """ if self.restrictions.is_restricted(asset, algo_datetime): self.handle_violation(asset, amount, algo_datetime) class MaxOrderSize(TradingControl): """ TradingControl representing a limit on the magnitude of any single order placed with the given asset. Can be specified by share or by dollar value. """ def __init__(self, on_error, asset=None, max_shares=None, max_notional=None): super(MaxOrderSize, self).__init__(on_error, asset=asset, max_shares=max_shares, max_notional=max_notional) self.asset = asset self.max_shares = max_shares self.max_notional = max_notional if max_shares is None and max_notional is None: raise ValueError( "Must supply at least one of max_shares and max_notional" ) if max_shares and max_shares < 0: raise ValueError( "max_shares cannot be negative." ) if max_notional and max_notional < 0: raise ValueError( "max_notional must be positive." ) def validate(self, asset, amount, portfolio, algo_datetime, algo_current_data): """ Fail if the magnitude of the given order exceeds either self.max_shares or self.max_notional. """ if self.asset is not None and self.asset != asset: return if self.max_shares is not None and abs(amount) > self.max_shares: self.handle_violation(asset, amount, algo_datetime) current_asset_price = algo_current_data.current(asset, "price") order_value = amount * current_asset_price too_much_value = (self.max_notional is not None and abs(order_value) > self.max_notional) if too_much_value: self.handle_violation(asset, amount, algo_datetime) class MaxPositionSize(TradingControl): """ TradingControl representing a limit on the maximum position size that can be held by an algo for a given asset. """ def __init__(self, on_error, asset=None, max_shares=None, max_notional=None): super(MaxPositionSize, self).__init__(on_error, asset=asset, max_shares=max_shares, max_notional=max_notional) self.asset = asset self.max_shares = max_shares self.max_notional = max_notional if max_shares is None and max_notional is None: raise ValueError( "Must supply at least one of max_shares and max_notional" ) if max_shares and max_shares < 0: raise ValueError( "max_shares cannot be negative." ) if max_notional and max_notional < 0: raise ValueError( "max_notional must be positive." ) def validate(self, asset, amount, portfolio, algo_datetime, algo_current_data): """ Fail if the given order would cause the magnitude of our position to be greater in shares than self.max_shares or greater in dollar value than self.max_notional. """ if self.asset is not None and self.asset != asset: return current_share_count = portfolio.positions[asset].amount shares_post_order = current_share_count + amount too_many_shares = (self.max_shares is not None and abs(shares_post_order) > self.max_shares) if too_many_shares: self.handle_violation(asset, amount, algo_datetime) current_price = algo_current_data.current(asset, "price") value_post_order = shares_post_order * current_price too_much_value = (self.max_notional is not None and abs(value_post_order) > self.max_notional) if too_much_value: self.handle_violation(asset, amount, algo_datetime) class LongOnly(TradingControl): """ TradingControl representing a prohibition against holding short positions. """ def __init__(self, on_error): super(LongOnly, self).__init__(on_error) def validate(self, asset, amount, portfolio, algo_datetime, algo_current_data): """ Fail if we would hold negative shares of asset after completing this order. """ if portfolio.positions[asset].amount + amount < 0: self.handle_violation(asset, amount, algo_datetime) class AssetDateBounds(TradingControl): """ TradingControl representing a prohibition against ordering an asset before its start_date, or after its end_date. """ def __init__(self, on_error): super(AssetDateBounds, self).__init__(on_error) def validate(self, asset, amount, portfolio, algo_datetime, algo_current_data): """ Fail if the algo has passed this Asset's end_date, or before the Asset's start date. """ # If the order is for 0 shares, then silently pass through. if amount == 0: return normalized_algo_dt = pd.Timestamp(algo_datetime).normalize() # Fail if the algo is before this Asset's start_date if asset.start_date: normalized_start = pd.Timestamp(asset.start_date).normalize() if normalized_algo_dt < normalized_start: metadata = { 'asset_start_date': normalized_start } self.handle_violation( asset, amount, algo_datetime, metadata=metadata) # Fail if the algo has passed this Asset's end_date if asset.end_date: normalized_end = pd.Timestamp(asset.end_date).normalize() if normalized_algo_dt > normalized_end: metadata = { 'asset_end_date': normalized_end } self.handle_violation( asset, amount, algo_datetime, metadata=metadata) class AccountControl(with_metaclass(abc.ABCMeta)): """ Abstract base class representing a fail-safe control on the behavior of any algorithm. """ def __init__(self, **kwargs): """ Track any arguments that should be printed in the error message generated by self.fail. """ self.__fail_args = kwargs @abc.abstractmethod def validate(self, _portfolio, _account, _algo_datetime, _algo_current_data): """ On each call to handle data by TradingAlgorithm, this method should be called *exactly once* on each registered AccountControl object. If the check does not violate this AccountControl's restraint given the information in `portfolio` and `account`, this method should return None and have no externally-visible side-effects. If the desired order violates this AccountControl's contraint, this method should call self.fail(). """ raise NotImplementedError def fail(self): """ Raise an AccountControlViolation with information about the failure. """ raise AccountControlViolation(constraint=repr(self)) def __repr__(self): return "{name}({attrs})".format(name=self.__class__.__name__, attrs=self.__fail_args) class MaxLeverage(AccountControl): """ AccountControl representing a limit on the maximum leverage allowed by the algorithm. """ def __init__(self, max_leverage): """ max_leverage is the gross leverage in decimal form. For example, 2, limits an algorithm to trading at most double the account value. """ super(MaxLeverage, self).__init__(max_leverage=max_leverage) self.max_leverage = max_leverage if max_leverage is None: raise ValueError( "Must supply max_leverage" ) if max_leverage < 0: raise ValueError( "max_leverage must be positive" ) def validate(self, _portfolio, _account, _algo_datetime, _algo_current_data): """ Fail if the leverage is greater than the allowed leverage. """ if _account.leverage > self.max_leverage: self.fail() class MinLeverage(AccountControl): """AccountControl representing a limit on the minimum leverage allowed by the algorithm after a threshold period of time. Parameters ---------- min_leverage : float The gross leverage in decimal form. deadline : datetime The date the min leverage must be achieved by. For example, min_leverage=2 limits an algorithm to trading at minimum double the account value by the deadline date. """ @expect_types( __funcname='MinLeverage', min_leverage=(int, float), deadline=datetime ) @expect_bounded(__funcname='MinLeverage', min_leverage=(0, None)) def __init__(self, min_leverage, deadline): super(MinLeverage, self).__init__(min_leverage=min_leverage, deadline=deadline) self.min_leverage = min_leverage self.deadline = deadline def validate(self, _portfolio, account, algo_datetime, _algo_current_data): """ Make validation checks if we are after the deadline. Fail if the leverage is less than the min leverage. """ if (algo_datetime > self.deadline and account.leverage < self.min_leverage): self.fail()
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/controls.py
controls.py
TRADING_DAYS_IN_YEAR = 250 TRADING_HOURS_IN_DAY = 6.5 MINUTES_IN_HOUR = 60 ANNUALIZER = {'daily': TRADING_DAYS_IN_YEAR, 'hourly': TRADING_DAYS_IN_YEAR * TRADING_HOURS_IN_DAY, 'minute': TRADING_DAYS_IN_YEAR * TRADING_HOURS_IN_DAY * MINUTES_IN_HOUR} # NOTE: It may be worth revisiting how the keys for this dictionary are # specified, for instance making them ContinuousFuture objects instead of # static strings. FUTURE_EXCHANGE_FEES_BY_SYMBOL = { 'AD': 1.60, # AUD 'AI': 0.96, # Bloomberg Commodity Index 'BD': 1.50, # Big Dow 'BO': 1.95, # Soybean Oil 'BP': 1.60, # GBP 'CD': 1.60, # CAD 'CL': 1.50, # Crude Oil 'CM': 1.03, # Corn e-mini 'CN': 1.95, # Corn 'DJ': 1.50, # Dow Jones 'EC': 1.60, # Euro FX 'ED': 1.25, # Eurodollar 'EE': 1.50, # Euro FX e-mini 'EI': 1.50, # MSCI Emerging Markets mini 'EL': 1.50, # Eurodollar NYSE LIFFE 'ER': 0.65, # Russell2000 e-mini 'ES': 1.18, # SP500 e-mini 'ET': 1.50, # Ethanol 'EU': 1.50, # Eurodollar e-micro 'FC': 2.03, # Feeder Cattle 'FF': 0.96, # 3-Day Federal Funds 'FI': 0.56, # Deliverable Interest Rate Swap 5y 'FS': 1.50, # Interest Rate Swap 5y 'FV': 0.65, # US 5y 'GC': 1.50, # Gold 'HG': 1.50, # Copper 'HO': 1.50, # Heating Oil 'HU': 1.50, # Unleaded Gasoline 'JE': 0.16, # JPY e-mini 'JY': 1.60, # JPY 'LB': 2.03, # Lumber 'LC': 2.03, # Live Cattle 'LH': 2.03, # Lean Hogs 'MB': 1.50, # Municipal Bonds 'MD': 1.50, # SP400 Midcap 'ME': 1.60, # MXN 'MG': 1.50, # MSCI EAFE mini 'MI': 1.18, # SP400 Midcap e-mini 'MS': 1.03, # Soybean e-mini 'MW': 1.03, # Wheat e-mini 'ND': 1.50, # Nasdaq100 'NG': 1.50, # Natural Gas 'NK': 2.15, # Nikkei225 'NQ': 1.18, # Nasdaq100 e-mini 'NZ': 1.60, # NZD 'OA': 1.95, # Oats 'PA': 1.50, # Palladium 'PB': 1.50, # Pork Bellies 'PL': 1.50, # Platinum 'QG': 0.50, # Natural Gas e-mini 'QM': 1.20, # Crude Oil e-mini 'RM': 1.50, # Russell1000 e-mini 'RR': 1.95, # Rough Rice 'SB': 2.10, # Sugar 'SF': 1.60, # CHF 'SM': 1.95, # Soybean Meal 'SP': 2.40, # SP500 'SV': 1.50, # Silver 'SY': 1.95, # Soybean 'TB': 1.50, # Treasury Bills 'TN': 0.56, # Deliverable Interest Rate Swap 10y 'TS': 1.50, # Interest Rate Swap 10y 'TU': 1.50, # US 2y 'TY': 0.75, # US 10y 'UB': 0.85, # Ultra Tbond 'US': 0.80, # US 30y 'VX': 1.50, # VIX 'WC': 1.95, # Wheat 'XB': 1.50, # RBOB Gasoline 'XG': 0.75, # Gold e-mini 'YM': 1.50, # Dow Jones e-mini 'YS': 0.75, # Silver e-mini } # See `zipline.finance.slippage.VolatilityVolumeShare` for more information on # how these constants are used. DEFAULT_ETA = 0.049018143225019836 ROOT_SYMBOL_TO_ETA = { 'AD': DEFAULT_ETA, # AUD 'AI': DEFAULT_ETA, # Bloomberg Commodity Index 'BD': 0.050346811117733474, # Big Dow 'BO': 0.054930995070046298, # Soybean Oil 'BP': 0.047841544238716338, # GBP 'CD': 0.051124420640250717, # CAD 'CL': 0.04852544628414196, # Crude Oil 'CM': 0.052683478163348625, # Corn e-mini 'CN': 0.053499718390037809, # Corn 'DJ': 0.02313009072076987, # Dow Jones 'EC': 0.04885131067661861, # Euro FX 'ED': 0.094184297090245755, # Eurodollar 'EE': 0.048713151357687556, # Euro FX e-mini 'EI': 0.031712708439692663, # MSCI Emerging Markets mini 'EL': 0.044207422018209361, # Eurodollar NYSE LIFFE 'ER': 0.045930567737711307, # Russell2000 e-mini 'ES': 0.047304418321993502, # SP500 e-mini 'ET': DEFAULT_ETA, # Ethanol 'EU': 0.049750396084029064, # Eurodollar e-micro 'FC': 0.058728734202178494, # Feeder Cattle 'FF': 0.048970591527624042, # 3-Day Federal Funds 'FI': 0.033477176738170772, # Deliverable Interest Rate Swap 5y 'FS': 0.034557788010453824, # Interest Rate Swap 5y 'FV': 0.046544427716056963, # US 5y 'GC': 0.048933313546125207, # Gold 'HG': 0.052238417524987799, # Copper 'HO': 0.045061318412156062, # Heating Oil 'HU': 0.017154313062463938, # Unleaded Gasoline 'JE': 0.013948949613401812, # JPY e-mini 'JY': DEFAULT_ETA, # JPY 'LB': 0.06146586386903994, # Lumber 'LC': 0.055853801862858619, # Live Cattle 'LH': 0.057557004630219781, # Lean Hogs 'MB': DEFAULT_ETA, # Municipal Bonds 'MD': DEFAULT_ETA, # SP400 Midcap 'ME': 0.030383767727818548, # MXN 'MG': 0.029579261656151684, # MSCI EAFE mini 'MI': 0.041026288873007355, # SP400 Midcap e-mini 'MS': DEFAULT_ETA, # Soybean e-mini 'MW': 0.052579919663880245, # Wheat e-mini 'ND': DEFAULT_ETA, # Nasdaq100 'NG': 0.047897809233755716, # Natural Gas 'NK': 0.044555435054791433, # Nikkei225 'NQ': 0.044772425085977945, # Nasdaq100 e-mini 'NZ': 0.049170418073872041, # NZD 'OA': 0.056973267232775522, # Oats 'PA': DEFAULT_ETA, # Palladium 'PB': DEFAULT_ETA, # Pork Bellies 'PL': 0.054579379665647493, # Platinum 'QG': DEFAULT_ETA, # Natural Gas e-mini 'QM': DEFAULT_ETA, # Crude Oil e-mini 'RM': 0.037425041244579654, # Russell1000 e-mini 'RR': DEFAULT_ETA, # Rough Rice 'SB': 0.057388160345668134, # Sugar 'SF': 0.047784825569615726, # CHF 'SM': 0.048552860559844223, # Soybean Meal 'SP': DEFAULT_ETA, # SP500 'SV': 0.052691435039931109, # Silver 'SY': 0.052041703657281613, # Soybean 'TB': DEFAULT_ETA, # Treasury Bills 'TN': 0.033363465365262503, # Deliverable Interest Rate Swap 10y 'TS': 0.032908878455069152, # Interest Rate Swap 10y 'TU': 0.063867646063840794, # US 2y 'TY': 0.050586988554700826, # US 10y 'UB': DEFAULT_ETA, # Ultra Tbond 'US': 0.047984179873590722, # US 30y 'VX': DEFAULT_ETA, # VIX 'WC': 0.052636542119329242, # Wheat 'XB': 0.044444916388854484, # RBOB Gasoline 'XG': DEFAULT_ETA, # Gold e-mini 'YM': DEFAULT_ETA, # Dow Jones e-mini 'YS': DEFAULT_ETA, # Silver e-mini }
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/constants.py
constants.py
import abc from numpy import vectorize from functools import partial, reduce import operator import pandas as pd from six import with_metaclass, iteritems from collections import namedtuple from toolz import groupby from zipline.utils.enum import enum from zipline.utils.numpy_utils import vectorized_is_element from zipline.assets import Asset Restriction = namedtuple( 'Restriction', ['asset', 'effective_date', 'state'] ) RESTRICTION_STATES = enum( 'ALLOWED', 'FROZEN', ) class Restrictions(with_metaclass(abc.ABCMeta)): """ Abstract restricted list interface, representing a set of assets that an algorithm is restricted from trading. """ @abc.abstractmethod def is_restricted(self, assets, dt): """ Is the asset restricted (RestrictionStates.FROZEN) on the given dt? Parameters ---------- asset : Asset of iterable of Assets The asset(s) for which we are querying a restriction dt : pd.Timestamp The timestamp of the restriction query Returns ------- is_restricted : bool or pd.Series[bool] indexed by asset Is the asset or assets restricted on this dt? """ raise NotImplementedError('is_restricted') def __or__(self, other_restriction): """Base implementation for combining two restrictions. """ # If the right side is a _UnionRestrictions, defers to the # _UnionRestrictions implementation of `|`, which intelligently # flattens restricted lists if isinstance(other_restriction, _UnionRestrictions): return other_restriction | self return _UnionRestrictions([self, other_restriction]) class _UnionRestrictions(Restrictions): """ A union of a number of sub restrictions. Parameters ---------- sub_restrictions : iterable of Restrictions (but not _UnionRestrictions) The Restrictions to be added together Notes ----- - Consumers should not construct instances of this class directly, but instead use the `|` operator to combine restrictions """ def __new__(cls, sub_restrictions): # Filter out NoRestrictions and deal with resulting cases involving # one or zero sub_restrictions sub_restrictions = [ r for r in sub_restrictions if not isinstance(r, NoRestrictions) ] if len(sub_restrictions) == 0: return NoRestrictions() elif len(sub_restrictions) == 1: return sub_restrictions[0] new_instance = super(_UnionRestrictions, cls).__new__(cls) new_instance.sub_restrictions = sub_restrictions return new_instance def __or__(self, other_restriction): """ Overrides the base implementation for combining two restrictions, of which the left side is a _UnionRestrictions. """ # Flatten the underlying sub restrictions of _UnionRestrictions if isinstance(other_restriction, _UnionRestrictions): new_sub_restrictions = \ self.sub_restrictions + other_restriction.sub_restrictions else: new_sub_restrictions = self.sub_restrictions + [other_restriction] return _UnionRestrictions(new_sub_restrictions) def is_restricted(self, assets, dt): if isinstance(assets, Asset): return any( r.is_restricted(assets, dt) for r in self.sub_restrictions ) return reduce( operator.or_, (r.is_restricted(assets, dt) for r in self.sub_restrictions) ) class NoRestrictions(Restrictions): """ A no-op restrictions that contains no restrictions. """ def is_restricted(self, assets, dt): if isinstance(assets, Asset): return False return pd.Series(index=pd.Index(assets), data=False) class StaticRestrictions(Restrictions): """ Static restrictions stored in memory that are constant regardless of dt for each asset. Parameters ---------- restricted_list : iterable of assets The assets to be restricted """ def __init__(self, restricted_list): self._restricted_set = frozenset(restricted_list) def is_restricted(self, assets, dt): """ An asset is restricted for all dts if it is in the static list. """ if isinstance(assets, Asset): return assets in self._restricted_set return pd.Series( index=pd.Index(assets), data=vectorized_is_element(assets, self._restricted_set) ) class HistoricalRestrictions(Restrictions): """ Historical restrictions stored in memory with effective dates for each asset. Parameters ---------- restrictions : iterable of namedtuple Restriction The restrictions, each defined by an asset, effective date and state """ def __init__(self, restrictions): # A dict mapping each asset to its restrictions, which are sorted by # ascending order of effective_date self._restrictions_by_asset = { asset: sorted( restrictions_for_asset, key=lambda x: x.effective_date ) for asset, restrictions_for_asset in iteritems(groupby(lambda x: x.asset, restrictions)) } def is_restricted(self, assets, dt): """ Returns whether or not an asset or iterable of assets is restricted on a dt. """ if isinstance(assets, Asset): return self._is_restricted_for_asset(assets, dt) is_restricted = partial(self._is_restricted_for_asset, dt=dt) return pd.Series( index=pd.Index(assets), data=vectorize(is_restricted, otypes=[bool])(assets) ) def _is_restricted_for_asset(self, asset, dt): state = RESTRICTION_STATES.ALLOWED for r in self._restrictions_by_asset.get(asset, ()): if r.effective_date > dt: break state = r.state return state == RESTRICTION_STATES.FROZEN class SecurityListRestrictions(Restrictions): """ Restrictions based on a security list. Parameters ---------- restrictions : zipline.utils.security_list.SecurityList The restrictions defined by a SecurityList """ def __init__(self, security_list_by_dt): self.current_securities = security_list_by_dt.current_securities def is_restricted(self, assets, dt): securities_in_list = self.current_securities(dt) if isinstance(assets, Asset): return assets in securities_in_list return pd.Series( index=pd.Index(assets), data=vectorized_is_element(assets, securities_in_list) )
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/asset_restrictions.py
asset_restrictions.py
from abc import abstractmethod from collections import defaultdict from six import with_metaclass from toolz import merge from zipline.assets import Equity, Future from zipline.finance.constants import FUTURE_EXCHANGE_FEES_BY_SYMBOL from zipline.finance.shared import AllowedAssetMarker, FinancialModelMeta from zipline.utils.dummy import DummyMapping DEFAULT_PER_SHARE_COST = 0.001 # 0.1 cents per share DEFAULT_PER_CONTRACT_COST = 0.85 # $0.85 per future contract DEFAULT_PER_DOLLAR_COST = 0.0015 # 0.15 cents per dollar DEFAULT_MINIMUM_COST_PER_EQUITY_TRADE = 0.0 # $0 per trade DEFAULT_MINIMUM_COST_PER_FUTURE_TRADE = 0.0 # $0 per trade class CommissionModel(with_metaclass(FinancialModelMeta)): """ Abstract commission model interface. Commission models are responsible for accepting order/transaction pairs and calculating how much commission should be charged to an algorithm's account on each transaction. """ # Asset types that are compatible with the given model. allowed_asset_types = (Equity, Future) @abstractmethod def calculate(self, order, transaction): """ Calculate the amount of commission to charge on ``order`` as a result of ``transaction``. Parameters ---------- order : zipline.finance.order.Order The order being processed. The ``commission`` field of ``order`` is a float indicating the amount of commission already charged on this order. transaction : zipline.finance.transaction.Transaction The transaction being processed. A single order may generate multiple transactions if there isn't enough volume in a given bar to fill the full amount requested in the order. Returns ------- amount_charged : float The additional commission, in dollars, that we should attribute to this order. """ raise NotImplementedError('calculate') class NoCommission(CommissionModel): """A commission model where all transactions are free. Notes ----- This is primarily used for testing. """ @staticmethod def calculate(order, transaction): return 0.0 class EquityCommissionModel(with_metaclass(AllowedAssetMarker, CommissionModel)): """ Base class for commission models which only support equities. """ allowed_asset_types = (Equity,) class FutureCommissionModel(with_metaclass(AllowedAssetMarker, CommissionModel)): """ Base class for commission models which only support futures. """ allowed_asset_types = (Future,) def calculate_per_unit_commission(order, transaction, cost_per_unit, initial_commission, min_trade_cost): """ If there is a minimum commission: If the order hasn't had a commission paid yet, pay the minimum commission. If the order has paid a commission, start paying additional commission once the minimum commission has been reached. If there is no minimum commission: Pay commission based on number of units in the transaction. """ additional_commission = abs(transaction.amount * cost_per_unit) if order.commission == 0: # no commission paid yet, pay at least the minimum plus a one-time # exchange fee. return max(min_trade_cost, additional_commission + initial_commission) else: # we've already paid some commission, so figure out how much we # would be paying if we only counted per unit. per_unit_total = \ abs(order.filled * cost_per_unit) + \ additional_commission + \ initial_commission if per_unit_total < min_trade_cost: # if we haven't hit the minimum threshold yet, don't pay # additional commission return 0 else: # we've exceeded the threshold, so pay more commission. return per_unit_total - order.commission class PerShare(EquityCommissionModel): """ Calculates a commission for a transaction based on a per share cost with an optional minimum cost per trade. Parameters ---------- cost : float, optional The amount of commissions paid per share traded. min_trade_cost : float, optional The minimum amount of commissions paid per trade. """ def __init__(self, cost=DEFAULT_PER_SHARE_COST, min_trade_cost=DEFAULT_MINIMUM_COST_PER_EQUITY_TRADE): self.cost_per_share = float(cost) self.min_trade_cost = min_trade_cost or 0 def __repr__(self): return ( '{class_name}(cost_per_share={cost_per_share}, ' 'min_trade_cost={min_trade_cost})' .format( class_name=self.__class__.__name__, cost_per_share=self.cost_per_share, min_trade_cost=self.min_trade_cost, ) ) def calculate(self, order, transaction): return calculate_per_unit_commission( order=order, transaction=transaction, cost_per_unit=self.cost_per_share, initial_commission=0, min_trade_cost=self.min_trade_cost, ) class PerContract(FutureCommissionModel): """ Calculates a commission for a transaction based on a per contract cost with an optional minimum cost per trade. Parameters ---------- cost : float or dict The amount of commissions paid per contract traded. If given a float, the commission for all futures contracts is the same. If given a dictionary, it must map root symbols to the commission cost for contracts of that symbol. exchange_fee : float or dict A flat-rate fee charged by the exchange per trade. This value is a constant, one-time charge no matter how many contracts are being traded. If given a float, the fee for all contracts is the same. If given a dictionary, it must map root symbols to the fee for contracts of that symbol. min_trade_cost : float, optional The minimum amount of commissions paid per trade. """ def __init__(self, cost, exchange_fee, min_trade_cost=DEFAULT_MINIMUM_COST_PER_FUTURE_TRADE): # If 'cost' or 'exchange fee' are constants, use a dummy mapping to # treat them as a dictionary that always returns the same value. # NOTE: These dictionary does not handle unknown root symbols, so it # may be worth revisiting this behavior. if isinstance(cost, (int, float)): self._cost_per_contract = DummyMapping(float(cost)) else: # Cost per contract is a dictionary. If the user's dictionary does # not provide a commission cost for a certain contract, fall back # on the pre-defined cost values per root symbol. self._cost_per_contract = defaultdict( lambda: DEFAULT_PER_CONTRACT_COST, **cost ) if isinstance(exchange_fee, (int, float)): self._exchange_fee = DummyMapping(float(exchange_fee)) else: # Exchange fee is a dictionary. If the user's dictionary does not # provide an exchange fee for a certain contract, fall back on the # pre-defined exchange fees per root symbol. self._exchange_fee = merge( FUTURE_EXCHANGE_FEES_BY_SYMBOL, exchange_fee, ) self.min_trade_cost = min_trade_cost or 0 def __repr__(self): if isinstance(self._cost_per_contract, DummyMapping): # Cost per contract is a constant, so extract it. cost_per_contract = self._cost_per_contract['dummy key'] else: cost_per_contract = '<varies>' if isinstance(self._exchange_fee, DummyMapping): # Exchange fee is a constant, so extract it. exchange_fee = self._exchange_fee['dummy key'] else: exchange_fee = '<varies>' return ( '{class_name}(cost_per_contract={cost_per_contract}, ' 'exchange_fee={exchange_fee}, min_trade_cost={min_trade_cost})' .format( class_name=self.__class__.__name__, cost_per_contract=cost_per_contract, exchange_fee=exchange_fee, min_trade_cost=self.min_trade_cost, ) ) def calculate(self, order, transaction): root_symbol = order.asset.root_symbol cost_per_contract = self._cost_per_contract[root_symbol] exchange_fee = self._exchange_fee[root_symbol] return calculate_per_unit_commission( order=order, transaction=transaction, cost_per_unit=cost_per_contract, initial_commission=exchange_fee, min_trade_cost=self.min_trade_cost, ) class PerTrade(CommissionModel): """ Calculates a commission for a transaction based on a per trade cost. Parameters ---------- cost : float, optional The flat amount of commissions paid per equity trade. """ def __init__(self, cost=DEFAULT_MINIMUM_COST_PER_EQUITY_TRADE): """ Cost parameter is the cost of a trade, regardless of share count. $5.00 per trade is fairly typical of discount brokers. """ # Cost needs to be floating point so that calculation using division # logic does not floor to an integer. self.cost = float(cost) def __repr__(self): return '{class_name}(cost_per_trade={cost})'.format( class_name=self.__class__.__name__, cost=self.cost, ) def calculate(self, order, transaction): """ If the order hasn't had a commission paid yet, pay the fixed commission. """ if order.commission == 0: # if the order hasn't had a commission attributed to it yet, # that's what we need to pay. return self.cost else: # order has already had commission attributed, so no more # commission. return 0.0 class PerFutureTrade(PerContract): """ Calculates a commission for a transaction based on a per trade cost. Parameters ---------- cost : float or dict The flat amount of commissions paid per trade, regardless of the number of contracts being traded. If given a float, the commission for all futures contracts is the same. If given a dictionary, it must map root symbols to the commission cost for trading contracts of that symbol. """ def __init__(self, cost=DEFAULT_MINIMUM_COST_PER_FUTURE_TRADE): # The per-trade cost can be represented as the exchange fee in a # per-contract model because the exchange fee is just a one time cost # incurred on the first fill. super(PerFutureTrade, self).__init__( cost=0, exchange_fee=cost, min_trade_cost=0, ) self._cost_per_trade = self._exchange_fee def __repr__(self): if isinstance(self._cost_per_trade, DummyMapping): # Cost per trade is a constant, so extract it. cost_per_trade = self._cost_per_trade['dummy key'] else: cost_per_trade = '<varies>' return '{class_name}(cost_per_trade={cost_per_trade})'.format( class_name=self.__class__.__name__, cost_per_trade=cost_per_trade, ) class PerDollar(EquityCommissionModel): """ Calculates a commission for a transaction based on a per dollar cost. Parameters ---------- cost : float The flat amount of commissions paid per dollar of equities traded. """ def __init__(self, cost=DEFAULT_PER_DOLLAR_COST): """ Cost parameter is the cost of a trade per-dollar. 0.0015 on $1 million means $1,500 commission (=1M * 0.0015) """ self.cost_per_dollar = float(cost) def __repr__(self): return "{class_name}(cost_per_dollar={cost})".format( class_name=self.__class__.__name__, cost=self.cost_per_dollar) def calculate(self, order, transaction): """ Pay commission based on dollar value of shares. """ cost_per_share = transaction.price * self.cost_per_dollar return abs(transaction.amount) * cost_per_share
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/commission.py
commission.py
import abc from sys import float_info from six import with_metaclass from numpy import isfinite import zipline.utils.math_utils as zp_math from zipline.errors import BadOrderParameters from zipline.utils.compat import consistent_round class ExecutionStyle(with_metaclass(abc.ABCMeta)): """ Abstract base class representing a modification to a standard order. """ _exchange = None @abc.abstractmethod def get_limit_price(self, is_buy): """ Get the limit price for this order. Returns either None or a numerical value >= 0. """ raise NotImplemented @abc.abstractmethod def get_stop_price(self, is_buy): """ Get the stop price for this order. Returns either None or a numerical value >= 0. """ raise NotImplemented @property def exchange(self): """ The exchange to which this order should be routed. """ return self._exchange class MarketOrder(ExecutionStyle): """ Class encapsulating an order to be placed at the current market price. """ def __init__(self, exchange=None): self._exchange = exchange def get_limit_price(self, _is_buy): return None def get_stop_price(self, _is_buy): return None class LimitOrder(ExecutionStyle): """ Execution style representing an order to be executed at a price equal to or better than a specified limit price. """ def __init__(self, limit_price, asset=None, exchange=None): """ Store the given price. """ check_stoplimit_prices(limit_price, 'limit') self.limit_price = limit_price self._exchange = exchange self.asset = asset def get_limit_price(self, is_buy): return asymmetric_round_price( self.limit_price, is_buy, tick_size=(0.01 if self.asset is None else self.asset.tick_size) ) def get_stop_price(self, _is_buy): return None class StopOrder(ExecutionStyle): """ Execution style representing an order to be placed once the market price reaches a specified stop price. """ def __init__(self, stop_price, asset=None, exchange=None): """ Store the given price. """ check_stoplimit_prices(stop_price, 'stop') self.stop_price = stop_price self._exchange = exchange self.asset = asset def get_limit_price(self, _is_buy): return None def get_stop_price(self, is_buy): return asymmetric_round_price( self.stop_price, not is_buy, tick_size=(0.01 if self.asset is None else self.asset.tick_size) ) class StopLimitOrder(ExecutionStyle): """ Execution style representing a limit order to be placed with a specified limit price once the market reaches a specified stop price. """ def __init__(self, limit_price, stop_price, asset=None, exchange=None): """ Store the given prices """ check_stoplimit_prices(limit_price, 'limit') check_stoplimit_prices(stop_price, 'stop') self.limit_price = limit_price self.stop_price = stop_price self._exchange = exchange self.asset = asset def get_limit_price(self, is_buy): return asymmetric_round_price( self.limit_price, is_buy, tick_size=(0.01 if self.asset is None else self.asset.tick_size) ) def get_stop_price(self, is_buy): return asymmetric_round_price( self.stop_price, not is_buy, tick_size=(0.01 if self.asset is None else self.asset.tick_size) ) def asymmetric_round_price(price, prefer_round_down, tick_size, diff=0.95): """ Asymmetric rounding function for adjusting prices to the specified number of places in a way that "improves" the price. For limit prices, this means preferring to round down on buys and preferring to round up on sells. For stop prices, it means the reverse. If prefer_round_down == True: When .05 below to .95 above a specified decimal place, use it. If prefer_round_down == False: When .95 below to .05 above a specified decimal place, use it. In math-speak: If prefer_round_down: [<X-1>.0095, X.0195) -> round to X.01. If not prefer_round_down: (<X-1>.0005, X.0105] -> round to X.01. """ precision = zp_math.number_of_decimal_places(tick_size) multiplier = int(tick_size * (10 ** precision)) diff -= 0.5 # shift the difference down diff *= (10 ** -precision) # adjust diff to precision of tick size diff *= multiplier # adjust diff to value of tick_size # Subtracting an epsilon from diff to enforce the open-ness of the upper # bound on buys and the lower bound on sells. Using the actual system # epsilon doesn't quite get there, so use a slightly less epsilon-ey value. epsilon = float_info.epsilon * 10 diff = diff - epsilon # relies on rounding half away from zero, unlike numpy's bankers' rounding rounded = tick_size * consistent_round( (price - (diff if prefer_round_down else -diff)) / tick_size ) if zp_math.tolerant_equals(rounded, 0.0): return 0.0 return rounded def check_stoplimit_prices(price, label): """ Check to make sure the stop/limit prices are reasonable and raise a BadOrderParameters exception if not. """ try: if not isfinite(price): raise BadOrderParameters( msg="Attempted to place an order with a {} price " "of {}.".format(label, price) ) # This catches arbitrary objects except TypeError: raise BadOrderParameters( msg="Attempted to place an order with a {} price " "of {}.".format(label, type(price)) ) if price < 0: raise BadOrderParameters( msg="Can't place a {} order with a negative price.".format(label) )
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/execution.py
execution.py
import logbook import pandas as pd from zipline.utils.memoize import remember_last from zipline.utils.pandas_utils import normalize_date log = logbook.Logger('Trading') DEFAULT_CAPITAL_BASE = 1e5 class SimulationParameters(object): def __init__(self, start_session, end_session, trading_calendar, capital_base=DEFAULT_CAPITAL_BASE, emission_rate='daily', data_frequency='daily', arena='backtest', execution_id=None): assert type(start_session) == pd.Timestamp assert type(end_session) == pd.Timestamp assert trading_calendar is not None, \ "Must pass in trading calendar!" assert start_session <= end_session, \ "Period start falls after period end." assert start_session <= trading_calendar.last_trading_session, \ "Period start falls after the last known trading day." assert end_session >= trading_calendar.first_trading_session, \ "Period end falls before the first known trading day." # chop off any minutes or hours on the given start and end dates, # as we only support session labels here (and we represent session # labels as midnight UTC). self._start_session = normalize_date(start_session) self._end_session = normalize_date(end_session) self._capital_base = capital_base if execution_id: self._execution_id = execution_id self._emission_rate = emission_rate self._data_frequency = data_frequency # copied to algorithm's environment for runtime access self._arena = arena self._trading_calendar = trading_calendar if not trading_calendar.is_session(self._start_session): # if the start date is not a valid session in this calendar, # push it forward to the first valid session self._start_session = trading_calendar.minute_to_session_label( self._start_session ) if not trading_calendar.is_session(self._end_session): # if the end date is not a valid session in this calendar, # pull it backward to the last valid session before the given # end date. self._end_session = trading_calendar.minute_to_session_label( self._end_session, direction="previous" ) self._first_open = trading_calendar.open_and_close_for_session( self._start_session )[0] self._last_close = trading_calendar.open_and_close_for_session( self._end_session )[1] @property def capital_base(self): return self._capital_base @property def emission_rate(self): return self._emission_rate @property def data_frequency(self): return self._data_frequency @data_frequency.setter def data_frequency(self, val): self._data_frequency = val @property def arena(self): return self._arena @arena.setter def arena(self, val): self._arena = val @property def start_session(self): return self._start_session @property def end_session(self): return self._end_session @property def first_open(self): return self._first_open @property def last_close(self): return self._last_close @property def trading_calendar(self): return self._trading_calendar @property @remember_last def sessions(self): return self._trading_calendar.sessions_in_range( self.start_session, self.end_session ) def create_new(self, start_session, end_session, data_frequency=None): if data_frequency is None: data_frequency = self.data_frequency return SimulationParameters( start_session, end_session, self._trading_calendar, capital_base=self.capital_base, emission_rate=self.emission_rate, data_frequency=data_frequency, arena=self.arena ) def __repr__(self): return """ {class_name}( start_session={start_session}, end_session={end_session}, capital_base={capital_base}, data_frequency={data_frequency}, emission_rate={emission_rate}, first_open={first_open}, last_close={last_close}, trading_calendar={trading_calendar} )\ """.format(class_name=self.__class__.__name__, start_session=self.start_session, end_session=self.end_session, capital_base=self.capital_base, data_frequency=self.data_frequency, emission_rate=self.emission_rate, first_open=self.first_open, last_close=self.last_close, trading_calendar=self._trading_calendar)
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/trading.py
trading.py
from __future__ import division from abc import abstractmethod import math import numpy as np from pandas import isnull from six import with_metaclass from toolz import merge from zipline.assets import Equity, Future from zipline.errors import HistoryWindowStartsBeforeData from zipline.finance.constants import ROOT_SYMBOL_TO_ETA from zipline.finance.shared import AllowedAssetMarker, FinancialModelMeta from zipline.finance.transaction import create_transaction from zipline.utils.cache import ExpiringCache from zipline.utils.dummy import DummyMapping from zipline.utils.input_validation import (expect_bounded, expect_strictly_bounded) SELL = 1 << 0 BUY = 1 << 1 STOP = 1 << 2 LIMIT = 1 << 3 SQRT_252 = math.sqrt(252) DEFAULT_EQUITY_VOLUME_SLIPPAGE_BAR_LIMIT = 0.025 DEFAULT_FUTURE_VOLUME_SLIPPAGE_BAR_LIMIT = 0.05 class LiquidityExceeded(Exception): pass def fill_price_worse_than_limit_price(fill_price, order): """ Checks whether the fill price is worse than the order's limit price. Parameters ---------- fill_price: float The price to check. order: zipline.finance.order.Order The order whose limit price to check. Returns ------- bool: Whether the fill price is above the limit price (for a buy) or below the limit price (for a sell). """ if order.limit: # this is tricky! if an order with a limit price has reached # the limit price, we will try to fill the order. do not fill # these shares if the impacted price is worse than the limit # price. return early to avoid creating the transaction. # buy order is worse if the impacted price is greater than # the limit price. sell order is worse if the impacted price # is less than the limit price if (order.direction > 0 and fill_price > order.limit) or \ (order.direction < 0 and fill_price < order.limit): return True return False class SlippageModel(with_metaclass(FinancialModelMeta)): """Abstract interface for defining a slippage model. """ # Asset types that are compatible with the given model. allowed_asset_types = (Equity, Future) def __init__(self): self._volume_for_bar = 0 @property def volume_for_bar(self): return self._volume_for_bar @abstractmethod def process_order(self, data, order): """Process how orders get filled. Parameters ---------- data : BarData The data for the given bar. order : Order The order to simulate. Returns ------- execution_price : float The price to execute the trade at. execution_volume : int The number of shares that could be filled. This may not be all the shares ordered in which case the order will be filled over multiple bars. """ raise NotImplementedError('process_order') def simulate(self, data, asset, orders_for_asset): self._volume_for_bar = 0 volume = data.current(asset, "volume") if volume == 0: return # can use the close price, since we verified there's volume in this # bar. price = data.current(asset, "close") # BEGIN # # Remove this block after fixing data to ensure volume always has # corresponding price. if isnull(price): return # END dt = data.current_dt for order in orders_for_asset: if order.open_amount == 0: continue order.check_triggers(price, dt) if not order.triggered: continue txn = None try: execution_price, execution_volume = \ self.process_order(data, order) if execution_price is not None: txn = create_transaction( order, data.current_dt, execution_price, execution_volume ) except LiquidityExceeded: break if txn: self._volume_for_bar += abs(txn.amount) yield order, txn def asdict(self): return self.__dict__ class NoSlippage(SlippageModel): """A slippage model where all orders fill immediately and completely at the current close price. Notes ----- This is primarily used for testing. """ @staticmethod def process_order(data, order): return ( data.current(order.asset, 'close'), order.amount, ) class EquitySlippageModel(with_metaclass(AllowedAssetMarker, SlippageModel)): """ Base class for slippage models which only support equities. """ allowed_asset_types = (Equity,) class FutureSlippageModel(with_metaclass(AllowedAssetMarker, SlippageModel)): """ Base class for slippage models which only support futures. """ allowed_asset_types = (Future,) class VolumeShareSlippage(SlippageModel): """ Model slippage as a function of the volume of contracts traded. """ def __init__(self, volume_limit=DEFAULT_EQUITY_VOLUME_SLIPPAGE_BAR_LIMIT, price_impact=0.1): super(VolumeShareSlippage, self).__init__() self.volume_limit = volume_limit self.price_impact = price_impact def __repr__(self): return """ {class_name}( volume_limit={volume_limit}, price_impact={price_impact}) """.strip().format(class_name=self.__class__.__name__, volume_limit=self.volume_limit, price_impact=self.price_impact) def process_order(self, data, order): volume = data.current(order.asset, "volume") max_volume = self.volume_limit * volume # price impact accounts for the total volume of transactions # created against the current minute bar remaining_volume = max_volume - self.volume_for_bar if remaining_volume < 1: # we can't fill any more transactions raise LiquidityExceeded() # the current order amount will be the min of the # volume available in the bar or the open amount. cur_volume = int(min(remaining_volume, abs(order.open_amount))) if cur_volume < 1: return None, None # tally the current amount into our total amount ordered. # total amount will be used to calculate price impact total_volume = self.volume_for_bar + cur_volume volume_share = min(total_volume / volume, self.volume_limit) price = data.current(order.asset, "close") # BEGIN # # Remove this block after fixing data to ensure volume always has # corresponding price. if isnull(price): return # END simulated_impact = volume_share ** 2 \ * math.copysign(self.price_impact, order.direction) \ * price impacted_price = price + simulated_impact if fill_price_worse_than_limit_price(impacted_price, order): return None, None return ( impacted_price, math.copysign(cur_volume, order.direction) ) class FixedSlippage(SlippageModel): """ Model slippage as a fixed spread. Parameters ---------- spread : float, optional spread / 2 will be added to buys and subtracted from sells. """ def __init__(self, spread=0.0): super(FixedSlippage, self).__init__() self.spread = spread def __repr__(self): return '{class_name}(spread={spread})'.format( class_name=self.__class__.__name__, spread=self.spread, ) def process_order(self, data, order): price = data.current(order.asset, "close") return ( price + (self.spread / 2.0 * order.direction), order.amount ) class MarketImpactBase(SlippageModel): """ Base class for slippage models which compute a simulated price impact according to a history lookback. """ NO_DATA_VOLATILITY_SLIPPAGE_IMPACT = 10.0 / 10000 def __init__(self): super(MarketImpactBase, self).__init__() self._window_data_cache = ExpiringCache() @abstractmethod def get_txn_volume(self, data, order): """ Return the number of shares we would like to order in this minute. Parameters ---------- data : BarData order : Order Return ------ int : the number of shares """ raise NotImplementedError('get_txn_volume') @abstractmethod def get_simulated_impact(self, order, current_price, current_volume, txn_volume, mean_volume, volatility): """ Calculate simulated price impact. Parameters ---------- order : The order being processed. current_price : Current price of the asset being ordered. current_volume : Volume of the asset being ordered for the current bar. txn_volume : Number of shares/contracts being ordered. mean_volume : Trailing ADV of the asset. volatility : Annualized daily volatility of volume. Return ------ int : impact on the current price. """ raise NotImplementedError('get_simulated_impact') def process_order(self, data, order): if order.open_amount == 0: return None, None minute_data = data.current(order.asset, ['volume', 'high', 'low']) mean_volume, volatility = self._get_window_data(data, order.asset, 20) # Price to use is the average of the minute bar's open and close. price = np.mean([minute_data['high'], minute_data['low']]) volume = minute_data['volume'] if not volume: return None, None txn_volume = int( min(self.get_txn_volume(data, order), abs(order.open_amount)) ) # If the computed transaction volume is zero or a decimal value, 'int' # will round it down to zero. In that case just bail. if txn_volume == 0: return None, None if mean_volume == 0 or np.isnan(volatility): # If this is the first day the contract exists or there is no # volume history, default to a conservative estimate of impact. simulated_impact = price * self.NO_DATA_VOLATILITY_SLIPPAGE_IMPACT else: simulated_impact = self.get_simulated_impact( order=order, current_price=price, current_volume=volume, txn_volume=txn_volume, mean_volume=mean_volume, volatility=volatility, ) impacted_price = \ price + math.copysign(simulated_impact, order.direction) if fill_price_worse_than_limit_price(impacted_price, order): return None, None return impacted_price, math.copysign(txn_volume, order.direction) def _get_window_data(self, data, asset, window_length): """ Internal utility method to return the trailing mean volume over the past 'window_length' days, and volatility of close prices for a specific asset. Parameters ---------- data : The BarData from which to fetch the daily windows. asset : The Asset whose data we are fetching. window_length : Number of days of history used to calculate the mean volume and close price volatility. Returns ------- (mean volume, volatility) """ try: values = self._window_data_cache.get(asset, data.current_session) except KeyError: try: # Add a day because we want 'window_length' complete days, # excluding the current day. volume_history = data.history( asset, 'volume', window_length + 1, '1d', ) close_history = data.history( asset, 'close', window_length + 1, '1d', ) except HistoryWindowStartsBeforeData: # If there is not enough data to do a full history call, return # values as if there was no data. return 0, np.NaN # Exclude the first value of the percent change array because it is # always just NaN. close_volatility = close_history[:-1].pct_change()[1:].std( skipna=False, ) values = { 'volume': volume_history[:-1].mean(), 'close': close_volatility * SQRT_252, } self._window_data_cache.set(asset, values, data.current_session) return values['volume'], values['close'] class VolatilityVolumeShare(MarketImpactBase): """ Model slippage for futures contracts according to the following formula: new_price = price + (price * MI / 10000), where 'MI' is market impact, which is defined as: MI = eta * sigma * sqrt(psi) Eta is a constant which varies by root symbol. Sigma is 20-day annualized volatility. Psi is the volume traded in the given bar divided by 20-day ADV. Parameters ---------- volume_limit : float Maximum percentage (as a decimal) of a bar's total volume that can be traded. eta : float or dict Constant used in the market impact formula. If given a float, the eta for all futures contracts is the same. If given a dictionary, it must map root symbols to the eta for contracts of that symbol. """ NO_DATA_VOLATILITY_SLIPPAGE_IMPACT = 7.5 / 10000 allowed_asset_types = (Future,) def __init__(self, volume_limit, eta=ROOT_SYMBOL_TO_ETA): super(VolatilityVolumeShare, self).__init__() self.volume_limit = volume_limit # If 'eta' is a constant, use a dummy mapping to treat it as a # dictionary that always returns the same value. # NOTE: This dictionary does not handle unknown root symbols, so it may # be worth revisiting this behavior. if isinstance(eta, (int, float)): self._eta = DummyMapping(float(eta)) else: # Eta is a dictionary. If the user's dictionary does not provide a # value for a certain contract, fall back on the pre-defined eta # values per root symbol. self._eta = merge(ROOT_SYMBOL_TO_ETA, eta) def __repr__(self): if isinstance(self._eta, DummyMapping): # Eta is a constant, so extract it. eta = self._eta['dummy key'] else: eta = '<varies>' return '{class_name}(volume_limit={volume_limit}, eta={eta})'.format( class_name=self.__class__.__name__, volume_limit=self.volume_limit, eta=eta, ) def get_simulated_impact(self, order, current_price, current_volume, txn_volume, mean_volume, volatility): eta = self._eta[order.asset.root_symbol] psi = txn_volume / mean_volume market_impact = eta * volatility * math.sqrt(psi) # We divide by 10,000 because this model computes to basis points. # To convert from bps to % we need to divide by 100, then again to # convert from % to fraction. return (current_price * market_impact) / 10000 def get_txn_volume(self, data, order): volume = data.current(order.asset, 'volume') return volume * self.volume_limit class FixedBasisPointsSlippage(SlippageModel): """ Model slippage as a fixed percentage of fill price. Executes the full order immediately. Orders to buy will be filled at: `price + (price * basis_points * 0.0001)`. Orders to sell will be filled at: `price - (price * basis_points * 0.0001)`. Parameters ---------- basis_points : float, optional Number of basis points of slippage to apply on each execution. volume_limit : float, optional fraction of the trading volume that can be filled each minute. """ @expect_bounded( basis_points=(0, None), __funcname='FixedBasisPointsSlippage', ) @expect_strictly_bounded( volume_limit=(0, None), __funcname='FixedBasisPointsSlippage', ) def __init__(self, basis_points=5.0, volume_limit=0.1): super(FixedBasisPointsSlippage, self).__init__() self.basis_points = basis_points self.percentage = self.basis_points / 10000.0 self.volume_limit = volume_limit def __repr__(self): return """ {class_name}( basis_points={basis_points}, volume_limit={volume_limit}, ) """.strip().format( class_name=self.__class__.__name__, basis_points=self.basis_points, volume_limit=self.volume_limit, ) def process_order(self, data, order): volume = data.current(order.asset, "volume") max_volume = int(self.volume_limit * volume) price = data.current(order.asset, "close") shares_to_fill = min(abs(order.open_amount), max_volume - self.volume_for_bar) if shares_to_fill == 0: raise LiquidityExceeded() return ( price + price * (self.percentage * order.direction), shares_to_fill * order.direction )
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/slippage.py
slippage.py
import math import uuid from six import text_type import zipline.protocol as zp from zipline.assets import Asset from zipline.utils.enum import enum from zipline.utils.input_validation import expect_types ORDER_STATUS = enum( 'OPEN', 'FILLED', 'CANCELLED', 'REJECTED', 'HELD', ) SELL = 1 << 0 BUY = 1 << 1 STOP = 1 << 2 LIMIT = 1 << 3 ORDER_FIELDS_TO_IGNORE = {'type', 'direction', '_status', 'asset'} class Order(object): # using __slots__ to save on memory usage. Simulations can create many # Order objects and we keep them all in memory, so it's worthwhile trying # to cut down on the memory footprint of this object. __slots__ = ["id", "dt", "reason", "created", "asset", "amount", "filled", "commission", "_status", "stop", "limit", "stop_reached", "limit_reached", "direction", "type", "broker_order_id"] @expect_types(asset=Asset) def __init__(self, dt, asset, amount, stop=None, limit=None, filled=0, commission=0, id=None): """ @dt - datetime.datetime that the order was placed @asset - asset for the order. @amount - the number of shares to buy/sell a positive sign indicates a buy a negative sign indicates a sell @filled - how many shares of the order have been filled so far """ # get a string representation of the uuid. self.id = self.make_id() if id is None else id self.dt = dt self.reason = None self.created = dt self.asset = asset self.amount = amount self.filled = filled self.commission = commission self._status = ORDER_STATUS.OPEN self.stop = stop self.limit = limit self.stop_reached = False self.limit_reached = False self.direction = math.copysign(1, self.amount) self.type = zp.DATASOURCE_TYPE.ORDER self.broker_order_id = None @staticmethod def make_id(): return uuid.uuid4().hex def to_dict(self): dct = {name: getattr(self, name) for name in self.__slots__ if name not in ORDER_FIELDS_TO_IGNORE} if self.broker_order_id is None: del dct['broker_order_id'] # Adding 'sid' for backwards compatibility with downstream consumers. dct['sid'] = self.asset dct['status'] = self.status return dct @property def sid(self): # For backwards compatibility because we pass this object to # custom slippage models. return self.asset def to_api_obj(self): pydict = self.to_dict() obj = zp.Order(initial_values=pydict) return obj def check_triggers(self, price, dt): """ Update internal state based on price triggers and the trade event's price. """ stop_reached, limit_reached, sl_stop_reached = \ self.check_order_triggers(price) if (stop_reached, limit_reached) \ != (self.stop_reached, self.limit_reached): self.dt = dt self.stop_reached = stop_reached self.limit_reached = limit_reached if sl_stop_reached: # Change the STOP LIMIT order into a LIMIT order self.stop = None def check_order_triggers(self, current_price): """ Given an order and a trade event, return a tuple of (stop_reached, limit_reached). For market orders, will return (False, False). For stop orders, limit_reached will always be False. For limit orders, stop_reached will always be False. For stop limit orders a Boolean is returned to flag that the stop has been reached. Orders that have been triggered already (price targets reached), the order's current values are returned. """ if self.triggered: return (self.stop_reached, self.limit_reached, False) stop_reached = False limit_reached = False sl_stop_reached = False order_type = 0 if self.amount > 0: order_type |= BUY else: order_type |= SELL if self.stop is not None: order_type |= STOP if self.limit is not None: order_type |= LIMIT if order_type == BUY | STOP | LIMIT: if current_price >= self.stop: sl_stop_reached = True if current_price <= self.limit: limit_reached = True elif order_type == SELL | STOP | LIMIT: if current_price <= self.stop: sl_stop_reached = True if current_price >= self.limit: limit_reached = True elif order_type == BUY | STOP: if current_price >= self.stop: stop_reached = True elif order_type == SELL | STOP: if current_price <= self.stop: stop_reached = True elif order_type == BUY | LIMIT: if current_price <= self.limit: limit_reached = True elif order_type == SELL | LIMIT: # This is a SELL LIMIT order if current_price >= self.limit: limit_reached = True return (stop_reached, limit_reached, sl_stop_reached) def handle_split(self, ratio): # update the amount, limit_price, and stop_price # by the split's ratio # info here: http://finra.complinet.com/en/display/display_plain.html? # rbid=2403&element_id=8950&record_id=12208&print=1 # new_share_amount = old_share_amount / ratio # new_price = old_price * ratio self.amount = int(self.amount / ratio) if self.limit is not None: self.limit = round(self.limit * ratio, 2) if self.stop is not None: self.stop = round(self.stop * ratio, 2) @property def status(self): if not self.open_amount: return ORDER_STATUS.FILLED elif self._status == ORDER_STATUS.HELD and self.filled: return ORDER_STATUS.OPEN else: return self._status @status.setter def status(self, status): self._status = status def cancel(self): self.status = ORDER_STATUS.CANCELLED def reject(self, reason=''): self.status = ORDER_STATUS.REJECTED self.reason = reason def hold(self, reason=''): self.status = ORDER_STATUS.HELD self.reason = reason @property def open(self): return self.status in [ORDER_STATUS.OPEN, ORDER_STATUS.HELD] @property def triggered(self): """ For a market order, True. For a stop order, True IFF stop_reached. For a limit order, True IFF limit_reached. """ if self.stop is not None and not self.stop_reached: return False if self.limit is not None and not self.limit_reached: return False return True @property def open_amount(self): return self.amount - self.filled def __repr__(self): """ String representation for this object. """ return "Order(%s)" % self.to_dict().__repr__() def __unicode__(self): """ Unicode representation for this object. """ return text_type(repr(self))
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/order.py
order.py
from __future__ import division from math import copysign import numpy as np import logbook from zipline.assets import Future import zipline.protocol as zp log = logbook.Logger('Performance') class Position(object): __slots__ = 'inner_position', 'protocol_position' def __init__(self, asset, amount=0, cost_basis=0.0, last_sale_price=0.0, last_sale_date=None): inner = zp.InnerPosition( asset=asset, amount=amount, cost_basis=cost_basis, last_sale_price=last_sale_price, last_sale_date=last_sale_date, ) object.__setattr__(self, 'inner_position', inner) object.__setattr__(self, 'protocol_position', zp.Position(inner)) def __getattr__(self, attr): return getattr(self.inner_position, attr) def __setattr__(self, attr, value): setattr(self.inner_position, attr, value) def earn_dividend(self, dividend): """ Register the number of shares we held at this dividend's ex date so that we can pay out the correct amount on the dividend's pay date. """ return { 'amount': self.amount * dividend.amount } def earn_stock_dividend(self, stock_dividend): """ Register the number of shares we held at this dividend's ex date so that we can pay out the correct amount on the dividend's pay date. """ return { 'payment_asset': stock_dividend.payment_asset, 'share_count': np.floor( self.amount * float(stock_dividend.ratio) ) } def handle_split(self, asset, ratio): """ Update the position by the split ratio, and return the resulting fractional share that will be converted into cash. Returns the unused cash. """ if self.asset != asset: raise Exception("updating split with the wrong asset!") # adjust the # of shares by the ratio # (if we had 100 shares, and the ratio is 3, # we now have 33 shares) # (old_share_count / ratio = new_share_count) # (old_price * ratio = new_price) # e.g., 33.333 raw_share_count = self.amount / float(ratio) # e.g., 33 full_share_count = np.floor(raw_share_count) # e.g., 0.333 fractional_share_count = raw_share_count - full_share_count # adjust the cost basis to the nearest cent, e.g., 60.0 new_cost_basis = round(self.cost_basis * ratio, 2) self.cost_basis = new_cost_basis self.amount = full_share_count return_cash = round(float(fractional_share_count * new_cost_basis), 2) log.info("after split: " + str(self)) log.info("returning cash: " + str(return_cash)) # return the leftover cash, which will be converted into cash # (rounded to the nearest cent) return return_cash def update(self, txn): if self.asset != txn.asset: raise Exception('updating position with txn for a ' 'different asset') total_shares = self.amount + txn.amount if total_shares == 0: self.cost_basis = 0.0 else: prev_direction = copysign(1, self.amount) txn_direction = copysign(1, txn.amount) if prev_direction != txn_direction: # we're covering a short or closing a position if abs(txn.amount) > abs(self.amount): # we've closed the position and gone short # or covered the short position and gone long self.cost_basis = txn.price else: prev_cost = self.cost_basis * self.amount txn_cost = txn.amount * txn.price total_cost = prev_cost + txn_cost self.cost_basis = total_cost / total_shares # Update the last sale price if txn is # best data we have so far if self.last_sale_date is None or txn.dt > self.last_sale_date: self.last_sale_price = txn.price self.last_sale_date = txn.dt self.amount = total_shares def adjust_commission_cost_basis(self, asset, cost): """ A note about cost-basis in zipline: all positions are considered to share a cost basis, even if they were executed in different transactions with different commission costs, different prices, etc. Due to limitations about how zipline handles positions, zipline will currently spread an externally-delivered commission charge across all shares in a position. """ if asset != self.asset: raise Exception('Updating a commission for a different asset?') if cost == 0.0: return # If we no longer hold this position, there is no cost basis to # adjust. if self.amount == 0: return # We treat cost basis as the share price where we have broken even. # For longs, commissions cause a relatively straight forward increase # in the cost basis. # # For shorts, you actually want to decrease the cost basis because you # break even and earn a profit when the share price decreases. # # Shorts are represented as having a negative `amount`. # # The multiplication and division by `amount` cancel out leaving the # cost_basis positive, while subtracting the commission. prev_cost = self.cost_basis * self.amount if isinstance(asset, Future): cost_to_use = cost / asset.price_multiplier else: cost_to_use = cost new_cost = prev_cost + cost_to_use self.cost_basis = new_cost / self.amount def __repr__(self): template = "asset: {asset}, amount: {amount}, cost_basis: {cost_basis}, \ last_sale_price: {last_sale_price}" return template.format( asset=self.asset, amount=self.amount, cost_basis=self.cost_basis, last_sale_price=self.last_sale_price ) def to_dict(self): """ Creates a dictionary representing the state of this position. Returns a dict object of the form: """ return { 'sid': self.asset, 'amount': self.amount, 'cost_basis': self.cost_basis, 'last_sale_price': self.last_sale_price }
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/position.py
position.py
from __future__ import division from collections import namedtuple, OrderedDict from functools import partial from math import isnan import logbook import numpy as np import pandas as pd from six import iteritems, itervalues, PY2 from zipline.assets import Future from zipline.finance.transaction import Transaction import zipline.protocol as zp from zipline.utils.sentinel import sentinel from .position import Position from ._finance_ext import ( PositionStats, calculate_position_tracker_stats, update_position_last_sale_prices, ) log = logbook.Logger('Performance') class PositionTracker(object): """The current state of the positions held. Parameters ---------- data_frequency : {'daily', 'minute'} The data frequency of the simulation. """ def __init__(self, data_frequency): self.positions = OrderedDict() self._unpaid_dividends = {} self._unpaid_stock_dividends = {} self._positions_store = zp.Positions() self.data_frequency = data_frequency # cache the stats until something alters our positions self._dirty_stats = True self._stats = PositionStats.new() def update_position(self, asset, amount=None, last_sale_price=None, last_sale_date=None, cost_basis=None): self._dirty_stats = True if asset not in self.positions: position = Position(asset) self.positions[asset] = position else: position = self.positions[asset] if amount is not None: position.amount = amount if last_sale_price is not None: position.last_sale_price = last_sale_price if last_sale_date is not None: position.last_sale_date = last_sale_date if cost_basis is not None: position.cost_basis = cost_basis def execute_transaction(self, txn): self._dirty_stats = True asset = txn.asset if asset not in self.positions: position = Position(asset) self.positions[asset] = position else: position = self.positions[asset] position.update(txn) if position.amount == 0: del self.positions[asset] try: # if this position exists in our user-facing dictionary, # remove it as well. del self._positions_store[asset] except KeyError: pass def handle_commission(self, asset, cost): # Adjust the cost basis of the stock if we own it if asset in self.positions: self._dirty_stats = True self.positions[asset].adjust_commission_cost_basis(asset, cost) def handle_splits(self, splits): """Processes a list of splits by modifying any positions as needed. Parameters ---------- splits: list A list of splits. Each split is a tuple of (asset, ratio). Returns ------- int: The leftover cash from fractional shares after modifying each position. """ total_leftover_cash = 0 for asset, ratio in splits: if asset in self.positions: self._dirty_stats = True # Make the position object handle the split. It returns the # leftover cash from a fractional share, if there is any. position = self.positions[asset] leftover_cash = position.handle_split(asset, ratio) total_leftover_cash += leftover_cash return total_leftover_cash def earn_dividends(self, cash_dividends, stock_dividends): """Given a list of dividends whose ex_dates are all the next trading day, calculate and store the cash and/or stock payments to be paid on each dividend's pay date. Parameters ---------- cash_dividends : iterable of (asset, amount, pay_date) namedtuples stock_dividends: iterable of (asset, payment_asset, ratio, pay_date) namedtuples. """ for cash_dividend in cash_dividends: self._dirty_stats = True # only mark dirty if we pay a dividend # Store the earned dividends so that they can be paid on the # dividends' pay_dates. div_owed = self.positions[cash_dividend.asset].earn_dividend( cash_dividend, ) try: self._unpaid_dividends[cash_dividend.pay_date].append(div_owed) except KeyError: self._unpaid_dividends[cash_dividend.pay_date] = [div_owed] for stock_dividend in stock_dividends: self._dirty_stats = True # only mark dirty if we pay a dividend div_owed = self.positions[ stock_dividend.asset ].earn_stock_dividend(stock_dividend) try: self._unpaid_stock_dividends[stock_dividend.pay_date].append( div_owed, ) except KeyError: self._unpaid_stock_dividends[stock_dividend.pay_date] = [ div_owed, ] def pay_dividends(self, next_trading_day): """ Returns a cash payment based on the dividends that should be paid out according to the accumulated bookkeeping of earned, unpaid, and stock dividends. """ net_cash_payment = 0.0 try: payments = self._unpaid_dividends[next_trading_day] # Mark these dividends as paid by dropping them from our unpaid del self._unpaid_dividends[next_trading_day] except KeyError: payments = [] # representing the fact that we're required to reimburse the owner of # the stock for any dividends paid while borrowing. for payment in payments: net_cash_payment += payment['amount'] # Add stock for any stock dividends paid. Again, the values here may # be negative in the case of short positions. try: stock_payments = self._unpaid_stock_dividends[next_trading_day] except KeyError: stock_payments = [] for stock_payment in stock_payments: payment_asset = stock_payment['payment_asset'] share_count = stock_payment['share_count'] # note we create a Position for stock dividend if we don't # already own the asset if payment_asset in self.positions: position = self.positions[payment_asset] else: position = self.positions[payment_asset] = Position( payment_asset, ) position.amount += share_count return net_cash_payment def maybe_create_close_position_transaction(self, asset, dt, data_portal): if not self.positions.get(asset): return None amount = self.positions.get(asset).amount price = data_portal.get_spot_value( asset, 'price', dt, self.data_frequency) # Get the last traded price if price is no longer available if isnan(price): price = self.positions.get(asset).last_sale_price return Transaction( asset=asset, amount=-amount, dt=dt, price=price, order_id=None, ) def get_positions(self): positions = self._positions_store for asset, pos in iteritems(self.positions): # Adds the new position if we didn't have one before, or overwrite # one we have currently positions[asset] = pos.protocol_position return positions def get_position_list(self): return [ pos.to_dict() for asset, pos in iteritems(self.positions) if pos.amount != 0 ] def sync_last_sale_prices(self, dt, data_portal, handle_non_market_minutes=False): self._dirty_stats = True if handle_non_market_minutes: previous_minute = data_portal.trading_calendar.previous_minute(dt) get_price = partial( data_portal.get_adjusted_value, field='price', dt=previous_minute, perspective_dt=dt, data_frequency=self.data_frequency, ) else: get_price = partial( data_portal.get_scalar_asset_spot_value, field='price', dt=dt, data_frequency=self.data_frequency, ) update_position_last_sale_prices(self.positions, get_price, dt) @property def stats(self): """The current status of the positions. Returns ------- stats : PositionStats The current stats position stats. Notes ----- This is cached, repeated access will not recompute the stats until the stats may have changed. """ if self._dirty_stats: calculate_position_tracker_stats(self.positions, self._stats) self._dirty_stats = False return self._stats if PY2: def move_to_end(ordered_dict, key, last=False): if last: ordered_dict[key] = ordered_dict.pop(key) else: # please don't do this in python 2 ;_; new_first_element = ordered_dict.pop(key) # the items (without the given key) in the order they were inserted items = ordered_dict.items() # reset the ordered_dict to re-insert in the new order ordered_dict.clear() ordered_dict[key] = new_first_element # add the items back in their original order ordered_dict.update(items) else: move_to_end = OrderedDict.move_to_end PeriodStats = namedtuple( 'PeriodStats', 'net_liquidation gross_leverage net_leverage', ) not_overridden = sentinel( 'not_overridden', 'Mark that an account field has not been overridden', ) class Ledger(object): """The ledger tracks all orders and transactions as well as the current state of the portfolio and positions. Attributes ---------- portfolio : zipline.protocol.Portfolio The updated portfolio being managed. account : zipline.protocol.Account The updated account being managed. position_tracker : PositionTracker The current set of positions. todays_returns : float The current day's returns. In minute emission mode, this is the partial day's returns. In daily emission mode, this is ``daily_returns[session]``. daily_returns_series : pd.Series The daily returns series. Days that have not yet finished will hold a value of ``np.nan``. daily_returns_array : np.ndarray The daily returns as an ndarray. Days that have not yet finished will hold a value of ``np.nan``. """ def __init__(self, trading_sessions, capital_base, data_frequency): if len(trading_sessions): start = trading_sessions[0] else: start = None # Have some fields of the portfolio changed? This should be accessed # through ``self._dirty_portfolio`` self.__dirty_portfolio = False self._immutable_portfolio = zp.Portfolio(start, capital_base) self._portfolio = zp.MutableView(self._immutable_portfolio) self.daily_returns_series = pd.Series( np.nan, index=trading_sessions, ) # Get a view into the storage of the returns series. Metrics # can access this directly in minute mode for performance reasons. self.daily_returns_array = self.daily_returns_series.values self._previous_total_returns = 0 # this is a component of the cache key for the account self._position_stats = None # Have some fields of the account changed? self._dirty_account = True self._immutable_account = zp.Account() self._account = zp.MutableView(self._immutable_account) # The broker blotter can override some fields on the account. This is # way to tangled up at the moment but we aren't fixing it today. self._account_overrides = {} self.position_tracker = PositionTracker(data_frequency) self._processed_transactions = {} self._orders_by_modified = {} self._orders_by_id = OrderedDict() # Keyed by asset, the previous last sale price of positions with # payouts on price differences, e.g. Futures. # # This dt is not the previous minute to the minute for which the # calculation is done, but the last sale price either before the period # start, or when the price at execution. self._payout_last_sale_prices = {} @property def todays_returns(self): # compute today's returns in returns space instead of portfolio-value # space to work even when we have capital changes return ( (self.portfolio.returns + 1) / (self._previous_total_returns + 1) - 1 ) @property def _dirty_portfolio(self): return self.__dirty_portfolio @_dirty_portfolio.setter def _dirty_portfolio(self, value): if value: # marking the portfolio as dirty also marks the account as dirty self.__dirty_portfolio = self._dirty_account = value else: self.__dirty_portfolio = value def start_of_session(self, session_label): self._processed_transactions.clear() self._orders_by_modified.clear() self._orders_by_id.clear() # Save the previous day's total returns so that ``todays_returns`` # produces returns since yesterday. This does not happen in # ``end_of_session`` because we want ``todays_returns`` to produce the # correct value in metric ``end_of_session`` handlers. self._previous_total_returns = self.portfolio.returns def end_of_bar(self, session_ix): # make daily_returns hold the partial returns, this saves many # metrics from doing a concat and copying all of the previous # returns self.daily_returns_array[session_ix] = self.todays_returns def end_of_session(self, session_ix): # save the daily returns time-series self.daily_returns_series[session_ix] = self.todays_returns def sync_last_sale_prices(self, dt, data_portal, handle_non_market_minutes=False): self.position_tracker.sync_last_sale_prices( dt, data_portal, handle_non_market_minutes=handle_non_market_minutes, ) self._dirty_portfolio = True @staticmethod def _calculate_payout(multiplier, amount, old_price, price): return (price - old_price) * multiplier * amount def _cash_flow(self, amount): self._dirty_portfolio = True p = self._portfolio p.cash_flow += amount p.cash += amount def process_transaction(self, transaction): """Add a transaction to ledger, updating the current state as needed. Parameters ---------- transaction : zp.Transaction The transaction to execute. """ asset = transaction.asset if isinstance(asset, Future): try: old_price = self._payout_last_sale_prices[asset] except KeyError: self._payout_last_sale_prices[asset] = transaction.price else: position = self.position_tracker.positions[asset] amount = position.amount price = transaction.price self._cash_flow( self._calculate_payout( asset.price_multiplier, amount, old_price, price, ), ) if amount + transaction.amount == 0: del self._payout_last_sale_prices[asset] else: self._payout_last_sale_prices[asset] = price else: self._cash_flow(-(transaction.price * transaction.amount)) self.position_tracker.execute_transaction(transaction) # we only ever want the dict form from now on transaction_dict = transaction.to_dict() try: self._processed_transactions[transaction.dt].append( transaction_dict, ) except KeyError: self._processed_transactions[transaction.dt] = [transaction_dict] def process_splits(self, splits): """Processes a list of splits by modifying any positions as needed. Parameters ---------- splits: list[(Asset, float)] A list of splits. Each split is a tuple of (asset, ratio). """ leftover_cash = self.position_tracker.handle_splits(splits) if leftover_cash > 0: self._cash_flow(leftover_cash) def process_order(self, order): """Keep track of an order that was placed. Parameters ---------- order : zp.Order The order to record. """ try: dt_orders = self._orders_by_modified[order.dt] except KeyError: self._orders_by_modified[order.dt] = OrderedDict([ (order.id, order), ]) self._orders_by_id[order.id] = order else: self._orders_by_id[order.id] = dt_orders[order.id] = order # to preserve the order of the orders by modified date move_to_end(dt_orders, order.id, last=True) move_to_end(self._orders_by_id, order.id, last=True) def process_commission(self, commission): """Process the commission. Parameters ---------- commission : zp.Event The commission being paid. """ asset = commission['asset'] cost = commission['cost'] self.position_tracker.handle_commission(asset, cost) self._cash_flow(-cost) def close_position(self, asset, dt, data_portal): txn = self.position_tracker.maybe_create_close_position_transaction( asset, dt, data_portal, ) if txn is not None: self.process_transaction(txn) def process_dividends(self, next_session, asset_finder, adjustment_reader): """Process dividends for the next session. This will earn us any dividends whose ex-date is the next session as well as paying out any dividends whose pay-date is the next session """ position_tracker = self.position_tracker # Earn dividends whose ex_date is the next trading day. We need to # check if we own any of these stocks so we know to pay them out when # the pay date comes. held_sids = set(position_tracker.positions) if held_sids: cash_dividends = adjustment_reader.get_dividends_with_ex_date( held_sids, next_session, asset_finder ) stock_dividends = ( adjustment_reader.get_stock_dividends_with_ex_date( held_sids, next_session, asset_finder ) ) # Earning a dividend just marks that we need to get paid out on # the dividend's pay-date. This does not affect our cash yet. position_tracker.earn_dividends( cash_dividends, stock_dividends, ) # Pay out the dividends whose pay-date is the next session. This does # affect out cash. self._cash_flow( position_tracker.pay_dividends( next_session, ), ) def capital_change(self, change_amount): self.update_portfolio() portfolio = self._portfolio # we update the cash and total value so this is not dirty portfolio.portfolio_value += change_amount portfolio.cash += change_amount def transactions(self, dt=None): """Retrieve the dict-form of all of the transactions in a given bar or for the whole simulation. Parameters ---------- dt : pd.Timestamp or None, optional The particular datetime to look up transactions for. If not passed, or None is explicitly passed, all of the transactions will be returned. Returns ------- transactions : list[dict] The transaction information. """ if dt is None: # flatten the by-day transactions return [ txn for by_day in itervalues(self._processed_transactions) for txn in by_day ] return self._processed_transactions.get(dt, []) def orders(self, dt=None): """Retrieve the dict-form of all of the orders in a given bar or for the whole simulation. Parameters ---------- dt : pd.Timestamp or None, optional The particular datetime to look up order for. If not passed, or None is explicitly passed, all of the orders will be returned. Returns ------- orders : list[dict] The order information. """ if dt is None: # orders by id is already flattened return [o.to_dict() for o in itervalues(self._orders_by_id)] return [ o.to_dict() for o in itervalues(self._orders_by_modified.get(dt, {})) ] @property def positions(self): return self.position_tracker.get_position_list() def _get_payout_total(self, positions): calculate_payout = self._calculate_payout payout_last_sale_prices = self._payout_last_sale_prices total = 0 for asset, old_price in iteritems(payout_last_sale_prices): position = positions[asset] payout_last_sale_prices[asset] = price = position.last_sale_price amount = position.amount total += calculate_payout( asset.price_multiplier, amount, old_price, price, ) return total def update_portfolio(self): """Force a computation of the current portfolio state. """ if not self._dirty_portfolio: return portfolio = self._portfolio pt = self.position_tracker portfolio.positions = pt.get_positions() position_stats = pt.stats portfolio.positions_value = position_value = ( position_stats.net_value ) portfolio.positions_exposure = position_stats.net_exposure self._cash_flow(self._get_payout_total(pt.positions)) start_value = portfolio.portfolio_value # update the new starting value portfolio.portfolio_value = end_value = portfolio.cash + position_value pnl = end_value - start_value if start_value != 0: returns = pnl / start_value else: returns = 0.0 portfolio.pnl += pnl portfolio.returns = ( (1 + portfolio.returns) * (1 + returns) - 1 ) # the portfolio has been fully synced self._dirty_portfolio = False @property def portfolio(self): """Compute the current portfolio. Notes ----- This is cached, repeated access will not recompute the portfolio until the portfolio may have changed. """ self.update_portfolio() return self._immutable_portfolio def calculate_period_stats(self): position_stats = self.position_tracker.stats portfolio_value = self.portfolio.portfolio_value if portfolio_value == 0: gross_leverage = net_leverage = np.inf else: gross_leverage = position_stats.gross_exposure / portfolio_value net_leverage = position_stats.net_exposure / portfolio_value return portfolio_value, gross_leverage, net_leverage def override_account_fields(self, settled_cash=not_overridden, accrued_interest=not_overridden, buying_power=not_overridden, equity_with_loan=not_overridden, total_positions_value=not_overridden, total_positions_exposure=not_overridden, regt_equity=not_overridden, regt_margin=not_overridden, initial_margin_requirement=not_overridden, maintenance_margin_requirement=not_overridden, available_funds=not_overridden, excess_liquidity=not_overridden, cushion=not_overridden, day_trades_remaining=not_overridden, leverage=not_overridden, net_leverage=not_overridden, net_liquidation=not_overridden): """Override fields on ``self.account``. """ # mark that the portfolio is dirty to override the fields again self._dirty_account = True self._account_overrides = kwargs = { k: v for k, v in locals().items() if v is not not_overridden } del kwargs['self'] @property def account(self): if self._dirty_account: portfolio = self.portfolio account = self._account # If no attribute is found in the ``_account_overrides`` resort to # the following default values. If an attribute is found use the # existing value. For instance, a broker may provide updates to # these attributes. In this case we do not want to over write the # broker values with the default values. account.settled_cash = portfolio.cash account.accrued_interest = 0.0 account.buying_power = np.inf account.equity_with_loan = portfolio.portfolio_value account.total_positions_value = ( portfolio.portfolio_value - portfolio.cash ) account.total_positions_exposure = ( portfolio.positions_exposure ) account.regt_equity = portfolio.cash account.regt_margin = np.inf account.initial_margin_requirement = 0.0 account.maintenance_margin_requirement = 0.0 account.available_funds = portfolio.cash account.excess_liquidity = portfolio.cash account.cushion = ( (portfolio.cash / portfolio.portfolio_value) if portfolio.portfolio_value else np.nan ) account.day_trades_remaining = np.inf (account.net_liquidation, account.gross_leverage, account.net_leverage) = self.calculate_period_stats() account.leverage = account.gross_leverage # apply the overrides for k, v in iteritems(self._account_overrides): setattr(account, k, v) # the account has been fully synced self._dirty_account = False return self._immutable_account
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/ledger.py
ledger.py
from abc import ABCMeta, abstractmethod from six import with_metaclass from zipline.extensions import extensible from zipline.finance.cancel_policy import NeverCancel @extensible class Blotter(with_metaclass(ABCMeta)): def __init__(self, cancel_policy=None): self.cancel_policy = cancel_policy if cancel_policy else NeverCancel() self.current_dt = None def set_date(self, dt): self.current_dt = dt @abstractmethod def order(self, asset, amount, style, order_id=None): """Place an order. Parameters ---------- asset : zipline.assets.Asset The asset that this order is for. amount : int The amount of shares to order. If ``amount`` is positive, this is the number of shares to buy or cover. If ``amount`` is negative, this is the number of shares to sell or short. style : zipline.finance.execution.ExecutionStyle The execution style for the order. order_id : str, optional The unique identifier for this order. Returns ------- order_id : str or None The unique identifier for this order, or None if no order was placed. Notes ----- amount > 0 :: Buy/Cover amount < 0 :: Sell/Short Market order: order(asset, amount) Limit order: order(asset, amount, style=LimitOrder(limit_price)) Stop order: order(asset, amount, style=StopOrder(stop_price)) StopLimit order: order(asset, amount, style=StopLimitOrder(limit_price, stop_price)) """ raise NotImplementedError('order') def batch_order(self, order_arg_lists): """Place a batch of orders. Parameters ---------- order_arg_lists : iterable[tuple] Tuples of args that `order` expects. Returns ------- order_ids : list[str or None] The unique identifier (or None) for each of the orders placed (or not placed). Notes ----- This is required for `Blotter` subclasses to be able to place a batch of orders, instead of being passed the order requests one at a time. """ return [self.order(*order_args) for order_args in order_arg_lists] @abstractmethod def cancel(self, order_id, relay_status=True): """Cancel a single order Parameters ---------- order_id : int The id of the order relay_status : bool Whether or not to record the status of the order """ raise NotImplementedError('cancel') @abstractmethod def cancel_all_orders_for_asset(self, asset, warn=False, relay_status=True): """ Cancel all open orders for a given asset. """ raise NotImplementedError('cancel_all_orders_for_asset') @abstractmethod def execute_cancel_policy(self, event): raise NotImplementedError('execute_cancel_policy') @abstractmethod def reject(self, order_id, reason=''): """ Mark the given order as 'rejected', which is functionally similar to cancelled. The distinction is that rejections are involuntary (and usually include a message from a broker indicating why the order was rejected) while cancels are typically user-driven. """ raise NotImplementedError('reject') @abstractmethod def hold(self, order_id, reason=''): """ Mark the order with order_id as 'held'. Held is functionally similar to 'open'. When a fill (full or partial) arrives, the status will automatically change back to open/filled as necessary. """ raise NotImplementedError('hold') @abstractmethod def process_splits(self, splits): """ Processes a list of splits by modifying any open orders as needed. Parameters ---------- splits: list A list of splits. Each split is a tuple of (asset, ratio). Returns ------- None """ raise NotImplementedError('process_splits') @abstractmethod def get_transactions(self, bar_data): """ Creates a list of transactions based on the current open orders, slippage model, and commission model. Parameters ---------- bar_data: zipline._protocol.BarData Notes ----- This method book-keeps the blotter's open_orders dictionary, so that it is accurate by the time we're done processing open orders. Returns ------- transactions_list: List transactions_list: list of transactions resulting from the current open orders. If there were no open orders, an empty list is returned. commissions_list: List commissions_list: list of commissions resulting from filling the open orders. A commission is an object with "asset" and "cost" parameters. closed_orders: List closed_orders: list of all the orders that have filled. """ raise NotImplementedError('get_transactions') @abstractmethod def prune_orders(self, closed_orders): """ Removes all given orders from the blotter's open_orders list. Parameters ---------- closed_orders: iterable of orders that are closed. Returns ------- None """ raise NotImplementedError('prune_orders')
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/blotter/blotter.py
blotter.py
from logbook import Logger from collections import defaultdict from copy import copy from six import iteritems from zipline.assets import Equity, Future, Asset from .blotter import Blotter from zipline.extensions import register from zipline.finance.order import Order from zipline.finance.slippage import ( DEFAULT_FUTURE_VOLUME_SLIPPAGE_BAR_LIMIT, VolatilityVolumeShare, FixedBasisPointsSlippage, ) from zipline.finance.commission import ( DEFAULT_PER_CONTRACT_COST, FUTURE_EXCHANGE_FEES_BY_SYMBOL, PerContract, PerShare, ) from zipline.utils.input_validation import expect_types log = Logger('Blotter') warning_logger = Logger('AlgoWarning') @register(Blotter, 'default') class SimulationBlotter(Blotter): def __init__(self, equity_slippage=None, future_slippage=None, equity_commission=None, future_commission=None, cancel_policy=None): super(SimulationBlotter, self).__init__(cancel_policy=cancel_policy) # these orders are aggregated by asset self.open_orders = defaultdict(list) # keep a dict of orders by their own id self.orders = {} # holding orders that have come in since the last event. self.new_orders = [] self.max_shares = int(1e+11) self.slippage_models = { Equity: equity_slippage or FixedBasisPointsSlippage(), Future: future_slippage or VolatilityVolumeShare( volume_limit=DEFAULT_FUTURE_VOLUME_SLIPPAGE_BAR_LIMIT, ), } self.commission_models = { Equity: equity_commission or PerShare(), Future: future_commission or PerContract( cost=DEFAULT_PER_CONTRACT_COST, exchange_fee=FUTURE_EXCHANGE_FEES_BY_SYMBOL, ), } def __repr__(self): return """ {class_name}( slippage_models={slippage_models}, commission_models={commission_models}, open_orders={open_orders}, orders={orders}, new_orders={new_orders}, current_dt={current_dt}) """.strip().format(class_name=self.__class__.__name__, slippage_models=self.slippage_models, commission_models=self.commission_models, open_orders=self.open_orders, orders=self.orders, new_orders=self.new_orders, current_dt=self.current_dt) @expect_types(asset=Asset) def order(self, asset, amount, style, order_id=None): """Place an order. Parameters ---------- asset : zipline.assets.Asset The asset that this order is for. amount : int The amount of shares to order. If ``amount`` is positive, this is the number of shares to buy or cover. If ``amount`` is negative, this is the number of shares to sell or short. style : zipline.finance.execution.ExecutionStyle The execution style for the order. order_id : str, optional The unique identifier for this order. Returns ------- order_id : str or None The unique identifier for this order, or None if no order was placed. Notes ----- amount > 0 :: Buy/Cover amount < 0 :: Sell/Short Market order: order(asset, amount) Limit order: order(asset, amount, style=LimitOrder(limit_price)) Stop order: order(asset, amount, style=StopOrder(stop_price)) StopLimit order: order(asset, amount, style=StopLimitOrder(limit_price, stop_price)) """ # something could be done with amount to further divide # between buy by share count OR buy shares up to a dollar amount # numeric == share count AND "$dollar.cents" == cost amount if amount == 0: # Don't bother placing orders for 0 shares. return None elif amount > self.max_shares: # Arbitrary limit of 100 billion (US) shares will never be # exceeded except by a buggy algorithm. raise OverflowError("Can't order more than %d shares" % self.max_shares) is_buy = (amount > 0) order = Order( dt=self.current_dt, asset=asset, amount=amount, stop=style.get_stop_price(is_buy), limit=style.get_limit_price(is_buy), id=order_id ) self.open_orders[order.asset].append(order) self.orders[order.id] = order self.new_orders.append(order) return order.id def cancel(self, order_id, relay_status=True): if order_id not in self.orders: return cur_order = self.orders[order_id] if cur_order.open: order_list = self.open_orders[cur_order.asset] if cur_order in order_list: order_list.remove(cur_order) if cur_order in self.new_orders: self.new_orders.remove(cur_order) cur_order.cancel() cur_order.dt = self.current_dt if relay_status: # we want this order's new status to be relayed out # along with newly placed orders. self.new_orders.append(cur_order) def cancel_all_orders_for_asset(self, asset, warn=False, relay_status=True): """ Cancel all open orders for a given asset. """ # (sadly) open_orders is a defaultdict, so this will always succeed. orders = self.open_orders[asset] # We're making a copy here because `cancel` mutates the list of open # orders in place. The right thing to do here would be to make # self.open_orders no longer a defaultdict. If we do that, then we # should just remove the orders once here and be done with the matter. for order in orders[:]: self.cancel(order.id, relay_status) if warn: # Message appropriately depending on whether there's # been a partial fill or not. if order.filled > 0: warning_logger.warn( 'Your order for {order_amt} shares of ' '{order_sym} has been partially filled. ' '{order_filled} shares were successfully ' 'purchased. {order_failed} shares were not ' 'filled by the end of day and ' 'were canceled.'.format( order_amt=order.amount, order_sym=order.asset.symbol, order_filled=order.filled, order_failed=order.amount - order.filled, ) ) elif order.filled < 0: warning_logger.warn( 'Your order for {order_amt} shares of ' '{order_sym} has been partially filled. ' '{order_filled} shares were successfully ' 'sold. {order_failed} shares were not ' 'filled by the end of day and ' 'were canceled.'.format( order_amt=order.amount, order_sym=order.asset.symbol, order_filled=-1 * order.filled, order_failed=-1 * (order.amount - order.filled), ) ) else: warning_logger.warn( 'Your order for {order_amt} shares of ' '{order_sym} failed to fill by the end of day ' 'and was canceled.'.format( order_amt=order.amount, order_sym=order.asset.symbol, ) ) assert not orders del self.open_orders[asset] def execute_cancel_policy(self, event): if self.cancel_policy.should_cancel(event): warn = self.cancel_policy.warn_on_cancel for asset in copy(self.open_orders): self.cancel_all_orders_for_asset(asset, warn, relay_status=False) def reject(self, order_id, reason=''): """ Mark the given order as 'rejected', which is functionally similar to cancelled. The distinction is that rejections are involuntary (and usually include a message from a broker indicating why the order was rejected) while cancels are typically user-driven. """ if order_id not in self.orders: return cur_order = self.orders[order_id] order_list = self.open_orders[cur_order.asset] if cur_order in order_list: order_list.remove(cur_order) if cur_order in self.new_orders: self.new_orders.remove(cur_order) cur_order.reject(reason=reason) cur_order.dt = self.current_dt # we want this order's new status to be relayed out # along with newly placed orders. self.new_orders.append(cur_order) def hold(self, order_id, reason=''): """ Mark the order with order_id as 'held'. Held is functionally similar to 'open'. When a fill (full or partial) arrives, the status will automatically change back to open/filled as necessary. """ if order_id not in self.orders: return cur_order = self.orders[order_id] if cur_order.open: if cur_order in self.new_orders: self.new_orders.remove(cur_order) cur_order.hold(reason=reason) cur_order.dt = self.current_dt # we want this order's new status to be relayed out # along with newly placed orders. self.new_orders.append(cur_order) def process_splits(self, splits): """ Processes a list of splits by modifying any open orders as needed. Parameters ---------- splits: list A list of splits. Each split is a tuple of (asset, ratio). Returns ------- None """ for asset, ratio in splits: if asset not in self.open_orders: continue orders_to_modify = self.open_orders[asset] for order in orders_to_modify: order.handle_split(ratio) def get_transactions(self, bar_data): """ Creates a list of transactions based on the current open orders, slippage model, and commission model. Parameters ---------- bar_data: zipline._protocol.BarData Notes ----- This method book-keeps the blotter's open_orders dictionary, so that it is accurate by the time we're done processing open orders. Returns ------- transactions_list: List transactions_list: list of transactions resulting from the current open orders. If there were no open orders, an empty list is returned. commissions_list: List commissions_list: list of commissions resulting from filling the open orders. A commission is an object with "asset" and "cost" parameters. closed_orders: List closed_orders: list of all the orders that have filled. """ closed_orders = [] transactions = [] commissions = [] if self.open_orders: for asset, asset_orders in iteritems(self.open_orders): slippage = self.slippage_models[type(asset)] for order, txn in \ slippage.simulate(bar_data, asset, asset_orders): commission = self.commission_models[type(asset)] additional_commission = commission.calculate(order, txn) if additional_commission > 0: commissions.append({ "asset": order.asset, "order": order, "cost": additional_commission }) order.filled += txn.amount order.commission += additional_commission order.dt = txn.dt transactions.append(txn) if not order.open: closed_orders.append(order) return transactions, commissions, closed_orders def prune_orders(self, closed_orders): """ Removes all given orders from the blotter's open_orders list. Parameters ---------- closed_orders: iterable of orders that are closed. Returns ------- None """ # remove all closed orders from our open_orders dict for order in closed_orders: asset = order.asset asset_orders = self.open_orders[asset] try: asset_orders.remove(order) except ValueError: continue # now clear out the assets from our open_orders dict that have # zero open orders for asset in list(self.open_orders.keys()): if len(self.open_orders[asset]) == 0: del self.open_orders[asset]
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/blotter/simulation_blotter.py
simulation_blotter.py
from logbook import Logger from collections import defaultdict from copy import copy from six import itervalues, iteritems from zipline.assets import Equity, Future, Asset from zipline.finance.blotter.blotter import Blotter from zipline.extensions import register from zipline.finance.order import Order from zipline.finance.slippage import ( DEFAULT_FUTURE_VOLUME_SLIPPAGE_BAR_LIMIT, VolatilityVolumeShare, FixedBasisPointsSlippage, ) from zipline.finance.commission import ( DEFAULT_PER_CONTRACT_COST, FUTURE_EXCHANGE_FEES_BY_SYMBOL, PerContract, PerShare, ) from zipline.utils.input_validation import expect_types import pandas as pd log = Logger('Blotter Live') warning_logger = Logger('AlgoWarning') class BlotterLive(Blotter): def __init__(self, data_frequency, broker): self.broker = broker self._processed_closed_orders = [] self._processed_transactions = [] self.data_frequency = data_frequency self.new_orders = [] self.max_shares = int(1e+11) self.slippage_models = { Equity: FixedBasisPointsSlippage(), Future: VolatilityVolumeShare( volume_limit=DEFAULT_FUTURE_VOLUME_SLIPPAGE_BAR_LIMIT, ), } self.commission_models = { Equity: PerShare(), Future: PerContract( cost=DEFAULT_PER_CONTRACT_COST, exchange_fee=FUTURE_EXCHANGE_FEES_BY_SYMBOL, ), } log.info('Initialized blotter_live') def __repr__(self): return """ {class_name}( open_orders={open_orders}, orders={orders}, new_orders={new_orders}, """.strip().format(class_name=self.__class__.__name__, open_orders=self.open_orders, orders=self.orders, new_orders=self.new_orders) @property def orders(self): # IB returns orders from previous days too. # Need to filter for today to be in sync with zipline's behavior # TODO: This logic needs to be extended once GTC orders are supported today = pd.to_datetime('now', utc=True).date() return {order_id: order for order_id, order in iteritems(self.broker.orders) if order.dt.date() == today} @property def open_orders(self): assets = set([order.asset for order in itervalues(self.orders) if order.open]) return { asset: [order for order in itervalues(self.orders) if order.asset == asset and order.open] for asset in assets } @expect_types(asset=Asset) def order(self, asset, amount, style, order_id=None): assert order_id is None if amount == 0: # it's a zipline fuck up.. we shouldn't get orders with amount 0. ignoring this order return '' order = self.broker.order(asset, amount, style) self.new_orders.append(order) return order.id def cancel(self, order_id, relay_status=True): return self.broker.cancel_order(order_id) def execute_cancel_policy(self, event): # Cancellation is handled at the broker pass def cancel_all_orders_for_asset(self, asset, warn=False, relay_status=True): """ Cancel all open orders for a given asset. """ # (sadly) open_orders is a defaultdict, so this will always succeed. orders = self.open_orders[asset] # We're making a copy here because `cancel` mutates the list of open # orders in place. The right thing to do here would be to make # self.open_orders no longer a defaultdict. If we do that, then we # should just remove the orders once here and be done with the matter. for order in orders[:]: self.cancel(order.id, relay_status) if warn: # Message appropriately depending on whether there's # been a partial fill or not. if order.filled > 0: warning_logger.warn( 'Your order for {order_amt} shares of ' '{order_sym} has been partially filled. ' '{order_filled} shares were successfully ' 'purchased. {order_failed} shares were not ' 'filled by the end of day and ' 'were canceled.'.format( order_amt=order.amount, order_sym=order.asset.symbol, order_filled=order.filled, order_failed=order.amount - order.filled, ) ) elif order.filled < 0: warning_logger.warn( 'Your order for {order_amt} shares of ' '{order_sym} has been partially filled. ' '{order_filled} shares were successfully ' 'sold. {order_failed} shares were not ' 'filled by the end of day and ' 'were canceled.'.format( order_amt=order.amount, order_sym=order.asset.symbol, order_filled=-1 * order.filled, order_failed=-1 * (order.amount - order.filled), ) ) else: warning_logger.warn( 'Your order for {order_amt} shares of ' '{order_sym} failed to fill by the end of day ' 'and was canceled.'.format( order_amt=order.amount, order_sym=order.asset.symbol, ) ) assert not orders del self.open_orders[asset] def reject(self, order_id, reason=''): log.warning("Unexpected reject request for {}: '{}'".format( order_id, reason)) def hold(self, order_id, reason=''): log.warning("Unexpected hold request for {}: '{}'".format( order_id, reason)) def get_transactions(self, bar_data): # All returned values from this function are delta between # the previous and actual call. def _list_delta(lst_a, lst_b): return [elem for elem in lst_a if elem not in set(lst_b)] today = pd.to_datetime('now', utc=True).date() all_transactions = [tx for tx in itervalues(self.broker.transactions) if tx.dt.date() == today] new_transactions = _list_delta(all_transactions, self._processed_transactions) self._processed_transactions = all_transactions new_commissions = [{'asset': tx.asset, 'cost': self.broker.orders[tx.order_id].commission, 'order': self.orders[tx.order_id]} for tx in new_transactions] all_closed_orders = [order for order in itervalues(self.orders) if not order.open] new_closed_orders = _list_delta(all_closed_orders, self._processed_closed_orders) self._processed_closed_orders = all_closed_orders return new_transactions, new_commissions, new_closed_orders def prune_orders(self, closed_orders): # Orders are handled at the broker pass def process_splits(self, splits): # Splits are handled at the broker pass
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/blotter/blotter_live.py
blotter_live.py
from __future__ import division import logbook from ..ledger import Ledger from zipline.utils.exploding_object import NamedExplodingObject log = logbook.Logger(__name__) class MetricsTracker(object): """The algorithm's interface to the registered risk and performance metrics. Parameters ---------- trading_calendar : TrandingCalendar The trading calendar used in the simulation. first_session : pd.Timestamp The label of the first trading session in the simulation. last_session : pd.Timestamp The label of the last trading session in the simulation. capital_base : float The starting capital for the simulation. emission_rate : {'daily', 'minute'} How frequently should a performance packet be generated? data_frequency : {'daily', 'minute'} The data frequency of the data portal. asset_finder : AssetFinder The asset finder used in the simulation. metrics : list[Metric] The metrics to track. """ _hooks = ( 'start_of_simulation', 'end_of_simulation', 'start_of_session', 'end_of_session', 'end_of_bar', ) @staticmethod def _execution_open_and_close(calendar, session): open_, close = calendar.open_and_close_for_session(session) execution_open = calendar.execution_time_from_open(open_) execution_close = calendar.execution_time_from_close(close) return execution_open, execution_close def __init__(self, trading_calendar, first_session, last_session, capital_base, emission_rate, data_frequency, asset_finder, metrics): self.emission_rate = emission_rate self._trading_calendar = trading_calendar self._first_session = first_session self._last_session = last_session self._capital_base = capital_base self._asset_finder = asset_finder self._current_session = first_session self._market_open, self._market_close = self._execution_open_and_close( trading_calendar, first_session, ) self._session_count = 0 self._sessions = sessions = trading_calendar.sessions_in_range( first_session, last_session, ) self._total_session_count = len(sessions) self._ledger = Ledger(sessions, capital_base, data_frequency) self._benchmark_source = NamedExplodingObject( 'self._benchmark_source', '_benchmark_source is not set until ``handle_start_of_simulation``' ' is called', ) if emission_rate == 'minute': def progress(self): return 1.0 # a fake value else: def progress(self): return self._session_count / self._total_session_count # don't compare these strings over and over again! self._progress = progress # bind all of the hooks from the passed metric objects. for hook in self._hooks: registered = [] for metric in metrics: try: registered.append(getattr(metric, hook)) except AttributeError: pass def closing_over_loop_variables_is_hard(registered=registered): def hook_implementation(*args, **kwargs): for impl in registered: impl(*args, **kwargs) return hook_implementation hook_implementation = closing_over_loop_variables_is_hard() hook_implementation.__name__ = hook setattr(self, hook, hook_implementation) def handle_start_of_simulation(self, benchmark_source): self._benchmark_source = benchmark_source self.start_of_simulation( self._ledger, self.emission_rate, self._trading_calendar, self._sessions, benchmark_source, ) @property def portfolio(self): return self._ledger.portfolio @property def account(self): return self._ledger.account @property def positions(self): return self._ledger.position_tracker.positions def update_position(self, asset, amount=None, last_sale_price=None, last_sale_date=None, cost_basis=None): self._ledger.position_tracker.update_position( asset, amount, last_sale_price, last_sale_date, cost_basis, ) def override_account_fields(self, **kwargs): self._ledger.override_account_fields(**kwargs) def process_transaction(self, transaction): self._ledger.process_transaction(transaction) def handle_splits(self, splits): self._ledger.process_splits(splits) def process_order(self, event): self._ledger.process_order(event) def process_commission(self, commission): self._ledger.process_commission(commission) def process_close_position(self, asset, dt, data_portal): self._ledger.close_position(asset, dt, data_portal) def capital_change(self, amount): self._ledger.capital_change(amount) def sync_last_sale_prices(self, dt, data_portal, handle_non_market_minutes=False): self._ledger.sync_last_sale_prices( dt, data_portal, handle_non_market_minutes=handle_non_market_minutes, ) def handle_minute_close(self, dt, data_portal): """ Handles the close of the given minute in minute emission. Parameters ---------- dt : Timestamp The minute that is ending Returns ------- A minute perf packet. """ self.sync_last_sale_prices(dt, data_portal) packet = { 'period_start': self._first_session, 'period_end': self._last_session, 'capital_base': self._capital_base, 'minute_perf': { 'period_open': self._market_open, 'period_close': dt, }, 'cumulative_perf': { 'period_open': self._first_session, 'period_close': self._last_session, }, 'progress': self._progress(self), 'cumulative_risk_metrics': {}, } ledger = self._ledger ledger.end_of_bar(self._session_count) self.end_of_bar( packet, ledger, dt, self._session_count, data_portal, ) return packet def handle_market_open(self, session_label, data_portal): """Handles the start of each session. Parameters ---------- session_label : Timestamp The label of the session that is about to begin. data_portal : DataPortal The current data portal. """ ledger = self._ledger ledger.start_of_session(session_label) adjustment_reader = data_portal.adjustment_reader if adjustment_reader is not None: # this is None when running with a dataframe source ledger.process_dividends( session_label, self._asset_finder, adjustment_reader, ) self._current_session = session_label cal = self._trading_calendar self._market_open, self._market_close = self._execution_open_and_close( cal, session_label, ) self.start_of_session(ledger, session_label, data_portal) def handle_market_close(self, dt, data_portal): """Handles the close of the given day. Parameters ---------- dt : Timestamp The most recently completed simulation datetime. data_portal : DataPortal The current data portal. Returns ------- A daily perf packet. """ completed_session = self._current_session if self.emission_rate == 'daily': # this method is called for both minutely and daily emissions, but # this chunk of code here only applies for daily emissions. (since # it's done every minute, elsewhere, for minutely emission). self.sync_last_sale_prices(dt, data_portal) session_ix = self._session_count # increment the day counter before we move markers forward. self._session_count += 1 packet = { 'period_start': self._first_session, 'period_end': self._last_session, 'capital_base': self._capital_base, 'daily_perf': { 'period_open': self._market_open, 'period_close': dt, }, 'cumulative_perf': { 'period_open': self._first_session, 'period_close': self._last_session, }, 'progress': self._progress(self), 'cumulative_risk_metrics': {}, } ledger = self._ledger ledger.end_of_session(session_ix) self.end_of_session( packet, ledger, completed_session, session_ix, data_portal, ) return packet def handle_simulation_end(self, data_portal): """ When the simulation is complete, run the full period risk report and send it out on the results socket. """ log.info( 'Simulated {} trading days\n' 'first open: {}\n' 'last close: {}', self._session_count, self._trading_calendar.session_open(self._first_session), self._trading_calendar.session_close(self._last_session), ) packet = {} self.end_of_simulation( packet, self._ledger, self._trading_calendar, self._sessions, data_portal, self._benchmark_source, ) return packet
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/metrics/tracker.py
tracker.py
from functools import partial from zipline.utils.compat import mappingproxy def _make_metrics_set_core(): """Create a family of metrics sets functions that read from the same metrics set mapping. Returns ------- metrics_sets : mappingproxy The mapping of metrics sets to load functions. register : callable The function which registers new metrics sets in the ``metrics_sets`` mapping. unregister : callable The function which deregisters metrics sets from the ``metrics_sets`` mapping. load : callable The function which loads the ingested metrics sets back into memory. """ _metrics_sets = {} # Expose _metrics_sets through a proxy so that users cannot mutate this # accidentally. Users may go through `register` to update this which will # warn when trampling another metrics set. metrics_sets = mappingproxy(_metrics_sets) def register(name, function=None): """Register a new metrics set. Parameters ---------- name : str The name of the metrics set function : callable The callable which produces the metrics set. Notes ----- This may be used as a decorator if only ``name`` is passed. See Also -------- zipline.finance.metrics.get_metrics_set zipline.finance.metrics.unregister_metrics_set """ if function is None: # allow as decorator with just name. return partial(register, name) if name in _metrics_sets: raise ValueError('metrics set %r is already registered' % name) _metrics_sets[name] = function return function def unregister(name): """Unregister an existing metrics set. Parameters ---------- name : str The name of the metrics set See Also -------- zipline.finance.metrics.register_metrics_set """ try: del _metrics_sets[name] except KeyError: raise ValueError( 'metrics set %r was not already registered' % name, ) def load(name): """Return an instance of the metrics set registered with the given name. Returns ------- metrics : set[Metric] A new instance of the metrics set. Raises ------ ValueError Raised when no metrics set is registered to ``name`` """ try: function = _metrics_sets[name] except KeyError: raise ValueError( 'no metrics set registered as %r, options are: %r' % ( name, sorted(_metrics_sets), ), ) return function() return metrics_sets, register, unregister, load metrics_sets, register, unregister, load = _make_metrics_set_core()
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/metrics/core.py
core.py
import empyrical from zipline.utils.deprecate import deprecated from .core import ( metrics_sets, register, unregister, load, ) from .metric import ( AlphaBeta, BenchmarkReturnsAndVolatility, CashFlow, DailyLedgerField, MaxLeverage, NumTradingDays, Orders, PeriodLabel, PNL, Returns, ReturnsStatistic, SimpleLedgerField, StartOfPeriodLedgerField, Transactions, _ConstantCumulativeRiskMetric, _ClassicRiskMetrics, ) from .tracker import MetricsTracker __all__ = ['MetricsTracker', 'unregister', 'metrics_sets', 'load'] register('none', set) @register('default') def default_metrics(): return { Returns(), ReturnsStatistic(empyrical.annual_volatility, 'algo_volatility'), BenchmarkReturnsAndVolatility(), PNL(), CashFlow(), Orders(), Transactions(), SimpleLedgerField('positions'), StartOfPeriodLedgerField( 'portfolio.positions_exposure', 'starting_exposure', ), DailyLedgerField( 'portfolio.positions_exposure', 'ending_exposure', ), StartOfPeriodLedgerField( 'portfolio.positions_value', 'starting_value' ), DailyLedgerField('portfolio.positions_value', 'ending_value'), StartOfPeriodLedgerField('portfolio.cash', 'starting_cash'), DailyLedgerField('portfolio.cash', 'ending_cash'), DailyLedgerField('portfolio.portfolio_value'), DailyLedgerField('position_tracker.stats.longs_count'), DailyLedgerField('position_tracker.stats.shorts_count'), DailyLedgerField('position_tracker.stats.long_value'), DailyLedgerField('position_tracker.stats.short_value'), DailyLedgerField('position_tracker.stats.long_exposure'), DailyLedgerField('position_tracker.stats.short_exposure'), DailyLedgerField('account.gross_leverage'), DailyLedgerField('account.net_leverage'), AlphaBeta(), ReturnsStatistic(empyrical.sharpe_ratio, 'sharpe'), ReturnsStatistic(empyrical.sortino_ratio, 'sortino'), ReturnsStatistic(empyrical.max_drawdown), MaxLeverage(), # Please kill these! _ConstantCumulativeRiskMetric('excess_return', 0.0), _ConstantCumulativeRiskMetric('treasury_period_return', 0.0), NumTradingDays(), PeriodLabel(), } @register('classic') @deprecated( 'The original risk packet has been deprecated and will be removed in a ' 'future release. Please use "default" metrics instead.' ) def classic_metrics(): metrics = default_metrics() metrics.add(_ClassicRiskMetrics()) return metrics
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/metrics/__init__.py
__init__.py
import datetime from functools import partial import operator as op from dateutil.relativedelta import relativedelta import empyrical as ep import numpy as np import pandas as pd from six import iteritems from zipline.utils.exploding_object import NamedExplodingObject from zipline.finance._finance_ext import minute_annual_volatility class SimpleLedgerField(object): """Emit the current value of a ledger field every bar or every session. Parameters ---------- ledger_field : str The ledger field to read. packet_field : str, optional The name of the field to populate in the packet. If not provided, ``ledger_field`` will be used. """ def __init__(self, ledger_field, packet_field=None): self._get_ledger_field = op.attrgetter(ledger_field) if packet_field is None: self._packet_field = ledger_field.rsplit('.', 1)[-1] else: self._packet_field = packet_field def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): packet['minute_perf'][self._packet_field] = self._get_ledger_field( ledger, ) def end_of_session(self, packet, ledger, session, session_ix, data_portal): packet['daily_perf'][self._packet_field] = self._get_ledger_field( ledger, ) class DailyLedgerField(object): """Like :class:`~zipline.finance.metrics.metric.SimpleLedgerField` but also puts the current value in the ``cumulative_perf`` section. Parameters ---------- ledger_field : str The ledger field to read. packet_field : str, optional The name of the field to populate in the packet. If not provided, ``ledger_field`` will be used. """ def __init__(self, ledger_field, packet_field=None): self._get_ledger_field = op.attrgetter(ledger_field) if packet_field is None: self._packet_field = ledger_field.rsplit('.', 1)[-1] else: self._packet_field = packet_field def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): field = self._packet_field packet['cumulative_perf'][field] = packet['minute_perf'][field] = ( self._get_ledger_field(ledger) ) def end_of_session(self, packet, ledger, session, session_ix, data_portal): field = self._packet_field packet['cumulative_perf'][field] = packet['daily_perf'][field] = ( self._get_ledger_field(ledger) ) class StartOfPeriodLedgerField(object): """Keep track of the value of a ledger field at the start of the period. Parameters ---------- ledger_field : str The ledger field to read. packet_field : str, optional The name of the field to populate in the packet. If not provided, ``ledger_field`` will be used. """ def __init__(self, ledger_field, packet_field=None): self._get_ledger_field = op.attrgetter(ledger_field) if packet_field is None: self._packet_field = ledger_field.rsplit('.', 1)[-1] else: self._packet_field = packet_field def start_of_simulation(self, ledger, emission_rate, trading_calendar, sessions, benchmark_source): self._start_of_simulation = self._get_ledger_field(ledger) def start_of_session(self, ledger, session, data_portal): self._previous_day = self._get_ledger_field(ledger) def _end_of_period(self, sub_field, packet, ledger): packet_field = self._packet_field packet['cumulative_perf'][packet_field] = self._start_of_simulation packet[sub_field][packet_field] = self._previous_day def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): self._end_of_period('minute_perf', packet, ledger) def end_of_session(self, packet, ledger, session, session_ix, data_portal): self._end_of_period('daily_perf', packet, ledger) class Returns(object): """Tracks the daily and cumulative returns of the algorithm. """ def _end_of_period(field, packet, ledger, dt, session_ix, data_portal): packet[field]['returns'] = ledger.todays_returns packet['cumulative_perf']['returns'] = ledger.portfolio.returns packet['cumulative_risk_metrics']['algorithm_period_return'] = ( ledger.portfolio.returns ) end_of_bar = partial(_end_of_period, 'minute_perf') end_of_session = partial(_end_of_period, 'daily_perf') class BenchmarkReturnsAndVolatility(object): """Tracks daily and cumulative returns for the benchmark as well as the volatility of the benchmark returns. """ def start_of_simulation(self, ledger, emission_rate, trading_calendar, sessions, benchmark_source): daily_returns_series = benchmark_source.daily_returns( sessions[0], sessions[-1], ) self._daily_returns = daily_returns_array = daily_returns_series.values self._daily_cumulative_returns = ( np.cumprod(1 + daily_returns_array) - 1 ) self._daily_annual_volatility = ( daily_returns_series.expanding(2).std(ddof=1) * np.sqrt(252) ).values if emission_rate == 'daily': self._minute_cumulative_returns = NamedExplodingObject( 'self._minute_cumulative_returns', 'does not exist in daily emission rate', ) self._minute_annual_volatility = NamedExplodingObject( 'self._minute_annual_volatility', 'does not exist in daily emission rate', ) else: open_ = trading_calendar.session_open(sessions[0]) close = trading_calendar.session_close(sessions[-1]) returns = benchmark_source.get_range(open_, close) self._minute_cumulative_returns = ( (1 + returns).cumprod() - 1 ) self._minute_annual_volatility = pd.Series( minute_annual_volatility( returns.index.normalize().view('int64'), returns.values, daily_returns_array, ), index=returns.index, ) def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): r = self._minute_cumulative_returns[dt] if np.isnan(r): r = None packet['cumulative_risk_metrics']['benchmark_period_return'] = r v = self._minute_annual_volatility[dt] if np.isnan(v): v = None packet['cumulative_risk_metrics']['benchmark_volatility'] = v def end_of_session(self, packet, ledger, session, session_ix, data_portal): r = self._daily_cumulative_returns[session_ix] if np.isnan(r): r = None packet['cumulative_risk_metrics']['benchmark_period_return'] = r v = self._daily_annual_volatility[session_ix] if np.isnan(v): v = None packet['cumulative_risk_metrics']['benchmark_volatility'] = v class PNL(object): """Tracks daily and cumulative PNL. """ def start_of_simulation(self, ledger, emission_rate, trading_calendar, sessions, benchmark_source): self._previous_pnl = 0.0 def start_of_session(self, ledger, session, data_portal): self._previous_pnl = ledger.portfolio.pnl def _end_of_period(self, field, packet, ledger): pnl = ledger.portfolio.pnl packet[field]['pnl'] = pnl - self._previous_pnl packet['cumulative_perf']['pnl'] = ledger.portfolio.pnl def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): self._end_of_period('minute_perf', packet, ledger) def end_of_session(self, packet, ledger, session, session_ix, data_portal): self._end_of_period('daily_perf', packet, ledger) class CashFlow(object): """Tracks daily and cumulative cash flow. Notes ----- For historical reasons, this field is named 'capital_used' in the packets. """ def start_of_simulation(self, ledger, emission_rate, trading_calendar, sessions, benchmark_source): self._previous_cash_flow = 0.0 def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): cash_flow = ledger.portfolio.cash_flow packet['minute_perf']['capital_used'] = ( cash_flow - self._previous_cash_flow ) packet['cumulative_perf']['capital_used'] = cash_flow def end_of_session(self, packet, ledger, session, session_ix, data_portal): cash_flow = ledger.portfolio.cash_flow packet['daily_perf']['capital_used'] = ( cash_flow - self._previous_cash_flow ) packet['cumulative_perf']['capital_used'] = cash_flow self._previous_cash_flow = cash_flow class Orders(object): """Tracks daily orders. """ def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): packet['minute_perf']['orders'] = ledger.orders(dt) def end_of_session(self, packet, ledger, dt, session_ix, data_portal): packet['daily_perf']['orders'] = ledger.orders() class Transactions(object): """Tracks daily transactions. """ def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): packet['minute_perf']['transactions'] = ledger.transactions(dt) def end_of_session(self, packet, ledger, dt, session_ix, data_portal): packet['daily_perf']['transactions'] = ledger.transactions() class Positions(object): """Tracks daily positions. """ def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): packet['minute_perf']['positions'] = ledger.positions(dt) def end_of_session(self, packet, ledger, dt, session_ix, data_portal): packet['daily_perf']['positions'] = ledger.positions() class ReturnsStatistic(object): """A metric that reports an end of simulation scalar or time series computed from the algorithm returns. Parameters ---------- function : callable The function to call on the daily returns. field_name : str, optional The name of the field. If not provided, it will be ``function.__name__``. """ def __init__(self, function, field_name=None): if field_name is None: field_name = function.__name__ self._function = function self._field_name = field_name def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): res = self._function(ledger.daily_returns_array[:session_ix + 1]) if not np.isfinite(res): res = None packet['cumulative_risk_metrics'][self._field_name] = res end_of_session = end_of_bar class AlphaBeta(object): """End of simulation alpha and beta to the benchmark. """ def start_of_simulation(self, ledger, emission_rate, trading_calendar, sessions, benchmark_source): self._daily_returns_array = benchmark_source.daily_returns( sessions[0], sessions[-1], ).values def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): risk = packet['cumulative_risk_metrics'] alpha, beta = ep.alpha_beta_aligned( ledger.daily_returns_array[:session_ix + 1], self._daily_returns_array[:session_ix + 1], ) if np.isnan(alpha): alpha = None if np.isnan(beta): beta = None risk['alpha'] = alpha risk['beta'] = beta end_of_session = end_of_bar class MaxLeverage(object): """Tracks the maximum account leverage. """ def start_of_simulation(self, *args): self._max_leverage = 0.0 def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): self._max_leverage = max(self._max_leverage, ledger.account.leverage) packet['cumulative_risk_metrics']['max_leverage'] = self._max_leverage end_of_session = end_of_bar class NumTradingDays(object): """Report the number of trading days. """ def start_of_simulation(self, *args): self._num_trading_days = 0 def start_of_session(self, *args): self._num_trading_days += 1 def end_of_bar(self, packet, ledger, dt, session_ix, data_portal): packet['cumulative_risk_metrics']['trading_days'] = ( self._num_trading_days ) end_of_session = end_of_bar class _ConstantCumulativeRiskMetric(object): """A metric which does not change, ever. Notes ----- This exists to maintain the existing structure of the perf packets. We should kill this as soon as possible. """ def __init__(self, field, value): self._field = field self._value = value def end_of_bar(self, packet, *args): packet['cumulative_risk_metrics'][self._field] = self._value def end_of_session(self, packet, *args): packet['cumulative_risk_metrics'][self._field] = self._value class PeriodLabel(object): """Backwards compat, please kill me. """ def start_of_session(self, ledger, session, data_portal): self._label = session.strftime('%Y-%m') def end_of_bar(self, packet, *args): packet['cumulative_risk_metrics']['period_label'] = self._label end_of_session = end_of_bar class _ClassicRiskMetrics(object): """Produces original risk packet. """ def start_of_simulation(self, ledger, emission_rate, trading_calendar, sessions, benchmark_source): self._leverages = np.full_like(sessions, np.nan, dtype='float64') def end_of_session(self, packet, ledger, dt, session_ix, data_portal): self._leverages[session_ix] = ledger.account.leverage @classmethod def risk_metric_period(cls, start_session, end_session, algorithm_returns, benchmark_returns, algorithm_leverages): """ Creates a dictionary representing the state of the risk report. Parameters ---------- start_session : pd.Timestamp Start of period (inclusive) to produce metrics on end_session : pd.Timestamp End of period (inclusive) to produce metrics on algorithm_returns : pd.Series(pd.Timestamp -> float) Series of algorithm returns as of the end of each session benchmark_returns : pd.Series(pd.Timestamp -> float) Series of benchmark returns as of the end of each session algorithm_leverages : pd.Series(pd.Timestamp -> float) Series of algorithm leverages as of the end of each session Returns ------- risk_metric : dict[str, any] Dict of metrics that with fields like: { 'algorithm_period_return': 0.0, 'benchmark_period_return': 0.0, 'treasury_period_return': 0, 'excess_return': 0.0, 'alpha': 0.0, 'beta': 0.0, 'sharpe': 0.0, 'sortino': 0.0, 'period_label': '1970-01', 'trading_days': 0, 'algo_volatility': 0.0, 'benchmark_volatility': 0.0, 'max_drawdown': 0.0, 'max_leverage': 0.0, } """ algorithm_returns = algorithm_returns[ (algorithm_returns.index >= start_session) & (algorithm_returns.index <= end_session) ] # Benchmark needs to be masked to the same dates as the algo returns benchmark_returns = benchmark_returns[ (benchmark_returns.index >= start_session) & (benchmark_returns.index <= algorithm_returns.index[-1]) ] benchmark_period_returns = ep.cum_returns(benchmark_returns).iloc[-1] algorithm_period_returns = ep.cum_returns(algorithm_returns).iloc[-1] alpha, beta = ep.alpha_beta_aligned( algorithm_returns.values, benchmark_returns.values, ) sharpe = ep.sharpe_ratio(algorithm_returns) # The consumer currently expects a 0.0 value for sharpe in period, # this differs from cumulative which was np.nan. # When factoring out the sharpe_ratio, the different return types # were collapsed into `np.nan`. # TODO: Either fix consumer to accept `np.nan` or make the # `sharpe_ratio` return type configurable. # In the meantime, convert nan values to 0.0 if pd.isnull(sharpe): sharpe = 0.0 sortino = ep.sortino_ratio( algorithm_returns.values, _downside_risk=ep.downside_risk(algorithm_returns.values), ) rval = { 'algorithm_period_return': algorithm_period_returns, 'benchmark_period_return': benchmark_period_returns, 'treasury_period_return': 0, 'excess_return': algorithm_period_returns, 'alpha': alpha, 'beta': beta, 'sharpe': sharpe, 'sortino': sortino, 'period_label': end_session.strftime("%Y-%m"), 'trading_days': len(benchmark_returns), 'algo_volatility': ep.annual_volatility(algorithm_returns), 'benchmark_volatility': ep.annual_volatility(benchmark_returns), 'max_drawdown': ep.max_drawdown(algorithm_returns.values), 'max_leverage': algorithm_leverages.max(), } # check if a field in rval is nan or inf, and replace it with None # except period_label which is always a str return { k: ( None if k != 'period_label' and not np.isfinite(v) else v ) for k, v in iteritems(rval) } @classmethod def _periods_in_range(cls, months, end_session, end_date, algorithm_returns, benchmark_returns, algorithm_leverages, months_per): if months.size < months_per: return end_date = end_date.tz_convert(None) for period_timestamp in months: period = period_timestamp.to_period(freq='%dM' % months_per) if period.end_time > end_date: break yield cls.risk_metric_period( start_session=period.start_time, end_session=min(period.end_time, end_session), algorithm_returns=algorithm_returns, benchmark_returns=benchmark_returns, algorithm_leverages=algorithm_leverages, ) @classmethod def risk_report(cls, algorithm_returns, benchmark_returns, algorithm_leverages): start_session = algorithm_returns.index[0] end_session = algorithm_returns.index[-1] end = end_session.replace(day=1) + relativedelta(months=1) months = pd.date_range( start=start_session, # Ensure we have at least one month end=end - datetime.timedelta(days=1), freq='M', tz='utc', ) periods_in_range = partial( cls._periods_in_range, months=months, end_session=end_session.tz_convert(None), end_date=end, algorithm_returns=algorithm_returns, benchmark_returns=benchmark_returns, algorithm_leverages=algorithm_leverages, ) return { 'one_month': list(periods_in_range(months_per=1)), 'three_month': list(periods_in_range(months_per=3)), 'six_month': list(periods_in_range(months_per=6)), 'twelve_month': list(periods_in_range(months_per=12)), } def end_of_simulation(self, packet, ledger, trading_calendar, sessions, data_portal, benchmark_source): packet.update(self.risk_report( algorithm_returns=ledger.daily_returns_series, benchmark_returns=benchmark_source.daily_returns( sessions[0], sessions[-1], ), algorithm_leverages=self._leverages, ))
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/finance/metrics/metric.py
metric.py
from textwrap import dedent from numpy import ( bool_, dtype, float32, float64, int32, int64, int16, uint16, ndarray, uint32, uint8, ) from zipline.errors import ( WindowLengthNotPositive, WindowLengthTooLong, ) from zipline.lib.labelarray import LabelArray from zipline.utils.numpy_utils import ( datetime64ns_dtype, float64_dtype, int64_dtype, uint8_dtype, ) from zipline.utils.memoize import lazyval # These class names are all the same because of our bootleg templating system. from ._float64window import AdjustedArrayWindow as Float64Window from ._int64window import AdjustedArrayWindow as Int64Window from ._labelwindow import AdjustedArrayWindow as LabelWindow from ._uint8window import AdjustedArrayWindow as UInt8Window BOOL_DTYPES = frozenset( map(dtype, [bool_, uint8]), ) FLOAT_DTYPES = frozenset( map(dtype, [float32, float64]), ) INT_DTYPES = frozenset( # NOTE: uint64 not supported because it can't be safely cast to int64. map(dtype, [int16, uint16, int32, int64, uint32]), ) DATETIME_DTYPES = frozenset( map(dtype, ['datetime64[ns]', 'datetime64[D]']), ) # We use object arrays for strings. OBJECT_DTYPES = frozenset(map(dtype, ['O'])) STRING_KINDS = frozenset(['S', 'U']) REPRESENTABLE_DTYPES = BOOL_DTYPES.union( FLOAT_DTYPES, INT_DTYPES, DATETIME_DTYPES, OBJECT_DTYPES, ) def can_represent_dtype(dtype): """ Can we build an AdjustedArray for a baseline of `dtype``? """ return dtype in REPRESENTABLE_DTYPES or dtype.kind in STRING_KINDS def is_categorical(dtype): """ Do we represent this dtype with LabelArrays rather than ndarrays? """ return dtype in OBJECT_DTYPES or dtype.kind in STRING_KINDS CONCRETE_WINDOW_TYPES = { float64_dtype: Float64Window, int64_dtype: Int64Window, uint8_dtype: UInt8Window, } def _normalize_array(data, missing_value): """ Coerce buffer data for an AdjustedArray into a standard scalar representation, returning the coerced array and a dict of argument to pass to np.view to use when providing a user-facing view of the underlying data. - float* data is coerced to float64 with viewtype float64. - int32, int64, and uint32 are converted to int64 with viewtype int64. - datetime[*] data is coerced to int64 with a viewtype of datetime64[ns]. - bool_ data is coerced to uint8 with a viewtype of bool_. Parameters ---------- data : np.ndarray Returns ------- coerced, view_kwargs : (np.ndarray, np.dtype) """ if isinstance(data, LabelArray): return data, {} data_dtype = data.dtype if data_dtype in BOOL_DTYPES: return data.astype(uint8), {'dtype': dtype(bool_)} elif data_dtype in FLOAT_DTYPES: return data.astype(float64), {'dtype': dtype(float64)} elif data_dtype in INT_DTYPES: return data.astype(int64), {'dtype': dtype(int64)} elif is_categorical(data_dtype): if not isinstance(missing_value, LabelArray.SUPPORTED_SCALAR_TYPES): raise TypeError( "Invalid missing_value for categorical array.\n" "Expected None, bytes or unicode. Got %r." % missing_value, ) return LabelArray(data, missing_value), {} elif data_dtype.kind == 'M': try: outarray = data.astype('datetime64[ns]').view('int64') return outarray, {'dtype': datetime64ns_dtype} except OverflowError: raise ValueError( "AdjustedArray received a datetime array " "not representable as datetime64[ns].\n" "Min Date: %s\n" "Max Date: %s\n" % (data.min(), data.max()) ) else: raise TypeError( "Don't know how to construct AdjustedArray " "on data of type %s." % data_dtype ) class AdjustedArray(object): """ An array that can be iterated with a variable-length window, and which can provide different views on data from different perspectives. Parameters ---------- data : np.ndarray The baseline data values. adjustments : dict[int -> list[Adjustment]] A dict mapping row indices to lists of adjustments to apply when we reach that row. missing_value : object A value to use to fill missing data in yielded windows. Should be a value coercible to `data.dtype`. """ __slots__ = ( '_data', '_view_kwargs', 'adjustments', 'missing_value', '__weakref__', ) def __init__(self, data, adjustments, missing_value): self._data, self._view_kwargs = _normalize_array(data, missing_value) self.adjustments = adjustments self.missing_value = missing_value @lazyval def data(self): """ The data stored in this array. """ return self._data.view(**self._view_kwargs) @lazyval def dtype(self): """ The dtype of the data stored in this array. """ return self._view_kwargs.get('dtype') or self._data.dtype @lazyval def _iterator_type(self): """ The iterator produced when `traverse` is called on this Array. """ if isinstance(self._data, LabelArray): return LabelWindow return CONCRETE_WINDOW_TYPES[self._data.dtype] def traverse(self, window_length, offset=0, perspective_offset=0): """ Produce an iterator rolling windows rows over our data. Each emitted window will have `window_length` rows. Parameters ---------- window_length : int The number of rows in each emitted window. offset : int, optional Number of rows to skip before the first window. Default is 0. perspective_offset : int, optional Number of rows past the end of the current window from which to "view" the underlying data. """ data = self._data.copy() _check_window_params(data, window_length) return self._iterator_type( data, self._view_kwargs, self.adjustments, offset, window_length, perspective_offset, rounding_places=None, ) def inspect(self): """ Return a string representation of the data stored in this array. """ return dedent( """\ Adjusted Array ({dtype}): Data: {data!r} Adjustments: {adjustments} """ ).format( dtype=self.dtype.name, data=self.data, adjustments=self.adjustments, ) def ensure_adjusted_array(ndarray_or_adjusted_array, missing_value): if isinstance(ndarray_or_adjusted_array, AdjustedArray): return ndarray_or_adjusted_array elif isinstance(ndarray_or_adjusted_array, ndarray): return AdjustedArray( ndarray_or_adjusted_array, {}, missing_value, ) else: raise TypeError( "Can't convert %s to AdjustedArray" % type(ndarray_or_adjusted_array).__name__ ) def ensure_ndarray(ndarray_or_adjusted_array): """ Return the input as a numpy ndarray. This is a no-op if the input is already an ndarray. If the input is an adjusted_array, this extracts a read-only view of its internal data buffer. Parameters ---------- ndarray_or_adjusted_array : numpy.ndarray | zipline.data.adjusted_array Returns ------- out : The input, converted to an ndarray. """ if isinstance(ndarray_or_adjusted_array, ndarray): return ndarray_or_adjusted_array elif isinstance(ndarray_or_adjusted_array, AdjustedArray): return ndarray_or_adjusted_array.data else: raise TypeError( "Can't convert %s to ndarray" % type(ndarray_or_adjusted_array).__name__ ) def _check_window_params(data, window_length): """ Check that a window of length `window_length` is well-defined on `data`. Parameters ---------- data : np.ndarray[ndim=2] The array of data to check. window_length : int Length of the desired window. Returns ------- None Raises ------ WindowLengthNotPositive If window_length < 1. WindowLengthTooLong If window_length is greater than the number of rows in `data`. """ if window_length < 1: raise WindowLengthNotPositive(window_length=window_length) if window_length > data.shape[0]: raise WindowLengthTooLong( nrows=data.shape[0], window_length=window_length, )
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/lib/adjusted_array.py
adjusted_array.py
from functools import partial, total_ordering from operator import eq, ne import re import numpy as np from numpy import ndarray import pandas as pd from toolz import compose from zipline.utils.compat import unicode from zipline.utils.functional import instance from zipline.utils.preprocess import preprocess from zipline.utils.sentinel import sentinel from zipline.utils.input_validation import ( coerce, expect_kinds, expect_types, optional, ) from zipline.utils.numpy_utils import ( bool_dtype, unsigned_int_dtype_with_size_in_bytes, is_object, object_dtype, ) from zipline.utils.pandas_utils import ignore_pandas_nan_categorical_warning from ._factorize import ( factorize_strings, factorize_strings_known_categories, smallest_uint_that_can_hold, ) def compare_arrays(left, right): "Eq check with a short-circuit for identical objects." return ( left is right or ((left.shape == right.shape) and (left == right).all()) ) def _make_unsupported_method(name): def method(*args, **kwargs): raise NotImplementedError( "Method %s is not supported on LabelArrays." % name ) method.__name__ = name method.__doc__ = "Unsupported LabelArray Method: %s" % name return method class MissingValueMismatch(ValueError): """ Error raised on attempt to perform operations between LabelArrays with mismatched missing_values. """ def __init__(self, left, right): super(MissingValueMismatch, self).__init__( "LabelArray missing_values don't match:" " left={}, right={}".format(left, right) ) class CategoryMismatch(ValueError): """ Error raised on attempt to perform operations between LabelArrays with mismatched category arrays. """ def __init__(self, left, right): (mismatches,) = np.where(left != right) assert len(mismatches), "Not actually a mismatch!" super(CategoryMismatch, self).__init__( "LabelArray categories don't match:\n" "Mismatched Indices: {mismatches}\n" "Left: {left}\n" "Right: {right}".format( mismatches=mismatches, left=left[mismatches], right=right[mismatches], ) ) _NotPassed = sentinel('_NotPassed') class LabelArray(ndarray): """ An ndarray subclass for working with arrays of strings. Factorizes the input array into integers, but overloads equality on strings to check against the factor label. Parameters ---------- values : array-like Array of values that can be passed to np.asarray with dtype=object. missing_value : str Scalar value to treat as 'missing' for operations on ``self``. categories : list[str], optional List of values to use as categories. If not supplied, categories will be inferred as the unique set of entries in ``values``. sort : bool, optional Whether to sort categories. If sort is False and categories is supplied, they are left in the order provided. If sort is False and categories is None, categories will be constructed in a random order. Attributes ---------- categories : ndarray[str] An array containing the unique labels of self. reverse_categories : dict[str -> int] Reverse lookup table for ``categories``. Stores the index in ``categories`` at which each entry each unique entry is found. missing_value : str or None A sentinel missing value with NaN semantics for comparisons. Notes ----- Consumers should be cautious when passing instances of LabelArray to numpy functions. We attempt to disallow as many meaningless operations as possible, but since a LabelArray is just an ndarray of ints with some additional metadata, many numpy functions (for example, trigonometric) will happily accept a LabelArray and treat its values as though they were integers. In a future change, we may be able to disallow more numerical operations by creating a wrapper dtype which doesn't register an implementation for most numpy ufuncs. Until that change is made, consumers of LabelArray should assume that it is undefined behavior to pass a LabelArray to any numpy ufunc that operates on semantically-numerical data. See Also -------- http://docs.scipy.org/doc/numpy-1.10.0/user/basics.subclassing.html """ SUPPORTED_SCALAR_TYPES = (bytes, unicode, type(None)) SUPPORTED_NON_NONE_SCALAR_TYPES = (bytes, unicode) @preprocess( values=coerce(list, partial(np.asarray, dtype=object)), # Coerce ``list`` to ``list`` to make a copy. Code internally may call # ``categories.insert(0, missing_value)`` which will mutate this list # in place. categories=coerce((list, np.ndarray, set), list), ) @expect_types( values=np.ndarray, missing_value=SUPPORTED_SCALAR_TYPES, categories=optional(list), ) @expect_kinds(values=("O", "S", "U")) def __new__(cls, values, missing_value, categories=None, sort=True): # Numpy's fixed-width string types aren't very efficient. Working with # object arrays is faster than bytes or unicode arrays in almost all # cases. if not is_object(values): values = values.astype(object) if categories is None: codes, categories, reverse_categories = factorize_strings( values.ravel(), missing_value=missing_value, sort=sort, ) else: codes, categories, reverse_categories = ( factorize_strings_known_categories( values.ravel(), categories=categories, missing_value=missing_value, sort=sort, ) ) categories.setflags(write=False) return cls.from_codes_and_metadata( codes=codes.reshape(values.shape), categories=categories, reverse_categories=reverse_categories, missing_value=missing_value, ) @classmethod def from_codes_and_metadata(cls, codes, categories, reverse_categories, missing_value): """ Rehydrate a LabelArray from the codes and metadata. Parameters ---------- codes : np.ndarray[integral] The codes for the label array. categories : np.ndarray[object] The unique string categories. reverse_categories : dict[str, int] The mapping from category to its code-index. missing_value : any The value used to represent missing data. """ ret = codes.view(type=cls, dtype=np.void) ret._categories = categories ret._reverse_categories = reverse_categories ret._missing_value = missing_value return ret @classmethod def from_categorical(cls, categorical, missing_value=None): """ Create a LabelArray from a pandas categorical. Parameters ---------- categorical : pd.Categorical The categorical object to convert. missing_value : bytes, unicode, or None, optional The missing value to use for this LabelArray. Returns ------- la : LabelArray The LabelArray representation of this categorical. """ return LabelArray( categorical, missing_value, categorical.categories, ) @property def categories(self): # This is a property because it should be immutable. return self._categories @property def reverse_categories(self): # This is a property because it should be immutable. return self._reverse_categories @property def missing_value(self): # This is a property because it should be immutable. return self._missing_value @property def missing_value_code(self): return self.reverse_categories[self.missing_value] def has_label(self, value): return value in self.reverse_categories def __array_finalize__(self, obj): """ Called by Numpy after array construction. There are three cases where this can happen: 1. Someone tries to directly construct a new array by doing:: >>> ndarray.__new__(LabelArray, ...) # doctest: +SKIP In this case, obj will be None. We treat this as an error case and fail. 2. Someone (most likely our own __new__) does:: >>> other_array.view(type=LabelArray) # doctest: +SKIP In this case, `self` will be the new LabelArray instance, and ``obj` will be the array on which ``view`` is being called. The caller of ``obj.view`` is responsible for setting category metadata on ``self`` after we exit. 3. Someone creates a new LabelArray by slicing an existing one. In this case, ``obj`` will be the original LabelArray. We're responsible for copying over the parent array's category metadata. """ if obj is None: raise TypeError( "Direct construction of LabelArrays is not supported." ) # See docstring for an explanation of when these will or will not be # set. self._categories = getattr(obj, 'categories', None) self._reverse_categories = getattr(obj, 'reverse_categories', None) self._missing_value = getattr(obj, 'missing_value', None) def as_int_array(self): """ Convert self into a regular ndarray of ints. This is an O(1) operation. It does not copy the underlying data. """ return self.view( type=ndarray, dtype=unsigned_int_dtype_with_size_in_bytes(self.itemsize), ) def as_string_array(self): """ Convert self back into an array of strings. This is an O(N) operation. """ return self.categories[self.as_int_array()] def as_categorical(self): """ Coerce self into a pandas categorical. This is only defined on 1D arrays, since that's all pandas supports. """ if len(self.shape) > 1: raise ValueError("Can't convert a 2D array to a categorical.") with ignore_pandas_nan_categorical_warning(): return pd.Categorical.from_codes( self.as_int_array(), # We need to make a copy because pandas >= 0.17 fails if this # buffer isn't writeable. self.categories.copy(), ordered=False, ) def as_categorical_frame(self, index, columns, name=None): """ Coerce self into a pandas DataFrame of Categoricals. """ if len(self.shape) != 2: raise ValueError( "Can't convert a non-2D LabelArray into a DataFrame." ) expected_shape = (len(index), len(columns)) if expected_shape != self.shape: raise ValueError( "Can't construct a DataFrame with provided indices:\n\n" "LabelArray shape is {actual}, but index and columns imply " "that shape should be {expected}.".format( actual=self.shape, expected=expected_shape, ) ) return pd.Series( index=pd.MultiIndex.from_product([index, columns]), data=self.ravel().as_categorical(), name=name, ).unstack() def __setitem__(self, indexer, value): self_categories = self.categories if isinstance(value, self.SUPPORTED_SCALAR_TYPES): value_code = self.reverse_categories.get(value, None) if value_code is None: raise ValueError("%r is not in LabelArray categories." % value) self.as_int_array()[indexer] = value_code elif isinstance(value, LabelArray): value_categories = value.categories if compare_arrays(self_categories, value_categories): return super(LabelArray, self).__setitem__(indexer, value) else: raise CategoryMismatch(self_categories, value_categories) else: raise NotImplementedError( "Setting into a LabelArray with a value of " "type {type} is not yet supported.".format( type=type(value).__name__, ), ) def set_scalar(self, indexer, value): """ Set scalar value into the array. Parameters ---------- indexer : any The indexer to set the value at. value : str The value to assign at the given locations. Raises ------ ValueError Raised when ``value`` is not a value element of this this label array. """ try: value_code = self.reverse_categories[value] except KeyError: raise ValueError("%r is not in LabelArray categories." % value) self.as_int_array()[indexer] = value_code def __setslice__(self, i, j, sequence): """ This method was deprecated in Python 2.0. It predates slice objects, but Python 2.7.11 still uses it if you implement it, which ndarray does. In newer Pythons, __setitem__ is always called, but we need to manuallly forward in py2. """ self.__setitem__(slice(i, j), sequence) def __getitem__(self, indexer): result = super(LabelArray, self).__getitem__(indexer) if result.ndim: # Result is still a LabelArray, so we can just return it. return result # Result is a scalar value, which will be an instance of np.void. # Map it back to one of our category entries. index = result.view( unsigned_int_dtype_with_size_in_bytes(self.itemsize), ) return self.categories[index] def is_missing(self): """ Like isnan, but checks for locations where we store missing values. """ return ( self.as_int_array() == self.reverse_categories[self.missing_value] ) def not_missing(self): """ Like ~isnan, but checks for locations where we store missing values. """ return ( self.as_int_array() != self.reverse_categories[self.missing_value] ) def _equality_check(op): """ Shared code for __eq__ and __ne__, parameterized on the actual comparison operator to use. """ def method(self, other): if isinstance(other, LabelArray): self_mv = self.missing_value other_mv = other.missing_value if self_mv != other_mv: raise MissingValueMismatch(self_mv, other_mv) self_categories = self.categories other_categories = other.categories if not compare_arrays(self_categories, other_categories): raise CategoryMismatch(self_categories, other_categories) return ( op(self.as_int_array(), other.as_int_array()) & self.not_missing() & other.not_missing() ) elif isinstance(other, ndarray): # Compare to ndarrays as though we were an array of strings. # This is fairly expensive, and should generally be avoided. return op(self.as_string_array(), other) & self.not_missing() elif isinstance(other, self.SUPPORTED_SCALAR_TYPES): i = self._reverse_categories.get(other, -1) return op(self.as_int_array(), i) & self.not_missing() return op(super(LabelArray, self), other) return method __eq__ = _equality_check(eq) __ne__ = _equality_check(ne) del _equality_check def view(self, dtype=_NotPassed, type=_NotPassed): if type is _NotPassed and dtype not in (_NotPassed, self.dtype): raise TypeError("Can't view LabelArray as another dtype.") # The text signature on ndarray.view makes it look like the default # values for dtype and type are `None`, but passing None explicitly has # different semantics than not passing an arg at all, so we reconstruct # the kwargs dict here to simulate the args not being passed at all. kwargs = {} if dtype is not _NotPassed: kwargs['dtype'] = dtype if type is not _NotPassed: kwargs['type'] = type return super(LabelArray, self).view(**kwargs) def astype(self, dtype, order='K', casting='unsafe', subok=True, copy=True): if dtype == self.dtype: if not subok: array = self.view(type=np.ndarray) else: array = self if copy: return array.copy() return array if dtype == object_dtype: return self.as_string_array() if dtype.kind == 'S': return self.as_string_array().astype( dtype, order=order, casting=casting, subok=subok, copy=copy, ) raise TypeError( '%s can only be converted into object, string, or void,' ' got: %r' % ( type(self).__name__, dtype, ), ) # In general, we support resizing, slicing, and reshaping methods, but not # numeric methods. SUPPORTED_NDARRAY_METHODS = frozenset([ 'astype', 'base', 'compress', 'copy', 'data', 'diagonal', 'dtype', 'flat', 'flatten', 'item', 'itemset', 'itemsize', 'nbytes', 'ndim', 'ravel', 'repeat', 'reshape', 'resize', 'setflags', 'shape', 'size', 'squeeze', 'strides', 'swapaxes', 'take', 'trace', 'transpose', 'view' ]) PUBLIC_NDARRAY_METHODS = frozenset([ s for s in dir(ndarray) if not s.startswith('_') ]) # Generate failing wrappers for all unsupported methods. locals().update( { method: _make_unsupported_method(method) for method in PUBLIC_NDARRAY_METHODS - SUPPORTED_NDARRAY_METHODS } ) def __repr__(self): repr_lines = repr(self.as_string_array()).splitlines() repr_lines[0] = repr_lines[0].replace('array(', 'LabelArray(', 1) repr_lines[-1] = repr_lines[-1].rsplit(',', 1)[0] + ')' # The extra spaces here account for the difference in length between # 'array(' and 'LabelArray('. return '\n '.join(repr_lines) def empty_like(self, shape): """ Make an empty LabelArray with the same categories as ``self``, filled with ``self.missing_value``. """ return type(self).from_codes_and_metadata( codes=np.full( shape, self.reverse_categories[self.missing_value], dtype=unsigned_int_dtype_with_size_in_bytes(self.itemsize), ), categories=self.categories, reverse_categories=self.reverse_categories, missing_value=self.missing_value, ) def map_predicate(self, f): """ Map a function from str -> bool element-wise over ``self``. ``f`` will be applied exactly once to each non-missing unique value in ``self``. Missing values will always return False. """ # Functions passed to this are of type str -> bool. Don't ever call # them on None, which is the only non-str value we ever store in # categories. if self.missing_value is None: def f_to_use(x): return False if x is None else f(x) else: f_to_use = f # Call f on each unique value in our categories. results = np.vectorize(f_to_use, otypes=[bool_dtype])(self.categories) # missing_value should produce False no matter what results[self.reverse_categories[self.missing_value]] = False # unpack the results form each unique value into their corresponding # locations in our indices. return results[self.as_int_array()] def map(self, f): """ Map a function from str -> str element-wise over ``self``. ``f`` will be applied exactly once to each non-missing unique value in ``self``. Missing values will always map to ``self.missing_value``. """ # f() should only return None if None is our missing value. if self.missing_value is None: allowed_outtypes = self.SUPPORTED_SCALAR_TYPES else: allowed_outtypes = self.SUPPORTED_NON_NONE_SCALAR_TYPES def f_to_use(x, missing_value=self.missing_value, otypes=allowed_outtypes): # Don't call f on the missing value; those locations don't exist # semantically. We return _sortable_sentinel rather than None # because the np.unique call below sorts the categories array, # which raises an error on Python 3 because None and str aren't # comparable. if x == missing_value: return _sortable_sentinel ret = f(x) if not isinstance(ret, otypes): raise TypeError( "LabelArray.map expected function {f} to return a string" " or None, but got {type} instead.\n" "Value was {value}.".format( f=f.__name__, type=type(ret).__name__, value=ret, ) ) if ret == missing_value: return _sortable_sentinel return ret new_categories_with_duplicates = ( np.vectorize(f_to_use, otypes=[object])(self.categories) ) # If f() maps multiple inputs to the same output, then we can end up # with the same code duplicated multiple times. Compress the categories # by running them through np.unique, and then use the reverse lookup # table to compress codes as well. new_categories, bloated_inverse_index = np.unique( new_categories_with_duplicates, return_inverse=True ) if new_categories[0] is _sortable_sentinel: # f_to_use return _sortable_sentinel for locations that should be # missing values in our output. Since np.unique returns the uniques # in sorted order, and since _sortable_sentinel sorts before any # string, we only need to check the first array entry. new_categories[0] = self.missing_value # `reverse_index` will always be a 64 bit integer even if we can hold a # smaller array. reverse_index = bloated_inverse_index.astype( smallest_uint_that_can_hold(len(new_categories)) ) new_codes = np.take(reverse_index, self.as_int_array()) return self.from_codes_and_metadata( new_codes, new_categories, dict(zip(new_categories, range(len(new_categories)))), missing_value=self.missing_value, ) def startswith(self, prefix): """ Element-wise startswith. Parameters ---------- prefix : str Returns ------- matches : np.ndarray[bool] An array with the same shape as self indicating whether each element of self started with ``prefix``. """ return self.map_predicate(lambda elem: elem.startswith(prefix)) def endswith(self, suffix): """ Elementwise endswith. Parameters ---------- suffix : str Returns ------- matches : np.ndarray[bool] An array with the same shape as self indicating whether each element of self ended with ``suffix`` """ return self.map_predicate(lambda elem: elem.endswith(suffix)) def has_substring(self, substring): """ Elementwise contains. Parameters ---------- substring : str Returns ------- matches : np.ndarray[bool] An array with the same shape as self indicating whether each element of self ended with ``suffix``. """ return self.map_predicate(lambda elem: substring in elem) @preprocess(pattern=coerce(from_=(bytes, unicode), to=re.compile)) def matches(self, pattern): """ Elementwise regex match. Parameters ---------- pattern : str or compiled regex Returns ------- matches : np.ndarray[bool] An array with the same shape as self indicating whether each element of self was matched by ``pattern``. """ return self.map_predicate(compose(bool, pattern.match)) # These types all implement an O(N) __contains__, so pre-emptively # coerce to `set`. @preprocess(container=coerce((list, tuple, np.ndarray), set)) def element_of(self, container): """ Check if each element of self is an of ``container``. Parameters ---------- container : object An object implementing a __contains__ to call on each element of ``self``. Returns ------- is_contained : np.ndarray[bool] An array with the same shape as self indicating whether each element of self was an element of ``container``. """ return self.map_predicate(container.__contains__) @instance # This makes _sortable_sentinel a singleton instance. @total_ordering class _sortable_sentinel(object): """Dummy object that sorts before any other python object. """ def __eq__(self, other): return self is other def __lt__(self, other): return True
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/lib/labelarray.py
labelarray.py
import os import subprocess import networkx as nx def debug_mro_failure(name, bases): graph = build_linearization_graph(name, bases) cycles = sorted(nx.cycles.simple_cycles(graph), key=len) cycle = cycles[0] if os.environ.get('DRAW_MRO_FAILURES'): output_file = name + '.dot' else: output_file = None # Return a nicely formatted error describing the cycle. lines = ["Cycle found when trying to compute MRO for {}:\n".format(name)] for source, dest in list(zip(cycle, cycle[1:])) + [(cycle[-1], cycle[0])]: label = verbosify_label(graph.get_edge_data(source, dest)['label']) lines.append("{} comes before {}: cause={}" .format(source, dest, label)) # Either graphviz graph and tell the user where it went, or tell people how # to enable that feature. lines.append('') if output_file is None: lines.append("Set the DRAW_MRO_FAILURES environment variable to" " render a GraphViz graph of this cycle.") else: try: nx.write_dot(graph.subgraph(cycle), output_file) subprocess.check_call(['dot', '-T', 'svg', '-O', output_file]) lines.append( "GraphViz rendering written to " + output_file + '.svg' ) except Exception as e: lines.append( "Failed to write GraphViz graph. Error was {}".format(e) ) return '\n'.join(lines) def build_linearization_graph(child_name, bases): g = nx.DiGraph() _build_linearization_graph(g, type(child_name, (object,), {}), bases) return g def _build_linearization_graph(g, child, bases): add_implicit_edges(g, child, bases) add_direct_edges(g, child, bases) def add_direct_edges(g, child, bases): # Enforce that bases are ordered in the order that the appear in child's # class declaration. g.add_path([b.__name__ for b in bases], label=child.__name__ + '(O)') # Add direct edges. for base in bases: g.add_edge(child.__name__, base.__name__, label=child.__name__ + '(D)') add_direct_edges(g, base, base.__bases__) def add_implicit_edges(g, child, bases): # Enforce that bases' previous linearizations are preserved. for base in bases: g.add_path( [b.__name__ for b in base.mro()], label=base.__name__ + '(L)', ) VERBOSE_LABELS = { "(D)": "(Direct Subclass)", "(O)": "(Parent Class Order)", "(L)": "(Linearization Order)", } def verbosify_label(label): prefix = label[:-3] suffix = label[-3:] return " ".join([prefix, VERBOSE_LABELS[suffix]])
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/testing/debug.py
debug.py
from contextlib import contextmanager import datetime from functools import partial import inspect import re from nose.tools import ( # noqa assert_almost_equal, assert_almost_equals, assert_dict_contains_subset, assert_false, assert_greater, assert_greater_equal, assert_in, assert_is, assert_is_instance, assert_is_none, assert_is_not, assert_is_not_none, assert_less, assert_less_equal, assert_multi_line_equal, assert_not_almost_equal, assert_not_almost_equals, assert_not_equal, assert_not_equals, assert_not_in, assert_not_is_instance, assert_raises, assert_raises_regexp, assert_regexp_matches, assert_true, assert_tuple_equal, ) import numpy as np import pandas as pd from pandas.util.testing import ( assert_frame_equal, assert_panel_equal, assert_series_equal, assert_index_equal, ) from six import iteritems, viewkeys, PY2 from six.moves import zip_longest from toolz import dissoc, keyfilter import toolz.curried.operator as op from zipline.dispatch import dispatch from zipline.lib.adjustment import Adjustment from zipline.lib.labelarray import LabelArray from zipline.testing.core import ensure_doctest from zipline.utils.compat import mappingproxy from zipline.utils.functional import dzip_exact, instance from zipline.utils.math_utils import tolerant_equals @instance @ensure_doctest class wildcard(object): """An object that compares equal to any other object. This is useful when using :func:`~zipline.testing.predicates.assert_equal` with a large recursive structure and some fields to be ignored. Examples -------- >>> wildcard == 5 True >>> wildcard == 'ayy' True # reflected >>> 5 == wildcard True >>> 'ayy' == wildcard True """ @staticmethod def __eq__(other): return True @staticmethod def __ne__(other): return False def __repr__(self): return '<%s>' % type(self).__name__ class instance_of(object): """An object that compares equal to any instance of a given type or types. Parameters ---------- types : type or tuple[type] The types to compare equal to. exact : bool, optional Only compare equal to exact instances, not instances of subclasses? """ def __init__(self, types, exact=False): if not isinstance(types, tuple): types = (types,) for type_ in types: if not isinstance(type_, type): raise TypeError('types must be a type or tuple of types') self.types = types self.exact = exact def __eq__(self, other): if self.exact: return type(other) in self.types return isinstance(other, self.types) def __ne__(self, other): return not self == other def __repr__(self): typenames = tuple(t.__name__ for t in self.types) return '%s(%s%s)' % ( type(self).__name__, ( typenames[0] if len(typenames) == 1 else '(%s)' % ', '.join(typenames) ), ', exact=True' if self.exact else '' ) def keywords(func): """Get the argument names of a function >>> def f(x, y=2): ... pass >>> keywords(f) ['x', 'y'] Notes ----- Taken from odo.utils """ if isinstance(func, type): return keywords(func.__init__) elif isinstance(func, partial): return keywords(func.func) return inspect.getargspec(func).args def filter_kwargs(f, kwargs): """Return a dict of valid kwargs for `f` from a subset of `kwargs` Examples -------- >>> def f(a, b=1, c=2): ... return a + b + c ... >>> raw_kwargs = dict(a=1, b=3, d=4) >>> f(**raw_kwargs) Traceback (most recent call last): ... TypeError: f() got an unexpected keyword argument 'd' >>> kwargs = filter_kwargs(f, raw_kwargs) >>> f(**kwargs) 6 Notes ----- Taken from odo.utils """ return keyfilter(op.contains(keywords(f)), kwargs) def _s(word, seq, suffix='s'): """Adds a suffix to ``word`` if some sequence has anything other than exactly one element. word : str The string to add the suffix to. seq : sequence The sequence to check the length of. suffix : str, optional. The suffix to add to ``word`` Returns ------- maybe_plural : str ``word`` with ``suffix`` added if ``len(seq) != 1``. """ return word + (suffix if len(seq) != 1 else '') def _fmt_path(path): """Format the path for final display. Parameters ---------- path : iterable of str The path to the values that are not equal. Returns ------- fmtd : str The formatted path to put into the error message. """ if not path: return '' return 'path: _' + ''.join(path) def _fmt_msg(msg): """Format the message for final display. Parameters ---------- msg : str The message to show to the user to provide additional context. returns ------- fmtd : str The formatted message to put into the error message. """ if not msg: return '' return msg + '\n' def _safe_cls_name(cls): try: return cls.__name__ except AttributeError: return repr(cls) def assert_is_subclass(subcls, cls, msg=''): """Assert that ``subcls`` is a subclass of ``cls``. Parameters ---------- subcls : type The type to check. cls : type The type to check ``subcls`` against. msg : str, optional An extra assertion message to print if this fails. """ assert issubclass(subcls, cls), ( '%s is not a subclass of %s\n%s' % ( _safe_cls_name(subcls), _safe_cls_name(cls), msg, ) ) def assert_regex(result, expected, msg=''): """Assert that ``expected`` matches the result. Parameters ---------- result : str The string to search. expected : str or compiled regex The pattern to search for in ``result``. msg : str, optional An extra assertion message to print if this fails. """ assert re.search(expected, result), ( '%s%r not found in %r' % (_fmt_msg(msg), expected, result) ) @contextmanager def assert_raises_regex(exc, pattern, msg=''): """Assert that some exception is raised in a context and that the message matches some pattern. Parameters ---------- exc : type or tuple[type] The exception type or types to expect. pattern : str or compiled regex The pattern to search for in the str of the raised exception. msg : str, optional An extra assertion message to print if this fails. """ try: yield except exc as e: assert re.search(pattern, str(e)), ( '%s%r not found in %r' % (_fmt_msg(msg), pattern, str(e)) ) else: raise AssertionError('%s%s was not raised' % (_fmt_msg(msg), exc)) def assert_raises_str(exc, expected_str, msg=''): """Assert that some exception is raised in a context and that the message exactly matches some string. Parameters ---------- exc : type or tuple[type] The exception type or types to expect. expected_str : str The expected result of ``str(exception)``. msg : str, optional An extra assertion message to print if this fails. """ return assert_raises_regex(exc, '^%s$' % re.escape(expected_str), msg=msg) def make_assert_equal_assertion_error(assertion_message, path, msg): """Create an assertion error formatted for use in ``assert_equal``. Parameters ---------- assertion_message : str The concrete reason for the failure. path : tuple[str] The path leading up to the failure. msg : str The user supplied message. Returns ------- exception_instance : AssertionError The new exception instance. Notes ----- This doesn't raise the exception, it only returns it. """ return AssertionError( '%s%s\n%s' % ( _fmt_msg(msg), assertion_message, _fmt_path(path), ), ) @dispatch(object, object) def assert_equal(result, expected, path=(), msg='', **kwargs): """Assert that two objects are equal using the ``==`` operator. Parameters ---------- result : object The result that came from the function under test. expected : object The expected result. Raises ------ AssertionError Raised when ``result`` is not equal to ``expected``. """ if result != expected: raise make_assert_equal_assertion_error( '%s != %s' % (result, expected), path, msg, ) @assert_equal.register(float, float) def assert_float_equal(result, expected, path=(), msg='', float_rtol=10e-7, float_atol=10e-7, float_equal_nan=True, **kwargs): assert tolerant_equals( result, expected, rtol=float_rtol, atol=float_atol, equal_nan=float_equal_nan, ), '%s%s != %s with rtol=%s and atol=%s%s\n%s' % ( _fmt_msg(msg), result, expected, float_rtol, float_atol, (' (with nan != nan)' if not float_equal_nan else ''), _fmt_path(path), ) def _check_sets(result, expected, msg, path, type_): """Compare two sets. This is used to check dictionary keys and sets. Parameters ---------- result : set expected : set msg : str path : tuple type : str The type of an element. For dict we use ``'key'`` and for set we use ``'element'``. """ if result != expected: if result > expected: diff = result - expected msg = 'extra %s in result: %r' % (_s(type_, diff), diff) elif result < expected: diff = expected - result msg = 'result is missing %s: %r' % (_s(type_, diff), diff) else: in_result = result - expected in_expected = expected - result msg = '%s only in result: %s\n%s only in expected: %s' % ( _s(type_, in_result), in_result, _s(type_, in_expected), in_expected, ) raise AssertionError( '%s%ss do not match\n%s' % ( _fmt_msg(msg), type_, _fmt_path(path), ), ) @assert_equal.register(dict, dict) def assert_dict_equal(result, expected, path=(), msg='', **kwargs): _check_sets( viewkeys(result), viewkeys(expected), msg, path + ('.%s()' % ('viewkeys' if PY2 else 'keys'),), 'key', ) failures = [] for k, (resultv, expectedv) in iteritems(dzip_exact(result, expected)): try: assert_equal( resultv, expectedv, path=path + ('[%r]' % (k,),), msg=msg, **kwargs ) except AssertionError as e: failures.append(str(e)) if failures: raise AssertionError('\n'.join(failures)) @assert_equal.register(mappingproxy, mappingproxy) def asssert_mappingproxy_equal(result, expected, path=(), msg='', **kwargs): # mappingproxies compare like dict but shouldn't compare to dicts _check_sets( set(result), set(expected), msg, path + ('.keys()',), 'key', ) failures = [] for k, resultv in iteritems(result): # we know this exists because of the _check_sets call above expectedv = expected[k] try: assert_equal( resultv, expectedv, path=path + ('[%r]' % (k,),), msg=msg, **kwargs ) except AssertionError as e: failures.append(str(e)) if failures: raise AssertionError('\n'.join(failures)) @assert_equal.register(list, list) @assert_equal.register(tuple, tuple) def assert_sequence_equal(result, expected, path=(), msg='', **kwargs): result_len = len(result) expected_len = len(expected) assert result_len == expected_len, ( '%s%s lengths do not match: %d != %d\n%s' % ( _fmt_msg(msg), type(result).__name__, result_len, expected_len, _fmt_path(path), ) ) for n, (resultv, expectedv) in enumerate(zip(result, expected)): assert_equal( resultv, expectedv, path=path + ('[%d]' % n,), msg=msg, **kwargs ) @assert_equal.register(set, set) def assert_set_equal(result, expected, path=(), msg='', **kwargs): _check_sets( result, expected, msg, path, 'element', ) @assert_equal.register(np.ndarray, np.ndarray) def assert_array_equal(result, expected, path=(), msg='', array_verbose=True, array_decimal=None, **kwargs): f = ( np.testing.assert_array_equal if array_decimal is None else partial(np.testing.assert_array_almost_equal, decimal=array_decimal) ) try: f( result, expected, verbose=array_verbose, err_msg=msg, ) except AssertionError as e: raise AssertionError('\n'.join((str(e), _fmt_path(path)))) @assert_equal.register(LabelArray, LabelArray) def assert_labelarray_equal(result, expected, path=(), **kwargs): assert_equal( result.categories, expected.categories, path=path + ('.categories',), **kwargs ) assert_equal( result.as_int_array(), expected.as_int_array(), path=path + ('.as_int_array()',), **kwargs ) def _register_assert_equal_wrapper(type_, assert_eq): """Register a new check for an ndframe object. Parameters ---------- type_ : type The class to register an ``assert_equal`` dispatch for. assert_eq : callable[type_, type_] The function which checks that if the two ndframes are equal. Returns ------- assert_ndframe_equal : callable[type_, type_] The wrapped function registered with ``assert_equal``. """ @assert_equal.register(type_, type_) def assert_ndframe_equal(result, expected, path=(), msg='', **kwargs): try: assert_eq( result, expected, **filter_kwargs(assert_eq, kwargs) ) except AssertionError as e: raise AssertionError( _fmt_msg(msg) + '\n'.join((str(e), _fmt_path(path))), ) return assert_ndframe_equal assert_frame_equal = _register_assert_equal_wrapper( pd.DataFrame, assert_frame_equal, ) assert_panel_equal = _register_assert_equal_wrapper( pd.Panel, assert_panel_equal, ) assert_series_equal = _register_assert_equal_wrapper( pd.Series, assert_series_equal, ) assert_index_equal = _register_assert_equal_wrapper( pd.Index, assert_index_equal, ) @assert_equal.register(pd.Categorical, pd.Categorical) def assert_categorical_equal(result, expected, path=(), msg='', **kwargs): assert_equal( result.categories, expected.categories, path=path + ('.categories',), msg=msg, **kwargs ) assert_equal( result.codes, expected.codes, path=path + ('.codes',), msg=msg, **kwargs ) @assert_equal.register(Adjustment, Adjustment) def assert_adjustment_equal(result, expected, path=(), **kwargs): for attr in ('first_row', 'last_row', 'first_col', 'last_col', 'value'): assert_equal( getattr(result, attr), getattr(expected, attr), path=path + ('.' + attr,), **kwargs ) @assert_equal.register( (datetime.datetime, np.datetime64), (datetime.datetime, np.datetime64), ) def assert_timestamp_and_datetime_equal(result, expected, path=(), msg='', allow_datetime_coercions=False, compare_nat_equal=True, **kwargs): """ Branch for comparing python datetime (which includes pandas Timestamp) and np.datetime64 as equal. Returns raises unless ``allow_datetime_coercions`` is passed as True. """ assert allow_datetime_coercions or type(result) == type(expected), ( "%sdatetime types (%s, %s) don't match and " "allow_datetime_coercions was not set.\n%s" % ( _fmt_msg(msg), type(result), type(expected), _fmt_path(path), ) ) result = pd.Timestamp(result) expected = pd.Timestamp(expected) if compare_nat_equal and pd.isnull(result) and pd.isnull(expected): return assert_equal.dispatch(object, object)( result, expected, path=path, **kwargs ) @assert_equal.register(slice, slice) def assert_slice_equal(result, expected, path=(), msg=''): diff_start = ( ('starts are not equal: %s != %s' % (result.start, result.stop)) if result.start != expected.start else '' ) diff_stop = ( ('stops are not equal: %s != %s' % (result.stop, result.stop)) if result.stop != expected.stop else '' ) diff_step = ( ('steps are not equal: %s != %s' % (result.step, result.stop)) if result.step != expected.step else '' ) diffs = diff_start, diff_stop, diff_step assert not any(diffs), '%s%s\n%s' % ( _fmt_msg(msg), '\n'.join(filter(None, diffs)), _fmt_path(path), ) def assert_isidentical(result, expected, msg=''): assert result.isidentical(expected), ( '%s%s is not identical to %s' % (_fmt_msg(msg), result, expected) ) def assert_messages_equal(result, expected): """Assertion helper for comparing very long strings (e.g. error messages). """ # The arg here is "keepends" which keeps trailing newlines (which # matters for checking trailing whitespace). You can't pass keepends by # name :(. left_lines = result.splitlines(True) right_lines = expected.splitlines(True) iter_lines = enumerate(zip_longest(left_lines, right_lines)) for line, (ll, rl) in iter_lines: if ll != rl: col = index_of_first_difference(ll, rl) raise AssertionError( "Messages differ on line {line}, col {col}:" "\n{ll!r}\n!=\n{rl!r}".format( line=line, col=col, ll=ll, rl=rl ) ) def index_of_first_difference(left, right): """Get the index of the first difference between two strings.""" difflocs = (i for (i, (lc, rc)) in enumerate(zip_longest(left, right)) if lc != rc) try: return next(difflocs) except StopIteration: raise ValueError("Left was equal to right!") try: # pull the dshape cases in from datashape.util.testing import assert_dshape_equal except ImportError: pass else: assert_equal.funcs.update( dissoc(assert_dshape_equal.funcs, (object, object)), )
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/testing/predicates.py
predicates.py
import os import sqlite3 from unittest import TestCase import warnings from contextlib2 import ExitStack from logbook import NullHandler, Logger import pandas as pd from six import with_metaclass, iteritems import responses from toolz import flip, merge from trading_calendars import ( get_calendar, register_calendar_alias, ) import zipline from zipline.algorithm import TradingAlgorithm from zipline.assets import Equity, Future from zipline.assets.continuous_futures import CHAIN_PREDICATES from zipline.finance.asset_restrictions import NoRestrictions from zipline.pipeline import SimplePipelineEngine from zipline.pipeline.data import USEquityPricing from zipline.pipeline.loaders import USEquityPricingLoader from zipline.pipeline.loaders.testing import make_seeded_random_loader from zipline.protocol import BarData from zipline.utils.paths import ensure_directory from .core import ( create_daily_bar_data, create_minute_bar_data, make_simple_equity_info, tmp_asset_finder, tmp_dir, ) from .debug import debug_mro_failure from ..data.data_portal import ( DataPortal, DEFAULT_MINUTE_HISTORY_PREFETCH, DEFAULT_DAILY_HISTORY_PREFETCH, ) from ..data.loader import ( get_benchmark_filename, ) from ..data.minute_bars import ( BcolzMinuteBarReader, BcolzMinuteBarWriter, US_EQUITIES_MINUTES_PER_DAY, FUTURES_MINUTES_PER_DAY, ) from ..data.resample import ( minute_frame_to_session_frame, MinuteResampleSessionBarReader ) from ..data.us_equity_pricing import ( BcolzDailyBarReader, BcolzDailyBarWriter, SQLiteAdjustmentReader, SQLiteAdjustmentWriter, ) from ..finance.trading import SimulationParameters from ..utils.classproperty import classproperty from ..utils.final import FinalMeta, final from ..utils.memoize import remember_last zipline_dir = os.path.dirname(zipline.__file__) class DebugMROMeta(FinalMeta): """Metaclass that helps debug MRO resolution errors. """ def __new__(mcls, name, bases, clsdict): try: return super(DebugMROMeta, mcls).__new__( mcls, name, bases, clsdict ) except TypeError as e: if "(MRO)" in str(e): msg = debug_mro_failure(name, bases) raise TypeError(msg) else: raise class ZiplineTestCase(with_metaclass(DebugMROMeta, TestCase)): """ Shared extensions to core unittest.TestCase. Overrides the default unittest setUp/tearDown functions with versions that use ExitStack to correctly clean up resources, even in the face of exceptions that occur during setUp/setUpClass. Subclasses **should not override setUp or setUpClass**! Instead, they should implement `init_instance_fixtures` for per-test-method resources, and `init_class_fixtures` for per-class resources. Resources that need to be cleaned up should be registered using either `enter_{class,instance}_context` or `add_{class,instance}_callback}. """ _in_setup = False @final @classmethod def setUpClass(cls): # Hold a set of all the "static" attributes on the class. These are # things that are not populated after the class was created like # methods or other class level attributes. cls._static_class_attributes = set(vars(cls)) cls._class_teardown_stack = ExitStack() try: cls._base_init_fixtures_was_called = False cls.init_class_fixtures() assert cls._base_init_fixtures_was_called, ( "ZiplineTestCase.init_class_fixtures() was not called.\n" "This probably means that you overrode init_class_fixtures" " without calling super()." ) except: cls.tearDownClass() raise @classmethod def init_class_fixtures(cls): """ Override and implement this classmethod to register resources that should be created and/or torn down on a per-class basis. Subclass implementations of this should always invoke this with super() to ensure that fixture mixins work properly. """ if cls._in_setup: raise ValueError( 'Called init_class_fixtures from init_instance_fixtures.' ' Did you write super(..., self).init_class_fixtures() instead' ' of super(..., self).init_instance_fixtures()?', ) cls._base_init_fixtures_was_called = True @final @classmethod def tearDownClass(cls): # We need to get this before it's deleted by the loop. stack = cls._class_teardown_stack for name in set(vars(cls)) - cls._static_class_attributes: # Remove all of the attributes that were added after the class was # constructed. This cleans up any large test data that is class # scoped while still allowing subclasses to access class level # attributes. delattr(cls, name) stack.close() @final @classmethod def enter_class_context(cls, context_manager): """ Enter a context manager to be exited during the tearDownClass """ if cls._in_setup: raise ValueError( 'Attempted to enter a class context in init_instance_fixtures.' '\nDid you mean to call enter_instance_context?', ) return cls._class_teardown_stack.enter_context(context_manager) @final @classmethod def add_class_callback(cls, callback, *args, **kwargs): """ Register a callback to be executed during tearDownClass. Parameters ---------- callback : callable The callback to invoke at the end of the test suite. """ if cls._in_setup: raise ValueError( 'Attempted to add a class callback in init_instance_fixtures.' '\nDid you mean to call add_instance_callback?', ) return cls._class_teardown_stack.callback(callback, *args, **kwargs) @final def setUp(self): type(self)._in_setup = True self._pre_setup_attrs = set(vars(self)) self._instance_teardown_stack = ExitStack() try: self._init_instance_fixtures_was_called = False self.init_instance_fixtures() assert self._init_instance_fixtures_was_called, ( "ZiplineTestCase.init_instance_fixtures() was not" " called.\n" "This probably means that you overrode" " init_instance_fixtures without calling super()." ) except: self.tearDown() raise finally: type(self)._in_setup = False def init_instance_fixtures(self): self._init_instance_fixtures_was_called = True @final def tearDown(self): # We need to get this before it's deleted by the loop. stack = self._instance_teardown_stack for attr in set(vars(self)) - self._pre_setup_attrs: delattr(self, attr) stack.close() @final def enter_instance_context(self, context_manager): """ Enter a context manager that should be exited during tearDown. """ return self._instance_teardown_stack.enter_context(context_manager) @final def add_instance_callback(self, callback): """ Register a callback to be executed during tearDown. Parameters ---------- callback : callable The callback to invoke at the end of each test. """ return self._instance_teardown_stack.callback(callback) def alias(attr_name): """Make a fixture attribute an alias of another fixture's attribute by default. Parameters ---------- attr_name : str The name of the attribute to alias. Returns ------- p : classproperty A class property that does the property aliasing. Examples -------- >>> class C(object): ... attr = 1 ... >>> class D(C): ... attr_alias = alias('attr') ... >>> D.attr 1 >>> D.attr_alias 1 >>> class E(D): ... attr_alias = 2 ... >>> E.attr 1 >>> E.attr_alias 2 """ return classproperty(flip(getattr, attr_name)) class WithDefaultDateBounds(with_metaclass(DebugMROMeta, object)): """ ZiplineTestCase mixin which makes it possible to synchronize date bounds across fixtures. This fixture should always be the last fixture in bases of any fixture or test case that uses it. Attributes ---------- START_DATE : datetime END_DATE : datetime The date bounds to be used for fixtures that want to have consistent dates. """ START_DATE = pd.Timestamp('2006-01-03', tz='utc') END_DATE = pd.Timestamp('2006-12-29', tz='utc') class WithLogger(object): """ ZiplineTestCase mixin providing cls.log_handler as an instance-level fixture. After init_instance_fixtures has been called `self.log_handler` will be a new ``logbook.NullHandler``. Methods ------- make_log_handler() -> logbook.LogHandler A class method which constructs the new log handler object. By default this will construct a ``NullHandler``. """ make_log_handler = NullHandler @classmethod def init_class_fixtures(cls): super(WithLogger, cls).init_class_fixtures() cls.log = Logger() cls.log_handler = cls.enter_class_context( cls.make_log_handler().applicationbound(), ) class WithAssetFinder(WithDefaultDateBounds): """ ZiplineTestCase mixin providing cls.asset_finder as a class-level fixture. After init_class_fixtures has been called, `cls.asset_finder` is populated with an AssetFinder. Attributes ---------- ASSET_FINDER_EQUITY_SIDS : iterable[int] The default sids to construct equity data for. ASSET_FINDER_EQUITY_SYMBOLS : iterable[str] The default symbols to use for the equities. ASSET_FINDER_EQUITY_START_DATE : datetime The default start date to create equity data for. This defaults to ``START_DATE``. ASSET_FINDER_EQUITY_END_DATE : datetime The default end date to create equity data for. This defaults to ``END_DATE``. ASSET_FINDER_EQUITY_NAMES: iterable[str] The default names to use for the equities. ASSET_FINDER_EQUITY_EXCHANGE : str The default exchange to assign each equity. ASSET_FINDER_COUNTRY_CODE : str The default country code to assign each exchange. Methods ------- make_equity_info() -> pd.DataFrame A class method which constructs the dataframe of equity info to write to the class's asset db. By default this is empty. make_futures_info() -> pd.DataFrame A class method which constructs the dataframe of futures contract info to write to the class's asset db. By default this is empty. make_exchanges_info() -> pd.DataFrame A class method which constructs the dataframe of exchange information to write to the class's assets db. By default this is empty. make_root_symbols_info() -> pd.DataFrame A class method which constructs the dataframe of root symbols information to write to the class's assets db. By default this is empty. make_asset_finder_db_url() -> string A class method which returns the URL at which to create the SQLAlchemy engine. By default provides a URL for an in-memory database. make_asset_finder() -> pd.DataFrame A class method which constructs the actual asset finder object to use for the class. If this method is overridden then the ``make_*_info`` methods may not be respected. See Also -------- zipline.testing.make_simple_equity_info zipline.testing.make_jagged_equity_info zipline.testing.make_rotating_equity_info zipline.testing.make_future_info zipline.testing.make_commodity_future_info """ ASSET_FINDER_EQUITY_SIDS = ord('A'), ord('B'), ord('C') ASSET_FINDER_EQUITY_SYMBOLS = None ASSET_FINDER_EQUITY_NAMES = None ASSET_FINDER_EQUITY_EXCHANGE = 'TEST' ASSET_FINDER_EQUITY_START_DATE = alias('START_DATE') ASSET_FINDER_EQUITY_END_DATE = alias('END_DATE') ASSET_FINDER_FUTURE_CHAIN_PREDICATES = CHAIN_PREDICATES ASSET_FINDER_COUNTRY_CODE = '??' @classmethod def _make_info(cls, *args): return None make_futures_info = _make_info make_exchanges_info = _make_info make_root_symbols_info = _make_info make_equity_supplementary_mappings = _make_info del _make_info @classmethod def make_equity_info(cls): return make_simple_equity_info( cls.ASSET_FINDER_EQUITY_SIDS, cls.ASSET_FINDER_EQUITY_START_DATE, cls.ASSET_FINDER_EQUITY_END_DATE, cls.ASSET_FINDER_EQUITY_SYMBOLS, cls.ASSET_FINDER_EQUITY_NAMES, cls.ASSET_FINDER_EQUITY_EXCHANGE, ) @classmethod def make_asset_finder_db_url(cls): return 'sqlite:///:memory:' @classmethod def make_asset_finder(cls): """Returns a new AssetFinder Returns ------- asset_finder : zipline.assets.AssetFinder """ equities = cls.make_equity_info() futures = cls.make_futures_info() root_symbols = cls.make_root_symbols_info() exchanges = cls.make_exchanges_info(equities, futures, root_symbols) if exchanges is None: exchange_names = [ df['exchange'] for df in (equities, futures, root_symbols) if df is not None ] if exchange_names: exchanges = pd.DataFrame({ 'exchange': pd.concat(exchange_names).unique(), 'country_code': cls.ASSET_FINDER_COUNTRY_CODE, }) return cls.enter_class_context(tmp_asset_finder( url=cls.make_asset_finder_db_url(), equities=equities, futures=futures, exchanges=exchanges, root_symbols=root_symbols, equity_supplementary_mappings=( cls.make_equity_supplementary_mappings() ), future_chain_predicates=cls.ASSET_FINDER_FUTURE_CHAIN_PREDICATES, )) @classmethod def init_class_fixtures(cls): super(WithAssetFinder, cls).init_class_fixtures() cls.asset_finder = cls.make_asset_finder() class WithTradingCalendars(object): """ ZiplineTestCase mixin providing cls.trading_calendar, cls.all_trading_calendars, cls.trading_calendar_for_asset_type as a class-level fixture. After ``init_class_fixtures`` has been called: - `cls.trading_calendar` is populated with a default of the nyse trading calendar for compatibility with existing tests - `cls.all_trading_calendars` is populated with the trading calendars keyed by name, - `cls.trading_calendar_for_asset_type` is populated with the trading calendars keyed by the asset type which uses the respective calendar. Attributes ---------- TRADING_CALENDAR_STRS : iterable iterable of identifiers of the calendars to use. TRADING_CALENDAR_FOR_ASSET_TYPE : dict A dictionary which maps asset type names to the calendar associated with that asset type. """ TRADING_CALENDAR_STRS = ('NYSE',) TRADING_CALENDAR_FOR_ASSET_TYPE = {Equity: 'NYSE', Future: 'us_futures'} # For backwards compatibility, exisitng tests and fixtures refer to # `trading_calendar` with the assumption that the value is the NYSE # calendar. TRADING_CALENDAR_PRIMARY_CAL = 'NYSE' @classmethod def init_class_fixtures(cls): super(WithTradingCalendars, cls).init_class_fixtures() cls.trading_calendars = {} for cal_str in ( set(cls.TRADING_CALENDAR_STRS) | {cls.TRADING_CALENDAR_PRIMARY_CAL} ): # Set name to allow aliasing. calendar = get_calendar(cal_str) setattr(cls, '{0}_calendar'.format(cal_str.lower()), calendar) cls.trading_calendars[cal_str] = calendar type_to_cal = iteritems(cls.TRADING_CALENDAR_FOR_ASSET_TYPE) for asset_type, cal_str in type_to_cal: calendar = get_calendar(cal_str) cls.trading_calendars[asset_type] = calendar cls.trading_calendar = ( cls.trading_calendars[cls.TRADING_CALENDAR_PRIMARY_CAL] ) _MARKET_DATA_DIR = os.path.join(zipline_dir, 'resources', 'market_data') @remember_last def read_checked_in_benchmark_data(): symbol = 'SPY' filename = get_benchmark_filename(symbol) source_path = os.path.join(_MARKET_DATA_DIR, filename) benchmark_returns = pd.read_csv( source_path, parse_dates=[0], index_col=0, header=None, ).tz_localize('UTC') return benchmark_returns.iloc[:, 0] class WithBenchmarkReturns(WithDefaultDateBounds, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.benchmark_returns as a class-level attribute. """ _default_treasury_curves = None @classproperty def BENCHMARK_RETURNS(cls): benchmark_returns = read_checked_in_benchmark_data() # Zipline ordinarily uses cached benchmark returns and treasury # curves data, but when running the zipline tests this cache is not # always updated to include the appropriate dates required by both # the futures and equity calendars. In order to create more # reliable and consistent data throughout the entirety of the # tests, we read static benchmark returns and treasury curve csv # files from source. If a test using this fixture attempts to run # outside of the static date range of the csv files, raise an # exception warning the user to either update the csv files in # source or to use a date range within the current bounds. static_start_date = benchmark_returns.index[0].date() static_end_date = benchmark_returns.index[-1].date() warning_message = ( 'The WithBenchmarkReturns fixture uses static data between ' '{static_start} and {static_end}. To use a start and end date ' 'of {given_start} and {given_end} you will have to update the ' 'files in {resource_dir} to include the missing dates.'.format( static_start=static_start_date, static_end=static_end_date, given_start=cls.START_DATE.date(), given_end=cls.END_DATE.date(), resource_dir=_MARKET_DATA_DIR, ) ) if cls.START_DATE.date() < static_start_date or \ cls.END_DATE.date() > static_end_date: raise AssertionError(warning_message) return benchmark_returns class WithSimParams(WithDefaultDateBounds): """ ZiplineTestCase mixin providing cls.sim_params as a class level fixture. Attributes ---------- SIM_PARAMS_CAPITAL_BASE : float SIM_PARAMS_DATA_FREQUENCY : {'daily', 'minute'} SIM_PARAMS_EMISSION_RATE : {'daily', 'minute'} Forwarded to ``SimulationParameters``. SIM_PARAMS_START : datetime SIM_PARAMS_END : datetime Forwarded to ``SimulationParameters``. If not explicitly overridden these will be ``START_DATE`` and ``END_DATE`` Methods ------- make_simparams(**overrides) Construct a ``SimulationParameters`` using the defaults defined by fixture configuration attributes. Any parameters to ``SimulationParameters`` can be overridden by passing them by keyword. See Also -------- zipline.finance.trading.SimulationParameters """ SIM_PARAMS_CAPITAL_BASE = 1.0e5 SIM_PARAMS_DATA_FREQUENCY = 'daily' SIM_PARAMS_EMISSION_RATE = 'daily' SIM_PARAMS_START = alias('START_DATE') SIM_PARAMS_END = alias('END_DATE') @classmethod def make_simparams(cls, **overrides): kwargs = dict( start_session=cls.SIM_PARAMS_START, end_session=cls.SIM_PARAMS_END, capital_base=cls.SIM_PARAMS_CAPITAL_BASE, data_frequency=cls.SIM_PARAMS_DATA_FREQUENCY, emission_rate=cls.SIM_PARAMS_EMISSION_RATE, trading_calendar=cls.trading_calendar, ) kwargs.update(overrides) return SimulationParameters(**kwargs) @classmethod def init_class_fixtures(cls): super(WithSimParams, cls).init_class_fixtures() cls.sim_params = cls.make_simparams() class WithTradingSessions(WithDefaultDateBounds, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.trading_days, cls.all_trading_sessions as a class-level fixture. After init_class_fixtures has been called, `cls.all_trading_sessions` is populated with a dictionary of calendar name to the DatetimeIndex containing the calendar trading days ranging from: (DATA_MAX_DAY - (cls.TRADING_DAY_COUNT) -> DATA_MAX_DAY) `cls.trading_days`, for compatibility with existing tests which make the assumption that trading days are equity only, defaults to the nyse trading sessions. Attributes ---------- DATA_MAX_DAY : datetime The most recent trading day in the calendar. TRADING_DAY_COUNT : int The number of days to put in the calendar. The default value of ``TRADING_DAY_COUNT`` is 126 (half a trading-year). Inheritors can override TRADING_DAY_COUNT to request more or less data. """ DATA_MIN_DAY = alias('START_DATE') DATA_MAX_DAY = alias('END_DATE') # For backwards compatibility, exisitng tests and fixtures refer to # `trading_days` with the assumption that the value is days of the NYSE # calendar. trading_days = alias('nyse_sessions') @classmethod def init_class_fixtures(cls): super(WithTradingSessions, cls).init_class_fixtures() cls.trading_sessions = {} for cal_str in cls.TRADING_CALENDAR_STRS: trading_calendar = cls.trading_calendars[cal_str] sessions = trading_calendar.sessions_in_range( cls.DATA_MIN_DAY, cls.DATA_MAX_DAY) # Set name for aliasing. setattr(cls, '{0}_sessions'.format(cal_str.lower()), sessions) cls.trading_sessions[cal_str] = sessions class WithTmpDir(object): """ ZiplineTestCase mixing providing cls.tmpdir as a class-level fixture. After init_class_fixtures has been called, `cls.tmpdir` is populated with a `testfixtures.TempDirectory` object whose path is `cls.TMP_DIR_PATH`. Attributes ---------- TMP_DIR_PATH : str The path to the new directory to create. By default this is None which will create a unique directory in /tmp. """ TMP_DIR_PATH = None @classmethod def init_class_fixtures(cls): super(WithTmpDir, cls).init_class_fixtures() cls.tmpdir = cls.enter_class_context( tmp_dir(path=cls.TMP_DIR_PATH), ) class WithInstanceTmpDir(object): """ ZiplineTestCase mixing providing self.tmpdir as an instance-level fixture. After init_instance_fixtures has been called, `self.tmpdir` is populated with a `testfixtures.TempDirectory` object whose path is `cls.TMP_DIR_PATH`. Attributes ---------- INSTANCE_TMP_DIR_PATH : str The path to the new directory to create. By default this is None which will create a unique directory in /tmp. """ INSTANCE_TMP_DIR_PATH = None def init_instance_fixtures(self): super(WithInstanceTmpDir, self).init_instance_fixtures() self.instance_tmpdir = self.enter_instance_context( tmp_dir(path=self.INSTANCE_TMP_DIR_PATH), ) class WithEquityDailyBarData(WithAssetFinder, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.make_equity_daily_bar_data. Attributes ---------- EQUITY_DAILY_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. EQUITY_DAILY_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE : bool If this flag is set, `make_equity_daily_bar_data` will read data from the minute bars defined by `WithEquityMinuteBarData`. The current default is `False`, but could be `True` in the future. Methods ------- make_equity_daily_bar_data() -> iterable[(int, pd.DataFrame)] A class method that returns an iterator of (sid, dataframe) pairs which will be written to the bcolz files that the class's ``BcolzDailyBarReader`` will read from. By default this creates some simple synthetic data with :func:`~zipline.testing.create_daily_bar_data` See Also -------- WithEquityMinuteBarData zipline.testing.create_daily_bar_data """ EQUITY_DAILY_BAR_START_DATE = alias('START_DATE') EQUITY_DAILY_BAR_END_DATE = alias('END_DATE') EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE = None @classproperty def EQUITY_DAILY_BAR_LOOKBACK_DAYS(cls): # If we're sourcing from minute data, then we almost certainly want the # minute bar calendar to be aligned with the daily bar calendar, so # re-use the same lookback parameter. if cls.EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE: return cls.EQUITY_MINUTE_BAR_LOOKBACK_DAYS else: return 0 @classmethod def _make_equity_daily_bar_from_minute(cls): assert issubclass(cls, WithEquityMinuteBarData), \ "Can't source daily data from minute without minute data!" assets = cls.asset_finder.retrieve_all(cls.asset_finder.equities_sids) minute_data = dict(cls.make_equity_minute_bar_data()) for asset in assets: yield asset.sid, minute_frame_to_session_frame( minute_data[asset.sid], cls.trading_calendars[Equity]) @classmethod def make_equity_daily_bar_data(cls): # Requires a WithEquityMinuteBarData to come before in the MRO. # Resample that data so that daily and minute bar data are aligned. if cls.EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE: return cls._make_equity_daily_bar_from_minute() else: return create_daily_bar_data( cls.equity_daily_bar_days, cls.asset_finder.equities_sids, ) @classmethod def init_class_fixtures(cls): super(WithEquityDailyBarData, cls).init_class_fixtures() trading_calendar = cls.trading_calendars[Equity] if trading_calendar.is_session(cls.EQUITY_DAILY_BAR_START_DATE): first_session = cls.EQUITY_DAILY_BAR_START_DATE else: first_session = trading_calendar.minute_to_session_label( pd.Timestamp(cls.EQUITY_DAILY_BAR_START_DATE) ) if cls.EQUITY_DAILY_BAR_LOOKBACK_DAYS > 0: first_session = trading_calendar.sessions_window( first_session, -1 * cls.EQUITY_DAILY_BAR_LOOKBACK_DAYS )[0] days = trading_calendar.sessions_in_range( first_session, cls.EQUITY_DAILY_BAR_END_DATE, ) cls.equity_daily_bar_days = days class WithFutureDailyBarData(WithAssetFinder, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.make_future_daily_bar_data. Attributes ---------- FUTURE_DAILY_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. FUTURE_DAILY_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE : bool If this flag is set, `make_future_daily_bar_data` will read data from the minute bars defined by `WithFutureMinuteBarData`. The current default is `False`, but could be `True` in the future. Methods ------- make_future_daily_bar_data() -> iterable[(int, pd.DataFrame)] A class method that returns an iterator of (sid, dataframe) pairs which will be written to the bcolz files that the class's ``BcolzDailyBarReader`` will read from. By default this creates some simple synthetic data with :func:`~zipline.testing.create_daily_bar_data` See Also -------- WithFutureMinuteBarData zipline.testing.create_daily_bar_data """ FUTURE_DAILY_BAR_USE_FULL_CALENDAR = False FUTURE_DAILY_BAR_START_DATE = alias('START_DATE') FUTURE_DAILY_BAR_END_DATE = alias('END_DATE') FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE = None @classproperty def FUTURE_DAILY_BAR_LOOKBACK_DAYS(cls): # If we're sourcing from minute data, then we almost certainly want the # minute bar calendar to be aligned with the daily bar calendar, so # re-use the same lookback parameter. if cls.FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE: return cls.FUTURE_MINUTE_BAR_LOOKBACK_DAYS else: return 0 @classmethod def _make_future_daily_bar_from_minute(cls): assert issubclass(cls, WithFutureMinuteBarData), \ "Can't source daily data from minute without minute data!" assets = cls.asset_finder.retrieve_all(cls.asset_finder.futures_sids) minute_data = dict(cls.make_future_minute_bar_data()) for asset in assets: yield asset.sid, minute_frame_to_session_frame( minute_data[asset.sid], cls.trading_calendars[Future]) @classmethod def make_future_daily_bar_data(cls): # Requires a WithFutureMinuteBarData to come before in the MRO. # Resample that data so that daily and minute bar data are aligned. if cls.FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE: return cls._make_future_daily_bar_from_minute() else: return create_daily_bar_data( cls.future_daily_bar_days, cls.asset_finder.futures_sids, ) @classmethod def init_class_fixtures(cls): super(WithFutureDailyBarData, cls).init_class_fixtures() trading_calendar = cls.trading_calendars[Future] if cls.FUTURE_DAILY_BAR_USE_FULL_CALENDAR: days = trading_calendar.all_sessions else: if trading_calendar.is_session(cls.FUTURE_DAILY_BAR_START_DATE): first_session = cls.FUTURE_DAILY_BAR_START_DATE else: first_session = trading_calendar.minute_to_session_label( pd.Timestamp(cls.FUTURE_DAILY_BAR_START_DATE) ) if cls.FUTURE_DAILY_BAR_LOOKBACK_DAYS > 0: first_session = trading_calendar.sessions_window( first_session, -1 * cls.FUTURE_DAILY_BAR_LOOKBACK_DAYS )[0] days = trading_calendar.sessions_in_range( first_session, cls.FUTURE_DAILY_BAR_END_DATE, ) cls.future_daily_bar_days = days class WithBcolzEquityDailyBarReader(WithEquityDailyBarData, WithTmpDir): """ ZiplineTestCase mixin providing cls.bcolz_daily_bar_path, cls.bcolz_daily_bar_ctable, and cls.bcolz_equity_daily_bar_reader class level fixtures. After init_class_fixtures has been called: - `cls.bcolz_daily_bar_path` is populated with `cls.tmpdir.getpath(cls.BCOLZ_DAILY_BAR_PATH)`. - `cls.bcolz_daily_bar_ctable` is populated with data returned from `cls.make_equity_daily_bar_data`. By default this calls :func:`zipline.pipeline.loaders.synthetic.make_equity_daily_bar_data`. - `cls.bcolz_equity_daily_bar_reader` is a daily bar reader pointing to the directory that was just written to. Attributes ---------- BCOLZ_DAILY_BAR_PATH : str The path inside the tmpdir where this will be written. EQUITY_DAILY_BAR_LOOKBACK_DAYS : int The number of days of data to add before the first day. This is used when a test needs to use history, in which case this should be set to the largest history window that will be requested. EQUITY_DAILY_BAR_USE_FULL_CALENDAR : bool If this flag is set the ``equity_daily_bar_days`` will be the full set of trading days from the trading environment. This flag overrides ``EQUITY_DAILY_BAR_LOOKBACK_DAYS``. BCOLZ_DAILY_BAR_READ_ALL_THRESHOLD : int If this flag is set, use the value as the `read_all_threshold` parameter to BcolzDailyBarReader, otherwise use the default value. EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE : bool If this flag is set, `make_equity_daily_bar_data` will read data from the minute bar reader defined by a `WithBcolzEquityMinuteBarReader`. Methods ------- make_bcolz_daily_bar_rootdir_path() -> string A class method that returns the path for the rootdir of the daily bars ctable. By default this is a subdirectory BCOLZ_DAILY_BAR_PATH in the shared temp directory. See Also -------- WithBcolzEquityMinuteBarReader WithDataPortal zipline.testing.create_daily_bar_data """ BCOLZ_DAILY_BAR_PATH = 'daily_equity_pricing.bcolz' BCOLZ_DAILY_BAR_READ_ALL_THRESHOLD = None EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE = False # allows WithBcolzEquityDailyBarReaderFromCSVs to call the # `write_csvs`method without needing to reimplement `init_class_fixtures` _write_method_name = 'write' # What to do when data being written is invalid, e.g. nan, inf, etc. # options are: 'warn', 'raise', 'ignore' INVALID_DATA_BEHAVIOR = 'warn' @classmethod def make_bcolz_daily_bar_rootdir_path(cls): return cls.tmpdir.makedir(cls.BCOLZ_DAILY_BAR_PATH) @classmethod def init_class_fixtures(cls): super(WithBcolzEquityDailyBarReader, cls).init_class_fixtures() cls.bcolz_daily_bar_path = p = cls.make_bcolz_daily_bar_rootdir_path() days = cls.equity_daily_bar_days trading_calendar = cls.trading_calendars[Equity] cls.bcolz_daily_bar_ctable = t = getattr( BcolzDailyBarWriter(p, trading_calendar, days[0], days[-1]), cls._write_method_name, )( cls.make_equity_daily_bar_data(), invalid_data_behavior=cls.INVALID_DATA_BEHAVIOR ) if cls.BCOLZ_DAILY_BAR_READ_ALL_THRESHOLD is not None: cls.bcolz_equity_daily_bar_reader = BcolzDailyBarReader( t, cls.BCOLZ_DAILY_BAR_READ_ALL_THRESHOLD) else: cls.bcolz_equity_daily_bar_reader = BcolzDailyBarReader(t) class WithBcolzFutureDailyBarReader(WithFutureDailyBarData, WithTmpDir): """ ZiplineTestCase mixin providing cls.bcolz_daily_bar_path, cls.bcolz_daily_bar_ctable, and cls.bcolz_future_daily_bar_reader class level fixtures. After init_class_fixtures has been called: - `cls.bcolz_daily_bar_path` is populated with `cls.tmpdir.getpath(cls.BCOLZ_DAILY_BAR_PATH)`. - `cls.bcolz_daily_bar_ctable` is populated with data returned from `cls.make_future_daily_bar_data`. By default this calls :func:`zipline.pipeline.loaders.synthetic.make_future_daily_bar_data`. - `cls.bcolz_future_daily_bar_reader` is a daily bar reader pointing to the directory that was just written to. Attributes ---------- BCOLZ_DAILY_BAR_PATH : str The path inside the tmpdir where this will be written. FUTURE_DAILY_BAR_LOOKBACK_DAYS : int The number of days of data to add before the first day. This is used when a test needs to use history, in which case this should be set to the largest history window that will be requested. FUTURE_DAILY_BAR_USE_FULL_CALENDAR : bool If this flag is set the ``future_daily_bar_days`` will be the full set of trading days from the trading environment. This flag overrides ``FUTURE_DAILY_BAR_LOOKBACK_DAYS``. BCOLZ_FUTURE_DAILY_BAR_READ_ALL_THRESHOLD : int If this flag is set, use the value as the `read_all_threshold` parameter to BcolzDailyBarReader, otherwise use the default value. FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE : bool If this flag is set, `make_future_daily_bar_data` will read data from the minute bar reader defined by a `WithBcolzFutureMinuteBarReader`. Methods ------- make_bcolz_daily_bar_rootdir_path() -> string A class method that returns the path for the rootdir of the daily bars ctable. By default this is a subdirectory BCOLZ_DAILY_BAR_PATH in the shared temp directory. See Also -------- WithBcolzFutureMinuteBarReader WithDataPortal zipline.testing.create_daily_bar_data """ BCOLZ_FUTURE_DAILY_BAR_PATH = 'daily_future_pricing.bcolz' BCOLZ_FUTURE_DAILY_BAR_READ_ALL_THRESHOLD = None FUTURE_DAILY_BAR_SOURCE_FROM_MINUTE = False # What to do when data being written is invalid, e.g. nan, inf, etc. # options are: 'warn', 'raise', 'ignore' BCOLZ_FUTURE_DAILY_BAR_INVALID_DATA_BEHAVIOR = 'warn' BCOLZ_FUTURE_DAILY_BAR_WRITE_METHOD_NAME = 'write' @classmethod def make_bcolz_future_daily_bar_rootdir_path(cls): return cls.tmpdir.makedir(cls.BCOLZ_FUTURE_DAILY_BAR_PATH) @classmethod def init_class_fixtures(cls): super(WithBcolzFutureDailyBarReader, cls).init_class_fixtures() p = cls.make_bcolz_future_daily_bar_rootdir_path() cls.future_bcolz_daily_bar_path = p days = cls.future_daily_bar_days trading_calendar = cls.trading_calendars[Future] cls.future_bcolz_daily_bar_ctable = t = getattr( BcolzDailyBarWriter(p, trading_calendar, days[0], days[-1]), cls.BCOLZ_FUTURE_DAILY_BAR_WRITE_METHOD_NAME, )( cls.make_future_daily_bar_data(), invalid_data_behavior=( cls.BCOLZ_FUTURE_DAILY_BAR_INVALID_DATA_BEHAVIOR ) ) if cls.BCOLZ_FUTURE_DAILY_BAR_READ_ALL_THRESHOLD is not None: cls.bcolz_future_daily_bar_reader = BcolzDailyBarReader( t, cls.BCOLZ_FUTURE_DAILY_BAR_READ_ALL_THRESHOLD) else: cls.bcolz_future_daily_bar_reader = BcolzDailyBarReader(t) class WithBcolzEquityDailyBarReaderFromCSVs(WithBcolzEquityDailyBarReader): """ ZiplineTestCase mixin that provides cls.bcolz_equity_daily_bar_reader from a mapping of sids to CSV file paths. """ _write_method_name = 'write_csvs' def _trading_days_for_minute_bars(calendar, start_date, end_date, lookback_days): first_session = calendar.minute_to_session_label(start_date) if lookback_days > 0: first_session = calendar.sessions_window( first_session, -1 * lookback_days )[0] return calendar.sessions_in_range(first_session, end_date) class WithEquityMinuteBarData(WithAssetFinder, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.equity_minute_bar_days. After init_class_fixtures has been called: - `cls.equity_minute_bar_days` has the range over which data has been generated. Attributes ---------- EQUITY_MINUTE_BAR_LOOKBACK_DAYS : int The number of days of data to add before the first day. This is used when a test needs to use history, in which case this should be set to the largest history window that will be requested. EQUITY_MINUTE_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. EQUITY_MINUTE_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. Methods ------- make_equity_minute_bar_data() -> iterable[(int, pd.DataFrame)] Classmethod producing an iterator of (sid, minute_data) pairs. The default implementation invokes zipline.testing.core.create_minute_bar_data. See Also -------- WithEquityDailyBarData zipline.testing.create_minute_bar_data """ EQUITY_MINUTE_BAR_LOOKBACK_DAYS = 0 EQUITY_MINUTE_BAR_START_DATE = alias('START_DATE') EQUITY_MINUTE_BAR_END_DATE = alias('END_DATE') @classmethod def make_equity_minute_bar_data(cls): trading_calendar = cls.trading_calendars[Equity] return create_minute_bar_data( trading_calendar.minutes_for_sessions_in_range( cls.equity_minute_bar_days[0], cls.equity_minute_bar_days[-1], ), cls.asset_finder.equities_sids, ) @classmethod def init_class_fixtures(cls): super(WithEquityMinuteBarData, cls).init_class_fixtures() trading_calendar = cls.trading_calendars[Equity] cls.equity_minute_bar_days = _trading_days_for_minute_bars( trading_calendar, pd.Timestamp(cls.EQUITY_MINUTE_BAR_START_DATE), pd.Timestamp(cls.EQUITY_MINUTE_BAR_END_DATE), cls.EQUITY_MINUTE_BAR_LOOKBACK_DAYS ) class WithFutureMinuteBarData(WithAssetFinder, WithTradingCalendars): """ ZiplineTestCase mixin providing cls.future_minute_bar_days. After init_class_fixtures has been called: - `cls.future_minute_bar_days` has the range over which data has been generated. Attributes ---------- FUTURE_MINUTE_BAR_LOOKBACK_DAYS : int The number of days of data to add before the first day. This is used when a test needs to use history, in which case this should be set to the largest history window that will be requested. FUTURE_MINUTE_BAR_START_DATE : Timestamp The date at to which to start creating data. This defaults to ``START_DATE``. FUTURE_MINUTE_BAR_END_DATE = Timestamp The end date up to which to create data. This defaults to ``END_DATE``. Methods ------- make_future_minute_bar_data() -> iterable[(int, pd.DataFrame)] A class method that returns a dict mapping sid to dataframe which will be written to into the the format of the inherited class which writes the minute bar data for use by a reader. By default this creates some simple sythetic data with :func:`~zipline.testing.create_minute_bar_data` See Also -------- zipline.testing.create_minute_bar_data """ FUTURE_MINUTE_BAR_LOOKBACK_DAYS = 0 FUTURE_MINUTE_BAR_START_DATE = alias('START_DATE') FUTURE_MINUTE_BAR_END_DATE = alias('END_DATE') @classmethod def make_future_minute_bar_data(cls): trading_calendar = get_calendar('us_futures') return create_minute_bar_data( trading_calendar.minutes_for_sessions_in_range( cls.future_minute_bar_days[0], cls.future_minute_bar_days[-1], ), cls.asset_finder.futures_sids, ) @classmethod def init_class_fixtures(cls): super(WithFutureMinuteBarData, cls).init_class_fixtures() trading_calendar = get_calendar('us_futures') cls.future_minute_bar_days = _trading_days_for_minute_bars( trading_calendar, pd.Timestamp(cls.FUTURE_MINUTE_BAR_START_DATE), pd.Timestamp(cls.FUTURE_MINUTE_BAR_END_DATE), cls.FUTURE_MINUTE_BAR_LOOKBACK_DAYS ) class WithBcolzEquityMinuteBarReader(WithEquityMinuteBarData, WithTmpDir): """ ZiplineTestCase mixin providing cls.bcolz_minute_bar_path, cls.bcolz_minute_bar_ctable, and cls.bcolz_equity_minute_bar_reader class level fixtures. After init_class_fixtures has been called: - `cls.bcolz_minute_bar_path` is populated with `cls.tmpdir.getpath(cls.BCOLZ_MINUTE_BAR_PATH)`. - `cls.bcolz_minute_bar_ctable` is populated with data returned from `cls.make_equity_minute_bar_data`. By default this calls :func:`zipline.pipeline.loaders.synthetic.make_equity_minute_bar_data`. - `cls.bcolz_equity_minute_bar_reader` is a minute bar reader pointing to the directory that was just written to. Attributes ---------- BCOLZ_MINUTE_BAR_PATH : str The path inside the tmpdir where this will be written. Methods ------- make_bcolz_minute_bar_rootdir_path() -> string A class method that returns the path for the directory that contains the minute bar ctables. By default this is a subdirectory BCOLZ_MINUTE_BAR_PATH in the shared temp directory. See Also -------- WithBcolzEquityDailyBarReader WithDataPortal zipline.testing.create_minute_bar_data """ BCOLZ_EQUITY_MINUTE_BAR_PATH = 'minute_equity_pricing' @classmethod def make_bcolz_equity_minute_bar_rootdir_path(cls): return cls.tmpdir.makedir(cls.BCOLZ_EQUITY_MINUTE_BAR_PATH) @classmethod def init_class_fixtures(cls): super(WithBcolzEquityMinuteBarReader, cls).init_class_fixtures() cls.bcolz_equity_minute_bar_path = p = \ cls.make_bcolz_equity_minute_bar_rootdir_path() days = cls.equity_minute_bar_days writer = BcolzMinuteBarWriter( p, cls.trading_calendars[Equity], days[0], days[-1], US_EQUITIES_MINUTES_PER_DAY ) writer.write(cls.make_equity_minute_bar_data()) cls.bcolz_equity_minute_bar_reader = \ BcolzMinuteBarReader(p) class WithBcolzFutureMinuteBarReader(WithFutureMinuteBarData, WithTmpDir): """ ZiplineTestCase mixin providing cls.bcolz_minute_bar_path, cls.bcolz_minute_bar_ctable, and cls.bcolz_equity_minute_bar_reader class level fixtures. After init_class_fixtures has been called: - `cls.bcolz_minute_bar_path` is populated with `cls.tmpdir.getpath(cls.BCOLZ_MINUTE_BAR_PATH)`. - `cls.bcolz_minute_bar_ctable` is populated with data returned from `cls.make_equity_minute_bar_data`. By default this calls :func:`zipline.pipeline.loaders.synthetic.make_equity_minute_bar_data`. - `cls.bcolz_equity_minute_bar_reader` is a minute bar reader pointing to the directory that was just written to. Attributes ---------- BCOLZ_FUTURE_MINUTE_BAR_PATH : str The path inside the tmpdir where this will be written. Methods ------- make_bcolz_minute_bar_rootdir_path() -> string A class method that returns the path for the directory that contains the minute bar ctables. By default this is a subdirectory BCOLZ_MINUTE_BAR_PATH in the shared temp directory. See Also -------- WithBcolzEquityDailyBarReader WithDataPortal zipline.testing.create_minute_bar_data """ BCOLZ_FUTURE_MINUTE_BAR_PATH = 'minute_future_pricing' OHLC_RATIOS_PER_SID = None @classmethod def make_bcolz_future_minute_bar_rootdir_path(cls): return cls.tmpdir.makedir(cls.BCOLZ_FUTURE_MINUTE_BAR_PATH) @classmethod def init_class_fixtures(cls): super(WithBcolzFutureMinuteBarReader, cls).init_class_fixtures() trading_calendar = get_calendar('us_futures') cls.bcolz_future_minute_bar_path = p = \ cls.make_bcolz_future_minute_bar_rootdir_path() days = cls.future_minute_bar_days writer = BcolzMinuteBarWriter( p, trading_calendar, days[0], days[-1], FUTURES_MINUTES_PER_DAY, ohlc_ratios_per_sid=cls.OHLC_RATIOS_PER_SID, ) writer.write(cls.make_future_minute_bar_data()) cls.bcolz_future_minute_bar_reader = \ BcolzMinuteBarReader(p) class WithConstantEquityMinuteBarData(WithEquityMinuteBarData): EQUITY_MINUTE_CONSTANT_LOW = 3.0 EQUITY_MINUTE_CONSTANT_OPEN = 4.0 EQUITY_MINUTE_CONSTANT_CLOSE = 5.0 EQUITY_MINUTE_CONSTANT_HIGH = 6.0 EQUITY_MINUTE_CONSTANT_VOLUME = 100.0 @classmethod def make_equity_minute_bar_data(cls): trading_calendar = cls.trading_calendars[Equity] sids = cls.asset_finder.equities_sids minutes = trading_calendar.minutes_for_sessions_in_range( cls.equity_minute_bar_days[0], cls.equity_minute_bar_days[-1], ) frame = pd.DataFrame( { 'open': cls.EQUITY_MINUTE_CONSTANT_OPEN, 'high': cls.EQUITY_MINUTE_CONSTANT_HIGH, 'low': cls.EQUITY_MINUTE_CONSTANT_LOW, 'close': cls.EQUITY_MINUTE_CONSTANT_CLOSE, 'volume': cls.EQUITY_MINUTE_CONSTANT_VOLUME, }, index=minutes, ) return ((sid, frame) for sid in sids) class WithConstantFutureMinuteBarData(WithFutureMinuteBarData): FUTURE_MINUTE_CONSTANT_LOW = 3.0 FUTURE_MINUTE_CONSTANT_OPEN = 4.0 FUTURE_MINUTE_CONSTANT_CLOSE = 5.0 FUTURE_MINUTE_CONSTANT_HIGH = 6.0 FUTURE_MINUTE_CONSTANT_VOLUME = 100.0 @classmethod def make_future_minute_bar_data(cls): trading_calendar = cls.trading_calendars[Future] sids = cls.asset_finder.futures_sids minutes = trading_calendar.minutes_for_sessions_in_range( cls.future_minute_bar_days[0], cls.future_minute_bar_days[-1], ) frame = pd.DataFrame( { 'open': cls.FUTURE_MINUTE_CONSTANT_OPEN, 'high': cls.FUTURE_MINUTE_CONSTANT_HIGH, 'low': cls.FUTURE_MINUTE_CONSTANT_LOW, 'close': cls.FUTURE_MINUTE_CONSTANT_CLOSE, 'volume': cls.FUTURE_MINUTE_CONSTANT_VOLUME, }, index=minutes, ) return ((sid, frame) for sid in sids) class WithAdjustmentReader(WithBcolzEquityDailyBarReader): """ ZiplineTestCase mixin providing cls.adjustment_reader as a class level fixture. After init_class_fixtures has been called, `cls.adjustment_reader` will be populated with a new SQLiteAdjustmentReader object. The data that will be written can be passed by overriding `make_{field}_data` where field may be `splits`, `mergers` `dividends`, or `stock_dividends`. The daily bar reader used for this adjustment reader may be customized by overriding `make_adjustment_writer_equity_daily_bar_reader`. This is useful to providing a `MockDailyBarReader`. Methods ------- make_splits_data() -> pd.DataFrame A class method that returns a dataframe of splits data to write to the class's adjustment db. By default this is empty. make_mergers_data() -> pd.DataFrame A class method that returns a dataframe of mergers data to write to the class's adjustment db. By default this is empty. make_dividends_data() -> pd.DataFrame A class method that returns a dataframe of dividends data to write to the class's adjustment db. By default this is empty. make_stock_dividends_data() -> pd.DataFrame A class method that returns a dataframe of stock dividends data to write to the class's adjustment db. By default this is empty. make_adjustment_db_conn_str() -> string A class method that returns the sqlite3 connection string for the database in to which the adjustments will be written. By default this is an in-memory database. make_adjustment_writer_equity_daily_bar_reader() -> pd.DataFrame A class method that returns the daily bar reader to use for the class's adjustment writer. By default this is the class's actual ``bcolz_equity_daily_bar_reader`` as inherited from ``WithBcolzEquityDailyBarReader``. This should probably not be overridden; however, some tests used a ``MockDailyBarReader`` for this. make_adjustment_writer(conn: sqlite3.Connection) -> AdjustmentWriter A class method that constructs the adjustment which will be used to write the data into the connection to be used by the class's adjustment reader. See Also -------- zipline.testing.MockDailyBarReader """ @classmethod def _make_data(cls): return None make_splits_data = _make_data make_mergers_data = _make_data make_dividends_data = _make_data make_stock_dividends_data = _make_data del _make_data @classmethod def make_adjustment_writer(cls, conn): return SQLiteAdjustmentWriter( conn, cls.make_adjustment_writer_equity_daily_bar_reader(), cls.equity_daily_bar_days, ) @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return cls.bcolz_equity_daily_bar_reader @classmethod def make_adjustment_db_conn_str(cls): return ':memory:' @classmethod def init_class_fixtures(cls): super(WithAdjustmentReader, cls).init_class_fixtures() conn = sqlite3.connect(cls.make_adjustment_db_conn_str()) cls.make_adjustment_writer(conn).write( splits=cls.make_splits_data(), mergers=cls.make_mergers_data(), dividends=cls.make_dividends_data(), stock_dividends=cls.make_stock_dividends_data(), ) cls.adjustment_reader = SQLiteAdjustmentReader(conn) class WithEquityPricingPipelineEngine(WithAdjustmentReader, WithTradingSessions): """ Mixin providing the following as a class-level fixtures. - cls.data_root_dir - cls.findata_dir - cls.pipeline_engine - cls.adjustments_db_path """ @classmethod def init_class_fixtures(cls): cls.data_root_dir = cls.enter_class_context(tmp_dir()) cls.findata_dir = cls.data_root_dir.makedir('findata') super(WithEquityPricingPipelineEngine, cls).init_class_fixtures() loader = USEquityPricingLoader( cls.bcolz_equity_daily_bar_reader, SQLiteAdjustmentReader(cls.adjustments_db_path), ) def get_loader(column): if column in USEquityPricing.columns: return loader else: raise AssertionError("No loader registered for %s" % column) cls.pipeline_engine = SimplePipelineEngine( get_loader=get_loader, calendar=cls.nyse_sessions, asset_finder=cls.asset_finder, ) @classmethod def make_adjustment_db_conn_str(cls): cls.adjustments_db_path = os.path.join( cls.findata_dir, 'adjustments', cls.END_DATE.strftime("%Y-%m-%d-adjustments.db") ) ensure_directory(os.path.dirname(cls.adjustments_db_path)) return cls.adjustments_db_path class WithSeededRandomPipelineEngine(WithTradingSessions, WithAssetFinder): """ ZiplineTestCase mixin providing class-level fixtures for running pipelines against deterministically-generated random data. Attributes ---------- SEEDED_RANDOM_PIPELINE_SEED : int Fixture input. Random seed used to initialize the random state loader. seeded_random_loader : SeededRandomLoader Fixture output. Loader capable of providing columns for zipline.pipeline.data.testing.TestingDataSet. seeded_random_engine : SimplePipelineEngine Fixture output. A pipeline engine that will use seeded_random_loader as its only data provider. Methods ------- run_pipeline(start_date, end_date) Run a pipeline with self.seeded_random_engine. See Also -------- zipline.pipeline.loaders.synthetic.SeededRandomLoader zipline.pipeline.loaders.testing.make_seeded_random_loader zipline.pipeline.engine.SimplePipelineEngine """ SEEDED_RANDOM_PIPELINE_SEED = 42 @classmethod def init_class_fixtures(cls): super(WithSeededRandomPipelineEngine, cls).init_class_fixtures() cls._sids = cls.asset_finder.sids cls.seeded_random_loader = loader = make_seeded_random_loader( cls.SEEDED_RANDOM_PIPELINE_SEED, cls.trading_days, cls._sids, ) cls.seeded_random_engine = SimplePipelineEngine( get_loader=lambda column: loader, calendar=cls.trading_days, asset_finder=cls.asset_finder, ) def raw_expected_values(self, column, start_date, end_date): """ Get an array containing the raw values we expect to be produced for the given dates between start_date and end_date, inclusive. """ all_values = self.seeded_random_loader.values( column.dtype, self.trading_days, self._sids, ) row_slice = self.trading_days.slice_indexer(start_date, end_date) return all_values[row_slice] def run_pipeline(self, pipeline, start_date, end_date): """ Run a pipeline with self.seeded_random_engine. """ if start_date not in self.trading_days: raise AssertionError("Start date not in calendar: %s" % start_date) if end_date not in self.trading_days: raise AssertionError("End date not in calendar: %s" % end_date) return self.seeded_random_engine.run_pipeline( pipeline, start_date, end_date, ) class WithDataPortal(WithAdjustmentReader, # Ordered so that bcolz minute reader is used first. WithBcolzEquityMinuteBarReader, WithBcolzFutureMinuteBarReader): """ ZiplineTestCase mixin providing self.data_portal as an instance level fixture. After init_instance_fixtures has been called, `self.data_portal` will be populated with a new data portal created by passing in the class's trading env, `cls.bcolz_equity_minute_bar_reader`, `cls.bcolz_equity_daily_bar_reader`, and `cls.adjustment_reader`. Attributes ---------- DATA_PORTAL_USE_DAILY_DATA : bool Should the daily bar reader be used? Defaults to True. DATA_PORTAL_USE_MINUTE_DATA : bool Should the minute bar reader be used? Defaults to True. DATA_PORTAL_USE_ADJUSTMENTS : bool Should the adjustment reader be used? Defaults to True. Methods ------- make_data_portal() -> DataPortal Method which returns the data portal to be used for each test case. If this is overridden, the ``DATA_PORTAL_USE_*`` attributes may not be respected. """ DATA_PORTAL_USE_DAILY_DATA = True DATA_PORTAL_USE_MINUTE_DATA = True DATA_PORTAL_USE_ADJUSTMENTS = True DATA_PORTAL_FIRST_TRADING_DAY = None DATA_PORTAL_LAST_AVAILABLE_SESSION = None DATA_PORTAL_LAST_AVAILABLE_MINUTE = None DATA_PORTAL_MINUTE_HISTORY_PREFETCH = DEFAULT_MINUTE_HISTORY_PREFETCH DATA_PORTAL_DAILY_HISTORY_PREFETCH = DEFAULT_DAILY_HISTORY_PREFETCH def make_data_portal(self): if self.DATA_PORTAL_FIRST_TRADING_DAY is None: if self.DATA_PORTAL_USE_MINUTE_DATA: self.DATA_PORTAL_FIRST_TRADING_DAY = ( self.bcolz_equity_minute_bar_reader. first_trading_day) elif self.DATA_PORTAL_USE_DAILY_DATA: self.DATA_PORTAL_FIRST_TRADING_DAY = ( self.bcolz_equity_daily_bar_reader. first_trading_day) return DataPortal( self.asset_finder, self.trading_calendar, first_trading_day=self.DATA_PORTAL_FIRST_TRADING_DAY, equity_daily_reader=( self.bcolz_equity_daily_bar_reader if self.DATA_PORTAL_USE_DAILY_DATA else None ), equity_minute_reader=( self.bcolz_equity_minute_bar_reader if self.DATA_PORTAL_USE_MINUTE_DATA else None ), adjustment_reader=( self.adjustment_reader if self.DATA_PORTAL_USE_ADJUSTMENTS else None ), future_minute_reader=( self.bcolz_future_minute_bar_reader if self.DATA_PORTAL_USE_MINUTE_DATA else None ), future_daily_reader=( MinuteResampleSessionBarReader( self.bcolz_future_minute_bar_reader.trading_calendar, self.bcolz_future_minute_bar_reader) if self.DATA_PORTAL_USE_MINUTE_DATA else None ), last_available_session=self.DATA_PORTAL_LAST_AVAILABLE_SESSION, last_available_minute=self.DATA_PORTAL_LAST_AVAILABLE_MINUTE, minute_history_prefetch_length=self. DATA_PORTAL_MINUTE_HISTORY_PREFETCH, daily_history_prefetch_length=self. DATA_PORTAL_DAILY_HISTORY_PREFETCH, ) def init_instance_fixtures(self): super(WithDataPortal, self).init_instance_fixtures() self.data_portal = self.make_data_portal() class WithResponses(object): """ ZiplineTestCase mixin that provides self.responses as an instance fixture. After init_instance_fixtures has been called, `self.responses` will be a new `responses.RequestsMock` object. Users may add new endpoints to this with the `self.responses.add` method. """ def init_instance_fixtures(self): super(WithResponses, self).init_instance_fixtures() self.responses = self.enter_instance_context( responses.RequestsMock(), ) class WithCreateBarData(WithDataPortal): CREATE_BARDATA_DATA_FREQUENCY = 'minute' def create_bardata(self, simulation_dt_func, restrictions=None): return BarData( self.data_portal, simulation_dt_func, self.CREATE_BARDATA_DATA_FREQUENCY, self.trading_calendar, restrictions or NoRestrictions() ) class WithMakeAlgo(WithBenchmarkReturns, WithSimParams, WithLogger, WithDataPortal): """ ZiplineTestCase mixin that provides a ``make_algo`` method. """ START_DATE = pd.Timestamp('2014-12-29', tz='UTC') END_DATE = pd.Timestamp('2015-1-05', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'minute' DEFAULT_ALGORITHM_CLASS = TradingAlgorithm @classproperty def BENCHMARK_SID(cls): """The sid to use as a benchmark. Can be overridden to use an alternative benchmark. """ return cls.asset_finder.sids[0] def merge_with_inherited_algo_kwargs(self, overriding_type, suite_overrides, method_overrides): """ Helper for subclasses overriding ``make_algo_kwargs``. A common pattern for tests using `WithMakeAlgoKwargs` is that a particular test suite has a set of default keywords it wants to use everywhere, but also accepts test-specific overrides. Test suites that fit that pattern can call this method and pass the test class, suite-specific overrides, and method-specific overrides, and this method takes care of fetching parent class overrides and merging them with the suite- and instance-specific overrides. Parameters ---------- overriding_type : type The type from which we're being called. This is forwarded to super().make_algo_kwargs() suite_overrides : dict Keywords which should take precedence over kwargs returned by super(overriding_type, self).make_algo_kwargs(). These are generally keyword arguments that are constant within a test suite. method_overrides : dict Keywords which should take precedence over `suite_overrides` and superclass kwargs. These are generally keyword arguments that are overridden on a per-test basis. """ # NOTE: This is a weird invocation of super(). # Our goal here is to provide the behavior that the caller would get if # they called super() in the normal way, so that we dispatch to the # make_algo_kwargs() for the parent of the type that's calling # into us. We achieve that goal by requiring the caller to tell us # what type they're calling us from. return super(overriding_type, self).make_algo_kwargs( **merge(suite_overrides, method_overrides) ) def make_algo_kwargs(self, **overrides): if self.BENCHMARK_SID is None: overrides.setdefault('benchmark_returns', self.BENCHMARK_RETURNS) return merge( { 'sim_params': self.sim_params, 'data_portal': self.data_portal, 'benchmark_sid': self.BENCHMARK_SID, }, overrides, ) def make_algo(self, algo_class=None, **overrides): if algo_class is None: algo_class = self.DEFAULT_ALGORITHM_CLASS return algo_class(**self.make_algo_kwargs(**overrides)) def run_algorithm(self, **overrides): """ Create and run an TradingAlgorithm in memory. """ return self.make_algo(**overrides).run() class WithWerror(object): @classmethod def init_class_fixtures(cls): cls.enter_class_context(warnings.catch_warnings()) warnings.simplefilter('error') super(WithWerror, cls).init_class_fixtures() register_calendar_alias("TEST", "NYSE")
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/testing/fixtures.py
fixtures.py
from abc import ABCMeta, abstractmethod, abstractproperty from contextlib import contextmanager import gzip from inspect import getargspec from itertools import ( combinations, count, product, ) import operator import os from os.path import abspath, dirname, join, realpath import shutil import sys import tempfile from traceback import format_exception from logbook import TestHandler from mock import patch from nose.tools import nottest from numpy.testing import assert_allclose, assert_array_equal import pandas as pd from six import itervalues, iteritems, with_metaclass from six.moves import filter, map from sqlalchemy import create_engine from testfixtures import TempDirectory from toolz import concat, curry from trading_calendars import get_calendar from zipline.assets import AssetFinder, AssetDBWriter from zipline.assets.synthetic import make_simple_equity_info from zipline.utils.compat import wraps from zipline.data.data_portal import DataPortal from zipline.data.loader import get_benchmark_filename, INDEX_MAPPING from zipline.data.minute_bars import ( BcolzMinuteBarReader, BcolzMinuteBarWriter, US_EQUITIES_MINUTES_PER_DAY ) from zipline.data.us_equity_pricing import ( BcolzDailyBarReader, BcolzDailyBarWriter, SQLiteAdjustmentWriter, ) from zipline.finance.blotter import SimulationBlotter from zipline.finance.order import ORDER_STATUS from zipline.lib.labelarray import LabelArray from zipline.pipeline.data import USEquityPricing from zipline.pipeline.engine import SimplePipelineEngine from zipline.pipeline.factors import CustomFactor from zipline.pipeline.loaders.testing import make_seeded_random_loader from zipline.utils import security_list from zipline.utils.input_validation import expect_dimensions from zipline.utils.numpy_utils import as_column, isnat from zipline.utils.pandas_utils import timedelta_to_integral_seconds from zipline.utils.paths import ensure_directory from zipline.utils.sentinel import sentinel import numpy as np from numpy import float64 EPOCH = pd.Timestamp(0, tz='UTC') def seconds_to_timestamp(seconds): return pd.Timestamp(seconds, unit='s', tz='UTC') def to_utc(time_str): """Convert a string in US/Eastern time to UTC""" return pd.Timestamp(time_str, tz='US/Eastern').tz_convert('UTC') def str_to_seconds(s): """ Convert a pandas-intelligible string to (integer) seconds since UTC. >>> from pandas import Timestamp >>> (Timestamp('2014-01-01') - Timestamp(0)).total_seconds() 1388534400.0 >>> str_to_seconds('2014-01-01') 1388534400 """ return timedelta_to_integral_seconds(pd.Timestamp(s, tz='UTC') - EPOCH) def drain_zipline(test, zipline): output = [] transaction_count = 0 msg_counter = 0 # start the simulation for update in zipline: msg_counter += 1 output.append(update) if 'daily_perf' in update: transaction_count += \ len(update['daily_perf']['transactions']) return output, transaction_count def check_algo_results(test, results, expected_transactions_count=None, expected_order_count=None, expected_positions_count=None, sid=None): if expected_transactions_count is not None: txns = flatten_list(results["transactions"]) test.assertEqual(expected_transactions_count, len(txns)) if expected_positions_count is not None: raise NotImplementedError if expected_order_count is not None: # de-dup orders on id, because orders are put back into perf packets # whenever they a txn is filled orders = set([order['id'] for order in flatten_list(results["orders"])]) test.assertEqual(expected_order_count, len(orders)) def flatten_list(list): return [item for sublist in list for item in sublist] def assert_single_position(test, zipline): output, transaction_count = drain_zipline(test, zipline) if 'expected_transactions' in test.zipline_test_config: test.assertEqual( test.zipline_test_config['expected_transactions'], transaction_count ) else: test.assertEqual( test.zipline_test_config['order_count'], transaction_count ) # the final message is the risk report, the second to # last is the final day's results. Positions is a list of # dicts. closing_positions = output[-2]['daily_perf']['positions'] # confirm that all orders were filled. # iterate over the output updates, overwriting # orders when they are updated. Then check the status on all. orders_by_id = {} for update in output: if 'daily_perf' in update: if 'orders' in update['daily_perf']: for order in update['daily_perf']['orders']: orders_by_id[order['id']] = order for order in itervalues(orders_by_id): test.assertEqual( order['status'], ORDER_STATUS.FILLED, "") test.assertEqual( len(closing_positions), 1, "Portfolio should have one position." ) sid = test.zipline_test_config['sid'] test.assertEqual( closing_positions[0]['sid'], sid, "Portfolio should have one position in " + str(sid) ) return output, transaction_count @contextmanager def security_list_copy(): old_dir = security_list.SECURITY_LISTS_DIR new_dir = tempfile.mkdtemp() try: for subdir in os.listdir(old_dir): shutil.copytree(os.path.join(old_dir, subdir), os.path.join(new_dir, subdir)) with patch.object(security_list, 'SECURITY_LISTS_DIR', new_dir), \ patch.object(security_list, 'using_copy', True, create=True): yield finally: shutil.rmtree(new_dir, True) def add_security_data(adds, deletes): if not hasattr(security_list, 'using_copy'): raise Exception('add_security_data must be used within ' 'security_list_copy context') directory = os.path.join( security_list.SECURITY_LISTS_DIR, "leveraged_etf_list/20150127/20150125" ) if not os.path.exists(directory): os.makedirs(directory) del_path = os.path.join(directory, "delete") with open(del_path, 'w') as f: for sym in deletes: f.write(sym) f.write('\n') add_path = os.path.join(directory, "add") with open(add_path, 'w') as f: for sym in adds: f.write(sym) f.write('\n') def all_pairs_matching_predicate(values, pred): """ Return an iterator of all pairs, (v0, v1) from values such that `pred(v0, v1) == True` Parameters ---------- values : iterable pred : function Returns ------- pairs_iterator : generator Generator yielding pairs matching `pred`. Examples -------- >>> from zipline.testing import all_pairs_matching_predicate >>> from operator import eq, lt >>> list(all_pairs_matching_predicate(range(5), eq)) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] >>> list(all_pairs_matching_predicate("abcd", lt)) [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')] """ return filter(lambda pair: pred(*pair), product(values, repeat=2)) def product_upper_triangle(values, include_diagonal=False): """ Return an iterator over pairs, (v0, v1), drawn from values. If `include_diagonal` is True, returns all pairs such that v0 <= v1. If `include_diagonal` is False, returns all pairs such that v0 < v1. """ return all_pairs_matching_predicate( values, operator.le if include_diagonal else operator.lt, ) def all_subindices(index): """ Return all valid sub-indices of a pandas Index. """ return ( index[start:stop] for start, stop in product_upper_triangle(range(len(index) + 1)) ) def chrange(start, stop): """ Construct an iterable of length-1 strings beginning with `start` and ending with `stop`. Parameters ---------- start : str The first character. stop : str The last character. Returns ------- chars: iterable[str] Iterable of strings beginning with start and ending with stop. Examples -------- >>> chrange('A', 'C') ['A', 'B', 'C'] """ return list(map(chr, range(ord(start), ord(stop) + 1))) def make_trade_data_for_asset_info(dates, asset_info, price_start, price_step_by_date, price_step_by_sid, volume_start, volume_step_by_date, volume_step_by_sid): """ Convert the asset info dataframe into a dataframe of trade data for each sid, and write to the writer if provided. Write NaNs for locations where assets did not exist. Return a dict of the dataframes, keyed by sid. """ trade_data = {} sids = asset_info.index price_sid_deltas = np.arange(len(sids), dtype=float64) * price_step_by_sid price_date_deltas = (np.arange(len(dates), dtype=float64) * price_step_by_date) prices = (price_sid_deltas + as_column(price_date_deltas)) + price_start volume_sid_deltas = np.arange(len(sids)) * volume_step_by_sid volume_date_deltas = np.arange(len(dates)) * volume_step_by_date volumes = volume_sid_deltas + as_column(volume_date_deltas) + volume_start for j, sid in enumerate(sids): start_date, end_date = asset_info.loc[sid, ['start_date', 'end_date']] # Normalize here so the we still generate non-NaN values on the minutes # for an asset's last trading day. for i, date in enumerate(dates.normalize()): if not (start_date <= date <= end_date): prices[i, j] = 0 volumes[i, j] = 0 df = pd.DataFrame( { "open": prices[:, j], "high": prices[:, j], "low": prices[:, j], "close": prices[:, j], "volume": volumes[:, j], }, index=dates, ) trade_data[sid] = df return trade_data def check_allclose(actual, desired, rtol=1e-07, atol=0, err_msg='', verbose=True): """ Wrapper around np.testing.assert_allclose that also verifies that inputs are ndarrays. See Also -------- np.assert_allclose """ if type(actual) != type(desired): raise AssertionError("%s != %s" % (type(actual), type(desired))) return assert_allclose( actual, desired, atol=atol, rtol=rtol, err_msg=err_msg, verbose=verbose, ) def check_arrays(x, y, err_msg='', verbose=True, check_dtypes=True): """ Wrapper around np.testing.assert_array_equal that also verifies that inputs are ndarrays. See Also -------- np.assert_array_equal """ assert type(x) == type(y), "{x} != {y}".format(x=type(x), y=type(y)) assert x.dtype == y.dtype, "{x.dtype} != {y.dtype}".format(x=x, y=y) if isinstance(x, LabelArray): # Check that both arrays have missing values in the same locations... assert_array_equal( x.is_missing(), y.is_missing(), err_msg=err_msg, verbose=verbose, ) # ...then check the actual values as well. x = x.as_string_array() y = y.as_string_array() elif x.dtype.kind in 'mM': x_isnat = isnat(x) y_isnat = isnat(y) assert_array_equal( x_isnat, y_isnat, err_msg="NaTs not equal", verbose=verbose, ) # Fill NaTs with zero for comparison. x = np.where(x_isnat, np.zeros_like(x), x) y = np.where(y_isnat, np.zeros_like(y), y) return assert_array_equal(x, y, err_msg=err_msg, verbose=verbose) class UnexpectedAttributeAccess(Exception): pass class ExplodingObject(object): """ Object that will raise an exception on any attribute access. Useful for verifying that an object is never touched during a function/method call. """ def __getattribute__(self, name): raise UnexpectedAttributeAccess(name) def write_minute_data(trading_calendar, tempdir, minutes, sids): first_session = trading_calendar.minute_to_session_label( minutes[0], direction="none" ) last_session = trading_calendar.minute_to_session_label( minutes[-1], direction="none" ) sessions = trading_calendar.sessions_in_range(first_session, last_session) write_bcolz_minute_data( trading_calendar, sessions, tempdir.path, create_minute_bar_data(minutes, sids), ) return tempdir.path def create_minute_bar_data(minutes, sids): length = len(minutes) for sid_idx, sid in enumerate(sids): yield sid, pd.DataFrame( { 'open': np.arange(length) + 10 + sid_idx, 'high': np.arange(length) + 15 + sid_idx, 'low': np.arange(length) + 8 + sid_idx, 'close': np.arange(length) + 10 + sid_idx, 'volume': 100 + sid_idx, }, index=minutes, ) def create_daily_bar_data(sessions, sids): length = len(sessions) for sid_idx, sid in enumerate(sids): yield sid, pd.DataFrame( { "open": (np.array(range(10, 10 + length)) + sid_idx), "high": (np.array(range(15, 15 + length)) + sid_idx), "low": (np.array(range(8, 8 + length)) + sid_idx), "close": (np.array(range(10, 10 + length)) + sid_idx), "volume": np.array(range(100, 100 + length)) + sid_idx, "day": [session.value for session in sessions] }, index=sessions, ) def write_daily_data(tempdir, sim_params, sids, trading_calendar): path = os.path.join(tempdir.path, "testdaily.bcolz") BcolzDailyBarWriter(path, trading_calendar, sim_params.start_session, sim_params.end_session).write( create_daily_bar_data(sim_params.sessions, sids), ) return path def create_data_portal(asset_finder, tempdir, sim_params, sids, trading_calendar, adjustment_reader=None): if sim_params.data_frequency == "daily": daily_path = write_daily_data(tempdir, sim_params, sids, trading_calendar) equity_daily_reader = BcolzDailyBarReader(daily_path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_daily_reader.first_trading_day, equity_daily_reader=equity_daily_reader, adjustment_reader=adjustment_reader ) else: minutes = trading_calendar.minutes_in_range( sim_params.first_open, sim_params.last_close ) minute_path = write_minute_data(trading_calendar, tempdir, minutes, sids) equity_minute_reader = BcolzMinuteBarReader(minute_path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_minute_reader.first_trading_day, equity_minute_reader=equity_minute_reader, adjustment_reader=adjustment_reader ) def write_bcolz_minute_data(trading_calendar, days, path, data): BcolzMinuteBarWriter( path, trading_calendar, days[0], days[-1], US_EQUITIES_MINUTES_PER_DAY ).write(data) def create_minute_df_for_asset(trading_calendar, start_dt, end_dt, interval=1, start_val=1, minute_blacklist=None): asset_minutes = trading_calendar.minutes_for_sessions_in_range( start_dt, end_dt ) minutes_count = len(asset_minutes) if interval > 1: minutes_arr = np.zeros(minutes_count) minutes_arr[interval-1::interval] = \ np.arange(start_val+interval-1, start_val+minutes_count, interval) else: minutes_arr = np.arange(start_val, start_val + minutes_count) open_ = minutes_arr.copy() open_[interval-1::interval] += 1 high = minutes_arr.copy() high[interval-1::interval] += 2 low = minutes_arr.copy() low[interval - 1::interval] -= 1 df = pd.DataFrame( { "open": open_, "high": high, "low": low, "close": minutes_arr, "volume": 100 * minutes_arr, }, index=asset_minutes, ) if minute_blacklist is not None: for minute in minute_blacklist: df.loc[minute] = 0 return df def create_daily_df_for_asset(trading_calendar, start_day, end_day, interval=1): days = trading_calendar.sessions_in_range(start_day, end_day) days_count = len(days) days_arr = np.arange(days_count) + 2 df = pd.DataFrame( { "open": days_arr + 1, "high": days_arr + 2, "low": days_arr - 1, "close": days_arr, "volume": days_arr * 100, }, index=days, ) if interval > 1: # only keep every 'interval' rows for idx, _ in enumerate(days_arr): if (idx + 1) % interval != 0: df["open"].iloc[idx] = 0 df["high"].iloc[idx] = 0 df["low"].iloc[idx] = 0 df["close"].iloc[idx] = 0 df["volume"].iloc[idx] = 0 return df def trades_by_sid_to_dfs(trades_by_sid, index): for sidint, trades in iteritems(trades_by_sid): opens = [] highs = [] lows = [] closes = [] volumes = [] for trade in trades: opens.append(trade.open_price) highs.append(trade.high) lows.append(trade.low) closes.append(trade.close_price) volumes.append(trade.volume) yield sidint, pd.DataFrame( { "open": opens, "high": highs, "low": lows, "close": closes, "volume": volumes, }, index=index, ) def create_data_portal_from_trade_history(asset_finder, trading_calendar, tempdir, sim_params, trades_by_sid): if sim_params.data_frequency == "daily": path = os.path.join(tempdir.path, "testdaily.bcolz") writer = BcolzDailyBarWriter( path, trading_calendar, sim_params.start_session, sim_params.end_session ) writer.write( trades_by_sid_to_dfs(trades_by_sid, sim_params.sessions), ) equity_daily_reader = BcolzDailyBarReader(path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_daily_reader.first_trading_day, equity_daily_reader=equity_daily_reader, ) else: minutes = trading_calendar.minutes_in_range( sim_params.first_open, sim_params.last_close ) length = len(minutes) assets = {} for sidint, trades in iteritems(trades_by_sid): opens = np.zeros(length) highs = np.zeros(length) lows = np.zeros(length) closes = np.zeros(length) volumes = np.zeros(length) for trade in trades: # put them in the right place idx = minutes.searchsorted(trade.dt) opens[idx] = trade.open_price * 1000 highs[idx] = trade.high * 1000 lows[idx] = trade.low * 1000 closes[idx] = trade.close_price * 1000 volumes[idx] = trade.volume assets[sidint] = pd.DataFrame({ "open": opens, "high": highs, "low": lows, "close": closes, "volume": volumes, "dt": minutes }).set_index("dt") write_bcolz_minute_data( trading_calendar, sim_params.sessions, tempdir.path, assets ) equity_minute_reader = BcolzMinuteBarReader(tempdir.path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_minute_reader.first_trading_day, equity_minute_reader=equity_minute_reader, ) class FakeDataPortal(DataPortal): def __init__(self, asset_finder, trading_calendar=None, first_trading_day=None): if trading_calendar is None: trading_calendar = get_calendar("NYSE") super(FakeDataPortal, self).__init__(asset_finder, trading_calendar, first_trading_day) def get_spot_value(self, asset, field, dt, data_frequency): if field == "volume": return 100 else: return 1.0 def get_scalar_asset_spot_value(self, asset, field, dt, data_frequency): if field == "volume": return 100 else: return 1.0 def get_history_window(self, assets, end_dt, bar_count, frequency, field, data_frequency, ffill=True): end_idx = self.trading_calendar.all_sessions.searchsorted(end_dt) days = self.trading_calendar.all_sessions[ (end_idx - bar_count + 1):(end_idx + 1) ] df = pd.DataFrame( np.full((bar_count, len(assets)), 100.0), index=days, columns=assets ) if frequency == "1m" and not df.empty: df = df.reindex( self.trading_calendar.minutes_for_sessions_in_range( df.index[0], df.index[-1], ), method='ffill', ) return df class FetcherDataPortal(DataPortal): """ Mock dataportal that returns fake data for history and non-fetcher spot value. """ def __init__(self, asset_finder, trading_calendar, first_trading_day=None): super(FetcherDataPortal, self).__init__(asset_finder, trading_calendar, first_trading_day) def get_spot_value(self, asset, field, dt, data_frequency): # if this is a fetcher field, exercise the regular code path if self._is_extra_source(asset, field, self._augmented_sources_map): return super(FetcherDataPortal, self).get_spot_value( asset, field, dt, data_frequency) # otherwise just return a fixed value return int(asset) # XXX: These aren't actually the methods that are used by the superclasses, # so these don't do anything, and this class will likely produce unexpected # results for history(). def _get_daily_window_for_sid(self, asset, field, days_in_window, extra_slot=True): return np.arange(days_in_window, dtype=np.float64) def _get_minute_window_for_asset(self, asset, field, minutes_for_window): return np.arange(minutes_for_window, dtype=np.float64) class tmp_assets_db(object): """Create a temporary assets sqlite database. This is meant to be used as a context manager. Parameters ---------- url : string The URL for the database connection. **frames The frames to pass to the AssetDBWriter. By default this maps equities: ('A', 'B', 'C') -> map(ord, 'ABC') See Also -------- empty_assets_db tmp_asset_finder """ _default_equities = sentinel('_default_equities') def __init__(self, url='sqlite:///:memory:', equities=_default_equities, **frames): self._url = url self._eng = None if equities is self._default_equities: equities = make_simple_equity_info( list(map(ord, 'ABC')), pd.Timestamp(0), pd.Timestamp('2015'), ) frames['equities'] = equities self._frames = frames self._eng = None # set in enter and exit def __enter__(self): self._eng = eng = create_engine(self._url) AssetDBWriter(eng).write(**self._frames) return eng def __exit__(self, *excinfo): assert self._eng is not None, '_eng was not set in __enter__' self._eng.dispose() self._eng = None def empty_assets_db(): """Context manager for creating an empty assets db. See Also -------- tmp_assets_db """ return tmp_assets_db(equities=None) class tmp_asset_finder(tmp_assets_db): """Create a temporary asset finder using an in memory sqlite db. Parameters ---------- url : string The URL for the database connection. finder_cls : type, optional The type of asset finder to create from the assets db. **frames Forwarded to ``tmp_assets_db``. See Also -------- tmp_assets_db """ def __init__(self, url='sqlite:///:memory:', finder_cls=AssetFinder, future_chain_predicates=None, **frames): self._finder_cls = finder_cls self._future_chain_predicates = future_chain_predicates super(tmp_asset_finder, self).__init__(url=url, **frames) def __enter__(self): return self._finder_cls( super(tmp_asset_finder, self).__enter__(), future_chain_predicates=self._future_chain_predicates, ) def empty_asset_finder(): """Context manager for creating an empty asset finder. See Also -------- empty_assets_db tmp_assets_db tmp_asset_finder """ return tmp_asset_finder(equities=None) class SubTestFailures(AssertionError): def __init__(self, *failures): self.failures = failures @staticmethod def _format_exc(exc_info): # we need to do this weird join-split-join to ensure that the full # message is indented by 4 spaces return '\n '.join(''.join(format_exception(*exc_info)).splitlines()) def __str__(self): return 'failures:\n %s' % '\n '.join( '\n '.join(( ', '.join('%s=%r' % item for item in scope.items()), self._format_exc(exc_info), )) for scope, exc_info in self.failures, ) @nottest def subtest(iterator, *_names): """ Construct a subtest in a unittest. Consider using ``zipline.testing.parameter_space`` when subtests are constructed over a single input or over the cross-product of multiple inputs. ``subtest`` works by decorating a function as a subtest. The decorated function will be run by iterating over the ``iterator`` and *unpacking the values into the function. If any of the runs fail, the result will be put into a set and the rest of the tests will be run. Finally, if any failed, all of the results will be dumped as one failure. Parameters ---------- iterator : iterable[iterable] The iterator of arguments to pass to the function. *name : iterator[str] The names to use for each element of ``iterator``. These will be used to print the scope when a test fails. If not provided, it will use the integer index of the value as the name. Examples -------- :: class MyTest(TestCase): def test_thing(self): # Example usage inside another test. @subtest(([n] for n in range(100000)), 'n') def subtest(n): self.assertEqual(n % 2, 0, 'n was not even') subtest() @subtest(([n] for n in range(100000)), 'n') def test_decorated_function(self, n): # Example usage to parameterize an entire function. self.assertEqual(n % 2, 1, 'n was not odd') Notes ----- We use this when we: * Will never want to run each parameter individually. * Have a large parameter space we are testing (see tests/utils/test_events.py). ``nose_parameterized.expand`` will create a test for each parameter combination which bloats the test output and makes the travis pages slow. We cannot use ``unittest2.TestCase.subTest`` because nose, pytest, and nose2 do not support ``addSubTest``. See Also -------- zipline.testing.parameter_space """ def dec(f): @wraps(f) def wrapped(*args, **kwargs): names = _names failures = [] for scope in iterator: scope = tuple(scope) try: f(*args + scope, **kwargs) except Exception: info = sys.exc_info() if not names: names = count() failures.append((dict(zip(names, scope)), info)) if failures: raise SubTestFailures(*failures) return wrapped return dec class MockDailyBarReader(object): def get_value(self, col, sid, dt): return 100 def create_mock_adjustment_data(splits=None, dividends=None, mergers=None): if splits is None: splits = create_empty_splits_mergers_frame() elif not isinstance(splits, pd.DataFrame): splits = pd.DataFrame(splits) if mergers is None: mergers = create_empty_splits_mergers_frame() elif not isinstance(mergers, pd.DataFrame): mergers = pd.DataFrame(mergers) if dividends is None: dividends = create_empty_dividends_frame() elif not isinstance(dividends, pd.DataFrame): dividends = pd.DataFrame(dividends) return splits, mergers, dividends def create_mock_adjustments(tempdir, days, splits=None, dividends=None, mergers=None): path = tempdir.getpath("test_adjustments.db") SQLiteAdjustmentWriter(path, MockDailyBarReader(), days).write( *create_mock_adjustment_data(splits, dividends, mergers) ) return path def assert_timestamp_equal(left, right, compare_nat_equal=True, msg=""): """ Assert that two pandas Timestamp objects are the same. Parameters ---------- left, right : pd.Timestamp The values to compare. compare_nat_equal : bool, optional Whether to consider `NaT` values equal. Defaults to True. msg : str, optional A message to forward to `pd.util.testing.assert_equal`. """ if compare_nat_equal and left is pd.NaT and right is pd.NaT: return return pd.util.testing.assert_equal(left, right, msg=msg) def powerset(values): """ Return the power set (i.e., the set of all subsets) of entries in `values`. """ return concat(combinations(values, i) for i in range(len(values) + 1)) def to_series(knowledge_dates, earning_dates): """ Helper for converting a dict of strings to a Series of datetimes. This is just for making the test cases more readable. """ return pd.Series( index=pd.to_datetime(knowledge_dates), data=pd.to_datetime(earning_dates), ) def gen_calendars(start, stop, critical_dates): """ Generate calendars to use as inputs. """ all_dates = pd.date_range(start, stop, tz='utc') for to_drop in map(list, powerset(critical_dates)): # Have to yield tuples. yield (all_dates.drop(to_drop),) # Also test with the trading calendar. trading_days = get_calendar("NYSE").all_days yield (trading_days[trading_days.slice_indexer(start, stop)],) @contextmanager def temp_pipeline_engine(calendar, sids, random_seed, symbols=None): """ A contextManager that yields a SimplePipelineEngine holding a reference to an AssetFinder generated via tmp_asset_finder. Parameters ---------- calendar : pd.DatetimeIndex Calendar to pass to the constructed PipelineEngine. sids : iterable[int] Sids to use for the temp asset finder. random_seed : int Integer used to seed instances of SeededRandomLoader. symbols : iterable[str], optional Symbols for constructed assets. Forwarded to make_simple_equity_info. """ equity_info = make_simple_equity_info( sids=sids, start_date=calendar[0], end_date=calendar[-1], symbols=symbols, ) loader = make_seeded_random_loader(random_seed, calendar, sids) def get_loader(column): return loader with tmp_asset_finder(equities=equity_info) as finder: yield SimplePipelineEngine(get_loader, calendar, finder) def parameter_space(__fail_fast=False, **params): """ Wrapper around subtest that allows passing keywords mapping names to iterables of values. The decorated test function will be called with the cross-product of all possible inputs Examples -------- >>> from unittest import TestCase >>> class SomeTestCase(TestCase): ... @parameter_space(x=[1, 2], y=[2, 3]) ... def test_some_func(self, x, y): ... # Will be called with every possible combination of x and y. ... self.assertEqual(somefunc(x, y), expected_result(x, y)) See Also -------- zipline.testing.subtest """ def decorator(f): argspec = getargspec(f) if argspec.varargs: raise AssertionError("parameter_space() doesn't support *args") if argspec.keywords: raise AssertionError("parameter_space() doesn't support **kwargs") if argspec.defaults: raise AssertionError("parameter_space() doesn't support defaults.") # Skip over implicit self. argnames = argspec.args if argnames[0] == 'self': argnames = argnames[1:] extra = set(params) - set(argnames) if extra: raise AssertionError( "Keywords %s supplied to parameter_space() are " "not in function signature." % extra ) unspecified = set(argnames) - set(params) if unspecified: raise AssertionError( "Function arguments %s were not " "supplied to parameter_space()." % extra ) def make_param_sets(): return product(*(params[name] for name in argnames)) if __fail_fast: @wraps(f) def wrapped(self): for args in make_param_sets(): f(self, *args) return wrapped else: @wraps(f) def wrapped(*args, **kwargs): subtest(make_param_sets(), *argnames)(f)(*args, **kwargs) return wrapped return decorator def create_empty_dividends_frame(): return pd.DataFrame( np.array( [], dtype=[ ('ex_date', 'datetime64[ns]'), ('pay_date', 'datetime64[ns]'), ('record_date', 'datetime64[ns]'), ('declared_date', 'datetime64[ns]'), ('amount', 'float64'), ('sid', 'int32'), ], ), index=pd.DatetimeIndex([], tz='UTC'), ) def create_empty_splits_mergers_frame(): return pd.DataFrame( np.array( [], dtype=[ ('effective_date', 'int64'), ('ratio', 'float64'), ('sid', 'int64'), ], ), index=pd.DatetimeIndex([]), ) def make_alternating_boolean_array(shape, first_value=True): """ Create a 2D numpy array with the given shape containing alternating values of False, True, False, True,... along each row and each column. Examples -------- >>> make_alternating_boolean_array((4,4)) array([[ True, False, True, False], [False, True, False, True], [ True, False, True, False], [False, True, False, True]], dtype=bool) >>> make_alternating_boolean_array((4,3), first_value=False) array([[False, True, False], [ True, False, True], [False, True, False], [ True, False, True]], dtype=bool) """ if len(shape) != 2: raise ValueError( 'Shape must be 2-dimensional. Given shape was {}'.format(shape) ) alternating = np.empty(shape, dtype=np.bool) for row in alternating: row[::2] = first_value row[1::2] = not(first_value) first_value = not(first_value) return alternating def make_cascading_boolean_array(shape, first_value=True): """ Create a numpy array with the given shape containing cascading boolean values, with `first_value` being the top-left value. Examples -------- >>> make_cascading_boolean_array((4,4)) array([[ True, True, True, False], [ True, True, False, False], [ True, False, False, False], [False, False, False, False]], dtype=bool) >>> make_cascading_boolean_array((4,2)) array([[ True, False], [False, False], [False, False], [False, False]], dtype=bool) >>> make_cascading_boolean_array((2,4)) array([[ True, True, True, False], [ True, True, False, False]], dtype=bool) """ if len(shape) != 2: raise ValueError( 'Shape must be 2-dimensional. Given shape was {}'.format(shape) ) cascading = np.full(shape, not(first_value), dtype=np.bool) ending_col = shape[1] - 1 for row in cascading: if ending_col > 0: row[:ending_col] = first_value ending_col -= 1 else: break return cascading @expect_dimensions(array=2) def permute_rows(seed, array): """ Shuffle each row in ``array`` based on permutations generated by ``seed``. Parameters ---------- seed : int Seed for numpy.RandomState array : np.ndarray[ndim=2] Array over which to apply permutations. """ rand = np.random.RandomState(seed) return np.apply_along_axis(rand.permutation, 1, array) @nottest def make_test_handler(testcase, *args, **kwargs): """ Returns a TestHandler which will be used by the given testcase. This handler can be used to test log messages. Parameters ---------- testcase: unittest.TestCase The test class in which the log handler will be used. *args, **kwargs Forwarded to the new TestHandler object. Returns ------- handler: logbook.TestHandler The handler to use for the test case. """ handler = TestHandler(*args, **kwargs) testcase.addCleanup(handler.close) return handler def write_compressed(path, content): """ Write a compressed (gzipped) file to `path`. """ with gzip.open(path, 'wb') as f: f.write(content) def read_compressed(path): """ Write a compressed (gzipped) file from `path`. """ with gzip.open(path, 'rb') as f: return f.read() zipline_git_root = abspath( join(realpath(dirname(__file__)), '..', '..'), ) @nottest def test_resource_path(*path_parts): return os.path.join(zipline_git_root, 'tests', 'resources', *path_parts) @contextmanager def patch_os_environment(remove=None, **values): """ Context manager for patching the operating system environment. """ old_values = {} remove = remove or [] for key in remove: old_values[key] = os.environ.pop(key) for key, value in values.iteritems(): old_values[key] = os.getenv(key) os.environ[key] = value try: yield finally: for old_key, old_value in old_values.iteritems(): if old_value is None: # Value was not present when we entered, so del it out if it's # still present. try: del os.environ[key] except KeyError: pass else: # Restore the old value. os.environ[old_key] = old_value class tmp_dir(TempDirectory, object): """New style class that wrapper for TempDirectory in python 2. """ pass class _TmpBarReader(with_metaclass(ABCMeta, tmp_dir)): """A helper for tmp_bcolz_equity_minute_bar_reader and tmp_bcolz_equity_daily_bar_reader. Parameters ---------- days : pd.DatetimeIndex The days to write for. data : dict[int -> pd.DataFrame] The data to write. path : str, optional The path to the directory to write the data into. If not given, this will be a unique name. """ @abstractproperty def _reader_cls(self): raise NotImplementedError('_reader') @abstractmethod def _write(self, cal, days, path, data): raise NotImplementedError('_write') def __init__(self, cal, days, data, path=None): super(_TmpBarReader, self).__init__(path=path) self._cal = cal self._days = days self._data = data def __enter__(self): tmpdir = super(_TmpBarReader, self).__enter__() try: self._write( self._cal, self._days, tmpdir.path, self._data, ) return self._reader_cls(tmpdir.path) except: self.__exit__(None, None, None) raise class tmp_bcolz_equity_minute_bar_reader(_TmpBarReader): """A temporary BcolzMinuteBarReader object. Parameters ---------- cal : TradingCalendar The trading calendar for which we're writing data. days : pd.DatetimeIndex The days to write for. data : iterable[(int, pd.DataFrame)] The data to write. path : str, optional The path to the directory to write the data into. If not given, this will be a unique name. See Also -------- tmp_bcolz_equity_daily_bar_reader """ _reader_cls = BcolzMinuteBarReader _write = staticmethod(write_bcolz_minute_data) class tmp_bcolz_equity_daily_bar_reader(_TmpBarReader): """A temporary BcolzDailyBarReader object. Parameters ---------- cal : TradingCalendar The trading calendar for which we're writing data. days : pd.DatetimeIndex The days to write for. data : dict[int -> pd.DataFrame] The data to write. path : str, optional The path to the directory to write the data into. If not given, this will be a unique name. See Also -------- tmp_bcolz_equity_daily_bar_reader """ _reader_cls = BcolzDailyBarReader @staticmethod def _write(cal, days, path, data): BcolzDailyBarWriter(path, days).write(data) @contextmanager def patch_read_csv(url_map, module=pd, strict=False): """Patch pandas.read_csv to map lookups from url to another. Parameters ---------- url_map : mapping[str or file-like object -> str or file-like object] The mapping to use to redirect read_csv calls. module : module, optional The module to patch ``read_csv`` on. By default this is ``pandas``. This should be set to another module if ``read_csv`` is early-bound like ``from pandas import read_csv`` instead of late-bound like: ``import pandas as pd; pd.read_csv``. strict : bool, optional If true, then this will assert that ``read_csv`` is only called with elements in the ``url_map``. """ read_csv = pd.read_csv def patched_read_csv(filepath_or_buffer, *args, **kwargs): if filepath_or_buffer in url_map: return read_csv(url_map[filepath_or_buffer], *args, **kwargs) elif not strict: return read_csv(filepath_or_buffer, *args, **kwargs) else: raise AssertionError( 'attempted to call read_csv on %r which not in the url map' % filepath_or_buffer, ) with patch.object(module, 'read_csv', patched_read_csv): yield def copy_market_data(src_market_data_dir, dest_root_dir): symbol = 'SPY' filenames = (get_benchmark_filename(symbol), INDEX_MAPPING[symbol][1]) ensure_directory(os.path.join(dest_root_dir, 'data')) for filename in filenames: shutil.copyfile( os.path.join(src_market_data_dir, filename), os.path.join(dest_root_dir, 'data', filename) ) @curry def ensure_doctest(f, name=None): """Ensure that an object gets doctested. This is useful for instances of objects like curry or partial which are not discovered by default. Parameters ---------- f : any The thing to doctest. name : str, optional The name to use in the doctest function mapping. If this is None, Then ``f.__name__`` will be used. Returns ------- f : any ``f`` unchanged. """ sys._getframe(2).f_globals.setdefault('__test__', {})[ f.__name__ if name is None else name ] = f return f class RecordBatchBlotter(SimulationBlotter): """Blotter that tracks how its batch_order method was called. """ def __init__(self): super(RecordBatchBlotter, self).__init__() self.order_batch_called = [] def batch_order(self, *args, **kwargs): self.order_batch_called.append((args, kwargs)) return super(RecordBatchBlotter, self).batch_order(*args, **kwargs) class AssetID(CustomFactor): """ CustomFactor that returns the AssetID of each asset. Useful for providing a Factor that produces a different value for each asset. """ window_length = 1 inputs = () def compute(self, today, assets, out): out[:] = assets class AssetIDPlusDay(CustomFactor): window_length = 1 inputs = () def compute(self, today, assets, out): out[:] = assets + today.day class OpenPrice(CustomFactor): window_length = 1 inputs = [USEquityPricing.open] def compute(self, today, assets, out, open): out[:] = open def prices_generating_returns(returns, starting_price): """Construct the time series of prices that produce the given returns. Parameters ---------- returns : np.ndarray[float] The returns that these prices generate. starting_price : float The value of the asset. Returns ------- prices : np.ndaray[float] The prices that generate the given returns. This array will be one element longer than ``returns`` and ``prices[0] == starting_price``. """ raw_prices = starting_price * (1 + np.append([0], returns)).cumprod() rounded_prices = raw_prices.round(3) if not np.allclose(raw_prices, rounded_prices): raise ValueError( 'Prices only have 3 decimal places of precision. There is no valid' ' price series that generate these returns.', ) return rounded_prices def simulate_minutes_for_day(open_, high, low, close, volume, trading_minutes=390, random_state=None): """Generate a random walk of minute returns which meets the given OHLCV profile for an asset. The volume will be evenly distributed through the day. Parameters ---------- open_ : float The day's open. high : float The day's high. low : float The day's low. close : float The day's close. volume : float The day's volume. trading_minutes : int, optional The number of minutes to simulate. random_state : numpy.random.RandomState, optional The random state to use. If not provided, the global numpy state is used. """ if random_state is None: random_state = np.random sub_periods = 5 values = (random_state.rand(trading_minutes * sub_periods) - 0.5).cumsum() values *= (high - low) / (values.max() - values.min()) values += np.linspace( open_ - values[0], close - values[-1], len(values), ) assert np.allclose(open_, values[0]) assert np.allclose(close, values[-1]) max_ = max(close, open_) where = values > max_ values[where] = ( (values[where] - max_) * (high - max_) / (values.max() - max_) + max_ ) min_ = min(close, open_) where = values < min_ values[where] = ( (values[where] - min_) * (low - min_) / (values.min() - min_) + min_ ) if not (np.allclose(values.max(), high) and np.allclose(values.min(), low)): return simulate_minutes_for_day( open_, high, low, close, volume, trading_minutes, random_state=random_state, ) prices = pd.Series(values.round(3)).groupby( np.arange(trading_minutes).repeat(sub_periods), ) base_volume, remainder = divmod(volume, trading_minutes) volume = np.full(trading_minutes, base_volume, dtype='int64') volume[:remainder] += 1 # TODO: add in volume return pd.DataFrame({ 'open': prices.first(), 'close': prices.last(), 'high': prices.max(), 'low': prices.min(), 'volume': volume, })
zipline-live2
/zipline_live2-1.3.0.7.0-cp36-cp36m-win32.whl/zipline/testing/core.py
core.py
__author__ = "NorgateData Pty Ltd" __all__ = [ "register_norgatedata_equities_bundle", "register_norgatedata_futures_bundle", "zipline_futures_root_symbols_dict", "translate_futures_symbol", "__version__", "__author__", ] import sys from zipline.data.bundles import register import pandas as pd import zipline as zl from exchange_calendars import get_calendar import norgatedata from numpy import empty, where import re from zipline.utils.cli import maybe_show_progress import logbook from os import environ, cpu_count import requests from .version import __version__ from pandas.tseries.offsets import BDay import multiprocessing as mp logbook.StreamHandler(sys.stdout).push_application() # required for Jupyter to output logger = logbook.Logger("Norgate Data") norgatedata.norgatehelper.version_checker(__version__, "zipline-norgatedata") # Translate Norgate symbols into Zipline symbols that are hardcoded in the Zipline package, # plus avoid overlaps _symbol_translate = { "6A": "AD", # AUD "6B": "BP", # GBP "6C": "CD", # CAD "6E": "EC", # EUR "6J": "JY", # JPY "6M": "ME", # MXN "6N": "NZ", # ZND "6S": "SF", # CHF "EMD": "MI", # E-Mini S&P 400 "EH": "ET", # Ethanol "FCE": "CA", # CAC 40 "FBTP": "BT", # Euro-BTP "FBTP9": "B9", # Euro-BTP "FDAX": "DA", # DAX (Last) "FDAX9": "D9", # DAX (Last) "FESX9": "E9", # Euro STOXX 50 (Last) "FGBL": "BL", # Euro-Bund "FGBL9": "G9", # Euro-Bund (Last) "FGBM": "BM", # Euro-Bobl "FGBM9": "M9", # Euro-Bobl (Last) "FGBS": "BS", # Euro-Schatz "FGBS9": "S9", # Euro-Schatz "FGBX9": "X9", # Euro-Buxl (Last) "FSMI": "SX", # Swiss Market Index "FTDX": "FD", # TecDAX "GF": "FC", # Feeder Cattle "HE": "LH", # Lean Hogs "LEU": "EU", # Euribor (Official Close) "LEU9": "L9", # Euribor (Official Close) "LFT9": "F9", # FTSE 100 (OOfficial Close) "RB": "XB", # RBOB Gasoline "RTY": "RM", # E-mini Russell 2000 "SCN4": "S4", # FTSE China A50 (Day session) "SIN": "SN", # SGX Nifty 50 "SNK": "SK", # Nikkei 225 (SGX) "SNK4": "K4", # Nikkei 225 (SGX) (Day session) "SP1": "S1", # S&P 500 (Floor) "SSG4": "S4", # MSCI Singpaore (Day session) # "STW4": "T4", # MSCI Taiwan (Day session) - contract retired - see HTW4 "YAP4": "A4", # SPI 200 (Day session) "YG": "XG", # Mini-Gold "YI": "YS", # Silver Mini "YIB": "IB", # ASX 30 day Interbank Cash Rate "YIB4": "B4", # ASX 30 day Interbank Cash Rate (Day) "YIR": "IR", # ASX 90 Day Bank Accepted Bills "YIR": "R4", # ASX 90 Day Bank Accepted Bills (Day) "YXT4": "X4", # ASX 10 Year Treasury Bond (Day) "YYT4": "Y4", # ASX 3 Year Treasury Bond (Day) "ZC": "CN", # Corn "ZF": "FV", # 5-year US T-Note "ZL": "BO", # Soybean Oil "ZM": "SM", # Soybean Meal "ZN": "TY", # 10-Year US T-Note "ZO": "OA", # Oats "ZQ": "FF", # 30 Day Fed Funds "ZR": "RR", # Rough Rice "ZS": "SY", # Soybean "ZT": "TU", # 2-year US T-Note "ZW": "WC", # Chicago SRW Wheat "LSS": "SS", # Short Sterling (LIFFE) "BTC": "BC", # Bitcoin "LES": "SW", # Euro Swiss "SXF": "TS", # S&P/TSX 60 "YAP10": "YN", # S&P/ASX 200 (N) (L) "SSG": "SG", # MSCI Singapore "SSG4": "SD", # MSCI Singapore Day "EUA": "EA", # European Union emission Allowances "FOAT": "FO", # French govt bond (OAT) "FOAT4": "O4", # French govt bond (OAT) - day "FOAT9": "O9", # French govt bond (OAT) - Official Close "HTW": "TW", # MSCI Taiwan "HTW4": "T4", # MSCI Taiwan (Day session) } def normalize_daily_start_end_session(calendar_name, start_session, end_session): cal = get_calendar(calendar_name,start=start_session.strftime("%Y-%m-%d")) if start_session < cal.first_session: # eg. Starts on 1 Jan will be realigned to the first trading day of the year start_session = cal.first_session if start_session.weekday() == 6: # Don't start on Sundays, this helps with futures testing... start_session = cal.next_close(start_session).floor(freq="D") #logger.info(" Realigning start to " + start_session.strftime("%Y-%m-%d")) if not (cal.is_session(end_session)): end_session = cal.previous_close(end_session).floor(freq="D") #logger.info(" Realigning end to " + end_session.strftime("%Y-%m-%d")) # Take out TZ now just in case cal inserts it, since sessions should be TZ-naive start_session = start_session.tz_localize(None) end_session = end_session.tz_localize(None) return start_session, end_session def define_non_US_country_code(exchanges): aulist = ('ASX','AU IDX') for exchange in aulist: #if exchanges.index.contains(exchange): if exchange in exchanges.index: exchanges.at[exchange,'country_code'] = 'AU' calist = ('TSX','TSX Venture','TSX Venture NEX','CSE','NEO','CA IDX') for exchange in calist: if exchange in exchanges.index: exchanges.at[exchange,'country_code'] = 'CA' def create_norgatedata_equities_bundle( bundlename, stock_price_adjustment_setting, start_session, end_session, symbol_list=None, watchlists=None, excluded_symbol_list=None, ): def ingest( environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir, ): logger.info( "Ingesting equities bundle " + bundlename + " with start date " + start_session.strftime("%Y-%m-%d") ) symbols = determine_symbols( start_session, end_session, symbol_list, watchlists, excluded_symbol_list ) dtype = [ ("start_date", "datetime64[ns]"), ("end_date", "datetime64[ns]"), ("auto_close_date", "datetime64[ns]"), ("symbol", "object"), ("asset_name", "object"), ("exchange", "object"), ("exchange_full", "object"), ("asset_type", "object"), ("norgate_data_symbol", "object"), ("norgate_data_assetid", "int64"), ("first_traded", "datetime64[ns]"), ] metadata = pd.DataFrame(empty(len(symbols), dtype=dtype)) sessions = calendar.sessions_in_range(start_session, end_session) daily_bar_writer.write( _pricing_iter_equities( symbols, metadata, sessions, show_progress, stock_price_adjustment_setting, start_session, end_session, ), show_progress=show_progress, ) exchangenames = pd.unique(metadata["exchange"]) exchanges = pd.DataFrame( data={"country_code": "US", "canonical_name": exchangenames}, index=exchangenames, ) exchanges.index.name = "exchange" define_non_US_country_code(exchanges) asset_db_writer.write(equities=metadata, exchanges=exchanges) # Write empty splits and divs - they are already incorporated in Norgate Data divs_splits = { "divs": pd.DataFrame( columns=[ "sid", "amount", "ex_date", "record_date", "declared_date", "pay_date", ] ), "splits": pd.DataFrame(columns=["sid", "ratio", "effective_date"]), } adjustment_writer.write( splits=divs_splits["splits"], dividends=divs_splits["divs"] ) logger.info( "Ingestion of equities bundle " + bundlename + " completed" + " with " + str(len(symbols)) + " securities" ) return ingest def Repeat(x): _size = len(x) repeated = [] for i in range(_size): k = i + 1 for j in range(k, _size): if x[i] == x[j] and x[i] not in repeated: repeated.append(x[i]) return repeated def create_norgatedata_futures_bundle( bundlename, start_session, end_session, symbol_list=None, watchlists=None, session_symbols=None, excluded_symbol_list=None, calendar=None, ): def ingest( environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir, ): logger.info( "Ingesting futures bundle " + bundlename + " with start date " + start_session.strftime("%Y-%m-%d") ) symbols, root_symbols = determine_futures_symbols( start_session, end_session, symbol_list=symbol_list, session_symbols=session_symbols, watchlists=watchlists, excluded_symbol_list=excluded_symbol_list, ) dtype = [ ("start_date", "datetime64[ns]"), ("end_date", "datetime64[ns]"), ("auto_close_date", "datetime64[ns]"), ("symbol", "object"), ("root_symbol", "object"), ("asset_name", "object"), ("exchange", "object"), ("exchange_full", "object"), ("tick_size", "float64"), ("notice_date", "datetime64[ns]"), ("expiration_date", "datetime64[ns]"), ("multiplier", "float64"), ("asset_type", "object"), ("norgate_data_symbol", "object"), ("norgate_data_assetid", "int64"), ("first_traded", "datetime64[ns]"), ] metadata = pd.DataFrame(empty(len(symbols), dtype=dtype)) sessions = calendar.sessions_in_range(start_session, end_session) daily_bar_writer.write( _pricing_iter_futures( symbols, metadata, sessions, show_progress, start_session, end_session ), show_progress=show_progress, ) exchangenames = pd.unique(metadata["exchange"]) exchanges = pd.DataFrame( data={"country_code": "US", "canonical_name": exchangenames}, index=exchangenames, ) exchanges.index.name = "exchange" #pd.set_option('display.max_rows', None) #pd.set_option('display.max_columns', None) #pd.set_option('display.width', None) #pd.set_option('display.max_colwidth', -1) # Check metadata for duplicate symbols symbollist_check = [i for i in list(metadata["symbol"]) if i] # obtain non-None symbols... dupes = set([x for x in symbollist_check if symbollist_check.count(x) > 1]) if len(dupes) > 0: logger.error("There are duplicate symbols in the metadata - this is probably due to a duplicated futures root symbol and will cause Zipline to abort.") logger.error("Duplicate symbols are : " + str(dupes)) raise Exception('Duplicate symbols in ingest') #metadata.asset_type = "futures" # test to see if this fixes things futures_metadata = metadata[metadata.asset_type == "futures"].copy() exchangenames = pd.unique(futures_metadata["exchange"]) futures_exchanges = pd.DataFrame( data={"country_code": "US", "canonical_name": exchangenames}, index=exchangenames, ) futures_exchanges.index.name = "exchange" equities_metadata = metadata[metadata.asset_type == "equities"].copy() exchangenames = pd.unique(equities_metadata["exchange"]) equities_exchanges = pd.DataFrame( data={"country_code": "US", "canonical_name": exchangenames}, index=exchangenames, ) equities_exchanges.index.name = "exchange" asset_db_writer.write( futures=futures_metadata, root_symbols=root_symbols, exchanges=futures_exchanges ) asset_db_writer.write(equities=equities_metadata, exchanges=equities_exchanges) # Write empty splits and divs - they are already n/a for futures divs_splits = { "divs": pd.DataFrame( columns=[ "sid", "amount", "ex_date", "record_date", "declared_date", "pay_date", ] ), "splits": pd.DataFrame(columns=["sid", "ratio", "effective_date"]), } adjustment_writer.write( splits=divs_splits["splits"], dividends=divs_splits["divs"] ) logger.info( "Ingesting of futures bundle " + bundlename + " completed" + " with " + str(len(symbols)) + " securities" ) return ingest def create_norgatedata_futures_bundle_130( bundlename, start_session, end_session, symbol_list=None, watchlists=None, session_symbols=None, excluded_symbol_list=None, ): def ingest( environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir, ): logger.info( "Ingesting futures bundle " + bundlename + " with start date " + start_session.strftime("%Y-%m-%d") ) symbols, root_symbols = determine_futures_symbols( start_session, symbol_list=symbol_list, session_symbols=session_symbols, watchlists=watchlists, excluded_symbol_list=excluded_symbol_list, ) dtype = [ ("start_date", "datetime64[ns]"), ("end_date", "datetime64[ns]"), ("auto_close_date", "datetime64[ns]"), ("symbol", "object"), ("root_symbol", "object"), ("asset_name", "object"), ("exchange", "object"), ("exchange_full", "object"), ("tick_size", "float64"), ("notice_date", "datetime64[ns]"), ("expiration_date", "datetime64[ns]"), ("multiplier", "float64"), ("asset_type", "object"), ("norgate_data_symbol", "object"), ("norgate_data_assetid", "int64"), ("first_traded", "datetime64[ns]"), ] metadata = pd.DataFrame(empty(len(symbols), dtype=dtype)) sessions = calendar.sessions_in_range(start_session, end_session) daily_bar_writer.write( _pricing_iter_futures( symbols, metadata, sessions, show_progress, start_session, end_session ), show_progress=show_progress, ) exchangenames = pd.unique(metadata["exchange"]) exchanges = pd.DataFrame( data={"country_code": "US", "canonical_name": exchangenames}, index=exchangenames, ) exchanges.index.name = "exchange" # Check metadata for duplicate symbols if len(metadata) != len(set(metadata["symbol"])): separator = "," logger.error( "There are duplicate symbols in the metadata - this is probably due to a duplicated futures root symbol and will cause Zipline to abort. Duplicate symbols are : " + separator.join(Repeat(metadata["symbol"])) ) metadata.asset_type = "futures" # test to see if this fixes things futures_metadata = metadata[metadata.asset_type == "futures"].copy() exchangenames = pd.unique(futures_metadata["exchange"]) futures_exchanges = pd.DataFrame( data={"country_code": "US", "canonical_name": exchangenames}, index=exchangenames, ) futures_exchanges.index.name = "exchange" equities_metadata = metadata[metadata.asset_type == "equities"].copy() exchangenames = pd.unique(equities_metadata["exchange"]) equities_exchanges = pd.DataFrame( data={"country_code": "US", "canonical_name": exchangenames}, index=exchangenames, ) equities_exchanges.index.name = "exchange" asset_db_writer.write( futures=metadata, root_symbols=root_symbols, exchanges=exchanges ) # `asset_db_writer.write(equities=equities_metadata, exchanges=equities_exchanges) # Write empty splits and divs - they are already n/a for futures divs_splits = { "divs": pd.DataFrame( columns=[ "sid", "amount", "ex_date", "record_date", "declared_date", "pay_date", ] ), "splits": pd.DataFrame(columns=["sid", "ratio", "effective_date"]), } adjustment_writer.write( splits=divs_splits["splits"], dividends=divs_splits["divs"] ) logger.info( "Ingesting of futures bundle " + bundlename + " completed" + " with " + str(len(symbols)) + " securities" ) return ingest def determine_symbols( startdate, enddate, symbol_list=None, watchlists=None, excluded_symbol_list=None ): if watchlists is None and symbol_list is None: logger.error("No watchlists or symbol specified") symbols = [] if symbol_list is not None: for symbol in symbol_list: if norgatedata.assetid(symbol) > 0: symbols.append(symbol) if watchlists is not None: for watchlistname in watchlists: watchlistsymbols = norgatedata.watchlist_symbols(watchlistname) logger.info( "Found " + str(len(watchlistsymbols)) + " symbols in " + watchlistname ) symbols.extend(watchlistsymbols) symbols = list(set(symbols)) # Remove dupes symbols.sort() logger.info("Obtaining metadata for " + str(len(symbols)) + " securities...") if (1 == 0): for symbol in reversed( symbols ): # Do in reversed order, because we will be deleting some symbols and this # messes up iteration if excluded_symbol_list is not None and symbol in excluded_symbol_list: symbols.remove(symbol) continue fqd = norgatedata.first_quoted_date(symbol, tz=None) if fqd is None or fqd == "9999-12-31": symbols.remove(symbol) continue fqd = pd.Timestamp(fqd, tz=None) if fqd > enddate: symbols.remove(symbol) continue lqd = norgatedata.last_quoted_date(symbol, tz=None) if not (lqd is None or lqd == "9999-12-31"): lqd = pd.Timestamp(lqd, tz=None) if lqd < startdate: symbols.remove(symbol) revisedsymbols = [] for symbol in symbols: # messes up iteration if excluded_symbol_list is not None and symbol in excluded_symbol_list: continue fqd = norgatedata.first_quoted_date(symbol, tz=None) if fqd is None or fqd == "9999-12-31": continue fqd = pd.Timestamp(fqd, tz=None) if fqd > enddate: continue lqd = norgatedata.last_quoted_date(symbol, tz=None) if not (lqd is None or lqd == "9999-12-31"): lqd = pd.Timestamp(lqd, tz=None) if lqd < startdate: continue revisedsymbols.append(symbol) revisedsymbols.sort() logger.info( "Metadata process complete. Revised security count: " + str(len(revisedsymbols)) ) return revisedsymbols def determine_futures_symbols( startdate, enddate, symbol_list=None, watchlists=None, session_symbols=None, excluded_symbol_list=None, ): if symbol_list is None and watchlists is None and session_symbols is None: logger.error("No symbols, watchlists or session symbols specified") raise ValueError symbols = [] root_symbols = set([]) exchanges = dict() marketnames = dict() sectors = dict() if symbol_list is not None: for symbol in symbol_list: if norgatedata.assetid(symbol) > 0: symbols.append(symbol) if watchlists is not None: for watchlistname in watchlists: watchlistsymbols = norgatedata.watchlist_symbols(watchlistname) logger.info( "Found " + str(len(watchlistsymbols)) + " symbols in " + watchlistname ) symbols.extend(watchlistsymbols) if session_symbols is not None: for session_symbol in session_symbols: contractsymbols = norgatedata.futures_market_session_contracts( session_symbol ) logger.info( "Found " + str(len(contractsymbols)) + " futures contracts in " + session_symbol + ": " + norgatedata.futures_market_session_name(session_symbol) ) symbols.extend(contractsymbols) symbols.sort() if len(symbols) != len(set(symbols)): logger.info("Duplicate symbols found... removing dupes ") symbols = list(set(symbols)) # Remove dupes logger.info("Obtaining metadata for " + str(len(symbols)) + " securities...") revisedsymbols = [] for symbol in symbols: if excluded_symbol_list is not None and symbol in excluded_symbol_list: continue fqd = norgatedata.first_quoted_date(symbol) if fqd is None or fqd == "9999-12-31": continue fqd = pd.Timestamp(fqd, tz=None) if fqd > enddate: continue lqd = norgatedata.last_quoted_date(symbol, tz=None) if lqd is not None: lqdtimestamp = pd.Timestamp(lqd, tz=None) if lqdtimestamp < startdate: continue notice_date = norgatedata.first_notice_date(symbol, tz=None) if notice_date is not None and pd.Timestamp(notice_date,tz=None) <= startdate: # Not much point including this delivery if FND is on or prior to startdate continue if norgatedata.base_type(symbol) == "Futures Market": if (lqd is None or lqd == "9999-12-31") and not symbol.startswith('&'): logger.info("Newly listed futures contract " + symbol + " ignored due to incomplete metadata") continue session_symbol = norgatedata.futures_market_session_symbol(symbol) #root_symbol = translate_futures_symbol(session_symbol) # Zipline 2.4 extends root symbol to more than 2 characters, so no need to do this any more root_symbol = session_symbol if len(root_symbol) > 0 and not root_symbol in root_symbols: root_symbols.add(root_symbol) exchange = norgatedata.exchange_name(symbol) exchanges[root_symbol] = exchange marketname = norgatedata.futures_market_session_name(symbol) marketnames[root_symbol] = marketname sector = norgatedata.classification( symbol, "NorgateDataFuturesClassification", "Name" ) sectors[root_symbol] = sector if session_symbol == root_symbol: logger.info( "Zipline Futures Root added: " + root_symbol + " (" + marketname + ")" ) else: logger.info( "Zipline Futures Root added: " + root_symbol + " (" + marketname + ") (translated from Norgate session symbol " + session_symbol + ")" ) revisedsymbols.append(symbol) revisedsymbols.sort() root_symbols = list(root_symbols) root_symbols = pd.DataFrame(root_symbols, columns=["root_symbol"]) root_symbols["root_symbol_id"] = root_symbols.index.values marketnames = pd.Series(marketnames) exchanges = pd.Series(exchanges) sectors = pd.Series(sectors) root_symbols["description"] = marketnames[root_symbols["root_symbol"]].tolist() root_symbols["exchange"] = exchanges[root_symbols["root_symbol"]].tolist() root_symbols["sector"] = sectors[root_symbols["root_symbol"]].tolist() logger.info( "Metadata process complete. Revised security count: " + str(len(revisedsymbols)) ) return revisedsymbols, root_symbols def _pricing_iter_equities( symbols, metadata, sessions, show_progress, stock_price_adjustment_setting, start_session, end_session, ): with maybe_show_progress( symbols, show_progress, label="Loading Norgate equities:", item_show_func=lambda a:_progress_symbol(a), ) as it: for sid, symbol in enumerate(it): # Padding must be all markte days, otherwise it will bork zipline's # expection that there's a bar for every day asset_name = norgatedata.security_name(symbol) exchange = norgatedata.exchange_name(symbol) exchange_full = norgatedata.exchange_name_full(symbol) df = norgatedata.price_timeseries( symbol, timeseriesformat="pandas-dataframe-zipline", start_date=start_session, end_date=end_session, stock_price_adjustment_setting=stock_price_adjustment_setting, padding_setting=norgatedata.PaddingType.ALLMARKETDAYS, # Must do this - Zipline can only market day padded data fields=["Open", "High", "Low", "Close", "Volume"], datetimeformat="datetime64nsutc", timezone=None, ) start_date = df.index[0] end_date = df.index[-1] # Add missing columns if not "volume" in df.columns: df["volume"] = 0 # Zipline can't handle volumes above 4294967295, so for indices, we'll divide by 1000. # Many indices including S&P 500, Russell 3000 etc. have this level of volume if norgatedata.subtype1(symbol) == "Index" and "volume" in df.columns: df.loc[:, "volume"] /= 1000 # Zipline can't handle crazy volumes for stocks where there have been lots of splits # Turn adjusted volume data into max UINT32 of 4294967295 if "volume" in df.columns: df["volume"] = where( df["volume"] > 4294967295, 4294967295, df["volume"] ) slqd = norgatedata.second_last_quoted_date( symbol, datetimeformat="pandas-timestamp", tz=None ) if slqd is None: ac_date = end_date + BDay(1) # Set bogus autoclose date after end date else: ac_date = slqd norgate_data_symbol = symbol norgate_data_assetid = norgatedata.assetid(symbol) asset_type = "equities" # Pad dates all_dates = sessions.snap("D") valid_dates = all_dates.slice_indexer(start=start_date, end=end_date) df = df.reindex(all_dates[valid_dates]) zerovalues = {"volume": 0} df.fillna(zerovalues, inplace=True) df["close"].fillna(method="ffill", inplace=True) # forward fill close df = df.fillna( method="bfill", axis=1, limit=3 ) # back fill close into OHL. (For some reason, inplace=True doesn't work here with Pandas 0.18) metadata.iloc[sid] = ( start_date, end_date, ac_date, symbol, asset_name, exchange, exchange_full, asset_type, norgate_data_symbol, norgate_data_assetid, start_date, ) yield sid, df ################################################ def translate_futures_symbol(symbol): # This was required for Zipline 2.2 for two character root, but has been enhanced in 2.4 to offer multi-character root. However, still requires MYY format where M is alphabetic month and YY = year # but Zipline 2.4 adds multicharacter root systems to futures # so this is no longer needed newsymbol = symbol if symbol[0] == "&": # Continuous futures, strip leading & newsymbol = symbol[1:] if not symbol[0].isalnum(): return newsymbol match = re.search("^([0-9A-Z]+)-(\d\d)(\d\d)([A-Z])", newsymbol) if match: newsymbol = match.group(1) if newsymbol in _symbol_translate: newsymbol = _symbol_translate[newsymbol] elif len(symbol) >= 3: newsymbol = newsymbol[0:2] if match: newsymbol += match.group(4) + match.group(3) return newsymbol def translate_futures_symbol(symbol): # This was required for Zipline 2.2 but Zipline 2.4 adds multicharacter root systems to futures # so this is no longer needed newsymbol = symbol if symbol[0] == "&": # Continuous futures, strip leading & newsymbol = symbol[1:] if not symbol[0].isalnum(): return newsymbol match = re.search("^([0-9A-Z]+)-(\d\d)(\d\d)([A-Z])", newsymbol) if match: newsymbol = match.group(1) #if newsymbol in _symbol_translate: # newsymbol = _symbol_translate[newsymbol] #elif len(symbol) >= 3: # newsymbol = newsymbol[0:2] if match: newsymbol += match.group(4) + match.group(3) return newsymbol def _progress_symbol(a): if a is None: return "" else: return a def _pricing_iter_futures( symbols, metadata, sessions, show_progress, start_session, end_session ): with maybe_show_progress( symbols, show_progress, label="Loading Norgate futures:", item_show_func=lambda a:_progress_symbol(a), ) as it: for sid, symbol in enumerate(it): # Padding must be all market days, otherwise it will bork zipline's # expection that there's a bar for every day # Open interest is here even though zipline can't yet use it df = norgatedata.price_timeseries( symbol, timeseriesformat="pandas-dataframe-zipline", start_date="1970-01-01", padding_setting=norgatedata.PaddingType.ALLMARKETDAYS, stock_price_adjustment_setting=norgatedata.StockPriceAdjustmentType.NONE, datetimeformat="datetime64ns", timezone=None, ) # Add missing columns if not "volume" in df.columns: df["volume"] = 0 if not "open interest" in df.columns: df["open interest"] = 0 # Zipline can't handle volumes above 4294967295, so for indices, we'll divide by 1000. # Many indices including S&P 500, Russell 3000 etc. have this level of volume if norgatedata.subtype1(symbol) == "Index": df.loc[:, "volume"] /= 1000 # Zipline can't handle crazy volumes for stocks where there have been lots of splits # Turn adjusted volume data into max UINT32 of 4294967295 df["volume"] = where(df["volume"] > 4294967295, 4294967295, df["volume"]) # Zipline can't handle negative numbers since it internally stores data as uint32 # This happened in Crude Oil in 2020 # so it will be set to zero until Zipline can handle it # Most traders would have already rolled anyway, so not a real big issue df["open"] = where(df["open"] < 0, 0, df["open"]) df["high"] = where(df["high"] < 0, 0, df["high"]) df["low"] = where(df["low"] < 0, 0, df["low"]) df["close"] = where(df["close"] < 0, 0, df["close"]) asset_name = norgatedata.security_name(symbol) exchange = norgatedata.exchange_name(symbol) exchange_full = norgatedata.exchange_name_full(symbol) norgate_data_symbol = symbol norgate_data_assetid = norgatedata.assetid(symbol) notice_date = norgatedata.first_notice_date( symbol, datetimeformat="pandas-timestamp", tz=None ) expiration_date = norgatedata.last_quoted_date( symbol, datetimeformat="pandas-timestamp", tz=None ) if norgatedata.base_type(symbol) == "Futures Market": tick_size = norgatedata.tick_size(symbol) multiplier = norgatedata.point_value(symbol) #root_symbol = translate_futures_symbol( # norgatedata.futures_market_session_symbol(symbol) #) root_symbol = norgatedata.futures_market_session_symbol(symbol) symbol = translate_futures_symbol(symbol) asset_type = "futures" else: tick_size = 0.0001 multiplier = 1 root_symbol = symbol asset_type = "equities" if df is None or len(df.index) == 0: logger.info( "Futures contract found with no price data: " + symbol + "(perhaps it has just been listed and the exchange has not yet sent down trading prices)... skipping" ) continue start_date = None end_date = None ac_date = None if len(df.index) > 0: start_date = df.index[0] end_date = df.index[-1] all_dates = sessions.snap("D") valid_dates = all_dates.slice_indexer(start=start_date, end=end_date) # Check if the first date from valid_dates exists in df - if not, we have to pad this ourselves so that the forward fill works in the future if ( len(all_dates[valid_dates]) > 0 and all_dates[valid_dates][0] not in df.index ): # Create a reindexed DF with one row that is forward filled single_date_slice = all_dates.slice_indexer( start=all_dates[valid_dates][0], end=all_dates[valid_dates][0] ) single_date_df = df.reindex( all_dates[single_date_slice], method="ffill" ) # Now set OHL to Close, vol to zero single_date_df["open"] = single_date_df["close"] single_date_df["high"] = single_date_df["close"] single_date_df["low"] = single_date_df["close"] single_date_df["volume"] = 0 # df = df.append(single_date_df).sort_index() # old pandas method df = pd.concat([df,single_date_df]).sort_index() df = df.reindex(all_dates[valid_dates]) zerovalues = {"volume": 0} df.fillna(zerovalues, inplace=True) df["close"].fillna(method="ffill", inplace=True) df["open interest"].fillna(method="ffill", inplace=True) df = df.fillna( method="bfill", axis=1, limit=3 ) # For some reason, inplace=True doesn't work here with Pandas 0.18 if len(df.index) > 0: start_date = df.index[0] else: start_date = None if notice_date is not None: if notice_date <= start_date: # Handle case when the backtest starts on a notice date - eg. start backtest 2000-01-03 with GC ac_date = start_date else: # if last date of price date is beyond notice date, set auto close date to notice date - 2 if df.index[-1] >= pd.Timestamp(notice_date, tz=None): if len(df.index) > 2: ac_date = df.index[ df.index.searchsorted(pd.Timestamp(notice_date, tz=None)) - 2 ] # 2 days prior to FND else: ac_date = pd.Timestamp(notice_date, tz=None) - BDay(2) else: ac_date = pd.Timestamp(notice_date, tz=None) - BDay(2) if ac_date < start_date: # Handle situations where we might have gone prior to backtest ac_date = start_date elif expiration_date is not None: # ac_date = pd.Timestamp(expiration_date, tz="utc") # This method was used prior to 20200713 if df.index[-1] >= pd.Timestamp(expiration_date, tz=None): # Last value is on or after expiration date if len(df.index) > 2: ac_date = df.index[ df.index.searchsorted(pd.Timestamp(expiration_date,tz=None)) - 2 ] # second last trading date, as determined by the data else: ac_date = pd.Timestamp(notice_date, tz=None) - BDay(2) # Corner case - perhaps we are ingesting around a boundary of expiration else: ac_date = pd.Timestamp(expiration_date, tz=None) - BDay(2) if ac_date is None: # Every futures contract needs an autoclose date of some sort expiration_date = end_date + BDay(1) # Set a bogus date ac_date = pd.Timestamp(expiration_date, tz=None) - BDay(2) if notice_date is None: notice_date = expiration_date + BDay(1) # Put a notice date 1 day after expiration metadata.iloc[sid] = ( start_date, end_date, ac_date, symbol, root_symbol, asset_name, exchange, exchange_full, tick_size, notice_date, expiration_date, multiplier, asset_type, norgate_data_symbol, norgate_data_assetid, start_date, ) yield sid, df def register_norgatedata_equities_bundle( bundlename, stock_price_adjustment_setting=norgatedata.StockPriceAdjustmentType.TOTALRETURN, start_session="1970-01-01", end_session="now", calendar_name="NYSE", symbol_list=None, watchlists=None, excluded_symbol_list=None, ): if not isinstance(start_session, pd.Timestamp): start_session = norgatedata.norgatehelper.decode_date( start_session, datetimeformat="pandas-timestamp", tz=None ) if not isinstance(end_session, pd.Timestamp): end_session = norgatedata.norgatehelper.decode_date( end_session, datetimeformat="pandas-timestamp", tz=None ) start_session, end_session = normalize_daily_start_end_session( calendar_name, start_session, end_session ) register( bundlename, create_norgatedata_equities_bundle( bundlename, stock_price_adjustment_setting, start_session, end_session, symbol_list=symbol_list, watchlists=watchlists, excluded_symbol_list=excluded_symbol_list, ), start_session=start_session, end_session=end_session, calendar_name=calendar_name, ) def register_norgatedata_futures_bundle( bundlename, start_session="1970-01-01", end_session="now", calendar_name="us_futures", symbol_list=None, session_symbols=None, watchlists=None, excluded_symbol_list=None, ): if not isinstance(start_session, pd.Timestamp): start_session = norgatedata.norgatehelper.decode_date( start_session, datetimeformat="pandas-timestamp", tz=None ) if not isinstance(end_session, pd.Timestamp): end_session = norgatedata.norgatehelper.decode_date( end_session, datetimeformat="pandas-timestamp", tz=None ) start_session, end_session = normalize_daily_start_end_session( calendar_name, start_session, end_session ) register( bundlename, create_norgatedata_futures_bundle( bundlename, start_session, end_session, symbol_list=symbol_list, watchlists=watchlists, session_symbols=session_symbols, excluded_symbol_list=excluded_symbol_list, ), start_session=start_session, end_session=end_session, calendar_name=calendar_name, ) def zipline_futures_root_symbols_dict(): zipline_markets = {} session_symbols = norgatedata.futures_market_session_symbols() for session_symbol in session_symbols: #zipline_symbol = translate_futures_symbol(session_symbol) zipline_symbol = session_symbol name = norgatedata.futures_market_session_name(session_symbol) if zipline_symbol in zipline_markets: logger.error( "Zipline already has a session symbol of " + zipline_symbol + ":" + zipline_markets[zipline_symbol] + ". " + name + ", derived from norgate session symbol " + session_symbol + " is a duplicate " ) zipline_markets[zipline_symbol] = name return zipline_markets logger.info("Zipline v" + zl.__version__ + " detected") logger.info("Zipline_norgatedata package v" + __version__ + ": Init complete")
zipline-norgatedata
/zipline_norgatedata-2.4.4-py3-none-any.whl/zipline_norgatedata/zipline_norgatedata.py
zipline_norgatedata.py
from zipline.pipeline.filters import Filter from zipline.pipeline.factors import Factor from zipline.api import sid from zipline.utils.numpy_utils import bool_dtype, repeat_first_axis from functools import partial from pprint import pprint # for debug only - remove for release import numpy as np import norgatedata import pandas as pd import logbook from queue import Queue from threading import Thread try: from multiprocessing import Process except ImportError: _has_multiprocessing = False else: _has_multiprocessing = True from time import time logger = logbook.Logger("Norgate Data") class NorgateDataIndexConstituent(Filter): """ A Filter that computes True or False for whether a given asset was part of the index on a given day Parameters """ window_length = 0 inputs = [] def __new__(cls, indexname): return super(NorgateDataIndexConstituent, cls).__new__(cls, indexname=indexname) def _init(self, indexname, *args, **kwargs): self._indexname = indexname return super(NorgateDataIndexConstituent, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, indexname, *args, **kwargs): return ( super(NorgateDataIndexConstituent, cls)._static_identity(*args, **kwargs), indexname, ) def _compute(self, arrays, dates, assets, mask): logger.info( "Populating " + self.__class__.__name__ + " pipeline populating with " + self._indexname + " on " + str(assets.size) + " securities from " + str(dates[0].strftime("%Y-%m-%d")) + " to " + str(dates[-1].strftime("%Y-%m-%d")) + "...." ) norgatetimeseriesfunction = partial( norgatedata.index_constituent_timeseries, indexname=self._indexname ) result = ConvertNorgateBoolTimeSeriesToFilter( assets, norgatetimeseriesfunction, dates, mask ) logger.info( "Pipeline " + self.__class__.__name__ + " with " + self._indexname + ": Done" ) return result class NorgateDataMajorExchangeListed(Filter): """ A Filter that computes True or False for whether a given asset was listed on a major exchange (True) or OTC (false) """ window_length = 0 inputs = [] def __new__(cls): return super(NorgateDataMajorExchangeListed, cls).__new__(cls) def _init(self, *args, **kwargs): return super(NorgateDataMajorExchangeListed, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, *args, **kwargs): return super(NorgateDataMajorExchangeListed, cls)._static_identity( *args, **kwargs ) def _compute(self, arrays, dates, assets, mask): logger.info( "Pipeline " + self.__class__.__name__ + " populating on " + str(assets.size) + " securities" ) norgatetimeseriesfunction = norgatedata.major_exchange_listed_timeseries result = ConvertNorgateBoolTimeSeriesToFilter( assets, norgatetimeseriesfunction, dates, mask ) logger.info("Pipeline " + self.__class__.__name__ + ": Done") return result # def graph_repr(self): # return "SingleAsset:\l asset: {!r}\l".format(self._indexname) class NorgateDataCapitalEvent(Filter): """ A Filter that computes True or False for whether a given asset had a capital event (eg. split) that was entitled today (and will take effect tomorrow) Parameters """ window_length = 1 inputs = [] window_safe = True dependencies = {} def __new__(cls): return super(NorgateDataCapitalEvent, cls).__new__(cls) def _init(self, *args, **kwargs): return super(NorgateDataCapitalEvent, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, *args, **kwargs): return super(NorgateDataCapitalEvent, cls)._static_identity(*args, **kwargs) def _compute(self, arrays, dates, assets, mask): logger.info( "Pipeline " + self.__class__.__name__ + " populating on " + str(assets.size) + " securities" ) norgatetimeseriesfunction = norgatedata.capital_event_timeseries result = ConvertNorgateBoolTimeSeriesToFilter( assets, norgatetimeseriesfunction, dates, mask ) logger.info("Pipeline " + self.__class__.__name__ + ": Done") return result # def graph_repr(self): # return "SingleAsset:\l asset: {!r}\l".format(self._indexname) class NorgateDataPaddingStatus(Filter): """ A Filter that computes True or False for whether a given asset was date padded on a given date Parameters """ window_length = 1 inputs = [] window_safe = True dependencies = {} def __new__(cls): return super(NorgateDataPaddingStatus, cls).__new__(cls) def _init(self, *args, **kwargs): return super(NorgateDataPaddingStatus, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, *args, **kwargs): return super(NorgateDataPaddingStatus, cls)._static_identity(*args, **kwargs) def _compute(self, arrays, dates, assets, mask): logger.info( "Pipeline " + self.__class__.__name__ + " populating on " + str(assets.size) + " securities" ) norgatetimeseriesfunction = norgatedata.padding_status_timeseries result = ConvertNorgateBoolTimeSeriesToFilter( assets, norgatetimeseriesfunction, dates, mask ) logger.info("Pipeline " + self.__class__.__name__ + ": Done") return result # def graph_repr(self): # return "SingleAsset:\l asset: {!r}\l".format(self._indexname) class NorgateDataUnadjustedClose(Factor): """ A Filter that returns the unadjusted close of the security """ window_length = 1 dtype = float inputs = [] window_safe = True def _compute(self, arrays, dates, assets, mask): logger.info( "Pipeline " + self.__class__.__name__ + " populating on " + str(assets.size) + " securities" ) norgatetimeseriesfunction = norgatedata.unadjusted_close_timeseries result = ConvertNorgateFloatTimeSeriesToFactor( assets, norgatetimeseriesfunction, dates, mask ) logger.info("Pipeline " + self.__class__.__name__ + ": Done") return result class NorgateDataDividendYield(Factor): """ A Filter that computes the dividend yield of a stock based upon a 12 month rolling window, with some smarts to handle variations in dates """ window_length = 1 dtype = float inputs = [] window_safe = True def _compute(self, arrays, dates, assets, mask): logger.info( "Pipeline " + self.__class__.__name__ + " populating on " + str(assets.size) + " securities" ) norgatetimeseriesfunction = norgatedata.dividend_yield_timeseries result = ConvertNorgateFloatTimeSeriesToFactor( assets, norgatetimeseriesfunction, dates, mask ) logger.info("Pipeline " + self.__class__.__name__ + ": Done") return result def PopulateFilterQueueWorker(q): while True: args = q.get() PopulateFilter(*args) q.task_done() def PopulateFilter( symbol, norgatetimeseriesfunction, start_date, end_date, assetindexcounter, dates, out, ): timeseries = norgatetimeseriesfunction( symbol=symbol, padding_setting=norgatedata.PaddingType.ALLMARKETDAYS, timeseriesformat="pandas-dataframe", start_date=start_date, end_date=end_date, datetimeformat="datetime64nsutc", timezone=None, ) timeseries = timeseries.reindex(dates, fill_value=0) out[:, assetindexcounter] = timeseries.iloc[:, 0] == 1 def ConvertNorgateBoolTimeSeriesToFilter( assets, norgatetimeseriesfunction, dates, mask ): start_date = dates[0] end_date = dates[-1] out = np.full_like(mask, False, order="K") # Fill with false assetindexcounter = 0 for zipline_assetid in assets: symbol = sid(zipline_assetid).symbol PopulateFilter( symbol, norgatetimeseriesfunction, start_date, end_date, assetindexcounter, dates, out, ) assetindexcounter += 1 # Testing of threading... only about 10% for unknown side effects # assetindexcounter = 0 # out = np.full_like(mask,False,order='K') # Fill with false # q = Queue(maxsize=0) # num_threads = 8 # Setup workers # for i in range(num_threads): # worker = Thread(target=PopulateFilterQueueWorker, args=(q,)) # worker.setDaemon(True) # worker.start() # for zipline_assetid in assets: # symbol = sid(zipline_assetid).symbol # q.put((symbol,norgatetimeseriesfunction,start_date,end_date,assetindexcounter,dates,out)) # assetindexcounter+=1 # q.join() return out def PopulateFactor( symbol, norgatetimeseriesfunction, start_date, end_date, assetindexcounter, dates, out, ): timeseries = norgatetimeseriesfunction( symbol=symbol, padding_setting=norgatedata.PaddingType.ALLMARKETDAYS, timeseriesformat="pandas-dataframe", start_date=start_date, end_date=end_date, datetimeformat="datetime64nsutc", timezone=None, ) out[:, assetindexcounter] = timeseries.reindex( dates, fill_value=0, copy=False ).values[:, 0] def ConvertNorgateFloatTimeSeriesToFactor( assets, norgatetimeseriesfunction, dates, mask ): start_date = dates[0].to_pydatetime() end_date = dates[-1].to_pydatetime() out = np.full_like(mask, np.nan, dtype=float, order="K") # Fill with NaN assetindexcounter = 0 for zipline_assetid in assets: symbol = sid(zipline_assetid).symbol PopulateFactor( symbol, norgatetimeseriesfunction, start_date, end_date, assetindexcounter, dates, out, ) assetindexcounter += 1 return out
zipline-norgatedata
/zipline_norgatedata-2.4.4-py3-none-any.whl/zipline_norgatedata/pipelines.py
pipelines.py
======================= Zipline Poloniex Bundle ======================= Poloniex data bundle for zipline_, the pythonic algorithmic trading library. Description =========== Just install the data bundle with pip:: pip install zipline-poloniex and create a file ``$HOME/.zipline/extension.py`` calling zipline's register_ function. The ``create_bundle`` function returns the necessary ingest function for ``register``. Use the ``Pairs`` record for common US-Dollar to crypto-currency pairs. Example ======= 1) Add following content to ``$HOME/.zipline/extension.py``: .. code:: python import pandas as pd from zipline_poloniex import create_bundle, Pairs, register # adjust the following lines to your needs start_session = pd.Timestamp('2016-01-01', tz='utc') end_session = pd.Timestamp('2016-12-31', tz='utc') assets = [Pairs.usdt_eth] register( 'poloniex', create_bundle( assets, start_session, end_session, ), calendar_name='POLONIEX', minutes_per_day=24*60, start_session=start_session, end_session=end_session ) 2) Ingest the data with:: zipline ingest -b poloniex 3) Create your trading algorithm, e.g. ``my_algorithm.py`` with: .. code:: python import logging from zipline.api import order, record, symbol from zipline_poloniex.utils import setup_logging __author__ = "Florian Wilhelm" __copyright__ = "Florian Wilhelm" __license__ = "new-bsd" # setup logging and all setup_logging(logging.INFO) _logger = logging.getLogger(__name__) _logger.info("Dummy agent loaded") def initialize(context): _logger.info("Initializing agent...") # There seems no "nice" way to set the emission rate to minute context.sim_params._emission_rate = 'minute' def handle_data(context, data): _logger.debug("Handling data...") order(symbol('ETH'), 10) record(ETH=data.current(symbol('ETH'), 'price')) 4) Run your algorithm in ``my_algorithm.py`` with:: zipline run -f ./my_algorithm.py -s 2016-01-01 -e 2016-12-31 -o results.pickle --data-frequency minute -b poloniex 5) Analyze the performance by reading ``results.pickle`` with the help of Pandas. Note ==== This project has been set up using PyScaffold 2.5.7. For details and usage information on PyScaffold see http://pyscaffold.readthedocs.org/. .. _register: http://www.zipline.io/appendix.html?highlight=register#zipline.data.bundles.register .. _zipline: http://www.zipline.io/
zipline-poloniex
/zipline-poloniex-0.1.2.tar.gz/zipline-poloniex-0.1.2/README.rst
README.rst
================ zipline-poloniex ================ This is the documentation of **zipline-poloniex**. .. note:: This is the main page of your project's `Sphinx <http://sphinx-doc.org/>`_ documentation. It is formatted in `reStructuredText <http://sphinx-doc.org/rest.html>`__. Add additional pages by creating rst-files in ``docs`` and adding them to the `toctree <http://sphinx-doc.org/markup/toctree.html>`_ below. Use then `references <http://sphinx-doc.org/markup/inline.html>`__ in order to link them from this page, e.g. :ref:`authors <authors>` and :ref:`changes`. It is also possible to refer to the documentation of other Python packages with the `Python domain syntax <http://sphinx-doc.org/domains.html#the-python-domain>`__. By default you can reference the documentation of `Sphinx <http://sphinx.pocoo.org>`__, `Python <http://docs.python.org/>`__, `NumPy <http://docs.scipy.org/doc/numpy>`__, `SciPy <http://docs.scipy.org/doc/scipy/reference/>`__, `matplotlib <http://matplotlib.sourceforge.net>`__, `Pandas <http://pandas.pydata.org/pandas-docs/stable>`__, `Scikit-Learn <http://scikit-learn.org/stable>`__. You can add more by extending the ``intersphinx_mapping`` in your Sphinx's ``conf.py``. The pretty useful extension `autodoc <http://www.sphinx-doc.org/en/stable/ext/autodoc.html>`__ is activated by default and lets you include documentation from docstrings. Docstrings can be written in `Google <http://google.github.io/styleguide/pyguide.html#Comments>`__ (recommended!), `NumPy <https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt>`__ and `classical <http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists>`__ style. Contents ======== .. toctree:: :maxdepth: 2 License <license> Authors <authors> Changelog <changes> Module Reference <api/modules> Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
zipline-poloniex
/zipline-poloniex-0.1.2.tar.gz/zipline-poloniex-0.1.2/docs/index.rst
index.rst
import logging from datetime import time, timedelta, datetime from pytz import timezone import numpy as np import pandas as pd from pandas.tseries.offsets import CustomBusinessDay from zipline.utils.calendars import ( TradingCalendar, register_calendar, register_calendar_alias, deregister_calendar) from zipline.data.bundles import register from zipline.utils.memoize import lazyval from .api import get_currencies, get_trade_hist, TradesExceeded __author__ = "Florian Wilhelm" __copyright__ = "Florian Wilhelm" __license__ = "mit" _logger = logging.getLogger(__name__) class Pairs(object): """Record object holding most common US-$ / crypto-currency pairs """ usdt_btc = 'USDT_BTC' usdt_bch = 'USDT_BCH' usdt_eth = 'USDT_ETH' usdt_dash = 'USDT_DASH' usdt_etc = 'USDT_ETC' usdt_xmr = 'USDT_XMR' usdt_zec = 'USDT_ZEC' usdt_xrp = 'USDT_XRP' usdt_ltc = 'USDT_LTC' usdt_rep = 'USDT_REP' usdt_nxt = 'USDT_NXT' usdt_str = 'USDT_STR' def fetch_assets(asset_pairs): """Fetch given asset pairs Args: asset_pairs (list): list of asset pairs Returns: pandas.DataFrame: dataframe of asset pairs """ asset_pair_map = {pair.split("_")[1]: pair for pair in asset_pairs} all_assets = get_currencies() asset_df = all_assets.ix[asset_pair_map.keys()].reset_index() asset_df = asset_df[['index', 'name']].rename( columns={'index': 'symbol', 'name': 'asset_name'}) asset_df['exchange'] = 'Poloniex' # needed despite documented as optional return asset_df def make_candle_stick(trades, freq='1T'): """Make a candle stick like chart Check [1] for resample rules: [1]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases Args: trades (pandas.DataFrame): dataframe containing trades freq (str): frequency for resampling (default 1 minute) Returns: pandas.DataFrame: chart data """ volume = trades['amount'].resample(freq).sum() volume = volume.fillna(0) high = trades['rate'].resample(freq).max() low = trades['rate'].resample(freq).min() open = trades['rate'].resample(freq).first() close = trades['rate'].resample(freq).last() return pd.DataFrame( dict(open=open, high=high, low=low, close=close, volume=volume)) def get_trade_hist_alias(asset_pair, start, end): """Helper function to run api.get_trade_hist If a TradesExceeded exception is raised, it splits the timerange of (start) to (end) in half and calls itself with the new timeranges. This prevents any 'hotspots' where there is extremely high trading activity in a short period of time - eg on usdt_btc Args: asset_pair: name of the asset pair start (pandas.Timestamp): start of period end (pandas.Timestamp): end of period Returns: pandas.DataFrame: dataframe containing trades of asset """ original_timedelta = end - start try: df = get_trade_hist(asset_pair, start, end) except TradesExceeded: new_timedelta = original_timedelta / 2 df = pd.concat([ get_trade_hist_alias(asset_pair, start, start + new_timedelta - pd.offsets.Second()), get_trade_hist_alias(asset_pair, start + new_timedelta, end) ]) return df def fetch_trades(asset_pair, start, end): """Helper function to fetch trades for a single asset pair Does all necessary conversions, sets `date` as index and assures that `start` and `end` are in the index. Args: asset_pair: name of the asset pair start (pandas.Timestamp): start of period end (pandas.Timestamp): end of period Returns: pandas.DataFrame: dataframe containing trades of asset """ df = get_trade_hist_alias(asset_pair, start, end) df['date'] = df['date'].apply(lambda x: datetime.strptime( x, '%Y-%m-%d %H:%M:%S').replace(tzinfo=timezone('UTC'))) for col in ('total', 'rate', 'amount'): df[col] = df[col].astype(np.float32) df = df.set_index('date') if start not in df.index: df.loc[start] = np.nan if end not in df.index: df.loc[end] = np.nan return df def prepare_data(start, end, sid_map, cache): """Retrieve and prepare trade data for ingestion Args: start (pandas.Timestamp): start of period end (pandas.Timestamp): end of period sid_map (dict): mapping from symbol id to asset pair name cache: cache object as provided by zipline Returns: generator of symbol id and dataframe tuples """ def get_key(sid, day): return "{}_{}".format(sid, day.strftime("%Y-%m-%d")) for sid, asset_pair in sid_map.items(): for start_day in pd.date_range(start, end, freq='D', closed='left', tz='utc'): key = get_key(sid, start_day) if key not in cache: end_day = start_day + timedelta(days=1, seconds=-1) trades = fetch_trades(asset_pair, start_day, end_day) cache[key] = make_candle_stick(trades) _logger.debug("Fetched trades from {} to {}".format(start_day, end_day)) yield sid, cache[key] def create_bundle(asset_pairs, start=None, end=None): """Create a bundle ingest function Args: asset_pairs (list): list of asset pairs start (pandas.Timestamp): start of trading period end (pandas.Timestamp): end of trading period Returns: ingest function needed by zipline's register. """ def ingest(environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir, # pass these as defaults to make them 'nonlocal' in py2 start=start, end=end): if start is None: start = start_session if end is None: end = end_session adjustment_writer.write() asset_df = fetch_assets(asset_pairs) asset_db_writer.write(equities=asset_df) # generate the mapping between sid and symbol name asset_map = asset_df['symbol'].to_dict() asset_pair_map = {pair.split("_")[1]: pair for pair in asset_pairs} sid_map = {k: asset_pair_map[v] for k, v in asset_map.items()} data = prepare_data(start, end, sid_map, cache) minute_bar_writer.write(data, show_progress=show_progress) return ingest class PoloniexCalendar(TradingCalendar): """Trading Calender of Poloniex Exchange """ @property def name(self): return "POLONIEX" @property def tz(self): return timezone('UTC') @property def open_time(self): return time(0, 0) @property def close_time(self): return time(23, 59) @lazyval def day(self): return CustomBusinessDay( weekmask='Mon Tue Wed Thu Fri Sat Sun' ) register_calendar('POLONIEX', PoloniexCalendar()) # The following is necessary because zipline's developer hard-coded NYSE # everywhere in run_algo._run, *DOH*!!! deregister_calendar('NYSE') register_calendar_alias('NYSE', 'POLONIEX', force=False) register( '.test_poloniex', create_bundle( [Pairs.usdt_eth], pd.Timestamp('2016-01-01', tz='utc'), pd.Timestamp('2016-01-31', tz='utc'), ), calendar_name='POLONIEX', minutes_per_day=24*60 )
zipline-poloniex
/zipline-poloniex-0.1.2.tar.gz/zipline-poloniex-0.1.2/zipline_poloniex/bundle.py
bundle.py
import sys import time import logging import functools from math import fabs from datetime import datetime from pytz import timezone __author__ = "Florian Wilhelm" __copyright__ = "Florian Wilhelm" __license__ = "mit" _logger = logging.getLogger(__name__) def unix_time(dt): """Convert datetime to seconds since epoch Args: dt: datetime object Returns: seconds since epoch """ epoch = datetime.utcfromtimestamp(0).replace(tzinfo=timezone('UTC')) dt = dt.replace(tzinfo=timezone('UTC')) return (dt - epoch).total_seconds() def throttle(calls, seconds=1): """Decorator for throttling a function to number of calls per seconds Args: calls (int): number of calls per interval seconds (int): number of seconds in interval Returns: wrapped function """ assert isinstance(calls, int), 'number of calls must be integer' assert isinstance(seconds, int), 'number of seconds must be integer' def wraps(func): # keeps track of the last calls last_calls = list() @functools.wraps(func) def wrapper(*args, **kwargs): curr_time = time.time() if last_calls: # remove calls from last_calls list older then interval in seconds idx_old_calls = [i for i, t in enumerate(last_calls) if t < curr_time - seconds] if idx_old_calls: del last_calls[:idx_old_calls[-1]] if len(last_calls) >= calls: idx = len(last_calls) - calls delta = fabs(1 - curr_time + last_calls[idx]) logger = logging.getLogger(func.__module__) logger.debug("Stalling call to {} for {}s".format(func.__name__, delta)) time.sleep(delta) resp = func(*args, **kwargs) last_calls.append(time.time()) return resp return wrapper return wraps def activate_live_debugging(): """Activates live debugging with IPython's pdb """ _logger.info("Activating live debugging...") from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', color_scheme='Linux', call_pdb=1) def setup_logging(loglevel): """Setup basic logging Args: loglevel (int): minimum loglevel for emitting messages """ logformat = "[%(asctime)s] %(levelname)s:%(name)s:%(message)s" logging.basicConfig(level=loglevel, stream=sys.stdout, format=logformat, datefmt="%Y-%m-%d %H:%M:%S")
zipline-poloniex
/zipline-poloniex-0.1.2.tar.gz/zipline-poloniex-0.1.2/zipline_poloniex/utils.py
utils.py
import logging import requests import pandas as pd from .utils import unix_time, throttle __author__ = "Florian Wilhelm" __copyright__ = "Florian Wilhelm" __license__ = "mit" _logger = logging.getLogger(__name__) API_URL = "https://poloniex.com/public" class TradesExceeded(Exception): pass class RequestError(Exception): pass @throttle(6) def call_api(command, **kwargs): """Call to Poloniex API Args: command (str): API command **kwargs: additional request parameters Returns: pandas.DataFrame: dataframe containing the results """ payload = dict(command=command) payload.update(kwargs) r = requests.get(API_URL, params=payload) r.raise_for_status() data = r.json() if isinstance(data, dict) and 'error' in data.keys(): raise RequestError(data['error']) return pd.DataFrame(data) def get_currencies(): """Fetch all available currency pairs, i.e. asset pairs Returns: pandas.DataFrame: dataframe containing asset pairs """ return call_api('returnCurrencies').transpose() def get_trade_hist(pair, start, end): """Fetch trade history of an asset pair in given period Args: pair (str): asset pair name start (pandas.Timestamp): start of period end (pandas.Timestamp): end of period Returns: pandas.DataFrame: dataframe containing period's trades """ start, end = unix_time(start), unix_time(end) trades = call_api('returnTradeHistory', currencyPair=pair, start=start, end=end) if trades.empty: # make sure we add the expected columns trades = pd.DataFrame( columns=["globalTradeID", "tradeID", "date", "type", "rate", "amount", "total"]) if trades.shape[0] >= 50000: raise TradesExceeded("Number of trades exceeded") return trades def get_chart_data(pair, start, end, period=1800): """Fetch chart data for asset pair in given period Args: pair (str): asset pair name start (pandas.Timestamp): start of period end (pandas.Timestamp): end of period period: period span in seconds Returns: pandas.DataFrame: dataframe containing candle stick data """ valid_periods = (300, 900, 1800, 7200, 14400, 86400) assert period in valid_periods, "Invalid period" start, end = unix_time(start), unix_time(end) return call_api('returnChartData', currencyPair=pair, start=start, end=end, period=period)
zipline-poloniex
/zipline-poloniex-0.1.2.tar.gz/zipline-poloniex-0.1.2/zipline_poloniex/api.py
api.py
import errno import os import click import logging import pandas as pd import zipline from zipline.data import bundles as bundles_module from zipline.utils.calendar_utils import get_calendar from zipline.utils.compat import wraps from zipline.utils.cli import Date, Timestamp from zipline.utils.run_algo import _run, BenchmarkSpec, load_extensions from zipline.extensions import create_args try: __IPYTHON__ except NameError: __IPYTHON__ = False @click.group() @click.option( "-e", "--extension", multiple=True, help="File or module path to a zipline extension to load.", ) @click.option( "--strict-extensions/--non-strict-extensions", is_flag=True, help="If --strict-extensions is passed then zipline will not " "run if it cannot load all of the specified extensions. " "If this is not passed or --non-strict-extensions is passed " "then the failure will be logged but execution will continue.", ) @click.option( "--default-extension/--no-default-extension", is_flag=True, default=True, help="Don't load the default zipline extension.py file in $ZIPLINE_HOME.", ) @click.option( "-x", multiple=True, help="Any custom command line arguments to define, in key=value form.", ) @click.pass_context def main(ctx, extension, strict_extensions, default_extension, x): """Top level zipline entry point.""" # install a logging handler before performing any other operations logging.basicConfig( format="[%(asctime)s-%(levelname)s][%(name)s]\n %(message)s", level=logging.INFO, datefmt="%Y-%m-%dT%H:%M:%S%z", ) create_args(x, zipline.extension_args) load_extensions( default_extension, extension, strict_extensions, os.environ, ) def extract_option_object(option): """Convert a click.option call into a click.Option object. Parameters ---------- option : decorator A click.option decorator. Returns ------- option_object : click.Option The option object that this decorator will create. """ @option def opt(): pass return opt.__click_params__[0] def ipython_only(option): """Mark that an option should only be exposed in IPython. Parameters ---------- option : decorator A click.option decorator. Returns ------- ipython_only_dec : decorator A decorator that correctly applies the argument even when not using IPython mode. """ if __IPYTHON__: return option argname = extract_option_object(option).name def d(f): @wraps(f) def _(*args, **kwargs): kwargs[argname] = None return f(*args, **kwargs) return _ return d DEFAULT_BUNDLE = "quandl" @main.command() @click.option( "-f", "--algofile", default=None, type=click.File("r"), help="The file that contains the algorithm to run.", ) @click.option( "-t", "--algotext", help="The algorithm script to run.", ) @click.option( "-D", "--define", multiple=True, help="Define a name to be bound in the namespace before executing" " the algotext. For example '-Dname=value'. The value may be any " "python expression. These are evaluated in order so they may refer " "to previously defined names.", ) @click.option( "--data-frequency", type=click.Choice({"daily", "minute"}), default="daily", show_default=True, help="The data frequency of the simulation.", ) @click.option( "--capital-base", type=float, default=10e6, show_default=True, help="The starting capital for the simulation.", ) @click.option( "-b", "--bundle", default=DEFAULT_BUNDLE, metavar="BUNDLE-NAME", show_default=True, help="The data bundle to use for the simulation.", ) @click.option( "--bundle-timestamp", type=Timestamp(), default=pd.Timestamp.utcnow(), show_default=False, help="The date to lookup data on or before.\n" "[default: <current-time>]", ) @click.option( "-bf", "--benchmark-file", default=None, type=click.Path(exists=True, dir_okay=False, readable=True, path_type=str), help="The csv file that contains the benchmark returns", ) @click.option( "--benchmark-symbol", default=None, type=click.STRING, help="The symbol of the instrument to be used as a benchmark " "(should exist in the ingested bundle)", ) @click.option( "--benchmark-sid", default=None, type=int, help="The sid of the instrument to be used as a benchmark " "(should exist in the ingested bundle)", ) @click.option( "--no-benchmark", is_flag=True, default=False, help="If passed, use a benchmark of zero returns.", ) @click.option( "-s", "--start", type=Date(as_timestamp=True), help="The start date of the simulation.", ) @click.option( "-e", "--end", type=Date(as_timestamp=True), help="The end date of the simulation.", ) @click.option( "-o", "--output", default="-", metavar="FILENAME", show_default=True, help="The location to write the perf data. If this is '-' the perf will" " be written to stdout.", ) @click.option( "--trading-calendar", metavar="TRADING-CALENDAR", default="XNYS", help="The calendar you want to use e.g. XLON. XNYS is the default.", ) @click.option( "--print-algo/--no-print-algo", is_flag=True, default=False, help="Print the algorithm to stdout.", ) @click.option( "--metrics-set", default="default", help="The metrics set to use. New metrics sets may be registered in your" " extension.py.", ) @click.option( "--blotter", default="default", help="The blotter to use.", show_default=True, ) @ipython_only( click.option( "--local-namespace/--no-local-namespace", is_flag=True, default=None, help="Should the algorithm methods be " "resolved in the local namespace.", ) ) @click.pass_context def run( ctx, algofile, algotext, define, data_frequency, capital_base, bundle, bundle_timestamp, benchmark_file, benchmark_symbol, benchmark_sid, no_benchmark, start, end, output, trading_calendar, print_algo, metrics_set, local_namespace, blotter, ): """Run a backtest for the given algorithm.""" # check that the start and end dates are passed correctly if start is None and end is None: # check both at the same time to avoid the case where a user # does not pass either of these and then passes the first only # to be told they need to pass the second argument also ctx.fail( "must specify dates with '-s' / '--start' and '-e' / '--end'", ) if start is None: ctx.fail("must specify a start date with '-s' / '--start'") if end is None: ctx.fail("must specify an end date with '-e' / '--end'") if (algotext is not None) == (algofile is not None): ctx.fail( "must specify exactly one of '-f' / " "'--algofile' or" " '-t' / '--algotext'", ) trading_calendar = get_calendar(trading_calendar) benchmark_spec = BenchmarkSpec.from_cli_params( no_benchmark=no_benchmark, benchmark_sid=benchmark_sid, benchmark_symbol=benchmark_symbol, benchmark_file=benchmark_file, ) return _run( initialize=None, handle_data=None, before_trading_start=None, analyze=None, algofile=algofile, algotext=algotext, defines=define, data_frequency=data_frequency, capital_base=capital_base, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output=output, trading_calendar=trading_calendar, print_algo=print_algo, metrics_set=metrics_set, local_namespace=local_namespace, environ=os.environ, blotter=blotter, benchmark_spec=benchmark_spec, custom_loader=None, ) def zipline_magic(line, cell=None): """The zipline IPython cell magic.""" load_extensions( default=True, extensions=[], strict=True, environ=os.environ, ) try: return run.main( # put our overrides at the start of the parameter list so that # users may pass values with higher precedence [ "--algotext", cell, "--output", os.devnull, # don't write the results by default ] + ( [ # these options are set when running in line magic mode # set a non None algo text to use the ipython user_ns "--algotext", "", "--local-namespace", ] if cell is None else [] ) + line.split(), "%s%%zipline" % ((cell or "") and "%"), # don't use system exit and propogate errors to the caller standalone_mode=False, ) except SystemExit as exc: # https://github.com/mitsuhiko/click/pull/533 # even in standalone_mode=False `--help` really wants to kill us ;_; if exc.code: raise ValueError( "main returned non-zero status code: %d" % exc.code ) from exc @main.command() @click.option( "-b", "--bundle", default=DEFAULT_BUNDLE, metavar="BUNDLE-NAME", show_default=True, help="The data bundle to ingest.", ) @click.option( "--assets-version", type=int, multiple=True, help="Version of the assets db to which to downgrade.", ) @click.option( "--show-progress/--no-show-progress", default=True, help="Print progress information to the terminal.", ) def ingest(bundle, assets_version, show_progress): """Ingest the data for the given bundle.""" bundles_module.ingest( bundle, os.environ, pd.Timestamp.utcnow(), assets_version, show_progress, ) @main.command() @click.option( "-b", "--bundle", default=DEFAULT_BUNDLE, metavar="BUNDLE-NAME", show_default=True, help="The data bundle to clean.", ) @click.option( "-e", "--before", type=Timestamp(), help="Clear all data before TIMESTAMP." " This may not be passed with -k / --keep-last", ) @click.option( "-a", "--after", type=Timestamp(), help="Clear all data after TIMESTAMP" " This may not be passed with -k / --keep-last", ) @click.option( "-k", "--keep-last", type=int, metavar="N", help="Clear all but the last N downloads." " This may not be passed with -e / --before or -a / --after", ) def clean(bundle, before, after, keep_last): """Clean up data downloaded with the ingest command.""" bundles_module.clean( bundle, before, after, keep_last, ) @main.command() def bundles(): """List all of the available data bundles.""" for bundle in sorted(bundles_module.bundles.keys()): if bundle.startswith("."): # hide the test data continue try: ingestions = list(map(str, bundles_module.ingestions_for_bundle(bundle))) except OSError as e: if e.errno != errno.ENOENT: raise ingestions = [] # If we got no ingestions, either because the directory didn't exist or # because there were no entries, print a single message indicating that # no ingestions have yet been made. for timestamp in ingestions or ["<no ingestions>"]: click.echo("%s %s" % (bundle, timestamp)) if __name__ == "__main__": main()
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/__main__.py
__main__.py
import re from toolz import curry def create_args(args, root): """ Encapsulates a set of custom command line arguments in key=value or key.namespace=value form into a chain of Namespace objects, where each next level is an attribute of the Namespace object on the current level Parameters ---------- args : list A list of strings representing arguments in key=value form root : Namespace The top-level element of the argument tree """ extension_args = {} for arg in args: parse_extension_arg(arg, extension_args) for name in sorted(extension_args, key=len): path = name.split(".") update_namespace(root, path, extension_args[name]) def parse_extension_arg(arg, arg_dict): """ Converts argument strings in key=value or key.namespace=value form to dictionary entries Parameters ---------- arg : str The argument string to parse, which must be in key=value or key.namespace=value form. arg_dict : dict The dictionary into which the key/value pair will be added """ match = re.match(r"^(([^\d\W]\w*)(\.[^\d\W]\w*)*)=(.*)$", arg) if match is None: raise ValueError( "invalid extension argument '%s', must be in key=value form" % arg ) name = match.group(1) value = match.group(4) arg_dict[name] = value def update_namespace(namespace, path, name): """ A recursive function that takes a root element, list of namespaces, and the value being stored, and assigns namespaces to the root object via a chain of Namespace objects, connected through attributes Parameters ---------- namespace : Namespace The object onto which an attribute will be added path : list A list of strings representing namespaces name : str The value to be stored at the bottom level """ if len(path) == 1: setattr(namespace, path[0], name) else: if hasattr(namespace, path[0]): if isinstance(getattr(namespace, path[0]), str): raise ValueError( "Conflicting assignments at namespace" " level '%s'" % path[0] ) else: a = Namespace() setattr(namespace, path[0], a) update_namespace(getattr(namespace, path[0]), path[1:], name) class Namespace: """ A placeholder object representing a namespace level """ class Registry: """ Responsible for managing all instances of custom subclasses of a given abstract base class - only one instance needs to be created per abstract base class, and should be created through the create_registry function/decorator. All management methods for a given base class can be called through the global wrapper functions rather than through the object instance itself. Parameters ---------- interface : type The abstract base class to manage. """ def __init__(self, interface): self.interface = interface self._factories = {} def load(self, name): """Construct an object from a registered factory. Parameters ---------- name : str Name with which the factory was registered. """ try: return self._factories[name]() except KeyError as exc: raise ValueError( "no %s factory registered under name %r, options are: %r" % (self.interface.__name__, name, sorted(self._factories)), ) from exc def is_registered(self, name): """Check whether we have a factory registered under ``name``.""" return name in self._factories @curry def register(self, name, factory): if self.is_registered(name): raise ValueError( "%s factory with name %r is already registered" % (self.interface.__name__, name) ) self._factories[name] = factory return factory def unregister(self, name): try: del self._factories[name] except KeyError as exc: raise ValueError( "%s factory %r was not already registered" % (self.interface.__name__, name) ) from exc def clear(self): self._factories.clear() # Public wrapper methods for Registry: def get_registry(interface): """ Getter method for retrieving the registry instance for a given extendable type Parameters ---------- interface : type extendable type (base class) Returns ------- manager : Registry The corresponding registry """ try: return custom_types[interface] except KeyError as exc: raise ValueError("class specified is not an extendable type") from exc def load(interface, name): """ Retrieves a custom class whose name is given. Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the class to be retrieved. Returns ------- obj : object An instance of the desired class. """ return get_registry(interface).load(name) @curry def register(interface, name, custom_class): """ Registers a class for retrieval by the load method Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the subclass custom_class : type The class to register, which must be a subclass of the abstract base class in self.dtype """ return get_registry(interface).register(name, custom_class) def unregister(interface, name): """ If a class is registered with the given name, it is unregistered. Parameters ---------- interface : type The base class for which to perform this operation name : str The name of the class to be unregistered. """ get_registry(interface).unregister(name) def clear(interface): """ Unregisters all current registered classes Parameters ---------- interface : type The base class for which to perform this operation """ get_registry(interface).clear() def create_registry(interface): """ Create a new registry for an extensible interface. Parameters ---------- interface : type The abstract data type for which to create a registry, which will manage registration of factories for this type. Returns ------- interface : type The data type specified/decorated, unaltered. """ if interface in custom_types: raise ValueError( "there is already a Registry instance " "for the specified type" ) custom_types[interface] = Registry(interface) return interface extensible = create_registry # A global dictionary for storing instances of Registry: custom_types = {}
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/extensions.py
extensions.py
from textwrap import dedent from zipline.utils.memoize import lazyval class ZiplineError(Exception): msg = None def __init__(self, **kwargs): self.kwargs = kwargs @lazyval def message(self): return str(self) def __str__(self): msg = self.msg.format(**self.kwargs) return msg __repr__ = __str__ class NoTradeDataAvailable(ZiplineError): pass class NoTradeDataAvailableTooEarly(NoTradeDataAvailable): msg = "{sid} does not exist on {dt}. It started trading on {start_dt}." class NoTradeDataAvailableTooLate(NoTradeDataAvailable): msg = "{sid} does not exist on {dt}. It stopped trading on {end_dt}." class BenchmarkAssetNotAvailableTooEarly(NoTradeDataAvailableTooEarly): pass class BenchmarkAssetNotAvailableTooLate(NoTradeDataAvailableTooLate): pass class InvalidBenchmarkAsset(ZiplineError): msg = """ {sid} cannot be used as the benchmark because it has a stock \ dividend on {dt}. Choose another asset to use as the benchmark. """.strip() class WrongDataForTransform(ZiplineError): """Raised whenever a rolling transform is called on an event that does not have the necessary properties. """ msg = "{transform} requires {fields}. Event cannot be processed." class UnsupportedSlippageModel(ZiplineError): """Raised if a user script calls the set_slippage magic with a slipage object that isn't a VolumeShareSlippage or FixedSlipapge """ msg = """ You attempted to set slippage with an unsupported class. \ Please use VolumeShareSlippage or FixedSlippage. """.strip() class IncompatibleSlippageModel(ZiplineError): """Raised if a user tries to set a futures slippage model for equities or vice versa. """ msg = """ You attempted to set an incompatible slippage model for {asset_type}. \ The slippage model '{given_model}' only supports {supported_asset_types}. """.strip() class SetSlippagePostInit(ZiplineError): # Raised if a users script calls set_slippage magic # after the initialize method has returned. msg = """ You attempted to set slippage outside of `initialize`. \ You may only call 'set_slippage' in your initialize method. """.strip() class SetCancelPolicyPostInit(ZiplineError): # Raised if a users script calls set_cancel_policy # after the initialize method has returned. msg = """ You attempted to set the cancel policy outside of `initialize`. \ You may only call 'set_cancel_policy' in your initialize method. """.strip() class RegisterTradingControlPostInit(ZiplineError): # Raised if a user's script register's a trading control after initialize # has been run. msg = """ You attempted to set a trading control outside of `initialize`. \ Trading controls may only be set in your initialize method. """.strip() class RegisterAccountControlPostInit(ZiplineError): # Raised if a user's script register's a trading control after initialize # has been run. msg = """ You attempted to set an account control outside of `initialize`. \ Account controls may only be set in your initialize method. """.strip() class UnsupportedCommissionModel(ZiplineError): """Raised if a user script calls the set_commission magic with a commission object that isn't a PerShare, PerTrade or PerDollar commission """ msg = """ You attempted to set commission with an unsupported class. \ Please use PerShare or PerTrade. """.strip() class IncompatibleCommissionModel(ZiplineError): """Raised if a user tries to set a futures commission model for equities or vice versa. """ msg = """ You attempted to set an incompatible commission model for {asset_type}. \ The commission model '{given_model}' only supports {supported_asset_types}. """.strip() class UnsupportedCancelPolicy(ZiplineError): """Raised if a user script calls set_cancel_policy with an object that isn't a CancelPolicy. """ msg = """ You attempted to set the cancel policy with an unsupported class. Please use an instance of CancelPolicy. """.strip() class SetCommissionPostInit(ZiplineError): """Raised if a users script calls set_commission magic after the initialize method has returned. """ msg = """ You attempted to override commission outside of `initialize`. \ You may only call 'set_commission' in your initialize method. """.strip() class TransactionWithNoVolume(ZiplineError): """Raised if a transact call returns a transaction with zero volume.""" msg = """ Transaction {txn} has a volume of zero. """.strip() class TransactionWithWrongDirection(ZiplineError): """Raised if a transact call returns a transaction with a direction that does not match the order. """ msg = """ Transaction {txn} not in same direction as corresponding order {order}. """.strip() class TransactionWithNoAmount(ZiplineError): """Raised if a transact call returns a transaction with zero amount.""" msg = """ Transaction {txn} has an amount of zero. """.strip() class TransactionVolumeExceedsOrder(ZiplineError): """Raised if a transact call returns a transaction with a volume greater than the corresponding order. """ msg = """ Transaction volume of {txn} exceeds the order volume of {order}. """.strip() class UnsupportedOrderParameters(ZiplineError): """Raised if a set of mutually exclusive parameters are passed to an order call. """ msg = "{msg}" class CannotOrderDelistedAsset(ZiplineError): """Raised if an order is for a delisted asset.""" msg = "{msg}" class BadOrderParameters(ZiplineError): """Raised if any impossible parameters (nan, negative limit/stop) are passed to an order call. """ msg = "{msg}" class OrderDuringInitialize(ZiplineError): """Raised if order is called during initialize()""" msg = "{msg}" class SetBenchmarkOutsideInitialize(ZiplineError): """Raised if set_benchmark is called outside initialize()""" msg = "'set_benchmark' can only be called within initialize function." class ZeroCapitalError(ZiplineError): """Raised if initial capital is set at or below zero""" msg = "initial capital base must be greater than zero" class AccountControlViolation(ZiplineError): """Raised if the account violates a constraint set by a AccountControl.""" msg = """ Account violates account constraint {constraint}. """.strip() class TradingControlViolation(ZiplineError): """Raised if an order would violate a constraint set by a TradingControl.""" msg = """ Order for {amount} shares of {asset} at {datetime} violates trading constraint {constraint}. """.strip() class IncompatibleHistoryFrequency(ZiplineError): """Raised when a frequency is given to history which is not supported. At least, not yet. """ msg = """ Requested history at frequency '{frequency}' cannot be created with data at frequency '{data_frequency}'. """.strip() class OrderInBeforeTradingStart(ZiplineError): """Raised when an algorithm calls an order method in before_trading_start.""" msg = "Cannot place orders inside before_trading_start." class MultipleSymbolsFound(ZiplineError): """Raised when a symbol() call contains a symbol that changed over time and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple symbols with the name '{symbol}' found. Use the as_of_date' argument to specify when the date symbol-lookup should be valid. Possible options: {options} """.strip() class MultipleSymbolsFoundForFuzzySymbol(MultipleSymbolsFound): """Raised when a fuzzy symbol lookup is not resolvable without additional information. """ msg = dedent( """\ Multiple symbols were found fuzzy matching the name '{symbol}'. Use the as_of_date and/or country_code arguments to specify the date and country for the symbol-lookup. Possible options: {options} """ ) class SameSymbolUsedAcrossCountries(MultipleSymbolsFound): """Raised when a symbol() call contains a symbol that is used in more than one country and is thus not resolvable without a country_code. """ msg = dedent( """\ The symbol '{symbol}' is used in more than one country. Use the country_code argument to specify the country. Possible options by country: {options} """ ) class SymbolNotFound(ZiplineError): """Raised when a symbol() call contains a non-existant symbol.""" msg = """ Symbol '{symbol}' was not found. """.strip() class RootSymbolNotFound(ZiplineError): """Raised when a lookup_future_chain() call contains a non-existant symbol.""" msg = """ Root symbol '{root_symbol}' was not found. """.strip() class ValueNotFoundForField(ZiplineError): """Raised when a lookup_by_supplementary_mapping() call contains a value does not exist for the specified mapping type. """ msg = """ Value '{value}' was not found for field '{field}'. """.strip() class MultipleValuesFoundForField(ZiplineError): """Raised when a lookup_by_supplementary_mapping() call contains a value that changed over time for the specified field and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple occurrences of the value '{value}' found for field '{field}'. Use the 'as_of_date' or 'country_code' argument to specify when or where the lookup should be valid. Possible options: {options} """.strip() class NoValueForSid(ZiplineError): """Raised when a get_supplementary_field() call contains a sid that does not have a value for the specified mapping type. """ msg = """ No '{field}' value found for sid '{sid}'. """.strip() class MultipleValuesFoundForSid(ZiplineError): """Raised when a get_supplementary_field() call contains a value that changed over time for the specified field and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple '{field}' values found for sid '{sid}'. Use the as_of_date' argument to specify when the lookup should be valid. Possible options: {options} """.strip() class SidsNotFound(ZiplineError): """Raised when a retrieve_asset() or retrieve_all() call contains a non-existent sid. """ @lazyval def plural(self): return len(self.sids) > 1 @lazyval def sids(self): return self.kwargs["sids"] @lazyval def msg(self): if self.plural: return "No assets found for sids: {sids}." return "No asset found for sid: {sids[0]}." class EquitiesNotFound(SidsNotFound): """Raised when a call to `retrieve_equities` fails to find an asset.""" @lazyval def msg(self): if self.plural: return "No equities found for sids: {sids}." return "No equity found for sid: {sids[0]}." class FutureContractsNotFound(SidsNotFound): """Raised when a call to `retrieve_futures_contracts` fails to find an asset.""" @lazyval def msg(self): if self.plural: return "No future contracts found for sids: {sids}." return "No future contract found for sid: {sids[0]}." class ConsumeAssetMetaDataError(ZiplineError): """Raised when AssetFinder.consume() is called on an invalid object.""" msg = """ AssetFinder can not consume metadata of type {obj}. Metadata must be a dict, a DataFrame, or a tables.Table. If the provided metadata is a Table, the rows must contain both or one of 'sid' or 'symbol'. """.strip() class SidAssignmentError(ZiplineError): """Raised when an AssetFinder tries to build an Asset that does not have a sid and that AssetFinder is not permitted to assign sids. """ msg = """ AssetFinder metadata is missing a SID for identifier '{identifier}'. """.strip() class NoSourceError(ZiplineError): """Raised when no source is given to the pipeline""" msg = """ No data source given. """.strip() class PipelineDateError(ZiplineError): """Raised when only one date is passed to the pipeline""" msg = """ Only one simulation date given. Please specify both the 'start' and 'end' for the simulation, or neither. If neither is given, the start and end of the DataSource will be used. Given start = '{start}', end = '{end}' """.strip() class WindowLengthTooLong(ZiplineError): """Raised when a trailing window is instantiated with a lookback greater than the length of the underlying array. """ msg = ( "Can't construct a rolling window of length " "{window_length} on an array of length {nrows}." ).strip() class WindowLengthNotPositive(ZiplineError): """Raised when a trailing window would be instantiated with a length less than 1. """ msg = ("Expected a window_length greater than 0, got {window_length}.").strip() class NonWindowSafeInput(ZiplineError): """Raised when a Pipeline API term that is not deemed window safe is specified as an input to another windowed term. This is an error because it's generally not safe to compose windowed functions on split/dividend adjusted data. """ msg = "Can't compute windowed expression {parent} with " "windowed input {child}." class TermInputsNotSpecified(ZiplineError): """Raised if a user attempts to construct a term without specifying inputs and that term does not have class-level default inputs. """ msg = "{termname} requires inputs, but no inputs list was passed." class NonPipelineInputs(ZiplineError): """Raised when a non-pipeline object is passed as input to a ComputableTerm""" def __init__(self, term, inputs): self.term = term self.inputs = inputs def __str__(self): return ( "Unexpected input types in {}. " "Inputs to Pipeline expressions must be Filters, Factors, " "Classifiers, or BoundColumns.\n" "Got the following type(s) instead: {}".format( type(self.term).__name__, sorted(set(map(type, self.inputs)), key=lambda t: t.__name__), ) ) class TermOutputsEmpty(ZiplineError): """Raised if a user attempts to construct a term with an empty outputs list.""" msg = "{termname} requires at least one output when passed an outputs " "argument." class InvalidOutputName(ZiplineError): """Raised if a term's output names conflict with any of its attributes.""" msg = ( "{output_name!r} cannot be used as an output name for {termname}. " "Output names cannot start with an underscore or be contained in the " "following list: {disallowed_names}." ) class WindowLengthNotSpecified(ZiplineError): """Raised if a user attempts to construct a term without specifying window length and that term does not have a class-level default window length. """ msg = "{termname} requires a window_length, but no window_length was passed." class InvalidTermParams(ZiplineError): """Raised if a user attempts to construct a Term using ParameterizedTermMixin without specifying a `params` list in the class body. """ msg = ( "Expected a list of strings as a class-level attribute for " "{termname}.params, but got {value} instead." ) class DTypeNotSpecified(ZiplineError): """Raised if a user attempts to construct a term without specifying dtype and that term does not have class-level default dtype. """ msg = "{termname} requires a dtype, but no dtype was passed." class NotDType(ZiplineError): """Raised when a pipeline Term is constructed with a dtype that isn't a numpy dtype object. """ msg = ( "{termname} expected a numpy dtype " "object for a dtype, but got {dtype} instead." ) class UnsupportedDType(ZiplineError): """Raised when a pipeline Term is constructed with a dtype that's not supported. """ msg = ( "Failed to construct {termname}.\n" "Pipeline terms of dtype {dtype} are not yet supported." ) class BadPercentileBounds(ZiplineError): """Raised by API functions accepting percentile bounds when the passed bounds are invalid. """ msg = ( "Percentile bounds must fall between 0.0 and {upper_bound}, and min " "must be less than max." "\nInputs were min={min_percentile}, max={max_percentile}." ) class UnknownRankMethod(ZiplineError): """Raised during construction of a Rank factor when supplied a bad Rank method. """ msg = "Unknown ranking method: '{method}'. " "`method` must be one of {choices}" class AttachPipelineAfterInitialize(ZiplineError): """Raised when a user tries to call add_pipeline outside of initialize.""" msg = ( "Attempted to attach a pipeline after initialize(). " "attach_pipeline() can only be called during initialize." ) class PipelineOutputDuringInitialize(ZiplineError): """Raised when a user tries to call `pipeline_output` during initialize.""" msg = ( "Attempted to call pipeline_output() during initialize. " "pipeline_output() can only be called once initialize has completed." ) class NoSuchPipeline(ZiplineError, KeyError): """Raised when a user tries to access a non-existent pipeline by name.""" msg = ( "No pipeline named '{name}' exists. Valid pipeline names are {valid}. " "Did you forget to call attach_pipeline()?" ) class DuplicatePipelineName(ZiplineError): """Raised when a user tries to attach a pipeline with a name that already exists for another attached pipeline. """ msg = ( "Attempted to attach pipeline named {name!r}, but the name already " "exists for another pipeline. Please use a different name for this " "pipeline." ) class UnsupportedDataType(ZiplineError): """ Raised by CustomFactors with unsupported dtypes. """ def __init__(self, hint="", **kwargs): if hint: hint = " " + hint kwargs["hint"] = hint super(UnsupportedDataType, self).__init__(**kwargs) msg = "{typename} instances with dtype {dtype} are not supported.{hint}" class NoFurtherDataError(ZiplineError): """Raised by calendar operations that would ask for dates beyond the extent of our known data. """ # This accepts an arbitrary message string because it's used in more places # that can be usefully templated. msg = "{msg}" @classmethod def from_lookback_window( cls, initial_message, first_date, lookback_start, lookback_length ): return cls( msg=dedent( """ {initial_message} lookback window started at {lookback_start} earliest known date was {first_date} {lookback_length} extra rows of data were required """ ).format( initial_message=initial_message, first_date=first_date, lookback_start=lookback_start, lookback_length=lookback_length, ) ) class UnsupportedDatetimeFormat(ZiplineError): """Raised when an unsupported datetime is passed to an API method.""" msg = ( "The input '{input}' passed to '{method}' is not " "coercible to a pandas.Timestamp object." ) class AssetDBVersionError(ZiplineError): """ Raised by an AssetDBWriter or AssetFinder if the version number in the versions table does not match the ASSET_DB_VERSION in asset_writer.py. """ msg = ( "The existing Asset database has an incorrect version: {db_version}. " "Expected version: {expected_version}. Try rebuilding your asset " "database or updating your version of Zipline." ) class AssetDBImpossibleDowngrade(ZiplineError): msg = ( "The existing Asset database is version: {db_version} which is lower " "than the desired downgrade version: {desired_version}." ) class HistoryWindowStartsBeforeData(ZiplineError): msg = ( "History window extends before {first_trading_day}. To use this " "history window, start the backtest on or after {suggested_start_day}." ) class NonExistentAssetInTimeFrame(ZiplineError): msg = ( "The target asset '{asset}' does not exist for the entire timeframe " "between {start_date} and {end_date}." ) class InvalidCalendarName(ZiplineError): """Raised when a calendar with an invalid name is requested.""" msg = "The requested TradingCalendar, {calendar_name}, does not exist." class CalendarNameCollision(ZiplineError): """ Raised when the static calendar registry already has a calendar with a given name. """ msg = "A calendar with the name {calendar_name} is already registered." class CyclicCalendarAlias(ZiplineError): """ Raised when calendar aliases form a cycle. """ msg = "Cycle in calendar aliases: [{cycle}]" class ScheduleFunctionWithoutCalendar(ZiplineError): """ Raised when schedule_function is called but there is not a calendar to be used in the construction of an event rule. """ # TODO update message when new TradingSchedules are built msg = ( "To use schedule_function, the TradingAlgorithm must be running on an " "ExchangeTradingSchedule, rather than {schedule}." ) class ScheduleFunctionInvalidCalendar(ZiplineError): """ Raised when schedule_function is called with an invalid calendar argument. """ msg = ( "Invalid calendar '{given_calendar}' passed to schedule_function. " "Allowed options are {allowed_calendars}." ) class UnsupportedPipelineOutput(ZiplineError): """ Raised when a 1D term is added as a column to a pipeline. """ msg = ( "Cannot add column {column_name!r} with term {term}. Adding slices or " "single-column-output terms as pipeline columns is not currently " "supported." ) class NonSliceableTerm(ZiplineError): """ Raised when attempting to index into a non-sliceable term, e.g. instances of `zipline.pipeline.term.LoadableTerm`. """ msg = "Taking slices of {term} is not currently supported." class IncompatibleTerms(ZiplineError): """ Raised when trying to compute correlations/regressions between two 2D factors with different masks. """ msg = ( "{term_1} and {term_2} must have the same mask in order to compute " "correlations and regressions asset-wise." )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/errors.py
errors.py
import pandas as pd from .assets import Asset from enum import IntEnum from ._protocol import BarData, InnerPosition # noqa class MutableView: """A mutable view over an "immutable" object. Parameters ---------- ob : any The object to take a view over. """ # add slots so we don't accidentally add attributes to the view instead of # ``ob`` __slots__ = ("_mutable_view_ob",) def __init__(self, ob): object.__setattr__(self, "_mutable_view_ob", ob) def __getattr__(self, attr): return getattr(self._mutable_view_ob, attr) def __setattr__(self, attr, value): vars(self._mutable_view_ob)[attr] = value def __repr__(self): return "%s(%r)" % (type(self).__name__, self._mutable_view_ob) # Datasource type should completely determine the other fields of a # message with its type. DATASOURCE_TYPE = IntEnum( "DATASOURCE_TYPE", [ "AS_TRADED_EQUITY", "MERGER", "SPLIT", "DIVIDEND", "TRADE", "TRANSACTION", "ORDER", "EMPTY", "DONE", "CUSTOM", "BENCHMARK", "COMMISSION", "CLOSE_POSITION", ], start=0, ) # Expected fields/index values for a dividend Series. DIVIDEND_FIELDS = [ "declared_date", "ex_date", "gross_amount", "net_amount", "pay_date", "payment_sid", "ratio", "sid", ] # Expected fields/index values for a dividend payment Series. DIVIDEND_PAYMENT_FIELDS = [ "id", "payment_sid", "cash_amount", "share_count", ] class Event: def __init__(self, initial_values=None): if initial_values: self.__dict__.update(initial_values) def keys(self): return self.__dict__.keys() def __eq__(self, other): return hasattr(other, "__dict__") and self.__dict__ == other.__dict__ def __contains__(self, name): return name in self.__dict__ def __repr__(self): return "Event({0})".format(self.__dict__) def to_series(self, index=None): return pd.Series(self.__dict__, index=index) class Order(Event): pass class Portfolio: """Object providing read-only access to current portfolio state. Parameters ---------- start_date : pd.Timestamp The start date for the period being recorded. capital_base : float The starting value for the portfolio. This will be used as the starting cash, current cash, and portfolio value. Attributes ---------- positions : zipline.protocol.Positions Dict-like object containing information about currently-held positions. cash : float Amount of cash currently held in portfolio. portfolio_value : float Current liquidation value of the portfolio's holdings. This is equal to ``cash + sum(shares * price)`` starting_cash : float Amount of cash in the portfolio at the start of the backtest. """ def __init__(self, start_date=None, capital_base=0.0): self_ = MutableView(self) self_.cash_flow = 0.0 self_.starting_cash = capital_base self_.portfolio_value = capital_base self_.pnl = 0.0 self_.returns = 0.0 self_.cash = capital_base self_.positions = Positions() self_.start_date = start_date self_.positions_value = 0.0 self_.positions_exposure = 0.0 @property def capital_used(self): return self.cash_flow def __setattr__(self, attr, value): raise AttributeError("cannot mutate Portfolio objects") def __repr__(self): return "Portfolio({0})".format(self.__dict__) @property def current_portfolio_weights(self): """ Compute each asset's weight in the portfolio by calculating its held value divided by the total value of all positions. Each equity's value is its price times the number of shares held. Each futures contract's value is its unit price times number of shares held times the multiplier. """ position_values = pd.Series( { asset: ( position.last_sale_price * position.amount * asset.price_multiplier ) for asset, position in self.positions.items() }, dtype=float, ) return position_values / self.portfolio_value class Account: """ The account object tracks information about the trading account. The values are updated as the algorithm runs and its keys remain unchanged. If connected to a broker, one can update these values with the trading account values as reported by the broker. """ def __init__(self): self_ = MutableView(self) self_.settled_cash = 0.0 self_.accrued_interest = 0.0 self_.buying_power = float("inf") self_.equity_with_loan = 0.0 self_.total_positions_value = 0.0 self_.total_positions_exposure = 0.0 self_.regt_equity = 0.0 self_.regt_margin = float("inf") self_.initial_margin_requirement = 0.0 self_.maintenance_margin_requirement = 0.0 self_.available_funds = 0.0 self_.excess_liquidity = 0.0 self_.cushion = 0.0 self_.day_trades_remaining = float("inf") self_.leverage = 0.0 self_.net_leverage = 0.0 self_.net_liquidation = 0.0 def __setattr__(self, attr, value): raise AttributeError("cannot mutate Account objects") def __repr__(self): return "Account({0})".format(self.__dict__) class Position: """ A position held by an algorithm. Attributes ---------- asset : zipline.assets.Asset The held asset. amount : int Number of shares held. Short positions are represented with negative values. cost_basis : float Average price at which currently-held shares were acquired. last_sale_price : float Most recent price for the position. last_sale_date : pd.Timestamp Datetime at which ``last_sale_price`` was last updated. """ __slots__ = ("_underlying_position",) def __init__(self, underlying_position): object.__setattr__(self, "_underlying_position", underlying_position) def __getattr__(self, attr): return getattr(self._underlying_position, attr) def __setattr__(self, attr, value): raise AttributeError("cannot mutate Position objects") @property def sid(self): # for backwards compatibility return self.asset def __repr__(self): return "Position(%r)" % { k: getattr(self, k) for k in ( "asset", "amount", "cost_basis", "last_sale_price", "last_sale_date", ) } class Positions(dict): """A dict-like object containing the algorithm's current positions.""" def __missing__(self, key): if isinstance(key, Asset): return Position(InnerPosition(key)) raise ValueError( "Position lookup expected a value of type Asset" f" but got {type(key).__name__} instead" )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/protocol.py
protocol.py
from packaging.version import Version import os import numpy as np # This is *not* a place to dump arbitrary classes/modules for convenience, # it is a place to expose the public interfaces. from zipline.utils.calendar_utils import get_calendar from . import data from . import finance from . import gens from . import utils from .utils.numpy_utils import numpy_version from .utils.pandas_utils import new_pandas from .utils.run_algo import run_algorithm # These need to happen after the other imports. from .algorithm import TradingAlgorithm from . import api from zipline import extensions as ext from zipline.finance.blotter import Blotter # PERF: Fire a warning if calendars were instantiated during zipline import. # Having calendars doesn't break anything per-se, but it makes zipline imports # noticeably slower, which becomes particularly noticeable in the Zipline CLI. from zipline.utils.calendar_utils import global_calendar_dispatcher if global_calendar_dispatcher._calendars: import warnings warnings.warn( "Found TradingCalendar instances after zipline import.\n" "Zipline startup will be much slower until this is fixed!", ) del warnings del global_calendar_dispatcher try: from ._version import version as __version__ from ._version import version_tuple except ImportError: __version__ = "unknown version" version_tuple = (0, 0, "unknown version") extension_args = ext.Namespace() def load_ipython_extension(ipython): from .__main__ import zipline_magic ipython.register_magic_function(zipline_magic, "line_cell", "zipline") if os.name == "nt": # we need to be able to write to our temp directoy on windows so we # create a subdir in %TMP% that has write access and use that as %TMP% def _(): import atexit import tempfile tempfile.tempdir = tempdir = tempfile.mkdtemp() @atexit.register def cleanup_tempdir(): import shutil shutil.rmtree(tempdir) _() del _ __all__ = [ "Blotter", "TradingAlgorithm", "api", "data", "finance", "get_calendar", "gens", "run_algorithm", "utils", "extension_args", ] def setup( self, np=np, numpy_version=numpy_version, Version=Version, new_pandas=new_pandas, ): """Lives in zipline.__init__ for doctests.""" if numpy_version >= Version("1.14"): self.old_opts = np.get_printoptions() np.set_printoptions(legacy="1.13") else: self.old_opts = None if new_pandas: self.old_err = np.geterr() # old pandas has numpy compat that sets this np.seterr(all="ignore") else: self.old_err = None def teardown(self, np=np): """Lives in zipline.__init__ for doctests.""" if self.old_err is not None: np.seterr(**self.old_err) if self.old_opts is not None: np.set_printoptions(**self.old_opts) del os del np del numpy_version del Version del new_pandas
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/__init__.py
__init__.py
from collections.abc import Iterable from collections import namedtuple from copy import copy import warnings from datetime import tzinfo, time, timezone import logging import pytz import pandas as pd import numpy as np from itertools import chain, repeat from zipline.utils.calendar_utils import get_calendar, days_at_time from zipline._protocol import handle_non_market_minutes from zipline.errors import ( AttachPipelineAfterInitialize, CannotOrderDelistedAsset, DuplicatePipelineName, IncompatibleCommissionModel, IncompatibleSlippageModel, NoSuchPipeline, OrderDuringInitialize, OrderInBeforeTradingStart, PipelineOutputDuringInitialize, RegisterAccountControlPostInit, RegisterTradingControlPostInit, ScheduleFunctionInvalidCalendar, SetBenchmarkOutsideInitialize, SetCancelPolicyPostInit, SetCommissionPostInit, SetSlippagePostInit, UnsupportedCancelPolicy, UnsupportedDatetimeFormat, UnsupportedOrderParameters, ZeroCapitalError, ) from zipline.finance.blotter import SimulationBlotter from zipline.finance.controls import ( LongOnly, MaxOrderCount, MaxOrderSize, MaxPositionSize, MaxLeverage, MinLeverage, RestrictedListOrder, ) from zipline.finance.execution import ( LimitOrder, MarketOrder, StopLimitOrder, StopOrder, ) from zipline.finance.asset_restrictions import Restrictions from zipline.finance.cancel_policy import NeverCancel, CancelPolicy from zipline.finance.asset_restrictions import ( NoRestrictions, StaticRestrictions, SecurityListRestrictions, ) from zipline.assets import Asset, Equity, Future from zipline.gens.tradesimulation import AlgorithmSimulator from zipline.finance.metrics import MetricsTracker, load as load_metrics_set from zipline.pipeline import Pipeline import zipline.pipeline.domain as domain from zipline.pipeline.engine import ( ExplodingPipelineEngine, SimplePipelineEngine, ) from zipline.utils.api_support import ( api_method, require_initialized, require_not_initialized, ZiplineAPI, disallowed_in_before_trading_start, ) from zipline.utils.compat import ExitStack from zipline.utils.date_utils import make_utc_aware from zipline.utils.input_validation import ( coerce_string, ensure_upper_case, error_keywords, expect_dtypes, expect_types, optional, optionally, ) from zipline.utils.numpy_utils import int64_dtype from zipline.utils.cache import ExpiringCache import zipline.utils.events from zipline.utils.events import ( EventManager, make_eventrule, date_rules, time_rules, calendars, AfterOpen, BeforeClose, ) from zipline.utils.math_utils import ( tolerant_equals, round_if_near_integer, ) from zipline.utils.preprocess import preprocess from zipline.utils.security_list import SecurityList import zipline.protocol from zipline.sources.requests_csv import PandasRequestsCSV from zipline.gens.sim_engine import MinuteSimulationClock from zipline.sources.benchmark_source import BenchmarkSource from zipline.zipline_warnings import ZiplineDeprecationWarning log = logging.getLogger("ZiplineLog") # For creating and storing pipeline instances AttachedPipeline = namedtuple("AttachedPipeline", "pipe chunks eager") class NoBenchmark(ValueError): def __init__(self): super(NoBenchmark, self).__init__( "Must specify either benchmark_sid or benchmark_returns.", ) class TradingAlgorithm: """A class that represents a trading strategy and parameters to execute the strategy. Parameters ---------- *args, **kwargs Forwarded to ``initialize`` unless listed below. initialize : callable[context -> None], optional Function that is called at the start of the simulation to setup the initial context. handle_data : callable[(context, data) -> None], optional Function called on every bar. This is where most logic should be implemented. before_trading_start : callable[(context, data) -> None], optional Function that is called before any bars have been processed each day. analyze : callable[(context, DataFrame) -> None], optional Function that is called at the end of the backtest. This is passed the context and the performance results for the backtest. script : str, optional Algoscript that contains the definitions for the four algorithm lifecycle functions and any supporting code. namespace : dict, optional The namespace to execute the algoscript in. By default this is an empty namespace that will include only python built ins. algo_filename : str, optional The filename for the algoscript. This will be used in exception tracebacks. default: '<string>'. data_frequency : {'daily', 'minute'}, optional The duration of the bars. equities_metadata : dict or DataFrame or file-like object, optional If dict is provided, it must have the following structure: * keys are the identifiers * values are dicts containing the metadata, with the metadata field name as the key If pandas.DataFrame is provided, it must have the following structure: * column names must be the metadata fields * index must be the different asset identifiers * array contents should be the metadata value If an object with a ``read`` method is provided, ``read`` must return rows containing at least one of 'sid' or 'symbol' along with the other metadata fields. futures_metadata : dict or DataFrame or file-like object, optional The same layout as ``equities_metadata`` except that it is used for futures information. identifiers : list, optional Any asset identifiers that are not provided in the equities_metadata, but will be traded by this TradingAlgorithm. get_pipeline_loader : callable[BoundColumn -> PipelineLoader], optional The function that maps pipeline columns to their loaders. create_event_context : callable[BarData -> context manager], optional A function used to create a context mananger that wraps the execution of all events that are scheduled for a bar. This function will be passed the data for the bar and should return the actual context manager that will be entered. history_container_class : type, optional The type of history container to use. default: HistoryContainer platform : str, optional The platform the simulation is running on. This can be queried for in the simulation with ``get_environment``. This allows algorithms to conditionally execute code based on platform it is running on. default: 'zipline' adjustment_reader : AdjustmentReader The interface to the adjustments. """ def __init__( self, sim_params, data_portal=None, asset_finder=None, # Algorithm API namespace=None, script=None, algo_filename=None, initialize=None, handle_data=None, before_trading_start=None, analyze=None, # trading_calendar=None, metrics_set=None, blotter=None, blotter_class=None, cancel_policy=None, benchmark_sid=None, benchmark_returns=None, platform="zipline", capital_changes=None, get_pipeline_loader=None, create_event_context=None, **initialize_kwargs, ): # List of trading controls to be used to validate orders. self.trading_controls = [] # List of account controls to be checked on each bar. self.account_controls = [] self._recorded_vars = {} self.namespace = namespace or {} self._platform = platform self.logger = None # XXX: This is kind of a mess. # We support passing a data_portal in `run`, but we need an asset # finder earlier than that to look up assets for things like # set_benchmark. self.data_portal = data_portal if self.data_portal is None: if asset_finder is None: raise ValueError( "Must pass either data_portal or asset_finder " "to TradingAlgorithm()" ) self.asset_finder = asset_finder else: # Raise an error if we were passed two different asset finders. # There's no world where that's a good idea. if ( asset_finder is not None and asset_finder is not data_portal.asset_finder ): raise ValueError("Inconsistent asset_finders in TradingAlgorithm()") self.asset_finder = data_portal.asset_finder self.benchmark_returns = benchmark_returns # XXX: This is also a mess. We should remove all of this and only allow # one way to pass a calendar. # # We have a required sim_params argument as well as an optional # trading_calendar argument, but sim_params has a trading_calendar # attribute. If the user passed trading_calendar explicitly, make sure # it matches their sim_params. Otherwise, just use what's in their # sim_params. self.sim_params = sim_params if trading_calendar is None: self.trading_calendar = sim_params.trading_calendar elif trading_calendar.name == sim_params.trading_calendar.name: self.trading_calendar = sim_params.trading_calendar else: raise ValueError( "Conflicting calendars: trading_calendar={}, but " "sim_params.trading_calendar={}".format( trading_calendar.name, self.sim_params.trading_calendar.name, ) ) self.metrics_tracker = None self._last_sync_time = pd.NaT self._metrics_set = metrics_set if self._metrics_set is None: self._metrics_set = load_metrics_set("default") # Initialize Pipeline API data. self.init_engine(get_pipeline_loader) self._pipelines = {} # Create an already-expired cache so that we compute the first time # data is requested. self._pipeline_cache = ExpiringCache() if blotter is not None: self.blotter = blotter else: cancel_policy = cancel_policy or NeverCancel() blotter_class = blotter_class or SimulationBlotter self.blotter = blotter_class(cancel_policy=cancel_policy) # The symbol lookup date specifies the date to use when resolving # symbols to sids, and can be set using set_symbol_lookup_date() self._symbol_lookup_date = None # If string is passed in, execute and get reference to # functions. self.algoscript = script self._initialize = None self._before_trading_start = None self._analyze = None self._in_before_trading_start = False self.event_manager = EventManager(create_event_context) self._handle_data = None def noop(*args, **kwargs): pass if self.algoscript is not None: unexpected_api_methods = set() if initialize is not None: unexpected_api_methods.add("initialize") if handle_data is not None: unexpected_api_methods.add("handle_data") if before_trading_start is not None: unexpected_api_methods.add("before_trading_start") if analyze is not None: unexpected_api_methods.add("analyze") if unexpected_api_methods: raise ValueError( "TradingAlgorithm received a script and the following API" " methods as functions:\n{funcs}".format( funcs=unexpected_api_methods, ) ) if algo_filename is None: algo_filename = "<string>" code = compile(self.algoscript, algo_filename, "exec") exec(code, self.namespace) self._initialize = self.namespace.get("initialize", noop) self._handle_data = self.namespace.get("handle_data", noop) self._before_trading_start = self.namespace.get( "before_trading_start", ) # Optional analyze function, gets called after run self._analyze = self.namespace.get("analyze") else: self._initialize = initialize or (lambda self: None) self._handle_data = handle_data self._before_trading_start = before_trading_start self._analyze = analyze self.event_manager.add_event( zipline.utils.events.Event( zipline.utils.events.Always(), # We pass handle_data.__func__ to get the unbound method. # We will explicitly pass the algorithm to bind it again. self.handle_data.__func__, ), prepend=True, ) if self.sim_params.capital_base <= 0: raise ZeroCapitalError() # Prepare the algo for initialization self.initialized = False self.initialize_kwargs = initialize_kwargs or {} self.benchmark_sid = benchmark_sid # A dictionary of capital changes, keyed by timestamp, indicating the # target/delta of the capital changes, along with values self.capital_changes = capital_changes or {} # A dictionary of the actual capital change deltas, keyed by timestamp self.capital_change_deltas = {} self.restrictions = NoRestrictions() def init_engine(self, get_loader): """Construct and store a PipelineEngine from loader. If get_loader is None, constructs an ExplodingPipelineEngine """ if get_loader is not None: self.engine = SimplePipelineEngine( get_loader, self.asset_finder, self.default_pipeline_domain(self.trading_calendar), ) else: self.engine = ExplodingPipelineEngine() def initialize(self, *args, **kwargs): """Call self._initialize with `self` made available to Zipline API functions. """ with ZiplineAPI(self): self._initialize(self, *args, **kwargs) def before_trading_start(self, data): self.compute_eager_pipelines() if self._before_trading_start is None: return self._in_before_trading_start = True with handle_non_market_minutes( data ) if self.data_frequency == "minute" else ExitStack(): self._before_trading_start(self, data) self._in_before_trading_start = False def handle_data(self, data): if self._handle_data: self._handle_data(self, data) def analyze(self, perf): if self._analyze is None: return with ZiplineAPI(self): self._analyze(self, perf) def __repr__(self): """N.B. this does not yet represent a string that can be used to instantiate an exact copy of an algorithm. However, it is getting close, and provides some value as something that can be inspected interactively. """ return """ {class_name}( capital_base={capital_base} sim_params={sim_params}, initialized={initialized}, slippage_models={slippage_models}, commission_models={commission_models}, blotter={blotter}, recorded_vars={recorded_vars}) """.strip().format( class_name=self.__class__.__name__, capital_base=self.sim_params.capital_base, sim_params=repr(self.sim_params), initialized=self.initialized, slippage_models=repr(self.blotter.slippage_models), commission_models=repr(self.blotter.commission_models), blotter=repr(self.blotter), recorded_vars=repr(self.recorded_vars), ) def _create_clock(self): """If the clock property is not set, then create one based on frequency.""" market_closes = self.trading_calendar.schedule.loc[ self.sim_params.sessions, "close" ] market_opens = self.trading_calendar.first_minutes.loc[self.sim_params.sessions] minutely_emission = False if self.sim_params.data_frequency == "minute": minutely_emission = self.sim_params.emission_rate == "minute" # The calendar's execution times are the minutes over which we # actually want to run the clock. Typically the execution times # simply adhere to the market open and close times. In the case of # the futures calendar, for example, we only want to simulate over # a subset of the full 24 hour calendar, so the execution times # dictate a market open time of 6:31am US/Eastern and a close of # 5:00pm US/Eastern. if self.trading_calendar.name == "us_futures": execution_opens = self.trading_calendar.execution_time_from_open( market_opens ) execution_closes = self.trading_calendar.execution_time_from_close( market_closes ) else: execution_opens = market_opens execution_closes = market_closes else: # in daily mode, we want to have one bar per session, timestamped # as the last minute of the session. if self.trading_calendar.name == "us_futures": execution_closes = self.trading_calendar.execution_time_from_close( market_closes ) execution_opens = execution_closes else: execution_closes = market_closes execution_opens = market_closes # FIXME generalize these values before_trading_start_minutes = days_at_time( self.sim_params.sessions, time(8, 45), "US/Eastern", day_offset=0, ) return MinuteSimulationClock( self.sim_params.sessions, execution_opens, execution_closes, before_trading_start_minutes, minute_emission=minutely_emission, ) def _create_benchmark_source(self): if self.benchmark_sid is not None: benchmark_asset = self.asset_finder.retrieve_asset(self.benchmark_sid) benchmark_returns = None else: benchmark_asset = None benchmark_returns = self.benchmark_returns return BenchmarkSource( benchmark_asset=benchmark_asset, benchmark_returns=benchmark_returns, trading_calendar=self.trading_calendar, sessions=self.sim_params.sessions, data_portal=self.data_portal, emission_rate=self.sim_params.emission_rate, ) def _create_metrics_tracker(self): return MetricsTracker( trading_calendar=self.trading_calendar, first_session=self.sim_params.start_session, last_session=self.sim_params.end_session, capital_base=self.sim_params.capital_base, emission_rate=self.sim_params.emission_rate, data_frequency=self.sim_params.data_frequency, asset_finder=self.asset_finder, metrics=self._metrics_set, ) def _create_generator(self, sim_params): if sim_params is not None: self.sim_params = sim_params self.metrics_tracker = metrics_tracker = self._create_metrics_tracker() # Set the dt initially to the period start by forcing it to change. self.on_dt_changed(self.sim_params.start_session) if not self.initialized: self.initialize(**self.initialize_kwargs) self.initialized = True benchmark_source = self._create_benchmark_source() self.trading_client = AlgorithmSimulator( self, sim_params, self.data_portal, self._create_clock(), benchmark_source, self.restrictions, ) metrics_tracker.handle_start_of_simulation(benchmark_source) return self.trading_client.transform() def compute_eager_pipelines(self): """Compute any pipelines attached with eager=True.""" for name, pipe in self._pipelines.items(): if pipe.eager: self.pipeline_output(name) def get_generator(self): """Override this method to add new logic to the construction of the generator. Overrides can use the _create_generator method to get a standard construction generator. """ return self._create_generator(self.sim_params) def run(self, data_portal=None): """Run the algorithm.""" # HACK: I don't think we really want to support passing a data portal # this late in the long term, but this is needed for now for backwards # compat downstream. if data_portal is not None: self.data_portal = data_portal self.asset_finder = data_portal.asset_finder elif self.data_portal is None: raise RuntimeError( "No data portal in TradingAlgorithm.run().\n" "Either pass a DataPortal to TradingAlgorithm() or to run()." ) else: assert ( self.asset_finder is not None ), "Have data portal without asset_finder." # Create zipline and loop through simulated_trading. # Each iteration returns a perf dictionary try: perfs = [] for perf in self.get_generator(): perfs.append(perf) # convert perf dict to pandas dataframe daily_stats = self._create_daily_stats(perfs) self.analyze(daily_stats) finally: self.data_portal = None self.metrics_tracker = None return daily_stats def _create_daily_stats(self, perfs): # create daily and cumulative stats dataframe daily_perfs = [] # TODO: the loop here could overwrite expected properties # of daily_perf. Could potentially raise or log a # warning. for perf in perfs: if "daily_perf" in perf: perf["daily_perf"].update(perf["daily_perf"].pop("recorded_vars")) perf["daily_perf"].update(perf["cumulative_risk_metrics"]) daily_perfs.append(perf["daily_perf"]) else: self.risk_report = perf daily_dts = pd.DatetimeIndex([p["period_close"] for p in daily_perfs]) daily_dts = make_utc_aware(daily_dts) daily_stats = pd.DataFrame(daily_perfs, index=daily_dts) return daily_stats def calculate_capital_changes( self, dt, emission_rate, is_interday, portfolio_value_adjustment=0.0 ): """If there is a capital change for a given dt, this means the the change occurs before `handle_data` on the given dt. In the case of the change being a target value, the change will be computed on the portfolio value according to prices at the given dt `portfolio_value_adjustment`, if specified, will be removed from the portfolio_value of the cumulative performance when calculating deltas from target capital changes. """ # CHECK is try/catch faster than search? try: capital_change = self.capital_changes[dt] except KeyError: return self._sync_last_sale_prices() if capital_change["type"] == "target": target = capital_change["value"] capital_change_amount = target - ( self.portfolio.portfolio_value - portfolio_value_adjustment ) log.info( "Processing capital change to target %s at %s. Capital " "change delta is %s" % (target, dt, capital_change_amount) ) elif capital_change["type"] == "delta": target = None capital_change_amount = capital_change["value"] log.info( "Processing capital change of delta %s at %s" % (capital_change_amount, dt) ) else: log.error( "Capital change %s does not indicate a valid type " "('target' or 'delta')" % capital_change ) return self.capital_change_deltas.update({dt: capital_change_amount}) self.metrics_tracker.capital_change(capital_change_amount) yield { "capital_change": { "date": dt, "type": "cash", "target": target, "delta": capital_change_amount, } } @api_method def get_environment(self, field="platform"): """Query the execution environment. Parameters ---------- field : {'platform', 'arena', 'data_frequency', 'start', 'end', 'capital_base', 'platform', '*'} The field to query. The options have the following meanings: - arena : str The arena from the simulation parameters. This will normally be ``'backtest'`` but some systems may use this distinguish live trading from backtesting. - data_frequency : {'daily', 'minute'} data_frequency tells the algorithm if it is running with daily data or minute data. - start : datetime The start date for the simulation. - end : datetime The end date for the simulation. - capital_base : float The starting capital for the simulation. -platform : str The platform that the code is running on. By default, this will be the string 'zipline'. This can allow algorithms to know if they are running on the Quantopian platform instead. - * : dict[str -> any] Returns all the fields in a dictionary. Returns ------- val : any The value for the field queried. See above for more information. Raises ------ ValueError Raised when ``field`` is not a valid option. """ env = { "arena": self.sim_params.arena, "data_frequency": self.sim_params.data_frequency, "start": self.sim_params.first_open, "end": self.sim_params.last_close, "capital_base": self.sim_params.capital_base, "platform": self._platform, } if field == "*": return env else: try: return env[field] except KeyError as exc: raise ValueError( "%r is not a valid field for get_environment" % field, ) from exc @api_method def fetch_csv( self, url, pre_func=None, post_func=None, date_column="date", date_format=None, timezone=str(timezone.utc), symbol=None, mask=True, symbol_column=None, special_params_checker=None, country_code=None, **kwargs, ): """Fetch a csv from a remote url and register the data so that it is queryable from the ``data`` object. Parameters ---------- url : str The url of the csv file to load. pre_func : callable[pd.DataFrame -> pd.DataFrame], optional A callback to allow preprocessing the raw data returned from fetch_csv before dates are paresed or symbols are mapped. post_func : callable[pd.DataFrame -> pd.DataFrame], optional A callback to allow postprocessing of the data after dates and symbols have been mapped. date_column : str, optional The name of the column in the preprocessed dataframe containing datetime information to map the data. date_format : str, optional The format of the dates in the ``date_column``. If not provided ``fetch_csv`` will attempt to infer the format. For information about the format of this string, see :func:`pandas.read_csv`. timezone : tzinfo or str, optional The timezone for the datetime in the ``date_column``. symbol : str, optional If the data is about a new asset or index then this string will be the name used to identify the values in ``data``. For example, one may use ``fetch_csv`` to load data for VIX, then this field could be the string ``'VIX'``. mask : bool, optional Drop any rows which cannot be symbol mapped. symbol_column : str If the data is attaching some new attribute to each asset then this argument is the name of the column in the preprocessed dataframe containing the symbols. This will be used along with the date information to map the sids in the asset finder. country_code : str, optional Country code to use to disambiguate symbol lookups. **kwargs Forwarded to :func:`pandas.read_csv`. Returns ------- csv_data_source : zipline.sources.requests_csv.PandasRequestsCSV A requests source that will pull data from the url specified. """ if country_code is None: country_code = self.default_fetch_csv_country_code( self.trading_calendar, ) # Show all the logs every time fetcher is used. csv_data_source = PandasRequestsCSV( url, pre_func, post_func, self.asset_finder, self.trading_calendar.day, self.sim_params.start_session, self.sim_params.end_session, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency=self.data_frequency, country_code=country_code, special_params_checker=special_params_checker, **kwargs, ) # ingest this into dataportal self.data_portal.handle_extra_source(csv_data_source.df, self.sim_params) return csv_data_source def add_event(self, rule, callback): """Adds an event to the algorithm's EventManager. Parameters ---------- rule : EventRule The rule for when the callback should be triggered. callback : callable[(context, data) -> None] The function to execute when the rule is triggered. """ self.event_manager.add_event( zipline.utils.events.Event(rule, callback), ) @api_method def schedule_function( self, func, date_rule=None, time_rule=None, half_days=True, calendar=None, ): """Schedule a function to be called repeatedly in the future. Parameters ---------- func : callable The function to execute when the rule is triggered. ``func`` should have the same signature as ``handle_data``. date_rule : zipline.utils.events.EventRule, optional Rule for the dates on which to execute ``func``. If not passed, the function will run every trading day. time_rule : zipline.utils.events.EventRule, optional Rule for the time at which to execute ``func``. If not passed, the function will execute at the end of the first market minute of the day. half_days : bool, optional Should this rule fire on half days? Default is True. calendar : Sentinel, optional Calendar used to compute rules that depend on the trading calendar. See Also -------- :class:`zipline.api.date_rules` :class:`zipline.api.time_rules` """ # When the user calls schedule_function(func, <time_rule>), assume that # the user meant to specify a time rule but no date rule, instead of # a date rule and no time rule as the signature suggests if isinstance(date_rule, (AfterOpen, BeforeClose)) and not time_rule: warnings.warn( "Got a time rule for the second positional argument " "date_rule. You should use keyword argument " "time_rule= when calling schedule_function without " "specifying a date_rule", stacklevel=3, ) date_rule = date_rule or date_rules.every_day() time_rule = ( (time_rule or time_rules.every_minute()) if self.sim_params.data_frequency == "minute" else # If we are in daily mode the time_rule is ignored. time_rules.every_minute() ) # Check the type of the algorithm's schedule before pulling calendar # Note that the ExchangeTradingSchedule is currently the only # TradingSchedule class, so this is unlikely to be hit if calendar is None: cal = self.trading_calendar elif calendar is calendars.US_EQUITIES: cal = get_calendar("XNYS") elif calendar is calendars.US_FUTURES: cal = get_calendar("us_futures") else: raise ScheduleFunctionInvalidCalendar( given_calendar=calendar, allowed_calendars=("[calendars.US_EQUITIES, calendars.US_FUTURES]"), ) self.add_event( make_eventrule(date_rule, time_rule, cal, half_days), func, ) @api_method def record(self, *args, **kwargs): """Track and record values each day. Parameters ---------- **kwargs The names and values to record. Notes ----- These values will appear in the performance packets and the performance dataframe passed to ``analyze`` and returned from :func:`~zipline.run_algorithm`. """ # Make 2 objects both referencing the same iterator args = [iter(args)] * 2 # Zip generates list entries by calling `next` on each iterator it # receives. In this case the two iterators are the same object, so the # call to next on args[0] will also advance args[1], resulting in zip # returning (a,b) (c,d) (e,f) rather than (a,a) (b,b) (c,c) etc. positionals = zip(*args) for name, value in chain(positionals, kwargs.items()): self._recorded_vars[name] = value @api_method def set_benchmark(self, benchmark): """Set the benchmark asset. Parameters ---------- benchmark : zipline.assets.Asset The asset to set as the new benchmark. Notes ----- Any dividends payed out for that new benchmark asset will be automatically reinvested. """ if self.initialized: raise SetBenchmarkOutsideInitialize() self.benchmark_sid = benchmark @api_method @preprocess(root_symbol_str=ensure_upper_case) def continuous_future( self, root_symbol_str, offset=0, roll="volume", adjustment="mul" ): """Create a specifier for a continuous contract. Parameters ---------- root_symbol_str : str The root symbol for the future chain. offset : int, optional The distance from the primary contract. Default is 0. roll_style : str, optional How rolls are determined. Default is 'volume'. adjustment : str, optional Method for adjusting lookback prices between rolls. Options are 'mul', 'add', and None. Default is 'mul'. Returns ------- continuous_future : zipline.assets.ContinuousFuture The continuous future specifier. """ return self.asset_finder.create_continuous_future( root_symbol_str, offset, roll, adjustment, ) @api_method @preprocess( symbol_str=ensure_upper_case, country_code=optionally(ensure_upper_case), ) def symbol(self, symbol_str, country_code=None): """Lookup an Equity by its ticker symbol. Parameters ---------- symbol_str : str The ticker symbol for the equity to lookup. country_code : str or None, optional A country to limit symbol searches to. Returns ------- equity : zipline.assets.Equity The equity that held the ticker symbol on the current symbol lookup date. Raises ------ SymbolNotFound Raised when the symbols was not held on the current lookup date. See Also -------- :func:`zipline.api.set_symbol_lookup_date` """ # If the user has not set the symbol lookup date, # use the end_session as the date for symbol->sid resolution. _lookup_date = ( self._symbol_lookup_date if self._symbol_lookup_date is not None else self.sim_params.end_session ) return self.asset_finder.lookup_symbol( symbol_str, as_of_date=_lookup_date, country_code=country_code, ) @api_method def symbols(self, *args, **kwargs): """Lookup multuple Equities as a list. Parameters ---------- *args : iterable[str] The ticker symbols to lookup. country_code : str or None, optional A country to limit symbol searches to. Returns ------- equities : list[zipline.assets.Equity] The equities that held the given ticker symbols on the current symbol lookup date. Raises ------ SymbolNotFound Raised when one of the symbols was not held on the current lookup date. See Also -------- :func:`zipline.api.set_symbol_lookup_date` """ return [self.symbol(identifier, **kwargs) for identifier in args] @api_method def sid(self, sid): """Lookup an Asset by its unique asset identifier. Parameters ---------- sid : int The unique integer that identifies an asset. Returns ------- asset : zipline.assets.Asset The asset with the given ``sid``. Raises ------ SidsNotFound When a requested ``sid`` does not map to any asset. """ return self.asset_finder.retrieve_asset(sid) @api_method @preprocess(symbol=ensure_upper_case) def future_symbol(self, symbol): """Lookup a futures contract with a given symbol. Parameters ---------- symbol : str The symbol of the desired contract. Returns ------- future : zipline.assets.Future The future that trades with the name ``symbol``. Raises ------ SymbolNotFound Raised when no contract named 'symbol' is found. """ return self.asset_finder.lookup_future_symbol(symbol) def _calculate_order_value_amount(self, asset, value): """Calculates how many shares/contracts to order based on the type of asset being ordered. """ # Make sure the asset exists, and that there is a last price for it. # FIXME: we should use BarData's can_trade logic here, but I haven't # yet found a good way to do that. normalized_date = self.trading_calendar.minute_to_session(self.datetime) if normalized_date < asset.start_date: raise CannotOrderDelistedAsset( msg="Cannot order {0}, as it started trading on" " {1}.".format(asset.symbol, asset.start_date) ) elif normalized_date > asset.end_date: raise CannotOrderDelistedAsset( msg="Cannot order {0}, as it stopped trading on" " {1}.".format(asset.symbol, asset.end_date) ) else: last_price = self.trading_client.current_data.current(asset, "price") if np.isnan(last_price): raise CannotOrderDelistedAsset( msg="Cannot order {0} on {1} as there is no last " "price for the security.".format(asset.symbol, self.datetime) ) if tolerant_equals(last_price, 0): zero_message = "Price of 0 for {psid}; can't infer value".format(psid=asset) if self.logger: self.logger.debug(zero_message) # Don't place any order return 0 value_multiplier = asset.price_multiplier return value / (last_price * value_multiplier) def _can_order_asset(self, asset): if not isinstance(asset, Asset): raise UnsupportedOrderParameters( msg="Passing non-Asset argument to 'order()' is not supported." " Use 'sid()' or 'symbol()' methods to look up an Asset." ) if asset.auto_close_date: # TODO FIXME TZ MESS day = self.trading_calendar.minute_to_session(self.get_datetime()) if day > min(asset.end_date, asset.auto_close_date): # If we are after the asset's end date or auto close date, warn # the user that they can't place an order for this asset, and # return None. log.warning( "Cannot place order for {0}, as it has de-listed. " "Any existing positions for this asset will be " "liquidated on " "{1}.".format(asset.symbol, asset.auto_close_date) ) return False return True @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order(self, asset, amount, limit_price=None, stop_price=None, style=None): """Place an order for a fixed number of shares. Parameters ---------- asset : Asset The asset to be ordered. amount : int The amount of shares to order. If ``amount`` is positive, this is the number of shares to buy or cover. If ``amount`` is negative, this is the number of shares to sell or short. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle, optional The execution style for the order. Returns ------- order_id : str or None The unique identifier for this order, or None if no order was placed. Notes ----- The ``limit_price`` and ``stop_price`` arguments provide shorthands for passing common execution styles. Passing ``limit_price=N`` is equivalent to ``style=LimitOrder(N)``. Similarly, passing ``stop_price=M`` is equivalent to ``style=StopOrder(M)``, and passing ``limit_price=N`` and ``stop_price=M`` is equivalent to ``style=StopLimitOrder(N, M)``. It is an error to pass both a ``style`` and ``limit_price`` or ``stop_price``. See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order_value` :func:`zipline.api.order_percent` """ if not self._can_order_asset(asset): return None amount, style = self._calculate_order( asset, amount, limit_price, stop_price, style ) return self.blotter.order(asset, amount, style) def _calculate_order( self, asset, amount, limit_price=None, stop_price=None, style=None ): amount = self.round_order(amount) # Raises a ZiplineError if invalid parameters are detected. self.validate_order_params(asset, amount, limit_price, stop_price, style) # Convert deprecated limit_price and stop_price parameters to use # ExecutionStyle objects. style = self.__convert_order_params_for_blotter( asset, limit_price, stop_price, style ) return amount, style @staticmethod def round_order(amount): """Convert number of shares to an integer. By default, truncates to the integer share count that's either within .0001 of amount or closer to zero. E.g. 3.9999 -> 4.0; 5.5 -> 5.0; -5.5 -> -5.0 """ return int(round_if_near_integer(amount)) def validate_order_params(self, asset, amount, limit_price, stop_price, style): """ Helper method for validating parameters to the order API function. Raises an UnsupportedOrderParameters if invalid arguments are found. """ if not self.initialized: raise OrderDuringInitialize( msg="order() can only be called from within handle_data()" ) if style: if limit_price: raise UnsupportedOrderParameters( msg="Passing both limit_price and style is not supported." ) if stop_price: raise UnsupportedOrderParameters( msg="Passing both stop_price and style is not supported." ) for control in self.trading_controls: control.validate( asset, amount, self.portfolio, self.get_datetime(), self.trading_client.current_data, ) @staticmethod def __convert_order_params_for_blotter(asset, limit_price, stop_price, style): """Helper method for converting deprecated limit_price and stop_price arguments into ExecutionStyle instances. This function assumes that either style == None or (limit_price, stop_price) == (None, None). """ if style: assert (limit_price, stop_price) == (None, None) return style if limit_price and stop_price: return StopLimitOrder(limit_price, stop_price, asset=asset) if limit_price: return LimitOrder(limit_price, asset=asset) if stop_price: return StopOrder(stop_price, asset=asset) else: return MarketOrder() @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_value(self, asset, value, limit_price=None, stop_price=None, style=None): """Place an order for a fixed amount of money. Equivalent to ``order(asset, value / data.current(asset, 'price'))``. Parameters ---------- asset : Asset The asset to be ordered. value : float Amount of value of ``asset`` to be transacted. The number of shares bought or sold will be equal to ``value / current_price``. limit_price : float, optional Limit price for the order. stop_price : float, optional Stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_percent` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_value_amount(asset, value) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) @property def recorded_vars(self): return copy(self._recorded_vars) def _sync_last_sale_prices(self, dt=None): """Sync the last sale prices on the metrics tracker to a given datetime. Parameters ---------- dt : datetime The time to sync the prices to. Notes ----- This call is cached by the datetime. Repeated calls in the same bar are cheap. """ if dt is None: dt = self.datetime if dt != self._last_sync_time: self.metrics_tracker.sync_last_sale_prices( dt, self.data_portal, ) self._last_sync_time = dt @property def portfolio(self): self._sync_last_sale_prices() return self.metrics_tracker.portfolio @property def account(self): self._sync_last_sale_prices() return self.metrics_tracker.account def set_logger(self, logger): self.logger = logger def on_dt_changed(self, dt): """Callback triggered by the simulation loop whenever the current dt changes. Any logic that should happen exactly once at the start of each datetime group should happen here. """ self.datetime = dt self.blotter.set_date(dt) @api_method @preprocess(tz=coerce_string(pytz.timezone)) @expect_types(tz=optional(tzinfo)) def get_datetime(self, tz=None): """Returns the current simulation datetime. Parameters ---------- tz : tzinfo or str, optional The timezone to return the datetime in. This defaults to utc. Returns ------- dt : datetime The current simulation datetime converted to ``tz``. """ dt = self.datetime assert dt.tzinfo == timezone.utc, "Algorithm should have a utc datetime" if tz is not None: dt = dt.astimezone(tz) return dt @api_method def set_slippage(self, us_equities=None, us_futures=None): """Set the slippage models for the simulation. Parameters ---------- us_equities : EquitySlippageModel The slippage model to use for trading US equities. us_futures : FutureSlippageModel The slippage model to use for trading US futures. Notes ----- This function can only be called during :func:`~zipline.api.initialize`. See Also -------- :class:`zipline.finance.slippage.SlippageModel` """ if self.initialized: raise SetSlippagePostInit() if us_equities is not None: if Equity not in us_equities.allowed_asset_types: raise IncompatibleSlippageModel( asset_type="equities", given_model=us_equities, supported_asset_types=us_equities.allowed_asset_types, ) self.blotter.slippage_models[Equity] = us_equities if us_futures is not None: if Future not in us_futures.allowed_asset_types: raise IncompatibleSlippageModel( asset_type="futures", given_model=us_futures, supported_asset_types=us_futures.allowed_asset_types, ) self.blotter.slippage_models[Future] = us_futures @api_method def set_commission(self, us_equities=None, us_futures=None): """Sets the commission models for the simulation. Parameters ---------- us_equities : EquityCommissionModel The commission model to use for trading US equities. us_futures : FutureCommissionModel The commission model to use for trading US futures. Notes ----- This function can only be called during :func:`~zipline.api.initialize`. See Also -------- :class:`zipline.finance.commission.PerShare` :class:`zipline.finance.commission.PerTrade` :class:`zipline.finance.commission.PerDollar` """ if self.initialized: raise SetCommissionPostInit() if us_equities is not None: if Equity not in us_equities.allowed_asset_types: raise IncompatibleCommissionModel( asset_type="equities", given_model=us_equities, supported_asset_types=us_equities.allowed_asset_types, ) self.blotter.commission_models[Equity] = us_equities if us_futures is not None: if Future not in us_futures.allowed_asset_types: raise IncompatibleCommissionModel( asset_type="futures", given_model=us_futures, supported_asset_types=us_futures.allowed_asset_types, ) self.blotter.commission_models[Future] = us_futures @api_method def set_cancel_policy(self, cancel_policy): """Sets the order cancellation policy for the simulation. Parameters ---------- cancel_policy : CancelPolicy The cancellation policy to use. See Also -------- :class:`zipline.api.EODCancel` :class:`zipline.api.NeverCancel` """ if not isinstance(cancel_policy, CancelPolicy): raise UnsupportedCancelPolicy() if self.initialized: raise SetCancelPolicyPostInit() self.blotter.cancel_policy = cancel_policy @api_method def set_symbol_lookup_date(self, dt): """Set the date for which symbols will be resolved to their assets (symbols may map to different firms or underlying assets at different times) Parameters ---------- dt : datetime The new symbol lookup date. """ try: self._symbol_lookup_date = pd.Timestamp(dt).tz_localize("UTC") except TypeError: self._symbol_lookup_date = pd.Timestamp(dt).tz_convert("UTC") except ValueError as exc: raise UnsupportedDatetimeFormat( input=dt, method="set_symbol_lookup_date" ) from exc @property def data_frequency(self): return self.sim_params.data_frequency @data_frequency.setter def data_frequency(self, value): assert value in ("daily", "minute") self.sim_params.data_frequency = value @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_percent( self, asset, percent, limit_price=None, stop_price=None, style=None ): """Place an order in the specified asset corresponding to the given percent of the current portfolio value. Parameters ---------- asset : Asset The asset that this order is for. percent : float The percentage of the portfolio value to allocate to ``asset``. This is specified as a decimal, for example: 0.50 means 50%. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_percent_amount(asset, percent) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) def _calculate_order_percent_amount(self, asset, percent): value = self.portfolio.portfolio_value * percent return self._calculate_order_value_amount(asset, value) @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target( self, asset, target, limit_price=None, stop_price=None, style=None ): """Place an order to adjust a position to a target number of shares. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target number of shares and the current number of shares. Parameters ---------- asset : Asset The asset that this order is for. target : int The desired number of shares of ``asset``. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target`` does not take into account any open orders. For example: .. code-block:: python order_target(sid(0), 10) order_target(sid(0), 10) This code will result in 20 shares of ``sid(0)`` because the first call to ``order_target`` will not have been filled when the second ``order_target`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target_percent` :func:`zipline.api.order_target_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_target_amount(asset, target) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) def _calculate_order_target_amount(self, asset, target): if asset in self.portfolio.positions: current_position = self.portfolio.positions[asset].amount target -= current_position return target @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target_value( self, asset, target, limit_price=None, stop_price=None, style=None ): """Place an order to adjust a position to a target value. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target value and the current value. If the Asset being ordered is a Future, the 'target value' calculated is actually the target exposure, as Futures have no 'value'. Parameters ---------- asset : Asset The asset that this order is for. target : float The desired total value of ``asset``. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target_value`` does not take into account any open orders. For example: .. code-block:: python order_target_value(sid(0), 10) order_target_value(sid(0), 10) This code will result in 20 dollars of ``sid(0)`` because the first call to ``order_target_value`` will not have been filled when the second ``order_target_value`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target` :func:`zipline.api.order_target_percent` """ if not self._can_order_asset(asset): return None target_amount = self._calculate_order_value_amount(asset, target) amount = self._calculate_order_target_amount(asset, target_amount) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order_target_percent( self, asset, target, limit_price=None, stop_price=None, style=None ): """Place an order to adjust a position to a target percent of the current portfolio value. If the position doesn't already exist, this is equivalent to placing a new order. If the position does exist, this is equivalent to placing an order for the difference between the target percent and the current percent. Parameters ---------- asset : Asset The asset that this order is for. target : float The desired percentage of the portfolio value to allocate to ``asset``. This is specified as a decimal, for example: 0.50 means 50%. limit_price : float, optional The limit price for the order. stop_price : float, optional The stop price for the order. style : ExecutionStyle The execution style for the order. Returns ------- order_id : str The unique identifier for this order. Notes ----- ``order_target_value`` does not take into account any open orders. For example: .. code-block:: python order_target_percent(sid(0), 10) order_target_percent(sid(0), 10) This code will result in 20% of the portfolio being allocated to sid(0) because the first call to ``order_target_percent`` will not have been filled when the second ``order_target_percent`` call is made. See :func:`zipline.api.order` for more information about ``limit_price``, ``stop_price``, and ``style`` See Also -------- :class:`zipline.finance.execution.ExecutionStyle` :func:`zipline.api.order` :func:`zipline.api.order_target` :func:`zipline.api.order_target_value` """ if not self._can_order_asset(asset): return None amount = self._calculate_order_target_percent_amount(asset, target) return self.order( asset, amount, limit_price=limit_price, stop_price=stop_price, style=style, ) def _calculate_order_target_percent_amount(self, asset, target): target_amount = self._calculate_order_percent_amount(asset, target) return self._calculate_order_target_amount(asset, target_amount) @api_method @expect_types(share_counts=pd.Series) @expect_dtypes(share_counts=int64_dtype) def batch_market_order(self, share_counts): """Place a batch market order for multiple assets. Parameters ---------- share_counts : pd.Series[Asset -> int] Map from asset to number of shares to order for that asset. Returns ------- order_ids : pd.Index[str] Index of ids for newly-created orders. """ style = MarketOrder() order_args = [ (asset, amount, style) for (asset, amount) in share_counts.items() if amount ] return self.blotter.batch_order(order_args) @error_keywords( sid="Keyword argument `sid` is no longer supported for " "get_open_orders. Use `asset` instead." ) @api_method def get_open_orders(self, asset=None): """Retrieve all of the current open orders. Parameters ---------- asset : Asset If passed and not None, return only the open orders for the given asset instead of all open orders. Returns ------- open_orders : dict[list[Order]] or list[Order] If no asset is passed this will return a dict mapping Assets to a list containing all the open orders for the asset. If an asset is passed then this will return a list of the open orders for this asset. """ if asset is None: return { key: [order.to_api_obj() for order in orders] for key, orders in self.blotter.open_orders.items() if orders } if asset in self.blotter.open_orders: orders = self.blotter.open_orders[asset] return [order.to_api_obj() for order in orders] return [] @api_method def get_order(self, order_id): """Lookup an order based on the order id returned from one of the order functions. Parameters ---------- order_id : str The unique identifier for the order. Returns ------- order : Order The order object. """ if order_id in self.blotter.orders: return self.blotter.orders[order_id].to_api_obj() @api_method def cancel_order(self, order_param): """Cancel an open order. Parameters ---------- order_param : str or Order The order_id or order object to cancel. """ order_id = order_param if isinstance(order_param, zipline.protocol.Order): order_id = order_param.id self.blotter.cancel(order_id) #################### # Account Controls # #################### def register_account_control(self, control): """ Register a new AccountControl to be checked on each bar. """ if self.initialized: raise RegisterAccountControlPostInit() self.account_controls.append(control) def validate_account_controls(self): for control in self.account_controls: control.validate( self.portfolio, self.account, self.get_datetime(), self.trading_client.current_data, ) @api_method def set_max_leverage(self, max_leverage): """Set a limit on the maximum leverage of the algorithm. Parameters ---------- max_leverage : float The maximum leverage for the algorithm. If not provided there will be no maximum. """ control = MaxLeverage(max_leverage) self.register_account_control(control) @api_method def set_min_leverage(self, min_leverage, grace_period): """Set a limit on the minimum leverage of the algorithm. Parameters ---------- min_leverage : float The minimum leverage for the algorithm. grace_period : pd.Timedelta The offset from the start date used to enforce a minimum leverage. """ deadline = self.sim_params.start_session + grace_period control = MinLeverage(min_leverage, deadline) self.register_account_control(control) #################### # Trading Controls # #################### def register_trading_control(self, control): """ Register a new TradingControl to be checked prior to order calls. """ if self.initialized: raise RegisterTradingControlPostInit() self.trading_controls.append(control) @api_method def set_max_position_size( self, asset=None, max_shares=None, max_notional=None, on_error="fail" ): """Set a limit on the number of shares and/or dollar value held for the given sid. Limits are treated as absolute values and are enforced at the time that the algo attempts to place an order for sid. This means that it's possible to end up with more than the max number of shares due to splits/dividends, and more than the max notional due to price improvement. If an algorithm attempts to place an order that would result in increasing the absolute value of shares/dollar value exceeding one of these limits, raise a TradingControlException. Parameters ---------- asset : Asset, optional If provided, this sets the guard only on positions in the given asset. max_shares : int, optional The maximum number of shares to hold for an asset. max_notional : float, optional The maximum value to hold for an asset. """ control = MaxPositionSize( asset=asset, max_shares=max_shares, max_notional=max_notional, on_error=on_error, ) self.register_trading_control(control) @api_method def set_max_order_size( self, asset=None, max_shares=None, max_notional=None, on_error="fail" ): """Set a limit on the number of shares and/or dollar value of any single order placed for sid. Limits are treated as absolute values and are enforced at the time that the algo attempts to place an order for sid. If an algorithm attempts to place an order that would result in exceeding one of these limits, raise a TradingControlException. Parameters ---------- asset : Asset, optional If provided, this sets the guard only on positions in the given asset. max_shares : int, optional The maximum number of shares that can be ordered at one time. max_notional : float, optional The maximum value that can be ordered at one time. """ control = MaxOrderSize( asset=asset, max_shares=max_shares, max_notional=max_notional, on_error=on_error, ) self.register_trading_control(control) @api_method def set_max_order_count(self, max_count, on_error="fail"): """Set a limit on the number of orders that can be placed in a single day. Parameters ---------- max_count : int The maximum number of orders that can be placed on any single day. """ control = MaxOrderCount(on_error, max_count) self.register_trading_control(control) @api_method def set_do_not_order_list(self, restricted_list, on_error="fail"): """Set a restriction on which assets can be ordered. Parameters ---------- restricted_list : container[Asset], SecurityList The assets that cannot be ordered. """ if isinstance(restricted_list, SecurityList): warnings.warn( "`set_do_not_order_list(security_lists.leveraged_etf_list)` " "is deprecated. Use `set_asset_restrictions(" "security_lists.restrict_leveraged_etfs)` instead.", category=ZiplineDeprecationWarning, stacklevel=2, ) restrictions = SecurityListRestrictions(restricted_list) else: warnings.warn( "`set_do_not_order_list(container_of_assets)` is deprecated. " "Create a zipline.finance.asset_restrictions." "StaticRestrictions object with a container of assets and use " "`set_asset_restrictions(StaticRestrictions(" "container_of_assets))` instead.", category=ZiplineDeprecationWarning, stacklevel=2, ) restrictions = StaticRestrictions(restricted_list) self.set_asset_restrictions(restrictions, on_error) @api_method @expect_types( restrictions=Restrictions, on_error=str, ) def set_asset_restrictions(self, restrictions, on_error="fail"): """Set a restriction on which assets can be ordered. Parameters ---------- restricted_list : Restrictions An object providing information about restricted assets. See Also -------- zipline.finance.asset_restrictions.Restrictions """ control = RestrictedListOrder(on_error, restrictions) self.register_trading_control(control) self.restrictions |= restrictions @api_method def set_long_only(self, on_error="fail"): """Set a rule specifying that this algorithm cannot take short positions. """ self.register_trading_control(LongOnly(on_error)) ############## # Pipeline API ############## @api_method @require_not_initialized(AttachPipelineAfterInitialize()) @expect_types( pipeline=Pipeline, name=str, chunks=(int, Iterable, type(None)), ) def attach_pipeline(self, pipeline, name, chunks=None, eager=True): """Register a pipeline to be computed at the start of each day. Parameters ---------- pipeline : Pipeline The pipeline to have computed. name : str The name of the pipeline. chunks : int or iterator, optional The number of days to compute pipeline results for. Increasing this number will make it longer to get the first results but may improve the total runtime of the simulation. If an iterator is passed, we will run in chunks based on values of the iterator. Default is True. eager : bool, optional Whether or not to compute this pipeline prior to before_trading_start. Returns ------- pipeline : Pipeline Returns the pipeline that was attached unchanged. See Also -------- :func:`zipline.api.pipeline_output` """ if chunks is None: # Make the first chunk smaller to get more immediate results: # (one week, then every half year) chunks = chain([5], repeat(126)) elif isinstance(chunks, int): chunks = repeat(chunks) if name in self._pipelines: raise DuplicatePipelineName(name=name) self._pipelines[name] = AttachedPipeline(pipeline, iter(chunks), eager) # Return the pipeline to allow expressions like # p = attach_pipeline(Pipeline(), 'name') return pipeline @api_method @require_initialized(PipelineOutputDuringInitialize()) def pipeline_output(self, name): """Get results of the pipeline attached by with name ``name``. Parameters ---------- name : str Name of the pipeline from which to fetch results. Returns ------- results : pd.DataFrame DataFrame containing the results of the requested pipeline for the current simulation date. Raises ------ NoSuchPipeline Raised when no pipeline with the name `name` has been registered. See Also -------- :func:`zipline.api.attach_pipeline` :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ try: pipe, chunks, _ = self._pipelines[name] except KeyError as exc: raise NoSuchPipeline( name=name, valid=list(self._pipelines.keys()), ) from exc return self._pipeline_output(pipe, chunks, name) def _pipeline_output(self, pipeline, chunks, name): """Internal implementation of `pipeline_output`.""" # TODO FIXME TZ MESS today = self.get_datetime().normalize().tz_localize(None) try: data = self._pipeline_cache.get(name, today) except KeyError: # Calculate the next block. data, valid_until = self.run_pipeline( pipeline, today, next(chunks), ) self._pipeline_cache.set(name, data, valid_until) # Now that we have a cached result, try to return the data for today. try: return data.loc[today] except KeyError: # This happens if no assets passed the pipeline screen on a given # day. return pd.DataFrame(index=[], columns=data.columns) def run_pipeline(self, pipeline, start_session, chunksize): """Compute `pipeline`, providing values for at least `start_date`. Produces a DataFrame containing data for days between `start_date` and `end_date`, where `end_date` is defined by: `end_date = min(start_date + chunksize trading days, simulation_end)` Returns ------- (data, valid_until) : tuple (pd.DataFrame, pd.Timestamp) See Also -------- PipelineEngine.run_pipeline """ sessions = self.trading_calendar.sessions # Load data starting from the previous trading day... start_date_loc = sessions.get_loc(start_session) # ...continuing until either the day before the simulation end, or # until chunksize days of data have been loaded. sim_end_session = self.sim_params.end_session end_loc = min(start_date_loc + chunksize, sessions.get_loc(sim_end_session)) end_session = sessions[end_loc] return ( self.engine.run_pipeline(pipeline, start_session, end_session), end_session, ) @staticmethod def default_pipeline_domain(calendar): """Get a default pipeline domain for algorithms running on ``calendar``. This will be used to infer a domain for pipelines that only use generic datasets when running in the context of a TradingAlgorithm. """ return _DEFAULT_DOMAINS.get(calendar.name, domain.GENERIC) @staticmethod def default_fetch_csv_country_code(calendar): """Get a default country_code to use for fetch_csv symbol lookups. This will be used to disambiguate symbol lookups for fetch_csv calls if our asset db contains entries with the same ticker spread across multiple """ return _DEFAULT_FETCH_CSV_COUNTRY_CODES.get(calendar.name) ################## # End Pipeline API ################## @classmethod def all_api_methods(cls): """Return a list of all the TradingAlgorithm API methods.""" return [fn for fn in vars(cls).values() if getattr(fn, "is_api_method", False)] # Map from calendar name to default domain for that calendar. _DEFAULT_DOMAINS = {d.calendar_name: d for d in domain.BUILT_IN_DOMAINS} # Map from calendar name to default country code for that calendar. _DEFAULT_FETCH_CSV_COUNTRY_CODES = { d.calendar_name: d.country_code for d in domain.BUILT_IN_DOMAINS } # Include us_futures, which doesn't have a pipeline domain. _DEFAULT_FETCH_CSV_COUNTRY_CODES["us_futures"] = "US"
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/algorithm.py
algorithm.py
from copy import copy import logging from zipline.finance.order import ORDER_STATUS from zipline.protocol import BarData from zipline.utils.api_support import ZiplineAPI from zipline.utils.compat import ExitStack from zipline.gens.sim_engine import ( BAR, SESSION_START, SESSION_END, MINUTE_END, BEFORE_TRADING_START_BAR, ) log = logging.getLogger("Trade Simulation") class AlgorithmSimulator: EMISSION_TO_PERF_KEY_MAP = {"minute": "minute_perf", "daily": "daily_perf"} def __init__( self, algo, sim_params, data_portal, clock, benchmark_source, restrictions, ): # ============== # Simulation # Param Setup # ============== self.sim_params = sim_params self.data_portal = data_portal self.restrictions = restrictions # ============== # Algo Setup # ============== self.algo = algo # ============== # Snapshot Setup # ============== # This object is the way that user algorithms interact with OHLCV data, # fetcher data, and some API methods like `data.can_trade`. self.current_data = self._create_bar_data() # We don't have a datetime for the current snapshot until we # receive a message. self.simulation_dt = None self.clock = clock self.benchmark_source = benchmark_source # ============= # Logging Setup # ============= # Processor function for injecting the algo_dt into # user prints/logs. # TODO CHECK: Disabled the old logbook mechanism, # didn't replace with an equivalent `logging` approach. def get_simulation_dt(self): return self.simulation_dt def _create_bar_data(self): return BarData( data_portal=self.data_portal, simulation_dt_func=self.get_simulation_dt, data_frequency=self.sim_params.data_frequency, trading_calendar=self.algo.trading_calendar, restrictions=self.restrictions, ) # TODO: simplify # flake8: noqa: C901 def transform(self): """ Main generator work loop. """ algo = self.algo metrics_tracker = algo.metrics_tracker emission_rate = metrics_tracker.emission_rate def every_bar( dt_to_use, current_data=self.current_data, handle_data=algo.event_manager.handle_data, ): for capital_change in calculate_minute_capital_changes(dt_to_use): yield capital_change self.simulation_dt = dt_to_use # called every tick (minute or day). algo.on_dt_changed(dt_to_use) blotter = algo.blotter # handle any transactions and commissions coming out new orders # placed in the last bar ( new_transactions, new_commissions, closed_orders, ) = blotter.get_transactions(current_data) blotter.prune_orders(closed_orders) for transaction in new_transactions: metrics_tracker.process_transaction(transaction) # since this order was modified, record it order = blotter.orders[transaction.order_id] metrics_tracker.process_order(order) for commission in new_commissions: metrics_tracker.process_commission(commission) handle_data(algo, current_data, dt_to_use) # grab any new orders from the blotter, then clear the list. # this includes cancelled orders. new_orders = blotter.new_orders blotter.new_orders = [] # if we have any new orders, record them so that we know # in what perf period they were placed. for new_order in new_orders: metrics_tracker.process_order(new_order) def once_a_day( midnight_dt, current_data=self.current_data, data_portal=self.data_portal, ): # process any capital changes that came overnight for capital_change in algo.calculate_capital_changes( midnight_dt, emission_rate=emission_rate, is_interday=True ): yield capital_change # set all the timestamps self.simulation_dt = midnight_dt algo.on_dt_changed(midnight_dt) metrics_tracker.handle_market_open( midnight_dt, algo.data_portal, ) # handle any splits that impact any positions or any open orders. assets_we_care_about = ( metrics_tracker.positions.keys() | algo.blotter.open_orders.keys() ) if assets_we_care_about: splits = data_portal.get_splits(assets_we_care_about, midnight_dt) if splits: algo.blotter.process_splits(splits) metrics_tracker.handle_splits(splits) def on_exit(): # Remove references to algo, data portal, et al to break cycles # and ensure deterministic cleanup of these objects when the # simulation finishes. self.algo = None self.benchmark_source = self.current_data = self.data_portal = None with ExitStack() as stack: stack.callback(on_exit) stack.enter_context(ZiplineAPI(self.algo)) if algo.data_frequency == "minute": def execute_order_cancellation_policy(): algo.blotter.execute_cancel_policy(SESSION_END) def calculate_minute_capital_changes(dt): # process any capital changes that came between the last # and current minutes return algo.calculate_capital_changes( dt, emission_rate=emission_rate, is_interday=False ) elif algo.data_frequency == "daily": def execute_order_cancellation_policy(): algo.blotter.execute_daily_cancel_policy(SESSION_END) def calculate_minute_capital_changes(dt): return [] else: def execute_order_cancellation_policy(): pass def calculate_minute_capital_changes(dt): return [] for dt, action in self.clock: if action == BAR: for capital_change_packet in every_bar(dt): yield capital_change_packet elif action == SESSION_START: for capital_change_packet in once_a_day(dt): yield capital_change_packet elif action == SESSION_END: # End of the session. positions = metrics_tracker.positions position_assets = algo.asset_finder.retrieve_all(positions) self._cleanup_expired_assets(dt, position_assets) execute_order_cancellation_policy() algo.validate_account_controls() yield self._get_daily_message(dt, algo, metrics_tracker) elif action == BEFORE_TRADING_START_BAR: self.simulation_dt = dt algo.on_dt_changed(dt) algo.before_trading_start(self.current_data) elif action == MINUTE_END: minute_msg = self._get_minute_message( dt, algo, metrics_tracker, ) yield minute_msg risk_message = metrics_tracker.handle_simulation_end( self.data_portal, ) yield risk_message def _cleanup_expired_assets(self, dt, position_assets): """ Clear out any assets that have expired before starting a new sim day. Performs two functions: 1. Finds all assets for which we have open orders and clears any orders whose assets are on or after their auto_close_date. 2. Finds all assets for which we have positions and generates close_position events for any assets that have reached their auto_close_date. """ algo = self.algo def past_auto_close_date(asset): acd = asset.auto_close_date if acd is not None: acd = acd.tz_localize(dt.tzinfo) return acd is not None and acd <= dt # Remove positions in any sids that have reached their auto_close date. assets_to_clear = [ asset for asset in position_assets if past_auto_close_date(asset) ] metrics_tracker = algo.metrics_tracker data_portal = self.data_portal for asset in assets_to_clear: metrics_tracker.process_close_position(asset, dt, data_portal) # Remove open orders for any sids that have reached their auto close # date. These orders get processed immediately because otherwise they # would not be processed until the first bar of the next day. blotter = algo.blotter assets_to_cancel = [ asset for asset in blotter.open_orders if past_auto_close_date(asset) ] for asset in assets_to_cancel: blotter.cancel_all_orders_for_asset(asset) # Make a copy here so that we are not modifying the list that is being # iterated over. for order in copy(blotter.new_orders): if order.status == ORDER_STATUS.CANCELLED: metrics_tracker.process_order(order) blotter.new_orders.remove(order) def _get_daily_message(self, dt, algo, metrics_tracker): """ Get a perf message for the given datetime. """ perf_message = metrics_tracker.handle_market_close( dt, self.data_portal, ) perf_message["daily_perf"]["recorded_vars"] = algo.recorded_vars return perf_message def _get_minute_message(self, dt, algo, metrics_tracker): """ Get a perf message for the given datetime. """ rvars = algo.recorded_vars minute_message = metrics_tracker.handle_minute_close( dt, self.data_portal, ) minute_message["minute_perf"]["recorded_vars"] = rvars return minute_message
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/gens/tradesimulation.py
tradesimulation.py
from abc import abstractmethod from numpy import ( array, full, recarray, searchsorted, vstack, where, ) from pandas import NaT as pd_NaT from zipline.errors import ( WindowLengthNotPositive, UnsupportedDataType, NonExistentAssetInTimeFrame, NoFurtherDataError, ) from zipline.lib.labelarray import LabelArray, labelarray_where from zipline.utils.context_tricks import nop_context from zipline.utils.input_validation import expect_dtypes, expect_types from zipline.utils.numpy_utils import bool_dtype from zipline.utils.pandas_utils import nearest_unequal_elements from .downsample_helpers import ( select_sampling_indices, expect_downsample_frequency, ) from .sentinels import NotSpecified from .term import Term class PositiveWindowLengthMixin(Term): """ Validation mixin enforcing that a Term gets a positive WindowLength """ def _validate(self): super(PositiveWindowLengthMixin, self)._validate() if not self.windowed: raise WindowLengthNotPositive(window_length=self.window_length) class SingleInputMixin(Term): """ Validation mixin enforcing that a Term gets a length-1 inputs list. """ def _validate(self): super(SingleInputMixin, self)._validate() num_inputs = len(self.inputs) if num_inputs != 1: raise ValueError( "{typename} expects only one input, " "but received {num_inputs} instead.".format( typename=type(self).__name__, num_inputs=num_inputs ) ) class StandardOutputs(Term): """ Validation mixin enforcing that a Term cannot produce non-standard outputs. """ def _validate(self): super(StandardOutputs, self)._validate() if self.outputs is not NotSpecified: raise ValueError( "{typename} does not support custom outputs," " but received custom outputs={outputs}.".format( typename=type(self).__name__, outputs=self.outputs, ) ) class RestrictedDTypeMixin(Term): """ Validation mixin enforcing that a term has a specific dtype. """ ALLOWED_DTYPES = NotSpecified def _validate(self): super(RestrictedDTypeMixin, self)._validate() assert self.ALLOWED_DTYPES is not NotSpecified, ( "ALLOWED_DTYPES not supplied on subclass " "of RestrictedDTypeMixin: %s." % type(self).__name__ ) if self.dtype not in self.ALLOWED_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, ) class CustomTermMixin(Term): """ Mixin for user-defined rolling-window Terms. Implements `_compute` in terms of a user-defined `compute` function, which is mapped over the input windows. Used by CustomFactor, CustomFilter, CustomClassifier, etc. """ ctx = nop_context def __new__( cls, inputs=NotSpecified, outputs=NotSpecified, window_length=NotSpecified, mask=NotSpecified, dtype=NotSpecified, missing_value=NotSpecified, ndim=NotSpecified, **kwargs, ): unexpected_keys = set(kwargs) - set(cls.params) if unexpected_keys: raise TypeError( "{termname} received unexpected keyword " "arguments {unexpected}".format( termname=cls.__name__, unexpected={k: kwargs[k] for k in unexpected_keys}, ) ) return super(CustomTermMixin, cls).__new__( cls, inputs=inputs, outputs=outputs, window_length=window_length, mask=mask, dtype=dtype, missing_value=missing_value, ndim=ndim, **kwargs, ) def compute(self, today, assets, out, *arrays): """ Override this method with a function that writes a value into `out`. """ raise NotImplementedError( "{name} must define a compute method".format(name=type(self).__name__) ) def _allocate_output(self, windows, shape): """ Allocate an output array whose rows should be passed to `self.compute`. The resulting array must have a shape of ``shape``. If we have standard outputs (i.e. self.outputs is NotSpecified), the default is an empty ndarray whose dtype is ``self.dtype``. If we have an outputs tuple, the default is an empty recarray with ``self.outputs`` as field names. Each field will have dtype ``self.dtype``. This can be overridden to control the kind of array constructed (e.g. to produce a LabelArray instead of an ndarray). """ missing_value = self.missing_value outputs = self.outputs if outputs is not NotSpecified: out = recarray( shape, formats=[self.dtype.str] * len(outputs), names=outputs, ) out[:] = missing_value else: out = full(shape, missing_value, dtype=self.dtype) return out def _format_inputs(self, windows, column_mask): inputs = [] for input_ in windows: window = next(input_) if window.shape[1] == 1: # Do not mask single-column inputs. inputs.append(window) else: inputs.append(window[:, column_mask]) return inputs def _compute(self, windows, dates, assets, mask): """ Call the user's `compute` function on each window with a pre-built output array. """ format_inputs = self._format_inputs compute = self.compute params = self.params ndim = self.ndim shape = (len(mask), 1) if ndim == 1 else mask.shape out = self._allocate_output(windows, shape) with self.ctx: for idx, date in enumerate(dates): # Never apply a mask to 1D outputs. out_mask = array([True]) if ndim == 1 else mask[idx] # Mask our inputs as usual. inputs_mask = mask[idx] masked_assets = assets[inputs_mask] out_row = out[idx][out_mask] inputs = format_inputs(windows, inputs_mask) compute(date, masked_assets, out_row, *inputs, **params) out[idx][out_mask] = out_row return out def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" # Graphviz interprets `\l` as "divide label into lines, left-justified" return type(self).__name__ + ":\\l window_length: %d\\l" % self.window_length class LatestMixin(SingleInputMixin): """ Common behavior for :attr:`zipline.pipeline.data.BoundColumn.latest`. Given a :class:`~zipline.pipeline.data.DataSet` named ``MyData`` with a column ``col`` of numeric dtype, the following expression: .. code-block:: python factor = MyData.col.latest is equivalent to: .. code-block:: python class Latest(CustomFactor): inputs = [MyData.col] window_length = 1 def compute(self, today, assets, out, data): out[:] = data[-1] factor = Latest() The behavior is the same for columns of boolean or string dtype, except the resulting expression will be a :class:`~zipline.pipeline.CustomFilter` for boolean columns, and the resulting object will be a :class:`~zipline.pipeline.CustomClassifier` for string or integer columns. """ window_length = 1 def compute(self, today, assets, out, data): out[:] = data[-1] def _validate(self): super(LatestMixin, self)._validate() if self.inputs[0].dtype != self.dtype: raise TypeError( "{name} expected an input of dtype {expected}, " "but got {actual} instead.".format( name=type(self).__name__, expected=self.dtype, actual=self.inputs[0].dtype, ) ) def graph_repr(self): return "Latest" class UniversalMixin(Term): """ Base class for "universal" mixins. Universal mixins are used to implement expressions that need separate subclasses for each of the ComputableTerm subclasses (Factor, Filter, and Classifier). Such expressions are usually return types of methods of ComputableTerm, such as `downsample()`, `alias()`, or `fillna()`. A type may only inherit from one UniversalMixin. """ # Memo dict mapping pairs of (mixin_type, principal_type) to subtypes. _UNIVERSAL_MIXIN_SUBTYPES = {} @staticmethod @abstractmethod def _universal_mixin_type(): raise NotImplementedError("_universal_mixin_type") @staticmethod @abstractmethod def _universal_mixin_specialization_name(principal_type): raise NotImplementedError("_universal_mixin_specialization_name") @classmethod def universal_mixin_specialization(cls, principal_type): """ Create a new subtype of `principal_type` that adds this mixin to ``principal_type``. ``principal_type`` will be one of Factor, Filter, or Classifier. """ mixin = cls._universal_mixin_type() memo_key = (mixin, principal_type) try: return cls._UNIVERSAL_MIXIN_SUBTYPES[memo_key] except KeyError: new_type = type( mixin._universal_mixin_specialization_name(principal_type), (mixin, principal_type), {"__module__": principal_type.__module__}, ) cls._UNIVERSAL_MIXIN_SUBTYPES[memo_key] = new_type return new_type class AliasedMixin(SingleInputMixin, UniversalMixin): """ Mixin for aliased terms. """ def __new__(cls, term, name): return super(AliasedMixin, cls).__new__( cls, inputs=(term,), outputs=term.outputs, window_length=0, name=name, dtype=term.dtype, missing_value=term.missing_value, ndim=term.ndim, window_safe=term.window_safe, ) def _init(self, name, *args, **kwargs): self.name = name return super(AliasedMixin, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, name, *args, **kwargs): return ( super(AliasedMixin, cls)._static_identity(*args, **kwargs), name, ) def _compute(self, inputs, dates, assets, mask): return inputs[0] def __repr__(self): return "{type}({inner}, name={name!r})".format( type=type(self).__name__, inner=self.inputs[0].recursive_repr(), name=self.name, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return self.name @staticmethod def _universal_mixin_type(): return AliasedMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return "Aliased" + principal_type.__name__ class DownsampledMixin(StandardOutputs, UniversalMixin): """Universal mixin for downsampled terms. A downsampled term is a wrapper around the "real" term that performs actual computation. The downsampler is responsible for calling the real term's `compute` method at selected intervals and forward-filling the computed values. Downsampling is not currently supported for terms with multiple outputs. """ # There's no reason to take a window of a downsampled term. The whole # point is that you're re-using the same result multiple times. window_safe = False @expect_types(term=Term) @expect_downsample_frequency def __new__(cls, term, frequency): return super(DownsampledMixin, cls).__new__( cls, inputs=term.inputs, outputs=term.outputs, window_length=term.window_length, mask=term.mask, frequency=frequency, wrapped_term=term, dtype=term.dtype, missing_value=term.missing_value, ndim=term.ndim, ) def _init(self, frequency, wrapped_term, *args, **kwargs): self._frequency = frequency self._wrapped_term = wrapped_term return super(DownsampledMixin, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, frequency, wrapped_term, *args, **kwargs): return ( super(DownsampledMixin, cls)._static_identity(*args, **kwargs), frequency, wrapped_term, ) def compute_extra_rows(self, all_dates, start_date, end_date, min_extra_rows): """ Ensure that min_extra_rows pushes us back to a computation date. Parameters ---------- all_dates : pd.DatetimeIndex The trading sessions against which ``self`` will be computed. start_date : pd.Timestamp The first date for which final output is requested. end_date : pd.Timestamp The last date for which final output is requested. min_extra_rows : int The minimum number of extra rows required of ``self``, as determined by other terms that depend on ``self``. Returns ------- extra_rows : int The number of extra rows to compute. This will be the minimum number of rows required to make our computed start_date fall on a recomputation date. """ try: current_start_pos = all_dates.get_loc(start_date) - min_extra_rows if current_start_pos < 0: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=all_dates[0], lookback_start=start_date, lookback_length=min_extra_rows, ) except KeyError as exc: before, after = nearest_unequal_elements(all_dates, start_date) raise ValueError( "Pipeline start_date {start_date} is not in calendar.\n" "Latest date before start_date is {before}.\n" "Earliest date after start_date is {after}.".format( start_date=start_date, before=before, after=after, ) ) from exc # Our possible target dates are all the dates on or before the current # starting position. # TODO: Consider bounding this below by self.window_length candidates = all_dates[: current_start_pos + 1] # Choose the latest date in the candidates that is the start of a new # period at our frequency. choices = select_sampling_indices(candidates, self._frequency) # If we have choices, the last choice is the first date if the # period containing current_start_date. Choose it. new_start_date = candidates[choices[-1]] # Add the difference between the new and old start dates to get the # number of rows for the new start_date. new_start_pos = all_dates.get_loc(new_start_date) assert new_start_pos <= current_start_pos, "Computed negative extra rows!" return min_extra_rows + (current_start_pos - new_start_pos) def _compute(self, inputs, dates, assets, mask): """ Compute by delegating to self._wrapped_term._compute on sample dates. On non-sample dates, forward-fill from previously-computed samples. """ to_sample = dates[select_sampling_indices(dates, self._frequency)] assert to_sample[0] == dates[0], ( "Misaligned sampling dates in %s." % type(self).__name__ ) real_compute = self._wrapped_term._compute # Inputs will contain different kinds of values depending on whether or # not we're a windowed computation. # If we're windowed, then `inputs` is a list of iterators of ndarrays. # If we're not windowed, then `inputs` is just a list of ndarrays. # There are two things we care about doing with the input: # 1. Preparing an input to be passed to our wrapped term. # 2. Skipping an input if we're going to use an already-computed row. # We perform these actions differently based on the expected kind of # input, and we encapsulate these actions with closures so that we # don't clutter the code below with lots of branching. if self.windowed: # If we're windowed, inputs are stateful AdjustedArrays. We don't # need to do any preparation before forwarding to real_compute, but # we need to call `next` on them if we want to skip an iteration. def prepare_inputs(): return inputs def skip_this_input(): for w in inputs: next(w) else: # If we're not windowed, inputs are just ndarrays. We need to # slice out a single row when forwarding to real_compute, but we # don't need to do anything to skip an input. def prepare_inputs(): # i is the loop iteration variable below. return [a[[i]] for a in inputs] def skip_this_input(): pass results = [] samples = iter(to_sample) next_sample = next(samples) for i, compute_date in enumerate(dates): if next_sample == compute_date: results.append( real_compute( prepare_inputs(), dates[i : i + 1], assets, mask[i : i + 1], ) ) try: next_sample = next(samples) except StopIteration: # No more samples to take. Set next_sample to Nat, which # compares False with any other datetime. next_sample = pd_NaT else: skip_this_input() # Copy results from previous sample period. results.append(results[-1]) # We should have exhausted our sample dates. try: next_sample = next(samples) except StopIteration: pass else: raise AssertionError("Unconsumed sample date: %s" % next_sample) # Concatenate stored results. return vstack(results) @staticmethod def _universal_mixin_type(): return DownsampledMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return "Downsampled" + principal_type.__name__ class SliceMixin(UniversalMixin): """Universal mixin for taking columnar slices of terms. Parameters ---------- term : zipline.pipeline.Term The term from which to extract a column of data. asset : zipline.assets.Asset The asset corresponding to the column of `term` to be extracted. Notes ----- Users should rarely construct instances of `Slice` directly. Instead, they should construct instances via indexing, e.g. `MyFactor()[Asset(24)]`. """ def __new__(cls, term, asset): return super(SliceMixin, cls).__new__( cls, asset=asset, inputs=[term], window_length=0, mask=term.mask, dtype=term.dtype, missing_value=term.missing_value, window_safe=term.window_safe, ndim=1, ) def __repr__(self): return "{parent_term}[{asset}]".format( parent_term=self.inputs[0].recursive_repr(), asset=self._asset, ) def _init(self, asset, *args, **kwargs): self._asset = asset return super(SliceMixin, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, asset, *args, **kwargs): return ( super(SliceMixin, cls)._static_identity(*args, **kwargs), asset, ) def _compute(self, windows, dates, assets, mask): asset = self._asset asset_column = searchsorted(assets.values, asset.sid) if assets[asset_column] != asset.sid: raise NonExistentAssetInTimeFrame( asset=asset, start_date=dates[0], end_date=dates[-1], ) # Return a 2D array with one column rather than a 1D array of the # column. return windows[0][:, [asset_column]] @property def asset(self): """Get the asset whose data is selected by this slice.""" return self._asset @staticmethod def _universal_mixin_type(): return SliceMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return principal_type.__name__ + "Slice" class IfElseMixin(UniversalMixin): """Universal mixin for types returned by Filter.if_else.""" window_length = 0 @expect_dtypes(condition=bool_dtype) def __new__(cls, condition, if_true, if_false): return super(IfElseMixin, cls).__new__( cls, inputs=[condition, if_true, if_false], dtype=if_true.dtype, ndim=if_true.ndim, missing_value=if_true.missing_value, window_safe=all( ( condition.window_safe, if_true.window_safe, if_false.window_safe, ) ), outputs=if_true.outputs, ) def _compute(self, inputs, assets, dates, mask): if self.dtype == object: return labelarray_where(inputs[0], inputs[1], inputs[2]) return where(inputs[0], inputs[1], inputs[2]) @staticmethod def _universal_mixin_type(): return IfElseMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return "IfElse" + principal_type.__name__ class ConstantMixin(StandardOutputs, UniversalMixin): """Universal mixin for terms that produce a known constant value.""" window_length = 0 inputs = () params = ("const",) def _compute(self, inputs, assets, dates, mask): constant = self.params["const"] out = full(mask.shape, constant, dtype=self.dtype) if self.dtype == object: return LabelArray( out, categories=[constant], missing_value=self.missing_value, ) return out @staticmethod def _universal_mixin_type(): return ConstantMixin @staticmethod def _universal_mixin_specialization_name(principal_type): return "Constant" + principal_type.__name__
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/mixins.py
mixins.py
from contextlib import contextmanager import errno from functools import partial from io import BytesIO from subprocess import Popen, PIPE from networkx import topological_sort from zipline.pipeline.data import BoundColumn from zipline.pipeline import Filter, Factor, Classifier, Term from zipline.pipeline.term import AssetExists class NoIPython(Exception): pass def delimit(delimiters, content): """ Surround `content` with the first and last characters of `delimiters`. >>> delimit('[]', "foo") # doctest: +SKIP '[foo]' >>> delimit('""', "foo") # doctest: +SKIP '"foo"' """ if len(delimiters) != 2: raise ValueError("`delimiters` must be of length 2. Got %r" % delimiters) return "".join([delimiters[0], content, delimiters[1]]) quote = partial(delimit, '""') bracket = partial(delimit, "[]") def begin_graph(f, name, **attrs): writeln(f, "strict digraph %s {" % name) writeln(f, "graph {}".format(format_attrs(attrs))) def begin_cluster(f, name, **attrs): attrs.setdefault("label", quote(name)) writeln(f, "subgraph cluster_%s {" % name) writeln(f, "graph {}".format(format_attrs(attrs))) def end_graph(f): writeln(f, "}") @contextmanager def graph(f, name, **attrs): begin_graph(f, name, **attrs) yield end_graph(f) @contextmanager def cluster(f, name, **attrs): begin_cluster(f, name, **attrs) yield end_graph(f) def roots(g): "Get nodes from graph G with indegree 0" return set(n for n, d in g.in_degree().items() if d == 0) def filter_nodes(include_asset_exists, nodes): if include_asset_exists: return nodes return filter(lambda n: n is not AssetExists(), nodes) def _render(g, out, format_, include_asset_exists=False): """ Draw `g` as a graph to `out`, in format `format`. Parameters ---------- g : zipline.pipeline.graph.TermGraph Graph to render. out : file-like object format_ : str {'png', 'svg'} Output format. include_asset_exists : bool Whether to filter out `AssetExists()` nodes. """ graph_attrs = {"rankdir": "TB", "splines": "ortho"} cluster_attrs = {"style": "filled", "color": "lightgoldenrod1"} in_nodes = g.loadable_terms out_nodes = list(g.outputs.values()) f = BytesIO() with graph(f, "G", **graph_attrs): # Write outputs cluster. with cluster(f, "Output", labelloc="b", **cluster_attrs): for term in filter_nodes(include_asset_exists, out_nodes): add_term_node(f, term) # Write inputs cluster. with cluster(f, "Input", **cluster_attrs): for term in filter_nodes(include_asset_exists, in_nodes): add_term_node(f, term) # Write intermediate results. for term in filter_nodes(include_asset_exists, topological_sort(g.graph)): if term in in_nodes or term in out_nodes: continue add_term_node(f, term) # Write edges for source, dest in g.graph.edges(): if source is AssetExists() and not include_asset_exists: continue add_edge(f, id(source), id(dest)) cmd = ["dot", "-T", format_] try: proc = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) except OSError as exc: if exc.errno == errno.ENOENT: raise RuntimeError( "Couldn't find `dot` graph layout program. " "Make sure Graphviz is installed and `dot` is on your path." ) from exc else: raise f.seek(0) proc_stdout, proc_stderr = proc.communicate(f.read()) if proc_stderr: raise RuntimeError( "Error(s) while rendering graph: %s" % proc_stderr.decode("utf-8") ) out.write(proc_stdout) def display_graph(g, format="svg", include_asset_exists=False): """ Display a TermGraph interactively from within IPython. """ try: import IPython.display as display except ImportError as exc: raise NoIPython("IPython is not installed. Can't display graph.") from exc if format == "svg": display_cls = display.SVG elif format in ("jpeg", "png"): display_cls = partial(display.Image, format=format, embed=True) out = BytesIO() _render(g, out, format, include_asset_exists=include_asset_exists) return display_cls(data=out.getvalue()) def writeln(f, s): f.write((s + "\n").encode("utf-8")) def fmt(obj): if isinstance(obj, Term): r = obj.graph_repr() else: r = obj return '"%s"' % r def add_term_node(f, term): declare_node(f, id(term), attrs_for_node(term)) def declare_node(f, name, attributes): writeln(f, "{0} {1};".format(name, format_attrs(attributes))) def add_edge(f, source, dest): writeln(f, "{0} -> {1};".format(source, dest)) def attrs_for_node(term, **overrides): attrs = { "shape": "box", "colorscheme": "pastel19", "style": "filled", "label": fmt(term), } if isinstance(term, BoundColumn): attrs["fillcolor"] = "1" if isinstance(term, Factor): attrs["fillcolor"] = "2" elif isinstance(term, Filter): attrs["fillcolor"] = "3" elif isinstance(term, Classifier): attrs["fillcolor"] = "4" attrs.update(**overrides or {}) return attrs def format_attrs(attrs): """ Format key, value pairs from attrs into graphviz attrs format Examples -------- >>> format_attrs({'key1': 'value1', 'key2': 'value2'}) # doctest: +SKIP '[key1=value1, key2=value2]' """ if not attrs: return "" entries = ["=".join((key, value)) for key, value in attrs.items()] return "[" + ", ".join(entries) + "]"
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/visualize.py
visualize.py
import re from itertools import chain from numbers import Number import numexpr from numexpr.necompiler import getExprNames from numpy import ( full, inf, ) from zipline.pipeline.term import Term, ComputableTerm from zipline.utils.numpy_utils import bool_dtype _VARIABLE_NAME_RE = re.compile("^(x_)([0-9]+)$") # Map from op symbol to equivalent Python magic method name. ops_to_methods = { "+": "__add__", "-": "__sub__", "*": "__mul__", "/": "__div__", "%": "__mod__", "**": "__pow__", "&": "__and__", "|": "__or__", "^": "__xor__", "<": "__lt__", "<=": "__le__", "==": "__eq__", "!=": "__ne__", ">=": "__ge__", ">": "__gt__", } # Map from method name to op symbol. methods_to_ops = {v: k for k, v in ops_to_methods.items()} # Map from op symbol to equivalent Python magic method name after flipping # arguments. ops_to_commuted_methods = { "+": "__radd__", "-": "__rsub__", "*": "__rmul__", "/": "__rdiv__", "%": "__rmod__", "**": "__rpow__", "&": "__rand__", "|": "__ror__", "^": "__rxor__", "<": "__gt__", "<=": "__ge__", "==": "__eq__", "!=": "__ne__", ">=": "__le__", ">": "__lt__", } unary_ops_to_methods = { "-": "__neg__", "~": "__invert__", } UNARY_OPS = {"-"} MATH_BINOPS = {"+", "-", "*", "/", "**", "%"} FILTER_BINOPS = {"&", "|"} # NumExpr doesn't support xor. COMPARISONS = {"<", "<=", "!=", ">=", ">", "=="} NUMEXPR_MATH_FUNCS = { "sin", "cos", "tan", "arcsin", "arccos", "arctan", "sinh", "cosh", "tanh", "arcsinh", "arccosh", "arctanh", "log", "log10", "log1p", "exp", "expm1", "sqrt", "abs", } NPY_MAXARGS = 32 def _ensure_element(tup, elem): """ Create a tuple containing all elements of tup, plus elem. Returns the new tuple and the index of elem in the new tuple. """ try: return tup, tup.index(elem) except ValueError: return tuple(chain(tup, (elem,))), len(tup) class BadBinaryOperator(TypeError): """ Called when a bad binary operation is encountered. Parameters ---------- op : str The attempted operation left : zipline.computable.Term The left hand side of the operation. right : zipline.computable.Term The right hand side of the operation. """ def __init__(self, op, left, right): super(BadBinaryOperator, self).__init__( "Can't compute {left} {op} {right}".format( op=op, left=type(left).__name__, right=type(right).__name__, ) ) def method_name_for_op(op, commute=False): """ Get the name of the Python magic method corresponding to `op`. Parameters ---------- op : str {'+','-','*', '/','**','&','|','^','<','<=','==','!=','>=','>'} The requested operation. commute : bool Whether to return the name of an equivalent method after flipping args. Returns ------- method_name : str The name of the Python magic method corresponding to `op`. If `commute` is True, returns the name of a method equivalent to `op` with inputs flipped. Examples -------- >>> method_name_for_op('+') '__add__' >>> method_name_for_op('+', commute=True) '__radd__' >>> method_name_for_op('>') '__gt__' >>> method_name_for_op('>', commute=True) '__lt__' """ if commute: return ops_to_commuted_methods[op] return ops_to_methods[op] def unary_op_name(op): return unary_ops_to_methods[op] def is_comparison(op): return op in COMPARISONS class NumericalExpression(ComputableTerm): """ Term binding to a numexpr expression. Parameters ---------- expr : string A string suitable for passing to numexpr. All variables in 'expr' should be of the form "x_i", where i is the index of the corresponding factor input in 'binds'. binds : tuple A tuple of factors to use as inputs. dtype : np.dtype The dtype for the expression. """ window_length = 0 def __new__(cls, expr, binds, dtype): # We always allow filters to be used in windowed computations. # Otherwise, an expression is window_safe if all its constituents are # window_safe. window_safe = (dtype == bool_dtype) or all(t.window_safe for t in binds) return super(NumericalExpression, cls).__new__( cls, inputs=binds, expr=expr, dtype=dtype, window_safe=window_safe, ) def _init(self, expr, *args, **kwargs): self._expr = expr return super(NumericalExpression, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, expr, *args, **kwargs): return ( super(NumericalExpression, cls)._static_identity(*args, **kwargs), expr, ) def _validate(self): """ Ensure that our expression string has variables of the form x_0, x_1, ... x_(N - 1), where N is the length of our inputs. """ variable_names, _unused = getExprNames(self._expr, {}) expr_indices = [] for name in variable_names: if name == "inf": continue match = _VARIABLE_NAME_RE.match(name) if not match: raise ValueError("%r is not a valid variable name" % name) expr_indices.append(int(match.group(2))) expr_indices.sort() expected_indices = list(range(len(self.inputs))) if expr_indices != expected_indices: raise ValueError( "Expected %s for variable indices, but got %s" % ( expected_indices, expr_indices, ) ) super(NumericalExpression, self)._validate() def _compute(self, arrays, dates, assets, mask): """ Compute our stored expression string with numexpr. """ out = full(mask.shape, self.missing_value, dtype=self.dtype) # This writes directly into our output buffer. numexpr.evaluate( self._expr, local_dict={"x_%d" % idx: array for idx, array in enumerate(arrays)}, global_dict={"inf": inf}, out=out, ) return out def _rebind_variables(self, new_inputs): """ Return self._expr with all variables rebound to the indices implied by new_inputs. """ expr = self._expr # If we have 11+ variables, some of our variable names may be # substrings of other variable names. For example, we might have x_1, # x_10, and x_100. By enumerating in reverse order, we ensure that # every variable name which is a substring of another variable name is # processed after the variable of which it is a substring. This # guarantees that the substitution of any given variable index only # ever affects exactly its own index. For example, if we have variables # with indices going up to 100, we will process all of the x_1xx names # before x_1x, which will be before x_1, so the substitution of x_1 # will not affect x_1x, which will not affect x_1xx. for idx, input_ in reversed(list(enumerate(self.inputs))): old_varname = "x_%d" % idx # Temporarily rebind to x_temp_N so that we don't overwrite the # same value multiple times. temp_new_varname = "x_temp_%d" % new_inputs.index(input_) expr = expr.replace(old_varname, temp_new_varname) # Clear out the temp variables now that we've finished iteration. return expr.replace("_temp_", "_") def _merge_expressions(self, other): """ Merge the inputs of two NumericalExpressions into a single input tuple, rewriting their respective string expressions to make input names resolve correctly. Returns a tuple of (new_self_expr, new_other_expr, new_inputs) """ new_inputs = tuple(set(self.inputs).union(other.inputs)) new_self_expr = self._rebind_variables(new_inputs) new_other_expr = other._rebind_variables(new_inputs) return new_self_expr, new_other_expr, new_inputs def build_binary_op(self, op, other): """ Compute new expression strings and a new inputs tuple for combining self and other with a binary operator. """ if isinstance(other, NumericalExpression): self_expr, other_expr, new_inputs = self._merge_expressions(other) elif isinstance(other, Term): self_expr = self._expr new_inputs, other_idx = _ensure_element(self.inputs, other) other_expr = "x_%d" % other_idx elif isinstance(other, Number): self_expr = self._expr other_expr = str(other) new_inputs = self.inputs else: raise BadBinaryOperator(op, self, other) # If the merged inputs would be too many for numexpr, then don't merge # them: if len(new_inputs) >= NPY_MAXARGS: self_expr = "x_0" other_expr = "x_1" new_inputs = self, other return self_expr, other_expr, new_inputs @property def bindings(self): return {"x_%d" % i: input_ for i, input_ in enumerate(self.inputs)} def __repr__(self): return "{typename}(expr='{expr}', bindings={bindings})".format( typename=type(self).__name__, expr=self._expr, bindings=self.bindings, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" # Replace any floating point numbers in the expression # with their scientific notation final = re.sub( r"[-+]?\d*\.\d+", lambda x: format(float(x.group(0)), ".2E"), self._expr ) # Graphviz interprets `\l` as "divide label into lines, left-justified" return "Expression:\\l {}\\l".format( final, )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/expression.py
expression.py
from zipline.errors import UnsupportedPipelineOutput from zipline.utils.input_validation import ( expect_element, expect_types, optional, ) from .domain import Domain, GENERIC, infer_domain from .graph import ExecutionPlan, TermGraph, SCREEN_NAME from .filters import Filter from .term import AssetExists, ComputableTerm, Term class Pipeline: """ A Pipeline object represents a collection of named expressions to be compiled and executed by a PipelineEngine. A Pipeline has two important attributes: 'columns', a dictionary of named :class:`~zipline.pipeline.Term` instances, and 'screen', a :class:`~zipline.pipeline.Filter` representing criteria for including an asset in the results of a Pipeline. To compute a pipeline in the context of a TradingAlgorithm, users must call ``attach_pipeline`` in their ``initialize`` function to register that the pipeline should be computed each trading day. The most recent outputs of an attached pipeline can be retrieved by calling ``pipeline_output`` from ``handle_data``, ``before_trading_start``, or a scheduled function. Parameters ---------- columns : dict, optional Initial columns. screen : zipline.pipeline.Filter, optional Initial screen. """ __slots__ = ("_columns", "_screen", "_domain", "__weakref__") @expect_types(columns=optional(dict), screen=optional(Filter), domain=Domain) def __init__(self, columns=None, screen=None, domain=GENERIC): if columns is None: columns = {} validate_column = self.validate_column for column_name, term in columns.items(): validate_column(column_name, term) if not isinstance(term, ComputableTerm): raise TypeError( "Column {column_name!r} contains an invalid pipeline term " "({term}). Did you mean to append '.latest'?".format( column_name=column_name, term=term, ) ) self._columns = columns self._screen = screen self._domain = domain @property def columns(self): """The output columns of this pipeline. Returns ------- columns : dict[str, zipline.pipeline.ComputableTerm] Map from column name to expression computing that column's output. """ return self._columns @property def screen(self): """ The screen of this pipeline. Returns ------- screen : zipline.pipeline.Filter or None Term defining the screen for this pipeline. If ``screen`` is a filter, rows that do not pass the filter (i.e., rows for which the filter computed ``False``) will be dropped from the output of this pipeline before returning results. Notes ----- Setting a screen on a Pipeline does not change the values produced for any rows: it only affects whether a given row is returned. Computing a pipeline with a screen is logically equivalent to computing the pipeline without the screen and then, as a post-processing-step, filtering out any rows for which the screen computed ``False``. """ return self._screen @expect_types(term=Term, name=str) def add(self, term, name, overwrite=False): """Add a column. The results of computing ``term`` will show up as a column in the DataFrame produced by running this pipeline. Parameters ---------- column : zipline.pipeline.Term A Filter, Factor, or Classifier to add to the pipeline. name : str Name of the column to add. overwrite : bool Whether to overwrite the existing entry if we already have a column named `name`. """ self.validate_column(name, term) columns = self.columns if name in columns: if overwrite: self.remove(name) else: raise KeyError("Column '{}' already exists.".format(name)) if not isinstance(term, ComputableTerm): raise TypeError( "{term} is not a valid pipeline column. Did you mean to " "append '.latest'?".format(term=term) ) self._columns[name] = term @expect_types(name=str) def remove(self, name): """Remove a column. Parameters ---------- name : str The name of the column to remove. Raises ------ KeyError If `name` is not in self.columns. Returns ------- removed : zipline.pipeline.Term The removed term. """ return self.columns.pop(name) @expect_types(screen=Filter, overwrite=(bool, int)) def set_screen(self, screen, overwrite=False): """Set a screen on this Pipeline. Parameters ---------- filter : zipline.pipeline.Filter The filter to apply as a screen. overwrite : bool Whether to overwrite any existing screen. If overwrite is False and self.screen is not None, we raise an error. """ if self._screen is not None and not overwrite: raise ValueError( "set_screen() called with overwrite=False and screen already " "set.\n" "If you want to apply multiple filters as a screen use " "set_screen(filter1 & filter2 & ...).\n" "If you want to replace the previous screen with a new one, " "use set_screen(new_filter, overwrite=True)." ) self._screen = screen def to_execution_plan(self, domain, default_screen, start_date, end_date): """ Compile into an ExecutionPlan. Parameters ---------- domain : zipline.pipeline.domain.Domain Domain on which the pipeline will be executed. default_screen : zipline.pipeline.Term Term to use as a screen if self.screen is None. all_dates : pd.DatetimeIndex A calendar of dates to use to calculate starts and ends for each term. start_date : pd.Timestamp The first date of requested output. end_date : pd.Timestamp The last date of requested output. Returns ------- graph : zipline.pipeline.graph.ExecutionPlan Graph encoding term dependencies, including metadata about extra row requirements. """ if self._domain is not GENERIC and self._domain is not domain: raise AssertionError( "Attempted to compile Pipeline with domain {} to execution " "plan with different domain {}.".format(self._domain, domain) ) return ExecutionPlan( domain=domain, terms=self._prepare_graph_terms(default_screen), start_date=start_date, end_date=end_date, ) def to_simple_graph(self, default_screen): """ Compile into a simple TermGraph with no extra row metadata. Parameters ---------- default_screen : zipline.pipeline.Term Term to use as a screen if self.screen is None. Returns ------- graph : zipline.pipeline.graph.TermGraph Graph encoding term dependencies. """ return TermGraph(self._prepare_graph_terms(default_screen)) def _prepare_graph_terms(self, default_screen): """Helper for to_graph and to_execution_plan.""" columns = self.columns.copy() screen = self.screen if screen is None: screen = default_screen columns[SCREEN_NAME] = screen return columns @expect_element(format=("svg", "png", "jpeg")) def show_graph(self, format="svg"): """ Render this Pipeline as a DAG. Parameters ---------- format : {'svg', 'png', 'jpeg'} Image format to render with. Default is 'svg'. """ g = self.to_simple_graph(AssetExists()) if format == "svg": return g.svg elif format == "png": return g.png elif format == "jpeg": return g.jpeg else: # We should never get here because of the expect_element decorator # above. raise AssertionError("Unknown graph format %r." % format) @staticmethod @expect_types(term=Term, column_name=str) def validate_column(column_name, term): if term.ndim == 1: raise UnsupportedPipelineOutput(column_name=column_name, term=term) @property def _output_terms(self): """ A list of terms that are outputs of this pipeline. Includes all terms registered as data outputs of the pipeline, plus the screen, if present. """ terms = list(self._columns.values()) screen = self.screen if screen is not None: terms.append(screen) return terms @expect_types(default=Domain) def domain(self, default): """ Get the domain for this pipeline. - If an explicit domain was provided at construction time, use it. - Otherwise, infer a domain from the registered columns. - If no domain can be inferred, return ``default``. Parameters ---------- default : zipline.pipeline.domain.Domain Domain to use if no domain can be inferred from this pipeline by itself. Returns ------- domain : zipline.pipeline.domain.Domain The domain for the pipeline. Raises ------ AmbiguousDomain ValueError If the terms in ``self`` conflict with self._domain. """ # Always compute our inferred domain to ensure that it's compatible # with our explicit domain. inferred = infer_domain(self._output_terms) if inferred is GENERIC and self._domain is GENERIC: # Both generic. Fall back to default. return default elif inferred is GENERIC and self._domain is not GENERIC: # Use the non-generic domain. return self._domain elif inferred is not GENERIC and self._domain is GENERIC: # Use the non-generic domain. return inferred else: # Both non-generic. They have to match. if inferred is not self._domain: raise ValueError( "Conflicting domains in Pipeline. Inferred {}, but {} was " "passed at construction.".format(inferred, self._domain) ) return inferred
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/pipeline.py
pipeline.py
import datetime from textwrap import dedent from interface import default, implements, Interface import numpy as np import pandas as pd import pytz from zipline.utils.calendar_utils import get_calendar from zipline.country import CountryCode from zipline.utils.formatting import bulleted_list from zipline.utils.input_validation import expect_types, optional from zipline.utils.memoize import lazyval from zipline.utils.pandas_utils import days_at_time class IDomain(Interface): """Domain interface.""" def sessions(self): """Get all trading sessions for the calendar of this domain. This determines the row labels of Pipeline outputs for pipelines run on this domain. Returns ------- sessions : pd.DatetimeIndex An array of all session labels for this domain. """ @property def country_code(self): """The country code for this domain. Returns ------- code : str The two-character country iso3166 country code for this domain. """ def data_query_cutoff_for_sessions(self, sessions): """Compute the data query cutoff time for the given sessions. Parameters ---------- sessions : pd.DatetimeIndex The sessions to get the data query cutoff times for. This index will contain all midnight UTC values. Returns ------- data_query_cutoff : pd.DatetimeIndex Timestamp of the last minute for which data should be considered "available" on each session. """ @default def roll_forward(self, dt): """Given a date, align it to the calendar of the pipeline's domain. Parameters ---------- dt : pd.Timestamp Returns ------- pd.Timestamp """ dt = pd.Timestamp(dt) trading_days = self.sessions() try: return trading_days[trading_days.searchsorted(dt)] except IndexError as exc: raise ValueError( f"Date {dt.date()} was past the last session for domain {self}. " f"The last session for this domain is {trading_days[-1].date()}." ) from exc Domain = implements(IDomain) Domain.__doc__ = """A domain represents a set of labels for the arrays computed by a Pipeline. A domain defines two things: 1. A calendar defining the dates to which the pipeline's inputs and outputs should be aligned. The calendar is represented concretely by a pandas DatetimeIndex. 2. The set of assets that the pipeline should compute over. Right now, the only supported way of representing this set is with a two-character country code describing the country of assets over which the pipeline should compute. In the future, we expect to expand this functionality to include more general concepts. """ Domain.__name__ = "Domain" Domain.__qualname__ = "zipline.pipeline.domain.Domain" class GenericDomain(Domain): """Special singleton class used to represent generic DataSets and Columns.""" def sessions(self): raise NotImplementedError("Can't get sessions for generic domain.") @property def country_code(self): raise NotImplementedError("Can't get country code for generic domain.") def data_query_cutoff_for_sessions(self, sessions): raise NotImplementedError( "Can't compute data query cutoff times for generic domain.", ) def __repr__(self): return "GENERIC" GENERIC = GenericDomain() class EquityCalendarDomain(Domain): """An equity domain whose sessions are defined by a named TradingCalendar. Parameters ---------- country_code : str ISO-3166 two-letter country code of the domain calendar_name : str Name of the calendar, to be looked by by trading_calendar.get_calendar. data_query_offset : np.timedelta64 The offset from market open when data should no longer be considered available for a session. For example, a ``data_query_offset`` of ``-np.timedelta64(45, 'm')`` means that the data must have been available at least 45 minutes prior to market open for it to appear in the pipeline input for the given session. """ @expect_types( country_code=str, calendar_name=str, __funcname="EquityCountryDomain", ) def __init__( self, country_code, calendar_name, data_query_offset=-np.timedelta64(45, "m") ): self._country_code = country_code self.calendar_name = calendar_name self._data_query_offset = ( # add one minute because `open_time` is actually the open minute # label which is one minute _after_ market open... data_query_offset - np.timedelta64(1, "m") ) if data_query_offset >= datetime.timedelta(0): raise ValueError( "data must be ready before market open (offset must be < 0)", ) @property def country_code(self): return self._country_code @lazyval def calendar(self): return get_calendar(self.calendar_name) def sessions(self): return self.calendar.sessions def data_query_cutoff_for_sessions(self, sessions): opens = self.calendar.first_minutes.reindex(sessions) missing_mask = pd.isnull(opens) if missing_mask.any(): missing_days = sessions[missing_mask] raise ValueError( "cannot resolve data query time for sessions that are not on" f" the {self.calendar_name} calendar:\n{missing_days}" ) return pd.DatetimeIndex(opens) + self._data_query_offset def __repr__(self): return "EquityCalendarDomain({!r}, {!r})".format( self.country_code, self.calendar_name, ) AR_EQUITIES = EquityCalendarDomain(CountryCode.ARGENTINA, "XBUE") AT_EQUITIES = EquityCalendarDomain(CountryCode.AUSTRIA, "XWBO") AU_EQUITIES = EquityCalendarDomain(CountryCode.AUSTRALIA, "XASX") BE_EQUITIES = EquityCalendarDomain(CountryCode.BELGIUM, "XBRU") BR_EQUITIES = EquityCalendarDomain(CountryCode.BRAZIL, "BVMF") CA_EQUITIES = EquityCalendarDomain(CountryCode.CANADA, "XTSE") CH_EQUITIES = EquityCalendarDomain(CountryCode.SWITZERLAND, "XSWX") CL_EQUITIES = EquityCalendarDomain(CountryCode.CHILE, "XSGO") CN_EQUITIES = EquityCalendarDomain(CountryCode.CHINA, "XSHG") CO_EQUITIES = EquityCalendarDomain(CountryCode.COLOMBIA, "XBOG") CZ_EQUITIES = EquityCalendarDomain(CountryCode.CZECH_REPUBLIC, "XPRA") DE_EQUITIES = EquityCalendarDomain(CountryCode.GERMANY, "XFRA") DK_EQUITIES = EquityCalendarDomain(CountryCode.DENMARK, "XCSE") ES_EQUITIES = EquityCalendarDomain(CountryCode.SPAIN, "XMAD") FI_EQUITIES = EquityCalendarDomain(CountryCode.FINLAND, "XHEL") FR_EQUITIES = EquityCalendarDomain(CountryCode.FRANCE, "XPAR") GB_EQUITIES = EquityCalendarDomain(CountryCode.UNITED_KINGDOM, "XLON") GR_EQUITIES = EquityCalendarDomain(CountryCode.GREECE, "ASEX") HK_EQUITIES = EquityCalendarDomain(CountryCode.HONG_KONG, "XHKG") HU_EQUITIES = EquityCalendarDomain(CountryCode.HUNGARY, "XBUD") ID_EQUITIES = EquityCalendarDomain(CountryCode.INDONESIA, "XIDX") IE_EQUITIES = EquityCalendarDomain(CountryCode.IRELAND, "XDUB") IN_EQUITIES = EquityCalendarDomain(CountryCode.INDIA, "XBOM") IT_EQUITIES = EquityCalendarDomain(CountryCode.ITALY, "XMIL") JP_EQUITIES = EquityCalendarDomain(CountryCode.JAPAN, "XTKS") KR_EQUITIES = EquityCalendarDomain(CountryCode.SOUTH_KOREA, "XKRX") MX_EQUITIES = EquityCalendarDomain(CountryCode.MEXICO, "XMEX") MY_EQUITIES = EquityCalendarDomain(CountryCode.MALAYSIA, "XKLS") NL_EQUITIES = EquityCalendarDomain(CountryCode.NETHERLANDS, "XAMS") NO_EQUITIES = EquityCalendarDomain(CountryCode.NORWAY, "XOSL") NZ_EQUITIES = EquityCalendarDomain(CountryCode.NEW_ZEALAND, "XNZE") PE_EQUITIES = EquityCalendarDomain(CountryCode.PERU, "XLIM") PH_EQUITIES = EquityCalendarDomain(CountryCode.PHILIPPINES, "XPHS") PK_EQUITIES = EquityCalendarDomain(CountryCode.PAKISTAN, "XKAR") PL_EQUITIES = EquityCalendarDomain(CountryCode.POLAND, "XWAR") PT_EQUITIES = EquityCalendarDomain(CountryCode.PORTUGAL, "XLIS") RU_EQUITIES = EquityCalendarDomain(CountryCode.RUSSIA, "XMOS") SE_EQUITIES = EquityCalendarDomain(CountryCode.SWEDEN, "XSTO") SG_EQUITIES = EquityCalendarDomain(CountryCode.SINGAPORE, "XSES") TH_EQUITIES = EquityCalendarDomain(CountryCode.THAILAND, "XBKK") TR_EQUITIES = EquityCalendarDomain(CountryCode.TURKEY, "XIST") TW_EQUITIES = EquityCalendarDomain(CountryCode.TAIWAN, "XTAI") US_EQUITIES = EquityCalendarDomain(CountryCode.UNITED_STATES, "XNYS") ZA_EQUITIES = EquityCalendarDomain(CountryCode.SOUTH_AFRICA, "XJSE") BUILT_IN_DOMAINS = [ AR_EQUITIES, AT_EQUITIES, AU_EQUITIES, BE_EQUITIES, BR_EQUITIES, CA_EQUITIES, CH_EQUITIES, CL_EQUITIES, CN_EQUITIES, CO_EQUITIES, CZ_EQUITIES, DE_EQUITIES, DK_EQUITIES, ES_EQUITIES, FI_EQUITIES, FR_EQUITIES, GB_EQUITIES, GR_EQUITIES, HK_EQUITIES, HU_EQUITIES, ID_EQUITIES, IE_EQUITIES, IN_EQUITIES, IT_EQUITIES, JP_EQUITIES, KR_EQUITIES, MX_EQUITIES, MY_EQUITIES, NL_EQUITIES, NO_EQUITIES, NZ_EQUITIES, PE_EQUITIES, PH_EQUITIES, PK_EQUITIES, PL_EQUITIES, PT_EQUITIES, RU_EQUITIES, SE_EQUITIES, SG_EQUITIES, TH_EQUITIES, TR_EQUITIES, TW_EQUITIES, US_EQUITIES, ZA_EQUITIES, ] def infer_domain(terms): """Infer the domain from a collection of terms. The algorithm for inferring domains is as follows: - If all input terms have a domain of GENERIC, the result is GENERIC. - If there is exactly one non-generic domain in the input terms, the result is that domain. - Otherwise, an AmbiguousDomain error is raised. Parameters ---------- terms : iterable[zipline.pipeline.Term] Returns ------- inferred : Domain or NotSpecified Raises ------ AmbiguousDomain Raised if more than one concrete domain is present in the input terms. """ domains = {t.domain for t in terms} num_domains = len(domains) if num_domains == 0: return GENERIC elif num_domains == 1: return domains.pop() elif num_domains == 2 and GENERIC in domains: domains.remove(GENERIC) return domains.pop() else: # Remove GENERIC if it's present before raising. Showing it to the user # is confusing because it doesn't contribute to the error. domains.discard(GENERIC) raise AmbiguousDomain(sorted(domains, key=repr)) # This would be better if we provided more context for which domains came from # which terms. class AmbiguousDomain(Exception): """Raised when we attempt to infer a domain from a collection of mixed terms.""" _TEMPLATE = dedent( """\ Found terms with conflicting domains: {domains}""" ) def __init__(self, domains): self.domains = domains def __str__(self): return self._TEMPLATE.format( domains=bulleted_list(self.domains, indent=2), ) class EquitySessionDomain(Domain): """A domain built directly from an index of sessions. Mostly useful for testing. Parameters ---------- sessions : pd.DatetimeIndex Sessions to use as output labels for pipelines run on this domain. country_code : str ISO 3166 country code of equities to be used with this domain. data_query_time : datetime.time, optional The time of day when data should no longer be considered available for a session. data_query_date_offset : int, optional The number of days to add to the session label before applying the ``data_query_time``. This can be used to express that the cutoff time for a session falls on a different calendar day from the session label. """ @expect_types( sessions=pd.DatetimeIndex, country_code=str, data_query_time=optional(datetime.time), data_query_date_offset=int, __funcname="EquitySessionDomain", ) def __init__( self, sessions, country_code, data_query_time=None, data_query_date_offset=0, ): self._country_code = country_code self._sessions = sessions if data_query_time is None: data_query_time = datetime.time(0, 0, tzinfo=pytz.timezone("UTC")) if data_query_time.tzinfo is None: raise ValueError("data_query_time cannot be tz-naive") self._data_query_time = data_query_time self._data_query_date_offset = data_query_date_offset @property def country_code(self): return self._country_code def sessions(self): return self._sessions def data_query_cutoff_for_sessions(self, sessions): return days_at_time( sessions, self._data_query_time, self._data_query_time.tzinfo, self._data_query_date_offset, )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/domain.py
domain.py
from abc import ABC, abstractmethod from functools import partial import pandas as pd from numpy import arange, array from toolz import groupby from zipline.errors import NoFurtherDataError from zipline.lib.adjusted_array import ensure_adjusted_array, ensure_ndarray from zipline.utils.date_utils import compute_date_range_chunks from zipline.utils.input_validation import expect_types from zipline.utils.numpy_utils import as_column, repeat_first_axis, repeat_last_axis from zipline.utils.pandas_utils import categorical_df_concat, explode from zipline.utils.string_formatting import bulleted_list from .domain import GENERIC, Domain from .graph import maybe_specialize from .hooks import DelegatingHooks from .term import AssetExists, InputDates, LoadableTerm class PipelineEngine(ABC): @abstractmethod def run_pipeline(self, pipeline, start_date, end_date, hooks=None): """Compute values for ``pipeline`` from ``start_date`` to ``end_date``. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. hooks : list[implements(PipelineHooks)], optional Hooks for instrumenting Pipeline execution. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. """ raise NotImplementedError("run_pipeline") @abstractmethod def run_chunked_pipeline( self, pipeline, start_date, end_date, chunksize, hooks=None ): """Compute values for ``pipeline`` from ``start_date`` to ``end_date``, in date chunks of size ``chunksize``. Chunked execution reduces memory consumption, and may reduce computation time depending on the contents of your pipeline. Parameters ---------- pipeline : Pipeline The pipeline to run. start_date : pd.Timestamp The start date to run the pipeline for. end_date : pd.Timestamp The end date to run the pipeline for. chunksize : int The number of days to execute at a time. hooks : list[implements(PipelineHooks)], optional Hooks for instrumenting Pipeline execution. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ raise NotImplementedError("run_chunked_pipeline") class NoEngineRegistered(Exception): """Raised if a user tries to call pipeline_output in an algorithm that hasn't set up a pipeline engine. """ class ExplodingPipelineEngine(PipelineEngine): """A PipelineEngine that doesn't do anything.""" def run_pipeline(self, pipeline, start_date, end_date, hooks=None): raise NoEngineRegistered( "Attempted to run a pipeline but no pipeline " "resources were registered." ) def run_chunked_pipeline( self, pipeline, start_date, end_date, chunksize, hooks=None ): raise NoEngineRegistered( "Attempted to run a chunked pipeline but no pipeline " "resources were registered." ) def default_populate_initial_workspace( initial_workspace, root_mask_term, execution_plan, dates, assets ): """The default implementation for ``populate_initial_workspace``. This function returns the ``initial_workspace`` argument without making any modifications. Parameters ---------- initial_workspace : dict[array-like] The initial workspace before we have populated it with any cached terms. root_mask_term : Term The root mask term, normally ``AssetExists()``. This is needed to compute the dates for individual terms. execution_plan : ExecutionPlan The execution plan for the pipeline being run. dates : pd.DatetimeIndex All of the dates being requested in this pipeline run including the extra dates for look back windows. assets : pd.Int64Index All of the assets that exist for the window being computed. Returns ------- populated_initial_workspace : dict[term, array-like] The workspace to begin computations with. """ return initial_workspace class SimplePipelineEngine(PipelineEngine): """PipelineEngine class that computes each term independently. Parameters ---------- get_loader : callable A function that is given a loadable term and returns a PipelineLoader to use to retrieve raw data for that term. asset_finder : zipline.assets.AssetFinder An AssetFinder instance. We depend on the AssetFinder to determine which assets are in the top-level universe at any point in time. populate_initial_workspace : callable, optional A function which will be used to populate the initial workspace when computing a pipeline. See :func:`zipline.pipeline.engine.default_populate_initial_workspace` for more info. default_hooks : list, optional List of hooks that should be used to instrument all pipelines executed by this engine. See Also -------- :func:`zipline.pipeline.engine.default_populate_initial_workspace` """ __slots__ = ( "_get_loader", "_finder", "_root_mask_term", "_root_mask_dates_term", "_populate_initial_workspace", ) @expect_types( default_domain=Domain, __funcname="SimplePipelineEngine", ) def __init__( self, get_loader, asset_finder, default_domain=GENERIC, populate_initial_workspace=None, default_hooks=None, ): self._get_loader = get_loader self._finder = asset_finder self._root_mask_term = AssetExists() self._root_mask_dates_term = InputDates() self._populate_initial_workspace = ( populate_initial_workspace or default_populate_initial_workspace ) self._default_domain = default_domain if default_hooks is None: self._default_hooks = [] else: self._default_hooks = list(default_hooks) def run_chunked_pipeline( self, pipeline, start_date, end_date, chunksize, hooks=None ): """Compute values for ``pipeline`` from ``start_date`` to ``end_date``, in date chunks of size ``chunksize``. Chunked execution reduces memory consumption, and may reduce computation time depending on the contents of your pipeline. Parameters ---------- pipeline : Pipeline The pipeline to run. start_date : pd.Timestamp The start date to run the pipeline for. end_date : pd.Timestamp The end date to run the pipeline for. chunksize : int The number of days to execute at a time. hooks : list[implements(PipelineHooks)], optional Hooks for instrumenting Pipeline execution. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ domain = self.resolve_domain(pipeline) ranges = compute_date_range_chunks( domain.sessions(), start_date, end_date, chunksize, ) hooks = self._resolve_hooks(hooks) run_pipeline = partial(self._run_pipeline_impl, pipeline, hooks=hooks) with hooks.running_pipeline(pipeline, start_date, end_date): chunks = [run_pipeline(s, e) for s, e in ranges] if len(chunks) == 1: # OPTIMIZATION: Don't make an extra copy in `categorical_df_concat` # if we don't have to. return chunks[0] # Filter out empty chunks. Empty dataframes lose dtype information, # which makes concatenation fail. nonempty_chunks = [c for c in chunks if len(c)] return categorical_df_concat(nonempty_chunks, inplace=True) def run_pipeline(self, pipeline, start_date, end_date, hooks=None): """Compute values for ``pipeline`` from ``start_date`` to ``end_date``. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. hooks : list[implements(PipelineHooks)], optional Hooks for instrumenting Pipeline execution. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. """ hooks = self._resolve_hooks(hooks) with hooks.running_pipeline(pipeline, start_date, end_date): return self._run_pipeline_impl( pipeline, start_date, end_date, hooks, ) def _run_pipeline_impl(self, pipeline, start_date, end_date, hooks): """Shared core for ``run_pipeline`` and ``run_chunked_pipeline``.""" # See notes at the top of this module for a description of the # algorithm implemented here. if end_date < start_date: raise ValueError( "start_date must be before or equal to end_date \n" f"start_date={start_date}, end_date={end_date}" ) domain = self.resolve_domain(pipeline) plan = pipeline.to_execution_plan( domain, self._root_mask_term, start_date, end_date, ) extra_rows = plan.extra_rows[self._root_mask_term] root_mask = self._compute_root_mask( domain, start_date, end_date, extra_rows, ) dates, sids, root_mask_values = explode(root_mask) workspace = self._populate_initial_workspace( { self._root_mask_term: root_mask_values, self._root_mask_dates_term: as_column(dates.values), }, self._root_mask_term, plan, dates, sids, ) refcounts = plan.initial_refcounts(workspace) execution_order = plan.execution_order(workspace, refcounts) with hooks.computing_chunk(execution_order, start_date, end_date): results = self.compute_chunk( graph=plan, dates=dates, sids=sids, workspace=workspace, refcounts=refcounts, execution_order=execution_order, hooks=hooks, ) return self._to_narrow( plan.outputs, results, results.pop(plan.screen_name), dates[extra_rows:], sids, ) def _compute_root_mask(self, domain, start_date, end_date, extra_rows): """Compute a lifetimes matrix from our AssetFinder, then drop columns that didn't exist at all during the query dates. Parameters ---------- domain : zipline.pipeline.domain.Domain Domain for which we're computing a pipeline. start_date : pd.Timestamp Base start date for the matrix. end_date : pd.Timestamp End date for the matrix. extra_rows : int Number of extra rows to compute before `start_date`. Extra rows are needed by terms like moving averages that require a trailing window of data. Returns ------- lifetimes : pd.DataFrame Frame of dtype `bool` containing dates from `extra_rows` days before `start_date`, continuing through to `end_date`. The returned frame contains as columns all assets in our AssetFinder that existed for at least one day between `start_date` and `end_date`. """ sessions = domain.sessions() if start_date not in sessions: raise ValueError( f"Pipeline start date ({start_date}) is not a trading session for " f"domain {domain}." ) elif end_date not in sessions: raise ValueError( f"Pipeline end date {end_date} is not a trading session for " f"domain {domain}." ) start_idx, end_idx = sessions.slice_locs(start_date, end_date) if start_idx < extra_rows: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=sessions[0], lookback_start=start_date, lookback_length=extra_rows, ) # NOTE: This logic should probably be delegated to the domain once we # start adding more complex domains. # # Build lifetimes matrix reaching back to `extra_rows` days before # `start_date.` finder = self._finder lifetimes = finder.lifetimes( sessions[start_idx - extra_rows : end_idx], include_start_date=False, country_codes=(domain.country_code,), ) if not lifetimes.columns.unique: columns = lifetimes.columns duplicated = columns[columns.duplicated()].unique() raise AssertionError("Duplicated sids: %d" % duplicated) # Filter out columns that didn't exist from the farthest look back # window through the end of the requested dates. existed = lifetimes.any() ret = lifetimes.loc[:, existed] num_assets = ret.shape[1] if num_assets == 0: raise ValueError( "Failed to find any assets with country_code {!r} that traded " "between {} and {}.\n" "This probably means that your asset db is old or that it has " "incorrect country/exchange metadata.".format( domain.country_code, start_date, end_date, ) ) return ret @staticmethod def _inputs_for_term(term, workspace, graph, domain, refcounts): """ Compute inputs for the given term. This is mostly complicated by the fact that for each input we store as many rows as will be necessary to serve **any** computation requiring that input. """ offsets = graph.offset out = [] # We need to specialize here because we don't change ComputableTerm # after resolving domains, so they can still contain generic terms as # inputs. specialized = [maybe_specialize(t, domain) for t in term.inputs] if term.windowed: # If term is windowed, then all input data should be instances of # AdjustedArray. for input_ in specialized: adjusted_array = ensure_adjusted_array( workspace[input_], input_.missing_value, ) out.append( adjusted_array.traverse( window_length=term.window_length, offset=offsets[term, input_], # If the refcount for the input is > 1, we will need # to traverse this array again so we must copy. # If the refcount for the input == 0, this is the last # traversal that will happen so we can invalidate # the AdjustedArray and mutate the data in place. copy=refcounts[input_] > 1, ) ) else: # If term is not windowed, input_data may be an AdjustedArray or # np.ndarray. Coerce the former to the latter. for input_ in specialized: input_data = ensure_ndarray(workspace[input_]) offset = offsets[term, input_] input_data = input_data[offset:] if refcounts[input_] > 1: input_data = input_data.copy() out.append(input_data) return out def compute_chunk( self, graph, dates, sids, workspace, refcounts, execution_order, hooks ): """Compute the Pipeline terms in the graph for the requested start and end dates. This is where we do the actual work of running a pipeline. Parameters ---------- graph : zipline.pipeline.graph.ExecutionPlan Dependency graph of the terms to be executed. dates : pd.DatetimeIndex Row labels for our root mask. sids : pd.Int64Index Column labels for our root mask. workspace : dict Map from term -> output. Must contain at least entry for `self._root_mask_term` whose shape is `(len(dates), len(assets))`, but may contain additional pre-computed terms for testing or optimization purposes. refcounts : dict[Term, int] Dictionary mapping terms to number of dependent terms. When a term's refcount hits 0, it can be safely discarded from ``workspace``. See TermGraph.decref_dependencies for more info. execution_order : list[Term] Order in which to execute terms. hooks : implements(PipelineHooks) Hooks to instrument pipeline execution. Returns ------- results : dict Dictionary mapping requested results to outputs. """ self._validate_compute_chunk_params(graph, dates, sids, workspace) get_loader = self._get_loader # Copy the supplied initial workspace so we don't mutate it in place. workspace = workspace.copy() domain = graph.domain # Many loaders can fetch data more efficiently if we ask them to # retrieve all their inputs at once. For example, a loader backed by a # SQL database can fetch multiple columns from the database in a single # query. # # To enable these loaders to fetch their data efficiently, we group # together requests for LoadableTerms if they are provided by the same # loader and they require the same number of extra rows. # # The extra rows condition is a simplification: we don't currently have # a mechanism for asking a loader to fetch different windows of data # for different terms, so we only batch requests together when they're # going to produce data for the same set of dates. def loader_group_key(term): loader = get_loader(term) extra_rows = graph.extra_rows[term] return loader, extra_rows # Only produce loader groups for the terms we expect to load. This # ensures that we can run pipelines for graphs where we don't have a # loader registered for an atomic term if all the dependencies of that # term were supplied in the initial workspace. will_be_loaded = graph.loadable_terms - workspace.keys() loader_groups = groupby( loader_group_key, (t for t in execution_order if t in will_be_loaded), ) for term in execution_order: # `term` may have been supplied in `initial_workspace`, or we may # have loaded `term` as part of a batch with another term coming # from the same loader (see note on loader_group_key above). In # either case, we already have the term computed, so don't # recompute. if term in workspace: continue # Asset labels are always the same, but date labels vary by how # many extra rows are needed. mask, mask_dates = graph.mask_and_dates_for_term( term, self._root_mask_term, workspace, dates, ) if isinstance(term, LoadableTerm): loader = get_loader(term) to_load = sorted( loader_groups[loader_group_key(term)], key=lambda t: t.dataset ) self._ensure_can_load(loader, to_load) with hooks.loading_terms(to_load): loaded = loader.load_adjusted_array( domain, to_load, mask_dates, sids, mask, ) assert set(loaded) == set(to_load), ( "loader did not return an AdjustedArray for each column\n" "expected: %r\n" "got: %r" % ( sorted(to_load, key=repr), sorted(loaded, key=repr), ) ) workspace.update(loaded) else: with hooks.computing_term(term): workspace[term] = term._compute( self._inputs_for_term( term, workspace, graph, domain, refcounts, ), mask_dates, sids, mask, ) if term.ndim == 2: assert workspace[term].shape == mask.shape else: assert workspace[term].shape == (mask.shape[0], 1) # Decref dependencies of ``term``, and clear any terms # whose refcounts hit 0. for garbage in graph.decref_dependencies(term, refcounts): del workspace[garbage] # At this point, all the output terms are in the workspace. out = {} graph_extra_rows = graph.extra_rows for name, term in graph.outputs.items(): # Truncate off extra rows from outputs. out[name] = workspace[term][graph_extra_rows[term] :] return out def _to_narrow(self, terms, data, mask, dates, assets): """ Convert raw computed pipeline results into a DataFrame for public APIs. Parameters ---------- terms : dict[str -> Term] Dict mapping column names to terms. data : dict[str -> ndarray[ndim=2]] Dict mapping column names to computed results for those names. mask : ndarray[bool, ndim=2] Mask array of values to keep. dates : ndarray[datetime64, ndim=1] Row index for arrays `data` and `mask` assets : ndarray[int64, ndim=2] Column index for arrays `data` and `mask` Returns ------- results : pd.DataFrame The indices of `results` are as follows: index : two-tiered MultiIndex of (date, asset). Contains an entry for each (date, asset) pair corresponding to a `True` value in `mask`. columns : Index of str One column per entry in `data`. If mask[date, asset] is True, then result.loc[(date, asset), colname] will contain the value of data[colname][date, asset]. """ if not mask.any(): # Manually handle the empty DataFrame case. This is a workaround # to pandas failing to tz_localize an empty dataframe with a # MultiIndex. It also saves us the work of applying a known-empty # mask to each array. # # Slicing `dates` here to preserve pandas metadata. empty_dates = dates[:0] empty_assets = array([], dtype=object) return pd.DataFrame( data={name: array([], dtype=arr.dtype) for name, arr in data.items()}, index=pd.MultiIndex.from_arrays([empty_dates, empty_assets]), ) # if "open_instance" in data.keys(): # data["open_instance"].tofile("../../open_instance.dat") final_columns = {} for name in data: # Each term that computed an output has its postprocess method # called on the filtered result. # # Using this to convert np.records to tuples final_columns[name] = terms[name].postprocess(data[name][mask]) resolved_assets = array(self._finder.retrieve_all(assets)) index = _pipeline_output_index(dates, resolved_assets, mask) return pd.DataFrame( data=final_columns, index=index, columns=final_columns.keys() ) def _validate_compute_chunk_params(self, graph, dates, sids, initial_workspace): """ Verify that the values passed to compute_chunk are well-formed. """ root = self._root_mask_term clsname = type(self).__name__ # Writing this out explicitly so this errors in testing if we change # the name without updating this line. compute_chunk_name = self.compute_chunk.__name__ if root not in initial_workspace: raise AssertionError( "root_mask values not supplied to {cls}.{method}".format( cls=clsname, method=compute_chunk_name, ) ) shape = initial_workspace[root].shape implied_shape = len(dates), len(sids) if shape != implied_shape: raise AssertionError( "root_mask shape is {shape}, but received dates/assets " "imply that shape should be {implied}".format( shape=shape, implied=implied_shape, ) ) for term in initial_workspace: if self._is_special_root_term(term): continue if term.domain is GENERIC: # XXX: We really shouldn't allow **any** generic terms to be # populated in the initial workspace. A generic term, by # definition, can't correspond to concrete data until it's # paired with a domain, and populate_initial_workspace isn't # given the domain of execution, so it can't possibly know what # data to use when populating a generic term. # # In our current implementation, however, we don't have a good # way to represent specializations of ComputableTerms that take # only generic inputs, so there's no good way for the initial # workspace to provide data for such terms except by populating # the generic ComputableTerm. # # The right fix for the above is to implement "full # specialization", i.e., implementing ``specialize`` uniformly # across all terms, not just LoadableTerms. Having full # specialization will also remove the need for all of the # remaining ``maybe_specialize`` calls floating around in this # file. # # In the meantime, disallowing ComputableTerms in the initial # workspace would break almost every test in # `test_filter`/`test_factor`/`test_classifier`, and fixing # them would require updating all those tests to compute with # more specialized terms. Once we have full specialization, we # can fix all the tests without a large volume of edits by # simply specializing their workspaces, so for now I'm leaving # this in place as a somewhat sharp edge. if isinstance(term, LoadableTerm): raise ValueError( "Loadable workspace terms must be specialized to a " "domain, but got generic term {}".format(term) ) elif term.domain != graph.domain: raise ValueError( "Initial workspace term {} has domain {}. " "Does not match pipeline domain {}".format( term, term.domain, graph.domain, ) ) def resolve_domain(self, pipeline): """Resolve a concrete domain for ``pipeline``.""" domain = pipeline.domain(default=self._default_domain) if domain is GENERIC: raise ValueError( "Unable to determine domain for Pipeline.\n" "Pass domain=<desired domain> to your Pipeline to set a " "domain." ) return domain def _is_special_root_term(self, term): return term is self._root_mask_term or term is self._root_mask_dates_term def _resolve_hooks(self, hooks): if hooks is None: hooks = [] return DelegatingHooks(self._default_hooks + hooks) def _ensure_can_load(self, loader, terms): """Ensure that ``loader`` can load ``terms``.""" if not loader.currency_aware: bad = [t for t in terms if t.currency_conversion is not None] if bad: raise ValueError( "Requested currency conversion is not supported for the " "following terms:\n{}".format(bulleted_list(bad)) ) def _pipeline_output_index(dates, assets, mask): """ Create a MultiIndex for a pipeline output. Parameters ---------- dates : pd.DatetimeIndex Row labels for ``mask``. assets : pd.Index Column labels for ``mask``. mask : np.ndarray[bool] Mask array indicating date/asset pairs that should be included in output index. Returns ------- index : pd.MultiIndex MultiIndex containing (date, asset) pairs corresponding to ``True`` values in ``mask``. """ date_labels = repeat_last_axis(arange(len(dates)), len(assets))[mask] asset_labels = repeat_first_axis(arange(len(assets)), len(dates))[mask] return pd.MultiIndex( [dates, assets], [date_labels, asset_labels], # TODO: We should probably add names for these. names=[None, None], verify_integrity=False, )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/engine.py
engine.py
from abc import ABC, abstractmethod from bisect import insort from collections.abc import Mapping from weakref import WeakValueDictionary from numpy import ( array, record, dtype as dtype_class, ndarray, ) from zipline.assets import Asset from zipline.errors import ( DTypeNotSpecified, InvalidOutputName, NonSliceableTerm, NonWindowSafeInput, NotDType, NonPipelineInputs, TermInputsNotSpecified, TermOutputsEmpty, UnsupportedDType, WindowLengthNotSpecified, ) from zipline.lib.adjusted_array import can_represent_dtype from zipline.lib.labelarray import LabelArray from zipline.utils.input_validation import expect_types from zipline.utils.memoize import classlazyval, lazyval from zipline.utils.numpy_utils import ( bool_dtype, categorical_dtype, datetime64ns_dtype, default_missing_value_for_dtype, float64_dtype, ) from zipline.utils.sharedoc import ( templated_docstring, PIPELINE_ALIAS_NAME_DOC, PIPELINE_DOWNSAMPLING_FREQUENCY_DOC, ) from .domain import Domain, GENERIC, infer_domain from .downsample_helpers import expect_downsample_frequency from .sentinels import NotSpecified class Term(ABC): """ Base class for objects that can appear in the compute graph of a :class:`zipline.pipeline.Pipeline`. Notes ----- Most Pipeline API users only interact with :class:`Term` via subclasses: - :class:`~zipline.pipeline.data.BoundColumn` - :class:`~zipline.pipeline.Factor` - :class:`~zipline.pipeline.Filter` - :class:`~zipline.pipeline.Classifier` Instances of :class:`Term` are **memoized**. If you call a Term's constructor with the same arguments twice, the same object will be returned from both calls: **Example:** >>> from zipline.pipeline.data import EquityPricing >>> from zipline.pipeline.factors import SimpleMovingAverage >>> x = SimpleMovingAverage(inputs=[EquityPricing.close], window_length=5) >>> y = SimpleMovingAverage(inputs=[EquityPricing.close], window_length=5) >>> x is y True .. warning:: Memoization of terms means that it's generally unsafe to modify attributes of a term after construction. """ # These are NotSpecified because a subclass is required to provide them. dtype = NotSpecified missing_value = NotSpecified # Subclasses aren't required to provide `params`. The default behavior is # no params. params = () # All terms are generic by default. domain = GENERIC # Determines if a term is safe to be used as a windowed input. window_safe = False # The dimensions of the term's output (1D or 2D). ndim = 2 _term_cache = WeakValueDictionary() def __new__( cls, domain=NotSpecified, dtype=NotSpecified, missing_value=NotSpecified, window_safe=NotSpecified, ndim=NotSpecified, # params is explicitly not allowed to be passed to an instance. *args, **kwargs, ): """ Memoized constructor for Terms. Caching previously-constructed Terms is useful because it allows us to only compute equivalent sub-expressions once when traversing a Pipeline dependency graph. Caching previously-constructed Terms is **sane** because terms and their inputs are both conceptually immutable. """ # Subclasses can override these class-level attributes to provide # different default values for instances. if domain is NotSpecified: domain = cls.domain if dtype is NotSpecified: dtype = cls.dtype if missing_value is NotSpecified: missing_value = cls.missing_value if ndim is NotSpecified: ndim = cls.ndim if window_safe is NotSpecified: window_safe = cls.window_safe dtype, missing_value = validate_dtype( cls.__name__, dtype, missing_value, ) params = cls._pop_params(kwargs) identity = cls._static_identity( domain=domain, dtype=dtype, missing_value=missing_value, window_safe=window_safe, ndim=ndim, params=params, *args, **kwargs, ) try: return cls._term_cache[identity] except KeyError: new_instance = cls._term_cache[identity] = ( super(Term, cls) .__new__(cls) ._init( domain=domain, dtype=dtype, missing_value=missing_value, window_safe=window_safe, ndim=ndim, params=params, *args, **kwargs, ) ) return new_instance @classmethod def _pop_params(cls, kwargs): """ Pop entries from the `kwargs` passed to cls.__new__ based on the values in `cls.params`. Parameters ---------- kwargs : dict The kwargs passed to cls.__new__. Returns ------- params : list[(str, object)] A list of string, value pairs containing the entries in cls.params. Raises ------ TypeError Raised if any parameter values are not passed or not hashable. """ params = cls.params if not isinstance(params, Mapping): params = {k: NotSpecified for k in params} param_values = [] for key, default_value in params.items(): try: value = kwargs.pop(key, default_value) if value is NotSpecified: raise KeyError(key) # Check here that the value is hashable so that we fail here # instead of trying to hash the param values tuple later. hash(value) except KeyError as exc: raise TypeError( "{typename} expected a keyword parameter {name!r}.".format( typename=cls.__name__, name=key ) ) from exc except TypeError as exc: # Value wasn't hashable. raise TypeError( "{typename} expected a hashable value for parameter " "{name!r}, but got {value!r} instead.".format( typename=cls.__name__, name=key, value=value, ) ) from exc param_values.append((key, value)) return tuple(param_values) def __init__(self, *args, **kwargs): """ Noop constructor to play nicely with our caching __new__. Subclasses should implement _init instead of this method. When a class' __new__ returns an instance of that class, Python will automatically call __init__ on the object, even if a new object wasn't actually constructed. Because we memoize instances, we often return an object that was already initialized from __new__, in which case we don't want to call __init__ again. Subclasses that need to initialize new instances should override _init, which is guaranteed to be called only once. """ pass @expect_types(key=Asset) def __getitem__(self, key): if isinstance(self, LoadableTerm): raise NonSliceableTerm(term=self) from .mixins import SliceMixin slice_type = type(self)._with_mixin(SliceMixin) return slice_type(self, key) @classmethod def _static_identity(cls, domain, dtype, missing_value, window_safe, ndim, params): """ Return the identity of the Term that would be constructed from the given arguments. Identities that compare equal will cause us to return a cached instance rather than constructing a new one. We do this primarily because it makes dependency resolution easier. This is a classmethod so that it can be called from Term.__new__ to determine whether to produce a new instance. """ return (cls, domain, dtype, missing_value, window_safe, ndim, params) def _init(self, domain, dtype, missing_value, window_safe, ndim, params): """ Parameters ---------- domain : zipline.pipeline.domain.Domain The domain of this term. dtype : np.dtype Dtype of this term's output. missing_value : object Missing value for this term. ndim : 1 or 2 The dimensionality of this term. params : tuple[(str, hashable)] Tuple of key/value pairs of additional parameters. """ self.domain = domain self.dtype = dtype self.missing_value = missing_value self.window_safe = window_safe self.ndim = ndim for name, _ in params: if hasattr(self, name): raise TypeError( "Parameter {name!r} conflicts with already-present" " attribute with value {value!r}.".format( name=name, value=getattr(self, name), ) ) # TODO: Consider setting these values as attributes and replacing # the boilerplate in NumericalExpression, Rank, and # PercentileFilter. self.params = dict(params) # Make sure that subclasses call super() in their _validate() methods # by setting this flag. The base class implementation of _validate # should set this flag to True. self._subclass_called_super_validate = False self._validate() assert self._subclass_called_super_validate, ( "Term._validate() was not called.\n" "This probably means that you overrode _validate" " without calling super()." ) del self._subclass_called_super_validate return self def _validate(self): """ Assert that this term is well-formed. This should be called exactly once, at the end of Term._init(). """ # mark that we got here to enforce that subclasses overriding _validate # call super(). self._subclass_called_super_validate = True def compute_extra_rows(self, all_dates, start_date, end_date, min_extra_rows): """ Calculate the number of extra rows needed to compute ``self``. Must return at least ``min_extra_rows``, and the default implementation is to just return ``min_extra_rows``. This is overridden by downsampled terms to ensure that the first date computed is a recomputation date. Parameters ---------- all_dates : pd.DatetimeIndex The trading sessions against which ``self`` will be computed. start_date : pd.Timestamp The first date for which final output is requested. end_date : pd.Timestamp The last date for which final output is requested. min_extra_rows : int The minimum number of extra rows required of ``self``, as determined by other terms that depend on ``self``. Returns ------- extra_rows : int The number of extra rows to compute. Must be at least ``min_extra_rows``. """ return min_extra_rows @property @abstractmethod def inputs(self): """ A tuple of other Terms needed as inputs for ``self``. """ raise NotImplementedError("inputs") @property @abstractmethod def windowed(self): """ Boolean indicating whether this term is a trailing-window computation. """ raise NotImplementedError("windowed") @property @abstractmethod def mask(self): """ A :class:`~zipline.pipeline.Filter` representing asset/date pairs to while computing this Term. True means include; False means exclude. """ raise NotImplementedError("mask") @property @abstractmethod def dependencies(self): """ A dictionary mapping terms that must be computed before `self` to the number of extra rows needed for those terms. """ raise NotImplementedError("dependencies") def graph_repr(self): """A short repr to use when rendering GraphViz graphs.""" # Default graph_repr is just the name of the type. return type(self).__name__ def recursive_repr(self): """A short repr to use when recursively rendering terms with inputs.""" # Default recursive_repr is just the name of the type. return type(self).__name__ class AssetExists(Term): """ Pseudo-filter describing whether or not an asset existed on a given day. This is the default mask for all terms that haven't been passed a mask explicitly. This is morally a Filter, in the sense that it produces a boolean value for every asset on every date. We don't subclass Filter, however, because `AssetExists` is computed directly by the PipelineEngine. This term is guaranteed to be available as an input for any term computed by SimplePipelineEngine.run_pipeline(). See Also -------- zipline.assets.AssetFinder.lifetimes """ dtype = bool_dtype dataset = None inputs = () dependencies = {} mask = None windowed = False def __repr__(self): return "AssetExists()" graph_repr = __repr__ def _compute(self, today, assets, out): raise NotImplementedError( "AssetExists cannot be computed directly." " Check your PipelineEngine configuration." ) class InputDates(Term): """ 1-Dimensional term providing date labels for other term inputs. This term is guaranteed to be available as an input for any term computed by SimplePipelineEngine.run_pipeline(). """ ndim = 1 dataset = None dtype = datetime64ns_dtype inputs = () dependencies = {} mask = None windowed = False window_safe = True def __repr__(self): return "InputDates()" graph_repr = __repr__ def _compute(self, today, assets, out): raise NotImplementedError( "InputDates cannot be computed directly." " Check your PipelineEngine configuration." ) class LoadableTerm(Term): """ A Term that should be loaded from an external resource by a PipelineLoader. This is the base class for :class:`zipline.pipeline.data.BoundColumn`. """ windowed = False inputs = () @lazyval def dependencies(self): return {self.mask: 0} class ComputableTerm(Term): """ A Term that should be computed from a tuple of inputs. This is the base class for :class:`zipline.pipeline.Factor`, :class:`zipline.pipeline.Filter`, and :class:`zipline.pipeline.Classifier`. """ inputs = NotSpecified outputs = NotSpecified window_length = NotSpecified mask = NotSpecified domain = NotSpecified def __new__( cls, inputs=inputs, outputs=outputs, window_length=window_length, mask=mask, domain=domain, *args, **kwargs, ): if inputs is NotSpecified: inputs = cls.inputs # Having inputs = NotSpecified is an error, but we handle it later # in self._validate rather than here. if inputs is not NotSpecified: # Allow users to specify lists as class-level defaults, but # normalize to a tuple so that inputs is hashable. inputs = tuple(inputs) # Make sure all our inputs are valid pipeline objects before trying # to infer a domain. non_terms = [t for t in inputs if not isinstance(t, Term)] if non_terms: raise NonPipelineInputs(cls.__name__, non_terms) if domain is NotSpecified: domain = infer_domain(inputs) if outputs is NotSpecified: outputs = cls.outputs if outputs is not NotSpecified: outputs = tuple(outputs) if mask is NotSpecified: mask = cls.mask if mask is NotSpecified: mask = AssetExists() if window_length is NotSpecified: window_length = cls.window_length return super(ComputableTerm, cls).__new__( cls, inputs=inputs, outputs=outputs, mask=mask, window_length=window_length, domain=domain, *args, **kwargs, ) def _init(self, inputs, outputs, window_length, mask, *args, **kwargs): self.inputs = inputs self.outputs = outputs self.window_length = window_length self.mask = mask return super(ComputableTerm, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, inputs, outputs, window_length, mask, *args, **kwargs): return ( super(ComputableTerm, cls)._static_identity(*args, **kwargs), inputs, outputs, window_length, mask, ) def _validate(self): super(ComputableTerm, self)._validate() # Check inputs. if self.inputs is NotSpecified: raise TermInputsNotSpecified(termname=type(self).__name__) if not isinstance(self.domain, Domain): raise TypeError( "Expected {}.domain to be an instance of Domain, " "but got {}.".format(type(self).__name__, type(self.domain)) ) # Check outputs. if self.outputs is NotSpecified: pass elif not self.outputs: raise TermOutputsEmpty(termname=type(self).__name__) else: # Raise an exception if there are any naming conflicts between the # term's output names and certain attributes. disallowed_names = [ attr for attr in dir(ComputableTerm) if not attr.startswith("_") ] # The name 'compute' is an added special case that is disallowed. # Use insort to add it to the list in alphabetical order. insort(disallowed_names, "compute") for output in self.outputs: if output.startswith("_") or output in disallowed_names: raise InvalidOutputName( output_name=output, termname=type(self).__name__, disallowed_names=disallowed_names, ) if self.window_length is NotSpecified: raise WindowLengthNotSpecified(termname=type(self).__name__) if self.mask is NotSpecified: # This isn't user error, this is a bug in our code. raise AssertionError("{term} has no mask".format(term=self)) if self.window_length > 1: for child in self.inputs: if not child.window_safe: raise NonWindowSafeInput(parent=self, child=child) def _compute(self, inputs, dates, assets, mask): """ Subclasses should implement this to perform actual computation. This is named ``_compute`` rather than just ``compute`` because ``compute`` is reserved for user-supplied functions in CustomFilter/CustomFactor/CustomClassifier. """ raise NotImplementedError("_compute") # NOTE: This is a method rather than a property because ABCMeta tries to # access all abstract attributes of its child classes to see if # they've been implemented. These accesses happen during subclass # creation, before the new subclass has been bound to a name in its # defining scope. Filter, Factor, and Classifier each implement this # method to return themselves, but if the method is invoked before # class definition is finished (which happens if this is a property), # they fail with a NameError. @classmethod @abstractmethod def _principal_computable_term_type(cls): """ Return the "principal" type for a ComputableTerm. This returns either Filter, Factor, or Classifier, depending on the type of ``cls``. It is used to implement behaviors like ``downsample`` and ``if_then_else`` that are implemented on all ComputableTerms, but that need to produce different output types depending on the type of the receiver. """ raise NotImplementedError("_principal_computable_term_type") @lazyval def windowed(self): """ Whether or not this term represents a trailing window computation. If term.windowed is truthy, its compute_from_windows method will be called with instances of AdjustedArray as inputs. If term.windowed is falsey, its compute_from_baseline will be called with instances of np.ndarray as inputs. """ return self.window_length is not NotSpecified and self.window_length > 0 @lazyval def dependencies(self): """ The number of extra rows needed for each of our inputs to compute this term. """ extra_input_rows = max(0, self.window_length - 1) out = {} for term in self.inputs: out[term] = extra_input_rows out[self.mask] = 0 return out @expect_types(data=ndarray) def postprocess(self, data): """ Called with an result of ``self``, unravelled (i.e. 1-dimensional) after any user-defined screens have been applied. This is mostly useful for transforming the dtype of an output, e.g., to convert a LabelArray into a pandas Categorical. The default implementation is to just return data unchanged. """ # starting with pandas 1.4, record arrays are no longer supported as DataFrame columns if isinstance(data[0], record): return [tuple(r) for r in data] return data def to_workspace_value(self, result, assets): """ Called with a column of the result of a pipeline. This needs to put the data into a format that can be used in a workspace to continue doing computations. Parameters ---------- result : pd.Series A multiindexed series with (dates, assets) whose values are the results of running this pipeline term over the dates. assets : pd.Index All of the assets being requested. This allows us to correctly shape the workspace value. Returns ------- workspace_value : array-like An array like value that the engine can consume. """ return ( result.unstack() .fillna(self.missing_value) .reindex(columns=assets, fill_value=self.missing_value) .values ) @expect_downsample_frequency @templated_docstring(frequency=PIPELINE_DOWNSAMPLING_FREQUENCY_DOC) def downsample(self, frequency): """ Make a term that computes from ``self`` at lower-than-daily frequency. Parameters ---------- {frequency} """ from .mixins import DownsampledMixin downsampled_type = type(self)._with_mixin(DownsampledMixin) return downsampled_type(term=self, frequency=frequency) @templated_docstring(name=PIPELINE_ALIAS_NAME_DOC) def alias(self, name): """ Make a term from ``self`` that names the expression. Parameters ---------- {name} Returns ------- aliased : Aliased ``self`` with a name. Notes ----- This is useful for giving a name to a numerical or boolean expression. """ from .mixins import AliasedMixin aliased_type = type(self)._with_mixin(AliasedMixin) return aliased_type(term=self, name=name) def isnull(self): """ A Filter producing True for values where this Factor has missing data. Equivalent to self.isnan() when ``self.dtype`` is float64. Otherwise equivalent to ``self.eq(self.missing_value)``. Returns ------- filter : zipline.pipeline.Filter """ if self.dtype == bool_dtype: raise TypeError("isnull() is not supported for Filters") from .filters import NullFilter if self.dtype == float64_dtype: # Using isnan is more efficient when possible because we can fold # the isnan computation with other NumExpr expressions. return self.isnan() else: return NullFilter(self) def notnull(self): """ A Filter producing True for values where this Factor has complete data. Equivalent to ``~self.isnan()` when ``self.dtype`` is float64. Otherwise equivalent to ``(self != self.missing_value)``. Returns ------- filter : zipline.pipeline.Filter """ if self.dtype == bool_dtype: raise TypeError("notnull() is not supported for Filters") from .filters import NotNullFilter return NotNullFilter(self) def fillna(self, fill_value): """ Create a new term that fills missing values of this term's output with ``fill_value``. Parameters ---------- fill_value : zipline.pipeline.ComputableTerm, or object. Object to use as replacement for missing values. If a ComputableTerm (e.g. a Factor) is passed, that term's results will be used as fill values. If a scalar (e.g. a number) is passed, the scalar will be used as a fill value. Examples -------- **Filling with a Scalar:** Let ``f`` be a Factor which would produce the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 NaN 3.0 4.0 2017-03-14 1.5 2.5 NaN NaN Then ``f.fillna(0)`` produces the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 0.0 3.0 4.0 2017-03-14 1.5 2.5 0.0 0.0 **Filling with a Term:** Let ``f`` be as above, and let ``g`` be another Factor which would produce the following output:: AAPL MSFT MCD BK 2017-03-13 10.0 20.0 30.0 40.0 2017-03-14 15.0 25.0 35.0 45.0 Then, ``f.fillna(g)`` produces the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 20.0 3.0 4.0 2017-03-14 1.5 2.5 35.0 45.0 Returns ------- filled : zipline.pipeline.ComputableTerm A term computing the same results as ``self``, but with missing values filled in using values from ``fill_value``. """ if self.dtype == bool_dtype: raise TypeError("fillna() is not supported for Filters") if isinstance(fill_value, LoadableTerm): raise TypeError( "Can't use expression {} as a fill value. Did you mean to " "append '.latest?'".format(fill_value) ) elif isinstance(fill_value, ComputableTerm): if_false = fill_value else: # Assume we got a scalar value. Make sure it's compatible with our # dtype. try: fill_value = _coerce_to_dtype(fill_value, self.dtype) except TypeError as exc: raise TypeError( "Fill value {value!r} is not a valid choice " "for term {termname} with dtype {dtype}.\n\n" "Coercion attempt failed with: {error}".format( termname=type(self).__name__, value=fill_value, dtype=self.dtype, error=exc, ) ) from exc if_false = self._constant_type( const=fill_value, dtype=self.dtype, missing_value=self.missing_value, ) return self.notnull().if_else(if_true=self, if_false=if_false) @classlazyval def _constant_type(cls): from .mixins import ConstantMixin return cls._with_mixin(ConstantMixin) @classlazyval def _if_else_type(cls): from .mixins import IfElseMixin return cls._with_mixin(IfElseMixin) def __repr__(self): return ("{type}([{inputs}], {window_length})").format( type=type(self).__name__, inputs=", ".join(i.recursive_repr() for i in self.inputs), window_length=self.window_length, ) def recursive_repr(self): return type(self).__name__ + "(...)" @classmethod def _with_mixin(cls, mixin_type): return mixin_type.universal_mixin_specialization( cls._principal_computable_term_type(), ) def validate_dtype(termname, dtype, missing_value): """ Validate a `dtype` and `missing_value` passed to Term.__new__. Ensures that we know how to represent ``dtype``, and that missing_value is specified for types without default missing values. Returns ------- validated_dtype, validated_missing_value : np.dtype, any The dtype and missing_value to use for the new term. Raises ------ DTypeNotSpecified When no dtype was passed to the instance, and the class doesn't provide a default. NotDType When either the class or the instance provides a value not coercible to a numpy dtype. NoDefaultMissingValue When dtype requires an explicit missing_value, but ``missing_value`` is NotSpecified. """ if dtype is NotSpecified: raise DTypeNotSpecified(termname=termname) try: dtype = dtype_class(dtype) except TypeError as exc: raise NotDType(dtype=dtype, termname=termname) from exc if not can_represent_dtype(dtype): raise UnsupportedDType(dtype=dtype, termname=termname) if missing_value is NotSpecified: missing_value = default_missing_value_for_dtype(dtype) try: _coerce_to_dtype(missing_value, dtype) except TypeError as exc: raise TypeError( "Missing value {value!r} is not a valid choice " "for term {termname} with dtype {dtype}.\n\n" "Coercion attempt failed with: {error}".format( termname=termname, value=missing_value, dtype=dtype, error=exc, ) ) from exc return dtype, missing_value def _assert_valid_categorical_missing_value(value): """ Check that value is a valid categorical missing_value. Raises a TypeError if the value is cannot be used as the missing_value for a categorical_dtype Term. """ label_types = LabelArray.SUPPORTED_SCALAR_TYPES if not isinstance(value, label_types): raise TypeError( "String-dtype classifiers can only produce {types}.".format( types=" or ".join([t.__name__ for t in label_types]) ) ) def _coerce_to_dtype(value, dtype): if dtype == categorical_dtype: # This check is necessary because we use object dtype for # categoricals, and numpy will allow us to promote numerical # values to object even though we don't support them. _assert_valid_categorical_missing_value(value) return value else: # For any other type, cast using the same rules as numpy's astype # function with casting='same_kind'. # # 'same_kind' allows casting between things like float32 and float64, # but not between str and int. Note that the name is somewhat # misleading, since it does allow conversion between different dtype # kinds in some cases. In particular, conversion from int to float is # allowed. return array([value]).astype(dtype=dtype, casting="same_kind")[0]
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/term.py
term.py
from interface import implements from zipline.utils.compat import ExitStack, contextmanager, wraps from .iface import PipelineHooks, PIPELINE_HOOKS_CONTEXT_MANAGERS from .no import NoHooks def delegating_hooks_method(method_name): """Factory function for making DelegatingHooks methods.""" if method_name in PIPELINE_HOOKS_CONTEXT_MANAGERS: # Generate a contextmanager that enters the context of all child hooks. @wraps(getattr(PipelineHooks, method_name)) @contextmanager def ctx(self, *args, **kwargs): with ExitStack() as stack: for hook in self._hooks: sub_ctx = getattr(hook, method_name)(*args, **kwargs) stack.enter_context(sub_ctx) yield stack return ctx else: # Generate a method that calls methods of all child hooks. @wraps(getattr(PipelineHooks, method_name)) def method(self, *args, **kwargs): for hook in self._hooks: sub_method = getattr(hook, method_name) sub_method(*args, **kwargs) return method class DelegatingHooks(implements(PipelineHooks)): """A PipelineHooks that delegates to one or more other hooks. Parameters ---------- hooks : list[implements(PipelineHooks)] Sequence of hooks to delegate to. """ def __new__(cls, hooks): if len(hooks) == 0: # OPTIMIZATION: Short-circuit to a NoHooks if we don't have any # sub-hooks. return NoHooks() elif len(hooks) == 1: # OPTIMIZATION: Unwrap delegation layer if we only have one # sub-hook. return hooks[0] else: self = super(DelegatingHooks, cls).__new__(cls) self._hooks = hooks return self # Implement all interface methods by delegating to corresponding methods on # input hooks. locals().update( { name: delegating_hooks_method(name) # TODO: Expose this publicly on interface. for name in PipelineHooks._signatures } ) del delegating_hooks_method
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/hooks/delegate.py
delegate.py
from collections import namedtuple import time from interface import implements from zipline.utils.compat import contextmanager, escape_html from zipline.utils.string_formatting import bulleted_list from .iface import PipelineHooks class ProgressHooks(implements(PipelineHooks)): """ Hooks implementation for displaying progress. Parameters ---------- publisher_factory : callable Function producing a new object with a ``publish()`` method that takes a ``ProgressModel`` and publishes progress to a consumer. """ def __init__(self, publisher_factory): self._publisher_factory = publisher_factory self._reset_transient_state() def _reset_transient_state(self): self._start_date = None self._end_date = None self._model = None self._publisher = None @classmethod def with_widget_publisher(cls): """ Construct a ProgressHooks that publishes to Jupyter via ``IPython.display``. """ return cls(publisher_factory=IPythonWidgetProgressPublisher) @classmethod def with_static_publisher(cls, publisher): """Construct a ProgressHooks that uses an already-constructed publisher.""" return cls(publisher_factory=lambda: publisher) def _publish(self): self._publisher.publish(self._model) @contextmanager def running_pipeline(self, pipeline, start_date, end_date): self._start_date = start_date self._end_date = end_date try: yield except Exception: if self._model is None: # This will only happen if an error happens in the Pipeline # Engine beteween entering `running_pipeline` and the first # `computing_chunk` call. If that happens, just propagate the # exception. raise self._model.finish(success=False) self._publish() raise else: self._model.finish(success=True) self._publish() finally: self._reset_transient_state() @contextmanager def computing_chunk(self, terms, start_date, end_date): # Set up model on first compute_chunk call. if self._model is None: self._publisher = self._publisher_factory() self._model = ProgressModel( start_date=self._start_date, end_date=self._end_date, ) try: self._model.start_chunk(terms, start_date, end_date) self._publish() yield finally: self._model.finish_chunk(terms, start_date, end_date) self._publish() @contextmanager def loading_terms(self, terms): try: self._model.start_load_terms(terms) self._publish() yield finally: self._model.finish_load_terms(terms) self._publish() @contextmanager def computing_term(self, term): try: self._model.start_compute_term(term) self._publish() yield finally: self._model.finish_compute_term(term) self._publish() class ProgressModel: """ Model object for tracking progress of a Pipeline execution. Parameters ---------- nterms : int Number of terms in the execution plan of the Pipeline being run. start_date : pd.Timestamp Start date of the range over which ``plan`` will be computed. end_date : pd.Timestamp End date of the range over which ``plan`` will be computed. Methods ------- start_chunk(start_date, end_date) finish_chunk(start_date, end_date) load_precomputed_terms(terms) start_load_terms(terms) finish_load_terms(terms) start_compute_term(term) finish_compute_term(term) finish(success) Attributes ---------- state : {'init', 'loading', 'computing', 'error', 'success'} Current state of the execution. percent_complete : float Percent of execution that has been completed, on a scale from 0 to 100. execution_time : float Number of seconds that the execution required. Only available if state is 'error' or 'success'. execution_bounds : (pd.Timestamp, pd.Timestamp) Pair of (start_date, end_date) for the entire execution. current_chunk_bounds : (pd.Timestamp, pd.Timestamp) Pair of (start_date, end_date) for the currently executing chunk. current_work : [zipline.pipeline.Term] List of terms currently being loaded or computed. """ def __init__(self, start_date, end_date): self._start_date = start_date self._end_date = end_date # +1 to be inclusive of end_date. self._total_days = (end_date - start_date).days + 1 self._progress = 0.0 self._days_completed = 0 self._state = "init" # Number of days in current chunk. self._current_chunk_size = None # (start_date, end_date) of current chunk. self._current_chunk_bounds = None # How much should we increment progress by after completing a term? self._completed_term_increment = None # How much should we increment progress by after completing a chunk? # This is zero unless we compute a pipeline with no terms, in which # case it will be the full chunk percentage. self._completed_chunk_increment = None # Terms currently being computed. self._current_work = None # Tracking state for total elapsed time. self._start_time = time.time() self._end_time = None # These properties form the interface for Publishers. @property def state(self): return self._state @property def percent_complete(self): return round(self._progress * 100.0, 3) @property def execution_time(self): if self._end_time is None: raise ValueError("Can't get execution_time until execution is complete.") return self._end_time - self._start_time @property def execution_bounds(self): return (self._start_date, self._end_date) @property def current_chunk_bounds(self): return self._current_chunk_bounds @property def current_work(self): return self._current_work # These methods form the interface for ProgressHooks. def start_chunk(self, terms, start_date, end_date): days_since_start = (end_date - self._start_date).days + 1 self._current_chunk_size = days_since_start - self._days_completed self._current_chunk_bounds = (start_date, end_date) # What percent of our overall progress will happen in this chunk? chunk_percent = float(self._current_chunk_size) / self._total_days # How much of that is associated with each completed term? nterms = len(terms) if nterms: self._completed_term_increment = chunk_percent / len(terms) self._completed_chunk_increment = 0.0 else: # Special case. If we don't have any terms, increment the entire # chunk's worth of progress when we finish the chunk. self._completed_term_increment = 0.0 self._completed_chunk_increment = chunk_percent def finish_chunk(self, terms, start_date, end_date): self._days_completed += self._current_chunk_size self._progress += self._completed_chunk_increment def start_load_terms(self, terms): self._state = "loading" self._current_work = terms def finish_load_terms(self, terms): self._finish_terms(nterms=len(terms)) def start_compute_term(self, term): self._state = "computing" self._current_work = [term] def finish_compute_term(self, term): self._finish_terms(nterms=1) def finish(self, success): self._end_time = time.time() if success: self._state = "success" else: self._state = "error" def _finish_terms(self, nterms): self._progress += nterms * self._completed_term_increment try: import ipywidgets HAVE_WIDGETS = True # This VBox subclass exists to work around a strange display issue but # where the repr of the progress bar sometimes gets re-displayed upon # re-opening the notebook, even after the bar has closed. The repr of VBox # is somewhat noisy, so we replace it here with a version that just returns # an empty string. class ProgressBarContainer(ipywidgets.VBox): def __repr__(self): return "" except ImportError: HAVE_WIDGETS = False try: from IPython.display import display, HTML as IPython_HTML HAVE_IPYTHON = True except ImportError: HAVE_IPYTHON = False # XXX: This class is currently untested, because we don't require ipywidgets as # a test dependency. Be careful if you make changes to this. class IPythonWidgetProgressPublisher: """A progress publisher that publishes to an IPython/Jupyter widget.""" def __init__(self): missing = [] if not HAVE_WIDGETS: missing.append("ipywidgets") elif not HAVE_IPYTHON: missing.append("IPython") if missing: raise ValueError( "IPythonWidgetProgressPublisher needs ipywidgets and IPython:" "\nMissing:\n{}".format(bulleted_list(missing)) ) # Heading for progress display. self._heading = ipywidgets.HTML() # Percent Complete Indicator to the left of the bar. indicator_width = "120px" self._percent_indicator = ipywidgets.HTML( layout={"width": indicator_width}, ) # The progress bar itself. self._bar = ipywidgets.FloatProgress( value=0.0, min=0.0, max=100.0, bar_style="info", # Leave enough space for the percent indicator. layout={"width": "calc(100% - {})".format(indicator_width)}, ) bar_and_percent = ipywidgets.HBox([self._percent_indicator, self._bar]) # Collapsable details tab underneath the progress bar. self._details_body = ipywidgets.HTML() self._details_tab = ipywidgets.Accordion( children=[self._details_body], selected_index=None, # Start in collapsed state. layout={ # Override default border settings to make details tab less # heavy. "border": "1px", }, ) # There's no public interface for setting title in the constructor :/. self._details_tab.set_title(0, "Details") # Container for the combined widget. self._layout = ProgressBarContainer( [ self._heading, bar_and_percent, self._details_tab, ], # Overall layout consumes 75% of the page. layout={"width": "75%"}, ) self._displayed = False def publish(self, model): if model.state == "init": self._heading.value = "<b>Analyzing Pipeline...</b>" self._set_progress(0.0) self._ensure_displayed() elif model.state in ("loading", "computing"): term_list = self._render_term_list(model.current_work) if model.state == "loading": details_heading = "<b>Loading Inputs:</b>" else: details_heading = "<b>Computing Expression:</b>" self._details_body.value = details_heading + term_list chunk_start, chunk_end = model.current_chunk_bounds self._heading.value = ( "<b>Running Pipeline</b>: Chunk Start={}, Chunk End={}".format( chunk_start.date(), chunk_end.date() ) ) self._set_progress(model.percent_complete) self._ensure_displayed() elif model.state == "success": # Replace widget layout with html that can be persisted. self._stop_displaying() display( IPython_HTML( "<b>Pipeline Execution Time:</b> {}".format( self._format_execution_time(model.execution_time) ) ), ) elif model.state == "error": self._bar.bar_style = "danger" self._stop_displaying() else: self._layout.close() raise ValueError("Unknown display state: {!r}".format(model.state)) def _ensure_displayed(self): if not self._displayed: display(self._layout) self._displayed = True def _stop_displaying(self): self._layout.close() @staticmethod def _render_term_list(terms): list_elements = "".join( ["<li><pre>{}</pre></li>".format(repr_htmlsafe(t)) for t in terms] ) return "<ul>{}</ul>".format(list_elements) def _set_progress(self, percent_complete): self._bar.value = percent_complete self._percent_indicator.value = "<b>{:.2f}% Complete</b>".format( percent_complete ) @staticmethod def _format_execution_time(total_seconds): """Helper method for displaying total execution time of a Pipeline. Parameters ---------- total_seconds : float Number of seconds elapsed. Returns ------- formatted : str User-facing text representation of elapsed time. """ def maybe_s(n): if n == 1: return "" return "s" minutes, seconds = divmod(total_seconds, 60) minutes = int(minutes) if minutes >= 60: hours, minutes = divmod(minutes, 60) t = "{hours} Hour{hs}, {minutes} Minute{ms}, {seconds:.2f} Seconds" return t.format( hours=hours, hs=maybe_s(hours), minutes=minutes, ms=maybe_s(minutes), seconds=seconds, ) elif minutes >= 1: t = "{minutes} Minute{ms}, {seconds:.2f} Seconds" return t.format( minutes=minutes, ms=maybe_s(minutes), seconds=seconds, ) else: return "{seconds:.2f} Seconds".format(seconds=seconds) class TestingProgressPublisher: """A progress publisher that records a trace of model states for testing.""" TraceState = namedtuple( "TraceState", [ "state", "percent_complete", "execution_bounds", "current_chunk_bounds", "current_work", ], ) def __init__(self): self.trace = [] def publish(self, model): self.trace.append( self.TraceState( state=model.state, percent_complete=model.percent_complete, execution_bounds=model.execution_bounds, current_chunk_bounds=model.current_chunk_bounds, current_work=model.current_work, ), ) def repr_htmlsafe(t): """Repr a value and html-escape the result. If an error is thrown by the repr, show a placeholder. """ try: r = repr(t) except Exception: r = "(Error Displaying {})".format(type(t).__name__) return escape_html(str(r), quote=True)
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/hooks/progress.py
progress.py
from zipline.utils.compat import contextmanager as _contextmanager from interface import Interface # Keep track of which methods of PipelineHooks are contextmanagers. Used by # DelegatingHooks to properly delegate to sub-hooks. PIPELINE_HOOKS_CONTEXT_MANAGERS = set() def contextmanager(f): """ Wrapper for contextlib.contextmanager that tracks which methods of PipelineHooks are contextmanagers in CONTEXT_MANAGER_METHODS. """ PIPELINE_HOOKS_CONTEXT_MANAGERS.add(f.__name__) return _contextmanager(f) class PipelineHooks(Interface): """ Interface for instrumenting SimplePipelineEngine executions. Methods with names like 'on_event()' should be normal methods. They will be called by the engine after the corresponding event. Methods with names like 'doing_thing()' should be context managers. They will be entered by the engine around the corresponding event. Methods ------- running_pipeline(self, pipeline, start_date, end_date, chunked) computing_chunk(self, terms, start_date, end_date) loading_terms(self, terms) computing_term(self, term): """ @contextmanager def running_pipeline(self, pipeline, start_date, end_date): """ Contextmanager entered during execution of run_pipeline or run_chunked_pipeline. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline being executed. start_date : pd.Timestamp First date of the execution. end_date : pd.Timestamp Last date of the execution. """ @contextmanager def computing_chunk(self, terms, start_date, end_date): """ Contextmanager entered during execution of compute_chunk. Parameters ---------- terms : list[zipline.pipeline.Term] List of terms, in execution order, that will be computed. This value may change between chunks if ``populate_initial_workspace`` prepopulates different terms at different times. start_date : pd.Timestamp First date of the chunk. end_date : pd.Timestamp Last date of the chunk. """ @contextmanager def loading_terms(self, terms): """Contextmanager entered when loading a batch of LoadableTerms. Parameters ---------- terms : list[zipline.pipeline.LoadableTerm] Terms being loaded. """ @contextmanager def computing_term(self, term): """Contextmanager entered when computing a ComputableTerm. Parameters ---------- terms : zipline.pipeline.ComputableTerm Terms being computed. """
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/hooks/iface.py
iface.py
from numpy import ( abs, average, clip, diff, dstack, inf, ) from numexpr import evaluate from zipline.pipeline.data import EquityPricing from zipline.pipeline.factors import CustomFactor from zipline.pipeline.mixins import SingleInputMixin from zipline.utils.input_validation import expect_bounded from zipline.utils.math_utils import ( nanargmax, nanargmin, nanmax, nanmean, nanstd, nanmin, ) from zipline.utils.numpy_utils import rolling_window from .basic import exponential_weights from .basic import ( # noqa reexport # These are re-exported here for backwards compatibility with the old # definition site. LinearWeightedMovingAverage, MaxDrawdown, SimpleMovingAverage, VWAP, WeightedAverageValue, ) class RSI(SingleInputMixin, CustomFactor): """ Relative Strength Index **Default Inputs**: :data:`zipline.pipeline.data.EquityPricing.close` **Default Window Length**: 15 """ window_length = 15 inputs = (EquityPricing.close,) window_safe = True def compute(self, today, assets, out, closes): diffs = diff(closes, axis=0) ups = nanmean(clip(diffs, 0, inf), axis=0) downs = abs(nanmean(clip(diffs, -inf, 0), axis=0)) return evaluate( "100 - (100 / (1 + (ups / downs)))", local_dict={"ups": ups, "downs": downs}, global_dict={}, out=out, ) class BollingerBands(CustomFactor): """ Bollinger Bands technical indicator. https://en.wikipedia.org/wiki/Bollinger_Bands **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.close` Parameters ---------- inputs : length-1 iterable[BoundColumn] The expression over which to compute bollinger bands. window_length : int > 0 Length of the lookback window over which to compute the bollinger bands. k : float The number of standard deviations to add or subtract to create the upper and lower bands. """ params = ("k",) inputs = (EquityPricing.close,) outputs = "lower", "middle", "upper" def compute(self, today, assets, out, close, k): difference = k * nanstd(close, axis=0) out.middle = middle = nanmean(close, axis=0) out.upper = middle + difference out.lower = middle - difference class Aroon(CustomFactor): """ Aroon technical indicator. https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/aroon-indicator **Defaults Inputs:** :data:`zipline.pipeline.data.EquityPricing.low`, \ :data:`zipline.pipeline.data.EquityPricing.high` Parameters ---------- window_length : int > 0 Length of the lookback window over which to compute the Aroon indicator. """ # noqa inputs = (EquityPricing.low, EquityPricing.high) outputs = ("down", "up") def compute(self, today, assets, out, lows, highs): wl = self.window_length high_date_index = nanargmax(highs, axis=0) low_date_index = nanargmin(lows, axis=0) evaluate( "(100 * high_date_index) / (wl - 1)", local_dict={ "high_date_index": high_date_index, "wl": wl, }, out=out.up, ) evaluate( "(100 * low_date_index) / (wl - 1)", local_dict={ "low_date_index": low_date_index, "wl": wl, }, out=out.down, ) class FastStochasticOscillator(CustomFactor): """ Fast Stochastic Oscillator Indicator [%K, Momentum Indicator] https://wiki.timetotrade.eu/Stochastic This stochastic is considered volatile, and varies a lot when used in market analysis. It is recommended to use the slow stochastic oscillator or a moving average of the %K [%D]. **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.close`, \ :data:`zipline.pipeline.data.EquityPricing.low`, \ :data:`zipline.pipeline.data.EquityPricing.high` **Default Window Length:** 14 Returns ------- out: %K oscillator """ inputs = (EquityPricing.close, EquityPricing.low, EquityPricing.high) window_safe = True window_length = 14 def compute(self, today, assets, out, closes, lows, highs): highest_highs = nanmax(highs, axis=0) lowest_lows = nanmin(lows, axis=0) today_closes = closes[-1] evaluate( "((tc - ll) / (hh - ll)) * 100", local_dict={ "tc": today_closes, "ll": lowest_lows, "hh": highest_highs, }, global_dict={}, out=out, ) class IchimokuKinkoHyo(CustomFactor): """Compute the various metrics for the Ichimoku Kinko Hyo (Ichimoku Cloud). http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.high`, \ :data:`zipline.pipeline.data.EquityPricing.low`, \ :data:`zipline.pipeline.data.EquityPricing.close` **Default Window Length:** 52 Parameters ---------- window_length : int > 0 The length the the window for the senkou span b. tenkan_sen_length : int >= 0, <= window_length The length of the window for the tenkan-sen. kijun_sen_length : int >= 0, <= window_length The length of the window for the kijou-sen. chikou_span_length : int >= 0, <= window_length The lag for the chikou span. """ # noqa params = { "tenkan_sen_length": 9, "kijun_sen_length": 26, "chikou_span_length": 26, } inputs = (EquityPricing.high, EquityPricing.low, EquityPricing.close) outputs = ( "tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b", "chikou_span", ) window_length = 52 def _validate(self): super(IchimokuKinkoHyo, self)._validate() for k, v in self.params.items(): if v > self.window_length: raise ValueError( "%s must be <= the window_length: %s > %s" % ( k, v, self.window_length, ), ) def compute( self, today, assets, out, high, low, close, tenkan_sen_length, kijun_sen_length, chikou_span_length, ): out.tenkan_sen = tenkan_sen = ( high[-tenkan_sen_length:].max(axis=0) + low[-tenkan_sen_length:].min(axis=0) ) / 2 out.kijun_sen = kijun_sen = ( high[-kijun_sen_length:].max(axis=0) + low[-kijun_sen_length:].min(axis=0) ) / 2 out.senkou_span_a = (tenkan_sen + kijun_sen) / 2 out.senkou_span_b = (high.max(axis=0) + low.min(axis=0)) / 2 out.chikou_span = close[chikou_span_length] class RateOfChangePercentage(CustomFactor): """ Rate of change Percentage ROC measures the percentage change in price from one period to the next. The ROC calculation compares the current price with the price `n` periods ago. Formula for calculation: ((price - prevPrice) / prevPrice) * 100 price - the current price prevPrice - the price n days ago, equals window length """ def compute(self, today, assets, out, close): today_close = close[-1] prev_close = close[0] evaluate( "((tc - pc) / pc) * 100", local_dict={"tc": today_close, "pc": prev_close}, global_dict={}, out=out, ) class TrueRange(CustomFactor): """ True Range A technical indicator originally developed by J. Welles Wilder, Jr. Indicates the true degree of daily price change in an underlying. **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.high`, \ :data:`zipline.pipeline.data.EquityPricing.low`, \ :data:`zipline.pipeline.data.EquityPricing.close` **Default Window Length:** 2 """ inputs = ( EquityPricing.high, EquityPricing.low, EquityPricing.close, ) window_length = 2 def compute(self, today, assets, out, highs, lows, closes): high_to_low = highs[1:] - lows[1:] high_to_prev_close = abs(highs[1:] - closes[:-1]) low_to_prev_close = abs(lows[1:] - closes[:-1]) out[:] = nanmax( dstack( ( high_to_low, high_to_prev_close, low_to_prev_close, ) ), 2, ) class MovingAverageConvergenceDivergenceSignal(CustomFactor): """ Moving Average Convergence/Divergence (MACD) Signal line https://en.wikipedia.org/wiki/MACD A technical indicator originally developed by Gerald Appel in the late 1970's. MACD shows the relationship between two moving averages and reveals changes in the strength, direction, momentum, and duration of a trend in a stock's price. **Default Inputs:** :data:`zipline.pipeline.data.EquityPricing.close` Parameters ---------- fast_period : int > 0, optional The window length for the "fast" EWMA. Default is 12. slow_period : int > 0, > fast_period, optional The window length for the "slow" EWMA. Default is 26. signal_period : int > 0, < fast_period, optional The window length for the signal line. Default is 9. Notes ----- Unlike most pipeline expressions, this factor does not accept a ``window_length`` parameter. ``window_length`` is inferred from ``slow_period`` and ``signal_period``. """ inputs = (EquityPricing.close,) # We don't use the default form of `params` here because we want to # dynamically calculate `window_length` from the period lengths in our # __new__. params = ("fast_period", "slow_period", "signal_period") @expect_bounded( __funcname="MACDSignal", fast_period=(1, None), # These must all be >= 1. slow_period=(1, None), signal_period=(1, None), ) def __new__(cls, fast_period=12, slow_period=26, signal_period=9, *args, **kwargs): if slow_period <= fast_period: raise ValueError( "'slow_period' must be greater than 'fast_period', but got\n" "slow_period={slow}, fast_period={fast}".format( slow=slow_period, fast=fast_period, ) ) return super(MovingAverageConvergenceDivergenceSignal, cls).__new__( cls, fast_period=fast_period, slow_period=slow_period, signal_period=signal_period, window_length=slow_period + signal_period - 1, *args, **kwargs, ) def _ewma(self, data, length): decay_rate = 1.0 - (2.0 / (1.0 + length)) return average(data, axis=1, weights=exponential_weights(length, decay_rate)) def compute( self, today, assets, out, close, fast_period, slow_period, signal_period ): slow_EWMA = self._ewma(rolling_window(close, slow_period), slow_period) fast_EWMA = self._ewma( rolling_window(close, fast_period)[-signal_period:], fast_period ) macd = fast_EWMA - slow_EWMA out[:] = self._ewma(macd.T, signal_period) # Convenience aliases. MACDSignal = MovingAverageConvergenceDivergenceSignal
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/factors/technical.py
technical.py
from numexpr import evaluate import numpy as np from numpy import broadcast_arrays from scipy.stats import ( linregress, spearmanr, ) from zipline.assets import Asset from zipline.errors import IncompatibleTerms from zipline.pipeline.factors import CustomFactor from zipline.pipeline.filters import SingleAsset from zipline.pipeline.mixins import StandardOutputs from zipline.pipeline.sentinels import NotSpecified from zipline.pipeline.term import AssetExists from zipline.utils.input_validation import ( expect_bounded, expect_dtypes, expect_types, ) from zipline.utils.math_utils import nanmean from zipline.utils.numpy_utils import ( float64_dtype, int64_dtype, ) from .basic import Returns ALLOWED_DTYPES = (float64_dtype, int64_dtype) class _RollingCorrelation(CustomFactor): @expect_dtypes(base_factor=ALLOWED_DTYPES, target=ALLOWED_DTYPES) @expect_bounded(correlation_length=(2, None)) def __new__(cls, base_factor, target, correlation_length, mask=NotSpecified): if target.ndim == 2 and base_factor.mask is not target.mask: raise IncompatibleTerms(term_1=base_factor, term_2=target) return super(_RollingCorrelation, cls).__new__( cls, inputs=[base_factor, target], window_length=correlation_length, mask=mask, ) class RollingPearson(_RollingCorrelation): """ A Factor that computes pearson correlation coefficients between the columns of a given Factor and either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- base_factor : zipline.pipeline.Factor The factor for which to compute correlations of each of its columns with `target`. target : zipline.pipeline.Term with a numeric dtype The term with which to compute correlations against each column of data produced by `base_factor`. This term may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `base_factor` should have their correlation with `target` computed each day. See Also -------- :func:`scipy.stats.pearsonr` :meth:`Factor.pearsonr` :class:`zipline.pipeline.factors.RollingPearsonOfReturns` Notes ----- Most users should call Factor.pearsonr rather than directly construct an instance of this class. """ window_safe = True def compute(self, today, assets, out, base_data, target_data): vectorized_pearson_r( base_data, target_data, allowed_missing=0, out=out, ) class RollingSpearman(_RollingCorrelation): """ A Factor that computes spearman rank correlation coefficients between the columns of a given Factor and either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- base_factor : zipline.pipeline.Factor The factor for which to compute correlations of each of its columns with `target`. target : zipline.pipeline.Term with a numeric dtype The term with which to compute correlations against each column of data produced by `base_factor`. This term may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `base_factor` should have their correlation with `target` computed each day. See Also -------- :func:`scipy.stats.spearmanr` :meth:`Factor.spearmanr` :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` Notes ----- Most users should call Factor.spearmanr rather than directly construct an instance of this class. """ window_safe = True def compute(self, today, assets, out, base_data, target_data): # If `target_data` is a Slice or single column of data, broadcast it # out to the same shape as `base_data`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. target_data = broadcast_arrays(target_data, base_data)[0] for i in range(len(out)): out[i] = spearmanr(base_data[:, i], target_data[:, i])[0] class RollingLinearRegression(CustomFactor): """ A Factor that performs an ordinary least-squares regression predicting the columns of a given Factor from either the columns of another Factor/BoundColumn or a slice/single column of data. Parameters ---------- dependent : zipline.pipeline.Factor The factor whose columns are the predicted/dependent variable of each regression with `independent`. independent : zipline.pipeline.slice.Slice or zipline.pipeline.Factor The factor/slice whose columns are the predictor/independent variable of each regression with `dependent`. If `independent` is a Factor, regressions are computed asset-wise. regression_length : int Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets (columns) of `dependent` should be regressed against `independent` each day. See Also -------- :func:`scipy.stats.linregress` :meth:`Factor.linear_regression` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` Notes ----- Most users should call Factor.linear_regression rather than directly construct an instance of this class. """ outputs = ["alpha", "beta", "r_value", "p_value", "stderr"] @expect_dtypes(dependent=ALLOWED_DTYPES, independent=ALLOWED_DTYPES) @expect_bounded(regression_length=(2, None)) def __new__(cls, dependent, independent, regression_length, mask=NotSpecified): if independent.ndim == 2 and dependent.mask is not independent.mask: raise IncompatibleTerms(term_1=dependent, term_2=independent) return super(RollingLinearRegression, cls).__new__( cls, inputs=[dependent, independent], window_length=regression_length, mask=mask, ) def compute(self, today, assets, out, dependent, independent): alpha = out.alpha beta = out.beta r_value = out.r_value p_value = out.p_value stderr = out.stderr def regress(y, x): regr_results = linregress(y=y, x=x) # `linregress` returns its results in the following order: # slope, intercept, r-value, p-value, stderr alpha[i] = regr_results[1] beta[i] = regr_results[0] r_value[i] = regr_results[2] p_value[i] = regr_results[3] stderr[i] = regr_results[4] # If `independent` is a Slice or single column of data, broadcast it # out to the same shape as `dependent`, then compute column-wise. This # is efficient because each column of the broadcasted array only refers # to a single memory location. independent = broadcast_arrays(independent, dependent)[0] for i in range(len(out)): regress(y=dependent[:, i], x=independent[:, i]) class RollingPearsonOfReturns(RollingPearson): """ Calculates the Pearson product-moment correlation coefficient of the returns of the given asset with the returns of all other assets. Pearson correlation is what most people mean when they say "correlation coefficient" or "R-value". Parameters ---------- target : zipline.assets.Asset The asset to correlate with all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. correlation_length : int >= 1 Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target asset computed each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which correlations are computed. Examples -------- Let the following be example 10-day returns for three different assets:: SPY MSFT FB 2017-03-13 -.03 .03 .04 2017-03-14 -.02 -.03 .02 2017-03-15 -.01 .02 .01 2017-03-16 0 -.02 .01 2017-03-17 .01 .04 -.01 2017-03-20 .02 -.03 -.02 2017-03-21 .03 .01 -.02 2017-03-22 .04 -.02 -.02 Suppose we are interested in SPY's rolling returns correlation with each stock from 2017-03-17 to 2017-03-22, using a 5-day look back window (that is, we calculate each correlation coefficient over 5 days of data). We can achieve this by doing:: rolling_correlations = RollingPearsonOfReturns( target=sid(8554), returns_length=10, correlation_length=5, ) The result of computing ``rolling_correlations`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 1 .15 -.96 2017-03-20 1 .10 -.96 2017-03-21 1 -.16 -.94 2017-03-22 1 -.16 -.85 Note that the column for SPY is all 1's, as the correlation of any data series with itself is always 1. To understand how each of the other values were calculated, take for example the .15 in MSFT's column. This is the correlation coefficient between SPY's returns looking back from 2017-03-17 (-.03, -.02, -.01, 0, .01) and MSFT's returns (.03, -.03, .02, -.02, .04). See Also -------- :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ def __new__(cls, target, returns_length, correlation_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingPearsonOfReturns, cls).__new__( cls, base_factor=returns, target=returns[target], correlation_length=correlation_length, mask=mask, ) class RollingSpearmanOfReturns(RollingSpearman): """ Calculates the Spearman rank correlation coefficient of the returns of the given asset with the returns of all other assets. Parameters ---------- target : zipline.assets.Asset The asset to correlate with all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. correlation_length : int >= 1 Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target asset computed each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which correlations are computed. See Also -------- :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ def __new__(cls, target, returns_length, correlation_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingSpearmanOfReturns, cls).__new__( cls, base_factor=returns, target=returns[target], correlation_length=correlation_length, mask=mask, ) class RollingLinearRegressionOfReturns(RollingLinearRegression): """Perform an ordinary least-squares regression predicting the returns of all other assets on the given asset. Parameters ---------- target : zipline.assets.Asset The asset to regress against all other assets. returns_length : int >= 2 Length of the lookback window over which to compute returns. Daily returns require a window length of 2. regression_length : int >= 1 Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets should be regressed against the target asset each day. Notes ----- Computing this factor over many assets can be time consuming. It is recommended that a mask be used in order to limit the number of assets over which regressions are computed. This factor is designed to return five outputs: - alpha, a factor that computes the intercepts of each regression. - beta, a factor that computes the slopes of each regression. - r_value, a factor that computes the correlation coefficient of each regression. - p_value, a factor that computes, for each regression, the two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. - stderr, a factor that computes the standard error of the estimate of each regression. For more help on factors with multiple outputs, see :class:`zipline.pipeline.CustomFactor`. Examples -------- Let the following be example 10-day returns for three different assets:: SPY MSFT FB 2017-03-13 -.03 .03 .04 2017-03-14 -.02 -.03 .02 2017-03-15 -.01 .02 .01 2017-03-16 0 -.02 .01 2017-03-17 .01 .04 -.01 2017-03-20 .02 -.03 -.02 2017-03-21 .03 .01 -.02 2017-03-22 .04 -.02 -.02 Suppose we are interested in predicting each stock's returns from SPY's over rolling 5-day look back windows. We can compute rolling regression coefficients (alpha and beta) from 2017-03-17 to 2017-03-22 by doing:: regression_factor = RollingRegressionOfReturns( target=sid(8554), returns_length=10, regression_length=5, ) alpha = regression_factor.alpha beta = regression_factor.beta The result of computing ``alpha`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 0 .011 .003 2017-03-20 0 -.004 .004 2017-03-21 0 .007 .006 2017-03-22 0 .002 .008 And the result of computing ``beta`` from 2017-03-17 to 2017-03-22 gives:: SPY MSFT FB 2017-03-17 1 .3 -1.1 2017-03-20 1 .2 -1 2017-03-21 1 -.3 -1 2017-03-22 1 -.3 -.9 Note that SPY's column for alpha is all 0's and for beta is all 1's, as the regression line of SPY with itself is simply the function y = x. To understand how each of the other values were calculated, take for example MSFT's ``alpha`` and ``beta`` values on 2017-03-17 (.011 and .3, respectively). These values are the result of running a linear regression predicting MSFT's returns from SPY's returns, using values starting at 2017-03-17 and looking back 5 days. That is, the regression was run with x = [-.03, -.02, -.01, 0, .01] and y = [.03, -.03, .02, -.02, .04], and it produced a slope of .3 and an intercept of .011. See Also -------- :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :class:`zipline.pipeline.factors.RollingSpearmanOfReturns` """ window_safe = True def __new__(cls, target, returns_length, regression_length, mask=NotSpecified): # Use the `SingleAsset` filter here because it protects against # inputting a non-existent target asset. returns = Returns( window_length=returns_length, mask=(AssetExists() | SingleAsset(asset=target)), ) return super(RollingLinearRegressionOfReturns, cls).__new__( cls, dependent=returns, independent=returns[target], regression_length=regression_length, mask=mask, ) class SimpleBeta(CustomFactor, StandardOutputs): """Factor producing the slope of a regression line between each asset's daily returns to the daily returns of a single "target" asset. Parameters ---------- target : zipline.Asset Asset against which other assets should be regressed. regression_length : int Number of days of daily returns to use for the regression. allowed_missing_percentage : float, optional Percentage of returns observations (between 0 and 1) that are allowed to be missing when calculating betas. Assets with more than this percentage of returns observations missing will produce values of NaN. Default behavior is that 25% of inputs can be missing. """ window_safe = True dtype = float64_dtype params = ("allowed_missing_count",) @expect_types( target=Asset, regression_length=int, allowed_missing_percentage=(int, float), __funcname="SimpleBeta", ) @expect_bounded( regression_length=(3, None), allowed_missing_percentage=(0.0, 1.0), __funcname="SimpleBeta", ) def __new__(cls, target, regression_length, allowed_missing_percentage=0.25): daily_returns = Returns( window_length=2, mask=(AssetExists() | SingleAsset(asset=target)), ) allowed_missing_count = int(allowed_missing_percentage * regression_length) return super(SimpleBeta, cls).__new__( cls, inputs=[daily_returns, daily_returns[target]], window_length=regression_length, allowed_missing_count=allowed_missing_count, ) def compute( self, today, assets, out, all_returns, target_returns, allowed_missing_count ): vectorized_beta( dependents=all_returns, independent=target_returns, allowed_missing=allowed_missing_count, out=out, ) def graph_repr(self): return "{}({!r}, {}, {})".format( type(self).__name__, str(self.target.symbol), # coerce from unicode to str in py2. self.window_length, self.params["allowed_missing_count"], ) @property def target(self): """Get the target of the beta calculation.""" return self.inputs[1].asset def __repr__(self): return "{}({}, length={}, allowed_missing={})".format( type(self).__name__, self.target, self.window_length, self.params["allowed_missing_count"], ) def vectorized_beta(dependents, independent, allowed_missing, out=None): """Compute slopes of linear regressions between columns of ``dependents`` and ``independent``. Parameters ---------- dependents : np.array[N, M] Array with columns of data to be regressed against ``independent``. independent : np.array[N, 1] Independent variable of the regression allowed_missing : int Number of allowed missing (NaN) observations per column. Columns with more than this many non-nan observations in either ``dependents`` or ``independents`` will output NaN as the regression coefficient. out : np.array[M] or None, optional Output array into which to write results. If None, a new array is created and returned. Returns ------- slopes : np.array[M] Linear regression coefficients for each column of ``dependents``. """ # Cache these as locals since we're going to call them multiple times. nan = np.nan isnan = np.isnan N, M = dependents.shape if out is None: out = np.full(M, nan) # Copy N times as a column vector and fill with nans to have the same # missing value pattern as the dependent variable. # # PERF_TODO: We could probably avoid the space blowup by doing this in # Cython. # shape: (N, M) independent = np.where( isnan(dependents), nan, independent, ) # Calculate beta as Cov(X, Y) / Cov(X, X). # https://en.wikipedia.org/wiki/Simple_linear_regression#Fitting_the_regression_line # noqa # # NOTE: The usual formula for covariance is:: # # mean((X - mean(X)) * (Y - mean(Y))) # # However, we don't actually need to take the mean of both sides of the # product, because of the folllowing equivalence:: # # Let X_res = (X - mean(X)). # We have: # # mean(X_res * (Y - mean(Y))) = mean(X_res * (Y - mean(Y))) # (1) = mean((X_res * Y) - (X_res * mean(Y))) # (2) = mean(X_res * Y) - mean(X_res * mean(Y)) # (3) = mean(X_res * Y) - mean(X_res) * mean(Y) # (4) = mean(X_res * Y) - 0 * mean(Y) # (5) = mean(X_res * Y) # # # The tricky step in the above derivation is step (4). We know that # mean(X_res) is zero because, for any X: # # mean(X - mean(X)) = mean(X) - mean(X) = 0. # # The upshot of this is that we only have to center one of `independent` # and `dependent` when calculating covariances. Since we need the centered # `independent` to calculate its variance in the next step, we choose to # center `independent`. # shape: (N, M) ind_residual = independent - nanmean(independent, axis=0) # shape: (M,) covariances = nanmean(ind_residual * dependents, axis=0) # We end up with different variances in each column here because each # column may have a different subset of the data dropped due to missing # data in the corresponding dependent column. # shape: (M,) independent_variances = nanmean(ind_residual**2, axis=0) # shape: (M,) np.divide(covariances, independent_variances, out=out) # Write nans back to locations where we have more then allowed number of # missing entries. nanlocs = isnan(independent).sum(axis=0) > allowed_missing out[nanlocs] = nan return out def vectorized_pearson_r(dependents, independents, allowed_missing, out=None): """Compute Pearson's r between columns of ``dependents`` and ``independents``. Parameters ---------- dependents : np.array[N, M] Array with columns of data to be regressed against ``independent``. independents : np.array[N, M] or np.array[N, 1] Independent variable(s) of the regression. If a single column is passed, it is broadcast to the shape of ``dependents``. allowed_missing : int Number of allowed missing (NaN) observations per column. Columns with more than this many non-nan observations in either ``dependents`` or ``independents`` will output NaN as the correlation coefficient. out : np.array[M] or None, optional Output array into which to write results. If None, a new array is created and returned. Returns ------- correlations : np.array[M] Pearson correlation coefficients for each column of ``dependents``. See Also -------- :class:`zipline.pipeline.factors.RollingPearson` :class:`zipline.pipeline.factors.RollingPearsonOfReturns` """ nan = np.nan isnan = np.isnan N, M = dependents.shape if out is None: out = np.full(M, nan) if allowed_missing > 0: # If we're handling nans robustly, we need to mask both arrays to # locations where either was nan. either_nan = isnan(dependents) | isnan(independents) independents = np.where(either_nan, nan, independents) dependents = np.where(either_nan, nan, dependents) mean = nanmean else: # Otherwise, we can just use mean, which will give us a nan for any # column where there's ever a nan. mean = np.mean # Pearson R is Cov(X, Y) / StdDev(X) * StdDev(Y) # c.f. https://en.wikipedia.org/wiki/Pearson_correlation_coefficient ind_residual = independents - mean(independents, axis=0) dep_residual = dependents - mean(dependents, axis=0) ind_variance = mean(ind_residual**2, axis=0) dep_variance = mean(dep_residual**2, axis=0) covariances = mean(ind_residual * dep_residual, axis=0) evaluate( "where(mask, nan, cov / sqrt(ind_variance * dep_variance))", local_dict={ "cov": covariances, "mask": isnan(independents).sum(axis=0) > allowed_missing, "nan": np.nan, "ind_variance": ind_variance, "dep_variance": dep_variance, }, global_dict={}, out=out, ) return out
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/factors/statistical.py
statistical.py
import numpy as np from operator import attrgetter from numbers import Number from math import ceil from textwrap import dedent from numpy import empty_like, inf, isnan, nan, where from scipy.stats import rankdata from zipline.utils.compat import wraps from zipline.errors import ( BadPercentileBounds, UnknownRankMethod, UnsupportedDataType, ) from zipline.lib.normalize import naive_grouped_rowwise_apply from zipline.lib.rank import masked_rankdata_2d, rankdata_1d_descending from zipline.pipeline.api_utils import restrict_to_dtype from zipline.pipeline.classifiers import Classifier, Everything, Quantiles from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.expression import ( BadBinaryOperator, COMPARISONS, is_comparison, MATH_BINOPS, method_name_for_op, NumericalExpression, NUMEXPR_MATH_FUNCS, UNARY_OPS, unary_op_name, ) from zipline.pipeline.filters import ( Filter, NumExprFilter, PercentileFilter, MaximumFilter, ) from zipline.pipeline.mixins import ( CustomTermMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, ) from zipline.pipeline.sentinels import NotSpecified, NotSpecifiedType from zipline.pipeline.term import AssetExists, ComputableTerm, Term from zipline.utils.functional import with_doc, with_name from zipline.utils.input_validation import expect_types from zipline.utils.math_utils import ( nanmax, nanmean, nanmedian, nanmin, nanstd, nansum, ) from zipline.utils.numpy_utils import ( as_column, bool_dtype, coerce_to_dtype, float64_dtype, is_missing, ) from zipline.utils.sharedoc import templated_docstring _RANK_METHODS = frozenset(["average", "min", "max", "dense", "ordinal"]) def coerce_numbers_to_my_dtype(f): """ A decorator for methods whose signature is f(self, other) that coerces ``other`` to ``self.dtype``. This is used to make comparison operations between numbers and `Factor` instances work independently of whether the user supplies a float or integer literal. For example, if I write:: my_filter = my_factor > 3 my_factor probably has dtype float64, but 3 is an int, so we want to coerce to float64 before doing the comparison. """ @wraps(f) def method(self, other): if isinstance(other, Number): other = coerce_to_dtype(self.dtype, other) return f(self, other) return method def binop_return_dtype(op, left, right): """ Compute the expected return dtype for the given binary operator. Parameters ---------- op : str Operator symbol, (e.g. '+', '-', ...). left : numpy.dtype Dtype of left hand side. right : numpy.dtype Dtype of right hand side. Returns ------- outdtype : numpy.dtype The dtype of the result of `left <op> right`. """ if is_comparison(op): if left != right: raise TypeError( "Don't know how to compute {left} {op} {right}.\n" "Comparisons are only supported between Factors of equal " "dtypes.".format(left=left, op=op, right=right) ) return bool_dtype elif left != float64_dtype or right != float64_dtype: raise TypeError( "Don't know how to compute {left} {op} {right}.\n" "Arithmetic operators are only supported between Factors of " "dtype 'float64'.".format( left=left.name, op=op, right=right.name, ) ) return float64_dtype BINOP_DOCSTRING_TEMPLATE = """ Construct a :class:`~zipline.pipeline.{rtype}` computing ``self {op} other``. Parameters ---------- other : zipline.pipeline.Factor, float Right-hand side of the expression. Returns ------- {ret} """ BINOP_RETURN_FILTER = """\ filter : zipline.pipeline.Filter Filter computing ``self {op} other`` with the outputs of ``self`` and ``other``. """ BINOP_RETURN_FACTOR = """\ factor : zipline.pipeline.Factor Factor computing ``self {op} other`` with outputs of ``self`` and ``other``. """ def binary_operator(op): """ Factory function for making binary operator methods on a Factor subclass. Returns a function, "binary_operator" suitable for implementing functions like __add__. """ # When combining a Factor with a NumericalExpression, we use this # attrgetter instance to defer to the commuted implementation of the # NumericalExpression operator. commuted_method_getter = attrgetter(method_name_for_op(op, commute=True)) is_compare = is_comparison(op) if is_compare: ret_doc = BINOP_RETURN_FILTER.format(op=op) rtype = "Filter" else: ret_doc = BINOP_RETURN_FACTOR.format(op=op) rtype = "Factor" docstring = BINOP_DOCSTRING_TEMPLATE.format( op=op, ret=ret_doc, rtype=rtype, ) @with_doc(docstring) @with_name(method_name_for_op(op)) @coerce_numbers_to_my_dtype def binary_operator(self, other): # This can't be hoisted up a scope because the types returned by # binop_return_type aren't defined when the top-level function is # invoked in the class body of Factor. return_type = NumExprFilter if is_compare else NumExprFactor if isinstance(self, NumExprFactor): self_expr, other_expr, new_inputs = self.build_binary_op( op, other, ) return return_type( "({left}) {op} ({right})".format( left=self_expr, op=op, right=other_expr, ), new_inputs, dtype=binop_return_dtype(op, self.dtype, other.dtype), ) elif isinstance(other, NumExprFactor): # NumericalExpression overrides ops to correctly handle merging of # inputs. Look up and call the appropriate reflected operator with # ourself as the input. return commuted_method_getter(other)(self) elif isinstance(other, Term): if self is other: return return_type( "x_0 {op} x_0".format(op=op), (self,), dtype=binop_return_dtype(op, self.dtype, other.dtype), ) return return_type( "x_0 {op} x_1".format(op=op), (self, other), dtype=binop_return_dtype(op, self.dtype, other.dtype), ) elif isinstance(other, Number): return return_type( "x_0 {op} ({constant})".format(op=op, constant=other), binds=(self,), # .dtype access is safe here because coerce_numbers_to_my_dtype # will convert any input numbers to numpy equivalents. dtype=binop_return_dtype(op, self.dtype, other.dtype), ) raise BadBinaryOperator(op, self, other) return binary_operator def reflected_binary_operator(op): """ Factory function for making binary operator methods on a Factor. Returns a function, "reflected_binary_operator" suitable for implementing functions like __radd__. """ assert not is_comparison(op) @with_name(method_name_for_op(op, commute=True)) @coerce_numbers_to_my_dtype def reflected_binary_operator(self, other): if isinstance(self, NumericalExpression): self_expr, other_expr, new_inputs = self.build_binary_op(op, other) return NumExprFactor( "({left}) {op} ({right})".format( left=other_expr, right=self_expr, op=op, ), new_inputs, dtype=binop_return_dtype(op, other.dtype, self.dtype), ) # Only have to handle the numeric case because in all other valid cases # the corresponding left-binding method will be called. elif isinstance(other, Number): return NumExprFactor( "{constant} {op} x_0".format(op=op, constant=other), binds=(self,), dtype=binop_return_dtype(op, other.dtype, self.dtype), ) raise BadBinaryOperator(op, other, self) return reflected_binary_operator def unary_operator(op): """ Factory function for making unary operator methods for Factors. """ # Only negate is currently supported. valid_ops = {"-"} if op not in valid_ops: raise ValueError("Invalid unary operator %s." % op) @with_doc("Unary Operator: '%s'" % op) @with_name(unary_op_name(op)) def unary_operator(self): if self.dtype != float64_dtype: raise TypeError( "Can't apply unary operator {op!r} to instance of " "{typename!r} with dtype {dtypename!r}.\n" "{op!r} is only supported for Factors of dtype " "'float64'.".format( op=op, typename=type(self).__name__, dtypename=self.dtype.name, ) ) # This can't be hoisted up a scope because the types returned by # unary_op_return_type aren't defined when the top-level function is # invoked. if isinstance(self, NumericalExpression): return NumExprFactor( "{op}({expr})".format(op=op, expr=self._expr), self.inputs, dtype=float64_dtype, ) else: return NumExprFactor( "{op}x_0".format(op=op), (self,), dtype=float64_dtype, ) return unary_operator def function_application(func): """ Factory function for producing function application methods for Factor subclasses. """ if func not in NUMEXPR_MATH_FUNCS: raise ValueError("Unsupported mathematical function '%s'" % func) docstring = dedent( """\ Construct a Factor that computes ``{}()`` on each output of ``self``. Returns ------- factor : zipline.pipeline.Factor """.format( func ) ) @with_doc(docstring) @with_name(func) def mathfunc(self): if isinstance(self, NumericalExpression): return NumExprFactor( "{func}({expr})".format(func=func, expr=self._expr), self.inputs, dtype=float64_dtype, ) else: return NumExprFactor( "{func}(x_0)".format(func=func), (self,), dtype=float64_dtype, ) return mathfunc # Decorators for Factor methods. if_not_float64_tell_caller_to_use_isnull = restrict_to_dtype( dtype=float64_dtype, message_template=( "{method_name}() was called on a factor of dtype {received_dtype}.\n" "{method_name}() is only defined for dtype {expected_dtype}." "To filter missing data, use isnull() or notnull()." ), ) float64_only = restrict_to_dtype( dtype=float64_dtype, message_template=( "{method_name}() is only defined on Factors of dtype {expected_dtype}," " but it was called on a Factor of dtype {received_dtype}." ), ) CORRELATION_METHOD_NOTE = dedent( """\ This method can only be called on expressions which are deemed safe for use as inputs to windowed :class:`~zipline.pipeline.Factor` objects. Examples of such expressions include This includes :class:`~zipline.pipeline.data.BoundColumn` :class:`~zipline.pipeline.factors.Returns` and any factors created from :meth:`~zipline.pipeline.Factor.rank` or :meth:`~zipline.pipeline.Factor.zscore`. """ ) class summary_funcs: """Namespace of functions meant to be used with DailySummary.""" @staticmethod def mean(a, missing_value): return nanmean(a, axis=1) @staticmethod def stddev(a, missing_value): return nanstd(a, axis=1) @staticmethod def max(a, missing_value): return nanmax(a, axis=1) @staticmethod def min(a, missing_value): return nanmin(a, axis=1) @staticmethod def median(a, missing_value): return nanmedian(a, axis=1) @staticmethod def sum(a, missing_value): return nansum(a, axis=1) @staticmethod def notnull_count(a, missing_value): return (~is_missing(a, missing_value)).sum(axis=1) names = {k for k in locals() if not k.startswith("_")} def summary_method(name): func = getattr(summary_funcs, name) @expect_types(mask=(Filter, NotSpecifiedType)) @float64_only def f(self, mask=NotSpecified): """Create a 1-dimensional factor computing the {} of self, each day. Parameters ---------- mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing results. If supplied, we ignore asset/date pairs where ``mask`` produces ``False``. Returns ------- result : zipline.pipeline.Factor """ return DailySummary( func, self, mask=mask, dtype=self.dtype, ) f.__name__ = func.__name__ f.__doc__ = f.__doc__.format(f.__name__) return f class Factor(RestrictedDTypeMixin, ComputableTerm): """ Pipeline API expression producing a numerical or date-valued output. Factors are the most commonly-used Pipeline term, representing the result of any computation producing a numerical result. Factors can be combined, both with other Factors and with scalar values, via any of the builtin mathematical operators (``+``, ``-``, ``*``, etc). This makes it easy to write complex expressions that combine multiple Factors. For example, constructing a Factor that computes the average of two other Factors is simply:: >>> f1 = SomeFactor(...) # doctest: +SKIP >>> f2 = SomeOtherFactor(...) # doctest: +SKIP >>> average = (f1 + f2) / 2.0 # doctest: +SKIP Factors can also be converted into :class:`zipline.pipeline.Filter` objects via comparison operators: (``<``, ``<=``, ``!=``, ``eq``, ``>``, ``>=``). There are many natural operators defined on Factors besides the basic numerical operators. These include methods for identifying missing or extreme-valued outputs (:meth:`isnull`, :meth:`notnull`, :meth:`isnan`, :meth:`notnan`), methods for normalizing outputs (:meth:`rank`, :meth:`demean`, :meth:`zscore`), and methods for constructing Filters based on rank-order properties of results (:meth:`top`, :meth:`bottom`, :meth:`percentile_between`). """ ALLOWED_DTYPES = FACTOR_DTYPES # Used by RestrictedDTypeMixin # Dynamically add functions for creating NumExprFactor/NumExprFilter # instances. clsdict = locals() clsdict.update( { method_name_for_op(op): binary_operator(op) # Don't override __eq__ because it breaks comparisons on tuples of # Factors. for op in MATH_BINOPS.union(COMPARISONS - {"=="}) } ) clsdict.update( { method_name_for_op(op, commute=True): reflected_binary_operator(op) for op in MATH_BINOPS } ) clsdict.update({unary_op_name(op): unary_operator(op) for op in UNARY_OPS}) clsdict.update( {funcname: function_application(funcname) for funcname in NUMEXPR_MATH_FUNCS} ) __truediv__ = clsdict["__div__"] __rtruediv__ = clsdict["__rdiv__"] # Add summary functions. clsdict.update( {name: summary_method(name) for name in summary_funcs.names}, ) del clsdict # don't pollute the class namespace with this. eq = binary_operator("==") @expect_types( mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def demean(self, mask=NotSpecified, groupby=NotSpecified): """ Construct a Factor that computes ``self`` and subtracts the mean from row of the result. If ``mask`` is supplied, ignore values where ``mask`` returns False when computing row means, and output NaN anywhere the mask is False. If ``groupby`` is supplied, compute by partitioning each row based on the values produced by ``groupby``, de-meaning the partitioned arrays, and stitching the sub-results back together. Parameters ---------- mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when computing means. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to compute means. Examples -------- Let ``f`` be a Factor which would produce the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 2.0 3.0 4.0 2017-03-14 1.5 2.5 3.5 1.0 2017-03-15 2.0 3.0 4.0 1.5 2017-03-16 2.5 3.5 1.0 2.0 Let ``c`` be a Classifier producing the following output:: AAPL MSFT MCD BK 2017-03-13 1 1 2 2 2017-03-14 1 1 2 2 2017-03-15 1 1 2 2 2017-03-16 1 1 2 2 Let ``m`` be a Filter producing the following output:: AAPL MSFT MCD BK 2017-03-13 False True True True 2017-03-14 True False True True 2017-03-15 True True False True 2017-03-16 True True True False Then ``f.demean()`` will subtract the mean from each row produced by ``f``. :: AAPL MSFT MCD BK 2017-03-13 -1.500 -0.500 0.500 1.500 2017-03-14 -0.625 0.375 1.375 -1.125 2017-03-15 -0.625 0.375 1.375 -1.125 2017-03-16 0.250 1.250 -1.250 -0.250 ``f.demean(mask=m)`` will subtract the mean from each row, but means will be calculated ignoring values on the diagonal, and NaNs will written to the diagonal in the output. Diagonal values are ignored because they are the locations where the mask ``m`` produced False. :: AAPL MSFT MCD BK 2017-03-13 NaN -1.000 0.000 1.000 2017-03-14 -0.500 NaN 1.500 -1.000 2017-03-15 -0.166 0.833 NaN -0.666 2017-03-16 0.166 1.166 -1.333 NaN ``f.demean(groupby=c)`` will subtract the group-mean of AAPL/MSFT and MCD/BK from their respective entries. The AAPL/MSFT are grouped together because both assets always produce 1 in the output of the classifier ``c``. Similarly, MCD/BK are grouped together because they always produce 2. :: AAPL MSFT MCD BK 2017-03-13 -0.500 0.500 -0.500 0.500 2017-03-14 -0.500 0.500 1.250 -1.250 2017-03-15 -0.500 0.500 1.250 -1.250 2017-03-16 -0.500 0.500 -0.500 0.500 ``f.demean(mask=m, groupby=c)`` will also subtract the group-mean of AAPL/MSFT and MCD/BK, but means will be calculated ignoring values on the diagonal , and NaNs will be written to the diagonal in the output. :: AAPL MSFT MCD BK 2017-03-13 NaN 0.000 -0.500 0.500 2017-03-14 0.000 NaN 1.250 -1.250 2017-03-15 -0.500 0.500 NaN 0.000 2017-03-16 -0.500 0.500 0.000 NaN Notes ----- Mean is sensitive to the magnitudes of outliers. When working with factor that can potentially produce large outliers, it is often useful to use the ``mask`` parameter to discard values at the extremes of the distribution:: >>> base = MyFactor(...) # doctest: +SKIP >>> normalized = base.demean( ... mask=base.percentile_between(1, 99), ... ) # doctest: +SKIP ``demean()`` is only supported on Factors of dtype float64. See Also -------- :meth:`pandas.DataFrame.groupby` """ return GroupedRowTransform( transform=demean, transform_args=(), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, window_safe=self.window_safe, mask=mask, ) @expect_types( mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def zscore(self, mask=NotSpecified, groupby=NotSpecified): """ Construct a Factor that Z-Scores each day's results. The Z-Score of a row is defined as:: (row - row.mean()) / row.stddev() If ``mask`` is supplied, ignore values where ``mask`` returns False when computing row means and standard deviations, and output NaN anywhere the mask is False. If ``groupby`` is supplied, compute by partitioning each row based on the values produced by ``groupby``, z-scoring the partitioned arrays, and stitching the sub-results back together. Parameters ---------- mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when Z-Scoring. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to compute Z-Scores. Returns ------- zscored : zipline.pipeline.Factor A Factor producing that z-scores the output of self. Notes ----- Mean and standard deviation are sensitive to the magnitudes of outliers. When working with factor that can potentially produce large outliers, it is often useful to use the ``mask`` parameter to discard values at the extremes of the distribution:: >>> base = MyFactor(...) # doctest: +SKIP >>> normalized = base.zscore( ... mask=base.percentile_between(1, 99), ... ) # doctest: +SKIP ``zscore()`` is only supported on Factors of dtype float64. Examples -------- See :meth:`~zipline.pipeline.Factor.demean` for an in-depth example of the semantics for ``mask`` and ``groupby``. See Also -------- :meth:`pandas.DataFrame.groupby` """ return GroupedRowTransform( transform=zscore, transform_args=(), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, mask=mask, window_safe=True, ) def rank( self, method="ordinal", ascending=True, mask=NotSpecified, groupby=NotSpecified ): """ Construct a new Factor representing the sorted rank of each column within each row. Parameters ---------- method : str, {'ordinal', 'min', 'max', 'dense', 'average'} The method used to assign ranks to tied elements. See `scipy.stats.rankdata` for a full description of the semantics for each ranking method. Default is 'ordinal'. ascending : bool, optional Whether to return sorted rank in ascending or descending order. Default is True. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, ranks are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- ranks : zipline.pipeline.Factor A new factor that will compute the ranking of the data produced by `self`. Notes ----- The default value for `method` is different from the default for `scipy.stats.rankdata`. See that function's documentation for a full description of the valid inputs to `method`. Missing or non-existent data on a given day will cause an asset to be given a rank of NaN for that day. See Also -------- :func:`scipy.stats.rankdata` """ if groupby is NotSpecified: return Rank(self, method=method, ascending=ascending, mask=mask) return GroupedRowTransform( transform=rankdata if ascending else rankdata_1d_descending, transform_args=(method,), factor=self, groupby=groupby, dtype=float64_dtype, missing_value=nan, mask=mask, window_safe=True, ) @expect_types( target=Term, correlation_length=int, mask=(Filter, NotSpecifiedType), ) @templated_docstring(CORRELATION_METHOD_NOTE=CORRELATION_METHOD_NOTE) def pearsonr(self, target, correlation_length, mask=NotSpecified): """ Construct a new Factor that computes rolling pearson correlation coefficients between ``target`` and the columns of ``self``. Parameters ---------- target : zipline.pipeline.Term The term used to compute correlations against each column of data produced by `self`. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target slice computed each day. Returns ------- correlations : zipline.pipeline.Factor A new Factor that will compute correlations between ``target`` and the columns of ``self``. Notes ----- {CORRELATION_METHOD_NOTE} Examples -------- Suppose we want to create a factor that computes the correlation between AAPL's 10-day returns and the 10-day returns of all other assets, computing each correlation over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_correlations = returns.pearsonr( target=returns_slice, correlation_length=30, ) This is equivalent to doing:: aapl_correlations = RollingPearsonOfReturns( target=sid(24), returns_length=10, correlation_length=30, ) See Also -------- :func:`scipy.stats.pearsonr` :class:`zipline.pipeline.factors.RollingPearsonOfReturns` :meth:`Factor.spearmanr` """ from .statistical import RollingPearson return RollingPearson( base_factor=self, target=target, correlation_length=correlation_length, mask=mask, ) @expect_types( target=Term, correlation_length=int, mask=(Filter, NotSpecifiedType), ) @templated_docstring(CORRELATION_METHOD_NOTE=CORRELATION_METHOD_NOTE) def spearmanr(self, target, correlation_length, mask=NotSpecified): """ Construct a new Factor that computes rolling spearman rank correlation coefficients between ``target`` and the columns of ``self``. Parameters ---------- target : zipline.pipeline.Term The term used to compute correlations against each column of data produced by `self`. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, correlations are computed asset-wise. correlation_length : int Length of the lookback window over which to compute each correlation coefficient. mask : zipline.pipeline.Filter, optional A Filter describing which assets should have their correlation with the target slice computed each day. Returns ------- correlations : zipline.pipeline.Factor A new Factor that will compute correlations between ``target`` and the columns of ``self``. Notes ----- {CORRELATION_METHOD_NOTE} Examples -------- Suppose we want to create a factor that computes the correlation between AAPL's 10-day returns and the 10-day returns of all other assets, computing each correlation over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_correlations = returns.spearmanr( target=returns_slice, correlation_length=30, ) This is equivalent to doing:: aapl_correlations = RollingSpearmanOfReturns( target=sid(24), returns_length=10, correlation_length=30, ) See Also -------- :func:`scipy.stats.spearmanr` :meth:`Factor.pearsonr` """ from .statistical import RollingSpearman return RollingSpearman( base_factor=self, target=target, correlation_length=correlation_length, mask=mask, ) @expect_types( target=Term, regression_length=int, mask=(Filter, NotSpecifiedType), ) @templated_docstring(CORRELATION_METHOD_NOTE=CORRELATION_METHOD_NOTE) def linear_regression(self, target, regression_length, mask=NotSpecified): """ Construct a new Factor that performs an ordinary least-squares regression predicting the columns of `self` from `target`. Parameters ---------- target : zipline.pipeline.Term The term to use as the predictor/independent variable in each regression. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, regressions are computed asset-wise. regression_length : int Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets should be regressed with the target slice each day. Returns ------- regressions : zipline.pipeline.Factor A new Factor that will compute linear regressions of `target` against the columns of `self`. Notes ----- {CORRELATION_METHOD_NOTE} Examples -------- Suppose we want to create a factor that regresses AAPL's 10-day returns against the 10-day returns of all other assets, computing each regression over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_regressions = returns.linear_regression( target=returns_slice, regression_length=30, ) This is equivalent to doing:: aapl_regressions = RollingLinearRegressionOfReturns( target=sid(24), returns_length=10, regression_length=30, ) See Also -------- :func:`scipy.stats.linregress` """ from .statistical import RollingLinearRegression return RollingLinearRegression( dependent=self, independent=target, regression_length=regression_length, mask=mask, ) @expect_types( min_percentile=(int, float), max_percentile=(int, float), mask=(Filter, NotSpecifiedType), groupby=(Classifier, NotSpecifiedType), ) @float64_only def winsorize( self, min_percentile, max_percentile, mask=NotSpecified, groupby=NotSpecified ): """ Construct a new factor that winsorizes the result of this factor. Winsorizing changes values ranked less than the minimum percentile to the value at the minimum percentile. Similarly, values ranking above the maximum percentile are changed to the value at the maximum percentile. Winsorizing is useful for limiting the impact of extreme data points without completely removing those points. If ``mask`` is supplied, ignore values where ``mask`` returns False when computing percentile cutoffs, and output NaN anywhere the mask is False. If ``groupby`` is supplied, winsorization is applied separately separately to each group defined by ``groupby``. Parameters ---------- min_percentile: float, int Entries with values at or below this percentile will be replaced with the (len(input) * min_percentile)th lowest value. If low values should not be clipped, use 0. max_percentile: float, int Entries with values at or above this percentile will be replaced with the (len(input) * max_percentile)th lowest value. If high values should not be clipped, use 1. mask : zipline.pipeline.Filter, optional A Filter defining values to ignore when winsorizing. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to winsorize. Returns ------- winsorized : zipline.pipeline.Factor A Factor producing a winsorized version of self. Examples -------- .. code-block:: python price = USEquityPricing.close.latest columns={ 'PRICE': price, 'WINSOR_1: price.winsorize( min_percentile=0.25, max_percentile=0.75 ), 'WINSOR_2': price.winsorize( min_percentile=0.50, max_percentile=1.0 ), 'WINSOR_3': price.winsorize( min_percentile=0.0, max_percentile=0.5 ), } Given a pipeline with columns, defined above, the result for a given day could look like: :: 'PRICE' 'WINSOR_1' 'WINSOR_2' 'WINSOR_3' Asset_1 1 2 4 3 Asset_2 2 2 4 3 Asset_3 3 3 4 3 Asset_4 4 4 4 4 Asset_5 5 5 5 4 Asset_6 6 5 5 4 See Also -------- :func:`scipy.stats.mstats.winsorize` :meth:`pandas.DataFrame.groupby` """ if not 0.0 <= min_percentile < max_percentile <= 1.0: raise BadPercentileBounds( min_percentile=min_percentile, max_percentile=max_percentile, upper_bound=1.0, ) return GroupedRowTransform( transform=winsorize, transform_args=(min_percentile, max_percentile), factor=self, groupby=groupby, dtype=self.dtype, missing_value=self.missing_value, mask=mask, window_safe=self.window_safe, ) @expect_types(bins=int, mask=(Filter, NotSpecifiedType)) def quantiles(self, bins, mask=NotSpecified): """ Construct a Classifier computing quantiles of the output of ``self``. Every non-NaN data point the output is labelled with an integer value from 0 to (bins - 1). NaNs are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- bins : int Number of bins labels to compute. mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quantiles. Returns ------- quantiles : zipline.pipeline.Classifier A classifier producing integer labels ranging from 0 to (bins - 1). """ if mask is NotSpecified: mask = self.mask return Quantiles(inputs=(self,), bins=bins, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def quartiles(self, mask=NotSpecified): """ Construct a Classifier computing quartiles over the output of ``self``. Every non-NaN data point the output is labelled with a value of either 0, 1, 2, or 3, corresponding to the first, second, third, or fourth quartile over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quartiles. Returns ------- quartiles : zipline.pipeline.Classifier A classifier producing integer labels ranging from 0 to 3. """ return self.quantiles(bins=4, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def quintiles(self, mask=NotSpecified): """ Construct a Classifier computing quintile labels on ``self``. Every non-NaN data point the output is labelled with a value of either 0, 1, 2, or 3, 4, corresonding to quintiles over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing quintiles. Returns ------- quintiles : zipline.pipeline.Classifier A classifier producing integer labels ranging from 0 to 4. """ return self.quantiles(bins=5, mask=mask) @expect_types(mask=(Filter, NotSpecifiedType)) def deciles(self, mask=NotSpecified): """ Construct a Classifier computing decile labels on ``self``. Every non-NaN data point the output is labelled with a value from 0 to 9 corresonding to deciles over each row. NaN data points are labelled with -1. If ``mask`` is supplied, ignore data points in locations for which ``mask`` produces False, and emit a label of -1 at those locations. Parameters ---------- mask : zipline.pipeline.Filter, optional Mask of values to ignore when computing deciles. Returns ------- deciles : zipline.pipeline.Classifier A classifier producing integer labels ranging from 0 to 9. """ return self.quantiles(bins=10, mask=mask) def top(self, N, mask=NotSpecified, groupby=NotSpecified): """ Construct a Filter matching the top N asset values of self each day. If ``groupby`` is supplied, returns a Filter matching the top N asset values for each group. Parameters ---------- N : int Number of assets passing the returned filter each day. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, top values are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- filter : zipline.pipeline.Filter """ if N == 1: # Special case: if N == 1, we can avoid doing a full sort on every # group, which is a big win. return self._maximum(mask=mask, groupby=groupby) return self.rank(ascending=False, mask=mask, groupby=groupby) <= N def bottom(self, N, mask=NotSpecified, groupby=NotSpecified): """ Construct a Filter matching the bottom N asset values of self each day. If ``groupby`` is supplied, returns a Filter matching the bottom N asset values **for each group** defined by ``groupby``. Parameters ---------- N : int Number of assets passing the returned filter each day. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when computing ranks. If mask is supplied, bottom values are computed ignoring any asset/date pairs for which `mask` produces a value of False. groupby : zipline.pipeline.Classifier, optional A classifier defining partitions over which to perform ranking. Returns ------- filter : zipline.pipeline.Filter """ return self.rank(ascending=True, mask=mask, groupby=groupby) <= N def _maximum(self, mask=NotSpecified, groupby=NotSpecified): return MaximumFilter(self, groupby=groupby, mask=mask) def percentile_between(self, min_percentile, max_percentile, mask=NotSpecified): """ Construct a Filter matching values of self that fall within the range defined by ``min_percentile`` and ``max_percentile``. Parameters ---------- min_percentile : float [0.0, 100.0] Return True for assets falling above this percentile in the data. max_percentile : float [0.0, 100.0] Return True for assets falling below this percentile in the data. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when percentile calculating thresholds. If mask is supplied, percentile cutoffs are computed each day using only assets for which ``mask`` returns True. Assets for which ``mask`` produces False will produce False in the output of this Factor as well. Returns ------- out : zipline.pipeline.Filter A new filter that will compute the specified percentile-range mask. """ return PercentileFilter( self, min_percentile=min_percentile, max_percentile=max_percentile, mask=mask, ) @if_not_float64_tell_caller_to_use_isnull def isnan(self): """ A Filter producing True for all values where this Factor is NaN. Returns ------- nanfilter : zipline.pipeline.Filter """ return self != self @if_not_float64_tell_caller_to_use_isnull def notnan(self): """ A Filter producing True for values where this Factor is not NaN. Returns ------- nanfilter : zipline.pipeline.Filter """ return ~self.isnan() @if_not_float64_tell_caller_to_use_isnull def isfinite(self): """ A Filter producing True for values where this Factor is anything but NaN, inf, or -inf. """ return (-inf < self) & (self < inf) def clip(self, min_bound, max_bound, mask=NotSpecified): """ Clip (limit) the values in a factor. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Parameters ---------- min_bound : float The minimum value to use. max_bound : float The maximum value to use. mask : zipline.pipeline.Filter, optional A Filter representing assets to consider when clipping. Notes ----- To only clip values on one side, ``-np.inf` and ``np.inf`` may be passed. For example, to only clip the maximum value but not clip a minimum value: .. code-block:: python factor.clip(min_bound=-np.inf, max_bound=user_provided_max) See Also -------- numpy.clip """ from .basic import Clip return Clip( inputs=[self], min_bound=min_bound, max_bound=max_bound, ) @classmethod def _principal_computable_term_type(cls): return Factor class NumExprFactor(NumericalExpression, Factor): """ Factor computed from a numexpr expression. Parameters ---------- expr : string A string suitable for passing to numexpr. All variables in 'expr' should be of the form "x_i", where i is the index of the corresponding factor input in 'binds'. binds : tuple A tuple of factors to use as inputs. Notes ----- NumExprFactors are constructed by numerical operators like `+` and `-`. Users should rarely need to construct a NumExprFactor directly. """ pass class GroupedRowTransform(Factor): """ A Factor that transforms an input factor by applying a row-wise shape-preserving transformation on classifier-defined groups of that Factor. This is most often useful for normalization operators like ``zscore`` or ``demean`` or for performing ranking using ``rank``. Parameters ---------- transform : function[ndarray[ndim=1] -> ndarray[ndim=1]] Function to apply over each row group. factor : zipline.pipeline.Factor The factor providing baseline data to transform. mask : zipline.pipeline.Filter Mask of entries to ignore when calculating transforms. groupby : zipline.pipeline.Classifier Classifier partitioning ``factor`` into groups to use when calculating means. transform_args : tuple[hashable] Additional positional arguments to forward to ``transform``. Notes ----- Users should rarely construct instances of this factor directly. Instead, they should construct instances via factor normalization methods like ``zscore`` and ``demean`` or using ``rank`` with ``groupby``. See Also -------- zipline.pipeline.Factor.zscore zipline.pipeline.Factor.demean zipline.pipeline.Factor.rank """ window_length = 0 def __new__( cls, transform, transform_args, factor, groupby, dtype, missing_value, mask, **kwargs, ): if mask is NotSpecified: mask = factor.mask else: mask = mask & factor.mask if groupby is NotSpecified: groupby = Everything(mask=mask) return super(GroupedRowTransform, cls).__new__( GroupedRowTransform, transform=transform, transform_args=transform_args, inputs=(factor, groupby), missing_value=missing_value, mask=mask, dtype=dtype, **kwargs, ) def _init(self, transform, transform_args, *args, **kwargs): self._transform = transform self._transform_args = transform_args return super(GroupedRowTransform, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, transform, transform_args, *args, **kwargs): return ( super(GroupedRowTransform, cls)._static_identity(*args, **kwargs), transform, transform_args, ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] group_labels, null_label = self.inputs[1]._to_integral(arrays[1]) # Make a copy with the null code written to masked locations. group_labels = where(mask, group_labels, null_label) return where( group_labels != null_label, naive_grouped_rowwise_apply( data=data, group_labels=group_labels, func=self._transform, func_args=self._transform_args, out=empty_like(data, dtype=self.dtype), ), self.missing_value, ) @property def transform_name(self): return self._transform.__name__ def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return type(self).__name__ + "(%r)" % self.transform_name class Rank(SingleInputMixin, Factor): """ A Factor representing the row-wise rank data of another Factor. Parameters ---------- factor : zipline.pipeline.Factor The factor on which to compute ranks. method : str, {'average', 'min', 'max', 'dense', 'ordinal'} The method used to assign ranks to tied elements. See `scipy.stats.rankdata` for a full description of the semantics for each ranking method. See Also -------- :func:`scipy.stats.rankdata` :class:`Factor.rank` Notes ----- Most users should call Factor.rank rather than directly construct an instance of this class. """ window_length = 0 dtype = float64_dtype window_safe = True def __new__(cls, factor, method, ascending, mask): return super(Rank, cls).__new__( cls, inputs=(factor,), method=method, ascending=ascending, mask=mask, ) def _init(self, method, ascending, *args, **kwargs): self._method = method self._ascending = ascending return super(Rank, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, method, ascending, *args, **kwargs): return ( super(Rank, cls)._static_identity(*args, **kwargs), method, ascending, ) def _validate(self): """ Verify that the stored rank method is valid. """ if self._method not in _RANK_METHODS: raise UnknownRankMethod( method=self._method, choices=set(_RANK_METHODS), ) return super(Rank, self)._validate() def _compute(self, arrays, dates, assets, mask): """ For each row in the input, compute a like-shaped array of per-row ranks. """ return masked_rankdata_2d( arrays[0], mask, self.inputs[0].missing_value, self._method, self._ascending, ) def __repr__(self): if self.mask is AssetExists(): # Don't include mask in repr if it's the default. mask_info = "" else: mask_info = ", mask={}".format(self.mask.recursive_repr()) return "{type}({input_}, method='{method}'{mask_info})".format( type=type(self).__name__, input_=self.inputs[0].recursive_repr(), method=self._method, mask_info=mask_info, ) def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "Rank:\\l method: {!r}\\l mask: {}\\l".format( self._method, type(self.mask).__name__, ) class CustomFactor(PositiveWindowLengthMixin, CustomTermMixin, Factor): ''' Base class for user-defined Factors. Parameters ---------- inputs : iterable, optional An iterable of `BoundColumn` instances (e.g. USEquityPricing.close), describing the data to load and pass to `self.compute`. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `inputs`. outputs : iterable[str], optional An iterable of strings which represent the names of each output this factor should compute and return. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `outputs`. window_length : int, optional Number of rows to pass for each input. If this argument is not passed to the CustomFactor constructor, we look for a class-level attribute named `window_length`. mask : zipline.pipeline.Filter, optional A Filter describing the assets on which we should compute each day. Each call to ``CustomFactor.compute`` will only receive assets for which ``mask`` produced True on the day for which compute is being called. Notes ----- Users implementing their own Factors should subclass CustomFactor and implement a method named `compute` with the following signature: .. code-block:: python def compute(self, today, assets, out, *inputs): ... On each simulation date, ``compute`` will be called with the current date, an array of sids, an output array, and an input array for each expression passed as inputs to the CustomFactor constructor. The specific types of the values passed to `compute` are as follows:: today : np.datetime64[ns] Row label for the last row of all arrays passed as `inputs`. assets : np.array[int64, ndim=1] Column labels for `out` and`inputs`. out : np.array[self.dtype, ndim=1] Output array of the same shape as `assets`. `compute` should write its desired return values into `out`. If multiple outputs are specified, `compute` should write its desired return values into `out.<output_name>` for each output name in `self.outputs`. *inputs : tuple of np.array Raw data arrays corresponding to the values of `self.inputs`. ``compute`` functions should expect to be passed NaN values for dates on which no data was available for an asset. This may include dates on which an asset did not yet exist. For example, if a CustomFactor requires 10 rows of close price data, and asset A started trading on Monday June 2nd, 2014, then on Tuesday, June 3rd, 2014, the column of input data for asset A will have 9 leading NaNs for the preceding days on which data was not yet available. Examples -------- A CustomFactor with pre-declared defaults: .. code-block:: python class TenDayRange(CustomFactor): """ Computes the difference between the highest high in the last 10 days and the lowest low. Pre-declares high and low as default inputs and `window_length` as 10. """ inputs = [USEquityPricing.high, USEquityPricing.low] window_length = 10 def compute(self, today, assets, out, highs, lows): from numpy import nanmin, nanmax highest_highs = nanmax(highs, axis=0) lowest_lows = nanmin(lows, axis=0) out[:] = highest_highs - lowest_lows # Doesn't require passing inputs or window_length because they're # pre-declared as defaults for the TenDayRange class. ten_day_range = TenDayRange() A CustomFactor without defaults: .. code-block:: python class MedianValue(CustomFactor): """ Computes the median value of an arbitrary single input over an arbitrary window.. Does not declare any defaults, so values for `window_length` and `inputs` must be passed explicitly on every construction. """ def compute(self, today, assets, out, data): from numpy import nanmedian out[:] = data.nanmedian(data, axis=0) # Values for `inputs` and `window_length` must be passed explicitly to # MedianValue. median_close10 = MedianValue([USEquityPricing.close], window_length=10) median_low15 = MedianValue([USEquityPricing.low], window_length=15) A CustomFactor with multiple outputs: .. code-block:: python class MultipleOutputs(CustomFactor): inputs = [USEquityPricing.close] outputs = ['alpha', 'beta'] window_length = N def compute(self, today, assets, out, close): computed_alpha, computed_beta = some_function(close) out.alpha[:] = computed_alpha out.beta[:] = computed_beta # Each output is returned as its own Factor upon instantiation. alpha, beta = MultipleOutputs() # Equivalently, we can create a single factor instance and access each # output as an attribute of that instance. multiple_outputs = MultipleOutputs() alpha = multiple_outputs.alpha beta = multiple_outputs.beta Note: If a CustomFactor has multiple outputs, all outputs must have the same dtype. For instance, in the example above, if alpha is a float then beta must also be a float. ''' dtype = float64_dtype def _validate(self): try: super(CustomFactor, self)._validate() except UnsupportedDataType as exc: if self.dtype in CLASSIFIER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomClassifier?", ) from exc elif self.dtype in FILTER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomFilter?", ) from exc raise def __getattribute__(self, name): outputs = object.__getattribute__(self, "outputs") if outputs is NotSpecified: return super(CustomFactor, self).__getattribute__(name) elif name in outputs: return RecarrayField(factor=self, attribute=name) else: try: return super(CustomFactor, self).__getattribute__(name) except AttributeError as exc: raise AttributeError( "Instance of {factor} has no output named {attr!r}. " "Possible choices are: {choices}.".format( factor=type(self).__name__, attr=name, choices=self.outputs, ) ) from exc def __iter__(self): if self.outputs is NotSpecified: raise ValueError( "{factor} does not have multiple outputs.".format( factor=type(self).__name__, ) ) return (RecarrayField(self, attr) for attr in self.outputs) class RecarrayField(SingleInputMixin, Factor): """ A single field from a multi-output factor. """ def __new__(cls, factor, attribute): return super(RecarrayField, cls).__new__( cls, attribute=attribute, inputs=[factor], window_length=0, mask=factor.mask, dtype=factor.dtype, missing_value=factor.missing_value, window_safe=factor.window_safe, ) def _init(self, attribute, *args, **kwargs): self._attribute = attribute return super(RecarrayField, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, attribute, *args, **kwargs): return ( super(RecarrayField, cls)._static_identity(*args, **kwargs), attribute, ) def _compute(self, windows, dates, assets, mask): return windows[0][self._attribute] def graph_repr(self): return "{}.{}".format(self.inputs[0].recursive_repr(), self._attribute) class Latest(LatestMixin, CustomFactor): """ Factor producing the most recently-known value of `inputs[0]` on each day. The `.latest` attribute of DataSet columns returns an instance of this Factor. """ window_length = 1 def compute(self, today, assets, out, data): out[:] = data[-1] class DailySummary(SingleInputMixin, Factor): """1D Factor that computes a summary statistic across all assets.""" ndim = 1 window_length = 0 params = ("func",) def __new__(cls, func, input_, mask, dtype): # TODO: We should be able to support datetime64 as well, but that # requires extra care for handling NaT. if dtype != float64_dtype: raise AssertionError( "DailySummary only supports float64 dtype, got {}".format(dtype), ) return super(DailySummary, cls).__new__( cls, inputs=[input_], dtype=dtype, missing_value=nan, window_safe=input_.window_safe, func=func, mask=mask, ) def _compute(self, arrays, dates, assets, mask): func = self.params["func"] data = arrays[0] data[~mask] = nan if not isnan(self.inputs[0].missing_value): data[data == self.inputs[0].missing_value] = nan return as_column(func(data, self.inputs[0].missing_value)) def __repr__(self): return "{}.{}()".format( self.inputs[0].recursive_repr(), self.params["func"].__name__, ) graph_repr = recursive_repr = __repr__ # Functions to be passed to GroupedRowTransform. These aren't defined inline # because the transformation function is part of the instance hash key. def demean(row): return row - nanmean(row) def zscore(row): with np.errstate(divide="ignore", invalid="ignore"): return (row - nanmean(row)) / nanstd(row) def winsorize(row, min_percentile, max_percentile): """ This implementation is based on scipy.stats.mstats.winsorize """ a = row.copy() nan_count = isnan(row).sum() nonnan_count = a.size - nan_count # NOTE: argsort() sorts nans to the end of the array. idx = a.argsort() # Set values at indices below the min percentile to the value of the entry # at the cutoff. if min_percentile > 0: lower_cutoff = int(min_percentile * nonnan_count) a[idx[:lower_cutoff]] = a[idx[lower_cutoff]] # Set values at indices above the max percentile to the value of the entry # at the cutoff. if max_percentile < 1: upper_cutoff = int(ceil(nonnan_count * max_percentile)) # if max_percentile is close to 1, then upper_cutoff might not # remove any values. if upper_cutoff < nonnan_count: start_of_nans = (-nan_count) if nan_count else None a[idx[upper_cutoff:start_of_nans]] = a[idx[upper_cutoff - 1]] return a
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/factors/factor.py
factor.py
from numbers import Number from numpy import ( arange, average, clip, copyto, exp, fmax, full, isnan, log, NINF, sqrt, sum as np_sum, unique, errstate as np_errstate, ) from zipline.pipeline.data import EquityPricing from zipline.utils.input_validation import expect_types from zipline.utils.math_utils import ( nanargmax, nanmax, nanmean, nanstd, nansum, ) from zipline.utils.numpy_utils import ( float64_dtype, ignore_nanwarnings, ) from .factor import CustomFactor from ..mixins import SingleInputMixin class Returns(CustomFactor): """ Calculates the percent change in close price over the given window_length. **Default Inputs**: [EquityPricing.close] """ inputs = [EquityPricing.close] window_safe = True def _validate(self): super(Returns, self)._validate() if self.window_length < 2: raise ValueError( "'Returns' expected a window length of at least 2, but was " "given {window_length}. For daily returns, use a window " "length of 2.".format(window_length=self.window_length) ) def compute(self, today, assets, out, close): out[:] = (close[-1] - close[0]) / close[0] class PercentChange(SingleInputMixin, CustomFactor): """ Calculates the percent change over the given window_length. **Default Inputs:** None **Default Window Length:** None Notes ----- Percent change is calculated as ``(new - old) / abs(old)``. """ window_safe = True def _validate(self): super(PercentChange, self)._validate() if self.window_length < 2: raise ValueError( "'PercentChange' expected a window length" "of at least 2, but was given {window_length}. " "For daily percent change, use a window " "length of 2.".format(window_length=self.window_length) ) def compute(self, today, assets, out, values): with np_errstate(divide="ignore", invalid="ignore"): out[:] = (values[-1] - values[0]) / abs(values[0]) class DailyReturns(Returns): """ Calculates daily percent change in close price. **Default Inputs**: [EquityPricing.close] """ inputs = [EquityPricing.close] window_safe = True window_length = 2 class SimpleMovingAverage(SingleInputMixin, CustomFactor): """ Average Value of an arbitrary column **Default Inputs**: None **Default Window Length**: None """ # numpy's nan functions throw warnings when passed an array containing only # nans, but they still returns the desired value (nan), so we ignore the # warning. ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): out[:] = nanmean(data, axis=0) class WeightedAverageValue(CustomFactor): """ Helper for VWAP-like computations. **Default Inputs:** None **Default Window Length:** None """ def compute(self, today, assets, out, base, weight): out[:] = nansum(base * weight, axis=0) / nansum(weight, axis=0) class VWAP(WeightedAverageValue): """ Volume Weighted Average Price **Default Inputs:** [EquityPricing.close, EquityPricing.volume] **Default Window Length:** None """ inputs = (EquityPricing.close, EquityPricing.volume) class MaxDrawdown(SingleInputMixin, CustomFactor): """ Max Drawdown **Default Inputs:** None **Default Window Length:** None """ ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): drawdowns = fmax.accumulate(data, axis=0) - data drawdowns[isnan(drawdowns)] = NINF drawdown_ends = nanargmax(drawdowns, axis=0) # TODO: Accelerate this loop in Cython or Numba. for i, end in enumerate(drawdown_ends): peak = nanmax(data[: end + 1, i]) out[i] = (peak - data[end, i]) / data[end, i] class AverageDollarVolume(CustomFactor): """ Average Daily Dollar Volume **Default Inputs:** [EquityPricing.close, EquityPricing.volume] **Default Window Length:** None """ inputs = [EquityPricing.close, EquityPricing.volume] def compute(self, today, assets, out, close, volume): out[:] = nansum(close * volume, axis=0) / len(close) def exponential_weights(length, decay_rate): """ Build a weight vector for an exponentially-weighted statistic. The resulting ndarray is of the form:: [decay_rate ** length, ..., decay_rate ** 2, decay_rate] Parameters ---------- length : int The length of the desired weight vector. decay_rate : float The rate at which entries in the weight vector increase or decrease. Returns ------- weights : ndarray[float64] """ return full(length, decay_rate, float64_dtype) ** arange(length + 1, 1, -1) class _ExponentialWeightedFactor(SingleInputMixin, CustomFactor): """ Base class for factors implementing exponential-weighted operations. **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list or tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Methods ------- weights from_span from_halflife from_center_of_mass """ params = ("decay_rate",) @classmethod @expect_types(span=Number) def from_span(cls, inputs, window_length, span, **kwargs): """ Convenience constructor for passing `decay_rate` in terms of `span`. Forwards `decay_rate` as `1 - (2.0 / (1 + span))`. This provides the behavior equivalent to passing `span` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[EquityPricing.close], # window_length=30, # decay_rate=(1 - (2.0 / (1 + 15.0))), # ) my_ewma = EWMA.from_span( inputs=[EquityPricing.close], window_length=30, span=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ if span <= 1: raise ValueError("`span` must be a positive number. %s was passed." % span) decay_rate = 1.0 - (2.0 / (1.0 + span)) assert 0.0 < decay_rate <= 1.0 return cls( inputs=inputs, window_length=window_length, decay_rate=decay_rate, **kwargs ) @classmethod @expect_types(halflife=Number) def from_halflife(cls, inputs, window_length, halflife, **kwargs): """ Convenience constructor for passing ``decay_rate`` in terms of half life. Forwards ``decay_rate`` as ``exp(log(.5) / halflife)``. This provides the behavior equivalent to passing `halflife` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[EquityPricing.close], # window_length=30, # decay_rate=np.exp(np.log(0.5) / 15), # ) my_ewma = EWMA.from_halflife( inputs=[EquityPricing.close], window_length=30, halflife=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ if halflife <= 0: raise ValueError( "`span` must be a positive number. %s was passed." % halflife ) decay_rate = exp(log(0.5) / halflife) assert 0.0 < decay_rate <= 1.0 return cls( inputs=inputs, window_length=window_length, decay_rate=decay_rate, **kwargs ) @classmethod def from_center_of_mass(cls, inputs, window_length, center_of_mass, **kwargs): """ Convenience constructor for passing `decay_rate` in terms of center of mass. Forwards `decay_rate` as `1 - (1 / 1 + center_of_mass)`. This provides behavior equivalent to passing `center_of_mass` to pandas.ewma. Examples -------- .. code-block:: python # Equivalent to: # my_ewma = EWMA( # inputs=[EquityPricing.close], # window_length=30, # decay_rate=(1 - (1 / 15.0)), # ) my_ewma = EWMA.from_center_of_mass( inputs=[EquityPricing.close], window_length=30, center_of_mass=15, ) Notes ----- This classmethod is provided by both :class:`ExponentialWeightedMovingAverage` and :class:`ExponentialWeightedMovingStdDev`. """ return cls( inputs=inputs, window_length=window_length, decay_rate=(1.0 - (1.0 / (1.0 + center_of_mass))), **kwargs, ) class ExponentialWeightedMovingAverage(_ExponentialWeightedFactor): """ Exponentially Weighted Moving Average **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list/tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Notes ----- - This class can also be imported under the name ``EWMA``. See Also -------- :meth:`pandas.DataFrame.ewm` """ def compute(self, today, assets, out, data, decay_rate): out[:] = average( data, axis=0, weights=exponential_weights(len(data), decay_rate), ) class ExponentialWeightedMovingStdDev(_ExponentialWeightedFactor): """ Exponentially Weighted Moving Standard Deviation **Default Inputs:** None **Default Window Length:** None Parameters ---------- inputs : length-1 list/tuple of BoundColumn The expression over which to compute the average. window_length : int > 0 Length of the lookback window over which to compute the average. decay_rate : float, 0 < decay_rate <= 1 Weighting factor by which to discount past observations. When calculating historical averages, rows are multiplied by the sequence:: decay_rate, decay_rate ** 2, decay_rate ** 3, ... Notes ----- - This class can also be imported under the name ``EWMSTD``. See Also -------- :func:`pandas.DataFrame.ewm` """ def compute(self, today, assets, out, data, decay_rate): weights = exponential_weights(len(data), decay_rate) mean = average(data, axis=0, weights=weights) variance = average((data - mean) ** 2, axis=0, weights=weights) squared_weight_sum = np_sum(weights) ** 2 bias_correction = squared_weight_sum / ( squared_weight_sum - np_sum(weights**2) ) out[:] = sqrt(variance * bias_correction) class LinearWeightedMovingAverage(SingleInputMixin, CustomFactor): """ Weighted Average Value of an arbitrary column **Default Inputs**: None **Default Window Length**: None """ # numpy's nan functions throw warnings when passed an array containing only # nans, but they still returns the desired value (nan), so we ignore the # warning. ctx = ignore_nanwarnings() def compute(self, today, assets, out, data): ndays = data.shape[0] # Initialize weights array weights = arange(1, ndays + 1, dtype=float64_dtype).reshape(ndays, 1) # Compute normalizer normalizer = (ndays * (ndays + 1)) / 2 # Weight the data weighted_data = data * weights # Compute weighted averages out[:] = nansum(weighted_data, axis=0) / normalizer class AnnualizedVolatility(CustomFactor): """ Volatility. The degree of variation of a series over time as measured by the standard deviation of daily returns. https://en.wikipedia.org/wiki/Volatility_(finance) **Default Inputs:** [Returns(window_length=2)] Parameters ---------- annualization_factor : float, optional The number of time units per year. Defaults is 252, the number of NYSE trading days in a normal year. """ inputs = [Returns(window_length=2)] params = {"annualization_factor": 252.0} window_length = 252 def compute(self, today, assets, out, returns, annualization_factor): out[:] = nanstd(returns, axis=0) * (annualization_factor**0.5) class PeerCount(SingleInputMixin, CustomFactor): """ Peer Count of distinct categories in a given classifier. This factor is returned by the classifier instance method peer_count() **Default Inputs:** None **Default Window Length:** 1 """ window_length = 1 def _validate(self): super(PeerCount, self)._validate() if self.window_length != 1: raise ValueError( "'PeerCount' expected a window length of 1, but was given" "{window_length}.".format(window_length=self.window_length) ) def compute(self, today, assets, out, classifier_values): # Convert classifier array to group label int array group_labels, null_label = self.inputs[0]._to_integral(classifier_values[0]) _, inverse, counts = unique( # Get counts, idx of unique groups group_labels, return_counts=True, return_inverse=True, ) copyto(out, counts[inverse], where=(group_labels != null_label)) # Convenience aliases EWMA = ExponentialWeightedMovingAverage EWMSTD = ExponentialWeightedMovingStdDev class Clip(CustomFactor): """ Clip (limit) the values in a factor. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. **Default Window Length:** 1 Parameters ---------- min_bound : float The minimum value to use. max_bound : float The maximum value to use. Notes ----- To only clip values on one side, ``-np.inf` and ``np.inf`` may be passed. For example, to only clip the maximum value but not clip a minimum value: .. code-block:: python Clip(inputs=[factor], min_bound=-np.inf, max_bound=user_provided_max) See Also -------- numpy.clip """ window_length = 1 params = ("min_bound", "max_bound") def compute(self, today, assets, out, values, min_bound, max_bound): clip(values[-1], min_bound, max_bound, out=out)
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/factors/basic.py
basic.py
from numpy import newaxis from zipline.utils.numpy_utils import ( NaTD, busday_count_mask_NaT, datetime64D_dtype, float64_dtype, ) from .factor import Factor class BusinessDaysSincePreviousEvent(Factor): """ Abstract class for business days since a previous event. Returns the number of **business days** (not trading days!) since the most recent event date for each asset. This doesn't use trading days for symmetry with BusinessDaysUntilNextEarnings. Assets which announced or will announce the event today will produce a value of 0.0. Assets that announced the event on the previous business day will produce a value of 1.0. Assets for which the event date is `NaT` will produce a value of `NaN`. Example ------- ``BusinessDaysSincePreviousEvent`` can be used to create an event-driven factor. For instance, you may want to only trade assets that have a data point with an asof_date in the last 5 business days. To do this, you can create a ``BusinessDaysSincePreviousEvent`` factor, supplying the relevant asof_date column from your dataset as input, like this:: # Factor computing number of days since most recent asof_date # per asset. days_since_event = BusinessDaysSincePreviousEvent( inputs=[MyDataset.asof_date] ) # Filter returning True for each asset whose most recent asof_date # was in the last 5 business days. recency_filter = (days_since_event <= 5) """ window_length = 0 dtype = float64_dtype def _compute(self, arrays, dates, assets, mask): # Coerce from [ns] to [D] for numpy busday_count. announce_dates = arrays[0].astype(datetime64D_dtype) # Set masked values to NaT. announce_dates[~mask] = NaTD # Convert row labels into a column vector for broadcasted comparison. reference_dates = dates.values.astype(datetime64D_dtype)[:, newaxis] return busday_count_mask_NaT(announce_dates, reference_dates) class BusinessDaysUntilNextEvent(Factor): """ Abstract class for business days since a next event. Returns the number of **business days** (not trading days!) until the next known event date for each asset. This doesn't use trading days because the trading calendar includes information that may not have been available to the algorithm at the time when `compute` is called. For example, the NYSE closings September 11th 2001, would not have been known to the algorithm on September 10th. Assets that announced or will announce the event today will produce a value of 0.0. Assets that will announce the event on the next upcoming business day will produce a value of 1.0. Assets for which the event date is `NaT` will produce a value of `NaN`. """ window_length = 0 dtype = float64_dtype def _compute(self, arrays, dates, assets, mask): # Coerce from [ns] to [D] for numpy busday_count. announce_dates = arrays[0].astype(datetime64D_dtype) # Set masked values to NaT. announce_dates[~mask] = NaTD # Convert row labels into a column vector for broadcasted comparison. reference_dates = dates.values.astype(datetime64D_dtype)[:, newaxis] return busday_count_mask_NaT(reference_dates, announce_dates)
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/factors/events.py
events.py
from functools import partial from numbers import Number import operator import re from numpy import where, isnan, nan, zeros import pandas as pd from zipline.errors import UnsupportedDataType from zipline.lib.labelarray import LabelArray from zipline.lib.quantiles import quantiles from zipline.pipeline.api_utils import restrict_to_dtype from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.sentinels import NotSpecified from zipline.pipeline.term import ComputableTerm from zipline.utils.compat import unicode from zipline.utils.input_validation import expect_types, expect_dtypes from zipline.utils.numpy_utils import ( categorical_dtype, int64_dtype, vectorized_is_element, ) from ..filters import ArrayPredicate, NumExprFilter from ..mixins import ( CustomTermMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, StandardOutputs, ) string_classifiers_only = restrict_to_dtype( dtype=categorical_dtype, message_template=( "{method_name}() is only defined on Classifiers producing strings" " but it was called on a Classifier of dtype {received_dtype}." ), ) class Classifier(RestrictedDTypeMixin, ComputableTerm): """ A Pipeline expression computing a categorical output. Classifiers are most commonly useful for describing grouping keys for complex transformations on Factor outputs. For example, Factor.demean() and Factor.zscore() can be passed a Classifier in their ``groupby`` argument, indicating that means/standard deviations should be computed on assets for which the classifier produced the same label. """ # Used by RestrictedDTypeMixin ALLOWED_DTYPES = CLASSIFIER_DTYPES categories = NotSpecified # We explicitly don't support classifier to classifier comparisons, since # the stored values likely don't mean the same thing. This may be relaxed # in the future, but for now we're starting conservatively. def eq(self, other): """ Construct a Filter returning True for asset/date pairs where the output of ``self`` matches ``other``. """ # We treat this as an error because missing_values have NaN semantics, # which means this would return an array of all False, which is almost # certainly not what the user wants. if other == self.missing_value: raise ValueError( "Comparison against self.missing_value ({value!r}) in" " {typename}.eq().\n" "Missing values have NaN semantics, so the " "requested comparison would always produce False.\n" "Use the isnull() method to check for missing values.".format( value=other, typename=(type(self).__name__), ) ) if isinstance(other, Number) != (self.dtype == int64_dtype): raise InvalidClassifierComparison(self, other) if isinstance(other, Number): return NumExprFilter.create( "x_0 == {other}".format(other=int(other)), binds=(self,), ) else: return ArrayPredicate( term=self, op=operator.eq, opargs=(other,), ) def __ne__(self, other): """ Construct a Filter returning True for asset/date pairs where the output of ``self`` matches ``other. """ if isinstance(other, Number) != (self.dtype == int64_dtype): raise InvalidClassifierComparison(self, other) if isinstance(other, Number): return NumExprFilter.create( "((x_0 != {other}) & (x_0 != {missing}))".format( other=int(other), missing=self.missing_value, ), binds=(self,), ) else: # Numexpr doesn't know how to use LabelArrays. return ArrayPredicate(term=self, op=operator.ne, opargs=(other,)) def bad_compare(opname, other): raise TypeError("cannot compare classifiers with %s" % opname) __gt__ = partial(bad_compare, ">") __ge__ = partial(bad_compare, ">=") __le__ = partial(bad_compare, "<=") __lt__ = partial(bad_compare, "<") del bad_compare @string_classifiers_only @expect_types(prefix=(bytes, unicode)) def startswith(self, prefix): """ Construct a Filter matching values starting with ``prefix``. Parameters ---------- prefix : str String prefix against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string starting with ``prefix``. """ return ArrayPredicate( term=self, op=LabelArray.startswith, opargs=(prefix,), ) @string_classifiers_only @expect_types(suffix=(bytes, unicode)) def endswith(self, suffix): """ Construct a Filter matching values ending with ``suffix``. Parameters ---------- suffix : str String suffix against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string ending with ``prefix``. """ return ArrayPredicate( term=self, op=LabelArray.endswith, opargs=(suffix,), ) @string_classifiers_only @expect_types(substring=(bytes, unicode)) def has_substring(self, substring): """ Construct a Filter matching values containing ``substring``. Parameters ---------- substring : str Sub-string against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string containing ``substring``. """ return ArrayPredicate( term=self, op=LabelArray.has_substring, opargs=(substring,), ) @string_classifiers_only @expect_types(pattern=(bytes, unicode, type(re.compile("")))) def matches(self, pattern): """ Construct a Filter that checks regex matches against ``pattern``. Parameters ---------- pattern : str Regex pattern against which to compare values produced by ``self``. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces a string matched by ``pattern``. See Also -------- :mod:`Python Regular Expressions <re>` """ return ArrayPredicate( term=self, op=LabelArray.matches, opargs=(pattern,), ) # TODO: Support relabeling for integer dtypes. @string_classifiers_only def relabel(self, relabeler): """ Convert ``self`` into a new classifier by mapping a function over each element produced by ``self``. Parameters ---------- relabeler : function[str -> str or None] A function to apply to each unique value produced by ``self``. Returns ------- relabeled : Classifier A classifier produced by applying ``relabeler`` to each unique value produced by ``self``. """ return Relabel(term=self, relabeler=relabeler) def element_of(self, choices): """ Construct a Filter indicating whether values are in ``choices``. Parameters ---------- choices : iterable[str or int] An iterable of choices. Returns ------- matches : Filter Filter returning True for all sid/date pairs for which ``self`` produces an entry in ``choices``. """ try: choices = frozenset(choices) except Exception as exc: raise TypeError( "Expected `choices` to be an iterable of hashable values," " but got {} instead.\n" "This caused the following error: {!r}.".format(choices, exc) ) from exc if self.missing_value in choices: raise ValueError( "Found self.missing_value ({mv!r}) in choices supplied to" " {typename}.{meth_name}().\n" "Missing values have NaN semantics, so the" " requested comparison would always produce False.\n" "Use the isnull() method to check for missing values.\n" "Received choices were {choices}.".format( mv=self.missing_value, typename=(type(self).__name__), choices=sorted(choices), meth_name=self.element_of.__name__, ) ) def only_contains(type_, values): return all(isinstance(v, type_) for v in values) if self.dtype == int64_dtype: if only_contains(int, choices): return ArrayPredicate( term=self, op=vectorized_is_element, opargs=(choices,), ) else: raise TypeError( "Found non-int in choices for {typename}.element_of.\n" "Supplied choices were {choices}.".format( typename=type(self).__name__, choices=choices, ) ) elif self.dtype == categorical_dtype: if only_contains((bytes, unicode), choices): return ArrayPredicate( term=self, op=LabelArray.element_of, opargs=(choices,), ) else: raise TypeError( "Found non-string in choices for {typename}.element_of.\n" "Supplied choices were {choices}.".format( typename=type(self).__name__, choices=choices, ) ) raise AssertionError(f"Unknown dtype in Classifier.element_of {self.dtype}.") def postprocess(self, data): if self.dtype == int64_dtype: return data if not isinstance(data, LabelArray): raise AssertionError("Expected a LabelArray, got %s." % type(data)) return data.as_categorical() def to_workspace_value(self, result, assets): """ Called with the result of a pipeline. This needs to return an object which can be put into the workspace to continue doing computations. This is the inverse of :func:`~zipline.pipeline.term.Term.postprocess`. """ if self.dtype == int64_dtype: return super(Classifier, self).to_workspace_value(result, assets) assert isinstance( result.values, pd.Categorical ), "Expected a Categorical, got %r." % type(result.values) with_missing = pd.Series( data=pd.Categorical( result.values, result.values.categories.union([self.missing_value]), ), index=result.index, ) return LabelArray( super(Classifier, self).to_workspace_value( with_missing, assets, ), self.missing_value, ) @classmethod def _principal_computable_term_type(cls): return Classifier def _to_integral(self, output_array): """ Convert an array produced by this classifier into an array of integer labels and a missing value label. """ if self.dtype == int64_dtype: group_labels = output_array null_label = self.missing_value elif self.dtype == categorical_dtype: # Coerce LabelArray into an isomorphic array of ints. This is # necessary because np.where doesn't know about LabelArrays or the # void dtype. group_labels = output_array.as_int_array() null_label = output_array.missing_value_code else: raise AssertionError("Unexpected Classifier dtype: %s." % self.dtype) return group_labels, null_label def peer_count(self, mask=NotSpecified): """ Construct a factor that gives the number of occurrences of each distinct category in a classifier. Parameters ---------- mask : zipline.pipeline.Filter, optional If passed, only count assets passing the filter. Default behavior is to count all assets. Examples -------- Let ``c`` be a Classifier which would produce the following output:: AAPL MSFT MCD BK AMZN FB 2015-05-05 'a' 'a' None 'b' 'a' None 2015-05-06 'b' 'a' 'c' 'b' 'b' 'b' 2015-05-07 None 'a' 'aa' 'aa' 'aa' None 2015-05-08 'c' 'c' 'c' 'c' 'c' 'c' Then ``c.peer_count()`` will count, for each row, the total number of assets in each classifier category produced by ``c``. Missing data will be evaluated to NaN. :: AAPL MSFT MCD BK AMZN FB 2015-05-05 3.0 3.0 NaN 1.0 3.0 NaN 2015-05-06 4.0 1.0 1.0 4.0 4.0 4.0 2015-05-07 NaN 1.0 3.0 3.0 3.0 NaN 2015-05-08 6.0 6.0 6.0 6.0 6.0 6.0 Returns ------- factor : CustomFactor A CustomFactor that counts, for each asset, the total number of assets with the same classifier category label. """ # Lazy import due to cyclic dependencies in factor.py, classifier.py from ..factors import PeerCount return PeerCount(inputs=[self], mask=mask) class Everything(Classifier): """ A trivial classifier that classifies everything the same. """ dtype = int64_dtype window_length = 0 inputs = () missing_value = -1 def _compute(self, arrays, dates, assets, mask): return where( mask, zeros(shape=mask.shape, dtype=int64_dtype), self.missing_value, ) class Quantiles(SingleInputMixin, Classifier): """ A classifier computing quantiles over an input. """ params = ("bins",) dtype = int64_dtype window_length = 0 missing_value = -1 def _compute(self, arrays, dates, assets, mask): data = arrays[0] bins = self.params["bins"] to_bin = where(mask, data, nan) result = quantiles(to_bin, bins) # Write self.missing_value into nan locations, whether they were # generated by our input mask or not. result[isnan(result)] = self.missing_value return result.astype(int64_dtype) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" return type(self).__name__ + "(%d)" % self.params["bins"] class Relabel(SingleInputMixin, Classifier): """ A classifier applying a relabeling function on the result of another classifier. Parameters ---------- arg : zipline.pipeline.Classifier Term produceing the input to be relabeled. relabel_func : function(LabelArray) -> LabelArray Function to apply to the result of `term`. """ window_length = 0 params = ("relabeler",) # TODO: Support relabeling for integer dtypes. @expect_dtypes(term=categorical_dtype) @expect_types(term=Classifier) def __new__(cls, term, relabeler): return super(Relabel, cls).__new__( cls, inputs=(term,), dtype=term.dtype, mask=term.mask, relabeler=relabeler, ) def _compute(self, arrays, dates, assets, mask): relabeler = self.params["relabeler"] data = arrays[0] if isinstance(data, LabelArray): result = data.map(relabeler) result[~mask] = data.missing_value else: raise NotImplementedError( "Relabeling is not currently supported for " "int-dtype classifiers." ) return result class CustomClassifier( PositiveWindowLengthMixin, StandardOutputs, CustomTermMixin, Classifier ): """ Base class for user-defined Classifiers. Does not suppport multiple outputs. See Also -------- zipline.pipeline.CustomFactor zipline.pipeline.CustomFilter """ def _validate(self): try: super(CustomClassifier, self)._validate() except UnsupportedDataType as exc: if self.dtype in FACTOR_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomFactor?", ) from exc elif self.dtype in FILTER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomFilter?", ) from exc raise def _allocate_output(self, windows, shape): """ Override the default array allocation to produce a LabelArray when we have a string-like dtype. """ if self.dtype == int64_dtype: return super(CustomClassifier, self)._allocate_output( windows, shape, ) # This is a little bit of a hack. We might not know what the # categories for a LabelArray are until it's actually been loaded, so # we need to look at the underlying data. return windows[0].data.empty_like(shape) class Latest(LatestMixin, CustomClassifier): """ A classifier producing the latest value of an input. See Also -------- zipline.pipeline.data.dataset.BoundColumn.latest """ pass class InvalidClassifierComparison(TypeError): def __init__(self, classifier, compval): super(InvalidClassifierComparison, self).__init__( "Can't compare classifier of dtype" " {dtype} to value {value} of type {type}.".format( dtype=classifier.dtype, value=compval, type=type(compval).__name__, ) )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/classifiers/classifier.py
classifier.py
import abc from collections import namedtuple, OrderedDict from itertools import repeat from textwrap import dedent from weakref import WeakKeyDictionary from toolz import first from zipline.currency import Currency from zipline.data.fx import DEFAULT_FX_RATE from zipline.pipeline.classifiers import Classifier, Latest as LatestClassifier from zipline.pipeline.domain import Domain, GENERIC from zipline.pipeline.factors import Factor, Latest as LatestFactor from zipline.pipeline.filters import Filter, Latest as LatestFilter from zipline.pipeline.sentinels import NotSpecified, sentinel from zipline.pipeline.term import ( AssetExists, LoadableTerm, validate_dtype, ) from zipline.utils.formatting import s, plural from zipline.utils.input_validation import ( coerce_types, ensure_dtype, expect_types, ) from zipline.utils.numpy_utils import float64_dtype, NoDefaultMissingValue from zipline.utils.preprocess import preprocess from zipline.utils.string_formatting import bulleted_list IsSpecialization = sentinel("IsSpecialization") class Column: """ An abstract column of data, not yet associated with a dataset. """ @preprocess(dtype=ensure_dtype) def __init__( self, dtype, missing_value=NotSpecified, doc=None, metadata=None, currency_aware=False, ): if currency_aware and dtype != float64_dtype: raise ValueError( "Columns cannot be constructed with currency_aware={}, " "dtype={}. Currency aware columns must have a float64 dtype.".format( currency_aware, dtype ) ) self.dtype = dtype self.missing_value = missing_value self.doc = doc self.metadata = metadata.copy() if metadata is not None else {} self.currency_aware = currency_aware def bind(self, name): """ Bind a `Column` object to its name. """ return _BoundColumnDescr( dtype=self.dtype, missing_value=self.missing_value, name=name, doc=self.doc, metadata=self.metadata, currency_aware=self.currency_aware, ) class _BoundColumnDescr: """ Intermediate class that sits on `DataSet` objects and returns memoized `BoundColumn` objects when requested. This exists so that subclasses of DataSets don't share columns with their parent classes. """ def __init__(self, dtype, missing_value, name, doc, metadata, currency_aware): # Validating and calculating default missing values here guarantees # that we fail quickly if the user passes an unsupporte dtype or fails # to provide a missing value for a dtype that requires one # (e.g. int64), but still enables us to provide an error message that # points to the name of the failing column. try: self.dtype, self.missing_value = validate_dtype( termname="Column(name={name!r})".format(name=name), dtype=dtype, missing_value=missing_value, ) except NoDefaultMissingValue as exc: # Re-raise with a more specific message. raise NoDefaultMissingValue( "Failed to create Column with name {name!r} and" " dtype {dtype} because no missing_value was provided\n\n" "Columns with dtype {dtype} require a missing_value.\n" "Please pass missing_value to Column() or use a different" " dtype.".format(dtype=dtype, name=name) ) from exc self.name = name self.doc = doc self.metadata = metadata self.currency_aware = currency_aware def __get__(self, instance, owner): """ Produce a concrete BoundColumn object when accessed. We don't bind to datasets at class creation time so that subclasses of DataSets produce different BoundColumns. """ return BoundColumn( dtype=self.dtype, missing_value=self.missing_value, dataset=owner, name=self.name, doc=self.doc, metadata=self.metadata, currency_conversion=None, currency_aware=self.currency_aware, ) class BoundColumn(LoadableTerm): """ A column of data that's been concretely bound to a particular dataset. Attributes ---------- dtype : numpy.dtype The dtype of data produced when this column is loaded. latest : zipline.pipeline.LoadableTerm A :class:`~zipline.pipeline.Filter`, :class:`~zipline.pipeline.Factor`, or :class:`~zipline.pipeline.Classifier` computing the most recently known value of this column on each date. See :class:`zipline.pipeline.mixins.LatestMixin` for more details. dataset : zipline.pipeline.data.DataSet The dataset to which this column is bound. name : str The name of this column. metadata : dict Extra metadata associated with this column. currency_aware : bool Whether or not this column produces currency-denominated data. Notes ----- Instances of this class are dynamically created upon access to attributes of :class:`~zipline.pipeline.data.DataSet`. For example, :attr:`~zipline.pipeline.data.EquityPricing.close` is an instance of this class. Pipeline API users should never construct instances of this directly. """ mask = AssetExists() window_safe = True def __new__( cls, dtype, missing_value, dataset, name, doc, metadata, currency_conversion, currency_aware, ): if currency_aware and dtype != float64_dtype: raise AssertionError( "The {} column on dataset {} cannot be constructed with " "currency_aware={}, dtype={}. Currency aware columns must " "have a float64 dtype.".format( name, dataset, currency_aware, dtype, ) ) return super(BoundColumn, cls).__new__( cls, domain=dataset.domain, dtype=dtype, missing_value=missing_value, dataset=dataset, name=name, ndim=dataset.ndim, doc=doc, metadata=metadata, currency_conversion=currency_conversion, currency_aware=currency_aware, ) def _init( self, dataset, name, doc, metadata, currency_conversion, currency_aware, *args, **kwargs, ): self._dataset = dataset self._name = name self.__doc__ = doc self._metadata = metadata self._currency_conversion = currency_conversion self._currency_aware = currency_aware return super(BoundColumn, self)._init(*args, **kwargs) @classmethod def _static_identity( cls, dataset, name, doc, metadata, currency_conversion, currency_aware, *args, **kwargs, ): return ( super(BoundColumn, cls)._static_identity(*args, **kwargs), dataset, name, doc, frozenset(sorted(metadata.items(), key=first)), currency_conversion, currency_aware, ) def __lt__(self, other): msg = "Can't compare '{}' with '{}'. (Did you mean to use '.latest'?)" raise TypeError(msg.format(self.qualname, other.__class__.__name__)) __gt__ = __le__ = __ge__ = __lt__ def _replace(self, **kwargs): kw = dict( dtype=self.dtype, missing_value=self.missing_value, dataset=self._dataset, name=self._name, doc=self.__doc__, metadata=self._metadata, currency_conversion=self._currency_conversion, currency_aware=self._currency_aware, ) kw.update(kwargs) return type(self)(**kw) def specialize(self, domain): """Specialize ``self`` to a concrete domain.""" if domain == self.domain: return self return self._replace(dataset=self._dataset.specialize(domain)) def unspecialize(self): """ Unspecialize a column to its generic form. This is equivalent to ``column.specialize(GENERIC)``. """ return self.specialize(GENERIC) @coerce_types(currency=(str, Currency)) def fx(self, currency): """ Construct a currency-converted version of this column. Parameters ---------- currency : str or zipline.currency.Currency Currency into which to convert this column's data. Returns ------- column : BoundColumn Column producing the same data as ``self``, but currency-converted into ``currency``. """ conversion = self._currency_conversion if not self._currency_aware: raise TypeError( "The .fx() method cannot be called on {} because it does not " "produce currency-denominated data.".format(self.qualname) ) elif conversion is not None and conversion.currency == currency: return self return self._replace( currency_conversion=CurrencyConversion( currency=currency, field=DEFAULT_FX_RATE, ) ) @property def currency_conversion(self): """Specification for currency conversions applied for this term.""" return self._currency_conversion @property def currency_aware(self): """ Whether or not this column produces currency-denominated data. """ return self._currency_aware @property def dataset(self): """ The dataset to which this column is bound. """ return self._dataset @property def name(self): """ The name of this column. """ return self._name @property def metadata(self): """ A copy of the metadata for this column. """ return self._metadata.copy() @property def qualname(self): """The fully-qualified name of this column.""" out = ".".join([self.dataset.qualname, self.name]) conversion = self._currency_conversion if conversion is not None: out += ".fx({!r})".format(conversion.currency.code) return out @property def latest(self): dtype = self.dtype if dtype in Filter.ALLOWED_DTYPES: Latest = LatestFilter elif dtype in Classifier.ALLOWED_DTYPES: Latest = LatestClassifier else: assert dtype in Factor.ALLOWED_DTYPES, "Unknown dtype %s." % dtype Latest = LatestFactor return Latest( inputs=(self,), dtype=dtype, missing_value=self.missing_value, ndim=self.ndim, ) def __repr__(self): return "{qualname}::{dtype}".format( qualname=self.qualname, dtype=self.dtype.name, ) def graph_repr(self): """Short repr to use when rendering Pipeline graphs.""" # Graphviz interprets `\l` as "divide label into lines, left-justified" return "BoundColumn:\\l Dataset: {}\\l Column: {}\\l".format( self.dataset.__name__, self.name ) def recursive_repr(self): """Short repr used to render in recursive contexts.""" return self.qualname class DataSetMeta(type): """ Metaclass for DataSets Supplies name and dataset information to Column attributes, and manages families of specialized dataset. """ def __new__(metacls, name, bases, dict_): if len(bases) != 1: # Disallowing multiple inheritance makes it easier for us to # determine whether a given dataset is the root for its family of # specializations. raise TypeError("Multiple dataset inheritance is not supported.") # This marker is set in the class dictionary by `specialize` below. is_specialization = dict_.pop(IsSpecialization, False) newtype = super(DataSetMeta, metacls).__new__(metacls, name, bases, dict_) if not isinstance(newtype.domain, Domain): raise TypeError( "Expected a Domain for {}.domain, but got {} instead.".format( newtype.__name__, type(newtype.domain), ) ) # Collect all of the column names that we inherit from our parents. column_names = set().union( *(getattr(base, "_column_names", ()) for base in bases) ) # Collect any new columns from this dataset. for maybe_colname, maybe_column in dict_.items(): if isinstance(maybe_column, Column): # add column names defined on our class bound_column_descr = maybe_column.bind(maybe_colname) setattr(newtype, maybe_colname, bound_column_descr) column_names.add(maybe_colname) newtype._column_names = frozenset(column_names) if not is_specialization: # This is the new root of a family of specializations. Store the # memoized dictionary for family on this type. newtype._domain_specializations = WeakKeyDictionary( { newtype.domain: newtype, } ) return newtype @expect_types(domain=Domain) def specialize(cls, domain): """ Specialize a generic DataSet to a concrete domain. Parameters ---------- domain : zipline.pipeline.domain.Domain Domain to which we should generate a specialization. Returns ------- specialized : type A new :class:`~zipline.pipeline.data.DataSet` subclass with the same columns as ``self``, but specialized to ``domain``. """ # We're already the specialization to this domain, so just return self. if domain == cls.domain: return cls try: return cls._domain_specializations[domain] except KeyError as exc: if not cls._can_create_new_specialization(domain): # This either means we're already a specialization and trying # to create a new specialization, or we're the generic version # of a root-specialized dataset, which we don't want to create # new specializations of. raise ValueError( "Can't specialize {dataset} from {current} to new domain {new}.".format( dataset=cls.__name__, current=cls.domain, new=domain, ) ) from exc new_type = cls._create_specialization(domain) cls._domain_specializations[domain] = new_type return new_type def unspecialize(cls): """ Unspecialize a dataset to its generic form. This is equivalent to ``dataset.specialize(GENERIC)``. """ return cls.specialize(GENERIC) def _can_create_new_specialization(cls, domain): # Always allow specializing to a generic domain. if domain is GENERIC: return True elif "_domain_specializations" in vars(cls): # This branch is True if we're the root of a family. # Allow specialization if we're generic. return cls.domain is GENERIC else: # If we're not the root of a family, we can't create any new # specializations. return False def _create_specialization(cls, domain): # These are all assertions because we should have handled these cases # already in specialize(). assert isinstance(domain, Domain) assert ( domain not in cls._domain_specializations ), "Domain specializations should be memoized!" if domain is not GENERIC: assert ( cls.domain is GENERIC ), "Can't specialize dataset with domain {} to domain {}.".format( cls.domain, domain, ) # Create a new subclass of ``self`` with the given domain. # Mark that it's a specialization so that we know not to create a new # family for it. name = cls.__name__ bases = (cls,) dict_ = {"domain": domain, IsSpecialization: True} out = type(name, bases, dict_) out.__module__ = cls.__module__ return out @property def columns(cls): return frozenset(getattr(cls, colname) for colname in cls._column_names) @property def qualname(cls): if cls.domain is GENERIC: specialization_key = "" else: specialization_key = "<" + cls.domain.country_code + ">" return cls.__name__ + specialization_key # NOTE: We used to use `functools.total_ordering` to account for all of the # other rich comparison methods, but it has issues in python 3 and # this method is only used for test purposes, so for now we will just # keep this in isolation. If we ever need any of the other comparison # methods we will have to implement them individually. def __lt__(cls, other): return id(cls) < id(other) def __repr__(cls): return "<DataSet: %r, domain=%s>" % (cls.__name__, cls.domain) class DataSet(object, metaclass=DataSetMeta): """ Base class for Pipeline datasets. A :class:`DataSet` is defined by two parts: 1. A collection of :class:`~zipline.pipeline.data.Column` objects that describe the queryable attributes of the dataset. 2. A :class:`~zipline.pipeline.domain.Domain` describing the assets and calendar of the data represented by the :class:`DataSet`. To create a new Pipeline dataset, define a subclass of :class:`DataSet` and set one or more :class:`Column` objects as class-level attributes. Each column requires a ``np.dtype`` that describes the type of data that should be produced by a loader for the dataset. Integer columns must also provide a "missing value" to be used when no value is available for a given asset/date combination. By default, the domain of a dataset is the special singleton value, :data:`~zipline.pipeline.domain.GENERIC`, which means that they can be used in a Pipeline running on **any** domain. In some cases, it may be preferable to restrict a dataset to only allow support a single domain. For example, a DataSet may describe data from a vendor that only covers the US. To restrict a dataset to a specific domain, define a `domain` attribute at class scope. You can also define a domain-specific version of a generic DataSet by calling its ``specialize`` method with the domain of interest. Examples -------- The built-in EquityPricing dataset is defined as follows:: class EquityPricing(DataSet): open = Column(float) high = Column(float) low = Column(float) close = Column(float) volume = Column(float) The built-in USEquityPricing dataset is a specialization of EquityPricing. It is defined as:: from zipline.pipeline.domain import US_EQUITIES USEquityPricing = EquityPricing.specialize(US_EQUITIES) Columns can have types other than float. A dataset containing assorted company metadata might be defined like this:: class CompanyMetadata(DataSet): # Use float for semantically-numeric data, even if it's always # integral valued (see Notes section below). The default missing # value for floats is NaN. shares_outstanding = Column(float) # Use object for string columns. The default missing value for # object-dtype columns is None. ticker = Column(object) # Use integers for integer-valued categorical data like sector or # industry codes. Integer-dtype columns require an explicit missing # value. sector_code = Column(int, missing_value=-1) # Use bool for boolean-valued flags. Note that the default missing # value for bool-dtype columns is False. is_primary_share = Column(bool) Notes ----- Because numpy has no native support for integers with missing values, users are strongly encouraged to use floats for any data that's semantically numeric. Doing so enables the use of `NaN` as a natural missing value, which has useful propagation semantics. """ domain = GENERIC ndim = 2 @classmethod def get_column(cls, name): """Look up a column by name. Parameters ---------- name : str Name of the column to look up. Returns ------- column : zipline.pipeline.data.BoundColumn Column with the given name. Raises ------ AttributeError If no column with the given name exists. """ clsdict = vars(cls) try: maybe_column = clsdict[name] if not isinstance(maybe_column, _BoundColumnDescr): raise KeyError(name) except KeyError as exc: raise AttributeError( "{dset} has no column {colname!r}:\n\n" "Possible choices are:\n" "{choices}".format( dset=cls.qualname, colname=name, choices=bulleted_list( sorted(cls._column_names), max_count=10, ), ) ) from exc # Resolve column descriptor into a BoundColumn. return maybe_column.__get__(None, cls) # This attribute is set by DataSetMeta to mark that a class is the root of a # family of datasets with diffent domains. We don't want that behavior for the # base DataSet class, and we also don't want to accidentally use a shared # version of this attribute if we fail to set this in a subclass somewhere. del DataSet._domain_specializations class DataSetFamilyLookupError(AttributeError): """Exception thrown when a column is accessed on a DataSetFamily instead of on the result of a slice. Parameters ---------- family_name : str The name of the DataSetFamily on which the access occurred. column_name : str The name of the column accessed. """ def __init__(self, family_name, column_name): self.family_name = family_name self.column_name = column_name def __str__(self): # NOTE: when ``aggregate`` is added, remember to update this message return dedent( """\ Attempted to access column {c} from DataSetFamily {d}: To work with dataset families, you must first select a slice using the ``slice`` method: {d}.slice(...).{c} """.format( c=self.column_name, d=self.family_name ) ) class _DataSetFamilyColumn: """Descriptor used to raise a helpful error when a column is accessed on a DataSetFamily instead of on the result of a slice. Parameters ---------- column_names : str The name of the column. """ def __init__(self, column_name): self.column_name = column_name def __get__(self, instance, owner): raise DataSetFamilyLookupError( owner.__name__, self.column_name, ) class DataSetFamilyMeta(abc.ABCMeta): def __new__(cls, name, bases, dict_): columns = {} for k, v in dict_.items(): if isinstance(v, Column): # capture all the columns off the DataSetFamily class # and replace them with a descriptor that will raise a helpful # error message. The columns will get added to the BaseSlice # for this type. columns[k] = v dict_[k] = _DataSetFamilyColumn(k) is_abstract = dict_.pop("_abstract", False) self = super(DataSetFamilyMeta, cls).__new__( cls, name, bases, dict_, ) if not is_abstract: self.extra_dims = extra_dims = OrderedDict( [(k, frozenset(v)) for k, v in OrderedDict(self.extra_dims).items()] ) if not extra_dims: raise ValueError( "DataSetFamily must be defined with non-empty" " extra_dims, or with `_abstract = True`", ) class BaseSlice(self._SliceType): dataset_family = self ndim = self.slice_ndim domain = self.domain locals().update(columns) BaseSlice.__name__ = "%sBaseSlice" % self.__name__ self._SliceType = BaseSlice # each type gets a unique cache self._slice_cache = {} return self def __repr__(self): return "<DataSetFamily: %r, extra_dims=%r>" % ( self.__name__, list(self.extra_dims), ) class DataSetFamilySlice(DataSet): """Marker type for slices of a :class:`zipline.pipeline.data.dataset.DataSetFamily` objects """ # XXX: This docstring was mostly written when the abstraction here was # "MultiDimensionalDataSet". It probably needs some rewriting. class DataSetFamily(metaclass=DataSetFamilyMeta): """ Base class for Pipeline dataset families. Dataset families are used to represent data where the unique identifier for a row requires more than just asset and date coordinates. A :class:`DataSetFamily` can also be thought of as a collection of :class:`~zipline.pipeline.data.DataSet` objects, each of which has the same columns, domain, and ndim. :class:`DataSetFamily` objects are defined with one or more :class:`~zipline.pipeline.data.Column` objects, plus one additional field: ``extra_dims``. The ``extra_dims`` field defines coordinates other than asset and date that must be fixed to produce a logical timeseries. The column objects determine columns that will be shared by slices of the family. ``extra_dims`` are represented as an ordered dictionary where the keys are the dimension name, and the values are a set of unique values along that dimension. To work with a :class:`DataSetFamily` in a pipeline expression, one must choose a specific value for each of the extra dimensions using the :meth:`~zipline.pipeline.data.DataSetFamily.slice` method. For example, given a :class:`DataSetFamily`: .. code-block:: python class SomeDataSet(DataSetFamily): extra_dims = [ ('dimension_0', {'a', 'b', 'c'}), ('dimension_1', {'d', 'e', 'f'}), ] column_0 = Column(float) column_1 = Column(bool) This dataset might represent a table with the following columns: :: sid :: int64 asof_date :: datetime64[ns] timestamp :: datetime64[ns] dimension_0 :: str dimension_1 :: str column_0 :: float64 column_1 :: bool Here we see the implicit ``sid``, ``asof_date`` and ``timestamp`` columns as well as the extra dimensions columns. This :class:`DataSetFamily` can be converted to a regular :class:`DataSet` with: .. code-block:: python DataSetSlice = SomeDataSet.slice(dimension_0='a', dimension_1='e') This sliced dataset represents the rows from the higher dimensional dataset where ``(dimension_0 == 'a') & (dimension_1 == 'e')``. """ _abstract = True # Removed by metaclass domain = GENERIC slice_ndim = 2 _SliceType = DataSetFamilySlice @type.__call__ class extra_dims: """OrderedDict[str, frozenset] of dimension name -> unique values May be defined on subclasses as an iterable of pairs: the metaclass converts this attribute to an OrderedDict. """ __isabstractmethod__ = True def __get__(self, instance, owner): return [] @classmethod def _canonical_key(cls, args, kwargs): extra_dims = cls.extra_dims dimensions_set = set(extra_dims) if not set(kwargs) <= dimensions_set: extra = sorted(set(kwargs) - dimensions_set) raise TypeError( "%s does not have the following %s: %s\n" "Valid dimensions are: %s" % ( cls.__name__, s("dimension", extra), ", ".join(extra), ", ".join(extra_dims), ), ) if len(args) > len(extra_dims): raise TypeError( "%s has %d extra %s but %d %s given" % ( cls.__name__, len(extra_dims), s("dimension", extra_dims), len(args), plural("was", "were", args), ), ) missing = object() coords = OrderedDict(zip(extra_dims, repeat(missing))) to_add = dict(zip(extra_dims, args)) coords.update(to_add) added = set(to_add) for key, value in kwargs.items(): if key in added: raise TypeError( "%s got multiple values for dimension %r" % ( cls.__name__, coords, ), ) coords[key] = value added.add(key) missing = {k for k, v in coords.items() if v is missing} if missing: missing = sorted(missing) raise TypeError( "no coordinate provided to %s for the following %s: %s" % ( cls.__name__, s("dimension", missing), ", ".join(missing), ), ) # validate that all of the provided values exist along their given # dimensions for key, value in coords.items(): if value not in cls.extra_dims[key]: raise ValueError( "%r is not a value along the %s dimension of %s" % ( value, key, cls.__name__, ), ) return coords, tuple(coords.items()) @classmethod def _make_dataset(cls, coords): """Construct a new dataset given the coordinates.""" class Slice(cls._SliceType): extra_coords = coords Slice.__name__ = "%s.slice(%s)" % ( cls.__name__, ", ".join("%s=%r" % item for item in coords.items()), ) return Slice @classmethod def slice(cls, *args, **kwargs): """Take a slice of a DataSetFamily to produce a dataset indexed by asset and date. Parameters ---------- *args **kwargs The coordinates to fix along each extra dimension. Returns ------- dataset : DataSet A regular pipeline dataset indexed by asset and date. Notes ----- The extra dimensions coords used to produce the result are available under the ``extra_coords`` attribute. """ coords, hash_key = cls._canonical_key(args, kwargs) try: return cls._slice_cache[hash_key] except KeyError: pass Slice = cls._make_dataset(coords) cls._slice_cache[hash_key] = Slice return Slice CurrencyConversion = namedtuple( "CurrencyConversion", ["currency", "field"], )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/data/dataset.py
dataset.py
from itertools import chain from operator import attrgetter from numpy import ( any as np_any, float64, nan, nanpercentile, uint8, ) from zipline.errors import ( BadPercentileBounds, NonExistentAssetInTimeFrame, UnsupportedDataType, ) from zipline.lib.labelarray import LabelArray from zipline.lib.rank import is_missing, grouped_masked_is_maximal from zipline.pipeline.dtypes import ( CLASSIFIER_DTYPES, FACTOR_DTYPES, FILTER_DTYPES, ) from zipline.pipeline.expression import ( BadBinaryOperator, FILTER_BINOPS, method_name_for_op, NumericalExpression, ) from zipline.pipeline.mixins import ( CustomTermMixin, IfElseMixin, LatestMixin, PositiveWindowLengthMixin, RestrictedDTypeMixin, SingleInputMixin, StandardOutputs, ) from zipline.pipeline.term import ComputableTerm, Term from zipline.utils.input_validation import expect_types from zipline.utils.numpy_utils import ( same, bool_dtype, int64_dtype, repeat_first_axis, ) from ..sentinels import NotSpecified def concat_tuples(*tuples): """ Concatenate a sequence of tuples into one tuple. """ return tuple(chain(*tuples)) def binary_operator(op): """ Factory function for making binary operator methods on a Filter subclass. Returns a function "binary_operator" suitable for implementing functions like __and__ or __or__. """ # When combining a Filter with a NumericalExpression, we use this # attrgetter instance to defer to the commuted interpretation of the # NumericalExpression operator. commuted_method_getter = attrgetter(method_name_for_op(op, commute=True)) def binary_operator(self, other): if isinstance(self, NumericalExpression): self_expr, other_expr, new_inputs = self.build_binary_op( op, other, ) return NumExprFilter.create( "({left}) {op} ({right})".format( left=self_expr, op=op, right=other_expr, ), new_inputs, ) elif isinstance(other, NumericalExpression): # NumericalExpression overrides numerical ops to correctly handle # merging of inputs. Look up and call the appropriate # right-binding operator with ourself as the input. return commuted_method_getter(other)(self) elif isinstance(other, Term): if other.dtype != bool_dtype: raise BadBinaryOperator(op, self, other) if self is other: return NumExprFilter.create( "x_0 {op} x_0".format(op=op), (self,), ) return NumExprFilter.create( "x_0 {op} x_1".format(op=op), (self, other), ) elif isinstance(other, int): # Note that this is true for bool as well return NumExprFilter.create( "x_0 {op} {constant}".format(op=op, constant=int(other)), binds=(self,), ) raise BadBinaryOperator(op, self, other) binary_operator.__doc__ = "Binary Operator: '%s'" % op return binary_operator def unary_operator(op): """ Factory function for making unary operator methods for Filters. """ valid_ops = {"~"} if op not in valid_ops: raise ValueError("Invalid unary operator %s." % op) def unary_operator(self): # This can't be hoisted up a scope because the types returned by # unary_op_return_type aren't defined when the top-level function is # invoked. if isinstance(self, NumericalExpression): return NumExprFilter.create( "{op}({expr})".format(op=op, expr=self._expr), self.inputs, ) else: return NumExprFilter.create("{op}x_0".format(op=op), (self,)) unary_operator.__doc__ = "Unary Operator: '%s'" % op return unary_operator class Filter(RestrictedDTypeMixin, ComputableTerm): """ Pipeline expression computing a boolean output. Filters are most commonly useful for describing sets of assets to include or exclude for some particular purpose. Many Pipeline API functions accept a ``mask`` argument, which can be supplied a Filter indicating that only values passing the Filter should be considered when performing the requested computation. For example, :meth:`zipline.pipeline.Factor.top` accepts a mask indicating that ranks should be computed only on assets that passed the specified Filter. The most common way to construct a Filter is via one of the comparison operators (``<``, ``<=``, ``!=``, ``eq``, ``>``, ``>=``) of :class:`~zipline.pipeline.Factor`. For example, a natural way to construct a Filter for stocks with a 10-day VWAP less than $20.0 is to first construct a Factor computing 10-day VWAP and compare it to the scalar value 20.0:: >>> from zipline.pipeline.factors import VWAP >>> vwap_10 = VWAP(window_length=10) >>> vwaps_under_20 = (vwap_10 <= 20) Filters can also be constructed via comparisons between two Factors. For example, to construct a Filter producing True for asset/date pairs where the asset's 10-day VWAP was greater than it's 30-day VWAP:: >>> short_vwap = VWAP(window_length=10) >>> long_vwap = VWAP(window_length=30) >>> higher_short_vwap = (short_vwap > long_vwap) Filters can be combined via the ``&`` (and) and ``|`` (or) operators. ``&``-ing together two filters produces a new Filter that produces True if **both** of the inputs produced True. ``|``-ing together two filters produces a new Filter that produces True if **either** of its inputs produced True. The ``~`` operator can be used to invert a Filter, swapping all True values with Falses and vice-versa. Filters may be set as the ``screen`` attribute of a Pipeline, indicating asset/date pairs for which the filter produces False should be excluded from the Pipeline's output. This is useful both for reducing noise in the output of a Pipeline and for reducing memory consumption of Pipeline results. """ # Filters are window-safe by default, since a yes/no decision means the # same thing from all temporal perspectives. window_safe = True # Used by RestrictedDTypeMixin ALLOWED_DTYPES = FILTER_DTYPES dtype = bool_dtype clsdict = locals() clsdict.update( {method_name_for_op(op): binary_operator(op) for op in FILTER_BINOPS} ) clsdict.update( { method_name_for_op(op, commute=True): binary_operator(op) for op in FILTER_BINOPS } ) __invert__ = unary_operator("~") def _validate(self): # Run superclass validation first so that we handle `dtype not passed` # before this. retval = super(Filter, self)._validate() if self.dtype != bool_dtype: raise UnsupportedDataType(typename=type(self).__name__, dtype=self.dtype) return retval @classmethod def _principal_computable_term_type(cls): return Filter @expect_types(if_true=ComputableTerm, if_false=ComputableTerm) def if_else(self, if_true, if_false): """ Create a term that selects values from one of two choices. Parameters ---------- if_true : zipline.pipeline.term.ComputableTerm Expression whose values should be used at locations where this filter outputs True. if_false : zipline.pipeline.term.ComputableTerm Expression whose values should be used at locations where this filter outputs False. Returns ------- merged : zipline.pipeline.term.ComputableTerm A term that computes by taking values from either ``if_true`` or ``if_false``, depending on the values produced by ``self``. The returned term draws from``if_true`` at locations where ``self`` produces True, and it draws from ``if_false`` at locations where ``self`` produces False. Example ------- Let ``f`` be a Factor that produces the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 2.0 3.0 4.0 2017-03-14 5.0 6.0 7.0 8.0 Let ``g`` be another Factor that produces the following output:: AAPL MSFT MCD BK 2017-03-13 10.0 20.0 30.0 40.0 2017-03-14 50.0 60.0 70.0 80.0 Finally, let ``condition`` be a Filter that produces the following output:: AAPL MSFT MCD BK 2017-03-13 True False True False 2017-03-14 True True False False Then, the expression ``condition.if_else(f, g)`` produces the following output:: AAPL MSFT MCD BK 2017-03-13 1.0 20.0 3.0 40.0 2017-03-14 5.0 6.0 70.0 80.0 See Also -------- numpy.where Factor.fillna """ true_type = if_true._principal_computable_term_type() false_type = if_false._principal_computable_term_type() if true_type is not false_type: raise TypeError( "Mismatched types in if_else(): if_true={}, but if_false={}".format( true_type.__name__, false_type.__name__ ) ) if if_true.dtype != if_false.dtype: raise TypeError( "Mismatched dtypes in if_else(): " "if_true.dtype = {}, if_false.dtype = {}".format( if_true.dtype, if_false.dtype ) ) if if_true.outputs != if_false.outputs: raise ValueError( "Mismatched outputs in if_else(): " "if_true.outputs = {}, if_false.outputs = {}".format( if_true.outputs, if_false.outputs ), ) if not same(if_true.missing_value, if_false.missing_value): raise ValueError( "Mismatched missing values in if_else(): " "if_true.missing_value = {!r}, if_false.missing_value = {!r}".format( if_true.missing_value, if_false.missing_value ) ) return_type = type(if_true)._with_mixin(IfElseMixin) return return_type( condition=self, if_true=if_true, if_false=if_false, ) class NumExprFilter(NumericalExpression, Filter): """ A Filter computed from a numexpr expression. """ @classmethod def create(cls, expr, binds): """ Helper for creating new NumExprFactors. This is just a wrapper around NumericalExpression.__new__ that always forwards `bool` as the dtype, since Filters can only be of boolean dtype. """ return cls(expr=expr, binds=binds, dtype=bool_dtype) def _compute(self, arrays, dates, assets, mask): """ Compute our result with numexpr, then re-apply `mask`. """ return ( super(NumExprFilter, self)._compute( arrays, dates, assets, mask, ) & mask ) class NullFilter(SingleInputMixin, Filter): """ A Filter indicating whether input values are missing from an input. Parameters ---------- factor : zipline.pipeline.Term The factor to compare against its missing_value. """ window_length = 0 def __new__(cls, term): return super(NullFilter, cls).__new__( cls, inputs=(term,), ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] if isinstance(data, LabelArray): return data.is_missing() return is_missing(arrays[0], self.inputs[0].missing_value) class NotNullFilter(SingleInputMixin, Filter): """ A Filter indicating whether input values are **not** missing from an input. Parameters ---------- factor : zipline.pipeline.Term The factor to compare against its missing_value. """ window_length = 0 def __new__(cls, term): return super(NotNullFilter, cls).__new__( cls, inputs=(term,), ) def _compute(self, arrays, dates, assets, mask): data = arrays[0] if isinstance(data, LabelArray): return ~data.is_missing() return ~is_missing(arrays[0], self.inputs[0].missing_value) class PercentileFilter(SingleInputMixin, Filter): """ A Filter representing assets falling between percentile bounds of a Factor. Parameters ---------- factor : zipline.pipeline.factor.Factor The factor over which to compute percentile bounds. min_percentile : float [0.0, 1.0] The minimum percentile rank of an asset that will pass the filter. max_percentile : float [0.0, 1.0] The maxiumum percentile rank of an asset that will pass the filter. """ window_length = 0 def __new__(cls, factor, min_percentile, max_percentile, mask): return super(PercentileFilter, cls).__new__( cls, inputs=(factor,), mask=mask, min_percentile=min_percentile, max_percentile=max_percentile, ) def _init(self, min_percentile, max_percentile, *args, **kwargs): self._min_percentile = min_percentile self._max_percentile = max_percentile return super(PercentileFilter, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, min_percentile, max_percentile, *args, **kwargs): return ( super(PercentileFilter, cls)._static_identity(*args, **kwargs), min_percentile, max_percentile, ) def _validate(self): """ Ensure that our percentile bounds are well-formed. """ if not 0.0 <= self._min_percentile < self._max_percentile <= 100.0: raise BadPercentileBounds( min_percentile=self._min_percentile, max_percentile=self._max_percentile, upper_bound=100.0, ) return super(PercentileFilter, self)._validate() def _compute(self, arrays, dates, assets, mask): """ For each row in the input, compute a mask of all values falling between the given percentiles. """ # TODO: Review whether there's a better way of handling small numbers # of columns. data = arrays[0].copy().astype(float64) data[~mask] = nan # FIXME: np.nanpercentile **should** support computing multiple bounds # at once, but there's a bug in the logic for multiple bounds in numpy # 1.9.2. It will be fixed in 1.10. # c.f. https://github.com/numpy/numpy/pull/5981 lower_bounds = nanpercentile( data, self._min_percentile, axis=1, keepdims=True, ) upper_bounds = nanpercentile( data, self._max_percentile, axis=1, keepdims=True, ) return (lower_bounds <= data) & (data <= upper_bounds) def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "{}:\\l min: {}, max: {}\\l".format( type(self).__name__, self._min_percentile, self._max_percentile, ) class CustomFilter(PositiveWindowLengthMixin, CustomTermMixin, Filter): """ Base class for user-defined Filters. Parameters ---------- inputs : iterable, optional An iterable of `BoundColumn` instances (e.g. USEquityPricing.close), describing the data to load and pass to ``self.compute``. If this argument is passed to the CustomFilter constructor, we look for a class-level attribute named ``inputs``. window_length : int, optional Number of rows to pass for each input. If this argument is not passed to the CustomFilter constructor, we look for a class-level attribute named `window_length`. Notes ----- Users implementing their own Filters should subclass CustomFilter and implement a method named ``compute`` with the following signature: .. code-block:: python def compute(self, today, assets, out, *inputs): ... On each simulation date, ``compute`` will be called with the current date, an array of sids, an output array, and an input array for each expression passed as inputs to the CustomFilter constructor. The specific types of the values passed to ``compute`` are as follows:: today : np.datetime64[ns] Row label for the last row of all arrays passed as `inputs`. assets : np.array[int64, ndim=1] Column labels for `out` and`inputs`. out : np.array[bool, ndim=1] Output array of the same shape as `assets`. `compute` should write its desired return values into `out`. *inputs : tuple of np.array Raw data arrays corresponding to the values of `self.inputs`. See the documentation for :class:`~zipline.pipeline.CustomFactor` for more details on implementing a custom ``compute`` method. See Also -------- zipline.pipeline.CustomFactor """ def _validate(self): try: super(CustomFilter, self)._validate() except UnsupportedDataType as exc: if self.dtype in CLASSIFIER_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomClassifier?", ) from exc elif self.dtype in FACTOR_DTYPES: raise UnsupportedDataType( typename=type(self).__name__, dtype=self.dtype, hint="Did you mean to create a CustomFactor?", ) from exc raise class ArrayPredicate(SingleInputMixin, Filter): """ A filter applying a function from (ndarray, *args) -> ndarray[bool]. Parameters ---------- term : zipline.pipeline.Term Term producing the array over which the predicate will be computed. op : function(ndarray, *args) -> ndarray[bool] Function to apply to the result of `term`. opargs : tuple[hashable] Additional argument to apply to ``op``. """ params = ("op", "opargs") window_length = 0 @expect_types(term=Term, opargs=tuple) def __new__(cls, term, op, opargs): hash(opargs) # fail fast if opargs isn't hashable. return super(ArrayPredicate, cls).__new__( ArrayPredicate, op=op, opargs=opargs, inputs=(term,), mask=term.mask, ) def _compute(self, arrays, dates, assets, mask): params = self.params data = arrays[0] return params["op"](data, *params["opargs"]) & mask def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "{}:\\l op: {}.{}()".format( type(self).__name__, self.params["op"].__module__, self.params["op"].__name__, ) class Latest(LatestMixin, CustomFilter): """ Filter producing the most recently-known value of `inputs[0]` on each day. """ pass class SingleAsset(Filter): """ A Filter that computes to True only for the given asset. """ inputs = [] window_length = 1 def __new__(cls, asset): return super(SingleAsset, cls).__new__(cls, asset=asset) def _init(self, asset, *args, **kwargs): self._asset = asset return super(SingleAsset, self)._init(*args, **kwargs) @classmethod def _static_identity(cls, asset, *args, **kwargs): return ( super(SingleAsset, cls)._static_identity(*args, **kwargs), asset, ) def _compute(self, arrays, dates, assets, mask): is_my_asset = assets == self._asset.sid out = repeat_first_axis(is_my_asset, len(mask)) # Raise an exception if `self._asset` does not exist for the entirety # of the timeframe over which we are computing. if (is_my_asset.sum() != 1) or ((out & mask).sum() != len(mask)): raise NonExistentAssetInTimeFrame( asset=self._asset, start_date=dates[0], end_date=dates[-1], ) return out def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "SingleAsset:\\l asset: {!r}\\l".format(self._asset) class StaticSids(Filter): """ A Filter that computes True for a specific set of predetermined sids. ``StaticSids`` is mostly useful for debugging or for interactively computing pipeline terms for a fixed set of sids that are known ahead of time. Parameters ---------- sids : iterable[int] An iterable of sids for which to filter. """ inputs = () window_length = 0 params = ("sids",) def __new__(cls, sids): sids = frozenset(sids) return super(StaticSids, cls).__new__(cls, sids=sids) def _compute(self, arrays, dates, sids, mask): my_columns = sids.isin(self.params["sids"]) return repeat_first_axis(my_columns, len(mask)) & mask class StaticAssets(StaticSids): """ A Filter that computes True for a specific set of predetermined assets. ``StaticAssets`` is mostly useful for debugging or for interactively computing pipeline terms for a fixed set of assets that are known ahead of time. Parameters ---------- assets : iterable[Asset] An iterable of assets for which to filter. """ def __new__(cls, assets): sids = frozenset(asset.sid for asset in assets) return super(StaticAssets, cls).__new__(cls, sids) class AllPresent(CustomFilter, SingleInputMixin, StandardOutputs): """Pipeline filter indicating input term has data for a given window.""" def _validate(self): if isinstance(self.inputs[0], Filter): raise TypeError("Input to filter `AllPresent` cannot be a Filter.") return super(AllPresent, self)._validate() def compute(self, today, assets, out, value): if isinstance(value, LabelArray): out[:] = ~np_any(value.is_missing(), axis=0) else: out[:] = ~np_any( is_missing(value, self.inputs[0].missing_value), axis=0, ) class MaximumFilter(Filter, StandardOutputs): """Pipeline filter that selects the top asset, possibly grouped and masked.""" window_length = 0 def __new__(cls, factor, groupby, mask): if groupby is NotSpecified: from zipline.pipeline.classifiers import Everything groupby = Everything() return super(MaximumFilter, cls).__new__( cls, inputs=(factor, groupby), mask=mask, ) def _compute(self, arrays, dates, assets, mask): # XXX: We're doing a lot of unncessary work here if `groupby` isn't # specified. data = arrays[0] group_labels, null_label = self.inputs[1]._to_integral(arrays[1]) effective_mask = ( mask & (group_labels != null_label) & ~is_missing(data, self.inputs[0].missing_value) ).view(uint8) return grouped_masked_is_maximal( # Unconditionally view the data as int64. # This is safe because casting from float64 to int64 is an # order-preserving operation. data.view(int64_dtype), # PERF: Consider supporting different sizes of group labels. group_labels.astype(int64_dtype), effective_mask, ) def __repr__(self): return "Maximum({}, groupby={}, mask={})".format( self.inputs[0].recursive_repr(), self.inputs[1].recursive_repr(), self.mask.recursive_repr(), ) def graph_repr(self): # Graphviz interprets `\l` as "divide label into lines, left-justified" return "Maximum:\\l groupby: {}\\l mask: {}\\l".format( self.inputs[1].recursive_repr(), self.mask.recursive_repr(), )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/filters/filter.py
filter.py
from collections import defaultdict from interface import implements from numpy import iinfo, uint32, multiply from zipline.data.fx import ExplodingFXRateReader from zipline.lib.adjusted_array import AdjustedArray from zipline.utils.numpy_utils import repeat_first_axis from .base import PipelineLoader from .utils import shift_dates from ..data.equity_pricing import EquityPricing UINT32_MAX = iinfo(uint32).max class EquityPricingLoader(implements(PipelineLoader)): """A PipelineLoader for loading daily OHLCV data. Parameters ---------- raw_price_reader : zipline.data.session_bars.SessionBarReader Reader providing raw prices. adjustments_reader : zipline.data.adjustments.SQLiteAdjustmentReader Reader providing price/volume adjustments. fx_reader : zipline.data.fx.FXRateReader Reader providing currency conversions. """ def __init__(self, raw_price_reader, adjustments_reader, fx_reader): self.raw_price_reader = raw_price_reader self.adjustments_reader = adjustments_reader self.fx_reader = fx_reader @classmethod def without_fx(cls, raw_price_reader, adjustments_reader): """ Construct an EquityPricingLoader without support for fx rates. The returned loader will raise an error if requested to load currency-converted columns. Parameters ---------- raw_price_reader : zipline.data.session_bars.SessionBarReader Reader providing raw prices. adjustments_reader : zipline.data.adjustments.SQLiteAdjustmentReader Reader providing price/volume adjustments. Returns ------- loader : EquityPricingLoader A loader that can only provide currency-naive data. """ return cls( raw_price_reader=raw_price_reader, adjustments_reader=adjustments_reader, fx_reader=ExplodingFXRateReader(), ) def load_adjusted_array(self, domain, columns, dates, sids, mask): # load_adjusted_array is called with dates on which the user's algo # will be shown data, which means we need to return the data that would # be known at the **start** of each date. We assume that the latest # data known on day N is the data from day (N - 1), so we shift all # query dates back by a trading session. sessions = domain.sessions() shifted_dates = shift_dates(sessions, dates[0], dates[-1], shift=1) ohlcv_cols, currency_cols = self._split_column_types(columns) del columns # From here on we should use ohlcv_cols or currency_cols. ohlcv_colnames = [c.name for c in ohlcv_cols] raw_ohlcv_arrays = self.raw_price_reader.load_raw_arrays( ohlcv_colnames, shifted_dates[0], shifted_dates[-1], sids, ) # Currency convert raw_arrays in place if necessary. We use shifted # dates to load currency conversion rates to make them line up with # dates used to fetch prices. self._inplace_currency_convert( ohlcv_cols, raw_ohlcv_arrays, shifted_dates, sids, ) adjustments = self.adjustments_reader.load_pricing_adjustments( ohlcv_colnames, dates, sids, ) out = {} for c, c_raw, c_adjs in zip(ohlcv_cols, raw_ohlcv_arrays, adjustments): out[c] = AdjustedArray( c_raw.astype(c.dtype), c_adjs, c.missing_value, ) for c in currency_cols: codes_1d = self.raw_price_reader.currency_codes(sids) codes = repeat_first_axis(codes_1d, len(dates)) out[c] = AdjustedArray( codes, adjustments={}, missing_value=None, ) return out @property def currency_aware(self): # Tell the pipeline engine that this loader supports currency # conversion if we have a non-dummy fx rates reader. return not isinstance(self.fx_reader, ExplodingFXRateReader) def _inplace_currency_convert(self, columns, arrays, dates, sids): """ Currency convert raw data loaded for ``column``. Parameters ---------- columns : list[zipline.pipeline.data.BoundColumn] List of columns whose raw data has been loaded. arrays : list[np.array] List of arrays, parallel to ``columns`` containing data for the column. dates : pd.DatetimeIndex Labels for rows of ``arrays``. These are the dates that should be used to fetch fx rates for conversion. sids : np.array[int64] Labels for columns of ``arrays``. Returns ------- None Side Effects ------------ Modifies ``arrays`` in place by applying currency conversions. """ # Group columns by currency conversion spec. by_spec = defaultdict(list) for column, array in zip(columns, arrays): by_spec[column.currency_conversion].append(array) # Nothing to do for terms with no currency conversion. by_spec.pop(None, None) if not by_spec: return fx_reader = self.fx_reader base_currencies = self.raw_price_reader.currency_codes(sids) # Columns with the same conversion spec will use the same multipliers. for spec, arrays in by_spec.items(): rates = fx_reader.get_rates( rate=spec.field, quote=spec.currency.code, bases=base_currencies, dts=dates, ) for arr in arrays: multiply(arr, rates, out=arr) def _split_column_types(self, columns): """Split out currency columns from OHLCV columns. Parameters ---------- columns : list[zipline.pipeline.data.BoundColumn] Columns to be loaded by ``load_adjusted_array``. Returns ------- ohlcv_columns : list[zipline.pipeline.data.BoundColumn] Price and volume columns from ``columns``. currency_columns : list[zipline.pipeline.data.BoundColumn] Currency code column from ``columns``, if present. """ currency_name = EquityPricing.currency.name ohlcv = [] currency = [] for c in columns: if c.name == currency_name: currency.append(c) else: ohlcv.append(c) return ohlcv, currency # Backwards compat alias. USEquityPricingLoader = EquityPricingLoader
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/loaders/equity_pricing_loader.py
equity_pricing_loader.py
from interface import implements import numpy as np from numpy.random import RandomState from pandas import DataFrame, Timestamp from sqlite3 import connect as sqlite3_connect from .base import PipelineLoader from .frame import DataFrameLoader from zipline.data.adjustments import ( SQLiteAdjustmentReader, SQLiteAdjustmentWriter, ) from zipline.data.bcolz_daily_bars import US_EQUITY_PRICING_BCOLZ_COLUMNS from zipline.utils.numpy_utils import ( bool_dtype, datetime64ns_dtype, float64_dtype, int64_dtype, object_dtype, ) UINT_32_MAX = np.iinfo(np.uint32).max def nanos_to_seconds(nanos): return nanos / (1000 * 1000 * 1000) class PrecomputedLoader(implements(PipelineLoader)): """Synthetic PipelineLoader that uses a pre-computed array for each column. Parameters ---------- values : dict Map from column to values to use for that column. Values can be anything that can be passed as the first positional argument to a DataFrame whose indices are ``dates`` and ``sids`` dates : iterable[datetime-like] Row labels for input data. Can be anything that pd.DataFrame will coerce to a DatetimeIndex. sids : iterable[int-like] Column labels for input data. Can be anything that pd.DataFrame will coerce to an Int64Index. Notes ----- Adjustments are unsupported by this loader. """ def __init__(self, constants, dates, sids): loaders = {} for column, const in constants.items(): frame = DataFrame( const, index=dates, columns=sids, dtype=column.dtype, ) loaders[column] = DataFrameLoader( column=column, baseline=frame, adjustments=None, ) self._loaders = loaders def load_adjusted_array(self, domain, columns, dates, sids, mask): """Load by delegating to sub-loaders.""" out = {} for col in columns: try: loader = self._loaders.get(col) if loader is None: loader = self._loaders[col.unspecialize()] except KeyError as exc: raise ValueError("Couldn't find loader for %s" % col) from exc out.update(loader.load_adjusted_array(domain, [col], dates, sids, mask)) return out class EyeLoader(PrecomputedLoader): """A PrecomputedLoader that emits arrays containing 1s on the diagonal and 0s elsewhere. Parameters ---------- columns : list[BoundColumn] Columns that this loader should know about. dates : iterable[datetime-like] Same as PrecomputedLoader. sids : iterable[int-like] Same as PrecomputedLoader """ def __init__(self, columns, dates, sids): shape = (len(dates), len(sids)) super(EyeLoader, self).__init__( {column: np.eye(shape, dtype=column.dtype) for column in columns}, dates, sids, ) class SeededRandomLoader(PrecomputedLoader): """A PrecomputedLoader that emits arrays randomly-generated with a given seed. Parameters ---------- seed : int Seed for numpy.random.RandomState. columns : list[BoundColumn] Columns that this loader should know about. dates : iterable[datetime-like] Same as PrecomputedLoader. sids : iterable[int-like] Same as PrecomputedLoader """ def __init__(self, seed, columns, dates, sids): self._seed = seed super(SeededRandomLoader, self).__init__( {c: self.values(c.dtype, dates, sids) for c in columns}, dates, sids, ) def values(self, dtype, dates, sids): """Make a random array of shape (len(dates), len(sids)) with ``dtype``.""" shape = (len(dates), len(sids)) return { datetime64ns_dtype: self._datetime_values, float64_dtype: self._float_values, int64_dtype: self._int_values, bool_dtype: self._bool_values, object_dtype: self._object_values, }[dtype](shape) @property def state(self): """Make a new RandomState from our seed. This ensures that every call to _*_values produces the same output every time for a given SeededRandomLoader instance. """ return RandomState(self._seed) def _float_values(self, shape): """Return uniformly-distributed floats between -0.0 and 100.0.""" return self.state.uniform(low=0.0, high=100.0, size=shape) def _int_values(self, shape): """ Return uniformly-distributed integers between 0 and 100. """ return self.state.randint(low=0, high=100, size=shape).astype( "int64" ) # default is system int def _datetime_values(self, shape): """Return uniformly-distributed dates in 2014.""" start = Timestamp("2014", tz="UTC").asm8 offsets = self.state.randint( low=0, high=364, size=shape, ).astype("timedelta64[D]") return start + offsets def _bool_values(self, shape): """Return uniformly-distributed True/False values.""" return self.state.randn(*shape) < 0 def _object_values(self, shape): res = self._int_values(shape).astype(str).astype(object) return res OHLCV = ("open", "high", "low", "close", "volume") OHLC = ("open", "high", "low", "close") PSEUDO_EPOCH_UTC = Timestamp("2000-01-01", tz="UTC") PSEUDO_EPOCH_NAIVE = Timestamp("2000-01-01") # TODO FIX TZ MESS def asset_start(asset_info, asset, tz=None): ret = asset_info.loc[asset]["start_date"] if tz is not None: ret = ret.tz_localize(tz) # assert ret.tzname() == "UTC", "Unexpected non-UTC timestamp" return ret def asset_end(asset_info, asset, tz=None): ret = asset_info.loc[asset]["end_date"] if tz is not None: ret = ret.tz_localize(tz) # if ret.tz is None: # ret = ret.tz_localize("UTC") # assert ret.tzname() == "UTC", "Unexpected non-UTC timestamp" return ret def make_bar_data(asset_info, calendar, holes=None): """For a given asset/date/column combination, we generate a corresponding raw value using the following formula for OHLCV columns: data(asset, date, column) = (100,000 * asset_id) + (10,000 * column_num) + (date - Jan 1 2000).days # ~6000 for 2015 where: column_num('open') = 0 column_num('high') = 1 column_num('low') = 2 column_num('close') = 3 column_num('volume') = 4 We use days since Jan 1, 2000 to guarantee that there are no collisions while also the produced values smaller than UINT32_MAX / 1000. For 'day' and 'id', we use the standard format expected by the base class. Parameters ---------- asset_info : DataFrame DataFrame with asset_id as index and 'start_date'/'end_date' columns. calendar : pd.DatetimeIndex The trading calendar to use. holes : dict[int -> tuple[pd.Timestamps]], optional A dict mapping asset ids to the tuple of dates that should have no data for that asset in the output. Default is no holes. Yields ------ p : (int, pd.DataFrame) A sid, data pair to be passed to BcolzDailyDailyBarWriter.write """ assert ( # Using .value here to avoid having to care about UTC-aware dates. PSEUDO_EPOCH_UTC.value < calendar.normalize().min().value <= asset_info["start_date"].min().value ), "calendar.min(): %s\nasset_info['start_date'].min(): %s" % ( calendar.min(), asset_info["start_date"].min(), ) assert (asset_info["start_date"] < asset_info["end_date"]).all() def _raw_data_for_asset(asset_id): """Generate 'raw' data that encodes information about the asset. See docstring for a description of the data format. """ # Get the dates for which this asset existed according to our asset # info. datetimes = calendar[ calendar.slice_indexer( asset_start(asset_info, asset_id, tz=calendar.tz), asset_end(asset_info, asset_id, tz=calendar.tz), ) ] data = np.full( (len(datetimes), len(US_EQUITY_PRICING_BCOLZ_COLUMNS)), asset_id * 100 * 1000, dtype=np.uint32, ) # Add 10,000 * column-index to OHLCV columns data[:, :5] += np.arange(5, dtype=np.uint32) * 1000 # Add days since Jan 1 2001 for OHLCV columns. # TODO FIXME TZ MESS if datetimes.tzinfo is None: data[:, :5] += np.array( (datetimes.tz_localize("UTC") - PSEUDO_EPOCH_UTC).days )[:, None].astype(np.uint32) else: data[:, :5] += np.array((datetimes - PSEUDO_EPOCH_UTC).days)[ :, None ].astype(np.uint32) frame = DataFrame( data, index=datetimes, columns=US_EQUITY_PRICING_BCOLZ_COLUMNS, ) if holes is not None and asset_id in holes: for dt in holes[asset_id]: frame.loc[dt, OHLC] = np.nan frame.loc[dt, ["volume"]] = 0 frame["day"] = nanos_to_seconds(datetimes.asi8) frame["id"] = asset_id return frame for asset in asset_info.index: yield asset, _raw_data_for_asset(asset) def expected_bar_value(asset_id, date, colname): """Check that the raw value for an asset/date/column triple is as expected. Used by tests to verify data written by a writer. """ from_asset = asset_id * 100000 from_colname = OHLCV.index(colname) * 1000 from_date = (date - PSEUDO_EPOCH_NAIVE.tz_localize(date.tzinfo)).days return from_asset + from_colname + from_date def expected_bar_value_with_holes(asset_id, date, colname, holes, missing_value): # Explicit holes are filled with the missing value. if asset_id in holes and date in holes[asset_id]: return missing_value return expected_bar_value(asset_id, date, colname) def expected_bar_values_2d(dates, assets, asset_info, colname, holes=None): """Return an 2D array containing cls.expected_value(asset_id, date, colname) for each date/asset pair in the inputs. Missing locs are filled with 0 for volume and NaN for price columns: - Values before/after an asset's lifetime. - Values for asset_ids not contained in asset_info. - Locs defined in `holes`. """ if colname == "volume": dtype = np.uint32 missing = 0 else: dtype = np.float64 missing = float("nan") data = np.full((len(dates), len(assets)), missing, dtype=dtype) for j, asset in enumerate(assets): # Use missing values when asset_id is not contained in asset_info. if asset not in asset_info.index: continue start = asset_start(asset_info, asset) end = asset_end(asset_info, asset) for i, date in enumerate(dates): # No value expected for dates outside the asset's start/end # date. # TODO FIXME TZ MESS if not ( start.tz_localize(date.tzinfo) <= date <= end.tz_localize(date.tzinfo) ): continue if holes is not None: expected = expected_bar_value_with_holes( asset, date, colname, holes, missing, ) else: expected = expected_bar_value(asset, date, colname) data[i, j] = expected return data class NullAdjustmentReader(SQLiteAdjustmentReader): """A SQLiteAdjustmentReader that stores no adjustments and uses in-memory SQLite. """ def __init__(self): conn = sqlite3_connect(":memory:") writer = SQLiteAdjustmentWriter(conn, None, None) empty = DataFrame( { "sid": np.array([], dtype=np.uint32), "effective_date": np.array([], dtype=np.uint32), "ratio": np.array([], dtype=float), } ) empty_dividends = DataFrame( { "sid": np.array([], dtype=np.uint32), "amount": np.array([], dtype=np.float64), "record_date": np.array([], dtype="datetime64[ns]"), "ex_date": np.array([], dtype="datetime64[ns]"), "declared_date": np.array([], dtype="datetime64[ns]"), "pay_date": np.array([], dtype="datetime64[ns]"), } ) writer.write(splits=empty, mergers=empty, dividends=empty_dividends) super(NullAdjustmentReader, self).__init__(conn)
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/loaders/synthetic.py
synthetic.py
from functools import partial from interface import implements import numpy as np import pandas as pd from zipline.lib.adjusted_array import AdjustedArray from zipline.lib.adjustment import make_adjustment_from_labels from zipline.utils.numpy_utils import as_column from .base import PipelineLoader ADJUSTMENT_COLUMNS = pd.Index( [ "sid", "value", "kind", "start_date", "end_date", "apply_date", ] ) class DataFrameLoader(implements(PipelineLoader)): """A PipelineLoader that reads its input from DataFrames. Mostly useful for testing, but can also be used for real work if your data fits in memory. Parameters ---------- column : zipline.pipeline.data.BoundColumn The column whose data is loadable by this loader. baseline : pandas.DataFrame A DataFrame with index of type DatetimeIndex and columns of type Int64Index. Dates should be labelled with the first date on which a value would be **available** to an algorithm. This means that OHLCV data should generally be shifted back by a trading day before being supplied to this class. adjustments : pandas.DataFrame, default=None A DataFrame with the following columns: sid : int value : any kind : int (zipline.pipeline.loaders.frame.ADJUSTMENT_TYPES) start_date : datetime64 (can be NaT) end_date : datetime64 (must be set) apply_date : datetime64 (must be set) The default of None is interpreted as "no adjustments to the baseline". """ def __init__(self, column, baseline, adjustments=None): self.column = column self.baseline = baseline.values.astype(self.column.dtype) self.dates = baseline.index self.assets = baseline.columns if adjustments is None: adjustments = pd.DataFrame( index=pd.DatetimeIndex([]), columns=ADJUSTMENT_COLUMNS, ) else: # Ensure that columns are in the correct order. adjustments = adjustments.reindex(ADJUSTMENT_COLUMNS, axis=1) adjustments.sort_values(["apply_date", "sid"], inplace=True) self.adjustments = adjustments self.adjustment_apply_dates = pd.DatetimeIndex(adjustments.apply_date) self.adjustment_end_dates = pd.DatetimeIndex(adjustments.end_date) self.adjustment_sids = pd.Index(adjustments.sid, dtype="int64") def format_adjustments(self, dates, assets): """Build a dict of Adjustment objects in the format expected by AdjustedArray. Returns a dict of the form: { # Integer index into `dates` for the date on which we should # apply the list of adjustments. 1 : [ Float64Multiply(first_row=2, last_row=4, col=3, value=0.5), Float64Overwrite(first_row=3, last_row=5, col=1, value=2.0), ... ], ... } """ make_adjustment = partial(make_adjustment_from_labels, dates, assets) min_date, max_date = dates[[0, -1]] # TODO: Consider porting this to Cython. if len(self.adjustments) == 0: return {} # Mask for adjustments whose apply_dates are in the requested window of # dates. date_bounds = self.adjustment_apply_dates.slice_indexer( min_date, max_date, ) dates_filter = np.zeros(len(self.adjustments), dtype="bool") dates_filter[date_bounds] = True # Ignore adjustments whose apply_date is in range, but whose end_date # is out of range. dates_filter &= self.adjustment_end_dates >= min_date # Mask for adjustments whose sids are in the requested assets. sids_filter = self.adjustment_sids.isin(assets.values) adjustments_to_use = self.adjustments.loc[dates_filter & sids_filter].set_index( "apply_date" ) # For each apply_date on which we have an adjustment, compute # the integer index of that adjustment's apply_date in `dates`. # Then build a list of Adjustment objects for that apply_date. # This logic relies on the sorting applied on the previous line. out = {} previous_apply_date = object() for row in adjustments_to_use.itertuples(): # This expansion depends on the ordering of the DataFrame columns, # defined above. apply_date, sid, value, kind, start_date, end_date = row if apply_date != previous_apply_date: # Get the next apply date if no exact match. row_loc = dates.get_indexer([apply_date], method="bfill")[0] current_date_adjustments = out[row_loc] = [] previous_apply_date = apply_date # Look up the approprate Adjustment constructor based on the value # of `kind`. current_date_adjustments.append( make_adjustment(start_date, end_date, sid, kind, value) ) return out def load_adjusted_array(self, domain, columns, dates, sids, mask): """Load data from our stored baseline.""" if len(columns) != 1: raise ValueError("Can't load multiple columns with DataFrameLoader") column = columns[0] self._validate_input_column(column) date_indexer = self.dates.get_indexer(dates) assets_indexer = self.assets.get_indexer(sids) # Boolean arrays with True on matched entries good_dates = date_indexer != -1 good_assets = assets_indexer != -1 data = self.baseline[np.ix_(date_indexer, assets_indexer)] mask = (good_assets & as_column(good_dates)) & mask # Mask out requested columns/rows that didn't match. data[~mask] = column.missing_value return { column: AdjustedArray( # Pull out requested columns/rows from our baseline data. data=data, adjustments=self.format_adjustments(dates, sids), missing_value=column.missing_value, ), } def _validate_input_column(self, column): """Make sure a passed column is our column.""" if column != self.column and column.unspecialize() != self.column: raise ValueError(f"Can't load unknown column {column}")
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/loaders/frame.py
frame.py
import numpy as np import pandas as pd from zipline.errors import NoFurtherDataError from zipline.pipeline.common import TS_FIELD_NAME, SID_FIELD_NAME from zipline.utils.date_utils import make_utc_aware from zipline.utils.numpy_utils import categorical_dtype def is_sorted_ascending(a): """Check if a numpy array is sorted.""" return (np.fmax.accumulate(a) <= a).all() def validate_event_metadata(event_dates, event_timestamps, event_sids): assert is_sorted_ascending(event_dates), "event dates must be sorted" assert ( len(event_sids) == len(event_dates) == len(event_timestamps) ), "mismatched arrays: %d != %d != %d" % ( len(event_sids), len(event_dates), len(event_timestamps), ) def next_event_indexer( all_dates, data_query_cutoff, all_sids, event_dates, event_timestamps, event_sids ): """ Construct an index array that, when applied to an array of values, produces a 2D array containing the values associated with the next event for each sid at each moment in time. Locations where no next event was known will be filled with -1. Parameters ---------- all_dates : ndarray[datetime64[ns], ndim=1] Row labels for the target output. data_query_cutoff : pd.DatetimeIndex The boundaries for the given trading sessions in ``all_dates``. all_sids : ndarray[int, ndim=1] Column labels for the target output. event_dates : ndarray[datetime64[ns], ndim=1] Dates on which each input events occurred/will occur. ``event_dates`` must be in sorted order, and may not contain any NaT values. event_timestamps : ndarray[datetime64[ns], ndim=1] Dates on which we learned about each input event. event_sids : ndarray[int, ndim=1] Sids assocated with each input event. Returns ------- indexer : ndarray[int, ndim=2] An array of shape (len(all_dates), len(all_sids)) of indices into ``event_{dates,timestamps,sids}``. """ validate_event_metadata(event_dates, event_timestamps, event_sids) out = np.full((len(all_dates), len(all_sids)), -1, dtype=np.int64) sid_ixs = all_sids.searchsorted(event_sids) # side='right' here ensures that we include the event date itself # if it's in all_dates. dt_ixs = all_dates.searchsorted(pd.DatetimeIndex(event_dates), side="right") ts_ixs = data_query_cutoff.searchsorted( # pd.to_datetime(event_timestamps, utc=True), side="right" make_utc_aware(pd.DatetimeIndex(event_timestamps)), side="right", ) # Walk backward through the events, writing the index of the event into # slots ranging from the event's timestamp to its asof. This depends for # correctness on the fact that event_dates is sorted in ascending order, # because we need to overwrite later events with earlier ones if their # eligible windows overlap. for i in range(len(event_sids) - 1, -1, -1): start_ix = ts_ixs[i] end_ix = dt_ixs[i] out[start_ix:end_ix, sid_ixs[i]] = i return out def previous_event_indexer( data_query_cutoff_times, all_sids, event_dates, event_timestamps, event_sids ): """ Construct an index array that, when applied to an array of values, produces a 2D array containing the values associated with the previous event for each sid at each moment in time. Locations where no previous event was known will be filled with -1. Parameters ---------- data_query_cutoff : pd.DatetimeIndex The boundaries for the given trading sessions. all_dates : ndarray[datetime64[ns], ndim=1] Row labels for the target output. all_sids : ndarray[int, ndim=1] Column labels for the target output. event_dates : ndarray[datetime64[ns], ndim=1] Dates on which each input events occurred/will occur. ``event_dates`` must be in sorted order, and may not contain any NaT values. event_timestamps : ndarray[datetime64[ns], ndim=1] Dates on which we learned about each input event. event_sids : ndarray[int, ndim=1] Sids assocated with each input event. Returns ------- indexer : ndarray[int, ndim=2] An array of shape (len(all_dates), len(all_sids)) of indices into ``event_{dates,timestamps,sids}``. """ validate_event_metadata(event_dates, event_timestamps, event_sids) out = np.full( (len(data_query_cutoff_times), len(all_sids)), -1, dtype=np.int64, ) eff_dts = np.maximum(event_dates, event_timestamps) sid_ixs = all_sids.searchsorted(event_sids) dt_ixs = data_query_cutoff_times.searchsorted( # pd.to_datetime(eff_dts, utc=True), side="right" make_utc_aware(pd.DatetimeIndex(eff_dts)), side="right", ) # Walk backwards through the events, writing the index of the event into # slots ranging from max(event_date, event_timestamp) to the start of the # previously-written event. This depends for correctness on the fact that # event_dates is sorted in ascending order, because we need to have written # later events so we know where to stop forward-filling earlier events. last_written = {} for i in range(len(event_dates) - 1, -1, -1): sid_ix = sid_ixs[i] dt_ix = dt_ixs[i] out[dt_ix : last_written.get(sid_ix, None), sid_ix] = i last_written[sid_ix] = dt_ix return out def last_in_date_group( df, data_query_cutoff_times, assets, reindex=True, have_sids=True, extra_groupers=None, ): """ Determine the last piece of information known on each date in the date index for each group. Input df MUST be sorted such that the correct last item is chosen from each group. Parameters ---------- df : pd.DataFrame The DataFrame containing the data to be grouped. Must be sorted so that the correct last item is chosen from each group. data_query_cutoff_times : pd.DatetimeIndex The dates to use for grouping and reindexing. assets : pd.Int64Index The assets that should be included in the column multiindex. reindex : bool Whether or not the DataFrame should be reindexed against the date index. This will add back any dates to the index that were grouped away. have_sids : bool Whether or not the DataFrame has sids. If it does, they will be used in the groupby. extra_groupers : list of str Any extra field names that should be included in the groupby. Returns ------- last_in_group : pd.DataFrame A DataFrame with dates as the index and fields used in the groupby as levels of a multiindex of columns. """ # get positions in `data_query_cutoff_times` just before `TS_FIELD_NAME` in `df` idx_before_ts = data_query_cutoff_times.searchsorted( make_utc_aware(pd.DatetimeIndex(df[TS_FIELD_NAME])) ) idx = [data_query_cutoff_times[idx_before_ts]] if have_sids: idx += [SID_FIELD_NAME] if extra_groupers is None: extra_groupers = [] idx += extra_groupers to_unstack = idx[-1 : -len(idx) : -1] last_in_group = ( df.drop(TS_FIELD_NAME, axis=1) .groupby(idx, sort=False) .last() .unstack(level=to_unstack) ) # For the number of things that we're grouping by (except TS), unstack # the df. Done this way because of an unresolved pandas bug whereby # passing a list of levels with mixed dtypes to unstack causes the # resulting DataFrame to have all object-type columns. # for _ in range(len(idx) - 1): # last_in_group = last_in_group.unstack(-1) if reindex: if have_sids: cols = last_in_group.columns columns = pd.MultiIndex.from_product( tuple(cols.levels[0 : len(extra_groupers) + 1]) + (assets,), names=cols.names, ) last_in_group = last_in_group.reindex( index=data_query_cutoff_times, columns=columns ) else: last_in_group = last_in_group.reindex(data_query_cutoff_times) return last_in_group def ffill_across_cols(df, columns, name_map): """ Forward fill values in a DataFrame with special logic to handle cases that pd.DataFrame.ffill cannot and cast columns to appropriate types. Parameters ---------- df : pd.DataFrame The DataFrame to do forward-filling on. columns : list of BoundColumn The BoundColumns that correspond to columns in the DataFrame to which special filling and/or casting logic should be applied. name_map: map of string -> string Mapping from the name of each BoundColumn to the associated column name in `df`. """ df.ffill(inplace=True) # Fill in missing values specified by each column. This is made # significantly more complex by the fact that we need to work around # two pandas issues: # 1) When we have sids, if there are no records for a given sid for any # dates, pandas will generate a column full of NaNs for that sid. # This means that some of the columns in `dense_output` are now # float instead of the intended dtype, so we have to coerce back to # our expected type and convert NaNs into the desired missing value. # 2) DataFrame.ffill assumes that receiving None as a fill-value means # that no value was passed. Consequently, there's no way to tell # pandas to replace NaNs in an object column with None using fillna, # so we have to roll our own instead using df.where. for column in columns: column_name = name_map[column.name] # Special logic for strings since `fillna` doesn't work if the # missing value is `None`. if column.dtype == categorical_dtype: df[column_name] = df[column.name].where( pd.notnull(df[column_name]), column.missing_value ) else: # We need to execute `fillna` before `astype` in case the # column contains NaNs and needs to be cast to bool or int. # This is so that the NaNs are replaced first, since pandas # can't convert NaNs for those types. df[column_name] = ( df[column_name].fillna(column.missing_value).astype(column.dtype) ) def shift_dates(dates, start_date, end_date, shift): """Shift dates of a pipeline query back by ``shift`` days. Parameters ---------- dates : DatetimeIndex All known dates. start_date : pd.Timestamp Start date of the pipeline query. end_date : pd.Timestamp End date of the pipeline query. shift : int The number of days to shift back the query dates. Returns ------- shifted : pd.DatetimeIndex The range [start_date, end_date] from ``dates``, shifted backwards by ``shift`` days. Raises ------ ValueError If ``start_date`` or ``end_date`` is not in ``dates``. NoFurtherDataError If shifting ``start_date`` back by ``shift`` days would push it off the end of ``dates``. """ try: start = dates.get_loc(start_date) except KeyError as exc: if start_date < dates[0]: raise NoFurtherDataError( msg=( "Pipeline Query requested data starting on {query_start}, " "but first known date is {calendar_start}" ).format( query_start=str(start_date), calendar_start=str(dates[0]), ) ) from exc else: raise ValueError(f"Query start {start_date} not in calendar") from exc # Make sure that shifting doesn't push us out of the calendar. if start < shift: raise NoFurtherDataError( msg=( "Pipeline Query requested data from {shift}" " days before {query_start}, but first known date is only " "{start} days earlier." ).format(shift=shift, query_start=start_date, start=start), ) try: end = dates.get_loc(end_date) except KeyError as exc: if end_date > dates[-1]: raise NoFurtherDataError( msg=( "Pipeline Query requesting data up to {query_end}, " "but last known date is {calendar_end}" ).format( query_end=end_date, calendar_end=dates[-1], ) ) from exc else: raise ValueError("Query end %s not in calendar" % end_date) from exc return dates[start - shift : end - shift + 1] # +1 to be inclusive
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/loaders/utils.py
utils.py
from abc import abstractmethod from interface import implements import numpy as np import pandas as pd from toolz import groupby from zipline.lib.adjusted_array import AdjustedArray from zipline.lib.adjustment import ( Datetime641DArrayOverwrite, Datetime64Overwrite, Float641DArrayOverwrite, Float64Multiply, Float64Overwrite, ) from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.loaders.base import PipelineLoader from zipline.utils.date_utils import make_utc_aware from zipline.utils.numpy_utils import datetime64ns_dtype, float64_dtype from zipline.pipeline.loaders.utils import ( ffill_across_cols, last_in_date_group, ) INVALID_NUM_QTRS_MESSAGE = ( "Passed invalid number of quarters %s; " "must pass a number of quarters >= 0" ) NEXT_FISCAL_QUARTER = "next_fiscal_quarter" NEXT_FISCAL_YEAR = "next_fiscal_year" NORMALIZED_QUARTERS = "normalized_quarters" PREVIOUS_FISCAL_QUARTER = "previous_fiscal_quarter" PREVIOUS_FISCAL_YEAR = "previous_fiscal_year" SHIFTED_NORMALIZED_QTRS = "shifted_normalized_quarters" SIMULATION_DATES = "dates" def normalize_quarters(years, quarters): return years * 4 + quarters - 1 def split_normalized_quarters(normalized_quarters): years = normalized_quarters // 4 quarters = normalized_quarters % 4 return years, quarters + 1 # These metadata columns are used to align event indexers. metadata_columns = frozenset( { TS_FIELD_NAME, SID_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, } ) def required_estimates_fields(columns): """Compute the set of resource columns required to serve `columns`. """ # We also expect any of the field names that our loadable columns # are mapped to. return metadata_columns.union(columns.values()) def validate_column_specs(events, columns): """Verify that the columns of ``events`` can be used by a EarningsEstimatesLoader to serve the BoundColumns described by `columns`. """ required = required_estimates_fields(columns) received = set(events.columns) missing = required - received if missing: raise ValueError( "EarningsEstimatesLoader missing required columns {missing}.\n" "Got Columns: {received}\n" "Expected Columns: {required}".format( missing=sorted(missing), received=sorted(received), required=sorted(required), ) ) def add_new_adjustments(adjustments_dict, adjustments, column_name, ts): try: adjustments_dict[column_name][ts].extend(adjustments) except KeyError: adjustments_dict[column_name][ts] = adjustments class EarningsEstimatesLoader(implements(PipelineLoader)): """An abstract pipeline loader for estimates data that can load data a variable number of quarters forwards/backwards from calendar dates depending on the `num_announcements` attribute of the columns' dataset. If split adjustments are to be applied, a loader, split-adjusted columns, and the split-adjusted asof-date must be supplied. Parameters ---------- estimates : pd.DataFrame The raw estimates data; must contain at least 5 columns: sid : int64 The asset id associated with each estimate. event_date : datetime64[ns] The date on which the event that the estimate is for will/has occurred. timestamp : datetime64[ns] The datetime where we learned about the estimate. fiscal_quarter : int64 The quarter during which the event has/will occur. fiscal_year : int64 The year during which the event has/will occur. name_map : dict[str -> str] A map of names of BoundColumns that this loader will load to the names of the corresponding columns in `events`. """ def __init__(self, estimates, name_map): validate_column_specs(estimates, name_map) self.estimates = estimates[ estimates[EVENT_DATE_FIELD_NAME].notnull() & estimates[FISCAL_QUARTER_FIELD_NAME].notnull() & estimates[FISCAL_YEAR_FIELD_NAME].notnull() ] self.estimates[NORMALIZED_QUARTERS] = normalize_quarters( self.estimates[FISCAL_YEAR_FIELD_NAME], self.estimates[FISCAL_QUARTER_FIELD_NAME], ) self.array_overwrites_dict = { datetime64ns_dtype: Datetime641DArrayOverwrite, float64_dtype: Float641DArrayOverwrite, } self.scalar_overwrites_dict = { datetime64ns_dtype: Datetime64Overwrite, float64_dtype: Float64Overwrite, } self.name_map = name_map @abstractmethod def get_zeroth_quarter_idx(self, stacked_last_per_qtr): raise NotImplementedError("get_zeroth_quarter_idx") @abstractmethod def get_shifted_qtrs(self, zero_qtrs, num_announcements): raise NotImplementedError("get_shifted_qtrs") @abstractmethod def create_overwrite_for_estimate( self, column, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments, split_adjusted_asof_idx, ): raise NotImplementedError("create_overwrite_for_estimate") @property @abstractmethod def searchsorted_side(self): return NotImplementedError("searchsorted_side") def get_requested_quarter_data( self, zero_qtr_data, zeroth_quarter_idx, stacked_last_per_qtr, num_announcements, dates, ): """Selects the requested data for each date. Parameters ---------- zero_qtr_data : pd.DataFrame The 'time zero' data for each calendar date per sid. zeroth_quarter_idx : pd.Index An index of calendar dates, sid, and normalized quarters, for only the rows that have a next or previous earnings estimate. stacked_last_per_qtr : pd.DataFrame The latest estimate known with the dates, normalized quarter, and sid as the index. num_announcements : int The number of annoucements out the user requested relative to each date in the calendar dates. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. Returns -------- requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns; `dates` are the index and columns are a MultiIndex with sids at the top level and the dataset columns on the bottom. """ zero_qtr_data_idx = zero_qtr_data.index requested_qtr_idx = pd.MultiIndex.from_arrays( [ zero_qtr_data_idx.get_level_values(0), zero_qtr_data_idx.get_level_values(1), self.get_shifted_qtrs( zeroth_quarter_idx.get_level_values( NORMALIZED_QUARTERS, ), num_announcements, ), ], names=[ zero_qtr_data_idx.names[0], zero_qtr_data_idx.names[1], SHIFTED_NORMALIZED_QTRS, ], ) requested_qtr_data = stacked_last_per_qtr.reindex(index=requested_qtr_idx) requested_qtr_data = requested_qtr_data.reset_index( SHIFTED_NORMALIZED_QTRS, ) # Calculate the actual year/quarter being requested and add those in # as columns. ( requested_qtr_data[FISCAL_YEAR_FIELD_NAME], requested_qtr_data[FISCAL_QUARTER_FIELD_NAME], ) = split_normalized_quarters(requested_qtr_data[SHIFTED_NORMALIZED_QTRS]) # Once we're left with just dates as the index, we can reindex by all # dates so that we have a value for each calendar date. return requested_qtr_data.unstack(SID_FIELD_NAME).reindex(dates) def get_split_adjusted_asof_idx(self, dates): """Compute the index in `dates` where the split-adjusted-asof-date falls. This is the date up to which, and including which, we will need to unapply all adjustments for and then re-apply them as they come in. After this date, adjustments are applied as normal. Parameters ---------- dates : pd.DatetimeIndex The calendar dates over which the Pipeline is being computed. Returns ------- split_adjusted_asof_idx : int The index in `dates` at which the data should be split. """ split_adjusted_asof_idx = dates.searchsorted(self._split_adjusted_asof) # make_utc_aware(pd.DatetimeIndex(self._split_adjusted_asof)) # The split-asof date is after the date index. if split_adjusted_asof_idx == len(dates): split_adjusted_asof_idx = len(dates) - 1 if self._split_adjusted_asof.tzinfo is not None: if self._split_adjusted_asof < dates[0]: split_adjusted_asof_idx = -1 else: if self._split_adjusted_asof < dates[0]: split_adjusted_asof_idx = -1 return split_adjusted_asof_idx def collect_overwrites_for_sid( self, group, dates, requested_qtr_data, last_per_qtr, sid_idx, columns, all_adjustments_for_sid, sid, ): """Given a sid, collect all overwrites that should be applied for this sid at each quarter boundary. Parameters ---------- group : pd.DataFrame The data for `sid`. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. sid_idx : int The sid's index in the asset index. columns : list of BoundColumn The columns for which the overwrites should be computed. all_adjustments_for_sid : dict[int -> AdjustedArray] A dictionary of the integer index of each timestamp into the date index, mapped to adjustments that should be applied at that index for the given sid (`sid`). This dictionary is modified as adjustments are collected. sid : int The sid for which overwrites should be computed. """ # If data was requested for only 1 date, there can never be any # overwrites, so skip the extra work. if len(dates) == 1: return next_qtr_start_indices = dates.searchsorted( pd.DatetimeIndex(group[EVENT_DATE_FIELD_NAME]), side=self.searchsorted_side, ) qtrs_with_estimates = group.index.get_level_values(NORMALIZED_QUARTERS).values for idx in next_qtr_start_indices: if 0 < idx < len(dates): # Find the quarter being requested in the quarter we're # crossing into. requested_quarter = requested_qtr_data[ SHIFTED_NORMALIZED_QTRS, sid, ].iloc[idx] # Only add adjustments if the next quarter starts somewhere # in our date index for this sid. Our 'next' quarter can # never start at index 0; a starting index of 0 means that # the next quarter's event date was NaT. self.create_overwrites_for_quarter( all_adjustments_for_sid, idx, last_per_qtr, qtrs_with_estimates, requested_quarter, sid, sid_idx, columns, ) def get_adjustments_for_sid( self, group, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, **kwargs, ): """ Parameters ---------- group : pd.DataFrame The data for the given sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. requested_qtr_data : pd.DataFrame The DataFrame with the latest values for the requested quarter for all columns. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. sid_to_idx : dict[int -> int] A dictionary mapping sid to he sid's index in the asset index. columns : list of BoundColumn The columns for which the overwrites should be computed. col_to_all_adjustments : dict[int -> AdjustedArray] A dictionary of the integer index of each timestamp into the date index, mapped to adjustments that should be applied at that index. This dictionary is for adjustments for ALL sids. It is modified as adjustments are collected. kwargs : Additional arguments used in collecting adjustments; unused here. """ # Collect all adjustments for a given sid. all_adjustments_for_sid = {} sid = int(group.name) self.collect_overwrites_for_sid( group, dates, requested_qtr_data, last_per_qtr, sid_to_idx[sid], columns, all_adjustments_for_sid, sid, ) self.merge_into_adjustments_for_all_sids( all_adjustments_for_sid, col_to_all_adjustments ) def merge_into_adjustments_for_all_sids( self, all_adjustments_for_sid, col_to_all_adjustments ): """Merge adjustments for a particular sid into a dictionary containing adjustments for all sids. Parameters ---------- all_adjustments_for_sid : dict[int -> AdjustedArray] All adjustments for a particular sid. col_to_all_adjustments : dict[int -> AdjustedArray] All adjustments for all sids. """ for col_name in all_adjustments_for_sid: if col_name not in col_to_all_adjustments: col_to_all_adjustments[col_name] = {} for ts in all_adjustments_for_sid[col_name]: adjs = all_adjustments_for_sid[col_name][ts] add_new_adjustments(col_to_all_adjustments, adjs, col_name, ts) def get_adjustments( self, zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, **kwargs, ): """Creates an AdjustedArray from the given estimates data for the given dates. Parameters ---------- zero_qtr_data : pd.DataFrame The 'time zero' data for each calendar date per sid. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. assets : pd.Int64Index An index of all the assets from the raw data. columns : list of BoundColumn The columns for which adjustments need to be calculated. kwargs : Additional keyword arguments that should be forwarded to `get_adjustments_for_sid` and to be used in computing adjustments for each sid. Returns ------- col_to_all_adjustments : dict[int -> AdjustedArray] A dictionary of all adjustments that should be applied. """ zero_qtr_data.sort_index(inplace=True) # Here we want to get the LAST record from each group of records # corresponding to a single quarter. This is to ensure that we select # the most up-to-date event date in case the event date changes. quarter_shifts = zero_qtr_data.groupby( level=[SID_FIELD_NAME, NORMALIZED_QUARTERS] ).nth(-1) col_to_all_adjustments = {} sid_to_idx = dict(zip(assets, range(len(assets)))) quarter_shifts.groupby(level=SID_FIELD_NAME).apply( self.get_adjustments_for_sid, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, **kwargs, ) return col_to_all_adjustments def create_overwrites_for_quarter( self, col_to_overwrites, next_qtr_start_idx, last_per_qtr, quarters_with_estimates_for_sid, requested_quarter, sid, sid_idx, columns, ): """Add entries to the dictionary of columns to adjustments for the given sid and the given quarter. Parameters ---------- col_to_overwrites : dict [column_name -> list of ArrayAdjustment] A dictionary mapping column names to all overwrites for those columns. next_qtr_start_idx : int The index of the first day of the next quarter in the calendar dates. last_per_qtr : pd.DataFrame A DataFrame with a column MultiIndex of [self.estimates.columns, normalized_quarters, sid] that allows easily getting the timeline of estimates for a particular sid for a particular quarter; this is particularly useful for getting adjustments for 'next' estimates. quarters_with_estimates_for_sid : np.array An array of all quarters for which there are estimates for the given sid. requested_quarter : float The quarter for which the overwrite should be created. sid : int The sid for which to create overwrites. sid_idx : int The index of the sid in `assets`. columns : list of BoundColumn The columns for which to create overwrites. """ for col in columns: column_name = self.name_map[col.name] if column_name not in col_to_overwrites: col_to_overwrites[column_name] = {} # If there are estimates for the requested quarter, # overwrite all values going up to the starting index of # that quarter with estimates for that quarter. if requested_quarter in quarters_with_estimates_for_sid: adjs = self.create_overwrite_for_estimate( col, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, ) add_new_adjustments( col_to_overwrites, adjs, column_name, next_qtr_start_idx ) # There are no estimates for the quarter. Overwrite all # values going up to the starting index of that quarter # with the missing value for this column. else: adjs = [self.overwrite_with_null(col, next_qtr_start_idx, sid_idx)] add_new_adjustments( col_to_overwrites, adjs, column_name, next_qtr_start_idx ) def overwrite_with_null(self, column, next_qtr_start_idx, sid_idx): return self.scalar_overwrites_dict[column.dtype]( 0, next_qtr_start_idx - 1, sid_idx, sid_idx, column.missing_value ) def load_adjusted_array(self, domain, columns, dates, sids, mask): # Separate out getting the columns' datasets and the datasets' # num_announcements attributes to ensure that we're catching the right # AttributeError. col_to_datasets = {col: col.dataset for col in columns} try: groups = groupby( lambda col: col_to_datasets[col].num_announcements, col_to_datasets ) except AttributeError as exc: raise AttributeError( "Datasets loaded via the " "EarningsEstimatesLoader must define a " "`num_announcements` attribute that defines " "how many quarters out the loader should load" " the data relative to `dates`." ) from exc if any(num_qtr < 0 for num_qtr in groups): raise ValueError( INVALID_NUM_QTRS_MESSAGE % ",".join(str(qtr) for qtr in groups if qtr < 0) ) out = {} # To optimize performance, only work below on assets that are # actually in the raw data. data_query_cutoff_times = domain.data_query_cutoff_for_sessions(dates) assets_with_data = set(sids) & set(self.estimates[SID_FIELD_NAME]) last_per_qtr, stacked_last_per_qtr = self.get_last_data_per_qtr( assets_with_data, columns, dates, data_query_cutoff_times, ) # Determine which quarter is immediately next/previous for each # date. zeroth_quarter_idx = self.get_zeroth_quarter_idx(stacked_last_per_qtr) zero_qtr_data = stacked_last_per_qtr.loc[zeroth_quarter_idx] for num_announcements, columns in groups.items(): requested_qtr_data = self.get_requested_quarter_data( zero_qtr_data, zeroth_quarter_idx, stacked_last_per_qtr, num_announcements, dates, ) # Calculate all adjustments for the given quarter and accumulate # them for each column. col_to_adjustments = self.get_adjustments( zero_qtr_data, requested_qtr_data, last_per_qtr, dates, sids, columns ) # Lookup the asset indexer once, this is so we can reindex # the assets returned into the assets requested for each column. # This depends on the fact that our column pd.MultiIndex has the same # sids for each field. This allows us to do the lookup once on # level 1 instead of doing the lookup each time per value in # level 0. # asset_indexer = sids.get_indexer_for( # requested_qtr_data.columns.levels[1], # ) for col in columns: column_name = self.name_map[col.name] # allocate the empty output with the correct missing value # shape = len(dates), len(sids) # output_array = np.full(shape=shape, # fill_value=col.missing_value, # dtype=col.dtype) # overwrite the missing value with values from the computed data try: output_array = ( requested_qtr_data[column_name] .reindex(sids, axis=1) .to_numpy() .astype(col.dtype) ) except Exception: output_array = ( requested_qtr_data[column_name] .reindex(sids, axis=1) .to_numpy(na_value=col.missing_value) .astype(col.dtype) ) # except ValueError: # np.copyto(output_array[:, asset_indexer], # requested_qtr_data[column_name].to_numpy(na_value=output_array.dtype), # casting='unsafe') out[col] = AdjustedArray( output_array, # There may not be any adjustments at all (e.g. if # len(date) == 1), so provide a default. dict(col_to_adjustments.get(column_name, {})), col.missing_value, ) return out def get_last_data_per_qtr( self, assets_with_data, columns, dates, data_query_cutoff_times ): """Determine the last piece of information we know for each column on each date in the index for each sid and quarter. Parameters ---------- assets_with_data : pd.Index Index of all assets that appear in the raw data given to the loader. columns : iterable of BoundColumn The columns that need to be loaded from the raw data. data_query_cutoff_times : pd.DatetimeIndex The calendar of dates for which data should be loaded. Returns ------- stacked_last_per_qtr : pd.DataFrame A DataFrame indexed by [dates, sid, normalized_quarters] that has the latest information for each row of the index, sorted by event date. last_per_qtr : pd.DataFrame A DataFrame with columns that are a MultiIndex of [ self.estimates.columns, normalized_quarters, sid]. """ # Get a DataFrame indexed by date with a MultiIndex of columns of # [self.estimates.columns, normalized_quarters, sid], where each cell # contains the latest data for that day. last_per_qtr = last_in_date_group( self.estimates, data_query_cutoff_times, assets_with_data, reindex=True, extra_groupers=[NORMALIZED_QUARTERS], ) last_per_qtr.index = dates # Forward fill values for each quarter/sid/dataset column. ffill_across_cols(last_per_qtr, columns, self.name_map) # Stack quarter and sid into the index. stacked_last_per_qtr = last_per_qtr.stack( [SID_FIELD_NAME, NORMALIZED_QUARTERS], ) # Set date index name for ease of reference stacked_last_per_qtr.index.set_names( SIMULATION_DATES, level=0, inplace=True, ) stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] = pd.to_datetime( stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] ) stacked_last_per_qtr = stacked_last_per_qtr.sort_values(EVENT_DATE_FIELD_NAME) return last_per_qtr, stacked_last_per_qtr class NextEarningsEstimatesLoader(EarningsEstimatesLoader): searchsorted_side = "right" def create_overwrite_for_estimate( self, column, column_name, last_per_qtr, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments=None, split_adjusted_asof_idx=None, ): return [ self.array_overwrites_dict[column.dtype]( 0, next_qtr_start_idx - 1, sid_idx, sid_idx, last_per_qtr[ column_name, requested_quarter, sid, ].values[:next_qtr_start_idx], ) ] def get_shifted_qtrs(self, zero_qtrs, num_announcements): return zero_qtrs + (num_announcements - 1) def get_zeroth_quarter_idx(self, stacked_last_per_qtr): """Filters for releases that are on or after each simulation date and determines the next quarter by picking out the upcoming release for each date in the index. Parameters ---------- stacked_last_per_qtr : pd.DataFrame A DataFrame with index of calendar dates, sid, and normalized quarters with each row being the latest estimate for the row's index values, sorted by event date. Returns ------- next_releases_per_date_index : pd.MultiIndex An index of calendar dates, sid, and normalized quarters, for only the rows that have a next event. """ next_releases_per_date = ( stacked_last_per_qtr.loc[ stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] >= stacked_last_per_qtr.index.get_level_values(SIMULATION_DATES) ] .groupby( level=[SIMULATION_DATES, SID_FIELD_NAME], as_index=False, # Here we take advantage of the fact that `stacked_last_per_qtr` is # sorted by event date. ) .nth(0) ) return next_releases_per_date.index class PreviousEarningsEstimatesLoader(EarningsEstimatesLoader): searchsorted_side = "left" def create_overwrite_for_estimate( self, column, column_name, dates, next_qtr_start_idx, requested_quarter, sid, sid_idx, col_to_split_adjustments=None, split_adjusted_asof_idx=None, split_dict=None, ): return [ self.overwrite_with_null( column, next_qtr_start_idx, sid_idx, ) ] def get_shifted_qtrs(self, zero_qtrs, num_announcements): return zero_qtrs - (num_announcements - 1) def get_zeroth_quarter_idx(self, stacked_last_per_qtr): """Filters for releases that are on or after each simulation date and determines the previous quarter by picking out the most recent release relative to each date in the index. Parameters ---------- stacked_last_per_qtr : pd.DataFrame A DataFrame with index of calendar dates, sid, and normalized quarters with each row being the latest estimate for the row's index values, sorted by event date. Returns ------- previous_releases_per_date_index : pd.MultiIndex An index of calendar dates, sid, and normalized quarters, for only the rows that have a previous event. """ previous_releases_per_date = ( stacked_last_per_qtr.loc[ stacked_last_per_qtr[EVENT_DATE_FIELD_NAME] <= stacked_last_per_qtr.index.get_level_values(SIMULATION_DATES) ] .groupby( level=[SIMULATION_DATES, SID_FIELD_NAME], as_index=False, # Here we take advantage of the fact that `stacked_last_per_qtr` is # sorted by event date. ) .nth(-1) ) return previous_releases_per_date.index def validate_split_adjusted_column_specs(name_map, columns): to_be_split = set(columns) available = set(name_map.keys()) extra = to_be_split - available if extra: raise ValueError( "EarningsEstimatesLoader got the following extra columns to be " "split-adjusted: {extra}.\n" "Got Columns: {to_be_split}\n" "Available Columns: {available}".format( extra=sorted(extra), to_be_split=sorted(to_be_split), available=sorted(available), ) ) class SplitAdjustedEstimatesLoader(EarningsEstimatesLoader): """Estimates loader that loads data that needs to be split-adjusted. Parameters ---------- split_adjustments_loader : SQLiteAdjustmentReader The loader to use for reading split adjustments. split_adjusted_column_names : iterable of str The column names that should be split-adjusted. split_adjusted_asof : pd.Timestamp The date that separates data into 2 halves: the first half is the set of dates up to and including the split_adjusted_asof date. All adjustments occurring during this first half are applied to all dates in this first half. The second half is the set of dates after the split_adjusted_asof date. All adjustments occurring during this second half are applied sequentially as they appear in the timeline. """ def __init__( self, estimates, name_map, split_adjustments_loader, split_adjusted_column_names, split_adjusted_asof, ): validate_split_adjusted_column_specs(name_map, split_adjusted_column_names) self._split_adjustments = split_adjustments_loader self._split_adjusted_column_names = split_adjusted_column_names self._split_adjusted_asof = split_adjusted_asof self._split_adjustment_dict = {} super(SplitAdjustedEstimatesLoader, self).__init__(estimates, name_map) @abstractmethod def collect_split_adjustments( self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ): raise NotImplementedError("collect_split_adjustments") def get_adjustments_for_sid( self, group, dates, requested_qtr_data, last_per_qtr, sid_to_idx, columns, col_to_all_adjustments, split_adjusted_asof_idx=None, split_adjusted_cols_for_group=None, ): """Collects both overwrites and adjustments for a particular sid. Parameters ---------- split_adjusted_asof_idx : int The integer index of the date on which the data was split-adjusted. split_adjusted_cols_for_group : list of str The names of requested columns that should also be split-adjusted. """ all_adjustments_for_sid = {} sid = int(group.name) self.collect_overwrites_for_sid( group, dates, requested_qtr_data, last_per_qtr, sid_to_idx[sid], columns, all_adjustments_for_sid, sid, ) ( pre_adjustments, post_adjustments, ) = self.retrieve_split_adjustment_data_for_sid( dates, sid, split_adjusted_asof_idx ) sid_estimates = self.estimates[self.estimates[SID_FIELD_NAME] == sid] # We might not have any overwrites but still have # adjustments, and we will need to manually add columns if # that is the case. for col_name in split_adjusted_cols_for_group: if col_name not in all_adjustments_for_sid: all_adjustments_for_sid[col_name] = {} self.collect_split_adjustments( all_adjustments_for_sid, requested_qtr_data, dates, sid, sid_to_idx[sid], sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, split_adjusted_cols_for_group, ) self.merge_into_adjustments_for_all_sids( all_adjustments_for_sid, col_to_all_adjustments ) def get_adjustments( self, zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, **kwargs, ): """Calculates both split adjustments and overwrites for all sids.""" split_adjusted_cols_for_group = [ self.name_map[col.name] for col in columns if self.name_map[col.name] in self._split_adjusted_column_names ] # Add all splits to the adjustment dict for this sid. split_adjusted_asof_idx = self.get_split_adjusted_asof_idx(dates) return super(SplitAdjustedEstimatesLoader, self).get_adjustments( zero_qtr_data, requested_qtr_data, last_per_qtr, dates, assets, columns, split_adjusted_cols_for_group=split_adjusted_cols_for_group, split_adjusted_asof_idx=split_adjusted_asof_idx, ) def determine_end_idx_for_adjustment( self, adjustment_ts, dates, upper_bound, requested_quarter, sid_estimates ): """Determines the date until which the adjustment at the given date index should be applied for the given quarter. Parameters ---------- adjustment_ts : pd.Timestamp The timestamp at which the adjustment occurs. dates : pd.DatetimeIndex The calendar dates over which the Pipeline is being computed. upper_bound : int The index of the upper bound in the calendar dates. This is the index until which the adjusment will be applied unless there is information for the requested quarter that comes in on or before that date. requested_quarter : float The quarter for which we are determining how the adjustment should be applied. sid_estimates : pd.DataFrame The DataFrame of estimates data for the sid for which we're applying the given adjustment. Returns ------- end_idx : int The last index to which the adjustment should be applied for the given quarter/sid. """ end_idx = upper_bound # Find the next newest kd that happens on or after # the date of this adjustment newest_kd_for_qtr = sid_estimates[ (sid_estimates[NORMALIZED_QUARTERS] == requested_quarter) & (sid_estimates[TS_FIELD_NAME] >= adjustment_ts) ][TS_FIELD_NAME].min() if pd.notnull(newest_kd_for_qtr): newest_kd_idx = dates.searchsorted(newest_kd_for_qtr) # make_utc_aware(pd.DatetimeIndex(newest_kd_for_qtr)) # We have fresh information that comes in # before the end of the overwrite and # presumably is already split-adjusted to the # current split. We should stop applying the # adjustment the day before this new # information comes in. if newest_kd_idx <= upper_bound: end_idx = newest_kd_idx - 1 return end_idx def collect_pre_split_asof_date_adjustments( self, split_adjusted_asof_date_idx, sid_idx, pre_adjustments, requested_split_adjusted_columns, ): """Collect split adjustments that occur before the split-adjusted-asof-date. All those adjustments must first be UN-applied at the first date index and then re-applied on the appropriate dates in order to match point in time share pricing data. Parameters ---------- split_adjusted_asof_date_idx : int The index in the calendar dates as-of which all data was split-adjusted. sid_idx : int The index of the sid for which adjustments should be collected in the adjusted array. pre_adjustments : tuple(list(float), list(int)) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str The requested split adjusted columns. Returns ------- col_to_split_adjustments : dict[str -> dict[int -> list of Adjustment]] The adjustments for this sid that occurred on or before the split-asof-date. """ col_to_split_adjustments = {} if len(pre_adjustments[0]): adjustment_values, date_indexes = pre_adjustments for column_name in requested_split_adjusted_columns: col_to_split_adjustments[column_name] = {} # We need to undo all adjustments that happen before the # split_asof_date here by reversing the split ratio. col_to_split_adjustments[column_name][0] = [ Float64Multiply( 0, split_adjusted_asof_date_idx, sid_idx, sid_idx, 1 / future_adjustment, ) for future_adjustment in adjustment_values ] for adjustment, date_index in zip(adjustment_values, date_indexes): adj = Float64Multiply( 0, split_adjusted_asof_date_idx, sid_idx, sid_idx, adjustment ) add_new_adjustments( col_to_split_adjustments, [adj], column_name, date_index ) return col_to_split_adjustments def collect_post_asof_split_adjustments( self, post_adjustments, requested_qtr_data, sid, sid_idx, sid_estimates, requested_split_adjusted_columns, ): """Collect split adjustments that occur after the split-adjusted-asof-date. Each adjustment needs to be applied to all dates on which knowledge for the requested quarter was older than the date of the adjustment. Parameters ---------- post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for this sid. requested_split_adjusted_columns : list of str The requested split adjusted columns. Returns ------- col_to_split_adjustments : dict[str -> dict[int -> list of Adjustment]] The adjustments for this sid that occurred after the split-asof-date. """ col_to_split_adjustments = {} if post_adjustments: # Get an integer index requested_qtr_timeline = requested_qtr_data[SHIFTED_NORMALIZED_QTRS][ sid ].reset_index() requested_qtr_timeline = requested_qtr_timeline[ requested_qtr_timeline[sid].notnull() ] # Split the data into range by quarter and determine which quarter # was being requested in each range. # Split integer indexes up by quarter range qtr_ranges_idxs = np.split( requested_qtr_timeline.index, np.where(np.diff(requested_qtr_timeline[sid]) != 0)[0] + 1, ) requested_quarters_per_range = [ requested_qtr_timeline[sid][r[0]] for r in qtr_ranges_idxs ] # Try to apply each adjustment to each quarter range. for i, qtr_range in enumerate(qtr_ranges_idxs): for adjustment, date_index, timestamp in zip(*post_adjustments): # In the default case, apply through the end of the quarter upper_bound = qtr_range[-1] # Find the smallest KD in estimates that is on or after the # date of the given adjustment. Apply the given adjustment # until that KD. end_idx = self.determine_end_idx_for_adjustment( timestamp, requested_qtr_data.index, upper_bound, requested_quarters_per_range[i], sid_estimates, ) # In the default case, apply adjustment on the first day of # the quarter. start_idx = qtr_range[0] # If the adjustment happens during this quarter, apply the # adjustment on the day it happens. if date_index > start_idx: start_idx = date_index # We only want to apply the adjustment if we have any stale # data to apply it to. if qtr_range[0] <= end_idx: for column_name in requested_split_adjusted_columns: if column_name not in col_to_split_adjustments: col_to_split_adjustments[column_name] = {} adj = Float64Multiply( # Always apply from first day of qtr qtr_range[0], end_idx, sid_idx, sid_idx, adjustment, ) add_new_adjustments( col_to_split_adjustments, [adj], column_name, start_idx ) return col_to_split_adjustments def retrieve_split_adjustment_data_for_sid( self, dates, sid, split_adjusted_asof_idx ): """ dates : pd.DatetimeIndex The calendar dates. sid : int The sid for which we want to retrieve adjustments. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. Returns ------- pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. """ adjustments = self._split_adjustments.get_adjustments_for_sid("splits", sid) sorted(adjustments, key=lambda adj: adj[0]) # Get rid of any adjustments that happen outside of our date index. adjustments = list(filter(lambda x: dates[0] <= x[0] <= dates[-1], adjustments)) adjustment_values = np.array([adj[1] for adj in adjustments]) timestamps = pd.DatetimeIndex([adj[0] for adj in adjustments]) # We need the first date on which we would have known about each # adjustment. date_indexes = dates.searchsorted(timestamps) pre_adjustment_idxs = np.where(date_indexes <= split_adjusted_asof_idx)[0] last_adjustment_split_asof_idx = -1 if len(pre_adjustment_idxs): last_adjustment_split_asof_idx = pre_adjustment_idxs.max() pre_adjustments = ( adjustment_values[: last_adjustment_split_asof_idx + 1], date_indexes[: last_adjustment_split_asof_idx + 1], ) post_adjustments = ( adjustment_values[last_adjustment_split_asof_idx + 1 :], date_indexes[last_adjustment_split_asof_idx + 1 :], timestamps[last_adjustment_split_asof_idx + 1 :], ) return pre_adjustments, post_adjustments def _collect_adjustments( self, requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ): pre_adjustments_dict = self.collect_pre_split_asof_date_adjustments( split_adjusted_asof_idx, sid_idx, pre_adjustments, requested_split_adjusted_columns, ) post_adjustments_dict = self.collect_post_asof_split_adjustments( post_adjustments, requested_qtr_data, sid, sid_idx, sid_estimates, requested_split_adjusted_columns, ) return pre_adjustments_dict, post_adjustments_dict def merge_split_adjustments_with_overwrites( self, pre, post, overwrites, requested_split_adjusted_columns ): """Merge split adjustments with the dict containing overwrites. Parameters ---------- pre : dict[str -> dict[int -> list]] The adjustments that occur before the split-adjusted-asof-date. post : dict[str -> dict[int -> list]] The adjustments that occur after the split-adjusted-asof-date. overwrites : dict[str -> dict[int -> list]] The overwrites across all time. Adjustments will be merged into this dictionary. requested_split_adjusted_columns : list of str List of names of split adjusted columns that are being requested. """ for column_name in requested_split_adjusted_columns: # We can do a merge here because the timestamps in 'pre' and # 'post' are guaranteed to not overlap. if pre: # Either empty or contains all columns. for ts in pre[column_name]: add_new_adjustments( overwrites, pre[column_name][ts], column_name, ts ) if post: # Either empty or contains all columns. for ts in post[column_name]: add_new_adjustments( overwrites, post[column_name][ts], column_name, ts ) class PreviousSplitAdjustedEarningsEstimatesLoader( SplitAdjustedEstimatesLoader, PreviousEarningsEstimatesLoader ): def collect_split_adjustments( self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ): """Collect split adjustments for previous quarters and apply them to the given dictionary of splits for the given sid. Since overwrites just replace all estimates before the new quarter with NaN, we don't need to worry about re-applying split adjustments. Parameters ---------- adjustments_for_sid : dict[str -> dict[int -> list]] The dictionary of adjustments to which splits need to be added. Initially it contains only overwrites. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for the given sid. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str List of requested split adjusted column names. """ (pre_adjustments_dict, post_adjustments_dict) = self._collect_adjustments( requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ) self.merge_split_adjustments_with_overwrites( pre_adjustments_dict, post_adjustments_dict, adjustments_for_sid, requested_split_adjusted_columns, ) class NextSplitAdjustedEarningsEstimatesLoader( SplitAdjustedEstimatesLoader, NextEarningsEstimatesLoader ): def collect_split_adjustments( self, adjustments_for_sid, requested_qtr_data, dates, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ): """Collect split adjustments for future quarters. Re-apply adjustments that would be overwritten by overwrites. Merge split adjustments with overwrites into the given dictionary of splits for the given sid. Parameters ---------- adjustments_for_sid : dict[str -> dict[int -> list]] The dictionary of adjustments to which splits need to be added. Initially it contains only overwrites. requested_qtr_data : pd.DataFrame The requested quarter data for each calendar date per sid. dates : pd.DatetimeIndex The calendar dates for which estimates data is requested. sid : int The sid for which adjustments need to be collected. sid_idx : int The index of `sid` in the adjusted array. sid_estimates : pd.DataFrame The raw estimates data for the given sid. split_adjusted_asof_idx : int The index in `dates` as-of which the data is split adjusted. pre_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values and indexes in `dates` for adjustments that happened before the split-asof-date. post_adjustments : tuple(list(float), list(int), pd.DatetimeIndex) The adjustment values, indexes in `dates`, and timestamps for adjustments that happened after the split-asof-date. requested_split_adjusted_columns : list of str List of requested split adjusted column names. """ (pre_adjustments_dict, post_adjustments_dict) = self._collect_adjustments( requested_qtr_data, sid, sid_idx, sid_estimates, split_adjusted_asof_idx, pre_adjustments, post_adjustments, requested_split_adjusted_columns, ) for column_name in requested_split_adjusted_columns: for overwrite_ts in adjustments_for_sid[column_name]: # We need to cumulatively re-apply all adjustments up to the # split-adjusted-asof-date. We might not have any # pre-adjustments, so we should check for that. if overwrite_ts <= split_adjusted_asof_idx and pre_adjustments_dict: for split_ts in pre_adjustments_dict[column_name]: # The split has to have occurred during the span of # the overwrite. if split_ts < overwrite_ts: # Create new adjustments here so that we can # re-apply all applicable adjustments to ONLY # the dates being overwritten. adjustments_for_sid[column_name][overwrite_ts].extend( [ Float64Multiply( 0, overwrite_ts - 1, sid_idx, sid_idx, adjustment.value, ) for adjustment in pre_adjustments_dict[column_name][ split_ts ] ] ) # After the split-adjusted-asof-date, we need to re-apply all # adjustments that occur after that date and within the # bounds of the overwrite. They need to be applied starting # from the first date and until an end date. The end date is # the date of the newest information we get about # `requested_quarter` that is >= `split_ts`, or if there is no # new knowledge before `overwrite_ts`, then it is the date # before `overwrite_ts`. else: # Overwrites happen at the first index of a new quarter, # so determine here which quarter that is. requested_quarter = requested_qtr_data[ SHIFTED_NORMALIZED_QTRS, sid ].iloc[overwrite_ts] for adjustment_value, date_index, timestamp in zip( *post_adjustments ): if split_adjusted_asof_idx < date_index < overwrite_ts: # Assume the entire overwrite contains stale data upper_bound = overwrite_ts - 1 end_idx = self.determine_end_idx_for_adjustment( timestamp, dates, upper_bound, requested_quarter, sid_estimates, ) adjustments_for_sid[column_name][overwrite_ts].append( Float64Multiply( 0, end_idx, sid_idx, sid_idx, adjustment_value ) ) self.merge_split_adjustments_with_overwrites( pre_adjustments_dict, post_adjustments_dict, adjustments_for_sid, requested_split_adjusted_columns, )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/loaders/earnings_estimates.py
earnings_estimates.py
import numpy as np import pandas as pd from interface import implements from toolz import groupby, merge from .base import PipelineLoader from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.loaders.frame import DataFrameLoader from zipline.pipeline.loaders.utils import ( next_event_indexer, previous_event_indexer, ) def required_event_fields(next_value_columns, previous_value_columns): """ Compute the set of resource columns required to serve ``next_value_columns`` and ``previous_value_columns``. """ # These metadata columns are used to align event indexers. return {TS_FIELD_NAME, SID_FIELD_NAME, EVENT_DATE_FIELD_NAME,}.union( # We also expect any of the field names that our loadable columns # are mapped to. next_value_columns.values(), previous_value_columns.values(), ) def validate_column_specs(events, next_value_columns, previous_value_columns): """ Verify that the columns of ``events`` can be used by an EventsLoader to serve the BoundColumns described by ``next_value_columns`` and ``previous_value_columns``. """ required = required_event_fields(next_value_columns, previous_value_columns) received = set(events.columns) missing = required - received if missing: raise ValueError( "EventsLoader missing required columns {missing}.\n" "Got Columns: {received}\n" "Expected Columns: {required}".format( missing=sorted(missing), received=sorted(received), required=sorted(required), ) ) class EventsLoader(implements(PipelineLoader)): """ Base class for PipelineLoaders that supports loading the next and previous value of an event field. Does not currently support adjustments. Parameters ---------- events : pd.DataFrame A DataFrame representing events (e.g. share buybacks or earnings announcements) associated with particular companies. ``events`` must contain at least three columns:: sid : int64 The asset id associated with each event. event_date : datetime64[ns] The date on which the event occurred. timestamp : datetime64[ns] The date on which we learned about the event. next_value_columns : dict[BoundColumn -> str] Map from dataset columns to raw field names that should be used when searching for a next event value. previous_value_columns : dict[BoundColumn -> str] Map from dataset columns to raw field names that should be used when searching for a previous event value. """ def __init__(self, events, next_value_columns, previous_value_columns): validate_column_specs( events, next_value_columns, previous_value_columns, ) events = events[events[EVENT_DATE_FIELD_NAME].notnull()] # We always work with entries from ``events`` directly as numpy arrays, # so we coerce from a frame to a dict of arrays here. self.events = { name: np.asarray(series) for name, series in (events.sort_values(EVENT_DATE_FIELD_NAME).items()) } # Columns to load with self.load_next_events. self.next_value_columns = next_value_columns # Columns to load with self.load_previous_events. self.previous_value_columns = previous_value_columns def split_next_and_previous_event_columns(self, requested_columns): """ Split requested columns into columns that should load the next known value and columns that should load the previous known value. Parameters ---------- requested_columns : iterable[BoundColumn] Returns ------- next_cols, previous_cols : iterable[BoundColumn], iterable[BoundColumn] ``requested_columns``, partitioned into sub-sequences based on whether the column should produce values from the next event or the previous event """ def next_or_previous(c): if c in self.next_value_columns: return "next" elif c in self.previous_value_columns: return "previous" raise ValueError( "{c} not found in next_value_columns " "or previous_value_columns".format(c=c) ) groups = groupby(next_or_previous, requested_columns) return groups.get("next", ()), groups.get("previous", ()) def next_event_indexer(self, dates, data_query_cutoff, sids): return next_event_indexer( dates, data_query_cutoff, sids, self.events[EVENT_DATE_FIELD_NAME], self.events[TS_FIELD_NAME], self.events[SID_FIELD_NAME], ) def previous_event_indexer(self, data_query_time, sids): return previous_event_indexer( data_query_time, sids, self.events[EVENT_DATE_FIELD_NAME], self.events[TS_FIELD_NAME], self.events[SID_FIELD_NAME], ) def load_next_events(self, domain, columns, dates, data_query_time, sids, mask): if not columns: return {} return self._load_events( name_map=self.next_value_columns, indexer=self.next_event_indexer(dates, data_query_time, sids), domain=domain, columns=columns, dates=dates, sids=sids, mask=mask, ) def load_previous_events(self, domain, columns, dates, data_query_time, sids, mask): if not columns: return {} return self._load_events( name_map=self.previous_value_columns, indexer=self.previous_event_indexer(data_query_time, sids), domain=domain, columns=columns, dates=dates, sids=sids, mask=mask, ) def _load_events(self, name_map, indexer, domain, columns, dates, sids, mask): def to_frame(array): return pd.DataFrame(array, index=dates, columns=sids) assert indexer.shape == (len(dates), len(sids)) out = {} for c in columns: # Array holding the value for column `c` for every event we have. col_array = self.events[name_map[c]] if not len(col_array): # We don't have **any** events, so return col.missing_value # every day for every sid. We have to special case empty events # because in normal branch we depend on being able to index # with -1 for missing values, which fails if there are no # events at all. raw = np.full( (len(dates), len(sids)), c.missing_value, dtype=c.dtype, ) else: # Slot event values into sid/date locations using `indexer`. # This produces a 2D array of the same shape as `indexer`, # which must be (len(dates), len(sids))`. raw = col_array[indexer] # indexer will be -1 for locations where we don't have a known # value. Overwrite those locations with c.missing_value. raw[indexer < 0] = c.missing_value # Delegate the actual array formatting logic to a DataFrameLoader. loader = DataFrameLoader(c, to_frame(raw), adjustments=None) out[c] = loader.load_adjusted_array( domain, [c], dates, sids, mask, )[c] return out def load_adjusted_array(self, domain, columns, dates, sids, mask): data_query = domain.data_query_cutoff_for_sessions(dates) n, p = self.split_next_and_previous_event_columns(columns) return merge( self.load_next_events(domain, n, dates, data_query, sids, mask), self.load_previous_events(domain, p, dates, data_query, sids, mask), )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/pipeline/loaders/events.py
events.py
from zipline.utils.calendar_utils import get_calendar class ExchangeInfo: """An exchange where assets are traded. Parameters ---------- name : str or None The full name of the exchange, for example 'NEW YORK STOCK EXCHANGE' or 'NASDAQ GLOBAL MARKET'. canonical_name : str The canonical name of the exchange, for example 'NYSE' or 'NASDAQ'. If None this will be the same as the name. country_code : str The country code where the exchange is located. Attributes ---------- name : str or None The full name of the exchange, for example 'NEW YORK STOCK EXCHANGE' or 'NASDAQ GLOBAL MARKET'. canonical_name : str The canonical name of the exchange, for example 'NYSE' or 'NASDAQ'. If None this will be the same as the name. country_code : str The country code where the exchange is located. calendar : TradingCalendar The trading calendar the exchange uses. """ def __init__(self, name, canonical_name, country_code): self.name = name if canonical_name is None: canonical_name = name self.canonical_name = canonical_name self.country_code = country_code.upper() def __repr__(self): return "%s(%r, %r, %r)" % ( type(self).__name__, self.name, self.canonical_name, self.country_code, ) @property def calendar(self): """The trading calendar that this exchange uses.""" return get_calendar(self.canonical_name) def __eq__(self, other): if not isinstance(other, ExchangeInfo): return NotImplemented return all( getattr(self, attr) == getattr(other, attr) for attr in ("name", "canonical_name", "country_code") ) def __ne__(self, other): eq = self == other if eq is NotImplemented: return NotImplemented return not eq
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/assets/exchange_info.py
exchange_info.py
# import array # import binascii # import struct from abc import ABC from collections import deque, namedtuple from functools import partial from numbers import Integral from operator import attrgetter, itemgetter import logging import numpy as np import pandas as pd import sqlalchemy as sa from toolz import ( compose, concat, concatv, curry, groupby, merge, partition_all, sliding_window, valmap, ) from zipline.errors import ( EquitiesNotFound, FutureContractsNotFound, MultipleSymbolsFound, MultipleSymbolsFoundForFuzzySymbol, MultipleValuesFoundForField, MultipleValuesFoundForSid, NoValueForSid, SameSymbolUsedAcrossCountries, SidsNotFound, SymbolNotFound, ValueNotFoundForField, ) from zipline.utils.functional import invert from zipline.utils.memoize import lazyval from zipline.utils.numpy_utils import as_column from zipline.utils.preprocess import preprocess from zipline.utils.sqlite_utils import coerce_string_to_eng, group_into_chunks from . import Asset, Equity, Future from .asset_db_schema import ASSET_DB_VERSION from .asset_writer import ( SQLITE_MAX_VARIABLE_NUMBER, asset_db_table_names, check_version_info, split_delimited_symbol, symbol_columns as SYMBOL_COLUMNS, ) from .continuous_futures import ( ADJUSTMENT_STYLES, CHAIN_PREDICATES, ContinuousFuture, OrderedContracts, ) from .exchange_info import ExchangeInfo log = logging.getLogger("assets.py") # A set of fields that need to be converted to strings before building an # Asset to avoid unicode fields # _asset_str_fields = frozenset( # { # "symbol", # "asset_name", # "exchange", # } # ) # A set of fields that need to be converted to timestamps in UTC _asset_timestamp_fields = frozenset( { "start_date", "end_date", "first_traded", "notice_date", "expiration_date", "auto_close_date", } ) OwnershipPeriod = namedtuple("OwnershipPeriod", "start end sid value") def merge_ownership_periods(mappings): """Given a dict of mappings where the values are lists of OwnershipPeriod objects, returns a dict with the same structure with new OwnershipPeriod objects adjusted so that the periods have no gaps. Orders the periods chronologically, and pushes forward the end date of each period to match the start date of the following period. The end date of the last period pushed forward to the max Timestamp. """ return valmap( lambda v: tuple( OwnershipPeriod( a.start, b.start, a.sid, a.value, ) for a, b in sliding_window( 2, concatv( sorted(v), # concat with a fake ownership object to make the last # end date be max timestamp [ OwnershipPeriod( pd.Timestamp.max, None, None, None, ) ], ), ) ), mappings, ) def _build_ownership_map_from_rows(rows, key_from_row, value_from_row): mappings = {} for row in rows: mappings.setdefault(key_from_row(row), [],).append( OwnershipPeriod( # TODO FIX TZ MESS # pd.Timestamp(row.start_date, unit="ns", tz="utc"), # pd.Timestamp(row.end_date, unit="ns", tz="utc"), pd.Timestamp(row.start_date, unit="ns", tz=None), pd.Timestamp(row.end_date, unit="ns", tz=None), row.sid, value_from_row(row), ), ) return merge_ownership_periods(mappings) def build_ownership_map(conn, table, key_from_row, value_from_row): """Builds a dict mapping to lists of OwnershipPeriods, from a db table.""" return _build_ownership_map_from_rows( conn.execute(sa.select(table.c)).fetchall(), key_from_row, value_from_row, ) def build_grouped_ownership_map(conn, table, key_from_row, value_from_row, group_key): """Builds a dict mapping group keys to maps of keys to lists of OwnershipPeriods, from a db table. """ grouped_rows = groupby( group_key, conn.execute(sa.select(table.c)).fetchall(), ) return { key: _build_ownership_map_from_rows( rows, key_from_row, value_from_row, ) for key, rows in grouped_rows.items() } @curry def _filter_kwargs(names, dict_): """Filter out kwargs from a dictionary. Parameters ---------- names : set[str] The names to select from ``dict_``. dict_ : dict[str, any] The dictionary to select from. Returns ------- kwargs : dict[str, any] ``dict_`` where the keys intersect with ``names`` and the values are not None. """ return {k: v for k, v in dict_.items() if k in names and v is not None} _filter_future_kwargs = _filter_kwargs(Future._kwargnames) _filter_equity_kwargs = _filter_kwargs(Equity._kwargnames) def _convert_asset_timestamp_fields(dict_): """Takes in a dict of Asset init args and converts dates to pd.Timestamps""" for key in _asset_timestamp_fields & dict_.keys(): # TODO FIX TZ MESS # value = pd.Timestamp(dict_[key], tz="UTC") value = pd.Timestamp(dict_[key], tz=None) dict_[key] = None if pd.isnull(value) else value return dict_ SID_TYPE_IDS = { # Asset would be 0, ContinuousFuture: 1, } CONTINUOUS_FUTURE_ROLL_STYLE_IDS = { "calendar": 0, "volume": 1, } CONTINUOUS_FUTURE_ADJUSTMENT_STYLE_IDS = { None: 0, "div": 1, "add": 2, } def _encode_continuous_future_sid(root_symbol, offset, roll_style, adjustment_style): # Generate a unique int identifier values = ( SID_TYPE_IDS[ContinuousFuture], offset, *[ord(x) for x in root_symbol.upper()], CONTINUOUS_FUTURE_ROLL_STYLE_IDS[roll_style], CONTINUOUS_FUTURE_ADJUSTMENT_STYLE_IDS[adjustment_style], ) return int("".join([str(x) for x in values])) Lifetimes = namedtuple("Lifetimes", "sid start end") class AssetFinder: """An AssetFinder is an interface to a database of Asset metadata written by an ``AssetDBWriter``. This class provides methods for looking up assets by unique integer id or by symbol. For historical reasons, we refer to these unique ids as 'sids'. Parameters ---------- engine : str or SQLAlchemy.engine An engine with a connection to the asset database to use, or a string that can be parsed by SQLAlchemy as a URI. future_chain_predicates : dict A dict mapping future root symbol to a predicate function which accepts a contract as a parameter and returns whether or not the contract should be included in the chain. See Also -------- :class:`zipline.assets.AssetDBWriter` """ @preprocess(engine=coerce_string_to_eng(require_exists=True)) def __init__(self, engine, future_chain_predicates=CHAIN_PREDICATES): self.engine = engine metadata_obj = sa.MetaData() metadata_obj.reflect(engine, only=asset_db_table_names) for table_name in asset_db_table_names: setattr(self, table_name, metadata_obj.tables[table_name]) # Check the version info of the db for compatibility with engine.connect() as conn: check_version_info(conn, self.version_info, ASSET_DB_VERSION) # Cache for lookup of assets by sid, the objects in the asset lookup # may be shared with the results from equity and future lookup caches. # # The top level cache exists to minimize lookups on the asset type # routing. # # The caches are read through, i.e. accessing an asset through # retrieve_asset will populate the cache on first retrieval. self._asset_cache = {} self._asset_type_cache = {} self._caches = (self._asset_cache, self._asset_type_cache) self._future_chain_predicates = ( future_chain_predicates if future_chain_predicates is not None else {} ) self._ordered_contracts = {} # Populated on first call to `lifetimes`. self._asset_lifetimes = {} @lazyval def exchange_info(self): with self.engine.connect() as conn: es = conn.execute(sa.select(self.exchanges.c)).fetchall() return { name: ExchangeInfo(name, canonical_name, country_code) for name, canonical_name, country_code in es } @lazyval def symbol_ownership_map(self): out = {} for mappings in self.symbol_ownership_maps_by_country_code.values(): for key, ownership_periods in mappings.items(): out.setdefault(key, []).extend(ownership_periods) return out @lazyval def symbol_ownership_maps_by_country_code(self): with self.engine.connect() as conn: query = sa.select( self.equities.c.sid, self.exchanges.c.country_code, ).where(self.equities.c.exchange == self.exchanges.c.exchange) sid_to_country_code = dict(conn.execute(query).fetchall()) return build_grouped_ownership_map( conn, table=self.equity_symbol_mappings, key_from_row=(lambda row: (row.company_symbol, row.share_class_symbol)), value_from_row=lambda row: row.symbol, group_key=lambda row: sid_to_country_code[row.sid], ) @lazyval def country_codes(self): return tuple(self.symbol_ownership_maps_by_country_code) @staticmethod def _fuzzify_symbol_ownership_map(ownership_map): fuzzy_mappings = {} for (cs, scs), owners in ownership_map.items(): fuzzy_owners = fuzzy_mappings.setdefault( cs + scs, [], ) fuzzy_owners.extend(owners) fuzzy_owners.sort() return fuzzy_mappings @lazyval def fuzzy_symbol_ownership_map(self): return self._fuzzify_symbol_ownership_map(self.symbol_ownership_map) @lazyval def fuzzy_symbol_ownership_maps_by_country_code(self): return valmap( self._fuzzify_symbol_ownership_map, self.symbol_ownership_maps_by_country_code, ) @lazyval def equity_supplementary_map(self): with self.engine.connect() as conn: return build_ownership_map( conn, table=self.equity_supplementary_mappings, key_from_row=lambda row: (row.field, row.value), value_from_row=lambda row: row.value, ) @lazyval def equity_supplementary_map_by_sid(self): with self.engine.connect() as conn: return build_ownership_map( conn, table=self.equity_supplementary_mappings, key_from_row=lambda row: (row.field, row.sid), value_from_row=lambda row: row.value, ) def lookup_asset_types(self, sids): """Retrieve asset types for a list of sids. Parameters ---------- sids : list[int] Returns ------- types : dict[sid -> str or None] Asset types for the provided sids. """ found = {} missing = set() for sid in sids: try: found[sid] = self._asset_type_cache[sid] except KeyError: missing.add(sid) if not missing: return found router_cols = self.asset_router.c with self.engine.connect() as conn: for assets in group_into_chunks(missing): query = sa.select(router_cols.sid, router_cols.asset_type).where( self.asset_router.c.sid.in_(map(int, assets)) ) for sid, type_ in conn.execute(query).fetchall(): missing.remove(sid) found[sid] = self._asset_type_cache[sid] = type_ for sid in missing: found[sid] = self._asset_type_cache[sid] = None return found def group_by_type(self, sids): """Group a list of sids by asset type. Parameters ---------- sids : list[int] Returns ------- types : dict[str or None -> list[int]] A dict mapping unique asset types to lists of sids drawn from sids. If we fail to look up an asset, we assign it a key of None. """ return invert(self.lookup_asset_types(sids)) def retrieve_asset(self, sid, default_none=False): """ Retrieve the Asset for a given sid. """ try: asset = self._asset_cache[sid] if asset is None and not default_none: raise SidsNotFound(sids=[sid]) return asset except KeyError: return self.retrieve_all((sid,), default_none=default_none)[0] def retrieve_all(self, sids, default_none=False): """Retrieve all assets in `sids`. Parameters ---------- sids : iterable of int Assets to retrieve. default_none : bool If True, return None for failed lookups. If False, raise `SidsNotFound`. Returns ------- assets : list[Asset or None] A list of the same length as `sids` containing Assets (or Nones) corresponding to the requested sids. Raises ------ SidsNotFound When a requested sid is not found and default_none=False. """ sids = list(sids) hits, missing, failures = {}, set(), [] for sid in sids: try: asset = self._asset_cache[sid] if not default_none and asset is None: # Bail early if we've already cached that we don't know # about an asset. raise SidsNotFound(sids=[sid]) hits[sid] = asset except KeyError: missing.add(sid) # All requests were cache hits. Return requested sids in order. if not missing: return [hits[sid] for sid in sids] update_hits = hits.update # Look up cache misses by type. type_to_assets = self.group_by_type(missing) # Handle failures failures = {failure: None for failure in type_to_assets.pop(None, ())} update_hits(failures) self._asset_cache.update(failures) if failures and not default_none: raise SidsNotFound(sids=list(failures)) # We don't update the asset cache here because it should already be # updated by `self.retrieve_equities`. update_hits(self.retrieve_equities(type_to_assets.pop("equity", ()))) update_hits(self.retrieve_futures_contracts(type_to_assets.pop("future", ()))) # We shouldn't know about any other asset types. if type_to_assets: raise AssertionError("Found asset types: %s" % list(type_to_assets.keys())) return [hits[sid] for sid in sids] def retrieve_equities(self, sids): """Retrieve Equity objects for a list of sids. Users generally shouldn't need to this method (instead, they should prefer the more general/friendly `retrieve_assets`), but it has a documented interface and tests because it's used upstream. Parameters ---------- sids : iterable[int] Returns ------- equities : dict[int -> Equity] Raises ------ EquitiesNotFound When any requested asset isn't found. """ return self._retrieve_assets(sids, self.equities, Equity) def _retrieve_equity(self, sid): return self.retrieve_equities((sid,))[sid] def retrieve_futures_contracts(self, sids): """Retrieve Future objects for an iterable of sids. Users generally shouldn't need to this method (instead, they should prefer the more general/friendly `retrieve_assets`), but it has a documented interface and tests because it's used upstream. Parameters ---------- sids : iterable[int] Returns ------- equities : dict[int -> Equity] Raises ------ EquitiesNotFound When any requested asset isn't found. """ return self._retrieve_assets(sids, self.futures_contracts, Future) @staticmethod def _select_assets_by_sid(asset_tbl, sids): return sa.select(asset_tbl).where(asset_tbl.c.sid.in_(map(int, sids))) @staticmethod def _select_asset_by_symbol(asset_tbl, symbol): return sa.select(asset_tbl).where(asset_tbl.c.symbol == symbol) def _select_most_recent_symbols_chunk(self, sid_group): """Retrieve the most recent symbol for a set of sids. Parameters ---------- sid_group : iterable[int] The sids to lookup. The length of this sequence must be less than or equal to SQLITE_MAX_VARIABLE_NUMBER because the sids will be passed in as sql bind params. Returns ------- sel : Selectable The sqlalchemy selectable that will query for the most recent symbol for each sid. Notes ----- This is implemented as an inner select of the columns of interest ordered by the end date of the (sid, symbol) mapping. We then group that inner select on the sid with no aggregations to select the last row per group which gives us the most recently active symbol for all of the sids. """ cols = self.equity_symbol_mappings.c # These are the columns we actually want. data_cols = (cols.sid,) + tuple(cols[name] for name in SYMBOL_COLUMNS) # Also select the max of end_date so that all non-grouped fields take # on the value associated with the max end_date. # to_select = data_cols + (sa.func.max(cols.end_date),) func_rank = ( sa.func.rank() .over(order_by=cols.end_date.desc(), partition_by=cols.sid) .label("rnk") ) to_select = data_cols + (func_rank,) subquery = ( sa.select(*to_select) .where(cols.sid.in_(map(int, sid_group))) .subquery("sq") ) query = ( sa.select(subquery.columns) .filter(subquery.c.rnk == 1) .select_from(subquery) ) return query def _lookup_most_recent_symbols(self, sids): with self.engine.connect() as conn: return { row.sid: {c: row[c] for c in SYMBOL_COLUMNS} for row in concat( conn.execute(self._select_most_recent_symbols_chunk(sid_group)) .mappings() .fetchall() for sid_group in partition_all(SQLITE_MAX_VARIABLE_NUMBER, sids) ) } def _retrieve_asset_dicts(self, sids, asset_tbl, querying_equities): if not sids: return if querying_equities: def mkdict( row, exchanges=self.exchange_info, symbols=self._lookup_most_recent_symbols(sids), ): d = dict(row) d["exchange_info"] = exchanges[d.pop("exchange")] # we are not required to have a symbol for every asset, if # we don't have any symbols we will just use the empty string return merge(d, symbols.get(row["sid"], {})) else: def mkdict(row, exchanges=self.exchange_info): d = dict(row) d["exchange_info"] = exchanges[d.pop("exchange")] return d for assets in group_into_chunks(sids): # Load misses from the db. query = self._select_assets_by_sid(asset_tbl, assets) with self.engine.connect() as conn: for row in conn.execute(query).mappings().fetchall(): yield _convert_asset_timestamp_fields(mkdict(row)) def _retrieve_assets(self, sids, asset_tbl, asset_type): """Internal function for loading assets from a table. This should be the only method of `AssetFinder` that writes Assets into self._asset_cache. Parameters --------- sids : iterable of int Asset ids to look up. asset_tbl : sqlalchemy.Table Table from which to query assets. asset_type : type Type of asset to be constructed. Returns ------- assets : dict[int -> Asset] Dict mapping requested sids to the retrieved assets. """ # Fastpath for empty request. if not sids: return {} cache = self._asset_cache hits = {} querying_equities = issubclass(asset_type, Equity) filter_kwargs = ( _filter_equity_kwargs if querying_equities else _filter_future_kwargs ) rows = self._retrieve_asset_dicts(sids, asset_tbl, querying_equities) for row in rows: sid = row["sid"] asset = asset_type(**filter_kwargs(row)) hits[sid] = cache[sid] = asset # If we get here, it means something in our code thought that a # particular sid was an equity/future and called this function with a # concrete type, but we couldn't actually resolve the asset. This is # an error in our code, not a user-input error. misses = tuple(set(sids) - hits.keys()) if misses: if querying_equities: raise EquitiesNotFound(sids=misses) else: raise FutureContractsNotFound(sids=misses) return hits def _lookup_symbol_strict(self, ownership_map, multi_country, symbol, as_of_date): """Resolve a symbol to an asset object without fuzzy matching. Parameters ---------- ownership_map : dict[(str, str), list[OwnershipPeriod]] The mapping from split symbols to ownership periods. multi_country : bool Does this mapping span multiple countries? symbol : str The symbol to look up. as_of_date : datetime or None If multiple assets have held this sid, which day should the resolution be checked against? If this value is None and multiple sids have held the ticker, then a MultipleSymbolsFound error will be raised. Returns ------- asset : Asset The asset that held the given symbol. Raises ------ SymbolNotFound Raised when the symbol or symbol as_of_date pair do not map to any assets. MultipleSymbolsFound Raised when multiple assets held the symbol. This happens if multiple assets held the symbol at disjoint times and ``as_of_date`` is None, or if multiple assets held the symbol at the same time and``multi_country`` is True. Notes ----- The resolution algorithm is as follows: - Split the symbol into the company and share class component. - Do a dictionary lookup of the ``(company_symbol, share_class_symbol)`` in the provided ownership map. - If there is no entry in the dictionary, we don't know about this symbol so raise a ``SymbolNotFound`` error. - If ``as_of_date`` is None: - If more there is more than one owner, raise ``MultipleSymbolsFound`` - Otherwise, because the list mapped to a symbol cannot be empty, return the single asset. - Iterate through all of the owners: - If the ``as_of_date`` is between the start and end of the ownership period: - If multi_country is False, return the found asset. - Otherwise, put the asset in a list. - At the end of the loop, if there are no candidate assets, raise a ``SymbolNotFound``. - If there is exactly one candidate, return it. - Othewise, raise ``MultipleSymbolsFound`` because the ticker is not unique across countries. """ # split the symbol into the components, if there are no # company/share class parts then share_class_symbol will be empty company_symbol, share_class_symbol = split_delimited_symbol(symbol) try: owners = ownership_map[company_symbol, share_class_symbol] assert owners, "empty owners list for %r" % symbol except KeyError as exc: # no equity has ever held this symbol raise SymbolNotFound(symbol=symbol) from exc if not as_of_date: # exactly one equity has ever held this symbol, we may resolve # without the date if len(owners) == 1: return self.retrieve_asset(owners[0].sid) options = {self.retrieve_asset(owner.sid) for owner in owners} if multi_country: country_codes = map(attrgetter("country_code"), options) if len(set(country_codes)) > 1: raise SameSymbolUsedAcrossCountries( symbol=symbol, options=dict(zip(country_codes, options)) ) # more than one equity has held this ticker, this # is ambiguous without the date raise MultipleSymbolsFound(symbol=symbol, options=options) options = [] country_codes = [] for start, end, sid, _ in owners: if start <= as_of_date < end: # find the equity that owned it on the given asof date asset = self.retrieve_asset(sid) # if this asset owned the symbol on this asof date and we are # only searching one country, return that asset if not multi_country: return asset else: options.append(asset) country_codes.append(asset.country_code) if not options: # no equity held the ticker on the given asof date raise SymbolNotFound(symbol=symbol) # if there is one valid option given the asof date, return that option if len(options) == 1: return options[0] # if there's more than one option given the asof date, a country code # must be passed to resolve the symbol to an asset raise SameSymbolUsedAcrossCountries( symbol=symbol, options=dict(zip(country_codes, options)) ) def _lookup_symbol_fuzzy(self, ownership_map, multi_country, symbol, as_of_date): symbol = symbol.upper() company_symbol, share_class_symbol = split_delimited_symbol(symbol) try: owners = ownership_map[company_symbol + share_class_symbol] assert owners, "empty owners list for %r" % symbol except KeyError as exc: # no equity has ever held a symbol matching the fuzzy symbol raise SymbolNotFound(symbol=symbol) from exc if not as_of_date: if len(owners) == 1: # only one valid match return self.retrieve_asset(owners[0].sid) options = [] for _, _, sid, sym in owners: if sym == symbol: # there are multiple options, look for exact matches options.append(self.retrieve_asset(sid)) if len(options) == 1: # there was only one exact match return options[0] # there is more than one exact match for this fuzzy symbol raise MultipleSymbolsFoundForFuzzySymbol( symbol=symbol, options=self.retrieve_all(owner.sid for owner in owners), ) options = {} for start, end, sid, sym in owners: if start <= as_of_date < end: # see which fuzzy symbols were owned on the asof date. options[sid] = sym if not options: # no equity owned the fuzzy symbol on the date requested raise SymbolNotFound(symbol=symbol) sid_keys = list(options.keys()) # If there was only one owner, or there is a fuzzy and non-fuzzy which # map to the same sid, return it. if len(options) == 1: return self.retrieve_asset(sid_keys[0]) exact_options = [] for sid, sym in options.items(): # Possible to have a scenario where multiple fuzzy matches have the # same date. Want to find the one where symbol and share class # match. if (company_symbol, share_class_symbol) == split_delimited_symbol(sym): asset = self.retrieve_asset(sid) if not multi_country: return asset else: exact_options.append(asset) if len(exact_options) == 1: return exact_options[0] # multiple equities held tickers matching the fuzzy ticker but # there are no exact matches raise MultipleSymbolsFoundForFuzzySymbol( symbol=symbol, options=self.retrieve_all(owner.sid for owner in owners), ) def _choose_fuzzy_symbol_ownership_map(self, country_code): if country_code is None: return self.fuzzy_symbol_ownership_map return self.fuzzy_symbol_ownership_maps_by_country_code.get( country_code, ) def _choose_symbol_ownership_map(self, country_code): if country_code is None: return self.symbol_ownership_map return self.symbol_ownership_maps_by_country_code.get(country_code) def lookup_symbol(self, symbol, as_of_date, fuzzy=False, country_code=None): """Lookup an equity by symbol. Parameters ---------- symbol : str The ticker symbol to resolve. as_of_date : datetime.datetime or None Look up the last owner of this symbol as of this datetime. If ``as_of_date`` is None, then this can only resolve the equity if exactly one equity has ever owned the ticker. fuzzy : bool, optional Should fuzzy symbol matching be used? Fuzzy symbol matching attempts to resolve differences in representations for shareclasses. For example, some people may represent the ``A`` shareclass of ``BRK`` as ``BRK.A``, where others could write ``BRK_A``. country_code : str or None, optional The country to limit searches to. If not provided, the search will span all countries which increases the likelihood of an ambiguous lookup. Returns ------- equity : Equity The equity that held ``symbol`` on the given ``as_of_date``, or the only equity to hold ``symbol`` if ``as_of_date`` is None. Raises ------ SymbolNotFound Raised when no equity has ever held the given symbol. MultipleSymbolsFound Raised when no ``as_of_date`` is given and more than one equity has held ``symbol``. This is also raised when ``fuzzy=True`` and there are multiple candidates for the given ``symbol`` on the ``as_of_date``. Also raised when no ``country_code`` is given and the symbol is ambiguous across multiple countries. """ if symbol is None: raise TypeError( "Cannot lookup asset for symbol of None for " "as of date %s." % as_of_date ) if fuzzy: f = self._lookup_symbol_fuzzy mapping = self._choose_fuzzy_symbol_ownership_map(country_code) else: f = self._lookup_symbol_strict mapping = self._choose_symbol_ownership_map(country_code) if mapping is None: raise SymbolNotFound(symbol=symbol) return f( mapping, country_code is None, symbol, as_of_date, ) def lookup_symbols(self, symbols, as_of_date, fuzzy=False, country_code=None): """Lookup a list of equities by symbol. Equivalent to:: [finder.lookup_symbol(s, as_of, fuzzy) for s in symbols] but potentially faster because repeated lookups are memoized. Parameters ---------- symbols : sequence[str] Sequence of ticker symbols to resolve. as_of_date : pd.Timestamp Forwarded to ``lookup_symbol``. fuzzy : bool, optional Forwarded to ``lookup_symbol``. country_code : str or None, optional The country to limit searches to. If not provided, the search will span all countries which increases the likelihood of an ambiguous lookup. Returns ------- equities : list[Equity] """ if not symbols: return [] multi_country = country_code is None if fuzzy: f = self._lookup_symbol_fuzzy mapping = self._choose_fuzzy_symbol_ownership_map(country_code) else: f = self._lookup_symbol_strict mapping = self._choose_symbol_ownership_map(country_code) if mapping is None: raise SymbolNotFound(symbol=symbols[0]) memo = {} out = [] append_output = out.append for sym in symbols: if sym in memo: append_output(memo[sym]) else: equity = memo[sym] = f( mapping, multi_country, sym, as_of_date, ) append_output(equity) return out def lookup_future_symbol(self, symbol): """Lookup a future contract by symbol. Parameters ---------- symbol : str The symbol of the desired contract. Returns ------- future : Future The future contract referenced by ``symbol``. Raises ------ SymbolNotFound Raised when no contract named 'symbol' is found. """ with self.engine.connect() as conn: data = ( conn.execute( self._select_asset_by_symbol(self.futures_contracts, symbol) ) .mappings() .fetchone() ) # If no data found, raise an exception if not data: raise SymbolNotFound(symbol=symbol) return self.retrieve_asset(data["sid"]) def lookup_by_supplementary_field(self, field_name, value, as_of_date): try: owners = self.equity_supplementary_map[ field_name, value, ] assert owners, "empty owners list for field %r (sid: %r)" % ( field_name, value, ) except KeyError as exc: # no equity has ever held this value raise ValueNotFoundForField(field=field_name, value=value) from exc if not as_of_date: if len(owners) > 1: # more than one equity has held this value, this is ambigious # without the date raise MultipleValuesFoundForField( field=field_name, value=value, options=set( map( compose(self.retrieve_asset, attrgetter("sid")), owners, ) ), ) # exactly one equity has ever held this value, we may resolve # without the date return self.retrieve_asset(owners[0].sid) for start, end, sid, _ in owners: if start <= as_of_date < end: # find the equity that owned it on the given asof date return self.retrieve_asset(sid) # no equity held the value on the given asof date raise ValueNotFoundForField(field=field_name, value=value) def get_supplementary_field(self, sid, field_name, as_of_date): """Get the value of a supplementary field for an asset. Parameters ---------- sid : int The sid of the asset to query. field_name : str Name of the supplementary field. as_of_date : pd.Timestamp, None The last known value on this date is returned. If None, a value is returned only if we've only ever had one value for this sid. If None and we've had multiple values, MultipleValuesFoundForSid is raised. Raises ------ NoValueForSid If we have no values for this asset, or no values was known on this as_of_date. MultipleValuesFoundForSid If we have had multiple values for this asset over time, and None was passed for as_of_date. """ try: periods = self.equity_supplementary_map_by_sid[ field_name, sid, ] assert periods, "empty periods list for field %r and sid %r" % ( field_name, sid, ) except KeyError: raise NoValueForSid(field=field_name, sid=sid) from KeyError if not as_of_date: if len(periods) > 1: # This equity has held more than one value, this is ambigious # without the date raise MultipleValuesFoundForSid( field=field_name, sid=sid, options={p.value for p in periods}, ) # this equity has only ever held this value, we may resolve # without the date return periods[0].value for start, end, _, value in periods: if start <= as_of_date < end: return value # Could not find a value for this sid on the as_of_date. raise NoValueForSid(field=field_name, sid=sid) def _get_contract_sids(self, root_symbol): fc_cols = self.futures_contracts.c with self.engine.connect() as conn: return ( conn.execute( sa.select( fc_cols.sid, ) .where( (fc_cols.root_symbol == root_symbol) & (fc_cols.start_date != pd.NaT.value) ) .order_by(fc_cols.sid) ) .scalars() .fetchall() ) def _get_root_symbol_exchange(self, root_symbol): fc_cols = self.futures_root_symbols.c fields = (fc_cols.exchange,) with self.engine.connect() as conn: exchange = conn.execute( sa.select(*fields).where(fc_cols.root_symbol == root_symbol) ).scalar() if exchange is not None: return exchange else: raise SymbolNotFound(symbol=root_symbol) def get_ordered_contracts(self, root_symbol): try: return self._ordered_contracts[root_symbol] except KeyError: contract_sids = self._get_contract_sids(root_symbol) contracts = deque(self.retrieve_all(contract_sids)) chain_predicate = self._future_chain_predicates.get(root_symbol, None) oc = OrderedContracts(root_symbol, contracts, chain_predicate) self._ordered_contracts[root_symbol] = oc return oc def create_continuous_future(self, root_symbol, offset, roll_style, adjustment): if adjustment not in ADJUSTMENT_STYLES: raise ValueError( f"Invalid adjustment style {adjustment!r}. Allowed adjustment styles are " f"{list(ADJUSTMENT_STYLES)}." ) oc = self.get_ordered_contracts(root_symbol) exchange = self._get_root_symbol_exchange(root_symbol) sid = _encode_continuous_future_sid(root_symbol, offset, roll_style, None) mul_sid = _encode_continuous_future_sid(root_symbol, offset, roll_style, "div") add_sid = _encode_continuous_future_sid(root_symbol, offset, roll_style, "add") cf_template = partial( ContinuousFuture, root_symbol=root_symbol, offset=offset, roll_style=roll_style, start_date=oc.start_date, end_date=oc.end_date, exchange_info=self.exchange_info[exchange], ) cf = cf_template(sid=sid) mul_cf = cf_template(sid=mul_sid, adjustment="mul") add_cf = cf_template(sid=add_sid, adjustment="add") self._asset_cache[cf.sid] = cf self._asset_cache[mul_cf.sid] = mul_cf self._asset_cache[add_cf.sid] = add_cf return {None: cf, "mul": mul_cf, "add": add_cf}[adjustment] def _make_sids(tblattr): def _(self): with self.engine.connect() as conn: return tuple( conn.execute(sa.select(getattr(self, tblattr).c.sid)) .scalars() .fetchall() ) return _ sids = property( _make_sids("asset_router"), doc="All the sids in the asset finder.", ) equities_sids = property( _make_sids("equities"), doc="All of the sids for equities in the asset finder.", ) futures_sids = property( _make_sids("futures_contracts"), doc="All of the sids for futures consracts in the asset finder.", ) del _make_sids def _lookup_generic_scalar(self, obj, as_of_date, country_code, matches, missing): """ Convert asset_convertible to an asset. On success, append to matches. On failure, append to missing. """ result = self._lookup_generic_scalar_helper( obj, as_of_date, country_code, ) if result is not None: matches.append(result) else: missing.append(obj) def _lookup_generic_scalar_helper(self, obj, as_of_date, country_code): if isinstance(obj, (Asset, ContinuousFuture)): return obj if isinstance(obj, Integral): try: return self.retrieve_asset(int(obj)) except SidsNotFound: return None if isinstance(obj, str): # Try to look up as an equity first. try: return self.lookup_symbol( symbol=obj, as_of_date=as_of_date, country_code=country_code ) except SymbolNotFound: # Fall back to lookup as a Future try: # TODO: Support country_code for future_symbols? return self.lookup_future_symbol(obj) except SymbolNotFound: return None raise NotAssetConvertible("Input was %s, not AssetConvertible." % obj) def lookup_generic(self, obj, as_of_date, country_code): """Convert an object into an Asset or sequence of Assets. This method exists primarily as a convenience for implementing user-facing APIs that can handle multiple kinds of input. It should not be used for internal code where we already know the expected types of our inputs. Parameters ---------- obj : int, str, Asset, ContinuousFuture, or iterable The object to be converted into one or more Assets. Integers are interpreted as sids. Strings are interpreted as tickers. Assets and ContinuousFutures are returned unchanged. as_of_date : pd.Timestamp or None Timestamp to use to disambiguate ticker lookups. Has the same semantics as in `lookup_symbol`. country_code : str or None ISO-3166 country code to use to disambiguate ticker lookups. Has the same semantics as in `lookup_symbol`. Returns ------- matches, missing : tuple ``matches`` is the result of the conversion. ``missing`` is a list containing any values that couldn't be resolved. If ``obj`` is not an iterable, ``missing`` will be an empty list. """ matches = [] missing = [] # Interpret input as scalar. if isinstance(obj, (AssetConvertible, ContinuousFuture)): self._lookup_generic_scalar( obj=obj, as_of_date=as_of_date, country_code=country_code, matches=matches, missing=missing, ) try: return matches[0], missing except IndexError: if hasattr(obj, "__int__"): raise SidsNotFound(sids=[obj]) from IndexError else: raise SymbolNotFound(symbol=obj) from IndexError # Interpret input as iterable. try: iterator = iter(obj) except TypeError: raise NotAssetConvertible( "Input was not a AssetConvertible or iterable of AssetConvertible." ) from TypeError for obj in iterator: self._lookup_generic_scalar( obj=obj, as_of_date=as_of_date, country_code=country_code, matches=matches, missing=missing, ) return matches, missing def _compute_asset_lifetimes(self, **kwargs): """Compute and cache a recarray of asset lifetimes""" sids = starts = ends = [] equities_cols = self.equities.c exchanges_cols = self.exchanges.c if len(kwargs) == 1: if "country_codes" in kwargs.keys(): condt = exchanges_cols.country_code.in_(kwargs["country_codes"]) if "exchange_names" in kwargs.keys(): condt = exchanges_cols.exchange.in_(kwargs["exchange_names"]) with self.engine.connect() as conn: results = conn.execute( sa.select( equities_cols.sid, equities_cols.start_date, equities_cols.end_date, ).where( (exchanges_cols.exchange == equities_cols.exchange) & (condt) ) ).fetchall() if results: sids, starts, ends = zip(*results) sid = np.array(sids, dtype="i8") start = np.array(starts, dtype="f8") end = np.array(ends, dtype="f8") start[np.isnan(start)] = 0 # convert missing starts to 0 end[np.isnan(end)] = np.iinfo(int).max # convert missing end to INTMAX return Lifetimes(sid, start.astype("i8"), end.astype("i8")) def lifetimes(self, dates, include_start_date, country_codes): """Compute a DataFrame representing asset lifetimes for the specified date range. Parameters ---------- dates : pd.DatetimeIndex The dates for which to compute lifetimes. include_start_date : bool Whether or not to count the asset as alive on its start_date. This is useful in a backtesting context where `lifetimes` is being used to signify "do I have data for this asset as of the morning of this date?" For many financial metrics, (e.g. daily close), data isn't available for an asset until the end of the asset's first day. country_codes : iterable[str] The country codes to get lifetimes for. Returns ------- lifetimes : pd.DataFrame A frame of dtype bool with `dates` as index and an Int64Index of assets as columns. The value at `lifetimes.loc[date, asset]` will be True iff `asset` existed on `date`. If `include_start_date` is False, then lifetimes.loc[date, asset] will be false when date == asset.start_date. See Also -------- numpy.putmask zipline.pipeline.engine.SimplePipelineEngine._compute_root_mask """ if isinstance(country_codes, str): raise TypeError( "Got string {!r} instead of an iterable of strings in " "AssetFinder.lifetimes.".format(country_codes), ) # normalize to a cache-key so that we can memoize results. country_codes = frozenset(country_codes) lifetimes = self._asset_lifetimes.get(country_codes) if lifetimes is None: self._asset_lifetimes[ country_codes ] = lifetimes = self._compute_asset_lifetimes(country_codes=country_codes) raw_dates = as_column(dates.asi8) if include_start_date: mask = lifetimes.start <= raw_dates else: mask = lifetimes.start < raw_dates mask &= raw_dates <= lifetimes.end return pd.DataFrame(mask, index=dates, columns=lifetimes.sid) def equities_sids_for_country_code(self, country_code): """Return all of the sids for a given country. Parameters ---------- country_code : str An ISO 3166 alpha-2 country code. Returns ------- tuple[int] The sids whose exchanges are in this country. """ sids = self._compute_asset_lifetimes(country_codes=[country_code]).sid return tuple(sids.tolist()) def equities_sids_for_exchange_name(self, exchange_name): """Return all of the sids for a given exchange_name. Parameters ---------- exchange_name : str Returns ------- tuple[int] The sids whose exchanges are in this country. """ sids = self._compute_asset_lifetimes(exchange_names=[exchange_name]).sid return tuple(sids.tolist()) class AssetConvertible(ABC): """ ABC for types that are convertible to integer-representations of Assets. Includes Asset, str, and Integral """ pass AssetConvertible.register(Integral) AssetConvertible.register(Asset) AssetConvertible.register(str) class NotAssetConvertible(ValueError): pass class PricingDataAssociable(ABC): """ABC for types that can be associated with pricing data. Includes Asset, Future, ContinuousFuture """ pass PricingDataAssociable.register(Asset) PricingDataAssociable.register(Future) PricingDataAssociable.register(ContinuousFuture) def was_active(reference_date_value, asset): """Whether or not `asset` was active at the time corresponding to `reference_date_value`. Parameters ---------- reference_date_value : int Date, represented as nanoseconds since EPOCH, for which we want to know if `asset` was alive. This is generally the result of accessing the `value` attribute of a pandas Timestamp. asset : Asset The asset object to check. Returns ------- was_active : bool Whether or not the `asset` existed at the specified time. """ return asset.start_date.value <= reference_date_value <= asset.end_date.value def only_active_assets(reference_date_value, assets): """Filter an iterable of Asset objects down to just assets that were alive at the time corresponding to `reference_date_value`. Parameters ---------- reference_date_value : int Date, represented as nanoseconds since EPOCH, for which we want to know if `asset` was alive. This is generally the result of accessing the `value` attribute of a pandas Timestamp. assets : iterable[Asset] The assets to filter. Returns ------- active_assets : list List of the active assets from `assets` on the requested date. """ return [a for a in assets if was_active(reference_date_value, a)]
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/assets/assets.py
assets.py
from itertools import product from string import ascii_uppercase import pandas as pd from pandas.tseries.offsets import MonthBegin from .futures import CMES_CODE_TO_MONTH def make_rotating_equity_info( num_assets, first_start, frequency, periods_between_starts, asset_lifetime, exchange="TEST", ): """Create a DataFrame representing lifetimes of assets that are constantly rotating in and out of existence. Parameters ---------- num_assets : int How many assets to create. first_start : pd.Timestamp The start date for the first asset. frequency : str or pd.tseries.offsets.Offset (e.g. trading_day) Frequency used to interpret next two arguments. periods_between_starts : int Create a new asset every `frequency` * `periods_between_new` asset_lifetime : int Each asset exists for `frequency` * `asset_lifetime` days. exchange : str, optional The exchange name. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ return pd.DataFrame( { "symbol": [chr(ord("A") + i) for i in range(num_assets)], # Start a new asset every `periods_between_starts` days. "start_date": pd.date_range( first_start, freq=(periods_between_starts * frequency), periods=num_assets, ), # Each asset lasts for `asset_lifetime` days. "end_date": pd.date_range( first_start + (asset_lifetime * frequency), freq=(periods_between_starts * frequency), periods=num_assets, ), "exchange": exchange, }, index=range(num_assets), ) def make_simple_equity_info( sids, start_date, end_date, symbols=None, names=None, exchange="TEST" ): """Create a DataFrame representing assets that exist for the full duration between `start_date` and `end_date`. Parameters ---------- sids : array-like of int start_date : pd.Timestamp, optional end_date : pd.Timestamp, optional symbols : list, optional Symbols to use for the assets. If not provided, symbols are generated from the sequence 'A', 'B', ... names : list, optional Names to use for the assets. If not provided, names are generated by adding " INC." to each of the symbols (which might also be auto-generated). exchange : str, optional The exchange name. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ num_assets = len(sids) if symbols is None: symbols = list(ascii_uppercase[:num_assets]) else: symbols = list(symbols) if names is None: names = [str(s) + " INC." for s in symbols] return pd.DataFrame( { "symbol": symbols, "start_date": pd.to_datetime([start_date] * num_assets), "end_date": pd.to_datetime([end_date] * num_assets), "asset_name": list(names), "exchange": exchange, }, index=list(sids), columns=( "start_date", "end_date", "symbol", "exchange", "asset_name", ), ) def make_simple_multi_country_equity_info( countries_to_sids, countries_to_exchanges, start_date, end_date ): """Create a DataFrame representing assets that exist for the full duration between `start_date` and `end_date`, from multiple countries. """ sids = [] symbols = [] exchanges = [] for country, country_sids in countries_to_sids.items(): exchange = countries_to_exchanges[country] for i, sid in enumerate(country_sids): sids.append(sid) symbols.append("-".join([country, str(i)])) exchanges.append(exchange) return pd.DataFrame( { "symbol": symbols, "start_date": start_date, "end_date": end_date, "asset_name": symbols, "exchange": exchanges, }, index=sids, columns=( "start_date", "end_date", "symbol", "exchange", "asset_name", ), ) def make_jagged_equity_info( num_assets, start_date, first_end, frequency, periods_between_ends, auto_close_delta ): """Create a DataFrame representing assets that all begin at the same start date, but have cascading end dates. Parameters ---------- num_assets : int How many assets to create. start_date : pd.Timestamp The start date for all the assets. first_end : pd.Timestamp The date at which the first equity will end. frequency : str or pd.tseries.offsets.Offset (e.g. trading_day) Frequency used to interpret the next argument. periods_between_ends : int Starting after the first end date, end each asset every `frequency` * `periods_between_ends`. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ frame = pd.DataFrame( { "symbol": [chr(ord("A") + i) for i in range(num_assets)], "start_date": start_date, "end_date": pd.date_range( first_end, freq=(periods_between_ends * frequency), periods=num_assets, ), "exchange": "TEST", }, index=range(num_assets), ) # Explicitly pass None to disable setting the auto_close_date column. if auto_close_delta is not None: # TODO CHECK PerformanceWarning: Non-vectorized DateOffset # being applied to Series or DatetimeIndex frame["auto_close_date"] = frame["end_date"] + auto_close_delta return frame def make_future_info( first_sid, root_symbols, years, notice_date_func, expiration_date_func, start_date_func, month_codes=None, multiplier=500, ): """Create a DataFrame representing futures for `root_symbols` during `year`. Generates a contract per triple of (symbol, year, month) supplied to `root_symbols`, `years`, and `month_codes`. Parameters ---------- first_sid : int The first sid to use for assigning sids to the created contracts. root_symbols : list[str] A list of root symbols for which to create futures. years : list[int or str] Years (e.g. 2014), for which to produce individual contracts. notice_date_func : (Timestamp) -> Timestamp Function to generate notice dates from first of the month associated with asset month code. Return NaT to simulate futures with no notice date. expiration_date_func : (Timestamp) -> Timestamp Function to generate expiration dates from first of the month associated with asset month code. start_date_func : (Timestamp) -> Timestamp, optional Function to generate start dates from first of the month associated with each asset month code. Defaults to a start_date one year prior to the month_code date. month_codes : dict[str -> [1..12]], optional Dictionary of month codes for which to create contracts. Entries should be strings mapped to values from 1 (January) to 12 (December). Default is zipline.futures.CMES_CODE_TO_MONTH multiplier : int The contract multiplier. Returns ------- futures_info : pd.DataFrame DataFrame of futures data suitable for passing to an AssetDBWriter. """ if month_codes is None: month_codes = CMES_CODE_TO_MONTH year_strs = list(map(str, years)) years = [pd.Timestamp(s, tz="UTC") for s in year_strs] # Pairs of string/date like ('K06', 2006-05-01) sorted by year/month # `MonthBegin(month_num - 1)` since the year already starts at month 1. contract_suffix_to_beginning_of_month = tuple( (month_code + year_str[-2:], year + MonthBegin(month_num - 1)) for ((year, year_str), (month_code, month_num)) in product( zip(years, year_strs), sorted(list(month_codes.items()), key=lambda item: item[1]), ) ) contracts = [] parts = product(root_symbols, contract_suffix_to_beginning_of_month) for sid, (root_sym, (suffix, month_begin)) in enumerate(parts, first_sid): contracts.append( { "sid": sid, "root_symbol": root_sym, "symbol": root_sym + suffix, "start_date": start_date_func(month_begin), "notice_date": notice_date_func(month_begin), "expiration_date": expiration_date_func(month_begin), "multiplier": multiplier, "exchange": "TEST", } ) return pd.DataFrame.from_records(contracts, index="sid") def make_commodity_future_info( first_sid, root_symbols, years, month_codes=None, multiplier=500 ): """Make futures testing data that simulates the notice/expiration date behavior of physical commodities like oil. Parameters ---------- first_sid : int The first sid to use for assigning sids to the created contracts. root_symbols : list[str] A list of root symbols for which to create futures. years : list[int or str] Years (e.g. 2014), for which to produce individual contracts. month_codes : dict[str -> [1..12]], optional Dictionary of month codes for which to create contracts. Entries should be strings mapped to values from 1 (January) to 12 (December). Default is zipline.futures.CMES_CODE_TO_MONTH multiplier : int The contract multiplier. Expiration dates are on the 20th of the month prior to the month code. Notice dates are are on the 20th two months prior to the month code. Start dates are one year before the contract month. See Also -------- make_future_info """ nineteen_days = pd.Timedelta(days=19) one_year = pd.Timedelta(days=365) return make_future_info( first_sid=first_sid, root_symbols=root_symbols, years=years, notice_date_func=lambda dt: dt - MonthBegin(2) + nineteen_days, expiration_date_func=lambda dt: dt - MonthBegin(1) + nineteen_days, start_date_func=lambda dt: dt - one_year, month_codes=month_codes, multiplier=multiplier, )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/assets/synthetic.py
synthetic.py
import re from collections import namedtuple import numpy as np import pandas as pd import sqlalchemy as sa from toolz import first from zipline.assets.asset_db_schema import ( ASSET_DB_VERSION, asset_db_table_names, asset_router, ) from zipline.assets.asset_db_schema import equities as equities_table from zipline.assets.asset_db_schema import ( equity_supplementary_mappings as equity_supplementary_mappings_table, ) from zipline.assets.asset_db_schema import equity_symbol_mappings from zipline.assets.asset_db_schema import exchanges as exchanges_table from zipline.assets.asset_db_schema import futures_contracts as futures_contracts_table from zipline.assets.asset_db_schema import futures_root_symbols, metadata, version_info from zipline.errors import AssetDBVersionError from zipline.utils.compat import ExitStack from zipline.utils.preprocess import preprocess from zipline.utils.range import from_tuple, intersecting_ranges from zipline.utils.sqlite_utils import coerce_string_to_eng # Define a namedtuple for use with the load_data and _load_data methods AssetData = namedtuple( "AssetData", ( "equities", "equities_mappings", "futures", "exchanges", "root_symbols", "equity_supplementary_mappings", ), ) SQLITE_MAX_VARIABLE_NUMBER = 999 symbol_columns = frozenset( { "symbol", "company_symbol", "share_class_symbol", } ) mapping_columns = symbol_columns | {"start_date", "end_date"} _index_columns = { "equities": "sid", "equity_supplementary_mappings": "sid", "futures": "sid", "exchanges": "exchange", "root_symbols": "root_symbol", } def _normalize_index_columns_in_place( equities, equity_supplementary_mappings, futures, exchanges, root_symbols ): """ Update dataframes in place to set indentifier columns as indices. For each input frame, if the frame has a column with the same name as its associated index column, set that column as the index. Otherwise, assume the index already contains identifiers. If frames are passed as None, they're ignored. """ for frame, column_name in ( (equities, "sid"), (equity_supplementary_mappings, "sid"), (futures, "sid"), (exchanges, "exchange"), (root_symbols, "root_symbol"), ): if frame is not None and column_name in frame: frame.set_index(column_name, inplace=True) def _default_none(df, column): return None def _no_default(df, column): if not df.empty: raise ValueError("no default value for column %r" % column) # Default values for the equities DataFrame _equities_defaults = { "symbol": _default_none, "asset_name": _default_none, "start_date": lambda df, col: 0, "end_date": lambda df, col: np.iinfo(np.int64).max, "first_traded": _default_none, "auto_close_date": _default_none, # the full exchange name "exchange": _no_default, } # the defaults for ``equities`` in ``write_direct`` _direct_equities_defaults = _equities_defaults.copy() del _direct_equities_defaults["symbol"] # Default values for the futures DataFrame _futures_defaults = { "symbol": _default_none, "root_symbol": _default_none, "asset_name": _default_none, "start_date": lambda df, col: 0, "end_date": lambda df, col: np.iinfo(np.int64).max, "first_traded": _default_none, "exchange": _default_none, "notice_date": _default_none, "expiration_date": _default_none, "auto_close_date": _default_none, "tick_size": _default_none, "multiplier": lambda df, col: 1, } # Default values for the exchanges DataFrame _exchanges_defaults = { "canonical_name": lambda df, col: df.index, "country_code": lambda df, col: "??", } # Default values for the root_symbols DataFrame _root_symbols_defaults = { "sector": _default_none, "description": _default_none, "exchange": _default_none, } # Default values for the equity_supplementary_mappings DataFrame _equity_supplementary_mappings_defaults = { "value": _default_none, "field": _default_none, "start_date": lambda df, col: 0, "end_date": lambda df, col: np.iinfo(np.int64).max, } # Default values for the equity_symbol_mappings DataFrame _equity_symbol_mappings_defaults = { "sid": _no_default, "company_symbol": _default_none, "share_class_symbol": _default_none, "symbol": _default_none, "start_date": lambda df, col: 0, "end_date": lambda df, col: np.iinfo(np.int64).max, } # Fuzzy symbol delimiters that may break up a company symbol and share class _delimited_symbol_delimiters_regex = re.compile(r"[./\-_]") _delimited_symbol_default_triggers = frozenset({np.nan, None, ""}) def split_delimited_symbol(symbol): """ Takes in a symbol that may be delimited and splits it in to a company symbol and share class symbol. Also returns the fuzzy symbol, which is the symbol without any fuzzy characters at all. Parameters ---------- symbol : str The possibly-delimited symbol to be split Returns ------- company_symbol : str The company part of the symbol. share_class_symbol : str The share class part of a symbol. """ # return blank strings for any bad fuzzy symbols, like NaN or None if symbol in _delimited_symbol_default_triggers: return "", "" symbol = symbol.upper() split_list = re.split( pattern=_delimited_symbol_delimiters_regex, string=symbol, maxsplit=1, ) # Break the list up in to its two components, the company symbol and the # share class symbol company_symbol = split_list[0] if len(split_list) > 1: share_class_symbol = split_list[1] else: share_class_symbol = "" return company_symbol, share_class_symbol def _generate_output_dataframe(data_subset, defaults): """ Generates an output dataframe from the given subset of user-provided data, the given column names, and the given default values. Parameters ---------- data_subset : DataFrame A DataFrame, usually from an AssetData object, that contains the user's input metadata for the asset type being processed defaults : dict A dict where the keys are the names of the columns of the desired output DataFrame and the values are a function from dataframe and column name to the default values to insert in the DataFrame if no user data is provided Returns ------- DataFrame A DataFrame containing all user-provided metadata, and default values wherever user-provided metadata was missing """ # The columns provided. cols = set(data_subset.columns) desired_cols = set(defaults) # Drop columns with unrecognised headers. data_subset.drop(cols - desired_cols, axis=1, inplace=True) # Get those columns which we need but # for which no data has been supplied. for col in desired_cols - cols: # write the default value for any missing columns data_subset[col] = defaults[col](data_subset, col) return data_subset def _check_asset_group(group): # workaround until fixed: https://github.com/pandas-dev/pandas/issues/47985 if group.empty: return group row = group.sort_values("end_date").iloc[-1] row.start_date = group.start_date.min() row.end_date = group.end_date.max() row.drop(list(symbol_columns), inplace=True) return row def _format_range(r): return ( str(pd.Timestamp(r.start, unit="ns")), str(pd.Timestamp(r.stop, unit="ns")), ) def _check_symbol_mappings(df, exchanges, asset_exchange): """Check that there are no cases where multiple symbols resolve to the same asset at the same time in the same country. Parameters ---------- df : pd.DataFrame The equity symbol mappings table. exchanges : pd.DataFrame The exchanges table. asset_exchange : pd.Series A series that maps sids to the exchange the asset is in. Raises ------ ValueError Raised when there are ambiguous symbol mappings. """ mappings = df.set_index("sid")[list(mapping_columns)].copy() try: mappings["country_code"] = exchanges["country_code"][ asset_exchange.loc[df["sid"]] ].values except KeyError: mappings["country_code"] = exchanges.set_index("exchange")["country_code"].loc[ asset_exchange.loc[df["sid"]].values ] ambiguous = {} def check_intersections(persymbol): intersections = list( intersecting_ranges( map( from_tuple, zip(persymbol.start_date, persymbol.end_date), ) ) ) if intersections: data = persymbol[["start_date", "end_date"]].astype("datetime64[ns]") # indent the dataframe string, also compute this early because # ``persymbol`` is a view and ``astype`` doesn't copy the index # correctly in pandas 0.22 msg_component = "\n ".join(str(data).splitlines()) ambiguous[persymbol.name] = intersections, msg_component mappings.groupby(["symbol", "country_code"], group_keys=False).apply( check_intersections ) if ambiguous: raise ValueError( "Ambiguous ownership for %d symbol%s, multiple assets held the" " following symbols:\n%s" % ( len(ambiguous), "" if len(ambiguous) == 1 else "s", "\n".join( "%s (%s):\n intersections: %s\n %s" % ( symbol, country_code, tuple(map(_format_range, intersections)), cs, ) for (symbol, country_code), (intersections, cs) in sorted( ambiguous.items(), key=first, ) ), ) ) def _split_symbol_mappings(df, exchanges): """Split out the symbol: sid mappings from the raw data. Parameters ---------- df : pd.DataFrame The dataframe with multiple rows for each symbol: sid pair. exchanges : pd.DataFrame The exchanges table. Returns ------- asset_info : pd.DataFrame The asset info with one row per asset. symbol_mappings : pd.DataFrame The dataframe of just symbol: sid mappings. The index will be the sid, then there will be three columns: symbol, start_date, and end_date. """ mappings = df[list(mapping_columns)] with pd.option_context("mode.chained_assignment", None): mappings["sid"] = mappings.index mappings.reset_index(drop=True, inplace=True) # take the most recent sid->exchange mapping based on end date asset_exchange = ( df[["exchange", "end_date"]] .sort_values("end_date") .groupby(level=0)["exchange"] .nth(-1) ) _check_symbol_mappings(mappings, exchanges, asset_exchange) return ( df.groupby(level=0, group_keys=False).apply(_check_asset_group), mappings, ) def _dt_to_epoch_ns(dt_series: pd.Series) -> pd.Index: """Convert a timeseries into an Int64Index of nanoseconds since the epoch. Parameters ---------- dt_series : pd.Series The timeseries to convert. Returns ------- idx : pd.Index The index converted to nanoseconds since the epoch. """ index = pd.to_datetime(dt_series.values) if index.tzinfo is None: index = index.tz_localize("UTC") else: index = index.tz_convert("UTC") return index.view(np.int64) def check_version_info(conn, version_table, expected_version: int): """ Checks for a version value in the version table. Parameters ---------- conn : Connection The connection to use to perform the check. version_table : sa.Table The version table of the asset database expected_version : int The expected version of the asset database Raises ------ AssetDBVersionError If the version is in the table and not equal to ASSET_DB_VERSION. """ # Read the version out of the table version_from_table = conn.execute(sa.select(version_table.c.version)).scalar() # A db without a version is considered v0 if version_from_table is None: version_from_table = 0 # Raise an error if the versions do not match if version_from_table != expected_version: raise AssetDBVersionError( db_version=version_from_table, expected_version=expected_version ) def write_version_info(conn, version_table, version_value): """ Inserts the version value in to the version table. Parameters ---------- conn : sa.Connection The connection to use to execute the insert. version_table : sa.Table The version table of the asset database version_value : int The version to write in to the database """ if conn.engine.name == "postgresql": conn.execute(sa.text("ALTER SEQUENCE version_info_id_seq RESTART WITH 1")) conn.execute(version_table.insert().values(version=version_value)) class AssetDBWriter: """Class used to write data to an assets db. Parameters ---------- engine : Engine or str An SQLAlchemy engine or path to a SQL database. """ DEFAULT_CHUNK_SIZE = SQLITE_MAX_VARIABLE_NUMBER @preprocess(engine=coerce_string_to_eng(require_exists=False)) def __init__(self, engine): self.engine = engine def _real_write( self, equities, equity_symbol_mappings, equity_supplementary_mappings, futures, exchanges, root_symbols, chunk_size, ): with self.engine.begin() as conn: # Create SQL tables if they do not exist. self.init_db(conn) if exchanges is not None: self._write_df_to_table( exchanges_table, exchanges, conn, chunk_size, ) if root_symbols is not None: self._write_df_to_table( futures_root_symbols, root_symbols, conn, chunk_size, ) if equity_supplementary_mappings is not None: self._write_df_to_table( equity_supplementary_mappings_table, equity_supplementary_mappings, conn, chunk_size, ) if futures is not None: self._write_assets( "future", futures, conn, chunk_size, ) if equities is not None: self._write_assets( "equity", equities, conn, chunk_size, mapping_data=equity_symbol_mappings, ) def write_direct( self, equities=None, equity_symbol_mappings=None, equity_supplementary_mappings=None, futures=None, exchanges=None, root_symbols=None, chunk_size=DEFAULT_CHUNK_SIZE, ): """Write asset metadata to a sqlite database in the format that it is stored in the assets db. Parameters ---------- equities : pd.DataFrame, optional The equity metadata. The columns for this dataframe are: symbol : str The ticker symbol for this equity. asset_name : str The full name for this asset. start_date : datetime The date when this asset was created. end_date : datetime, optional The last date we have trade data for this asset. first_traded : datetime, optional The first date we have trade data for this asset. auto_close_date : datetime, optional The date on which to close any positions in this asset. exchange : str The exchange where this asset is traded. The index of this dataframe should contain the sids. futures : pd.DataFrame, optional The future contract metadata. The columns for this dataframe are: symbol : str The ticker symbol for this futures contract. root_symbol : str The root symbol, or the symbol with the expiration stripped out. asset_name : str The full name for this asset. start_date : datetime, optional The date when this asset was created. end_date : datetime, optional The last date we have trade data for this asset. first_traded : datetime, optional The first date we have trade data for this asset. exchange : str The exchange where this asset is traded. notice_date : datetime The date when the owner of the contract may be forced to take physical delivery of the contract's asset. expiration_date : datetime The date when the contract expires. auto_close_date : datetime The date when the broker will automatically close any positions in this contract. tick_size : float The minimum price movement of the contract. multiplier: float The amount of the underlying asset represented by this contract. exchanges : pd.DataFrame, optional The exchanges where assets can be traded. The columns of this dataframe are: exchange : str The full name of the exchange. canonical_name : str The canonical name of the exchange. country_code : str The ISO 3166 alpha-2 country code of the exchange. root_symbols : pd.DataFrame, optional The root symbols for the futures contracts. The columns for this dataframe are: root_symbol : str The root symbol name. root_symbol_id : int The unique id for this root symbol. sector : string, optional The sector of this root symbol. description : string, optional A short description of this root symbol. exchange : str The exchange where this root symbol is traded. equity_supplementary_mappings : pd.DataFrame, optional Additional mappings from values of abitrary type to assets. chunk_size : int, optional The amount of rows to write to the SQLite table at once. This defaults to the default number of bind params in sqlite. If you have compiled sqlite3 with more bind or less params you may want to pass that value here. """ if equities is not None: equities = _generate_output_dataframe( equities, _direct_equities_defaults, ) if equity_symbol_mappings is None: raise ValueError( "equities provided with no symbol mapping data", ) equity_symbol_mappings = _generate_output_dataframe( equity_symbol_mappings, _equity_symbol_mappings_defaults, ) _check_symbol_mappings( equity_symbol_mappings, exchanges, equities["exchange"], ) if equity_supplementary_mappings is not None: equity_supplementary_mappings = _generate_output_dataframe( equity_supplementary_mappings, _equity_supplementary_mappings_defaults, ) if futures is not None: futures = _generate_output_dataframe(_futures_defaults, futures) if exchanges is not None: exchanges = _generate_output_dataframe( exchanges.set_index("exchange"), _exchanges_defaults, ) if root_symbols is not None: root_symbols = _generate_output_dataframe( root_symbols, _root_symbols_defaults, ) # Set named identifier columns as indices, if provided. _normalize_index_columns_in_place( equities=equities, equity_supplementary_mappings=equity_supplementary_mappings, futures=futures, exchanges=exchanges, root_symbols=root_symbols, ) self._real_write( equities=equities, equity_symbol_mappings=equity_symbol_mappings, equity_supplementary_mappings=equity_supplementary_mappings, futures=futures, exchanges=exchanges, root_symbols=root_symbols, chunk_size=chunk_size, ) def write( self, equities=None, futures=None, exchanges=None, root_symbols=None, equity_supplementary_mappings=None, chunk_size=DEFAULT_CHUNK_SIZE, ): """Write asset metadata to a sqlite database. Parameters ---------- equities : pd.DataFrame, optional The equity metadata. The columns for this dataframe are: symbol : str The ticker symbol for this equity. asset_name : str The full name for this asset. start_date : datetime The date when this asset was created. end_date : datetime, optional The last date we have trade data for this asset. first_traded : datetime, optional The first date we have trade data for this asset. auto_close_date : datetime, optional The date on which to close any positions in this asset. exchange : str The exchange where this asset is traded. The index of this dataframe should contain the sids. futures : pd.DataFrame, optional The future contract metadata. The columns for this dataframe are: symbol : str The ticker symbol for this futures contract. root_symbol : str The root symbol, or the symbol with the expiration stripped out. asset_name : str The full name for this asset. start_date : datetime, optional The date when this asset was created. end_date : datetime, optional The last date we have trade data for this asset. first_traded : datetime, optional The first date we have trade data for this asset. exchange : str The exchange where this asset is traded. notice_date : datetime The date when the owner of the contract may be forced to take physical delivery of the contract's asset. expiration_date : datetime The date when the contract expires. auto_close_date : datetime The date when the broker will automatically close any positions in this contract. tick_size : float The minimum price movement of the contract. multiplier: float The amount of the underlying asset represented by this contract. exchanges : pd.DataFrame, optional The exchanges where assets can be traded. The columns of this dataframe are: exchange : str The full name of the exchange. canonical_name : str The canonical name of the exchange. country_code : str The ISO 3166 alpha-2 country code of the exchange. root_symbols : pd.DataFrame, optional The root symbols for the futures contracts. The columns for this dataframe are: root_symbol : str The root symbol name. root_symbol_id : int The unique id for this root symbol. sector : string, optional The sector of this root symbol. description : string, optional A short description of this root symbol. exchange : str The exchange where this root symbol is traded. equity_supplementary_mappings : pd.DataFrame, optional Additional mappings from values of abitrary type to assets. chunk_size : int, optional The amount of rows to write to the SQLite table at once. This defaults to the default number of bind params in sqlite. If you have compiled sqlite3 with more bind or less params you may want to pass that value here. See Also -------- zipline.assets.asset_finder """ if exchanges is None: exchange_names = [ df["exchange"] for df in (equities, futures, root_symbols) if df is not None ] if exchange_names: exchanges = pd.DataFrame( { "exchange": pd.concat(exchange_names).unique(), } ) data = self._load_data( equities if equities is not None else pd.DataFrame(), futures if futures is not None else pd.DataFrame(), exchanges if exchanges is not None else pd.DataFrame(), root_symbols if root_symbols is not None else pd.DataFrame(), ( equity_supplementary_mappings if equity_supplementary_mappings is not None else pd.DataFrame() ), ) self._real_write( equities=data.equities, equity_symbol_mappings=data.equities_mappings, equity_supplementary_mappings=data.equity_supplementary_mappings, futures=data.futures, root_symbols=data.root_symbols, exchanges=data.exchanges, chunk_size=chunk_size, ) def _write_df_to_table(self, tbl, df, txn, chunk_size): df = df.copy() for column, dtype in df.dtypes.items(): if dtype.kind == "M": df[column] = _dt_to_epoch_ns(df[column]) if txn.dialect.name == "postgresql": txn.execute(sa.text(f"ALTER TABLE {tbl.name} DISABLE TRIGGER ALL;")) df.to_sql( tbl.name, txn, index=True, index_label=first(tbl.primary_key.columns).name, if_exists="append", chunksize=chunk_size, ) def _write_assets(self, asset_type, assets, txn, chunk_size, mapping_data=None): if asset_type == "future": tbl = futures_contracts_table if mapping_data is not None: raise TypeError("no mapping data expected for futures") elif asset_type == "equity": tbl = equities_table if mapping_data is None: raise TypeError("mapping data required for equities") # write the symbol mapping data. self._write_df_to_table( equity_symbol_mappings, mapping_data, txn, chunk_size, ) else: raise ValueError( "asset_type must be in {'future', 'equity'}, got: %s" % asset_type, ) self._write_df_to_table(tbl, assets, txn, chunk_size) pd.DataFrame( { asset_router.c.sid.name: assets.index.values, asset_router.c.asset_type.name: asset_type, } ).to_sql( asset_router.name, txn, if_exists="append", index=False, chunksize=chunk_size, ) def _all_tables_present(self, txn): """ Checks if any tables are present in the current assets database. Parameters ---------- txn : Transaction The open transaction to check in. Returns ------- has_tables : bool True if any tables are present, otherwise False. """ # conn = txn.connect() for table_name in asset_db_table_names: return sa.inspect(txn).has_table(table_name) # if txn.dialect.has_table(conn, table_name): # return True # return False def init_db(self, txn=None): """Connect to database and create tables. Parameters ---------- txn : sa.engine.Connection, optional The transaction block to execute in. If this is not provided, a new transaction will be started with the engine provided. Returns ------- metadata : sa.MetaData The metadata that describes the new assets db. """ with ExitStack() as stack: if txn is None: txn = stack.enter_context(self.engine.begin()) tables_already_exist = self._all_tables_present(txn) # Create the SQL tables if they do not already exist. metadata.create_all(txn, checkfirst=True) if tables_already_exist: check_version_info(txn, version_info, ASSET_DB_VERSION) else: write_version_info(txn, version_info, ASSET_DB_VERSION) def _normalize_equities(self, equities, exchanges): # HACK: If 'company_name' is provided, map it to asset_name if "company_name" in equities.columns and "asset_name" not in equities.columns: equities["asset_name"] = equities["company_name"] # remap 'file_name' to 'symbol' if provided if "file_name" in equities.columns: equities["symbol"] = equities["file_name"] equities_output = _generate_output_dataframe( data_subset=equities, defaults=_equities_defaults, ) # Split symbols to company_symbols and share_class_symbols tuple_series = equities_output["symbol"].apply(split_delimited_symbol) split_symbols = pd.DataFrame( tuple_series.tolist(), columns=["company_symbol", "share_class_symbol"], index=tuple_series.index, ) equities_output = pd.concat((equities_output, split_symbols), axis=1) # Upper-case all symbol data for col in symbol_columns: equities_output[col] = equities_output[col].str.upper() # Convert date columns to UNIX Epoch integers (nanoseconds) for col in ("start_date", "end_date", "first_traded", "auto_close_date"): equities_output[col] = _dt_to_epoch_ns(equities_output[col]) return _split_symbol_mappings(equities_output, exchanges) def _normalize_futures(self, futures): futures_output = _generate_output_dataframe( data_subset=futures, defaults=_futures_defaults, ) for col in ("symbol", "root_symbol"): futures_output[col] = futures_output[col].str.upper() for col in ( "start_date", "end_date", "first_traded", "notice_date", "expiration_date", "auto_close_date", ): futures_output[col] = _dt_to_epoch_ns(futures_output[col]) return futures_output def _normalize_equity_supplementary_mappings(self, mappings): mappings_output = _generate_output_dataframe( data_subset=mappings, defaults=_equity_supplementary_mappings_defaults, ) for col in ("start_date", "end_date"): mappings_output[col] = _dt_to_epoch_ns(mappings_output[col]) return mappings_output def _load_data( self, equities, futures, exchanges, root_symbols, equity_supplementary_mappings ): """ Returns a standard set of pandas.DataFrames: equities, futures, exchanges, root_symbols """ # Set named identifier columns as indices, if provided. _normalize_index_columns_in_place( equities=equities, equity_supplementary_mappings=equity_supplementary_mappings, futures=futures, exchanges=exchanges, root_symbols=root_symbols, ) futures_output = self._normalize_futures(futures) equity_supplementary_mappings_output = ( self._normalize_equity_supplementary_mappings( equity_supplementary_mappings, ) ) exchanges_output = _generate_output_dataframe( data_subset=exchanges, defaults=_exchanges_defaults, ) equities_output, equities_mappings = self._normalize_equities( equities, exchanges_output, ) root_symbols_output = _generate_output_dataframe( data_subset=root_symbols, defaults=_root_symbols_defaults, ) return AssetData( equities=equities_output, equities_mappings=equities_mappings, futures=futures_output, exchanges=exchanges_output, root_symbols=root_symbols_output, equity_supplementary_mappings=equity_supplementary_mappings_output, )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/assets/asset_writer.py
asset_writer.py
import sqlalchemy as sa from alembic.migration import MigrationContext from alembic.operations import Operations from toolz.curried import do, operator from zipline.assets.asset_writer import write_version_info from zipline.errors import AssetDBImpossibleDowngrade from zipline.utils.compat import wraps from zipline.utils.preprocess import preprocess from zipline.utils.sqlite_utils import coerce_string_to_eng def alter_columns(op, name, *columns, **kwargs): """Alter columns from a table. Parameters ---------- name : str The name of the table. *columns The new columns to have. selection_string : str, optional The string to use in the selection. If not provided, it will select all of the new columns from the old table. Notes ----- The columns are passed explicitly because this should only be used in a downgrade where ``zipline.assets.asset_db_schema`` could change. """ selection_string = kwargs.pop("selection_string", None) if kwargs: raise TypeError( "alter_columns received extra arguments: %r" % sorted(kwargs), ) if selection_string is None: selection_string = ", ".join(column.name for column in columns) tmp_name = "_alter_columns_" + name op.rename_table(name, tmp_name) for column in columns: # Clear any indices that already exist on this table, otherwise we will # fail to create the table because the indices will already be present. # When we create the table below, the indices that we want to preserve # will just get recreated. for table in (name, tmp_name): try: op.execute(f"DROP INDEX IF EXISTS ix_{table}_{column.name}") except sa.exc.OperationalError: pass op.create_table(name, *columns) op.execute( f"INSERT INTO {name} SELECT {selection_string} FROM {tmp_name}", ) if op.impl.dialect.name == "postgresql": op.execute(f"ALTER TABLE {tmp_name} DISABLE TRIGGER ALL;") op.execute(f"DROP TABLE {tmp_name} CASCADE;") else: op.drop_table(tmp_name) @preprocess(engine=coerce_string_to_eng(require_exists=True)) def downgrade(engine, desired_version): """Downgrades the assets db at the given engine to the desired version. Parameters ---------- engine : Engine An SQLAlchemy engine to the assets database. desired_version : int The desired resulting version for the assets database. """ # Check the version of the db at the engine with engine.begin() as conn: metadata_obj = sa.MetaData() metadata_obj.reflect(conn) version_info_table = metadata_obj.tables["version_info"] # starting_version = sa.select((version_info_table.c.version,)).scalar() starting_version = conn.execute( sa.select(version_info_table.c.version) ).scalar() # Check for accidental upgrade if starting_version < desired_version: raise AssetDBImpossibleDowngrade( db_version=starting_version, desired_version=desired_version ) # Check if the desired version is already the db version if starting_version == desired_version: # No downgrade needed return # Create alembic context ctx = MigrationContext.configure(conn) op = Operations(ctx) # Integer keys of downgrades to run # E.g.: [5, 4, 3, 2] would downgrade v6 to v2 downgrade_keys = range(desired_version, starting_version)[::-1] # Disable foreign keys until all downgrades are complete _pragma_foreign_keys(conn, False) # Execute the downgrades in order for downgrade_key in downgrade_keys: _downgrade_methods[downgrade_key](op, conn, version_info_table) # Re-enable foreign keys _pragma_foreign_keys(conn, True) def _pragma_foreign_keys(connection, on): """Sets the PRAGMA foreign_keys state of the SQLite database. Disabling the pragma allows for batch modification of tables with foreign keys. Parameters ---------- connection : Connection A SQLAlchemy connection to the db on : bool If true, PRAGMA foreign_keys will be set to ON. Otherwise, the PRAGMA foreign_keys will be set to OFF. """ if connection.engine.name == "sqlite": connection.execute(sa.text(f"PRAGMA foreign_keys={'ON' if on else 'OFF'}")) # elif connection.engine.name == "postgresql": # connection.execute( # f"SET session_replication_role = {'origin' if on else 'replica'};" # ) # This dict contains references to downgrade methods that can be applied to an # assets db. The resulting db's version is the key. # e.g. The method at key '0' is the downgrade method from v1 to v0 _downgrade_methods = {} def downgrades(src): """Decorator for marking that a method is a downgrade to a version to the previous version. Parameters ---------- src : int The version this downgrades from. Returns ------- decorator : callable[(callable) -> callable] The decorator to apply. """ def _(f): destination = src - 1 @do(operator.setitem(_downgrade_methods, destination)) @wraps(f) def wrapper(op, conn, version_info_table): conn.execute(version_info_table.delete()) # clear the version f(op) write_version_info(conn, version_info_table, destination) return wrapper return _ @downgrades(1) def _downgrade_v1(op): """ Downgrade assets db by removing the 'tick_size' column and renaming the 'multiplier' column. """ # Drop indices before batch # This is to prevent index collision when creating the temp table op.drop_index("ix_futures_contracts_root_symbol") op.drop_index("ix_futures_contracts_symbol") # Execute batch op to allow column modification in SQLite with op.batch_alter_table("futures_contracts") as batch_op: # Rename 'multiplier' batch_op.alter_column( column_name="multiplier", new_column_name="contract_multiplier" ) # Delete 'tick_size' batch_op.drop_column("tick_size") # Recreate indices after batch op.create_index( "ix_futures_contracts_root_symbol", table_name="futures_contracts", columns=["root_symbol"], ) op.create_index( "ix_futures_contracts_symbol", table_name="futures_contracts", columns=["symbol"], unique=True, ) @downgrades(2) def _downgrade_v2(op): """ Downgrade assets db by removing the 'auto_close_date' column. """ # Drop indices before batch # This is to prevent index collision when creating the temp table op.drop_index("ix_equities_fuzzy_symbol") op.drop_index("ix_equities_company_symbol") # Execute batch op to allow column modification in SQLite with op.batch_alter_table("equities") as batch_op: batch_op.drop_column("auto_close_date") # Recreate indices after batch op.create_index( "ix_equities_fuzzy_symbol", table_name="equities", columns=["fuzzy_symbol"] ) op.create_index( "ix_equities_company_symbol", table_name="equities", columns=["company_symbol"] ) @downgrades(3) def _downgrade_v3(op): """ Downgrade assets db by adding a not null constraint on ``equities.first_traded`` """ op.create_table( "_new_equities", sa.Column( "sid", sa.BigInteger, unique=True, nullable=False, primary_key=True, ), sa.Column("symbol", sa.Text), sa.Column("company_symbol", sa.Text), sa.Column("share_class_symbol", sa.Text), sa.Column("fuzzy_symbol", sa.Text), sa.Column("asset_name", sa.Text), sa.Column("start_date", sa.BigInteger, default=0, nullable=False), sa.Column("end_date", sa.BigInteger, nullable=False), sa.Column("first_traded", sa.BigInteger, nullable=False), sa.Column("auto_close_date", sa.BigInteger), sa.Column("exchange", sa.Text), ) op.execute( """ insert into _new_equities select * from equities where equities.first_traded is not null """, ) op.drop_table("equities") op.rename_table("_new_equities", "equities") # we need to make sure the indices have the proper names after the rename op.create_index( "ix_equities_company_symbol", "equities", ["company_symbol"], ) op.create_index( "ix_equities_fuzzy_symbol", "equities", ["fuzzy_symbol"], ) @downgrades(4) def _downgrade_v4(op): """ Downgrades assets db by copying the `exchange_full` column to `exchange`, then dropping the `exchange_full` column. """ op.drop_index("ix_equities_fuzzy_symbol") op.drop_index("ix_equities_company_symbol") op.execute("UPDATE equities SET exchange = exchange_full") with op.batch_alter_table("equities") as batch_op: batch_op.drop_column("exchange_full") op.create_index( "ix_equities_fuzzy_symbol", table_name="equities", columns=["fuzzy_symbol"] ) op.create_index( "ix_equities_company_symbol", table_name="equities", columns=["company_symbol"] ) @downgrades(5) def _downgrade_v5(op): op.create_table( "_new_equities", sa.Column( "sid", sa.BigInteger, unique=True, nullable=False, primary_key=True, ), sa.Column("symbol", sa.Text), sa.Column("company_symbol", sa.Text), sa.Column("share_class_symbol", sa.Text), sa.Column("fuzzy_symbol", sa.Text), sa.Column("asset_name", sa.Text), sa.Column("start_date", sa.BigInteger, default=0, nullable=False), sa.Column("end_date", sa.BigInteger, nullable=False), sa.Column("first_traded", sa.BigInteger), sa.Column("auto_close_date", sa.BigInteger), sa.Column("exchange", sa.Text), sa.Column("exchange_full", sa.Text), ) op.execute( """ INSERT INTO _new_equities SELECT equities.sid as sid, sym.symbol as symbol, sym.company_symbol as company_symbol, sym.share_class_symbol as share_class_symbol, sym.company_symbol || sym.share_class_symbol as fuzzy_symbol, equities.asset_name as asset_name, equities.start_date as start_date, equities.end_date as end_date, equities.first_traded as first_traded, equities.auto_close_date as auto_close_date, equities.exchange as exchange, equities.exchange_full as exchange_full FROM equities INNER JOIN -- Select the last held symbol (end_date) for each equity sid from the (SELECT sid, symbol, company_symbol, share_class_symbol, end_date FROM (SELECT *, RANK() OVER (PARTITION BY sid ORDER BY end_date DESC) max_end_date FROM equity_symbol_mappings) ranked WHERE max_end_date=1 ) as sym on equities.sid = sym.sid """, ) op.drop_table("equity_symbol_mappings") op.drop_table("equities") op.rename_table("_new_equities", "equities") # we need to make sure the indices have the proper names after the rename op.create_index( "ix_equities_company_symbol", "equities", ["company_symbol"], ) op.create_index( "ix_equities_fuzzy_symbol", "equities", ["fuzzy_symbol"], ) @downgrades(6) def _downgrade_v6(op): op.drop_table("equity_supplementary_mappings") @downgrades(7) def _downgrade_v7(op): tmp_name = "_new_equities" op.create_table( tmp_name, sa.Column( "sid", sa.BigInteger, unique=True, nullable=False, primary_key=True, ), sa.Column("asset_name", sa.Text), sa.Column("start_date", sa.BigInteger, default=0, nullable=False), sa.Column("end_date", sa.BigInteger, nullable=False), sa.Column("first_traded", sa.BigInteger), sa.Column("auto_close_date", sa.BigInteger), # remove foreign key to exchange sa.Column("exchange", sa.Text), # add back exchange full column sa.Column("exchange_full", sa.Text), ) op.execute( f""" insert into {tmp_name} select eq.sid, eq.asset_name, eq.start_date, eq.end_date, eq.first_traded, eq.auto_close_date, ex.canonical_name, ex.exchange from equities eq inner join exchanges ex on eq.exchange = ex.exchange where ex.country_code in ('US', '??') """, ) # if op.impl.dialect.name == "postgresql": # for table_name, col_name in [ # ("equities", "exchange"), # ("equity_symbol_mappings", "sid"), # ("equity_supplementary_mappings", "sid"), # ]: # op.drop_constraint( # f"{table_name}_{col_name}_fkey", # f"{table_name}", # type_="foreignkey", # ) if op.impl.dialect.name == "postgresql": op.execute("ALTER TABLE equities DISABLE TRIGGER ALL;") op.execute("DROP TABLE equities CASCADE;") else: op.drop_table("equities") op.rename_table(tmp_name, "equities") # rebuild all tables without a foreign key to ``exchanges`` alter_columns( op, "futures_root_symbols", sa.Column( "root_symbol", sa.Text, unique=True, nullable=False, primary_key=True, ), sa.Column("root_symbol_id", sa.BigInteger), sa.Column("sector", sa.Text), sa.Column("description", sa.Text), sa.Column("exchange", sa.Text), ) alter_columns( op, "futures_contracts", sa.Column( "sid", sa.BigInteger, unique=True, nullable=False, primary_key=True, ), sa.Column("symbol", sa.Text, unique=True, index=True), sa.Column("root_symbol", sa.Text, index=True), sa.Column("asset_name", sa.Text), sa.Column("start_date", sa.BigInteger, default=0, nullable=False), sa.Column("end_date", sa.BigInteger, nullable=False), sa.Column("first_traded", sa.BigInteger), sa.Column("exchange", sa.Text), sa.Column("notice_date", sa.BigInteger, nullable=False), sa.Column("expiration_date", sa.BigInteger, nullable=False), sa.Column("auto_close_date", sa.BigInteger, nullable=False), sa.Column("multiplier", sa.Float), sa.Column("tick_size", sa.Float), ) # drop the ``country_code`` and ``canonical_name`` columns alter_columns( op, "exchanges", sa.Column( "exchange", sa.Text, unique=True, nullable=False, primary_key=True, ), sa.Column("timezone", sa.Text), # Set the timezone to NULL because we don't know what it was before. # Nothing in zipline reads the timezone so it doesn't matter. selection_string="exchange, NULL", ) op.rename_table("exchanges", "futures_exchanges") # add back the foreign keys that previously existed alter_columns( op, "futures_root_symbols", sa.Column( "root_symbol", sa.Text, unique=True, nullable=False, primary_key=True, ), sa.Column("root_symbol_id", sa.BigInteger), sa.Column("sector", sa.Text), sa.Column("description", sa.Text), sa.Column( "exchange", sa.Text, sa.ForeignKey("futures_exchanges.exchange"), ), ) alter_columns( op, "futures_contracts", sa.Column( "sid", sa.BigInteger, unique=True, nullable=False, primary_key=True, ), sa.Column("symbol", sa.Text, unique=True, index=True), sa.Column( "root_symbol", sa.Text, sa.ForeignKey("futures_root_symbols.root_symbol"), index=True, ), sa.Column("asset_name", sa.Text), sa.Column("start_date", sa.BigInteger, default=0, nullable=False), sa.Column("end_date", sa.BigInteger, nullable=False), sa.Column("first_traded", sa.BigInteger), sa.Column( "exchange", sa.Text, sa.ForeignKey("futures_exchanges.exchange"), ), sa.Column("notice_date", sa.BigInteger, nullable=False), sa.Column("expiration_date", sa.BigInteger, nullable=False), sa.Column("auto_close_date", sa.BigInteger, nullable=False), sa.Column("multiplier", sa.Float), sa.Column("tick_size", sa.Float), ) # Delete equity_symbol_mappings records that no longer refer to valid sids. op.execute( """ DELETE FROM equity_symbol_mappings WHERE sid NOT IN (SELECT sid FROM equities); """ ) # Delete asset_router records that no longer refer to valid sids. op.execute( """ DELETE FROM asset_router WHERE sid NOT IN ( SELECT sid FROM equities UNION SELECT sid FROM futures_contracts ); """ )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/assets/asset_db_migrations.py
asset_db_migrations.py
from abc import ABC, abstractmethod # Number of days over which to compute rolls when finding the current contract # for a volume-rolling contract chain. For more details on why this is needed, # see `VolumeRollFinder.get_contract_center`. ROLL_DAYS_FOR_CURRENT_CONTRACT = 90 class RollFinder(ABC): """Abstract base class for calculating when futures contracts are the active contract. """ @abstractmethod def _active_contract(self, oc, front, back, dt): raise NotImplementedError def _get_active_contract_at_offset(self, root_symbol, dt, offset): """For the given root symbol, find the contract that is considered active on a specific date at a specific offset. """ oc = self.asset_finder.get_ordered_contracts(root_symbol) session = self.trading_calendar.minute_to_session(dt) front = oc.contract_before_auto_close(session.value) back = oc.contract_at_offset(front, 1, dt.value) if back is None: return front primary = self._active_contract(oc, front, back, session) return oc.contract_at_offset(primary, offset, session.value) def get_contract_center(self, root_symbol, dt, offset): """ Parameters ---------- root_symbol : str The root symbol for the contract chain. dt : Timestamp The datetime for which to retrieve the current contract. offset : int The offset from the primary contract. 0 is the primary, 1 is the secondary, etc. Returns ------- Future The active future contract at the given dt. """ return self._get_active_contract_at_offset(root_symbol, dt, offset) def get_rolls(self, root_symbol, start, end, offset): """Get the rolls, i.e. the session at which to hop from contract to contract in the chain. Parameters ---------- root_symbol : str The root symbol for which to calculate rolls. start : Timestamp Start of the date range. end : Timestamp End of the date range. offset : int Offset from the primary. Returns ------- rolls - list[tuple(sid, roll_date)] A list of rolls, where first value is the first active `sid`, and the `roll_date` on which to hop to the next contract. The last pair in the chain has a value of `None` since the roll is after the range. """ oc = self.asset_finder.get_ordered_contracts(root_symbol) front = self._get_active_contract_at_offset(root_symbol, end, 0) back = oc.contract_at_offset(front, 1, end.value) if back is not None: end_session = self.trading_calendar.minute_to_session(end) first = self._active_contract(oc, front, back, end_session) else: first = front first_contract = oc.sid_to_contract[first] rolls = [((first_contract >> offset).contract.sid, None)] tc = self.trading_calendar sessions = tc.sessions_in_range( tc.minute_to_session(start), tc.minute_to_session(end) ) freq = sessions.freq if first == front: # This is a bit tricky to grasp. Once we have the active contract # on the given end date, we want to start walking backwards towards # the start date and checking for rolls. For this, we treat the # previous month's contract as the 'first' contract, and the # contract we just found to be active as the 'back'. As we walk # towards the start date, if the 'back' is no longer active, we add # that date as a roll. curr = first_contract << 1 else: curr = first_contract << 2 session = sessions[-1] start = start.tz_localize(None) while session > start and curr is not None: front = curr.contract.sid back = rolls[0][0] prev_c = curr.prev while session > start: prev = (session - freq).tz_localize(None) if prev_c is not None: if prev < prev_c.contract.auto_close_date: break if back != self._active_contract(oc, front, back, prev): # TODO: Instead of listing each contract with its roll date # as tuples, create a series which maps every day to the # active contract on that day. rolls.insert(0, ((curr >> offset).contract.sid, session)) break session = prev curr = curr.prev if curr is not None: session = min(session, curr.contract.auto_close_date + freq) return rolls class CalendarRollFinder(RollFinder): """The CalendarRollFinder calculates contract rolls based purely on the contract's auto close date. """ def __init__(self, trading_calendar, asset_finder): self.trading_calendar = trading_calendar self.asset_finder = asset_finder def _active_contract(self, oc, front, back, dt): contract = oc.sid_to_contract[front].contract auto_close_date = contract.auto_close_date auto_closed = dt >= auto_close_date return back if auto_closed else front class VolumeRollFinder(RollFinder): """The VolumeRollFinder calculates contract rolls based on when volume activity transfers from one contract to another. """ GRACE_DAYS = 7 def __init__(self, trading_calendar, asset_finder, session_reader): self.trading_calendar = trading_calendar self.asset_finder = asset_finder self.session_reader = session_reader def _active_contract(self, oc, front, back, dt): r""" Return the active contract based on the previous trading day's volume. In the rare case that a double volume switch occurs we treat the first switch as the roll. Take the following case for example: | +++++ _____ | + __ / <--- 'G' | ++/++\++++/++ | _/ \__/ + | / + | ____/ + <--- 'F' |_________|__|___|________ a b c <--- Switches We should treat 'a' as the roll date rather than 'c' because from the perspective of 'a', if a switch happens and we are pretty close to the auto-close date, we would probably assume it is time to roll. This means that for every date after 'a', `data.current(cf, 'contract')` should return the 'G' contract. """ front_contract = oc.sid_to_contract[front].contract back_contract = oc.sid_to_contract[back].contract tc = self.trading_calendar trading_day = tc.day prev = dt - trading_day get_value = self.session_reader.get_value # If the front contract is past its auto close date it cannot be the # active contract, so return the back contract. Similarly, if the back # contract has not even started yet, just return the front contract. # The reason for using 'prev' to see if the contracts are alive instead # of using 'dt' is because we need to get each contract's volume on the # previous day, so we need to make sure that each contract exists on # 'prev' in order to call 'get_value' below. if dt > min(front_contract.auto_close_date, front_contract.end_date): return back elif front_contract.start_date > prev: return back elif dt > min(back_contract.auto_close_date, back_contract.end_date): return front elif back_contract.start_date > prev: return front front_vol = get_value(front, prev, "volume") back_vol = get_value(back, prev, "volume") if back_vol > front_vol: return back gap_start = max( back_contract.start_date, front_contract.auto_close_date - (trading_day * self.GRACE_DAYS), ) gap_end = prev - trading_day if dt < gap_start: return front # If we are within `self.GRACE_DAYS` of the front contract's auto close # date, and a volume flip happened during that period, return the back # contract as the active one. sessions = tc.sessions_in_range( tc.minute_to_session(gap_start), tc.minute_to_session(gap_end), ) for session in sessions: front_vol = get_value(front, session, "volume") back_vol = get_value(back, session, "volume") if back_vol > front_vol: return back return front def get_contract_center(self, root_symbol, dt, offset): """ Parameters ---------- root_symbol : str The root symbol for the contract chain. dt : Timestamp The datetime for which to retrieve the current contract. offset : int The offset from the primary contract. 0 is the primary, 1 is the secondary, etc. Returns ------- Future The active future contract at the given dt. """ # When determining the center contract on a specific day using volume # rolls, simply picking the contract with the highest volume could # cause flip-flopping between active contracts each day if the front # and back contracts are close in volume. Therefore, information about # the surrounding rolls is required. The `get_rolls` logic prevents # contracts from being considered active once they have rolled, so # incorporating that logic here prevents flip-flopping. day = self.trading_calendar.day end_date = min( dt + (ROLL_DAYS_FOR_CURRENT_CONTRACT * day), self.session_reader.last_available_dt.tz_localize(dt.tzinfo), ) rolls = self.get_rolls( root_symbol=root_symbol, start=dt, end=end_date, offset=offset, ) sid, acd = rolls[0] return self.asset_finder.retrieve_asset(sid)
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/assets/roll_finder.py
roll_finder.py
import logging import sys import numpy as np from zipline.finance import commission, slippage # zipline_logging = logging.getLogger("zipline_logging") # zipline_logging.addHandler(logging.NullHandler()) # zipline_logging.addHandler( # logging.StreamHandler(sys.stdout).setLevel(logging.INFO), # ) # zipline_logging.addHandler(logging.StreamHandler(sys.stderr).setLevel(logging.ERROR)) STOCKS = ["AMD", "CERN", "COST", "DELL", "GPS", "INTC", "MMM"] # On-Line Portfolio Moving Average Reversion # More info can be found in the corresponding paper: # http://icml.cc/2012/papers/168.pdf def initialize(algo, eps=1, window_length=5): algo.stocks = STOCKS algo.sids = [algo.symbol(symbol) for symbol in algo.stocks] algo.m = len(algo.stocks) algo.price = {} algo.b_t = np.ones(algo.m) / algo.m algo.last_desired_port = np.ones(algo.m) / algo.m algo.eps = eps algo.init = True algo.days = 0 algo.window_length = window_length algo.set_commission(commission.PerShare(cost=0, min_trade_cost=1.0)) algo.set_slippage(slippage.VolumeShareSlippage()) def handle_data(algo, data): algo.days += 1 if algo.days < algo.window_length: return if algo.init: rebalance_portfolio(algo, data, algo.b_t) algo.init = False return m = algo.m x_tilde = np.zeros(m) # find relative moving average price for each asset mavgs = data.history(algo.sids, "price", algo.window_length, "1d").mean() for i, sid in enumerate(algo.sids): price = data.current(sid, "price") # Relative mean deviation x_tilde[i] = mavgs[sid] / price ########################### # Inside of OLMAR (algo 2) x_bar = x_tilde.mean() # market relative deviation mark_rel_dev = x_tilde - x_bar # Expected return with current portfolio exp_return = np.dot(algo.b_t, x_tilde) weight = algo.eps - exp_return variability = (np.linalg.norm(mark_rel_dev)) ** 2 # test for divide-by-zero case if variability == 0.0: step_size = 0 else: step_size = max(0, weight / variability) b = algo.b_t + step_size * mark_rel_dev b_norm = simplex_projection(b) np.testing.assert_almost_equal(b_norm.sum(), 1) rebalance_portfolio(algo, data, b_norm) # update portfolio algo.b_t = b_norm def rebalance_portfolio(algo, data, desired_port): # rebalance portfolio desired_amount = np.zeros_like(desired_port) current_amount = np.zeros_like(desired_port) prices = np.zeros_like(desired_port) if algo.init: positions_value = algo.portfolio.starting_cash else: positions_value = algo.portfolio.positions_value + algo.portfolio.cash for i, sid in enumerate(algo.sids): current_amount[i] = algo.portfolio.positions[sid].amount prices[i] = data.current(sid, "price") desired_amount = np.round(desired_port * positions_value / prices) algo.last_desired_port = desired_port diff_amount = desired_amount - current_amount for i, sid in enumerate(algo.sids): algo.order(sid, diff_amount[i]) def simplex_projection(v, b=1): r"""Projection vectors to the simplex domain Implemented according to the paper: Efficient projections onto the l1-ball for learning in high dimensions, John Duchi, et al. ICML 2008. Implementation Time: 2011 June 17 by Bin@libin AT pmail.ntu.edu.sg Optimization Problem: min_{w}\| w - v \|_{2}^{2} s.t. sum_{i=1}^{m}=z, w_{i}\geq 0 Input: A vector v \in R^{m}, and a scalar z > 0 (default=1) Output: Projection vector w :Example: >>> proj = simplex_projection([.4 ,.3, -.4, .5]) >>> proj # doctest: +NORMALIZE_WHITESPACE array([ 0.33333333, 0.23333333, 0. , 0.43333333]) >>> print(proj.sum()) 1.0 Original matlab implementation: John Duchi ([email protected]) Python-port: Copyright 2013 by Thomas Wiecki ([email protected]). """ v = np.asarray(v) p = len(v) # Sort v into u in descending order v = (v > 0) * v u = np.sort(v)[::-1] sv = np.cumsum(u) rho = np.where(u > (sv - b) / np.arange(1, p + 1))[0][-1] theta = np.max([0, (sv[rho] - b) / (rho + 1)]) w = v - theta w[w < 0] = 0 return w def analyze(context=None, results=None): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) results.portfolio_value.plot(ax=ax) ax.set_ylabel("Portfolio value (USD)") plt.show() def _test_args(): """Extra arguments to use when zipline's automated tests run this example.""" import pandas as pd return {"start": pd.Timestamp("2004"), "end": pd.Timestamp("2008")}
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/examples/olmar.py
olmar.py
import os from zipline.api import order, record, symbol from zipline.finance import commission, slippage # Import exponential moving average from talib wrapper try: from talib import EMA except ImportError as exc: msg = ( "Unable to import module TA-lib. Use `pip install TA-lib` to " "install. Note: if installation fails, you might need to install " "the underlying TA-lib library (more information can be found in " "the zipline installation documentation)." ) raise ImportError(msg) from exc def initialize(context): context.asset = symbol("AAPL") # To keep track of whether we invested in the stock or not context.invested = False # Explicitly set the commission/slippage to the "old" value until we can # rebuild example data. # github.com/quantopian/zipline/blob/master/tests/resources/ # rebuild_example_data#L105 context.set_commission(commission.PerShare(cost=0.0075, min_trade_cost=1.0)) context.set_slippage(slippage.VolumeShareSlippage()) def handle_data(context, data): trailing_window = data.history(context.asset, "price", 40, "1d") if trailing_window.isnull().values.any(): return short_ema = EMA(trailing_window.values, timeperiod=20) long_ema = EMA(trailing_window.values, timeperiod=40) buy = False sell = False if (short_ema[-1] > long_ema[-1]) and not context.invested: order(context.asset, 100) context.invested = True buy = True elif (short_ema[-1] < long_ema[-1]) and context.invested: order(context.asset, -100) context.invested = False sell = True record( AAPL=data.current(context.asset, "price"), short_ema=short_ema[-1], long_ema=long_ema[-1], buy=buy, sell=sell, ) # Note: this function can be removed if running # this algorithm on quantopian.com def analyze(context=None, results=None): import matplotlib.pyplot as plt import logging logging.basicConfig( format="[%(asctime)s-%(levelname)s][%(name)s]\n %(message)s", level=logging.INFO, datefmt="%Y-%m-%dT%H:%M:%S%z", ) log = logging.getLogger("Algorithm") fig = plt.figure() ax1 = fig.add_subplot(211) results.portfolio_value.plot(ax=ax1) ax1.set_ylabel("Portfolio value (USD)") ax2 = fig.add_subplot(212) ax2.set_ylabel("Price (USD)") # If data has been record()ed, then plot it. # Otherwise, log the fact that no data has been recorded. if "AAPL" in results and "short_ema" in results and "long_ema" in results: results[["AAPL", "short_ema", "long_ema"]].plot(ax=ax2) ax2.plot( results.index[results.buy], results.loc[results.buy, "long_ema"], "^", markersize=10, color="m", ) ax2.plot( results.index[results.sell], results.loc[results.sell, "short_ema"], "v", markersize=10, color="k", ) plt.legend(loc=0) plt.gcf().set_size_inches(18, 8) else: msg = "AAPL, short_ema and long_ema data not captured using record()." ax2.annotate(msg, xy=(0.1, 0.5)) log.info(msg) plt.show() if "PYTEST_CURRENT_TEST" in os.environ: plt.close("all") def _test_args(): """Extra arguments to use when zipline's automated tests run this example.""" import pandas as pd return {"start": pd.Timestamp("2014-01-01"), "end": pd.Timestamp("2014-11-01")}
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/examples/dual_ema_talib.py
dual_ema_talib.py
``` %matplotlib inline %load_ext zipline %%zipline --start=2011-1-1 --end=2013-1-1 --no-benchmark from zipline.api import order, record, symbol import matplotlib.pyplot as plt def initialize(context): pass def handle_data(context, data): order(symbol('AAPL'), 10) record(AAPL=data.current(symbol('AAPL'), "price")) def analyze(context, perf): ax1 = plt.subplot(211) perf.portfolio_value.plot(ax=ax1) ax2 = plt.subplot(212, sharex=ax1) perf.AAPL.plot(ax=ax2) plt.gcf().set_size_inches(18, 8) plt.show() ```
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/examples/buyapple.ipynb
buyapple.ipynb
from zipline.api import ( attach_pipeline, date_rules, order_target_percent, pipeline_output, record, schedule_function, ) from zipline.finance import commission, slippage from zipline.pipeline import Pipeline from zipline.pipeline.factors import RSI def make_pipeline(): rsi = RSI() return Pipeline( columns={ "longs": rsi.top(3), "shorts": rsi.bottom(3), }, ) def rebalance(context, data): # Pipeline data will be a dataframe with boolean columns named 'longs' and # 'shorts'. pipeline_data = context.pipeline_data all_assets = pipeline_data.index longs = all_assets[pipeline_data.longs] shorts = all_assets[pipeline_data.shorts] record(universe_size=len(all_assets)) # Build a 2x-leveraged, equal-weight, long-short portfolio. one_third = 1.0 / 3.0 for asset in longs: order_target_percent(asset, one_third) for asset in shorts: order_target_percent(asset, -one_third) # Remove any assets that should no longer be in our portfolio. portfolio_assets = longs.union(shorts) positions = context.portfolio.positions for asset in positions.keys() - set(portfolio_assets): # This will fail if the asset was removed from our portfolio because it # was delisted. if data.can_trade(asset): order_target_percent(asset, 0) def initialize(context): attach_pipeline(make_pipeline(), "my_pipeline") # Rebalance each day. In daily mode, this is equivalent to putting # `rebalance` in our handle_data, but in minute mode, it's equivalent to # running at the start of the day each day. schedule_function(rebalance, date_rules.every_day()) # Explicitly set the commission/slippage to the "old" value until we can # rebuild example data. # github.com/quantopian/zipline/blob/master/tests/resources/ # rebuild_example_data#L105 context.set_commission(commission.PerShare(cost=0.0075, min_trade_cost=1.0)) context.set_slippage(slippage.VolumeShareSlippage()) def before_trading_start(context, data): context.pipeline_data = pipeline_output("my_pipeline") def _test_args(): """ Extra arguments to use when zipline's automated tests run this example. Notes for testers: Gross leverage should be roughly 2.0 on every day except the first. Net leverage should be roughly 2.0 on every day except the first. Longs Count should always be 3 after the first day. Shorts Count should be 3 after the first day, except on 2013-10-30, when it dips to 2 for a day because DELL is delisted. """ import pandas as pd return { # We run through october of 2013 because DELL is in the test data and # it went private on 2013-10-29. "start": pd.Timestamp("2013-10-07"), "end": pd.Timestamp("2013-11-30"), "capital_base": 100000, }
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/examples/momentum_pipeline.py
momentum_pipeline.py
from importlib import import_module import os from toolz import merge from zipline.utils.calendar_utils import register_calendar, get_calendar from zipline import run_algorithm # These are used by test_examples.py to discover the examples to run. def load_example_modules(): example_modules = {} for f in os.listdir(os.path.dirname(__file__)): if not f.endswith(".py") or f == "__init__.py" or f == "buyapple_ide.py": continue modname = f[: -len(".py")] mod = import_module("." + modname, package=__name__) example_modules[modname] = mod globals()[modname] = mod # Remove noise from loop variables. del f, modname, mod return example_modules # Columns that we expect to be able to reliably deterministic # Doesn't include fields that have UUIDS. _cols_to_check = [ "algo_volatility", "algorithm_period_return", "alpha", "benchmark_period_return", "benchmark_volatility", "beta", "capital_used", "ending_cash", "ending_exposure", "ending_value", "excess_return", "gross_leverage", "long_exposure", "long_value", "longs_count", "max_drawdown", "max_leverage", "net_leverage", "period_close", "period_label", "period_open", "pnl", "portfolio_value", "positions", "returns", "short_exposure", "short_value", "shorts_count", "sortino", "starting_cash", "starting_exposure", "starting_value", "trading_days", "treasury_period_return", ] def run_example(example_modules, example_name, environ, benchmark_returns=None): """Run an example module from zipline.examples.""" mod = example_modules[example_name] register_calendar("YAHOO", get_calendar("NYSE"), force=True) return run_algorithm( initialize=getattr(mod, "initialize", None), handle_data=getattr(mod, "handle_data", None), before_trading_start=getattr(mod, "before_trading_start", None), analyze=getattr(mod, "analyze", None), bundle="test", environ=environ, benchmark_returns=benchmark_returns, # Provide a default capital base, but allow the test to override. **merge({"capital_base": 1e7}, mod._test_args()), )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/examples/__init__.py
__init__.py
import os from zipline.api import order_target, record, symbol from zipline.finance import commission, slippage def initialize(context): context.sym = symbol("AAPL") context.i = 0 # Explicitly set the commission/slippage to the "old" value until we can # rebuild example data. # github.com/quantopian/zipline/blob/master/tests/resources/ # rebuild_example_data#L105 context.set_commission(commission.PerShare(cost=0.0075, min_trade_cost=1.0)) context.set_slippage(slippage.VolumeShareSlippage()) def handle_data(context, data): # Skip first 300 days to get full windows context.i += 1 if context.i < 300: return # Compute averages # history() has to be called with the same params # from above and returns a pandas dataframe. short_mavg = data.history(context.sym, "price", 100, "1d").mean() long_mavg = data.history(context.sym, "price", 300, "1d").mean() # Trading logic if short_mavg > long_mavg: # order_target orders as many shares as needed to # achieve the desired number of shares. order_target(context.sym, 100) elif short_mavg < long_mavg: order_target(context.sym, 0) # Save values for later inspection record( AAPL=data.current(context.sym, "price"), short_mavg=short_mavg, long_mavg=long_mavg, ) # Note: this function can be removed if running # this algorithm on quantopian.com def analyze(context=None, results=None): import matplotlib.pyplot as plt import logging logging.basicConfig( format="[%(asctime)s-%(levelname)s][%(name)s]\n %(message)s", level=logging.INFO, datefmt="%Y-%m-%dT%H:%M:%S%z", ) log = logging.getLogger("Algorithm") fig = plt.figure() ax1 = fig.add_subplot(211) results.portfolio_value.plot(ax=ax1) ax1.set_ylabel("Portfolio value (USD)") ax2 = fig.add_subplot(212) ax2.set_ylabel("Price (USD)") # If data has been record()ed, then plot it. # Otherwise, log the fact that no data has been recorded. if "AAPL" in results and "short_mavg" in results and "long_mavg" in results: results["AAPL"].plot(ax=ax2) results[["short_mavg", "long_mavg"]].plot(ax=ax2) trans = results[[t != [] for t in results.transactions]] buys = trans[[t[0]["amount"] > 0 for t in trans.transactions]] sells = trans[[t[0]["amount"] < 0 for t in trans.transactions]] ax2.plot( buys.index, results.short_mavg.loc[buys.index], "^", markersize=10, color="m", ) ax2.plot( sells.index, results.short_mavg.loc[sells.index], "v", markersize=10, color="k", ) plt.legend(loc=0) else: msg = "AAPL, short_mavg & long_mavg data not captured using record()." ax2.annotate(msg, xy=(0.1, 0.5)) log.info(msg) plt.show() if "PYTEST_CURRENT_TEST" in os.environ: plt.close("all") def _test_args(): """Extra arguments to use when zipline's automated tests run this example.""" import pandas as pd return {"start": pd.Timestamp("2011"), "end": pd.Timestamp("2013")}
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/examples/dual_moving_average.py
dual_moving_average.py
import pandas as pd from zipline.errors import ( InvalidBenchmarkAsset, BenchmarkAssetNotAvailableTooEarly, BenchmarkAssetNotAvailableTooLate, ) class BenchmarkSource: def __init__( self, benchmark_asset, trading_calendar, sessions, data_portal, emission_rate="daily", benchmark_returns=None, ): self.benchmark_asset = benchmark_asset self.sessions = sessions self.emission_rate = emission_rate self.data_portal = data_portal if len(sessions) == 0: self._precalculated_series = pd.Series() elif benchmark_asset is not None: self._validate_benchmark(benchmark_asset) ( self._precalculated_series, self._daily_returns, ) = self._initialize_precalculated_series( benchmark_asset, trading_calendar, sessions, data_portal ) elif benchmark_returns is not None: self._daily_returns = daily_series = benchmark_returns.reindex( sessions, ).fillna(0) if self.emission_rate == "minute": # we need to take the env's benchmark returns, which are daily, # and resample them to minute minutes = trading_calendar.sessions_minutes(sessions[0], sessions[-1]) minute_series = daily_series.tz_localize(minutes.tzinfo).reindex( index=minutes, method="ffill" ) self._precalculated_series = minute_series else: self._precalculated_series = daily_series else: raise Exception( "Must provide either benchmark_asset or " "benchmark_returns." ) def get_value(self, dt): """Look up the returns for a given dt. Parameters ---------- dt : datetime The label to look up. Returns ------- returns : float The returns at the given dt or session. See Also -------- :class:`zipline.sources.benchmark_source.BenchmarkSource.daily_returns` .. warning:: This method expects minute inputs if ``emission_rate == 'minute'`` and session labels when ``emission_rate == 'daily``. """ return self._precalculated_series.loc[dt] def get_range(self, start_dt, end_dt): """Look up the returns for a given period. Parameters ---------- start_dt : datetime The inclusive start label. end_dt : datetime The inclusive end label. Returns ------- returns : pd.Series The series of returns. See Also -------- :class:`zipline.sources.benchmark_source.BenchmarkSource.daily_returns` .. warning:: This method expects minute inputs if ``emission_rate == 'minute'`` and session labels when ``emission_rate == 'daily``. """ return self._precalculated_series.loc[start_dt:end_dt] def daily_returns(self, start, end=None): """Returns the daily returns for the given period. Parameters ---------- start : datetime The inclusive starting session label. end : datetime, optional The inclusive ending session label. If not provided, treat ``start`` as a scalar key. Returns ------- returns : pd.Series or float The returns in the given period. The index will be the trading calendar in the range [start, end]. If just ``start`` is provided, return the scalar value on that day. """ if end is None: return self._daily_returns[start] return self._daily_returns[start:end] def _validate_benchmark(self, benchmark_asset): # check if this security has a stock dividend. if so, raise an # error suggesting that the user pick a different asset to use # as benchmark. stock_dividends = self.data_portal.get_stock_dividends( self.benchmark_asset, self.sessions ) if len(stock_dividends) > 0: raise InvalidBenchmarkAsset( sid=str(self.benchmark_asset), dt=stock_dividends[0]["ex_date"] ) if benchmark_asset.start_date > self.sessions[0]: # the asset started trading after the first simulation day raise BenchmarkAssetNotAvailableTooEarly( sid=str(self.benchmark_asset), dt=self.sessions[0], start_dt=benchmark_asset.start_date, ) if benchmark_asset.end_date < self.sessions[-1]: # the asset stopped trading before the last simulation day raise BenchmarkAssetNotAvailableTooLate( sid=str(self.benchmark_asset), dt=self.sessions[-1], end_dt=benchmark_asset.end_date, ) @staticmethod def _compute_daily_returns(g): return (g[-1] - g[0]) / g[0] @classmethod def downsample_minute_return_series(cls, trading_calendar, minutely_returns): sessions = trading_calendar.minutes_to_sessions( minutely_returns.index, ) closes = trading_calendar.closes[sessions[0] : sessions[-1]] daily_returns = minutely_returns[closes].pct_change() daily_returns.index = closes.index return daily_returns.iloc[1:] def _initialize_precalculated_series( self, asset, trading_calendar, trading_days, data_portal ): """ Internal method that pre-calculates the benchmark return series for use in the simulation. Parameters ---------- asset: Asset to use trading_calendar: TradingCalendar trading_days: pd.DateTimeIndex data_portal: DataPortal Notes ----- If the benchmark asset started trading after the simulation start, or finished trading before the simulation end, exceptions are raised. If the benchmark asset started trading the same day as the simulation start, the first available minute price on that day is used instead of the previous close. We use history to get an adjusted price history for each day's close, as of the look-back date (the last day of the simulation). Prices are fully adjusted for dividends, splits, and mergers. Returns ------- returns : pd.Series indexed by trading day, whose values represent the % change from close to close. daily_returns : pd.Series the partial daily returns for each minute """ if self.emission_rate == "minute": minutes = trading_calendar.sessions_minutes( self.sessions[0], self.sessions[-1] ) benchmark_series = data_portal.get_history_window( [asset], minutes[-1], bar_count=len(minutes) + 1, frequency="1m", field="price", data_frequency=self.emission_rate, ffill=True, )[asset] return ( benchmark_series.pct_change()[1:], self.downsample_minute_return_series( trading_calendar, benchmark_series, ), ) start_date = asset.start_date if start_date < trading_days[0]: # get the window of close prices for benchmark_asset from the # last trading day of the simulation, going up to one day # before the simulation start day (so that we can get the % # change on day 1) benchmark_series = data_portal.get_history_window( [asset], trading_days[-1], bar_count=len(trading_days) + 1, frequency="1d", field="price", data_frequency=self.emission_rate, ffill=True, )[asset] returns = benchmark_series.pct_change()[1:] return returns, returns elif start_date == trading_days[0]: # Attempt to handle case where stock data starts on first # day, in this case use the open to close return. benchmark_series = data_portal.get_history_window( [asset], trading_days[-1], bar_count=len(trading_days), frequency="1d", field="price", data_frequency=self.emission_rate, ffill=True, )[asset] # get a minute history window of the first day first_open = data_portal.get_spot_value( asset, "open", trading_days[0], "daily", ) first_close = data_portal.get_spot_value( asset, "close", trading_days[0], "daily", ) first_day_return = (first_close - first_open) / first_open returns = benchmark_series.pct_change()[:] returns[0] = first_day_return return returns, returns else: raise ValueError( "cannot set benchmark to asset that does not exist during" " the simulation period (asset start date=%r)" % start_date )
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/sources/benchmark_source.py
benchmark_source.py
from abc import ABC, abstractmethod from collections import namedtuple import hashlib from textwrap import dedent import warnings import logging import numpy import pandas as pd import datetime import requests from io import StringIO from zipline.errors import MultipleSymbolsFound, SymbolNotFound, ZiplineError from zipline.protocol import DATASOURCE_TYPE, Event from zipline.assets import Equity logger = logging.getLogger("Requests Source Logger") def roll_dts_to_midnight(dts, trading_day): if len(dts) == 0: return dts return ( pd.DatetimeIndex( (dts.tz_convert("US/Eastern") - pd.Timedelta(hours=16)).date, tz="UTC", ) + trading_day ) class FetcherEvent(Event): pass class FetcherCSVRedirectError(ZiplineError): msg = dedent( """\ Attempt to fetch_csv from a redirected url. {url} must be changed to {new_url} """ ) def __init__(self, *args, **kwargs): self.url = kwargs["url"] self.new_url = kwargs["new_url"] self.extra = kwargs["extra"] super(FetcherCSVRedirectError, self).__init__(*args, **kwargs) # The following optional arguments are supported for # requests backed data sources. # see https://requests.readthedocs.io/en/latest/api/#main-interface # for a full list. ALLOWED_REQUESTS_KWARGS = {"params", "headers", "auth", "cert"} # The following optional arguments are supported for pandas' read_csv # function, and may be passed as kwargs to the datasource below. # see https://pandas.pydata.org/ # pandas-docs/stable/generated/pandas.io.parsers.read_csv.html ALLOWED_READ_CSV_KWARGS = { "sep", "dialect", "doublequote", "escapechar", "quotechar", "quoting", "skipinitialspace", "lineterminator", "header", "index_col", "names", "prefix", "skiprows", "skipfooter", "skip_footer", "na_values", "true_values", "false_values", "delimiter", "converters", "dtype", "delim_whitespace", "as_recarray", "na_filter", "compact_ints", "use_unsigned", "buffer_lines", "warn_bad_lines", "error_bad_lines", "keep_default_na", "thousands", "comment", "decimal", "keep_date_col", "nrows", "chunksize", "encoding", "usecols", } SHARED_REQUESTS_KWARGS = { "stream": True, "allow_redirects": False, } def mask_requests_args(url, validating=False, params_checker=None, **kwargs): requests_kwargs = { key: val for (key, val) in kwargs.items() if key in ALLOWED_REQUESTS_KWARGS } if params_checker is not None: url, s_params = params_checker(url) if s_params: if "params" in requests_kwargs: requests_kwargs["params"].update(s_params) else: requests_kwargs["params"] = s_params # Giving the connection 30 seconds. This timeout does not # apply to the download of the response body. # (Note that Quandl links can take >10 seconds to return their # first byte on occasion) requests_kwargs["timeout"] = 1.0 if validating else 30.0 requests_kwargs.update(SHARED_REQUESTS_KWARGS) request_pair = namedtuple("RequestPair", ("requests_kwargs", "url")) return request_pair(requests_kwargs, url) class PandasCSV(ABC): def __init__( self, pre_func, post_func, asset_finder, trading_day, start_date, end_date, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency, country_code, **kwargs, ): self.start_date = start_date self.end_date = end_date self.date_column = date_column self.date_format = date_format self.timezone = timezone self.mask = mask self.symbol_column = symbol_column or "symbol" self.data_frequency = data_frequency self.country_code = country_code invalid_kwargs = set(kwargs) - ALLOWED_READ_CSV_KWARGS if invalid_kwargs: raise TypeError( "Unexpected keyword arguments: %s" % invalid_kwargs, ) self.pandas_kwargs = self.mask_pandas_args(kwargs) self.symbol = symbol self.finder = asset_finder self.trading_day = trading_day self.pre_func = pre_func self.post_func = post_func @property def fields(self): return self.df.columns.tolist() def get_hash(self): return self.namestring @abstractmethod def fetch_data(self): return @staticmethod def parse_date_str_series( format_str, tz, date_str_series, data_frequency, trading_day ): """ Efficient parsing for a 1d Pandas/numpy object containing string representations of dates. Note: pd.to_datetime is significantly faster when no format string is passed, and in pandas 0.12.0 the %p strptime directive is not correctly handled if a format string is explicitly passed, but AM/PM is handled properly if format=None. Moreover, we were previously ignoring this parameter unintentionally because we were incorrectly passing it as a positional. For all these reasons, we ignore the format_str parameter when parsing datetimes. """ # Explicitly ignoring this parameter. See note above. if format_str is not None: logger.warning( "The 'format_str' parameter to fetch_csv is deprecated. " "Ignoring and defaulting to pandas default date parsing." ) format_str = None tz_str = str(tz) if tz_str == str(datetime.timezone.utc): parsed = pd.to_datetime( date_str_series.values, # format=format_str, utc=True, errors="coerce", ) else: parsed = ( pd.to_datetime( date_str_series.values, format=format_str, errors="coerce", ) .tz_localize(tz_str) .tz_convert("UTC") ) if data_frequency == "daily": parsed = roll_dts_to_midnight(parsed, trading_day) return parsed def mask_pandas_args(self, kwargs): pandas_kwargs = { key: val for (key, val) in kwargs.items() if key in ALLOWED_READ_CSV_KWARGS } if "usecols" in pandas_kwargs: usecols = pandas_kwargs["usecols"] if usecols and self.date_column not in usecols: # make a new list so we don't modify user's, # and to ensure it is mutable with_date = list(usecols) with_date.append(self.date_column) pandas_kwargs["usecols"] = with_date # No strings in the 'symbol' column should be interpreted as NaNs pandas_kwargs.setdefault("keep_default_na", False) pandas_kwargs.setdefault("na_values", {"symbol": []}) return pandas_kwargs def _lookup_unconflicted_symbol(self, symbol): """ Attempt to find a unique asset whose symbol is the given string. If multiple assets have held the given symbol, return a 0. If no asset has held the given symbol, return a NaN. """ try: uppered = symbol.upper() except AttributeError: # The mapping fails because symbol was a non-string return numpy.nan try: return self.finder.lookup_symbol( uppered, as_of_date=None, country_code=self.country_code, ) except MultipleSymbolsFound: # Fill conflicted entries with zeros to mark that they need to be # resolved by date. return 0 except SymbolNotFound: # Fill not found entries with nans. return numpy.nan def load_df(self): df = self.fetch_data() if self.pre_func: df = self.pre_func(df) # Batch-convert the user-specifed date column into timestamps. df["dt"] = self.parse_date_str_series( self.date_format, self.timezone, df[self.date_column], self.data_frequency, self.trading_day, ).values # ignore rows whose dates we couldn't parse df = df[df["dt"].notnull()] if self.symbol is not None: df["sid"] = self.symbol elif self.finder: df.sort_values(by=self.symbol_column, inplace=True) # Pop the 'sid' column off of the DataFrame, just in case the user # has assigned it, and throw a warning try: df.pop("sid") warnings.warn( "Assignment of the 'sid' column of a DataFrame is " "not supported by Fetcher. The 'sid' column has been " "overwritten.", category=UserWarning, stacklevel=2, ) except KeyError: # There was no 'sid' column, so no warning is necessary pass # Fill entries for any symbols that don't require a date to # uniquely identify. Entries for which multiple securities exist # are replaced with zeroes, while entries for which no asset # exists are replaced with NaNs. unique_symbols = df[self.symbol_column].unique() sid_series = pd.Series( data=map(self._lookup_unconflicted_symbol, unique_symbols), index=unique_symbols, name="sid", ) df = df.join(sid_series, on=self.symbol_column) # Fill any zero entries left in our sid column by doing a lookup # using both symbol and the row date. conflict_rows = df[df["sid"] == 0] for row_idx, row in conflict_rows.iterrows(): try: asset = ( self.finder.lookup_symbol( row[self.symbol_column], # Replacing tzinfo here is necessary because of the # timezone metadata bug described below. row["dt"].replace(tzinfo=datetime.tzinfo.utc), country_code=self.country_code, # It's possible that no asset comes back here if our # lookup date is from before any asset held the # requested symbol. Mark such cases as NaN so that # they get dropped in the next step. ) or numpy.nan ) except SymbolNotFound: asset = numpy.nan # Assign the resolved asset to the cell df.iloc[row_idx, df.columns.get_loc("sid")] = asset # Filter out rows containing symbols that we failed to find. length_before_drop = len(df) df = df[df["sid"].notnull()] no_sid_count = length_before_drop - len(df) if no_sid_count: logger.warning( "Dropped %s rows from fetched csv.", no_sid_count, extra={"syslog": True}, ) else: df["sid"] = df["symbol"] # Dates are localized to UTC when they come out of # parse_date_str_series, but we need to re-localize them here because # of a bug that wasn't fixed until # https://github.com/pydata/pandas/pull/7092. # We should be able to remove the call to tz_localize once we're on # pandas 0.14.0 # We don't set 'dt' as the index until here because the Symbol parsing # operations above depend on having a unique index for the dataframe, # and the 'dt' column can contain multiple dates for the same entry. df.drop_duplicates(["sid", "dt"]) df.set_index(["dt"], inplace=True) df = df.tz_localize("UTC") df.sort_index(inplace=True) cols_to_drop = [self.date_column] if self.symbol is None: cols_to_drop.append(self.symbol_column) df = df[df.columns.drop(cols_to_drop)] if self.post_func: df = self.post_func(df) return df def __iter__(self): asset_cache = {} for dt, series in self.df.iterrows(): if dt < self.start_date: continue if dt > self.end_date: return event = FetcherEvent() # when dt column is converted to be the dataframe's index # the dt column is dropped. So, we need to manually copy # dt into the event. event.dt = dt for k, v in series.iteritems(): # convert numpy integer types to # int. This assumes we are on a 64bit # platform that will not lose information # by casting. # TODO: this is only necessary on the # amazon qexec instances. would be good # to figure out how to use the numpy dtypes # without this check and casting. if isinstance(v, numpy.integer): v = int(v) setattr(event, k, v) # If it has start_date, then it's already an Asset # object from asset_for_symbol, and we don't have to # transform it any further. Checking for start_date is # faster than isinstance. if event.sid in asset_cache: event.sid = asset_cache[event.sid] elif hasattr(event.sid, "start_date"): # Clone for user algo code, if we haven't already. asset_cache[event.sid] = event.sid elif self.finder and isinstance(event.sid, int): asset = self.finder.retrieve_asset(event.sid, default_none=True) if asset: # Clone for user algo code. event.sid = asset_cache[asset] = asset elif self.mask: # When masking drop all non-mappable values. continue elif self.symbol is None: # If the event's sid property is an int we coerce # it into an Equity. event.sid = asset_cache[event.sid] = Equity(event.sid) event.type = DATASOURCE_TYPE.CUSTOM event.source_id = self.namestring yield event class PandasRequestsCSV(PandasCSV): # maximum 100 megs to prevent DDoS MAX_DOCUMENT_SIZE = (1024 * 1024) * 100 # maximum number of bytes to read in at a time CONTENT_CHUNK_SIZE = 4096 def __init__( self, url, pre_func, post_func, asset_finder, trading_day, start_date, end_date, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency, country_code, special_params_checker=None, **kwargs, ): # Peel off extra requests kwargs, forwarding the remaining kwargs to # the superclass. # Also returns possible https updated url if sent to http quandl ds # If url hasn't changed, will just return the original. self._requests_kwargs, self.url = mask_requests_args( url, params_checker=special_params_checker, **kwargs ) remaining_kwargs = { k: v for k, v in kwargs.items() if k not in self.requests_kwargs } self.namestring = type(self).__name__ super(PandasRequestsCSV, self).__init__( pre_func, post_func, asset_finder, trading_day, start_date, end_date, date_column, date_format, timezone, symbol, mask, symbol_column, data_frequency, country_code=country_code, **remaining_kwargs, ) self.fetch_size = None self.fetch_hash = None self.df = self.load_df() self.special_params_checker = special_params_checker @property def requests_kwargs(self): return self._requests_kwargs def fetch_url(self, url): info = "checking {url} with {params}" logger.info(info.format(url=url, params=self.requests_kwargs)) # setting decode_unicode=True sometimes results in a # UnicodeEncodeError exception, so instead we'll use # pandas logic for decoding content try: response = requests.get(url, **self.requests_kwargs) except requests.exceptions.ConnectionError as exc: raise Exception("Could not connect to %s" % url) from exc if not response.ok: raise Exception("Problem reaching %s" % url) elif response.is_redirect: # On the offchance we don't catch a redirect URL # in validation, this will catch it. new_url = response.headers["location"] raise FetcherCSVRedirectError( url=url, new_url=new_url, extra={"old_url": url, "new_url": new_url}, ) content_length = 0 logger.info( "{} connection established in {:.1f} seconds".format( url, response.elapsed.total_seconds() ) ) # use the decode_unicode flag to ensure that the output of this is # a string, and not bytes. for chunk in response.iter_content( self.CONTENT_CHUNK_SIZE, decode_unicode=True ): if content_length > self.MAX_DOCUMENT_SIZE: raise Exception("Document size too big.") if chunk: content_length += len(chunk) yield chunk return def fetch_data(self): # create a data frame directly from the full text of # the response from the returned file-descriptor. data = self.fetch_url(self.url) fd = StringIO() if isinstance(data, str): fd.write(data) else: for chunk in data: fd.write(chunk) self.fetch_size = fd.tell() fd.seek(0) try: # see if pandas can parse csv data frames = pd.read_csv(fd, **self.pandas_kwargs) frames_hash = hashlib.md5(str(fd.getvalue()).encode("utf-8")) self.fetch_hash = frames_hash.hexdigest() except pd.parser.CParserError as exc: # could not parse the data, raise exception raise Exception("Error parsing remote CSV data.") from exc finally: fd.close() return frames
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/sources/requests_csv.py
requests_csv.py
from abc import ( ABC, abstractmethod, ) import numpy as np from lru import LRU from pandas import isnull from toolz import sliding_window from zipline.assets import Equity, Future from zipline.assets.continuous_futures import ContinuousFuture from zipline.lib._int64window import AdjustedArrayWindow as Int64Window from zipline.lib._float64window import AdjustedArrayWindow as Float64Window from zipline.lib.adjustment import Float64Multiply, Float64Add from zipline.utils.cache import ExpiringCache from zipline.utils.math_utils import number_of_decimal_places from zipline.utils.memoize import lazyval from zipline.utils.numpy_utils import float64_dtype from zipline.utils.pandas_utils import find_in_sorted_index # Default number of decimal places used for rounding asset prices. DEFAULT_ASSET_PRICE_DECIMALS = 3 class HistoryCompatibleUSEquityAdjustmentReader: def __init__(self, adjustment_reader): self._adjustments_reader = adjustment_reader def load_pricing_adjustments(self, columns, dts, assets): """ Returns ------- adjustments : list[dict[int -> Adjustment]] A list, where each element corresponds to the `columns`, of mappings from index to adjustment objects to apply at that index. """ out = [None] * len(columns) for i, column in enumerate(columns): adjs = {} for asset in assets: adjs.update(self._get_adjustments_in_range(asset, dts, column)) out[i] = adjs return out def _get_adjustments_in_range(self, asset, dts, field): """Get the Float64Multiply objects to pass to an AdjustedArrayWindow. For the use of AdjustedArrayWindow in the loader, which looks back from current simulation time back to a window of data the dictionary is structured with: - the key into the dictionary for adjustments is the location of the day from which the window is being viewed. - the start of all multiply objects is always 0 (in each window all adjustments are overlapping) - the end of the multiply object is the location before the calendar location of the adjustment action, making all days before the event adjusted. Parameters ---------- asset : Asset The assets for which to get adjustments. dts : iterable of datetime64-like The dts for which adjustment data is needed. field : str OHLCV field for which to get the adjustments. Returns ------- out : dict[loc -> Float64Multiply] The adjustments as a dict of loc -> Float64Multiply """ sid = int(asset) start = dts[0].normalize() end = dts[-1].normalize() adjs = {} if field != "volume": mergers = self._adjustments_reader.get_adjustments_for_sid("mergers", sid) for m in mergers: dt = m[0].tz_localize(dts.tzinfo) if start < dt <= end: end_loc = dts.searchsorted(dt) adj_loc = end_loc mult = Float64Multiply(0, end_loc - 1, 0, 0, m[1]) try: adjs[adj_loc].append(mult) except KeyError: adjs[adj_loc] = [mult] divs = self._adjustments_reader.get_adjustments_for_sid("dividends", sid) for d in divs: dt = d[0].tz_localize(dts.tzinfo) if start < dt <= end: end_loc = dts.searchsorted(dt) adj_loc = end_loc mult = Float64Multiply(0, end_loc - 1, 0, 0, d[1]) try: adjs[adj_loc].append(mult) except KeyError: adjs[adj_loc] = [mult] splits = self._adjustments_reader.get_adjustments_for_sid("splits", sid) for s in splits: dt = s[0].tz_localize(dts.tzinfo) if start < dt <= end: if field == "volume": ratio = 1.0 / s[1] else: ratio = s[1] end_loc = dts.searchsorted(dt) adj_loc = end_loc mult = Float64Multiply(0, end_loc - 1, 0, 0, ratio) try: adjs[adj_loc].append(mult) except KeyError: adjs[adj_loc] = [mult] return adjs class ContinuousFutureAdjustmentReader: """Calculates adjustments for continuous futures, based on the close and open of the contracts on the either side of each roll. """ def __init__( self, trading_calendar, asset_finder, bar_reader, roll_finders, frequency, ): self._trading_calendar = trading_calendar self._asset_finder = asset_finder self._bar_reader = bar_reader self._roll_finders = roll_finders self._frequency = frequency def load_pricing_adjustments(self, columns, dts, assets): """ Returns ------- adjustments : list[dict[int -> Adjustment]] A list, where each element corresponds to the `columns`, of mappings from index to adjustment objects to apply at that index. """ out = [None] * len(columns) for i, column in enumerate(columns): adjs = {} for asset in assets: adjs.update(self._get_adjustments_in_range(asset, dts, column)) out[i] = adjs return out def _make_adjustment(self, adjustment_type, front_close, back_close, end_loc): adj_base = back_close - front_close if adjustment_type == "mul": adj_value = 1.0 + adj_base / front_close adj_class = Float64Multiply elif adjustment_type == "add": adj_value = adj_base adj_class = Float64Add return adj_class(0, end_loc, 0, 0, adj_value) def _get_adjustments_in_range(self, cf, dts, field): if field == "volume" or field == "sid": return {} if cf.adjustment is None: return {} rf = self._roll_finders[cf.roll_style] partitions = [] rolls = rf.get_rolls(cf.root_symbol, dts[0], dts[-1], cf.offset) tc = self._trading_calendar adjs = {} for front, back in sliding_window(2, rolls): front_sid, roll_dt = front back_sid = back[0] dt = tc.previous_session(roll_dt) if self._frequency == "minute": dt = tc.session_close(dt) roll_dt = tc.session_first_minute(roll_dt) partitions.append((front_sid, back_sid, dt, roll_dt)) for partition in partitions: front_sid, back_sid, dt, roll_dt = partition last_front_dt = self._bar_reader.get_last_traded_dt( self._asset_finder.retrieve_asset(front_sid), dt ) last_back_dt = self._bar_reader.get_last_traded_dt( self._asset_finder.retrieve_asset(back_sid), dt ) if isnull(last_front_dt) or isnull(last_back_dt): continue front_close = self._bar_reader.get_value(front_sid, last_front_dt, "close") back_close = self._bar_reader.get_value(back_sid, last_back_dt, "close") adj_loc = dts.searchsorted(roll_dt) end_loc = adj_loc - 1 adj = self._make_adjustment(cf.adjustment, front_close, back_close, end_loc) try: adjs[adj_loc].append(adj) except KeyError: adjs[adj_loc] = [adj] return adjs class SlidingWindow: """Wrapper around an AdjustedArrayWindow which supports monotonically increasing (by datetime) requests for a sized window of data. Parameters ---------- window : AdjustedArrayWindow Window of pricing data with prefetched values beyond the current simulation dt. cal_start : int Index in the overall calendar at which the window starts. """ def __init__(self, window, size, cal_start, offset): self.window = window self.cal_start = cal_start self.current = next(window) self.offset = offset self.most_recent_ix = self.cal_start + size def get(self, end_ix): """ Returns ------- out : A np.ndarray of the equity pricing up to end_ix after adjustments and rounding have been applied. """ if self.most_recent_ix == end_ix: return self.current target = end_ix - self.cal_start - self.offset + 1 self.current = self.window.seek(target) self.most_recent_ix = end_ix return self.current class HistoryLoader(ABC): """Loader for sliding history windows, with support for adjustments. Parameters ---------- trading_calendar: TradingCalendar Contains the grouping logic needed to assign minutes to periods. reader : DailyBarReader, MinuteBarReader Reader for pricing bars. adjustment_reader : SQLiteAdjustmentReader Reader for adjustment data. """ FIELDS = ("open", "high", "low", "close", "volume", "sid") def __init__( self, trading_calendar, reader, equity_adjustment_reader, asset_finder, roll_finders=None, sid_cache_size=1000, prefetch_length=0, ): self.trading_calendar = trading_calendar self._asset_finder = asset_finder self._reader = reader self._adjustment_readers = {} if equity_adjustment_reader is not None: self._adjustment_readers[ Equity ] = HistoryCompatibleUSEquityAdjustmentReader(equity_adjustment_reader) if roll_finders: self._adjustment_readers[ ContinuousFuture ] = ContinuousFutureAdjustmentReader( trading_calendar, asset_finder, reader, roll_finders, self._frequency, ) self._window_blocks = { field: ExpiringCache(LRU(sid_cache_size)) for field in self.FIELDS } self._prefetch_length = prefetch_length @property @abstractmethod def _frequency(self): pass @property @abstractmethod def _calendar(self): pass @abstractmethod def _array(self, start, end, assets, field): pass def _decimal_places_for_asset(self, asset, reference_date): if isinstance(asset, Future) and asset.tick_size: return number_of_decimal_places(asset.tick_size) elif isinstance(asset, ContinuousFuture): # Tick size should be the same for all contracts of a continuous # future, so arbitrarily get the contract with next upcoming auto # close date. oc = self._asset_finder.get_ordered_contracts(asset.root_symbol) contract_sid = oc.contract_before_auto_close(reference_date.value) if contract_sid is not None: contract = self._asset_finder.retrieve_asset(contract_sid) if contract.tick_size: return number_of_decimal_places(contract.tick_size) return DEFAULT_ASSET_PRICE_DECIMALS def _ensure_sliding_windows(self, assets, dts, field, is_perspective_after): """Ensure that there is a Float64Multiply window for each asset that can provide data for the given parameters. If the corresponding window for the (assets, len(dts), field) does not exist, then create a new one. If a corresponding window does exist for (assets, len(dts), field), but can not provide data for the current dts range, then create a new one and replace the expired window. Parameters ---------- assets : iterable of Assets The assets in the window dts : iterable of datetime64-like The datetimes for which to fetch data. Makes an assumption that all dts are present and contiguous, in the calendar. field : str The OHLCV field for which to retrieve data. is_perspective_after : bool see: `PricingHistoryLoader.history` Returns ------- out : list of Float64Window with sufficient data so that each asset's window can provide `get` for the index corresponding with the last value in `dts` """ end = dts[-1] size = len(dts) asset_windows = {} needed_assets = [] cal = self._calendar assets = self._asset_finder.retrieve_all(assets) end_ix = find_in_sorted_index(cal, end) for asset in assets: try: window = self._window_blocks[field].get( (asset, size, is_perspective_after), end ) except KeyError: needed_assets.append(asset) else: if end_ix < window.most_recent_ix: # Window needs reset. Requested end index occurs before the # end index from the previous history call for this window. # Grab new window instead of rewinding adjustments. needed_assets.append(asset) else: asset_windows[asset] = window if needed_assets: offset = 0 start_ix = find_in_sorted_index(cal, dts[0]) prefetch_end_ix = min(end_ix + self._prefetch_length, len(cal) - 1) prefetch_end = cal[prefetch_end_ix] prefetch_dts = cal[start_ix : prefetch_end_ix + 1] if is_perspective_after: adj_end_ix = min(prefetch_end_ix + 1, len(cal) - 1) adj_dts = cal[start_ix : adj_end_ix + 1] else: adj_dts = prefetch_dts prefetch_len = len(prefetch_dts) array = self._array(prefetch_dts, needed_assets, field) if field == "sid": window_type = Int64Window else: window_type = Float64Window view_kwargs = {} if field == "volume": array = array.astype(float64_dtype) for i, asset in enumerate(needed_assets): adj_reader = None try: adj_reader = self._adjustment_readers[type(asset)] except KeyError: adj_reader = None if adj_reader is not None: adjs = adj_reader.load_pricing_adjustments( [field], adj_dts, [asset] )[0] else: adjs = {} window = window_type( array[:, i].reshape(prefetch_len, 1), view_kwargs, adjs, offset, size, int(is_perspective_after), self._decimal_places_for_asset(asset, dts[-1]), ) sliding_window = SlidingWindow(window, size, start_ix, offset) asset_windows[asset] = sliding_window self._window_blocks[field].set( (asset, size, is_perspective_after), sliding_window, prefetch_end, ) return [asset_windows[asset] for asset in assets] def history(self, assets, dts, field, is_perspective_after): """A window of pricing data with adjustments applied assuming that the end of the window is the day before the current simulation time. Parameters ---------- assets : iterable of Assets The assets in the window. dts : iterable of datetime64-like The datetimes for which to fetch data. Makes an assumption that all dts are present and contiguous, in the calendar. field : str The OHLCV field for which to retrieve data. is_perspective_after : bool True, if the window is being viewed immediately after the last dt in the sliding window. False, if the window is viewed on the last dt. This flag is used for handling the case where the last dt in the requested window immediately precedes a corporate action, e.g.: - is_perspective_after is True When the viewpoint is after the last dt in the window, as when a daily history window is accessed from a simulation that uses a minute data frequency, the history call to this loader will not include the current simulation dt. At that point in time, the raw data for the last day in the window will require adjustment, so the most recent adjustment with respect to the simulation time is applied to the last dt in the requested window. An example equity which has a 0.5 split ratio dated for 05-27, with the dts for a history call of 5 bars with a '1d' frequency at 05-27 9:31. Simulation frequency is 'minute'. (In this case this function is called with 4 daily dts, and the calling function is responsible for stitching back on the 'current' dt) | | | | | last dt | <-- viewer is here | | | 05-23 | 05-24 | 05-25 | 05-26 | 05-27 9:31 | | raw | 10.10 | 10.20 | 10.30 | 10.40 | | | adj | 5.05 | 5.10 | 5.15 | 5.25 | | The adjustment is applied to the last dt, 05-26, and all previous dts. - is_perspective_after is False, daily When the viewpoint is the same point in time as the last dt in the window, as when a daily history window is accessed from a simulation that uses a daily data frequency, the history call will include the current dt. At that point in time, the raw data for the last day in the window will be post-adjustment, so no adjustment is applied to the last dt. An example equity which has a 0.5 split ratio dated for 05-27, with the dts for a history call of 5 bars with a '1d' frequency at 05-27 0:00. Simulation frequency is 'daily'. | | | | | | <-- viewer is here | | | | | | | last dt | | | 05-23 | 05-24 | 05-25 | 05-26 | 05-27 | | raw | 10.10 | 10.20 | 10.30 | 10.40 | 5.25 | | adj | 5.05 | 5.10 | 5.15 | 5.20 | 5.25 | Adjustments are applied 05-23 through 05-26 but not to the last dt, 05-27 Returns ------- out : np.ndarray with shape(len(days between start, end), len(assets)) """ block = self._ensure_sliding_windows(assets, dts, field, is_perspective_after) end_ix = self._calendar.searchsorted(dts[-1]) return np.concatenate( [window.get(end_ix) for window in block], axis=1, ) class DailyHistoryLoader(HistoryLoader): @property def _frequency(self): return "daily" @property def _calendar(self): return self._reader.sessions def _array(self, dts, assets, field): return self._reader.load_raw_arrays( [field], dts[0], dts[-1], assets, )[0] class MinuteHistoryLoader(HistoryLoader): @property def _frequency(self): return "minute" @lazyval def _calendar(self): mm = self.trading_calendar.minutes start = mm.searchsorted(self._reader.first_trading_day.tz_localize("UTC")) if self._reader.last_available_dt.tzinfo is None: end = mm.searchsorted( self._reader.last_available_dt.tz_localize("UTC"), side="right" ) else: end = mm.searchsorted(self._reader.last_available_dt, side="right") return mm[start:end] def _array(self, dts, assets, field): return self._reader.load_raw_arrays( [field], dts[0], dts[-1], assets, )[0]
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/data/history_loader.py
history_loader.py
import warnings from functools import partial with warnings.catch_warnings(): # noqa warnings.filterwarnings("ignore", category=DeprecationWarning) from bcolz import carray, ctable import numpy as np import logging import pandas as pd from zipline.data.bar_reader import NoDataAfterDate, NoDataBeforeDate, NoDataOnDate from zipline.data.session_bars import CurrencyAwareSessionBarReader from zipline.utils.calendar_utils import get_calendar from zipline.utils.cli import maybe_show_progress from zipline.utils.functional import apply from zipline.utils.input_validation import expect_element from zipline.utils.memoize import lazyval from zipline.utils.numpy_utils import float64_dtype, iNaT, uint32_dtype from ._equities import _compute_row_slices, _read_bcolz_data logger = logging.getLogger("UsEquityPricing") OHLC = frozenset(["open", "high", "low", "close"]) US_EQUITY_PRICING_BCOLZ_COLUMNS = ( "open", "high", "low", "close", "volume", "day", "id", ) UINT32_MAX = np.iinfo(np.uint32).max def check_uint32_safe(value, colname): if value >= UINT32_MAX: raise ValueError("Value %s from column '%s' is too large" % (value, colname)) @expect_element(invalid_data_behavior={"warn", "raise", "ignore"}) def winsorise_uint32(df, invalid_data_behavior, column, *columns): """Drops any record where a value would not fit into a uint32. Parameters ---------- df : pd.DataFrame The dataframe to winsorise. invalid_data_behavior : {'warn', 'raise', 'ignore'} What to do when data is outside the bounds of a uint32. *columns : iterable[str] The names of the columns to check. Returns ------- truncated : pd.DataFrame ``df`` with values that do not fit into a uint32 zeroed out. """ columns = list((column,) + columns) mask = df[columns] > UINT32_MAX if invalid_data_behavior != "ignore": mask |= df[columns].isnull() else: # we are not going to generate a warning or error for this so just use # nan_to_num df[columns] = np.nan_to_num(df[columns]) mv = mask.values if mv.any(): if invalid_data_behavior == "raise": raise ValueError( "%d values out of bounds for uint32: %r" % ( mv.sum(), df[mask.any(axis=1)], ), ) if invalid_data_behavior == "warn": warnings.warn( "Ignoring %d values because they are out of bounds for" " uint32:\n %r" % ( mv.sum(), df[mask.any(axis=1)], ), stacklevel=3, # one extra frame for `expect_element` ) df[mask] = 0 return df class BcolzDailyBarWriter: """Class capable of writing daily OHLCV data to disk in a format that can be read efficiently by BcolzDailyOHLCVReader. Parameters ---------- filename : str The location at which we should write our output. calendar : zipline.utils.calendar.trading_calendar Calendar to use to compute asset calendar offsets. start_session: pd.Timestamp Midnight UTC session label. end_session: pd.Timestamp Midnight UTC session label. See Also -------- zipline.data.bcolz_daily_bars.BcolzDailyBarReader """ _csv_dtypes = { "open": float64_dtype, "high": float64_dtype, "low": float64_dtype, "close": float64_dtype, "volume": float64_dtype, } def __init__(self, filename, calendar, start_session, end_session): self._filename = filename start_session = start_session.tz_localize(None) end_session = end_session.tz_localize(None) if start_session != end_session: if not calendar.is_session(start_session): raise ValueError("Start session %s is invalid!" % start_session) if not calendar.is_session(end_session): raise ValueError("End session %s is invalid!" % end_session) self._start_session = start_session self._end_session = end_session self._calendar = calendar @property def progress_bar_message(self): return "Merging daily equity files:" def progress_bar_item_show_func(self, value): return value if value is None else str(value[0]) def write( self, data, assets=None, show_progress=False, invalid_data_behavior="warn" ): """ Parameters ---------- data : iterable[tuple[int, pandas.DataFrame or bcolz.ctable]] The data chunks to write. Each chunk should be a tuple of sid and the data for that asset. assets : set[int], optional The assets that should be in ``data``. If this is provided we will check ``data`` against the assets and provide better progress information. show_progress : bool, optional Whether or not to show a progress bar while writing. invalid_data_behavior : {'warn', 'raise', 'ignore'}, optional What to do when data is encountered that is outside the range of a uint32. Returns ------- table : bcolz.ctable The newly-written table. """ ctx = maybe_show_progress( ((sid, self.to_ctable(df, invalid_data_behavior)) for sid, df in data), show_progress=show_progress, item_show_func=self.progress_bar_item_show_func, label=self.progress_bar_message, length=len(assets) if assets is not None else None, ) with ctx as it: return self._write_internal(it, assets) def write_csvs(self, asset_map, show_progress=False, invalid_data_behavior="warn"): """Read CSVs as DataFrames from our asset map. Parameters ---------- asset_map : dict[int -> str] A mapping from asset id to file path with the CSV data for that asset show_progress : bool Whether or not to show a progress bar while writing. invalid_data_behavior : {'warn', 'raise', 'ignore'} What to do when data is encountered that is outside the range of a uint32. """ read = partial( pd.read_csv, parse_dates=["day"], index_col="day", dtype=self._csv_dtypes, ) return self.write( ((asset, read(path)) for asset, path in asset_map.items()), assets=asset_map.keys(), show_progress=show_progress, invalid_data_behavior=invalid_data_behavior, ) def _write_internal(self, iterator, assets): """Internal implementation of write. `iterator` should be an iterator yielding pairs of (asset, ctable). """ total_rows = 0 first_row = {} last_row = {} calendar_offset = {} # Maps column name -> output carray. columns = { k: carray(np.array([], dtype=uint32_dtype)) for k in US_EQUITY_PRICING_BCOLZ_COLUMNS } earliest_date = None sessions = self._calendar.sessions_in_range( self._start_session, self._end_session ) if assets is not None: @apply def iterator(iterator=iterator, assets=set(assets)): for asset_id, table in iterator: if asset_id not in assets: raise ValueError("unknown asset id %r" % asset_id) yield asset_id, table for asset_id, table in iterator: nrows = len(table) for column_name in columns: if column_name == "id": # We know what the content of this column is, so don't # bother reading it. columns["id"].append( np.full((nrows,), asset_id, dtype="uint32"), ) continue columns[column_name].append(table[column_name]) if earliest_date is None: earliest_date = table["day"][0] else: earliest_date = min(earliest_date, table["day"][0]) # Bcolz doesn't support ints as keys in `attrs`, so convert # assets to strings for use as attr keys. asset_key = str(asset_id) # Calculate the index into the array of the first and last row # for this asset. This allows us to efficiently load single # assets when querying the data back out of the table. first_row[asset_key] = total_rows last_row[asset_key] = total_rows + nrows - 1 total_rows += nrows asset_first_day = pd.Timestamp(table["day"][0], unit="s").normalize() asset_last_day = pd.Timestamp(table["day"][-1], unit="s").normalize() asset_sessions = sessions[ sessions.slice_indexer(asset_first_day, asset_last_day) ] if len(table) != len(asset_sessions): missing_sessions = asset_sessions.difference( pd.to_datetime(np.array(table["day"]), unit="s") ).tolist() extra_sessions = ( pd.to_datetime(np.array(table["day"]), unit="s") .difference(asset_sessions) .tolist() ) raise AssertionError( f"Got {len(table)} rows for daily bars table with " f"first day={asset_first_day.date()}, last " f"day={asset_last_day.date()}, expected {len(asset_sessions)} rows.\n" f"Missing sessions: {missing_sessions}\nExtra sessions: {extra_sessions}" ) # assert len(table) == len(asset_sessions), ( # Calculate the number of trading days between the first date # in the stored data and the first date of **this** asset. This # offset used for output alignment by the reader. calendar_offset[asset_key] = sessions.get_loc(asset_first_day) # This writes the table to disk. full_table = ctable( columns=[columns[colname] for colname in US_EQUITY_PRICING_BCOLZ_COLUMNS], names=US_EQUITY_PRICING_BCOLZ_COLUMNS, rootdir=self._filename, mode="w", ) full_table.attrs["first_trading_day"] = ( earliest_date if earliest_date is not None else iNaT ) full_table.attrs["first_row"] = first_row full_table.attrs["last_row"] = last_row full_table.attrs["calendar_offset"] = calendar_offset full_table.attrs["calendar_name"] = self._calendar.name full_table.attrs["start_session_ns"] = self._start_session.value full_table.attrs["end_session_ns"] = self._end_session.value full_table.flush() return full_table @expect_element(invalid_data_behavior={"warn", "raise", "ignore"}) def to_ctable(self, raw_data, invalid_data_behavior): if isinstance(raw_data, ctable): # we already have a ctable so do nothing return raw_data winsorise_uint32(raw_data, invalid_data_behavior, "volume", *OHLC) processed = (raw_data[list(OHLC)] * 1000).round().astype("uint32") dates = raw_data.index.values.astype("datetime64[s]") check_uint32_safe(dates.max().view(np.int64), "day") processed["day"] = dates.astype("uint32") processed["volume"] = raw_data.volume.astype("uint32") return ctable.fromdataframe(processed) class BcolzDailyBarReader(CurrencyAwareSessionBarReader): """Reader for raw pricing data written by BcolzDailyOHLCVWriter. Parameters ---------- table : bcolz.ctable The ctable contaning the pricing data, with attrs corresponding to the Attributes list below. read_all_threshold : int The number of equities at which; below, the data is read by reading a slice from the carray per asset. above, the data is read by pulling all of the data for all assets into memory and then indexing into that array for each day and asset pair. Used to tune performance of reads when using a small or large number of equities. Attributes ---------- The table with which this loader interacts contains the following attributes: first_row : dict Map from asset_id -> index of first row in the dataset with that id. last_row : dict Map from asset_id -> index of last row in the dataset with that id. calendar_offset : dict Map from asset_id -> calendar index of first row. start_session_ns: int Epoch ns of the first session used in this dataset. end_session_ns: int Epoch ns of the last session used in this dataset. calendar_name: str String identifier of trading calendar used (ie, "NYSE"). We use first_row and last_row together to quickly find ranges of rows to load when reading an asset's data into memory. We use calendar_offset and calendar to orient loaded blocks within a range of queried dates. Notes ------ A Bcolz CTable is comprised of Columns and Attributes. The table with which this loader interacts contains the following columns: ['open', 'high', 'low', 'close', 'volume', 'day', 'id']. The data in these columns is interpreted as follows: - Price columns ('open', 'high', 'low', 'close') are interpreted as 1000 * as-traded dollar value. - Volume is interpreted as as-traded volume. - Day is interpreted as seconds since midnight UTC, Jan 1, 1970. - Id is the asset id of the row. The data in each column is grouped by asset and then sorted by day within each asset block. The table is built to represent a long time range of data, e.g. ten years of equity data, so the lengths of each asset block is not equal to each other. The blocks are clipped to the known start and end date of each asset to cut down on the number of empty values that would need to be included to make a regular/cubic dataset. When read across the open, high, low, close, and volume with the same index should represent the same asset and day. See Also -------- zipline.data.bcolz_daily_bars.BcolzDailyBarWriter """ def __init__(self, table, read_all_threshold=3000): self._maybe_table_rootdir = table # Cache of fully read np.array for the carrays in the daily bar table. # raw_array does not use the same cache, but it could. # Need to test keeping the entire array in memory for the course of a # process first. self._spot_cols = {} self.PRICE_ADJUSTMENT_FACTOR = 0.001 self._read_all_threshold = read_all_threshold @lazyval def _table(self): maybe_table_rootdir = self._maybe_table_rootdir if isinstance(maybe_table_rootdir, ctable): return maybe_table_rootdir return ctable(rootdir=maybe_table_rootdir, mode="r") @lazyval def sessions(self): if "calendar" in self._table.attrs.attrs: # backwards compatibility with old formats, will remove return pd.DatetimeIndex(self._table.attrs["calendar"]) else: cal = get_calendar(self._table.attrs["calendar_name"]) start_session_ns = self._table.attrs["start_session_ns"] start_session = pd.Timestamp(start_session_ns) end_session_ns = self._table.attrs["end_session_ns"] end_session = pd.Timestamp(end_session_ns) sessions = cal.sessions_in_range(start_session, end_session) return sessions @lazyval def _first_rows(self): return { int(asset_id): start_index for asset_id, start_index in self._table.attrs["first_row"].items() } @lazyval def _last_rows(self): return { int(asset_id): end_index for asset_id, end_index in self._table.attrs["last_row"].items() } @lazyval def _calendar_offsets(self): return { int(id_): offset for id_, offset in self._table.attrs["calendar_offset"].items() } @lazyval def first_trading_day(self): try: return pd.Timestamp(self._table.attrs["first_trading_day"], unit="s") except KeyError: return None @lazyval def trading_calendar(self): if "calendar_name" in self._table.attrs.attrs: return get_calendar(self._table.attrs["calendar_name"]) else: return None @property def last_available_dt(self): return self.sessions[-1] def _compute_slices(self, start_idx, end_idx, assets): """Compute the raw row indices to load for each asset on a query for the given dates after applying a shift. Parameters ---------- start_idx : int Index of first date for which we want data. end_idx : int Index of last date for which we want data. assets : pandas.Int64Index Assets for which we want to compute row indices Returns ------- A 3-tuple of (first_rows, last_rows, offsets): first_rows : np.array[intp] Array with length == len(assets) containing the index of the first row to load for each asset in `assets`. last_rows : np.array[intp] Array with length == len(assets) containing the index of the last row to load for each asset in `assets`. offset : np.array[intp] Array with length == (len(asset) containing the index in a buffer of length `dates` corresponding to the first row of each asset. The value of offset[i] will be 0 if asset[i] existed at the start of a query. Otherwise, offset[i] will be equal to the number of entries in `dates` for which the asset did not yet exist. """ # The core implementation of the logic here is implemented in Cython # for efficiency. return _compute_row_slices( self._first_rows, self._last_rows, self._calendar_offsets, start_idx, end_idx, assets, ) def load_raw_arrays(self, columns, start_date, end_date, assets): start_idx = self._load_raw_arrays_date_to_index(start_date) end_idx = self._load_raw_arrays_date_to_index(end_date) first_rows, last_rows, offsets = self._compute_slices( start_idx, end_idx, assets, ) read_all = len(assets) > self._read_all_threshold return _read_bcolz_data( self._table, (end_idx - start_idx + 1, len(assets)), list(columns), first_rows, last_rows, offsets, read_all, ) def _load_raw_arrays_date_to_index(self, date): try: # TODO get_loc is deprecated but get_indexer doesnt raise and error return self.sessions.get_loc(date) except KeyError as exc: raise NoDataOnDate(date) from exc def _spot_col(self, colname): """Get the colname from daily_bar_table and read all of it into memory, caching the result. Parameters ---------- colname : string A name of a OHLCV carray in the daily_bar_table Returns ------- array (uint32) Full read array of the carray in the daily_bar_table with the given colname. """ try: col = self._spot_cols[colname] except KeyError: col = self._spot_cols[colname] = self._table[colname] return col def get_last_traded_dt(self, asset, day): volumes = self._spot_col("volume") search_day = day while True: try: ix = self.sid_day_index(asset, search_day) except NoDataBeforeDate: return pd.NaT except NoDataAfterDate: prev_day_ix = self.sessions.get_loc(search_day) - 1 if prev_day_ix > -1: search_day = self.sessions[prev_day_ix] continue except NoDataOnDate: return pd.NaT if volumes[ix] != 0: return search_day prev_day_ix = self.sessions.get_loc(search_day) - 1 if prev_day_ix > -1: search_day = self.sessions[prev_day_ix] else: return pd.NaT def sid_day_index(self, sid, day): """ Parameters ---------- sid : int The asset identifier. day : datetime64-like Midnight of the day for which data is requested. Returns ------- int Index into the data tape for the given sid and day. Raises a NoDataOnDate exception if the given day and sid is before or after the date range of the equity. """ try: day_loc = self.sessions.get_loc(day) except Exception as exc: raise NoDataOnDate( "day={0} is outside of calendar={1}".format(day, self.sessions) ) from exc offset = day_loc - self._calendar_offsets[sid] if offset < 0: raise NoDataBeforeDate( "No data on or before day={0} for sid={1}".format(day, sid) ) ix = self._first_rows[sid] + offset if ix > self._last_rows[sid]: raise NoDataAfterDate( "No data on or after day={0} for sid={1}".format(day, sid) ) return ix def get_value(self, sid, dt, field): """ Parameters ---------- sid : int The asset identifier. day : datetime64-like Midnight of the day for which data is requested. colname : string The price field. e.g. ('open', 'high', 'low', 'close', 'volume') Returns ------- float The spot price for colname of the given sid on the given day. Raises a NoDataOnDate exception if the given day and sid is before or after the date range of the equity. Returns -1 if the day is within the date range, but the price is 0. """ ix = self.sid_day_index(sid, dt) price = self._spot_col(field)[ix] if field != "volume": if price == 0: return np.nan else: return price * 0.001 else: return price def currency_codes(self, sids): # XXX: This is pretty inefficient. This reader doesn't really support # country codes, so we always either return USD or None if we don't # know about the sid at all. first_rows = self._first_rows out = [] for sid in sids: if sid in first_rows: out.append("USD") else: out.append(None) return np.array(out, dtype=object)
zipline-reloaded
/zipline_reloaded-3.0.3-cp311-cp311-win_amd64.whl/zipline/data/bcolz_daily_bars.py
bcolz_daily_bars.py