code
stringlengths
0
23.9M
// SPDX-License-Identifier: GPL-2.0+ OR MIT /* * Apple iPhone X (GSM), D221, iPhone10,6 (A1901) * Copyright (c) 2022, Konrad Dybcio <[email protected]> */ /dts-v1/; #include "t8015-x.dtsi" / { compatible = "apple,d221", "apple,t8015", "apple,arm-platform"; model = "Apple iPhone X (GSM)"; };
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2018 MediaTek Inc. * */ #ifndef __MTK_CMDQ_H__ #define __MTK_CMDQ_H__ #include <linux/mailbox_client.h> #include <linux/mailbox/mtk-cmdq-mailbox.h> #include <linux/timer.h> #define CMDQ_ADDR_HIGH(addr) ((u32)(((addr) >> 16) & GENMASK(31, 0))) #define CMDQ_ADDR_LOW(addr) ((u16)(addr) | BIT(1)) /* * Every cmdq thread has its own SPRs (Specific Purpose Registers), * so there are 4 * N (threads) SPRs in GCE that shares the same indexes below. */ #define CMDQ_THR_SPR_IDX0 (0) #define CMDQ_THR_SPR_IDX1 (1) #define CMDQ_THR_SPR_IDX2 (2) #define CMDQ_THR_SPR_IDX3 (3) struct cmdq_pkt; enum cmdq_logic_op { CMDQ_LOGIC_ASSIGN = 0, CMDQ_LOGIC_ADD = 1, CMDQ_LOGIC_SUBTRACT = 2, CMDQ_LOGIC_MULTIPLY = 3, CMDQ_LOGIC_XOR = 8, CMDQ_LOGIC_NOT = 9, CMDQ_LOGIC_OR = 10, CMDQ_LOGIC_AND = 11, CMDQ_LOGIC_LEFT_SHIFT = 12, CMDQ_LOGIC_RIGHT_SHIFT = 13, CMDQ_LOGIC_MAX, }; struct cmdq_operand { /* register type */ bool reg; union { /* index */ u16 idx; /* value */ u16 value; }; }; struct cmdq_client_reg { u8 subsys; u16 offset; u16 size; }; struct cmdq_client { struct mbox_client client; struct mbox_chan *chan; }; #if IS_ENABLED(CONFIG_MTK_CMDQ) /** * cmdq_dev_get_client_reg() - parse cmdq client reg from the device * node of CMDQ client * @dev: device of CMDQ mailbox client * @client_reg: CMDQ client reg pointer * @idx: the index of desired reg * * Return: 0 for success; else the error code is returned * * Help CMDQ client parsing the cmdq client reg * from the device node of CMDQ client. */ int cmdq_dev_get_client_reg(struct device *dev, struct cmdq_client_reg *client_reg, int idx); /** * cmdq_mbox_create() - create CMDQ mailbox client and channel * @dev: device of CMDQ mailbox client * @index: index of CMDQ mailbox channel * * Return: CMDQ mailbox client pointer */ struct cmdq_client *cmdq_mbox_create(struct device *dev, int index); /** * cmdq_mbox_destroy() - destroy CMDQ mailbox client and channel * @client: the CMDQ mailbox client */ void cmdq_mbox_destroy(struct cmdq_client *client); /** * cmdq_pkt_create() - create a CMDQ packet * @client: the CMDQ mailbox client * @pkt: the CMDQ packet * @size: required CMDQ buffer size * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_create(struct cmdq_client *client, struct cmdq_pkt *pkt, size_t size); /** * cmdq_pkt_destroy() - destroy the CMDQ packet * @client: the CMDQ mailbox client * @pkt: the CMDQ packet */ void cmdq_pkt_destroy(struct cmdq_client *client, struct cmdq_pkt *pkt); /** * cmdq_pkt_write() - append write command to the CMDQ packet * @pkt: the CMDQ packet * @subsys: the CMDQ sub system code * @offset: register offset from CMDQ sub system * @value: the specified target register value * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_write(struct cmdq_pkt *pkt, u8 subsys, u16 offset, u32 value); /** * cmdq_pkt_write_mask() - append write command with mask to the CMDQ packet * @pkt: the CMDQ packet * @subsys: the CMDQ sub system code * @offset: register offset from CMDQ sub system * @value: the specified target register value * @mask: the specified target register mask * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_write_mask(struct cmdq_pkt *pkt, u8 subsys, u16 offset, u32 value, u32 mask); /* * cmdq_pkt_read_s() - append read_s command to the CMDQ packet * @pkt: the CMDQ packet * @high_addr_reg_idx: internal register ID which contains high address of pa * @addr_low: low address of pa * @reg_idx: the CMDQ internal register ID to cache read data * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_read_s(struct cmdq_pkt *pkt, u16 high_addr_reg_idx, u16 addr_low, u16 reg_idx); /** * cmdq_pkt_write_s() - append write_s command to the CMDQ packet * @pkt: the CMDQ packet * @high_addr_reg_idx: internal register ID which contains high address of pa * @addr_low: low address of pa * @src_reg_idx: the CMDQ internal register ID which cache source value * * Return: 0 for success; else the error code is returned * * Support write value to physical address without subsys. Use CMDQ_ADDR_HIGH() * to get high address and call cmdq_pkt_assign() to assign value into internal * reg. Also use CMDQ_ADDR_LOW() to get low address for addr_low parameter when * call to this function. */ int cmdq_pkt_write_s(struct cmdq_pkt *pkt, u16 high_addr_reg_idx, u16 addr_low, u16 src_reg_idx); /** * cmdq_pkt_write_s_mask() - append write_s with mask command to the CMDQ packet * @pkt: the CMDQ packet * @high_addr_reg_idx: internal register ID which contains high address of pa * @addr_low: low address of pa * @src_reg_idx: the CMDQ internal register ID which cache source value * @mask: the specified target address mask, use U32_MAX if no need * * Return: 0 for success; else the error code is returned * * Support write value to physical address without subsys. Use CMDQ_ADDR_HIGH() * to get high address and call cmdq_pkt_assign() to assign value into internal * reg. Also use CMDQ_ADDR_LOW() to get low address for addr_low parameter when * call to this function. */ int cmdq_pkt_write_s_mask(struct cmdq_pkt *pkt, u16 high_addr_reg_idx, u16 addr_low, u16 src_reg_idx, u32 mask); /** * cmdq_pkt_write_s_value() - append write_s command to the CMDQ packet which * write value to a physical address * @pkt: the CMDQ packet * @high_addr_reg_idx: internal register ID which contains high address of pa * @addr_low: low address of pa * @value: the specified target value * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_write_s_value(struct cmdq_pkt *pkt, u8 high_addr_reg_idx, u16 addr_low, u32 value); /** * cmdq_pkt_write_s_mask_value() - append write_s command with mask to the CMDQ * packet which write value to a physical * address * @pkt: the CMDQ packet * @high_addr_reg_idx: internal register ID which contains high address of pa * @addr_low: low address of pa * @value: the specified target value * @mask: the specified target mask * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_write_s_mask_value(struct cmdq_pkt *pkt, u8 high_addr_reg_idx, u16 addr_low, u32 value, u32 mask); /** * cmdq_pkt_mem_move() - append memory move command to the CMDQ packet * @pkt: the CMDQ packet * @src_addr: source address * @dst_addr: destination address * * Appends a CMDQ command to copy the value found in `src_addr` to `dst_addr`. * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_mem_move(struct cmdq_pkt *pkt, dma_addr_t src_addr, dma_addr_t dst_addr); /** * cmdq_pkt_wfe() - append wait for event command to the CMDQ packet * @pkt: the CMDQ packet * @event: the desired event type to wait * @clear: clear event or not after event arrive * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_wfe(struct cmdq_pkt *pkt, u16 event, bool clear); /** * cmdq_pkt_acquire_event() - append acquire event command to the CMDQ packet * @pkt: the CMDQ packet * @event: the desired event to be acquired * * User can use cmdq_pkt_acquire_event() as `mutex_lock` and cmdq_pkt_clear_event() * as `mutex_unlock` to protect some `critical section` instructions between them. * cmdq_pkt_acquire_event() would wait for event to be cleared. * After event is cleared by cmdq_pkt_clear_event in other GCE threads, * cmdq_pkt_acquire_event() would set event and keep executing next instruction. * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_acquire_event(struct cmdq_pkt *pkt, u16 event); /** * cmdq_pkt_clear_event() - append clear event command to the CMDQ packet * @pkt: the CMDQ packet * @event: the desired event to be cleared * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_clear_event(struct cmdq_pkt *pkt, u16 event); /** * cmdq_pkt_set_event() - append set event command to the CMDQ packet * @pkt: the CMDQ packet * @event: the desired event to be set * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_set_event(struct cmdq_pkt *pkt, u16 event); /** * cmdq_pkt_poll() - Append polling command to the CMDQ packet, ask GCE to * execute an instruction that wait for a specified * hardware register to check for the value w/o mask. * All GCE hardware threads will be blocked by this * instruction. * @pkt: the CMDQ packet * @subsys: the CMDQ sub system code * @offset: register offset from CMDQ sub system * @value: the specified target register value * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_poll(struct cmdq_pkt *pkt, u8 subsys, u16 offset, u32 value); /** * cmdq_pkt_poll_mask() - Append polling command to the CMDQ packet, ask GCE to * execute an instruction that wait for a specified * hardware register to check for the value w/ mask. * All GCE hardware threads will be blocked by this * instruction. * @pkt: the CMDQ packet * @subsys: the CMDQ sub system code * @offset: register offset from CMDQ sub system * @value: the specified target register value * @mask: the specified target register mask * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_poll_mask(struct cmdq_pkt *pkt, u8 subsys, u16 offset, u32 value, u32 mask); /** * cmdq_pkt_logic_command() - Append logic command to the CMDQ packet, ask GCE to * execute an instruction that store the result of logic operation * with left and right operand into result_reg_idx. * @pkt: the CMDQ packet * @result_reg_idx: SPR index that store operation result of left_operand and right_operand * @left_operand: left operand * @s_op: the logic operator enum * @right_operand: right operand * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_logic_command(struct cmdq_pkt *pkt, u16 result_reg_idx, struct cmdq_operand *left_operand, enum cmdq_logic_op s_op, struct cmdq_operand *right_operand); /** * cmdq_pkt_assign() - Append logic assign command to the CMDQ packet, ask GCE * to execute an instruction that set a constant value into * internal register and use as value, mask or address in * read/write instruction. * @pkt: the CMDQ packet * @reg_idx: the CMDQ internal register ID * @value: the specified value * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_assign(struct cmdq_pkt *pkt, u16 reg_idx, u32 value); /** * cmdq_pkt_poll_addr() - Append blocking POLL command to CMDQ packet * @pkt: the CMDQ packet * @addr: the hardware register address * @value: the specified target register value * @mask: the specified target register mask * * Appends a polling (POLL) command to the CMDQ packet and asks the GCE * to execute an instruction that checks for the specified `value` (with * or without `mask`) to appear in the specified hardware register `addr`. * All GCE threads will be blocked by this instruction. * * Return: 0 for success or negative error code */ int cmdq_pkt_poll_addr(struct cmdq_pkt *pkt, dma_addr_t addr, u32 value, u32 mask); /** * cmdq_pkt_jump_abs() - Append jump command to the CMDQ packet, ask GCE * to execute an instruction that change current thread * PC to a absolute physical address which should * contains more instruction. * @pkt: the CMDQ packet * @addr: absolute physical address of target instruction buffer * @shift_pa: shift bits of physical address in CMDQ instruction. This value * is got by cmdq_get_shift_pa(). * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_jump_abs(struct cmdq_pkt *pkt, dma_addr_t addr, u8 shift_pa); /* This wrapper has to be removed after all users migrated to jump_abs */ static inline int cmdq_pkt_jump(struct cmdq_pkt *pkt, dma_addr_t addr, u8 shift_pa) { return cmdq_pkt_jump_abs(pkt, addr, shift_pa); } /** * cmdq_pkt_jump_rel() - Append jump command to the CMDQ packet, ask GCE * to execute an instruction that change current thread * PC to a physical address with relative offset. The * target address should contains more instruction. * @pkt: the CMDQ packet * @offset: relative offset of target instruction buffer from current PC. * @shift_pa: shift bits of physical address in CMDQ instruction. This value * is got by cmdq_get_shift_pa(). * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_jump_rel(struct cmdq_pkt *pkt, s32 offset, u8 shift_pa); /** * cmdq_pkt_eoc() - Append EOC and ask GCE to generate an IRQ at end of execution * @pkt: The CMDQ packet * * Appends an End Of Code (EOC) command to the CMDQ packet and asks the GCE * to generate an interrupt at the end of the execution of all commands in * the pipeline. * The EOC command is usually appended to the end of the pipeline to notify * that all commands are done. * * Return: 0 for success or negative error number */ int cmdq_pkt_eoc(struct cmdq_pkt *pkt); /** * cmdq_pkt_finalize() - Append EOC and jump command to pkt. * @pkt: the CMDQ packet * * Return: 0 for success; else the error code is returned */ int cmdq_pkt_finalize(struct cmdq_pkt *pkt); #else /* IS_ENABLED(CONFIG_MTK_CMDQ) */ static inline int cmdq_dev_get_client_reg(struct device *dev, struct cmdq_client_reg *client_reg, int idx) { return -ENODEV; } static inline struct cmdq_client *cmdq_mbox_create(struct device *dev, int index) { return ERR_PTR(-EINVAL); } static inline void cmdq_mbox_destroy(struct cmdq_client *client) { } static inline int cmdq_pkt_create(struct cmdq_client *client, struct cmdq_pkt *pkt, size_t size) { return -EINVAL; } static inline void cmdq_pkt_destroy(struct cmdq_client *client, struct cmdq_pkt *pkt) { } static inline int cmdq_pkt_write(struct cmdq_pkt *pkt, u8 subsys, u16 offset, u32 value) { return -ENOENT; } static inline int cmdq_pkt_write_mask(struct cmdq_pkt *pkt, u8 subsys, u16 offset, u32 value, u32 mask) { return -ENOENT; } static inline int cmdq_pkt_read_s(struct cmdq_pkt *pkt, u16 high_addr_reg_idx, u16 addr_low, u16 reg_idx) { return -ENOENT; } static inline int cmdq_pkt_write_s(struct cmdq_pkt *pkt, u16 high_addr_reg_idx, u16 addr_low, u16 src_reg_idx) { return -ENOENT; } static inline int cmdq_pkt_write_s_mask(struct cmdq_pkt *pkt, u16 high_addr_reg_idx, u16 addr_low, u16 src_reg_idx, u32 mask) { return -ENOENT; } static inline int cmdq_pkt_write_s_value(struct cmdq_pkt *pkt, u8 high_addr_reg_idx, u16 addr_low, u32 value) { return -ENOENT; } static inline int cmdq_pkt_write_s_mask_value(struct cmdq_pkt *pkt, u8 high_addr_reg_idx, u16 addr_low, u32 value, u32 mask) { return -ENOENT; } static inline int cmdq_pkt_wfe(struct cmdq_pkt *pkt, u16 event, bool clear) { return -EINVAL; } static inline int cmdq_pkt_clear_event(struct cmdq_pkt *pkt, u16 event) { return -EINVAL; } static inline int cmdq_pkt_set_event(struct cmdq_pkt *pkt, u16 event) { return -EINVAL; } static inline int cmdq_pkt_poll(struct cmdq_pkt *pkt, u8 subsys, u16 offset, u32 value) { return -EINVAL; } static inline int cmdq_pkt_poll_mask(struct cmdq_pkt *pkt, u8 subsys, u16 offset, u32 value, u32 mask) { return -EINVAL; } static inline int cmdq_pkt_assign(struct cmdq_pkt *pkt, u16 reg_idx, u32 value) { return -EINVAL; } static inline int cmdq_pkt_poll_addr(struct cmdq_pkt *pkt, dma_addr_t addr, u32 value, u32 mask) { return -EINVAL; } static inline int cmdq_pkt_jump_abs(struct cmdq_pkt *pkt, dma_addr_t addr, u8 shift_pa) { return -EINVAL; } static inline int cmdq_pkt_jump(struct cmdq_pkt *pkt, dma_addr_t addr, u8 shift_pa) { return -EINVAL; } static inline int cmdq_pkt_jump_rel(struct cmdq_pkt *pkt, s32 offset, u8 shift_pa) { return -EINVAL; } static inline int cmdq_pkt_eoc(struct cmdq_pkt *pkt) { return -EINVAL; } static inline int cmdq_pkt_finalize(struct cmdq_pkt *pkt) { return -EINVAL; } #endif /* IS_ENABLED(CONFIG_MTK_CMDQ) */ #endif /* __MTK_CMDQ_H__ */
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * AHCI SATA platform driver * * Copyright 2004-2005 Red Hat, Inc. * Jeff Garzik <[email protected]> * Copyright 2010 MontaVista Software, LLC. * Anton Vorontsov <[email protected]> */ #ifndef _AHCI_PLATFORM_H #define _AHCI_PLATFORM_H #include <linux/compiler.h> struct clk; struct device; struct ata_port_info; struct ahci_host_priv; struct platform_device; struct scsi_host_template; int ahci_platform_enable_phys(struct ahci_host_priv *hpriv); void ahci_platform_disable_phys(struct ahci_host_priv *hpriv); struct clk *ahci_platform_find_clk(struct ahci_host_priv *hpriv, const char *con_id); int ahci_platform_enable_clks(struct ahci_host_priv *hpriv); void ahci_platform_disable_clks(struct ahci_host_priv *hpriv); int ahci_platform_deassert_rsts(struct ahci_host_priv *hpriv); int ahci_platform_assert_rsts(struct ahci_host_priv *hpriv); int ahci_platform_enable_regulators(struct ahci_host_priv *hpriv); void ahci_platform_disable_regulators(struct ahci_host_priv *hpriv); int ahci_platform_enable_resources(struct ahci_host_priv *hpriv); void ahci_platform_disable_resources(struct ahci_host_priv *hpriv); struct ahci_host_priv *ahci_platform_get_resources( struct platform_device *pdev, unsigned int flags); int ahci_platform_init_host(struct platform_device *pdev, struct ahci_host_priv *hpriv, const struct ata_port_info *pi_template, const struct scsi_host_template *sht); void ahci_platform_shutdown(struct platform_device *pdev); int ahci_platform_suspend_host(struct device *dev); int ahci_platform_resume_host(struct device *dev); int ahci_platform_suspend(struct device *dev); int ahci_platform_resume(struct device *dev); #define AHCI_PLATFORM_GET_RESETS BIT(0) #define AHCI_PLATFORM_RST_TRIGGER BIT(1) #endif /* _AHCI_PLATFORM_H */
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright SUSE Linux Products GmbH 2009 * * Authors: Alexander Graf <[email protected]> */ #include <asm/kvm_ppc.h> #include <asm/disassemble.h> #include <asm/kvm_book3s.h> #include <asm/reg.h> #include <asm/switch_to.h> #include <asm/time.h> #include <asm/tm.h> #include "book3s.h" #include <asm/asm-prototypes.h> #define OP_19_XOP_RFID 18 #define OP_19_XOP_RFI 50 #define OP_31_XOP_MFMSR 83 #define OP_31_XOP_MTMSR 146 #define OP_31_XOP_MTMSRD 178 #define OP_31_XOP_MTSR 210 #define OP_31_XOP_MTSRIN 242 #define OP_31_XOP_TLBIEL 274 /* Opcode is officially reserved, reuse it as sc 1 when sc 1 doesn't trap */ #define OP_31_XOP_FAKE_SC1 308 #define OP_31_XOP_SLBMTE 402 #define OP_31_XOP_SLBIE 434 #define OP_31_XOP_SLBIA 498 #define OP_31_XOP_MFSR 595 #define OP_31_XOP_MFSRIN 659 #define OP_31_XOP_DCBA 758 #define OP_31_XOP_SLBMFEV 851 #define OP_31_XOP_EIOIO 854 #define OP_31_XOP_SLBMFEE 915 #define OP_31_XOP_SLBFEE 979 #define OP_31_XOP_TBEGIN 654 #define OP_31_XOP_TABORT 910 #define OP_31_XOP_TRECLAIM 942 #define OP_31_XOP_TRCHKPT 1006 /* DCBZ is actually 1014, but we patch it to 1010 so we get a trap */ #define OP_31_XOP_DCBZ 1010 #define OP_LFS 48 #define OP_LFD 50 #define OP_STFS 52 #define OP_STFD 54 #define SPRN_GQR0 912 #define SPRN_GQR1 913 #define SPRN_GQR2 914 #define SPRN_GQR3 915 #define SPRN_GQR4 916 #define SPRN_GQR5 917 #define SPRN_GQR6 918 #define SPRN_GQR7 919 enum priv_level { PRIV_PROBLEM = 0, PRIV_SUPER = 1, PRIV_HYPER = 2, }; static bool spr_allowed(struct kvm_vcpu *vcpu, enum priv_level level) { /* PAPR VMs only access supervisor SPRs */ if (vcpu->arch.papr_enabled && (level > PRIV_SUPER)) return false; /* Limit user space to its own small SPR set */ if ((kvmppc_get_msr(vcpu) & MSR_PR) && level > PRIV_PROBLEM) return false; return true; } #ifdef CONFIG_PPC_TRANSACTIONAL_MEM static inline void kvmppc_copyto_vcpu_tm(struct kvm_vcpu *vcpu) { memcpy(&vcpu->arch.gpr_tm[0], &vcpu->arch.regs.gpr[0], sizeof(vcpu->arch.gpr_tm)); memcpy(&vcpu->arch.fp_tm, &vcpu->arch.fp, sizeof(struct thread_fp_state)); memcpy(&vcpu->arch.vr_tm, &vcpu->arch.vr, sizeof(struct thread_vr_state)); vcpu->arch.ppr_tm = vcpu->arch.ppr; vcpu->arch.dscr_tm = vcpu->arch.dscr; vcpu->arch.amr_tm = vcpu->arch.amr; vcpu->arch.ctr_tm = vcpu->arch.regs.ctr; vcpu->arch.tar_tm = vcpu->arch.tar; vcpu->arch.lr_tm = vcpu->arch.regs.link; vcpu->arch.cr_tm = vcpu->arch.regs.ccr; vcpu->arch.xer_tm = vcpu->arch.regs.xer; vcpu->arch.vrsave_tm = vcpu->arch.vrsave; } static inline void kvmppc_copyfrom_vcpu_tm(struct kvm_vcpu *vcpu) { memcpy(&vcpu->arch.regs.gpr[0], &vcpu->arch.gpr_tm[0], sizeof(vcpu->arch.regs.gpr)); memcpy(&vcpu->arch.fp, &vcpu->arch.fp_tm, sizeof(struct thread_fp_state)); memcpy(&vcpu->arch.vr, &vcpu->arch.vr_tm, sizeof(struct thread_vr_state)); vcpu->arch.ppr = vcpu->arch.ppr_tm; vcpu->arch.dscr = vcpu->arch.dscr_tm; vcpu->arch.amr = vcpu->arch.amr_tm; vcpu->arch.regs.ctr = vcpu->arch.ctr_tm; vcpu->arch.tar = vcpu->arch.tar_tm; vcpu->arch.regs.link = vcpu->arch.lr_tm; vcpu->arch.regs.ccr = vcpu->arch.cr_tm; vcpu->arch.regs.xer = vcpu->arch.xer_tm; vcpu->arch.vrsave = vcpu->arch.vrsave_tm; } static void kvmppc_emulate_treclaim(struct kvm_vcpu *vcpu, int ra_val) { unsigned long guest_msr = kvmppc_get_msr(vcpu); int fc_val = ra_val ? ra_val : 1; uint64_t texasr; /* CR0 = 0 | MSR[TS] | 0 */ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) | (((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1)) << CR0_SHIFT); preempt_disable(); tm_enable(); texasr = mfspr(SPRN_TEXASR); kvmppc_save_tm_pr(vcpu); kvmppc_copyfrom_vcpu_tm(vcpu); /* failure recording depends on Failure Summary bit */ if (!(texasr & TEXASR_FS)) { texasr &= ~TEXASR_FC; texasr |= ((u64)fc_val << TEXASR_FC_LG) | TEXASR_FS; texasr &= ~(TEXASR_PR | TEXASR_HV); if (kvmppc_get_msr(vcpu) & MSR_PR) texasr |= TEXASR_PR; if (kvmppc_get_msr(vcpu) & MSR_HV) texasr |= TEXASR_HV; vcpu->arch.texasr = texasr; vcpu->arch.tfiar = kvmppc_get_pc(vcpu); mtspr(SPRN_TEXASR, texasr); mtspr(SPRN_TFIAR, vcpu->arch.tfiar); } tm_disable(); /* * treclaim need quit to non-transactional state. */ guest_msr &= ~(MSR_TS_MASK); kvmppc_set_msr(vcpu, guest_msr); preempt_enable(); if (vcpu->arch.shadow_fscr & FSCR_TAR) mtspr(SPRN_TAR, vcpu->arch.tar); } static void kvmppc_emulate_trchkpt(struct kvm_vcpu *vcpu) { unsigned long guest_msr = kvmppc_get_msr(vcpu); preempt_disable(); /* * need flush FP/VEC/VSX to vcpu save area before * copy. */ kvmppc_giveup_ext(vcpu, MSR_VSX); kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); kvmppc_copyto_vcpu_tm(vcpu); kvmppc_save_tm_sprs(vcpu); /* * as a result of trecheckpoint. set TS to suspended. */ guest_msr &= ~(MSR_TS_MASK); guest_msr |= MSR_TS_S; kvmppc_set_msr(vcpu, guest_msr); kvmppc_restore_tm_pr(vcpu); preempt_enable(); } /* emulate tabort. at guest privilege state */ void kvmppc_emulate_tabort(struct kvm_vcpu *vcpu, int ra_val) { /* currently we only emulate tabort. but no emulation of other * tabort variants since there is no kernel usage of them at * present. */ unsigned long guest_msr = kvmppc_get_msr(vcpu); uint64_t org_texasr; preempt_disable(); tm_enable(); org_texasr = mfspr(SPRN_TEXASR); tm_abort(ra_val); /* CR0 = 0 | MSR[TS] | 0 */ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) | (((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1)) << CR0_SHIFT); vcpu->arch.texasr = mfspr(SPRN_TEXASR); /* failure recording depends on Failure Summary bit, * and tabort will be treated as nops in non-transactional * state. */ if (!(org_texasr & TEXASR_FS) && MSR_TM_ACTIVE(guest_msr)) { vcpu->arch.texasr &= ~(TEXASR_PR | TEXASR_HV); if (guest_msr & MSR_PR) vcpu->arch.texasr |= TEXASR_PR; if (guest_msr & MSR_HV) vcpu->arch.texasr |= TEXASR_HV; vcpu->arch.tfiar = kvmppc_get_pc(vcpu); } tm_disable(); preempt_enable(); } #endif int kvmppc_core_emulate_op_pr(struct kvm_vcpu *vcpu, unsigned int inst, int *advance) { int emulated = EMULATE_DONE; int rt = get_rt(inst); int rs = get_rs(inst); int ra = get_ra(inst); int rb = get_rb(inst); u32 inst_sc = 0x44000002; switch (get_op(inst)) { case 0: emulated = EMULATE_FAIL; if ((kvmppc_get_msr(vcpu) & MSR_LE) && (inst == swab32(inst_sc))) { /* * This is the byte reversed syscall instruction of our * hypercall handler. Early versions of LE Linux didn't * swap the instructions correctly and ended up in * illegal instructions. * Just always fail hypercalls on these broken systems. */ kvmppc_set_gpr(vcpu, 3, EV_UNIMPLEMENTED); kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); emulated = EMULATE_DONE; } break; case 19: switch (get_xop(inst)) { case OP_19_XOP_RFID: case OP_19_XOP_RFI: { unsigned long srr1 = kvmppc_get_srr1(vcpu); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM unsigned long cur_msr = kvmppc_get_msr(vcpu); /* * add rules to fit in ISA specification regarding TM * state transition in TM disable/Suspended state, * and target TM state is TM inactive(00) state. (the * change should be suppressed). */ if (((cur_msr & MSR_TM) == 0) && ((srr1 & MSR_TM) == 0) && MSR_TM_SUSPENDED(cur_msr) && !MSR_TM_ACTIVE(srr1)) srr1 |= MSR_TS_S; #endif kvmppc_set_pc(vcpu, kvmppc_get_srr0(vcpu)); kvmppc_set_msr(vcpu, srr1); *advance = 0; break; } default: emulated = EMULATE_FAIL; break; } break; case 31: switch (get_xop(inst)) { case OP_31_XOP_MFMSR: kvmppc_set_gpr(vcpu, rt, kvmppc_get_msr(vcpu)); break; case OP_31_XOP_MTMSRD: { ulong rs_val = kvmppc_get_gpr(vcpu, rs); if (inst & 0x10000) { ulong new_msr = kvmppc_get_msr(vcpu); new_msr &= ~(MSR_RI | MSR_EE); new_msr |= rs_val & (MSR_RI | MSR_EE); kvmppc_set_msr_fast(vcpu, new_msr); } else kvmppc_set_msr(vcpu, rs_val); break; } case OP_31_XOP_MTMSR: kvmppc_set_msr(vcpu, kvmppc_get_gpr(vcpu, rs)); break; case OP_31_XOP_MFSR: { int srnum; srnum = kvmppc_get_field(inst, 12 + 32, 15 + 32); if (vcpu->arch.mmu.mfsrin) { u32 sr; sr = vcpu->arch.mmu.mfsrin(vcpu, srnum); kvmppc_set_gpr(vcpu, rt, sr); } break; } case OP_31_XOP_MFSRIN: { int srnum; srnum = (kvmppc_get_gpr(vcpu, rb) >> 28) & 0xf; if (vcpu->arch.mmu.mfsrin) { u32 sr; sr = vcpu->arch.mmu.mfsrin(vcpu, srnum); kvmppc_set_gpr(vcpu, rt, sr); } break; } case OP_31_XOP_MTSR: vcpu->arch.mmu.mtsrin(vcpu, (inst >> 16) & 0xf, kvmppc_get_gpr(vcpu, rs)); break; case OP_31_XOP_MTSRIN: vcpu->arch.mmu.mtsrin(vcpu, (kvmppc_get_gpr(vcpu, rb) >> 28) & 0xf, kvmppc_get_gpr(vcpu, rs)); break; case OP_31_XOP_TLBIE: case OP_31_XOP_TLBIEL: { bool large = (inst & 0x00200000) ? true : false; ulong addr = kvmppc_get_gpr(vcpu, rb); vcpu->arch.mmu.tlbie(vcpu, addr, large); break; } #ifdef CONFIG_PPC_BOOK3S_64 case OP_31_XOP_FAKE_SC1: { /* SC 1 papr hypercalls */ ulong cmd = kvmppc_get_gpr(vcpu, 3); int i; if ((kvmppc_get_msr(vcpu) & MSR_PR) || !vcpu->arch.papr_enabled) { emulated = EMULATE_FAIL; break; } if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) break; vcpu->run->papr_hcall.nr = cmd; for (i = 0; i < 9; ++i) { ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); vcpu->run->papr_hcall.args[i] = gpr; } vcpu->run->exit_reason = KVM_EXIT_PAPR_HCALL; vcpu->arch.hcall_needed = 1; emulated = EMULATE_EXIT_USER; break; } #endif case OP_31_XOP_EIOIO: break; case OP_31_XOP_SLBMTE: if (!vcpu->arch.mmu.slbmte) return EMULATE_FAIL; vcpu->arch.mmu.slbmte(vcpu, kvmppc_get_gpr(vcpu, rs), kvmppc_get_gpr(vcpu, rb)); break; case OP_31_XOP_SLBIE: if (!vcpu->arch.mmu.slbie) return EMULATE_FAIL; vcpu->arch.mmu.slbie(vcpu, kvmppc_get_gpr(vcpu, rb)); break; case OP_31_XOP_SLBIA: if (!vcpu->arch.mmu.slbia) return EMULATE_FAIL; vcpu->arch.mmu.slbia(vcpu); break; case OP_31_XOP_SLBFEE: if (!(inst & 1) || !vcpu->arch.mmu.slbfee) { return EMULATE_FAIL; } else { ulong b, t; ulong cr = kvmppc_get_cr(vcpu) & ~CR0_MASK; b = kvmppc_get_gpr(vcpu, rb); if (!vcpu->arch.mmu.slbfee(vcpu, b, &t)) cr |= 2 << CR0_SHIFT; kvmppc_set_gpr(vcpu, rt, t); /* copy XER[SO] bit to CR0[SO] */ cr |= (vcpu->arch.regs.xer & 0x80000000) >> (31 - CR0_SHIFT); kvmppc_set_cr(vcpu, cr); } break; case OP_31_XOP_SLBMFEE: if (!vcpu->arch.mmu.slbmfee) { emulated = EMULATE_FAIL; } else { ulong t, rb_val; rb_val = kvmppc_get_gpr(vcpu, rb); t = vcpu->arch.mmu.slbmfee(vcpu, rb_val); kvmppc_set_gpr(vcpu, rt, t); } break; case OP_31_XOP_SLBMFEV: if (!vcpu->arch.mmu.slbmfev) { emulated = EMULATE_FAIL; } else { ulong t, rb_val; rb_val = kvmppc_get_gpr(vcpu, rb); t = vcpu->arch.mmu.slbmfev(vcpu, rb_val); kvmppc_set_gpr(vcpu, rt, t); } break; case OP_31_XOP_DCBA: /* Gets treated as NOP */ break; case OP_31_XOP_DCBZ: { ulong rb_val = kvmppc_get_gpr(vcpu, rb); ulong ra_val = 0; ulong addr, vaddr; u32 zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; u32 dsisr; int r; if (ra) ra_val = kvmppc_get_gpr(vcpu, ra); addr = (ra_val + rb_val) & ~31ULL; if (!(kvmppc_get_msr(vcpu) & MSR_SF)) addr &= 0xffffffff; vaddr = addr; r = kvmppc_st(vcpu, &addr, 32, zeros, true); if ((r == -ENOENT) || (r == -EPERM)) { *advance = 0; kvmppc_set_dar(vcpu, vaddr); vcpu->arch.fault_dar = vaddr; dsisr = DSISR_ISSTORE; if (r == -ENOENT) dsisr |= DSISR_NOHPTE; else if (r == -EPERM) dsisr |= DSISR_PROTFAULT; kvmppc_set_dsisr(vcpu, dsisr); vcpu->arch.fault_dsisr = dsisr; kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE); } break; } #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case OP_31_XOP_TBEGIN: { if (!cpu_has_feature(CPU_FTR_TM)) break; if (!(kvmppc_get_msr(vcpu) & MSR_TM)) { kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG); emulated = EMULATE_AGAIN; break; } if (!(kvmppc_get_msr(vcpu) & MSR_PR)) { preempt_disable(); vcpu->arch.regs.ccr = (CR0_TBEGIN_FAILURE | (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT))); vcpu->arch.texasr = (TEXASR_FS | TEXASR_EXACT | (((u64)(TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT)) << TEXASR_FC_LG)); if ((inst >> 21) & 0x1) vcpu->arch.texasr |= TEXASR_ROT; if (kvmppc_get_msr(vcpu) & MSR_HV) vcpu->arch.texasr |= TEXASR_HV; vcpu->arch.tfhar = kvmppc_get_pc(vcpu) + 4; vcpu->arch.tfiar = kvmppc_get_pc(vcpu); kvmppc_restore_tm_sprs(vcpu); preempt_enable(); } else emulated = EMULATE_FAIL; break; } case OP_31_XOP_TABORT: { ulong guest_msr = kvmppc_get_msr(vcpu); unsigned long ra_val = 0; if (!cpu_has_feature(CPU_FTR_TM)) break; if (!(kvmppc_get_msr(vcpu) & MSR_TM)) { kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG); emulated = EMULATE_AGAIN; break; } /* only emulate for privilege guest, since problem state * guest can run with TM enabled and we don't expect to * trap at here for that case. */ WARN_ON(guest_msr & MSR_PR); if (ra) ra_val = kvmppc_get_gpr(vcpu, ra); kvmppc_emulate_tabort(vcpu, ra_val); break; } case OP_31_XOP_TRECLAIM: { ulong guest_msr = kvmppc_get_msr(vcpu); unsigned long ra_val = 0; if (!cpu_has_feature(CPU_FTR_TM)) break; if (!(kvmppc_get_msr(vcpu) & MSR_TM)) { kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG); emulated = EMULATE_AGAIN; break; } /* generate interrupts based on priorities */ if (guest_msr & MSR_PR) { /* Privileged Instruction type Program Interrupt */ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); emulated = EMULATE_AGAIN; break; } if (!MSR_TM_ACTIVE(guest_msr)) { /* TM bad thing interrupt */ kvmppc_core_queue_program(vcpu, SRR1_PROGTM); emulated = EMULATE_AGAIN; break; } if (ra) ra_val = kvmppc_get_gpr(vcpu, ra); kvmppc_emulate_treclaim(vcpu, ra_val); break; } case OP_31_XOP_TRCHKPT: { ulong guest_msr = kvmppc_get_msr(vcpu); unsigned long texasr; if (!cpu_has_feature(CPU_FTR_TM)) break; if (!(kvmppc_get_msr(vcpu) & MSR_TM)) { kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG); emulated = EMULATE_AGAIN; break; } /* generate interrupt based on priorities */ if (guest_msr & MSR_PR) { /* Privileged Instruction type Program Intr */ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); emulated = EMULATE_AGAIN; break; } tm_enable(); texasr = mfspr(SPRN_TEXASR); tm_disable(); if (MSR_TM_ACTIVE(guest_msr) || !(texasr & (TEXASR_FS))) { /* TM bad thing interrupt */ kvmppc_core_queue_program(vcpu, SRR1_PROGTM); emulated = EMULATE_AGAIN; break; } kvmppc_emulate_trchkpt(vcpu); break; } #endif default: emulated = EMULATE_FAIL; } break; default: emulated = EMULATE_FAIL; } if (emulated == EMULATE_FAIL) emulated = kvmppc_emulate_paired_single(vcpu); return emulated; } void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat, bool upper, u32 val) { if (upper) { /* Upper BAT */ u32 bl = (val >> 2) & 0x7ff; bat->bepi_mask = (~bl << 17); bat->bepi = val & 0xfffe0000; bat->vs = (val & 2) ? 1 : 0; bat->vp = (val & 1) ? 1 : 0; bat->raw = (bat->raw & 0xffffffff00000000ULL) | val; } else { /* Lower BAT */ bat->brpn = val & 0xfffe0000; bat->wimg = (val >> 3) & 0xf; bat->pp = val & 3; bat->raw = (bat->raw & 0x00000000ffffffffULL) | ((u64)val << 32); } } static struct kvmppc_bat *kvmppc_find_bat(struct kvm_vcpu *vcpu, int sprn) { struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); struct kvmppc_bat *bat; switch (sprn) { case SPRN_IBAT0U ... SPRN_IBAT3L: bat = &vcpu_book3s->ibat[(sprn - SPRN_IBAT0U) / 2]; break; case SPRN_IBAT4U ... SPRN_IBAT7L: bat = &vcpu_book3s->ibat[4 + ((sprn - SPRN_IBAT4U) / 2)]; break; case SPRN_DBAT0U ... SPRN_DBAT3L: bat = &vcpu_book3s->dbat[(sprn - SPRN_DBAT0U) / 2]; break; case SPRN_DBAT4U ... SPRN_DBAT7L: bat = &vcpu_book3s->dbat[4 + ((sprn - SPRN_DBAT4U) / 2)]; break; default: BUG(); } return bat; } int kvmppc_core_emulate_mtspr_pr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) { int emulated = EMULATE_DONE; switch (sprn) { case SPRN_SDR1: if (!spr_allowed(vcpu, PRIV_HYPER)) goto unprivileged; to_book3s(vcpu)->sdr1 = spr_val; break; case SPRN_DSISR: kvmppc_set_dsisr(vcpu, spr_val); break; case SPRN_DAR: kvmppc_set_dar(vcpu, spr_val); break; case SPRN_HIOR: to_book3s(vcpu)->hior = spr_val; break; case SPRN_IBAT0U ... SPRN_IBAT3L: case SPRN_IBAT4U ... SPRN_IBAT7L: case SPRN_DBAT0U ... SPRN_DBAT3L: case SPRN_DBAT4U ... SPRN_DBAT7L: { struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn); kvmppc_set_bat(vcpu, bat, !(sprn % 2), (u32)spr_val); /* BAT writes happen so rarely that we're ok to flush * everything here */ kvmppc_mmu_pte_flush(vcpu, 0, 0); kvmppc_mmu_flush_segments(vcpu); break; } case SPRN_HID0: to_book3s(vcpu)->hid[0] = spr_val; break; case SPRN_HID1: to_book3s(vcpu)->hid[1] = spr_val; break; case SPRN_HID2_750FX: to_book3s(vcpu)->hid[2] = spr_val; break; case SPRN_HID2_GEKKO: to_book3s(vcpu)->hid[2] = spr_val; /* HID2.PSE controls paired single on gekko */ switch (vcpu->arch.pvr) { case 0x00080200: /* lonestar 2.0 */ case 0x00088202: /* lonestar 2.2 */ case 0x70000100: /* gekko 1.0 */ case 0x00080100: /* gekko 2.0 */ case 0x00083203: /* gekko 2.3a */ case 0x00083213: /* gekko 2.3b */ case 0x00083204: /* gekko 2.4 */ case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ case 0x00087200: /* broadway */ if (vcpu->arch.hflags & BOOK3S_HFLAG_NATIVE_PS) { /* Native paired singles */ } else if (spr_val & (1 << 29)) { /* HID2.PSE */ vcpu->arch.hflags |= BOOK3S_HFLAG_PAIRED_SINGLE; kvmppc_giveup_ext(vcpu, MSR_FP); } else { vcpu->arch.hflags &= ~BOOK3S_HFLAG_PAIRED_SINGLE; } break; } break; case SPRN_HID4: case SPRN_HID4_GEKKO: to_book3s(vcpu)->hid[4] = spr_val; break; case SPRN_HID5: to_book3s(vcpu)->hid[5] = spr_val; /* guest HID5 set can change is_dcbz32 */ if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV)) vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; break; case SPRN_GQR0: case SPRN_GQR1: case SPRN_GQR2: case SPRN_GQR3: case SPRN_GQR4: case SPRN_GQR5: case SPRN_GQR6: case SPRN_GQR7: to_book3s(vcpu)->gqr[sprn - SPRN_GQR0] = spr_val; break; #ifdef CONFIG_PPC_BOOK3S_64 case SPRN_FSCR: kvmppc_set_fscr(vcpu, spr_val); break; case SPRN_BESCR: vcpu->arch.bescr = spr_val; break; case SPRN_EBBHR: vcpu->arch.ebbhr = spr_val; break; case SPRN_EBBRR: vcpu->arch.ebbrr = spr_val; break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case SPRN_TFHAR: case SPRN_TEXASR: case SPRN_TFIAR: if (!cpu_has_feature(CPU_FTR_TM)) break; if (!(kvmppc_get_msr(vcpu) & MSR_TM)) { kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG); emulated = EMULATE_AGAIN; break; } if (MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)) && !((MSR_TM_SUSPENDED(kvmppc_get_msr(vcpu))) && (sprn == SPRN_TFHAR))) { /* it is illegal to mtspr() TM regs in * other than non-transactional state, with * the exception of TFHAR in suspend state. */ kvmppc_core_queue_program(vcpu, SRR1_PROGTM); emulated = EMULATE_AGAIN; break; } tm_enable(); if (sprn == SPRN_TFHAR) mtspr(SPRN_TFHAR, spr_val); else if (sprn == SPRN_TEXASR) mtspr(SPRN_TEXASR, spr_val); else mtspr(SPRN_TFIAR, spr_val); tm_disable(); break; #endif #endif case SPRN_ICTC: case SPRN_THRM1: case SPRN_THRM2: case SPRN_THRM3: case SPRN_CTRLF: case SPRN_CTRLT: case SPRN_L2CR: case SPRN_DSCR: case SPRN_MMCR0_GEKKO: case SPRN_MMCR1_GEKKO: case SPRN_PMC1_GEKKO: case SPRN_PMC2_GEKKO: case SPRN_PMC3_GEKKO: case SPRN_PMC4_GEKKO: case SPRN_WPAR_GEKKO: case SPRN_MSSSR0: case SPRN_DABR: #ifdef CONFIG_PPC_BOOK3S_64 case SPRN_MMCRS: case SPRN_MMCRA: case SPRN_MMCR0: case SPRN_MMCR1: case SPRN_MMCR2: case SPRN_UMMCR2: case SPRN_UAMOR: case SPRN_IAMR: case SPRN_AMR: #endif break; unprivileged: default: pr_info_ratelimited("KVM: invalid SPR write: %d\n", sprn); if (sprn & 0x10) { if (kvmppc_get_msr(vcpu) & MSR_PR) { kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); emulated = EMULATE_AGAIN; } } else { if ((kvmppc_get_msr(vcpu) & MSR_PR) || sprn == 0) { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); emulated = EMULATE_AGAIN; } } break; } return emulated; } int kvmppc_core_emulate_mfspr_pr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) { int emulated = EMULATE_DONE; switch (sprn) { case SPRN_IBAT0U ... SPRN_IBAT3L: case SPRN_IBAT4U ... SPRN_IBAT7L: case SPRN_DBAT0U ... SPRN_DBAT3L: case SPRN_DBAT4U ... SPRN_DBAT7L: { struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn); if (sprn % 2) *spr_val = bat->raw >> 32; else *spr_val = bat->raw; break; } case SPRN_SDR1: if (!spr_allowed(vcpu, PRIV_HYPER)) goto unprivileged; *spr_val = to_book3s(vcpu)->sdr1; break; case SPRN_DSISR: *spr_val = kvmppc_get_dsisr(vcpu); break; case SPRN_DAR: *spr_val = kvmppc_get_dar(vcpu); break; case SPRN_HIOR: *spr_val = to_book3s(vcpu)->hior; break; case SPRN_HID0: *spr_val = to_book3s(vcpu)->hid[0]; break; case SPRN_HID1: *spr_val = to_book3s(vcpu)->hid[1]; break; case SPRN_HID2_750FX: case SPRN_HID2_GEKKO: *spr_val = to_book3s(vcpu)->hid[2]; break; case SPRN_HID4: case SPRN_HID4_GEKKO: *spr_val = to_book3s(vcpu)->hid[4]; break; case SPRN_HID5: *spr_val = to_book3s(vcpu)->hid[5]; break; case SPRN_CFAR: case SPRN_DSCR: *spr_val = 0; break; case SPRN_PURR: /* * On exit we would have updated purr */ *spr_val = vcpu->arch.purr; break; case SPRN_SPURR: /* * On exit we would have updated spurr */ *spr_val = vcpu->arch.spurr; break; case SPRN_VTB: *spr_val = to_book3s(vcpu)->vtb; break; case SPRN_IC: *spr_val = vcpu->arch.ic; break; case SPRN_GQR0: case SPRN_GQR1: case SPRN_GQR2: case SPRN_GQR3: case SPRN_GQR4: case SPRN_GQR5: case SPRN_GQR6: case SPRN_GQR7: *spr_val = to_book3s(vcpu)->gqr[sprn - SPRN_GQR0]; break; #ifdef CONFIG_PPC_BOOK3S_64 case SPRN_FSCR: *spr_val = vcpu->arch.fscr; break; case SPRN_BESCR: *spr_val = vcpu->arch.bescr; break; case SPRN_EBBHR: *spr_val = vcpu->arch.ebbhr; break; case SPRN_EBBRR: *spr_val = vcpu->arch.ebbrr; break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case SPRN_TFHAR: case SPRN_TEXASR: case SPRN_TFIAR: if (!cpu_has_feature(CPU_FTR_TM)) break; if (!(kvmppc_get_msr(vcpu) & MSR_TM)) { kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG); emulated = EMULATE_AGAIN; break; } tm_enable(); if (sprn == SPRN_TFHAR) *spr_val = mfspr(SPRN_TFHAR); else if (sprn == SPRN_TEXASR) *spr_val = mfspr(SPRN_TEXASR); else if (sprn == SPRN_TFIAR) *spr_val = mfspr(SPRN_TFIAR); tm_disable(); break; #endif #endif case SPRN_THRM1: case SPRN_THRM2: case SPRN_THRM3: case SPRN_CTRLF: case SPRN_CTRLT: case SPRN_L2CR: case SPRN_MMCR0_GEKKO: case SPRN_MMCR1_GEKKO: case SPRN_PMC1_GEKKO: case SPRN_PMC2_GEKKO: case SPRN_PMC3_GEKKO: case SPRN_PMC4_GEKKO: case SPRN_WPAR_GEKKO: case SPRN_MSSSR0: case SPRN_DABR: #ifdef CONFIG_PPC_BOOK3S_64 case SPRN_MMCRS: case SPRN_MMCRA: case SPRN_MMCR0: case SPRN_MMCR1: case SPRN_MMCR2: case SPRN_UMMCR2: case SPRN_TIR: case SPRN_UAMOR: case SPRN_IAMR: case SPRN_AMR: #endif *spr_val = 0; break; default: unprivileged: pr_info_ratelimited("KVM: invalid SPR read: %d\n", sprn); if (sprn & 0x10) { if (kvmppc_get_msr(vcpu) & MSR_PR) { kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); emulated = EMULATE_AGAIN; } } else { if ((kvmppc_get_msr(vcpu) & MSR_PR) || sprn == 0 || sprn == 4 || sprn == 5 || sprn == 6) { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); emulated = EMULATE_AGAIN; } } break; } return emulated; } u32 kvmppc_alignment_dsisr(struct kvm_vcpu *vcpu, unsigned int inst) { return make_dsisr(inst); } ulong kvmppc_alignment_dar(struct kvm_vcpu *vcpu, unsigned int inst) { #ifdef CONFIG_PPC_BOOK3S_64 /* * Linux's fix_alignment() assumes that DAR is valid, so can we */ return vcpu->arch.fault_dar; #else ulong dar = 0; ulong ra = get_ra(inst); ulong rb = get_rb(inst); switch (get_op(inst)) { case OP_LFS: case OP_LFD: case OP_STFD: case OP_STFS: if (ra) dar = kvmppc_get_gpr(vcpu, ra); dar += (s32)((s16)inst); break; case 31: if (ra) dar = kvmppc_get_gpr(vcpu, ra); dar += kvmppc_get_gpr(vcpu, rb); break; default: printk(KERN_INFO "KVM: Unaligned instruction 0x%x\n", inst); break; } return dar; #endif }
// SPDX-License-Identifier: GPL-2.0 /* * UEFI Common Platform Error Record (CPER) support * * Copyright (C) 2010, Intel Corp. * Author: Huang Ying <[email protected]> * * CPER is the format used to describe platform hardware error by * various tables, such as ERST, BERT and HEST etc. * * For more information about CPER, please refer to Appendix N of UEFI * Specification version 2.4. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/time.h> #include <linux/cper.h> #include <linux/dmi.h> #include <linux/acpi.h> #include <linux/pci.h> #include <linux/aer.h> #include <linux/printk.h> #include <linux/bcd.h> #include <acpi/ghes.h> #include <ras/ras_event.h> #include "cper_cxl.h" /* * CPER record ID need to be unique even after reboot, because record * ID is used as index for ERST storage, while CPER records from * multiple boot may co-exist in ERST. */ u64 cper_next_record_id(void) { static atomic64_t seq; if (!atomic64_read(&seq)) { time64_t time = ktime_get_real_seconds(); /* * This code is unlikely to still be needed in year 2106, * but just in case, let's use a few more bits for timestamps * after y2038 to be sure they keep increasing monotonically * for the next few hundred years... */ if (time < 0x80000000) atomic64_set(&seq, (ktime_get_real_seconds()) << 32); else atomic64_set(&seq, 0x8000000000000000ull | ktime_get_real_seconds() << 24); } return atomic64_inc_return(&seq); } EXPORT_SYMBOL_GPL(cper_next_record_id); static const char * const severity_strs[] = { "recoverable", "fatal", "corrected", "info", }; const char *cper_severity_str(unsigned int severity) { return severity < ARRAY_SIZE(severity_strs) ? severity_strs[severity] : "unknown"; } EXPORT_SYMBOL_GPL(cper_severity_str); /* * cper_print_bits - print strings for set bits * @pfx: prefix for each line, including log level and prefix string * @bits: bit mask * @strs: string array, indexed by bit position * @strs_size: size of the string array: @strs * * For each set bit in @bits, print the corresponding string in @strs. * If the output length is longer than 80, multiple line will be * printed, with @pfx is printed at the beginning of each line. */ void cper_print_bits(const char *pfx, unsigned int bits, const char * const strs[], unsigned int strs_size) { int i, len = 0; const char *str; char buf[84]; for (i = 0; i < strs_size; i++) { if (!(bits & (1U << i))) continue; str = strs[i]; if (!str) continue; if (len && len + strlen(str) + 2 > 80) { printk("%s\n", buf); len = 0; } if (!len) len = snprintf(buf, sizeof(buf), "%s%s", pfx, str); else len += scnprintf(buf+len, sizeof(buf)-len, ", %s", str); } if (len) printk("%s\n", buf); } static const char * const proc_type_strs[] = { "IA32/X64", "IA64", "ARM", }; static const char * const proc_isa_strs[] = { "IA32", "IA64", "X64", "ARM A32/T32", "ARM A64", }; const char * const cper_proc_error_type_strs[] = { "cache error", "TLB error", "bus error", "micro-architectural error", }; static const char * const proc_op_strs[] = { "unknown or generic", "data read", "data write", "instruction execution", }; static const char * const proc_flag_strs[] = { "restartable", "precise IP", "overflow", "corrected", }; static void cper_print_proc_generic(const char *pfx, const struct cper_sec_proc_generic *proc) { if (proc->validation_bits & CPER_PROC_VALID_TYPE) printk("%s""processor_type: %d, %s\n", pfx, proc->proc_type, proc->proc_type < ARRAY_SIZE(proc_type_strs) ? proc_type_strs[proc->proc_type] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_ISA) printk("%s""processor_isa: %d, %s\n", pfx, proc->proc_isa, proc->proc_isa < ARRAY_SIZE(proc_isa_strs) ? proc_isa_strs[proc->proc_isa] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_ERROR_TYPE) { printk("%s""error_type: 0x%02x\n", pfx, proc->proc_error_type); cper_print_bits(pfx, proc->proc_error_type, cper_proc_error_type_strs, ARRAY_SIZE(cper_proc_error_type_strs)); } if (proc->validation_bits & CPER_PROC_VALID_OPERATION) printk("%s""operation: %d, %s\n", pfx, proc->operation, proc->operation < ARRAY_SIZE(proc_op_strs) ? proc_op_strs[proc->operation] : "unknown"); if (proc->validation_bits & CPER_PROC_VALID_FLAGS) { printk("%s""flags: 0x%02x\n", pfx, proc->flags); cper_print_bits(pfx, proc->flags, proc_flag_strs, ARRAY_SIZE(proc_flag_strs)); } if (proc->validation_bits & CPER_PROC_VALID_LEVEL) printk("%s""level: %d\n", pfx, proc->level); if (proc->validation_bits & CPER_PROC_VALID_VERSION) printk("%s""version_info: 0x%016llx\n", pfx, proc->cpu_version); if (proc->validation_bits & CPER_PROC_VALID_ID) printk("%s""processor_id: 0x%016llx\n", pfx, proc->proc_id); if (proc->validation_bits & CPER_PROC_VALID_TARGET_ADDRESS) printk("%s""target_address: 0x%016llx\n", pfx, proc->target_addr); if (proc->validation_bits & CPER_PROC_VALID_REQUESTOR_ID) printk("%s""requestor_id: 0x%016llx\n", pfx, proc->requestor_id); if (proc->validation_bits & CPER_PROC_VALID_RESPONDER_ID) printk("%s""responder_id: 0x%016llx\n", pfx, proc->responder_id); if (proc->validation_bits & CPER_PROC_VALID_IP) printk("%s""IP: 0x%016llx\n", pfx, proc->ip); } static const char * const mem_err_type_strs[] = { "unknown", "no error", "single-bit ECC", "multi-bit ECC", "single-symbol chipkill ECC", "multi-symbol chipkill ECC", "master abort", "target abort", "parity error", "watchdog timeout", "invalid address", "mirror Broken", "memory sparing", "scrub corrected error", "scrub uncorrected error", "physical memory map-out event", }; const char *cper_mem_err_type_str(unsigned int etype) { return etype < ARRAY_SIZE(mem_err_type_strs) ? mem_err_type_strs[etype] : "unknown"; } EXPORT_SYMBOL_GPL(cper_mem_err_type_str); const char *cper_mem_err_status_str(u64 status) { switch ((status >> 8) & 0xff) { case 1: return "Error detected internal to the component"; case 4: return "Storage error in DRAM memory"; case 5: return "Storage error in TLB"; case 6: return "Storage error in cache"; case 7: return "Error in one or more functional units"; case 8: return "Component failed self test"; case 9: return "Overflow or undervalue of internal queue"; case 16: return "Error detected in the bus"; case 17: return "Virtual address not found on IO-TLB or IO-PDIR"; case 18: return "Improper access error"; case 19: return "Access to a memory address which is not mapped to any component"; case 20: return "Loss of Lockstep"; case 21: return "Response not associated with a request"; case 22: return "Bus parity error - must also set the A, C, or D Bits"; case 23: return "Detection of a protocol error"; case 24: return "Detection of a PATH_ERROR"; case 25: return "Bus operation timeout"; case 26: return "A read was issued to data that has been poisoned"; default: return "Reserved"; } } EXPORT_SYMBOL_GPL(cper_mem_err_status_str); int cper_mem_err_location(struct cper_mem_err_compact *mem, char *msg) { u32 len, n; if (!msg) return 0; n = 0; len = CPER_REC_LEN; if (mem->validation_bits & CPER_MEM_VALID_NODE) n += scnprintf(msg + n, len - n, "node:%d ", mem->node); if (mem->validation_bits & CPER_MEM_VALID_CARD) n += scnprintf(msg + n, len - n, "card:%d ", mem->card); if (mem->validation_bits & CPER_MEM_VALID_MODULE) n += scnprintf(msg + n, len - n, "module:%d ", mem->module); if (mem->validation_bits & CPER_MEM_VALID_RANK_NUMBER) n += scnprintf(msg + n, len - n, "rank:%d ", mem->rank); if (mem->validation_bits & CPER_MEM_VALID_BANK) n += scnprintf(msg + n, len - n, "bank:%d ", mem->bank); if (mem->validation_bits & CPER_MEM_VALID_BANK_GROUP) n += scnprintf(msg + n, len - n, "bank_group:%d ", mem->bank >> CPER_MEM_BANK_GROUP_SHIFT); if (mem->validation_bits & CPER_MEM_VALID_BANK_ADDRESS) n += scnprintf(msg + n, len - n, "bank_address:%d ", mem->bank & CPER_MEM_BANK_ADDRESS_MASK); if (mem->validation_bits & CPER_MEM_VALID_DEVICE) n += scnprintf(msg + n, len - n, "device:%d ", mem->device); if (mem->validation_bits & (CPER_MEM_VALID_ROW | CPER_MEM_VALID_ROW_EXT)) { u32 row = mem->row; row |= cper_get_mem_extension(mem->validation_bits, mem->extended); n += scnprintf(msg + n, len - n, "row:%d ", row); } if (mem->validation_bits & CPER_MEM_VALID_COLUMN) n += scnprintf(msg + n, len - n, "column:%d ", mem->column); if (mem->validation_bits & CPER_MEM_VALID_BIT_POSITION) n += scnprintf(msg + n, len - n, "bit_position:%d ", mem->bit_pos); if (mem->validation_bits & CPER_MEM_VALID_REQUESTOR_ID) n += scnprintf(msg + n, len - n, "requestor_id:0x%016llx ", mem->requestor_id); if (mem->validation_bits & CPER_MEM_VALID_RESPONDER_ID) n += scnprintf(msg + n, len - n, "responder_id:0x%016llx ", mem->responder_id); if (mem->validation_bits & CPER_MEM_VALID_TARGET_ID) n += scnprintf(msg + n, len - n, "target_id:0x%016llx ", mem->target_id); if (mem->validation_bits & CPER_MEM_VALID_CHIP_ID) n += scnprintf(msg + n, len - n, "chip_id:%d ", mem->extended >> CPER_MEM_CHIP_ID_SHIFT); return n; } EXPORT_SYMBOL_GPL(cper_mem_err_location); int cper_dimm_err_location(struct cper_mem_err_compact *mem, char *msg) { u32 len, n; const char *bank = NULL, *device = NULL; if (!msg || !(mem->validation_bits & CPER_MEM_VALID_MODULE_HANDLE)) return 0; len = CPER_REC_LEN; dmi_memdev_name(mem->mem_dev_handle, &bank, &device); if (bank && device) n = snprintf(msg, len, "DIMM location: %s %s ", bank, device); else n = snprintf(msg, len, "DIMM location: not present. DMI handle: 0x%.4x ", mem->mem_dev_handle); return n; } EXPORT_SYMBOL_GPL(cper_dimm_err_location); void cper_mem_err_pack(const struct cper_sec_mem_err *mem, struct cper_mem_err_compact *cmem) { cmem->validation_bits = mem->validation_bits; cmem->node = mem->node; cmem->card = mem->card; cmem->module = mem->module; cmem->bank = mem->bank; cmem->device = mem->device; cmem->row = mem->row; cmem->column = mem->column; cmem->bit_pos = mem->bit_pos; cmem->requestor_id = mem->requestor_id; cmem->responder_id = mem->responder_id; cmem->target_id = mem->target_id; cmem->extended = mem->extended; cmem->rank = mem->rank; cmem->mem_array_handle = mem->mem_array_handle; cmem->mem_dev_handle = mem->mem_dev_handle; } EXPORT_SYMBOL_GPL(cper_mem_err_pack); const char *cper_mem_err_unpack(struct trace_seq *p, struct cper_mem_err_compact *cmem) { const char *ret = trace_seq_buffer_ptr(p); char rcd_decode_str[CPER_REC_LEN]; if (cper_mem_err_location(cmem, rcd_decode_str)) trace_seq_printf(p, "%s", rcd_decode_str); if (cper_dimm_err_location(cmem, rcd_decode_str)) trace_seq_printf(p, "%s", rcd_decode_str); trace_seq_putc(p, '\0'); return ret; } static void cper_print_mem(const char *pfx, const struct cper_sec_mem_err *mem, int len) { struct cper_mem_err_compact cmem; char rcd_decode_str[CPER_REC_LEN]; /* Don't trust UEFI 2.1/2.2 structure with bad validation bits */ if (len == sizeof(struct cper_sec_mem_err_old) && (mem->validation_bits & ~(CPER_MEM_VALID_RANK_NUMBER - 1))) { pr_err(FW_WARN "valid bits set for fields beyond structure\n"); return; } if (mem->validation_bits & CPER_MEM_VALID_ERROR_STATUS) printk("%s error_status: %s (0x%016llx)\n", pfx, cper_mem_err_status_str(mem->error_status), mem->error_status); if (mem->validation_bits & CPER_MEM_VALID_PA) printk("%s""physical_address: 0x%016llx\n", pfx, mem->physical_addr); if (mem->validation_bits & CPER_MEM_VALID_PA_MASK) printk("%s""physical_address_mask: 0x%016llx\n", pfx, mem->physical_addr_mask); cper_mem_err_pack(mem, &cmem); if (cper_mem_err_location(&cmem, rcd_decode_str)) printk("%s%s\n", pfx, rcd_decode_str); if (mem->validation_bits & CPER_MEM_VALID_ERROR_TYPE) { u8 etype = mem->error_type; printk("%s""error_type: %d, %s\n", pfx, etype, cper_mem_err_type_str(etype)); } if (cper_dimm_err_location(&cmem, rcd_decode_str)) printk("%s%s\n", pfx, rcd_decode_str); } static const char * const pcie_port_type_strs[] = { "PCIe end point", "legacy PCI end point", "unknown", "unknown", "root port", "upstream switch port", "downstream switch port", "PCIe to PCI/PCI-X bridge", "PCI/PCI-X to PCIe bridge", "root complex integrated endpoint device", "root complex event collector", }; static void cper_print_pcie(const char *pfx, const struct cper_sec_pcie *pcie, const struct acpi_hest_generic_data *gdata) { if (pcie->validation_bits & CPER_PCIE_VALID_PORT_TYPE) printk("%s""port_type: %d, %s\n", pfx, pcie->port_type, pcie->port_type < ARRAY_SIZE(pcie_port_type_strs) ? pcie_port_type_strs[pcie->port_type] : "unknown"); if (pcie->validation_bits & CPER_PCIE_VALID_VERSION) printk("%s""version: %d.%d\n", pfx, pcie->version.major, pcie->version.minor); if (pcie->validation_bits & CPER_PCIE_VALID_COMMAND_STATUS) printk("%s""command: 0x%04x, status: 0x%04x\n", pfx, pcie->command, pcie->status); if (pcie->validation_bits & CPER_PCIE_VALID_DEVICE_ID) { const __u8 *p; printk("%s""device_id: %04x:%02x:%02x.%x\n", pfx, pcie->device_id.segment, pcie->device_id.bus, pcie->device_id.device, pcie->device_id.function); printk("%s""slot: %d\n", pfx, pcie->device_id.slot >> CPER_PCIE_SLOT_SHIFT); printk("%s""secondary_bus: 0x%02x\n", pfx, pcie->device_id.secondary_bus); printk("%s""vendor_id: 0x%04x, device_id: 0x%04x\n", pfx, pcie->device_id.vendor_id, pcie->device_id.device_id); p = pcie->device_id.class_code; printk("%s""class_code: %02x%02x%02x\n", pfx, p[2], p[1], p[0]); } if (pcie->validation_bits & CPER_PCIE_VALID_SERIAL_NUMBER) printk("%s""serial number: 0x%04x, 0x%04x\n", pfx, pcie->serial_number.lower, pcie->serial_number.upper); if (pcie->validation_bits & CPER_PCIE_VALID_BRIDGE_CONTROL_STATUS) printk( "%s""bridge: secondary_status: 0x%04x, control: 0x%04x\n", pfx, pcie->bridge.secondary_status, pcie->bridge.control); /* * Print all valid AER info. Record may be from BERT (boot-time) or GHES (run-time). * * Fatal errors call __ghes_panic() before AER handler prints this. */ if (pcie->validation_bits & CPER_PCIE_VALID_AER_INFO) { struct aer_capability_regs *aer; aer = (struct aer_capability_regs *)pcie->aer_info; printk("%saer_cor_status: 0x%08x, aer_cor_mask: 0x%08x\n", pfx, aer->cor_status, aer->cor_mask); printk("%saer_uncor_status: 0x%08x, aer_uncor_mask: 0x%08x\n", pfx, aer->uncor_status, aer->uncor_mask); printk("%saer_uncor_severity: 0x%08x\n", pfx, aer->uncor_severity); printk("%sTLP Header: %08x %08x %08x %08x\n", pfx, aer->header_log.dw[0], aer->header_log.dw[1], aer->header_log.dw[2], aer->header_log.dw[3]); } } static const char * const fw_err_rec_type_strs[] = { "IPF SAL Error Record", "SOC Firmware Error Record Type1 (Legacy CrashLog Support)", "SOC Firmware Error Record Type2", }; static void cper_print_fw_err(const char *pfx, struct acpi_hest_generic_data *gdata, const struct cper_sec_fw_err_rec_ref *fw_err) { void *buf = acpi_hest_get_payload(gdata); u32 offset, length = gdata->error_data_length; printk("%s""Firmware Error Record Type: %s\n", pfx, fw_err->record_type < ARRAY_SIZE(fw_err_rec_type_strs) ? fw_err_rec_type_strs[fw_err->record_type] : "unknown"); printk("%s""Revision: %d\n", pfx, fw_err->revision); /* Record Type based on UEFI 2.7 */ if (fw_err->revision == 0) { printk("%s""Record Identifier: %08llx\n", pfx, fw_err->record_identifier); } else if (fw_err->revision == 2) { printk("%s""Record Identifier: %pUl\n", pfx, &fw_err->record_identifier_guid); } /* * The FW error record may contain trailing data beyond the * structure defined by the specification. As the fields * defined (and hence the offset of any trailing data) vary * with the revision, set the offset to account for this * variation. */ if (fw_err->revision == 0) { /* record_identifier_guid not defined */ offset = offsetof(struct cper_sec_fw_err_rec_ref, record_identifier_guid); } else if (fw_err->revision == 1) { /* record_identifier not defined */ offset = offsetof(struct cper_sec_fw_err_rec_ref, record_identifier); } else { offset = sizeof(*fw_err); } buf += offset; length -= offset; print_hex_dump(pfx, "", DUMP_PREFIX_OFFSET, 16, 4, buf, length, true); } static void cper_print_tstamp(const char *pfx, struct acpi_hest_generic_data_v300 *gdata) { __u8 hour, min, sec, day, mon, year, century, *timestamp; if (gdata->validation_bits & ACPI_HEST_GEN_VALID_TIMESTAMP) { timestamp = (__u8 *)&(gdata->time_stamp); sec = bcd2bin(timestamp[0]); min = bcd2bin(timestamp[1]); hour = bcd2bin(timestamp[2]); day = bcd2bin(timestamp[4]); mon = bcd2bin(timestamp[5]); year = bcd2bin(timestamp[6]); century = bcd2bin(timestamp[7]); printk("%s%ststamp: %02d%02d-%02d-%02d %02d:%02d:%02d\n", pfx, (timestamp[3] & 0x1 ? "precise " : "imprecise "), century, year, mon, day, hour, min, sec); } } struct ignore_section { guid_t guid; const char *name; }; static const struct ignore_section ignore_sections[] = { { .guid = CPER_SEC_CXL_GEN_MEDIA_GUID, .name = "CXL General Media Event" }, { .guid = CPER_SEC_CXL_DRAM_GUID, .name = "CXL DRAM Event" }, { .guid = CPER_SEC_CXL_MEM_MODULE_GUID, .name = "CXL Memory Module Event" }, }; static void cper_estatus_print_section(const char *pfx, struct acpi_hest_generic_data *gdata, int sec_no) { guid_t *sec_type = (guid_t *)gdata->section_type; __u16 severity; char newpfx[64]; if (acpi_hest_get_version(gdata) >= 3) cper_print_tstamp(pfx, (struct acpi_hest_generic_data_v300 *)gdata); severity = gdata->error_severity; printk("%s""Error %d, type: %s\n", pfx, sec_no, cper_severity_str(severity)); if (gdata->validation_bits & CPER_SEC_VALID_FRU_ID) printk("%s""fru_id: %pUl\n", pfx, gdata->fru_id); if (gdata->validation_bits & CPER_SEC_VALID_FRU_TEXT) printk("%s""fru_text: %.20s\n", pfx, gdata->fru_text); snprintf(newpfx, sizeof(newpfx), "%s ", pfx); for (int i = 0; i < ARRAY_SIZE(ignore_sections); i++) { if (guid_equal(sec_type, &ignore_sections[i].guid)) { printk("%ssection_type: %s\n", newpfx, ignore_sections[i].name); return; } } if (guid_equal(sec_type, &CPER_SEC_PROC_GENERIC)) { struct cper_sec_proc_generic *proc_err = acpi_hest_get_payload(gdata); printk("%s""section_type: general processor error\n", newpfx); if (gdata->error_data_length >= sizeof(*proc_err)) cper_print_proc_generic(newpfx, proc_err); else goto err_section_too_small; } else if (guid_equal(sec_type, &CPER_SEC_PLATFORM_MEM)) { struct cper_sec_mem_err *mem_err = acpi_hest_get_payload(gdata); printk("%s""section_type: memory error\n", newpfx); if (gdata->error_data_length >= sizeof(struct cper_sec_mem_err_old)) cper_print_mem(newpfx, mem_err, gdata->error_data_length); else goto err_section_too_small; } else if (guid_equal(sec_type, &CPER_SEC_PCIE)) { struct cper_sec_pcie *pcie = acpi_hest_get_payload(gdata); printk("%s""section_type: PCIe error\n", newpfx); if (gdata->error_data_length >= sizeof(*pcie)) cper_print_pcie(newpfx, pcie, gdata); else goto err_section_too_small; #if defined(CONFIG_ARM64) || defined(CONFIG_ARM) } else if (guid_equal(sec_type, &CPER_SEC_PROC_ARM)) { struct cper_sec_proc_arm *arm_err = acpi_hest_get_payload(gdata); printk("%ssection_type: ARM processor error\n", newpfx); if (gdata->error_data_length >= sizeof(*arm_err)) cper_print_proc_arm(newpfx, arm_err); else goto err_section_too_small; #endif #if defined(CONFIG_UEFI_CPER_X86) } else if (guid_equal(sec_type, &CPER_SEC_PROC_IA)) { struct cper_sec_proc_ia *ia_err = acpi_hest_get_payload(gdata); printk("%ssection_type: IA32/X64 processor error\n", newpfx); if (gdata->error_data_length >= sizeof(*ia_err)) cper_print_proc_ia(newpfx, ia_err); else goto err_section_too_small; #endif } else if (guid_equal(sec_type, &CPER_SEC_FW_ERR_REC_REF)) { struct cper_sec_fw_err_rec_ref *fw_err = acpi_hest_get_payload(gdata); printk("%ssection_type: Firmware Error Record Reference\n", newpfx); /* The minimal FW Error Record contains 16 bytes */ if (gdata->error_data_length >= SZ_16) cper_print_fw_err(newpfx, gdata, fw_err); else goto err_section_too_small; } else if (guid_equal(sec_type, &CPER_SEC_CXL_PROT_ERR)) { struct cper_sec_prot_err *prot_err = acpi_hest_get_payload(gdata); printk("%ssection_type: CXL Protocol Error\n", newpfx); if (gdata->error_data_length >= sizeof(*prot_err)) cper_print_prot_err(newpfx, prot_err); else goto err_section_too_small; } else { const void *err = acpi_hest_get_payload(gdata); printk("%ssection type: unknown, %pUl\n", newpfx, sec_type); printk("%ssection length: %#x\n", newpfx, gdata->error_data_length); print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4, err, gdata->error_data_length, true); } return; err_section_too_small: pr_err(FW_WARN "error section length is too small\n"); } void cper_estatus_print(const char *pfx, const struct acpi_hest_generic_status *estatus) { struct acpi_hest_generic_data *gdata; int sec_no = 0; char newpfx[64]; __u16 severity; severity = estatus->error_severity; if (severity == CPER_SEV_CORRECTED) printk("%s%s\n", pfx, "It has been corrected by h/w " "and requires no further action"); printk("%s""event severity: %s\n", pfx, cper_severity_str(severity)); snprintf(newpfx, sizeof(newpfx), "%s ", pfx); apei_estatus_for_each_section(estatus, gdata) { cper_estatus_print_section(newpfx, gdata, sec_no); sec_no++; } } EXPORT_SYMBOL_GPL(cper_estatus_print); int cper_estatus_check_header(const struct acpi_hest_generic_status *estatus) { if (estatus->data_length && estatus->data_length < sizeof(struct acpi_hest_generic_data)) return -EINVAL; if (estatus->raw_data_length && estatus->raw_data_offset < sizeof(*estatus) + estatus->data_length) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(cper_estatus_check_header); int cper_estatus_check(const struct acpi_hest_generic_status *estatus) { struct acpi_hest_generic_data *gdata; unsigned int data_len, record_size; int rc; rc = cper_estatus_check_header(estatus); if (rc) return rc; data_len = estatus->data_length; apei_estatus_for_each_section(estatus, gdata) { if (acpi_hest_get_size(gdata) > data_len) return -EINVAL; record_size = acpi_hest_get_record_size(gdata); if (record_size > data_len) return -EINVAL; data_len -= record_size; } if (data_len) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(cper_estatus_check);
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2013 John Crispin <[email protected]> */ #include <linux/interrupt.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <asm/mach-ralink/ralink_regs.h> #define REG_ILL_ACC_ADDR 0x10 #define REG_ILL_ACC_TYPE 0x14 #define ILL_INT_STATUS BIT(31) #define ILL_ACC_WRITE BIT(30) #define ILL_ACC_LEN_M 0xff #define ILL_ACC_OFF_M 0xf #define ILL_ACC_OFF_S 16 #define ILL_ACC_ID_M 0x7 #define ILL_ACC_ID_S 8 #define DRV_NAME "ill_acc" static const char * const ill_acc_ids[] = { "cpu", "dma", "ppe", "pdma rx", "pdma tx", "pci/e", "wmac", "usb", }; static irqreturn_t ill_acc_irq_handler(int irq, void *_priv) { struct device *dev = (struct device *) _priv; u32 addr = rt_memc_r32(REG_ILL_ACC_ADDR); u32 type = rt_memc_r32(REG_ILL_ACC_TYPE); dev_err(dev, "illegal %s access from %s - addr:0x%08x offset:%d len:%d\n", (type & ILL_ACC_WRITE) ? ("write") : ("read"), ill_acc_ids[(type >> ILL_ACC_ID_S) & ILL_ACC_ID_M], addr, (type >> ILL_ACC_OFF_S) & ILL_ACC_OFF_M, type & ILL_ACC_LEN_M); rt_memc_w32(ILL_INT_STATUS, REG_ILL_ACC_TYPE); return IRQ_HANDLED; } static int __init ill_acc_of_setup(void) { struct platform_device *pdev; struct device_node *np; int irq; /* somehow this driver breaks on RT5350 */ if (of_machine_is_compatible("ralink,rt5350-soc")) return -EINVAL; np = of_find_compatible_node(NULL, NULL, "ralink,rt3050-memc"); if (!np) return -EINVAL; pdev = of_find_device_by_node(np); if (!pdev) { pr_err("%pOFn: failed to lookup pdev\n", np); of_node_put(np); return -EINVAL; } irq = irq_of_parse_and_map(np, 0); of_node_put(np); if (!irq) { dev_err(&pdev->dev, "failed to get irq\n"); put_device(&pdev->dev); return -EINVAL; } if (request_irq(irq, ill_acc_irq_handler, 0, "ill_acc", &pdev->dev)) { dev_err(&pdev->dev, "failed to request irq\n"); put_device(&pdev->dev); return -EINVAL; } rt_memc_w32(ILL_INT_STATUS, REG_ILL_ACC_TYPE); dev_info(&pdev->dev, "irq registered\n"); return 0; } arch_initcall(ill_acc_of_setup);
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2020 Facebook */ #include <test_progs.h> #include "test_global_func1.skel.h" #include "test_global_func2.skel.h" #include "test_global_func3.skel.h" #include "test_global_func4.skel.h" #include "test_global_func5.skel.h" #include "test_global_func6.skel.h" #include "test_global_func7.skel.h" #include "test_global_func8.skel.h" #include "test_global_func9.skel.h" #include "test_global_func10.skel.h" #include "test_global_func11.skel.h" #include "test_global_func12.skel.h" #include "test_global_func13.skel.h" #include "test_global_func14.skel.h" #include "test_global_func15.skel.h" #include "test_global_func16.skel.h" #include "test_global_func17.skel.h" #include "test_global_func_ctx_args.skel.h" #include "bpf/libbpf_internal.h" #include "btf_helpers.h" static void check_ctx_arg_type(const struct btf *btf, const struct btf_param *p) { const struct btf_type *t; const char *s; t = btf__type_by_id(btf, p->type); if (!ASSERT_EQ(btf_kind(t), BTF_KIND_PTR, "ptr_t")) return; s = btf_type_raw_dump(btf, t->type); if (!ASSERT_HAS_SUBSTR(s, "STRUCT 'bpf_perf_event_data' size=0 vlen=0", "ctx_struct_t")) return; } static void subtest_ctx_arg_rewrite(void) { struct test_global_func_ctx_args *skel = NULL; struct bpf_prog_info info; char func_info_buf[1024] __attribute__((aligned(8))); struct bpf_func_info_min *rec; struct btf *btf = NULL; __u32 info_len = sizeof(info); int err, fd, i; struct btf *kern_btf = NULL; kern_btf = btf__load_vmlinux_btf(); if (!ASSERT_OK_PTR(kern_btf, "kern_btf_load")) return; /* simple detection of kernel native arg:ctx tag support */ if (btf__find_by_name_kind(kern_btf, "bpf_subprog_arg_info", BTF_KIND_STRUCT) > 0) { test__skip(); btf__free(kern_btf); return; } btf__free(kern_btf); skel = test_global_func_ctx_args__open(); if (!ASSERT_OK_PTR(skel, "skel_open")) return; bpf_program__set_autoload(skel->progs.arg_tag_ctx_perf, true); err = test_global_func_ctx_args__load(skel); if (!ASSERT_OK(err, "skel_load")) goto out; memset(&info, 0, sizeof(info)); info.func_info = ptr_to_u64(&func_info_buf); info.nr_func_info = 3; info.func_info_rec_size = sizeof(struct bpf_func_info_min); fd = bpf_program__fd(skel->progs.arg_tag_ctx_perf); err = bpf_prog_get_info_by_fd(fd, &info, &info_len); if (!ASSERT_OK(err, "prog_info")) goto out; if (!ASSERT_EQ(info.nr_func_info, 3, "nr_func_info")) goto out; btf = btf__load_from_kernel_by_id(info.btf_id); if (!ASSERT_OK_PTR(btf, "obj_kern_btf")) goto out; rec = (struct bpf_func_info_min *)func_info_buf; for (i = 0; i < info.nr_func_info; i++, rec = (void *)rec + info.func_info_rec_size) { const struct btf_type *fn_t, *proto_t; const char *name; if (rec->insn_off == 0) continue; /* main prog, skip */ fn_t = btf__type_by_id(btf, rec->type_id); if (!ASSERT_OK_PTR(fn_t, "fn_type")) goto out; if (!ASSERT_EQ(btf_kind(fn_t), BTF_KIND_FUNC, "fn_type_kind")) goto out; proto_t = btf__type_by_id(btf, fn_t->type); if (!ASSERT_OK_PTR(proto_t, "proto_type")) goto out; name = btf__name_by_offset(btf, fn_t->name_off); if (strcmp(name, "subprog_ctx_tag") == 0) { /* int subprog_ctx_tag(void *ctx __arg_ctx) */ if (!ASSERT_EQ(btf_vlen(proto_t), 1, "arg_cnt")) goto out; /* arg 0 is PTR -> STRUCT bpf_perf_event_data */ check_ctx_arg_type(btf, &btf_params(proto_t)[0]); } else if (strcmp(name, "subprog_multi_ctx_tags") == 0) { /* int subprog_multi_ctx_tags(void *ctx1 __arg_ctx, * struct my_struct *mem, * void *ctx2 __arg_ctx) */ if (!ASSERT_EQ(btf_vlen(proto_t), 3, "arg_cnt")) goto out; /* arg 0 is PTR -> STRUCT bpf_perf_event_data */ check_ctx_arg_type(btf, &btf_params(proto_t)[0]); /* arg 2 is PTR -> STRUCT bpf_perf_event_data */ check_ctx_arg_type(btf, &btf_params(proto_t)[2]); } else { ASSERT_FAIL("unexpected subprog %s", name); goto out; } } out: btf__free(btf); test_global_func_ctx_args__destroy(skel); } void test_test_global_funcs(void) { RUN_TESTS(test_global_func1); RUN_TESTS(test_global_func2); RUN_TESTS(test_global_func3); RUN_TESTS(test_global_func4); RUN_TESTS(test_global_func5); RUN_TESTS(test_global_func6); RUN_TESTS(test_global_func7); RUN_TESTS(test_global_func8); RUN_TESTS(test_global_func9); RUN_TESTS(test_global_func10); RUN_TESTS(test_global_func11); RUN_TESTS(test_global_func12); RUN_TESTS(test_global_func13); RUN_TESTS(test_global_func14); RUN_TESTS(test_global_func15); RUN_TESTS(test_global_func16); RUN_TESTS(test_global_func17); RUN_TESTS(test_global_func_ctx_args); if (test__start_subtest("ctx_arg_rewrite")) subtest_ctx_arg_rewrite(); }
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2023 Loongson Technology Corporation Limited */ #include <linux/aperture.h> #include <linux/pci.h> #include <linux/vgaarb.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_client_setup.h> #include <drm/drm_drv.h> #include <drm/drm_fbdev_ttm.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_ioctl.h> #include <drm/drm_modeset_helper.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include "loongson_module.h" #include "lsdc_drv.h" #include "lsdc_gem.h" #include "lsdc_ttm.h" #define DRIVER_AUTHOR "Sui Jingfeng <[email protected]>" #define DRIVER_NAME "loongson" #define DRIVER_DESC "drm driver for loongson graphics" #define DRIVER_DATE "20220701" #define DRIVER_MAJOR 1 #define DRIVER_MINOR 0 #define DRIVER_PATCHLEVEL 0 DEFINE_DRM_GEM_FOPS(lsdc_gem_fops); static const struct drm_driver lsdc_drm_driver = { .driver_features = DRIVER_MODESET | DRIVER_RENDER | DRIVER_GEM | DRIVER_ATOMIC, .fops = &lsdc_gem_fops, .name = DRIVER_NAME, .desc = DRIVER_DESC, .date = DRIVER_DATE, .major = DRIVER_MAJOR, .minor = DRIVER_MINOR, .patchlevel = DRIVER_PATCHLEVEL, .debugfs_init = lsdc_debugfs_init, .dumb_create = lsdc_dumb_create, .dumb_map_offset = lsdc_dumb_map_offset, .gem_prime_import_sg_table = lsdc_prime_import_sg_table, DRM_FBDEV_TTM_DRIVER_OPS, }; static const struct drm_mode_config_funcs lsdc_mode_config_funcs = { .fb_create = drm_gem_fb_create, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; /* Display related */ static int lsdc_modeset_init(struct lsdc_device *ldev, unsigned int num_crtc, const struct lsdc_kms_funcs *funcs, bool has_vblank) { struct drm_device *ddev = &ldev->base; struct lsdc_display_pipe *dispipe; unsigned int i; int ret; for (i = 0; i < num_crtc; i++) { dispipe = &ldev->dispipe[i]; /* We need an index before crtc is initialized */ dispipe->index = i; ret = funcs->create_i2c(ddev, dispipe, i); if (ret) return ret; } for (i = 0; i < num_crtc; i++) { struct i2c_adapter *ddc = NULL; dispipe = &ldev->dispipe[i]; if (dispipe->li2c) ddc = &dispipe->li2c->adapter; ret = funcs->output_init(ddev, dispipe, ddc, i); if (ret) return ret; ldev->num_output++; } for (i = 0; i < num_crtc; i++) { dispipe = &ldev->dispipe[i]; ret = funcs->primary_plane_init(ddev, &dispipe->primary.base, i); if (ret) return ret; ret = funcs->cursor_plane_init(ddev, &dispipe->cursor.base, i); if (ret) return ret; ret = funcs->crtc_init(ddev, &dispipe->crtc.base, &dispipe->primary.base, &dispipe->cursor.base, i, has_vblank); if (ret) return ret; } drm_info(ddev, "Total %u outputs\n", ldev->num_output); return 0; } static const struct drm_mode_config_helper_funcs lsdc_mode_config_helper_funcs = { .atomic_commit_tail = drm_atomic_helper_commit_tail, }; static int lsdc_mode_config_init(struct drm_device *ddev, const struct lsdc_desc *descp) { int ret; ret = drmm_mode_config_init(ddev); if (ret) return ret; ddev->mode_config.funcs = &lsdc_mode_config_funcs; ddev->mode_config.min_width = 1; ddev->mode_config.min_height = 1; ddev->mode_config.max_width = descp->max_width * LSDC_NUM_CRTC; ddev->mode_config.max_height = descp->max_height * LSDC_NUM_CRTC; ddev->mode_config.preferred_depth = 24; ddev->mode_config.prefer_shadow = 1; ddev->mode_config.cursor_width = descp->hw_cursor_h; ddev->mode_config.cursor_height = descp->hw_cursor_h; ddev->mode_config.helper_private = &lsdc_mode_config_helper_funcs; if (descp->has_vblank_counter) ddev->max_vblank_count = 0xffffffff; return ret; } /* * The GPU and display controller in the LS7A1000/LS7A2000/LS2K2000 are * separated PCIE devices. They are two devices, not one. Bar 2 of the GPU * device contains the base address and size of the VRAM, both the GPU and * the DC could access the on-board VRAM. */ static int lsdc_get_dedicated_vram(struct lsdc_device *ldev, struct pci_dev *pdev_dc, const struct lsdc_desc *descp) { struct drm_device *ddev = &ldev->base; struct pci_dev *pdev_gpu; resource_size_t base, size; /* * The GPU has 00:06.0 as its BDF, while the DC has 00:06.1 * This is true for the LS7A1000, LS7A2000 and LS2K2000. */ pdev_gpu = pci_get_domain_bus_and_slot(pci_domain_nr(pdev_dc->bus), pdev_dc->bus->number, PCI_DEVFN(6, 0)); if (!pdev_gpu) { drm_err(ddev, "No GPU device, then no VRAM\n"); return -ENODEV; } base = pci_resource_start(pdev_gpu, 2); size = pci_resource_len(pdev_gpu, 2); ldev->vram_base = base; ldev->vram_size = size; ldev->gpu = pdev_gpu; drm_info(ddev, "Dedicated vram start: 0x%llx, size: %uMiB\n", (u64)base, (u32)(size >> 20)); return (size > SZ_1M) ? 0 : -ENODEV; } static struct lsdc_device * lsdc_create_device(struct pci_dev *pdev, const struct lsdc_desc *descp, const struct drm_driver *driver) { struct lsdc_device *ldev; struct drm_device *ddev; int ret; ldev = devm_drm_dev_alloc(&pdev->dev, driver, struct lsdc_device, base); if (IS_ERR(ldev)) return ldev; ldev->dc = pdev; ldev->descp = descp; ddev = &ldev->base; loongson_gfxpll_create(ddev, &ldev->gfxpll); ret = lsdc_get_dedicated_vram(ldev, pdev, descp); if (ret) { drm_err(ddev, "Init VRAM failed: %d\n", ret); return ERR_PTR(ret); } ret = aperture_remove_conflicting_devices(ldev->vram_base, ldev->vram_size, driver->name); if (ret) { drm_err(ddev, "Remove firmware framebuffers failed: %d\n", ret); return ERR_PTR(ret); } ret = lsdc_ttm_init(ldev); if (ret) { drm_err(ddev, "Memory manager init failed: %d\n", ret); return ERR_PTR(ret); } lsdc_gem_init(ddev); /* Bar 0 of the DC device contains the MMIO register's base address */ ldev->reg_base = pcim_iomap(pdev, 0, 0); if (!ldev->reg_base) return ERR_PTR(-ENODEV); spin_lock_init(&ldev->reglock); ret = lsdc_mode_config_init(ddev, descp); if (ret) return ERR_PTR(ret); ret = lsdc_modeset_init(ldev, descp->num_of_crtc, descp->funcs, loongson_vblank); if (ret) return ERR_PTR(ret); drm_mode_config_reset(ddev); return ldev; } /* For multiple GPU driver instance co-exixt in the system */ static unsigned int lsdc_vga_set_decode(struct pci_dev *pdev, bool state) { return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; } static int lsdc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { const struct lsdc_desc *descp; struct drm_device *ddev; struct lsdc_device *ldev; int ret; descp = lsdc_device_probe(pdev, ent->driver_data); if (IS_ERR_OR_NULL(descp)) return -ENODEV; pci_set_master(pdev); ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); if (ret) return ret; ret = pcim_enable_device(pdev); if (ret) return ret; dev_info(&pdev->dev, "Found %s, revision: %u", to_loongson_gfx(descp)->model, pdev->revision); ldev = lsdc_create_device(pdev, descp, &lsdc_drm_driver); if (IS_ERR(ldev)) return PTR_ERR(ldev); ddev = &ldev->base; pci_set_drvdata(pdev, ddev); vga_client_register(pdev, lsdc_vga_set_decode); drm_kms_helper_poll_init(ddev); if (loongson_vblank) { ret = drm_vblank_init(ddev, descp->num_of_crtc); if (ret) return ret; ret = devm_request_irq(&pdev->dev, pdev->irq, descp->funcs->irq_handler, IRQF_SHARED, dev_name(&pdev->dev), ddev); if (ret) { drm_err(ddev, "Failed to register interrupt: %d\n", ret); return ret; } drm_info(ddev, "registered irq: %u\n", pdev->irq); } ret = drm_dev_register(ddev, 0); if (ret) return ret; drm_client_setup(ddev, NULL); return 0; } static void lsdc_pci_remove(struct pci_dev *pdev) { struct drm_device *ddev = pci_get_drvdata(pdev); drm_dev_unregister(ddev); drm_atomic_helper_shutdown(ddev); } static void lsdc_pci_shutdown(struct pci_dev *pdev) { drm_atomic_helper_shutdown(pci_get_drvdata(pdev)); } static int lsdc_drm_freeze(struct drm_device *ddev) { struct lsdc_device *ldev = to_lsdc(ddev); struct lsdc_bo *lbo; int ret; /* unpin all of buffers in the VRAM */ mutex_lock(&ldev->gem.mutex); list_for_each_entry(lbo, &ldev->gem.objects, list) { struct ttm_buffer_object *tbo = &lbo->tbo; struct ttm_resource *resource = tbo->resource; unsigned int pin_count = tbo->pin_count; drm_dbg(ddev, "bo[%p], size: %zuKiB, type: %s, pin count: %u\n", lbo, lsdc_bo_size(lbo) >> 10, lsdc_mem_type_to_str(resource->mem_type), pin_count); if (!pin_count) continue; if (resource->mem_type == TTM_PL_VRAM) { ret = lsdc_bo_reserve(lbo); if (unlikely(ret)) { drm_err(ddev, "bo reserve failed: %d\n", ret); continue; } do { lsdc_bo_unpin(lbo); --pin_count; } while (pin_count); lsdc_bo_unreserve(lbo); } } mutex_unlock(&ldev->gem.mutex); lsdc_bo_evict_vram(ddev); ret = drm_mode_config_helper_suspend(ddev); if (unlikely(ret)) { drm_err(ddev, "Freeze error: %d", ret); return ret; } return 0; } static int lsdc_drm_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct drm_device *ddev = pci_get_drvdata(pdev); return drm_mode_config_helper_resume(ddev); } static int lsdc_pm_freeze(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct drm_device *ddev = pci_get_drvdata(pdev); return lsdc_drm_freeze(ddev); } static int lsdc_pm_thaw(struct device *dev) { return lsdc_drm_resume(dev); } static int lsdc_pm_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); int error; error = lsdc_pm_freeze(dev); if (error) return error; pci_save_state(pdev); /* Shut down the device */ pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int lsdc_pm_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); if (pcim_enable_device(pdev)) return -EIO; return lsdc_pm_thaw(dev); } static const struct dev_pm_ops lsdc_pm_ops = { .suspend = lsdc_pm_suspend, .resume = lsdc_pm_resume, .freeze = lsdc_pm_freeze, .thaw = lsdc_pm_thaw, .poweroff = lsdc_pm_freeze, .restore = lsdc_pm_resume, }; static const struct pci_device_id lsdc_pciid_list[] = { {PCI_VDEVICE(LOONGSON, 0x7a06), CHIP_LS7A1000}, {PCI_VDEVICE(LOONGSON, 0x7a36), CHIP_LS7A2000}, { } }; struct pci_driver lsdc_pci_driver = { .name = DRIVER_NAME, .id_table = lsdc_pciid_list, .probe = lsdc_pci_probe, .remove = lsdc_pci_remove, .shutdown = lsdc_pci_shutdown, .driver.pm = &lsdc_pm_ops, }; MODULE_DEVICE_TABLE(pci, lsdc_pciid_list); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright © 2007 Nokia Corporation. All rights reserved. * Copyright © 2004-2010 David Woodhouse <[email protected]> * * Created by Richard Purdie <[email protected]> * * For licensing information, see the file 'LICENCE' in this directory. * */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/lzo.h> #include "compr.h" static void *lzo_mem; static void *lzo_compress_buf; static DEFINE_MUTEX(deflate_mutex); /* for lzo_mem and lzo_compress_buf */ static void free_workspace(void) { vfree(lzo_mem); vfree(lzo_compress_buf); } static int __init alloc_workspace(void) { lzo_mem = vmalloc(LZO1X_MEM_COMPRESS); lzo_compress_buf = vmalloc(lzo1x_worst_compress(PAGE_SIZE)); if (!lzo_mem || !lzo_compress_buf) { free_workspace(); return -ENOMEM; } return 0; } static int jffs2_lzo_compress(unsigned char *data_in, unsigned char *cpage_out, uint32_t *sourcelen, uint32_t *dstlen) { size_t compress_size; int ret; mutex_lock(&deflate_mutex); ret = lzo1x_1_compress(data_in, *sourcelen, lzo_compress_buf, &compress_size, lzo_mem); if (ret != LZO_E_OK) goto fail; if (compress_size > *dstlen) goto fail; memcpy(cpage_out, lzo_compress_buf, compress_size); mutex_unlock(&deflate_mutex); *dstlen = compress_size; return 0; fail: mutex_unlock(&deflate_mutex); return -1; } static int jffs2_lzo_decompress(unsigned char *data_in, unsigned char *cpage_out, uint32_t srclen, uint32_t destlen) { size_t dl = destlen; int ret; ret = lzo1x_decompress_safe(data_in, srclen, cpage_out, &dl); if (ret != LZO_E_OK || dl != destlen) return -1; return 0; } static struct jffs2_compressor jffs2_lzo_comp = { .priority = JFFS2_LZO_PRIORITY, .name = "lzo", .compr = JFFS2_COMPR_LZO, .compress = &jffs2_lzo_compress, .decompress = &jffs2_lzo_decompress, .disabled = 0, }; int __init jffs2_lzo_init(void) { int ret; ret = alloc_workspace(); if (ret < 0) return ret; ret = jffs2_register_compressor(&jffs2_lzo_comp); if (ret) free_workspace(); return ret; } void jffs2_lzo_exit(void) { jffs2_unregister_compressor(&jffs2_lzo_comp); free_workspace(); }
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2015 Cumulus Networks, Inc. */ #ifndef _NET_MPLS_IPTUNNEL_H #define _NET_MPLS_IPTUNNEL_H 1 #include <linux/types.h> #include <net/lwtunnel.h> struct mpls_iptunnel_encap { u8 labels; u8 ttl_propagate; u8 default_ttl; u8 reserved1; u32 label[]; }; static inline struct mpls_iptunnel_encap *mpls_lwtunnel_encap(struct lwtunnel_state *lwtstate) { return (struct mpls_iptunnel_encap *)lwtstate->data; } #endif
// SPDX-License-Identifier: GPL-2.0-or-later /* * DTS file for SPEAr320s SoC * * Copyright 2021 Herve Codina <[email protected]> */ /include/ "spear320.dtsi" / { ahb { apb { gpiopinctrl: gpio@b3000000 { /* * The "RM0321 SPEAr320s address and map * registers" document mentions interrupt 6 * (NPGIO_INTR) for the PL_GPIO interrupt. */ interrupts = <6>; interrupt-parent = <&shirq>; }; }; }; };
/* * Copyright (C) 2013-2015 ARM Limited * Author: Liviu Dudau <[email protected]> * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. * * ARM HDLCD Driver */ #include <linux/aperture.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/clk.h> #include <linux/component.h> #include <linux/console.h> #include <linux/dma-mapping.h> #include <linux/list.h> #include <linux/of_graph.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_client_setup.h> #include <drm/drm_crtc.h> #include <drm/drm_debugfs.h> #include <drm/drm_drv.h> #include <drm/drm_fbdev_dma.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_modeset_helper.h> #include <drm/drm_module.h> #include <drm/drm_of.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include "hdlcd_drv.h" #include "hdlcd_regs.h" static irqreturn_t hdlcd_irq(int irq, void *arg) { struct hdlcd_drm_private *hdlcd = arg; unsigned long irq_status; irq_status = hdlcd_read(hdlcd, HDLCD_REG_INT_STATUS); #ifdef CONFIG_DEBUG_FS if (irq_status & HDLCD_INTERRUPT_UNDERRUN) atomic_inc(&hdlcd->buffer_underrun_count); if (irq_status & HDLCD_INTERRUPT_DMA_END) atomic_inc(&hdlcd->dma_end_count); if (irq_status & HDLCD_INTERRUPT_BUS_ERROR) atomic_inc(&hdlcd->bus_error_count); if (irq_status & HDLCD_INTERRUPT_VSYNC) atomic_inc(&hdlcd->vsync_count); #endif if (irq_status & HDLCD_INTERRUPT_VSYNC) drm_crtc_handle_vblank(&hdlcd->crtc); /* acknowledge interrupt(s) */ hdlcd_write(hdlcd, HDLCD_REG_INT_CLEAR, irq_status); return IRQ_HANDLED; } static int hdlcd_irq_install(struct hdlcd_drm_private *hdlcd) { int ret; /* Ensure interrupts are disabled */ hdlcd_write(hdlcd, HDLCD_REG_INT_MASK, 0); hdlcd_write(hdlcd, HDLCD_REG_INT_CLEAR, ~0); ret = request_irq(hdlcd->irq, hdlcd_irq, 0, "hdlcd", hdlcd); if (ret) return ret; #ifdef CONFIG_DEBUG_FS /* enable debug interrupts */ hdlcd_write(hdlcd, HDLCD_REG_INT_MASK, HDLCD_DEBUG_INT_MASK); #endif return 0; } static void hdlcd_irq_uninstall(struct hdlcd_drm_private *hdlcd) { /* disable all the interrupts that we might have enabled */ hdlcd_write(hdlcd, HDLCD_REG_INT_MASK, 0); free_irq(hdlcd->irq, hdlcd); } static int hdlcd_load(struct drm_device *drm, unsigned long flags) { struct hdlcd_drm_private *hdlcd = drm_to_hdlcd_priv(drm); struct platform_device *pdev = to_platform_device(drm->dev); u32 version; int ret; hdlcd->clk = devm_clk_get(drm->dev, "pxlclk"); if (IS_ERR(hdlcd->clk)) return PTR_ERR(hdlcd->clk); #ifdef CONFIG_DEBUG_FS atomic_set(&hdlcd->buffer_underrun_count, 0); atomic_set(&hdlcd->bus_error_count, 0); atomic_set(&hdlcd->vsync_count, 0); atomic_set(&hdlcd->dma_end_count, 0); #endif hdlcd->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hdlcd->mmio)) { DRM_ERROR("failed to map control registers area\n"); ret = PTR_ERR(hdlcd->mmio); hdlcd->mmio = NULL; return ret; } version = hdlcd_read(hdlcd, HDLCD_REG_VERSION); if ((version & HDLCD_PRODUCT_MASK) != HDLCD_PRODUCT_ID) { DRM_ERROR("unknown product id: 0x%x\n", version); return -EINVAL; } DRM_INFO("found ARM HDLCD version r%dp%d\n", (version & HDLCD_VERSION_MAJOR_MASK) >> 8, version & HDLCD_VERSION_MINOR_MASK); /* Get the optional framebuffer memory resource */ ret = of_reserved_mem_device_init(drm->dev); if (ret && ret != -ENODEV) return ret; ret = dma_set_mask_and_coherent(drm->dev, DMA_BIT_MASK(32)); if (ret) goto setup_fail; ret = hdlcd_setup_crtc(drm); if (ret < 0) { DRM_ERROR("failed to create crtc\n"); goto setup_fail; } ret = platform_get_irq(pdev, 0); if (ret < 0) goto irq_fail; hdlcd->irq = ret; ret = hdlcd_irq_install(hdlcd); if (ret < 0) { DRM_ERROR("failed to install IRQ handler\n"); goto irq_fail; } return 0; irq_fail: drm_crtc_cleanup(&hdlcd->crtc); setup_fail: of_reserved_mem_device_release(drm->dev); return ret; } static const struct drm_mode_config_funcs hdlcd_mode_config_funcs = { .fb_create = drm_gem_fb_create, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static int hdlcd_setup_mode_config(struct drm_device *drm) { int ret; ret = drmm_mode_config_init(drm); if (ret) return ret; drm->mode_config.min_width = 0; drm->mode_config.min_height = 0; drm->mode_config.max_width = HDLCD_MAX_XRES; drm->mode_config.max_height = HDLCD_MAX_YRES; drm->mode_config.funcs = &hdlcd_mode_config_funcs; return 0; } #ifdef CONFIG_DEBUG_FS static int hdlcd_show_underrun_count(struct seq_file *m, void *arg) { struct drm_debugfs_entry *entry = m->private; struct drm_device *drm = entry->dev; struct hdlcd_drm_private *hdlcd = drm_to_hdlcd_priv(drm); seq_printf(m, "underrun : %d\n", atomic_read(&hdlcd->buffer_underrun_count)); seq_printf(m, "dma_end : %d\n", atomic_read(&hdlcd->dma_end_count)); seq_printf(m, "bus_error: %d\n", atomic_read(&hdlcd->bus_error_count)); seq_printf(m, "vsync : %d\n", atomic_read(&hdlcd->vsync_count)); return 0; } static int hdlcd_show_pxlclock(struct seq_file *m, void *arg) { struct drm_debugfs_entry *entry = m->private; struct drm_device *drm = entry->dev; struct hdlcd_drm_private *hdlcd = drm_to_hdlcd_priv(drm); unsigned long clkrate = clk_get_rate(hdlcd->clk); unsigned long mode_clock = hdlcd->crtc.mode.crtc_clock * 1000; seq_printf(m, "hw : %lu\n", clkrate); seq_printf(m, "mode: %lu\n", mode_clock); return 0; } static struct drm_debugfs_info hdlcd_debugfs_list[] = { { "interrupt_count", hdlcd_show_underrun_count, 0 }, { "clocks", hdlcd_show_pxlclock, 0 }, }; #endif DEFINE_DRM_GEM_DMA_FOPS(fops); static const struct drm_driver hdlcd_driver = { .driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC, DRM_GEM_DMA_DRIVER_OPS, DRM_FBDEV_DMA_DRIVER_OPS, .fops = &fops, .name = "hdlcd", .desc = "ARM HDLCD Controller DRM", .date = "20151021", .major = 1, .minor = 0, }; static int hdlcd_drm_bind(struct device *dev) { struct drm_device *drm; struct hdlcd_drm_private *hdlcd; int ret; hdlcd = devm_drm_dev_alloc(dev, &hdlcd_driver, typeof(*hdlcd), base); if (IS_ERR(hdlcd)) return PTR_ERR(hdlcd); drm = &hdlcd->base; dev_set_drvdata(dev, drm); ret = hdlcd_setup_mode_config(drm); if (ret) goto err_free; ret = hdlcd_load(drm, 0); if (ret) goto err_free; /* Set the CRTC's port so that the encoder component can find it */ hdlcd->crtc.port = of_graph_get_port_by_id(dev->of_node, 0); ret = component_bind_all(dev, drm); if (ret) { DRM_ERROR("Failed to bind all components\n"); goto err_unload; } ret = pm_runtime_set_active(dev); if (ret) goto err_pm_active; pm_runtime_enable(dev); ret = drm_vblank_init(drm, drm->mode_config.num_crtc); if (ret < 0) { DRM_ERROR("failed to initialise vblank\n"); goto err_vblank; } /* * If EFI left us running, take over from simple framebuffer * drivers. Read HDLCD_REG_COMMAND to see if we are enabled. */ if (hdlcd_read(hdlcd, HDLCD_REG_COMMAND)) { hdlcd_write(hdlcd, HDLCD_REG_COMMAND, 0); aperture_remove_all_conflicting_devices(hdlcd_driver.name); } drm_mode_config_reset(drm); drm_kms_helper_poll_init(drm); #ifdef CONFIG_DEBUG_FS drm_debugfs_add_files(drm, hdlcd_debugfs_list, ARRAY_SIZE(hdlcd_debugfs_list)); #endif ret = drm_dev_register(drm, 0); if (ret) goto err_register; drm_client_setup(drm, NULL); return 0; err_register: drm_kms_helper_poll_fini(drm); err_vblank: pm_runtime_disable(drm->dev); err_pm_active: drm_atomic_helper_shutdown(drm); component_unbind_all(dev, drm); err_unload: of_node_put(hdlcd->crtc.port); hdlcd->crtc.port = NULL; hdlcd_irq_uninstall(hdlcd); of_reserved_mem_device_release(drm->dev); err_free: dev_set_drvdata(dev, NULL); return ret; } static void hdlcd_drm_unbind(struct device *dev) { struct drm_device *drm = dev_get_drvdata(dev); struct hdlcd_drm_private *hdlcd = drm_to_hdlcd_priv(drm); drm_dev_unregister(drm); drm_kms_helper_poll_fini(drm); component_unbind_all(dev, drm); of_node_put(hdlcd->crtc.port); hdlcd->crtc.port = NULL; pm_runtime_get_sync(dev); drm_atomic_helper_shutdown(drm); hdlcd_irq_uninstall(hdlcd); pm_runtime_put(dev); if (pm_runtime_enabled(dev)) pm_runtime_disable(dev); of_reserved_mem_device_release(dev); dev_set_drvdata(dev, NULL); } static const struct component_master_ops hdlcd_master_ops = { .bind = hdlcd_drm_bind, .unbind = hdlcd_drm_unbind, }; static int compare_dev(struct device *dev, void *data) { return dev->of_node == data; } static int hdlcd_probe(struct platform_device *pdev) { struct device_node *port; struct component_match *match = NULL; /* there is only one output port inside each device, find it */ port = of_graph_get_remote_node(pdev->dev.of_node, 0, 0); if (!port) return -ENODEV; drm_of_component_match_add(&pdev->dev, &match, compare_dev, port); of_node_put(port); return component_master_add_with_match(&pdev->dev, &hdlcd_master_ops, match); } static void hdlcd_remove(struct platform_device *pdev) { component_master_del(&pdev->dev, &hdlcd_master_ops); } static void hdlcd_shutdown(struct platform_device *pdev) { drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); } static const struct of_device_id hdlcd_of_match[] = { { .compatible = "arm,hdlcd" }, {}, }; MODULE_DEVICE_TABLE(of, hdlcd_of_match); static int __maybe_unused hdlcd_pm_suspend(struct device *dev) { struct drm_device *drm = dev_get_drvdata(dev); return drm_mode_config_helper_suspend(drm); } static int __maybe_unused hdlcd_pm_resume(struct device *dev) { struct drm_device *drm = dev_get_drvdata(dev); drm_mode_config_helper_resume(drm); return 0; } static SIMPLE_DEV_PM_OPS(hdlcd_pm_ops, hdlcd_pm_suspend, hdlcd_pm_resume); static struct platform_driver hdlcd_platform_driver = { .probe = hdlcd_probe, .remove = hdlcd_remove, .shutdown = hdlcd_shutdown, .driver = { .name = "hdlcd", .pm = &hdlcd_pm_ops, .of_match_table = hdlcd_of_match, }, }; drm_module_platform_driver(hdlcd_platform_driver); MODULE_AUTHOR("Liviu Dudau"); MODULE_DESCRIPTION("ARM HDLCD DRM driver"); MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2020 Cloudflare /* * Tests for sockmap/sockhash holding kTLS sockets. */ #include <netinet/tcp.h> #include "test_progs.h" #define MAX_TEST_NAME 80 #define TCP_ULP 31 static int tcp_server(int family) { int err, s; s = socket(family, SOCK_STREAM, 0); if (!ASSERT_GE(s, 0, "socket")) return -1; err = listen(s, SOMAXCONN); if (!ASSERT_OK(err, "listen")) return -1; return s; } static int disconnect(int fd) { struct sockaddr unspec = { AF_UNSPEC }; return connect(fd, &unspec, sizeof(unspec)); } /* Disconnect (unhash) a kTLS socket after removing it from sockmap. */ static void test_sockmap_ktls_disconnect_after_delete(int family, int map) { struct sockaddr_storage addr = {0}; socklen_t len = sizeof(addr); int err, cli, srv, zero = 0; srv = tcp_server(family); if (srv == -1) return; err = getsockname(srv, (struct sockaddr *)&addr, &len); if (!ASSERT_OK(err, "getsockopt")) goto close_srv; cli = socket(family, SOCK_STREAM, 0); if (!ASSERT_GE(cli, 0, "socket")) goto close_srv; err = connect(cli, (struct sockaddr *)&addr, len); if (!ASSERT_OK(err, "connect")) goto close_cli; err = bpf_map_update_elem(map, &zero, &cli, 0); if (!ASSERT_OK(err, "bpf_map_update_elem")) goto close_cli; err = setsockopt(cli, IPPROTO_TCP, TCP_ULP, "tls", strlen("tls")); if (!ASSERT_OK(err, "setsockopt(TCP_ULP)")) goto close_cli; err = bpf_map_delete_elem(map, &zero); if (!ASSERT_OK(err, "bpf_map_delete_elem")) goto close_cli; err = disconnect(cli); ASSERT_OK(err, "disconnect"); close_cli: close(cli); close_srv: close(srv); } static void test_sockmap_ktls_update_fails_when_sock_has_ulp(int family, int map) { struct sockaddr_storage addr = {}; socklen_t len = sizeof(addr); struct sockaddr_in6 *v6; struct sockaddr_in *v4; int err, s, zero = 0; switch (family) { case AF_INET: v4 = (struct sockaddr_in *)&addr; v4->sin_family = AF_INET; break; case AF_INET6: v6 = (struct sockaddr_in6 *)&addr; v6->sin6_family = AF_INET6; break; default: PRINT_FAIL("unsupported socket family %d", family); return; } s = socket(family, SOCK_STREAM, 0); if (!ASSERT_GE(s, 0, "socket")) return; err = bind(s, (struct sockaddr *)&addr, len); if (!ASSERT_OK(err, "bind")) goto close; err = getsockname(s, (struct sockaddr *)&addr, &len); if (!ASSERT_OK(err, "getsockname")) goto close; err = connect(s, (struct sockaddr *)&addr, len); if (!ASSERT_OK(err, "connect")) goto close; /* save sk->sk_prot and set it to tls_prots */ err = setsockopt(s, IPPROTO_TCP, TCP_ULP, "tls", strlen("tls")); if (!ASSERT_OK(err, "setsockopt(TCP_ULP)")) goto close; /* sockmap update should not affect saved sk_prot */ err = bpf_map_update_elem(map, &zero, &s, BPF_ANY); if (!ASSERT_ERR(err, "sockmap update elem")) goto close; /* call sk->sk_prot->setsockopt to dispatch to saved sk_prot */ err = setsockopt(s, IPPROTO_TCP, TCP_NODELAY, &zero, sizeof(zero)); ASSERT_OK(err, "setsockopt(TCP_NODELAY)"); close: close(s); } static const char *fmt_test_name(const char *subtest_name, int family, enum bpf_map_type map_type) { const char *map_type_str = BPF_MAP_TYPE_SOCKMAP ? "SOCKMAP" : "SOCKHASH"; const char *family_str = AF_INET ? "IPv4" : "IPv6"; static char test_name[MAX_TEST_NAME]; snprintf(test_name, MAX_TEST_NAME, "sockmap_ktls %s %s %s", subtest_name, family_str, map_type_str); return test_name; } static void run_tests(int family, enum bpf_map_type map_type) { int map; map = bpf_map_create(map_type, NULL, sizeof(int), sizeof(int), 1, NULL); if (!ASSERT_GE(map, 0, "bpf_map_create")) return; if (test__start_subtest(fmt_test_name("disconnect_after_delete", family, map_type))) test_sockmap_ktls_disconnect_after_delete(family, map); if (test__start_subtest(fmt_test_name("update_fails_when_sock_has_ulp", family, map_type))) test_sockmap_ktls_update_fails_when_sock_has_ulp(family, map); close(map); } void test_sockmap_ktls(void) { run_tests(AF_INET, BPF_MAP_TYPE_SOCKMAP); run_tests(AF_INET, BPF_MAP_TYPE_SOCKHASH); run_tests(AF_INET6, BPF_MAP_TYPE_SOCKMAP); run_tests(AF_INET6, BPF_MAP_TYPE_SOCKHASH); }
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright (c) 2019 BayLibre SAS. All rights reserved. */ /dts-v1/; #include "meson-sm1.dtsi" #include <dt-bindings/gpio/gpio.h> #include <dt-bindings/input/input.h> #include <dt-bindings/gpio/meson-g12a-gpio.h> #include <dt-bindings/sound/meson-g12a-tohdmitx.h> / { compatible = "seirobotics,sei610", "amlogic,sm1"; model = "SEI Robotics SEI610"; aliases { serial0 = &uart_AO; ethernet0 = &ethmac; }; mono_dac: audio-codec-0 { compatible = "maxim,max98357a"; #sound-dai-cells = <0>; sound-name-prefix = "U16"; sdmode-gpios = <&gpio GPIOX_8 GPIO_ACTIVE_HIGH>; }; dmics: audio-codec-1 { #sound-dai-cells = <0>; compatible = "dmic-codec"; num-channels = <2>; wakeup-delay-ms = <50>; sound-name-prefix = "MIC"; }; chosen { stdout-path = "serial0:115200n8"; }; emmc_pwrseq: emmc-pwrseq { compatible = "mmc-pwrseq-emmc"; reset-gpios = <&gpio BOOT_12 GPIO_ACTIVE_LOW>; }; gpio-keys { compatible = "gpio-keys"; key-1 { label = "A"; linux,code = <BTN_0>; gpios = <&gpio GPIOH_6 GPIO_ACTIVE_LOW>; interrupt-parent = <&gpio_intc>; interrupts = <IRQID_GPIOH_6 IRQ_TYPE_EDGE_BOTH>; }; key-2 { label = "B"; linux,code = <BTN_1>; gpios = <&gpio GPIOH_7 GPIO_ACTIVE_LOW>; interrupt-parent = <&gpio_intc>; interrupts = <IRQID_GPIOH_7 IRQ_TYPE_EDGE_BOTH>; }; key-3 { label = "C"; linux,code = <BTN_2>; gpios = <&gpio_ao GPIOAO_2 GPIO_ACTIVE_LOW>; interrupt-parent = <&gpio_intc>; interrupts = <IRQID_GPIOAO_2 IRQ_TYPE_EDGE_BOTH>; }; key-mic-mute { label = "MicMute"; linux,code = <SW_MUTE_DEVICE>; linux,input-type = <EV_SW>; gpios = <&gpio_ao GPIOE_2 GPIO_ACTIVE_LOW>; interrupt-parent = <&gpio_intc>; interrupts = <IRQID_GPIOE_2 IRQ_TYPE_EDGE_BOTH>; }; key-power { label = "PowerKey"; linux,code = <KEY_POWER>; gpios = <&gpio_ao GPIOAO_3 GPIO_ACTIVE_LOW>; interrupt-parent = <&gpio_intc>; interrupts = <IRQID_GPIOAO_3 IRQ_TYPE_EDGE_BOTH>; }; }; hdmi-connector { compatible = "hdmi-connector"; type = "a"; port { hdmi_connector_in: endpoint { remote-endpoint = <&hdmi_tx_tmds_out>; }; }; }; led-controller-1 { compatible = "gpio-leds"; led-1 { label = "sei610:blue:bt"; gpios = <&gpio GPIOC_7 (GPIO_ACTIVE_LOW | GPIO_OPEN_DRAIN)>; default-state = "off"; }; }; led-controller-2 { compatible = "pwm-leds"; led-2 { label = "sei610:red:power"; pwms = <&pwm_AO_ab 0 30518 0>; max-brightness = <255>; linux,default-trigger = "default-on"; active-low; }; }; memory@0 { device_type = "memory"; reg = <0x0 0x0 0x0 0x40000000>; }; ao_5v: regulator-ao-5v { compatible = "regulator-fixed"; regulator-name = "AO_5V"; regulator-min-microvolt = <5000000>; regulator-max-microvolt = <5000000>; vin-supply = <&dc_in>; regulator-always-on; }; dc_in: regulator-dc-in { compatible = "regulator-fixed"; regulator-name = "DC_IN"; regulator-min-microvolt = <5000000>; regulator-max-microvolt = <5000000>; regulator-always-on; }; emmc_1v8: regulator-emmc-1v8 { compatible = "regulator-fixed"; regulator-name = "EMMC_1V8"; regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; vin-supply = <&vddao_3v3>; regulator-always-on; }; vddao_3v3: regulator-vddao-3v3 { compatible = "regulator-fixed"; regulator-name = "VDDAO_3V3"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; vin-supply = <&dc_in>; regulator-always-on; }; /* Used by Tuner, RGB Led & IR Emitter LED array */ vddao_3v3_t: regulator-vddao-3v3-t { compatible = "regulator-fixed"; regulator-name = "VDDAO_3V3_T"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; vin-supply = <&vddao_3v3>; gpio = <&gpio GPIOH_8 GPIO_OPEN_DRAIN>; regulator-always-on; }; vddcpu: regulator-vddcpu { /* * SY8120B1ABC DC/DC Regulator. */ compatible = "pwm-regulator"; regulator-name = "VDDCPU"; regulator-min-microvolt = <690000>; regulator-max-microvolt = <1050000>; pwm-supply = <&dc_in>; pwms = <&pwm_AO_cd 1 1500 0>; pwm-dutycycle-range = <100 0>; regulator-boot-on; regulator-always-on; }; vddio_ao1v8: regulator-vddio-ao1v8 { compatible = "regulator-fixed"; regulator-name = "VDDIO_AO1V8"; regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; vin-supply = <&vddao_3v3>; regulator-always-on; }; sdio_pwrseq: sdio-pwrseq { compatible = "mmc-pwrseq-simple"; reset-gpios = <&gpio GPIOX_6 GPIO_ACTIVE_LOW>; clocks = <&wifi32k>; clock-names = "ext_clock"; }; sound { compatible = "amlogic,axg-sound-card"; model = "SEI610"; audio-aux-devs = <&tdmout_a>, <&tdmout_b>, <&tdmin_a>, <&tdmin_b>; audio-routing = "TDMOUT_A IN 0", "FRDDR_A OUT 0", "TDMOUT_A IN 1", "FRDDR_B OUT 0", "TDMOUT_A IN 2", "FRDDR_C OUT 0", "TDM_A Playback", "TDMOUT_A OUT", "TDMOUT_B IN 0", "FRDDR_A OUT 1", "TDMOUT_B IN 1", "FRDDR_B OUT 1", "TDMOUT_B IN 2", "FRDDR_C OUT 1", "TDM_B Playback", "TDMOUT_B OUT", "TODDR_A IN 4", "PDM Capture", "TODDR_B IN 4", "PDM Capture", "TODDR_C IN 4", "PDM Capture", "TDMIN_A IN 0", "TDM_A Capture", "TDMIN_A IN 3", "TDM_A Loopback", "TDMIN_B IN 0", "TDM_A Capture", "TDMIN_B IN 3", "TDM_A Loopback", "TDMIN_A IN 1", "TDM_B Capture", "TDMIN_A IN 4", "TDM_B Loopback", "TDMIN_B IN 1", "TDM_B Capture", "TDMIN_B IN 4", "TDM_B Loopback", "TODDR_A IN 0", "TDMIN_A OUT", "TODDR_B IN 0", "TDMIN_A OUT", "TODDR_C IN 0", "TDMIN_A OUT", "TODDR_A IN 1", "TDMIN_B OUT", "TODDR_B IN 1", "TDMIN_B OUT", "TODDR_C IN 1", "TDMIN_B OUT"; clocks = <&clkc CLKID_MPLL2>, <&clkc CLKID_MPLL0>, <&clkc CLKID_MPLL1>; assigned-clocks = <&clkc CLKID_MPLL2>, <&clkc CLKID_MPLL0>, <&clkc CLKID_MPLL1>; assigned-clock-parents = <0>, <0>, <0>; assigned-clock-rates = <294912000>, <270950400>, <393216000>; dai-link-0 { sound-dai = <&frddr_a>; }; dai-link-1 { sound-dai = <&frddr_b>; }; dai-link-2 { sound-dai = <&frddr_c>; }; dai-link-3 { sound-dai = <&toddr_a>; }; dai-link-4 { sound-dai = <&toddr_b>; }; dai-link-5 { sound-dai = <&toddr_c>; }; /* internal speaker interface */ dai-link-6 { sound-dai = <&tdmif_a>; dai-format = "i2s"; dai-tdm-slot-tx-mask-0 = <1 1>; mclk-fs = <256>; codec-0 { sound-dai = <&mono_dac>; }; codec-1 { sound-dai = <&tohdmitx TOHDMITX_I2S_IN_A>; }; }; /* 8ch hdmi interface */ dai-link-7 { sound-dai = <&tdmif_b>; dai-format = "i2s"; dai-tdm-slot-tx-mask-0 = <1 1>; dai-tdm-slot-tx-mask-1 = <1 1>; dai-tdm-slot-tx-mask-2 = <1 1>; dai-tdm-slot-tx-mask-3 = <1 1>; mclk-fs = <256>; codec { sound-dai = <&tohdmitx TOHDMITX_I2S_IN_B>; }; }; /* internal digital mics */ dai-link-8 { sound-dai = <&pdm>; codec { sound-dai = <&dmics>; }; }; /* hdmi glue */ dai-link-9 { sound-dai = <&tohdmitx TOHDMITX_I2S_OUT>; codec { sound-dai = <&hdmi_tx>; }; }; }; wifi32k: wifi32k { compatible = "pwm-clock"; #clock-cells = <0>; clock-frequency = <32768>; pwms = <&pwm_ef 0 30518 0>; /* PWM_E at 32.768KHz */ }; }; &arb { status = "okay"; }; &cec_AO { pinctrl-0 = <&cec_ao_a_h_pins>; pinctrl-names = "default"; status = "disabled"; hdmi-phandle = <&hdmi_tx>; }; &cecb_AO { pinctrl-0 = <&cec_ao_b_h_pins>; pinctrl-names = "default"; status = "okay"; hdmi-phandle = <&hdmi_tx>; }; &clkc_audio { status = "okay"; }; &cpu0 { cpu-supply = <&vddcpu>; operating-points-v2 = <&cpu_opp_table>; clocks = <&clkc CLKID_CPU_CLK>; clock-latency = <50000>; }; &cpu1 { cpu-supply = <&vddcpu>; operating-points-v2 = <&cpu_opp_table>; clocks = <&clkc CLKID_CPU1_CLK>; clock-latency = <50000>; }; &cpu2 { cpu-supply = <&vddcpu>; operating-points-v2 = <&cpu_opp_table>; clocks = <&clkc CLKID_CPU2_CLK>; clock-latency = <50000>; }; &cpu3 { cpu-supply = <&vddcpu>; operating-points-v2 = <&cpu_opp_table>; clocks = <&clkc CLKID_CPU3_CLK>; clock-latency = <50000>; }; &ethmac { status = "okay"; phy-handle = <&internal_ephy>; phy-mode = "rmii"; }; &frddr_a { status = "okay"; }; &frddr_b { status = "okay"; }; &frddr_c { status = "okay"; }; &hdmi_tx { status = "okay"; pinctrl-0 = <&hdmitx_hpd_pins>, <&hdmitx_ddc_pins>; pinctrl-names = "default"; }; &hdmi_tx_tmds_port { hdmi_tx_tmds_out: endpoint { remote-endpoint = <&hdmi_connector_in>; }; }; &i2c3 { status = "okay"; pinctrl-0 = <&i2c3_sda_a_pins>, <&i2c3_sck_a_pins>; pinctrl-names = "default"; }; &ir { status = "okay"; pinctrl-0 = <&remote_input_ao_pins>; pinctrl-names = "default"; }; &pdm { pinctrl-0 = <&pdm_din0_z_pins>, <&pdm_dclk_z_pins>; pinctrl-names = "default"; status = "okay"; }; &pwm_AO_ab { status = "okay"; pinctrl-0 = <&pwm_ao_a_pins>; pinctrl-names = "default"; clocks = <&xtal>; clock-names = "clkin0"; }; &pwm_AO_cd { pinctrl-0 = <&pwm_ao_d_e_pins>; pinctrl-names = "default"; clocks = <&xtal>; clock-names = "clkin1"; status = "okay"; }; &pwm_ef { status = "okay"; pinctrl-0 = <&pwm_e_pins>; pinctrl-names = "default"; clocks = <&xtal>; clock-names = "clkin0"; }; &saradc { status = "okay"; vref-supply = <&vddio_ao1v8>; }; /* SDIO */ &sd_emmc_a { status = "okay"; pinctrl-0 = <&sdio_pins>; pinctrl-1 = <&sdio_clk_gate_pins>; pinctrl-names = "default", "clk-gate"; #address-cells = <1>; #size-cells = <0>; bus-width = <4>; cap-sd-highspeed; sd-uhs-sdr50; max-frequency = <100000000>; non-removable; disable-wp; /* WiFi firmware requires power to be kept while in suspend */ keep-power-in-suspend; mmc-pwrseq = <&sdio_pwrseq>; vmmc-supply = <&vddao_3v3>; vqmmc-supply = <&vddio_ao1v8>; brcmf: wifi@1 { reg = <1>; compatible = "brcm,bcm4329-fmac"; }; }; /* SD card */ &sd_emmc_b { status = "okay"; pinctrl-0 = <&sdcard_c_pins>; pinctrl-1 = <&sdcard_clk_gate_c_pins>; pinctrl-names = "default", "clk-gate"; bus-width = <4>; cap-sd-highspeed; max-frequency = <50000000>; disable-wp; cd-gpios = <&gpio GPIOC_6 GPIO_ACTIVE_LOW>; vmmc-supply = <&vddao_3v3>; vqmmc-supply = <&vddao_3v3>; }; /* eMMC */ &sd_emmc_c { status = "okay"; pinctrl-0 = <&emmc_ctrl_pins>, <&emmc_data_8b_pins>, <&emmc_ds_pins>; pinctrl-1 = <&emmc_clk_gate_pins>; pinctrl-names = "default", "clk-gate"; bus-width = <8>; cap-mmc-highspeed; mmc-ddr-1_8v; mmc-hs200-1_8v; max-frequency = <200000000>; non-removable; disable-wp; mmc-pwrseq = <&emmc_pwrseq>; vmmc-supply = <&vddao_3v3>; vqmmc-supply = <&emmc_1v8>; }; &tdmif_a { pinctrl-0 = <&tdm_a_dout0_pins>, <&tdm_a_fs_pins>, <&tdm_a_sclk_pins>; pinctrl-names = "default"; status = "okay"; assigned-clocks = <&clkc_audio AUD_CLKID_TDM_SCLK_PAD0>, <&clkc_audio AUD_CLKID_TDM_LRCLK_PAD0>; assigned-clock-parents = <&clkc_audio AUD_CLKID_MST_A_SCLK>, <&clkc_audio AUD_CLKID_MST_A_LRCLK>; assigned-clock-rates = <0>, <0>; }; &tdmif_b { status = "okay"; }; &tdmin_a { status = "okay"; }; &tdmin_b { status = "okay"; }; &tdmout_a { status = "okay"; }; &tdmout_b { status = "okay"; }; &toddr_a { status = "okay"; }; &toddr_b { status = "okay"; }; &toddr_c { status = "okay"; }; &tohdmitx { status = "okay"; }; &uart_A { status = "okay"; pinctrl-0 = <&uart_a_pins>, <&uart_a_cts_rts_pins>; pinctrl-names = "default"; uart-has-rtscts; bluetooth { compatible = "brcm,bcm43438-bt"; interrupt-parent = <&gpio_intc>; interrupts = <IRQID_GPIOX_18 IRQ_TYPE_LEVEL_HIGH>; interrupt-names = "host-wakeup"; shutdown-gpios = <&gpio GPIOX_17 GPIO_ACTIVE_HIGH>; max-speed = <2000000>; clocks = <&wifi32k>; clock-names = "lpo"; vbat-supply = <&vddao_3v3>; vddio-supply = <&vddio_ao1v8>; }; }; /* Exposed via the on-board USB to Serial FT232RL IC */ &uart_AO { status = "okay"; pinctrl-0 = <&uart_ao_a_pins>; pinctrl-names = "default"; }; &usb { status = "okay"; dr_mode = "otg"; };
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016 Maxime Ripard. All rights reserved. */ #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include "ccu_common.h" #include "ccu_reset.h" #include "ccu_div.h" #include "ccu_gate.h" #include "ccu_mp.h" #include "ccu_mult.h" #include "ccu_nk.h" #include "ccu_nkm.h" #include "ccu_nkmp.h" #include "ccu_nm.h" #include "ccu_phase.h" #include "ccu-sun50i-a64.h" static struct ccu_nkmp pll_cpux_clk = { .enable = BIT(31), .lock = BIT(28), .n = _SUNXI_CCU_MULT(8, 5), .k = _SUNXI_CCU_MULT(4, 2), .m = _SUNXI_CCU_DIV(0, 2), .p = _SUNXI_CCU_DIV_MAX(16, 2, 4), .common = { .reg = 0x000, .hw.init = CLK_HW_INIT("pll-cpux", "osc24M", &ccu_nkmp_ops, CLK_SET_RATE_UNGATE), }, }; /* * The Audio PLL is supposed to have 4 outputs: 3 fixed factors from * the base (2x, 4x and 8x), and one variable divider (the one true * pll audio). * * With sigma-delta modulation for fractional-N on the audio PLL, * we have to use specific dividers. This means the variable divider * can no longer be used, as the audio codec requests the exact clock * rates we support through this mechanism. So we now hard code the * variable divider to 1. This means the clock rates will no longer * match the clock names. */ #define SUN50I_A64_PLL_AUDIO_REG 0x008 static struct ccu_sdm_setting pll_audio_sdm_table[] = { { .rate = 22579200, .pattern = 0xc0010d84, .m = 8, .n = 7 }, { .rate = 24576000, .pattern = 0xc000ac02, .m = 14, .n = 14 }, }; static SUNXI_CCU_NM_WITH_SDM_GATE_LOCK(pll_audio_base_clk, "pll-audio-base", "osc24M", 0x008, 8, 7, /* N */ 0, 5, /* M */ pll_audio_sdm_table, BIT(24), 0x284, BIT(31), BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); static SUNXI_CCU_NM_WITH_FRAC_GATE_LOCK_MIN_MAX_CLOSEST(pll_video0_clk, "pll-video0", "osc24M", 0x010, 192000000, /* Minimum rate */ 1008000000, /* Maximum rate */ 8, 7, /* N */ 0, 4, /* M */ BIT(24), /* frac enable */ BIT(25), /* frac select */ 270000000, /* frac rate 0 */ 297000000, /* frac rate 1 */ BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); static SUNXI_CCU_NM_WITH_FRAC_GATE_LOCK(pll_ve_clk, "pll-ve", "osc24M", 0x018, 8, 7, /* N */ 0, 4, /* M */ BIT(24), /* frac enable */ BIT(25), /* frac select */ 270000000, /* frac rate 0 */ 297000000, /* frac rate 1 */ BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); static SUNXI_CCU_NKM_WITH_GATE_LOCK(pll_ddr0_clk, "pll-ddr0", "osc24M", 0x020, 8, 5, /* N */ 4, 2, /* K */ 0, 2, /* M */ BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); static struct ccu_nk pll_periph0_clk = { .enable = BIT(31), .lock = BIT(28), .n = _SUNXI_CCU_MULT(8, 5), .k = _SUNXI_CCU_MULT_MIN(4, 2, 2), .fixed_post_div = 2, .common = { .reg = 0x028, .features = CCU_FEATURE_FIXED_POSTDIV, .hw.init = CLK_HW_INIT("pll-periph0", "osc24M", &ccu_nk_ops, CLK_SET_RATE_UNGATE), }, }; static struct ccu_nk pll_periph1_clk = { .enable = BIT(31), .lock = BIT(28), .n = _SUNXI_CCU_MULT(8, 5), .k = _SUNXI_CCU_MULT_MIN(4, 2, 2), .fixed_post_div = 2, .common = { .reg = 0x02c, .features = CCU_FEATURE_FIXED_POSTDIV, .hw.init = CLK_HW_INIT("pll-periph1", "osc24M", &ccu_nk_ops, CLK_SET_RATE_UNGATE), }, }; static SUNXI_CCU_NM_WITH_FRAC_GATE_LOCK_MIN_MAX(pll_video1_clk, "pll-video1", "osc24M", 0x030, 192000000, /* Minimum rate */ 1008000000, /* Maximum rate */ 8, 7, /* N */ 0, 4, /* M */ BIT(24), /* frac enable */ BIT(25), /* frac select */ 270000000, /* frac rate 0 */ 297000000, /* frac rate 1 */ BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); static SUNXI_CCU_NM_WITH_FRAC_GATE_LOCK(pll_gpu_clk, "pll-gpu", "osc24M", 0x038, 8, 7, /* N */ 0, 4, /* M */ BIT(24), /* frac enable */ BIT(25), /* frac select */ 270000000, /* frac rate 0 */ 297000000, /* frac rate 1 */ BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); /* * The output function can be changed to something more complex that * we do not handle yet. * * Hardcode the mode so that we don't fall in that case. */ #define SUN50I_A64_PLL_MIPI_REG 0x040 static struct ccu_nkm pll_mipi_clk = { /* * The bit 23 and 22 are called "LDO{1,2}_EN" on the SoC's * user manual, and by experiments the PLL doesn't work without * these bits toggled. */ .enable = BIT(31) | BIT(23) | BIT(22), .lock = BIT(28), .n = _SUNXI_CCU_MULT(8, 4), .k = _SUNXI_CCU_MULT_MIN(4, 2, 2), .m = _SUNXI_CCU_DIV(0, 4), .max_m_n_ratio = 3, .min_parent_m_ratio = 24000000, .common = { .reg = 0x040, .hw.init = CLK_HW_INIT("pll-mipi", "pll-video0", &ccu_nkm_ops, CLK_SET_RATE_UNGATE | CLK_SET_RATE_PARENT), .features = CCU_FEATURE_CLOSEST_RATE, .min_rate = 500000000, .max_rate = 1400000000, }, }; static SUNXI_CCU_NM_WITH_FRAC_GATE_LOCK(pll_hsic_clk, "pll-hsic", "osc24M", 0x044, 8, 7, /* N */ 0, 4, /* M */ BIT(24), /* frac enable */ BIT(25), /* frac select */ 270000000, /* frac rate 0 */ 297000000, /* frac rate 1 */ BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); static SUNXI_CCU_NM_WITH_FRAC_GATE_LOCK(pll_de_clk, "pll-de", "osc24M", 0x048, 8, 7, /* N */ 0, 4, /* M */ BIT(24), /* frac enable */ BIT(25), /* frac select */ 270000000, /* frac rate 0 */ 297000000, /* frac rate 1 */ BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); static SUNXI_CCU_NM_WITH_GATE_LOCK(pll_ddr1_clk, "pll-ddr1", "osc24M", 0x04c, 8, 7, /* N */ 0, 2, /* M */ BIT(31), /* gate */ BIT(28), /* lock */ CLK_SET_RATE_UNGATE); static const char * const cpux_parents[] = { "osc32k", "osc24M", "pll-cpux", "pll-cpux" }; static SUNXI_CCU_MUX(cpux_clk, "cpux", cpux_parents, 0x050, 16, 2, CLK_SET_RATE_PARENT | CLK_IS_CRITICAL); static SUNXI_CCU_M(axi_clk, "axi", "cpux", 0x050, 0, 2, 0); static const char * const ahb1_parents[] = { "osc32k", "osc24M", "axi", "pll-periph0" }; static const struct ccu_mux_var_prediv ahb1_predivs[] = { { .index = 3, .shift = 6, .width = 2 }, }; static struct ccu_div ahb1_clk = { .div = _SUNXI_CCU_DIV_FLAGS(4, 2, CLK_DIVIDER_POWER_OF_TWO), .mux = { .shift = 12, .width = 2, .var_predivs = ahb1_predivs, .n_var_predivs = ARRAY_SIZE(ahb1_predivs), }, .common = { .reg = 0x054, .features = CCU_FEATURE_VARIABLE_PREDIV, .hw.init = CLK_HW_INIT_PARENTS("ahb1", ahb1_parents, &ccu_div_ops, 0), }, }; static struct clk_div_table apb1_div_table[] = { { .val = 0, .div = 2 }, { .val = 1, .div = 2 }, { .val = 2, .div = 4 }, { .val = 3, .div = 8 }, { /* Sentinel */ }, }; static SUNXI_CCU_DIV_TABLE(apb1_clk, "apb1", "ahb1", 0x054, 8, 2, apb1_div_table, 0); static const char * const apb2_parents[] = { "osc32k", "osc24M", "pll-periph0-2x", "pll-periph0-2x" }; static SUNXI_CCU_MP_WITH_MUX(apb2_clk, "apb2", apb2_parents, 0x058, 0, 5, /* M */ 16, 2, /* P */ 24, 2, /* mux */ 0); static const char * const ahb2_parents[] = { "ahb1", "pll-periph0" }; static const struct ccu_mux_fixed_prediv ahb2_fixed_predivs[] = { { .index = 1, .div = 2 }, }; static struct ccu_mux ahb2_clk = { .mux = { .shift = 0, .width = 1, .fixed_predivs = ahb2_fixed_predivs, .n_predivs = ARRAY_SIZE(ahb2_fixed_predivs), }, .common = { .reg = 0x05c, .features = CCU_FEATURE_FIXED_PREDIV, .hw.init = CLK_HW_INIT_PARENTS("ahb2", ahb2_parents, &ccu_mux_ops, 0), }, }; static SUNXI_CCU_GATE(bus_mipi_dsi_clk, "bus-mipi-dsi", "ahb1", 0x060, BIT(1), 0); static SUNXI_CCU_GATE(bus_ce_clk, "bus-ce", "ahb1", 0x060, BIT(5), 0); static SUNXI_CCU_GATE(bus_dma_clk, "bus-dma", "ahb1", 0x060, BIT(6), 0); static SUNXI_CCU_GATE(bus_mmc0_clk, "bus-mmc0", "ahb1", 0x060, BIT(8), 0); static SUNXI_CCU_GATE(bus_mmc1_clk, "bus-mmc1", "ahb1", 0x060, BIT(9), 0); static SUNXI_CCU_GATE(bus_mmc2_clk, "bus-mmc2", "ahb1", 0x060, BIT(10), 0); static SUNXI_CCU_GATE(bus_nand_clk, "bus-nand", "ahb1", 0x060, BIT(13), 0); static SUNXI_CCU_GATE(bus_dram_clk, "bus-dram", "ahb1", 0x060, BIT(14), 0); static SUNXI_CCU_GATE(bus_emac_clk, "bus-emac", "ahb2", 0x060, BIT(17), 0); static SUNXI_CCU_GATE(bus_ts_clk, "bus-ts", "ahb1", 0x060, BIT(18), 0); static SUNXI_CCU_GATE(bus_hstimer_clk, "bus-hstimer", "ahb1", 0x060, BIT(19), 0); static SUNXI_CCU_GATE(bus_spi0_clk, "bus-spi0", "ahb1", 0x060, BIT(20), 0); static SUNXI_CCU_GATE(bus_spi1_clk, "bus-spi1", "ahb1", 0x060, BIT(21), 0); static SUNXI_CCU_GATE(bus_otg_clk, "bus-otg", "ahb1", 0x060, BIT(23), 0); static SUNXI_CCU_GATE(bus_ehci0_clk, "bus-ehci0", "ahb1", 0x060, BIT(24), 0); static SUNXI_CCU_GATE(bus_ehci1_clk, "bus-ehci1", "ahb2", 0x060, BIT(25), 0); static SUNXI_CCU_GATE(bus_ohci0_clk, "bus-ohci0", "ahb1", 0x060, BIT(28), 0); static SUNXI_CCU_GATE(bus_ohci1_clk, "bus-ohci1", "ahb2", 0x060, BIT(29), 0); static SUNXI_CCU_GATE(bus_ve_clk, "bus-ve", "ahb1", 0x064, BIT(0), 0); static SUNXI_CCU_GATE(bus_tcon0_clk, "bus-tcon0", "ahb1", 0x064, BIT(3), 0); static SUNXI_CCU_GATE(bus_tcon1_clk, "bus-tcon1", "ahb1", 0x064, BIT(4), 0); static SUNXI_CCU_GATE(bus_deinterlace_clk, "bus-deinterlace", "ahb1", 0x064, BIT(5), 0); static SUNXI_CCU_GATE(bus_csi_clk, "bus-csi", "ahb1", 0x064, BIT(8), 0); static SUNXI_CCU_GATE(bus_hdmi_clk, "bus-hdmi", "ahb1", 0x064, BIT(11), 0); static SUNXI_CCU_GATE(bus_de_clk, "bus-de", "ahb1", 0x064, BIT(12), 0); static SUNXI_CCU_GATE(bus_gpu_clk, "bus-gpu", "ahb1", 0x064, BIT(20), 0); static SUNXI_CCU_GATE(bus_msgbox_clk, "bus-msgbox", "ahb1", 0x064, BIT(21), 0); static SUNXI_CCU_GATE(bus_spinlock_clk, "bus-spinlock", "ahb1", 0x064, BIT(22), 0); static SUNXI_CCU_GATE(bus_codec_clk, "bus-codec", "apb1", 0x068, BIT(0), 0); static SUNXI_CCU_GATE(bus_spdif_clk, "bus-spdif", "apb1", 0x068, BIT(1), 0); static SUNXI_CCU_GATE(bus_pio_clk, "bus-pio", "apb1", 0x068, BIT(5), 0); static SUNXI_CCU_GATE(bus_ths_clk, "bus-ths", "apb1", 0x068, BIT(8), 0); static SUNXI_CCU_GATE(bus_i2s0_clk, "bus-i2s0", "apb1", 0x068, BIT(12), 0); static SUNXI_CCU_GATE(bus_i2s1_clk, "bus-i2s1", "apb1", 0x068, BIT(13), 0); static SUNXI_CCU_GATE(bus_i2s2_clk, "bus-i2s2", "apb1", 0x068, BIT(14), 0); static SUNXI_CCU_GATE(bus_i2c0_clk, "bus-i2c0", "apb2", 0x06c, BIT(0), 0); static SUNXI_CCU_GATE(bus_i2c1_clk, "bus-i2c1", "apb2", 0x06c, BIT(1), 0); static SUNXI_CCU_GATE(bus_i2c2_clk, "bus-i2c2", "apb2", 0x06c, BIT(2), 0); static SUNXI_CCU_GATE(bus_scr_clk, "bus-scr", "apb2", 0x06c, BIT(5), 0); static SUNXI_CCU_GATE(bus_uart0_clk, "bus-uart0", "apb2", 0x06c, BIT(16), 0); static SUNXI_CCU_GATE(bus_uart1_clk, "bus-uart1", "apb2", 0x06c, BIT(17), 0); static SUNXI_CCU_GATE(bus_uart2_clk, "bus-uart2", "apb2", 0x06c, BIT(18), 0); static SUNXI_CCU_GATE(bus_uart3_clk, "bus-uart3", "apb2", 0x06c, BIT(19), 0); static SUNXI_CCU_GATE(bus_uart4_clk, "bus-uart4", "apb2", 0x06c, BIT(20), 0); static SUNXI_CCU_GATE(bus_dbg_clk, "bus-dbg", "ahb1", 0x070, BIT(7), 0); static struct clk_div_table ths_div_table[] = { { .val = 0, .div = 1 }, { .val = 1, .div = 2 }, { .val = 2, .div = 4 }, { .val = 3, .div = 6 }, { /* Sentinel */ }, }; static const char * const ths_parents[] = { "osc24M" }; static struct ccu_div ths_clk = { .enable = BIT(31), .div = _SUNXI_CCU_DIV_TABLE(0, 2, ths_div_table), .mux = _SUNXI_CCU_MUX(24, 2), .common = { .reg = 0x074, .hw.init = CLK_HW_INIT_PARENTS("ths", ths_parents, &ccu_div_ops, 0), }, }; static const char * const mod0_default_parents[] = { "osc24M", "pll-periph0", "pll-periph1" }; static SUNXI_CCU_MP_WITH_MUX_GATE(nand_clk, "nand", mod0_default_parents, 0x080, 0, 4, /* M */ 16, 2, /* P */ 24, 2, /* mux */ BIT(31), /* gate */ 0); /* * MMC clocks are the new timing mode (see A83T & H3) variety, but without * the mode switch. This means they have a 2x post divider between the clock * and the MMC module. This is not documented in the manual, but is taken * into consideration when setting the mmc module clocks in the BSP kernel. * Without it, MMC performance is degraded. * * We model it here to be consistent with other SoCs supporting this mode. * The alternative would be to add the 2x multiplier when setting the MMC * module clock in the MMC driver, just for the A64. */ static const char * const mmc_default_parents[] = { "osc24M", "pll-periph0-2x", "pll-periph1-2x" }; static SUNXI_CCU_MP_WITH_MUX_GATE_POSTDIV(mmc0_clk, "mmc0", mmc_default_parents, 0x088, 0, 4, /* M */ 16, 2, /* P */ 24, 2, /* mux */ BIT(31), /* gate */ 2, /* post-div */ 0); static SUNXI_CCU_MP_WITH_MUX_GATE_POSTDIV(mmc1_clk, "mmc1", mmc_default_parents, 0x08c, 0, 4, /* M */ 16, 2, /* P */ 24, 2, /* mux */ BIT(31), /* gate */ 2, /* post-div */ 0); static SUNXI_CCU_MP_WITH_MUX_GATE_POSTDIV(mmc2_clk, "mmc2", mmc_default_parents, 0x090, 0, 4, /* M */ 16, 2, /* P */ 24, 2, /* mux */ BIT(31), /* gate */ 2, /* post-div */ 0); static const char * const ts_parents[] = { "osc24M", "pll-periph0", }; static SUNXI_CCU_MP_WITH_MUX_GATE(ts_clk, "ts", ts_parents, 0x098, 0, 4, /* M */ 16, 2, /* P */ 24, 4, /* mux */ BIT(31), /* gate */ 0); static SUNXI_CCU_MP_WITH_MUX_GATE(ce_clk, "ce", mmc_default_parents, 0x09c, 0, 4, /* M */ 16, 2, /* P */ 24, 2, /* mux */ BIT(31), /* gate */ 0); static SUNXI_CCU_MP_WITH_MUX_GATE(spi0_clk, "spi0", mod0_default_parents, 0x0a0, 0, 4, /* M */ 16, 2, /* P */ 24, 2, /* mux */ BIT(31), /* gate */ 0); static SUNXI_CCU_MP_WITH_MUX_GATE(spi1_clk, "spi1", mod0_default_parents, 0x0a4, 0, 4, /* M */ 16, 2, /* P */ 24, 2, /* mux */ BIT(31), /* gate */ 0); static const char * const i2s_parents[] = { "pll-audio-8x", "pll-audio-4x", "pll-audio-2x", "pll-audio" }; static SUNXI_CCU_MUX_WITH_GATE(i2s0_clk, "i2s0", i2s_parents, 0x0b0, 16, 2, BIT(31), CLK_SET_RATE_PARENT); static SUNXI_CCU_MUX_WITH_GATE(i2s1_clk, "i2s1", i2s_parents, 0x0b4, 16, 2, BIT(31), CLK_SET_RATE_PARENT); static SUNXI_CCU_MUX_WITH_GATE(i2s2_clk, "i2s2", i2s_parents, 0x0b8, 16, 2, BIT(31), CLK_SET_RATE_PARENT); static SUNXI_CCU_M_WITH_GATE(spdif_clk, "spdif", "pll-audio", 0x0c0, 0, 4, BIT(31), CLK_SET_RATE_PARENT); static SUNXI_CCU_GATE(usb_phy0_clk, "usb-phy0", "osc24M", 0x0cc, BIT(8), 0); static SUNXI_CCU_GATE(usb_phy1_clk, "usb-phy1", "osc24M", 0x0cc, BIT(9), 0); static SUNXI_CCU_GATE(usb_hsic_clk, "usb-hsic", "pll-hsic", 0x0cc, BIT(10), 0); static SUNXI_CCU_GATE(usb_hsic_12m_clk, "usb-hsic-12M", "osc12M", 0x0cc, BIT(11), 0); static SUNXI_CCU_GATE(usb_ohci0_clk, "usb-ohci0", "osc12M", 0x0cc, BIT(16), 0); static SUNXI_CCU_GATE(usb_ohci1_clk, "usb-ohci1", "usb-ohci0", 0x0cc, BIT(17), 0); static const char * const dram_parents[] = { "pll-ddr0", "pll-ddr1" }; static SUNXI_CCU_M_WITH_MUX(dram_clk, "dram", dram_parents, 0x0f4, 0, 4, 20, 2, CLK_IS_CRITICAL); static SUNXI_CCU_GATE(dram_ve_clk, "dram-ve", "dram", 0x100, BIT(0), 0); static SUNXI_CCU_GATE(dram_csi_clk, "dram-csi", "dram", 0x100, BIT(1), 0); static SUNXI_CCU_GATE(dram_deinterlace_clk, "dram-deinterlace", "dram", 0x100, BIT(2), 0); static SUNXI_CCU_GATE(dram_ts_clk, "dram-ts", "dram", 0x100, BIT(3), 0); static const char * const de_parents[] = { "pll-periph0-2x", "pll-de" }; static SUNXI_CCU_M_WITH_MUX_GATE(de_clk, "de", de_parents, 0x104, 0, 4, 24, 3, BIT(31), CLK_SET_RATE_PARENT); /* * DSI output seems to work only when PLL_MIPI selected. Set it and prevent * the mux from reparenting. */ #define SUN50I_A64_TCON0_CLK_REG 0x118 static const char * const tcon0_parents[] = { "pll-mipi", "pll-video0-2x" }; static const u8 tcon0_table[] = { 0, 2, }; static SUNXI_CCU_MUX_TABLE_WITH_GATE_CLOSEST(tcon0_clk, "tcon0", tcon0_parents, tcon0_table, 0x118, 24, 3, BIT(31), CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT); static const char * const tcon1_parents[] = { "pll-video0", "pll-video1" }; static const u8 tcon1_table[] = { 0, 2, }; static SUNXI_CCU_M_WITH_MUX_TABLE_GATE_CLOSEST(tcon1_clk, "tcon1", tcon1_parents, tcon1_table, 0x11c, 0, 4, /* M */ 24, 2, /* mux */ BIT(31), /* gate */ CLK_SET_RATE_PARENT); static const char * const deinterlace_parents[] = { "pll-periph0", "pll-periph1" }; static SUNXI_CCU_M_WITH_MUX_GATE(deinterlace_clk, "deinterlace", deinterlace_parents, 0x124, 0, 4, 24, 3, BIT(31), 0); static SUNXI_CCU_GATE(csi_misc_clk, "csi-misc", "osc24M", 0x130, BIT(31), 0); static const char * const csi_sclk_parents[] = { "pll-periph0", "pll-periph1" }; static SUNXI_CCU_M_WITH_MUX_GATE(csi_sclk_clk, "csi-sclk", csi_sclk_parents, 0x134, 16, 4, 24, 3, BIT(31), 0); static const char * const csi_mclk_parents[] = { "osc24M", "pll-video1", "pll-periph1" }; static SUNXI_CCU_M_WITH_MUX_GATE(csi_mclk_clk, "csi-mclk", csi_mclk_parents, 0x134, 0, 5, 8, 3, BIT(15), 0); static SUNXI_CCU_M_WITH_GATE(ve_clk, "ve", "pll-ve", 0x13c, 16, 3, BIT(31), CLK_SET_RATE_PARENT); static SUNXI_CCU_GATE(ac_dig_clk, "ac-dig", "pll-audio", 0x140, BIT(31), CLK_SET_RATE_PARENT); static SUNXI_CCU_GATE(ac_dig_4x_clk, "ac-dig-4x", "pll-audio-4x", 0x140, BIT(30), CLK_SET_RATE_PARENT); static SUNXI_CCU_GATE(avs_clk, "avs", "osc24M", 0x144, BIT(31), 0); static const char * const hdmi_parents[] = { "pll-video0", "pll-video1" }; static SUNXI_CCU_M_WITH_MUX_GATE_CLOSEST(hdmi_clk, "hdmi", hdmi_parents, 0x150, 0, 4, 24, 2, BIT(31), CLK_SET_RATE_PARENT); static SUNXI_CCU_GATE(hdmi_ddc_clk, "hdmi-ddc", "osc24M", 0x154, BIT(31), 0); static const char * const mbus_parents[] = { "osc24M", "pll-periph0-2x", "pll-ddr0", "pll-ddr1" }; static SUNXI_CCU_M_WITH_MUX_GATE(mbus_clk, "mbus", mbus_parents, 0x15c, 0, 3, 24, 2, BIT(31), CLK_IS_CRITICAL); static const char * const dsi_dphy_parents[] = { "pll-video0", "pll-periph0" }; static const u8 dsi_dphy_table[] = { 0, 2, }; static SUNXI_CCU_M_WITH_MUX_TABLE_GATE_CLOSEST(dsi_dphy_clk, "dsi-dphy", dsi_dphy_parents, dsi_dphy_table, 0x168, 0, 4, 8, 2, BIT(15), CLK_SET_RATE_PARENT); static SUNXI_CCU_M_WITH_GATE(gpu_clk, "gpu", "pll-gpu", 0x1a0, 0, 3, BIT(31), CLK_SET_RATE_PARENT); /* Fixed Factor clocks */ static CLK_FIXED_FACTOR_FW_NAME(osc12M_clk, "osc12M", "hosc", 2, 1, 0); static const struct clk_hw *clk_parent_pll_audio[] = { &pll_audio_base_clk.common.hw }; /* We hardcode the divider to 1 for now */ static CLK_FIXED_FACTOR_HWS(pll_audio_clk, "pll-audio", clk_parent_pll_audio, 1, 1, CLK_SET_RATE_PARENT); static CLK_FIXED_FACTOR_HWS(pll_audio_2x_clk, "pll-audio-2x", clk_parent_pll_audio, 2, 1, CLK_SET_RATE_PARENT); static CLK_FIXED_FACTOR_HWS(pll_audio_4x_clk, "pll-audio-4x", clk_parent_pll_audio, 1, 1, CLK_SET_RATE_PARENT); static CLK_FIXED_FACTOR_HWS(pll_audio_8x_clk, "pll-audio-8x", clk_parent_pll_audio, 1, 2, CLK_SET_RATE_PARENT); static CLK_FIXED_FACTOR_HW(pll_periph0_2x_clk, "pll-periph0-2x", &pll_periph0_clk.common.hw, 1, 2, 0); static CLK_FIXED_FACTOR_HW(pll_periph1_2x_clk, "pll-periph1-2x", &pll_periph1_clk.common.hw, 1, 2, 0); static CLK_FIXED_FACTOR_HW(pll_video0_2x_clk, "pll-video0-2x", &pll_video0_clk.common.hw, 1, 2, CLK_SET_RATE_PARENT); static struct ccu_common *sun50i_a64_ccu_clks[] = { &pll_cpux_clk.common, &pll_audio_base_clk.common, &pll_video0_clk.common, &pll_ve_clk.common, &pll_ddr0_clk.common, &pll_periph0_clk.common, &pll_periph1_clk.common, &pll_video1_clk.common, &pll_gpu_clk.common, &pll_mipi_clk.common, &pll_hsic_clk.common, &pll_de_clk.common, &pll_ddr1_clk.common, &cpux_clk.common, &axi_clk.common, &ahb1_clk.common, &apb1_clk.common, &apb2_clk.common, &ahb2_clk.common, &bus_mipi_dsi_clk.common, &bus_ce_clk.common, &bus_dma_clk.common, &bus_mmc0_clk.common, &bus_mmc1_clk.common, &bus_mmc2_clk.common, &bus_nand_clk.common, &bus_dram_clk.common, &bus_emac_clk.common, &bus_ts_clk.common, &bus_hstimer_clk.common, &bus_spi0_clk.common, &bus_spi1_clk.common, &bus_otg_clk.common, &bus_ehci0_clk.common, &bus_ehci1_clk.common, &bus_ohci0_clk.common, &bus_ohci1_clk.common, &bus_ve_clk.common, &bus_tcon0_clk.common, &bus_tcon1_clk.common, &bus_deinterlace_clk.common, &bus_csi_clk.common, &bus_hdmi_clk.common, &bus_de_clk.common, &bus_gpu_clk.common, &bus_msgbox_clk.common, &bus_spinlock_clk.common, &bus_codec_clk.common, &bus_spdif_clk.common, &bus_pio_clk.common, &bus_ths_clk.common, &bus_i2s0_clk.common, &bus_i2s1_clk.common, &bus_i2s2_clk.common, &bus_i2c0_clk.common, &bus_i2c1_clk.common, &bus_i2c2_clk.common, &bus_scr_clk.common, &bus_uart0_clk.common, &bus_uart1_clk.common, &bus_uart2_clk.common, &bus_uart3_clk.common, &bus_uart4_clk.common, &bus_dbg_clk.common, &ths_clk.common, &nand_clk.common, &mmc0_clk.common, &mmc1_clk.common, &mmc2_clk.common, &ts_clk.common, &ce_clk.common, &spi0_clk.common, &spi1_clk.common, &i2s0_clk.common, &i2s1_clk.common, &i2s2_clk.common, &spdif_clk.common, &usb_phy0_clk.common, &usb_phy1_clk.common, &usb_hsic_clk.common, &usb_hsic_12m_clk.common, &usb_ohci0_clk.common, &usb_ohci1_clk.common, &dram_clk.common, &dram_ve_clk.common, &dram_csi_clk.common, &dram_deinterlace_clk.common, &dram_ts_clk.common, &de_clk.common, &tcon0_clk.common, &tcon1_clk.common, &deinterlace_clk.common, &csi_misc_clk.common, &csi_sclk_clk.common, &csi_mclk_clk.common, &ve_clk.common, &ac_dig_clk.common, &ac_dig_4x_clk.common, &avs_clk.common, &hdmi_clk.common, &hdmi_ddc_clk.common, &mbus_clk.common, &dsi_dphy_clk.common, &gpu_clk.common, }; static struct clk_hw_onecell_data sun50i_a64_hw_clks = { .hws = { [CLK_OSC_12M] = &osc12M_clk.hw, [CLK_PLL_CPUX] = &pll_cpux_clk.common.hw, [CLK_PLL_AUDIO_BASE] = &pll_audio_base_clk.common.hw, [CLK_PLL_AUDIO] = &pll_audio_clk.hw, [CLK_PLL_AUDIO_2X] = &pll_audio_2x_clk.hw, [CLK_PLL_AUDIO_4X] = &pll_audio_4x_clk.hw, [CLK_PLL_AUDIO_8X] = &pll_audio_8x_clk.hw, [CLK_PLL_VIDEO0] = &pll_video0_clk.common.hw, [CLK_PLL_VIDEO0_2X] = &pll_video0_2x_clk.hw, [CLK_PLL_VE] = &pll_ve_clk.common.hw, [CLK_PLL_DDR0] = &pll_ddr0_clk.common.hw, [CLK_PLL_PERIPH0] = &pll_periph0_clk.common.hw, [CLK_PLL_PERIPH0_2X] = &pll_periph0_2x_clk.hw, [CLK_PLL_PERIPH1] = &pll_periph1_clk.common.hw, [CLK_PLL_PERIPH1_2X] = &pll_periph1_2x_clk.hw, [CLK_PLL_VIDEO1] = &pll_video1_clk.common.hw, [CLK_PLL_GPU] = &pll_gpu_clk.common.hw, [CLK_PLL_MIPI] = &pll_mipi_clk.common.hw, [CLK_PLL_HSIC] = &pll_hsic_clk.common.hw, [CLK_PLL_DE] = &pll_de_clk.common.hw, [CLK_PLL_DDR1] = &pll_ddr1_clk.common.hw, [CLK_CPUX] = &cpux_clk.common.hw, [CLK_AXI] = &axi_clk.common.hw, [CLK_AHB1] = &ahb1_clk.common.hw, [CLK_APB1] = &apb1_clk.common.hw, [CLK_APB2] = &apb2_clk.common.hw, [CLK_AHB2] = &ahb2_clk.common.hw, [CLK_BUS_MIPI_DSI] = &bus_mipi_dsi_clk.common.hw, [CLK_BUS_CE] = &bus_ce_clk.common.hw, [CLK_BUS_DMA] = &bus_dma_clk.common.hw, [CLK_BUS_MMC0] = &bus_mmc0_clk.common.hw, [CLK_BUS_MMC1] = &bus_mmc1_clk.common.hw, [CLK_BUS_MMC2] = &bus_mmc2_clk.common.hw, [CLK_BUS_NAND] = &bus_nand_clk.common.hw, [CLK_BUS_DRAM] = &bus_dram_clk.common.hw, [CLK_BUS_EMAC] = &bus_emac_clk.common.hw, [CLK_BUS_TS] = &bus_ts_clk.common.hw, [CLK_BUS_HSTIMER] = &bus_hstimer_clk.common.hw, [CLK_BUS_SPI0] = &bus_spi0_clk.common.hw, [CLK_BUS_SPI1] = &bus_spi1_clk.common.hw, [CLK_BUS_OTG] = &bus_otg_clk.common.hw, [CLK_BUS_EHCI0] = &bus_ehci0_clk.common.hw, [CLK_BUS_EHCI1] = &bus_ehci1_clk.common.hw, [CLK_BUS_OHCI0] = &bus_ohci0_clk.common.hw, [CLK_BUS_OHCI1] = &bus_ohci1_clk.common.hw, [CLK_BUS_VE] = &bus_ve_clk.common.hw, [CLK_BUS_TCON0] = &bus_tcon0_clk.common.hw, [CLK_BUS_TCON1] = &bus_tcon1_clk.common.hw, [CLK_BUS_DEINTERLACE] = &bus_deinterlace_clk.common.hw, [CLK_BUS_CSI] = &bus_csi_clk.common.hw, [CLK_BUS_HDMI] = &bus_hdmi_clk.common.hw, [CLK_BUS_DE] = &bus_de_clk.common.hw, [CLK_BUS_GPU] = &bus_gpu_clk.common.hw, [CLK_BUS_MSGBOX] = &bus_msgbox_clk.common.hw, [CLK_BUS_SPINLOCK] = &bus_spinlock_clk.common.hw, [CLK_BUS_CODEC] = &bus_codec_clk.common.hw, [CLK_BUS_SPDIF] = &bus_spdif_clk.common.hw, [CLK_BUS_PIO] = &bus_pio_clk.common.hw, [CLK_BUS_THS] = &bus_ths_clk.common.hw, [CLK_BUS_I2S0] = &bus_i2s0_clk.common.hw, [CLK_BUS_I2S1] = &bus_i2s1_clk.common.hw, [CLK_BUS_I2S2] = &bus_i2s2_clk.common.hw, [CLK_BUS_I2C0] = &bus_i2c0_clk.common.hw, [CLK_BUS_I2C1] = &bus_i2c1_clk.common.hw, [CLK_BUS_I2C2] = &bus_i2c2_clk.common.hw, [CLK_BUS_UART0] = &bus_uart0_clk.common.hw, [CLK_BUS_UART1] = &bus_uart1_clk.common.hw, [CLK_BUS_UART2] = &bus_uart2_clk.common.hw, [CLK_BUS_UART3] = &bus_uart3_clk.common.hw, [CLK_BUS_UART4] = &bus_uart4_clk.common.hw, [CLK_BUS_SCR] = &bus_scr_clk.common.hw, [CLK_BUS_DBG] = &bus_dbg_clk.common.hw, [CLK_THS] = &ths_clk.common.hw, [CLK_NAND] = &nand_clk.common.hw, [CLK_MMC0] = &mmc0_clk.common.hw, [CLK_MMC1] = &mmc1_clk.common.hw, [CLK_MMC2] = &mmc2_clk.common.hw, [CLK_TS] = &ts_clk.common.hw, [CLK_CE] = &ce_clk.common.hw, [CLK_SPI0] = &spi0_clk.common.hw, [CLK_SPI1] = &spi1_clk.common.hw, [CLK_I2S0] = &i2s0_clk.common.hw, [CLK_I2S1] = &i2s1_clk.common.hw, [CLK_I2S2] = &i2s2_clk.common.hw, [CLK_SPDIF] = &spdif_clk.common.hw, [CLK_USB_PHY0] = &usb_phy0_clk.common.hw, [CLK_USB_PHY1] = &usb_phy1_clk.common.hw, [CLK_USB_HSIC] = &usb_hsic_clk.common.hw, [CLK_USB_HSIC_12M] = &usb_hsic_12m_clk.common.hw, [CLK_USB_OHCI0] = &usb_ohci0_clk.common.hw, [CLK_USB_OHCI1] = &usb_ohci1_clk.common.hw, [CLK_DRAM] = &dram_clk.common.hw, [CLK_DRAM_VE] = &dram_ve_clk.common.hw, [CLK_DRAM_CSI] = &dram_csi_clk.common.hw, [CLK_DRAM_DEINTERLACE] = &dram_deinterlace_clk.common.hw, [CLK_DRAM_TS] = &dram_ts_clk.common.hw, [CLK_DE] = &de_clk.common.hw, [CLK_TCON0] = &tcon0_clk.common.hw, [CLK_TCON1] = &tcon1_clk.common.hw, [CLK_DEINTERLACE] = &deinterlace_clk.common.hw, [CLK_CSI_MISC] = &csi_misc_clk.common.hw, [CLK_CSI_SCLK] = &csi_sclk_clk.common.hw, [CLK_CSI_MCLK] = &csi_mclk_clk.common.hw, [CLK_VE] = &ve_clk.common.hw, [CLK_AC_DIG] = &ac_dig_clk.common.hw, [CLK_AC_DIG_4X] = &ac_dig_4x_clk.common.hw, [CLK_AVS] = &avs_clk.common.hw, [CLK_HDMI] = &hdmi_clk.common.hw, [CLK_HDMI_DDC] = &hdmi_ddc_clk.common.hw, [CLK_MBUS] = &mbus_clk.common.hw, [CLK_DSI_DPHY] = &dsi_dphy_clk.common.hw, [CLK_GPU] = &gpu_clk.common.hw, }, .num = CLK_NUMBER, }; static const struct ccu_reset_map sun50i_a64_ccu_resets[] = { [RST_USB_PHY0] = { 0x0cc, BIT(0) }, [RST_USB_PHY1] = { 0x0cc, BIT(1) }, [RST_USB_HSIC] = { 0x0cc, BIT(2) }, [RST_DRAM] = { 0x0f4, BIT(31) }, [RST_MBUS] = { 0x0fc, BIT(31) }, [RST_BUS_MIPI_DSI] = { 0x2c0, BIT(1) }, [RST_BUS_CE] = { 0x2c0, BIT(5) }, [RST_BUS_DMA] = { 0x2c0, BIT(6) }, [RST_BUS_MMC0] = { 0x2c0, BIT(8) }, [RST_BUS_MMC1] = { 0x2c0, BIT(9) }, [RST_BUS_MMC2] = { 0x2c0, BIT(10) }, [RST_BUS_NAND] = { 0x2c0, BIT(13) }, [RST_BUS_DRAM] = { 0x2c0, BIT(14) }, [RST_BUS_EMAC] = { 0x2c0, BIT(17) }, [RST_BUS_TS] = { 0x2c0, BIT(18) }, [RST_BUS_HSTIMER] = { 0x2c0, BIT(19) }, [RST_BUS_SPI0] = { 0x2c0, BIT(20) }, [RST_BUS_SPI1] = { 0x2c0, BIT(21) }, [RST_BUS_OTG] = { 0x2c0, BIT(23) }, [RST_BUS_EHCI0] = { 0x2c0, BIT(24) }, [RST_BUS_EHCI1] = { 0x2c0, BIT(25) }, [RST_BUS_OHCI0] = { 0x2c0, BIT(28) }, [RST_BUS_OHCI1] = { 0x2c0, BIT(29) }, [RST_BUS_VE] = { 0x2c4, BIT(0) }, [RST_BUS_TCON0] = { 0x2c4, BIT(3) }, [RST_BUS_TCON1] = { 0x2c4, BIT(4) }, [RST_BUS_DEINTERLACE] = { 0x2c4, BIT(5) }, [RST_BUS_CSI] = { 0x2c4, BIT(8) }, [RST_BUS_HDMI0] = { 0x2c4, BIT(10) }, [RST_BUS_HDMI1] = { 0x2c4, BIT(11) }, [RST_BUS_DE] = { 0x2c4, BIT(12) }, [RST_BUS_GPU] = { 0x2c4, BIT(20) }, [RST_BUS_MSGBOX] = { 0x2c4, BIT(21) }, [RST_BUS_SPINLOCK] = { 0x2c4, BIT(22) }, [RST_BUS_DBG] = { 0x2c4, BIT(31) }, [RST_BUS_LVDS] = { 0x2c8, BIT(0) }, [RST_BUS_CODEC] = { 0x2d0, BIT(0) }, [RST_BUS_SPDIF] = { 0x2d0, BIT(1) }, [RST_BUS_THS] = { 0x2d0, BIT(8) }, [RST_BUS_I2S0] = { 0x2d0, BIT(12) }, [RST_BUS_I2S1] = { 0x2d0, BIT(13) }, [RST_BUS_I2S2] = { 0x2d0, BIT(14) }, [RST_BUS_I2C0] = { 0x2d8, BIT(0) }, [RST_BUS_I2C1] = { 0x2d8, BIT(1) }, [RST_BUS_I2C2] = { 0x2d8, BIT(2) }, [RST_BUS_SCR] = { 0x2d8, BIT(5) }, [RST_BUS_UART0] = { 0x2d8, BIT(16) }, [RST_BUS_UART1] = { 0x2d8, BIT(17) }, [RST_BUS_UART2] = { 0x2d8, BIT(18) }, [RST_BUS_UART3] = { 0x2d8, BIT(19) }, [RST_BUS_UART4] = { 0x2d8, BIT(20) }, }; static const struct sunxi_ccu_desc sun50i_a64_ccu_desc = { .ccu_clks = sun50i_a64_ccu_clks, .num_ccu_clks = ARRAY_SIZE(sun50i_a64_ccu_clks), .hw_clks = &sun50i_a64_hw_clks, .resets = sun50i_a64_ccu_resets, .num_resets = ARRAY_SIZE(sun50i_a64_ccu_resets), }; static struct ccu_pll_nb sun50i_a64_pll_cpu_nb = { .common = &pll_cpux_clk.common, /* copy from pll_cpux_clk */ .enable = BIT(31), .lock = BIT(28), }; static struct ccu_mux_nb sun50i_a64_cpu_nb = { .common = &cpux_clk.common, .cm = &cpux_clk.mux, .delay_us = 1, /* > 8 clock cycles at 24 MHz */ .bypass_index = 1, /* index of 24 MHz oscillator */ }; static int sun50i_a64_ccu_probe(struct platform_device *pdev) { void __iomem *reg; u32 val; int ret; reg = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(reg)) return PTR_ERR(reg); /* Force the PLL-Audio-1x divider to 1 */ val = readl(reg + SUN50I_A64_PLL_AUDIO_REG); val &= ~GENMASK(19, 16); writel(val | (0 << 16), reg + SUN50I_A64_PLL_AUDIO_REG); writel(0x515, reg + SUN50I_A64_PLL_MIPI_REG); /* Set PLL MIPI as parent for TCON0 */ val = readl(reg + SUN50I_A64_TCON0_CLK_REG); val &= ~GENMASK(26, 24); writel(val | (0 << 24), reg + SUN50I_A64_TCON0_CLK_REG); ret = devm_sunxi_ccu_probe(&pdev->dev, reg, &sun50i_a64_ccu_desc); if (ret) return ret; /* Gate then ungate PLL CPU after any rate changes */ ccu_pll_notifier_register(&sun50i_a64_pll_cpu_nb); /* Reparent CPU during PLL CPU rate changes */ ccu_mux_notifier_register(pll_cpux_clk.common.hw.clk, &sun50i_a64_cpu_nb); return 0; } static const struct of_device_id sun50i_a64_ccu_ids[] = { { .compatible = "allwinner,sun50i-a64-ccu" }, { } }; MODULE_DEVICE_TABLE(of, sun50i_a64_ccu_ids); static struct platform_driver sun50i_a64_ccu_driver = { .probe = sun50i_a64_ccu_probe, .driver = { .name = "sun50i-a64-ccu", .suppress_bind_attrs = true, .of_match_table = sun50i_a64_ccu_ids, }, }; module_platform_driver(sun50i_a64_ccu_driver); MODULE_IMPORT_NS("SUNXI_CCU"); MODULE_DESCRIPTION("Support for the Allwinner A64 CCU"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/usb/ch11.h> #define TEST_SE0_NAK_PID 0x0101 #define TEST_J_PID 0x0102 #define TEST_K_PID 0x0103 #define TEST_PACKET_PID 0x0104 #define TEST_HS_HOST_PORT_SUSPEND_RESUME 0x0106 #define TEST_SINGLE_STEP_GET_DEV_DESC 0x0107 #define TEST_SINGLE_STEP_SET_FEATURE 0x0108 extern const struct usb_device_id *usb_device_match_id(struct usb_device *udev, const struct usb_device_id *id); /* * A list of USB hubs which requires to disable the power * to the port before starting the testing procedures. */ static const struct usb_device_id ehset_hub_list[] = { { USB_DEVICE(0x0424, 0x4502) }, { USB_DEVICE(0x0424, 0x4913) }, { USB_DEVICE(0x0451, 0x8027) }, { } }; static int ehset_prepare_port_for_testing(struct usb_device *hub_udev, u16 portnum) { int ret = 0; /* * The USB2.0 spec chapter 11.24.2.13 says that the USB port which is * going under test needs to be put in suspend before sending the * test command. Most hubs don't enforce this precondition, but there * are some hubs which needs to disable the power to the port before * starting the test. */ if (usb_device_match_id(hub_udev, ehset_hub_list)) { ret = usb_control_msg_send(hub_udev, 0, USB_REQ_CLEAR_FEATURE, USB_RT_PORT, USB_PORT_FEAT_ENABLE, portnum, NULL, 0, 1000, GFP_KERNEL); /* * Wait for the port to be disabled. It's an arbitrary value * which worked every time. */ msleep(100); } else { /* * For the hubs which are compliant with the spec, * put the port in SUSPEND. */ ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_SUSPEND, portnum, NULL, 0, 1000, GFP_KERNEL); } return ret; } static int ehset_probe(struct usb_interface *intf, const struct usb_device_id *id) { int ret = -EINVAL; struct usb_device *dev = interface_to_usbdev(intf); struct usb_device *hub_udev = dev->parent; struct usb_device_descriptor buf; u8 portnum = dev->portnum; u16 test_pid = le16_to_cpu(dev->descriptor.idProduct); switch (test_pid) { case TEST_SE0_NAK_PID: ret = ehset_prepare_port_for_testing(hub_udev, portnum); if (ret < 0) break; ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (USB_TEST_SE0_NAK << 8) | portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_J_PID: ret = ehset_prepare_port_for_testing(hub_udev, portnum); if (ret < 0) break; ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (USB_TEST_J << 8) | portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_K_PID: ret = ehset_prepare_port_for_testing(hub_udev, portnum); if (ret < 0) break; ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (USB_TEST_K << 8) | portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_PACKET_PID: ret = ehset_prepare_port_for_testing(hub_udev, portnum); if (ret < 0) break; ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (USB_TEST_PACKET << 8) | portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_HS_HOST_PORT_SUSPEND_RESUME: /* Test: wait for 15secs -> suspend -> 15secs delay -> resume */ msleep(15 * 1000); ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_SUSPEND, portnum, NULL, 0, 1000, GFP_KERNEL); if (ret < 0) break; msleep(15 * 1000); ret = usb_control_msg_send(hub_udev, 0, USB_REQ_CLEAR_FEATURE, USB_RT_PORT, USB_PORT_FEAT_SUSPEND, portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_SINGLE_STEP_GET_DEV_DESC: /* Test: wait for 15secs -> GetDescriptor request */ msleep(15 * 1000); ret = usb_control_msg_recv(dev, 0, USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, USB_DT_DEVICE << 8, 0, &buf, USB_DT_DEVICE_SIZE, USB_CTRL_GET_TIMEOUT, GFP_KERNEL); break; case TEST_SINGLE_STEP_SET_FEATURE: /* * GetDescriptor SETUP request -> 15secs delay -> IN & STATUS * * Note, this test is only supported on root hubs since the * SetPortFeature handling can only be done inside the HCD's * hub_control callback function. */ if (hub_udev != dev->bus->root_hub) { dev_err(&intf->dev, "SINGLE_STEP_SET_FEATURE test only supported on root hub\n"); break; } ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (6 << 8) | portnum, NULL, 0, 60 * 1000, GFP_KERNEL); break; default: dev_err(&intf->dev, "%s: unsupported PID: 0x%x\n", __func__, test_pid); } return ret; } static void ehset_disconnect(struct usb_interface *intf) { } static const struct usb_device_id ehset_id_table[] = { { USB_DEVICE(0x1a0a, TEST_SE0_NAK_PID) }, { USB_DEVICE(0x1a0a, TEST_J_PID) }, { USB_DEVICE(0x1a0a, TEST_K_PID) }, { USB_DEVICE(0x1a0a, TEST_PACKET_PID) }, { USB_DEVICE(0x1a0a, TEST_HS_HOST_PORT_SUSPEND_RESUME) }, { USB_DEVICE(0x1a0a, TEST_SINGLE_STEP_GET_DEV_DESC) }, { USB_DEVICE(0x1a0a, TEST_SINGLE_STEP_SET_FEATURE) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, ehset_id_table); static struct usb_driver ehset_driver = { .name = "usb_ehset_test", .probe = ehset_probe, .disconnect = ehset_disconnect, .id_table = ehset_id_table, }; module_usb_driver(ehset_driver); MODULE_DESCRIPTION("USB Driver for EHSET Test Fixture"); MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UV_UV_H #define _ASM_X86_UV_UV_H enum uv_system_type {UV_NONE, UV_LEGACY_APIC, UV_X2APIC}; #ifdef CONFIG_X86_UV #include <linux/efi.h> #define UV_PROC_NODE "sgi_uv" static inline int uv(int uvtype) { /* uv(0) is "any" */ if (uvtype >= 0 && uvtype <= 30) return 1 << uvtype; return 1; } extern unsigned long uv_systab_phys; extern enum uv_system_type get_uv_system_type(void); static inline bool is_early_uv_system(void) { return uv_systab_phys && uv_systab_phys != EFI_INVALID_TABLE_ADDR; } extern int is_uv_system(void); extern int is_uv_hubbed(int uvtype); extern void uv_cpu_init(void); extern void uv_nmi_init(void); extern void uv_system_init(void); #else /* !X86_UV */ static inline enum uv_system_type get_uv_system_type(void) { return UV_NONE; } static inline bool is_early_uv_system(void) { return 0; } static inline int is_uv_system(void) { return 0; } static inline int is_uv_hubbed(int uv) { return 0; } static inline void uv_cpu_init(void) { } static inline void uv_system_init(void) { } #endif /* X86_UV */ #endif /* _ASM_X86_UV_UV_H */
/* * Copyright (C) 2010 Francisco Jerez. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "priv.h" #include "ram.h" static void nv35_fb_tile_comp(struct nvkm_fb *fb, int i, u32 size, u32 flags, struct nvkm_fb_tile *tile) { u32 tiles = DIV_ROUND_UP(size, 0x40); u32 tags = round_up(tiles / fb->ram->parts, 0x40); if (!nvkm_mm_head(&fb->tags.mm, 0, 1, tags, tags, 1, &tile->tag)) { if (flags & 2) tile->zcomp |= 0x04000000; /* Z16 */ else tile->zcomp |= 0x08000000; /* Z24S8 */ tile->zcomp |= ((tile->tag->offset ) >> 6); tile->zcomp |= ((tile->tag->offset + tags - 1) >> 6) << 13; #ifdef __BIG_ENDIAN tile->zcomp |= 0x40000000; #endif } } static const struct nvkm_fb_func nv35_fb = { .tags = nv20_fb_tags, .init = nv30_fb_init, .tile.regions = 8, .tile.init = nv30_fb_tile_init, .tile.comp = nv35_fb_tile_comp, .tile.fini = nv20_fb_tile_fini, .tile.prog = nv20_fb_tile_prog, .ram_new = nv20_ram_new, }; int nv35_fb_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_fb **pfb) { return nvkm_fb_new_(&nv35_fb, device, type, inst, pfb); }
/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Rafael Antognolli <[email protected]> * */ #include <linux/device.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/uio.h> #include <drm/display/drm_dp_helper.h> #include <drm/display/drm_dp_mst_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_print.h> #include "drm_dp_helper_internal.h" struct drm_dp_aux_dev { unsigned index; struct drm_dp_aux *aux; struct device *dev; struct kref refcount; atomic_t usecount; }; #define DRM_AUX_MINORS 256 #define AUX_MAX_OFFSET (1 << 20) static DEFINE_IDR(aux_idr); static DEFINE_MUTEX(aux_idr_mutex); static struct class *drm_dp_aux_dev_class; static int drm_dev_major = -1; static struct drm_dp_aux_dev *drm_dp_aux_dev_get_by_minor(unsigned index) { struct drm_dp_aux_dev *aux_dev = NULL; mutex_lock(&aux_idr_mutex); aux_dev = idr_find(&aux_idr, index); if (aux_dev && !kref_get_unless_zero(&aux_dev->refcount)) aux_dev = NULL; mutex_unlock(&aux_idr_mutex); return aux_dev; } static struct drm_dp_aux_dev *alloc_drm_dp_aux_dev(struct drm_dp_aux *aux) { struct drm_dp_aux_dev *aux_dev; int index; aux_dev = kzalloc(sizeof(*aux_dev), GFP_KERNEL); if (!aux_dev) return ERR_PTR(-ENOMEM); aux_dev->aux = aux; atomic_set(&aux_dev->usecount, 1); kref_init(&aux_dev->refcount); mutex_lock(&aux_idr_mutex); index = idr_alloc(&aux_idr, aux_dev, 0, DRM_AUX_MINORS, GFP_KERNEL); mutex_unlock(&aux_idr_mutex); if (index < 0) { kfree(aux_dev); return ERR_PTR(index); } aux_dev->index = index; return aux_dev; } static void release_drm_dp_aux_dev(struct kref *ref) { struct drm_dp_aux_dev *aux_dev = container_of(ref, struct drm_dp_aux_dev, refcount); kfree(aux_dev); } static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t res; struct drm_dp_aux_dev *aux_dev = drm_dp_aux_dev_get_by_minor(MINOR(dev->devt)); if (!aux_dev) return -ENODEV; res = sprintf(buf, "%s\n", aux_dev->aux->name); kref_put(&aux_dev->refcount, release_drm_dp_aux_dev); return res; } static DEVICE_ATTR_RO(name); static struct attribute *drm_dp_aux_attrs[] = { &dev_attr_name.attr, NULL, }; ATTRIBUTE_GROUPS(drm_dp_aux); static int auxdev_open(struct inode *inode, struct file *file) { unsigned int minor = iminor(inode); struct drm_dp_aux_dev *aux_dev; aux_dev = drm_dp_aux_dev_get_by_minor(minor); if (!aux_dev) return -ENODEV; file->private_data = aux_dev; return 0; } static loff_t auxdev_llseek(struct file *file, loff_t offset, int whence) { return fixed_size_llseek(file, offset, whence, AUX_MAX_OFFSET); } static ssize_t auxdev_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct drm_dp_aux_dev *aux_dev = iocb->ki_filp->private_data; loff_t pos = iocb->ki_pos; ssize_t res = 0; if (!atomic_inc_not_zero(&aux_dev->usecount)) return -ENODEV; iov_iter_truncate(to, AUX_MAX_OFFSET - pos); while (iov_iter_count(to)) { uint8_t buf[DP_AUX_MAX_PAYLOAD_BYTES]; ssize_t todo = min(iov_iter_count(to), sizeof(buf)); if (signal_pending(current)) { res = -ERESTARTSYS; break; } res = drm_dp_dpcd_read(aux_dev->aux, pos, buf, todo); if (res <= 0) break; if (copy_to_iter(buf, res, to) != res) { res = -EFAULT; break; } pos += res; } if (pos != iocb->ki_pos) res = pos - iocb->ki_pos; iocb->ki_pos = pos; if (atomic_dec_and_test(&aux_dev->usecount)) wake_up_var(&aux_dev->usecount); return res; } static ssize_t auxdev_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct drm_dp_aux_dev *aux_dev = iocb->ki_filp->private_data; loff_t pos = iocb->ki_pos; ssize_t res = 0; if (!atomic_inc_not_zero(&aux_dev->usecount)) return -ENODEV; iov_iter_truncate(from, AUX_MAX_OFFSET - pos); while (iov_iter_count(from)) { uint8_t buf[DP_AUX_MAX_PAYLOAD_BYTES]; ssize_t todo = min(iov_iter_count(from), sizeof(buf)); if (signal_pending(current)) { res = -ERESTARTSYS; break; } if (!copy_from_iter_full(buf, todo, from)) { res = -EFAULT; break; } res = drm_dp_dpcd_write(aux_dev->aux, pos, buf, todo); if (res <= 0) break; pos += res; } if (pos != iocb->ki_pos) res = pos - iocb->ki_pos; iocb->ki_pos = pos; if (atomic_dec_and_test(&aux_dev->usecount)) wake_up_var(&aux_dev->usecount); return res; } static int auxdev_release(struct inode *inode, struct file *file) { struct drm_dp_aux_dev *aux_dev = file->private_data; kref_put(&aux_dev->refcount, release_drm_dp_aux_dev); return 0; } static const struct file_operations auxdev_fops = { .owner = THIS_MODULE, .llseek = auxdev_llseek, .read_iter = auxdev_read_iter, .write_iter = auxdev_write_iter, .open = auxdev_open, .release = auxdev_release, }; #define to_auxdev(d) container_of(d, struct drm_dp_aux_dev, aux) static struct drm_dp_aux_dev *drm_dp_aux_dev_get_by_aux(struct drm_dp_aux *aux) { struct drm_dp_aux_dev *iter, *aux_dev = NULL; int id; /* don't increase kref count here because this function should only be * used by drm_dp_aux_unregister_devnode. Thus, it will always have at * least one reference - the one that drm_dp_aux_register_devnode * created */ mutex_lock(&aux_idr_mutex); idr_for_each_entry(&aux_idr, iter, id) { if (iter->aux == aux) { aux_dev = iter; break; } } mutex_unlock(&aux_idr_mutex); return aux_dev; } void drm_dp_aux_unregister_devnode(struct drm_dp_aux *aux) { struct drm_dp_aux_dev *aux_dev; unsigned int minor; aux_dev = drm_dp_aux_dev_get_by_aux(aux); if (!aux_dev) /* attach must have failed */ return; /* * As some AUX adapters may exist as platform devices which outlive their respective DRM * devices, we clear drm_dev to ensure that we never accidentally reference a stale pointer */ aux->drm_dev = NULL; mutex_lock(&aux_idr_mutex); idr_remove(&aux_idr, aux_dev->index); mutex_unlock(&aux_idr_mutex); atomic_dec(&aux_dev->usecount); wait_var_event(&aux_dev->usecount, !atomic_read(&aux_dev->usecount)); minor = aux_dev->index; if (aux_dev->dev) device_destroy(drm_dp_aux_dev_class, MKDEV(drm_dev_major, minor)); DRM_DEBUG("drm_dp_aux_dev: aux [%s] unregistering\n", aux->name); kref_put(&aux_dev->refcount, release_drm_dp_aux_dev); } int drm_dp_aux_register_devnode(struct drm_dp_aux *aux) { struct drm_dp_aux_dev *aux_dev; int res; aux_dev = alloc_drm_dp_aux_dev(aux); if (IS_ERR(aux_dev)) return PTR_ERR(aux_dev); aux_dev->dev = device_create(drm_dp_aux_dev_class, aux->dev, MKDEV(drm_dev_major, aux_dev->index), NULL, "drm_dp_aux%d", aux_dev->index); if (IS_ERR(aux_dev->dev)) { res = PTR_ERR(aux_dev->dev); aux_dev->dev = NULL; goto error; } DRM_DEBUG("drm_dp_aux_dev: aux [%s] registered as minor %d\n", aux->name, aux_dev->index); return 0; error: drm_dp_aux_unregister_devnode(aux); return res; } int drm_dp_aux_dev_init(void) { int res; drm_dp_aux_dev_class = class_create("drm_dp_aux_dev"); if (IS_ERR(drm_dp_aux_dev_class)) { return PTR_ERR(drm_dp_aux_dev_class); } drm_dp_aux_dev_class->dev_groups = drm_dp_aux_groups; res = register_chrdev(0, "aux", &auxdev_fops); if (res < 0) goto out; drm_dev_major = res; return 0; out: class_destroy(drm_dp_aux_dev_class); return res; } void drm_dp_aux_dev_exit(void) { unregister_chrdev(drm_dev_major, "aux"); class_destroy(drm_dp_aux_dev_class); }
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2021 Linaro Ltd. * Author: Sam Protsenko <[email protected]> * * Common Clock Framework support for Exynos850 SoC. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/of.h> #include <linux/platform_device.h> #include <dt-bindings/clock/exynos850.h> #include "clk.h" #include "clk-cpu.h" #include "clk-exynos-arm64.h" /* NOTE: Must be equal to the last clock ID increased by one */ #define CLKS_NR_TOP (CLK_DOUT_CPUCL1_SWITCH + 1) #define CLKS_NR_APM (CLK_GOUT_SYSREG_APM_PCLK + 1) #define CLKS_NR_AUD (CLK_GOUT_AUD_CMU_AUD_PCLK + 1) #define CLKS_NR_CMGP (CLK_GOUT_SYSREG_CMGP_PCLK + 1) #define CLKS_NR_CPUCL0 (CLK_CLUSTER0_SCLK + 1) #define CLKS_NR_CPUCL1 (CLK_CLUSTER1_SCLK + 1) #define CLKS_NR_G3D (CLK_GOUT_G3D_SYSREG_PCLK + 1) #define CLKS_NR_HSI (CLK_GOUT_HSI_CMU_HSI_PCLK + 1) #define CLKS_NR_IS (CLK_GOUT_IS_SYSREG_PCLK + 1) #define CLKS_NR_MFCMSCL (CLK_GOUT_MFCMSCL_SYSREG_PCLK + 1) #define CLKS_NR_PERI (CLK_GOUT_BUSIF_TMU_PCLK + 1) #define CLKS_NR_CORE (CLK_GOUT_SPDMA_CORE_ACLK + 1) #define CLKS_NR_DPU (CLK_GOUT_DPU_SYSREG_PCLK + 1) /* ---- CMU_TOP ------------------------------------------------------------- */ /* Register Offset definitions for CMU_TOP (0x120e0000) */ #define PLL_LOCKTIME_PLL_MMC 0x0000 #define PLL_LOCKTIME_PLL_SHARED0 0x0004 #define PLL_LOCKTIME_PLL_SHARED1 0x0008 #define PLL_CON0_PLL_MMC 0x0100 #define PLL_CON3_PLL_MMC 0x010c #define PLL_CON0_PLL_SHARED0 0x0140 #define PLL_CON3_PLL_SHARED0 0x014c #define PLL_CON0_PLL_SHARED1 0x0180 #define PLL_CON3_PLL_SHARED1 0x018c #define CLK_CON_MUX_MUX_CLKCMU_APM_BUS 0x1000 #define CLK_CON_MUX_MUX_CLKCMU_AUD 0x1004 #define CLK_CON_MUX_MUX_CLKCMU_CORE_BUS 0x1014 #define CLK_CON_MUX_MUX_CLKCMU_CORE_CCI 0x1018 #define CLK_CON_MUX_MUX_CLKCMU_CORE_MMC_EMBD 0x101c #define CLK_CON_MUX_MUX_CLKCMU_CORE_SSS 0x1020 #define CLK_CON_MUX_MUX_CLKCMU_CPUCL0_DBG 0x1024 #define CLK_CON_MUX_MUX_CLKCMU_CPUCL0_SWITCH 0x1028 #define CLK_CON_MUX_MUX_CLKCMU_CPUCL1_DBG 0x102c #define CLK_CON_MUX_MUX_CLKCMU_CPUCL1_SWITCH 0x1030 #define CLK_CON_MUX_MUX_CLKCMU_DPU 0x1034 #define CLK_CON_MUX_MUX_CLKCMU_G3D_SWITCH 0x1038 #define CLK_CON_MUX_MUX_CLKCMU_HSI_BUS 0x103c #define CLK_CON_MUX_MUX_CLKCMU_HSI_MMC_CARD 0x1040 #define CLK_CON_MUX_MUX_CLKCMU_HSI_USB20DRD 0x1044 #define CLK_CON_MUX_MUX_CLKCMU_IS_BUS 0x1048 #define CLK_CON_MUX_MUX_CLKCMU_IS_GDC 0x104c #define CLK_CON_MUX_MUX_CLKCMU_IS_ITP 0x1050 #define CLK_CON_MUX_MUX_CLKCMU_IS_VRA 0x1054 #define CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_JPEG 0x1058 #define CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_M2M 0x105c #define CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_MCSC 0x1060 #define CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_MFC 0x1064 #define CLK_CON_MUX_MUX_CLKCMU_PERI_BUS 0x1070 #define CLK_CON_MUX_MUX_CLKCMU_PERI_IP 0x1074 #define CLK_CON_MUX_MUX_CLKCMU_PERI_UART 0x1078 #define CLK_CON_DIV_CLKCMU_APM_BUS 0x180c #define CLK_CON_DIV_CLKCMU_AUD 0x1810 #define CLK_CON_DIV_CLKCMU_CORE_BUS 0x1820 #define CLK_CON_DIV_CLKCMU_CORE_CCI 0x1824 #define CLK_CON_DIV_CLKCMU_CORE_MMC_EMBD 0x1828 #define CLK_CON_DIV_CLKCMU_CORE_SSS 0x182c #define CLK_CON_DIV_CLKCMU_CPUCL0_DBG 0x1830 #define CLK_CON_DIV_CLKCMU_CPUCL0_SWITCH 0x1834 #define CLK_CON_DIV_CLKCMU_CPUCL1_DBG 0x1838 #define CLK_CON_DIV_CLKCMU_CPUCL1_SWITCH 0x183c #define CLK_CON_DIV_CLKCMU_DPU 0x1840 #define CLK_CON_DIV_CLKCMU_G3D_SWITCH 0x1844 #define CLK_CON_DIV_CLKCMU_HSI_BUS 0x1848 #define CLK_CON_DIV_CLKCMU_HSI_MMC_CARD 0x184c #define CLK_CON_DIV_CLKCMU_HSI_USB20DRD 0x1850 #define CLK_CON_DIV_CLKCMU_IS_BUS 0x1854 #define CLK_CON_DIV_CLKCMU_IS_GDC 0x1858 #define CLK_CON_DIV_CLKCMU_IS_ITP 0x185c #define CLK_CON_DIV_CLKCMU_IS_VRA 0x1860 #define CLK_CON_DIV_CLKCMU_MFCMSCL_JPEG 0x1864 #define CLK_CON_DIV_CLKCMU_MFCMSCL_M2M 0x1868 #define CLK_CON_DIV_CLKCMU_MFCMSCL_MCSC 0x186c #define CLK_CON_DIV_CLKCMU_MFCMSCL_MFC 0x1870 #define CLK_CON_DIV_CLKCMU_PERI_BUS 0x187c #define CLK_CON_DIV_CLKCMU_PERI_IP 0x1880 #define CLK_CON_DIV_CLKCMU_PERI_UART 0x1884 #define CLK_CON_DIV_PLL_SHARED0_DIV2 0x188c #define CLK_CON_DIV_PLL_SHARED0_DIV3 0x1890 #define CLK_CON_DIV_PLL_SHARED0_DIV4 0x1894 #define CLK_CON_DIV_PLL_SHARED1_DIV2 0x1898 #define CLK_CON_DIV_PLL_SHARED1_DIV3 0x189c #define CLK_CON_DIV_PLL_SHARED1_DIV4 0x18a0 #define CLK_CON_GAT_GATE_CLKCMU_APM_BUS 0x2008 #define CLK_CON_GAT_GATE_CLKCMU_AUD 0x200c #define CLK_CON_GAT_GATE_CLKCMU_CORE_BUS 0x201c #define CLK_CON_GAT_GATE_CLKCMU_CORE_CCI 0x2020 #define CLK_CON_GAT_GATE_CLKCMU_CORE_MMC_EMBD 0x2024 #define CLK_CON_GAT_GATE_CLKCMU_CORE_SSS 0x2028 #define CLK_CON_GAT_GATE_CLKCMU_CPUCL0_DBG 0x202c #define CLK_CON_GAT_GATE_CLKCMU_CPUCL0_SWITCH 0x2030 #define CLK_CON_GAT_GATE_CLKCMU_CPUCL1_DBG 0x2034 #define CLK_CON_GAT_GATE_CLKCMU_CPUCL1_SWITCH 0x2038 #define CLK_CON_GAT_GATE_CLKCMU_DPU 0x203c #define CLK_CON_GAT_GATE_CLKCMU_G3D_SWITCH 0x2040 #define CLK_CON_GAT_GATE_CLKCMU_HSI_BUS 0x2044 #define CLK_CON_GAT_GATE_CLKCMU_HSI_MMC_CARD 0x2048 #define CLK_CON_GAT_GATE_CLKCMU_HSI_USB20DRD 0x204c #define CLK_CON_GAT_GATE_CLKCMU_IS_BUS 0x2050 #define CLK_CON_GAT_GATE_CLKCMU_IS_GDC 0x2054 #define CLK_CON_GAT_GATE_CLKCMU_IS_ITP 0x2058 #define CLK_CON_GAT_GATE_CLKCMU_IS_VRA 0x205c #define CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_JPEG 0x2060 #define CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_M2M 0x2064 #define CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_MCSC 0x2068 #define CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_MFC 0x206c #define CLK_CON_GAT_GATE_CLKCMU_PERI_BUS 0x2080 #define CLK_CON_GAT_GATE_CLKCMU_PERI_IP 0x2084 #define CLK_CON_GAT_GATE_CLKCMU_PERI_UART 0x2088 static const unsigned long top_clk_regs[] __initconst = { PLL_LOCKTIME_PLL_MMC, PLL_LOCKTIME_PLL_SHARED0, PLL_LOCKTIME_PLL_SHARED1, PLL_CON0_PLL_MMC, PLL_CON3_PLL_MMC, PLL_CON0_PLL_SHARED0, PLL_CON3_PLL_SHARED0, PLL_CON0_PLL_SHARED1, PLL_CON3_PLL_SHARED1, CLK_CON_MUX_MUX_CLKCMU_APM_BUS, CLK_CON_MUX_MUX_CLKCMU_AUD, CLK_CON_MUX_MUX_CLKCMU_CORE_BUS, CLK_CON_MUX_MUX_CLKCMU_CORE_CCI, CLK_CON_MUX_MUX_CLKCMU_CORE_MMC_EMBD, CLK_CON_MUX_MUX_CLKCMU_CORE_SSS, CLK_CON_MUX_MUX_CLKCMU_CPUCL0_DBG, CLK_CON_MUX_MUX_CLKCMU_CPUCL0_SWITCH, CLK_CON_MUX_MUX_CLKCMU_CPUCL1_DBG, CLK_CON_MUX_MUX_CLKCMU_CPUCL1_SWITCH, CLK_CON_MUX_MUX_CLKCMU_DPU, CLK_CON_MUX_MUX_CLKCMU_G3D_SWITCH, CLK_CON_MUX_MUX_CLKCMU_HSI_BUS, CLK_CON_MUX_MUX_CLKCMU_HSI_MMC_CARD, CLK_CON_MUX_MUX_CLKCMU_HSI_USB20DRD, CLK_CON_MUX_MUX_CLKCMU_IS_BUS, CLK_CON_MUX_MUX_CLKCMU_IS_GDC, CLK_CON_MUX_MUX_CLKCMU_IS_ITP, CLK_CON_MUX_MUX_CLKCMU_IS_VRA, CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_JPEG, CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_M2M, CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_MCSC, CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_MFC, CLK_CON_MUX_MUX_CLKCMU_PERI_BUS, CLK_CON_MUX_MUX_CLKCMU_PERI_IP, CLK_CON_MUX_MUX_CLKCMU_PERI_UART, CLK_CON_DIV_CLKCMU_APM_BUS, CLK_CON_DIV_CLKCMU_AUD, CLK_CON_DIV_CLKCMU_CORE_BUS, CLK_CON_DIV_CLKCMU_CORE_CCI, CLK_CON_DIV_CLKCMU_CORE_MMC_EMBD, CLK_CON_DIV_CLKCMU_CORE_SSS, CLK_CON_DIV_CLKCMU_CPUCL0_DBG, CLK_CON_DIV_CLKCMU_CPUCL0_SWITCH, CLK_CON_DIV_CLKCMU_CPUCL1_DBG, CLK_CON_DIV_CLKCMU_CPUCL1_SWITCH, CLK_CON_DIV_CLKCMU_DPU, CLK_CON_DIV_CLKCMU_G3D_SWITCH, CLK_CON_DIV_CLKCMU_HSI_BUS, CLK_CON_DIV_CLKCMU_HSI_MMC_CARD, CLK_CON_DIV_CLKCMU_HSI_USB20DRD, CLK_CON_DIV_CLKCMU_IS_BUS, CLK_CON_DIV_CLKCMU_IS_GDC, CLK_CON_DIV_CLKCMU_IS_ITP, CLK_CON_DIV_CLKCMU_IS_VRA, CLK_CON_DIV_CLKCMU_MFCMSCL_JPEG, CLK_CON_DIV_CLKCMU_MFCMSCL_M2M, CLK_CON_DIV_CLKCMU_MFCMSCL_MCSC, CLK_CON_DIV_CLKCMU_MFCMSCL_MFC, CLK_CON_DIV_CLKCMU_PERI_BUS, CLK_CON_DIV_CLKCMU_PERI_IP, CLK_CON_DIV_CLKCMU_PERI_UART, CLK_CON_DIV_PLL_SHARED0_DIV2, CLK_CON_DIV_PLL_SHARED0_DIV3, CLK_CON_DIV_PLL_SHARED0_DIV4, CLK_CON_DIV_PLL_SHARED1_DIV2, CLK_CON_DIV_PLL_SHARED1_DIV3, CLK_CON_DIV_PLL_SHARED1_DIV4, CLK_CON_GAT_GATE_CLKCMU_APM_BUS, CLK_CON_GAT_GATE_CLKCMU_AUD, CLK_CON_GAT_GATE_CLKCMU_CORE_BUS, CLK_CON_GAT_GATE_CLKCMU_CORE_CCI, CLK_CON_GAT_GATE_CLKCMU_CORE_MMC_EMBD, CLK_CON_GAT_GATE_CLKCMU_CORE_SSS, CLK_CON_GAT_GATE_CLKCMU_CPUCL0_DBG, CLK_CON_GAT_GATE_CLKCMU_CPUCL0_SWITCH, CLK_CON_GAT_GATE_CLKCMU_CPUCL1_DBG, CLK_CON_GAT_GATE_CLKCMU_CPUCL1_SWITCH, CLK_CON_GAT_GATE_CLKCMU_DPU, CLK_CON_GAT_GATE_CLKCMU_G3D_SWITCH, CLK_CON_GAT_GATE_CLKCMU_HSI_BUS, CLK_CON_GAT_GATE_CLKCMU_HSI_MMC_CARD, CLK_CON_GAT_GATE_CLKCMU_HSI_USB20DRD, CLK_CON_GAT_GATE_CLKCMU_IS_BUS, CLK_CON_GAT_GATE_CLKCMU_IS_GDC, CLK_CON_GAT_GATE_CLKCMU_IS_ITP, CLK_CON_GAT_GATE_CLKCMU_IS_VRA, CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_JPEG, CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_M2M, CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_MCSC, CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_MFC, CLK_CON_GAT_GATE_CLKCMU_PERI_BUS, CLK_CON_GAT_GATE_CLKCMU_PERI_IP, CLK_CON_GAT_GATE_CLKCMU_PERI_UART, }; /* * Do not provide PLL tables to core PLLs, as MANUAL_PLL_CTRL bit is not set * for those PLLs by default, so set_rate operation would fail. */ static const struct samsung_pll_clock top_pll_clks[] __initconst = { /* CMU_TOP_PURECLKCOMP */ PLL(pll_0822x, CLK_FOUT_SHARED0_PLL, "fout_shared0_pll", "oscclk", PLL_LOCKTIME_PLL_SHARED0, PLL_CON3_PLL_SHARED0, NULL), PLL(pll_0822x, CLK_FOUT_SHARED1_PLL, "fout_shared1_pll", "oscclk", PLL_LOCKTIME_PLL_SHARED1, PLL_CON3_PLL_SHARED1, NULL), PLL(pll_0831x, CLK_FOUT_MMC_PLL, "fout_mmc_pll", "oscclk", PLL_LOCKTIME_PLL_MMC, PLL_CON3_PLL_MMC, NULL), }; /* List of parent clocks for Muxes in CMU_TOP */ PNAME(mout_shared0_pll_p) = { "oscclk", "fout_shared0_pll" }; PNAME(mout_shared1_pll_p) = { "oscclk", "fout_shared1_pll" }; PNAME(mout_mmc_pll_p) = { "oscclk", "fout_mmc_pll" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_APM */ PNAME(mout_clkcmu_apm_bus_p) = { "dout_shared0_div4", "pll_shared1_div4" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_AUD */ PNAME(mout_aud_p) = { "fout_shared1_pll", "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_CORE */ PNAME(mout_core_bus_p) = { "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3", "dout_shared0_div4" }; PNAME(mout_core_cci_p) = { "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3" }; PNAME(mout_core_mmc_embd_p) = { "oscclk", "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3", "mout_mmc_pll", "oscclk", "oscclk" }; PNAME(mout_core_sss_p) = { "dout_shared0_div3", "dout_shared1_div3", "dout_shared0_div4", "dout_shared1_div4" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_CPUCL0 */ PNAME(mout_cpucl0_switch_p) = { "fout_shared0_pll", "fout_shared1_pll", "dout_shared0_div2", "dout_shared1_div2" }; PNAME(mout_cpucl0_dbg_p) = { "dout_shared0_div4", "dout_shared1_div4" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_CPUCL1 */ PNAME(mout_cpucl1_switch_p) = { "fout_shared0_pll", "fout_shared1_pll", "dout_shared0_div2", "dout_shared1_div2" }; PNAME(mout_cpucl1_dbg_p) = { "dout_shared0_div4", "dout_shared1_div4" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_G3D */ PNAME(mout_g3d_switch_p) = { "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_HSI */ PNAME(mout_hsi_bus_p) = { "dout_shared0_div2", "dout_shared1_div2" }; PNAME(mout_hsi_mmc_card_p) = { "oscclk", "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3", "mout_mmc_pll", "oscclk", "oscclk" }; PNAME(mout_hsi_usb20drd_p) = { "oscclk", "dout_shared0_div4", "dout_shared1_div4", "oscclk" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_IS */ PNAME(mout_is_bus_p) = { "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3" }; PNAME(mout_is_itp_p) = { "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3" }; PNAME(mout_is_vra_p) = { "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3" }; PNAME(mout_is_gdc_p) = { "dout_shared0_div2", "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_MFCMSCL */ PNAME(mout_mfcmscl_mfc_p) = { "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3", "dout_shared0_div4" }; PNAME(mout_mfcmscl_m2m_p) = { "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3", "dout_shared0_div4" }; PNAME(mout_mfcmscl_mcsc_p) = { "dout_shared1_div2", "dout_shared0_div3", "dout_shared1_div3", "dout_shared0_div4" }; PNAME(mout_mfcmscl_jpeg_p) = { "dout_shared0_div3", "dout_shared1_div3", "dout_shared0_div4", "dout_shared1_div4" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_PERI */ PNAME(mout_peri_bus_p) = { "dout_shared0_div4", "dout_shared1_div4" }; PNAME(mout_peri_uart_p) = { "oscclk", "dout_shared0_div4", "dout_shared1_div4", "oscclk" }; PNAME(mout_peri_ip_p) = { "oscclk", "dout_shared0_div4", "dout_shared1_div4", "oscclk" }; /* List of parent clocks for Muxes in CMU_TOP: for CMU_DPU */ PNAME(mout_dpu_p) = { "dout_shared0_div3", "dout_shared1_div3", "dout_shared0_div4", "dout_shared1_div4" }; static const struct samsung_mux_clock top_mux_clks[] __initconst = { /* CMU_TOP_PURECLKCOMP */ MUX(CLK_MOUT_SHARED0_PLL, "mout_shared0_pll", mout_shared0_pll_p, PLL_CON0_PLL_SHARED0, 4, 1), MUX(CLK_MOUT_SHARED1_PLL, "mout_shared1_pll", mout_shared1_pll_p, PLL_CON0_PLL_SHARED1, 4, 1), MUX(CLK_MOUT_MMC_PLL, "mout_mmc_pll", mout_mmc_pll_p, PLL_CON0_PLL_MMC, 4, 1), /* APM */ MUX(CLK_MOUT_CLKCMU_APM_BUS, "mout_clkcmu_apm_bus", mout_clkcmu_apm_bus_p, CLK_CON_MUX_MUX_CLKCMU_APM_BUS, 0, 1), /* AUD */ MUX(CLK_MOUT_AUD, "mout_aud", mout_aud_p, CLK_CON_MUX_MUX_CLKCMU_AUD, 0, 2), /* CORE */ MUX(CLK_MOUT_CORE_BUS, "mout_core_bus", mout_core_bus_p, CLK_CON_MUX_MUX_CLKCMU_CORE_BUS, 0, 2), MUX(CLK_MOUT_CORE_CCI, "mout_core_cci", mout_core_cci_p, CLK_CON_MUX_MUX_CLKCMU_CORE_CCI, 0, 2), MUX(CLK_MOUT_CORE_MMC_EMBD, "mout_core_mmc_embd", mout_core_mmc_embd_p, CLK_CON_MUX_MUX_CLKCMU_CORE_MMC_EMBD, 0, 3), MUX(CLK_MOUT_CORE_SSS, "mout_core_sss", mout_core_sss_p, CLK_CON_MUX_MUX_CLKCMU_CORE_SSS, 0, 2), /* CPUCL0 */ MUX(CLK_MOUT_CPUCL0_DBG, "mout_cpucl0_dbg", mout_cpucl0_dbg_p, CLK_CON_MUX_MUX_CLKCMU_CPUCL0_DBG, 0, 1), MUX(CLK_MOUT_CPUCL0_SWITCH, "mout_cpucl0_switch", mout_cpucl0_switch_p, CLK_CON_MUX_MUX_CLKCMU_CPUCL0_SWITCH, 0, 2), /* CPUCL1 */ MUX(CLK_MOUT_CPUCL1_DBG, "mout_cpucl1_dbg", mout_cpucl1_dbg_p, CLK_CON_MUX_MUX_CLKCMU_CPUCL1_DBG, 0, 1), MUX(CLK_MOUT_CPUCL1_SWITCH, "mout_cpucl1_switch", mout_cpucl1_switch_p, CLK_CON_MUX_MUX_CLKCMU_CPUCL1_SWITCH, 0, 2), /* DPU */ MUX(CLK_MOUT_DPU, "mout_dpu", mout_dpu_p, CLK_CON_MUX_MUX_CLKCMU_DPU, 0, 2), /* G3D */ MUX(CLK_MOUT_G3D_SWITCH, "mout_g3d_switch", mout_g3d_switch_p, CLK_CON_MUX_MUX_CLKCMU_G3D_SWITCH, 0, 2), /* HSI */ MUX(CLK_MOUT_HSI_BUS, "mout_hsi_bus", mout_hsi_bus_p, CLK_CON_MUX_MUX_CLKCMU_HSI_BUS, 0, 1), MUX(CLK_MOUT_HSI_MMC_CARD, "mout_hsi_mmc_card", mout_hsi_mmc_card_p, CLK_CON_MUX_MUX_CLKCMU_HSI_MMC_CARD, 0, 3), MUX(CLK_MOUT_HSI_USB20DRD, "mout_hsi_usb20drd", mout_hsi_usb20drd_p, CLK_CON_MUX_MUX_CLKCMU_HSI_USB20DRD, 0, 2), /* IS */ MUX(CLK_MOUT_IS_BUS, "mout_is_bus", mout_is_bus_p, CLK_CON_MUX_MUX_CLKCMU_IS_BUS, 0, 2), MUX(CLK_MOUT_IS_ITP, "mout_is_itp", mout_is_itp_p, CLK_CON_MUX_MUX_CLKCMU_IS_ITP, 0, 2), MUX(CLK_MOUT_IS_VRA, "mout_is_vra", mout_is_vra_p, CLK_CON_MUX_MUX_CLKCMU_IS_VRA, 0, 2), MUX(CLK_MOUT_IS_GDC, "mout_is_gdc", mout_is_gdc_p, CLK_CON_MUX_MUX_CLKCMU_IS_GDC, 0, 2), /* MFCMSCL */ MUX(CLK_MOUT_MFCMSCL_MFC, "mout_mfcmscl_mfc", mout_mfcmscl_mfc_p, CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_MFC, 0, 2), MUX(CLK_MOUT_MFCMSCL_M2M, "mout_mfcmscl_m2m", mout_mfcmscl_m2m_p, CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_M2M, 0, 2), MUX(CLK_MOUT_MFCMSCL_MCSC, "mout_mfcmscl_mcsc", mout_mfcmscl_mcsc_p, CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_MCSC, 0, 2), MUX(CLK_MOUT_MFCMSCL_JPEG, "mout_mfcmscl_jpeg", mout_mfcmscl_jpeg_p, CLK_CON_MUX_MUX_CLKCMU_MFCMSCL_JPEG, 0, 2), /* PERI */ MUX(CLK_MOUT_PERI_BUS, "mout_peri_bus", mout_peri_bus_p, CLK_CON_MUX_MUX_CLKCMU_PERI_BUS, 0, 1), MUX(CLK_MOUT_PERI_UART, "mout_peri_uart", mout_peri_uart_p, CLK_CON_MUX_MUX_CLKCMU_PERI_UART, 0, 2), MUX(CLK_MOUT_PERI_IP, "mout_peri_ip", mout_peri_ip_p, CLK_CON_MUX_MUX_CLKCMU_PERI_IP, 0, 2), }; static const struct samsung_div_clock top_div_clks[] __initconst = { /* CMU_TOP_PURECLKCOMP */ DIV(CLK_DOUT_SHARED0_DIV3, "dout_shared0_div3", "mout_shared0_pll", CLK_CON_DIV_PLL_SHARED0_DIV3, 0, 2), DIV(CLK_DOUT_SHARED0_DIV2, "dout_shared0_div2", "mout_shared0_pll", CLK_CON_DIV_PLL_SHARED0_DIV2, 0, 1), DIV(CLK_DOUT_SHARED1_DIV3, "dout_shared1_div3", "mout_shared1_pll", CLK_CON_DIV_PLL_SHARED1_DIV3, 0, 2), DIV(CLK_DOUT_SHARED1_DIV2, "dout_shared1_div2", "mout_shared1_pll", CLK_CON_DIV_PLL_SHARED1_DIV2, 0, 1), DIV(CLK_DOUT_SHARED0_DIV4, "dout_shared0_div4", "dout_shared0_div2", CLK_CON_DIV_PLL_SHARED0_DIV4, 0, 1), DIV(CLK_DOUT_SHARED1_DIV4, "dout_shared1_div4", "dout_shared1_div2", CLK_CON_DIV_PLL_SHARED1_DIV4, 0, 1), /* APM */ DIV(CLK_DOUT_CLKCMU_APM_BUS, "dout_clkcmu_apm_bus", "gout_clkcmu_apm_bus", CLK_CON_DIV_CLKCMU_APM_BUS, 0, 3), /* AUD */ DIV(CLK_DOUT_AUD, "dout_aud", "gout_aud", CLK_CON_DIV_CLKCMU_AUD, 0, 4), /* CORE */ DIV(CLK_DOUT_CORE_BUS, "dout_core_bus", "gout_core_bus", CLK_CON_DIV_CLKCMU_CORE_BUS, 0, 4), DIV(CLK_DOUT_CORE_CCI, "dout_core_cci", "gout_core_cci", CLK_CON_DIV_CLKCMU_CORE_CCI, 0, 4), DIV(CLK_DOUT_CORE_MMC_EMBD, "dout_core_mmc_embd", "gout_core_mmc_embd", CLK_CON_DIV_CLKCMU_CORE_MMC_EMBD, 0, 9), DIV(CLK_DOUT_CORE_SSS, "dout_core_sss", "gout_core_sss", CLK_CON_DIV_CLKCMU_CORE_SSS, 0, 4), /* CPUCL0 */ DIV(CLK_DOUT_CPUCL0_DBG, "dout_cpucl0_dbg", "gout_cpucl0_dbg", CLK_CON_DIV_CLKCMU_CPUCL0_DBG, 0, 3), DIV(CLK_DOUT_CPUCL0_SWITCH, "dout_cpucl0_switch", "gout_cpucl0_switch", CLK_CON_DIV_CLKCMU_CPUCL0_SWITCH, 0, 3), /* CPUCL1 */ DIV(CLK_DOUT_CPUCL1_DBG, "dout_cpucl1_dbg", "gout_cpucl1_dbg", CLK_CON_DIV_CLKCMU_CPUCL1_DBG, 0, 3), DIV(CLK_DOUT_CPUCL1_SWITCH, "dout_cpucl1_switch", "gout_cpucl1_switch", CLK_CON_DIV_CLKCMU_CPUCL1_SWITCH, 0, 3), /* DPU */ DIV(CLK_DOUT_DPU, "dout_dpu", "gout_dpu", CLK_CON_DIV_CLKCMU_DPU, 0, 4), /* G3D */ DIV(CLK_DOUT_G3D_SWITCH, "dout_g3d_switch", "gout_g3d_switch", CLK_CON_DIV_CLKCMU_G3D_SWITCH, 0, 3), /* HSI */ DIV(CLK_DOUT_HSI_BUS, "dout_hsi_bus", "gout_hsi_bus", CLK_CON_DIV_CLKCMU_HSI_BUS, 0, 4), DIV(CLK_DOUT_HSI_MMC_CARD, "dout_hsi_mmc_card", "gout_hsi_mmc_card", CLK_CON_DIV_CLKCMU_HSI_MMC_CARD, 0, 9), DIV(CLK_DOUT_HSI_USB20DRD, "dout_hsi_usb20drd", "gout_hsi_usb20drd", CLK_CON_DIV_CLKCMU_HSI_USB20DRD, 0, 4), /* IS */ DIV(CLK_DOUT_IS_BUS, "dout_is_bus", "gout_is_bus", CLK_CON_DIV_CLKCMU_IS_BUS, 0, 4), DIV(CLK_DOUT_IS_ITP, "dout_is_itp", "gout_is_itp", CLK_CON_DIV_CLKCMU_IS_ITP, 0, 4), DIV(CLK_DOUT_IS_VRA, "dout_is_vra", "gout_is_vra", CLK_CON_DIV_CLKCMU_IS_VRA, 0, 4), DIV(CLK_DOUT_IS_GDC, "dout_is_gdc", "gout_is_gdc", CLK_CON_DIV_CLKCMU_IS_GDC, 0, 4), /* MFCMSCL */ DIV(CLK_DOUT_MFCMSCL_MFC, "dout_mfcmscl_mfc", "gout_mfcmscl_mfc", CLK_CON_DIV_CLKCMU_MFCMSCL_MFC, 0, 4), DIV(CLK_DOUT_MFCMSCL_M2M, "dout_mfcmscl_m2m", "gout_mfcmscl_m2m", CLK_CON_DIV_CLKCMU_MFCMSCL_M2M, 0, 4), DIV(CLK_DOUT_MFCMSCL_MCSC, "dout_mfcmscl_mcsc", "gout_mfcmscl_mcsc", CLK_CON_DIV_CLKCMU_MFCMSCL_MCSC, 0, 4), DIV(CLK_DOUT_MFCMSCL_JPEG, "dout_mfcmscl_jpeg", "gout_mfcmscl_jpeg", CLK_CON_DIV_CLKCMU_MFCMSCL_JPEG, 0, 4), /* PERI */ DIV(CLK_DOUT_PERI_BUS, "dout_peri_bus", "gout_peri_bus", CLK_CON_DIV_CLKCMU_PERI_BUS, 0, 4), DIV(CLK_DOUT_PERI_UART, "dout_peri_uart", "gout_peri_uart", CLK_CON_DIV_CLKCMU_PERI_UART, 0, 4), DIV(CLK_DOUT_PERI_IP, "dout_peri_ip", "gout_peri_ip", CLK_CON_DIV_CLKCMU_PERI_IP, 0, 4), }; static const struct samsung_gate_clock top_gate_clks[] __initconst = { /* CORE */ GATE(CLK_GOUT_CORE_BUS, "gout_core_bus", "mout_core_bus", CLK_CON_GAT_GATE_CLKCMU_CORE_BUS, 21, 0, 0), GATE(CLK_GOUT_CORE_CCI, "gout_core_cci", "mout_core_cci", CLK_CON_GAT_GATE_CLKCMU_CORE_CCI, 21, 0, 0), GATE(CLK_GOUT_CORE_MMC_EMBD, "gout_core_mmc_embd", "mout_core_mmc_embd", CLK_CON_GAT_GATE_CLKCMU_CORE_MMC_EMBD, 21, 0, 0), GATE(CLK_GOUT_CORE_SSS, "gout_core_sss", "mout_core_sss", CLK_CON_GAT_GATE_CLKCMU_CORE_SSS, 21, 0, 0), /* APM */ GATE(CLK_GOUT_CLKCMU_APM_BUS, "gout_clkcmu_apm_bus", "mout_clkcmu_apm_bus", CLK_CON_GAT_GATE_CLKCMU_APM_BUS, 21, 0, 0), /* AUD */ GATE(CLK_GOUT_AUD, "gout_aud", "mout_aud", CLK_CON_GAT_GATE_CLKCMU_AUD, 21, 0, 0), /* CPUCL0 */ GATE(CLK_GOUT_CPUCL0_DBG, "gout_cpucl0_dbg", "mout_cpucl0_dbg", CLK_CON_GAT_GATE_CLKCMU_CPUCL0_DBG, 21, 0, 0), GATE(CLK_GOUT_CPUCL0_SWITCH, "gout_cpucl0_switch", "mout_cpucl0_switch", CLK_CON_GAT_GATE_CLKCMU_CPUCL0_SWITCH, 21, 0, 0), /* CPUCL1 */ GATE(CLK_GOUT_CPUCL1_DBG, "gout_cpucl1_dbg", "mout_cpucl1_dbg", CLK_CON_GAT_GATE_CLKCMU_CPUCL1_DBG, 21, 0, 0), GATE(CLK_GOUT_CPUCL1_SWITCH, "gout_cpucl1_switch", "mout_cpucl1_switch", CLK_CON_GAT_GATE_CLKCMU_CPUCL1_SWITCH, 21, 0, 0), /* DPU */ GATE(CLK_GOUT_DPU, "gout_dpu", "mout_dpu", CLK_CON_GAT_GATE_CLKCMU_DPU, 21, 0, 0), /* G3D */ GATE(CLK_GOUT_G3D_SWITCH, "gout_g3d_switch", "mout_g3d_switch", CLK_CON_GAT_GATE_CLKCMU_G3D_SWITCH, 21, 0, 0), /* HSI */ GATE(CLK_GOUT_HSI_BUS, "gout_hsi_bus", "mout_hsi_bus", CLK_CON_GAT_GATE_CLKCMU_HSI_BUS, 21, 0, 0), GATE(CLK_GOUT_HSI_MMC_CARD, "gout_hsi_mmc_card", "mout_hsi_mmc_card", CLK_CON_GAT_GATE_CLKCMU_HSI_MMC_CARD, 21, 0, 0), GATE(CLK_GOUT_HSI_USB20DRD, "gout_hsi_usb20drd", "mout_hsi_usb20drd", CLK_CON_GAT_GATE_CLKCMU_HSI_USB20DRD, 21, 0, 0), /* IS */ /* TODO: These clocks have to be always enabled to access CMU_IS regs */ GATE(CLK_GOUT_IS_BUS, "gout_is_bus", "mout_is_bus", CLK_CON_GAT_GATE_CLKCMU_IS_BUS, 21, CLK_IS_CRITICAL, 0), GATE(CLK_GOUT_IS_ITP, "gout_is_itp", "mout_is_itp", CLK_CON_GAT_GATE_CLKCMU_IS_ITP, 21, CLK_IS_CRITICAL, 0), GATE(CLK_GOUT_IS_VRA, "gout_is_vra", "mout_is_vra", CLK_CON_GAT_GATE_CLKCMU_IS_VRA, 21, CLK_IS_CRITICAL, 0), GATE(CLK_GOUT_IS_GDC, "gout_is_gdc", "mout_is_gdc", CLK_CON_GAT_GATE_CLKCMU_IS_GDC, 21, CLK_IS_CRITICAL, 0), /* MFCMSCL */ /* TODO: These have to be always enabled to access CMU_MFCMSCL regs */ GATE(CLK_GOUT_MFCMSCL_MFC, "gout_mfcmscl_mfc", "mout_mfcmscl_mfc", CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_MFC, 21, CLK_IS_CRITICAL, 0), GATE(CLK_GOUT_MFCMSCL_M2M, "gout_mfcmscl_m2m", "mout_mfcmscl_m2m", CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_M2M, 21, CLK_IS_CRITICAL, 0), GATE(CLK_GOUT_MFCMSCL_MCSC, "gout_mfcmscl_mcsc", "mout_mfcmscl_mcsc", CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_MCSC, 21, CLK_IS_CRITICAL, 0), GATE(CLK_GOUT_MFCMSCL_JPEG, "gout_mfcmscl_jpeg", "mout_mfcmscl_jpeg", CLK_CON_GAT_GATE_CLKCMU_MFCMSCL_JPEG, 21, CLK_IS_CRITICAL, 0), /* PERI */ GATE(CLK_GOUT_PERI_BUS, "gout_peri_bus", "mout_peri_bus", CLK_CON_GAT_GATE_CLKCMU_PERI_BUS, 21, 0, 0), GATE(CLK_GOUT_PERI_UART, "gout_peri_uart", "mout_peri_uart", CLK_CON_GAT_GATE_CLKCMU_PERI_UART, 21, 0, 0), GATE(CLK_GOUT_PERI_IP, "gout_peri_ip", "mout_peri_ip", CLK_CON_GAT_GATE_CLKCMU_PERI_IP, 21, 0, 0), }; static const struct samsung_cmu_info top_cmu_info __initconst = { .pll_clks = top_pll_clks, .nr_pll_clks = ARRAY_SIZE(top_pll_clks), .mux_clks = top_mux_clks, .nr_mux_clks = ARRAY_SIZE(top_mux_clks), .div_clks = top_div_clks, .nr_div_clks = ARRAY_SIZE(top_div_clks), .gate_clks = top_gate_clks, .nr_gate_clks = ARRAY_SIZE(top_gate_clks), .nr_clk_ids = CLKS_NR_TOP, .clk_regs = top_clk_regs, .nr_clk_regs = ARRAY_SIZE(top_clk_regs), }; static void __init exynos850_cmu_top_init(struct device_node *np) { exynos_arm64_register_cmu(NULL, np, &top_cmu_info); } /* Register CMU_TOP early, as it's a dependency for other early domains */ CLK_OF_DECLARE(exynos850_cmu_top, "samsung,exynos850-cmu-top", exynos850_cmu_top_init); /* ---- CMU_APM ------------------------------------------------------------- */ /* Register Offset definitions for CMU_APM (0x11800000) */ #define PLL_CON0_MUX_CLKCMU_APM_BUS_USER 0x0600 #define PLL_CON0_MUX_CLK_RCO_APM_I3C_USER 0x0610 #define PLL_CON0_MUX_CLK_RCO_APM_USER 0x0620 #define PLL_CON0_MUX_DLL_USER 0x0630 #define CLK_CON_MUX_MUX_CLKCMU_CHUB_BUS 0x1000 #define CLK_CON_MUX_MUX_CLK_APM_BUS 0x1004 #define CLK_CON_MUX_MUX_CLK_APM_I3C 0x1008 #define CLK_CON_DIV_CLKCMU_CHUB_BUS 0x1800 #define CLK_CON_DIV_DIV_CLK_APM_BUS 0x1804 #define CLK_CON_DIV_DIV_CLK_APM_I3C 0x1808 #define CLK_CON_GAT_CLKCMU_CMGP_BUS 0x2000 #define CLK_CON_GAT_GATE_CLKCMU_CHUB_BUS 0x2014 #define CLK_CON_GAT_GOUT_APM_APBIF_GPIO_ALIVE_PCLK 0x2018 #define CLK_CON_GAT_GOUT_APM_APBIF_PMU_ALIVE_PCLK 0x2020 #define CLK_CON_GAT_GOUT_APM_APBIF_RTC_PCLK 0x2024 #define CLK_CON_GAT_GOUT_APM_APBIF_TOP_RTC_PCLK 0x2028 #define CLK_CON_GAT_GOUT_APM_I3C_APM_PMIC_I_PCLK 0x2034 #define CLK_CON_GAT_GOUT_APM_I3C_APM_PMIC_I_SCLK 0x2038 #define CLK_CON_GAT_GOUT_APM_SPEEDY_APM_PCLK 0x20bc #define CLK_CON_GAT_GOUT_APM_SYSREG_APM_PCLK 0x20c0 static const unsigned long apm_clk_regs[] __initconst = { PLL_CON0_MUX_CLKCMU_APM_BUS_USER, PLL_CON0_MUX_CLK_RCO_APM_I3C_USER, PLL_CON0_MUX_CLK_RCO_APM_USER, PLL_CON0_MUX_DLL_USER, CLK_CON_MUX_MUX_CLKCMU_CHUB_BUS, CLK_CON_MUX_MUX_CLK_APM_BUS, CLK_CON_MUX_MUX_CLK_APM_I3C, CLK_CON_DIV_CLKCMU_CHUB_BUS, CLK_CON_DIV_DIV_CLK_APM_BUS, CLK_CON_DIV_DIV_CLK_APM_I3C, CLK_CON_GAT_CLKCMU_CMGP_BUS, CLK_CON_GAT_GATE_CLKCMU_CHUB_BUS, CLK_CON_GAT_GOUT_APM_APBIF_GPIO_ALIVE_PCLK, CLK_CON_GAT_GOUT_APM_APBIF_PMU_ALIVE_PCLK, CLK_CON_GAT_GOUT_APM_APBIF_RTC_PCLK, CLK_CON_GAT_GOUT_APM_APBIF_TOP_RTC_PCLK, CLK_CON_GAT_GOUT_APM_I3C_APM_PMIC_I_PCLK, CLK_CON_GAT_GOUT_APM_I3C_APM_PMIC_I_SCLK, CLK_CON_GAT_GOUT_APM_SPEEDY_APM_PCLK, CLK_CON_GAT_GOUT_APM_SYSREG_APM_PCLK, }; /* List of parent clocks for Muxes in CMU_APM */ PNAME(mout_apm_bus_user_p) = { "oscclk_rco_apm", "dout_clkcmu_apm_bus" }; PNAME(mout_rco_apm_i3c_user_p) = { "oscclk_rco_apm", "clk_rco_i3c_pmic" }; PNAME(mout_rco_apm_user_p) = { "oscclk_rco_apm", "clk_rco_apm__alv" }; PNAME(mout_dll_user_p) = { "oscclk_rco_apm", "clk_dll_dco" }; PNAME(mout_clkcmu_chub_bus_p) = { "mout_apm_bus_user", "mout_dll_user" }; PNAME(mout_apm_bus_p) = { "mout_rco_apm_user", "mout_apm_bus_user", "mout_dll_user", "oscclk_rco_apm" }; PNAME(mout_apm_i3c_p) = { "dout_apm_i3c", "mout_rco_apm_i3c_user" }; static const struct samsung_fixed_rate_clock apm_fixed_clks[] __initconst = { FRATE(CLK_RCO_I3C_PMIC, "clk_rco_i3c_pmic", NULL, 0, 491520000), FRATE(OSCCLK_RCO_APM, "oscclk_rco_apm", NULL, 0, 24576000), FRATE(CLK_RCO_APM__ALV, "clk_rco_apm__alv", NULL, 0, 49152000), FRATE(CLK_DLL_DCO, "clk_dll_dco", NULL, 0, 360000000), }; static const struct samsung_mux_clock apm_mux_clks[] __initconst = { MUX(CLK_MOUT_APM_BUS_USER, "mout_apm_bus_user", mout_apm_bus_user_p, PLL_CON0_MUX_CLKCMU_APM_BUS_USER, 4, 1), MUX(CLK_MOUT_RCO_APM_I3C_USER, "mout_rco_apm_i3c_user", mout_rco_apm_i3c_user_p, PLL_CON0_MUX_CLK_RCO_APM_I3C_USER, 4, 1), MUX(CLK_MOUT_RCO_APM_USER, "mout_rco_apm_user", mout_rco_apm_user_p, PLL_CON0_MUX_CLK_RCO_APM_USER, 4, 1), MUX(CLK_MOUT_DLL_USER, "mout_dll_user", mout_dll_user_p, PLL_CON0_MUX_DLL_USER, 4, 1), MUX(CLK_MOUT_CLKCMU_CHUB_BUS, "mout_clkcmu_chub_bus", mout_clkcmu_chub_bus_p, CLK_CON_MUX_MUX_CLKCMU_CHUB_BUS, 0, 1), MUX(CLK_MOUT_APM_BUS, "mout_apm_bus", mout_apm_bus_p, CLK_CON_MUX_MUX_CLK_APM_BUS, 0, 2), MUX(CLK_MOUT_APM_I3C, "mout_apm_i3c", mout_apm_i3c_p, CLK_CON_MUX_MUX_CLK_APM_I3C, 0, 1), }; static const struct samsung_div_clock apm_div_clks[] __initconst = { DIV(CLK_DOUT_CLKCMU_CHUB_BUS, "dout_clkcmu_chub_bus", "gout_clkcmu_chub_bus", CLK_CON_DIV_CLKCMU_CHUB_BUS, 0, 3), DIV(CLK_DOUT_APM_BUS, "dout_apm_bus", "mout_apm_bus", CLK_CON_DIV_DIV_CLK_APM_BUS, 0, 3), DIV(CLK_DOUT_APM_I3C, "dout_apm_i3c", "mout_apm_bus", CLK_CON_DIV_DIV_CLK_APM_I3C, 0, 3), }; static const struct samsung_gate_clock apm_gate_clks[] __initconst = { GATE(CLK_GOUT_CLKCMU_CMGP_BUS, "gout_clkcmu_cmgp_bus", "dout_apm_bus", CLK_CON_GAT_CLKCMU_CMGP_BUS, 21, CLK_SET_RATE_PARENT, 0), GATE(CLK_GOUT_CLKCMU_CHUB_BUS, "gout_clkcmu_chub_bus", "mout_clkcmu_chub_bus", CLK_CON_GAT_GATE_CLKCMU_CHUB_BUS, 21, 0, 0), GATE(CLK_GOUT_RTC_PCLK, "gout_rtc_pclk", "dout_apm_bus", CLK_CON_GAT_GOUT_APM_APBIF_RTC_PCLK, 21, 0, 0), GATE(CLK_GOUT_TOP_RTC_PCLK, "gout_top_rtc_pclk", "dout_apm_bus", CLK_CON_GAT_GOUT_APM_APBIF_TOP_RTC_PCLK, 21, 0, 0), GATE(CLK_GOUT_I3C_PCLK, "gout_i3c_pclk", "dout_apm_bus", CLK_CON_GAT_GOUT_APM_I3C_APM_PMIC_I_PCLK, 21, 0, 0), GATE(CLK_GOUT_I3C_SCLK, "gout_i3c_sclk", "mout_apm_i3c", CLK_CON_GAT_GOUT_APM_I3C_APM_PMIC_I_SCLK, 21, 0, 0), GATE(CLK_GOUT_SPEEDY_PCLK, "gout_speedy_pclk", "dout_apm_bus", CLK_CON_GAT_GOUT_APM_SPEEDY_APM_PCLK, 21, 0, 0), /* TODO: Should be enabled in GPIO driver (or made CLK_IS_CRITICAL) */ GATE(CLK_GOUT_GPIO_ALIVE_PCLK, "gout_gpio_alive_pclk", "dout_apm_bus", CLK_CON_GAT_GOUT_APM_APBIF_GPIO_ALIVE_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_PMU_ALIVE_PCLK, "gout_pmu_alive_pclk", "dout_apm_bus", CLK_CON_GAT_GOUT_APM_APBIF_PMU_ALIVE_PCLK, 21, CLK_IS_CRITICAL, 0), GATE(CLK_GOUT_SYSREG_APM_PCLK, "gout_sysreg_apm_pclk", "dout_apm_bus", CLK_CON_GAT_GOUT_APM_SYSREG_APM_PCLK, 21, 0, 0), }; static const struct samsung_cmu_info apm_cmu_info __initconst = { .mux_clks = apm_mux_clks, .nr_mux_clks = ARRAY_SIZE(apm_mux_clks), .div_clks = apm_div_clks, .nr_div_clks = ARRAY_SIZE(apm_div_clks), .gate_clks = apm_gate_clks, .nr_gate_clks = ARRAY_SIZE(apm_gate_clks), .fixed_clks = apm_fixed_clks, .nr_fixed_clks = ARRAY_SIZE(apm_fixed_clks), .nr_clk_ids = CLKS_NR_APM, .clk_regs = apm_clk_regs, .nr_clk_regs = ARRAY_SIZE(apm_clk_regs), .clk_name = "dout_clkcmu_apm_bus", }; /* ---- CMU_AUD ------------------------------------------------------------- */ #define PLL_LOCKTIME_PLL_AUD 0x0000 #define PLL_CON0_PLL_AUD 0x0100 #define PLL_CON3_PLL_AUD 0x010c #define PLL_CON0_MUX_CLKCMU_AUD_CPU_USER 0x0600 #define PLL_CON0_MUX_TICK_USB_USER 0x0610 #define CLK_CON_MUX_MUX_CLK_AUD_CPU 0x1000 #define CLK_CON_MUX_MUX_CLK_AUD_CPU_HCH 0x1004 #define CLK_CON_MUX_MUX_CLK_AUD_FM 0x1008 #define CLK_CON_MUX_MUX_CLK_AUD_UAIF0 0x100c #define CLK_CON_MUX_MUX_CLK_AUD_UAIF1 0x1010 #define CLK_CON_MUX_MUX_CLK_AUD_UAIF2 0x1014 #define CLK_CON_MUX_MUX_CLK_AUD_UAIF3 0x1018 #define CLK_CON_MUX_MUX_CLK_AUD_UAIF4 0x101c #define CLK_CON_MUX_MUX_CLK_AUD_UAIF5 0x1020 #define CLK_CON_MUX_MUX_CLK_AUD_UAIF6 0x1024 #define CLK_CON_DIV_DIV_CLK_AUD_MCLK 0x1800 #define CLK_CON_DIV_DIV_CLK_AUD_AUDIF 0x1804 #define CLK_CON_DIV_DIV_CLK_AUD_BUSD 0x1808 #define CLK_CON_DIV_DIV_CLK_AUD_BUSP 0x180c #define CLK_CON_DIV_DIV_CLK_AUD_CNT 0x1810 #define CLK_CON_DIV_DIV_CLK_AUD_CPU 0x1814 #define CLK_CON_DIV_DIV_CLK_AUD_CPU_ACLK 0x1818 #define CLK_CON_DIV_DIV_CLK_AUD_CPU_PCLKDBG 0x181c #define CLK_CON_DIV_DIV_CLK_AUD_FM 0x1820 #define CLK_CON_DIV_DIV_CLK_AUD_FM_SPDY 0x1824 #define CLK_CON_DIV_DIV_CLK_AUD_UAIF0 0x1828 #define CLK_CON_DIV_DIV_CLK_AUD_UAIF1 0x182c #define CLK_CON_DIV_DIV_CLK_AUD_UAIF2 0x1830 #define CLK_CON_DIV_DIV_CLK_AUD_UAIF3 0x1834 #define CLK_CON_DIV_DIV_CLK_AUD_UAIF4 0x1838 #define CLK_CON_DIV_DIV_CLK_AUD_UAIF5 0x183c #define CLK_CON_DIV_DIV_CLK_AUD_UAIF6 0x1840 #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_CNT 0x2000 #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF0 0x2004 #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF1 0x2008 #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF2 0x200c #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF3 0x2010 #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF4 0x2014 #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF5 0x2018 #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF6 0x201c #define CLK_CON_GAT_CLK_AUD_CMU_AUD_PCLK 0x2020 #define CLK_CON_GAT_GOUT_AUD_ABOX_ACLK 0x2048 #define CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_SPDY 0x204c #define CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_ASB 0x2050 #define CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_CA32 0x2054 #define CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_DAP 0x2058 #define CLK_CON_GAT_GOUT_AUD_CODEC_MCLK 0x206c #define CLK_CON_GAT_GOUT_AUD_TZPC_PCLK 0x2070 #define CLK_CON_GAT_GOUT_AUD_GPIO_PCLK 0x2074 #define CLK_CON_GAT_GOUT_AUD_PPMU_ACLK 0x2088 #define CLK_CON_GAT_GOUT_AUD_PPMU_PCLK 0x208c #define CLK_CON_GAT_GOUT_AUD_SYSMMU_CLK_S1 0x20b4 #define CLK_CON_GAT_GOUT_AUD_SYSREG_PCLK 0x20b8 #define CLK_CON_GAT_GOUT_AUD_WDT_PCLK 0x20bc static const unsigned long aud_clk_regs[] __initconst = { PLL_LOCKTIME_PLL_AUD, PLL_CON0_PLL_AUD, PLL_CON3_PLL_AUD, PLL_CON0_MUX_CLKCMU_AUD_CPU_USER, PLL_CON0_MUX_TICK_USB_USER, CLK_CON_MUX_MUX_CLK_AUD_CPU, CLK_CON_MUX_MUX_CLK_AUD_CPU_HCH, CLK_CON_MUX_MUX_CLK_AUD_FM, CLK_CON_MUX_MUX_CLK_AUD_UAIF0, CLK_CON_MUX_MUX_CLK_AUD_UAIF1, CLK_CON_MUX_MUX_CLK_AUD_UAIF2, CLK_CON_MUX_MUX_CLK_AUD_UAIF3, CLK_CON_MUX_MUX_CLK_AUD_UAIF4, CLK_CON_MUX_MUX_CLK_AUD_UAIF5, CLK_CON_MUX_MUX_CLK_AUD_UAIF6, CLK_CON_DIV_DIV_CLK_AUD_MCLK, CLK_CON_DIV_DIV_CLK_AUD_AUDIF, CLK_CON_DIV_DIV_CLK_AUD_BUSD, CLK_CON_DIV_DIV_CLK_AUD_BUSP, CLK_CON_DIV_DIV_CLK_AUD_CNT, CLK_CON_DIV_DIV_CLK_AUD_CPU, CLK_CON_DIV_DIV_CLK_AUD_CPU_ACLK, CLK_CON_DIV_DIV_CLK_AUD_CPU_PCLKDBG, CLK_CON_DIV_DIV_CLK_AUD_FM, CLK_CON_DIV_DIV_CLK_AUD_FM_SPDY, CLK_CON_DIV_DIV_CLK_AUD_UAIF0, CLK_CON_DIV_DIV_CLK_AUD_UAIF1, CLK_CON_DIV_DIV_CLK_AUD_UAIF2, CLK_CON_DIV_DIV_CLK_AUD_UAIF3, CLK_CON_DIV_DIV_CLK_AUD_UAIF4, CLK_CON_DIV_DIV_CLK_AUD_UAIF5, CLK_CON_DIV_DIV_CLK_AUD_UAIF6, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_CNT, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF0, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF1, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF2, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF3, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF4, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF5, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF6, CLK_CON_GAT_CLK_AUD_CMU_AUD_PCLK, CLK_CON_GAT_GOUT_AUD_ABOX_ACLK, CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_SPDY, CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_ASB, CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_CA32, CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_DAP, CLK_CON_GAT_GOUT_AUD_CODEC_MCLK, CLK_CON_GAT_GOUT_AUD_TZPC_PCLK, CLK_CON_GAT_GOUT_AUD_GPIO_PCLK, CLK_CON_GAT_GOUT_AUD_PPMU_ACLK, CLK_CON_GAT_GOUT_AUD_PPMU_PCLK, CLK_CON_GAT_GOUT_AUD_SYSMMU_CLK_S1, CLK_CON_GAT_GOUT_AUD_SYSREG_PCLK, CLK_CON_GAT_GOUT_AUD_WDT_PCLK, }; /* List of parent clocks for Muxes in CMU_AUD */ PNAME(mout_aud_pll_p) = { "oscclk", "fout_aud_pll" }; PNAME(mout_aud_cpu_user_p) = { "oscclk", "dout_aud" }; PNAME(mout_aud_cpu_p) = { "dout_aud_cpu", "mout_aud_cpu_user" }; PNAME(mout_aud_cpu_hch_p) = { "mout_aud_cpu", "oscclk" }; PNAME(mout_aud_uaif0_p) = { "dout_aud_uaif0", "ioclk_audiocdclk0" }; PNAME(mout_aud_uaif1_p) = { "dout_aud_uaif1", "ioclk_audiocdclk1" }; PNAME(mout_aud_uaif2_p) = { "dout_aud_uaif2", "ioclk_audiocdclk2" }; PNAME(mout_aud_uaif3_p) = { "dout_aud_uaif3", "ioclk_audiocdclk3" }; PNAME(mout_aud_uaif4_p) = { "dout_aud_uaif4", "ioclk_audiocdclk4" }; PNAME(mout_aud_uaif5_p) = { "dout_aud_uaif5", "ioclk_audiocdclk5" }; PNAME(mout_aud_uaif6_p) = { "dout_aud_uaif6", "ioclk_audiocdclk6" }; PNAME(mout_aud_tick_usb_user_p) = { "oscclk", "tick_usb" }; PNAME(mout_aud_fm_p) = { "oscclk", "dout_aud_fm_spdy" }; /* * Do not provide PLL table to PLL_AUD, as MANUAL_PLL_CTRL bit is not set * for that PLL by default, so set_rate operation would fail. */ static const struct samsung_pll_clock aud_pll_clks[] __initconst = { PLL(pll_0831x, CLK_FOUT_AUD_PLL, "fout_aud_pll", "oscclk", PLL_LOCKTIME_PLL_AUD, PLL_CON3_PLL_AUD, NULL), }; static const struct samsung_fixed_rate_clock aud_fixed_clks[] __initconst = { FRATE(IOCLK_AUDIOCDCLK0, "ioclk_audiocdclk0", NULL, 0, 25000000), FRATE(IOCLK_AUDIOCDCLK1, "ioclk_audiocdclk1", NULL, 0, 25000000), FRATE(IOCLK_AUDIOCDCLK2, "ioclk_audiocdclk2", NULL, 0, 25000000), FRATE(IOCLK_AUDIOCDCLK3, "ioclk_audiocdclk3", NULL, 0, 25000000), FRATE(IOCLK_AUDIOCDCLK4, "ioclk_audiocdclk4", NULL, 0, 25000000), FRATE(IOCLK_AUDIOCDCLK5, "ioclk_audiocdclk5", NULL, 0, 25000000), FRATE(IOCLK_AUDIOCDCLK6, "ioclk_audiocdclk6", NULL, 0, 25000000), FRATE(TICK_USB, "tick_usb", NULL, 0, 60000000), }; static const struct samsung_mux_clock aud_mux_clks[] __initconst = { MUX(CLK_MOUT_AUD_PLL, "mout_aud_pll", mout_aud_pll_p, PLL_CON0_PLL_AUD, 4, 1), MUX(CLK_MOUT_AUD_CPU_USER, "mout_aud_cpu_user", mout_aud_cpu_user_p, PLL_CON0_MUX_CLKCMU_AUD_CPU_USER, 4, 1), MUX(CLK_MOUT_AUD_TICK_USB_USER, "mout_aud_tick_usb_user", mout_aud_tick_usb_user_p, PLL_CON0_MUX_TICK_USB_USER, 4, 1), MUX(CLK_MOUT_AUD_CPU, "mout_aud_cpu", mout_aud_cpu_p, CLK_CON_MUX_MUX_CLK_AUD_CPU, 0, 1), MUX(CLK_MOUT_AUD_CPU_HCH, "mout_aud_cpu_hch", mout_aud_cpu_hch_p, CLK_CON_MUX_MUX_CLK_AUD_CPU_HCH, 0, 1), MUX(CLK_MOUT_AUD_UAIF0, "mout_aud_uaif0", mout_aud_uaif0_p, CLK_CON_MUX_MUX_CLK_AUD_UAIF0, 0, 1), MUX(CLK_MOUT_AUD_UAIF1, "mout_aud_uaif1", mout_aud_uaif1_p, CLK_CON_MUX_MUX_CLK_AUD_UAIF1, 0, 1), MUX(CLK_MOUT_AUD_UAIF2, "mout_aud_uaif2", mout_aud_uaif2_p, CLK_CON_MUX_MUX_CLK_AUD_UAIF2, 0, 1), MUX(CLK_MOUT_AUD_UAIF3, "mout_aud_uaif3", mout_aud_uaif3_p, CLK_CON_MUX_MUX_CLK_AUD_UAIF3, 0, 1), MUX(CLK_MOUT_AUD_UAIF4, "mout_aud_uaif4", mout_aud_uaif4_p, CLK_CON_MUX_MUX_CLK_AUD_UAIF4, 0, 1), MUX(CLK_MOUT_AUD_UAIF5, "mout_aud_uaif5", mout_aud_uaif5_p, CLK_CON_MUX_MUX_CLK_AUD_UAIF5, 0, 1), MUX(CLK_MOUT_AUD_UAIF6, "mout_aud_uaif6", mout_aud_uaif6_p, CLK_CON_MUX_MUX_CLK_AUD_UAIF6, 0, 1), MUX(CLK_MOUT_AUD_FM, "mout_aud_fm", mout_aud_fm_p, CLK_CON_MUX_MUX_CLK_AUD_FM, 0, 1), }; static const struct samsung_div_clock aud_div_clks[] __initconst = { DIV(CLK_DOUT_AUD_CPU, "dout_aud_cpu", "mout_aud_pll", CLK_CON_DIV_DIV_CLK_AUD_CPU, 0, 4), DIV(CLK_DOUT_AUD_BUSD, "dout_aud_busd", "mout_aud_pll", CLK_CON_DIV_DIV_CLK_AUD_BUSD, 0, 4), DIV(CLK_DOUT_AUD_BUSP, "dout_aud_busp", "mout_aud_pll", CLK_CON_DIV_DIV_CLK_AUD_BUSP, 0, 4), DIV(CLK_DOUT_AUD_AUDIF, "dout_aud_audif", "mout_aud_pll", CLK_CON_DIV_DIV_CLK_AUD_AUDIF, 0, 9), DIV(CLK_DOUT_AUD_CPU_ACLK, "dout_aud_cpu_aclk", "mout_aud_cpu_hch", CLK_CON_DIV_DIV_CLK_AUD_CPU_ACLK, 0, 3), DIV(CLK_DOUT_AUD_CPU_PCLKDBG, "dout_aud_cpu_pclkdbg", "mout_aud_cpu_hch", CLK_CON_DIV_DIV_CLK_AUD_CPU_PCLKDBG, 0, 3), DIV(CLK_DOUT_AUD_MCLK, "dout_aud_mclk", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_MCLK, 0, 2), DIV(CLK_DOUT_AUD_CNT, "dout_aud_cnt", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_CNT, 0, 10), DIV(CLK_DOUT_AUD_UAIF0, "dout_aud_uaif0", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_UAIF0, 0, 10), DIV(CLK_DOUT_AUD_UAIF1, "dout_aud_uaif1", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_UAIF1, 0, 10), DIV(CLK_DOUT_AUD_UAIF2, "dout_aud_uaif2", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_UAIF2, 0, 10), DIV(CLK_DOUT_AUD_UAIF3, "dout_aud_uaif3", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_UAIF3, 0, 10), DIV(CLK_DOUT_AUD_UAIF4, "dout_aud_uaif4", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_UAIF4, 0, 10), DIV(CLK_DOUT_AUD_UAIF5, "dout_aud_uaif5", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_UAIF5, 0, 10), DIV(CLK_DOUT_AUD_UAIF6, "dout_aud_uaif6", "dout_aud_audif", CLK_CON_DIV_DIV_CLK_AUD_UAIF6, 0, 10), DIV(CLK_DOUT_AUD_FM_SPDY, "dout_aud_fm_spdy", "mout_aud_tick_usb_user", CLK_CON_DIV_DIV_CLK_AUD_FM_SPDY, 0, 1), DIV(CLK_DOUT_AUD_FM, "dout_aud_fm", "mout_aud_fm", CLK_CON_DIV_DIV_CLK_AUD_FM, 0, 10), }; static const struct samsung_gate_clock aud_gate_clks[] __initconst = { GATE(CLK_GOUT_AUD_CMU_AUD_PCLK, "gout_aud_cmu_aud_pclk", "dout_aud_busd", CLK_CON_GAT_CLK_AUD_CMU_AUD_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_AUD_CA32_CCLK, "gout_aud_ca32_cclk", "mout_aud_cpu_hch", CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_CA32, 21, 0, 0), GATE(CLK_GOUT_AUD_ASB_CCLK, "gout_aud_asb_cclk", "dout_aud_cpu_aclk", CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_ASB, 21, 0, 0), GATE(CLK_GOUT_AUD_DAP_CCLK, "gout_aud_dap_cclk", "dout_aud_cpu_pclkdbg", CLK_CON_GAT_GOUT_AUD_ABOX_CCLK_DAP, 21, 0, 0), /* TODO: Should be enabled in ABOX driver (or made CLK_IS_CRITICAL) */ GATE(CLK_GOUT_AUD_ABOX_ACLK, "gout_aud_abox_aclk", "dout_aud_busd", CLK_CON_GAT_GOUT_AUD_ABOX_ACLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_AUD_GPIO_PCLK, "gout_aud_gpio_pclk", "dout_aud_busd", CLK_CON_GAT_GOUT_AUD_GPIO_PCLK, 21, 0, 0), GATE(CLK_GOUT_AUD_PPMU_ACLK, "gout_aud_ppmu_aclk", "dout_aud_busd", CLK_CON_GAT_GOUT_AUD_PPMU_ACLK, 21, 0, 0), GATE(CLK_GOUT_AUD_PPMU_PCLK, "gout_aud_ppmu_pclk", "dout_aud_busd", CLK_CON_GAT_GOUT_AUD_PPMU_PCLK, 21, 0, 0), GATE(CLK_GOUT_AUD_SYSMMU_CLK, "gout_aud_sysmmu_clk", "dout_aud_busd", CLK_CON_GAT_GOUT_AUD_SYSMMU_CLK_S1, 21, 0, 0), GATE(CLK_GOUT_AUD_SYSREG_PCLK, "gout_aud_sysreg_pclk", "dout_aud_busd", CLK_CON_GAT_GOUT_AUD_SYSREG_PCLK, 21, 0, 0), GATE(CLK_GOUT_AUD_WDT_PCLK, "gout_aud_wdt_pclk", "dout_aud_busd", CLK_CON_GAT_GOUT_AUD_WDT_PCLK, 21, 0, 0), GATE(CLK_GOUT_AUD_TZPC_PCLK, "gout_aud_tzpc_pclk", "dout_aud_busp", CLK_CON_GAT_GOUT_AUD_TZPC_PCLK, 21, 0, 0), GATE(CLK_GOUT_AUD_CODEC_MCLK, "gout_aud_codec_mclk", "dout_aud_mclk", CLK_CON_GAT_GOUT_AUD_CODEC_MCLK, 21, 0, 0), GATE(CLK_GOUT_AUD_CNT_BCLK, "gout_aud_cnt_bclk", "dout_aud_cnt", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_CNT, 21, 0, 0), GATE(CLK_GOUT_AUD_UAIF0_BCLK, "gout_aud_uaif0_bclk", "mout_aud_uaif0", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF0, 21, 0, 0), GATE(CLK_GOUT_AUD_UAIF1_BCLK, "gout_aud_uaif1_bclk", "mout_aud_uaif1", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF1, 21, 0, 0), GATE(CLK_GOUT_AUD_UAIF2_BCLK, "gout_aud_uaif2_bclk", "mout_aud_uaif2", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF2, 21, 0, 0), GATE(CLK_GOUT_AUD_UAIF3_BCLK, "gout_aud_uaif3_bclk", "mout_aud_uaif3", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF3, 21, 0, 0), GATE(CLK_GOUT_AUD_UAIF4_BCLK, "gout_aud_uaif4_bclk", "mout_aud_uaif4", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF4, 21, 0, 0), GATE(CLK_GOUT_AUD_UAIF5_BCLK, "gout_aud_uaif5_bclk", "mout_aud_uaif5", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF5, 21, 0, 0), GATE(CLK_GOUT_AUD_UAIF6_BCLK, "gout_aud_uaif6_bclk", "mout_aud_uaif6", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_UAIF6, 21, 0, 0), GATE(CLK_GOUT_AUD_SPDY_BCLK, "gout_aud_spdy_bclk", "dout_aud_fm", CLK_CON_GAT_GOUT_AUD_ABOX_BCLK_SPDY, 21, 0, 0), }; static const struct samsung_cmu_info aud_cmu_info __initconst = { .pll_clks = aud_pll_clks, .nr_pll_clks = ARRAY_SIZE(aud_pll_clks), .mux_clks = aud_mux_clks, .nr_mux_clks = ARRAY_SIZE(aud_mux_clks), .div_clks = aud_div_clks, .nr_div_clks = ARRAY_SIZE(aud_div_clks), .gate_clks = aud_gate_clks, .nr_gate_clks = ARRAY_SIZE(aud_gate_clks), .fixed_clks = aud_fixed_clks, .nr_fixed_clks = ARRAY_SIZE(aud_fixed_clks), .nr_clk_ids = CLKS_NR_AUD, .clk_regs = aud_clk_regs, .nr_clk_regs = ARRAY_SIZE(aud_clk_regs), .clk_name = "dout_aud", }; /* ---- CMU_CMGP ------------------------------------------------------------ */ /* Register Offset definitions for CMU_CMGP (0x11c00000) */ #define CLK_CON_MUX_CLK_CMGP_ADC 0x1000 #define CLK_CON_MUX_MUX_CLK_CMGP_USI_CMGP0 0x1004 #define CLK_CON_MUX_MUX_CLK_CMGP_USI_CMGP1 0x1008 #define CLK_CON_DIV_DIV_CLK_CMGP_ADC 0x1800 #define CLK_CON_DIV_DIV_CLK_CMGP_USI_CMGP0 0x1804 #define CLK_CON_DIV_DIV_CLK_CMGP_USI_CMGP1 0x1808 #define CLK_CON_GAT_GOUT_CMGP_ADC_PCLK_S0 0x200c #define CLK_CON_GAT_GOUT_CMGP_ADC_PCLK_S1 0x2010 #define CLK_CON_GAT_GOUT_CMGP_GPIO_PCLK 0x2018 #define CLK_CON_GAT_GOUT_CMGP_SYSREG_CMGP_PCLK 0x2040 #define CLK_CON_GAT_GOUT_CMGP_USI_CMGP0_IPCLK 0x2044 #define CLK_CON_GAT_GOUT_CMGP_USI_CMGP0_PCLK 0x2048 #define CLK_CON_GAT_GOUT_CMGP_USI_CMGP1_IPCLK 0x204c #define CLK_CON_GAT_GOUT_CMGP_USI_CMGP1_PCLK 0x2050 static const unsigned long cmgp_clk_regs[] __initconst = { CLK_CON_MUX_CLK_CMGP_ADC, CLK_CON_MUX_MUX_CLK_CMGP_USI_CMGP0, CLK_CON_MUX_MUX_CLK_CMGP_USI_CMGP1, CLK_CON_DIV_DIV_CLK_CMGP_ADC, CLK_CON_DIV_DIV_CLK_CMGP_USI_CMGP0, CLK_CON_DIV_DIV_CLK_CMGP_USI_CMGP1, CLK_CON_GAT_GOUT_CMGP_ADC_PCLK_S0, CLK_CON_GAT_GOUT_CMGP_ADC_PCLK_S1, CLK_CON_GAT_GOUT_CMGP_GPIO_PCLK, CLK_CON_GAT_GOUT_CMGP_SYSREG_CMGP_PCLK, CLK_CON_GAT_GOUT_CMGP_USI_CMGP0_IPCLK, CLK_CON_GAT_GOUT_CMGP_USI_CMGP0_PCLK, CLK_CON_GAT_GOUT_CMGP_USI_CMGP1_IPCLK, CLK_CON_GAT_GOUT_CMGP_USI_CMGP1_PCLK, }; /* List of parent clocks for Muxes in CMU_CMGP */ PNAME(mout_cmgp_usi0_p) = { "clk_rco_cmgp", "gout_clkcmu_cmgp_bus" }; PNAME(mout_cmgp_usi1_p) = { "clk_rco_cmgp", "gout_clkcmu_cmgp_bus" }; PNAME(mout_cmgp_adc_p) = { "oscclk", "dout_cmgp_adc" }; static const struct samsung_fixed_rate_clock cmgp_fixed_clks[] __initconst = { FRATE(CLK_RCO_CMGP, "clk_rco_cmgp", NULL, 0, 49152000), }; static const struct samsung_mux_clock cmgp_mux_clks[] __initconst = { MUX(CLK_MOUT_CMGP_ADC, "mout_cmgp_adc", mout_cmgp_adc_p, CLK_CON_MUX_CLK_CMGP_ADC, 0, 1), MUX_F(CLK_MOUT_CMGP_USI0, "mout_cmgp_usi0", mout_cmgp_usi0_p, CLK_CON_MUX_MUX_CLK_CMGP_USI_CMGP0, 0, 1, CLK_SET_RATE_PARENT, 0), MUX_F(CLK_MOUT_CMGP_USI1, "mout_cmgp_usi1", mout_cmgp_usi1_p, CLK_CON_MUX_MUX_CLK_CMGP_USI_CMGP1, 0, 1, CLK_SET_RATE_PARENT, 0), }; static const struct samsung_div_clock cmgp_div_clks[] __initconst = { DIV(CLK_DOUT_CMGP_ADC, "dout_cmgp_adc", "gout_clkcmu_cmgp_bus", CLK_CON_DIV_DIV_CLK_CMGP_ADC, 0, 4), DIV_F(CLK_DOUT_CMGP_USI0, "dout_cmgp_usi0", "mout_cmgp_usi0", CLK_CON_DIV_DIV_CLK_CMGP_USI_CMGP0, 0, 5, CLK_SET_RATE_PARENT, 0), DIV_F(CLK_DOUT_CMGP_USI1, "dout_cmgp_usi1", "mout_cmgp_usi1", CLK_CON_DIV_DIV_CLK_CMGP_USI_CMGP1, 0, 5, CLK_SET_RATE_PARENT, 0), }; static const struct samsung_gate_clock cmgp_gate_clks[] __initconst = { GATE(CLK_GOUT_CMGP_ADC_S0_PCLK, "gout_adc_s0_pclk", "gout_clkcmu_cmgp_bus", CLK_CON_GAT_GOUT_CMGP_ADC_PCLK_S0, 21, 0, 0), GATE(CLK_GOUT_CMGP_ADC_S1_PCLK, "gout_adc_s1_pclk", "gout_clkcmu_cmgp_bus", CLK_CON_GAT_GOUT_CMGP_ADC_PCLK_S1, 21, 0, 0), /* TODO: Should be enabled in GPIO driver (or made CLK_IS_CRITICAL) */ GATE(CLK_GOUT_CMGP_GPIO_PCLK, "gout_gpio_cmgp_pclk", "gout_clkcmu_cmgp_bus", CLK_CON_GAT_GOUT_CMGP_GPIO_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CMGP_USI0_IPCLK, "gout_cmgp_usi0_ipclk", "dout_cmgp_usi0", CLK_CON_GAT_GOUT_CMGP_USI_CMGP0_IPCLK, 21, CLK_SET_RATE_PARENT, 0), GATE(CLK_GOUT_CMGP_USI0_PCLK, "gout_cmgp_usi0_pclk", "gout_clkcmu_cmgp_bus", CLK_CON_GAT_GOUT_CMGP_USI_CMGP0_PCLK, 21, 0, 0), GATE(CLK_GOUT_CMGP_USI1_IPCLK, "gout_cmgp_usi1_ipclk", "dout_cmgp_usi1", CLK_CON_GAT_GOUT_CMGP_USI_CMGP1_IPCLK, 21, CLK_SET_RATE_PARENT, 0), GATE(CLK_GOUT_CMGP_USI1_PCLK, "gout_cmgp_usi1_pclk", "gout_clkcmu_cmgp_bus", CLK_CON_GAT_GOUT_CMGP_USI_CMGP1_PCLK, 21, 0, 0), GATE(CLK_GOUT_SYSREG_CMGP_PCLK, "gout_sysreg_cmgp_pclk", "gout_clkcmu_cmgp_bus", CLK_CON_GAT_GOUT_CMGP_SYSREG_CMGP_PCLK, 21, 0, 0), }; static const struct samsung_cmu_info cmgp_cmu_info __initconst = { .mux_clks = cmgp_mux_clks, .nr_mux_clks = ARRAY_SIZE(cmgp_mux_clks), .div_clks = cmgp_div_clks, .nr_div_clks = ARRAY_SIZE(cmgp_div_clks), .gate_clks = cmgp_gate_clks, .nr_gate_clks = ARRAY_SIZE(cmgp_gate_clks), .fixed_clks = cmgp_fixed_clks, .nr_fixed_clks = ARRAY_SIZE(cmgp_fixed_clks), .nr_clk_ids = CLKS_NR_CMGP, .clk_regs = cmgp_clk_regs, .nr_clk_regs = ARRAY_SIZE(cmgp_clk_regs), .clk_name = "gout_clkcmu_cmgp_bus", }; /* ---- CMU_CPUCL0 ---------------------------------------------------------- */ /* Register Offset definitions for CMU_CPUCL0 (0x10900000) */ #define PLL_LOCKTIME_PLL_CPUCL0 0x0000 #define PLL_CON0_PLL_CPUCL0 0x0100 #define PLL_CON1_PLL_CPUCL0 0x0104 #define PLL_CON3_PLL_CPUCL0 0x010c #define PLL_CON0_MUX_CLKCMU_CPUCL0_DBG_USER 0x0600 #define PLL_CON0_MUX_CLKCMU_CPUCL0_SWITCH_USER 0x0610 #define CLK_CON_MUX_MUX_CLK_CPUCL0_PLL 0x100c #define CLK_CON_DIV_DIV_CLK_CLUSTER0_ACLK 0x1800 #define CLK_CON_DIV_DIV_CLK_CLUSTER0_ATCLK 0x1808 #define CLK_CON_DIV_DIV_CLK_CLUSTER0_PCLKDBG 0x180c #define CLK_CON_DIV_DIV_CLK_CLUSTER0_PERIPHCLK 0x1810 #define CLK_CON_DIV_DIV_CLK_CPUCL0_CMUREF 0x1814 #define CLK_CON_DIV_DIV_CLK_CPUCL0_CPU 0x1818 #define CLK_CON_DIV_DIV_CLK_CPUCL0_PCLK 0x181c #define CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_ATCLK 0x2000 #define CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_PCLK 0x2004 #define CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_PERIPHCLK 0x2008 #define CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_SCLK 0x200c #define CLK_CON_GAT_CLK_CPUCL0_CMU_CPUCL0_PCLK 0x2010 #define CLK_CON_GAT_GATE_CLK_CPUCL0_CPU 0x2020 static const unsigned long cpucl0_clk_regs[] __initconst = { PLL_LOCKTIME_PLL_CPUCL0, PLL_CON0_PLL_CPUCL0, PLL_CON1_PLL_CPUCL0, PLL_CON3_PLL_CPUCL0, PLL_CON0_MUX_CLKCMU_CPUCL0_DBG_USER, PLL_CON0_MUX_CLKCMU_CPUCL0_SWITCH_USER, CLK_CON_MUX_MUX_CLK_CPUCL0_PLL, CLK_CON_DIV_DIV_CLK_CLUSTER0_ACLK, CLK_CON_DIV_DIV_CLK_CLUSTER0_ATCLK, CLK_CON_DIV_DIV_CLK_CLUSTER0_PCLKDBG, CLK_CON_DIV_DIV_CLK_CLUSTER0_PERIPHCLK, CLK_CON_DIV_DIV_CLK_CPUCL0_CMUREF, CLK_CON_DIV_DIV_CLK_CPUCL0_CPU, CLK_CON_DIV_DIV_CLK_CPUCL0_PCLK, CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_ATCLK, CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_PCLK, CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_PERIPHCLK, CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_SCLK, CLK_CON_GAT_CLK_CPUCL0_CMU_CPUCL0_PCLK, CLK_CON_GAT_GATE_CLK_CPUCL0_CPU, }; /* List of parent clocks for Muxes in CMU_CPUCL0 */ PNAME(mout_pll_cpucl0_p) = { "oscclk", "fout_cpucl0_pll" }; PNAME(mout_cpucl0_switch_user_p) = { "oscclk", "dout_cpucl0_switch" }; PNAME(mout_cpucl0_dbg_user_p) = { "oscclk", "dout_cpucl0_dbg" }; PNAME(mout_cpucl0_pll_p) = { "mout_pll_cpucl0", "mout_cpucl0_switch_user" }; static const struct samsung_pll_rate_table cpu_pll_rates[] __initconst = { PLL_35XX_RATE(26 * MHZ, 2210000000U, 255, 3, 0), PLL_35XX_RATE(26 * MHZ, 2106000000U, 243, 3, 0), PLL_35XX_RATE(26 * MHZ, 2002000000U, 231, 3, 0), PLL_35XX_RATE(26 * MHZ, 1846000000U, 213, 3, 0), PLL_35XX_RATE(26 * MHZ, 1742000000U, 201, 3, 0), PLL_35XX_RATE(26 * MHZ, 1586000000U, 183, 3, 0), PLL_35XX_RATE(26 * MHZ, 1456000000U, 168, 3, 0), PLL_35XX_RATE(26 * MHZ, 1300000000U, 150, 3, 0), PLL_35XX_RATE(26 * MHZ, 1157000000U, 267, 3, 1), PLL_35XX_RATE(26 * MHZ, 1053000000U, 243, 3, 1), PLL_35XX_RATE(26 * MHZ, 949000000U, 219, 3, 1), PLL_35XX_RATE(26 * MHZ, 806000000U, 186, 3, 1), PLL_35XX_RATE(26 * MHZ, 650000000U, 150, 3, 1), PLL_35XX_RATE(26 * MHZ, 546000000U, 252, 3, 2), PLL_35XX_RATE(26 * MHZ, 442000000U, 204, 3, 2), PLL_35XX_RATE(26 * MHZ, 351000000U, 162, 3, 2), PLL_35XX_RATE(26 * MHZ, 247000000U, 114, 3, 2), PLL_35XX_RATE(26 * MHZ, 182000000U, 168, 3, 3), PLL_35XX_RATE(26 * MHZ, 130000000U, 120, 3, 3), }; static const struct samsung_pll_clock cpucl0_pll_clks[] __initconst = { PLL(pll_0822x, CLK_FOUT_CPUCL0_PLL, "fout_cpucl0_pll", "oscclk", PLL_LOCKTIME_PLL_CPUCL0, PLL_CON3_PLL_CPUCL0, cpu_pll_rates), }; static const struct samsung_mux_clock cpucl0_mux_clks[] __initconst = { MUX_F(CLK_MOUT_PLL_CPUCL0, "mout_pll_cpucl0", mout_pll_cpucl0_p, PLL_CON0_PLL_CPUCL0, 4, 1, CLK_SET_RATE_PARENT | CLK_RECALC_NEW_RATES, 0), MUX_F(CLK_MOUT_CPUCL0_SWITCH_USER, "mout_cpucl0_switch_user", mout_cpucl0_switch_user_p, PLL_CON0_MUX_CLKCMU_CPUCL0_SWITCH_USER, 4, 1, CLK_SET_RATE_PARENT, 0), MUX(CLK_MOUT_CPUCL0_DBG_USER, "mout_cpucl0_dbg_user", mout_cpucl0_dbg_user_p, PLL_CON0_MUX_CLKCMU_CPUCL0_DBG_USER, 4, 1), MUX_F(CLK_MOUT_CPUCL0_PLL, "mout_cpucl0_pll", mout_cpucl0_pll_p, CLK_CON_MUX_MUX_CLK_CPUCL0_PLL, 0, 1, CLK_SET_RATE_PARENT, 0), }; static const struct samsung_div_clock cpucl0_div_clks[] __initconst = { DIV_F(CLK_DOUT_CPUCL0_CPU, "dout_cpucl0_cpu", "mout_cpucl0_pll", CLK_CON_DIV_DIV_CLK_CPUCL0_CPU, 0, 1, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CPUCL0_CMUREF, "dout_cpucl0_cmuref", "dout_cpucl0_cpu", CLK_CON_DIV_DIV_CLK_CPUCL0_CMUREF, 0, 3, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CPUCL0_PCLK, "dout_cpucl0_pclk", "dout_cpucl0_cpu", CLK_CON_DIV_DIV_CLK_CPUCL0_PCLK, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), /* EMBEDDED_CMU_CPUCL0 */ DIV_F(CLK_DOUT_CLUSTER0_ACLK, "dout_cluster0_aclk", "gout_cluster0_cpu", CLK_CON_DIV_DIV_CLK_CLUSTER0_ACLK, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CLUSTER0_ATCLK, "dout_cluster0_atclk", "gout_cluster0_cpu", CLK_CON_DIV_DIV_CLK_CLUSTER0_ATCLK, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CLUSTER0_PCLKDBG, "dout_cluster0_pclkdbg", "gout_cluster0_cpu", CLK_CON_DIV_DIV_CLK_CLUSTER0_PCLKDBG, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CLUSTER0_PERIPHCLK, "dout_cluster0_periphclk", "gout_cluster0_cpu", CLK_CON_DIV_DIV_CLK_CLUSTER0_PERIPHCLK, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), }; static const struct samsung_gate_clock cpucl0_gate_clks[] __initconst = { GATE(CLK_GOUT_CPUCL0_CMU_CPUCL0_PCLK, "gout_cpucl0_cmu_cpucl0_pclk", "dout_cpucl0_pclk", CLK_CON_GAT_CLK_CPUCL0_CMU_CPUCL0_PCLK, 21, CLK_IGNORE_UNUSED, 0), /* EMBEDDED_CMU_CPUCL0 */ GATE(CLK_GOUT_CLUSTER0_CPU, "gout_cluster0_cpu", "dout_cpucl0_cpu", CLK_CON_GAT_GATE_CLK_CPUCL0_CPU, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CLUSTER0_SCLK, "gout_cluster0_sclk", "gout_cluster0_cpu", CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_SCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CLUSTER0_ATCLK, "gout_cluster0_atclk", "dout_cluster0_atclk", CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_ATCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CLUSTER0_PERIPHCLK, "gout_cluster0_periphclk", "dout_cluster0_periphclk", CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_PERIPHCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CLUSTER0_PCLK, "gout_cluster0_pclk", "dout_cluster0_pclkdbg", CLK_CON_GAT_CLK_CPUCL0_CLUSTER0_PCLK, 21, CLK_IGNORE_UNUSED, 0), }; /* * Each parameter is going to be written into the corresponding DIV register. So * the actual divider value for each parameter will be 1/(param+1). All these * parameters must be in the range of 0..15, as the divider range for all of * these DIV clocks is 1..16. The default values for these dividers is * (1, 3, 3, 1). */ #define E850_CPU_DIV0(aclk, atclk, pclkdbg, periphclk) \ (((aclk) << 16) | ((atclk) << 12) | ((pclkdbg) << 8) | \ ((periphclk) << 4)) static const struct exynos_cpuclk_cfg_data exynos850_cluster_clk_d[] __initconst = { { 2210000, E850_CPU_DIV0(1, 3, 3, 1) }, { 2106000, E850_CPU_DIV0(1, 3, 3, 1) }, { 2002000, E850_CPU_DIV0(1, 3, 3, 1) }, { 1846000, E850_CPU_DIV0(1, 3, 3, 1) }, { 1742000, E850_CPU_DIV0(1, 3, 3, 1) }, { 1586000, E850_CPU_DIV0(1, 3, 3, 1) }, { 1456000, E850_CPU_DIV0(1, 3, 3, 1) }, { 1300000, E850_CPU_DIV0(1, 3, 3, 1) }, { 1157000, E850_CPU_DIV0(1, 3, 3, 1) }, { 1053000, E850_CPU_DIV0(1, 3, 3, 1) }, { 949000, E850_CPU_DIV0(1, 3, 3, 1) }, { 806000, E850_CPU_DIV0(1, 3, 3, 1) }, { 650000, E850_CPU_DIV0(1, 3, 3, 1) }, { 546000, E850_CPU_DIV0(1, 3, 3, 1) }, { 442000, E850_CPU_DIV0(1, 3, 3, 1) }, { 351000, E850_CPU_DIV0(1, 3, 3, 1) }, { 247000, E850_CPU_DIV0(1, 3, 3, 1) }, { 182000, E850_CPU_DIV0(1, 3, 3, 1) }, { 130000, E850_CPU_DIV0(1, 3, 3, 1) }, { 0 } }; static const struct samsung_cpu_clock cpucl0_cpu_clks[] __initconst = { CPU_CLK(CLK_CLUSTER0_SCLK, "cluster0_clk", CLK_MOUT_PLL_CPUCL0, CLK_MOUT_CPUCL0_SWITCH_USER, 0, 0x0, CPUCLK_LAYOUT_E850_CL0, exynos850_cluster_clk_d), }; static const struct samsung_cmu_info cpucl0_cmu_info __initconst = { .pll_clks = cpucl0_pll_clks, .nr_pll_clks = ARRAY_SIZE(cpucl0_pll_clks), .mux_clks = cpucl0_mux_clks, .nr_mux_clks = ARRAY_SIZE(cpucl0_mux_clks), .div_clks = cpucl0_div_clks, .nr_div_clks = ARRAY_SIZE(cpucl0_div_clks), .gate_clks = cpucl0_gate_clks, .nr_gate_clks = ARRAY_SIZE(cpucl0_gate_clks), .cpu_clks = cpucl0_cpu_clks, .nr_cpu_clks = ARRAY_SIZE(cpucl0_cpu_clks), .nr_clk_ids = CLKS_NR_CPUCL0, .clk_regs = cpucl0_clk_regs, .nr_clk_regs = ARRAY_SIZE(cpucl0_clk_regs), .clk_name = "dout_cpucl0_switch", .manual_plls = true, }; static void __init exynos850_cmu_cpucl0_init(struct device_node *np) { exynos_arm64_register_cmu(NULL, np, &cpucl0_cmu_info); } /* Register CMU_CPUCL0 early, as CPU clocks should be available ASAP */ CLK_OF_DECLARE(exynos850_cmu_cpucl0, "samsung,exynos850-cmu-cpucl0", exynos850_cmu_cpucl0_init); /* ---- CMU_CPUCL1 ---------------------------------------------------------- */ /* Register Offset definitions for CMU_CPUCL1 (0x10800000) */ #define PLL_LOCKTIME_PLL_CPUCL1 0x0000 #define PLL_CON0_PLL_CPUCL1 0x0100 #define PLL_CON1_PLL_CPUCL1 0x0104 #define PLL_CON3_PLL_CPUCL1 0x010c #define PLL_CON0_MUX_CLKCMU_CPUCL1_DBG_USER 0x0600 #define PLL_CON0_MUX_CLKCMU_CPUCL1_SWITCH_USER 0x0610 #define CLK_CON_MUX_MUX_CLK_CPUCL1_PLL 0x1000 #define CLK_CON_DIV_DIV_CLK_CLUSTER1_ACLK 0x1800 #define CLK_CON_DIV_DIV_CLK_CLUSTER1_ATCLK 0x1808 #define CLK_CON_DIV_DIV_CLK_CLUSTER1_PCLKDBG 0x180c #define CLK_CON_DIV_DIV_CLK_CLUSTER1_PERIPHCLK 0x1810 #define CLK_CON_DIV_DIV_CLK_CPUCL1_CMUREF 0x1814 #define CLK_CON_DIV_DIV_CLK_CPUCL1_CPU 0x1818 #define CLK_CON_DIV_DIV_CLK_CPUCL1_PCLK 0x181c #define CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_ATCLK 0x2000 #define CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_PCLK 0x2004 #define CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_PERIPHCLK 0x2008 #define CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_SCLK 0x200c #define CLK_CON_GAT_CLK_CPUCL1_CMU_CPUCL1_PCLK 0x2010 #define CLK_CON_GAT_GATE_CLK_CPUCL1_CPU 0x2020 static const unsigned long cpucl1_clk_regs[] __initconst = { PLL_LOCKTIME_PLL_CPUCL1, PLL_CON0_PLL_CPUCL1, PLL_CON1_PLL_CPUCL1, PLL_CON3_PLL_CPUCL1, PLL_CON0_MUX_CLKCMU_CPUCL1_DBG_USER, PLL_CON0_MUX_CLKCMU_CPUCL1_SWITCH_USER, CLK_CON_MUX_MUX_CLK_CPUCL1_PLL, CLK_CON_DIV_DIV_CLK_CLUSTER1_ACLK, CLK_CON_DIV_DIV_CLK_CLUSTER1_ATCLK, CLK_CON_DIV_DIV_CLK_CLUSTER1_PCLKDBG, CLK_CON_DIV_DIV_CLK_CLUSTER1_PERIPHCLK, CLK_CON_DIV_DIV_CLK_CPUCL1_CMUREF, CLK_CON_DIV_DIV_CLK_CPUCL1_CPU, CLK_CON_DIV_DIV_CLK_CPUCL1_PCLK, CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_ATCLK, CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_PCLK, CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_PERIPHCLK, CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_SCLK, CLK_CON_GAT_CLK_CPUCL1_CMU_CPUCL1_PCLK, CLK_CON_GAT_GATE_CLK_CPUCL1_CPU, }; /* List of parent clocks for Muxes in CMU_CPUCL0 */ PNAME(mout_pll_cpucl1_p) = { "oscclk", "fout_cpucl1_pll" }; PNAME(mout_cpucl1_switch_user_p) = { "oscclk", "dout_cpucl1_switch" }; PNAME(mout_cpucl1_dbg_user_p) = { "oscclk", "dout_cpucl1_dbg" }; PNAME(mout_cpucl1_pll_p) = { "mout_pll_cpucl1", "mout_cpucl1_switch_user" }; static const struct samsung_pll_clock cpucl1_pll_clks[] __initconst = { PLL(pll_0822x, CLK_FOUT_CPUCL1_PLL, "fout_cpucl1_pll", "oscclk", PLL_LOCKTIME_PLL_CPUCL1, PLL_CON3_PLL_CPUCL1, cpu_pll_rates), }; static const struct samsung_mux_clock cpucl1_mux_clks[] __initconst = { MUX_F(CLK_MOUT_PLL_CPUCL1, "mout_pll_cpucl1", mout_pll_cpucl1_p, PLL_CON0_PLL_CPUCL1, 4, 1, CLK_SET_RATE_PARENT | CLK_RECALC_NEW_RATES, 0), MUX_F(CLK_MOUT_CPUCL1_SWITCH_USER, "mout_cpucl1_switch_user", mout_cpucl1_switch_user_p, PLL_CON0_MUX_CLKCMU_CPUCL1_SWITCH_USER, 4, 1, CLK_SET_RATE_PARENT, 0), MUX(CLK_MOUT_CPUCL1_DBG_USER, "mout_cpucl1_dbg_user", mout_cpucl1_dbg_user_p, PLL_CON0_MUX_CLKCMU_CPUCL1_DBG_USER, 4, 1), MUX_F(CLK_MOUT_CPUCL1_PLL, "mout_cpucl1_pll", mout_cpucl1_pll_p, CLK_CON_MUX_MUX_CLK_CPUCL1_PLL, 0, 1, CLK_SET_RATE_PARENT, 0), }; static const struct samsung_div_clock cpucl1_div_clks[] __initconst = { DIV_F(CLK_DOUT_CPUCL1_CPU, "dout_cpucl1_cpu", "mout_cpucl1_pll", CLK_CON_DIV_DIV_CLK_CPUCL1_CPU, 0, 1, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CPUCL1_CMUREF, "dout_cpucl1_cmuref", "dout_cpucl1_cpu", CLK_CON_DIV_DIV_CLK_CPUCL1_CMUREF, 0, 3, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CPUCL1_PCLK, "dout_cpucl1_pclk", "dout_cpucl1_cpu", CLK_CON_DIV_DIV_CLK_CPUCL1_PCLK, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), /* EMBEDDED_CMU_CPUCL1 */ DIV_F(CLK_DOUT_CLUSTER1_ACLK, "dout_cluster1_aclk", "gout_cluster1_cpu", CLK_CON_DIV_DIV_CLK_CLUSTER1_ACLK, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CLUSTER1_ATCLK, "dout_cluster1_atclk", "gout_cluster1_cpu", CLK_CON_DIV_DIV_CLK_CLUSTER1_ATCLK, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CLUSTER1_PCLKDBG, "dout_cluster1_pclkdbg", "gout_cluster1_cpu", CLK_CON_DIV_DIV_CLK_CLUSTER1_PCLKDBG, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), DIV_F(CLK_DOUT_CLUSTER1_PERIPHCLK, "dout_cluster1_periphclk", "gout_cluster1_cpu", CLK_CON_DIV_DIV_CLK_CLUSTER1_PERIPHCLK, 0, 4, CLK_GET_RATE_NOCACHE, CLK_DIVIDER_READ_ONLY), }; static const struct samsung_gate_clock cpucl1_gate_clks[] __initconst = { GATE(CLK_GOUT_CPUCL1_CMU_CPUCL1_PCLK, "gout_cpucl1_cmu_cpucl1_pclk", "dout_cpucl1_pclk", CLK_CON_GAT_CLK_CPUCL1_CMU_CPUCL1_PCLK, 21, CLK_IGNORE_UNUSED, 0), /* EMBEDDED_CMU_CPUCL1 */ GATE(CLK_GOUT_CLUSTER1_CPU, "gout_cluster1_cpu", "dout_cpucl1_cpu", CLK_CON_GAT_GATE_CLK_CPUCL1_CPU, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CLUSTER1_SCLK, "gout_cluster1_sclk", "gout_cluster1_cpu", CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_SCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CLUSTER1_ATCLK, "gout_cluster1_atclk", "dout_cluster1_atclk", CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_ATCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CLUSTER1_PERIPHCLK, "gout_cluster1_periphclk", "dout_cluster1_periphclk", CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_PERIPHCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_CLUSTER1_PCLK, "gout_cluster1_pclk", "dout_cluster1_pclkdbg", CLK_CON_GAT_CLK_CPUCL1_CLUSTER1_PCLK, 21, CLK_IGNORE_UNUSED, 0), }; static const struct samsung_cpu_clock cpucl1_cpu_clks[] __initconst = { CPU_CLK(CLK_CLUSTER1_SCLK, "cluster1_clk", CLK_MOUT_PLL_CPUCL1, CLK_MOUT_CPUCL1_SWITCH_USER, 0, 0x0, CPUCLK_LAYOUT_E850_CL1, exynos850_cluster_clk_d), }; static const struct samsung_cmu_info cpucl1_cmu_info __initconst = { .pll_clks = cpucl1_pll_clks, .nr_pll_clks = ARRAY_SIZE(cpucl1_pll_clks), .mux_clks = cpucl1_mux_clks, .nr_mux_clks = ARRAY_SIZE(cpucl1_mux_clks), .div_clks = cpucl1_div_clks, .nr_div_clks = ARRAY_SIZE(cpucl1_div_clks), .gate_clks = cpucl1_gate_clks, .nr_gate_clks = ARRAY_SIZE(cpucl1_gate_clks), .cpu_clks = cpucl1_cpu_clks, .nr_cpu_clks = ARRAY_SIZE(cpucl1_cpu_clks), .nr_clk_ids = CLKS_NR_CPUCL1, .clk_regs = cpucl1_clk_regs, .nr_clk_regs = ARRAY_SIZE(cpucl1_clk_regs), .clk_name = "dout_cpucl1_switch", .manual_plls = true, }; static void __init exynos850_cmu_cpucl1_init(struct device_node *np) { exynos_arm64_register_cmu(NULL, np, &cpucl1_cmu_info); } /* Register CMU_CPUCL1 early, as CPU clocks should be available ASAP */ CLK_OF_DECLARE(exynos850_cmu_cpucl1, "samsung,exynos850-cmu-cpucl1", exynos850_cmu_cpucl1_init); /* ---- CMU_G3D ------------------------------------------------------------- */ /* Register Offset definitions for CMU_G3D (0x11400000) */ #define PLL_LOCKTIME_PLL_G3D 0x0000 #define PLL_CON0_PLL_G3D 0x0100 #define PLL_CON3_PLL_G3D 0x010c #define PLL_CON0_MUX_CLKCMU_G3D_SWITCH_USER 0x0600 #define CLK_CON_MUX_MUX_CLK_G3D_BUSD 0x1000 #define CLK_CON_DIV_DIV_CLK_G3D_BUSP 0x1804 #define CLK_CON_GAT_CLK_G3D_CMU_G3D_PCLK 0x2000 #define CLK_CON_GAT_CLK_G3D_GPU_CLK 0x2004 #define CLK_CON_GAT_GOUT_G3D_TZPC_PCLK 0x200c #define CLK_CON_GAT_GOUT_G3D_GRAY2BIN_CLK 0x2010 #define CLK_CON_GAT_GOUT_G3D_BUSD_CLK 0x2024 #define CLK_CON_GAT_GOUT_G3D_BUSP_CLK 0x2028 #define CLK_CON_GAT_GOUT_G3D_SYSREG_PCLK 0x202c static const unsigned long g3d_clk_regs[] __initconst = { PLL_LOCKTIME_PLL_G3D, PLL_CON0_PLL_G3D, PLL_CON3_PLL_G3D, PLL_CON0_MUX_CLKCMU_G3D_SWITCH_USER, CLK_CON_MUX_MUX_CLK_G3D_BUSD, CLK_CON_DIV_DIV_CLK_G3D_BUSP, CLK_CON_GAT_CLK_G3D_CMU_G3D_PCLK, CLK_CON_GAT_CLK_G3D_GPU_CLK, CLK_CON_GAT_GOUT_G3D_TZPC_PCLK, CLK_CON_GAT_GOUT_G3D_GRAY2BIN_CLK, CLK_CON_GAT_GOUT_G3D_BUSD_CLK, CLK_CON_GAT_GOUT_G3D_BUSP_CLK, CLK_CON_GAT_GOUT_G3D_SYSREG_PCLK, }; /* List of parent clocks for Muxes in CMU_G3D */ PNAME(mout_g3d_pll_p) = { "oscclk", "fout_g3d_pll" }; PNAME(mout_g3d_switch_user_p) = { "oscclk", "dout_g3d_switch" }; PNAME(mout_g3d_busd_p) = { "mout_g3d_pll", "mout_g3d_switch_user" }; /* * Do not provide PLL table to PLL_G3D, as MANUAL_PLL_CTRL bit is not set * for that PLL by default, so set_rate operation would fail. */ static const struct samsung_pll_clock g3d_pll_clks[] __initconst = { PLL(pll_0818x, CLK_FOUT_G3D_PLL, "fout_g3d_pll", "oscclk", PLL_LOCKTIME_PLL_G3D, PLL_CON3_PLL_G3D, NULL), }; static const struct samsung_mux_clock g3d_mux_clks[] __initconst = { MUX(CLK_MOUT_G3D_PLL, "mout_g3d_pll", mout_g3d_pll_p, PLL_CON0_PLL_G3D, 4, 1), MUX(CLK_MOUT_G3D_SWITCH_USER, "mout_g3d_switch_user", mout_g3d_switch_user_p, PLL_CON0_MUX_CLKCMU_G3D_SWITCH_USER, 4, 1), MUX(CLK_MOUT_G3D_BUSD, "mout_g3d_busd", mout_g3d_busd_p, CLK_CON_MUX_MUX_CLK_G3D_BUSD, 0, 1), }; static const struct samsung_div_clock g3d_div_clks[] __initconst = { DIV(CLK_DOUT_G3D_BUSP, "dout_g3d_busp", "mout_g3d_busd", CLK_CON_DIV_DIV_CLK_G3D_BUSP, 0, 3), }; static const struct samsung_gate_clock g3d_gate_clks[] __initconst = { GATE(CLK_GOUT_G3D_CMU_G3D_PCLK, "gout_g3d_cmu_g3d_pclk", "dout_g3d_busp", CLK_CON_GAT_CLK_G3D_CMU_G3D_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_G3D_GPU_CLK, "gout_g3d_gpu_clk", "mout_g3d_busd", CLK_CON_GAT_CLK_G3D_GPU_CLK, 21, 0, 0), GATE(CLK_GOUT_G3D_TZPC_PCLK, "gout_g3d_tzpc_pclk", "dout_g3d_busp", CLK_CON_GAT_GOUT_G3D_TZPC_PCLK, 21, 0, 0), GATE(CLK_GOUT_G3D_GRAY2BIN_CLK, "gout_g3d_gray2bin_clk", "mout_g3d_busd", CLK_CON_GAT_GOUT_G3D_GRAY2BIN_CLK, 21, 0, 0), GATE(CLK_GOUT_G3D_BUSD_CLK, "gout_g3d_busd_clk", "mout_g3d_busd", CLK_CON_GAT_GOUT_G3D_BUSD_CLK, 21, 0, 0), GATE(CLK_GOUT_G3D_BUSP_CLK, "gout_g3d_busp_clk", "dout_g3d_busp", CLK_CON_GAT_GOUT_G3D_BUSP_CLK, 21, 0, 0), GATE(CLK_GOUT_G3D_SYSREG_PCLK, "gout_g3d_sysreg_pclk", "dout_g3d_busp", CLK_CON_GAT_GOUT_G3D_SYSREG_PCLK, 21, 0, 0), }; static const struct samsung_cmu_info g3d_cmu_info __initconst = { .pll_clks = g3d_pll_clks, .nr_pll_clks = ARRAY_SIZE(g3d_pll_clks), .mux_clks = g3d_mux_clks, .nr_mux_clks = ARRAY_SIZE(g3d_mux_clks), .div_clks = g3d_div_clks, .nr_div_clks = ARRAY_SIZE(g3d_div_clks), .gate_clks = g3d_gate_clks, .nr_gate_clks = ARRAY_SIZE(g3d_gate_clks), .nr_clk_ids = CLKS_NR_G3D, .clk_regs = g3d_clk_regs, .nr_clk_regs = ARRAY_SIZE(g3d_clk_regs), .clk_name = "dout_g3d_switch", }; /* ---- CMU_HSI ------------------------------------------------------------- */ /* Register Offset definitions for CMU_HSI (0x13400000) */ #define PLL_CON0_MUX_CLKCMU_HSI_BUS_USER 0x0600 #define PLL_CON0_MUX_CLKCMU_HSI_MMC_CARD_USER 0x0610 #define PLL_CON0_MUX_CLKCMU_HSI_USB20DRD_USER 0x0620 #define CLK_CON_MUX_MUX_CLK_HSI_RTC 0x1000 #define CLK_CON_GAT_CLK_HSI_CMU_HSI_PCLK 0x2000 #define CLK_CON_GAT_HSI_USB20DRD_TOP_I_RTC_CLK__ALV 0x2008 #define CLK_CON_GAT_HSI_USB20DRD_TOP_I_REF_CLK_50 0x200c #define CLK_CON_GAT_HSI_USB20DRD_TOP_I_PHY_REFCLK_26 0x2010 #define CLK_CON_GAT_GOUT_HSI_GPIO_HSI_PCLK 0x2018 #define CLK_CON_GAT_GOUT_HSI_MMC_CARD_I_ACLK 0x2024 #define CLK_CON_GAT_GOUT_HSI_MMC_CARD_SDCLKIN 0x2028 #define CLK_CON_GAT_GOUT_HSI_PPMU_ACLK 0x202c #define CLK_CON_GAT_GOUT_HSI_PPMU_PCLK 0x2030 #define CLK_CON_GAT_GOUT_HSI_SYSREG_HSI_PCLK 0x2038 #define CLK_CON_GAT_GOUT_HSI_USB20DRD_TOP_ACLK_PHYCTRL_20 0x203c #define CLK_CON_GAT_GOUT_HSI_USB20DRD_TOP_BUS_CLK_EARLY 0x2040 static const unsigned long hsi_clk_regs[] __initconst = { PLL_CON0_MUX_CLKCMU_HSI_BUS_USER, PLL_CON0_MUX_CLKCMU_HSI_MMC_CARD_USER, PLL_CON0_MUX_CLKCMU_HSI_USB20DRD_USER, CLK_CON_MUX_MUX_CLK_HSI_RTC, CLK_CON_GAT_CLK_HSI_CMU_HSI_PCLK, CLK_CON_GAT_HSI_USB20DRD_TOP_I_RTC_CLK__ALV, CLK_CON_GAT_HSI_USB20DRD_TOP_I_REF_CLK_50, CLK_CON_GAT_HSI_USB20DRD_TOP_I_PHY_REFCLK_26, CLK_CON_GAT_GOUT_HSI_GPIO_HSI_PCLK, CLK_CON_GAT_GOUT_HSI_MMC_CARD_I_ACLK, CLK_CON_GAT_GOUT_HSI_MMC_CARD_SDCLKIN, CLK_CON_GAT_GOUT_HSI_PPMU_ACLK, CLK_CON_GAT_GOUT_HSI_PPMU_PCLK, CLK_CON_GAT_GOUT_HSI_SYSREG_HSI_PCLK, CLK_CON_GAT_GOUT_HSI_USB20DRD_TOP_ACLK_PHYCTRL_20, CLK_CON_GAT_GOUT_HSI_USB20DRD_TOP_BUS_CLK_EARLY, }; /* List of parent clocks for Muxes in CMU_HSI */ PNAME(mout_hsi_bus_user_p) = { "oscclk", "dout_hsi_bus" }; PNAME(mout_hsi_mmc_card_user_p) = { "oscclk", "dout_hsi_mmc_card" }; PNAME(mout_hsi_usb20drd_user_p) = { "oscclk", "dout_hsi_usb20drd" }; PNAME(mout_hsi_rtc_p) = { "rtcclk", "oscclk" }; static const struct samsung_mux_clock hsi_mux_clks[] __initconst = { MUX(CLK_MOUT_HSI_BUS_USER, "mout_hsi_bus_user", mout_hsi_bus_user_p, PLL_CON0_MUX_CLKCMU_HSI_BUS_USER, 4, 1), MUX_F(CLK_MOUT_HSI_MMC_CARD_USER, "mout_hsi_mmc_card_user", mout_hsi_mmc_card_user_p, PLL_CON0_MUX_CLKCMU_HSI_MMC_CARD_USER, 4, 1, CLK_SET_RATE_PARENT, 0), MUX(CLK_MOUT_HSI_USB20DRD_USER, "mout_hsi_usb20drd_user", mout_hsi_usb20drd_user_p, PLL_CON0_MUX_CLKCMU_HSI_USB20DRD_USER, 4, 1), MUX(CLK_MOUT_HSI_RTC, "mout_hsi_rtc", mout_hsi_rtc_p, CLK_CON_MUX_MUX_CLK_HSI_RTC, 0, 1), }; static const struct samsung_gate_clock hsi_gate_clks[] __initconst = { /* TODO: Should be enabled in corresponding driver */ GATE(CLK_GOUT_HSI_CMU_HSI_PCLK, "gout_hsi_cmu_hsi_pclk", "mout_hsi_bus_user", CLK_CON_GAT_CLK_HSI_CMU_HSI_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_USB_RTC_CLK, "gout_usb_rtc", "mout_hsi_rtc", CLK_CON_GAT_HSI_USB20DRD_TOP_I_RTC_CLK__ALV, 21, 0, 0), GATE(CLK_GOUT_USB_REF_CLK, "gout_usb_ref", "mout_hsi_usb20drd_user", CLK_CON_GAT_HSI_USB20DRD_TOP_I_REF_CLK_50, 21, 0, 0), GATE(CLK_GOUT_USB_PHY_REF_CLK, "gout_usb_phy_ref", "oscclk", CLK_CON_GAT_HSI_USB20DRD_TOP_I_PHY_REFCLK_26, 21, 0, 0), /* TODO: Should be enabled in GPIO driver (or made CLK_IS_CRITICAL) */ GATE(CLK_GOUT_GPIO_HSI_PCLK, "gout_gpio_hsi_pclk", "mout_hsi_bus_user", CLK_CON_GAT_GOUT_HSI_GPIO_HSI_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_MMC_CARD_ACLK, "gout_mmc_card_aclk", "mout_hsi_bus_user", CLK_CON_GAT_GOUT_HSI_MMC_CARD_I_ACLK, 21, 0, 0), GATE(CLK_GOUT_MMC_CARD_SDCLKIN, "gout_mmc_card_sdclkin", "mout_hsi_mmc_card_user", CLK_CON_GAT_GOUT_HSI_MMC_CARD_SDCLKIN, 21, CLK_SET_RATE_PARENT, 0), GATE(CLK_GOUT_HSI_PPMU_ACLK, "gout_hsi_ppmu_aclk", "mout_hsi_bus_user", CLK_CON_GAT_GOUT_HSI_PPMU_ACLK, 21, 0, 0), GATE(CLK_GOUT_HSI_PPMU_PCLK, "gout_hsi_ppmu_pclk", "mout_hsi_bus_user", CLK_CON_GAT_GOUT_HSI_PPMU_PCLK, 21, 0, 0), GATE(CLK_GOUT_SYSREG_HSI_PCLK, "gout_sysreg_hsi_pclk", "mout_hsi_bus_user", CLK_CON_GAT_GOUT_HSI_SYSREG_HSI_PCLK, 21, 0, 0), GATE(CLK_GOUT_USB_PHY_ACLK, "gout_usb_phy_aclk", "mout_hsi_bus_user", CLK_CON_GAT_GOUT_HSI_USB20DRD_TOP_ACLK_PHYCTRL_20, 21, 0, 0), GATE(CLK_GOUT_USB_BUS_EARLY_CLK, "gout_usb_bus_early", "mout_hsi_bus_user", CLK_CON_GAT_GOUT_HSI_USB20DRD_TOP_BUS_CLK_EARLY, 21, 0, 0), }; static const struct samsung_cmu_info hsi_cmu_info __initconst = { .mux_clks = hsi_mux_clks, .nr_mux_clks = ARRAY_SIZE(hsi_mux_clks), .gate_clks = hsi_gate_clks, .nr_gate_clks = ARRAY_SIZE(hsi_gate_clks), .nr_clk_ids = CLKS_NR_HSI, .clk_regs = hsi_clk_regs, .nr_clk_regs = ARRAY_SIZE(hsi_clk_regs), .clk_name = "dout_hsi_bus", }; /* ---- CMU_IS -------------------------------------------------------------- */ #define PLL_CON0_MUX_CLKCMU_IS_BUS_USER 0x0600 #define PLL_CON0_MUX_CLKCMU_IS_GDC_USER 0x0610 #define PLL_CON0_MUX_CLKCMU_IS_ITP_USER 0x0620 #define PLL_CON0_MUX_CLKCMU_IS_VRA_USER 0x0630 #define CLK_CON_DIV_DIV_CLK_IS_BUSP 0x1800 #define CLK_CON_GAT_CLK_IS_CMU_IS_PCLK 0x2000 #define CLK_CON_GAT_GOUT_IS_CSIS0_ACLK 0x2040 #define CLK_CON_GAT_GOUT_IS_CSIS1_ACLK 0x2044 #define CLK_CON_GAT_GOUT_IS_CSIS2_ACLK 0x2048 #define CLK_CON_GAT_GOUT_IS_TZPC_PCLK 0x204c #define CLK_CON_GAT_GOUT_IS_CLK_CSIS_DMA 0x2050 #define CLK_CON_GAT_GOUT_IS_CLK_GDC 0x2054 #define CLK_CON_GAT_GOUT_IS_CLK_IPP 0x2058 #define CLK_CON_GAT_GOUT_IS_CLK_ITP 0x205c #define CLK_CON_GAT_GOUT_IS_CLK_MCSC 0x2060 #define CLK_CON_GAT_GOUT_IS_CLK_VRA 0x2064 #define CLK_CON_GAT_GOUT_IS_PPMU_IS0_ACLK 0x2074 #define CLK_CON_GAT_GOUT_IS_PPMU_IS0_PCLK 0x2078 #define CLK_CON_GAT_GOUT_IS_PPMU_IS1_ACLK 0x207c #define CLK_CON_GAT_GOUT_IS_PPMU_IS1_PCLK 0x2080 #define CLK_CON_GAT_GOUT_IS_SYSMMU_IS0_CLK_S1 0x2098 #define CLK_CON_GAT_GOUT_IS_SYSMMU_IS1_CLK_S1 0x209c #define CLK_CON_GAT_GOUT_IS_SYSREG_PCLK 0x20a0 static const unsigned long is_clk_regs[] __initconst = { PLL_CON0_MUX_CLKCMU_IS_BUS_USER, PLL_CON0_MUX_CLKCMU_IS_GDC_USER, PLL_CON0_MUX_CLKCMU_IS_ITP_USER, PLL_CON0_MUX_CLKCMU_IS_VRA_USER, CLK_CON_DIV_DIV_CLK_IS_BUSP, CLK_CON_GAT_CLK_IS_CMU_IS_PCLK, CLK_CON_GAT_GOUT_IS_CSIS0_ACLK, CLK_CON_GAT_GOUT_IS_CSIS1_ACLK, CLK_CON_GAT_GOUT_IS_CSIS2_ACLK, CLK_CON_GAT_GOUT_IS_TZPC_PCLK, CLK_CON_GAT_GOUT_IS_CLK_CSIS_DMA, CLK_CON_GAT_GOUT_IS_CLK_GDC, CLK_CON_GAT_GOUT_IS_CLK_IPP, CLK_CON_GAT_GOUT_IS_CLK_ITP, CLK_CON_GAT_GOUT_IS_CLK_MCSC, CLK_CON_GAT_GOUT_IS_CLK_VRA, CLK_CON_GAT_GOUT_IS_PPMU_IS0_ACLK, CLK_CON_GAT_GOUT_IS_PPMU_IS0_PCLK, CLK_CON_GAT_GOUT_IS_PPMU_IS1_ACLK, CLK_CON_GAT_GOUT_IS_PPMU_IS1_PCLK, CLK_CON_GAT_GOUT_IS_SYSMMU_IS0_CLK_S1, CLK_CON_GAT_GOUT_IS_SYSMMU_IS1_CLK_S1, CLK_CON_GAT_GOUT_IS_SYSREG_PCLK, }; /* List of parent clocks for Muxes in CMU_IS */ PNAME(mout_is_bus_user_p) = { "oscclk", "dout_is_bus" }; PNAME(mout_is_itp_user_p) = { "oscclk", "dout_is_itp" }; PNAME(mout_is_vra_user_p) = { "oscclk", "dout_is_vra" }; PNAME(mout_is_gdc_user_p) = { "oscclk", "dout_is_gdc" }; static const struct samsung_mux_clock is_mux_clks[] __initconst = { MUX(CLK_MOUT_IS_BUS_USER, "mout_is_bus_user", mout_is_bus_user_p, PLL_CON0_MUX_CLKCMU_IS_BUS_USER, 4, 1), MUX(CLK_MOUT_IS_ITP_USER, "mout_is_itp_user", mout_is_itp_user_p, PLL_CON0_MUX_CLKCMU_IS_ITP_USER, 4, 1), MUX(CLK_MOUT_IS_VRA_USER, "mout_is_vra_user", mout_is_vra_user_p, PLL_CON0_MUX_CLKCMU_IS_VRA_USER, 4, 1), MUX(CLK_MOUT_IS_GDC_USER, "mout_is_gdc_user", mout_is_gdc_user_p, PLL_CON0_MUX_CLKCMU_IS_GDC_USER, 4, 1), }; static const struct samsung_div_clock is_div_clks[] __initconst = { DIV(CLK_DOUT_IS_BUSP, "dout_is_busp", "mout_is_bus_user", CLK_CON_DIV_DIV_CLK_IS_BUSP, 0, 2), }; static const struct samsung_gate_clock is_gate_clks[] __initconst = { /* TODO: Should be enabled in IS driver */ GATE(CLK_GOUT_IS_CMU_IS_PCLK, "gout_is_cmu_is_pclk", "dout_is_busp", CLK_CON_GAT_CLK_IS_CMU_IS_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_IS_CSIS0_ACLK, "gout_is_csis0_aclk", "mout_is_bus_user", CLK_CON_GAT_GOUT_IS_CSIS0_ACLK, 21, 0, 0), GATE(CLK_GOUT_IS_CSIS1_ACLK, "gout_is_csis1_aclk", "mout_is_bus_user", CLK_CON_GAT_GOUT_IS_CSIS1_ACLK, 21, 0, 0), GATE(CLK_GOUT_IS_CSIS2_ACLK, "gout_is_csis2_aclk", "mout_is_bus_user", CLK_CON_GAT_GOUT_IS_CSIS2_ACLK, 21, 0, 0), GATE(CLK_GOUT_IS_TZPC_PCLK, "gout_is_tzpc_pclk", "dout_is_busp", CLK_CON_GAT_GOUT_IS_TZPC_PCLK, 21, 0, 0), GATE(CLK_GOUT_IS_CSIS_DMA_CLK, "gout_is_csis_dma_clk", "mout_is_bus_user", CLK_CON_GAT_GOUT_IS_CLK_CSIS_DMA, 21, 0, 0), GATE(CLK_GOUT_IS_GDC_CLK, "gout_is_gdc_clk", "mout_is_gdc_user", CLK_CON_GAT_GOUT_IS_CLK_GDC, 21, 0, 0), GATE(CLK_GOUT_IS_IPP_CLK, "gout_is_ipp_clk", "mout_is_bus_user", CLK_CON_GAT_GOUT_IS_CLK_IPP, 21, 0, 0), GATE(CLK_GOUT_IS_ITP_CLK, "gout_is_itp_clk", "mout_is_itp_user", CLK_CON_GAT_GOUT_IS_CLK_ITP, 21, 0, 0), GATE(CLK_GOUT_IS_MCSC_CLK, "gout_is_mcsc_clk", "mout_is_itp_user", CLK_CON_GAT_GOUT_IS_CLK_MCSC, 21, 0, 0), GATE(CLK_GOUT_IS_VRA_CLK, "gout_is_vra_clk", "mout_is_vra_user", CLK_CON_GAT_GOUT_IS_CLK_VRA, 21, 0, 0), GATE(CLK_GOUT_IS_PPMU_IS0_ACLK, "gout_is_ppmu_is0_aclk", "mout_is_bus_user", CLK_CON_GAT_GOUT_IS_PPMU_IS0_ACLK, 21, 0, 0), GATE(CLK_GOUT_IS_PPMU_IS0_PCLK, "gout_is_ppmu_is0_pclk", "dout_is_busp", CLK_CON_GAT_GOUT_IS_PPMU_IS0_PCLK, 21, 0, 0), GATE(CLK_GOUT_IS_PPMU_IS1_ACLK, "gout_is_ppmu_is1_aclk", "mout_is_itp_user", CLK_CON_GAT_GOUT_IS_PPMU_IS1_ACLK, 21, 0, 0), GATE(CLK_GOUT_IS_PPMU_IS1_PCLK, "gout_is_ppmu_is1_pclk", "dout_is_busp", CLK_CON_GAT_GOUT_IS_PPMU_IS1_PCLK, 21, 0, 0), GATE(CLK_GOUT_IS_SYSMMU_IS0_CLK, "gout_is_sysmmu_is0_clk", "mout_is_bus_user", CLK_CON_GAT_GOUT_IS_SYSMMU_IS0_CLK_S1, 21, 0, 0), GATE(CLK_GOUT_IS_SYSMMU_IS1_CLK, "gout_is_sysmmu_is1_clk", "mout_is_itp_user", CLK_CON_GAT_GOUT_IS_SYSMMU_IS1_CLK_S1, 21, 0, 0), GATE(CLK_GOUT_IS_SYSREG_PCLK, "gout_is_sysreg_pclk", "dout_is_busp", CLK_CON_GAT_GOUT_IS_SYSREG_PCLK, 21, 0, 0), }; static const struct samsung_cmu_info is_cmu_info __initconst = { .mux_clks = is_mux_clks, .nr_mux_clks = ARRAY_SIZE(is_mux_clks), .div_clks = is_div_clks, .nr_div_clks = ARRAY_SIZE(is_div_clks), .gate_clks = is_gate_clks, .nr_gate_clks = ARRAY_SIZE(is_gate_clks), .nr_clk_ids = CLKS_NR_IS, .clk_regs = is_clk_regs, .nr_clk_regs = ARRAY_SIZE(is_clk_regs), .clk_name = "dout_is_bus", }; /* ---- CMU_MFCMSCL --------------------------------------------------------- */ #define PLL_CON0_MUX_CLKCMU_MFCMSCL_JPEG_USER 0x0600 #define PLL_CON0_MUX_CLKCMU_MFCMSCL_M2M_USER 0x0610 #define PLL_CON0_MUX_CLKCMU_MFCMSCL_MCSC_USER 0x0620 #define PLL_CON0_MUX_CLKCMU_MFCMSCL_MFC_USER 0x0630 #define CLK_CON_DIV_DIV_CLK_MFCMSCL_BUSP 0x1800 #define CLK_CON_GAT_CLK_MFCMSCL_CMU_MFCMSCL_PCLK 0x2000 #define CLK_CON_GAT_GOUT_MFCMSCL_TZPC_PCLK 0x2038 #define CLK_CON_GAT_GOUT_MFCMSCL_JPEG_ACLK 0x203c #define CLK_CON_GAT_GOUT_MFCMSCL_M2M_ACLK 0x2048 #define CLK_CON_GAT_GOUT_MFCMSCL_MCSC_I_CLK 0x204c #define CLK_CON_GAT_GOUT_MFCMSCL_MFC_ACLK 0x2050 #define CLK_CON_GAT_GOUT_MFCMSCL_PPMU_ACLK 0x2054 #define CLK_CON_GAT_GOUT_MFCMSCL_PPMU_PCLK 0x2058 #define CLK_CON_GAT_GOUT_MFCMSCL_SYSMMU_CLK_S1 0x2074 #define CLK_CON_GAT_GOUT_MFCMSCL_SYSREG_PCLK 0x2078 static const unsigned long mfcmscl_clk_regs[] __initconst = { PLL_CON0_MUX_CLKCMU_MFCMSCL_JPEG_USER, PLL_CON0_MUX_CLKCMU_MFCMSCL_M2M_USER, PLL_CON0_MUX_CLKCMU_MFCMSCL_MCSC_USER, PLL_CON0_MUX_CLKCMU_MFCMSCL_MFC_USER, CLK_CON_DIV_DIV_CLK_MFCMSCL_BUSP, CLK_CON_GAT_CLK_MFCMSCL_CMU_MFCMSCL_PCLK, CLK_CON_GAT_GOUT_MFCMSCL_TZPC_PCLK, CLK_CON_GAT_GOUT_MFCMSCL_JPEG_ACLK, CLK_CON_GAT_GOUT_MFCMSCL_M2M_ACLK, CLK_CON_GAT_GOUT_MFCMSCL_MCSC_I_CLK, CLK_CON_GAT_GOUT_MFCMSCL_MFC_ACLK, CLK_CON_GAT_GOUT_MFCMSCL_PPMU_ACLK, CLK_CON_GAT_GOUT_MFCMSCL_PPMU_PCLK, CLK_CON_GAT_GOUT_MFCMSCL_SYSMMU_CLK_S1, CLK_CON_GAT_GOUT_MFCMSCL_SYSREG_PCLK, }; /* List of parent clocks for Muxes in CMU_MFCMSCL */ PNAME(mout_mfcmscl_mfc_user_p) = { "oscclk", "dout_mfcmscl_mfc" }; PNAME(mout_mfcmscl_m2m_user_p) = { "oscclk", "dout_mfcmscl_m2m" }; PNAME(mout_mfcmscl_mcsc_user_p) = { "oscclk", "dout_mfcmscl_mcsc" }; PNAME(mout_mfcmscl_jpeg_user_p) = { "oscclk", "dout_mfcmscl_jpeg" }; static const struct samsung_mux_clock mfcmscl_mux_clks[] __initconst = { MUX(CLK_MOUT_MFCMSCL_MFC_USER, "mout_mfcmscl_mfc_user", mout_mfcmscl_mfc_user_p, PLL_CON0_MUX_CLKCMU_MFCMSCL_MFC_USER, 4, 1), MUX(CLK_MOUT_MFCMSCL_M2M_USER, "mout_mfcmscl_m2m_user", mout_mfcmscl_m2m_user_p, PLL_CON0_MUX_CLKCMU_MFCMSCL_M2M_USER, 4, 1), MUX(CLK_MOUT_MFCMSCL_MCSC_USER, "mout_mfcmscl_mcsc_user", mout_mfcmscl_mcsc_user_p, PLL_CON0_MUX_CLKCMU_MFCMSCL_MCSC_USER, 4, 1), MUX(CLK_MOUT_MFCMSCL_JPEG_USER, "mout_mfcmscl_jpeg_user", mout_mfcmscl_jpeg_user_p, PLL_CON0_MUX_CLKCMU_MFCMSCL_JPEG_USER, 4, 1), }; static const struct samsung_div_clock mfcmscl_div_clks[] __initconst = { DIV(CLK_DOUT_MFCMSCL_BUSP, "dout_mfcmscl_busp", "mout_mfcmscl_mfc_user", CLK_CON_DIV_DIV_CLK_MFCMSCL_BUSP, 0, 3), }; static const struct samsung_gate_clock mfcmscl_gate_clks[] __initconst = { /* TODO: Should be enabled in MFC driver */ GATE(CLK_GOUT_MFCMSCL_CMU_MFCMSCL_PCLK, "gout_mfcmscl_cmu_mfcmscl_pclk", "dout_mfcmscl_busp", CLK_CON_GAT_CLK_MFCMSCL_CMU_MFCMSCL_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_MFCMSCL_TZPC_PCLK, "gout_mfcmscl_tzpc_pclk", "dout_mfcmscl_busp", CLK_CON_GAT_GOUT_MFCMSCL_TZPC_PCLK, 21, 0, 0), GATE(CLK_GOUT_MFCMSCL_JPEG_ACLK, "gout_mfcmscl_jpeg_aclk", "mout_mfcmscl_jpeg_user", CLK_CON_GAT_GOUT_MFCMSCL_JPEG_ACLK, 21, 0, 0), GATE(CLK_GOUT_MFCMSCL_M2M_ACLK, "gout_mfcmscl_m2m_aclk", "mout_mfcmscl_m2m_user", CLK_CON_GAT_GOUT_MFCMSCL_M2M_ACLK, 21, 0, 0), GATE(CLK_GOUT_MFCMSCL_MCSC_CLK, "gout_mfcmscl_mcsc_clk", "mout_mfcmscl_mcsc_user", CLK_CON_GAT_GOUT_MFCMSCL_MCSC_I_CLK, 21, 0, 0), GATE(CLK_GOUT_MFCMSCL_MFC_ACLK, "gout_mfcmscl_mfc_aclk", "mout_mfcmscl_mfc_user", CLK_CON_GAT_GOUT_MFCMSCL_MFC_ACLK, 21, 0, 0), GATE(CLK_GOUT_MFCMSCL_PPMU_ACLK, "gout_mfcmscl_ppmu_aclk", "mout_mfcmscl_mfc_user", CLK_CON_GAT_GOUT_MFCMSCL_PPMU_ACLK, 21, 0, 0), GATE(CLK_GOUT_MFCMSCL_PPMU_PCLK, "gout_mfcmscl_ppmu_pclk", "dout_mfcmscl_busp", CLK_CON_GAT_GOUT_MFCMSCL_PPMU_PCLK, 21, 0, 0), GATE(CLK_GOUT_MFCMSCL_SYSMMU_CLK, "gout_mfcmscl_sysmmu_clk", "mout_mfcmscl_mfc_user", CLK_CON_GAT_GOUT_MFCMSCL_SYSMMU_CLK_S1, 21, 0, 0), GATE(CLK_GOUT_MFCMSCL_SYSREG_PCLK, "gout_mfcmscl_sysreg_pclk", "dout_mfcmscl_busp", CLK_CON_GAT_GOUT_MFCMSCL_SYSREG_PCLK, 21, 0, 0), }; static const struct samsung_cmu_info mfcmscl_cmu_info __initconst = { .mux_clks = mfcmscl_mux_clks, .nr_mux_clks = ARRAY_SIZE(mfcmscl_mux_clks), .div_clks = mfcmscl_div_clks, .nr_div_clks = ARRAY_SIZE(mfcmscl_div_clks), .gate_clks = mfcmscl_gate_clks, .nr_gate_clks = ARRAY_SIZE(mfcmscl_gate_clks), .nr_clk_ids = CLKS_NR_MFCMSCL, .clk_regs = mfcmscl_clk_regs, .nr_clk_regs = ARRAY_SIZE(mfcmscl_clk_regs), .clk_name = "dout_mfcmscl_mfc", }; /* ---- CMU_PERI ------------------------------------------------------------ */ /* Register Offset definitions for CMU_PERI (0x10030000) */ #define PLL_CON0_MUX_CLKCMU_PERI_BUS_USER 0x0600 #define PLL_CON0_MUX_CLKCMU_PERI_HSI2C_USER 0x0610 #define PLL_CON0_MUX_CLKCMU_PERI_SPI_USER 0x0620 #define PLL_CON0_MUX_CLKCMU_PERI_UART_USER 0x0630 #define CLK_CON_DIV_DIV_CLK_PERI_HSI2C_0 0x1800 #define CLK_CON_DIV_DIV_CLK_PERI_HSI2C_1 0x1804 #define CLK_CON_DIV_DIV_CLK_PERI_HSI2C_2 0x1808 #define CLK_CON_DIV_DIV_CLK_PERI_SPI_0 0x180c #define CLK_CON_GAT_GATE_CLK_PERI_HSI2C_0 0x200c #define CLK_CON_GAT_GATE_CLK_PERI_HSI2C_1 0x2010 #define CLK_CON_GAT_GATE_CLK_PERI_HSI2C_2 0x2014 #define CLK_CON_GAT_GOUT_PERI_BUSIF_TMU_PCLK 0x2018 #define CLK_CON_GAT_GOUT_PERI_GPIO_PERI_PCLK 0x2020 #define CLK_CON_GAT_GOUT_PERI_HSI2C_0_IPCLK 0x2024 #define CLK_CON_GAT_GOUT_PERI_HSI2C_0_PCLK 0x2028 #define CLK_CON_GAT_GOUT_PERI_HSI2C_1_IPCLK 0x202c #define CLK_CON_GAT_GOUT_PERI_HSI2C_1_PCLK 0x2030 #define CLK_CON_GAT_GOUT_PERI_HSI2C_2_IPCLK 0x2034 #define CLK_CON_GAT_GOUT_PERI_HSI2C_2_PCLK 0x2038 #define CLK_CON_GAT_GOUT_PERI_I2C_0_PCLK 0x203c #define CLK_CON_GAT_GOUT_PERI_I2C_1_PCLK 0x2040 #define CLK_CON_GAT_GOUT_PERI_I2C_2_PCLK 0x2044 #define CLK_CON_GAT_GOUT_PERI_I2C_3_PCLK 0x2048 #define CLK_CON_GAT_GOUT_PERI_I2C_4_PCLK 0x204c #define CLK_CON_GAT_GOUT_PERI_I2C_5_PCLK 0x2050 #define CLK_CON_GAT_GOUT_PERI_I2C_6_PCLK 0x2054 #define CLK_CON_GAT_GOUT_PERI_MCT_PCLK 0x205c #define CLK_CON_GAT_GOUT_PERI_PWM_MOTOR_PCLK 0x2064 #define CLK_CON_GAT_GOUT_PERI_SPI_0_IPCLK 0x209c #define CLK_CON_GAT_GOUT_PERI_SPI_0_PCLK 0x20a0 #define CLK_CON_GAT_GOUT_PERI_SYSREG_PERI_PCLK 0x20a4 #define CLK_CON_GAT_GOUT_PERI_UART_IPCLK 0x20a8 #define CLK_CON_GAT_GOUT_PERI_UART_PCLK 0x20ac #define CLK_CON_GAT_GOUT_PERI_WDT_0_PCLK 0x20b0 #define CLK_CON_GAT_GOUT_PERI_WDT_1_PCLK 0x20b4 static const unsigned long peri_clk_regs[] __initconst = { PLL_CON0_MUX_CLKCMU_PERI_BUS_USER, PLL_CON0_MUX_CLKCMU_PERI_HSI2C_USER, PLL_CON0_MUX_CLKCMU_PERI_SPI_USER, PLL_CON0_MUX_CLKCMU_PERI_UART_USER, CLK_CON_DIV_DIV_CLK_PERI_HSI2C_0, CLK_CON_DIV_DIV_CLK_PERI_HSI2C_1, CLK_CON_DIV_DIV_CLK_PERI_HSI2C_2, CLK_CON_DIV_DIV_CLK_PERI_SPI_0, CLK_CON_GAT_GATE_CLK_PERI_HSI2C_0, CLK_CON_GAT_GATE_CLK_PERI_HSI2C_1, CLK_CON_GAT_GATE_CLK_PERI_HSI2C_2, CLK_CON_GAT_GOUT_PERI_BUSIF_TMU_PCLK, CLK_CON_GAT_GOUT_PERI_GPIO_PERI_PCLK, CLK_CON_GAT_GOUT_PERI_HSI2C_0_IPCLK, CLK_CON_GAT_GOUT_PERI_HSI2C_0_PCLK, CLK_CON_GAT_GOUT_PERI_HSI2C_1_IPCLK, CLK_CON_GAT_GOUT_PERI_HSI2C_1_PCLK, CLK_CON_GAT_GOUT_PERI_HSI2C_2_IPCLK, CLK_CON_GAT_GOUT_PERI_HSI2C_2_PCLK, CLK_CON_GAT_GOUT_PERI_I2C_0_PCLK, CLK_CON_GAT_GOUT_PERI_I2C_1_PCLK, CLK_CON_GAT_GOUT_PERI_I2C_2_PCLK, CLK_CON_GAT_GOUT_PERI_I2C_3_PCLK, CLK_CON_GAT_GOUT_PERI_I2C_4_PCLK, CLK_CON_GAT_GOUT_PERI_I2C_5_PCLK, CLK_CON_GAT_GOUT_PERI_I2C_6_PCLK, CLK_CON_GAT_GOUT_PERI_MCT_PCLK, CLK_CON_GAT_GOUT_PERI_PWM_MOTOR_PCLK, CLK_CON_GAT_GOUT_PERI_SPI_0_IPCLK, CLK_CON_GAT_GOUT_PERI_SPI_0_PCLK, CLK_CON_GAT_GOUT_PERI_SYSREG_PERI_PCLK, CLK_CON_GAT_GOUT_PERI_UART_IPCLK, CLK_CON_GAT_GOUT_PERI_UART_PCLK, CLK_CON_GAT_GOUT_PERI_WDT_0_PCLK, CLK_CON_GAT_GOUT_PERI_WDT_1_PCLK, }; /* List of parent clocks for Muxes in CMU_PERI */ PNAME(mout_peri_bus_user_p) = { "oscclk", "dout_peri_bus" }; PNAME(mout_peri_uart_user_p) = { "oscclk", "dout_peri_uart" }; PNAME(mout_peri_hsi2c_user_p) = { "oscclk", "dout_peri_ip" }; PNAME(mout_peri_spi_user_p) = { "oscclk", "dout_peri_ip" }; static const struct samsung_mux_clock peri_mux_clks[] __initconst = { MUX(CLK_MOUT_PERI_BUS_USER, "mout_peri_bus_user", mout_peri_bus_user_p, PLL_CON0_MUX_CLKCMU_PERI_BUS_USER, 4, 1), MUX(CLK_MOUT_PERI_UART_USER, "mout_peri_uart_user", mout_peri_uart_user_p, PLL_CON0_MUX_CLKCMU_PERI_UART_USER, 4, 1), MUX(CLK_MOUT_PERI_HSI2C_USER, "mout_peri_hsi2c_user", mout_peri_hsi2c_user_p, PLL_CON0_MUX_CLKCMU_PERI_HSI2C_USER, 4, 1), MUX_F(CLK_MOUT_PERI_SPI_USER, "mout_peri_spi_user", mout_peri_spi_user_p, PLL_CON0_MUX_CLKCMU_PERI_SPI_USER, 4, 1, CLK_SET_RATE_PARENT, 0), }; static const struct samsung_div_clock peri_div_clks[] __initconst = { DIV(CLK_DOUT_PERI_HSI2C0, "dout_peri_hsi2c0", "gout_peri_hsi2c0", CLK_CON_DIV_DIV_CLK_PERI_HSI2C_0, 0, 5), DIV(CLK_DOUT_PERI_HSI2C1, "dout_peri_hsi2c1", "gout_peri_hsi2c1", CLK_CON_DIV_DIV_CLK_PERI_HSI2C_1, 0, 5), DIV(CLK_DOUT_PERI_HSI2C2, "dout_peri_hsi2c2", "gout_peri_hsi2c2", CLK_CON_DIV_DIV_CLK_PERI_HSI2C_2, 0, 5), DIV_F(CLK_DOUT_PERI_SPI0, "dout_peri_spi0", "mout_peri_spi_user", CLK_CON_DIV_DIV_CLK_PERI_SPI_0, 0, 5, CLK_SET_RATE_PARENT, 0), }; static const struct samsung_gate_clock peri_gate_clks[] __initconst = { GATE(CLK_GOUT_PERI_HSI2C0, "gout_peri_hsi2c0", "mout_peri_hsi2c_user", CLK_CON_GAT_GATE_CLK_PERI_HSI2C_0, 21, 0, 0), GATE(CLK_GOUT_PERI_HSI2C1, "gout_peri_hsi2c1", "mout_peri_hsi2c_user", CLK_CON_GAT_GATE_CLK_PERI_HSI2C_1, 21, 0, 0), GATE(CLK_GOUT_PERI_HSI2C2, "gout_peri_hsi2c2", "mout_peri_hsi2c_user", CLK_CON_GAT_GATE_CLK_PERI_HSI2C_2, 21, 0, 0), GATE(CLK_GOUT_HSI2C0_IPCLK, "gout_hsi2c0_ipclk", "dout_peri_hsi2c0", CLK_CON_GAT_GOUT_PERI_HSI2C_0_IPCLK, 21, 0, 0), GATE(CLK_GOUT_HSI2C0_PCLK, "gout_hsi2c0_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_HSI2C_0_PCLK, 21, 0, 0), GATE(CLK_GOUT_HSI2C1_IPCLK, "gout_hsi2c1_ipclk", "dout_peri_hsi2c1", CLK_CON_GAT_GOUT_PERI_HSI2C_1_IPCLK, 21, 0, 0), GATE(CLK_GOUT_HSI2C1_PCLK, "gout_hsi2c1_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_HSI2C_1_PCLK, 21, 0, 0), GATE(CLK_GOUT_HSI2C2_IPCLK, "gout_hsi2c2_ipclk", "dout_peri_hsi2c2", CLK_CON_GAT_GOUT_PERI_HSI2C_2_IPCLK, 21, 0, 0), GATE(CLK_GOUT_HSI2C2_PCLK, "gout_hsi2c2_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_HSI2C_2_PCLK, 21, 0, 0), GATE(CLK_GOUT_I2C0_PCLK, "gout_i2c0_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_I2C_0_PCLK, 21, 0, 0), GATE(CLK_GOUT_I2C1_PCLK, "gout_i2c1_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_I2C_1_PCLK, 21, 0, 0), GATE(CLK_GOUT_I2C2_PCLK, "gout_i2c2_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_I2C_2_PCLK, 21, 0, 0), GATE(CLK_GOUT_I2C3_PCLK, "gout_i2c3_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_I2C_3_PCLK, 21, 0, 0), GATE(CLK_GOUT_I2C4_PCLK, "gout_i2c4_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_I2C_4_PCLK, 21, 0, 0), GATE(CLK_GOUT_I2C5_PCLK, "gout_i2c5_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_I2C_5_PCLK, 21, 0, 0), GATE(CLK_GOUT_I2C6_PCLK, "gout_i2c6_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_I2C_6_PCLK, 21, 0, 0), GATE(CLK_GOUT_MCT_PCLK, "gout_mct_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_MCT_PCLK, 21, 0, 0), GATE(CLK_GOUT_PWM_MOTOR_PCLK, "gout_pwm_motor_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_PWM_MOTOR_PCLK, 21, 0, 0), GATE(CLK_GOUT_SPI0_IPCLK, "gout_spi0_ipclk", "dout_peri_spi0", CLK_CON_GAT_GOUT_PERI_SPI_0_IPCLK, 21, CLK_SET_RATE_PARENT, 0), GATE(CLK_GOUT_SPI0_PCLK, "gout_spi0_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_SPI_0_PCLK, 21, 0, 0), GATE(CLK_GOUT_SYSREG_PERI_PCLK, "gout_sysreg_peri_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_SYSREG_PERI_PCLK, 21, 0, 0), GATE(CLK_GOUT_UART_IPCLK, "gout_uart_ipclk", "mout_peri_uart_user", CLK_CON_GAT_GOUT_PERI_UART_IPCLK, 21, 0, 0), GATE(CLK_GOUT_UART_PCLK, "gout_uart_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_UART_PCLK, 21, 0, 0), GATE(CLK_GOUT_WDT0_PCLK, "gout_wdt0_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_WDT_0_PCLK, 21, 0, 0), GATE(CLK_GOUT_WDT1_PCLK, "gout_wdt1_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_WDT_1_PCLK, 21, 0, 0), /* TODO: Should be enabled in GPIO driver (or made CLK_IS_CRITICAL) */ GATE(CLK_GOUT_GPIO_PERI_PCLK, "gout_gpio_peri_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_GPIO_PERI_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_BUSIF_TMU_PCLK, "gout_busif_tmu_pclk", "mout_peri_bus_user", CLK_CON_GAT_GOUT_PERI_BUSIF_TMU_PCLK, 21, 0, 0), }; static const struct samsung_cmu_info peri_cmu_info __initconst = { .mux_clks = peri_mux_clks, .nr_mux_clks = ARRAY_SIZE(peri_mux_clks), .div_clks = peri_div_clks, .nr_div_clks = ARRAY_SIZE(peri_div_clks), .gate_clks = peri_gate_clks, .nr_gate_clks = ARRAY_SIZE(peri_gate_clks), .nr_clk_ids = CLKS_NR_PERI, .clk_regs = peri_clk_regs, .nr_clk_regs = ARRAY_SIZE(peri_clk_regs), .clk_name = "dout_peri_bus", }; static void __init exynos850_cmu_peri_init(struct device_node *np) { exynos_arm64_register_cmu(NULL, np, &peri_cmu_info); } /* Register CMU_PERI early, as it's needed for MCT timer */ CLK_OF_DECLARE(exynos850_cmu_peri, "samsung,exynos850-cmu-peri", exynos850_cmu_peri_init); /* ---- CMU_CORE ------------------------------------------------------------ */ /* Register Offset definitions for CMU_CORE (0x12000000) */ #define PLL_CON0_MUX_CLKCMU_CORE_BUS_USER 0x0600 #define PLL_CON0_MUX_CLKCMU_CORE_CCI_USER 0x0610 #define PLL_CON0_MUX_CLKCMU_CORE_MMC_EMBD_USER 0x0620 #define PLL_CON0_MUX_CLKCMU_CORE_SSS_USER 0x0630 #define CLK_CON_MUX_MUX_CLK_CORE_GIC 0x1000 #define CLK_CON_DIV_DIV_CLK_CORE_BUSP 0x1800 #define CLK_CON_GAT_GOUT_CORE_CCI_550_ACLK 0x2038 #define CLK_CON_GAT_GOUT_CORE_GIC_CLK 0x2040 #define CLK_CON_GAT_GOUT_CORE_GPIO_CORE_PCLK 0x2044 #define CLK_CON_GAT_GOUT_CORE_MMC_EMBD_I_ACLK 0x20e8 #define CLK_CON_GAT_GOUT_CORE_MMC_EMBD_SDCLKIN 0x20ec #define CLK_CON_GAT_GOUT_CORE_PDMA_ACLK 0x20f0 #define CLK_CON_GAT_GOUT_CORE_SPDMA_ACLK 0x2124 #define CLK_CON_GAT_GOUT_CORE_SSS_I_ACLK 0x2128 #define CLK_CON_GAT_GOUT_CORE_SSS_I_PCLK 0x212c #define CLK_CON_GAT_GOUT_CORE_SYSREG_CORE_PCLK 0x2130 static const unsigned long core_clk_regs[] __initconst = { PLL_CON0_MUX_CLKCMU_CORE_BUS_USER, PLL_CON0_MUX_CLKCMU_CORE_CCI_USER, PLL_CON0_MUX_CLKCMU_CORE_MMC_EMBD_USER, PLL_CON0_MUX_CLKCMU_CORE_SSS_USER, CLK_CON_MUX_MUX_CLK_CORE_GIC, CLK_CON_DIV_DIV_CLK_CORE_BUSP, CLK_CON_GAT_GOUT_CORE_CCI_550_ACLK, CLK_CON_GAT_GOUT_CORE_GIC_CLK, CLK_CON_GAT_GOUT_CORE_GPIO_CORE_PCLK, CLK_CON_GAT_GOUT_CORE_MMC_EMBD_I_ACLK, CLK_CON_GAT_GOUT_CORE_MMC_EMBD_SDCLKIN, CLK_CON_GAT_GOUT_CORE_PDMA_ACLK, CLK_CON_GAT_GOUT_CORE_SPDMA_ACLK, CLK_CON_GAT_GOUT_CORE_SSS_I_ACLK, CLK_CON_GAT_GOUT_CORE_SSS_I_PCLK, CLK_CON_GAT_GOUT_CORE_SYSREG_CORE_PCLK, }; /* List of parent clocks for Muxes in CMU_CORE */ PNAME(mout_core_bus_user_p) = { "oscclk", "dout_core_bus" }; PNAME(mout_core_cci_user_p) = { "oscclk", "dout_core_cci" }; PNAME(mout_core_mmc_embd_user_p) = { "oscclk", "dout_core_mmc_embd" }; PNAME(mout_core_sss_user_p) = { "oscclk", "dout_core_sss" }; PNAME(mout_core_gic_p) = { "dout_core_busp", "oscclk" }; static const struct samsung_mux_clock core_mux_clks[] __initconst = { MUX(CLK_MOUT_CORE_BUS_USER, "mout_core_bus_user", mout_core_bus_user_p, PLL_CON0_MUX_CLKCMU_CORE_BUS_USER, 4, 1), MUX(CLK_MOUT_CORE_CCI_USER, "mout_core_cci_user", mout_core_cci_user_p, PLL_CON0_MUX_CLKCMU_CORE_CCI_USER, 4, 1), MUX_F(CLK_MOUT_CORE_MMC_EMBD_USER, "mout_core_mmc_embd_user", mout_core_mmc_embd_user_p, PLL_CON0_MUX_CLKCMU_CORE_MMC_EMBD_USER, 4, 1, CLK_SET_RATE_PARENT, 0), MUX(CLK_MOUT_CORE_SSS_USER, "mout_core_sss_user", mout_core_sss_user_p, PLL_CON0_MUX_CLKCMU_CORE_SSS_USER, 4, 1), MUX(CLK_MOUT_CORE_GIC, "mout_core_gic", mout_core_gic_p, CLK_CON_MUX_MUX_CLK_CORE_GIC, 0, 1), }; static const struct samsung_div_clock core_div_clks[] __initconst = { DIV(CLK_DOUT_CORE_BUSP, "dout_core_busp", "mout_core_bus_user", CLK_CON_DIV_DIV_CLK_CORE_BUSP, 0, 2), }; static const struct samsung_gate_clock core_gate_clks[] __initconst = { /* CCI (interconnect) clock must be always running */ GATE(CLK_GOUT_CCI_ACLK, "gout_cci_aclk", "mout_core_cci_user", CLK_CON_GAT_GOUT_CORE_CCI_550_ACLK, 21, CLK_IS_CRITICAL, 0), /* GIC (interrupt controller) clock must be always running */ GATE(CLK_GOUT_GIC_CLK, "gout_gic_clk", "mout_core_gic", CLK_CON_GAT_GOUT_CORE_GIC_CLK, 21, CLK_IS_CRITICAL, 0), GATE(CLK_GOUT_MMC_EMBD_ACLK, "gout_mmc_embd_aclk", "dout_core_busp", CLK_CON_GAT_GOUT_CORE_MMC_EMBD_I_ACLK, 21, 0, 0), GATE(CLK_GOUT_MMC_EMBD_SDCLKIN, "gout_mmc_embd_sdclkin", "mout_core_mmc_embd_user", CLK_CON_GAT_GOUT_CORE_MMC_EMBD_SDCLKIN, 21, CLK_SET_RATE_PARENT, 0), GATE(CLK_GOUT_PDMA_CORE_ACLK, "gout_pdma_core_aclk", "mout_core_bus_user", CLK_CON_GAT_GOUT_CORE_PDMA_ACLK, 21, 0, 0), GATE(CLK_GOUT_SPDMA_CORE_ACLK, "gout_spdma_core_aclk", "mout_core_bus_user", CLK_CON_GAT_GOUT_CORE_SPDMA_ACLK, 21, 0, 0), GATE(CLK_GOUT_SSS_ACLK, "gout_sss_aclk", "mout_core_sss_user", CLK_CON_GAT_GOUT_CORE_SSS_I_ACLK, 21, 0, 0), GATE(CLK_GOUT_SSS_PCLK, "gout_sss_pclk", "dout_core_busp", CLK_CON_GAT_GOUT_CORE_SSS_I_PCLK, 21, 0, 0), /* TODO: Should be enabled in GPIO driver (or made CLK_IS_CRITICAL) */ GATE(CLK_GOUT_GPIO_CORE_PCLK, "gout_gpio_core_pclk", "dout_core_busp", CLK_CON_GAT_GOUT_CORE_GPIO_CORE_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_SYSREG_CORE_PCLK, "gout_sysreg_core_pclk", "dout_core_busp", CLK_CON_GAT_GOUT_CORE_SYSREG_CORE_PCLK, 21, 0, 0), }; static const struct samsung_cmu_info core_cmu_info __initconst = { .mux_clks = core_mux_clks, .nr_mux_clks = ARRAY_SIZE(core_mux_clks), .div_clks = core_div_clks, .nr_div_clks = ARRAY_SIZE(core_div_clks), .gate_clks = core_gate_clks, .nr_gate_clks = ARRAY_SIZE(core_gate_clks), .nr_clk_ids = CLKS_NR_CORE, .clk_regs = core_clk_regs, .nr_clk_regs = ARRAY_SIZE(core_clk_regs), .clk_name = "dout_core_bus", }; /* ---- CMU_DPU ------------------------------------------------------------- */ /* Register Offset definitions for CMU_DPU (0x13000000) */ #define PLL_CON0_MUX_CLKCMU_DPU_USER 0x0600 #define CLK_CON_DIV_DIV_CLK_DPU_BUSP 0x1800 #define CLK_CON_GAT_CLK_DPU_CMU_DPU_PCLK 0x2004 #define CLK_CON_GAT_GOUT_DPU_ACLK_DECON0 0x2010 #define CLK_CON_GAT_GOUT_DPU_ACLK_DMA 0x2014 #define CLK_CON_GAT_GOUT_DPU_ACLK_DPP 0x2018 #define CLK_CON_GAT_GOUT_DPU_PPMU_ACLK 0x2028 #define CLK_CON_GAT_GOUT_DPU_PPMU_PCLK 0x202c #define CLK_CON_GAT_GOUT_DPU_SMMU_CLK 0x2038 #define CLK_CON_GAT_GOUT_DPU_SYSREG_PCLK 0x203c static const unsigned long dpu_clk_regs[] __initconst = { PLL_CON0_MUX_CLKCMU_DPU_USER, CLK_CON_DIV_DIV_CLK_DPU_BUSP, CLK_CON_GAT_CLK_DPU_CMU_DPU_PCLK, CLK_CON_GAT_GOUT_DPU_ACLK_DECON0, CLK_CON_GAT_GOUT_DPU_ACLK_DMA, CLK_CON_GAT_GOUT_DPU_ACLK_DPP, CLK_CON_GAT_GOUT_DPU_PPMU_ACLK, CLK_CON_GAT_GOUT_DPU_PPMU_PCLK, CLK_CON_GAT_GOUT_DPU_SMMU_CLK, CLK_CON_GAT_GOUT_DPU_SYSREG_PCLK, }; /* List of parent clocks for Muxes in CMU_DPU */ PNAME(mout_dpu_user_p) = { "oscclk", "dout_dpu" }; static const struct samsung_mux_clock dpu_mux_clks[] __initconst = { MUX(CLK_MOUT_DPU_USER, "mout_dpu_user", mout_dpu_user_p, PLL_CON0_MUX_CLKCMU_DPU_USER, 4, 1), }; static const struct samsung_div_clock dpu_div_clks[] __initconst = { DIV(CLK_DOUT_DPU_BUSP, "dout_dpu_busp", "mout_dpu_user", CLK_CON_DIV_DIV_CLK_DPU_BUSP, 0, 3), }; static const struct samsung_gate_clock dpu_gate_clks[] __initconst = { /* TODO: Should be enabled in DSIM driver */ GATE(CLK_GOUT_DPU_CMU_DPU_PCLK, "gout_dpu_cmu_dpu_pclk", "dout_dpu_busp", CLK_CON_GAT_CLK_DPU_CMU_DPU_PCLK, 21, CLK_IGNORE_UNUSED, 0), GATE(CLK_GOUT_DPU_DECON0_ACLK, "gout_dpu_decon0_aclk", "mout_dpu_user", CLK_CON_GAT_GOUT_DPU_ACLK_DECON0, 21, 0, 0), GATE(CLK_GOUT_DPU_DMA_ACLK, "gout_dpu_dma_aclk", "mout_dpu_user", CLK_CON_GAT_GOUT_DPU_ACLK_DMA, 21, 0, 0), GATE(CLK_GOUT_DPU_DPP_ACLK, "gout_dpu_dpp_aclk", "mout_dpu_user", CLK_CON_GAT_GOUT_DPU_ACLK_DPP, 21, 0, 0), GATE(CLK_GOUT_DPU_PPMU_ACLK, "gout_dpu_ppmu_aclk", "mout_dpu_user", CLK_CON_GAT_GOUT_DPU_PPMU_ACLK, 21, 0, 0), GATE(CLK_GOUT_DPU_PPMU_PCLK, "gout_dpu_ppmu_pclk", "dout_dpu_busp", CLK_CON_GAT_GOUT_DPU_PPMU_PCLK, 21, 0, 0), GATE(CLK_GOUT_DPU_SMMU_CLK, "gout_dpu_smmu_clk", "mout_dpu_user", CLK_CON_GAT_GOUT_DPU_SMMU_CLK, 21, 0, 0), GATE(CLK_GOUT_DPU_SYSREG_PCLK, "gout_dpu_sysreg_pclk", "dout_dpu_busp", CLK_CON_GAT_GOUT_DPU_SYSREG_PCLK, 21, 0, 0), }; static const struct samsung_cmu_info dpu_cmu_info __initconst = { .mux_clks = dpu_mux_clks, .nr_mux_clks = ARRAY_SIZE(dpu_mux_clks), .div_clks = dpu_div_clks, .nr_div_clks = ARRAY_SIZE(dpu_div_clks), .gate_clks = dpu_gate_clks, .nr_gate_clks = ARRAY_SIZE(dpu_gate_clks), .nr_clk_ids = CLKS_NR_DPU, .clk_regs = dpu_clk_regs, .nr_clk_regs = ARRAY_SIZE(dpu_clk_regs), .clk_name = "dout_dpu", }; /* ---- platform_driver ----------------------------------------------------- */ static int __init exynos850_cmu_probe(struct platform_device *pdev) { const struct samsung_cmu_info *info; struct device *dev = &pdev->dev; info = of_device_get_match_data(dev); exynos_arm64_register_cmu(dev, dev->of_node, info); return 0; } static const struct of_device_id exynos850_cmu_of_match[] = { { .compatible = "samsung,exynos850-cmu-apm", .data = &apm_cmu_info, }, { .compatible = "samsung,exynos850-cmu-aud", .data = &aud_cmu_info, }, { .compatible = "samsung,exynos850-cmu-cmgp", .data = &cmgp_cmu_info, }, { .compatible = "samsung,exynos850-cmu-g3d", .data = &g3d_cmu_info, }, { .compatible = "samsung,exynos850-cmu-hsi", .data = &hsi_cmu_info, }, { .compatible = "samsung,exynos850-cmu-is", .data = &is_cmu_info, }, { .compatible = "samsung,exynos850-cmu-mfcmscl", .data = &mfcmscl_cmu_info, }, { .compatible = "samsung,exynos850-cmu-core", .data = &core_cmu_info, }, { .compatible = "samsung,exynos850-cmu-dpu", .data = &dpu_cmu_info, }, { }, }; static struct platform_driver exynos850_cmu_driver __refdata = { .driver = { .name = "exynos850-cmu", .of_match_table = exynos850_cmu_of_match, .suppress_bind_attrs = true, }, .probe = exynos850_cmu_probe, }; static int __init exynos850_cmu_init(void) { return platform_driver_register(&exynos850_cmu_driver); } core_initcall(exynos850_cmu_init);
/* SPDX-License-Identifier: GPL-2.0 * * Copyright 2016-2018 HabanaLabs, Ltd. * All Rights Reserved. * */ /************************************ ** This is an auto-generated file ** ** DO NOT EDIT BELOW ** ************************************/ #ifndef ASIC_REG_STLB_MASKS_H_ #define ASIC_REG_STLB_MASKS_H_ /* ***************************************** * STLB (Prototype: STLB) ***************************************** */ /* STLB_CACHE_INV */ #define STLB_CACHE_INV_PRODUCER_INDEX_SHIFT 0 #define STLB_CACHE_INV_PRODUCER_INDEX_MASK 0xFF #define STLB_CACHE_INV_INDEX_MASK_SHIFT 8 #define STLB_CACHE_INV_INDEX_MASK_MASK 0xFF00 /* STLB_CACHE_INV_BASE_39_8 */ #define STLB_CACHE_INV_BASE_39_8_PA_SHIFT 0 #define STLB_CACHE_INV_BASE_39_8_PA_MASK 0xFFFFFFFF /* STLB_CACHE_INV_BASE_49_40 */ #define STLB_CACHE_INV_BASE_49_40_PA_SHIFT 0 #define STLB_CACHE_INV_BASE_49_40_PA_MASK 0x3FF /* STLB_STLB_FEATURE_EN */ #define STLB_STLB_FEATURE_EN_STLB_CTRL_MULTI_PAGE_SIZE_EN_SHIFT 0 #define STLB_STLB_FEATURE_EN_STLB_CTRL_MULTI_PAGE_SIZE_EN_MASK 0x1 #define STLB_STLB_FEATURE_EN_MULTI_PAGE_SIZE_EN_SHIFT 1 #define STLB_STLB_FEATURE_EN_MULTI_PAGE_SIZE_EN_MASK 0x2 #define STLB_STLB_FEATURE_EN_LOOKUP_EN_SHIFT 2 #define STLB_STLB_FEATURE_EN_LOOKUP_EN_MASK 0x4 #define STLB_STLB_FEATURE_EN_BYPASS_SHIFT 3 #define STLB_STLB_FEATURE_EN_BYPASS_MASK 0x8 #define STLB_STLB_FEATURE_EN_BANK_STOP_SHIFT 4 #define STLB_STLB_FEATURE_EN_BANK_STOP_MASK 0x10 #define STLB_STLB_FEATURE_EN_TRACE_EN_SHIFT 5 #define STLB_STLB_FEATURE_EN_TRACE_EN_MASK 0x20 #define STLB_STLB_FEATURE_EN_FOLLOWER_EN_SHIFT 6 #define STLB_STLB_FEATURE_EN_FOLLOWER_EN_MASK 0x40 #define STLB_STLB_FEATURE_EN_CACHING_EN_SHIFT 7 #define STLB_STLB_FEATURE_EN_CACHING_EN_MASK 0xF80 /* STLB_STLB_AXI_CACHE */ #define STLB_STLB_AXI_CACHE_STLB_CTRL_ARCACHE_SHIFT 0 #define STLB_STLB_AXI_CACHE_STLB_CTRL_ARCACHE_MASK 0xF #define STLB_STLB_AXI_CACHE_STLB_CTRL_AWCACHE_SHIFT 4 #define STLB_STLB_AXI_CACHE_STLB_CTRL_AWCACHE_MASK 0xF0 #define STLB_STLB_AXI_CACHE_INV_ARCACHE_SHIFT 8 #define STLB_STLB_AXI_CACHE_INV_ARCACHE_MASK 0xF00 /* STLB_HOP_CONFIGURATION */ #define STLB_HOP_CONFIGURATION_FIRST_HOP_SHIFT 0 #define STLB_HOP_CONFIGURATION_FIRST_HOP_MASK 0x7 #define STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SHIFT 4 #define STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_MASK 0x70 #define STLB_HOP_CONFIGURATION_LAST_HOP_SHIFT 8 #define STLB_HOP_CONFIGURATION_LAST_HOP_MASK 0x700 /* STLB_LINK_LIST_LOOKUP_MASK_49_32 */ #define STLB_LINK_LIST_LOOKUP_MASK_49_32_R_SHIFT 0 #define STLB_LINK_LIST_LOOKUP_MASK_49_32_R_MASK 0x3FFFF /* STLB_LINK_LIST_LOOKUP_MASK_31_0 */ #define STLB_LINK_LIST_LOOKUP_MASK_31_0_R_SHIFT 0 #define STLB_LINK_LIST_LOOKUP_MASK_31_0_R_MASK 0xFFFFFFFF /* STLB_LINK_LIST */ #define STLB_LINK_LIST_CLEAR_SHIFT 0 #define STLB_LINK_LIST_CLEAR_MASK 0x1 #define STLB_LINK_LIST_EN_SHIFT 1 #define STLB_LINK_LIST_EN_MASK 0x2 /* STLB_INV_ALL_START */ #define STLB_INV_ALL_START_R_SHIFT 0 #define STLB_INV_ALL_START_R_MASK 0x1 /* STLB_INV_ALL_SET */ #define STLB_INV_ALL_SET_R_SHIFT 0 #define STLB_INV_ALL_SET_R_MASK 0xFF /* STLB_INV_PS */ #define STLB_INV_PS_R_SHIFT 0 #define STLB_INV_PS_R_MASK 0x3 /* STLB_INV_CONSUMER_INDEX */ #define STLB_INV_CONSUMER_INDEX_R_SHIFT 0 #define STLB_INV_CONSUMER_INDEX_R_MASK 0xFF /* STLB_INV_HIT_COUNT */ #define STLB_INV_HIT_COUNT_R_SHIFT 0 #define STLB_INV_HIT_COUNT_R_MASK 0x7FF /* STLB_INV_SET */ #define STLB_INV_SET_R_SHIFT 0 #define STLB_INV_SET_R_MASK 0xFF /* STLB_SRAM_INIT */ #define STLB_SRAM_INIT_BUSY_TAG_SHIFT 0 #define STLB_SRAM_INIT_BUSY_TAG_MASK 0x3 #define STLB_SRAM_INIT_BUSY_SLICE_SHIFT 2 #define STLB_SRAM_INIT_BUSY_SLICE_MASK 0xC #define STLB_SRAM_INIT_BUSY_DATA_SHIFT 4 #define STLB_SRAM_INIT_BUSY_DATA_MASK 0x10 #endif /* ASIC_REG_STLB_MASKS_H_ */
// SPDX-License-Identifier: GPL-2.0 /* * Industrial I/O driver for Microchip digital potentiometers * Copyright (c) 2018 Axentia Technologies AB * Author: Peter Rosin <[email protected]> * * Datasheet: http://www.microchip.com/downloads/en/DeviceDoc/22147a.pdf * * DEVID #Wipers #Positions Resistor Opts (kOhm) * mcp4017 1 128 5, 10, 50, 100 * mcp4018 1 128 5, 10, 50, 100 * mcp4019 1 128 5, 10, 50, 100 */ #include <linux/err.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/property.h> #define MCP4018_WIPER_MAX 127 struct mcp4018_cfg { int kohms; }; enum mcp4018_type { MCP4018_502, MCP4018_103, MCP4018_503, MCP4018_104, }; static const struct mcp4018_cfg mcp4018_cfg[] = { [MCP4018_502] = { .kohms = 5, }, [MCP4018_103] = { .kohms = 10, }, [MCP4018_503] = { .kohms = 50, }, [MCP4018_104] = { .kohms = 100, }, }; struct mcp4018_data { struct i2c_client *client; const struct mcp4018_cfg *cfg; }; static const struct iio_chan_spec mcp4018_channel = { .type = IIO_RESISTANCE, .indexed = 1, .output = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), }; static int mcp4018_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mcp4018_data *data = iio_priv(indio_dev); s32 ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = i2c_smbus_read_byte(data->client); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 1000 * data->cfg->kohms; *val2 = MCP4018_WIPER_MAX; return IIO_VAL_FRACTIONAL; } return -EINVAL; } static int mcp4018_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct mcp4018_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: if (val > MCP4018_WIPER_MAX || val < 0) return -EINVAL; break; default: return -EINVAL; } return i2c_smbus_write_byte(data->client, val); } static const struct iio_info mcp4018_info = { .read_raw = mcp4018_read_raw, .write_raw = mcp4018_write_raw, }; #define MCP4018_ID_TABLE(_name, cfg) { \ .name = _name, \ .driver_data = (kernel_ulong_t)&mcp4018_cfg[cfg], \ } static const struct i2c_device_id mcp4018_id[] = { MCP4018_ID_TABLE("mcp4017-502", MCP4018_502), MCP4018_ID_TABLE("mcp4017-103", MCP4018_103), MCP4018_ID_TABLE("mcp4017-503", MCP4018_503), MCP4018_ID_TABLE("mcp4017-104", MCP4018_104), MCP4018_ID_TABLE("mcp4018-502", MCP4018_502), MCP4018_ID_TABLE("mcp4018-103", MCP4018_103), MCP4018_ID_TABLE("mcp4018-503", MCP4018_503), MCP4018_ID_TABLE("mcp4018-104", MCP4018_104), MCP4018_ID_TABLE("mcp4019-502", MCP4018_502), MCP4018_ID_TABLE("mcp4019-103", MCP4018_103), MCP4018_ID_TABLE("mcp4019-503", MCP4018_503), MCP4018_ID_TABLE("mcp4019-104", MCP4018_104), { /* sentinel */ } }; MODULE_DEVICE_TABLE(i2c, mcp4018_id); #define MCP4018_COMPATIBLE(of_compatible, cfg) { \ .compatible = of_compatible, \ .data = &mcp4018_cfg[cfg], \ } static const struct of_device_id mcp4018_of_match[] = { MCP4018_COMPATIBLE("microchip,mcp4017-502", MCP4018_502), MCP4018_COMPATIBLE("microchip,mcp4017-103", MCP4018_103), MCP4018_COMPATIBLE("microchip,mcp4017-503", MCP4018_503), MCP4018_COMPATIBLE("microchip,mcp4017-104", MCP4018_104), MCP4018_COMPATIBLE("microchip,mcp4018-502", MCP4018_502), MCP4018_COMPATIBLE("microchip,mcp4018-103", MCP4018_103), MCP4018_COMPATIBLE("microchip,mcp4018-503", MCP4018_503), MCP4018_COMPATIBLE("microchip,mcp4018-104", MCP4018_104), MCP4018_COMPATIBLE("microchip,mcp4019-502", MCP4018_502), MCP4018_COMPATIBLE("microchip,mcp4019-103", MCP4018_103), MCP4018_COMPATIBLE("microchip,mcp4019-503", MCP4018_503), MCP4018_COMPATIBLE("microchip,mcp4019-104", MCP4018_104), { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mcp4018_of_match); static int mcp4018_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct mcp4018_data *data; struct iio_dev *indio_dev; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE)) { dev_err(dev, "SMBUS Byte transfers not supported\n"); return -EOPNOTSUPP; } indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; data->cfg = i2c_get_match_data(client); indio_dev->info = &mcp4018_info; indio_dev->channels = &mcp4018_channel; indio_dev->num_channels = 1; indio_dev->name = client->name; return devm_iio_device_register(dev, indio_dev); } static struct i2c_driver mcp4018_driver = { .driver = { .name = "mcp4018", .of_match_table = mcp4018_of_match, }, .probe = mcp4018_probe, .id_table = mcp4018_id, }; module_i2c_driver(mcp4018_driver); MODULE_AUTHOR("Peter Rosin <[email protected]>"); MODULE_DESCRIPTION("MCP4018 digital potentiometer"); MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) */ /* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * Copyright (c) 2019-2020 Marvell International Ltd. */ #ifndef _QED_OOO_H #define _QED_OOO_H #include <linux/types.h> #include <linux/list.h> #include <linux/slab.h> #include "qed.h" #define QED_MAX_NUM_ISLES 256 #define QED_MAX_NUM_OOO_HISTORY_ENTRIES 512 #define QED_OOO_LEFT_BUF 0 #define QED_OOO_RIGHT_BUF 1 struct qed_ooo_buffer { struct list_head list_entry; void *rx_buffer_virt_addr; dma_addr_t rx_buffer_phys_addr; u32 rx_buffer_size; u16 packet_length; u16 parse_flags; u16 vlan; u8 placement_offset; }; struct qed_ooo_isle { struct list_head list_entry; struct list_head buffers_list; }; struct qed_ooo_archipelago { struct list_head isles_list; }; struct qed_ooo_history { struct ooo_opaque *p_cqes; u32 head_idx; u32 num_of_cqes; }; struct qed_ooo_info { struct list_head free_buffers_list; struct list_head ready_buffers_list; struct list_head free_isles_list; struct qed_ooo_archipelago *p_archipelagos_mem; struct qed_ooo_isle *p_isles_mem; struct qed_ooo_history ooo_history; u32 cur_isles_number; u32 max_isles_number; u32 gen_isles_number; u16 max_num_archipelagos; u16 cid_base; }; #if IS_ENABLED(CONFIG_QED_OOO) void qed_ooo_save_history_entry(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, struct ooo_opaque *p_cqe); int qed_ooo_alloc(struct qed_hwfn *p_hwfn); void qed_ooo_setup(struct qed_hwfn *p_hwfn); void qed_ooo_free(struct qed_hwfn *p_hwfn); void qed_ooo_release_connection_isles(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid); void qed_ooo_release_all_isles(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info); void qed_ooo_put_free_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, struct qed_ooo_buffer *p_buffer); struct qed_ooo_buffer * qed_ooo_get_free_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info); void qed_ooo_put_ready_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, struct qed_ooo_buffer *p_buffer, u8 on_tail); struct qed_ooo_buffer * qed_ooo_get_ready_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info); void qed_ooo_delete_isles(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid, u8 drop_isle, u8 drop_size); void qed_ooo_add_new_isle(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid, u8 ooo_isle, struct qed_ooo_buffer *p_buffer); void qed_ooo_add_new_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid, u8 ooo_isle, struct qed_ooo_buffer *p_buffer, u8 buffer_side); void qed_ooo_join_isles(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid, u8 left_isle); #else /* IS_ENABLED(CONFIG_QED_ISCSI) */ static inline void qed_ooo_save_history_entry(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, struct ooo_opaque *p_cqe) {} static inline int qed_ooo_alloc(struct qed_hwfn *p_hwfn) { return -EINVAL; } static inline void qed_ooo_setup(struct qed_hwfn *p_hwfn) {} static inline void qed_ooo_free(struct qed_hwfn *p_hwfn) {} static inline void qed_ooo_release_connection_isles(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid) {} static inline void qed_ooo_release_all_isles(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info) {} static inline void qed_ooo_put_free_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, struct qed_ooo_buffer *p_buffer) {} static inline struct qed_ooo_buffer * qed_ooo_get_free_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info) { return NULL; } static inline void qed_ooo_put_ready_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, struct qed_ooo_buffer *p_buffer, u8 on_tail) {} static inline struct qed_ooo_buffer * qed_ooo_get_ready_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info) { return NULL; } static inline void qed_ooo_delete_isles(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid, u8 drop_isle, u8 drop_size) {} static inline void qed_ooo_add_new_isle(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid, u8 ooo_isle, struct qed_ooo_buffer *p_buffer) {} static inline void qed_ooo_add_new_buffer(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid, u8 ooo_isle, struct qed_ooo_buffer *p_buffer, u8 buffer_side) {} static inline void qed_ooo_join_isles(struct qed_hwfn *p_hwfn, struct qed_ooo_info *p_ooo_info, u32 cid, u8 left_isle) {} #endif /* IS_ENABLED(CONFIG_QED_ISCSI) */ #endif
// SPDX-License-Identifier: GPL-2.0-or-later /* * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. * * Note: This driver is a cleanroom reimplementation based on reverse * engineered documentation written by Carl-Daniel Hailfinger * and Andrew de Quincey. * * NVIDIA, nForce and other NVIDIA marks are trademarks or registered * trademarks of NVIDIA Corporation in the United States and other * countries. * * Copyright (C) 2003,4,5 Manfred Spraul * Copyright (C) 2004 Andrew de Quincey (wol support) * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane * IRQ rate fixes, bigendian fixes, cleanups, verification) * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation * * Known bugs: * We suspect that on some hardware no TX done interrupts are generated. * This means recovery from netif_stop_queue only happens if the hw timer * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) * and the timer is active in the IRQMask, or if a rx packet arrives by chance. * If your hardware reliably generates tx done interrupts, then you can remove * DEV_NEED_TIMERIRQ from the driver_data flags. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few * superfluous timer interrupts from the nic. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define FORCEDETH_VERSION "0.64" #define DRV_NAME "forcedeth" #include <linux/module.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/spinlock.h> #include <linux/ethtool.h> #include <linux/timer.h> #include <linux/skbuff.h> #include <linux/mii.h> #include <linux/random.h> #include <linux/if_vlan.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/prefetch.h> #include <linux/u64_stats_sync.h> #include <linux/io.h> #include <asm/irq.h> #define TX_WORK_PER_LOOP NAPI_POLL_WEIGHT #define RX_WORK_PER_LOOP NAPI_POLL_WEIGHT /* * Hardware access: */ #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */ #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */ #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */ #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */ #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */ #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */ #define DEV_HAS_MSI 0x0000040 /* device supports MSI */ #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */ #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */ #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */ #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */ #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */ #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */ #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */ #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */ #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */ #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */ #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */ #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */ #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */ #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */ #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */ #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */ #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */ #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */ #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */ #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */ enum { NvRegIrqStatus = 0x000, #define NVREG_IRQSTAT_MIIEVENT 0x040 #define NVREG_IRQSTAT_MASK 0x83ff NvRegIrqMask = 0x004, #define NVREG_IRQ_RX_ERROR 0x0001 #define NVREG_IRQ_RX 0x0002 #define NVREG_IRQ_RX_NOBUF 0x0004 #define NVREG_IRQ_TX_ERR 0x0008 #define NVREG_IRQ_TX_OK 0x0010 #define NVREG_IRQ_TIMER 0x0020 #define NVREG_IRQ_LINK 0x0040 #define NVREG_IRQ_RX_FORCED 0x0080 #define NVREG_IRQ_TX_FORCED 0x0100 #define NVREG_IRQ_RECOVER_ERROR 0x8200 #define NVREG_IRQMASK_THROUGHPUT 0x00df #define NVREG_IRQMASK_CPU 0x0060 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED) #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED) #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR) NvRegUnknownSetupReg6 = 0x008, #define NVREG_UNKSETUP6_VAL 3 /* * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms */ NvRegPollingInterval = 0x00c, #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */ #define NVREG_POLL_DEFAULT_CPU 13 NvRegMSIMap0 = 0x020, NvRegMSIMap1 = 0x024, NvRegMSIIrqMask = 0x030, #define NVREG_MSI_VECTOR_0_ENABLED 0x01 NvRegMisc1 = 0x080, #define NVREG_MISC1_PAUSE_TX 0x01 #define NVREG_MISC1_HD 0x02 #define NVREG_MISC1_FORCE 0x3b0f3c NvRegMacReset = 0x34, #define NVREG_MAC_RESET_ASSERT 0x0F3 NvRegTransmitterControl = 0x084, #define NVREG_XMITCTL_START 0x01 #define NVREG_XMITCTL_MGMT_ST 0x40000000 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000 #define NVREG_XMITCTL_HOST_LOADED 0x00004000 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000 #define NVREG_XMITCTL_DATA_START 0x00100000 #define NVREG_XMITCTL_DATA_READY 0x00010000 #define NVREG_XMITCTL_DATA_ERROR 0x00020000 NvRegTransmitterStatus = 0x088, #define NVREG_XMITSTAT_BUSY 0x01 NvRegPacketFilterFlags = 0x8c, #define NVREG_PFF_PAUSE_RX 0x08 #define NVREG_PFF_ALWAYS 0x7F0000 #define NVREG_PFF_PROMISC 0x80 #define NVREG_PFF_MYADDR 0x20 #define NVREG_PFF_LOOPBACK 0x10 NvRegOffloadConfig = 0x90, #define NVREG_OFFLOAD_HOMEPHY 0x601 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE NvRegReceiverControl = 0x094, #define NVREG_RCVCTL_START 0x01 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000 NvRegReceiverStatus = 0x98, #define NVREG_RCVSTAT_BUSY 0x01 NvRegSlotTime = 0x9c, #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00 #define NVREG_SLOTTIME_HALF 0x0000ff00 #define NVREG_SLOTTIME_DEFAULT 0x00007f00 #define NVREG_SLOTTIME_MASK 0x000000ff NvRegTxDeferral = 0xA0, #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000 NvRegRxDeferral = 0xA4, #define NVREG_RX_DEFERRAL_DEFAULT 0x16 NvRegMacAddrA = 0xA8, NvRegMacAddrB = 0xAC, NvRegMulticastAddrA = 0xB0, #define NVREG_MCASTADDRA_FORCE 0x01 NvRegMulticastAddrB = 0xB4, NvRegMulticastMaskA = 0xB8, #define NVREG_MCASTMASKA_NONE 0xffffffff NvRegMulticastMaskB = 0xBC, #define NVREG_MCASTMASKB_NONE 0xffff NvRegPhyInterface = 0xC0, #define PHY_RGMII 0x10000000 NvRegBackOffControl = 0xC4, #define NVREG_BKOFFCTRL_DEFAULT 0x70000000 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff #define NVREG_BKOFFCTRL_SELECT 24 #define NVREG_BKOFFCTRL_GEAR 12 NvRegTxRingPhysAddr = 0x100, NvRegRxRingPhysAddr = 0x104, NvRegRingSizes = 0x108, #define NVREG_RINGSZ_TXSHIFT 0 #define NVREG_RINGSZ_RXSHIFT 16 NvRegTransmitPoll = 0x10c, #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000 NvRegLinkSpeed = 0x110, #define NVREG_LINKSPEED_FORCE 0x10000 #define NVREG_LINKSPEED_10 1000 #define NVREG_LINKSPEED_100 100 #define NVREG_LINKSPEED_1000 50 #define NVREG_LINKSPEED_MASK (0xFFF) NvRegUnknownSetupReg5 = 0x130, #define NVREG_UNKSETUP5_BIT31 (1<<31) NvRegTxWatermark = 0x13c, #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000 NvRegTxRxControl = 0x144, #define NVREG_TXRXCTL_KICK 0x0001 #define NVREG_TXRXCTL_BIT1 0x0002 #define NVREG_TXRXCTL_BIT2 0x0004 #define NVREG_TXRXCTL_IDLE 0x0008 #define NVREG_TXRXCTL_RESET 0x0010 #define NVREG_TXRXCTL_RXCHECK 0x0400 #define NVREG_TXRXCTL_DESC_1 0 #define NVREG_TXRXCTL_DESC_2 0x002100 #define NVREG_TXRXCTL_DESC_3 0xc02200 #define NVREG_TXRXCTL_VLANSTRIP 0x00040 #define NVREG_TXRXCTL_VLANINS 0x00080 NvRegTxRingPhysAddrHigh = 0x148, NvRegRxRingPhysAddrHigh = 0x14C, NvRegTxPauseFrame = 0x170, #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880 NvRegTxPauseFrameLimit = 0x174, #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000 NvRegMIIStatus = 0x180, #define NVREG_MIISTAT_ERROR 0x0001 #define NVREG_MIISTAT_LINKCHANGE 0x0008 #define NVREG_MIISTAT_MASK_RW 0x0007 #define NVREG_MIISTAT_MASK_ALL 0x000f NvRegMIIMask = 0x184, #define NVREG_MII_LINKCHANGE 0x0008 NvRegAdapterControl = 0x188, #define NVREG_ADAPTCTL_START 0x02 #define NVREG_ADAPTCTL_LINKUP 0x04 #define NVREG_ADAPTCTL_PHYVALID 0x40000 #define NVREG_ADAPTCTL_RUNNING 0x100000 #define NVREG_ADAPTCTL_PHYSHIFT 24 NvRegMIISpeed = 0x18c, #define NVREG_MIISPEED_BIT8 (1<<8) #define NVREG_MIIDELAY 5 NvRegMIIControl = 0x190, #define NVREG_MIICTL_INUSE 0x08000 #define NVREG_MIICTL_WRITE 0x00400 #define NVREG_MIICTL_ADDRSHIFT 5 NvRegMIIData = 0x194, NvRegTxUnicast = 0x1a0, NvRegTxMulticast = 0x1a4, NvRegTxBroadcast = 0x1a8, NvRegWakeUpFlags = 0x200, #define NVREG_WAKEUPFLAGS_VAL 0x7770 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 NvRegMgmtUnitGetVersion = 0x204, #define NVREG_MGMTUNITGETVERSION 0x01 NvRegMgmtUnitVersion = 0x208, #define NVREG_MGMTUNITVERSION 0x08 NvRegPowerCap = 0x268, #define NVREG_POWERCAP_D3SUPP (1<<30) #define NVREG_POWERCAP_D2SUPP (1<<26) #define NVREG_POWERCAP_D1SUPP (1<<25) NvRegPowerState = 0x26c, #define NVREG_POWERSTATE_POWEREDUP 0x8000 #define NVREG_POWERSTATE_VALID 0x0100 #define NVREG_POWERSTATE_MASK 0x0003 #define NVREG_POWERSTATE_D0 0x0000 #define NVREG_POWERSTATE_D1 0x0001 #define NVREG_POWERSTATE_D2 0x0002 #define NVREG_POWERSTATE_D3 0x0003 NvRegMgmtUnitControl = 0x278, #define NVREG_MGMTUNITCONTROL_INUSE 0x20000 NvRegTxCnt = 0x280, NvRegTxZeroReXmt = 0x284, NvRegTxOneReXmt = 0x288, NvRegTxManyReXmt = 0x28c, NvRegTxLateCol = 0x290, NvRegTxUnderflow = 0x294, NvRegTxLossCarrier = 0x298, NvRegTxExcessDef = 0x29c, NvRegTxRetryErr = 0x2a0, NvRegRxFrameErr = 0x2a4, NvRegRxExtraByte = 0x2a8, NvRegRxLateCol = 0x2ac, NvRegRxRunt = 0x2b0, NvRegRxFrameTooLong = 0x2b4, NvRegRxOverflow = 0x2b8, NvRegRxFCSErr = 0x2bc, NvRegRxFrameAlignErr = 0x2c0, NvRegRxLenErr = 0x2c4, NvRegRxUnicast = 0x2c8, NvRegRxMulticast = 0x2cc, NvRegRxBroadcast = 0x2d0, NvRegTxDef = 0x2d4, NvRegTxFrame = 0x2d8, NvRegRxCnt = 0x2dc, NvRegTxPause = 0x2e0, NvRegRxPause = 0x2e4, NvRegRxDropFrame = 0x2e8, NvRegVlanControl = 0x300, #define NVREG_VLANCONTROL_ENABLE 0x2000 NvRegMSIXMap0 = 0x3e0, NvRegMSIXMap1 = 0x3e4, NvRegMSIXIrqStatus = 0x3f0, NvRegPowerState2 = 0x600, #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001 #define NVREG_POWERSTATE2_PHY_RESET 0x0004 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00 }; /* Big endian: should work, but is untested */ struct ring_desc { __le32 buf; __le32 flaglen; }; struct ring_desc_ex { __le32 bufhigh; __le32 buflow; __le32 txvlan; __le32 flaglen; }; union ring_type { struct ring_desc *orig; struct ring_desc_ex *ex; }; #define FLAG_MASK_V1 0xffff0000 #define FLAG_MASK_V2 0xffffc000 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) #define NV_TX_LASTPACKET (1<<16) #define NV_TX_RETRYERROR (1<<19) #define NV_TX_RETRYCOUNT_MASK (0xF<<20) #define NV_TX_FORCED_INTERRUPT (1<<24) #define NV_TX_DEFERRED (1<<26) #define NV_TX_CARRIERLOST (1<<27) #define NV_TX_LATECOLLISION (1<<28) #define NV_TX_UNDERFLOW (1<<29) #define NV_TX_ERROR (1<<30) #define NV_TX_VALID (1<<31) #define NV_TX2_LASTPACKET (1<<29) #define NV_TX2_RETRYERROR (1<<18) #define NV_TX2_RETRYCOUNT_MASK (0xF<<19) #define NV_TX2_FORCED_INTERRUPT (1<<30) #define NV_TX2_DEFERRED (1<<25) #define NV_TX2_CARRIERLOST (1<<26) #define NV_TX2_LATECOLLISION (1<<27) #define NV_TX2_UNDERFLOW (1<<28) /* error and valid are the same for both */ #define NV_TX2_ERROR (1<<30) #define NV_TX2_VALID (1<<31) #define NV_TX2_TSO (1<<28) #define NV_TX2_TSO_SHIFT 14 #define NV_TX2_TSO_MAX_SHIFT 14 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT) #define NV_TX2_CHECKSUM_L3 (1<<27) #define NV_TX2_CHECKSUM_L4 (1<<26) #define NV_TX3_VLAN_TAG_PRESENT (1<<18) #define NV_RX_DESCRIPTORVALID (1<<16) #define NV_RX_MISSEDFRAME (1<<17) #define NV_RX_SUBTRACT1 (1<<18) #define NV_RX_ERROR1 (1<<23) #define NV_RX_ERROR2 (1<<24) #define NV_RX_ERROR3 (1<<25) #define NV_RX_ERROR4 (1<<26) #define NV_RX_CRCERR (1<<27) #define NV_RX_OVERFLOW (1<<28) #define NV_RX_FRAMINGERR (1<<29) #define NV_RX_ERROR (1<<30) #define NV_RX_AVAIL (1<<31) #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR) #define NV_RX2_CHECKSUMMASK (0x1C000000) #define NV_RX2_CHECKSUM_IP (0x10000000) #define NV_RX2_CHECKSUM_IP_TCP (0x14000000) #define NV_RX2_CHECKSUM_IP_UDP (0x18000000) #define NV_RX2_DESCRIPTORVALID (1<<29) #define NV_RX2_SUBTRACT1 (1<<25) #define NV_RX2_ERROR1 (1<<18) #define NV_RX2_ERROR2 (1<<19) #define NV_RX2_ERROR3 (1<<20) #define NV_RX2_ERROR4 (1<<21) #define NV_RX2_CRCERR (1<<22) #define NV_RX2_OVERFLOW (1<<23) #define NV_RX2_FRAMINGERR (1<<24) /* error and avail are the same for both */ #define NV_RX2_ERROR (1<<30) #define NV_RX2_AVAIL (1<<31) #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR) #define NV_RX3_VLAN_TAG_PRESENT (1<<16) #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF) /* Miscellaneous hardware related defines: */ #define NV_PCI_REGSZ_VER1 0x270 #define NV_PCI_REGSZ_VER2 0x2d4 #define NV_PCI_REGSZ_VER3 0x604 #define NV_PCI_REGSZ_MAX 0x604 /* various timeout delays: all in usec */ #define NV_TXRX_RESET_DELAY 4 #define NV_TXSTOP_DELAY1 10 #define NV_TXSTOP_DELAY1MAX 500000 #define NV_TXSTOP_DELAY2 100 #define NV_RXSTOP_DELAY1 10 #define NV_RXSTOP_DELAY1MAX 500000 #define NV_RXSTOP_DELAY2 100 #define NV_SETUP5_DELAY 5 #define NV_SETUP5_DELAYMAX 50000 #define NV_POWERUP_DELAY 5 #define NV_POWERUP_DELAYMAX 5000 #define NV_MIIBUSY_DELAY 50 #define NV_MIIPHY_DELAY 10 #define NV_MIIPHY_DELAYMAX 10000 #define NV_MAC_RESET_DELAY 64 #define NV_WAKEUPPATTERNS 5 #define NV_WAKEUPMASKENTRIES 4 /* General driver defaults */ #define NV_WATCHDOG_TIMEO (5*HZ) #define RX_RING_DEFAULT 512 #define TX_RING_DEFAULT 256 #define RX_RING_MIN 128 #define TX_RING_MIN 64 #define RING_MAX_DESC_VER_1 1024 #define RING_MAX_DESC_VER_2_3 16384 /* rx/tx mac addr + type + vlan + align + slack*/ #define NV_RX_HEADERS (64) /* even more slack. */ #define NV_RX_ALLOC_PAD (64) /* maximum mtu size */ #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ #define OOM_REFILL (1+HZ/20) #define POLL_WAIT (1+HZ/100) #define LINK_TIMEOUT (3*HZ) #define STATS_INTERVAL (10*HZ) /* * desc_ver values: * The nic supports three different descriptor types: * - DESC_VER_1: Original * - DESC_VER_2: support for jumbo frames. * - DESC_VER_3: 64-bit format. */ #define DESC_VER_1 1 #define DESC_VER_2 2 #define DESC_VER_3 3 /* PHY defines */ #define PHY_OUI_MARVELL 0x5043 #define PHY_OUI_CICADA 0x03f1 #define PHY_OUI_VITESSE 0x01c1 #define PHY_OUI_REALTEK 0x0732 #define PHY_OUI_REALTEK2 0x0020 #define PHYID1_OUI_MASK 0x03ff #define PHYID1_OUI_SHFT 6 #define PHYID2_OUI_MASK 0xfc00 #define PHYID2_OUI_SHFT 10 #define PHYID2_MODEL_MASK 0x03f0 #define PHY_MODEL_REALTEK_8211 0x0110 #define PHY_REV_MASK 0x0001 #define PHY_REV_REALTEK_8211B 0x0000 #define PHY_REV_REALTEK_8211C 0x0001 #define PHY_MODEL_REALTEK_8201 0x0200 #define PHY_MODEL_MARVELL_E3016 0x0220 #define PHY_MARVELL_E3016_INITMASK 0x0300 #define PHY_CICADA_INIT1 0x0f000 #define PHY_CICADA_INIT2 0x0e00 #define PHY_CICADA_INIT3 0x01000 #define PHY_CICADA_INIT4 0x0200 #define PHY_CICADA_INIT5 0x0004 #define PHY_CICADA_INIT6 0x02000 #define PHY_VITESSE_INIT_REG1 0x1f #define PHY_VITESSE_INIT_REG2 0x10 #define PHY_VITESSE_INIT_REG3 0x11 #define PHY_VITESSE_INIT_REG4 0x12 #define PHY_VITESSE_INIT_MSK1 0xc #define PHY_VITESSE_INIT_MSK2 0x0180 #define PHY_VITESSE_INIT1 0x52b5 #define PHY_VITESSE_INIT2 0xaf8a #define PHY_VITESSE_INIT3 0x8 #define PHY_VITESSE_INIT4 0x8f8a #define PHY_VITESSE_INIT5 0xaf86 #define PHY_VITESSE_INIT6 0x8f86 #define PHY_VITESSE_INIT7 0xaf82 #define PHY_VITESSE_INIT8 0x0100 #define PHY_VITESSE_INIT9 0x8f82 #define PHY_VITESSE_INIT10 0x0 #define PHY_REALTEK_INIT_REG1 0x1f #define PHY_REALTEK_INIT_REG2 0x19 #define PHY_REALTEK_INIT_REG3 0x13 #define PHY_REALTEK_INIT_REG4 0x14 #define PHY_REALTEK_INIT_REG5 0x18 #define PHY_REALTEK_INIT_REG6 0x11 #define PHY_REALTEK_INIT_REG7 0x01 #define PHY_REALTEK_INIT1 0x0000 #define PHY_REALTEK_INIT2 0x8e00 #define PHY_REALTEK_INIT3 0x0001 #define PHY_REALTEK_INIT4 0xad17 #define PHY_REALTEK_INIT5 0xfb54 #define PHY_REALTEK_INIT6 0xf5c7 #define PHY_REALTEK_INIT7 0x1000 #define PHY_REALTEK_INIT8 0x0003 #define PHY_REALTEK_INIT9 0x0008 #define PHY_REALTEK_INIT10 0x0005 #define PHY_REALTEK_INIT11 0x0200 #define PHY_REALTEK_INIT_MSK1 0x0003 #define PHY_GIGABIT 0x0100 #define PHY_TIMEOUT 0x1 #define PHY_ERROR 0x2 #define PHY_100 0x1 #define PHY_1000 0x2 #define PHY_HALF 0x100 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002 #define NV_PAUSEFRAME_RX_ENABLE 0x0004 #define NV_PAUSEFRAME_TX_ENABLE 0x0008 #define NV_PAUSEFRAME_RX_REQ 0x0010 #define NV_PAUSEFRAME_TX_REQ 0x0020 #define NV_PAUSEFRAME_AUTONEG 0x0040 /* MSI/MSI-X defines */ #define NV_MSI_X_MAX_VECTORS 8 #define NV_MSI_X_VECTORS_MASK 0x000f #define NV_MSI_CAPABLE 0x0010 #define NV_MSI_X_CAPABLE 0x0020 #define NV_MSI_ENABLED 0x0040 #define NV_MSI_X_ENABLED 0x0080 #define NV_MSI_X_VECTOR_ALL 0x0 #define NV_MSI_X_VECTOR_RX 0x0 #define NV_MSI_X_VECTOR_TX 0x1 #define NV_MSI_X_VECTOR_OTHER 0x2 #define NV_MSI_PRIV_OFFSET 0x68 #define NV_MSI_PRIV_VALUE 0xffffffff #define NV_RESTART_TX 0x1 #define NV_RESTART_RX 0x2 #define NV_TX_LIMIT_COUNT 16 #define NV_DYNAMIC_THRESHOLD 4 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048 /* statistics */ struct nv_ethtool_str { char name[ETH_GSTRING_LEN]; }; static const struct nv_ethtool_str nv_estats_str[] = { { "tx_bytes" }, /* includes Ethernet FCS CRC */ { "tx_zero_rexmt" }, { "tx_one_rexmt" }, { "tx_many_rexmt" }, { "tx_late_collision" }, { "tx_fifo_errors" }, { "tx_carrier_errors" }, { "tx_excess_deferral" }, { "tx_retry_error" }, { "rx_frame_error" }, { "rx_extra_byte" }, { "rx_late_collision" }, { "rx_runt" }, { "rx_frame_too_long" }, { "rx_over_errors" }, { "rx_crc_errors" }, { "rx_frame_align_error" }, { "rx_length_error" }, { "rx_unicast" }, { "rx_multicast" }, { "rx_broadcast" }, { "rx_packets" }, { "rx_errors_total" }, { "tx_errors_total" }, /* version 2 stats */ { "tx_deferral" }, { "tx_packets" }, { "rx_bytes" }, /* includes Ethernet FCS CRC */ { "tx_pause" }, { "rx_pause" }, { "rx_drop_frame" }, /* version 3 stats */ { "tx_unicast" }, { "tx_multicast" }, { "tx_broadcast" } }; struct nv_ethtool_stats { u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */ u64 tx_zero_rexmt; u64 tx_one_rexmt; u64 tx_many_rexmt; u64 tx_late_collision; u64 tx_fifo_errors; u64 tx_carrier_errors; u64 tx_excess_deferral; u64 tx_retry_error; u64 rx_frame_error; u64 rx_extra_byte; u64 rx_late_collision; u64 rx_runt; u64 rx_frame_too_long; u64 rx_over_errors; u64 rx_crc_errors; u64 rx_frame_align_error; u64 rx_length_error; u64 rx_unicast; u64 rx_multicast; u64 rx_broadcast; u64 rx_packets; /* should be ifconfig->rx_packets */ u64 rx_errors_total; u64 tx_errors_total; /* version 2 stats */ u64 tx_deferral; u64 tx_packets; /* should be ifconfig->tx_packets */ u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */ u64 tx_pause; u64 rx_pause; u64 rx_drop_frame; /* version 3 stats */ u64 tx_unicast; u64 tx_multicast; u64 tx_broadcast; }; #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64)) #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3) #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6) /* diagnostics */ #define NV_TEST_COUNT_BASE 3 #define NV_TEST_COUNT_EXTENDED 4 static const struct nv_ethtool_str nv_etests_str[] = { { "link (online/offline)" }, { "register (offline) " }, { "interrupt (offline) " }, { "loopback (offline) " } }; struct register_test { __u32 reg; __u32 mask; }; static const struct register_test nv_registers_test[] = { { NvRegUnknownSetupReg6, 0x01 }, { NvRegMisc1, 0x03c }, { NvRegOffloadConfig, 0x03ff }, { NvRegMulticastAddrA, 0xffffffff }, { NvRegTxWatermark, 0x0ff }, { NvRegWakeUpFlags, 0x07777 }, { 0, 0 } }; struct nv_skb_map { struct sk_buff *skb; dma_addr_t dma; unsigned int dma_len:31; unsigned int dma_single:1; struct ring_desc_ex *first_tx_desc; struct nv_skb_map *next_tx_ctx; }; struct nv_txrx_stats { u64 stat_rx_packets; u64 stat_rx_bytes; /* not always available in HW */ u64 stat_rx_missed_errors; u64 stat_rx_dropped; u64 stat_tx_packets; /* not always available in HW */ u64 stat_tx_bytes; u64 stat_tx_dropped; }; #define nv_txrx_stats_inc(member) \ __this_cpu_inc(np->txrx_stats->member) #define nv_txrx_stats_add(member, count) \ __this_cpu_add(np->txrx_stats->member, (count)) /* * SMP locking: * All hardware access under netdev_priv(dev)->lock, except the performance * critical parts: * - rx is (pseudo-) lockless: it relies on the single-threading provided * by the arch code for interrupts. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission * needs netdev_priv(dev)->lock :-( * - set_multicast_list: preparation lockless, relies on netif_tx_lock. * * Hardware stats updates are protected by hwstats_lock: * - updated by nv_do_stats_poll (timer). This is meant to avoid * integer wraparound in the NIC stats registers, at low frequency * (0.1 Hz) * - updated by nv_get_ethtool_stats + nv_get_stats64 * * Software stats are accessed only through 64b synchronization points * and are not subject to other synchronization techniques (single * update thread on the TX or RX paths). */ /* in dev: base, irq */ struct fe_priv { spinlock_t lock; struct net_device *dev; struct napi_struct napi; /* hardware stats are updated in syscall and timer */ spinlock_t hwstats_lock; struct nv_ethtool_stats estats; int in_shutdown; u32 linkspeed; int duplex; int autoneg; int fixed_mode; int phyaddr; int wolenabled; unsigned int phy_oui; unsigned int phy_model; unsigned int phy_rev; u16 gigabit; int intr_test; int recover_error; int quiet_count; /* General data: RO fields */ dma_addr_t ring_addr; struct pci_dev *pci_dev; u32 orig_mac[2]; u32 events; u32 irqmask; u32 desc_ver; u32 txrxctl_bits; u32 vlanctl_bits; u32 driver_data; u32 device_id; u32 register_size; u32 mac_in_use; int mgmt_version; int mgmt_sema; void __iomem *base; /* rx specific fields. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); */ union ring_type get_rx, put_rx, last_rx; struct nv_skb_map *get_rx_ctx, *put_rx_ctx; struct nv_skb_map *last_rx_ctx; struct nv_skb_map *rx_skb; union ring_type rx_ring; unsigned int rx_buf_sz; unsigned int pkt_limit; struct timer_list oom_kick; struct timer_list nic_poll; struct timer_list stats_poll; u32 nic_poll_irq; int rx_ring_size; /* RX software stats */ struct u64_stats_sync swstats_rx_syncp; struct nv_txrx_stats __percpu *txrx_stats; /* media detection workaround. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); */ int need_linktimer; unsigned long link_timeout; /* * tx specific fields. */ union ring_type get_tx, put_tx, last_tx; struct nv_skb_map *get_tx_ctx, *put_tx_ctx; struct nv_skb_map *last_tx_ctx; struct nv_skb_map *tx_skb; union ring_type tx_ring; u32 tx_flags; int tx_ring_size; int tx_limit; u32 tx_pkts_in_progress; struct nv_skb_map *tx_change_owner; struct nv_skb_map *tx_end_flip; int tx_stop; /* TX software stats */ struct u64_stats_sync swstats_tx_syncp; /* msi/msi-x fields */ u32 msi_flags; struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; /* flow control */ u32 pause_flags; /* power saved state */ u32 saved_config_space[NV_PCI_REGSZ_MAX/4]; /* for different msi-x irq type */ char name_rx[IFNAMSIZ + 3]; /* -rx */ char name_tx[IFNAMSIZ + 3]; /* -tx */ char name_other[IFNAMSIZ + 6]; /* -other */ }; /* * Maximum number of loops until we assume that a bit in the irq mask * is stuck. Overridable with module param. */ static int max_interrupt_work = 4; /* * Optimization can be either throuput mode or cpu mode * * Throughput Mode: Every tx and rx packet will generate an interrupt. * CPU Mode: Interrupts are controlled by a timer. */ enum { NV_OPTIMIZATION_MODE_THROUGHPUT, NV_OPTIMIZATION_MODE_CPU, NV_OPTIMIZATION_MODE_DYNAMIC }; static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC; /* * Poll interval for timer irq * * This interval determines how frequent an interrupt is generated. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] * Min = 0, and Max = 65535 */ static int poll_interval = -1; /* * MSI interrupts */ enum { NV_MSI_INT_DISABLED, NV_MSI_INT_ENABLED }; static int msi = NV_MSI_INT_ENABLED; /* * MSIX interrupts */ enum { NV_MSIX_INT_DISABLED, NV_MSIX_INT_ENABLED }; static int msix = NV_MSIX_INT_ENABLED; /* * DMA 64bit */ enum { NV_DMA_64BIT_DISABLED, NV_DMA_64BIT_ENABLED }; static int dma_64bit = NV_DMA_64BIT_ENABLED; /* * Debug output control for tx_timeout */ static bool debug_tx_timeout = false; /* * Crossover Detection * Realtek 8201 phy + some OEM boards do not work properly. */ enum { NV_CROSSOVER_DETECTION_DISABLED, NV_CROSSOVER_DETECTION_ENABLED }; static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED; /* * Power down phy when interface is down (persists through reboot; * older Linux and other OSes may not power it up again) */ static int phy_power_down; static inline struct fe_priv *get_nvpriv(struct net_device *dev) { return netdev_priv(dev); } static inline u8 __iomem *get_hwbase(struct net_device *dev) { return ((struct fe_priv *)netdev_priv(dev))->base; } static inline void pci_push(u8 __iomem *base) { /* force out pending posted writes */ readl(base); } static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) { return le32_to_cpu(prd->flaglen) & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); } static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) { return le32_to_cpu(prd->flaglen) & LEN_MASK_V2; } static bool nv_optimized(struct fe_priv *np) { if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) return false; return true; } static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, int delay, int delaymax) { u8 __iomem *base = get_hwbase(dev); pci_push(base); do { udelay(delay); delaymax -= delay; if (delaymax < 0) return 1; } while ((readl(base + offset) & mask) != target); return 0; } #define NV_SETUP_RX_RING 0x01 #define NV_SETUP_TX_RING 0x02 static inline u32 dma_low(dma_addr_t addr) { return addr; } static inline u32 dma_high(dma_addr_t addr) { return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */ } static void setup_hw_rings(struct net_device *dev, int rxtx_flags) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); if (!nv_optimized(np)) { if (rxtx_flags & NV_SETUP_RX_RING) writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); if (rxtx_flags & NV_SETUP_TX_RING) writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); } else { if (rxtx_flags & NV_SETUP_RX_RING) { writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh); } if (rxtx_flags & NV_SETUP_TX_RING) { writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh); } } } static void free_rings(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); if (!nv_optimized(np)) { if (np->rx_ring.orig) dma_free_coherent(&np->pci_dev->dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), np->rx_ring.orig, np->ring_addr); } else { if (np->rx_ring.ex) dma_free_coherent(&np->pci_dev->dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), np->rx_ring.ex, np->ring_addr); } kfree(np->rx_skb); kfree(np->tx_skb); } static int using_multi_irqs(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); if (!(np->msi_flags & NV_MSI_X_ENABLED) || ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)) return 0; else return 1; } static void nv_txrx_gate(struct net_device *dev, bool gate) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); u32 powerstate; if (!np->mac_in_use && (np->driver_data & DEV_HAS_POWER_CNTRL)) { powerstate = readl(base + NvRegPowerState2); if (gate) powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS; else powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS; writel(powerstate, base + NvRegPowerState2); } } static void nv_enable_irq(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); if (!using_multi_irqs(dev)) { if (np->msi_flags & NV_MSI_X_ENABLED) enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); else enable_irq(np->pci_dev->irq); } else { enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); } } static void nv_disable_irq(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); if (!using_multi_irqs(dev)) { if (np->msi_flags & NV_MSI_X_ENABLED) disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); else disable_irq(np->pci_dev->irq); } else { disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); } } /* In MSIX mode, a write to irqmask behaves as XOR */ static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask) { u8 __iomem *base = get_hwbase(dev); writel(mask, base + NvRegIrqMask); } static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); if (np->msi_flags & NV_MSI_X_ENABLED) { writel(mask, base + NvRegIrqMask); } else { if (np->msi_flags & NV_MSI_ENABLED) writel(0, base + NvRegMSIIrqMask); writel(0, base + NvRegIrqMask); } } static void nv_napi_enable(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); napi_enable(&np->napi); } static void nv_napi_disable(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); napi_disable(&np->napi); } #define MII_READ (-1) /* mii_rw: read/write a register on the PHY. * * Caller must guarantee serialization */ static int mii_rw(struct net_device *dev, int addr, int miireg, int value) { u8 __iomem *base = get_hwbase(dev); u32 reg; int retval; writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus); reg = readl(base + NvRegMIIControl); if (reg & NVREG_MIICTL_INUSE) { writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); udelay(NV_MIIBUSY_DELAY); } reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; if (value != MII_READ) { writel(value, base + NvRegMIIData); reg |= NVREG_MIICTL_WRITE; } writel(reg, base + NvRegMIIControl); if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) { retval = -1; } else if (value != MII_READ) { /* it was a write operation - fewer failures are detectable */ retval = 0; } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { retval = -1; } else { retval = readl(base + NvRegMIIData); } return retval; } static int phy_reset(struct net_device *dev, u32 bmcr_setup) { struct fe_priv *np = netdev_priv(dev); u32 miicontrol; unsigned int tries = 0; miicontrol = BMCR_RESET | bmcr_setup; if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) return -1; /* wait for 500ms */ msleep(500); /* must wait till reset is deasserted */ while (miicontrol & BMCR_RESET) { usleep_range(10000, 20000); miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); /* FIXME: 100 tries seem excessive */ if (tries++ > 100) return -1; } return 0; } static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np) { static const struct { int reg; int init; } ri[] = { { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 }, { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 }, { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 }, { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 }, { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 }, { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, }; int i; for (i = 0; i < ARRAY_SIZE(ri); i++) { if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init)) return PHY_ERROR; } return 0; } static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np) { u32 reg; u8 __iomem *base = get_hwbase(dev); u32 powerstate = readl(base + NvRegPowerState2); /* need to perform hw phy reset */ powerstate |= NVREG_POWERSTATE2_PHY_RESET; writel(powerstate, base + NvRegPowerState2); msleep(25); powerstate &= ~NVREG_POWERSTATE2_PHY_RESET; writel(powerstate, base + NvRegPowerState2); msleep(25); reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); reg |= PHY_REALTEK_INIT9; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) return PHY_ERROR; reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ); if (!(reg & PHY_REALTEK_INIT11)) { reg |= PHY_REALTEK_INIT11; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) return PHY_ERROR; return 0; } static int init_realtek_8201(struct net_device *dev, struct fe_priv *np) { u32 phy_reserved; if (np->driver_data & DEV_NEED_PHY_INIT_FIX) { phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); phy_reserved |= PHY_REALTEK_INIT7; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) return PHY_ERROR; } return 0; } static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np) { u32 phy_reserved; if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) return PHY_ERROR; phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); phy_reserved &= ~PHY_REALTEK_INIT_MSK1; phy_reserved |= PHY_REALTEK_INIT3; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) return PHY_ERROR; } return 0; } static int init_cicada(struct net_device *dev, struct fe_priv *np, u32 phyinterface) { u32 phy_reserved; if (phyinterface & PHY_RGMII) { phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2); phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4); if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) return PHY_ERROR; phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); phy_reserved |= PHY_CICADA_INIT5; if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); phy_reserved |= PHY_CICADA_INIT6; if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) return PHY_ERROR; return 0; } static int init_vitesse(struct net_device *dev, struct fe_priv *np) { u32 phy_reserved; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) return PHY_ERROR; phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ); if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) return PHY_ERROR; phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ); phy_reserved &= ~PHY_VITESSE_INIT_MSK1; phy_reserved |= PHY_VITESSE_INIT3; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) return PHY_ERROR; phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ); phy_reserved &= ~PHY_VITESSE_INIT_MSK1; phy_reserved |= PHY_VITESSE_INIT3; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) return PHY_ERROR; phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ); if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) return PHY_ERROR; phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ); if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) return PHY_ERROR; phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ); phy_reserved &= ~PHY_VITESSE_INIT_MSK2; phy_reserved |= PHY_VITESSE_INIT8; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) return PHY_ERROR; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) return PHY_ERROR; return 0; } static int phy_init(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); u32 phyinterface; u32 mii_status, mii_control, mii_control_1000, reg; /* phy errata for E3016 phy */ if (np->phy_model == PHY_MODEL_MARVELL_E3016) { reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); reg &= ~PHY_MARVELL_E3016_INITMASK; if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) { netdev_info(dev, "%s: phy write to errata reg failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (np->phy_oui == PHY_OUI_REALTEK) { if (np->phy_model == PHY_MODEL_REALTEK_8211 && np->phy_rev == PHY_REV_REALTEK_8211B) { if (init_realtek_8211b(dev, np)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else if (np->phy_model == PHY_MODEL_REALTEK_8211 && np->phy_rev == PHY_REV_REALTEK_8211C) { if (init_realtek_8211c(dev, np)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { if (init_realtek_8201(dev, np)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } } /* set advertise register */ reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { netdev_info(dev, "%s: phy write to advertise failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } /* get phy interface type */ phyinterface = readl(base + NvRegPhyInterface); /* see if gigabit phy */ mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); if (mii_status & PHY_GIGABIT) { np->gigabit = PHY_GIGABIT; mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); mii_control_1000 &= ~ADVERTISE_1000HALF; if (phyinterface & PHY_RGMII) mii_control_1000 |= ADVERTISE_1000FULL; else mii_control_1000 &= ~ADVERTISE_1000FULL; if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else np->gigabit = 0; mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); mii_control |= BMCR_ANENABLE; if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211 && np->phy_rev == PHY_REV_REALTEK_8211C) { /* start autoneg since we already performed hw reset above */ mii_control |= BMCR_ANRESTART; if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else { /* reset the phy * (certain phys need bmcr to be setup with reset) */ if (phy_reset(dev, mii_control)) { netdev_info(dev, "%s: phy reset failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } /* phy vendor specific configuration */ if (np->phy_oui == PHY_OUI_CICADA) { if (init_cicada(dev, np, phyinterface)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else if (np->phy_oui == PHY_OUI_VITESSE) { if (init_vitesse(dev, np)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else if (np->phy_oui == PHY_OUI_REALTEK) { if (np->phy_model == PHY_MODEL_REALTEK_8211 && np->phy_rev == PHY_REV_REALTEK_8211B) { /* reset could have cleared these out, set them back */ if (init_realtek_8211b(dev, np)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { if (init_realtek_8201(dev, np) || init_realtek_8201_cross(dev, np)) { netdev_info(dev, "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } } /* some phys clear out pause advertisement on reset, set it back */ mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg); /* restart auto negotiation, power down phy */ mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); if (phy_power_down) mii_control |= BMCR_PDOWN; if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) return PHY_ERROR; return 0; } static void nv_start_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 rx_ctrl = readl(base + NvRegReceiverControl); /* Already running? Stop it. */ if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) { rx_ctrl &= ~NVREG_RCVCTL_START; writel(rx_ctrl, base + NvRegReceiverControl); pci_push(base); } writel(np->linkspeed, base + NvRegLinkSpeed); pci_push(base); rx_ctrl |= NVREG_RCVCTL_START; if (np->mac_in_use) rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN; writel(rx_ctrl, base + NvRegReceiverControl); pci_push(base); } static void nv_stop_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 rx_ctrl = readl(base + NvRegReceiverControl); if (!np->mac_in_use) rx_ctrl &= ~NVREG_RCVCTL_START; else rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN; writel(rx_ctrl, base + NvRegReceiverControl); if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX)) netdev_info(dev, "%s: ReceiverStatus remained busy\n", __func__); udelay(NV_RXSTOP_DELAY2); if (!np->mac_in_use) writel(0, base + NvRegLinkSpeed); } static void nv_start_tx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 tx_ctrl = readl(base + NvRegTransmitterControl); tx_ctrl |= NVREG_XMITCTL_START; if (np->mac_in_use) tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN; writel(tx_ctrl, base + NvRegTransmitterControl); pci_push(base); } static void nv_stop_tx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 tx_ctrl = readl(base + NvRegTransmitterControl); if (!np->mac_in_use) tx_ctrl &= ~NVREG_XMITCTL_START; else tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN; writel(tx_ctrl, base + NvRegTransmitterControl); if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX)) netdev_info(dev, "%s: TransmitterStatus remained busy\n", __func__); udelay(NV_TXSTOP_DELAY2); if (!np->mac_in_use) writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); } static void nv_start_rxtx(struct net_device *dev) { nv_start_rx(dev); nv_start_tx(dev); } static void nv_stop_rxtx(struct net_device *dev) { nv_stop_rx(dev); nv_stop_tx(dev); } static void nv_txrx_reset(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); pci_push(base); udelay(NV_TXRX_RESET_DELAY); writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); pci_push(base); } static void nv_mac_reset(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 temp1, temp2, temp3; writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); pci_push(base); /* save registers since they will be cleared on reset */ temp1 = readl(base + NvRegMacAddrA); temp2 = readl(base + NvRegMacAddrB); temp3 = readl(base + NvRegTransmitPoll); writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset); pci_push(base); udelay(NV_MAC_RESET_DELAY); writel(0, base + NvRegMacReset); pci_push(base); udelay(NV_MAC_RESET_DELAY); /* restore saved registers */ writel(temp1, base + NvRegMacAddrA); writel(temp2, base + NvRegMacAddrB); writel(temp3, base + NvRegTransmitPoll); writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); pci_push(base); } /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */ static void nv_update_stats(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); lockdep_assert_held(&np->hwstats_lock); /* query hardware */ np->estats.tx_bytes += readl(base + NvRegTxCnt); np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt); np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt); np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt); np->estats.tx_late_collision += readl(base + NvRegTxLateCol); np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow); np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier); np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef); np->estats.tx_retry_error += readl(base + NvRegTxRetryErr); np->estats.rx_frame_error += readl(base + NvRegRxFrameErr); np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte); np->estats.rx_late_collision += readl(base + NvRegRxLateCol); np->estats.rx_runt += readl(base + NvRegRxRunt); np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong); np->estats.rx_over_errors += readl(base + NvRegRxOverflow); np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr); np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr); np->estats.rx_length_error += readl(base + NvRegRxLenErr); np->estats.rx_unicast += readl(base + NvRegRxUnicast); np->estats.rx_multicast += readl(base + NvRegRxMulticast); np->estats.rx_broadcast += readl(base + NvRegRxBroadcast); np->estats.rx_packets = np->estats.rx_unicast + np->estats.rx_multicast + np->estats.rx_broadcast; np->estats.rx_errors_total = np->estats.rx_crc_errors + np->estats.rx_over_errors + np->estats.rx_frame_error + (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) + np->estats.rx_late_collision + np->estats.rx_runt + np->estats.rx_frame_too_long; np->estats.tx_errors_total = np->estats.tx_late_collision + np->estats.tx_fifo_errors + np->estats.tx_carrier_errors + np->estats.tx_excess_deferral + np->estats.tx_retry_error; if (np->driver_data & DEV_HAS_STATISTICS_V2) { np->estats.tx_deferral += readl(base + NvRegTxDef); np->estats.tx_packets += readl(base + NvRegTxFrame); np->estats.rx_bytes += readl(base + NvRegRxCnt); np->estats.tx_pause += readl(base + NvRegTxPause); np->estats.rx_pause += readl(base + NvRegRxPause); np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame); np->estats.rx_errors_total += np->estats.rx_drop_frame; } if (np->driver_data & DEV_HAS_STATISTICS_V3) { np->estats.tx_unicast += readl(base + NvRegTxUnicast); np->estats.tx_multicast += readl(base + NvRegTxMulticast); np->estats.tx_broadcast += readl(base + NvRegTxBroadcast); } } static void nv_get_stats(int cpu, struct fe_priv *np, struct rtnl_link_stats64 *storage) { struct nv_txrx_stats *src = per_cpu_ptr(np->txrx_stats, cpu); unsigned int syncp_start; u64 rx_packets, rx_bytes, rx_dropped, rx_missed_errors; u64 tx_packets, tx_bytes, tx_dropped; do { syncp_start = u64_stats_fetch_begin(&np->swstats_rx_syncp); rx_packets = src->stat_rx_packets; rx_bytes = src->stat_rx_bytes; rx_dropped = src->stat_rx_dropped; rx_missed_errors = src->stat_rx_missed_errors; } while (u64_stats_fetch_retry(&np->swstats_rx_syncp, syncp_start)); storage->rx_packets += rx_packets; storage->rx_bytes += rx_bytes; storage->rx_dropped += rx_dropped; storage->rx_missed_errors += rx_missed_errors; do { syncp_start = u64_stats_fetch_begin(&np->swstats_tx_syncp); tx_packets = src->stat_tx_packets; tx_bytes = src->stat_tx_bytes; tx_dropped = src->stat_tx_dropped; } while (u64_stats_fetch_retry(&np->swstats_tx_syncp, syncp_start)); storage->tx_packets += tx_packets; storage->tx_bytes += tx_bytes; storage->tx_dropped += tx_dropped; } /* * nv_get_stats64: dev->ndo_get_stats64 function * Get latest stats value from the nic. * Called with rcu_read_lock() held - * only synchronized against unregister_netdevice. */ static void nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) __acquires(&netdev_priv(dev)->hwstats_lock) __releases(&netdev_priv(dev)->hwstats_lock) { struct fe_priv *np = netdev_priv(dev); int cpu; /* * Note: because HW stats are not always available and for * consistency reasons, the following ifconfig stats are * managed by software: rx_bytes, tx_bytes, rx_packets and * tx_packets. The related hardware stats reported by ethtool * should be equivalent to these ifconfig stats, with 4 * additional bytes per packet (Ethernet FCS CRC), except for * tx_packets when TSO kicks in. */ /* software stats */ for_each_online_cpu(cpu) nv_get_stats(cpu, np, storage); /* If the nic supports hw counters then retrieve latest values */ if (np->driver_data & DEV_HAS_STATISTICS_V123) { spin_lock_bh(&np->hwstats_lock); nv_update_stats(dev); /* generic stats */ storage->rx_errors = np->estats.rx_errors_total; storage->tx_errors = np->estats.tx_errors_total; /* meaningful only when NIC supports stats v3 */ storage->multicast = np->estats.rx_multicast; /* detailed rx_errors */ storage->rx_length_errors = np->estats.rx_length_error; storage->rx_over_errors = np->estats.rx_over_errors; storage->rx_crc_errors = np->estats.rx_crc_errors; storage->rx_frame_errors = np->estats.rx_frame_align_error; storage->rx_fifo_errors = np->estats.rx_drop_frame; /* detailed tx_errors */ storage->tx_carrier_errors = np->estats.tx_carrier_errors; storage->tx_fifo_errors = np->estats.tx_fifo_errors; spin_unlock_bh(&np->hwstats_lock); } } /* * nv_alloc_rx: fill rx ring entries. * Return 1 if the allocations for the skbs failed and the * rx engine is without Available descriptors */ static int nv_alloc_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); struct ring_desc *less_rx; less_rx = np->get_rx.orig; if (less_rx-- == np->rx_ring.orig) less_rx = np->last_rx.orig; while (np->put_rx.orig != less_rx) { struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); if (likely(skb)) { np->put_rx_ctx->skb = skb; np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev, skb->data, skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&np->pci_dev->dev, np->put_rx_ctx->dma))) { kfree_skb(skb); goto packet_dropped; } np->put_rx_ctx->dma_len = skb_tailroom(skb); np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma); wmb(); np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); if (unlikely(np->put_rx.orig++ == np->last_rx.orig)) np->put_rx.orig = np->rx_ring.orig; if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) np->put_rx_ctx = np->rx_skb; } else { packet_dropped: u64_stats_update_begin(&np->swstats_rx_syncp); nv_txrx_stats_inc(stat_rx_dropped); u64_stats_update_end(&np->swstats_rx_syncp); return 1; } } return 0; } static int nv_alloc_rx_optimized(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); struct ring_desc_ex *less_rx; less_rx = np->get_rx.ex; if (less_rx-- == np->rx_ring.ex) less_rx = np->last_rx.ex; while (np->put_rx.ex != less_rx) { struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); if (likely(skb)) { np->put_rx_ctx->skb = skb; np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev, skb->data, skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&np->pci_dev->dev, np->put_rx_ctx->dma))) { kfree_skb(skb); goto packet_dropped; } np->put_rx_ctx->dma_len = skb_tailroom(skb); np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma)); np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma)); wmb(); np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) np->put_rx.ex = np->rx_ring.ex; if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) np->put_rx_ctx = np->rx_skb; } else { packet_dropped: u64_stats_update_begin(&np->swstats_rx_syncp); nv_txrx_stats_inc(stat_rx_dropped); u64_stats_update_end(&np->swstats_rx_syncp); return 1; } } return 0; } /* If rx bufs are exhausted called after 50ms to attempt to refresh */ static void nv_do_rx_refill(struct timer_list *t) { struct fe_priv *np = from_timer(np, t, oom_kick); /* Just reschedule NAPI rx processing */ napi_schedule(&np->napi); } static void nv_init_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int i; np->get_rx = np->rx_ring; np->put_rx = np->rx_ring; if (!nv_optimized(np)) np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1]; else np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1]; np->get_rx_ctx = np->rx_skb; np->put_rx_ctx = np->rx_skb; np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1]; for (i = 0; i < np->rx_ring_size; i++) { if (!nv_optimized(np)) { np->rx_ring.orig[i].flaglen = 0; np->rx_ring.orig[i].buf = 0; } else { np->rx_ring.ex[i].flaglen = 0; np->rx_ring.ex[i].txvlan = 0; np->rx_ring.ex[i].bufhigh = 0; np->rx_ring.ex[i].buflow = 0; } np->rx_skb[i].skb = NULL; np->rx_skb[i].dma = 0; } } static void nv_init_tx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int i; np->get_tx = np->tx_ring; np->put_tx = np->tx_ring; if (!nv_optimized(np)) np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1]; else np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1]; np->get_tx_ctx = np->tx_skb; np->put_tx_ctx = np->tx_skb; np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1]; netdev_reset_queue(np->dev); np->tx_pkts_in_progress = 0; np->tx_change_owner = NULL; np->tx_end_flip = NULL; np->tx_stop = 0; for (i = 0; i < np->tx_ring_size; i++) { if (!nv_optimized(np)) { np->tx_ring.orig[i].flaglen = 0; np->tx_ring.orig[i].buf = 0; } else { np->tx_ring.ex[i].flaglen = 0; np->tx_ring.ex[i].txvlan = 0; np->tx_ring.ex[i].bufhigh = 0; np->tx_ring.ex[i].buflow = 0; } np->tx_skb[i].skb = NULL; np->tx_skb[i].dma = 0; np->tx_skb[i].dma_len = 0; np->tx_skb[i].dma_single = 0; np->tx_skb[i].first_tx_desc = NULL; np->tx_skb[i].next_tx_ctx = NULL; } } static int nv_init_ring(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); nv_init_tx(dev); nv_init_rx(dev); if (!nv_optimized(np)) return nv_alloc_rx(dev); else return nv_alloc_rx_optimized(dev); } static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) { if (tx_skb->dma) { if (tx_skb->dma_single) dma_unmap_single(&np->pci_dev->dev, tx_skb->dma, tx_skb->dma_len, DMA_TO_DEVICE); else dma_unmap_page(&np->pci_dev->dev, tx_skb->dma, tx_skb->dma_len, DMA_TO_DEVICE); tx_skb->dma = 0; } } static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) { nv_unmap_txskb(np, tx_skb); if (tx_skb->skb) { dev_kfree_skb_any(tx_skb->skb); tx_skb->skb = NULL; return 1; } return 0; } static void nv_drain_tx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); unsigned int i; for (i = 0; i < np->tx_ring_size; i++) { if (!nv_optimized(np)) { np->tx_ring.orig[i].flaglen = 0; np->tx_ring.orig[i].buf = 0; } else { np->tx_ring.ex[i].flaglen = 0; np->tx_ring.ex[i].txvlan = 0; np->tx_ring.ex[i].bufhigh = 0; np->tx_ring.ex[i].buflow = 0; } if (nv_release_txskb(np, &np->tx_skb[i])) { u64_stats_update_begin(&np->swstats_tx_syncp); nv_txrx_stats_inc(stat_tx_dropped); u64_stats_update_end(&np->swstats_tx_syncp); } np->tx_skb[i].dma = 0; np->tx_skb[i].dma_len = 0; np->tx_skb[i].dma_single = 0; np->tx_skb[i].first_tx_desc = NULL; np->tx_skb[i].next_tx_ctx = NULL; } np->tx_pkts_in_progress = 0; np->tx_change_owner = NULL; np->tx_end_flip = NULL; } static void nv_drain_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int i; for (i = 0; i < np->rx_ring_size; i++) { if (!nv_optimized(np)) { np->rx_ring.orig[i].flaglen = 0; np->rx_ring.orig[i].buf = 0; } else { np->rx_ring.ex[i].flaglen = 0; np->rx_ring.ex[i].txvlan = 0; np->rx_ring.ex[i].bufhigh = 0; np->rx_ring.ex[i].buflow = 0; } wmb(); if (np->rx_skb[i].skb) { dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma, (skb_end_pointer(np->rx_skb[i].skb) - np->rx_skb[i].skb->data), DMA_FROM_DEVICE); dev_kfree_skb(np->rx_skb[i].skb); np->rx_skb[i].skb = NULL; } } } static void nv_drain_rxtx(struct net_device *dev) { nv_drain_tx(dev); nv_drain_rx(dev); } static inline u32 nv_get_empty_tx_slots(struct fe_priv *np) { return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size)); } static void nv_legacybackoff_reseed(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); u32 reg; u32 low; int tx_status = 0; reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK; get_random_bytes(&low, sizeof(low)); reg |= low & NVREG_SLOTTIME_MASK; /* Need to stop tx before change takes effect. * Caller has already gained np->lock. */ tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START; if (tx_status) nv_stop_tx(dev); nv_stop_rx(dev); writel(reg, base + NvRegSlotTime); if (tx_status) nv_start_tx(dev); nv_start_rx(dev); } /* Gear Backoff Seeds */ #define BACKOFF_SEEDSET_ROWS 8 #define BACKOFF_SEEDSET_LFSRS 15 /* Known Good seed sets */ static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974}, {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974}, {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984}, {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984}, {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84}, {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} }; static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397}, {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} }; static void nv_gear_backoff_reseed(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed; u32 temp, seedset, combinedSeed; int i; /* Setup seed for free running LFSR */ /* We are going to read the time stamp counter 3 times and swizzle bits around to increase randomness */ get_random_bytes(&miniseed1, sizeof(miniseed1)); miniseed1 &= 0x0fff; if (miniseed1 == 0) miniseed1 = 0xabc; get_random_bytes(&miniseed2, sizeof(miniseed2)); miniseed2 &= 0x0fff; if (miniseed2 == 0) miniseed2 = 0xabc; miniseed2_reversed = ((miniseed2 & 0xF00) >> 8) | (miniseed2 & 0x0F0) | ((miniseed2 & 0x00F) << 8); get_random_bytes(&miniseed3, sizeof(miniseed3)); miniseed3 &= 0x0fff; if (miniseed3 == 0) miniseed3 = 0xabc; miniseed3_reversed = ((miniseed3 & 0xF00) >> 8) | (miniseed3 & 0x0F0) | ((miniseed3 & 0x00F) << 8); combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | (miniseed2 ^ miniseed3_reversed); /* Seeds can not be zero */ if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0) combinedSeed |= 0x08; if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0) combinedSeed |= 0x8000; /* No need to disable tx here */ temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT); temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK; temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR; writel(temp, base + NvRegBackOffControl); /* Setup seeds for all gear LFSRs. */ get_random_bytes(&seedset, sizeof(seedset)); seedset = seedset % BACKOFF_SEEDSET_ROWS; for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) { temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT); temp |= main_seedset[seedset][i-1] & 0x3ff; temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR); writel(temp, base + NvRegBackOffControl); } } /* * nv_start_xmit: dev->hard_start_xmit function * Called with netif_tx_lock held. */ static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u32 tx_flags = 0; u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); unsigned int fragments = skb_shinfo(skb)->nr_frags; unsigned int i; u32 offset = 0; u32 bcnt; u32 size = skb_headlen(skb); u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); u32 empty_slots; struct ring_desc *put_tx; struct ring_desc *start_tx; struct ring_desc *prev_tx; struct nv_skb_map *prev_tx_ctx; struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL; unsigned long flags; netdev_tx_t ret = NETDEV_TX_OK; /* add fragments to entries count */ for (i = 0; i < fragments; i++) { u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); } spin_lock_irqsave(&np->lock, flags); empty_slots = nv_get_empty_tx_slots(np); if (unlikely(empty_slots <= entries)) { netif_stop_queue(dev); np->tx_stop = 1; spin_unlock_irqrestore(&np->lock, flags); /* When normal packets and/or xmit_more packets fill up * tx_desc, it is necessary to trigger NIC tx reg. */ ret = NETDEV_TX_BUSY; goto txkick; } spin_unlock_irqrestore(&np->lock, flags); start_tx = put_tx = np->put_tx.orig; /* setup the header buffer */ do { bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev, skb->data + offset, bcnt, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&np->pci_dev->dev, np->put_tx_ctx->dma))) { /* on DMA mapping error - drop the packet */ dev_kfree_skb_any(skb); u64_stats_update_begin(&np->swstats_tx_syncp); nv_txrx_stats_inc(stat_tx_dropped); u64_stats_update_end(&np->swstats_tx_syncp); ret = NETDEV_TX_OK; goto dma_error; } np->put_tx_ctx->dma_len = bcnt; np->put_tx_ctx->dma_single = 1; put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); tx_flags = np->tx_flags; offset += bcnt; size -= bcnt; if (unlikely(put_tx++ == np->last_tx.orig)) put_tx = np->tx_ring.orig; if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) np->put_tx_ctx = np->tx_skb; } while (size); /* setup the fragments */ for (i = 0; i < fragments; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 frag_size = skb_frag_size(frag); offset = 0; do { if (!start_tx_ctx) start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; np->put_tx_ctx->dma = skb_frag_dma_map( &np->pci_dev->dev, frag, offset, bcnt, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&np->pci_dev->dev, np->put_tx_ctx->dma))) { /* Unwind the mapped fragments */ do { nv_unmap_txskb(np, start_tx_ctx); if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) tmp_tx_ctx = np->tx_skb; } while (tmp_tx_ctx != np->put_tx_ctx); dev_kfree_skb_any(skb); np->put_tx_ctx = start_tx_ctx; u64_stats_update_begin(&np->swstats_tx_syncp); nv_txrx_stats_inc(stat_tx_dropped); u64_stats_update_end(&np->swstats_tx_syncp); ret = NETDEV_TX_OK; goto dma_error; } np->put_tx_ctx->dma_len = bcnt; np->put_tx_ctx->dma_single = 0; put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); offset += bcnt; frag_size -= bcnt; if (unlikely(put_tx++ == np->last_tx.orig)) put_tx = np->tx_ring.orig; if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) np->put_tx_ctx = np->tx_skb; } while (frag_size); } if (unlikely(put_tx == np->tx_ring.orig)) prev_tx = np->last_tx.orig; else prev_tx = put_tx - 1; if (unlikely(np->put_tx_ctx == np->tx_skb)) prev_tx_ctx = np->last_tx_ctx; else prev_tx_ctx = np->put_tx_ctx - 1; /* set last fragment flag */ prev_tx->flaglen |= cpu_to_le32(tx_flags_extra); /* save skb in this slot's context area */ prev_tx_ctx->skb = skb; if (skb_is_gso(skb)) tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); else tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; spin_lock_irqsave(&np->lock, flags); /* set tx flags */ start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); netdev_sent_queue(np->dev, skb->len); skb_tx_timestamp(skb); np->put_tx.orig = put_tx; spin_unlock_irqrestore(&np->lock, flags); txkick: if (netif_queue_stopped(dev) || !netdev_xmit_more()) { u32 txrxctl_kick; dma_error: txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits; writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl); } return ret; } static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u32 tx_flags = 0; u32 tx_flags_extra; unsigned int fragments = skb_shinfo(skb)->nr_frags; unsigned int i; u32 offset = 0; u32 bcnt; u32 size = skb_headlen(skb); u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); u32 empty_slots; struct ring_desc_ex *put_tx; struct ring_desc_ex *start_tx; struct ring_desc_ex *prev_tx; struct nv_skb_map *prev_tx_ctx; struct nv_skb_map *start_tx_ctx = NULL; struct nv_skb_map *tmp_tx_ctx = NULL; unsigned long flags; netdev_tx_t ret = NETDEV_TX_OK; /* add fragments to entries count */ for (i = 0; i < fragments; i++) { u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); } spin_lock_irqsave(&np->lock, flags); empty_slots = nv_get_empty_tx_slots(np); if (unlikely(empty_slots <= entries)) { netif_stop_queue(dev); np->tx_stop = 1; spin_unlock_irqrestore(&np->lock, flags); /* When normal packets and/or xmit_more packets fill up * tx_desc, it is necessary to trigger NIC tx reg. */ ret = NETDEV_TX_BUSY; goto txkick; } spin_unlock_irqrestore(&np->lock, flags); start_tx = put_tx = np->put_tx.ex; start_tx_ctx = np->put_tx_ctx; /* setup the header buffer */ do { bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev, skb->data + offset, bcnt, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&np->pci_dev->dev, np->put_tx_ctx->dma))) { /* on DMA mapping error - drop the packet */ dev_kfree_skb_any(skb); u64_stats_update_begin(&np->swstats_tx_syncp); nv_txrx_stats_inc(stat_tx_dropped); u64_stats_update_end(&np->swstats_tx_syncp); ret = NETDEV_TX_OK; goto dma_error; } np->put_tx_ctx->dma_len = bcnt; np->put_tx_ctx->dma_single = 1; put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); tx_flags = NV_TX2_VALID; offset += bcnt; size -= bcnt; if (unlikely(put_tx++ == np->last_tx.ex)) put_tx = np->tx_ring.ex; if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) np->put_tx_ctx = np->tx_skb; } while (size); /* setup the fragments */ for (i = 0; i < fragments; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 frag_size = skb_frag_size(frag); offset = 0; do { bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; if (!start_tx_ctx) start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; np->put_tx_ctx->dma = skb_frag_dma_map( &np->pci_dev->dev, frag, offset, bcnt, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&np->pci_dev->dev, np->put_tx_ctx->dma))) { /* Unwind the mapped fragments */ do { nv_unmap_txskb(np, start_tx_ctx); if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) tmp_tx_ctx = np->tx_skb; } while (tmp_tx_ctx != np->put_tx_ctx); dev_kfree_skb_any(skb); np->put_tx_ctx = start_tx_ctx; u64_stats_update_begin(&np->swstats_tx_syncp); nv_txrx_stats_inc(stat_tx_dropped); u64_stats_update_end(&np->swstats_tx_syncp); ret = NETDEV_TX_OK; goto dma_error; } np->put_tx_ctx->dma_len = bcnt; np->put_tx_ctx->dma_single = 0; put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); offset += bcnt; frag_size -= bcnt; if (unlikely(put_tx++ == np->last_tx.ex)) put_tx = np->tx_ring.ex; if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) np->put_tx_ctx = np->tx_skb; } while (frag_size); } if (unlikely(put_tx == np->tx_ring.ex)) prev_tx = np->last_tx.ex; else prev_tx = put_tx - 1; if (unlikely(np->put_tx_ctx == np->tx_skb)) prev_tx_ctx = np->last_tx_ctx; else prev_tx_ctx = np->put_tx_ctx - 1; /* set last fragment flag */ prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET); /* save skb in this slot's context area */ prev_tx_ctx->skb = skb; if (skb_is_gso(skb)) tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); else tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; /* vlan tag */ if (skb_vlan_tag_present(skb)) start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | skb_vlan_tag_get(skb)); else start_tx->txvlan = 0; spin_lock_irqsave(&np->lock, flags); if (np->tx_limit) { /* Limit the number of outstanding tx. Setup all fragments, but * do not set the VALID bit on the first descriptor. Save a pointer * to that descriptor and also for next skb_map element. */ if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) { if (!np->tx_change_owner) np->tx_change_owner = start_tx_ctx; /* remove VALID bit */ tx_flags &= ~NV_TX2_VALID; start_tx_ctx->first_tx_desc = start_tx; start_tx_ctx->next_tx_ctx = np->put_tx_ctx; np->tx_end_flip = np->put_tx_ctx; } else { np->tx_pkts_in_progress++; } } /* set tx flags */ start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); netdev_sent_queue(np->dev, skb->len); skb_tx_timestamp(skb); np->put_tx.ex = put_tx; spin_unlock_irqrestore(&np->lock, flags); txkick: if (netif_queue_stopped(dev) || !netdev_xmit_more()) { u32 txrxctl_kick; dma_error: txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits; writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl); } return ret; } static inline void nv_tx_flip_ownership(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); np->tx_pkts_in_progress--; if (np->tx_change_owner) { np->tx_change_owner->first_tx_desc->flaglen |= cpu_to_le32(NV_TX2_VALID); np->tx_pkts_in_progress++; np->tx_change_owner = np->tx_change_owner->next_tx_ctx; if (np->tx_change_owner == np->tx_end_flip) np->tx_change_owner = NULL; writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); } } /* * nv_tx_done: check for completed packets, release the skbs. * * Caller must own np->lock. */ static int nv_tx_done(struct net_device *dev, int limit) { struct fe_priv *np = netdev_priv(dev); u32 flags; int tx_work = 0; struct ring_desc *orig_get_tx = np->get_tx.orig; unsigned int bytes_compl = 0; while ((np->get_tx.orig != np->put_tx.orig) && !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) && (tx_work < limit)) { nv_unmap_txskb(np, np->get_tx_ctx); if (np->desc_ver == DESC_VER_1) { if (flags & NV_TX_LASTPACKET) { if (unlikely(flags & NV_TX_ERROR)) { if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK)) nv_legacybackoff_reseed(dev); } else { unsigned int len; u64_stats_update_begin(&np->swstats_tx_syncp); nv_txrx_stats_inc(stat_tx_packets); len = np->get_tx_ctx->skb->len; nv_txrx_stats_add(stat_tx_bytes, len); u64_stats_update_end(&np->swstats_tx_syncp); } bytes_compl += np->get_tx_ctx->skb->len; dev_kfree_skb_any(np->get_tx_ctx->skb); np->get_tx_ctx->skb = NULL; tx_work++; } } else { if (flags & NV_TX2_LASTPACKET) { if (unlikely(flags & NV_TX2_ERROR)) { if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) nv_legacybackoff_reseed(dev); } else { unsigned int len; u64_stats_update_begin(&np->swstats_tx_syncp); nv_txrx_stats_inc(stat_tx_packets); len = np->get_tx_ctx->skb->len; nv_txrx_stats_add(stat_tx_bytes, len); u64_stats_update_end(&np->swstats_tx_syncp); } bytes_compl += np->get_tx_ctx->skb->len; dev_kfree_skb_any(np->get_tx_ctx->skb); np->get_tx_ctx->skb = NULL; tx_work++; } } if (unlikely(np->get_tx.orig++ == np->last_tx.orig)) np->get_tx.orig = np->tx_ring.orig; if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) np->get_tx_ctx = np->tx_skb; } netdev_completed_queue(np->dev, tx_work, bytes_compl); if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) { np->tx_stop = 0; netif_wake_queue(dev); } return tx_work; } static int nv_tx_done_optimized(struct net_device *dev, int limit) { struct fe_priv *np = netdev_priv(dev); u32 flags; int tx_work = 0; struct ring_desc_ex *orig_get_tx = np->get_tx.ex; unsigned long bytes_cleaned = 0; while ((np->get_tx.ex != np->put_tx.ex) && !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) && (tx_work < limit)) { nv_unmap_txskb(np, np->get_tx_ctx); if (flags & NV_TX2_LASTPACKET) { if (unlikely(flags & NV_TX2_ERROR)) { if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) { if (np->driver_data & DEV_HAS_GEAR_MODE) nv_gear_backoff_reseed(dev); else nv_legacybackoff_reseed(dev); } } else { unsigned int len; u64_stats_update_begin(&np->swstats_tx_syncp); nv_txrx_stats_inc(stat_tx_packets); len = np->get_tx_ctx->skb->len; nv_txrx_stats_add(stat_tx_bytes, len); u64_stats_update_end(&np->swstats_tx_syncp); } bytes_cleaned += np->get_tx_ctx->skb->len; dev_kfree_skb_any(np->get_tx_ctx->skb); np->get_tx_ctx->skb = NULL; tx_work++; if (np->tx_limit) nv_tx_flip_ownership(dev); } if (unlikely(np->get_tx.ex++ == np->last_tx.ex)) np->get_tx.ex = np->tx_ring.ex; if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) np->get_tx_ctx = np->tx_skb; } netdev_completed_queue(np->dev, tx_work, bytes_cleaned); if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) { np->tx_stop = 0; netif_wake_queue(dev); } return tx_work; } /* * nv_tx_timeout: dev->tx_timeout function * Called with netif_tx_lock held. */ static void nv_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 status; union ring_type put_tx; int saved_tx_limit; if (np->msi_flags & NV_MSI_X_ENABLED) status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; else status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status); if (unlikely(debug_tx_timeout)) { int i; netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr); netdev_info(dev, "Dumping tx registers\n"); for (i = 0; i <= np->register_size; i += 32) { netdev_info(dev, "%3x: %08x %08x %08x %08x " "%08x %08x %08x %08x\n", i, readl(base + i + 0), readl(base + i + 4), readl(base + i + 8), readl(base + i + 12), readl(base + i + 16), readl(base + i + 20), readl(base + i + 24), readl(base + i + 28)); } netdev_info(dev, "Dumping tx ring\n"); for (i = 0; i < np->tx_ring_size; i += 4) { if (!nv_optimized(np)) { netdev_info(dev, "%03x: %08x %08x // %08x %08x " "// %08x %08x // %08x %08x\n", i, le32_to_cpu(np->tx_ring.orig[i].buf), le32_to_cpu(np->tx_ring.orig[i].flaglen), le32_to_cpu(np->tx_ring.orig[i+1].buf), le32_to_cpu(np->tx_ring.orig[i+1].flaglen), le32_to_cpu(np->tx_ring.orig[i+2].buf), le32_to_cpu(np->tx_ring.orig[i+2].flaglen), le32_to_cpu(np->tx_ring.orig[i+3].buf), le32_to_cpu(np->tx_ring.orig[i+3].flaglen)); } else { netdev_info(dev, "%03x: %08x %08x %08x " "// %08x %08x %08x " "// %08x %08x %08x " "// %08x %08x %08x\n", i, le32_to_cpu(np->tx_ring.ex[i].bufhigh), le32_to_cpu(np->tx_ring.ex[i].buflow), le32_to_cpu(np->tx_ring.ex[i].flaglen), le32_to_cpu(np->tx_ring.ex[i+1].bufhigh), le32_to_cpu(np->tx_ring.ex[i+1].buflow), le32_to_cpu(np->tx_ring.ex[i+1].flaglen), le32_to_cpu(np->tx_ring.ex[i+2].bufhigh), le32_to_cpu(np->tx_ring.ex[i+2].buflow), le32_to_cpu(np->tx_ring.ex[i+2].flaglen), le32_to_cpu(np->tx_ring.ex[i+3].bufhigh), le32_to_cpu(np->tx_ring.ex[i+3].buflow), le32_to_cpu(np->tx_ring.ex[i+3].flaglen)); } } } spin_lock_irq(&np->lock); /* 1) stop tx engine */ nv_stop_tx(dev); /* 2) complete any outstanding tx and do not give HW any limited tx pkts */ saved_tx_limit = np->tx_limit; np->tx_limit = 0; /* prevent giving HW any limited pkts */ np->tx_stop = 0; /* prevent waking tx queue */ if (!nv_optimized(np)) nv_tx_done(dev, np->tx_ring_size); else nv_tx_done_optimized(dev, np->tx_ring_size); /* save current HW position */ if (np->tx_change_owner) put_tx.ex = np->tx_change_owner->first_tx_desc; else put_tx = np->put_tx; /* 3) clear all tx state */ nv_drain_tx(dev); nv_init_tx(dev); /* 4) restore state to current HW position */ np->get_tx = np->put_tx = put_tx; np->tx_limit = saved_tx_limit; /* 5) restart tx engine */ nv_start_tx(dev); netif_wake_queue(dev); spin_unlock_irq(&np->lock); } /* * Called when the nic notices a mismatch between the actual data len on the * wire and the len indicated in the 802 header */ static int nv_getlen(struct net_device *dev, void *packet, int datalen) { int hdrlen; /* length of the 802 header */ int protolen; /* length as stored in the proto field */ /* 1) calculate len according to header */ if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) { protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto); hdrlen = VLAN_HLEN; } else { protolen = ntohs(((struct ethhdr *)packet)->h_proto); hdrlen = ETH_HLEN; } if (protolen > ETH_DATA_LEN) return datalen; /* Value in proto field not a len, no checks possible */ protolen += hdrlen; /* consistency checks: */ if (datalen > ETH_ZLEN) { if (datalen >= protolen) { /* more data on wire than in 802 header, trim of * additional data. */ return protolen; } else { /* less data on wire than mentioned in header. * Discard the packet. */ return -1; } } else { /* short packet. Accept only if 802 values are also short */ if (protolen > ETH_ZLEN) { return -1; } return datalen; } } static void rx_missing_handler(u32 flags, struct fe_priv *np) { if (flags & NV_RX_MISSEDFRAME) { u64_stats_update_begin(&np->swstats_rx_syncp); nv_txrx_stats_inc(stat_rx_missed_errors); u64_stats_update_end(&np->swstats_rx_syncp); } } static int nv_rx_process(struct net_device *dev, int limit) { struct fe_priv *np = netdev_priv(dev); u32 flags; int rx_work = 0; struct sk_buff *skb; int len; while ((np->get_rx.orig != np->put_rx.orig) && !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) && (rx_work < limit)) { /* * the packet is for us - immediately tear down the pci mapping. * TODO: check if a prefetch of the first cacheline improves * the performance. */ dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma, np->get_rx_ctx->dma_len, DMA_FROM_DEVICE); skb = np->get_rx_ctx->skb; np->get_rx_ctx->skb = NULL; /* look at what we actually got: */ if (np->desc_ver == DESC_VER_1) { if (likely(flags & NV_RX_DESCRIPTORVALID)) { len = flags & LEN_MASK_V1; if (unlikely(flags & NV_RX_ERROR)) { if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) { len = nv_getlen(dev, skb->data, len); if (len < 0) { dev_kfree_skb(skb); goto next_pkt; } } /* framing errors are soft errors */ else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) { if (flags & NV_RX_SUBTRACT1) len--; } /* the rest are hard errors */ else { rx_missing_handler(flags, np); dev_kfree_skb(skb); goto next_pkt; } } } else { dev_kfree_skb(skb); goto next_pkt; } } else { if (likely(flags & NV_RX2_DESCRIPTORVALID)) { len = flags & LEN_MASK_V2; if (unlikely(flags & NV_RX2_ERROR)) { if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { len = nv_getlen(dev, skb->data, len); if (len < 0) { dev_kfree_skb(skb); goto next_pkt; } } /* framing errors are soft errors */ else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { if (flags & NV_RX2_SUBTRACT1) len--; } /* the rest are hard errors */ else { dev_kfree_skb(skb); goto next_pkt; } } if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ skb->ip_summed = CHECKSUM_UNNECESSARY; } else { dev_kfree_skb(skb); goto next_pkt; } } /* got a valid packet - forward it to the network core */ skb_put(skb, len); skb->protocol = eth_type_trans(skb, dev); napi_gro_receive(&np->napi, skb); u64_stats_update_begin(&np->swstats_rx_syncp); nv_txrx_stats_inc(stat_rx_packets); nv_txrx_stats_add(stat_rx_bytes, len); u64_stats_update_end(&np->swstats_rx_syncp); next_pkt: if (unlikely(np->get_rx.orig++ == np->last_rx.orig)) np->get_rx.orig = np->rx_ring.orig; if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) np->get_rx_ctx = np->rx_skb; rx_work++; } return rx_work; } static int nv_rx_process_optimized(struct net_device *dev, int limit) { struct fe_priv *np = netdev_priv(dev); u32 flags; u32 vlanflags = 0; int rx_work = 0; struct sk_buff *skb; int len; while ((np->get_rx.ex != np->put_rx.ex) && !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) && (rx_work < limit)) { /* * the packet is for us - immediately tear down the pci mapping. * TODO: check if a prefetch of the first cacheline improves * the performance. */ dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma, np->get_rx_ctx->dma_len, DMA_FROM_DEVICE); skb = np->get_rx_ctx->skb; np->get_rx_ctx->skb = NULL; /* look at what we actually got: */ if (likely(flags & NV_RX2_DESCRIPTORVALID)) { len = flags & LEN_MASK_V2; if (unlikely(flags & NV_RX2_ERROR)) { if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { len = nv_getlen(dev, skb->data, len); if (len < 0) { dev_kfree_skb(skb); goto next_pkt; } } /* framing errors are soft errors */ else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { if (flags & NV_RX2_SUBTRACT1) len--; } /* the rest are hard errors */ else { dev_kfree_skb(skb); goto next_pkt; } } if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ skb->ip_summed = CHECKSUM_UNNECESSARY; /* got a valid packet - forward it to the network core */ skb_put(skb, len); skb->protocol = eth_type_trans(skb, dev); prefetch(skb->data); vlanflags = le32_to_cpu(np->get_rx.ex->buflow); /* * There's need to check for NETIF_F_HW_VLAN_CTAG_RX * here. Even if vlan rx accel is disabled, * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set. */ if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && vlanflags & NV_RX3_VLAN_TAG_PRESENT) { u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); } napi_gro_receive(&np->napi, skb); u64_stats_update_begin(&np->swstats_rx_syncp); nv_txrx_stats_inc(stat_rx_packets); nv_txrx_stats_add(stat_rx_bytes, len); u64_stats_update_end(&np->swstats_rx_syncp); } else { dev_kfree_skb(skb); } next_pkt: if (unlikely(np->get_rx.ex++ == np->last_rx.ex)) np->get_rx.ex = np->rx_ring.ex; if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) np->get_rx_ctx = np->rx_skb; rx_work++; } return rx_work; } static void set_bufsize(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); if (dev->mtu <= ETH_DATA_LEN) np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; else np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; } /* * nv_change_mtu: dev->change_mtu function * Called with RTNL held for read. */ static int nv_change_mtu(struct net_device *dev, int new_mtu) { struct fe_priv *np = netdev_priv(dev); int old_mtu; old_mtu = dev->mtu; WRITE_ONCE(dev->mtu, new_mtu); /* return early if the buffer sizes will not change */ if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) return 0; /* synchronized against open : rtnl_lock() held by caller */ if (netif_running(dev)) { u8 __iomem *base = get_hwbase(dev); /* * It seems that the nic preloads valid ring entries into an * internal buffer. The procedure for flushing everything is * guessed, there is probably a simpler approach. * Changing the MTU is a rare event, it shouldn't matter. */ nv_disable_irq(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* drain rx queue */ nv_drain_rxtx(dev); /* reinit driver view of the rx queue */ set_bufsize(dev); if (nv_init_ring(dev)) { if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); } /* reinit nic view of the rx queue */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(base); /* restart rx engine */ nv_start_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); nv_napi_enable(dev); nv_enable_irq(dev); } return 0; } static void nv_copy_mac_to_hw(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); u32 mac[2]; mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); writel(mac[0], base + NvRegMacAddrA); writel(mac[1], base + NvRegMacAddrB); } /* * nv_set_mac_address: dev->set_mac_address function * Called with rtnl_lock() held. */ static int nv_set_mac_address(struct net_device *dev, void *addr) { struct fe_priv *np = netdev_priv(dev); struct sockaddr *macaddr = (struct sockaddr *)addr; if (!is_valid_ether_addr(macaddr->sa_data)) return -EADDRNOTAVAIL; /* synchronized against open : rtnl_lock() held by caller */ eth_hw_addr_set(dev, macaddr->sa_data); if (netif_running(dev)) { netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock_irq(&np->lock); /* stop rx engine */ nv_stop_rx(dev); /* set mac address */ nv_copy_mac_to_hw(dev); /* restart rx engine */ nv_start_rx(dev); spin_unlock_irq(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } else { nv_copy_mac_to_hw(dev); } return 0; } /* * nv_set_multicast: dev->set_multicast function * Called with netif_tx_lock held. */ static void nv_set_multicast(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 addr[2]; u32 mask[2]; u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX; memset(addr, 0, sizeof(addr)); memset(mask, 0, sizeof(mask)); if (dev->flags & IFF_PROMISC) { pff |= NVREG_PFF_PROMISC; } else { pff |= NVREG_PFF_MYADDR; if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { u32 alwaysOff[2]; u32 alwaysOn[2]; alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; if (dev->flags & IFF_ALLMULTI) { alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; } else { struct netdev_hw_addr *ha; netdev_for_each_mc_addr(ha, dev) { unsigned char *hw_addr = ha->addr; u32 a, b; a = le32_to_cpu(*(__le32 *) hw_addr); b = le16_to_cpu(*(__le16 *) (&hw_addr[4])); alwaysOn[0] &= a; alwaysOff[0] &= ~a; alwaysOn[1] &= b; alwaysOff[1] &= ~b; } } addr[0] = alwaysOn[0]; addr[1] = alwaysOn[1]; mask[0] = alwaysOn[0] | alwaysOff[0]; mask[1] = alwaysOn[1] | alwaysOff[1]; } else { mask[0] = NVREG_MCASTMASKA_NONE; mask[1] = NVREG_MCASTMASKB_NONE; } } addr[0] |= NVREG_MCASTADDRA_FORCE; pff |= NVREG_PFF_ALWAYS; spin_lock_irq(&np->lock); nv_stop_rx(dev); writel(addr[0], base + NvRegMulticastAddrA); writel(addr[1], base + NvRegMulticastAddrB); writel(mask[0], base + NvRegMulticastMaskA); writel(mask[1], base + NvRegMulticastMaskB); writel(pff, base + NvRegPacketFilterFlags); nv_start_rx(dev); spin_unlock_irq(&np->lock); } static void nv_update_pause(struct net_device *dev, u32 pause_flags) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE); if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) { u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX; if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) { writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags); np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; } else { writel(pff, base + NvRegPacketFilterFlags); } } if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) { u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX; if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) { u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1; if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2; if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) { pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3; /* limit the number of tx pause frames to a default of 8 */ writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit); } writel(pause_enable, base + NvRegTxPauseFrame); writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1); np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } else { writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); writel(regmisc, base + NvRegMisc1); } } } static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 phyreg, txreg; int mii_status; np->linkspeed = NVREG_LINKSPEED_FORCE|speed; np->duplex = duplex; /* see if gigabit phy */ mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); if (mii_status & PHY_GIGABIT) { np->gigabit = PHY_GIGABIT; phyreg = readl(base + NvRegSlotTime); phyreg &= ~(0x3FF00); if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) phyreg |= NVREG_SLOTTIME_10_100_FULL; else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) phyreg |= NVREG_SLOTTIME_10_100_FULL; else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) phyreg |= NVREG_SLOTTIME_1000_FULL; writel(phyreg, base + NvRegSlotTime); } phyreg = readl(base + NvRegPhyInterface); phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); if (np->duplex == 0) phyreg |= PHY_HALF; if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) phyreg |= PHY_100; else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) phyreg |= PHY_1000; writel(phyreg, base + NvRegPhyInterface); if (phyreg & PHY_RGMII) { if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) txreg = NVREG_TX_DEFERRAL_RGMII_1000; else txreg = NVREG_TX_DEFERRAL_RGMII_10_100; } else { txreg = NVREG_TX_DEFERRAL_DEFAULT; } writel(txreg, base + NvRegTxDeferral); if (np->desc_ver == DESC_VER_1) { txreg = NVREG_TX_WM_DESC1_DEFAULT; } else { if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) txreg = NVREG_TX_WM_DESC2_3_1000; else txreg = NVREG_TX_WM_DESC2_3_DEFAULT; } writel(txreg, base + NvRegTxWatermark); writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), base + NvRegMisc1); pci_push(base); writel(np->linkspeed, base + NvRegLinkSpeed); pci_push(base); } /** * nv_update_linkspeed - Setup the MAC according to the link partner * @dev: Network device to be configured * * The function queries the PHY and checks if there is a link partner. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is * set to 10 MBit HD. * * The function returns 0 if there is no link partner and 1 if there is * a good link partner. */ static int nv_update_linkspeed(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int adv = 0; int lpa = 0; int adv_lpa, adv_pause, lpa_pause; int newls = np->linkspeed; int newdup = np->duplex; int mii_status; u32 bmcr; int retval = 0; u32 control_1000, status_1000, phyreg, pause_flags, txreg; u32 txrxFlags = 0; u32 phy_exp; /* If device loopback is enabled, set carrier on and enable max link * speed. */ bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); if (bmcr & BMCR_LOOPBACK) { if (netif_running(dev)) { nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1); if (!netif_carrier_ok(dev)) netif_carrier_on(dev); } return 1; } /* BMSR_LSTATUS is latched, read it twice: * we want the current value. */ mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); if (!(mii_status & BMSR_LSTATUS)) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; retval = 0; goto set_speed; } if (np->autoneg == 0) { if (np->fixed_mode & LPA_100FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 1; } else if (np->fixed_mode & LPA_100HALF) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 0; } else if (np->fixed_mode & LPA_10FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 1; } else { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; } retval = 1; goto set_speed; } /* check auto negotiation is complete */ if (!(mii_status & BMSR_ANEGCOMPLETE)) { /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; retval = 0; goto set_speed; } adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); retval = 1; if (np->gigabit == PHY_GIGABIT) { control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ); if ((control_1000 & ADVERTISE_1000FULL) && (status_1000 & LPA_1000FULL)) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; newdup = 1; goto set_speed; } } /* FIXME: handle parallel detection properly */ adv_lpa = lpa & adv; if (adv_lpa & LPA_100FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 1; } else if (adv_lpa & LPA_100HALF) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 0; } else if (adv_lpa & LPA_10FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 1; } else if (adv_lpa & LPA_10HALF) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; } else { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; } set_speed: if (np->duplex == newdup && np->linkspeed == newls) return retval; np->duplex = newdup; np->linkspeed = newls; /* The transmitter and receiver must be restarted for safe update */ if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) { txrxFlags |= NV_RESTART_TX; nv_stop_tx(dev); } if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { txrxFlags |= NV_RESTART_RX; nv_stop_rx(dev); } if (np->gigabit == PHY_GIGABIT) { phyreg = readl(base + NvRegSlotTime); phyreg &= ~(0x3FF00); if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) || ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)) phyreg |= NVREG_SLOTTIME_10_100_FULL; else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) phyreg |= NVREG_SLOTTIME_1000_FULL; writel(phyreg, base + NvRegSlotTime); } phyreg = readl(base + NvRegPhyInterface); phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); if (np->duplex == 0) phyreg |= PHY_HALF; if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) phyreg |= PHY_100; else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) phyreg |= PHY_1000; writel(phyreg, base + NvRegPhyInterface); phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */ if (phyreg & PHY_RGMII) { if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) { txreg = NVREG_TX_DEFERRAL_RGMII_1000; } else { if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) { if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10) txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10; else txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100; } else { txreg = NVREG_TX_DEFERRAL_RGMII_10_100; } } } else { if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) txreg = NVREG_TX_DEFERRAL_MII_STRETCH; else txreg = NVREG_TX_DEFERRAL_DEFAULT; } writel(txreg, base + NvRegTxDeferral); if (np->desc_ver == DESC_VER_1) { txreg = NVREG_TX_WM_DESC1_DEFAULT; } else { if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) txreg = NVREG_TX_WM_DESC2_3_1000; else txreg = NVREG_TX_WM_DESC2_3_DEFAULT; } writel(txreg, base + NvRegTxWatermark); writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), base + NvRegMisc1); pci_push(base); writel(np->linkspeed, base + NvRegLinkSpeed); pci_push(base); pause_flags = 0; /* setup pause frame */ if (netif_running(dev) && (np->duplex != 0)) { if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) { adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM); switch (adv_pause) { case ADVERTISE_PAUSE_CAP: if (lpa_pause & LPA_PAUSE_CAP) { pause_flags |= NV_PAUSEFRAME_RX_ENABLE; if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } break; case ADVERTISE_PAUSE_ASYM: if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM)) pause_flags |= NV_PAUSEFRAME_TX_ENABLE; break; case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM: if (lpa_pause & LPA_PAUSE_CAP) { pause_flags |= NV_PAUSEFRAME_RX_ENABLE; if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } if (lpa_pause == LPA_PAUSE_ASYM) pause_flags |= NV_PAUSEFRAME_RX_ENABLE; break; } } else { pause_flags = np->pause_flags; } } nv_update_pause(dev, pause_flags); if (txrxFlags & NV_RESTART_TX) nv_start_tx(dev); if (txrxFlags & NV_RESTART_RX) nv_start_rx(dev); return retval; } static void nv_linkchange(struct net_device *dev) { if (nv_update_linkspeed(dev)) { if (!netif_carrier_ok(dev)) { netif_carrier_on(dev); netdev_info(dev, "link up\n"); nv_txrx_gate(dev, false); nv_start_rx(dev); } } else { if (netif_carrier_ok(dev)) { netif_carrier_off(dev); netdev_info(dev, "link down\n"); nv_txrx_gate(dev, true); nv_stop_rx(dev); } } } static void nv_link_irq(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); u32 miistat; miistat = readl(base + NvRegMIIStatus); writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus); if (miistat & (NVREG_MIISTAT_LINKCHANGE)) nv_linkchange(dev); } static void nv_msi_workaround(struct fe_priv *np) { /* Need to toggle the msi irq mask within the ethernet device, * otherwise, future interrupts will not be detected. */ if (np->msi_flags & NV_MSI_ENABLED) { u8 __iomem *base = np->base; writel(0, base + NvRegMSIIrqMask); writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); } } static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work) { struct fe_priv *np = netdev_priv(dev); if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) { if (total_work > NV_DYNAMIC_THRESHOLD) { /* transition to poll based interrupts */ np->quiet_count = 0; if (np->irqmask != NVREG_IRQMASK_CPU) { np->irqmask = NVREG_IRQMASK_CPU; return 1; } } else { if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) { np->quiet_count++; } else { /* reached a period of low activity, switch to per tx/rx packet interrupts */ if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) { np->irqmask = NVREG_IRQMASK_THROUGHPUT; return 1; } } } } return 0; } static irqreturn_t nv_nic_irq(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); if (!(np->msi_flags & NV_MSI_X_ENABLED)) { np->events = readl(base + NvRegIrqStatus); writel(np->events, base + NvRegIrqStatus); } else { np->events = readl(base + NvRegMSIXIrqStatus); writel(np->events, base + NvRegMSIXIrqStatus); } if (!(np->events & np->irqmask)) return IRQ_NONE; nv_msi_workaround(np); if (napi_schedule_prep(&np->napi)) { /* * Disable further irq's (msix not enabled with napi) */ writel(0, base + NvRegIrqMask); __napi_schedule(&np->napi); } return IRQ_HANDLED; } /* All _optimized functions are used to help increase performance * (reduce CPU and increase throughput). They use descripter version 3, * compiler directives, and reduce memory accesses. */ static irqreturn_t nv_nic_irq_optimized(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); if (!(np->msi_flags & NV_MSI_X_ENABLED)) { np->events = readl(base + NvRegIrqStatus); writel(np->events, base + NvRegIrqStatus); } else { np->events = readl(base + NvRegMSIXIrqStatus); writel(np->events, base + NvRegMSIXIrqStatus); } if (!(np->events & np->irqmask)) return IRQ_NONE; nv_msi_workaround(np); if (napi_schedule_prep(&np->napi)) { /* * Disable further irq's (msix not enabled with napi) */ writel(0, base + NvRegIrqMask); __napi_schedule(&np->napi); } return IRQ_HANDLED; } static irqreturn_t nv_nic_irq_tx(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 events; int i; unsigned long flags; for (i = 0;; i++) { events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL; writel(events, base + NvRegMSIXIrqStatus); netdev_dbg(dev, "tx irq events: %08x\n", events); if (!(events & np->irqmask)) break; spin_lock_irqsave(&np->lock, flags); nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); spin_unlock_irqrestore(&np->lock, flags); if (unlikely(i > max_interrupt_work)) { spin_lock_irqsave(&np->lock, flags); /* disable interrupts on the nic */ writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq |= NVREG_IRQ_TX_ALL; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); netdev_dbg(dev, "%s: too many iterations (%d)\n", __func__, i); break; } } return IRQ_RETVAL(i); } static int nv_napi_poll(struct napi_struct *napi, int budget) { struct fe_priv *np = container_of(napi, struct fe_priv, napi); struct net_device *dev = np->dev; u8 __iomem *base = get_hwbase(dev); unsigned long flags; int retcode; int rx_count, tx_work = 0, rx_work = 0; do { if (!nv_optimized(np)) { spin_lock_irqsave(&np->lock, flags); tx_work += nv_tx_done(dev, np->tx_ring_size); spin_unlock_irqrestore(&np->lock, flags); rx_count = nv_rx_process(dev, budget - rx_work); retcode = nv_alloc_rx(dev); } else { spin_lock_irqsave(&np->lock, flags); tx_work += nv_tx_done_optimized(dev, np->tx_ring_size); spin_unlock_irqrestore(&np->lock, flags); rx_count = nv_rx_process_optimized(dev, budget - rx_work); retcode = nv_alloc_rx_optimized(dev); } } while (retcode == 0 && rx_count > 0 && (rx_work += rx_count) < budget); if (retcode) { spin_lock_irqsave(&np->lock, flags); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock_irqrestore(&np->lock, flags); } nv_change_interrupt_mode(dev, tx_work + rx_work); if (unlikely(np->events & NVREG_IRQ_LINK)) { spin_lock_irqsave(&np->lock, flags); nv_link_irq(dev); spin_unlock_irqrestore(&np->lock, flags); } if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { spin_lock_irqsave(&np->lock, flags); nv_linkchange(dev); spin_unlock_irqrestore(&np->lock, flags); np->link_timeout = jiffies + LINK_TIMEOUT; } if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { spin_lock_irqsave(&np->lock, flags); if (!np->in_shutdown) { np->nic_poll_irq = np->irqmask; np->recover_error = 1; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); napi_complete(napi); return rx_work; } if (rx_work < budget) { /* re-enable interrupts (msix not enabled in napi) */ napi_complete_done(napi, rx_work); writel(np->irqmask, base + NvRegIrqMask); } return rx_work; } static irqreturn_t nv_nic_irq_rx(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 events; int i; unsigned long flags; for (i = 0;; i++) { events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL; writel(events, base + NvRegMSIXIrqStatus); netdev_dbg(dev, "rx irq events: %08x\n", events); if (!(events & np->irqmask)) break; if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { if (unlikely(nv_alloc_rx_optimized(dev))) { spin_lock_irqsave(&np->lock, flags); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock_irqrestore(&np->lock, flags); } } if (unlikely(i > max_interrupt_work)) { spin_lock_irqsave(&np->lock, flags); /* disable interrupts on the nic */ writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq |= NVREG_IRQ_RX_ALL; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); netdev_dbg(dev, "%s: too many iterations (%d)\n", __func__, i); break; } } return IRQ_RETVAL(i); } static irqreturn_t nv_nic_irq_other(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 events; int i; unsigned long flags; for (i = 0;; i++) { events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER; writel(events, base + NvRegMSIXIrqStatus); netdev_dbg(dev, "irq events: %08x\n", events); if (!(events & np->irqmask)) break; /* check tx in case we reached max loop limit in tx isr */ spin_lock_irqsave(&np->lock, flags); nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); spin_unlock_irqrestore(&np->lock, flags); if (events & NVREG_IRQ_LINK) { spin_lock_irqsave(&np->lock, flags); nv_link_irq(dev); spin_unlock_irqrestore(&np->lock, flags); } if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { spin_lock_irqsave(&np->lock, flags); nv_linkchange(dev); spin_unlock_irqrestore(&np->lock, flags); np->link_timeout = jiffies + LINK_TIMEOUT; } if (events & NVREG_IRQ_RECOVER_ERROR) { spin_lock_irqsave(&np->lock, flags); /* disable interrupts on the nic */ writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq |= NVREG_IRQ_OTHER; np->recover_error = 1; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); break; } if (unlikely(i > max_interrupt_work)) { spin_lock_irqsave(&np->lock, flags); /* disable interrupts on the nic */ writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq |= NVREG_IRQ_OTHER; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); netdev_dbg(dev, "%s: too many iterations (%d)\n", __func__, i); break; } } return IRQ_RETVAL(i); } static irqreturn_t nv_nic_irq_test(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 events; if (!(np->msi_flags & NV_MSI_X_ENABLED)) { events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus); } else { events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus); } pci_push(base); if (!(events & NVREG_IRQ_TIMER)) return IRQ_RETVAL(0); nv_msi_workaround(np); spin_lock(&np->lock); np->intr_test = 1; spin_unlock(&np->lock); return IRQ_RETVAL(1); } static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask) { u8 __iomem *base = get_hwbase(dev); int i; u32 msixmap = 0; /* Each interrupt bit can be mapped to a MSIX vector (4 bits). * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents * the remaining 8 interrupts. */ for (i = 0; i < 8; i++) { if ((irqmask >> i) & 0x1) msixmap |= vector << (i << 2); } writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0); msixmap = 0; for (i = 0; i < 8; i++) { if ((irqmask >> (i + 8)) & 0x1) msixmap |= vector << (i << 2); } writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1); } static int nv_request_irq(struct net_device *dev, int intr_test) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); int ret; int i; irqreturn_t (*handler)(int foo, void *data); if (intr_test) { handler = nv_nic_irq_test; } else { if (nv_optimized(np)) handler = nv_nic_irq_optimized; else handler = nv_nic_irq; } if (np->msi_flags & NV_MSI_X_CAPABLE) { for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) np->msi_x_entry[i].entry = i; ret = pci_enable_msix_range(np->pci_dev, np->msi_x_entry, np->msi_flags & NV_MSI_X_VECTORS_MASK, np->msi_flags & NV_MSI_X_VECTORS_MASK); if (ret > 0) { np->msi_flags |= NV_MSI_X_ENABLED; if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) { /* Request irq for rx handling */ sprintf(np->name_rx, "%s-rx", dev->name); ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev); if (ret) { netdev_info(dev, "request_irq failed for rx %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; goto out_err; } /* Request irq for tx handling */ sprintf(np->name_tx, "%s-tx", dev->name); ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev); if (ret) { netdev_info(dev, "request_irq failed for tx %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; goto out_free_rx; } /* Request irq for link and timer handling */ sprintf(np->name_other, "%s-other", dev->name); ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, nv_nic_irq_other, IRQF_SHARED, np->name_other, dev); if (ret) { netdev_info(dev, "request_irq failed for link %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; goto out_free_tx; } /* map interrupts to their respective vector */ writel(0, base + NvRegMSIXMap0); writel(0, base + NvRegMSIXMap1); set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL); set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL); set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER); } else { /* Request irq for all interrupts */ ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev); if (ret) { netdev_info(dev, "request_irq failed %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; goto out_err; } /* map interrupts to vector 0 */ writel(0, base + NvRegMSIXMap0); writel(0, base + NvRegMSIXMap1); } netdev_info(dev, "MSI-X enabled\n"); return 0; } } if (np->msi_flags & NV_MSI_CAPABLE) { ret = pci_enable_msi(np->pci_dev); if (ret == 0) { np->msi_flags |= NV_MSI_ENABLED; ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev); if (ret) { netdev_info(dev, "request_irq failed %d\n", ret); pci_disable_msi(np->pci_dev); np->msi_flags &= ~NV_MSI_ENABLED; goto out_err; } /* map interrupts to vector 0 */ writel(0, base + NvRegMSIMap0); writel(0, base + NvRegMSIMap1); /* enable msi vector 0 */ writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); netdev_info(dev, "MSI enabled\n"); return 0; } } if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) goto out_err; return 0; out_free_tx: free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev); out_free_rx: free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev); out_err: return 1; } static void nv_free_irq(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); int i; if (np->msi_flags & NV_MSI_X_ENABLED) { for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) free_irq(np->msi_x_entry[i].vector, dev); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; } else { free_irq(np->pci_dev->irq, dev); if (np->msi_flags & NV_MSI_ENABLED) { pci_disable_msi(np->pci_dev); np->msi_flags &= ~NV_MSI_ENABLED; } } } static void nv_do_nic_poll(struct timer_list *t) { struct fe_priv *np = from_timer(np, t, nic_poll); struct net_device *dev = np->dev; u8 __iomem *base = get_hwbase(dev); u32 mask = 0; unsigned long flags; unsigned int irq = 0; /* * First disable irq(s) and then * reenable interrupts on the nic, we have to do this before calling * nv_nic_irq because that may decide to do otherwise */ if (!using_multi_irqs(dev)) { if (np->msi_flags & NV_MSI_X_ENABLED) irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector; else irq = np->pci_dev->irq; mask = np->irqmask; } else { if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector; mask |= NVREG_IRQ_RX_ALL; } if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector; mask |= NVREG_IRQ_TX_ALL; } if (np->nic_poll_irq & NVREG_IRQ_OTHER) { irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector; mask |= NVREG_IRQ_OTHER; } } disable_irq_nosync_lockdep_irqsave(irq, &flags); synchronize_irq(irq); if (np->recover_error) { np->recover_error = 0; netdev_info(dev, "MAC in recoverable error state\n"); if (netif_running(dev)) { netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); if (np->driver_data & DEV_HAS_POWER_CNTRL) nv_mac_reset(dev); nv_txrx_reset(dev); /* drain rx queue */ nv_drain_rxtx(dev); /* reinit driver view of the rx queue */ set_bufsize(dev); if (nv_init_ring(dev)) { if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); } /* reinit nic view of the rx queue */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(base); /* clear interrupts */ if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); else writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); /* restart rx engine */ nv_start_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } } writel(mask, base + NvRegIrqMask); pci_push(base); if (!using_multi_irqs(dev)) { np->nic_poll_irq = 0; if (nv_optimized(np)) nv_nic_irq_optimized(0, dev); else nv_nic_irq(0, dev); } else { if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL; nv_nic_irq_rx(0, dev); } if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL; nv_nic_irq_tx(0, dev); } if (np->nic_poll_irq & NVREG_IRQ_OTHER) { np->nic_poll_irq &= ~NVREG_IRQ_OTHER; nv_nic_irq_other(0, dev); } } enable_irq_lockdep_irqrestore(irq, &flags); } #ifdef CONFIG_NET_POLL_CONTROLLER static void nv_poll_controller(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); nv_do_nic_poll(&np->nic_poll); } #endif static void nv_do_stats_poll(struct timer_list *t) __acquires(&netdev_priv(dev)->hwstats_lock) __releases(&netdev_priv(dev)->hwstats_lock) { struct fe_priv *np = from_timer(np, t, stats_poll); struct net_device *dev = np->dev; /* If lock is currently taken, the stats are being refreshed * and hence fresh enough */ if (spin_trylock(&np->hwstats_lock)) { nv_update_stats(dev); spin_unlock(&np->hwstats_lock); } if (!np->in_shutdown) mod_timer(&np->stats_poll, round_jiffies(jiffies + STATS_INTERVAL)); } static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct fe_priv *np = netdev_priv(dev); strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, FORCEDETH_VERSION, sizeof(info->version)); strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); } static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) { struct fe_priv *np = netdev_priv(dev); wolinfo->supported = WAKE_MAGIC; spin_lock_irq(&np->lock); if (np->wolenabled) wolinfo->wolopts = WAKE_MAGIC; spin_unlock_irq(&np->lock); } static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 flags = 0; if (wolinfo->wolopts == 0) { np->wolenabled = 0; } else if (wolinfo->wolopts & WAKE_MAGIC) { np->wolenabled = 1; flags = NVREG_WAKEUPFLAGS_ENABLE; } if (netif_running(dev)) { spin_lock_irq(&np->lock); writel(flags, base + NvRegWakeUpFlags); spin_unlock_irq(&np->lock); } device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled); return 0; } static int nv_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct fe_priv *np = netdev_priv(dev); u32 speed, supported, advertising; int adv; spin_lock_irq(&np->lock); cmd->base.port = PORT_MII; if (!netif_running(dev)) { /* We do not track link speed / duplex setting if the * interface is disabled. Force a link check */ if (nv_update_linkspeed(dev)) { netif_carrier_on(dev); } else { netif_carrier_off(dev); } } if (netif_carrier_ok(dev)) { switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) { case NVREG_LINKSPEED_10: speed = SPEED_10; break; case NVREG_LINKSPEED_100: speed = SPEED_100; break; case NVREG_LINKSPEED_1000: speed = SPEED_1000; break; default: speed = -1; break; } cmd->base.duplex = DUPLEX_HALF; if (np->duplex) cmd->base.duplex = DUPLEX_FULL; } else { speed = SPEED_UNKNOWN; cmd->base.duplex = DUPLEX_UNKNOWN; } cmd->base.speed = speed; cmd->base.autoneg = np->autoneg; advertising = ADVERTISED_MII; if (np->autoneg) { advertising |= ADVERTISED_Autoneg; adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); if (adv & ADVERTISE_10HALF) advertising |= ADVERTISED_10baseT_Half; if (adv & ADVERTISE_10FULL) advertising |= ADVERTISED_10baseT_Full; if (adv & ADVERTISE_100HALF) advertising |= ADVERTISED_100baseT_Half; if (adv & ADVERTISE_100FULL) advertising |= ADVERTISED_100baseT_Full; if (np->gigabit == PHY_GIGABIT) { adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); if (adv & ADVERTISE_1000FULL) advertising |= ADVERTISED_1000baseT_Full; } } supported = (SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_MII); if (np->gigabit == PHY_GIGABIT) supported |= SUPPORTED_1000baseT_Full; cmd->base.phy_address = np->phyaddr; ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, advertising); /* ignore maxtxpkt, maxrxpkt for now */ spin_unlock_irq(&np->lock); return 0; } static int nv_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct fe_priv *np = netdev_priv(dev); u32 speed = cmd->base.speed; u32 advertising; ethtool_convert_link_mode_to_legacy_u32(&advertising, cmd->link_modes.advertising); if (cmd->base.port != PORT_MII) return -EINVAL; if (cmd->base.phy_address != np->phyaddr) { /* TODO: support switching between multiple phys. Should be * trivial, but not enabled due to lack of test hardware. */ return -EINVAL; } if (cmd->base.autoneg == AUTONEG_ENABLE) { u32 mask; mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; if (np->gigabit == PHY_GIGABIT) mask |= ADVERTISED_1000baseT_Full; if ((advertising & mask) == 0) return -EINVAL; } else if (cmd->base.autoneg == AUTONEG_DISABLE) { /* Note: autonegotiation disable, speed 1000 intentionally * forbidden - no one should need that. */ if (speed != SPEED_10 && speed != SPEED_100) return -EINVAL; if (cmd->base.duplex != DUPLEX_HALF && cmd->base.duplex != DUPLEX_FULL) return -EINVAL; } else { return -EINVAL; } netif_carrier_off(dev); if (netif_running(dev)) { unsigned long flags; nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); /* with plain spinlock lockdep complains */ spin_lock_irqsave(&np->lock, flags); /* stop engines */ /* FIXME: * this can take some time, and interrupts are disabled * due to spin_lock_irqsave, but let's hope no daemon * is going to change the settings very often... * Worst case: * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX * + some minor delays, which is up to a second approximately */ nv_stop_rxtx(dev); spin_unlock_irqrestore(&np->lock, flags); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } if (cmd->base.autoneg == AUTONEG_ENABLE) { int adv, bmcr; np->autoneg = 1; /* advertise only what has been requested */ adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (advertising & ADVERTISED_10baseT_Half) adv |= ADVERTISE_10HALF; if (advertising & ADVERTISED_10baseT_Full) adv |= ADVERTISE_10FULL; if (advertising & ADVERTISED_100baseT_Half) adv |= ADVERTISE_100HALF; if (advertising & ADVERTISED_100baseT_Full) adv |= ADVERTISE_100FULL; if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) adv |= ADVERTISE_PAUSE_ASYM; mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); if (np->gigabit == PHY_GIGABIT) { adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); adv &= ~ADVERTISE_1000FULL; if (advertising & ADVERTISED_1000baseT_Full) adv |= ADVERTISE_1000FULL; mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); } if (netif_running(dev)) netdev_info(dev, "link down\n"); bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); if (np->phy_model == PHY_MODEL_MARVELL_E3016) { bmcr |= BMCR_ANENABLE; /* reset the phy in order for settings to stick, * and cause autoneg to start */ if (phy_reset(dev, bmcr)) { netdev_info(dev, "phy reset failed\n"); return -EINVAL; } } else { bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); } } else { int adv, bmcr; np->autoneg = 0; adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF) adv |= ADVERTISE_10HALF; if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL) adv |= ADVERTISE_10FULL; if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF) adv |= ADVERTISE_100HALF; if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL) adv |= ADVERTISE_100FULL; np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */ adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; } if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) { adv |= ADVERTISE_PAUSE_ASYM; np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); np->fixed_mode = adv; if (np->gigabit == PHY_GIGABIT) { adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); adv &= ~ADVERTISE_1000FULL; mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); } bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX); if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL)) bmcr |= BMCR_FULLDPLX; if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL)) bmcr |= BMCR_SPEED100; if (np->phy_oui == PHY_OUI_MARVELL) { /* reset the phy in order for forced mode settings to stick */ if (phy_reset(dev, bmcr)) { netdev_info(dev, "phy reset failed\n"); return -EINVAL; } } else { mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); if (netif_running(dev)) { /* Wait a bit and then reconfigure the nic. */ udelay(10); nv_linkchange(dev); } } } if (netif_running(dev)) { nv_start_rxtx(dev); nv_enable_irq(dev); } return 0; } #define FORCEDETH_REGS_VER 1 static int nv_get_regs_len(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); return np->register_size; } static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 *rbuf = buf; int i; regs->version = FORCEDETH_REGS_VER; spin_lock_irq(&np->lock); for (i = 0; i < np->register_size/sizeof(u32); i++) rbuf[i] = readl(base + i*sizeof(u32)); spin_unlock_irq(&np->lock); } static int nv_nway_reset(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int ret; if (np->autoneg) { int bmcr; netif_carrier_off(dev); if (netif_running(dev)) { nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); netdev_info(dev, "link down\n"); } bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); if (np->phy_model == PHY_MODEL_MARVELL_E3016) { bmcr |= BMCR_ANENABLE; /* reset the phy in order for settings to stick*/ if (phy_reset(dev, bmcr)) { netdev_info(dev, "phy reset failed\n"); return -EINVAL; } } else { bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); } if (netif_running(dev)) { nv_start_rxtx(dev); nv_enable_irq(dev); } ret = 0; } else { ret = -EINVAL; } return ret; } static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct fe_priv *np = netdev_priv(dev); ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; ring->rx_pending = np->rx_ring_size; ring->tx_pending = np->tx_ring_size; } static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u8 *rxtx_ring, *rx_skbuff, *tx_skbuff; dma_addr_t ring_addr; if (ring->rx_pending < RX_RING_MIN || ring->tx_pending < TX_RING_MIN || ring->rx_mini_pending != 0 || ring->rx_jumbo_pending != 0 || (np->desc_ver == DESC_VER_1 && (ring->rx_pending > RING_MAX_DESC_VER_1 || ring->tx_pending > RING_MAX_DESC_VER_1)) || (np->desc_ver != DESC_VER_1 && (ring->rx_pending > RING_MAX_DESC_VER_2_3 || ring->tx_pending > RING_MAX_DESC_VER_2_3))) { return -EINVAL; } /* allocate new rings */ if (!nv_optimized(np)) { rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), &ring_addr, GFP_ATOMIC); } else { rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), &ring_addr, GFP_ATOMIC); } rx_skbuff = kmalloc_array(ring->rx_pending, sizeof(struct nv_skb_map), GFP_KERNEL); tx_skbuff = kmalloc_array(ring->tx_pending, sizeof(struct nv_skb_map), GFP_KERNEL); if (!rxtx_ring || !rx_skbuff || !tx_skbuff) { /* fall back to old rings */ if (!nv_optimized(np)) { if (rxtx_ring) dma_free_coherent(&np->pci_dev->dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), rxtx_ring, ring_addr); } else { if (rxtx_ring) dma_free_coherent(&np->pci_dev->dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), rxtx_ring, ring_addr); } kfree(rx_skbuff); kfree(tx_skbuff); goto exit; } if (netif_running(dev)) { nv_disable_irq(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* drain queues */ nv_drain_rxtx(dev); /* delete queues */ free_rings(dev); } /* set new values */ np->rx_ring_size = ring->rx_pending; np->tx_ring_size = ring->tx_pending; if (!nv_optimized(np)) { np->rx_ring.orig = (struct ring_desc *)rxtx_ring; np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; } else { np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring; np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; } np->rx_skb = (struct nv_skb_map *)rx_skbuff; np->tx_skb = (struct nv_skb_map *)tx_skbuff; np->ring_addr = ring_addr; memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size); memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size); if (netif_running(dev)) { /* reinit driver view of the queues */ set_bufsize(dev); if (nv_init_ring(dev)) { if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); } /* reinit nic view of the queues */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(base); /* restart engines */ nv_start_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); nv_napi_enable(dev); nv_enable_irq(dev); } return 0; exit: return -ENOMEM; } static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) { struct fe_priv *np = netdev_priv(dev); pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0; pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0; pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0; } static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) { struct fe_priv *np = netdev_priv(dev); int adv, bmcr; if ((!np->autoneg && np->duplex == 0) || (np->autoneg && !pause->autoneg && np->duplex == 0)) { netdev_info(dev, "can not set pause settings when forced link is in half duplex\n"); return -EINVAL; } if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) { netdev_info(dev, "hardware does not support tx pause frames\n"); return -EINVAL; } netif_carrier_off(dev); if (netif_running(dev)) { nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ); if (pause->rx_pause) np->pause_flags |= NV_PAUSEFRAME_RX_REQ; if (pause->tx_pause) np->pause_flags |= NV_PAUSEFRAME_TX_REQ; if (np->autoneg && pause->autoneg) { np->pause_flags |= NV_PAUSEFRAME_AUTONEG; adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) adv |= ADVERTISE_PAUSE_ASYM; mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); if (netif_running(dev)) netdev_info(dev, "link down\n"); bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); } else { np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); if (pause->rx_pause) np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; if (pause->tx_pause) np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; if (!netif_running(dev)) nv_update_linkspeed(dev); else nv_update_pause(dev, np->pause_flags); } if (netif_running(dev)) { nv_start_rxtx(dev); nv_enable_irq(dev); } return 0; } static int nv_set_loopback(struct net_device *dev, netdev_features_t features) { struct fe_priv *np = netdev_priv(dev); unsigned long flags; u32 miicontrol; int err, retval = 0; spin_lock_irqsave(&np->lock, flags); miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); if (features & NETIF_F_LOOPBACK) { if (miicontrol & BMCR_LOOPBACK) { spin_unlock_irqrestore(&np->lock, flags); netdev_info(dev, "Loopback already enabled\n"); return 0; } nv_disable_irq(dev); /* Turn on loopback mode */ miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000; err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol); if (err) { retval = PHY_ERROR; spin_unlock_irqrestore(&np->lock, flags); phy_init(dev); } else { if (netif_running(dev)) { /* Force 1000 Mbps full-duplex */ nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1); /* Force link up */ netif_carrier_on(dev); } spin_unlock_irqrestore(&np->lock, flags); netdev_info(dev, "Internal PHY loopback mode enabled.\n"); } } else { if (!(miicontrol & BMCR_LOOPBACK)) { spin_unlock_irqrestore(&np->lock, flags); netdev_info(dev, "Loopback already disabled\n"); return 0; } nv_disable_irq(dev); /* Turn off loopback */ spin_unlock_irqrestore(&np->lock, flags); netdev_info(dev, "Internal PHY loopback mode disabled.\n"); phy_init(dev); } msleep(500); spin_lock_irqsave(&np->lock, flags); nv_enable_irq(dev); spin_unlock_irqrestore(&np->lock, flags); return retval; } static netdev_features_t nv_fix_features(struct net_device *dev, netdev_features_t features) { /* vlan is dependent on rx checksum offload */ if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX)) features |= NETIF_F_RXCSUM; return features; } static void nv_vlan_mode(struct net_device *dev, netdev_features_t features) { struct fe_priv *np = get_nvpriv(dev); spin_lock_irq(&np->lock); if (features & NETIF_F_HW_VLAN_CTAG_RX) np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP; else np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP; if (features & NETIF_F_HW_VLAN_CTAG_TX) np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS; else np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS; writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); spin_unlock_irq(&np->lock); } static int nv_set_features(struct net_device *dev, netdev_features_t features) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); netdev_features_t changed = dev->features ^ features; int retval; if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) { retval = nv_set_loopback(dev, features); if (retval != 0) return retval; } if (changed & NETIF_F_RXCSUM) { spin_lock_irq(&np->lock); if (features & NETIF_F_RXCSUM) np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; else np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK; if (netif_running(dev)) writel(np->txrxctl_bits, base + NvRegTxRxControl); spin_unlock_irq(&np->lock); } if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX)) nv_vlan_mode(dev, features); return 0; } static int nv_get_sset_count(struct net_device *dev, int sset) { struct fe_priv *np = netdev_priv(dev); switch (sset) { case ETH_SS_TEST: if (np->driver_data & DEV_HAS_TEST_EXTENDED) return NV_TEST_COUNT_EXTENDED; else return NV_TEST_COUNT_BASE; case ETH_SS_STATS: if (np->driver_data & DEV_HAS_STATISTICS_V3) return NV_DEV_STATISTICS_V3_COUNT; else if (np->driver_data & DEV_HAS_STATISTICS_V2) return NV_DEV_STATISTICS_V2_COUNT; else if (np->driver_data & DEV_HAS_STATISTICS_V1) return NV_DEV_STATISTICS_V1_COUNT; else return 0; default: return -EOPNOTSUPP; } } static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer) __acquires(&netdev_priv(dev)->hwstats_lock) __releases(&netdev_priv(dev)->hwstats_lock) { struct fe_priv *np = netdev_priv(dev); spin_lock_bh(&np->hwstats_lock); nv_update_stats(dev); memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64)); spin_unlock_bh(&np->hwstats_lock); } static int nv_link_test(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int mii_status; mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); /* check phy link status */ if (!(mii_status & BMSR_LSTATUS)) return 0; else return 1; } static int nv_register_test(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); int i = 0; u32 orig_read, new_read; do { orig_read = readl(base + nv_registers_test[i].reg); /* xor with mask to toggle bits */ orig_read ^= nv_registers_test[i].mask; writel(orig_read, base + nv_registers_test[i].reg); new_read = readl(base + nv_registers_test[i].reg); if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask)) return 0; /* restore original value */ orig_read ^= nv_registers_test[i].mask; writel(orig_read, base + nv_registers_test[i].reg); } while (nv_registers_test[++i].reg != 0); return 1; } static int nv_interrupt_test(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int ret = 1; int testcnt; u32 save_msi_flags, save_poll_interval = 0; if (netif_running(dev)) { /* free current irq */ nv_free_irq(dev); save_poll_interval = readl(base+NvRegPollingInterval); } /* flag to test interrupt handler */ np->intr_test = 0; /* setup test irq */ save_msi_flags = np->msi_flags; np->msi_flags &= ~NV_MSI_X_VECTORS_MASK; np->msi_flags |= 0x001; /* setup 1 vector */ if (nv_request_irq(dev, 1)) return 0; /* setup timer interrupt */ writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER); /* wait for at least one interrupt */ msleep(100); spin_lock_irq(&np->lock); /* flag should be set within ISR */ testcnt = np->intr_test; if (!testcnt) ret = 2; nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER); if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); else writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); spin_unlock_irq(&np->lock); nv_free_irq(dev); np->msi_flags = save_msi_flags; if (netif_running(dev)) { writel(save_poll_interval, base + NvRegPollingInterval); writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); /* restore original irq */ if (nv_request_irq(dev, 0)) return 0; } return ret; } static int nv_loopback_test(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); struct sk_buff *tx_skb, *rx_skb; dma_addr_t test_dma_addr; u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); u32 flags; int len, i, pkt_len; u8 *pkt_data; u32 filter_flags = 0; u32 misc1_flags = 0; int ret = 1; if (netif_running(dev)) { nv_disable_irq(dev); filter_flags = readl(base + NvRegPacketFilterFlags); misc1_flags = readl(base + NvRegMisc1); } else { nv_txrx_reset(dev); } /* reinit driver view of the rx queue */ set_bufsize(dev); nv_init_ring(dev); /* setup hardware for loopback */ writel(NVREG_MISC1_FORCE, base + NvRegMisc1); writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags); /* reinit nic view of the rx queue */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); /* restart rx engine */ nv_start_rxtx(dev); /* setup packet for tx */ pkt_len = ETH_DATA_LEN; tx_skb = netdev_alloc_skb(dev, pkt_len); if (!tx_skb) { ret = 0; goto out; } test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data, skb_tailroom(tx_skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&np->pci_dev->dev, test_dma_addr))) { dev_kfree_skb_any(tx_skb); goto out; } pkt_data = skb_put(tx_skb, pkt_len); for (i = 0; i < pkt_len; i++) pkt_data[i] = (u8)(i & 0xff); if (!nv_optimized(np)) { np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); } else { np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr)); np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr)); np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); } writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(get_hwbase(dev)); msleep(500); /* check for rx of the packet */ if (!nv_optimized(np)) { flags = le32_to_cpu(np->rx_ring.orig[0].flaglen); len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver); } else { flags = le32_to_cpu(np->rx_ring.ex[0].flaglen); len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver); } if (flags & NV_RX_AVAIL) { ret = 0; } else if (np->desc_ver == DESC_VER_1) { if (flags & NV_RX_ERROR) ret = 0; } else { if (flags & NV_RX2_ERROR) ret = 0; } if (ret) { if (len != pkt_len) { ret = 0; } else { rx_skb = np->rx_skb[0].skb; for (i = 0; i < pkt_len; i++) { if (rx_skb->data[i] != (u8)(i & 0xff)) { ret = 0; break; } } } } dma_unmap_single(&np->pci_dev->dev, test_dma_addr, (skb_end_pointer(tx_skb) - tx_skb->data), DMA_TO_DEVICE); dev_kfree_skb_any(tx_skb); out: /* stop engines */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* drain rx queue */ nv_drain_rxtx(dev); if (netif_running(dev)) { writel(misc1_flags, base + NvRegMisc1); writel(filter_flags, base + NvRegPacketFilterFlags); nv_enable_irq(dev); } return ret; } static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int result, count; count = nv_get_sset_count(dev, ETH_SS_TEST); memset(buffer, 0, count * sizeof(u64)); if (!nv_link_test(dev)) { test->flags |= ETH_TEST_FL_FAILED; buffer[0] = 1; } if (test->flags & ETH_TEST_FL_OFFLINE) { if (netif_running(dev)) { netif_stop_queue(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock_irq(&np->lock); nv_disable_hw_interrupts(dev, np->irqmask); if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); else writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); /* stop engines */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* drain rx queue */ nv_drain_rxtx(dev); spin_unlock_irq(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } if (!nv_register_test(dev)) { test->flags |= ETH_TEST_FL_FAILED; buffer[1] = 1; } result = nv_interrupt_test(dev); if (result != 1) { test->flags |= ETH_TEST_FL_FAILED; buffer[2] = 1; } if (result == 0) { /* bail out */ return; } if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) { test->flags |= ETH_TEST_FL_FAILED; buffer[3] = 1; } if (netif_running(dev)) { /* reinit driver view of the rx queue */ set_bufsize(dev); if (nv_init_ring(dev)) { if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); } /* reinit nic view of the rx queue */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(base); /* restart rx engine */ nv_start_rxtx(dev); netif_start_queue(dev); nv_napi_enable(dev); nv_enable_hw_interrupts(dev, np->irqmask); } } } static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer) { switch (stringset) { case ETH_SS_STATS: memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str)); break; case ETH_SS_TEST: memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str)); break; } } static const struct ethtool_ops ops = { .get_drvinfo = nv_get_drvinfo, .get_link = ethtool_op_get_link, .get_wol = nv_get_wol, .set_wol = nv_set_wol, .get_regs_len = nv_get_regs_len, .get_regs = nv_get_regs, .nway_reset = nv_nway_reset, .get_ringparam = nv_get_ringparam, .set_ringparam = nv_set_ringparam, .get_pauseparam = nv_get_pauseparam, .set_pauseparam = nv_set_pauseparam, .get_strings = nv_get_strings, .get_ethtool_stats = nv_get_ethtool_stats, .get_sset_count = nv_get_sset_count, .self_test = nv_self_test, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = nv_get_link_ksettings, .set_link_ksettings = nv_set_link_ksettings, }; /* The mgmt unit and driver use a semaphore to access the phy during init */ static int nv_mgmt_acquire_sema(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int i; u32 tx_ctrl, mgmt_sema; for (i = 0; i < 10; i++) { mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK; if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE) break; msleep(500); } if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE) return 0; for (i = 0; i < 2; i++) { tx_ctrl = readl(base + NvRegTransmitterControl); tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ; writel(tx_ctrl, base + NvRegTransmitterControl); /* verify that semaphore was acquired */ tx_ctrl = readl(base + NvRegTransmitterControl); if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) && ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) { np->mgmt_sema = 1; return 1; } else udelay(50); } return 0; } static void nv_mgmt_release_sema(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 tx_ctrl; if (np->driver_data & DEV_HAS_MGMT_UNIT) { if (np->mgmt_sema) { tx_ctrl = readl(base + NvRegTransmitterControl); tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ; writel(tx_ctrl, base + NvRegTransmitterControl); } } } static int nv_mgmt_get_version(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 data_ready = readl(base + NvRegTransmitterControl); u32 data_ready2 = 0; unsigned long start; int ready = 0; writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion); writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl); start = jiffies; while (time_before(jiffies, start + 5*HZ)) { data_ready2 = readl(base + NvRegTransmitterControl); if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) { ready = 1; break; } schedule_timeout_uninterruptible(1); } if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR)) return 0; np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION; return 1; } static int nv_open(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int ret = 1; int oom, i; u32 low; /* power up phy */ mii_rw(dev, np->phyaddr, MII_BMCR, mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN); nv_txrx_gate(dev, false); /* erase previous misconfiguration */ if (np->driver_data & DEV_HAS_POWER_CNTRL) nv_mac_reset(dev); writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); writel(0, base + NvRegMulticastAddrB); writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); writel(0, base + NvRegPacketFilterFlags); writel(0, base + NvRegTransmitterControl); writel(0, base + NvRegReceiverControl); writel(0, base + NvRegAdapterControl); if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); /* initialize descriptor rings */ set_bufsize(dev); oom = nv_init_ring(dev); writel(0, base + NvRegLinkSpeed); writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); nv_txrx_reset(dev); writel(0, base + NvRegUnknownSetupReg6); np->in_shutdown = 0; /* give hw rings */ setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); writel(np->linkspeed, base + NvRegLinkSpeed); if (np->desc_ver == DESC_VER_1) writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark); else writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark); writel(np->txrxctl_bits, base + NvRegTxRxControl); writel(np->vlanctl_bits, base + NvRegVlanControl); pci_push(base); writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); if (reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX)) netdev_info(dev, "%s: SetupReg5, Bit 31 remained off\n", __func__); writel(0, base + NvRegMIIMask); writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); writel(np->rx_buf_sz, base + NvRegOffloadConfig); writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); get_random_bytes(&low, sizeof(low)); low &= NVREG_SLOTTIME_MASK; if (np->desc_ver == DESC_VER_1) { writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime); } else { if (!(np->driver_data & DEV_HAS_GEAR_MODE)) { /* setup legacy backoff */ writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime); } else { writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime); nv_gear_backoff_reseed(dev); } } writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral); writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral); if (poll_interval == -1) { if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); else writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); } else writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask); if (np->wolenabled) writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags); i = readl(base + NvRegPowerState); if ((i & NVREG_POWERSTATE_POWEREDUP) == 0) writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); pci_push(base); udelay(10); writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); nv_disable_hw_interrupts(dev, np->irqmask); pci_push(base); writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); pci_push(base); if (nv_request_irq(dev, 0)) goto out_drain; /* ask for interrupts */ nv_enable_hw_interrupts(dev, np->irqmask); spin_lock_irq(&np->lock); writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); writel(0, base + NvRegMulticastAddrB); writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); /* One manual link speed update: Interrupts are enabled, future link * speed changes cause interrupts and are handled by nv_link_irq(). */ readl(base + NvRegMIIStatus); writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); /* set linkspeed to invalid value, thus force nv_update_linkspeed * to init hw */ np->linkspeed = 0; ret = nv_update_linkspeed(dev); nv_start_rxtx(dev); netif_start_queue(dev); nv_napi_enable(dev); if (ret) { netif_carrier_on(dev); } else { netdev_info(dev, "no link during initialization\n"); netif_carrier_off(dev); } if (oom) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); /* start statistics timer */ if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) mod_timer(&np->stats_poll, round_jiffies(jiffies + STATS_INTERVAL)); spin_unlock_irq(&np->lock); /* If the loopback feature was set while the device was down, make sure * that it's set correctly now. */ if (dev->features & NETIF_F_LOOPBACK) nv_set_loopback(dev, dev->features); return 0; out_drain: nv_drain_rxtx(dev); return ret; } static int nv_close(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base; spin_lock_irq(&np->lock); np->in_shutdown = 1; spin_unlock_irq(&np->lock); nv_napi_disable(dev); synchronize_irq(np->pci_dev->irq); del_timer_sync(&np->oom_kick); del_timer_sync(&np->nic_poll); del_timer_sync(&np->stats_poll); netif_stop_queue(dev); spin_lock_irq(&np->lock); nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* disable interrupts on the nic or we will lock up */ base = get_hwbase(dev); nv_disable_hw_interrupts(dev, np->irqmask); pci_push(base); spin_unlock_irq(&np->lock); nv_free_irq(dev); nv_drain_rxtx(dev); if (np->wolenabled || !phy_power_down) { nv_txrx_gate(dev, false); writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); nv_start_rx(dev); } else { /* power down phy */ mii_rw(dev, np->phyaddr, MII_BMCR, mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN); nv_txrx_gate(dev, true); } /* FIXME: power down nic */ return 0; } static const struct net_device_ops nv_netdev_ops = { .ndo_open = nv_open, .ndo_stop = nv_close, .ndo_get_stats64 = nv_get_stats64, .ndo_start_xmit = nv_start_xmit, .ndo_tx_timeout = nv_tx_timeout, .ndo_change_mtu = nv_change_mtu, .ndo_fix_features = nv_fix_features, .ndo_set_features = nv_set_features, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = nv_set_mac_address, .ndo_set_rx_mode = nv_set_multicast, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = nv_poll_controller, #endif }; static const struct net_device_ops nv_netdev_ops_optimized = { .ndo_open = nv_open, .ndo_stop = nv_close, .ndo_get_stats64 = nv_get_stats64, .ndo_start_xmit = nv_start_xmit_optimized, .ndo_tx_timeout = nv_tx_timeout, .ndo_change_mtu = nv_change_mtu, .ndo_fix_features = nv_fix_features, .ndo_set_features = nv_set_features, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = nv_set_mac_address, .ndo_set_rx_mode = nv_set_multicast, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = nv_poll_controller, #endif }; static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { struct net_device *dev; struct fe_priv *np; unsigned long addr; u8 __iomem *base; int err, i; u32 powerstate, txreg; u32 phystate_orig = 0, phystate; int phyinitialized = 0; static int printed_version; u8 mac[ETH_ALEN]; if (!printed_version++) pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION); dev = alloc_etherdev(sizeof(struct fe_priv)); err = -ENOMEM; if (!dev) goto out; np = netdev_priv(dev); np->dev = dev; np->pci_dev = pci_dev; spin_lock_init(&np->lock); spin_lock_init(&np->hwstats_lock); SET_NETDEV_DEV(dev, &pci_dev->dev); u64_stats_init(&np->swstats_rx_syncp); u64_stats_init(&np->swstats_tx_syncp); np->txrx_stats = alloc_percpu(struct nv_txrx_stats); if (!np->txrx_stats) { pr_err("np->txrx_stats, alloc memory error.\n"); err = -ENOMEM; goto out_alloc_percpu; } timer_setup(&np->oom_kick, nv_do_rx_refill, 0); timer_setup(&np->nic_poll, nv_do_nic_poll, 0); timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE); err = pci_enable_device(pci_dev); if (err) goto out_free; pci_set_master(pci_dev); err = pci_request_regions(pci_dev, DRV_NAME); if (err < 0) goto out_disable; if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) np->register_size = NV_PCI_REGSZ_VER3; else if (id->driver_data & DEV_HAS_STATISTICS_V1) np->register_size = NV_PCI_REGSZ_VER2; else np->register_size = NV_PCI_REGSZ_VER1; err = -EINVAL; addr = 0; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && pci_resource_len(pci_dev, i) >= np->register_size) { addr = pci_resource_start(pci_dev, i); break; } } if (i == DEVICE_COUNT_RESOURCE) { dev_info(&pci_dev->dev, "Couldn't find register window\n"); goto out_relreg; } /* copy of driver data */ np->driver_data = id->driver_data; /* copy of device id */ np->device_id = id->device; /* handle different descriptor versions */ if (id->driver_data & DEV_HAS_HIGH_DMA) { /* packet format 3: supports 40-bit addressing */ np->desc_ver = DESC_VER_3; np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; if (dma_64bit) { if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(39))) dev_info(&pci_dev->dev, "64-bit DMA failed, using 32-bit addressing\n"); else dev->features |= NETIF_F_HIGHDMA; } } else if (id->driver_data & DEV_HAS_LARGEDESC) { /* packet format 2: supports jumbo frames */ np->desc_ver = DESC_VER_2; np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; } else { /* original packet format */ np->desc_ver = DESC_VER_1; np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; } np->pkt_limit = NV_PKTLIMIT_1; if (id->driver_data & DEV_HAS_LARGEDESC) np->pkt_limit = NV_PKTLIMIT_2; if (id->driver_data & DEV_HAS_CHECKSUM) { np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_RXCSUM; } np->vlanctl_bits = 0; if (id->driver_data & DEV_HAS_VLAN) { np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE; dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; } dev->features |= dev->hw_features; /* Add loopback capability to the device. */ dev->hw_features |= NETIF_F_LOOPBACK; /* MTU range: 64 - 1500 or 9100 */ dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; dev->max_mtu = np->pkt_limit; np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG; if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) || (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) || (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) { np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ; } err = -ENOMEM; np->base = ioremap(addr, np->register_size); if (!np->base) goto out_relreg; np->rx_ring_size = RX_RING_DEFAULT; np->tx_ring_size = TX_RING_DEFAULT; if (!nv_optimized(np)) { np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), &np->ring_addr, GFP_KERNEL); if (!np->rx_ring.orig) goto out_unmap; np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; } else { np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), &np->ring_addr, GFP_KERNEL); if (!np->rx_ring.ex) goto out_unmap; np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; } np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); if (!np->rx_skb || !np->tx_skb) goto out_freering; if (!nv_optimized(np)) dev->netdev_ops = &nv_netdev_ops; else dev->netdev_ops = &nv_netdev_ops_optimized; netif_napi_add(dev, &np->napi, nv_napi_poll); dev->ethtool_ops = &ops; dev->watchdog_timeo = NV_WATCHDOG_TIMEO; pci_set_drvdata(pci_dev, dev); /* read the mac address */ base = get_hwbase(dev); np->orig_mac[0] = readl(base + NvRegMacAddrA); np->orig_mac[1] = readl(base + NvRegMacAddrB); /* check the workaround bit for correct mac address order */ txreg = readl(base + NvRegTransmitPoll); if (id->driver_data & DEV_HAS_CORRECT_MACADDR) { /* mac address is already in correct order */ mac[0] = (np->orig_mac[0] >> 0) & 0xff; mac[1] = (np->orig_mac[0] >> 8) & 0xff; mac[2] = (np->orig_mac[0] >> 16) & 0xff; mac[3] = (np->orig_mac[0] >> 24) & 0xff; mac[4] = (np->orig_mac[1] >> 0) & 0xff; mac[5] = (np->orig_mac[1] >> 8) & 0xff; } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) { /* mac address is already in correct order */ mac[0] = (np->orig_mac[0] >> 0) & 0xff; mac[1] = (np->orig_mac[0] >> 8) & 0xff; mac[2] = (np->orig_mac[0] >> 16) & 0xff; mac[3] = (np->orig_mac[0] >> 24) & 0xff; mac[4] = (np->orig_mac[1] >> 0) & 0xff; mac[5] = (np->orig_mac[1] >> 8) & 0xff; /* * Set orig mac address back to the reversed version. * This flag will be cleared during low power transition. * Therefore, we should always put back the reversed address. */ np->orig_mac[0] = (mac[5] << 0) + (mac[4] << 8) + (mac[3] << 16) + (mac[2] << 24); np->orig_mac[1] = (mac[1] << 0) + (mac[0] << 8); } else { /* need to reverse mac address to correct order */ mac[0] = (np->orig_mac[1] >> 8) & 0xff; mac[1] = (np->orig_mac[1] >> 0) & 0xff; mac[2] = (np->orig_mac[0] >> 24) & 0xff; mac[3] = (np->orig_mac[0] >> 16) & 0xff; mac[4] = (np->orig_mac[0] >> 8) & 0xff; mac[5] = (np->orig_mac[0] >> 0) & 0xff; writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); dev_dbg(&pci_dev->dev, "%s: set workaround bit for reversed mac addr\n", __func__); } if (is_valid_ether_addr(mac)) { eth_hw_addr_set(dev, mac); } else { /* * Bad mac address. At least one bios sets the mac address * to 01:23:45:67:89:ab */ dev_err(&pci_dev->dev, "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n", mac); eth_hw_addr_random(dev); dev_err(&pci_dev->dev, "Using random MAC address: %pM\n", dev->dev_addr); } /* set mac address */ nv_copy_mac_to_hw(dev); /* disable WOL */ writel(0, base + NvRegWakeUpFlags); np->wolenabled = 0; device_set_wakeup_enable(&pci_dev->dev, false); if (id->driver_data & DEV_HAS_POWER_CNTRL) { /* take phy and nic out of low power mode */ powerstate = readl(base + NvRegPowerState2); powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK; if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) && pci_dev->revision >= 0xA3) powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3; writel(powerstate, base + NvRegPowerState2); } if (np->desc_ver == DESC_VER_1) np->tx_flags = NV_TX_VALID; else np->tx_flags = NV_TX2_VALID; np->msi_flags = 0; if ((id->driver_data & DEV_HAS_MSI) && msi) np->msi_flags |= NV_MSI_CAPABLE; if ((id->driver_data & DEV_HAS_MSI_X) && msix) { /* msix has had reported issues when modifying irqmask as in the case of napi, therefore, disable for now */ #if 0 np->msi_flags |= NV_MSI_X_CAPABLE; #endif } if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) { np->irqmask = NVREG_IRQMASK_CPU; if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ np->msi_flags |= 0x0001; } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC && !(id->driver_data & DEV_NEED_TIMERIRQ)) { /* start off in throughput mode */ np->irqmask = NVREG_IRQMASK_THROUGHPUT; /* remove support for msix mode */ np->msi_flags &= ~NV_MSI_X_CAPABLE; } else { optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; np->irqmask = NVREG_IRQMASK_THROUGHPUT; if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ np->msi_flags |= 0x0003; } if (id->driver_data & DEV_NEED_TIMERIRQ) np->irqmask |= NVREG_IRQ_TIMER; if (id->driver_data & DEV_NEED_LINKTIMER) { np->need_linktimer = 1; np->link_timeout = jiffies + LINK_TIMEOUT; } else { np->need_linktimer = 0; } /* Limit the number of tx's outstanding for hw bug */ if (id->driver_data & DEV_NEED_TX_LIMIT) { np->tx_limit = 1; if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) && pci_dev->revision >= 0xA2) np->tx_limit = 0; } /* clear phy state and temporarily halt phy interrupts */ writel(0, base + NvRegMIIMask); phystate = readl(base + NvRegAdapterControl); if (phystate & NVREG_ADAPTCTL_RUNNING) { phystate_orig = 1; phystate &= ~NVREG_ADAPTCTL_RUNNING; writel(phystate, base + NvRegAdapterControl); } writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); if (id->driver_data & DEV_HAS_MGMT_UNIT) { /* management unit running on the mac? */ if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) && (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) && nv_mgmt_acquire_sema(dev) && nv_mgmt_get_version(dev)) { np->mac_in_use = 1; if (np->mgmt_version > 0) np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE; /* management unit setup the phy already? */ if (np->mac_in_use && ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) == NVREG_XMITCTL_SYNC_PHY_INIT)) { /* phy is inited by mgmt unit */ phyinitialized = 1; } else { /* we need to init the phy */ } } } /* find a suitable phy */ for (i = 1; i <= 32; i++) { int id1, id2; int phyaddr = i & 0x1F; spin_lock_irq(&np->lock); id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); spin_unlock_irq(&np->lock); if (id1 < 0 || id1 == 0xffff) continue; spin_lock_irq(&np->lock); id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); spin_unlock_irq(&np->lock); if (id2 < 0 || id2 == 0xffff) continue; np->phy_model = id2 & PHYID2_MODEL_MASK; id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; np->phyaddr = phyaddr; np->phy_oui = id1 | id2; /* Realtek hardcoded phy id1 to all zero's on certain phys */ if (np->phy_oui == PHY_OUI_REALTEK2) np->phy_oui = PHY_OUI_REALTEK; /* Setup phy revision for Realtek */ if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211) np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK; break; } if (i == 33) { dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n"); goto out_error; } if (!phyinitialized) { /* reset it */ phy_init(dev); } else { /* see if it is a gigabit phy */ u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); if (mii_status & PHY_GIGABIT) np->gigabit = PHY_GIGABIT; } /* set default link speed settings */ np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; np->duplex = 0; np->autoneg = 1; err = register_netdev(dev); if (err) { dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err); goto out_error; } netif_carrier_off(dev); /* Some NICs freeze when TX pause is enabled while NIC is * down, and this stays across warm reboots. The sequence * below should be enough to recover from that state. */ nv_update_pause(dev, 0); nv_start_tx(dev); nv_stop_tx(dev); if (id->driver_data & DEV_HAS_VLAN) nv_vlan_mode(dev, dev->features); dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n", dev->name, np->phy_oui, np->phyaddr, dev->dev_addr); dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", dev->features & NETIF_F_HIGHDMA ? "highdma " : "", dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ? "csum " : "", dev->features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX) ? "vlan " : "", dev->features & (NETIF_F_LOOPBACK) ? "loopback " : "", id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "", id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "", id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "", np->gigabit == PHY_GIGABIT ? "gbit " : "", np->need_linktimer ? "lnktim " : "", np->msi_flags & NV_MSI_CAPABLE ? "msi " : "", np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "", np->desc_ver); return 0; out_error: nv_mgmt_release_sema(dev); if (phystate_orig) writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); out_freering: free_rings(dev); out_unmap: iounmap(get_hwbase(dev)); out_relreg: pci_release_regions(pci_dev); out_disable: pci_disable_device(pci_dev); out_free: free_percpu(np->txrx_stats); out_alloc_percpu: free_netdev(dev); out: return err; } static void nv_restore_phy(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u16 phy_reserved, mii_control; if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8201 && phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3); phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); phy_reserved &= ~PHY_REALTEK_INIT_MSK1; phy_reserved |= PHY_REALTEK_INIT8; mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved); mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1); /* restart auto negotiation */ mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); mii_rw(dev, np->phyaddr, MII_BMCR, mii_control); } } static void nv_restore_mac_addr(struct pci_dev *pci_dev) { struct net_device *dev = pci_get_drvdata(pci_dev); struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); /* special op: write back the misordered MAC address - otherwise * the next nv_probe would see a wrong address. */ writel(np->orig_mac[0], base + NvRegMacAddrA); writel(np->orig_mac[1], base + NvRegMacAddrB); writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); } static void nv_remove(struct pci_dev *pci_dev) { struct net_device *dev = pci_get_drvdata(pci_dev); struct fe_priv *np = netdev_priv(dev); free_percpu(np->txrx_stats); unregister_netdev(dev); nv_restore_mac_addr(pci_dev); /* restore any phy related changes */ nv_restore_phy(dev); nv_mgmt_release_sema(dev); /* free all structures */ free_rings(dev); iounmap(get_hwbase(dev)); pci_release_regions(pci_dev); pci_disable_device(pci_dev); free_netdev(dev); } #ifdef CONFIG_PM_SLEEP static int nv_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int i; if (netif_running(dev)) { /* Gross. */ nv_close(dev); } netif_device_detach(dev); /* save non-pci configuration space */ for (i = 0; i <= np->register_size/sizeof(u32); i++) np->saved_config_space[i] = readl(base + i*sizeof(u32)); return 0; } static int nv_resume(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct net_device *dev = pci_get_drvdata(pdev); struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int i, rc = 0; /* restore non-pci configuration space */ for (i = 0; i <= np->register_size/sizeof(u32); i++) writel(np->saved_config_space[i], base+i*sizeof(u32)); if (np->driver_data & DEV_NEED_MSI_FIX) pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE); /* restore phy state, including autoneg */ phy_init(dev); netif_device_attach(dev); if (netif_running(dev)) { rc = nv_open(dev); nv_set_multicast(dev); } return rc; } static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume); #define NV_PM_OPS (&nv_pm_ops) #else #define NV_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM static void nv_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct fe_priv *np = netdev_priv(dev); if (netif_running(dev)) nv_close(dev); /* * Restore the MAC so a kernel started by kexec won't get confused. * If we really go for poweroff, we must not restore the MAC, * otherwise the MAC for WOL will be reversed at least on some boards. */ if (system_state != SYSTEM_POWER_OFF) nv_restore_mac_addr(pdev); pci_disable_device(pdev); /* * Apparently it is not possible to reinitialise from D3 hot, * only put the device into D3 if we really go for poweroff. */ if (system_state == SYSTEM_POWER_OFF) { pci_wake_from_d3(pdev, np->wolenabled); pci_set_power_state(pdev, PCI_D3hot); } } #else #define nv_shutdown NULL #endif /* CONFIG_PM */ static const struct pci_device_id pci_tbl[] = { { /* nForce Ethernet Controller */ PCI_DEVICE(0x10DE, 0x01C3), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, }, { /* nForce2 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0066), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x00D6), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0086), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x008C), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x00E6), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x00DF), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, }, { /* CK804 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0056), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, }, { /* CK804 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0057), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, }, { /* MCP04 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0037), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, }, { /* MCP04 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0038), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, }, { /* MCP51 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0268), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, }, { /* MCP51 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0269), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, }, { /* MCP55 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0372), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, }, { /* MCP55 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0373), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, }, { /* MCP61 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x03E5), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, }, { /* MCP61 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x03E6), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, }, { /* MCP61 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x03EE), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, }, { /* MCP61 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x03EF), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, }, { /* MCP65 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0450), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP65 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0451), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP65 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0452), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP65 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0453), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP67 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x054C), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP67 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x054D), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP67 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x054E), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP67 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x054F), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP73 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x07DC), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP73 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x07DD), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP73 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x07DE), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP73 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x07DF), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, }, { /* MCP77 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0760), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, }, { /* MCP77 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0761), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, }, { /* MCP77 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0762), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, }, { /* MCP77 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0763), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, }, { /* MCP79 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0AB0), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, }, { /* MCP79 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0AB1), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, }, { /* MCP79 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0AB2), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, }, { /* MCP79 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0AB3), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, }, { /* MCP89 Ethernet Controller */ PCI_DEVICE(0x10DE, 0x0D7D), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX, }, {0,}, }; static struct pci_driver forcedeth_pci_driver = { .name = DRV_NAME, .id_table = pci_tbl, .probe = nv_probe, .remove = nv_remove, .shutdown = nv_shutdown, .driver.pm = NV_PM_OPS, }; module_param(max_interrupt_work, int, 0); MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); module_param(optimization_mode, int, 0); MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load."); module_param(poll_interval, int, 0); MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); module_param(msi, int, 0); MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0."); module_param(msix, int, 0); MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0."); module_param(dma_64bit, int, 0); MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0."); module_param(phy_cross, int, 0); MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0."); module_param(phy_power_down, int, 0); MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0)."); module_param(debug_tx_timeout, bool, 0); MODULE_PARM_DESC(debug_tx_timeout, "Dump tx related registers and ring when tx_timeout happens"); module_pci_driver(forcedeth_pci_driver); MODULE_AUTHOR("Manfred Spraul <[email protected]>"); MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, pci_tbl);
// SPDX-License-Identifier: GPL-2.0+ /* * IPv6 IOAM implementation * * Author: * Justin Iurman <[email protected]> */ #include <linux/errno.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/net.h> #include <linux/ioam6.h> #include <linux/ioam6_genl.h> #include <linux/rhashtable.h> #include <linux/netdevice.h> #include <net/addrconf.h> #include <net/genetlink.h> #include <net/ioam6.h> #include <net/sch_generic.h> static void ioam6_ns_release(struct ioam6_namespace *ns) { kfree_rcu(ns, rcu); } static void ioam6_sc_release(struct ioam6_schema *sc) { kfree_rcu(sc, rcu); } static void ioam6_free_ns(void *ptr, void *arg) { struct ioam6_namespace *ns = (struct ioam6_namespace *)ptr; if (ns) ioam6_ns_release(ns); } static void ioam6_free_sc(void *ptr, void *arg) { struct ioam6_schema *sc = (struct ioam6_schema *)ptr; if (sc) ioam6_sc_release(sc); } static int ioam6_ns_cmpfn(struct rhashtable_compare_arg *arg, const void *obj) { const struct ioam6_namespace *ns = obj; return (ns->id != *(__be16 *)arg->key); } static int ioam6_sc_cmpfn(struct rhashtable_compare_arg *arg, const void *obj) { const struct ioam6_schema *sc = obj; return (sc->id != *(u32 *)arg->key); } static const struct rhashtable_params rht_ns_params = { .key_len = sizeof(__be16), .key_offset = offsetof(struct ioam6_namespace, id), .head_offset = offsetof(struct ioam6_namespace, head), .automatic_shrinking = true, .obj_cmpfn = ioam6_ns_cmpfn, }; static const struct rhashtable_params rht_sc_params = { .key_len = sizeof(u32), .key_offset = offsetof(struct ioam6_schema, id), .head_offset = offsetof(struct ioam6_schema, head), .automatic_shrinking = true, .obj_cmpfn = ioam6_sc_cmpfn, }; static struct genl_family ioam6_genl_family; static const struct nla_policy ioam6_genl_policy_addns[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, [IOAM6_ATTR_NS_DATA] = { .type = NLA_U32 }, [IOAM6_ATTR_NS_DATA_WIDE] = { .type = NLA_U64 }, }; static const struct nla_policy ioam6_genl_policy_delns[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, }; static const struct nla_policy ioam6_genl_policy_addsc[] = { [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, [IOAM6_ATTR_SC_DATA] = { .type = NLA_BINARY, .len = IOAM6_MAX_SCHEMA_DATA_LEN }, }; static const struct nla_policy ioam6_genl_policy_delsc[] = { [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, }; static const struct nla_policy ioam6_genl_policy_ns_sc[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, [IOAM6_ATTR_SC_NONE] = { .type = NLA_FLAG }, }; static int ioam6_genl_addns(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; u64 data64; u32 data32; __be16 id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID]) return -EINVAL; id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); if (ns) { err = -EEXIST; goto out_unlock; } ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) { err = -ENOMEM; goto out_unlock; } ns->id = id; data32 = nla_get_u32_default(info->attrs[IOAM6_ATTR_NS_DATA], IOAM6_U32_UNAVAILABLE); data64 = nla_get_u64_default(info->attrs[IOAM6_ATTR_NS_DATA_WIDE], IOAM6_U64_UNAVAILABLE); ns->data = cpu_to_be32(data32); ns->data_wide = cpu_to_be64(data64); err = rhashtable_lookup_insert_fast(&nsdata->namespaces, &ns->head, rht_ns_params); if (err) kfree(ns); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int ioam6_genl_delns(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; struct ioam6_schema *sc; __be16 id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID]) return -EINVAL; id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); if (!ns) { err = -ENOENT; goto out_unlock; } sc = rcu_dereference_protected(ns->schema, lockdep_is_held(&nsdata->lock)); err = rhashtable_remove_fast(&nsdata->namespaces, &ns->head, rht_ns_params); if (err) goto out_unlock; if (sc) rcu_assign_pointer(sc->ns, NULL); ioam6_ns_release(ns); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int __ioam6_genl_dumpns_element(struct ioam6_namespace *ns, u32 portid, u32 seq, u32 flags, struct sk_buff *skb, u8 cmd) { struct ioam6_schema *sc; u64 data64; u32 data32; void *hdr; hdr = genlmsg_put(skb, portid, seq, &ioam6_genl_family, flags, cmd); if (!hdr) return -ENOMEM; data32 = be32_to_cpu(ns->data); data64 = be64_to_cpu(ns->data_wide); if (nla_put_u16(skb, IOAM6_ATTR_NS_ID, be16_to_cpu(ns->id)) || (data32 != IOAM6_U32_UNAVAILABLE && nla_put_u32(skb, IOAM6_ATTR_NS_DATA, data32)) || (data64 != IOAM6_U64_UNAVAILABLE && nla_put_u64_64bit(skb, IOAM6_ATTR_NS_DATA_WIDE, data64, IOAM6_ATTR_PAD))) goto nla_put_failure; rcu_read_lock(); sc = rcu_dereference(ns->schema); if (sc && nla_put_u32(skb, IOAM6_ATTR_SC_ID, sc->id)) { rcu_read_unlock(); goto nla_put_failure; } rcu_read_unlock(); genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } static int ioam6_genl_dumpns_start(struct netlink_callback *cb) { struct ioam6_pernet_data *nsdata = ioam6_pernet(sock_net(cb->skb->sk)); struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; if (!iter) { iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; cb->args[0] = (long)iter; } rhashtable_walk_enter(&nsdata->namespaces, iter); return 0; } static int ioam6_genl_dumpns_done(struct netlink_callback *cb) { struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_exit(iter); kfree(iter); return 0; } static int ioam6_genl_dumpns(struct sk_buff *skb, struct netlink_callback *cb) { struct rhashtable_iter *iter; struct ioam6_namespace *ns; int err; iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_start(iter); for (;;) { ns = rhashtable_walk_next(iter); if (IS_ERR(ns)) { if (PTR_ERR(ns) == -EAGAIN) continue; err = PTR_ERR(ns); goto done; } else if (!ns) { break; } err = __ioam6_genl_dumpns_element(ns, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, skb, IOAM6_CMD_DUMP_NAMESPACES); if (err) goto done; } err = skb->len; done: rhashtable_walk_stop(iter); return err; } static int ioam6_genl_addsc(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; int len, len_aligned, err; struct ioam6_schema *sc; u32 id; if (!info->attrs[IOAM6_ATTR_SC_ID] || !info->attrs[IOAM6_ATTR_SC_DATA]) return -EINVAL; id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); sc = rhashtable_lookup_fast(&nsdata->schemas, &id, rht_sc_params); if (sc) { err = -EEXIST; goto out_unlock; } len = nla_len(info->attrs[IOAM6_ATTR_SC_DATA]); len_aligned = ALIGN(len, 4); sc = kzalloc(sizeof(*sc) + len_aligned, GFP_KERNEL); if (!sc) { err = -ENOMEM; goto out_unlock; } sc->id = id; sc->len = len_aligned; sc->hdr = cpu_to_be32(sc->id | ((u8)(sc->len / 4) << 24)); nla_memcpy(sc->data, info->attrs[IOAM6_ATTR_SC_DATA], len); err = rhashtable_lookup_insert_fast(&nsdata->schemas, &sc->head, rht_sc_params); if (err) goto free_sc; out_unlock: mutex_unlock(&nsdata->lock); return err; free_sc: kfree(sc); goto out_unlock; } static int ioam6_genl_delsc(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; struct ioam6_schema *sc; int err; u32 id; if (!info->attrs[IOAM6_ATTR_SC_ID]) return -EINVAL; id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); sc = rhashtable_lookup_fast(&nsdata->schemas, &id, rht_sc_params); if (!sc) { err = -ENOENT; goto out_unlock; } ns = rcu_dereference_protected(sc->ns, lockdep_is_held(&nsdata->lock)); err = rhashtable_remove_fast(&nsdata->schemas, &sc->head, rht_sc_params); if (err) goto out_unlock; if (ns) rcu_assign_pointer(ns->schema, NULL); ioam6_sc_release(sc); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int __ioam6_genl_dumpsc_element(struct ioam6_schema *sc, u32 portid, u32 seq, u32 flags, struct sk_buff *skb, u8 cmd) { struct ioam6_namespace *ns; void *hdr; hdr = genlmsg_put(skb, portid, seq, &ioam6_genl_family, flags, cmd); if (!hdr) return -ENOMEM; if (nla_put_u32(skb, IOAM6_ATTR_SC_ID, sc->id) || nla_put(skb, IOAM6_ATTR_SC_DATA, sc->len, sc->data)) goto nla_put_failure; rcu_read_lock(); ns = rcu_dereference(sc->ns); if (ns && nla_put_u16(skb, IOAM6_ATTR_NS_ID, be16_to_cpu(ns->id))) { rcu_read_unlock(); goto nla_put_failure; } rcu_read_unlock(); genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } static int ioam6_genl_dumpsc_start(struct netlink_callback *cb) { struct ioam6_pernet_data *nsdata = ioam6_pernet(sock_net(cb->skb->sk)); struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; if (!iter) { iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; cb->args[0] = (long)iter; } rhashtable_walk_enter(&nsdata->schemas, iter); return 0; } static int ioam6_genl_dumpsc_done(struct netlink_callback *cb) { struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_exit(iter); kfree(iter); return 0; } static int ioam6_genl_dumpsc(struct sk_buff *skb, struct netlink_callback *cb) { struct rhashtable_iter *iter; struct ioam6_schema *sc; int err; iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_start(iter); for (;;) { sc = rhashtable_walk_next(iter); if (IS_ERR(sc)) { if (PTR_ERR(sc) == -EAGAIN) continue; err = PTR_ERR(sc); goto done; } else if (!sc) { break; } err = __ioam6_genl_dumpsc_element(sc, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, skb, IOAM6_CMD_DUMP_SCHEMAS); if (err) goto done; } err = skb->len; done: rhashtable_walk_stop(iter); return err; } static int ioam6_genl_ns_set_schema(struct sk_buff *skb, struct genl_info *info) { struct ioam6_namespace *ns, *ns_ref; struct ioam6_schema *sc, *sc_ref; struct ioam6_pernet_data *nsdata; __be16 ns_id; u32 sc_id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID] || (!info->attrs[IOAM6_ATTR_SC_ID] && !info->attrs[IOAM6_ATTR_SC_NONE])) return -EINVAL; ns_id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &ns_id, rht_ns_params); if (!ns) { err = -ENOENT; goto out_unlock; } if (info->attrs[IOAM6_ATTR_SC_NONE]) { sc = NULL; } else { sc_id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); sc = rhashtable_lookup_fast(&nsdata->schemas, &sc_id, rht_sc_params); if (!sc) { err = -ENOENT; goto out_unlock; } } sc_ref = rcu_dereference_protected(ns->schema, lockdep_is_held(&nsdata->lock)); if (sc_ref) rcu_assign_pointer(sc_ref->ns, NULL); rcu_assign_pointer(ns->schema, sc); if (sc) { ns_ref = rcu_dereference_protected(sc->ns, lockdep_is_held(&nsdata->lock)); if (ns_ref) rcu_assign_pointer(ns_ref->schema, NULL); rcu_assign_pointer(sc->ns, ns); } err = 0; out_unlock: mutex_unlock(&nsdata->lock); return err; } static const struct genl_ops ioam6_genl_ops[] = { { .cmd = IOAM6_CMD_ADD_NAMESPACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_addns, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_addns, .maxattr = ARRAY_SIZE(ioam6_genl_policy_addns) - 1, }, { .cmd = IOAM6_CMD_DEL_NAMESPACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_delns, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_delns, .maxattr = ARRAY_SIZE(ioam6_genl_policy_delns) - 1, }, { .cmd = IOAM6_CMD_DUMP_NAMESPACES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .start = ioam6_genl_dumpns_start, .dumpit = ioam6_genl_dumpns, .done = ioam6_genl_dumpns_done, .flags = GENL_ADMIN_PERM, }, { .cmd = IOAM6_CMD_ADD_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_addsc, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_addsc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_addsc) - 1, }, { .cmd = IOAM6_CMD_DEL_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_delsc, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_delsc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_delsc) - 1, }, { .cmd = IOAM6_CMD_DUMP_SCHEMAS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .start = ioam6_genl_dumpsc_start, .dumpit = ioam6_genl_dumpsc, .done = ioam6_genl_dumpsc_done, .flags = GENL_ADMIN_PERM, }, { .cmd = IOAM6_CMD_NS_SET_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_ns_set_schema, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_ns_sc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_ns_sc) - 1, }, }; #define IOAM6_GENL_EV_GRP_OFFSET 0 static const struct genl_multicast_group ioam6_mcgrps[] = { [IOAM6_GENL_EV_GRP_OFFSET] = { .name = IOAM6_GENL_EV_GRP_NAME, .flags = GENL_MCAST_CAP_NET_ADMIN }, }; static int ioam6_event_put_trace(struct sk_buff *skb, struct ioam6_trace_hdr *trace, unsigned int len) { if (nla_put_u16(skb, IOAM6_EVENT_ATTR_TRACE_NAMESPACE, be16_to_cpu(trace->namespace_id)) || nla_put_u8(skb, IOAM6_EVENT_ATTR_TRACE_NODELEN, trace->nodelen) || nla_put_u32(skb, IOAM6_EVENT_ATTR_TRACE_TYPE, be32_to_cpu(trace->type_be32)) || nla_put(skb, IOAM6_EVENT_ATTR_TRACE_DATA, len - sizeof(struct ioam6_trace_hdr) - trace->remlen * 4, trace->data + trace->remlen * 4)) return 1; return 0; } void ioam6_event(enum ioam6_event_type type, struct net *net, gfp_t gfp, void *opt, unsigned int opt_len) { struct nlmsghdr *nlh; struct sk_buff *skb; if (!genl_has_listeners(&ioam6_genl_family, net, IOAM6_GENL_EV_GRP_OFFSET)) return; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp); if (!skb) return; nlh = genlmsg_put(skb, 0, 0, &ioam6_genl_family, 0, type); if (!nlh) goto nla_put_failure; switch (type) { case IOAM6_EVENT_UNSPEC: WARN_ON_ONCE(1); break; case IOAM6_EVENT_TRACE: if (ioam6_event_put_trace(skb, (struct ioam6_trace_hdr *)opt, opt_len)) goto nla_put_failure; break; } genlmsg_end(skb, nlh); genlmsg_multicast_netns(&ioam6_genl_family, net, skb, 0, IOAM6_GENL_EV_GRP_OFFSET, gfp); return; nla_put_failure: nlmsg_free(skb); } static struct genl_family ioam6_genl_family __ro_after_init = { .name = IOAM6_GENL_NAME, .version = IOAM6_GENL_VERSION, .netnsok = true, .parallel_ops = true, .ops = ioam6_genl_ops, .n_ops = ARRAY_SIZE(ioam6_genl_ops), .resv_start_op = IOAM6_CMD_NS_SET_SCHEMA + 1, .mcgrps = ioam6_mcgrps, .n_mcgrps = ARRAY_SIZE(ioam6_mcgrps), .module = THIS_MODULE, }; struct ioam6_namespace *ioam6_namespace(struct net *net, __be16 id) { struct ioam6_pernet_data *nsdata = ioam6_pernet(net); return rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); } static void __ioam6_fill_trace_data(struct sk_buff *skb, struct ioam6_namespace *ns, struct ioam6_trace_hdr *trace, struct ioam6_schema *sc, u8 sclen, bool is_input) { struct timespec64 ts; ktime_t tstamp; u64 raw64; u32 raw32; u16 raw16; u8 *data; u8 byte; data = trace->data + trace->remlen * 4 - trace->nodelen * 4 - sclen * 4; /* hop_lim and node_id */ if (trace->type.bit0) { byte = ipv6_hdr(skb)->hop_limit; if (is_input) byte--; raw32 = dev_net(skb_dst(skb)->dev)->ipv6.sysctl.ioam6_id; *(__be32 *)data = cpu_to_be32((byte << 24) | raw32); data += sizeof(__be32); } /* ingress_if_id and egress_if_id */ if (trace->type.bit1) { if (!skb->dev) raw16 = IOAM6_U16_UNAVAILABLE; else raw16 = (__force u16)READ_ONCE(__in6_dev_get(skb->dev)->cnf.ioam6_id); *(__be16 *)data = cpu_to_be16(raw16); data += sizeof(__be16); if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) raw16 = IOAM6_U16_UNAVAILABLE; else raw16 = (__force u16)READ_ONCE(__in6_dev_get(skb_dst(skb)->dev)->cnf.ioam6_id); *(__be16 *)data = cpu_to_be16(raw16); data += sizeof(__be16); } /* timestamp seconds */ if (trace->type.bit2) { if (!skb->dev) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { tstamp = skb_tstamp_cond(skb, true); ts = ktime_to_timespec64(tstamp); *(__be32 *)data = cpu_to_be32((u32)ts.tv_sec); } data += sizeof(__be32); } /* timestamp subseconds */ if (trace->type.bit3) { if (!skb->dev) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { if (!trace->type.bit2) { tstamp = skb_tstamp_cond(skb, true); ts = ktime_to_timespec64(tstamp); } *(__be32 *)data = cpu_to_be32((u32)(ts.tv_nsec / NSEC_PER_USEC)); } data += sizeof(__be32); } /* transit delay */ if (trace->type.bit4) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* namespace data */ if (trace->type.bit5) { *(__be32 *)data = ns->data; data += sizeof(__be32); } /* queue depth */ if (trace->type.bit6) { struct netdev_queue *queue; struct Qdisc *qdisc; __u32 qlen, backlog; if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { queue = skb_get_tx_queue(skb_dst(skb)->dev, skb); qdisc = rcu_dereference(queue->qdisc); qdisc_qstats_qlen_backlog(qdisc, &qlen, &backlog); *(__be32 *)data = cpu_to_be32(backlog); } data += sizeof(__be32); } /* checksum complement */ if (trace->type.bit7) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* hop_lim and node_id (wide) */ if (trace->type.bit8) { byte = ipv6_hdr(skb)->hop_limit; if (is_input) byte--; raw64 = dev_net(skb_dst(skb)->dev)->ipv6.sysctl.ioam6_id_wide; *(__be64 *)data = cpu_to_be64(((u64)byte << 56) | raw64); data += sizeof(__be64); } /* ingress_if_id and egress_if_id (wide) */ if (trace->type.bit9) { if (!skb->dev) raw32 = IOAM6_U32_UNAVAILABLE; else raw32 = READ_ONCE(__in6_dev_get(skb->dev)->cnf.ioam6_id_wide); *(__be32 *)data = cpu_to_be32(raw32); data += sizeof(__be32); if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) raw32 = IOAM6_U32_UNAVAILABLE; else raw32 = READ_ONCE(__in6_dev_get(skb_dst(skb)->dev)->cnf.ioam6_id_wide); *(__be32 *)data = cpu_to_be32(raw32); data += sizeof(__be32); } /* namespace data (wide) */ if (trace->type.bit10) { *(__be64 *)data = ns->data_wide; data += sizeof(__be64); } /* buffer occupancy */ if (trace->type.bit11) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit12 undefined: filled with empty value */ if (trace->type.bit12) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit13 undefined: filled with empty value */ if (trace->type.bit13) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit14 undefined: filled with empty value */ if (trace->type.bit14) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit15 undefined: filled with empty value */ if (trace->type.bit15) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit16 undefined: filled with empty value */ if (trace->type.bit16) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit17 undefined: filled with empty value */ if (trace->type.bit17) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit18 undefined: filled with empty value */ if (trace->type.bit18) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit19 undefined: filled with empty value */ if (trace->type.bit19) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit20 undefined: filled with empty value */ if (trace->type.bit20) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit21 undefined: filled with empty value */ if (trace->type.bit21) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* opaque state snapshot */ if (trace->type.bit22) { if (!sc) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE >> 8); } else { *(__be32 *)data = sc->hdr; data += sizeof(__be32); memcpy(data, sc->data, sc->len); } } } /* called with rcu_read_lock() */ void ioam6_fill_trace_data(struct sk_buff *skb, struct ioam6_namespace *ns, struct ioam6_trace_hdr *trace, bool is_input) { struct ioam6_schema *sc; u8 sclen = 0; /* Skip if Overflow flag is set */ if (trace->overflow) return; /* NodeLen does not include Opaque State Snapshot length. We need to * take it into account if the corresponding bit is set (bit 22) and * if the current IOAM namespace has an active schema attached to it */ sc = rcu_dereference(ns->schema); if (trace->type.bit22) { sclen = sizeof_field(struct ioam6_schema, hdr) / 4; if (sc) sclen += sc->len / 4; } /* If there is no space remaining, we set the Overflow flag and we * skip without filling the trace */ if (!trace->remlen || trace->remlen < trace->nodelen + sclen) { trace->overflow = 1; return; } __ioam6_fill_trace_data(skb, ns, trace, sc, sclen, is_input); trace->remlen -= trace->nodelen + sclen; } static int __net_init ioam6_net_init(struct net *net) { struct ioam6_pernet_data *nsdata; int err = -ENOMEM; nsdata = kzalloc(sizeof(*nsdata), GFP_KERNEL); if (!nsdata) goto out; mutex_init(&nsdata->lock); net->ipv6.ioam6_data = nsdata; err = rhashtable_init(&nsdata->namespaces, &rht_ns_params); if (err) goto free_nsdata; err = rhashtable_init(&nsdata->schemas, &rht_sc_params); if (err) goto free_rht_ns; out: return err; free_rht_ns: rhashtable_destroy(&nsdata->namespaces); free_nsdata: kfree(nsdata); net->ipv6.ioam6_data = NULL; goto out; } static void __net_exit ioam6_net_exit(struct net *net) { struct ioam6_pernet_data *nsdata = ioam6_pernet(net); rhashtable_free_and_destroy(&nsdata->namespaces, ioam6_free_ns, NULL); rhashtable_free_and_destroy(&nsdata->schemas, ioam6_free_sc, NULL); kfree(nsdata); } static struct pernet_operations ioam6_net_ops = { .init = ioam6_net_init, .exit = ioam6_net_exit, }; int __init ioam6_init(void) { int err = register_pernet_subsys(&ioam6_net_ops); if (err) goto out; err = genl_register_family(&ioam6_genl_family); if (err) goto out_unregister_pernet_subsys; #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL err = ioam6_iptunnel_init(); if (err) goto out_unregister_genl; #endif pr_info("In-situ OAM (IOAM) with IPv6\n"); out: return err; #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL out_unregister_genl: genl_unregister_family(&ioam6_genl_family); #endif out_unregister_pernet_subsys: unregister_pernet_subsys(&ioam6_net_ops); goto out; } void ioam6_exit(void) { #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL ioam6_iptunnel_exit(); #endif genl_unregister_family(&ioam6_genl_family); unregister_pernet_subsys(&ioam6_net_ops); }
/* SPDX-License-Identifier: MIT */ /* * Copyright © 2020 Intel Corporation */ #ifndef __I915_DRM_CLIENT_H__ #define __I915_DRM_CLIENT_H__ #include <linux/kref.h> #include <linux/list.h> #include <linux/spinlock.h> #include <uapi/drm/i915_drm.h> #include "i915_file_private.h" #include "gem/i915_gem_object_types.h" #include "gt/intel_context_types.h" #define I915_LAST_UABI_ENGINE_CLASS I915_ENGINE_CLASS_COMPUTE struct drm_file; struct drm_printer; struct i915_drm_client { struct kref kref; spinlock_t ctx_lock; /* For add/remove from ctx_list. */ struct list_head ctx_list; /* List of contexts belonging to client. */ #ifdef CONFIG_PROC_FS /** * @objects_lock: lock protecting @objects_list */ spinlock_t objects_lock; /** * @objects_list: list of objects created by this client * * Protected by @objects_lock. */ struct list_head objects_list; #endif /** * @past_runtime: Accumulation of pphwsp runtimes from closed contexts. */ atomic64_t past_runtime[I915_LAST_UABI_ENGINE_CLASS + 1]; }; static inline struct i915_drm_client * i915_drm_client_get(struct i915_drm_client *client) { kref_get(&client->kref); return client; } void __i915_drm_client_free(struct kref *kref); static inline void i915_drm_client_put(struct i915_drm_client *client) { kref_put(&client->kref, __i915_drm_client_free); } struct i915_drm_client *i915_drm_client_alloc(void); void i915_drm_client_fdinfo(struct drm_printer *p, struct drm_file *file); #ifdef CONFIG_PROC_FS void i915_drm_client_add_object(struct i915_drm_client *client, struct drm_i915_gem_object *obj); void i915_drm_client_remove_object(struct drm_i915_gem_object *obj); void i915_drm_client_add_context_objects(struct i915_drm_client *client, struct intel_context *ce); #else static inline void i915_drm_client_add_object(struct i915_drm_client *client, struct drm_i915_gem_object *obj) { } static inline void i915_drm_client_remove_object(struct drm_i915_gem_object *obj) { } static inline void i915_drm_client_add_context_objects(struct i915_drm_client *client, struct intel_context *ce) { } #endif #endif /* !__I915_DRM_CLIENT_H__ */
// SPDX-License-Identifier: GPL-2.0-or-later /* * StarFive JH71XX PMU (Power Management Unit) Controller Driver * * Copyright (C) 2022-2023 StarFive Technology Co., Ltd. */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <dt-bindings/power/starfive,jh7110-pmu.h> /* register offset */ #define JH71XX_PMU_SW_TURN_ON_POWER 0x0C #define JH71XX_PMU_SW_TURN_OFF_POWER 0x10 #define JH71XX_PMU_SW_ENCOURAGE 0x44 #define JH71XX_PMU_TIMER_INT_MASK 0x48 #define JH71XX_PMU_CURR_POWER_MODE 0x80 #define JH71XX_PMU_EVENT_STATUS 0x88 #define JH71XX_PMU_INT_STATUS 0x8C /* aon pmu register offset */ #define JH71XX_AON_PMU_SWITCH 0x00 /* sw encourage cfg */ #define JH71XX_PMU_SW_ENCOURAGE_EN_LO 0x05 #define JH71XX_PMU_SW_ENCOURAGE_EN_HI 0x50 #define JH71XX_PMU_SW_ENCOURAGE_DIS_LO 0x0A #define JH71XX_PMU_SW_ENCOURAGE_DIS_HI 0xA0 #define JH71XX_PMU_SW_ENCOURAGE_ON 0xFF /* pmu int status */ #define JH71XX_PMU_INT_SEQ_DONE BIT(0) #define JH71XX_PMU_INT_HW_REQ BIT(1) #define JH71XX_PMU_INT_SW_FAIL GENMASK(3, 2) #define JH71XX_PMU_INT_HW_FAIL GENMASK(5, 4) #define JH71XX_PMU_INT_PCH_FAIL GENMASK(8, 6) #define JH71XX_PMU_INT_ALL_MASK GENMASK(8, 0) /* * The time required for switching power status is based on the time * to turn on the largest domain's power, which is at microsecond level */ #define JH71XX_PMU_TIMEOUT_US 100 struct jh71xx_domain_info { const char * const name; unsigned int flags; u8 bit; }; struct jh71xx_pmu; struct jh71xx_pmu_dev; struct jh71xx_pmu_match_data { const struct jh71xx_domain_info *domain_info; int num_domains; unsigned int pmu_status; int (*pmu_parse_irq)(struct platform_device *pdev, struct jh71xx_pmu *pmu); int (*pmu_set_state)(struct jh71xx_pmu_dev *pmd, u32 mask, bool on); }; struct jh71xx_pmu { struct device *dev; const struct jh71xx_pmu_match_data *match_data; void __iomem *base; struct generic_pm_domain **genpd; struct genpd_onecell_data genpd_data; int irq; spinlock_t lock; /* protects pmu reg */ }; struct jh71xx_pmu_dev { const struct jh71xx_domain_info *domain_info; struct jh71xx_pmu *pmu; struct generic_pm_domain genpd; }; static int jh71xx_pmu_get_state(struct jh71xx_pmu_dev *pmd, u32 mask, bool *is_on) { struct jh71xx_pmu *pmu = pmd->pmu; if (!mask) return -EINVAL; *is_on = readl(pmu->base + pmu->match_data->pmu_status) & mask; return 0; } static int jh7110_pmu_set_state(struct jh71xx_pmu_dev *pmd, u32 mask, bool on) { struct jh71xx_pmu *pmu = pmd->pmu; unsigned long flags; u32 val; u32 mode; u32 encourage_lo; u32 encourage_hi; int ret; spin_lock_irqsave(&pmu->lock, flags); /* * The PMU accepts software encourage to switch power mode in the following 2 steps: * * 1.Configure the register SW_TURN_ON_POWER (offset 0x0c) by writing 1 to * the bit corresponding to the power domain that will be turned on * and writing 0 to the others. * Likewise, configure the register SW_TURN_OFF_POWER (offset 0x10) by * writing 1 to the bit corresponding to the power domain that will be * turned off and writing 0 to the others. */ if (on) { mode = JH71XX_PMU_SW_TURN_ON_POWER; encourage_lo = JH71XX_PMU_SW_ENCOURAGE_EN_LO; encourage_hi = JH71XX_PMU_SW_ENCOURAGE_EN_HI; } else { mode = JH71XX_PMU_SW_TURN_OFF_POWER; encourage_lo = JH71XX_PMU_SW_ENCOURAGE_DIS_LO; encourage_hi = JH71XX_PMU_SW_ENCOURAGE_DIS_HI; } writel(mask, pmu->base + mode); /* * 2.Write SW encourage command sequence to the Software Encourage Reg (offset 0x44) * First write SW_MODE_ENCOURAGE_ON to JH71XX_PMU_SW_ENCOURAGE. This will reset * the state machine which parses the command sequence. This register must be * written every time software wants to power on/off a domain. * Then write the lower bits of the command sequence, followed by the upper * bits. The sequence differs between powering on & off a domain. */ writel(JH71XX_PMU_SW_ENCOURAGE_ON, pmu->base + JH71XX_PMU_SW_ENCOURAGE); writel(encourage_lo, pmu->base + JH71XX_PMU_SW_ENCOURAGE); writel(encourage_hi, pmu->base + JH71XX_PMU_SW_ENCOURAGE); spin_unlock_irqrestore(&pmu->lock, flags); /* Wait for the power domain bit to be enabled / disabled */ if (on) { ret = readl_poll_timeout_atomic(pmu->base + JH71XX_PMU_CURR_POWER_MODE, val, val & mask, 1, JH71XX_PMU_TIMEOUT_US); } else { ret = readl_poll_timeout_atomic(pmu->base + JH71XX_PMU_CURR_POWER_MODE, val, !(val & mask), 1, JH71XX_PMU_TIMEOUT_US); } if (ret) { dev_err(pmu->dev, "%s: failed to power %s\n", pmd->genpd.name, on ? "on" : "off"); return -ETIMEDOUT; } return 0; } static int jh7110_aon_pmu_set_state(struct jh71xx_pmu_dev *pmd, u32 mask, bool on) { struct jh71xx_pmu *pmu = pmd->pmu; unsigned long flags; u32 val; spin_lock_irqsave(&pmu->lock, flags); val = readl(pmu->base + JH71XX_AON_PMU_SWITCH); if (on) val |= mask; else val &= ~mask; writel(val, pmu->base + JH71XX_AON_PMU_SWITCH); spin_unlock_irqrestore(&pmu->lock, flags); return 0; } static int jh71xx_pmu_set_state(struct jh71xx_pmu_dev *pmd, u32 mask, bool on) { struct jh71xx_pmu *pmu = pmd->pmu; const struct jh71xx_pmu_match_data *match_data = pmu->match_data; bool is_on; int ret; ret = jh71xx_pmu_get_state(pmd, mask, &is_on); if (ret) { dev_dbg(pmu->dev, "unable to get current state for %s\n", pmd->genpd.name); return ret; } if (is_on == on) { dev_dbg(pmu->dev, "pm domain [%s] is already %sable status.\n", pmd->genpd.name, on ? "en" : "dis"); return 0; } return match_data->pmu_set_state(pmd, mask, on); } static int jh71xx_pmu_on(struct generic_pm_domain *genpd) { struct jh71xx_pmu_dev *pmd = container_of(genpd, struct jh71xx_pmu_dev, genpd); u32 pwr_mask = BIT(pmd->domain_info->bit); return jh71xx_pmu_set_state(pmd, pwr_mask, true); } static int jh71xx_pmu_off(struct generic_pm_domain *genpd) { struct jh71xx_pmu_dev *pmd = container_of(genpd, struct jh71xx_pmu_dev, genpd); u32 pwr_mask = BIT(pmd->domain_info->bit); return jh71xx_pmu_set_state(pmd, pwr_mask, false); } static void jh71xx_pmu_int_enable(struct jh71xx_pmu *pmu, u32 mask, bool enable) { u32 val; unsigned long flags; spin_lock_irqsave(&pmu->lock, flags); val = readl(pmu->base + JH71XX_PMU_TIMER_INT_MASK); if (enable) val &= ~mask; else val |= mask; writel(val, pmu->base + JH71XX_PMU_TIMER_INT_MASK); spin_unlock_irqrestore(&pmu->lock, flags); } static irqreturn_t jh71xx_pmu_interrupt(int irq, void *data) { struct jh71xx_pmu *pmu = data; u32 val; val = readl(pmu->base + JH71XX_PMU_INT_STATUS); if (val & JH71XX_PMU_INT_SEQ_DONE) dev_dbg(pmu->dev, "sequence done.\n"); if (val & JH71XX_PMU_INT_HW_REQ) dev_dbg(pmu->dev, "hardware encourage requestion.\n"); if (val & JH71XX_PMU_INT_SW_FAIL) dev_err(pmu->dev, "software encourage fail.\n"); if (val & JH71XX_PMU_INT_HW_FAIL) dev_err(pmu->dev, "hardware encourage fail.\n"); if (val & JH71XX_PMU_INT_PCH_FAIL) dev_err(pmu->dev, "p-channel fail event.\n"); /* clear interrupts */ writel(val, pmu->base + JH71XX_PMU_INT_STATUS); writel(val, pmu->base + JH71XX_PMU_EVENT_STATUS); return IRQ_HANDLED; } static int jh7110_pmu_parse_irq(struct platform_device *pdev, struct jh71xx_pmu *pmu) { struct device *dev = &pdev->dev; int ret; pmu->irq = platform_get_irq(pdev, 0); if (pmu->irq < 0) return pmu->irq; ret = devm_request_irq(dev, pmu->irq, jh71xx_pmu_interrupt, 0, pdev->name, pmu); if (ret) dev_err(dev, "failed to request irq\n"); jh71xx_pmu_int_enable(pmu, JH71XX_PMU_INT_ALL_MASK & ~JH71XX_PMU_INT_PCH_FAIL, true); return 0; } static int jh71xx_pmu_init_domain(struct jh71xx_pmu *pmu, int index) { struct jh71xx_pmu_dev *pmd; u32 pwr_mask; int ret; bool is_on = false; pmd = devm_kzalloc(pmu->dev, sizeof(*pmd), GFP_KERNEL); if (!pmd) return -ENOMEM; pmd->domain_info = &pmu->match_data->domain_info[index]; pmd->pmu = pmu; pwr_mask = BIT(pmd->domain_info->bit); pmd->genpd.name = pmd->domain_info->name; pmd->genpd.flags = pmd->domain_info->flags; ret = jh71xx_pmu_get_state(pmd, pwr_mask, &is_on); if (ret) dev_warn(pmu->dev, "unable to get current state for %s\n", pmd->genpd.name); pmd->genpd.power_on = jh71xx_pmu_on; pmd->genpd.power_off = jh71xx_pmu_off; pm_genpd_init(&pmd->genpd, NULL, !is_on); pmu->genpd_data.domains[index] = &pmd->genpd; return 0; } static int jh71xx_pmu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct jh71xx_pmu_match_data *match_data; struct jh71xx_pmu *pmu; unsigned int i; int ret; pmu = devm_kzalloc(dev, sizeof(*pmu), GFP_KERNEL); if (!pmu) return -ENOMEM; pmu->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pmu->base)) return PTR_ERR(pmu->base); spin_lock_init(&pmu->lock); match_data = of_device_get_match_data(dev); if (!match_data) return -EINVAL; if (match_data->pmu_parse_irq) { ret = match_data->pmu_parse_irq(pdev, pmu); if (ret) { dev_err(dev, "failed to parse irq\n"); return ret; } } pmu->genpd = devm_kcalloc(dev, match_data->num_domains, sizeof(struct generic_pm_domain *), GFP_KERNEL); if (!pmu->genpd) return -ENOMEM; pmu->dev = dev; pmu->match_data = match_data; pmu->genpd_data.domains = pmu->genpd; pmu->genpd_data.num_domains = match_data->num_domains; for (i = 0; i < match_data->num_domains; i++) { ret = jh71xx_pmu_init_domain(pmu, i); if (ret) { dev_err(dev, "failed to initialize power domain\n"); return ret; } } ret = of_genpd_add_provider_onecell(np, &pmu->genpd_data); if (ret) { dev_err(dev, "failed to register genpd driver: %d\n", ret); return ret; } dev_dbg(dev, "registered %u power domains\n", i); return 0; } static const struct jh71xx_domain_info jh7110_power_domains[] = { [JH7110_PD_SYSTOP] = { .name = "SYSTOP", .bit = 0, .flags = GENPD_FLAG_ALWAYS_ON, }, [JH7110_PD_CPU] = { .name = "CPU", .bit = 1, .flags = GENPD_FLAG_ALWAYS_ON, }, [JH7110_PD_GPUA] = { .name = "GPUA", .bit = 2, }, [JH7110_PD_VDEC] = { .name = "VDEC", .bit = 3, }, [JH7110_PD_VOUT] = { .name = "VOUT", .bit = 4, }, [JH7110_PD_ISP] = { .name = "ISP", .bit = 5, }, [JH7110_PD_VENC] = { .name = "VENC", .bit = 6, }, }; static const struct jh71xx_pmu_match_data jh7110_pmu = { .num_domains = ARRAY_SIZE(jh7110_power_domains), .domain_info = jh7110_power_domains, .pmu_status = JH71XX_PMU_CURR_POWER_MODE, .pmu_parse_irq = jh7110_pmu_parse_irq, .pmu_set_state = jh7110_pmu_set_state, }; static const struct jh71xx_domain_info jh7110_aon_power_domains[] = { [JH7110_AON_PD_DPHY_TX] = { .name = "DPHY-TX", .bit = 30, }, [JH7110_AON_PD_DPHY_RX] = { .name = "DPHY-RX", .bit = 31, }, }; static const struct jh71xx_pmu_match_data jh7110_aon_pmu = { .num_domains = ARRAY_SIZE(jh7110_aon_power_domains), .domain_info = jh7110_aon_power_domains, .pmu_status = JH71XX_AON_PMU_SWITCH, .pmu_set_state = jh7110_aon_pmu_set_state, }; static const struct of_device_id jh71xx_pmu_of_match[] = { { .compatible = "starfive,jh7110-pmu", .data = (void *)&jh7110_pmu, }, { .compatible = "starfive,jh7110-aon-syscon", .data = (void *)&jh7110_aon_pmu, }, { /* sentinel */ } }; static struct platform_driver jh71xx_pmu_driver = { .probe = jh71xx_pmu_probe, .driver = { .name = "jh71xx-pmu", .of_match_table = jh71xx_pmu_of_match, .suppress_bind_attrs = true, }, }; builtin_platform_driver(jh71xx_pmu_driver); MODULE_AUTHOR("Walker Chen <[email protected]>"); MODULE_AUTHOR("Changhuang Liang <[email protected]>"); MODULE_DESCRIPTION("StarFive JH71XX PMU Driver"); MODULE_LICENSE("GPL");
/* SPDX-License-Identifier: GPL-2.0 * * Copyright 2016-2020 HabanaLabs, Ltd. * All Rights Reserved. * */ /************************************ ** This is an auto-generated file ** ** DO NOT EDIT BELOW ** ************************************/ #ifndef ASIC_REG_ARC_FARM_ARC0_DUP_ENG_AXUSER_REGS_H_ #define ASIC_REG_ARC_FARM_ARC0_DUP_ENG_AXUSER_REGS_H_ /* ***************************************** * ARC_FARM_ARC0_DUP_ENG_AXUSER * (Prototype: AXUSER) ***************************************** */ #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_ASID 0x4E89900 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_MMU_BP 0x4E89904 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_STRONG_ORDER 0x4E89908 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_NO_SNOOP 0x4E8990C #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_WR_REDUCTION 0x4E89910 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_RD_ATOMIC 0x4E89914 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_QOS 0x4E89918 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_RSVD 0x4E8991C #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_EMEM_CPAGE 0x4E89920 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_CORE 0x4E89924 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_E2E_COORD 0x4E89928 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_WR_OVRD_LO 0x4E89930 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_WR_OVRD_HI 0x4E89934 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_RD_OVRD_LO 0x4E89938 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_RD_OVRD_HI 0x4E8993C #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_LB_COORD 0x4E89940 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_LB_LOCK 0x4E89944 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_LB_RSVD 0x4E89948 #define mmARC_FARM_ARC0_DUP_ENG_AXUSER_LB_OVRD 0x4E8994C #endif /* ASIC_REG_ARC_FARM_ARC0_DUP_ENG_AXUSER_REGS_H_ */
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright (c) 2016 Andreas Färber */ /dts-v1/; #include "meson-gxbb-vega-s95.dtsi" / { compatible = "tronsmart,vega-s95-meta", "tronsmart,vega-s95", "amlogic,meson-gxbb"; model = "Tronsmart Vega S95 Meta"; memory@0 { device_type = "memory"; reg = <0x0 0x0 0x0 0x80000000>; }; };
// SPDX-License-Identifier: GPL-2.0-or-later /* * MixCom Watchdog: A Simple Hardware Watchdog Device * Based on Softdog driver by Alan Cox and PC Watchdog driver by Ken Hollis * * Author: Gergely Madarasz <[email protected]> * * Copyright (c) 1999 ITConsult-Pro Co. <[email protected]> * * Version 0.1 (99/04/15): * - first version * * Version 0.2 (99/06/16): * - added kernel timer watchdog ping after close * since the hardware does not support watchdog shutdown * * Version 0.3 (99/06/21): * - added WDIOC_GETSTATUS and WDIOC_GETSUPPORT ioctl calls * * Version 0.3.1 (99/06/22): * - allow module removal while internal timer is active, * print warning about probable reset * * Version 0.4 (99/11/15): * - support for one more type board * * Version 0.5 (2001/12/14) Matt Domsch <[email protected]> * - added nowayout module option to override * CONFIG_WATCHDOG_NOWAYOUT * * Version 0.6 (2002/04/12): Rob Radez <[email protected]> * - make mixcomwd_opened unsigned, * removed lock_kernel/unlock_kernel from mixcomwd_release, * modified ioctl a bit to conform to API */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define VERSION "0.6" #define WATCHDOG_NAME "mixcomwd" #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/miscdevice.h> #include <linux/ioport.h> #include <linux/watchdog.h> #include <linux/fs.h> #include <linux/reboot.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/timer.h> #include <linux/uaccess.h> #include <linux/io.h> /* * We have two types of cards that can be probed: * 1) The Mixcom cards: these cards can be found at addresses * 0x180, 0x280, 0x380 with an additional offset of 0xc10. * (Or 0xd90, 0xe90, 0xf90). * 2) The FlashCOM cards: these cards can be set up at * 0x300 -> 0x378, in 0x8 jumps with an offset of 0x04. * (Or 0x304 -> 0x37c in 0x8 jumps). * Each card has it's own ID. */ #define MIXCOM_ID 0x11 #define FLASHCOM_ID 0x18 static struct { int ioport; int id; } mixcomwd_io_info[] = { /* The Mixcom cards */ {0x0d90, MIXCOM_ID}, {0x0e90, MIXCOM_ID}, {0x0f90, MIXCOM_ID}, /* The FlashCOM cards */ {0x0304, FLASHCOM_ID}, {0x030c, FLASHCOM_ID}, {0x0314, FLASHCOM_ID}, {0x031c, FLASHCOM_ID}, {0x0324, FLASHCOM_ID}, {0x032c, FLASHCOM_ID}, {0x0334, FLASHCOM_ID}, {0x033c, FLASHCOM_ID}, {0x0344, FLASHCOM_ID}, {0x034c, FLASHCOM_ID}, {0x0354, FLASHCOM_ID}, {0x035c, FLASHCOM_ID}, {0x0364, FLASHCOM_ID}, {0x036c, FLASHCOM_ID}, {0x0374, FLASHCOM_ID}, {0x037c, FLASHCOM_ID}, /* The end of the list */ {0x0000, 0}, }; static void mixcomwd_timerfun(struct timer_list *unused); static unsigned long mixcomwd_opened; /* long req'd for setbit --RR */ static int watchdog_port; static int mixcomwd_timer_alive; static DEFINE_TIMER(mixcomwd_timer, mixcomwd_timerfun); static char expect_close; static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); static void mixcomwd_ping(void) { outb_p(55, watchdog_port); return; } static void mixcomwd_timerfun(struct timer_list *unused) { mixcomwd_ping(); mod_timer(&mixcomwd_timer, jiffies + 5 * HZ); } /* * Allow only one person to hold it open */ static int mixcomwd_open(struct inode *inode, struct file *file) { if (test_and_set_bit(0, &mixcomwd_opened)) return -EBUSY; mixcomwd_ping(); if (nowayout) /* * fops_get() code via open() has already done * a try_module_get() so it is safe to do the * __module_get(). */ __module_get(THIS_MODULE); else { if (mixcomwd_timer_alive) { del_timer(&mixcomwd_timer); mixcomwd_timer_alive = 0; } } return stream_open(inode, file); } static int mixcomwd_release(struct inode *inode, struct file *file) { if (expect_close == 42) { if (mixcomwd_timer_alive) { pr_err("release called while internal timer alive\n"); return -EBUSY; } mixcomwd_timer_alive = 1; mod_timer(&mixcomwd_timer, jiffies + 5 * HZ); } else pr_crit("WDT device closed unexpectedly. WDT will not stop!\n"); clear_bit(0, &mixcomwd_opened); expect_close = 0; return 0; } static ssize_t mixcomwd_write(struct file *file, const char __user *data, size_t len, loff_t *ppos) { if (len) { if (!nowayout) { size_t i; /* In case it was set long ago */ expect_close = 0; for (i = 0; i != len; i++) { char c; if (get_user(c, data + i)) return -EFAULT; if (c == 'V') expect_close = 42; } } mixcomwd_ping(); } return len; } static long mixcomwd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; int __user *p = argp; int status; static const struct watchdog_info ident = { .options = WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE, .firmware_version = 1, .identity = "MixCOM watchdog", }; switch (cmd) { case WDIOC_GETSUPPORT: if (copy_to_user(argp, &ident, sizeof(ident))) return -EFAULT; break; case WDIOC_GETSTATUS: status = mixcomwd_opened; if (!nowayout) status |= mixcomwd_timer_alive; return put_user(status, p); case WDIOC_GETBOOTSTATUS: return put_user(0, p); case WDIOC_KEEPALIVE: mixcomwd_ping(); break; default: return -ENOTTY; } return 0; } static const struct file_operations mixcomwd_fops = { .owner = THIS_MODULE, .write = mixcomwd_write, .unlocked_ioctl = mixcomwd_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = mixcomwd_open, .release = mixcomwd_release, }; static struct miscdevice mixcomwd_miscdev = { .minor = WATCHDOG_MINOR, .name = "watchdog", .fops = &mixcomwd_fops, }; static int __init checkcard(int port, int card_id) { int id; if (!request_region(port, 1, "MixCOM watchdog")) return 0; id = inb_p(port); if (card_id == MIXCOM_ID) id &= 0x3f; if (id != card_id) { release_region(port, 1); return 0; } return 1; } static int __init mixcomwd_init(void) { int i, ret, found = 0; for (i = 0; !found && mixcomwd_io_info[i].ioport != 0; i++) { if (checkcard(mixcomwd_io_info[i].ioport, mixcomwd_io_info[i].id)) { found = 1; watchdog_port = mixcomwd_io_info[i].ioport; } } if (!found) { pr_err("No card detected, or port not available\n"); return -ENODEV; } ret = misc_register(&mixcomwd_miscdev); if (ret) { pr_err("cannot register miscdev on minor=%d (err=%d)\n", WATCHDOG_MINOR, ret); goto error_misc_register_watchdog; } pr_info("MixCOM watchdog driver v%s, watchdog port at 0x%3x\n", VERSION, watchdog_port); return 0; error_misc_register_watchdog: release_region(watchdog_port, 1); watchdog_port = 0x0000; return ret; } static void __exit mixcomwd_exit(void) { if (!nowayout) { if (mixcomwd_timer_alive) { pr_warn("I quit now, hardware will probably reboot!\n"); del_timer_sync(&mixcomwd_timer); mixcomwd_timer_alive = 0; } } misc_deregister(&mixcomwd_miscdev); release_region(watchdog_port, 1); } module_init(mixcomwd_init); module_exit(mixcomwd_exit); MODULE_AUTHOR("Gergely Madarasz <[email protected]>"); MODULE_DESCRIPTION("MixCom Watchdog driver"); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Linux MegaRAID device driver * * Copyright (c) 2002 LSI Logic Corporation. * * Copyright (c) 2002 Red Hat, Inc. All rights reserved. * - fixes * - speed-ups (list handling fixes, issued_list, optimizations.) * - lots of cleanups. * * Copyright (c) 2003 Christoph Hellwig <[email protected]> * - new-style, hotplug-aware pci probing and scsi registration * * Version : v2.00.4 Mon Nov 14 14:02:43 EST 2005 - Seokmann Ju * <[email protected]> * * Description: Linux device driver for LSI Logic MegaRAID controller * * Supported controllers: MegaRAID 418, 428, 438, 466, 762, 467, 471, 490, 493 * 518, 520, 531, 532 * * This driver is supported by LSI Logic, with assistance from Red Hat, Dell, * and others. Please send updates to the mailing list * [email protected] . */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/blkdev.h> #include <linux/uaccess.h> #include <asm/io.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/reboot.h> #include <linux/module.h> #include <linux/list.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/dma-mapping.h> #include <linux/mutex.h> #include <linux/slab.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsicam.h> #include "megaraid.h" #define MEGARAID_MODULE_VERSION "2.00.4" MODULE_AUTHOR ("[email protected]"); MODULE_DESCRIPTION ("LSI Logic MegaRAID legacy driver"); MODULE_LICENSE ("GPL"); MODULE_VERSION(MEGARAID_MODULE_VERSION); static DEFINE_MUTEX(megadev_mutex); static unsigned int max_cmd_per_lun = DEF_CMD_PER_LUN; module_param(max_cmd_per_lun, uint, 0); MODULE_PARM_DESC(max_cmd_per_lun, "Maximum number of commands which can be issued to a single LUN (default=DEF_CMD_PER_LUN=63)"); static unsigned short int max_sectors_per_io = MAX_SECTORS_PER_IO; module_param(max_sectors_per_io, ushort, 0); MODULE_PARM_DESC(max_sectors_per_io, "Maximum number of sectors per I/O request (default=MAX_SECTORS_PER_IO=128)"); static unsigned short int max_mbox_busy_wait = MBOX_BUSY_WAIT; module_param(max_mbox_busy_wait, ushort, 0); MODULE_PARM_DESC(max_mbox_busy_wait, "Maximum wait for mailbox in microseconds if busy (default=MBOX_BUSY_WAIT=10)"); #define RDINDOOR(adapter) readl((adapter)->mmio_base + 0x20) #define RDOUTDOOR(adapter) readl((adapter)->mmio_base + 0x2C) #define WRINDOOR(adapter,value) writel(value, (adapter)->mmio_base + 0x20) #define WROUTDOOR(adapter,value) writel(value, (adapter)->mmio_base + 0x2C) /* * Global variables */ static int hba_count; static adapter_t *hba_soft_state[MAX_CONTROLLERS]; static struct proc_dir_entry *mega_proc_dir_entry; /* For controller re-ordering */ static struct mega_hbas mega_hbas[MAX_CONTROLLERS]; static long megadev_unlocked_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); /* * The File Operations structure for the serial/ioctl interface of the driver */ static const struct file_operations megadev_fops = { .owner = THIS_MODULE, .unlocked_ioctl = megadev_unlocked_ioctl, .open = megadev_open, .llseek = noop_llseek, }; /* * Array to structures for storing the information about the controllers. This * information is sent to the user level applications, when they do an ioctl * for this information. */ static struct mcontroller mcontroller[MAX_CONTROLLERS]; /* The current driver version */ static u32 driver_ver = 0x02000000; /* major number used by the device for character interface */ static int major; #define IS_RAID_CH(hba, ch) (((hba)->mega_ch_class >> (ch)) & 0x01) /* * Debug variable to print some diagnostic messages */ static int trace_level; /** * mega_setup_mailbox() * @adapter: pointer to our soft state * * Allocates a 8 byte aligned memory for the handshake mailbox. */ static int mega_setup_mailbox(adapter_t *adapter) { unsigned long align; adapter->una_mbox64 = dma_alloc_coherent(&adapter->dev->dev, sizeof(mbox64_t), &adapter->una_mbox64_dma, GFP_KERNEL); if( !adapter->una_mbox64 ) return -1; adapter->mbox = &adapter->una_mbox64->mbox; adapter->mbox = (mbox_t *)((((unsigned long) adapter->mbox) + 15) & (~0UL ^ 0xFUL)); adapter->mbox64 = (mbox64_t *)(((unsigned long)adapter->mbox) - 8); align = ((void *)adapter->mbox) - ((void *)&adapter->una_mbox64->mbox); adapter->mbox_dma = adapter->una_mbox64_dma + 8 + align; /* * Register the mailbox if the controller is an io-mapped controller */ if( adapter->flag & BOARD_IOMAP ) { outb(adapter->mbox_dma & 0xFF, adapter->host->io_port + MBOX_PORT0); outb((adapter->mbox_dma >> 8) & 0xFF, adapter->host->io_port + MBOX_PORT1); outb((adapter->mbox_dma >> 16) & 0xFF, adapter->host->io_port + MBOX_PORT2); outb((adapter->mbox_dma >> 24) & 0xFF, adapter->host->io_port + MBOX_PORT3); outb(ENABLE_MBOX_BYTE, adapter->host->io_port + ENABLE_MBOX_REGION); irq_ack(adapter); irq_enable(adapter); } return 0; } /* * mega_query_adapter() * @adapter - pointer to our soft state * * Issue the adapter inquiry commands to the controller and find out * information and parameter about the devices attached */ static int mega_query_adapter(adapter_t *adapter) { dma_addr_t prod_info_dma_handle; mega_inquiry3 *inquiry3; struct mbox_out mbox; u8 *raw_mbox = (u8 *)&mbox; int retval; /* Initialize adapter inquiry mailbox */ memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); memset(&mbox, 0, sizeof(mbox)); /* * Try to issue Inquiry3 command * if not succeeded, then issue MEGA_MBOXCMD_ADAPTERINQ command and * update enquiry3 structure */ mbox.xferaddr = (u32)adapter->buf_dma_handle; inquiry3 = (mega_inquiry3 *)adapter->mega_buffer; raw_mbox[0] = FC_NEW_CONFIG; /* i.e. mbox->cmd=0xA1 */ raw_mbox[2] = NC_SUBOP_ENQUIRY3; /* i.e. 0x0F */ raw_mbox[3] = ENQ3_GET_SOLICITED_FULL; /* i.e. 0x02 */ /* Issue a blocking command to the card */ if (issue_scb_block(adapter, raw_mbox)) { /* the adapter does not support 40ld */ mraid_ext_inquiry *ext_inq; mraid_inquiry *inq; dma_addr_t dma_handle; ext_inq = dma_alloc_coherent(&adapter->dev->dev, sizeof(mraid_ext_inquiry), &dma_handle, GFP_KERNEL); if( ext_inq == NULL ) return -1; inq = &ext_inq->raid_inq; mbox.xferaddr = (u32)dma_handle; /*issue old 0x04 command to adapter */ mbox.cmd = MEGA_MBOXCMD_ADPEXTINQ; issue_scb_block(adapter, raw_mbox); /* * update Enquiry3 and ProductInfo structures with * mraid_inquiry structure */ mega_8_to_40ld(inq, inquiry3, (mega_product_info *)&adapter->product_info); dma_free_coherent(&adapter->dev->dev, sizeof(mraid_ext_inquiry), ext_inq, dma_handle); } else { /*adapter supports 40ld */ adapter->flag |= BOARD_40LD; /* * get product_info, which is static information and will be * unchanged */ prod_info_dma_handle = dma_map_single(&adapter->dev->dev, (void *)&adapter->product_info, sizeof(mega_product_info), DMA_FROM_DEVICE); mbox.xferaddr = prod_info_dma_handle; raw_mbox[0] = FC_NEW_CONFIG; /* i.e. mbox->cmd=0xA1 */ raw_mbox[2] = NC_SUBOP_PRODUCT_INFO; /* i.e. 0x0E */ if ((retval = issue_scb_block(adapter, raw_mbox))) dev_warn(&adapter->dev->dev, "Product_info cmd failed with error: %d\n", retval); dma_unmap_single(&adapter->dev->dev, prod_info_dma_handle, sizeof(mega_product_info), DMA_FROM_DEVICE); } /* * kernel scans the channels from 0 to <= max_channel */ adapter->host->max_channel = adapter->product_info.nchannels + NVIRT_CHAN -1; adapter->host->max_id = 16; /* max targets per channel */ adapter->host->max_lun = 7; /* Up to 7 luns for non disk devices */ adapter->host->cmd_per_lun = max_cmd_per_lun; adapter->numldrv = inquiry3->num_ldrv; adapter->max_cmds = adapter->product_info.max_commands; if(adapter->max_cmds > MAX_COMMANDS) adapter->max_cmds = MAX_COMMANDS; adapter->host->can_queue = adapter->max_cmds - 1; /* * Get the maximum number of scatter-gather elements supported by this * firmware */ mega_get_max_sgl(adapter); adapter->host->sg_tablesize = adapter->sglen; /* use HP firmware and bios version encoding Note: fw_version[0|1] and bios_version[0|1] were originally shifted right 8 bits making them zero. This 0 value was hardcoded to fix sparse warnings. */ if (adapter->product_info.subsysvid == PCI_VENDOR_ID_HP) { snprintf(adapter->fw_version, sizeof(adapter->fw_version), "%c%d%d.%d%d", adapter->product_info.fw_version[2], 0, adapter->product_info.fw_version[1] & 0x0f, 0, adapter->product_info.fw_version[0] & 0x0f); snprintf(adapter->bios_version, sizeof(adapter->fw_version), "%c%d%d.%d%d", adapter->product_info.bios_version[2], 0, adapter->product_info.bios_version[1] & 0x0f, 0, adapter->product_info.bios_version[0] & 0x0f); } else { memcpy(adapter->fw_version, (char *)adapter->product_info.fw_version, 4); adapter->fw_version[4] = 0; memcpy(adapter->bios_version, (char *)adapter->product_info.bios_version, 4); adapter->bios_version[4] = 0; } dev_notice(&adapter->dev->dev, "[%s:%s] detected %d logical drives\n", adapter->fw_version, adapter->bios_version, adapter->numldrv); /* * Do we support extended (>10 bytes) cdbs */ adapter->support_ext_cdb = mega_support_ext_cdb(adapter); if (adapter->support_ext_cdb) dev_notice(&adapter->dev->dev, "supports extended CDBs\n"); return 0; } /** * mega_runpendq() * @adapter: pointer to our soft state * * Runs through the list of pending requests. */ static inline void mega_runpendq(adapter_t *adapter) { if(!list_empty(&adapter->pending_list)) __mega_runpendq(adapter); } /* * megaraid_queue() * @scmd - Issue this scsi command * @done - the callback hook into the scsi mid-layer * * The command queuing entry point for the mid-layer. */ static int megaraid_queue_lck(struct scsi_cmnd *scmd) { adapter_t *adapter; scb_t *scb; int busy=0; unsigned long flags; adapter = (adapter_t *)scmd->device->host->hostdata; /* * Allocate and build a SCB request * busy flag will be set if mega_build_cmd() command could not * allocate scb. We will return non-zero status in that case. * NOTE: scb can be null even though certain commands completed * successfully, e.g., MODE_SENSE and TEST_UNIT_READY, we would * return 0 in that case. */ spin_lock_irqsave(&adapter->lock, flags); scb = mega_build_cmd(adapter, scmd, &busy); if (!scb) goto out; scb->state |= SCB_PENDQ; list_add_tail(&scb->list, &adapter->pending_list); /* * Check if the HBA is in quiescent state, e.g., during a * delete logical drive opertion. If it is, don't run * the pending_list. */ if (atomic_read(&adapter->quiescent) == 0) mega_runpendq(adapter); busy = 0; out: spin_unlock_irqrestore(&adapter->lock, flags); return busy; } static DEF_SCSI_QCMD(megaraid_queue) /** * mega_allocate_scb() * @adapter: pointer to our soft state * @cmd: scsi command from the mid-layer * * Allocate a SCB structure. This is the central structure for controller * commands. */ static inline scb_t * mega_allocate_scb(adapter_t *adapter, struct scsi_cmnd *cmd) { struct list_head *head = &adapter->free_list; scb_t *scb; /* Unlink command from Free List */ if( !list_empty(head) ) { scb = list_entry(head->next, scb_t, list); list_del_init(head->next); scb->state = SCB_ACTIVE; scb->cmd = cmd; scb->dma_type = MEGA_DMA_TYPE_NONE; return scb; } return NULL; } /** * mega_get_ldrv_num() * @adapter: pointer to our soft state * @cmd: scsi mid layer command * @channel: channel on the controller * * Calculate the logical drive number based on the information in scsi command * and the channel number. */ static inline int mega_get_ldrv_num(adapter_t *adapter, struct scsi_cmnd *cmd, int channel) { int tgt; int ldrv_num; tgt = cmd->device->id; if ( tgt > adapter->this_id ) tgt--; /* we do not get inquires for initiator id */ ldrv_num = (channel * 15) + tgt; /* * If we have a logical drive with boot enabled, project it first */ if( adapter->boot_ldrv_enabled ) { if( ldrv_num == 0 ) { ldrv_num = adapter->boot_ldrv; } else { if( ldrv_num <= adapter->boot_ldrv ) { ldrv_num--; } } } /* * If "delete logical drive" feature is enabled on this controller. * Do only if at least one delete logical drive operation was done. * * Also, after logical drive deletion, instead of logical drive number, * the value returned should be 0x80+logical drive id. * * These is valid only for IO commands. */ if (adapter->support_random_del && adapter->read_ldidmap ) switch (cmd->cmnd[0]) { case READ_6: case WRITE_6: case READ_10: case WRITE_10: ldrv_num += 0x80; } return ldrv_num; } /** * mega_build_cmd() * @adapter: pointer to our soft state * @cmd: Prepare using this scsi command * @busy: busy flag if no resources * * Prepares a command and scatter gather list for the controller. This routine * also finds out if the commands is intended for a logical drive or a * physical device and prepares the controller command accordingly. * * We also re-order the logical drives and physical devices based on their * boot settings. */ static scb_t * mega_build_cmd(adapter_t *adapter, struct scsi_cmnd *cmd, int *busy) { mega_passthru *pthru; scb_t *scb; mbox_t *mbox; u32 seg; char islogical; int max_ldrv_num; int channel = 0; int target = 0; int ldrv_num = 0; /* logical drive number */ /* * We know what channels our logical drives are on - mega_find_card() */ islogical = adapter->logdrv_chan[cmd->device->channel]; /* * The theory: If physical drive is chosen for boot, all the physical * devices are exported before the logical drives, otherwise physical * devices are pushed after logical drives, in which case - Kernel sees * the physical devices on virtual channel which is obviously converted * to actual channel on the HBA. */ if( adapter->boot_pdrv_enabled ) { if( islogical ) { /* logical channel */ channel = cmd->device->channel - adapter->product_info.nchannels; } else { /* this is physical channel */ channel = cmd->device->channel; target = cmd->device->id; /* * boot from a physical disk, that disk needs to be * exposed first IF both the channels are SCSI, then * booting from the second channel is not allowed. */ if( target == 0 ) { target = adapter->boot_pdrv_tgt; } else if( target == adapter->boot_pdrv_tgt ) { target = 0; } } } else { if( islogical ) { /* this is the logical channel */ channel = cmd->device->channel; } else { /* physical channel */ channel = cmd->device->channel - NVIRT_CHAN; target = cmd->device->id; } } if(islogical) { /* have just LUN 0 for each target on virtual channels */ if (cmd->device->lun) { cmd->result = (DID_BAD_TARGET << 16); scsi_done(cmd); return NULL; } ldrv_num = mega_get_ldrv_num(adapter, cmd, channel); max_ldrv_num = (adapter->flag & BOARD_40LD) ? MAX_LOGICAL_DRIVES_40LD : MAX_LOGICAL_DRIVES_8LD; /* * max_ldrv_num increases by 0x80 if some logical drive was * deleted. */ if(adapter->read_ldidmap) max_ldrv_num += 0x80; if(ldrv_num > max_ldrv_num ) { cmd->result = (DID_BAD_TARGET << 16); scsi_done(cmd); return NULL; } } else { if( cmd->device->lun > 7) { /* * Do not support lun >7 for physically accessed * devices */ cmd->result = (DID_BAD_TARGET << 16); scsi_done(cmd); return NULL; } } /* * * Logical drive commands * */ if(islogical) { switch (cmd->cmnd[0]) { case TEST_UNIT_READY: #if MEGA_HAVE_CLUSTERING /* * Do we support clustering and is the support enabled * If no, return success always */ if( !adapter->has_cluster ) { cmd->result = (DID_OK << 16); scsi_done(cmd); return NULL; } if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } scb->raw_mbox[0] = MEGA_CLUSTER_CMD; scb->raw_mbox[2] = MEGA_RESERVATION_STATUS; scb->raw_mbox[3] = ldrv_num; scb->dma_direction = DMA_NONE; return scb; #else cmd->result = (DID_OK << 16); scsi_done(cmd); return NULL; #endif case MODE_SENSE: { char *buf; struct scatterlist *sg; sg = scsi_sglist(cmd); buf = kmap_atomic(sg_page(sg)) + sg->offset; memset(buf, 0, cmd->cmnd[4]); kunmap_atomic(buf - sg->offset); cmd->result = (DID_OK << 16); scsi_done(cmd); return NULL; } case READ_CAPACITY: case INQUIRY: if(!(adapter->flag & (1L << cmd->device->channel))) { dev_notice(&adapter->dev->dev, "scsi%d: scanning scsi channel %d " "for logical drives\n", adapter->host->host_no, cmd->device->channel); adapter->flag |= (1L << cmd->device->channel); } /* Allocate a SCB and initialize passthru */ if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } pthru = scb->pthru; mbox = (mbox_t *)scb->raw_mbox; memset(mbox, 0, sizeof(scb->raw_mbox)); memset(pthru, 0, sizeof(mega_passthru)); pthru->timeout = 0; pthru->ars = 1; pthru->reqsenselen = 14; pthru->islogical = 1; pthru->logdrv = ldrv_num; pthru->cdblen = cmd->cmd_len; memcpy(pthru->cdb, cmd->cmnd, cmd->cmd_len); if( adapter->has_64bit_addr ) { mbox->m_out.cmd = MEGA_MBOXCMD_PASSTHRU64; } else { mbox->m_out.cmd = MEGA_MBOXCMD_PASSTHRU; } scb->dma_direction = DMA_FROM_DEVICE; pthru->numsgelements = mega_build_sglist(adapter, scb, &pthru->dataxferaddr, &pthru->dataxferlen); mbox->m_out.xferaddr = scb->pthru_dma_addr; return scb; case READ_6: case WRITE_6: case READ_10: case WRITE_10: case READ_12: case WRITE_12: /* Allocate a SCB and initialize mailbox */ if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } mbox = (mbox_t *)scb->raw_mbox; memset(mbox, 0, sizeof(scb->raw_mbox)); mbox->m_out.logdrv = ldrv_num; /* * A little hack: 2nd bit is zero for all scsi read * commands and is set for all scsi write commands */ if( adapter->has_64bit_addr ) { mbox->m_out.cmd = (*cmd->cmnd & 0x02) ? MEGA_MBOXCMD_LWRITE64: MEGA_MBOXCMD_LREAD64 ; } else { mbox->m_out.cmd = (*cmd->cmnd & 0x02) ? MEGA_MBOXCMD_LWRITE: MEGA_MBOXCMD_LREAD ; } /* * 6-byte READ(0x08) or WRITE(0x0A) cdb */ if( cmd->cmd_len == 6 ) { mbox->m_out.numsectors = (u32) cmd->cmnd[4]; mbox->m_out.lba = ((u32)cmd->cmnd[1] << 16) | ((u32)cmd->cmnd[2] << 8) | (u32)cmd->cmnd[3]; mbox->m_out.lba &= 0x1FFFFF; #if MEGA_HAVE_STATS /* * Take modulo 0x80, since the logical drive * number increases by 0x80 when a logical * drive was deleted */ if (*cmd->cmnd == READ_6) { adapter->nreads[ldrv_num%0x80]++; adapter->nreadblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } else { adapter->nwrites[ldrv_num%0x80]++; adapter->nwriteblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } #endif } /* * 10-byte READ(0x28) or WRITE(0x2A) cdb */ if( cmd->cmd_len == 10 ) { mbox->m_out.numsectors = (u32)cmd->cmnd[8] | ((u32)cmd->cmnd[7] << 8); mbox->m_out.lba = ((u32)cmd->cmnd[2] << 24) | ((u32)cmd->cmnd[3] << 16) | ((u32)cmd->cmnd[4] << 8) | (u32)cmd->cmnd[5]; #if MEGA_HAVE_STATS if (*cmd->cmnd == READ_10) { adapter->nreads[ldrv_num%0x80]++; adapter->nreadblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } else { adapter->nwrites[ldrv_num%0x80]++; adapter->nwriteblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } #endif } /* * 12-byte READ(0xA8) or WRITE(0xAA) cdb */ if( cmd->cmd_len == 12 ) { mbox->m_out.lba = ((u32)cmd->cmnd[2] << 24) | ((u32)cmd->cmnd[3] << 16) | ((u32)cmd->cmnd[4] << 8) | (u32)cmd->cmnd[5]; mbox->m_out.numsectors = ((u32)cmd->cmnd[6] << 24) | ((u32)cmd->cmnd[7] << 16) | ((u32)cmd->cmnd[8] << 8) | (u32)cmd->cmnd[9]; #if MEGA_HAVE_STATS if (*cmd->cmnd == READ_12) { adapter->nreads[ldrv_num%0x80]++; adapter->nreadblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } else { adapter->nwrites[ldrv_num%0x80]++; adapter->nwriteblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } #endif } /* * If it is a read command */ if( (*cmd->cmnd & 0x0F) == 0x08 ) { scb->dma_direction = DMA_FROM_DEVICE; } else { scb->dma_direction = DMA_TO_DEVICE; } /* Calculate Scatter-Gather info */ mbox->m_out.numsgelements = mega_build_sglist(adapter, scb, (u32 *)&mbox->m_out.xferaddr, &seg); return scb; #if MEGA_HAVE_CLUSTERING case RESERVE: case RELEASE: /* * Do we support clustering and is the support enabled */ if( ! adapter->has_cluster ) { cmd->result = (DID_BAD_TARGET << 16); scsi_done(cmd); return NULL; } /* Allocate a SCB and initialize mailbox */ if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } scb->raw_mbox[0] = MEGA_CLUSTER_CMD; scb->raw_mbox[2] = ( *cmd->cmnd == RESERVE ) ? MEGA_RESERVE_LD : MEGA_RELEASE_LD; scb->raw_mbox[3] = ldrv_num; scb->dma_direction = DMA_NONE; return scb; #endif default: cmd->result = (DID_BAD_TARGET << 16); scsi_done(cmd); return NULL; } } /* * Passthru drive commands */ else { /* Allocate a SCB and initialize passthru */ if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } mbox = (mbox_t *)scb->raw_mbox; memset(mbox, 0, sizeof(scb->raw_mbox)); if( adapter->support_ext_cdb ) { mega_prepare_extpassthru(adapter, scb, cmd, channel, target); mbox->m_out.cmd = MEGA_MBOXCMD_EXTPTHRU; mbox->m_out.xferaddr = scb->epthru_dma_addr; } else { pthru = mega_prepare_passthru(adapter, scb, cmd, channel, target); /* Initialize mailbox */ if( adapter->has_64bit_addr ) { mbox->m_out.cmd = MEGA_MBOXCMD_PASSTHRU64; } else { mbox->m_out.cmd = MEGA_MBOXCMD_PASSTHRU; } mbox->m_out.xferaddr = scb->pthru_dma_addr; } return scb; } return NULL; } /** * mega_prepare_passthru() * @adapter: pointer to our soft state * @scb: our scsi control block * @cmd: scsi command from the mid-layer * @channel: actual channel on the controller * @target: actual id on the controller. * * prepare a command for the scsi physical devices. */ static mega_passthru * mega_prepare_passthru(adapter_t *adapter, scb_t *scb, struct scsi_cmnd *cmd, int channel, int target) { mega_passthru *pthru; pthru = scb->pthru; memset(pthru, 0, sizeof (mega_passthru)); /* 0=6sec/1=60sec/2=10min/3=3hrs */ pthru->timeout = 2; pthru->ars = 1; pthru->reqsenselen = 14; pthru->islogical = 0; pthru->channel = (adapter->flag & BOARD_40LD) ? 0 : channel; pthru->target = (adapter->flag & BOARD_40LD) ? (channel << 4) | target : target; pthru->cdblen = cmd->cmd_len; pthru->logdrv = cmd->device->lun; memcpy(pthru->cdb, cmd->cmnd, cmd->cmd_len); /* Not sure about the direction */ scb->dma_direction = DMA_BIDIRECTIONAL; /* Special Code for Handling READ_CAPA/ INQ using bounce buffers */ switch (cmd->cmnd[0]) { case INQUIRY: case READ_CAPACITY: if(!(adapter->flag & (1L << cmd->device->channel))) { dev_notice(&adapter->dev->dev, "scsi%d: scanning scsi channel %d [P%d] " "for physical devices\n", adapter->host->host_no, cmd->device->channel, channel); adapter->flag |= (1L << cmd->device->channel); } fallthrough; default: pthru->numsgelements = mega_build_sglist(adapter, scb, &pthru->dataxferaddr, &pthru->dataxferlen); break; } return pthru; } /** * mega_prepare_extpassthru() * @adapter: pointer to our soft state * @scb: our scsi control block * @cmd: scsi command from the mid-layer * @channel: actual channel on the controller * @target: actual id on the controller. * * prepare a command for the scsi physical devices. This rountine prepares * commands for devices which can take extended CDBs (>10 bytes) */ static mega_ext_passthru * mega_prepare_extpassthru(adapter_t *adapter, scb_t *scb, struct scsi_cmnd *cmd, int channel, int target) { mega_ext_passthru *epthru; epthru = scb->epthru; memset(epthru, 0, sizeof(mega_ext_passthru)); /* 0=6sec/1=60sec/2=10min/3=3hrs */ epthru->timeout = 2; epthru->ars = 1; epthru->reqsenselen = 14; epthru->islogical = 0; epthru->channel = (adapter->flag & BOARD_40LD) ? 0 : channel; epthru->target = (adapter->flag & BOARD_40LD) ? (channel << 4) | target : target; epthru->cdblen = cmd->cmd_len; epthru->logdrv = cmd->device->lun; memcpy(epthru->cdb, cmd->cmnd, cmd->cmd_len); /* Not sure about the direction */ scb->dma_direction = DMA_BIDIRECTIONAL; switch(cmd->cmnd[0]) { case INQUIRY: case READ_CAPACITY: if(!(adapter->flag & (1L << cmd->device->channel))) { dev_notice(&adapter->dev->dev, "scsi%d: scanning scsi channel %d [P%d] " "for physical devices\n", adapter->host->host_no, cmd->device->channel, channel); adapter->flag |= (1L << cmd->device->channel); } fallthrough; default: epthru->numsgelements = mega_build_sglist(adapter, scb, &epthru->dataxferaddr, &epthru->dataxferlen); break; } return epthru; } static void __mega_runpendq(adapter_t *adapter) { scb_t *scb; struct list_head *pos, *next; /* Issue any pending commands to the card */ list_for_each_safe(pos, next, &adapter->pending_list) { scb = list_entry(pos, scb_t, list); if( !(scb->state & SCB_ISSUED) ) { if( issue_scb(adapter, scb) != 0 ) return; } } return; } /** * issue_scb() * @adapter: pointer to our soft state * @scb: scsi control block * * Post a command to the card if the mailbox is available, otherwise return * busy. We also take the scb from the pending list if the mailbox is * available. */ static int issue_scb(adapter_t *adapter, scb_t *scb) { volatile mbox64_t *mbox64 = adapter->mbox64; volatile mbox_t *mbox = adapter->mbox; unsigned int i = 0; if(unlikely(mbox->m_in.busy)) { do { udelay(1); i++; } while( mbox->m_in.busy && (i < max_mbox_busy_wait) ); if(mbox->m_in.busy) return -1; } /* Copy mailbox data into host structure */ memcpy((char *)&mbox->m_out, (char *)scb->raw_mbox, sizeof(struct mbox_out)); mbox->m_out.cmdid = scb->idx; /* Set cmdid */ mbox->m_in.busy = 1; /* Set busy */ /* * Increment the pending queue counter */ atomic_inc(&adapter->pend_cmds); switch (mbox->m_out.cmd) { case MEGA_MBOXCMD_LREAD64: case MEGA_MBOXCMD_LWRITE64: case MEGA_MBOXCMD_PASSTHRU64: case MEGA_MBOXCMD_EXTPTHRU: mbox64->xfer_segment_lo = mbox->m_out.xferaddr; mbox64->xfer_segment_hi = 0; mbox->m_out.xferaddr = 0xFFFFFFFF; break; default: mbox64->xfer_segment_lo = 0; mbox64->xfer_segment_hi = 0; } /* * post the command */ scb->state |= SCB_ISSUED; if( likely(adapter->flag & BOARD_MEMMAP) ) { mbox->m_in.poll = 0; mbox->m_in.ack = 0; WRINDOOR(adapter, adapter->mbox_dma | 0x1); } else { irq_enable(adapter); issue_command(adapter); } return 0; } /* * Wait until the controller's mailbox is available */ static inline int mega_busywait_mbox (adapter_t *adapter) { if (adapter->mbox->m_in.busy) return __mega_busywait_mbox(adapter); return 0; } /** * issue_scb_block() * @adapter: pointer to our soft state * @raw_mbox: the mailbox * * Issue a scb in synchronous and non-interrupt mode */ static int issue_scb_block(adapter_t *adapter, u_char *raw_mbox) { volatile mbox64_t *mbox64 = adapter->mbox64; volatile mbox_t *mbox = adapter->mbox; u8 byte; /* Wait until mailbox is free */ if(mega_busywait_mbox (adapter)) goto bug_blocked_mailbox; /* Copy mailbox data into host structure */ memcpy((char *) mbox, raw_mbox, sizeof(struct mbox_out)); mbox->m_out.cmdid = 0xFE; mbox->m_in.busy = 1; switch (raw_mbox[0]) { case MEGA_MBOXCMD_LREAD64: case MEGA_MBOXCMD_LWRITE64: case MEGA_MBOXCMD_PASSTHRU64: case MEGA_MBOXCMD_EXTPTHRU: mbox64->xfer_segment_lo = mbox->m_out.xferaddr; mbox64->xfer_segment_hi = 0; mbox->m_out.xferaddr = 0xFFFFFFFF; break; default: mbox64->xfer_segment_lo = 0; mbox64->xfer_segment_hi = 0; } if( likely(adapter->flag & BOARD_MEMMAP) ) { mbox->m_in.poll = 0; mbox->m_in.ack = 0; mbox->m_in.numstatus = 0xFF; mbox->m_in.status = 0xFF; WRINDOOR(adapter, adapter->mbox_dma | 0x1); while((volatile u8)mbox->m_in.numstatus == 0xFF) cpu_relax(); mbox->m_in.numstatus = 0xFF; while( (volatile u8)mbox->m_in.poll != 0x77 ) cpu_relax(); mbox->m_in.poll = 0; mbox->m_in.ack = 0x77; WRINDOOR(adapter, adapter->mbox_dma | 0x2); while(RDINDOOR(adapter) & 0x2) cpu_relax(); } else { irq_disable(adapter); issue_command(adapter); while (!((byte = irq_state(adapter)) & INTR_VALID)) cpu_relax(); set_irq_state(adapter, byte); irq_enable(adapter); irq_ack(adapter); } return mbox->m_in.status; bug_blocked_mailbox: dev_warn(&adapter->dev->dev, "Blocked mailbox......!!\n"); udelay (1000); return -1; } /** * megaraid_isr_iomapped() * @irq: irq * @devp: pointer to our soft state * * Interrupt service routine for io-mapped controllers. * Find out if our device is interrupting. If yes, acknowledge the interrupt * and service the completed commands. */ static irqreturn_t megaraid_isr_iomapped(int irq, void *devp) { adapter_t *adapter = devp; unsigned long flags; u8 status; u8 nstatus; u8 completed[MAX_FIRMWARE_STATUS]; u8 byte; int handled = 0; /* * loop till F/W has more commands for us to complete. */ spin_lock_irqsave(&adapter->lock, flags); do { /* Check if a valid interrupt is pending */ byte = irq_state(adapter); if( (byte & VALID_INTR_BYTE) == 0 ) { /* * No more pending commands */ goto out_unlock; } set_irq_state(adapter, byte); while((nstatus = (volatile u8)adapter->mbox->m_in.numstatus) == 0xFF) cpu_relax(); adapter->mbox->m_in.numstatus = 0xFF; status = adapter->mbox->m_in.status; /* * decrement the pending queue counter */ atomic_sub(nstatus, &adapter->pend_cmds); memcpy(completed, (void *)adapter->mbox->m_in.completed, nstatus); /* Acknowledge interrupt */ irq_ack(adapter); mega_cmd_done(adapter, completed, nstatus, status); mega_rundoneq(adapter); handled = 1; /* Loop through any pending requests */ if(atomic_read(&adapter->quiescent) == 0) { mega_runpendq(adapter); } } while(1); out_unlock: spin_unlock_irqrestore(&adapter->lock, flags); return IRQ_RETVAL(handled); } /** * megaraid_isr_memmapped() * @irq: irq * @devp: pointer to our soft state * * Interrupt service routine for memory-mapped controllers. * Find out if our device is interrupting. If yes, acknowledge the interrupt * and service the completed commands. */ static irqreturn_t megaraid_isr_memmapped(int irq, void *devp) { adapter_t *adapter = devp; unsigned long flags; u8 status; u32 dword = 0; u8 nstatus; u8 completed[MAX_FIRMWARE_STATUS]; int handled = 0; /* * loop till F/W has more commands for us to complete. */ spin_lock_irqsave(&adapter->lock, flags); do { /* Check if a valid interrupt is pending */ dword = RDOUTDOOR(adapter); if(dword != 0x10001234) { /* * No more pending commands */ goto out_unlock; } WROUTDOOR(adapter, 0x10001234); while((nstatus = (volatile u8)adapter->mbox->m_in.numstatus) == 0xFF) { cpu_relax(); } adapter->mbox->m_in.numstatus = 0xFF; status = adapter->mbox->m_in.status; /* * decrement the pending queue counter */ atomic_sub(nstatus, &adapter->pend_cmds); memcpy(completed, (void *)adapter->mbox->m_in.completed, nstatus); /* Acknowledge interrupt */ WRINDOOR(adapter, 0x2); handled = 1; while( RDINDOOR(adapter) & 0x02 ) cpu_relax(); mega_cmd_done(adapter, completed, nstatus, status); mega_rundoneq(adapter); /* Loop through any pending requests */ if(atomic_read(&adapter->quiescent) == 0) { mega_runpendq(adapter); } } while(1); out_unlock: spin_unlock_irqrestore(&adapter->lock, flags); return IRQ_RETVAL(handled); } /** * mega_cmd_done() * @adapter: pointer to our soft state * @completed: array of ids of completed commands * @nstatus: number of completed commands * @status: status of the last command completed * * Complete the commands and call the scsi mid-layer callback hooks. */ static void mega_cmd_done(adapter_t *adapter, u8 completed[], int nstatus, int status) { mega_ext_passthru *epthru = NULL; struct scatterlist *sgl; struct scsi_cmnd *cmd = NULL; mega_passthru *pthru = NULL; mbox_t *mbox = NULL; u8 c; scb_t *scb; int islogical; int cmdid; int i; /* * for all the commands completed, call the mid-layer callback routine * and free the scb. */ for( i = 0; i < nstatus; i++ ) { cmdid = completed[i]; /* * Only free SCBs for the commands coming down from the * mid-layer, not for which were issued internally * * For internal command, restore the status returned by the * firmware so that user can interpret it. */ if (cmdid == CMDID_INT_CMDS) { scb = &adapter->int_scb; cmd = scb->cmd; list_del_init(&scb->list); scb->state = SCB_FREE; adapter->int_status = status; complete(&adapter->int_waitq); } else { scb = &adapter->scb_list[cmdid]; /* * Make sure f/w has completed a valid command */ if( !(scb->state & SCB_ISSUED) || scb->cmd == NULL ) { dev_crit(&adapter->dev->dev, "invalid command " "Id %d, scb->state:%x, scsi cmd:%p\n", cmdid, scb->state, scb->cmd); continue; } /* * Was a abort issued for this command */ if( scb->state & SCB_ABORT ) { dev_warn(&adapter->dev->dev, "aborted cmd [%x] complete\n", scb->idx); scb->cmd->result = (DID_ABORT << 16); list_add_tail(SCSI_LIST(scb->cmd), &adapter->completed_list); mega_free_scb(adapter, scb); continue; } /* * Was a reset issued for this command */ if( scb->state & SCB_RESET ) { dev_warn(&adapter->dev->dev, "reset cmd [%x] complete\n", scb->idx); scb->cmd->result = (DID_RESET << 16); list_add_tail(SCSI_LIST(scb->cmd), &adapter->completed_list); mega_free_scb (adapter, scb); continue; } cmd = scb->cmd; pthru = scb->pthru; epthru = scb->epthru; mbox = (mbox_t *)scb->raw_mbox; #if MEGA_HAVE_STATS { int logdrv = mbox->m_out.logdrv; islogical = adapter->logdrv_chan[cmd->channel]; /* * Maintain an error counter for the logical drive. * Some application like SNMP agent need such * statistics */ if( status && islogical && (cmd->cmnd[0] == READ_6 || cmd->cmnd[0] == READ_10 || cmd->cmnd[0] == READ_12)) { /* * Logical drive number increases by 0x80 when * a logical drive is deleted */ adapter->rd_errors[logdrv%0x80]++; } if( status && islogical && (cmd->cmnd[0] == WRITE_6 || cmd->cmnd[0] == WRITE_10 || cmd->cmnd[0] == WRITE_12)) { /* * Logical drive number increases by 0x80 when * a logical drive is deleted */ adapter->wr_errors[logdrv%0x80]++; } } #endif } /* * Do not return the presence of hard disk on the channel so, * inquiry sent, and returned data==hard disk or removable * hard disk and not logical, request should return failure! - * PJ */ islogical = adapter->logdrv_chan[cmd->device->channel]; if( cmd->cmnd[0] == INQUIRY && !islogical ) { sgl = scsi_sglist(cmd); if( sg_page(sgl) ) { c = *(unsigned char *) sg_virt(&sgl[0]); } else { dev_warn(&adapter->dev->dev, "invalid sg\n"); c = 0; } if(IS_RAID_CH(adapter, cmd->device->channel) && ((c & 0x1F ) == TYPE_DISK)) { status = 0xF0; } } /* clear result; otherwise, success returns corrupt value */ cmd->result = 0; /* Convert MegaRAID status to Linux error code */ switch (status) { case 0x00: /* SUCCESS , i.e. SCSI_STATUS_GOOD */ cmd->result |= (DID_OK << 16); break; case 0x02: /* ERROR_ABORTED, i.e. SCSI_STATUS_CHECK_CONDITION */ /* set sense_buffer and result fields */ if( mbox->m_out.cmd == MEGA_MBOXCMD_PASSTHRU || mbox->m_out.cmd == MEGA_MBOXCMD_PASSTHRU64 ) { memcpy(cmd->sense_buffer, pthru->reqsensearea, 14); cmd->result = SAM_STAT_CHECK_CONDITION; } else { if (mbox->m_out.cmd == MEGA_MBOXCMD_EXTPTHRU) { memcpy(cmd->sense_buffer, epthru->reqsensearea, 14); cmd->result = SAM_STAT_CHECK_CONDITION; } else scsi_build_sense(cmd, 0, ABORTED_COMMAND, 0, 0); } break; case 0x08: /* ERR_DEST_DRIVE_FAILED, i.e. SCSI_STATUS_BUSY */ cmd->result |= (DID_BUS_BUSY << 16) | status; break; default: #if MEGA_HAVE_CLUSTERING /* * If TEST_UNIT_READY fails, we know * MEGA_RESERVATION_STATUS failed */ if( cmd->cmnd[0] == TEST_UNIT_READY ) { cmd->result |= (DID_ERROR << 16) | SAM_STAT_RESERVATION_CONFLICT; } else /* * Error code returned is 1 if Reserve or Release * failed or the input parameter is invalid */ if( status == 1 && (cmd->cmnd[0] == RESERVE || cmd->cmnd[0] == RELEASE) ) { cmd->result |= (DID_ERROR << 16) | SAM_STAT_RESERVATION_CONFLICT; } else #endif cmd->result |= (DID_BAD_TARGET << 16)|status; } mega_free_scb(adapter, scb); /* Add Scsi_Command to end of completed queue */ list_add_tail(SCSI_LIST(cmd), &adapter->completed_list); } } /* * mega_runpendq() * * Run through the list of completed requests and finish it */ static void mega_rundoneq (adapter_t *adapter) { struct megaraid_cmd_priv *cmd_priv; list_for_each_entry(cmd_priv, &adapter->completed_list, entry) scsi_done(megaraid_to_scsi_cmd(cmd_priv)); INIT_LIST_HEAD(&adapter->completed_list); } /* * Free a SCB structure * Note: We assume the scsi commands associated with this scb is not free yet. */ static void mega_free_scb(adapter_t *adapter, scb_t *scb) { switch( scb->dma_type ) { case MEGA_DMA_TYPE_NONE: break; case MEGA_SGLIST: scsi_dma_unmap(scb->cmd); break; default: break; } /* * Remove from the pending list */ list_del_init(&scb->list); /* Link the scb back into free list */ scb->state = SCB_FREE; scb->cmd = NULL; list_add(&scb->list, &adapter->free_list); } static int __mega_busywait_mbox (adapter_t *adapter) { volatile mbox_t *mbox = adapter->mbox; long counter; for (counter = 0; counter < 10000; counter++) { if (!mbox->m_in.busy) return 0; udelay(100); cond_resched(); } return -1; /* give up after 1 second */ } /* * Copies data to SGLIST * Note: For 64 bit cards, we need a minimum of one SG element for read/write */ static int mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len) { struct scatterlist *sg; struct scsi_cmnd *cmd; int sgcnt; int idx; cmd = scb->cmd; /* * Copy Scatter-Gather list info into controller structure. * * The number of sg elements returned must not exceed our limit */ sgcnt = scsi_dma_map(cmd); scb->dma_type = MEGA_SGLIST; BUG_ON(sgcnt > adapter->sglen || sgcnt < 0); *len = 0; if (scsi_sg_count(cmd) == 1 && !adapter->has_64bit_addr) { sg = scsi_sglist(cmd); scb->dma_h_bulkdata = sg_dma_address(sg); *buf = (u32)scb->dma_h_bulkdata; *len = sg_dma_len(sg); return 0; } scsi_for_each_sg(cmd, sg, sgcnt, idx) { if (adapter->has_64bit_addr) { scb->sgl64[idx].address = sg_dma_address(sg); *len += scb->sgl64[idx].length = sg_dma_len(sg); } else { scb->sgl[idx].address = sg_dma_address(sg); *len += scb->sgl[idx].length = sg_dma_len(sg); } } /* Reset pointer and length fields */ *buf = scb->sgl_dma_addr; /* Return count of SG requests */ return sgcnt; } /* * mega_8_to_40ld() * * takes all info in AdapterInquiry structure and puts it into ProductInfo and * Enquiry3 structures for later use */ static void mega_8_to_40ld(mraid_inquiry *inquiry, mega_inquiry3 *enquiry3, mega_product_info *product_info) { int i; product_info->max_commands = inquiry->adapter_info.max_commands; enquiry3->rebuild_rate = inquiry->adapter_info.rebuild_rate; product_info->nchannels = inquiry->adapter_info.nchannels; for (i = 0; i < 4; i++) { product_info->fw_version[i] = inquiry->adapter_info.fw_version[i]; product_info->bios_version[i] = inquiry->adapter_info.bios_version[i]; } enquiry3->cache_flush_interval = inquiry->adapter_info.cache_flush_interval; product_info->dram_size = inquiry->adapter_info.dram_size; enquiry3->num_ldrv = inquiry->logdrv_info.num_ldrv; for (i = 0; i < MAX_LOGICAL_DRIVES_8LD; i++) { enquiry3->ldrv_size[i] = inquiry->logdrv_info.ldrv_size[i]; enquiry3->ldrv_prop[i] = inquiry->logdrv_info.ldrv_prop[i]; enquiry3->ldrv_state[i] = inquiry->logdrv_info.ldrv_state[i]; } for (i = 0; i < (MAX_PHYSICAL_DRIVES); i++) enquiry3->pdrv_state[i] = inquiry->pdrv_info.pdrv_state[i]; } static inline void mega_free_sgl(adapter_t *adapter) { scb_t *scb; int i; for(i = 0; i < adapter->max_cmds; i++) { scb = &adapter->scb_list[i]; if( scb->sgl64 ) { dma_free_coherent(&adapter->dev->dev, sizeof(mega_sgl64) * adapter->sglen, scb->sgl64, scb->sgl_dma_addr); scb->sgl64 = NULL; } if( scb->pthru ) { dma_free_coherent(&adapter->dev->dev, sizeof(mega_passthru), scb->pthru, scb->pthru_dma_addr); scb->pthru = NULL; } if( scb->epthru ) { dma_free_coherent(&adapter->dev->dev, sizeof(mega_ext_passthru), scb->epthru, scb->epthru_dma_addr); scb->epthru = NULL; } } } /* * Get information about the card/driver */ const char * megaraid_info(struct Scsi_Host *host) { static char buffer[512]; adapter_t *adapter; adapter = (adapter_t *)host->hostdata; sprintf (buffer, "LSI Logic MegaRAID %s %d commands %d targs %d chans %d luns", adapter->fw_version, adapter->product_info.max_commands, adapter->host->max_id, adapter->host->max_channel, (u32)adapter->host->max_lun); return buffer; } /* * Abort a previous SCSI request. Only commands on the pending list can be * aborted. All the commands issued to the F/W must complete. */ static int megaraid_abort(struct scsi_cmnd *cmd) { adapter_t *adapter; int rval; adapter = (adapter_t *)cmd->device->host->hostdata; rval = megaraid_abort_and_reset(adapter, cmd, SCB_ABORT); /* * This is required here to complete any completed requests * to be communicated over to the mid layer. */ mega_rundoneq(adapter); return rval; } static int megaraid_reset(struct scsi_cmnd *cmd) { adapter_t *adapter; megacmd_t mc; int rval; adapter = (adapter_t *)cmd->device->host->hostdata; #if MEGA_HAVE_CLUSTERING mc.cmd = MEGA_CLUSTER_CMD; mc.opcode = MEGA_RESET_RESERVATIONS; if( mega_internal_command(adapter, &mc, NULL) != 0 ) { dev_warn(&adapter->dev->dev, "reservation reset failed\n"); } else { dev_info(&adapter->dev->dev, "reservation reset\n"); } #endif spin_lock_irq(&adapter->lock); rval = megaraid_abort_and_reset(adapter, NULL, SCB_RESET); /* * This is required here to complete any completed requests * to be communicated over to the mid layer. */ mega_rundoneq(adapter); spin_unlock_irq(&adapter->lock); return rval; } /** * megaraid_abort_and_reset() * @adapter: megaraid soft state * @cmd: scsi command to be aborted or reset * @aor: abort or reset flag * * Try to locate the scsi command in the pending queue. If found and is not * issued to the controller, abort/reset it. Otherwise return failure */ static int megaraid_abort_and_reset(adapter_t *adapter, struct scsi_cmnd *cmd, int aor) { struct list_head *pos, *next; scb_t *scb; if (aor == SCB_ABORT) dev_warn(&adapter->dev->dev, "ABORTING cmd=%x <c=%d t=%d l=%d>\n", cmd->cmnd[0], cmd->device->channel, cmd->device->id, (u32)cmd->device->lun); else dev_warn(&adapter->dev->dev, "RESETTING\n"); if(list_empty(&adapter->pending_list)) return FAILED; list_for_each_safe(pos, next, &adapter->pending_list) { scb = list_entry(pos, scb_t, list); if (!cmd || scb->cmd == cmd) { /* Found command */ scb->state |= aor; /* * Check if this command has firmware ownership. If * yes, we cannot reset this command. Whenever f/w * completes this command, we will return appropriate * status from ISR. */ if( scb->state & SCB_ISSUED ) { dev_warn(&adapter->dev->dev, "%s[%x], fw owner\n", (aor==SCB_ABORT) ? "ABORTING":"RESET", scb->idx); return FAILED; } /* * Not yet issued! Remove from the pending * list */ dev_warn(&adapter->dev->dev, "%s-[%x], driver owner\n", (cmd) ? "ABORTING":"RESET", scb->idx); mega_free_scb(adapter, scb); if (cmd) { cmd->result = (DID_ABORT << 16); list_add_tail(SCSI_LIST(cmd), &adapter->completed_list); } return SUCCESS; } } return FAILED; } static inline int make_local_pdev(adapter_t *adapter, struct pci_dev **pdev) { *pdev = pci_alloc_dev(NULL); if( *pdev == NULL ) return -1; memcpy(*pdev, adapter->dev, sizeof(struct pci_dev)); if (dma_set_mask(&(*pdev)->dev, DMA_BIT_MASK(32)) != 0) { kfree(*pdev); return -1; } return 0; } static inline void free_local_pdev(struct pci_dev *pdev) { kfree(pdev); } /** * mega_allocate_inquiry() * @dma_handle: handle returned for dma address * @pdev: handle to pci device * * allocates memory for inquiry structure */ static inline void * mega_allocate_inquiry(dma_addr_t *dma_handle, struct pci_dev *pdev) { return dma_alloc_coherent(&pdev->dev, sizeof(mega_inquiry3), dma_handle, GFP_KERNEL); } static inline void mega_free_inquiry(void *inquiry, dma_addr_t dma_handle, struct pci_dev *pdev) { dma_free_coherent(&pdev->dev, sizeof(mega_inquiry3), inquiry, dma_handle); } #ifdef CONFIG_PROC_FS /* Following code handles /proc fs */ /** * proc_show_config() * @m: Synthetic file construction data * @v: File iterator * * Display configuration information about the controller. */ static int proc_show_config(struct seq_file *m, void *v) { adapter_t *adapter = m->private; seq_puts(m, MEGARAID_VERSION); if(adapter->product_info.product_name[0]) seq_printf(m, "%s\n", adapter->product_info.product_name); seq_puts(m, "Controller Type: "); if( adapter->flag & BOARD_MEMMAP ) seq_puts(m, "438/466/467/471/493/518/520/531/532\n"); else seq_puts(m, "418/428/434\n"); if(adapter->flag & BOARD_40LD) seq_puts(m, "Controller Supports 40 Logical Drives\n"); if(adapter->flag & BOARD_64BIT) seq_puts(m, "Controller capable of 64-bit memory addressing\n"); if( adapter->has_64bit_addr ) seq_puts(m, "Controller using 64-bit memory addressing\n"); else seq_puts(m, "Controller is not using 64-bit memory addressing\n"); seq_printf(m, "Base = %08lx, Irq = %d, ", adapter->base, adapter->host->irq); seq_printf(m, "Logical Drives = %d, Channels = %d\n", adapter->numldrv, adapter->product_info.nchannels); seq_printf(m, "Version =%s:%s, DRAM = %dMb\n", adapter->fw_version, adapter->bios_version, adapter->product_info.dram_size); seq_printf(m, "Controller Queue Depth = %d, Driver Queue Depth = %d\n", adapter->product_info.max_commands, adapter->max_cmds); seq_printf(m, "support_ext_cdb = %d\n", adapter->support_ext_cdb); seq_printf(m, "support_random_del = %d\n", adapter->support_random_del); seq_printf(m, "boot_ldrv_enabled = %d\n", adapter->boot_ldrv_enabled); seq_printf(m, "boot_ldrv = %d\n", adapter->boot_ldrv); seq_printf(m, "boot_pdrv_enabled = %d\n", adapter->boot_pdrv_enabled); seq_printf(m, "boot_pdrv_ch = %d\n", adapter->boot_pdrv_ch); seq_printf(m, "boot_pdrv_tgt = %d\n", adapter->boot_pdrv_tgt); seq_printf(m, "quiescent = %d\n", atomic_read(&adapter->quiescent)); seq_printf(m, "has_cluster = %d\n", adapter->has_cluster); seq_puts(m, "\nModule Parameters:\n"); seq_printf(m, "max_cmd_per_lun = %d\n", max_cmd_per_lun); seq_printf(m, "max_sectors_per_io = %d\n", max_sectors_per_io); return 0; } /** * proc_show_stat() * @m: Synthetic file construction data * @v: File iterator * * Display statistical information about the I/O activity. */ static int proc_show_stat(struct seq_file *m, void *v) { adapter_t *adapter = m->private; #if MEGA_HAVE_STATS int i; #endif seq_puts(m, "Statistical Information for this controller\n"); seq_printf(m, "pend_cmds = %d\n", atomic_read(&adapter->pend_cmds)); #if MEGA_HAVE_STATS for(i = 0; i < adapter->numldrv; i++) { seq_printf(m, "Logical Drive %d:\n", i); seq_printf(m, "\tReads Issued = %lu, Writes Issued = %lu\n", adapter->nreads[i], adapter->nwrites[i]); seq_printf(m, "\tSectors Read = %lu, Sectors Written = %lu\n", adapter->nreadblocks[i], adapter->nwriteblocks[i]); seq_printf(m, "\tRead errors = %lu, Write errors = %lu\n\n", adapter->rd_errors[i], adapter->wr_errors[i]); } #else seq_puts(m, "IO and error counters not compiled in driver.\n"); #endif return 0; } /** * proc_show_mbox() * @m: Synthetic file construction data * @v: File iterator * * Display mailbox information for the last command issued. This information * is good for debugging. */ static int proc_show_mbox(struct seq_file *m, void *v) { adapter_t *adapter = m->private; volatile mbox_t *mbox = adapter->mbox; seq_puts(m, "Contents of Mail Box Structure\n"); seq_printf(m, " Fw Command = 0x%02x\n", mbox->m_out.cmd); seq_printf(m, " Cmd Sequence = 0x%02x\n", mbox->m_out.cmdid); seq_printf(m, " No of Sectors= %04d\n", mbox->m_out.numsectors); seq_printf(m, " LBA = 0x%02x\n", mbox->m_out.lba); seq_printf(m, " DTA = 0x%08x\n", mbox->m_out.xferaddr); seq_printf(m, " Logical Drive= 0x%02x\n", mbox->m_out.logdrv); seq_printf(m, " No of SG Elmt= 0x%02x\n", mbox->m_out.numsgelements); seq_printf(m, " Busy = %01x\n", mbox->m_in.busy); seq_printf(m, " Status = 0x%02x\n", mbox->m_in.status); return 0; } /** * proc_show_rebuild_rate() * @m: Synthetic file construction data * @v: File iterator * * Display current rebuild rate */ static int proc_show_rebuild_rate(struct seq_file *m, void *v) { adapter_t *adapter = m->private; dma_addr_t dma_handle; caddr_t inquiry; struct pci_dev *pdev; if( make_local_pdev(adapter, &pdev) != 0 ) return 0; if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) goto free_pdev; if( mega_adapinq(adapter, dma_handle) != 0 ) { seq_puts(m, "Adapter inquiry failed.\n"); dev_warn(&adapter->dev->dev, "inquiry failed\n"); goto free_inquiry; } if( adapter->flag & BOARD_40LD ) seq_printf(m, "Rebuild Rate: [%d%%]\n", ((mega_inquiry3 *)inquiry)->rebuild_rate); else seq_printf(m, "Rebuild Rate: [%d%%]\n", ((mraid_ext_inquiry *) inquiry)->raid_inq.adapter_info.rebuild_rate); free_inquiry: mega_free_inquiry(inquiry, dma_handle, pdev); free_pdev: free_local_pdev(pdev); return 0; } /** * proc_show_battery() * @m: Synthetic file construction data * @v: File iterator * * Display information about the battery module on the controller. */ static int proc_show_battery(struct seq_file *m, void *v) { adapter_t *adapter = m->private; dma_addr_t dma_handle; caddr_t inquiry; struct pci_dev *pdev; u8 battery_status; if( make_local_pdev(adapter, &pdev) != 0 ) return 0; if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) goto free_pdev; if( mega_adapinq(adapter, dma_handle) != 0 ) { seq_puts(m, "Adapter inquiry failed.\n"); dev_warn(&adapter->dev->dev, "inquiry failed\n"); goto free_inquiry; } if( adapter->flag & BOARD_40LD ) { battery_status = ((mega_inquiry3 *)inquiry)->battery_status; } else { battery_status = ((mraid_ext_inquiry *)inquiry)-> raid_inq.adapter_info.battery_status; } /* * Decode the battery status */ seq_printf(m, "Battery Status:[%d]", battery_status); if(battery_status == MEGA_BATT_CHARGE_DONE) seq_puts(m, " Charge Done"); if(battery_status & MEGA_BATT_MODULE_MISSING) seq_puts(m, " Module Missing"); if(battery_status & MEGA_BATT_LOW_VOLTAGE) seq_puts(m, " Low Voltage"); if(battery_status & MEGA_BATT_TEMP_HIGH) seq_puts(m, " Temperature High"); if(battery_status & MEGA_BATT_PACK_MISSING) seq_puts(m, " Pack Missing"); if(battery_status & MEGA_BATT_CHARGE_INPROG) seq_puts(m, " Charge In-progress"); if(battery_status & MEGA_BATT_CHARGE_FAIL) seq_puts(m, " Charge Fail"); if(battery_status & MEGA_BATT_CYCLES_EXCEEDED) seq_puts(m, " Cycles Exceeded"); seq_putc(m, '\n'); free_inquiry: mega_free_inquiry(inquiry, dma_handle, pdev); free_pdev: free_local_pdev(pdev); return 0; } /* * Display scsi inquiry */ static void mega_print_inquiry(struct seq_file *m, char *scsi_inq) { int i; seq_puts(m, " Vendor: "); seq_write(m, scsi_inq + 8, 8); seq_puts(m, " Model: "); seq_write(m, scsi_inq + 16, 16); seq_puts(m, " Rev: "); seq_write(m, scsi_inq + 32, 4); seq_putc(m, '\n'); i = scsi_inq[0] & 0x1f; seq_printf(m, " Type: %s ", scsi_device_type(i)); seq_printf(m, " ANSI SCSI revision: %02x", scsi_inq[2] & 0x07); if( (scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1 ) seq_puts(m, " CCS\n"); else seq_putc(m, '\n'); } /** * proc_show_pdrv() * @m: Synthetic file construction data * @adapter: pointer to our soft state * @channel: channel * * Display information about the physical drives. */ static int proc_show_pdrv(struct seq_file *m, adapter_t *adapter, int channel) { dma_addr_t dma_handle; char *scsi_inq; dma_addr_t scsi_inq_dma_handle; caddr_t inquiry; struct pci_dev *pdev; u8 *pdrv_state; u8 state; int tgt; int max_channels; int i; if( make_local_pdev(adapter, &pdev) != 0 ) return 0; if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) goto free_pdev; if( mega_adapinq(adapter, dma_handle) != 0 ) { seq_puts(m, "Adapter inquiry failed.\n"); dev_warn(&adapter->dev->dev, "inquiry failed\n"); goto free_inquiry; } scsi_inq = dma_alloc_coherent(&pdev->dev, 256, &scsi_inq_dma_handle, GFP_KERNEL); if( scsi_inq == NULL ) { seq_puts(m, "memory not available for scsi inq.\n"); goto free_inquiry; } if( adapter->flag & BOARD_40LD ) { pdrv_state = ((mega_inquiry3 *)inquiry)->pdrv_state; } else { pdrv_state = ((mraid_ext_inquiry *)inquiry)-> raid_inq.pdrv_info.pdrv_state; } max_channels = adapter->product_info.nchannels; if( channel >= max_channels ) { goto free_pci; } for( tgt = 0; tgt <= MAX_TARGET; tgt++ ) { i = channel*16 + tgt; state = *(pdrv_state + i); switch( state & 0x0F ) { case PDRV_ONLINE: seq_printf(m, "Channel:%2d Id:%2d State: Online", channel, tgt); break; case PDRV_FAILED: seq_printf(m, "Channel:%2d Id:%2d State: Failed", channel, tgt); break; case PDRV_RBLD: seq_printf(m, "Channel:%2d Id:%2d State: Rebuild", channel, tgt); break; case PDRV_HOTSPARE: seq_printf(m, "Channel:%2d Id:%2d State: Hot spare", channel, tgt); break; default: seq_printf(m, "Channel:%2d Id:%2d State: Un-configured", channel, tgt); break; } /* * This interface displays inquiries for disk drives * only. Inquries for logical drives and non-disk * devices are available through /proc/scsi/scsi */ memset(scsi_inq, 0, 256); if( mega_internal_dev_inquiry(adapter, channel, tgt, scsi_inq_dma_handle) || (scsi_inq[0] & 0x1F) != TYPE_DISK ) { continue; } /* * Check for overflow. We print less than 240 * characters for inquiry */ seq_puts(m, ".\n"); mega_print_inquiry(m, scsi_inq); } free_pci: dma_free_coherent(&pdev->dev, 256, scsi_inq, scsi_inq_dma_handle); free_inquiry: mega_free_inquiry(inquiry, dma_handle, pdev); free_pdev: free_local_pdev(pdev); return 0; } /** * proc_show_pdrv_ch0() * @m: Synthetic file construction data * @v: File iterator * * Display information about the physical drives on physical channel 0. */ static int proc_show_pdrv_ch0(struct seq_file *m, void *v) { return proc_show_pdrv(m, m->private, 0); } /** * proc_show_pdrv_ch1() * @m: Synthetic file construction data * @v: File iterator * * Display information about the physical drives on physical channel 1. */ static int proc_show_pdrv_ch1(struct seq_file *m, void *v) { return proc_show_pdrv(m, m->private, 1); } /** * proc_show_pdrv_ch2() * @m: Synthetic file construction data * @v: File iterator * * Display information about the physical drives on physical channel 2. */ static int proc_show_pdrv_ch2(struct seq_file *m, void *v) { return proc_show_pdrv(m, m->private, 2); } /** * proc_show_pdrv_ch3() * @m: Synthetic file construction data * @v: File iterator * * Display information about the physical drives on physical channel 3. */ static int proc_show_pdrv_ch3(struct seq_file *m, void *v) { return proc_show_pdrv(m, m->private, 3); } /** * proc_show_rdrv() * @m: Synthetic file construction data * @adapter: pointer to our soft state * @start: starting logical drive to display * @end: ending logical drive to display * * We do not print the inquiry information since its already available through * /proc/scsi/scsi interface */ static int proc_show_rdrv(struct seq_file *m, adapter_t *adapter, int start, int end ) { dma_addr_t dma_handle; logdrv_param *lparam; megacmd_t mc; char *disk_array; dma_addr_t disk_array_dma_handle; caddr_t inquiry; struct pci_dev *pdev; u8 *rdrv_state; int num_ldrv; u32 array_sz; int i; if( make_local_pdev(adapter, &pdev) != 0 ) return 0; if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) goto free_pdev; if( mega_adapinq(adapter, dma_handle) != 0 ) { seq_puts(m, "Adapter inquiry failed.\n"); dev_warn(&adapter->dev->dev, "inquiry failed\n"); goto free_inquiry; } memset(&mc, 0, sizeof(megacmd_t)); if( adapter->flag & BOARD_40LD ) { array_sz = sizeof(disk_array_40ld); rdrv_state = ((mega_inquiry3 *)inquiry)->ldrv_state; num_ldrv = ((mega_inquiry3 *)inquiry)->num_ldrv; } else { array_sz = sizeof(disk_array_8ld); rdrv_state = ((mraid_ext_inquiry *)inquiry)-> raid_inq.logdrv_info.ldrv_state; num_ldrv = ((mraid_ext_inquiry *)inquiry)-> raid_inq.logdrv_info.num_ldrv; } disk_array = dma_alloc_coherent(&pdev->dev, array_sz, &disk_array_dma_handle, GFP_KERNEL); if( disk_array == NULL ) { seq_puts(m, "memory not available.\n"); goto free_inquiry; } mc.xferaddr = (u32)disk_array_dma_handle; if( adapter->flag & BOARD_40LD ) { mc.cmd = FC_NEW_CONFIG; mc.opcode = OP_DCMD_READ_CONFIG; if( mega_internal_command(adapter, &mc, NULL) ) { seq_puts(m, "40LD read config failed.\n"); goto free_pci; } } else { mc.cmd = NEW_READ_CONFIG_8LD; if( mega_internal_command(adapter, &mc, NULL) ) { mc.cmd = READ_CONFIG_8LD; if( mega_internal_command(adapter, &mc, NULL) ) { seq_puts(m, "8LD read config failed.\n"); goto free_pci; } } } for( i = start; i < ( (end+1 < num_ldrv) ? end+1 : num_ldrv ); i++ ) { if( adapter->flag & BOARD_40LD ) { lparam = &((disk_array_40ld *)disk_array)->ldrv[i].lparam; } else { lparam = &((disk_array_8ld *)disk_array)->ldrv[i].lparam; } /* * Check for overflow. We print less than 240 characters for * information about each logical drive. */ seq_printf(m, "Logical drive:%2d:, ", i); switch( rdrv_state[i] & 0x0F ) { case RDRV_OFFLINE: seq_puts(m, "state: offline"); break; case RDRV_DEGRADED: seq_puts(m, "state: degraded"); break; case RDRV_OPTIMAL: seq_puts(m, "state: optimal"); break; case RDRV_DELETED: seq_puts(m, "state: deleted"); break; default: seq_puts(m, "state: unknown"); break; } /* * Check if check consistency or initialization is going on * for this logical drive. */ if( (rdrv_state[i] & 0xF0) == 0x20 ) seq_puts(m, ", check-consistency in progress"); else if( (rdrv_state[i] & 0xF0) == 0x10 ) seq_puts(m, ", initialization in progress"); seq_putc(m, '\n'); seq_printf(m, "Span depth:%3d, ", lparam->span_depth); seq_printf(m, "RAID level:%3d, ", lparam->level); seq_printf(m, "Stripe size:%3d, ", lparam->stripe_sz ? lparam->stripe_sz/2: 128); seq_printf(m, "Row size:%3d\n", lparam->row_size); seq_puts(m, "Read Policy: "); switch(lparam->read_ahead) { case NO_READ_AHEAD: seq_puts(m, "No read ahead, "); break; case READ_AHEAD: seq_puts(m, "Read ahead, "); break; case ADAP_READ_AHEAD: seq_puts(m, "Adaptive, "); break; } seq_puts(m, "Write Policy: "); switch(lparam->write_mode) { case WRMODE_WRITE_THRU: seq_puts(m, "Write thru, "); break; case WRMODE_WRITE_BACK: seq_puts(m, "Write back, "); break; } seq_puts(m, "Cache Policy: "); switch(lparam->direct_io) { case CACHED_IO: seq_puts(m, "Cached IO\n\n"); break; case DIRECT_IO: seq_puts(m, "Direct IO\n\n"); break; } } free_pci: dma_free_coherent(&pdev->dev, array_sz, disk_array, disk_array_dma_handle); free_inquiry: mega_free_inquiry(inquiry, dma_handle, pdev); free_pdev: free_local_pdev(pdev); return 0; } /** * proc_show_rdrv_10() * @m: Synthetic file construction data * @v: File iterator * * Display real time information about the logical drives 0 through 9. */ static int proc_show_rdrv_10(struct seq_file *m, void *v) { return proc_show_rdrv(m, m->private, 0, 9); } /** * proc_show_rdrv_20() * @m: Synthetic file construction data * @v: File iterator * * Display real time information about the logical drives 0 through 9. */ static int proc_show_rdrv_20(struct seq_file *m, void *v) { return proc_show_rdrv(m, m->private, 10, 19); } /** * proc_show_rdrv_30() * @m: Synthetic file construction data * @v: File iterator * * Display real time information about the logical drives 0 through 9. */ static int proc_show_rdrv_30(struct seq_file *m, void *v) { return proc_show_rdrv(m, m->private, 20, 29); } /** * proc_show_rdrv_40() * @m: Synthetic file construction data * @v: File iterator * * Display real time information about the logical drives 0 through 9. */ static int proc_show_rdrv_40(struct seq_file *m, void *v) { return proc_show_rdrv(m, m->private, 30, 39); } /** * mega_create_proc_entry() * @index: index in soft state array * @parent: parent node for this /proc entry * * Creates /proc entries for our controllers. */ static void mega_create_proc_entry(int index, struct proc_dir_entry *parent) { adapter_t *adapter = hba_soft_state[index]; struct proc_dir_entry *dir; u8 string[16]; sprintf(string, "hba%d", adapter->host->host_no); dir = proc_mkdir_data(string, 0, parent, adapter); if (!dir) { dev_warn(&adapter->dev->dev, "proc_mkdir failed\n"); return; } proc_create_single_data("config", S_IRUSR, dir, proc_show_config, adapter); proc_create_single_data("stat", S_IRUSR, dir, proc_show_stat, adapter); proc_create_single_data("mailbox", S_IRUSR, dir, proc_show_mbox, adapter); #if MEGA_HAVE_ENH_PROC proc_create_single_data("rebuild-rate", S_IRUSR, dir, proc_show_rebuild_rate, adapter); proc_create_single_data("battery-status", S_IRUSR, dir, proc_show_battery, adapter); proc_create_single_data("diskdrives-ch0", S_IRUSR, dir, proc_show_pdrv_ch0, adapter); proc_create_single_data("diskdrives-ch1", S_IRUSR, dir, proc_show_pdrv_ch1, adapter); proc_create_single_data("diskdrives-ch2", S_IRUSR, dir, proc_show_pdrv_ch2, adapter); proc_create_single_data("diskdrives-ch3", S_IRUSR, dir, proc_show_pdrv_ch3, adapter); proc_create_single_data("raiddrives-0-9", S_IRUSR, dir, proc_show_rdrv_10, adapter); proc_create_single_data("raiddrives-10-19", S_IRUSR, dir, proc_show_rdrv_20, adapter); proc_create_single_data("raiddrives-20-29", S_IRUSR, dir, proc_show_rdrv_30, adapter); proc_create_single_data("raiddrives-30-39", S_IRUSR, dir, proc_show_rdrv_40, adapter); #endif } #else static inline void mega_create_proc_entry(int index, struct proc_dir_entry *parent) { } #endif /* * megaraid_biosparam() * * Return the disk geometry for a particular disk */ static int megaraid_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { adapter_t *adapter; int heads; int sectors; int cylinders; /* Get pointer to host config structure */ adapter = (adapter_t *)sdev->host->hostdata; if (IS_RAID_CH(adapter, sdev->channel)) { /* Default heads (64) & sectors (32) */ heads = 64; sectors = 32; cylinders = (ulong)capacity / (heads * sectors); /* * Handle extended translation size for logical drives * > 1Gb */ if ((ulong)capacity >= 0x200000) { heads = 255; sectors = 63; cylinders = (ulong)capacity / (heads * sectors); } /* return result */ geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; } else { if (scsi_partsize(bdev, capacity, geom)) return 0; dev_info(&adapter->dev->dev, "invalid partition on this disk on channel %d\n", sdev->channel); /* Default heads (64) & sectors (32) */ heads = 64; sectors = 32; cylinders = (ulong)capacity / (heads * sectors); /* Handle extended translation size for logical drives > 1Gb */ if ((ulong)capacity >= 0x200000) { heads = 255; sectors = 63; cylinders = (ulong)capacity / (heads * sectors); } /* return result */ geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; } return 0; } /** * mega_init_scb() * @adapter: pointer to our soft state * * Allocate memory for the various pointers in the scb structures: * scatter-gather list pointer, passthru and extended passthru structure * pointers. */ static int mega_init_scb(adapter_t *adapter) { scb_t *scb; int i; for( i = 0; i < adapter->max_cmds; i++ ) { scb = &adapter->scb_list[i]; scb->sgl64 = NULL; scb->sgl = NULL; scb->pthru = NULL; scb->epthru = NULL; } for( i = 0; i < adapter->max_cmds; i++ ) { scb = &adapter->scb_list[i]; scb->idx = i; scb->sgl64 = dma_alloc_coherent(&adapter->dev->dev, sizeof(mega_sgl64) * adapter->sglen, &scb->sgl_dma_addr, GFP_KERNEL); scb->sgl = (mega_sglist *)scb->sgl64; if( !scb->sgl ) { dev_warn(&adapter->dev->dev, "RAID: Can't allocate sglist\n"); mega_free_sgl(adapter); return -1; } scb->pthru = dma_alloc_coherent(&adapter->dev->dev, sizeof(mega_passthru), &scb->pthru_dma_addr, GFP_KERNEL); if( !scb->pthru ) { dev_warn(&adapter->dev->dev, "RAID: Can't allocate passthru\n"); mega_free_sgl(adapter); return -1; } scb->epthru = dma_alloc_coherent(&adapter->dev->dev, sizeof(mega_ext_passthru), &scb->epthru_dma_addr, GFP_KERNEL); if( !scb->epthru ) { dev_warn(&adapter->dev->dev, "Can't allocate extended passthru\n"); mega_free_sgl(adapter); return -1; } scb->dma_type = MEGA_DMA_TYPE_NONE; /* * Link to free list * lock not required since we are loading the driver, so no * commands possible right now. */ scb->state = SCB_FREE; scb->cmd = NULL; list_add(&scb->list, &adapter->free_list); } return 0; } /** * megadev_open() * @inode: unused * @filep: unused * * Routines for the character/ioctl interface to the driver. Find out if this * is a valid open. */ static int megadev_open (struct inode *inode, struct file *filep) { /* * Only allow superuser to access private ioctl interface */ if( !capable(CAP_SYS_ADMIN) ) return -EACCES; return 0; } /** * megadev_ioctl() * @filep: Our device file * @cmd: ioctl command * @arg: user buffer * * ioctl entry point for our private ioctl interface. We move the data in from * the user space, prepare the command (if necessary, convert the old MIMD * ioctl to new ioctl command), and issue a synchronous command to the * controller. */ static int megadev_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { adapter_t *adapter; nitioctl_t uioc; int adapno; int rval; mega_passthru __user *upthru; /* user address for passthru */ mega_passthru *pthru; /* copy user passthru here */ dma_addr_t pthru_dma_hndl; void *data = NULL; /* data to be transferred */ dma_addr_t data_dma_hndl; /* dma handle for data xfer area */ megacmd_t mc; #if MEGA_HAVE_STATS megastat_t __user *ustats = NULL; int num_ldrv = 0; #endif u32 uxferaddr = 0; struct pci_dev *pdev; /* * Make sure only USCSICMD are issued through this interface. * MIMD application would still fire different command. */ if( (_IOC_TYPE(cmd) != MEGAIOC_MAGIC) && (cmd != USCSICMD) ) { return -EINVAL; } /* * Check and convert a possible MIMD command to NIT command. * mega_m_to_n() copies the data from the user space, so we do not * have to do it here. * NOTE: We will need some user address to copyout the data, therefore * the inteface layer will also provide us with the required user * addresses. */ memset(&uioc, 0, sizeof(nitioctl_t)); if( (rval = mega_m_to_n( (void __user *)arg, &uioc)) != 0 ) return rval; switch( uioc.opcode ) { case GET_DRIVER_VER: if( put_user(driver_ver, (u32 __user *)uioc.uioc_uaddr) ) return (-EFAULT); break; case GET_N_ADAP: if( put_user(hba_count, (u32 __user *)uioc.uioc_uaddr) ) return (-EFAULT); /* * Shucks. MIMD interface returns a positive value for number * of adapters. TODO: Change it to return 0 when there is no * applicatio using mimd interface. */ return hba_count; case GET_ADAP_INFO: /* * Which adapter */ if( (adapno = GETADAP(uioc.adapno)) >= hba_count ) return (-ENODEV); if( copy_to_user(uioc.uioc_uaddr, mcontroller+adapno, sizeof(struct mcontroller)) ) return (-EFAULT); break; #if MEGA_HAVE_STATS case GET_STATS: /* * Which adapter */ if( (adapno = GETADAP(uioc.adapno)) >= hba_count ) return (-ENODEV); adapter = hba_soft_state[adapno]; ustats = uioc.uioc_uaddr; if( copy_from_user(&num_ldrv, &ustats->num_ldrv, sizeof(int)) ) return (-EFAULT); /* * Check for the validity of the logical drive number */ if( num_ldrv >= MAX_LOGICAL_DRIVES_40LD ) return -EINVAL; if( copy_to_user(ustats->nreads, adapter->nreads, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->nreadblocks, adapter->nreadblocks, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->nwrites, adapter->nwrites, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->nwriteblocks, adapter->nwriteblocks, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->rd_errors, adapter->rd_errors, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->wr_errors, adapter->wr_errors, num_ldrv*sizeof(u32)) ) return -EFAULT; return 0; #endif case MBOX_CMD: /* * Which adapter */ if( (adapno = GETADAP(uioc.adapno)) >= hba_count ) return (-ENODEV); adapter = hba_soft_state[adapno]; /* * Deletion of logical drive is a special case. The adapter * should be quiescent before this command is issued. */ if( uioc.uioc_rmbox[0] == FC_DEL_LOGDRV && uioc.uioc_rmbox[2] == OP_DEL_LOGDRV ) { /* * Do we support this feature */ if( !adapter->support_random_del ) { dev_warn(&adapter->dev->dev, "logdrv " "delete on non-supporting F/W\n"); return (-EINVAL); } rval = mega_del_logdrv( adapter, uioc.uioc_rmbox[3] ); if( rval == 0 ) { memset(&mc, 0, sizeof(megacmd_t)); mc.status = rval; rval = mega_n_to_m((void __user *)arg, &mc); } return rval; } /* * This interface only support the regular passthru commands. * Reject extended passthru and 64-bit passthru */ if( uioc.uioc_rmbox[0] == MEGA_MBOXCMD_PASSTHRU64 || uioc.uioc_rmbox[0] == MEGA_MBOXCMD_EXTPTHRU ) { dev_warn(&adapter->dev->dev, "rejected passthru\n"); return (-EINVAL); } /* * For all internal commands, the buffer must be allocated in * <4GB address range */ if( make_local_pdev(adapter, &pdev) != 0 ) return -EIO; /* Is it a passthru command or a DCMD */ if( uioc.uioc_rmbox[0] == MEGA_MBOXCMD_PASSTHRU ) { /* Passthru commands */ pthru = dma_alloc_coherent(&pdev->dev, sizeof(mega_passthru), &pthru_dma_hndl, GFP_KERNEL); if( pthru == NULL ) { free_local_pdev(pdev); return (-ENOMEM); } /* * The user passthru structure */ upthru = (mega_passthru __user *)(unsigned long)MBOX(uioc)->xferaddr; /* * Copy in the user passthru here. */ if( copy_from_user(pthru, upthru, sizeof(mega_passthru)) ) { dma_free_coherent(&pdev->dev, sizeof(mega_passthru), pthru, pthru_dma_hndl); free_local_pdev(pdev); return (-EFAULT); } /* * Is there a data transfer */ if( pthru->dataxferlen ) { data = dma_alloc_coherent(&pdev->dev, pthru->dataxferlen, &data_dma_hndl, GFP_KERNEL); if( data == NULL ) { dma_free_coherent(&pdev->dev, sizeof(mega_passthru), pthru, pthru_dma_hndl); free_local_pdev(pdev); return (-ENOMEM); } /* * Save the user address and point the kernel * address at just allocated memory */ uxferaddr = pthru->dataxferaddr; pthru->dataxferaddr = data_dma_hndl; } /* * Is data coming down-stream */ if( pthru->dataxferlen && (uioc.flags & UIOC_WR) ) { /* * Get the user data */ if( copy_from_user(data, (char __user *)(unsigned long) uxferaddr, pthru->dataxferlen) ) { rval = (-EFAULT); goto freemem_and_return; } } memset(&mc, 0, sizeof(megacmd_t)); mc.cmd = MEGA_MBOXCMD_PASSTHRU; mc.xferaddr = (u32)pthru_dma_hndl; /* * Issue the command */ mega_internal_command(adapter, &mc, pthru); rval = mega_n_to_m((void __user *)arg, &mc); if( rval ) goto freemem_and_return; /* * Is data going up-stream */ if( pthru->dataxferlen && (uioc.flags & UIOC_RD) ) { if( copy_to_user((char __user *)(unsigned long) uxferaddr, data, pthru->dataxferlen) ) { rval = (-EFAULT); } } /* * Send the request sense data also, irrespective of * whether the user has asked for it or not. */ if (copy_to_user(upthru->reqsensearea, pthru->reqsensearea, 14)) rval = -EFAULT; freemem_and_return: if( pthru->dataxferlen ) { dma_free_coherent(&pdev->dev, pthru->dataxferlen, data, data_dma_hndl); } dma_free_coherent(&pdev->dev, sizeof(mega_passthru), pthru, pthru_dma_hndl); free_local_pdev(pdev); return rval; } else { /* DCMD commands */ /* * Is there a data transfer */ if( uioc.xferlen ) { data = dma_alloc_coherent(&pdev->dev, uioc.xferlen, &data_dma_hndl, GFP_KERNEL); if( data == NULL ) { free_local_pdev(pdev); return (-ENOMEM); } uxferaddr = MBOX(uioc)->xferaddr; } /* * Is data coming down-stream */ if( uioc.xferlen && (uioc.flags & UIOC_WR) ) { /* * Get the user data */ if( copy_from_user(data, (char __user *)(unsigned long) uxferaddr, uioc.xferlen) ) { dma_free_coherent(&pdev->dev, uioc.xferlen, data, data_dma_hndl); free_local_pdev(pdev); return (-EFAULT); } } memcpy(&mc, MBOX(uioc), sizeof(megacmd_t)); mc.xferaddr = (u32)data_dma_hndl; /* * Issue the command */ mega_internal_command(adapter, &mc, NULL); rval = mega_n_to_m((void __user *)arg, &mc); if( rval ) { if( uioc.xferlen ) { dma_free_coherent(&pdev->dev, uioc.xferlen, data, data_dma_hndl); } free_local_pdev(pdev); return rval; } /* * Is data going up-stream */ if( uioc.xferlen && (uioc.flags & UIOC_RD) ) { if( copy_to_user((char __user *)(unsigned long) uxferaddr, data, uioc.xferlen) ) { rval = (-EFAULT); } } if( uioc.xferlen ) { dma_free_coherent(&pdev->dev, uioc.xferlen, data, data_dma_hndl); } free_local_pdev(pdev); return rval; } default: return (-EINVAL); } return 0; } static long megadev_unlocked_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { int ret; mutex_lock(&megadev_mutex); ret = megadev_ioctl(filep, cmd, arg); mutex_unlock(&megadev_mutex); return ret; } /** * mega_m_to_n() * @arg: user address * @uioc: new ioctl structure * * A thin layer to convert older mimd interface ioctl structure to NIT ioctl * structure * * Converts the older mimd ioctl structure to newer NIT structure */ static int mega_m_to_n(void __user *arg, nitioctl_t *uioc) { struct uioctl_t uioc_mimd; char signature[8] = {0}; u8 opcode; u8 subopcode; /* * check is the application conforms to NIT. We do not have to do much * in that case. * We exploit the fact that the signature is stored in the very * beginning of the structure. */ if( copy_from_user(signature, arg, 7) ) return (-EFAULT); if( memcmp(signature, "MEGANIT", 7) == 0 ) { /* * NOTE NOTE: The nit ioctl is still under flux because of * change of mailbox definition, in HPE. No applications yet * use this interface and let's not have applications use this * interface till the new specifitions are in place. */ return -EINVAL; #if 0 if( copy_from_user(uioc, arg, sizeof(nitioctl_t)) ) return (-EFAULT); return 0; #endif } /* * Else assume we have mimd uioctl_t as arg. Convert to nitioctl_t * * Get the user ioctl structure */ if( copy_from_user(&uioc_mimd, arg, sizeof(struct uioctl_t)) ) return (-EFAULT); /* * Get the opcode and subopcode for the commands */ opcode = uioc_mimd.ui.fcs.opcode; subopcode = uioc_mimd.ui.fcs.subopcode; switch (opcode) { case 0x82: switch (subopcode) { case MEGAIOC_QDRVRVER: /* Query driver version */ uioc->opcode = GET_DRIVER_VER; uioc->uioc_uaddr = uioc_mimd.data; break; case MEGAIOC_QNADAP: /* Get # of adapters */ uioc->opcode = GET_N_ADAP; uioc->uioc_uaddr = uioc_mimd.data; break; case MEGAIOC_QADAPINFO: /* Get adapter information */ uioc->opcode = GET_ADAP_INFO; uioc->adapno = uioc_mimd.ui.fcs.adapno; uioc->uioc_uaddr = uioc_mimd.data; break; default: return(-EINVAL); } break; case 0x81: uioc->opcode = MBOX_CMD; uioc->adapno = uioc_mimd.ui.fcs.adapno; memcpy(uioc->uioc_rmbox, uioc_mimd.mbox, 18); uioc->xferlen = uioc_mimd.ui.fcs.length; if( uioc_mimd.outlen ) uioc->flags = UIOC_RD; if( uioc_mimd.inlen ) uioc->flags |= UIOC_WR; break; case 0x80: uioc->opcode = MBOX_CMD; uioc->adapno = uioc_mimd.ui.fcs.adapno; memcpy(uioc->uioc_rmbox, uioc_mimd.mbox, 18); /* * Choose the xferlen bigger of input and output data */ uioc->xferlen = uioc_mimd.outlen > uioc_mimd.inlen ? uioc_mimd.outlen : uioc_mimd.inlen; if( uioc_mimd.outlen ) uioc->flags = UIOC_RD; if( uioc_mimd.inlen ) uioc->flags |= UIOC_WR; break; default: return (-EINVAL); } return 0; } /* * mega_n_to_m() * @arg: user address * @mc: mailbox command * * Updates the status information to the application, depending on application * conforms to older mimd ioctl interface or newer NIT ioctl interface */ static int mega_n_to_m(void __user *arg, megacmd_t *mc) { nitioctl_t __user *uiocp; megacmd_t __user *umc; mega_passthru __user *upthru; struct uioctl_t __user *uioc_mimd; char signature[8] = {0}; /* * check is the application conforms to NIT. */ if( copy_from_user(signature, arg, 7) ) return -EFAULT; if( memcmp(signature, "MEGANIT", 7) == 0 ) { uiocp = arg; if( put_user(mc->status, (u8 __user *)&MBOX_P(uiocp)->status) ) return (-EFAULT); if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) { umc = MBOX_P(uiocp); if (get_user(upthru, (mega_passthru __user * __user *)&umc->xferaddr)) return -EFAULT; if( put_user(mc->status, (u8 __user *)&upthru->scsistatus)) return (-EFAULT); } } else { uioc_mimd = arg; if( put_user(mc->status, (u8 __user *)&uioc_mimd->mbox[17]) ) return (-EFAULT); if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) { umc = (megacmd_t __user *)uioc_mimd->mbox; if (get_user(upthru, (mega_passthru __user * __user *)&umc->xferaddr)) return (-EFAULT); if( put_user(mc->status, (u8 __user *)&upthru->scsistatus) ) return (-EFAULT); } } return 0; } /* * MEGARAID 'FW' commands. */ /** * mega_is_bios_enabled() * @adapter: pointer to our soft state * * issue command to find out if the BIOS is enabled for this controller */ static int mega_is_bios_enabled(adapter_t *adapter) { struct mbox_out mbox; unsigned char *raw_mbox = (u8 *)&mbox; memset(&mbox, 0, sizeof(mbox)); memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox.xferaddr = (u32)adapter->buf_dma_handle; raw_mbox[0] = IS_BIOS_ENABLED; raw_mbox[2] = GET_BIOS; issue_scb_block(adapter, raw_mbox); return *(char *)adapter->mega_buffer; } /** * mega_enum_raid_scsi() * @adapter: pointer to our soft state * * Find out what channels are RAID/SCSI. This information is used to * differentiate the virtual channels and physical channels and to support * ROMB feature and non-disk devices. */ static void mega_enum_raid_scsi(adapter_t *adapter) { struct mbox_out mbox; unsigned char *raw_mbox = (u8 *)&mbox; int i; memset(&mbox, 0, sizeof(mbox)); /* * issue command to find out what channels are raid/scsi */ raw_mbox[0] = CHNL_CLASS; raw_mbox[2] = GET_CHNL_CLASS; memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox.xferaddr = (u32)adapter->buf_dma_handle; /* * Non-ROMB firmware fail this command, so all channels * must be shown RAID */ adapter->mega_ch_class = 0xFF; if(!issue_scb_block(adapter, raw_mbox)) { adapter->mega_ch_class = *((char *)adapter->mega_buffer); } for( i = 0; i < adapter->product_info.nchannels; i++ ) { if( (adapter->mega_ch_class >> i) & 0x01 ) { dev_info(&adapter->dev->dev, "channel[%d] is raid\n", i); } else { dev_info(&adapter->dev->dev, "channel[%d] is scsi\n", i); } } return; } /** * mega_get_boot_drv() * @adapter: pointer to our soft state * * Find out which device is the boot device. Note, any logical drive or any * phyical device (e.g., a CDROM) can be designated as a boot device. */ static void mega_get_boot_drv(adapter_t *adapter) { struct private_bios_data *prv_bios_data; struct mbox_out mbox; unsigned char *raw_mbox = (u8 *)&mbox; u16 cksum = 0; u8 *cksum_p; u8 boot_pdrv; int i; memset(&mbox, 0, sizeof(mbox)); raw_mbox[0] = BIOS_PVT_DATA; raw_mbox[2] = GET_BIOS_PVT_DATA; memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox.xferaddr = (u32)adapter->buf_dma_handle; adapter->boot_ldrv_enabled = 0; adapter->boot_ldrv = 0; adapter->boot_pdrv_enabled = 0; adapter->boot_pdrv_ch = 0; adapter->boot_pdrv_tgt = 0; if(issue_scb_block(adapter, raw_mbox) == 0) { prv_bios_data = (struct private_bios_data *)adapter->mega_buffer; cksum = 0; cksum_p = (char *)prv_bios_data; for (i = 0; i < 14; i++ ) { cksum += (u16)(*cksum_p++); } if (prv_bios_data->cksum == (u16)(0-cksum) ) { /* * If MSB is set, a physical drive is set as boot * device */ if( prv_bios_data->boot_drv & 0x80 ) { adapter->boot_pdrv_enabled = 1; boot_pdrv = prv_bios_data->boot_drv & 0x7F; adapter->boot_pdrv_ch = boot_pdrv / 16; adapter->boot_pdrv_tgt = boot_pdrv % 16; } else { adapter->boot_ldrv_enabled = 1; adapter->boot_ldrv = prv_bios_data->boot_drv; } } } } /** * mega_support_random_del() * @adapter: pointer to our soft state * * Find out if this controller supports random deletion and addition of * logical drives */ static int mega_support_random_del(adapter_t *adapter) { struct mbox_out mbox; unsigned char *raw_mbox = (u8 *)&mbox; int rval; memset(&mbox, 0, sizeof(mbox)); /* * issue command */ raw_mbox[0] = FC_DEL_LOGDRV; raw_mbox[2] = OP_SUP_DEL_LOGDRV; rval = issue_scb_block(adapter, raw_mbox); return !rval; } /** * mega_support_ext_cdb() * @adapter: pointer to our soft state * * Find out if this firmware support cdblen > 10 */ static int mega_support_ext_cdb(adapter_t *adapter) { struct mbox_out mbox; unsigned char *raw_mbox = (u8 *)&mbox; int rval; memset(&mbox, 0, sizeof(mbox)); /* * issue command to find out if controller supports extended CDBs. */ raw_mbox[0] = 0xA4; raw_mbox[2] = 0x16; rval = issue_scb_block(adapter, raw_mbox); return !rval; } /** * mega_del_logdrv() * @adapter: pointer to our soft state * @logdrv: logical drive to be deleted * * Delete the specified logical drive. It is the responsibility of the user * app to let the OS know about this operation. */ static int mega_del_logdrv(adapter_t *adapter, int logdrv) { unsigned long flags; scb_t *scb; int rval; /* * Stop sending commands to the controller, queue them internally. * When deletion is complete, ISR will flush the queue. */ atomic_set(&adapter->quiescent, 1); /* * Wait till all the issued commands are complete and there are no * commands in the pending queue */ while (atomic_read(&adapter->pend_cmds) > 0 || !list_empty(&adapter->pending_list)) msleep(1000); /* sleep for 1s */ rval = mega_do_del_logdrv(adapter, logdrv); spin_lock_irqsave(&adapter->lock, flags); /* * If delete operation was successful, add 0x80 to the logical drive * ids for commands in the pending queue. */ if (adapter->read_ldidmap) { struct list_head *pos; list_for_each(pos, &adapter->pending_list) { scb = list_entry(pos, scb_t, list); if (scb->pthru->logdrv < 0x80 ) scb->pthru->logdrv += 0x80; } } atomic_set(&adapter->quiescent, 0); mega_runpendq(adapter); spin_unlock_irqrestore(&adapter->lock, flags); return rval; } static int mega_do_del_logdrv(adapter_t *adapter, int logdrv) { megacmd_t mc; int rval; memset( &mc, 0, sizeof(megacmd_t)); mc.cmd = FC_DEL_LOGDRV; mc.opcode = OP_DEL_LOGDRV; mc.subopcode = logdrv; rval = mega_internal_command(adapter, &mc, NULL); /* log this event */ if(rval) { dev_warn(&adapter->dev->dev, "Delete LD-%d failed", logdrv); return rval; } /* * After deleting first logical drive, the logical drives must be * addressed by adding 0x80 to the logical drive id. */ adapter->read_ldidmap = 1; return rval; } /** * mega_get_max_sgl() * @adapter: pointer to our soft state * * Find out the maximum number of scatter-gather elements supported by this * version of the firmware */ static void mega_get_max_sgl(adapter_t *adapter) { struct mbox_out mbox; unsigned char *raw_mbox = (u8 *)&mbox; memset(&mbox, 0, sizeof(mbox)); memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox.xferaddr = (u32)adapter->buf_dma_handle; raw_mbox[0] = MAIN_MISC_OPCODE; raw_mbox[2] = GET_MAX_SG_SUPPORT; if( issue_scb_block(adapter, raw_mbox) ) { /* * f/w does not support this command. Choose the default value */ adapter->sglen = MIN_SGLIST; } else { adapter->sglen = *((char *)adapter->mega_buffer); /* * Make sure this is not more than the resources we are * planning to allocate */ if ( adapter->sglen > MAX_SGLIST ) adapter->sglen = MAX_SGLIST; } return; } /** * mega_support_cluster() * @adapter: pointer to our soft state * * Find out if this firmware support cluster calls. */ static int mega_support_cluster(adapter_t *adapter) { struct mbox_out mbox; unsigned char *raw_mbox = (u8 *)&mbox; memset(&mbox, 0, sizeof(mbox)); memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox.xferaddr = (u32)adapter->buf_dma_handle; /* * Try to get the initiator id. This command will succeed iff the * clustering is available on this HBA. */ raw_mbox[0] = MEGA_GET_TARGET_ID; if( issue_scb_block(adapter, raw_mbox) == 0 ) { /* * Cluster support available. Get the initiator target id. * Tell our id to mid-layer too. */ adapter->this_id = *(u32 *)adapter->mega_buffer; adapter->host->this_id = adapter->this_id; return 1; } return 0; } #ifdef CONFIG_PROC_FS /** * mega_adapinq() * @adapter: pointer to our soft state * @dma_handle: DMA address of the buffer * * Issue internal commands while interrupts are available. * We only issue direct mailbox commands from within the driver. ioctl() * interface using these routines can issue passthru commands. */ static int mega_adapinq(adapter_t *adapter, dma_addr_t dma_handle) { megacmd_t mc; memset(&mc, 0, sizeof(megacmd_t)); if( adapter->flag & BOARD_40LD ) { mc.cmd = FC_NEW_CONFIG; mc.opcode = NC_SUBOP_ENQUIRY3; mc.subopcode = ENQ3_GET_SOLICITED_FULL; } else { mc.cmd = MEGA_MBOXCMD_ADPEXTINQ; } mc.xferaddr = (u32)dma_handle; if ( mega_internal_command(adapter, &mc, NULL) != 0 ) { return -1; } return 0; } /** * mega_internal_dev_inquiry() * @adapter: pointer to our soft state * @ch: channel for this device * @tgt: ID of this device * @buf_dma_handle: DMA address of the buffer * * Issue the scsi inquiry for the specified device. */ static int mega_internal_dev_inquiry(adapter_t *adapter, u8 ch, u8 tgt, dma_addr_t buf_dma_handle) { mega_passthru *pthru; dma_addr_t pthru_dma_handle; megacmd_t mc; int rval; struct pci_dev *pdev; /* * For all internal commands, the buffer must be allocated in <4GB * address range */ if( make_local_pdev(adapter, &pdev) != 0 ) return -1; pthru = dma_alloc_coherent(&pdev->dev, sizeof(mega_passthru), &pthru_dma_handle, GFP_KERNEL); if( pthru == NULL ) { free_local_pdev(pdev); return -1; } pthru->timeout = 2; pthru->ars = 1; pthru->reqsenselen = 14; pthru->islogical = 0; pthru->channel = (adapter->flag & BOARD_40LD) ? 0 : ch; pthru->target = (adapter->flag & BOARD_40LD) ? (ch << 4)|tgt : tgt; pthru->cdblen = 6; pthru->cdb[0] = INQUIRY; pthru->cdb[1] = 0; pthru->cdb[2] = 0; pthru->cdb[3] = 0; pthru->cdb[4] = 255; pthru->cdb[5] = 0; pthru->dataxferaddr = (u32)buf_dma_handle; pthru->dataxferlen = 256; memset(&mc, 0, sizeof(megacmd_t)); mc.cmd = MEGA_MBOXCMD_PASSTHRU; mc.xferaddr = (u32)pthru_dma_handle; rval = mega_internal_command(adapter, &mc, pthru); dma_free_coherent(&pdev->dev, sizeof(mega_passthru), pthru, pthru_dma_handle); free_local_pdev(pdev); return rval; } #endif /** * mega_internal_command() * @adapter: pointer to our soft state * @mc: the mailbox command * @pthru: Passthru structure for DCDB commands * * Issue the internal commands in interrupt mode. * The last argument is the address of the passthru structure if the command * to be fired is a passthru command * * Note: parameter 'pthru' is null for non-passthru commands. */ static int mega_internal_command(adapter_t *adapter, megacmd_t *mc, mega_passthru *pthru) { unsigned long flags; scb_t *scb; int rval; /* * The internal commands share one command id and hence are * serialized. This is so because we want to reserve maximum number of * available command ids for the I/O commands. */ mutex_lock(&adapter->int_mtx); scb = &adapter->int_scb; memset(scb, 0, sizeof(scb_t)); scb->idx = CMDID_INT_CMDS; scb->state |= SCB_ACTIVE | SCB_PENDQ; memcpy(scb->raw_mbox, mc, sizeof(megacmd_t)); /* * Is it a passthru command */ if (mc->cmd == MEGA_MBOXCMD_PASSTHRU) scb->pthru = pthru; spin_lock_irqsave(&adapter->lock, flags); list_add_tail(&scb->list, &adapter->pending_list); /* * Check if the HBA is in quiescent state, e.g., during a * delete logical drive opertion. If it is, don't run * the pending_list. */ if (atomic_read(&adapter->quiescent) == 0) mega_runpendq(adapter); spin_unlock_irqrestore(&adapter->lock, flags); wait_for_completion(&adapter->int_waitq); mc->status = rval = adapter->int_status; /* * Print a debug message for all failed commands. Applications can use * this information. */ if (rval && trace_level) { dev_info(&adapter->dev->dev, "cmd [%x, %x, %x] status:[%x]\n", mc->cmd, mc->opcode, mc->subopcode, rval); } mutex_unlock(&adapter->int_mtx); return rval; } static const struct scsi_host_template megaraid_template = { .module = THIS_MODULE, .name = "MegaRAID", .proc_name = "megaraid_legacy", .info = megaraid_info, .queuecommand = megaraid_queue, .bios_param = megaraid_biosparam, .max_sectors = MAX_SECTORS_PER_IO, .can_queue = MAX_COMMANDS, .this_id = DEFAULT_INITIATOR_ID, .sg_tablesize = MAX_SGLIST, .cmd_per_lun = DEF_CMD_PER_LUN, .eh_abort_handler = megaraid_abort, .eh_host_reset_handler = megaraid_reset, .no_write_same = 1, .cmd_size = sizeof(struct megaraid_cmd_priv), }; static int megaraid_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { struct Scsi_Host *host; adapter_t *adapter; unsigned long mega_baseport, tbase, flag = 0; u16 subsysid, subsysvid; u8 pci_bus, pci_dev_func; int irq, i, j; int error = -ENODEV; if (hba_count >= MAX_CONTROLLERS) goto out; if (pci_enable_device(pdev)) goto out; pci_set_master(pdev); pci_bus = pdev->bus->number; pci_dev_func = pdev->devfn; /* * The megaraid3 stuff reports the ID of the Intel part which is not * remotely specific to the megaraid */ if (pdev->vendor == PCI_VENDOR_ID_INTEL) { u16 magic; /* * Don't fall over the Compaq management cards using the same * PCI identifier */ if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ && pdev->subsystem_device == 0xC000) goto out_disable_device; /* Now check the magic signature byte */ pci_read_config_word(pdev, PCI_CONF_AMISIG, &magic); if (magic != HBA_SIGNATURE_471 && magic != HBA_SIGNATURE) goto out_disable_device; /* Ok it is probably a megaraid */ } /* * For these vendor and device ids, signature offsets are not * valid and 64 bit is implicit */ if (id->driver_data & BOARD_64BIT) flag |= BOARD_64BIT; else { u32 magic64; pci_read_config_dword(pdev, PCI_CONF_AMISIG64, &magic64); if (magic64 == HBA_SIGNATURE_64BIT) flag |= BOARD_64BIT; } subsysvid = pdev->subsystem_vendor; subsysid = pdev->subsystem_device; dev_notice(&pdev->dev, "found 0x%4.04x:0x%4.04x\n", id->vendor, id->device); /* Read the base port and IRQ from PCI */ mega_baseport = pci_resource_start(pdev, 0); irq = pdev->irq; tbase = mega_baseport; if (pci_resource_flags(pdev, 0) & IORESOURCE_MEM) { flag |= BOARD_MEMMAP; if (!request_mem_region(mega_baseport, 128, "megaraid")) { dev_warn(&pdev->dev, "mem region busy!\n"); goto out_disable_device; } mega_baseport = (unsigned long)ioremap(mega_baseport, 128); if (!mega_baseport) { dev_warn(&pdev->dev, "could not map hba memory\n"); goto out_release_region; } } else { flag |= BOARD_IOMAP; mega_baseport += 0x10; if (!request_region(mega_baseport, 16, "megaraid")) goto out_disable_device; } /* Initialize SCSI Host structure */ host = scsi_host_alloc(&megaraid_template, sizeof(adapter_t)); if (!host) goto out_iounmap; adapter = (adapter_t *)host->hostdata; memset(adapter, 0, sizeof(adapter_t)); dev_notice(&pdev->dev, "scsi%d:Found MegaRAID controller at 0x%lx, IRQ:%d\n", host->host_no, mega_baseport, irq); adapter->base = mega_baseport; if (flag & BOARD_MEMMAP) adapter->mmio_base = (void __iomem *) mega_baseport; INIT_LIST_HEAD(&adapter->free_list); INIT_LIST_HEAD(&adapter->pending_list); INIT_LIST_HEAD(&adapter->completed_list); adapter->flag = flag; spin_lock_init(&adapter->lock); host->cmd_per_lun = max_cmd_per_lun; host->max_sectors = max_sectors_per_io; adapter->dev = pdev; adapter->host = host; adapter->host->irq = irq; if (flag & BOARD_MEMMAP) adapter->host->base = tbase; else { adapter->host->io_port = tbase; adapter->host->n_io_port = 16; } adapter->host->unique_id = (pci_bus << 8) | pci_dev_func; /* * Allocate buffer to issue internal commands. */ adapter->mega_buffer = dma_alloc_coherent(&adapter->dev->dev, MEGA_BUFFER_SIZE, &adapter->buf_dma_handle, GFP_KERNEL); if (!adapter->mega_buffer) { dev_warn(&pdev->dev, "out of RAM\n"); goto out_host_put; } adapter->scb_list = kmalloc_array(MAX_COMMANDS, sizeof(scb_t), GFP_KERNEL); if (!adapter->scb_list) { dev_warn(&pdev->dev, "out of RAM\n"); goto out_free_cmd_buffer; } if (request_irq(irq, (adapter->flag & BOARD_MEMMAP) ? megaraid_isr_memmapped : megaraid_isr_iomapped, IRQF_SHARED, "megaraid", adapter)) { dev_warn(&pdev->dev, "Couldn't register IRQ %d!\n", irq); goto out_free_scb_list; } if (mega_setup_mailbox(adapter)) goto out_free_irq; if (mega_query_adapter(adapter)) goto out_free_mbox; /* * Have checks for some buggy f/w */ if ((subsysid == 0x1111) && (subsysvid == 0x1111)) { /* * Which firmware */ if (!strcmp(adapter->fw_version, "3.00") || !strcmp(adapter->fw_version, "3.01")) { dev_warn(&pdev->dev, "Your card is a Dell PERC " "2/SC RAID controller with " "firmware\nmegaraid: 3.00 or 3.01. " "This driver is known to have " "corruption issues\nmegaraid: with " "those firmware versions on this " "specific card. In order\nmegaraid: " "to protect your data, please upgrade " "your firmware to version\nmegaraid: " "3.10 or later, available from the " "Dell Technical Support web\n" "megaraid: site at\nhttp://support." "dell.com/us/en/filelib/download/" "index.asp?fileid=2940\n" ); } } /* * If we have a HP 1M(0x60E7)/2M(0x60E8) controller with * firmware H.01.07, H.01.08, and H.01.09 disable 64 bit * support, since this firmware cannot handle 64 bit * addressing */ if ((subsysvid == PCI_VENDOR_ID_HP) && ((subsysid == 0x60E7) || (subsysid == 0x60E8))) { /* * which firmware */ if (!strcmp(adapter->fw_version, "H01.07") || !strcmp(adapter->fw_version, "H01.08") || !strcmp(adapter->fw_version, "H01.09") ) { dev_warn(&pdev->dev, "Firmware H.01.07, " "H.01.08, and H.01.09 on 1M/2M " "controllers\n" "do not support 64 bit " "addressing.\nDISABLING " "64 bit support.\n"); adapter->flag &= ~BOARD_64BIT; } } if (mega_is_bios_enabled(adapter)) mega_hbas[hba_count].is_bios_enabled = 1; mega_hbas[hba_count].hostdata_addr = adapter; /* * Find out which channel is raid and which is scsi. This is * for ROMB support. */ mega_enum_raid_scsi(adapter); /* * Find out if a logical drive is set as the boot drive. If * there is one, will make that as the first logical drive. * ROMB: Do we have to boot from a physical drive. Then all * the physical drives would appear before the logical disks. * Else, all the physical drives would be exported to the mid * layer after logical drives. */ mega_get_boot_drv(adapter); if (adapter->boot_pdrv_enabled) { j = adapter->product_info.nchannels; for( i = 0; i < j; i++ ) adapter->logdrv_chan[i] = 0; for( i = j; i < NVIRT_CHAN + j; i++ ) adapter->logdrv_chan[i] = 1; } else { for (i = 0; i < NVIRT_CHAN; i++) adapter->logdrv_chan[i] = 1; for (i = NVIRT_CHAN; i < MAX_CHANNELS+NVIRT_CHAN; i++) adapter->logdrv_chan[i] = 0; adapter->mega_ch_class <<= NVIRT_CHAN; } /* * Do we support random deletion and addition of logical * drives */ adapter->read_ldidmap = 0; /* set it after first logdrv delete cmd */ adapter->support_random_del = mega_support_random_del(adapter); /* Initialize SCBs */ if (mega_init_scb(adapter)) goto out_free_mbox; /* * Reset the pending commands counter */ atomic_set(&adapter->pend_cmds, 0); /* * Reset the adapter quiescent flag */ atomic_set(&adapter->quiescent, 0); hba_soft_state[hba_count] = adapter; /* * Fill in the structure which needs to be passed back to the * application when it does an ioctl() for controller related * information. */ i = hba_count; mcontroller[i].base = mega_baseport; mcontroller[i].irq = irq; mcontroller[i].numldrv = adapter->numldrv; mcontroller[i].pcibus = pci_bus; mcontroller[i].pcidev = id->device; mcontroller[i].pcifun = PCI_FUNC (pci_dev_func); mcontroller[i].pciid = -1; mcontroller[i].pcivendor = id->vendor; mcontroller[i].pcislot = PCI_SLOT(pci_dev_func); mcontroller[i].uid = (pci_bus << 8) | pci_dev_func; /* Set the Mode of addressing to 64 bit if we can */ if ((adapter->flag & BOARD_64BIT) && (sizeof(dma_addr_t) == 8)) { dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); adapter->has_64bit_addr = 1; } else { dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); adapter->has_64bit_addr = 0; } mutex_init(&adapter->int_mtx); init_completion(&adapter->int_waitq); adapter->this_id = DEFAULT_INITIATOR_ID; adapter->host->this_id = DEFAULT_INITIATOR_ID; #if MEGA_HAVE_CLUSTERING /* * Is cluster support enabled on this controller * Note: In a cluster the HBAs ( the initiators ) will have * different target IDs and we cannot assume it to be 7. Call * to mega_support_cluster() will get the target ids also if * the cluster support is available */ adapter->has_cluster = mega_support_cluster(adapter); if (adapter->has_cluster) { dev_notice(&pdev->dev, "Cluster driver, initiator id:%d\n", adapter->this_id); } #endif pci_set_drvdata(pdev, host); mega_create_proc_entry(hba_count, mega_proc_dir_entry); error = scsi_add_host(host, &pdev->dev); if (error) goto out_free_mbox; scsi_scan_host(host); hba_count++; return 0; out_free_mbox: dma_free_coherent(&adapter->dev->dev, sizeof(mbox64_t), adapter->una_mbox64, adapter->una_mbox64_dma); out_free_irq: free_irq(adapter->host->irq, adapter); out_free_scb_list: kfree(adapter->scb_list); out_free_cmd_buffer: dma_free_coherent(&adapter->dev->dev, MEGA_BUFFER_SIZE, adapter->mega_buffer, adapter->buf_dma_handle); out_host_put: scsi_host_put(host); out_iounmap: if (flag & BOARD_MEMMAP) iounmap((void *)mega_baseport); out_release_region: if (flag & BOARD_MEMMAP) release_mem_region(tbase, 128); else release_region(mega_baseport, 16); out_disable_device: pci_disable_device(pdev); out: return error; } static void __megaraid_shutdown(adapter_t *adapter) { u_char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox = (mbox_t *)raw_mbox; int i; /* Flush adapter cache */ memset(&mbox->m_out, 0, sizeof(raw_mbox)); raw_mbox[0] = FLUSH_ADAPTER; free_irq(adapter->host->irq, adapter); /* Issue a blocking (interrupts disabled) command to the card */ issue_scb_block(adapter, raw_mbox); /* Flush disks cache */ memset(&mbox->m_out, 0, sizeof(raw_mbox)); raw_mbox[0] = FLUSH_SYSTEM; /* Issue a blocking (interrupts disabled) command to the card */ issue_scb_block(adapter, raw_mbox); if (atomic_read(&adapter->pend_cmds) > 0) dev_warn(&adapter->dev->dev, "pending commands!!\n"); /* * Have a delibrate delay to make sure all the caches are * actually flushed. */ for (i = 0; i <= 10; i++) mdelay(1000); } static void megaraid_remove_one(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); adapter_t *adapter = (adapter_t *)host->hostdata; char buf[12] = { 0 }; scsi_remove_host(host); __megaraid_shutdown(adapter); /* Free our resources */ if (adapter->flag & BOARD_MEMMAP) { iounmap((void *)adapter->base); release_mem_region(adapter->host->base, 128); } else release_region(adapter->base, 16); mega_free_sgl(adapter); sprintf(buf, "hba%d", adapter->host->host_no); remove_proc_subtree(buf, mega_proc_dir_entry); dma_free_coherent(&adapter->dev->dev, MEGA_BUFFER_SIZE, adapter->mega_buffer, adapter->buf_dma_handle); kfree(adapter->scb_list); dma_free_coherent(&adapter->dev->dev, sizeof(mbox64_t), adapter->una_mbox64, adapter->una_mbox64_dma); scsi_host_put(host); pci_disable_device(pdev); hba_count--; } static void megaraid_shutdown(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); adapter_t *adapter = (adapter_t *)host->hostdata; __megaraid_shutdown(adapter); } static struct pci_device_id megaraid_pci_tbl[] = { {PCI_VENDOR_ID_AMI, PCI_DEVICE_ID_AMI_MEGARAID, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_AMI, PCI_DEVICE_ID_AMI_MEGARAID2, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_AMI_MEGARAID3, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, megaraid_pci_tbl); static struct pci_driver megaraid_pci_driver = { .name = "megaraid_legacy", .id_table = megaraid_pci_tbl, .probe = megaraid_probe_one, .remove = megaraid_remove_one, .shutdown = megaraid_shutdown, }; static int __init megaraid_init(void) { int error; if ((max_cmd_per_lun <= 0) || (max_cmd_per_lun > MAX_CMD_PER_LUN)) max_cmd_per_lun = MAX_CMD_PER_LUN; if (max_mbox_busy_wait > MBOX_BUSY_WAIT) max_mbox_busy_wait = MBOX_BUSY_WAIT; #ifdef CONFIG_PROC_FS mega_proc_dir_entry = proc_mkdir("megaraid", NULL); if (!mega_proc_dir_entry) { printk(KERN_WARNING "megaraid: failed to create megaraid root\n"); } #endif error = pci_register_driver(&megaraid_pci_driver); if (error) { #ifdef CONFIG_PROC_FS remove_proc_entry("megaraid", NULL); #endif return error; } /* * Register the driver as a character device, for applications * to access it for ioctls. * First argument (major) to register_chrdev implies a dynamic * major number allocation. */ major = register_chrdev(0, "megadev_legacy", &megadev_fops); if (major < 0) { printk(KERN_WARNING "megaraid: failed to register char device\n"); } return 0; } static void __exit megaraid_exit(void) { /* * Unregister the character device interface to the driver. */ unregister_chrdev(major, "megadev_legacy"); pci_unregister_driver(&megaraid_pci_driver); #ifdef CONFIG_PROC_FS remove_proc_entry("megaraid", NULL); #endif } module_init(megaraid_init); module_exit(megaraid_exit); /* vi: set ts=8 sw=8 tw=78: */
/* SPDX-License-Identifier: GPL-2.0 */ /* * Support for Intel Camera Imaging ISP subsystem. * Copyright (c) 2015, Intel Corporation. */ #ifndef __ISYS_IRQ_LOCAL_H__ #define __ISYS_IRQ_LOCAL_H__ #include <type_support.h> typedef struct isys_irqc_state_s isys_irqc_state_t; struct isys_irqc_state_s { hrt_data edge; hrt_data mask; hrt_data status; hrt_data enable; hrt_data level_no; /*hrt_data clear; */ /* write-only register */ }; #endif /* __ISYS_IRQ_LOCAL_H__ */
/* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef SMU13_DRIVER_IF_SMU_13_0_7_H #define SMU13_DRIVER_IF_SMU_13_0_7_H // *** IMPORTANT *** // PMFW TEAM: Always increment the interface version on any change to this file #define SMU13_0_7_DRIVER_IF_VERSION 0x35 //Increment this version if SkuTable_t or BoardTable_t change #define PPTABLE_VERSION 0x27 #define NUM_GFXCLK_DPM_LEVELS 16 #define NUM_SOCCLK_DPM_LEVELS 8 #define NUM_MP0CLK_DPM_LEVELS 2 #define NUM_DCLK_DPM_LEVELS 8 #define NUM_VCLK_DPM_LEVELS 8 #define NUM_DISPCLK_DPM_LEVELS 8 #define NUM_DPPCLK_DPM_LEVELS 8 #define NUM_DPREFCLK_DPM_LEVELS 8 #define NUM_DCFCLK_DPM_LEVELS 8 #define NUM_DTBCLK_DPM_LEVELS 8 #define NUM_UCLK_DPM_LEVELS 4 #define NUM_LINK_LEVELS 3 #define NUM_FCLK_DPM_LEVELS 8 #define NUM_OD_FAN_MAX_POINTS 6 // Feature Control Defines #define FEATURE_FW_DATA_READ_BIT 0 #define FEATURE_DPM_GFXCLK_BIT 1 #define FEATURE_DPM_GFX_POWER_OPTIMIZER_BIT 2 #define FEATURE_DPM_UCLK_BIT 3 #define FEATURE_DPM_FCLK_BIT 4 #define FEATURE_DPM_SOCCLK_BIT 5 #define FEATURE_DPM_MP0CLK_BIT 6 #define FEATURE_DPM_LINK_BIT 7 #define FEATURE_DPM_DCN_BIT 8 #define FEATURE_VMEMP_SCALING_BIT 9 #define FEATURE_VDDIO_MEM_SCALING_BIT 10 #define FEATURE_DS_GFXCLK_BIT 11 #define FEATURE_DS_SOCCLK_BIT 12 #define FEATURE_DS_FCLK_BIT 13 #define FEATURE_DS_LCLK_BIT 14 #define FEATURE_DS_DCFCLK_BIT 15 #define FEATURE_DS_UCLK_BIT 16 #define FEATURE_GFX_ULV_BIT 17 #define FEATURE_FW_DSTATE_BIT 18 #define FEATURE_GFXOFF_BIT 19 #define FEATURE_BACO_BIT 20 #define FEATURE_MM_DPM_BIT 21 #define FEATURE_SOC_MPCLK_DS_BIT 22 #define FEATURE_BACO_MPCLK_DS_BIT 23 #define FEATURE_THROTTLERS_BIT 24 #define FEATURE_SMARTSHIFT_BIT 25 #define FEATURE_GTHR_BIT 26 #define FEATURE_ACDC_BIT 27 #define FEATURE_VR0HOT_BIT 28 #define FEATURE_FW_CTF_BIT 29 #define FEATURE_FAN_CONTROL_BIT 30 #define FEATURE_GFX_DCS_BIT 31 #define FEATURE_GFX_READ_MARGIN_BIT 32 #define FEATURE_LED_DISPLAY_BIT 33 #define FEATURE_GFXCLK_SPREAD_SPECTRUM_BIT 34 #define FEATURE_OUT_OF_BAND_MONITOR_BIT 35 #define FEATURE_OPTIMIZED_VMIN_BIT 36 #define FEATURE_GFX_IMU_BIT 37 #define FEATURE_BOOT_TIME_CAL_BIT 38 #define FEATURE_GFX_PCC_DFLL_BIT 39 #define FEATURE_SOC_CG_BIT 40 #define FEATURE_DF_CSTATE_BIT 41 #define FEATURE_GFX_EDC_BIT 42 #define FEATURE_BOOT_POWER_OPT_BIT 43 #define FEATURE_CLOCK_POWER_DOWN_BYPASS_BIT 44 #define FEATURE_DS_VCN_BIT 45 #define FEATURE_BACO_CG_BIT 46 #define FEATURE_MEM_TEMP_READ_BIT 47 #define FEATURE_ATHUB_MMHUB_PG_BIT 48 #define FEATURE_SOC_PCC_BIT 49 #define FEATURE_EDC_PWRBRK_BIT 50 #define FEATURE_SPARE_51_BIT 51 #define FEATURE_SPARE_52_BIT 52 #define FEATURE_SPARE_53_BIT 53 #define FEATURE_SPARE_54_BIT 54 #define FEATURE_SPARE_55_BIT 55 #define FEATURE_SPARE_56_BIT 56 #define FEATURE_SPARE_57_BIT 57 #define FEATURE_SPARE_58_BIT 58 #define FEATURE_SPARE_59_BIT 59 #define FEATURE_SPARE_60_BIT 60 #define FEATURE_SPARE_61_BIT 61 #define FEATURE_SPARE_62_BIT 62 #define FEATURE_SPARE_63_BIT 63 #define NUM_FEATURES 64 #define ALLOWED_FEATURE_CTRL_DEFAULT 0xFFFFFFFFFFFFFFFFULL #define ALLOWED_FEATURE_CTRL_SCPM ((1 << FEATURE_DPM_GFXCLK_BIT) | \ (1 << FEATURE_DPM_GFX_POWER_OPTIMIZER_BIT) | \ (1 << FEATURE_DPM_UCLK_BIT) | \ (1 << FEATURE_DPM_FCLK_BIT) | \ (1 << FEATURE_DPM_SOCCLK_BIT) | \ (1 << FEATURE_DPM_MP0CLK_BIT) | \ (1 << FEATURE_DPM_LINK_BIT) | \ (1 << FEATURE_DPM_DCN_BIT) | \ (1 << FEATURE_DS_GFXCLK_BIT) | \ (1 << FEATURE_DS_SOCCLK_BIT) | \ (1 << FEATURE_DS_FCLK_BIT) | \ (1 << FEATURE_DS_LCLK_BIT) | \ (1 << FEATURE_DS_DCFCLK_BIT) | \ (1 << FEATURE_DS_UCLK_BIT) | \ (1ULL << FEATURE_DS_VCN_BIT)) //For use with feature control messages typedef enum { FEATURE_PWR_ALL, FEATURE_PWR_S5, FEATURE_PWR_BACO, FEATURE_PWR_SOC, FEATURE_PWR_GFX, FEATURE_PWR_DOMAIN_COUNT, } FEATURE_PWR_DOMAIN_e; // Debug Overrides Bitmask #define DEBUG_OVERRIDE_DISABLE_VOLT_LINK_VCN_FCLK 0x00000001 #define DEBUG_OVERRIDE_DISABLE_VOLT_LINK_DCN_FCLK 0x00000002 #define DEBUG_OVERRIDE_DISABLE_VOLT_LINK_MP0_FCLK 0x00000004 #define DEBUG_OVERRIDE_DISABLE_VOLT_LINK_VCN_DCFCLK 0x00000008 #define DEBUG_OVERRIDE_DISABLE_FAST_FCLK_TIMER 0x00000010 #define DEBUG_OVERRIDE_DISABLE_VCN_PG 0x00000020 #define DEBUG_OVERRIDE_DISABLE_FMAX_VMAX 0x00000040 #define DEBUG_OVERRIDE_DISABLE_IMU_FW_CHECKS 0x00000080 #define DEBUG_OVERRIDE_DISABLE_D0i2_REENTRY_HSR_TIMER_CHECK 0x00000100 #define DEBUG_OVERRIDE_DISABLE_DFLL 0x00000200 #define DEBUG_OVERRIDE_ENABLE_RLC_VF_BRINGUP_MODE 0x00000400 #define DEBUG_OVERRIDE_DFLL_MASTER_MODE 0x00000800 #define DEBUG_OVERRIDE_ENABLE_PROFILING_MODE 0x00001000 // VR Mapping Bit Defines #define VR_MAPPING_VR_SELECT_MASK 0x01 #define VR_MAPPING_VR_SELECT_SHIFT 0x00 #define VR_MAPPING_PLANE_SELECT_MASK 0x02 #define VR_MAPPING_PLANE_SELECT_SHIFT 0x01 // PSI Bit Defines #define PSI_SEL_VR0_PLANE0_PSI0 0x01 #define PSI_SEL_VR0_PLANE0_PSI1 0x02 #define PSI_SEL_VR0_PLANE1_PSI0 0x04 #define PSI_SEL_VR0_PLANE1_PSI1 0x08 #define PSI_SEL_VR1_PLANE0_PSI0 0x10 #define PSI_SEL_VR1_PLANE0_PSI1 0x20 #define PSI_SEL_VR1_PLANE1_PSI0 0x40 #define PSI_SEL_VR1_PLANE1_PSI1 0x80 typedef enum { SVI_PSI_0, // Full phase count (default) SVI_PSI_1, // Phase count 1st level SVI_PSI_2, // Phase count 2nd level SVI_PSI_3, // Single phase operation + active diode emulation SVI_PSI_4, // Single phase operation + passive diode emulation *optional* SVI_PSI_5, // Reserved SVI_PSI_6, // Power down to 0V (voltage regulation disabled) SVI_PSI_7, // Automated phase shedding and diode emulation } SVI_PSI_e; // Throttler Control/Status Bits #define THROTTLER_TEMP_EDGE_BIT 0 #define THROTTLER_TEMP_HOTSPOT_BIT 1 #define THROTTLER_TEMP_HOTSPOT_G_BIT 2 #define THROTTLER_TEMP_HOTSPOT_M_BIT 3 #define THROTTLER_TEMP_MEM_BIT 4 #define THROTTLER_TEMP_VR_GFX_BIT 5 #define THROTTLER_TEMP_VR_MEM0_BIT 6 #define THROTTLER_TEMP_VR_MEM1_BIT 7 #define THROTTLER_TEMP_VR_SOC_BIT 8 #define THROTTLER_TEMP_VR_U_BIT 9 #define THROTTLER_TEMP_LIQUID0_BIT 10 #define THROTTLER_TEMP_LIQUID1_BIT 11 #define THROTTLER_TEMP_PLX_BIT 12 #define THROTTLER_TDC_GFX_BIT 13 #define THROTTLER_TDC_SOC_BIT 14 #define THROTTLER_TDC_U_BIT 15 #define THROTTLER_PPT0_BIT 16 #define THROTTLER_PPT1_BIT 17 #define THROTTLER_PPT2_BIT 18 #define THROTTLER_PPT3_BIT 19 #define THROTTLER_FIT_BIT 20 #define THROTTLER_GFX_APCC_PLUS_BIT 21 #define THROTTLER_COUNT 22 // FW DState Features Control Bits #define FW_DSTATE_SOC_ULV_BIT 0 #define FW_DSTATE_G6_HSR_BIT 1 #define FW_DSTATE_G6_PHY_VMEMP_OFF_BIT 2 #define FW_DSTATE_SMN_DS_BIT 3 #define FW_DSTATE_MP1_WHISPER_MODE_BIT 4 #define FW_DSTATE_SOC_LIV_MIN_BIT 5 #define FW_DSTATE_SOC_PLL_PWRDN_BIT 6 #define FW_DSTATE_MEM_PLL_PWRDN_BIT 7 #define FW_DSTATE_MALL_ALLOC_BIT 8 #define FW_DSTATE_MEM_PSI_BIT 9 #define FW_DSTATE_HSR_NON_STROBE_BIT 10 #define FW_DSTATE_MP0_ENTER_WFI_BIT 11 #define FW_DSTATE_U_ULV_BIT 12 #define FW_DSTATE_MALL_FLUSH_BIT 13 #define FW_DSTATE_SOC_PSI_BIT 14 #define FW_DSTATE_U_PSI_BIT 15 #define FW_DSTATE_UCP_DS_BIT 16 #define FW_DSTATE_CSRCLK_DS_BIT 17 #define FW_DSTATE_MMHUB_INTERLOCK_BIT 18 #define FW_DSTATE_D0i3_2_QUIET_FW_BIT 19 #define FW_DSTATE_CLDO_PRG_BIT 20 #define FW_DSTATE_DF_PLL_PWRDN_BIT 21 #define FW_DSTATE_U_LOW_PWR_MODE_EN_BIT 22 #define FW_DSTATE_GFX_PSI6_BIT 23 #define FW_DSTATE_GFX_VR_PWR_STAGE_BIT 24 //LED Display Mask & Control Bits #define LED_DISPLAY_GFX_DPM_BIT 0 #define LED_DISPLAY_PCIE_BIT 1 #define LED_DISPLAY_ERROR_BIT 2 #define MEM_TEMP_READ_OUT_OF_BAND_BIT 0 #define MEM_TEMP_READ_IN_BAND_REFRESH_BIT 1 #define MEM_TEMP_READ_IN_BAND_DUMMY_PSTATE_BIT 2 typedef enum { SMARTSHIFT_VERSION_1, SMARTSHIFT_VERSION_2, SMARTSHIFT_VERSION_3, } SMARTSHIFT_VERSION_e; typedef enum { FOPT_CALC_AC_CALC_DC, FOPT_PPTABLE_AC_CALC_DC, FOPT_CALC_AC_PPTABLE_DC, FOPT_PPTABLE_AC_PPTABLE_DC, } FOPT_CALC_e; typedef enum { DRAM_BIT_WIDTH_DISABLED = 0, DRAM_BIT_WIDTH_X_8 = 8, DRAM_BIT_WIDTH_X_16 = 16, DRAM_BIT_WIDTH_X_32 = 32, DRAM_BIT_WIDTH_X_64 = 64, DRAM_BIT_WIDTH_X_128 = 128, DRAM_BIT_WIDTH_COUNT, } DRAM_BIT_WIDTH_TYPE_e; //I2C Interface #define NUM_I2C_CONTROLLERS 8 #define I2C_CONTROLLER_ENABLED 1 #define I2C_CONTROLLER_DISABLED 0 #define MAX_SW_I2C_COMMANDS 24 typedef enum { I2C_CONTROLLER_PORT_0 = 0, //CKSVII2C0 I2C_CONTROLLER_PORT_1 = 1, //CKSVII2C1 I2C_CONTROLLER_PORT_COUNT, } I2cControllerPort_e; typedef enum { I2C_CONTROLLER_NAME_VR_GFX = 0, I2C_CONTROLLER_NAME_VR_SOC, I2C_CONTROLLER_NAME_VR_VMEMP, I2C_CONTROLLER_NAME_VR_VDDIO, I2C_CONTROLLER_NAME_LIQUID0, I2C_CONTROLLER_NAME_LIQUID1, I2C_CONTROLLER_NAME_PLX, I2C_CONTROLLER_NAME_FAN_INTAKE, I2C_CONTROLLER_NAME_COUNT, } I2cControllerName_e; typedef enum { I2C_CONTROLLER_THROTTLER_TYPE_NONE = 0, I2C_CONTROLLER_THROTTLER_VR_GFX, I2C_CONTROLLER_THROTTLER_VR_SOC, I2C_CONTROLLER_THROTTLER_VR_VMEMP, I2C_CONTROLLER_THROTTLER_VR_VDDIO, I2C_CONTROLLER_THROTTLER_LIQUID0, I2C_CONTROLLER_THROTTLER_LIQUID1, I2C_CONTROLLER_THROTTLER_PLX, I2C_CONTROLLER_THROTTLER_FAN_INTAKE, I2C_CONTROLLER_THROTTLER_INA3221, I2C_CONTROLLER_THROTTLER_COUNT, } I2cControllerThrottler_e; typedef enum { I2C_CONTROLLER_PROTOCOL_VR_XPDE132G5, I2C_CONTROLLER_PROTOCOL_VR_IR35217, I2C_CONTROLLER_PROTOCOL_TMP_MAX31875, I2C_CONTROLLER_PROTOCOL_INA3221, I2C_CONTROLLER_PROTOCOL_TMP_MAX6604, I2C_CONTROLLER_PROTOCOL_COUNT, } I2cControllerProtocol_e; typedef struct { uint8_t Enabled; uint8_t Speed; uint8_t SlaveAddress; uint8_t ControllerPort; uint8_t ControllerName; uint8_t ThermalThrotter; uint8_t I2cProtocol; uint8_t PaddingConfig; } I2cControllerConfig_t; typedef enum { I2C_PORT_SVD_SCL = 0, I2C_PORT_GPIO, } I2cPort_e; typedef enum { I2C_SPEED_FAST_50K = 0, //50 Kbits/s I2C_SPEED_FAST_100K, //100 Kbits/s I2C_SPEED_FAST_400K, //400 Kbits/s I2C_SPEED_FAST_PLUS_1M, //1 Mbits/s (in fast mode) I2C_SPEED_HIGH_1M, //1 Mbits/s (in high speed mode) I2C_SPEED_HIGH_2M, //2.3 Mbits/s I2C_SPEED_COUNT, } I2cSpeed_e; typedef enum { I2C_CMD_READ = 0, I2C_CMD_WRITE, I2C_CMD_COUNT, } I2cCmdType_e; #define CMDCONFIG_STOP_BIT 0 #define CMDCONFIG_RESTART_BIT 1 #define CMDCONFIG_READWRITE_BIT 2 //bit should be 0 for read, 1 for write #define CMDCONFIG_STOP_MASK (1 << CMDCONFIG_STOP_BIT) #define CMDCONFIG_RESTART_MASK (1 << CMDCONFIG_RESTART_BIT) #define CMDCONFIG_READWRITE_MASK (1 << CMDCONFIG_READWRITE_BIT) typedef struct { uint8_t ReadWriteData; //Return data for read. Data to send for write uint8_t CmdConfig; //Includes whether associated command should have a stop or restart command, and is a read or write } SwI2cCmd_t; //SW I2C Command Table typedef struct { uint8_t I2CcontrollerPort; //CKSVII2C0(0) or //CKSVII2C1(1) uint8_t I2CSpeed; //Use I2cSpeed_e to indicate speed to select uint8_t SlaveAddress; //Slave address of device uint8_t NumCmds; //Number of commands SwI2cCmd_t SwI2cCmds[MAX_SW_I2C_COMMANDS]; } SwI2cRequest_t; // SW I2C Request Table typedef struct { SwI2cRequest_t SwI2cRequest; uint32_t Spare[8]; uint32_t MmHubPadding[8]; // SMU internal use } SwI2cRequestExternal_t; typedef struct { uint64_t mca_umc_status; uint64_t mca_umc_addr; uint16_t ce_count_lo_chip; uint16_t ce_count_hi_chip; uint32_t eccPadding; } EccInfo_t; typedef struct { EccInfo_t EccInfo[24]; } EccInfoTable_t; //D3HOT sequences typedef enum { BACO_SEQUENCE, MSR_SEQUENCE, BAMACO_SEQUENCE, ULPS_SEQUENCE, D3HOT_SEQUENCE_COUNT, } D3HOTSequence_e; //This is aligned with RSMU PGFSM Register Mapping typedef enum { PG_DYNAMIC_MODE = 0, PG_STATIC_MODE, } PowerGatingMode_e; //This is aligned with RSMU PGFSM Register Mapping typedef enum { PG_POWER_DOWN = 0, PG_POWER_UP, } PowerGatingSettings_e; typedef struct { uint32_t a; // store in IEEE float format in this variable uint32_t b; // store in IEEE float format in this variable uint32_t c; // store in IEEE float format in this variable } QuadraticInt_t; typedef struct { uint32_t m; // store in IEEE float format in this variable uint32_t b; // store in IEEE float format in this variable } LinearInt_t; typedef struct { uint32_t a; // store in IEEE float format in this variable uint32_t b; // store in IEEE float format in this variable uint32_t c; // store in IEEE float format in this variable } DroopInt_t; typedef enum { DCS_ARCH_DISABLED, DCS_ARCH_FADCS, DCS_ARCH_ASYNC, } DCS_ARCH_e; //Only Clks that have DPM descriptors are listed here typedef enum { PPCLK_GFXCLK = 0, PPCLK_SOCCLK, PPCLK_UCLK, PPCLK_FCLK, PPCLK_DCLK_0, PPCLK_VCLK_0, PPCLK_DCLK_1, PPCLK_VCLK_1, PPCLK_DISPCLK, PPCLK_DPPCLK, PPCLK_DPREFCLK, PPCLK_DCFCLK, PPCLK_DTBCLK, PPCLK_COUNT, } PPCLK_e; typedef enum { VOLTAGE_MODE_PPTABLE = 0, VOLTAGE_MODE_FUSES, VOLTAGE_MODE_COUNT, } VOLTAGE_MODE_e; typedef enum { AVFS_VOLTAGE_GFX = 0, AVFS_VOLTAGE_SOC, AVFS_VOLTAGE_COUNT, } AVFS_VOLTAGE_TYPE_e; typedef enum { AVFS_TEMP_COLD = 0, AVFS_TEMP_HOT, AVFS_TEMP_COUNT, } AVFS_TEMP_e; typedef enum { AVFS_D_G, AVFS_D_M_B, AVFS_D_M_S, AVFS_D_COUNT, } AVFS_D_e; typedef enum { UCLK_DIV_BY_1 = 0, UCLK_DIV_BY_2, UCLK_DIV_BY_4, UCLK_DIV_BY_8, } UCLK_DIV_e; typedef enum { GPIO_INT_POLARITY_ACTIVE_LOW = 0, GPIO_INT_POLARITY_ACTIVE_HIGH, } GpioIntPolarity_e; typedef enum { PWR_CONFIG_TDP = 0, PWR_CONFIG_TGP, PWR_CONFIG_TCP_ESTIMATED, PWR_CONFIG_TCP_MEASURED, } PwrConfig_e; typedef struct { uint8_t Padding; uint8_t SnapToDiscrete; // 0 - Fine grained DPM, 1 - Discrete DPM uint8_t NumDiscreteLevels; // Set to 2 (Fmin, Fmax) when using fine grained DPM, otherwise set to # discrete levels used uint8_t CalculateFopt; // Indication whether FW should calculate Fopt or use values below. Reference FOPT_CALC_e LinearInt_t ConversionToAvfsClk; // Transfer function to AVFS Clock (GHz->GHz) uint32_t Padding3[3]; uint16_t Padding4; uint16_t FoptimalDc; //Foptimal frequency in DC power mode. uint16_t FoptimalAc; //Foptimal frequency in AC power mode. uint16_t Padding2; } DpmDescriptor_t; typedef enum { PPT_THROTTLER_PPT0, PPT_THROTTLER_PPT1, PPT_THROTTLER_PPT2, PPT_THROTTLER_PPT3, PPT_THROTTLER_COUNT } PPT_THROTTLER_e; typedef enum { TEMP_EDGE, TEMP_HOTSPOT, TEMP_HOTSPOT_G, TEMP_HOTSPOT_M, TEMP_MEM, TEMP_VR_GFX, TEMP_VR_MEM0, TEMP_VR_MEM1, TEMP_VR_SOC, TEMP_VR_U, TEMP_LIQUID0, TEMP_LIQUID1, TEMP_PLX, TEMP_COUNT, } TEMP_e; typedef enum { TDC_THROTTLER_GFX, TDC_THROTTLER_SOC, TDC_THROTTLER_U, TDC_THROTTLER_COUNT } TDC_THROTTLER_e; typedef enum { SVI_PLANE_GFX, SVI_PLANE_SOC, SVI_PLANE_VMEMP, SVI_PLANE_VDDIO_MEM, SVI_PLANE_U, SVI_PLANE_COUNT, } SVI_PLANE_e; typedef enum { PMFW_VOLT_PLANE_GFX, PMFW_VOLT_PLANE_SOC, PMFW_VOLT_PLANE_COUNT } PMFW_VOLT_PLANE_e; typedef enum { CUSTOMER_VARIANT_ROW, CUSTOMER_VARIANT_FALCON, CUSTOMER_VARIANT_COUNT, } CUSTOMER_VARIANT_e; typedef enum { POWER_SOURCE_AC, POWER_SOURCE_DC, POWER_SOURCE_COUNT, } POWER_SOURCE_e; typedef enum { MEM_VENDOR_SAMSUNG, MEM_VENDOR_INFINEON, MEM_VENDOR_ELPIDA, MEM_VENDOR_ETRON, MEM_VENDOR_NANYA, MEM_VENDOR_HYNIX, MEM_VENDOR_MOSEL, MEM_VENDOR_WINBOND, MEM_VENDOR_ESMT, MEM_VENDOR_PLACEHOLDER0, MEM_VENDOR_PLACEHOLDER1, MEM_VENDOR_PLACEHOLDER2, MEM_VENDOR_PLACEHOLDER3, MEM_VENDOR_PLACEHOLDER4, MEM_VENDOR_PLACEHOLDER5, MEM_VENDOR_MICRON, MEM_VENDOR_COUNT, } MEM_VENDOR_e; typedef enum { PP_GRTAVFS_HW_CPO_CTL_ZONE0, PP_GRTAVFS_HW_CPO_CTL_ZONE1, PP_GRTAVFS_HW_CPO_CTL_ZONE2, PP_GRTAVFS_HW_CPO_CTL_ZONE3, PP_GRTAVFS_HW_CPO_CTL_ZONE4, PP_GRTAVFS_HW_CPO_EN_0_31_ZONE0, PP_GRTAVFS_HW_CPO_EN_32_63_ZONE0, PP_GRTAVFS_HW_CPO_EN_0_31_ZONE1, PP_GRTAVFS_HW_CPO_EN_32_63_ZONE1, PP_GRTAVFS_HW_CPO_EN_0_31_ZONE2, PP_GRTAVFS_HW_CPO_EN_32_63_ZONE2, PP_GRTAVFS_HW_CPO_EN_0_31_ZONE3, PP_GRTAVFS_HW_CPO_EN_32_63_ZONE3, PP_GRTAVFS_HW_CPO_EN_0_31_ZONE4, PP_GRTAVFS_HW_CPO_EN_32_63_ZONE4, PP_GRTAVFS_HW_ZONE0_VF, PP_GRTAVFS_HW_ZONE1_VF1, PP_GRTAVFS_HW_ZONE2_VF2, PP_GRTAVFS_HW_ZONE3_VF3, PP_GRTAVFS_HW_VOLTAGE_GB, PP_GRTAVFS_HW_CPOSCALINGCTRL_ZONE0, PP_GRTAVFS_HW_CPOSCALINGCTRL_ZONE1, PP_GRTAVFS_HW_CPOSCALINGCTRL_ZONE2, PP_GRTAVFS_HW_CPOSCALINGCTRL_ZONE3, PP_GRTAVFS_HW_CPOSCALINGCTRL_ZONE4, PP_GRTAVFS_HW_RESERVED_0, PP_GRTAVFS_HW_RESERVED_1, PP_GRTAVFS_HW_RESERVED_2, PP_GRTAVFS_HW_RESERVED_3, PP_GRTAVFS_HW_RESERVED_4, PP_GRTAVFS_HW_RESERVED_5, PP_GRTAVFS_HW_RESERVED_6, PP_GRTAVFS_HW_FUSE_COUNT, } PP_GRTAVFS_HW_FUSE_e; typedef enum { PP_GRTAVFS_FW_COMMON_PPVMIN_Z1_HOT_T0, PP_GRTAVFS_FW_COMMON_PPVMIN_Z1_COLD_T0, PP_GRTAVFS_FW_COMMON_PPVMIN_Z2_HOT_T0, PP_GRTAVFS_FW_COMMON_PPVMIN_Z2_COLD_T0, PP_GRTAVFS_FW_COMMON_PPVMIN_Z3_HOT_T0, PP_GRTAVFS_FW_COMMON_PPVMIN_Z3_COLD_T0, PP_GRTAVFS_FW_COMMON_PPVMIN_Z4_HOT_T0, PP_GRTAVFS_FW_COMMON_PPVMIN_Z4_COLD_T0, PP_GRTAVFS_FW_COMMON_SRAM_RM_Z0, PP_GRTAVFS_FW_COMMON_SRAM_RM_Z1, PP_GRTAVFS_FW_COMMON_SRAM_RM_Z2, PP_GRTAVFS_FW_COMMON_SRAM_RM_Z3, PP_GRTAVFS_FW_COMMON_SRAM_RM_Z4, PP_GRTAVFS_FW_COMMON_FUSE_COUNT, } PP_GRTAVFS_FW_COMMON_FUSE_e; typedef enum { PP_GRTAVFS_FW_SEP_FUSE_GB1_PWL_VOLTAGE_NEG_1, PP_GRTAVFS_FW_SEP_FUSE_GB1_PWL_VOLTAGE_0, PP_GRTAVFS_FW_SEP_FUSE_GB1_PWL_VOLTAGE_1, PP_GRTAVFS_FW_SEP_FUSE_GB1_PWL_VOLTAGE_2, PP_GRTAVFS_FW_SEP_FUSE_GB1_PWL_VOLTAGE_3, PP_GRTAVFS_FW_SEP_FUSE_GB1_PWL_VOLTAGE_4, PP_GRTAVFS_FW_SEP_FUSE_GB2_PWL_VOLTAGE_NEG_1, PP_GRTAVFS_FW_SEP_FUSE_GB2_PWL_VOLTAGE_0, PP_GRTAVFS_FW_SEP_FUSE_GB2_PWL_VOLTAGE_1, PP_GRTAVFS_FW_SEP_FUSE_GB2_PWL_VOLTAGE_2, PP_GRTAVFS_FW_SEP_FUSE_GB2_PWL_VOLTAGE_3, PP_GRTAVFS_FW_SEP_FUSE_GB2_PWL_VOLTAGE_4, PP_GRTAVFS_FW_SEP_FUSE_VF_NEG_1_FREQUENCY, PP_GRTAVFS_FW_SEP_FUSE_VF4_FREQUENCY, PP_GRTAVFS_FW_SEP_FUSE_FREQUENCY_TO_COUNT_SCALER_0, PP_GRTAVFS_FW_SEP_FUSE_FREQUENCY_TO_COUNT_SCALER_1, PP_GRTAVFS_FW_SEP_FUSE_FREQUENCY_TO_COUNT_SCALER_2, PP_GRTAVFS_FW_SEP_FUSE_FREQUENCY_TO_COUNT_SCALER_3, PP_GRTAVFS_FW_SEP_FUSE_FREQUENCY_TO_COUNT_SCALER_4, PP_GRTAVFS_FW_SEP_FUSE_COUNT, } PP_GRTAVFS_FW_SEP_FUSE_e; #define PP_NUM_RTAVFS_PWL_ZONES 5 // VBIOS or PPLIB configures telemetry slope and offset. Only slope expected to be set for SVI3 // Slope Q1.7, Offset Q1.2 typedef struct { int8_t Offset; // in Amps uint8_t Padding; uint16_t MaxCurrent; // in Amps } SviTelemetryScale_t; #define PP_NUM_OD_VF_CURVE_POINTS PP_NUM_RTAVFS_PWL_ZONES + 1 #define PP_OD_FEATURE_GFX_VF_CURVE_BIT 0 #define PP_OD_FEATURE_PPT_BIT 2 #define PP_OD_FEATURE_FAN_CURVE_BIT 3 #define PP_OD_FEATURE_GFXCLK_BIT 7 #define PP_OD_FEATURE_UCLK_BIT 8 #define PP_OD_FEATURE_ZERO_FAN_BIT 9 #define PP_OD_FEATURE_TEMPERATURE_BIT 10 #define PP_OD_FEATURE_COUNT 13 typedef enum { PP_OD_POWER_FEATURE_ALWAYS_ENABLED, PP_OD_POWER_FEATURE_DISABLED_WHILE_GAMING, PP_OD_POWER_FEATURE_ALWAYS_DISABLED, } PP_OD_POWER_FEATURE_e; typedef enum { FAN_MODE_AUTO = 0, FAN_MODE_MANUAL_LINEAR, } FanMode_e; typedef struct { uint32_t FeatureCtrlMask; //Voltage control int16_t VoltageOffsetPerZoneBoundary[PP_NUM_OD_VF_CURVE_POINTS]; uint32_t Reserved; //Frequency changes int16_t GfxclkFmin; // MHz int16_t GfxclkFmax; // MHz uint16_t UclkFmin; // MHz uint16_t UclkFmax; // MHz //PPT int16_t Ppt; // % int16_t Tdc; //Fan control uint8_t FanLinearPwmPoints[NUM_OD_FAN_MAX_POINTS]; uint8_t FanLinearTempPoints[NUM_OD_FAN_MAX_POINTS]; uint16_t FanMinimumPwm; uint16_t AcousticTargetRpmThreshold; uint16_t AcousticLimitRpmThreshold; uint16_t FanTargetTemperature; // Degree Celcius uint8_t FanZeroRpmEnable; uint8_t FanZeroRpmStopTemp; uint8_t FanMode; uint8_t MaxOpTemp; uint8_t Padding[4]; uint32_t Spare[12]; uint32_t MmHubPadding[8]; // SMU internal use. Adding here instead of external as a workaround } OverDriveTable_t; typedef struct { OverDriveTable_t OverDriveTable; } OverDriveTableExternal_t; typedef struct { uint32_t FeatureCtrlMask; int16_t VoltageOffsetPerZoneBoundary; uint16_t Reserved1; uint16_t Reserved2; int16_t GfxclkFmin; // MHz int16_t GfxclkFmax; // MHz uint16_t UclkFmin; // MHz uint16_t UclkFmax; // MHz //PPT int16_t Ppt; // % int16_t Tdc; uint8_t FanLinearPwmPoints; uint8_t FanLinearTempPoints; uint16_t FanMinimumPwm; uint16_t AcousticTargetRpmThreshold; uint16_t AcousticLimitRpmThreshold; uint16_t FanTargetTemperature; // Degree Celcius uint8_t FanZeroRpmEnable; uint8_t FanZeroRpmStopTemp; uint8_t FanMode; uint8_t MaxOpTemp; uint8_t Padding[4]; uint32_t Spare[12]; } OverDriveLimits_t; typedef enum { BOARD_GPIO_SMUIO_0, BOARD_GPIO_SMUIO_1, BOARD_GPIO_SMUIO_2, BOARD_GPIO_SMUIO_3, BOARD_GPIO_SMUIO_4, BOARD_GPIO_SMUIO_5, BOARD_GPIO_SMUIO_6, BOARD_GPIO_SMUIO_7, BOARD_GPIO_SMUIO_8, BOARD_GPIO_SMUIO_9, BOARD_GPIO_SMUIO_10, BOARD_GPIO_SMUIO_11, BOARD_GPIO_SMUIO_12, BOARD_GPIO_SMUIO_13, BOARD_GPIO_SMUIO_14, BOARD_GPIO_SMUIO_15, BOARD_GPIO_SMUIO_16, BOARD_GPIO_SMUIO_17, BOARD_GPIO_SMUIO_18, BOARD_GPIO_SMUIO_19, BOARD_GPIO_SMUIO_20, BOARD_GPIO_SMUIO_21, BOARD_GPIO_SMUIO_22, BOARD_GPIO_SMUIO_23, BOARD_GPIO_SMUIO_24, BOARD_GPIO_SMUIO_25, BOARD_GPIO_SMUIO_26, BOARD_GPIO_SMUIO_27, BOARD_GPIO_SMUIO_28, BOARD_GPIO_SMUIO_29, BOARD_GPIO_SMUIO_30, BOARD_GPIO_SMUIO_31, MAX_BOARD_GPIO_SMUIO_NUM, BOARD_GPIO_DC_GEN_A, BOARD_GPIO_DC_GEN_B, BOARD_GPIO_DC_GEN_C, BOARD_GPIO_DC_GEN_D, BOARD_GPIO_DC_GEN_E, BOARD_GPIO_DC_GEN_F, BOARD_GPIO_DC_GEN_G, BOARD_GPIO_DC_GENLK_CLK, BOARD_GPIO_DC_GENLK_VSYNC, BOARD_GPIO_DC_SWAPLOCK_A, BOARD_GPIO_DC_SWAPLOCK_B, } BOARD_GPIO_TYPE_e; #define INVALID_BOARD_GPIO 0xFF typedef struct { //PLL 0 uint16_t InitGfxclk_bypass; uint16_t InitSocclk; uint16_t InitMp0clk; uint16_t InitMpioclk; uint16_t InitSmnclk; uint16_t InitUcpclk; uint16_t InitCsrclk; //PLL 1 uint16_t InitDprefclk; uint16_t InitDcfclk; uint16_t InitDtbclk; //PLL 2 uint16_t InitDclk; //assume same DCLK/VCLK for both instances uint16_t InitVclk; // PLL 3 uint16_t InitUsbdfsclk; uint16_t InitMp1clk; uint16_t InitLclk; uint16_t InitBaco400clk_bypass; uint16_t InitBaco1200clk_bypass; uint16_t InitBaco700clk_bypass; // PLL 4 uint16_t InitFclk; // PLL 5 uint16_t InitGfxclk_clkb; //PLL 6 uint8_t InitUclkDPMState; // =0,1,2,3, frequency from FreqTableUclk uint8_t Padding[3]; uint32_t InitVcoFreqPll0; uint32_t InitVcoFreqPll1; uint32_t InitVcoFreqPll2; uint32_t InitVcoFreqPll3; uint32_t InitVcoFreqPll4; uint32_t InitVcoFreqPll5; uint32_t InitVcoFreqPll6; //encoding will change depending on SVI2/SVI3 uint16_t InitGfx; // In mV(Q2) , should be 0? uint16_t InitSoc; // In mV(Q2) uint16_t InitU; // In Mv(Q2) not applicable uint16_t Padding2; uint32_t Spare[8]; } BootValues_t; typedef struct { uint16_t Power[PPT_THROTTLER_COUNT][POWER_SOURCE_COUNT]; // Watts uint16_t Tdc[TDC_THROTTLER_COUNT]; // Amps uint16_t Temperature[TEMP_COUNT]; // Celsius uint8_t PwmLimitMin; uint8_t PwmLimitMax; uint8_t FanTargetTemperature; uint8_t Spare1[1]; uint16_t AcousticTargetRpmThresholdMin; uint16_t AcousticTargetRpmThresholdMax; uint16_t AcousticLimitRpmThresholdMin; uint16_t AcousticLimitRpmThresholdMax; uint16_t PccLimitMin; uint16_t PccLimitMax; uint16_t FanStopTempMin; uint16_t FanStopTempMax; uint16_t FanStartTempMin; uint16_t FanStartTempMax; uint16_t PowerMinPpt0[POWER_SOURCE_COUNT]; uint32_t Spare[11]; } MsgLimits_t; typedef struct { uint16_t BaseClockAc; uint16_t GameClockAc; uint16_t BoostClockAc; uint16_t BaseClockDc; uint16_t GameClockDc; uint16_t BoostClockDc; uint32_t Reserved[4]; } DriverReportedClocks_t; typedef struct { uint8_t DcBtcEnabled; uint8_t Padding[3]; uint16_t DcTol; // mV Q2 uint16_t DcBtcGb; // mV Q2 uint16_t DcBtcMin; // mV Q2 uint16_t DcBtcMax; // mV Q2 LinearInt_t DcBtcGbScalar; } AvfsDcBtcParams_t; typedef struct { uint16_t AvfsTemp[AVFS_TEMP_COUNT]; //in degrees C uint16_t VftFMin; // in MHz uint16_t VInversion; // in mV Q2 QuadraticInt_t qVft[AVFS_TEMP_COUNT]; QuadraticInt_t qAvfsGb; QuadraticInt_t qAvfsGb2; } AvfsFuseOverride_t; typedef struct { // SECTION: Version uint32_t Version; // should be unique to each SKU(i.e if any value changes in below structure then this value must be different) // SECTION: Feature Control uint32_t FeaturesToRun[NUM_FEATURES / 32]; // Features that PMFW will attempt to enable. Use FEATURE_*_BIT as mapping // SECTION: Miscellaneous Configuration uint8_t TotalPowerConfig; // Determines how PMFW calculates the power. Use defines from PwrConfig_e uint8_t CustomerVariant; //To specify if this PPTable is intended for a particular customer. Use defines from CUSTOMER_VARIANT_e uint8_t MemoryTemperatureTypeMask; // Bit mapping indicating which methods of memory temperature reading are enabled. Use defines from MEM_TEMP_*BIT uint8_t SmartShiftVersion; // Determine what SmartShift feature version is supported Use defines from SMARTSHIFT_VERSION_e // SECTION: Infrastructure Limits uint16_t SocketPowerLimitAc[PPT_THROTTLER_COUNT]; // In Watts. Power limit that PMFW attempts to control to in AC mode. Multiple limits supported uint16_t SocketPowerLimitDc[PPT_THROTTLER_COUNT]; // In Watts. Power limit that PMFW attempts to control to in DC mode. Multiple limits supported uint16_t SocketPowerLimitSmartShift2; // In Watts. Power limit used SmartShift //if set to 1, SocketPowerLimitAc and SocketPowerLimitDc will be interpreted as legacy programs(i.e absolute power). If 0, all except index 0 will be scalars //relative index 0 uint8_t EnableLegacyPptLimit; uint8_t UseInputTelemetry; //applicable to SVI3 only and only to be set if VRs support uint8_t SmartShiftMinReportedPptinDcs; //minimum possible active power consumption for this SKU. Used for SmartShift power reporting uint8_t PaddingPpt[1]; uint16_t VrTdcLimit[TDC_THROTTLER_COUNT]; // In Amperes. Current limit associated with VR regulator maximum temperature uint16_t PlatformTdcLimit[TDC_THROTTLER_COUNT]; // In Amperes. Current limit associated with platform maximum temperature per VR current rail uint16_t TemperatureLimit[TEMP_COUNT]; // In degrees Celsius. Temperature limit associated with each input uint16_t HwCtfTempLimit; // In degrees Celsius. Temperature above which HW will trigger CTF. Consumed by VBIOS only uint16_t PaddingInfra; // Per year normalized Vmax state failure rates (sum of the two domains divided by life time in years) uint32_t FitControllerFailureRateLimit; //in IEEE float //Expected GFX Duty Cycle at Vmax. uint32_t FitControllerGfxDutyCycle; // in IEEE float //Expected SOC Duty Cycle at Vmax. uint32_t FitControllerSocDutyCycle; // in IEEE float //This offset will be deducted from the controller output to before it goes through the SOC Vset limiter block. uint32_t FitControllerSocOffset; //in IEEE float uint32_t GfxApccPlusResidencyLimit; // Percentage value. Used by APCC+ controller to control PCC residency to some value // SECTION: Throttler settings uint32_t ThrottlerControlMask; // See THROTTLER_*_BIT for mapping // SECTION: FW DSTATE Settings uint32_t FwDStateMask; // See FW_DSTATE_*_BIT for mapping // SECTION: Voltage Control Parameters uint16_t UlvVoltageOffset[PMFW_VOLT_PLANE_COUNT]; // In mV(Q2). ULV offset used in either GFX_ULV or SOC_ULV(part of FW_DSTATE) uint16_t UlvVoltageOffsetU; // In mV(Q2). ULV offset used in either U_ULV(part of FW_DSTATE) uint16_t DeepUlvVoltageOffsetSoc; // In mV(Q2) Long Idle Vmin (deep ULV), for VDD_SOC as part of FW_DSTATE // Voltage Limits uint16_t DefaultMaxVoltage[PMFW_VOLT_PLANE_COUNT]; // In mV(Q2) Maximum voltage without FIT controller enabled uint16_t BoostMaxVoltage[PMFW_VOLT_PLANE_COUNT]; // In mV(Q2) Maximum voltage with FIT controller enabled //Vmin Optimizations int16_t VminTempHystersis[PMFW_VOLT_PLANE_COUNT]; // Celsius Temperature hysteresis for switching between low/high temperature values for Vmin int16_t VminTempThreshold[PMFW_VOLT_PLANE_COUNT]; // Celsius Temperature threshold for switching between low/high temperature values for Vmin uint16_t Vmin_Hot_T0[PMFW_VOLT_PLANE_COUNT]; //In mV(Q2) Initial (pre-aging) Vset to be used at hot. uint16_t Vmin_Cold_T0[PMFW_VOLT_PLANE_COUNT]; //In mV(Q2) Initial (pre-aging) Vset to be used at cold. uint16_t Vmin_Hot_Eol[PMFW_VOLT_PLANE_COUNT]; //In mV(Q2) End-of-life Vset to be used at hot. uint16_t Vmin_Cold_Eol[PMFW_VOLT_PLANE_COUNT]; //In mV(Q2) End-of-life Vset to be used at cold. uint16_t Vmin_Aging_Offset[PMFW_VOLT_PLANE_COUNT]; //In mV(Q2) Worst-case aging margin uint16_t Spare_Vmin_Plat_Offset_Hot[PMFW_VOLT_PLANE_COUNT]; //In mV(Q2) Platform offset apply to T0 Hot uint16_t Spare_Vmin_Plat_Offset_Cold[PMFW_VOLT_PLANE_COUNT]; //In mV(Q2) Platform offset apply to T0 Cold //This is a fixed/minimum VMIN aging degradation offset which is applied at T0. This reflects the minimum amount of aging already accounted for. uint16_t VcBtcFixedVminAgingOffset[PMFW_VOLT_PLANE_COUNT]; //Linear offset or GB term to account for mis-correlation between PSM and Vmin shift trends across parts. uint16_t VcBtcVmin2PsmDegrationGb[PMFW_VOLT_PLANE_COUNT]; //Scalar coefficient of the PSM aging degradation function uint32_t VcBtcPsmA[PMFW_VOLT_PLANE_COUNT]; // A_PSM //Exponential coefficient of the PSM aging degradation function uint32_t VcBtcPsmB[PMFW_VOLT_PLANE_COUNT]; // B_PSM //Scalar coefficient of the VMIN aging degradation function. Specified as worst case between hot and cold. uint32_t VcBtcVminA[PMFW_VOLT_PLANE_COUNT]; // A_VMIN //Exponential coefficient of the VMIN aging degradation function. Specified as worst case between hot and cold. uint32_t VcBtcVminB[PMFW_VOLT_PLANE_COUNT]; // B_VMIN uint8_t PerPartVminEnabled[PMFW_VOLT_PLANE_COUNT]; uint8_t VcBtcEnabled[PMFW_VOLT_PLANE_COUNT]; uint16_t SocketPowerLimitAcTau[PPT_THROTTLER_COUNT]; // Time constant of LPF in ms uint16_t SocketPowerLimitDcTau[PPT_THROTTLER_COUNT]; // Time constant of LPF in ms QuadraticInt_t Vmin_droop; uint32_t SpareVmin[9]; //SECTION: DPM Configuration 1 DpmDescriptor_t DpmDescriptor[PPCLK_COUNT]; uint16_t FreqTableGfx [NUM_GFXCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableVclk [NUM_VCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDclk [NUM_DCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableSocclk [NUM_SOCCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableUclk [NUM_UCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDispclk [NUM_DISPCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDppClk [NUM_DPPCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDprefclk [NUM_DPREFCLK_DPM_LEVELS]; // In MHz uint16_t FreqTableDcfclk [NUM_DCFCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDtbclk [NUM_DTBCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableFclk [NUM_FCLK_DPM_LEVELS ]; // In MHz uint32_t DcModeMaxFreq [PPCLK_COUNT ]; // In MHz // SECTION: DPM Configuration 2 uint16_t Mp0clkFreq [NUM_MP0CLK_DPM_LEVELS]; // in MHz uint16_t Mp0DpmVoltage [NUM_MP0CLK_DPM_LEVELS]; // mV(Q2) uint8_t GfxclkSpare[2]; uint16_t GfxclkFreqCap; //GFX Idle Power Settings uint16_t GfxclkFgfxoffEntry; // in Mhz uint16_t GfxclkFgfxoffExitImu; // in Mhz uint16_t GfxclkFgfxoffExitRlc; // in Mhz uint16_t GfxclkThrottleClock; //Used primarily in DCS uint8_t EnableGfxPowerStagesGpio; //Genlk_vsync GPIO flag used to control gfx power stages uint8_t GfxIdlePadding; uint8_t SmsRepairWRCKClkDivEn; uint8_t SmsRepairWRCKClkDivVal; uint8_t GfxOffEntryEarlyMGCGEn; uint8_t GfxOffEntryForceCGCGEn; uint8_t GfxOffEntryForceCGCGDelayEn; uint8_t GfxOffEntryForceCGCGDelayVal; // in microseconds uint16_t GfxclkFreqGfxUlv; // in MHz uint8_t GfxIdlePadding2[2]; uint32_t GfxOffEntryHysteresis; //For RLC to count after it enters CGCG, and before triggers GFXOFF entry uint32_t GfxoffSpare[15]; // GFX GPO uint32_t DfllBtcMasterScalerM; int32_t DfllBtcMasterScalerB; uint32_t DfllBtcSlaveScalerM; int32_t DfllBtcSlaveScalerB; uint32_t DfllPccAsWaitCtrl; //GDFLL_AS_WAIT_CTRL_PCC register value to be passed to RLC msg uint32_t DfllPccAsStepCtrl; //GDFLL_AS_STEP_CTRL_PCC register value to be passed to RLC msg uint32_t GfxGpoSpare[10]; // GFX DCS uint16_t DcsGfxOffVoltage; //Voltage in mV(Q2) applied to VDDGFX when entering DCS GFXOFF phase uint16_t PaddingDcs; uint16_t DcsMinGfxOffTime; //Minimum amount of time PMFW shuts GFX OFF as part of GFX DCS phase uint16_t DcsMaxGfxOffTime; //Maximum amount of time PMFW can shut GFX OFF as part of GFX DCS phase at a stretch. uint32_t DcsMinCreditAccum; //Min amount of positive credit accumulation before waking GFX up as part of DCS. uint16_t DcsExitHysteresis; //The min amount of time power credit accumulator should have a value > 0 before SMU exits the DCS throttling phase. uint16_t DcsTimeout; //This is the amount of time SMU FW waits for RLC to put GFX into GFXOFF before reverting to the fallback mechanism of throttling GFXCLK to Fmin. uint32_t DcsSpare[14]; // UCLK section uint16_t ShadowFreqTableUclk[NUM_UCLK_DPM_LEVELS]; // In MHz // UCLK section uint8_t UseStrobeModeOptimizations; //Set to indicate that FW should use strobe mode optimizations uint8_t PaddingMem[3]; uint8_t UclkDpmPstates [NUM_UCLK_DPM_LEVELS]; // 4 DPM states, 0-P0, 1-P1, 2-P2, 3-P3. uint8_t FreqTableUclkDiv [NUM_UCLK_DPM_LEVELS ]; // 0:Div-1, 1:Div-1/2, 2:Div-1/4, 3:Div-1/8 uint16_t MemVmempVoltage [NUM_UCLK_DPM_LEVELS]; // mV(Q2) uint16_t MemVddioVoltage [NUM_UCLK_DPM_LEVELS]; // mV(Q2) //FCLK Section uint8_t FclkDpmUPstates[NUM_FCLK_DPM_LEVELS]; // U P-state ID associated with each FCLK DPM state. uint16_t FclkDpmVddU[NUM_FCLK_DPM_LEVELS]; // mV(Q2) Vset U voltage associated with each FCLK DPM state. uint16_t FclkDpmUSpeed[NUM_FCLK_DPM_LEVELS]; //U speed associated with each FCLK DPM state uint16_t FclkDpmDisallowPstateFreq; //Frequency which FW will target when indicated that display config cannot support P-state. Set to 0 use FW calculated value uint16_t PaddingFclk; // Link DPM Settings uint8_t PcieGenSpeed[NUM_LINK_LEVELS]; ///< 0:PciE-gen1 1:PciE-gen2 2:PciE-gen3 3:PciE-gen4 uint8_t PcieLaneCount[NUM_LINK_LEVELS]; ///< 1=x1, 2=x2, 3=x4, 4=x8, 5=x12, 6=x16 uint16_t LclkFreq[NUM_LINK_LEVELS]; // SECTION: Fan Control uint16_t FanStopTemp[TEMP_COUNT]; //Celsius uint16_t FanStartTemp[TEMP_COUNT]; //Celsius uint16_t FanGain[TEMP_COUNT]; uint16_t FanGainPadding; uint16_t FanPwmMin; uint16_t AcousticTargetRpmThreshold; uint16_t AcousticLimitRpmThreshold; uint16_t FanMaximumRpm; uint16_t MGpuAcousticLimitRpmThreshold; uint16_t FanTargetGfxclk; uint32_t TempInputSelectMask; uint8_t FanZeroRpmEnable; uint8_t FanTachEdgePerRev; uint16_t FanTargetTemperature[TEMP_COUNT]; // The following are AFC override parameters. Leave at 0 to use FW defaults. int16_t FuzzyFan_ErrorSetDelta; int16_t FuzzyFan_ErrorRateSetDelta; int16_t FuzzyFan_PwmSetDelta; uint16_t FuzzyFan_Reserved; uint16_t FwCtfLimit[TEMP_COUNT]; uint16_t IntakeTempEnableRPM; int16_t IntakeTempOffsetTemp; uint16_t IntakeTempReleaseTemp; uint16_t IntakeTempHighIntakeAcousticLimit; uint16_t IntakeTempAcouticLimitReleaseRate; int16_t FanAbnormalTempLimitOffset; uint16_t FanStalledTriggerRpm; uint16_t FanAbnormalTriggerRpmCoeff; uint16_t FanAbnormalDetectionEnable; uint8_t FanIntakeSensorSupport; uint8_t FanIntakePadding[3]; uint32_t FanSpare[13]; // SECTION: VDD_GFX AVFS uint8_t OverrideGfxAvfsFuses; uint8_t GfxAvfsPadding[3]; uint32_t L2HwRtAvfsFuses[PP_GRTAVFS_HW_FUSE_COUNT]; //see fusedoc for encoding uint32_t SeHwRtAvfsFuses[PP_GRTAVFS_HW_FUSE_COUNT]; uint32_t CommonRtAvfs[PP_GRTAVFS_FW_COMMON_FUSE_COUNT]; uint32_t L2FwRtAvfsFuses[PP_GRTAVFS_FW_SEP_FUSE_COUNT]; uint32_t SeFwRtAvfsFuses[PP_GRTAVFS_FW_SEP_FUSE_COUNT]; uint32_t Droop_PWL_F[PP_NUM_RTAVFS_PWL_ZONES]; uint32_t Droop_PWL_a[PP_NUM_RTAVFS_PWL_ZONES]; uint32_t Droop_PWL_b[PP_NUM_RTAVFS_PWL_ZONES]; uint32_t Droop_PWL_c[PP_NUM_RTAVFS_PWL_ZONES]; uint32_t Static_PWL_Offset[PP_NUM_RTAVFS_PWL_ZONES]; uint32_t dGbV_dT_vmin; uint32_t dGbV_dT_vmax; uint32_t V2F_vmin_range_low; uint32_t V2F_vmin_range_high; uint32_t V2F_vmax_range_low; uint32_t V2F_vmax_range_high; AvfsDcBtcParams_t DcBtcGfxParams; uint32_t GfxAvfsSpare[32]; //SECTION: VDD_SOC AVFS uint8_t OverrideSocAvfsFuses; uint8_t MinSocAvfsRevision; uint8_t SocAvfsPadding[2]; AvfsFuseOverride_t SocAvfsFuseOverride[AVFS_D_COUNT]; DroopInt_t dBtcGbSoc[AVFS_D_COUNT]; // GHz->V BtcGb LinearInt_t qAgingGb[AVFS_D_COUNT]; // GHz->V QuadraticInt_t qStaticVoltageOffset[AVFS_D_COUNT]; // GHz->V AvfsDcBtcParams_t DcBtcSocParams[AVFS_D_COUNT]; uint32_t SocAvfsSpare[32]; //SECTION: Boot clock and voltage values BootValues_t BootValues; //SECTION: Driver Reported Clocks DriverReportedClocks_t DriverReportedClocks; //SECTION: Message Limits MsgLimits_t MsgLimits; //SECTION: OverDrive Limits OverDriveLimits_t OverDriveLimitsMin; OverDriveLimits_t OverDriveLimitsBasicMax; OverDriveLimits_t OverDriveLimitsAdvancedMax; // SECTION: Advanced Options uint32_t DebugOverrides; // Section: Total Board Power idle vs active coefficients uint8_t TotalBoardPowerSupport; uint8_t TotalBoardPowerPadding[3]; int16_t TotalIdleBoardPowerM; int16_t TotalIdleBoardPowerB; int16_t TotalBoardPowerM; int16_t TotalBoardPowerB; QuadraticInt_t qFeffCoeffGameClock[POWER_SOURCE_COUNT]; QuadraticInt_t qFeffCoeffBaseClock[POWER_SOURCE_COUNT]; QuadraticInt_t qFeffCoeffBoostClock[POWER_SOURCE_COUNT]; // SECTION: Sku Reserved uint32_t Spare[43]; // Padding for MMHUB - do not modify this uint32_t MmHubPadding[8]; } SkuTable_t; typedef struct { // SECTION: Version uint32_t Version; //should be unique to each board type // SECTION: I2C Control I2cControllerConfig_t I2cControllers[NUM_I2C_CONTROLLERS]; // SECTION: SVI2 Board Parameters uint8_t VddGfxVrMapping; // Use VR_MAPPING* bitfields uint8_t VddSocVrMapping; // Use VR_MAPPING* bitfields uint8_t VddMem0VrMapping; // Use VR_MAPPING* bitfields uint8_t VddMem1VrMapping; // Use VR_MAPPING* bitfields uint8_t GfxUlvPhaseSheddingMask; // set this to 1 to set PSI0/1 to 1 in ULV mode uint8_t SocUlvPhaseSheddingMask; // set this to 1 to set PSI0/1 to 1 in ULV mode uint8_t VmempUlvPhaseSheddingMask; // set this to 1 to set PSI0/1 to 1 in ULV mode uint8_t VddioUlvPhaseSheddingMask; // set this to 1 to set PSI0/1 to 1 in ULV mode //SECTION SVI3 Board Parameters uint8_t SlaveAddrMapping[SVI_PLANE_COUNT]; uint8_t VrPsiSupport[SVI_PLANE_COUNT]; uint8_t PaddingPsi[SVI_PLANE_COUNT]; uint8_t EnablePsi6[SVI_PLANE_COUNT]; // only applicable in SVI3 // SECTION: Voltage Regulator Settings SviTelemetryScale_t SviTelemetryScale[SVI_PLANE_COUNT]; uint32_t VoltageTelemetryRatio[SVI_PLANE_COUNT]; // This is used for VDDIO Svi2 Div Ratio workaround. It has 16 fractional bits (Q16.16) uint8_t DownSlewRateVr[SVI_PLANE_COUNT]; // SECTION: GPIO Settings uint8_t LedOffGpio; uint8_t FanOffGpio; uint8_t GfxVrPowerStageOffGpio; uint8_t AcDcGpio; // GPIO pin configured for AC/DC switching uint8_t AcDcPolarity; // GPIO polarity for AC/DC switching uint8_t VR0HotGpio; // GPIO pin configured for VR0 HOT event uint8_t VR0HotPolarity; // GPIO polarity for VR0 HOT event uint8_t GthrGpio; // GPIO pin configured for GTHR Event uint8_t GthrPolarity; // replace GPIO polarity for GTHR // LED Display Settings uint8_t LedPin0; // GPIO number for LedPin[0] uint8_t LedPin1; // GPIO number for LedPin[1] uint8_t LedPin2; // GPIO number for LedPin[2] uint8_t LedEnableMask; uint8_t LedPcie; // GPIO number for PCIE results uint8_t LedError; // GPIO number for Error Cases // SECTION: Clock Spread Spectrum // UCLK Spread Spectrum uint8_t UclkTrainingModeSpreadPercent; // Q4.4 uint8_t UclkSpreadPadding; uint16_t UclkSpreadFreq; // kHz // UCLK Spread Spectrum uint8_t UclkSpreadPercent[MEM_VENDOR_COUNT]; // FCLK Spread Spectrum uint8_t FclkSpreadPadding; uint8_t FclkSpreadPercent; // Q4.4 uint16_t FclkSpreadFreq; // kHz // Section: Memory Config uint8_t DramWidth; // Width of interface to the channel for each DRAM module. See DRAM_BIT_WIDTH_TYPE_e uint8_t PaddingMem1[7]; // SECTION: UMC feature flags uint8_t HsrEnabled; uint8_t VddqOffEnabled; uint8_t PaddingUmcFlags[2]; uint32_t PostVoltageSetBacoDelay; // in microseconds. Amount of time FW will wait after power good is established or PSI0 command is issued uint32_t BacoEntryDelay; // in milliseconds. Amount of time FW will wait to trigger BACO entry after receiving entry notification from OS uint8_t FuseWritePowerMuxPresent; uint8_t FuseWritePadding[3]; // SECTION: Board Reserved uint32_t BoardSpare[63]; // SECTION: Structure Padding // Padding for MMHUB - do not modify this uint32_t MmHubPadding[8]; } BoardTable_t; #pragma pack(push, 1) typedef struct { SkuTable_t SkuTable; BoardTable_t BoardTable; } PPTable_t; #pragma pack(pop) typedef struct { // Time constant parameters for clock averages in ms uint16_t GfxclkAverageLpfTau; uint16_t FclkAverageLpfTau; uint16_t UclkAverageLpfTau; uint16_t GfxActivityLpfTau; uint16_t UclkActivityLpfTau; uint16_t SocketPowerLpfTau; uint16_t VcnClkAverageLpfTau; uint16_t VcnUsageAverageLpfTau; } DriverSmuConfig_t; typedef struct { DriverSmuConfig_t DriverSmuConfig; uint32_t Spare[8]; // Padding - ignore uint32_t MmHubPadding[8]; // SMU internal use } DriverSmuConfigExternal_t; typedef struct { uint16_t FreqTableGfx [NUM_GFXCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableVclk [NUM_VCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDclk [NUM_DCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableSocclk [NUM_SOCCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableUclk [NUM_UCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDispclk [NUM_DISPCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDppClk [NUM_DPPCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDprefclk [NUM_DPREFCLK_DPM_LEVELS]; // In MHz uint16_t FreqTableDcfclk [NUM_DCFCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableDtbclk [NUM_DTBCLK_DPM_LEVELS ]; // In MHz uint16_t FreqTableFclk [NUM_FCLK_DPM_LEVELS ]; // In MHz uint16_t DcModeMaxFreq [PPCLK_COUNT ]; // In MHz uint16_t Padding; uint32_t Spare[32]; // Padding - ignore uint32_t MmHubPadding[8]; // SMU internal use } DriverInfoTable_t; typedef struct { uint32_t CurrClock[PPCLK_COUNT]; uint16_t AverageGfxclkFrequencyTarget; uint16_t AverageGfxclkFrequencyPreDs; uint16_t AverageGfxclkFrequencyPostDs; uint16_t AverageFclkFrequencyPreDs; uint16_t AverageFclkFrequencyPostDs; uint16_t AverageMemclkFrequencyPreDs ; // this is scaled to actual memory clock uint16_t AverageMemclkFrequencyPostDs ; // this is scaled to actual memory clock uint16_t AverageVclk0Frequency ; uint16_t AverageDclk0Frequency ; uint16_t AverageVclk1Frequency ; uint16_t AverageDclk1Frequency ; uint16_t PCIeBusy ; uint16_t dGPU_W_MAX ; uint16_t padding ; uint32_t MetricsCounter ; uint16_t AvgVoltage[SVI_PLANE_COUNT]; uint16_t AvgCurrent[SVI_PLANE_COUNT]; uint16_t AverageGfxActivity ; uint16_t AverageUclkActivity ; uint16_t Vcn0ActivityPercentage ; uint16_t Vcn1ActivityPercentage ; uint32_t EnergyAccumulator; uint16_t AverageSocketPower; uint16_t AverageTotalBoardPower; uint16_t AvgTemperature[TEMP_COUNT]; uint16_t AvgTemperatureFanIntake; uint8_t PcieRate ; uint8_t PcieWidth ; uint8_t AvgFanPwm; uint8_t Padding[1]; uint16_t AvgFanRpm; uint8_t ThrottlingPercentage[THROTTLER_COUNT]; //metrics for D3hot entry/exit and driver ARM msgs uint32_t D3HotEntryCountPerMode[D3HOT_SEQUENCE_COUNT]; uint32_t D3HotExitCountPerMode[D3HOT_SEQUENCE_COUNT]; uint32_t ArmMsgReceivedCountPerMode[D3HOT_SEQUENCE_COUNT]; uint16_t ApuSTAPMSmartShiftLimit; uint16_t ApuSTAPMLimit; uint16_t AvgApuSocketPower; uint16_t AverageUclkActivity_MAX; uint32_t PublicSerialNumberLower; uint32_t PublicSerialNumberUpper; } SmuMetrics_t; typedef struct { SmuMetrics_t SmuMetrics; uint32_t Spare[30]; // Padding - ignore uint32_t MmHubPadding[8]; // SMU internal use } SmuMetricsExternal_t; typedef struct { uint8_t WmSetting; uint8_t Flags; uint8_t Padding[2]; } WatermarkRowGeneric_t; #define NUM_WM_RANGES 4 typedef enum { WATERMARKS_CLOCK_RANGE = 0, WATERMARKS_DUMMY_PSTATE, WATERMARKS_MALL, WATERMARKS_COUNT, } WATERMARKS_FLAGS_e; typedef struct { // Watermarks WatermarkRowGeneric_t WatermarkRow[NUM_WM_RANGES]; } Watermarks_t; typedef struct { Watermarks_t Watermarks; uint32_t Spare[16]; uint32_t MmHubPadding[8]; // SMU internal use } WatermarksExternal_t; typedef struct { uint16_t avgPsmCount[36]; uint16_t minPsmCount[36]; float avgPsmVoltage[36]; float minPsmVoltage[36]; } AvfsDebugTable_t; typedef struct { AvfsDebugTable_t AvfsDebugTable; uint32_t MmHubPadding[8]; // SMU internal use } AvfsDebugTableExternal_t; typedef struct { uint8_t Gfx_ActiveHystLimit; uint8_t Gfx_IdleHystLimit; uint8_t Gfx_FPS; uint8_t Gfx_MinActiveFreqType; uint8_t Gfx_BoosterFreqType; uint8_t PaddingGfx; uint16_t Gfx_MinActiveFreq; // MHz uint16_t Gfx_BoosterFreq; // MHz uint16_t Gfx_PD_Data_time_constant; // Time constant of PD controller in ms uint32_t Gfx_PD_Data_limit_a; // Q16 uint32_t Gfx_PD_Data_limit_b; // Q16 uint32_t Gfx_PD_Data_limit_c; // Q16 uint32_t Gfx_PD_Data_error_coeff; // Q16 uint32_t Gfx_PD_Data_error_rate_coeff; // Q16 uint8_t Fclk_ActiveHystLimit; uint8_t Fclk_IdleHystLimit; uint8_t Fclk_FPS; uint8_t Fclk_MinActiveFreqType; uint8_t Fclk_BoosterFreqType; uint8_t PaddingFclk; uint16_t Fclk_MinActiveFreq; // MHz uint16_t Fclk_BoosterFreq; // MHz uint16_t Fclk_PD_Data_time_constant; // Time constant of PD controller in ms uint32_t Fclk_PD_Data_limit_a; // Q16 uint32_t Fclk_PD_Data_limit_b; // Q16 uint32_t Fclk_PD_Data_limit_c; // Q16 uint32_t Fclk_PD_Data_error_coeff; // Q16 uint32_t Fclk_PD_Data_error_rate_coeff; // Q16 uint32_t Mem_UpThreshold_Limit[NUM_UCLK_DPM_LEVELS]; // Q16 uint8_t Mem_UpHystLimit[NUM_UCLK_DPM_LEVELS]; uint8_t Mem_DownHystLimit[NUM_UCLK_DPM_LEVELS]; uint16_t Mem_Fps; uint8_t padding[2]; } DpmActivityMonitorCoeffInt_t; typedef struct { DpmActivityMonitorCoeffInt_t DpmActivityMonitorCoeffInt; uint32_t MmHubPadding[8]; // SMU internal use } DpmActivityMonitorCoeffIntExternal_t; // Workload bits #define WORKLOAD_PPLIB_DEFAULT_BIT 0 #define WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT 1 #define WORKLOAD_PPLIB_POWER_SAVING_BIT 2 #define WORKLOAD_PPLIB_VIDEO_BIT 3 #define WORKLOAD_PPLIB_VR_BIT 4 #define WORKLOAD_PPLIB_COMPUTE_BIT 5 #define WORKLOAD_PPLIB_CUSTOM_BIT 6 #define WORKLOAD_PPLIB_WINDOW_3D_BIT 7 #define WORKLOAD_PPLIB_COUNT 8 // These defines are used with the following messages: // SMC_MSG_TransferTableDram2Smu // SMC_MSG_TransferTableSmu2Dram // Table transfer status #define TABLE_TRANSFER_OK 0x0 #define TABLE_TRANSFER_FAILED 0xFF #define TABLE_TRANSFER_PENDING 0xAB // Table types #define TABLE_PPTABLE 0 #define TABLE_COMBO_PPTABLE 1 #define TABLE_WATERMARKS 2 #define TABLE_AVFS_PSM_DEBUG 3 #define TABLE_PMSTATUSLOG 4 #define TABLE_SMU_METRICS 5 #define TABLE_DRIVER_SMU_CONFIG 6 #define TABLE_ACTIVITY_MONITOR_COEFF 7 #define TABLE_OVERDRIVE 8 #define TABLE_I2C_COMMANDS 9 #define TABLE_DRIVER_INFO 10 #define TABLE_ECCINFO 11 #define TABLE_WIFIBAND 12 #define TABLE_COUNT 13 //IH Interupt ID #define IH_INTERRUPT_ID_TO_DRIVER 0xFE #define IH_INTERRUPT_CONTEXT_ID_BACO 0x2 #define IH_INTERRUPT_CONTEXT_ID_AC 0x3 #define IH_INTERRUPT_CONTEXT_ID_DC 0x4 #define IH_INTERRUPT_CONTEXT_ID_AUDIO_D0 0x5 #define IH_INTERRUPT_CONTEXT_ID_AUDIO_D3 0x6 #define IH_INTERRUPT_CONTEXT_ID_THERMAL_THROTTLING 0x7 #define IH_INTERRUPT_CONTEXT_ID_FAN_ABNORMAL 0x8 #define IH_INTERRUPT_CONTEXT_ID_FAN_RECOVERY 0x9 #endif
// SPDX-License-Identifier: GPL-2.0-only // // aw88081.c -- AW88081 ALSA SoC Audio driver // // Copyright (c) 2024 awinic Technology CO., LTD // // Author: Weidong Wang <[email protected]> // #include <linux/firmware.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <sound/soc.h> #include "aw88081.h" #include "aw88395/aw88395_device.h" struct aw88081 { struct aw_device *aw_pa; struct mutex lock; struct delayed_work start_work; struct regmap *regmap; struct aw_container *aw_cfg; bool phase_sync; }; static const struct regmap_config aw88081_regmap_config = { .val_bits = 16, .reg_bits = 8, .max_register = AW88081_REG_MAX, .reg_format_endian = REGMAP_ENDIAN_LITTLE, .val_format_endian = REGMAP_ENDIAN_BIG, }; static int aw88081_dev_get_iis_status(struct aw_device *aw_dev) { unsigned int reg_val; int ret; ret = regmap_read(aw_dev->regmap, AW88081_SYSST_REG, &reg_val); if (ret) return ret; if ((reg_val & AW88081_BIT_PLL_CHECK) != AW88081_BIT_PLL_CHECK) { dev_err(aw_dev->dev, "check pll lock fail,reg_val:0x%04x", reg_val); return -EINVAL; } return 0; } static int aw88081_dev_check_mode1_pll(struct aw_device *aw_dev) { int ret, i; for (i = 0; i < AW88081_DEV_SYSST_CHECK_MAX; i++) { ret = aw88081_dev_get_iis_status(aw_dev); if (ret) { dev_err(aw_dev->dev, "mode1 iis signal check error"); usleep_range(AW88081_2000_US, AW88081_2000_US + 10); } else { return 0; } } return -EPERM; } static int aw88081_dev_check_mode2_pll(struct aw_device *aw_dev) { unsigned int reg_val; int ret, i; ret = regmap_read(aw_dev->regmap, AW88081_PLLCTRL1_REG, &reg_val); if (ret) return ret; reg_val &= (~AW88081_CCO_MUX_MASK); if (reg_val == AW88081_CCO_MUX_DIVIDED_VALUE) { dev_dbg(aw_dev->dev, "CCO_MUX is already divider"); return -EPERM; } /* change mode2 */ ret = regmap_update_bits(aw_dev->regmap, AW88081_PLLCTRL1_REG, ~AW88081_CCO_MUX_MASK, AW88081_CCO_MUX_DIVIDED_VALUE); if (ret) return ret; for (i = 0; i < AW88081_DEV_SYSST_CHECK_MAX; i++) { ret = aw88081_dev_get_iis_status(aw_dev); if (ret) { dev_err(aw_dev->dev, "mode2 iis check error"); usleep_range(AW88081_2000_US, AW88081_2000_US + 10); } else { break; } } /* change mode1 */ ret = regmap_update_bits(aw_dev->regmap, AW88081_PLLCTRL1_REG, ~AW88081_CCO_MUX_MASK, AW88081_CCO_MUX_BYPASS_VALUE); if (ret == 0) { usleep_range(AW88081_2000_US, AW88081_2000_US + 10); for (i = 0; i < AW88081_DEV_SYSST_CHECK_MAX; i++) { ret = aw88081_dev_check_mode1_pll(aw_dev); if (ret) { dev_err(aw_dev->dev, "mode2 switch to mode1, iis check error"); usleep_range(AW88081_2000_US, AW88081_2000_US + 10); } else { break; } } } return ret; } static int aw88081_dev_check_syspll(struct aw_device *aw_dev) { int ret; ret = aw88081_dev_check_mode1_pll(aw_dev); if (ret) { dev_dbg(aw_dev->dev, "mode1 check iis failed try switch to mode2 check"); ret = aw88081_dev_check_mode2_pll(aw_dev); if (ret) { dev_err(aw_dev->dev, "mode2 check iis failed"); return ret; } } return 0; } static int aw88081_dev_check_sysst(struct aw_device *aw_dev) { unsigned int check_val; unsigned int reg_val; unsigned int value; int ret, i; ret = regmap_read(aw_dev->regmap, AW88081_PWMCTRL4_REG, &reg_val); if (ret) return ret; if (reg_val & (~AW88081_NOISE_GATE_EN_MASK)) check_val = AW88081_NO_SWS_SYSST_CHECK; else check_val = AW88081_SWS_SYSST_CHECK; for (i = 0; i < AW88081_DEV_SYSST_CHECK_MAX; i++) { ret = regmap_read(aw_dev->regmap, AW88081_SYSST_REG, &reg_val); if (ret) return ret; value = reg_val & (~AW88081_BIT_SYSST_CHECK_MASK) & check_val; if (value != check_val) { dev_err(aw_dev->dev, "check sysst fail, reg_val=0x%04x, check:0x%x", reg_val, check_val); usleep_range(AW88081_2000_US, AW88081_2000_US + 10); } else { return 0; } } return -EPERM; } static void aw88081_dev_i2s_tx_enable(struct aw_device *aw_dev, bool flag) { if (flag) regmap_update_bits(aw_dev->regmap, AW88081_I2SCTRL3_REG, ~AW88081_I2STXEN_MASK, AW88081_I2STXEN_ENABLE_VALUE); else regmap_update_bits(aw_dev->regmap, AW88081_I2SCTRL3_REG, ~AW88081_I2STXEN_MASK, AW88081_I2STXEN_DISABLE_VALUE); } static void aw88081_dev_pwd(struct aw_device *aw_dev, bool pwd) { if (pwd) regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL_REG, ~AW88081_PWDN_MASK, AW88081_PWDN_POWER_DOWN_VALUE); else regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL_REG, ~AW88081_PWDN_MASK, AW88081_PWDN_WORKING_VALUE); } static void aw88081_dev_amppd(struct aw_device *aw_dev, bool amppd) { if (amppd) regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL_REG, ~AW88081_EN_PA_MASK, AW88081_EN_PA_POWER_DOWN_VALUE); else regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL_REG, ~AW88081_EN_PA_MASK, AW88081_EN_PA_WORKING_VALUE); } static void aw88081_dev_clear_int_status(struct aw_device *aw_dev) { unsigned int int_status; /* read int status and clear */ regmap_read(aw_dev->regmap, AW88081_SYSINT_REG, &int_status); /* make sure int status is clear */ regmap_read(aw_dev->regmap, AW88081_SYSINT_REG, &int_status); dev_dbg(aw_dev->dev, "read interrupt reg = 0x%04x", int_status); } static void aw88081_dev_set_volume(struct aw_device *aw_dev, unsigned int value) { struct aw_volume_desc *vol_desc = &aw_dev->volume_desc; unsigned int volume; volume = min((value + vol_desc->init_volume), (unsigned int)AW88081_MUTE_VOL); regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL2_REG, ~AW88081_VOL_MASK, volume); } static void aw88081_dev_fade_in(struct aw_device *aw_dev) { struct aw_volume_desc *desc = &aw_dev->volume_desc; int fade_in_vol = desc->ctl_volume; int fade_step = aw_dev->fade_step; int i; if (fade_step == 0 || aw_dev->fade_in_time == 0) { aw88081_dev_set_volume(aw_dev, fade_in_vol); return; } for (i = AW88081_MUTE_VOL; i >= fade_in_vol; i -= fade_step) { aw88081_dev_set_volume(aw_dev, i); usleep_range(aw_dev->fade_in_time, aw_dev->fade_in_time + 10); } if (i != fade_in_vol) aw88081_dev_set_volume(aw_dev, fade_in_vol); } static void aw88081_dev_fade_out(struct aw_device *aw_dev) { struct aw_volume_desc *desc = &aw_dev->volume_desc; int fade_step = aw_dev->fade_step; int i; if (fade_step == 0 || aw_dev->fade_out_time == 0) { aw88081_dev_set_volume(aw_dev, AW88081_MUTE_VOL); return; } for (i = desc->ctl_volume; i <= AW88081_MUTE_VOL; i += fade_step) { aw88081_dev_set_volume(aw_dev, i); usleep_range(aw_dev->fade_out_time, aw_dev->fade_out_time + 10); } if (i != AW88081_MUTE_VOL) aw88081_dev_set_volume(aw_dev, AW88081_MUTE_VOL); } static void aw88081_dev_mute(struct aw_device *aw_dev, bool is_mute) { if (is_mute) { aw88081_dev_fade_out(aw_dev); regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL_REG, ~AW88081_HMUTE_MASK, AW88081_HMUTE_ENABLE_VALUE); } else { regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL_REG, ~AW88081_HMUTE_MASK, AW88081_HMUTE_DISABLE_VALUE); aw88081_dev_fade_in(aw_dev); } } static void aw88081_dev_uls_hmute(struct aw_device *aw_dev, bool uls_hmute) { if (uls_hmute) regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL_REG, ~AW88081_ULS_HMUTE_MASK, AW88081_ULS_HMUTE_ENABLE_VALUE); else regmap_update_bits(aw_dev->regmap, AW88081_SYSCTRL_REG, ~AW88081_ULS_HMUTE_MASK, AW88081_ULS_HMUTE_DISABLE_VALUE); } static int aw88081_dev_reg_update(struct aw88081 *aw88081, unsigned char *data, unsigned int len) { struct aw_device *aw_dev = aw88081->aw_pa; struct aw_volume_desc *vol_desc = &aw_dev->volume_desc; unsigned int read_vol; int data_len, i, ret; int16_t *reg_data; u16 reg_val; u8 reg_addr; if (!len || !data) { dev_err(aw_dev->dev, "reg data is null or len is 0"); return -EINVAL; } reg_data = (int16_t *)data; data_len = len >> 1; if (data_len & 0x1) { dev_err(aw_dev->dev, "data len:%d unsupported", data_len); return -EINVAL; } for (i = 0; i < data_len; i += 2) { reg_addr = reg_data[i]; reg_val = reg_data[i + 1]; if (reg_addr == AW88081_SYSCTRL_REG) { reg_val &= ~(~AW88081_EN_PA_MASK | ~AW88081_PWDN_MASK | ~AW88081_HMUTE_MASK | ~AW88081_ULS_HMUTE_MASK); reg_val |= AW88081_EN_PA_POWER_DOWN_VALUE | AW88081_PWDN_POWER_DOWN_VALUE | AW88081_HMUTE_ENABLE_VALUE | AW88081_ULS_HMUTE_ENABLE_VALUE; } if (reg_addr == AW88081_SYSCTRL2_REG) { read_vol = (reg_val & (~AW88081_VOL_MASK)) >> AW88081_VOL_START_BIT; aw_dev->volume_desc.init_volume = read_vol; } /* i2stxen */ if (reg_addr == AW88081_I2SCTRL3_REG) { /* close tx */ reg_val &= AW88081_I2STXEN_MASK; reg_val |= AW88081_I2STXEN_DISABLE_VALUE; } ret = regmap_write(aw_dev->regmap, reg_addr, reg_val); if (ret) return ret; } if (aw_dev->prof_cur != aw_dev->prof_index) vol_desc->ctl_volume = 0; /* keep min volume */ aw88081_dev_set_volume(aw_dev, vol_desc->mute_volume); return 0; } static int aw88081_dev_get_prof_name(struct aw_device *aw_dev, int index, char **prof_name) { struct aw_prof_info *prof_info = &aw_dev->prof_info; struct aw_prof_desc *prof_desc; if ((index >= aw_dev->prof_info.count) || (index < 0)) { dev_err(aw_dev->dev, "index[%d] overflow count[%d]", index, aw_dev->prof_info.count); return -EINVAL; } prof_desc = &aw_dev->prof_info.prof_desc[index]; *prof_name = prof_info->prof_name_list[prof_desc->id]; return 0; } static int aw88081_dev_get_prof_data(struct aw_device *aw_dev, int index, struct aw_prof_desc **prof_desc) { if ((index >= aw_dev->prof_info.count) || (index < 0)) { dev_err(aw_dev->dev, "%s: index[%d] overflow count[%d]\n", __func__, index, aw_dev->prof_info.count); return -EINVAL; } *prof_desc = &aw_dev->prof_info.prof_desc[index]; return 0; } static int aw88081_dev_fw_update(struct aw88081 *aw88081) { struct aw_device *aw_dev = aw88081->aw_pa; struct aw_prof_desc *prof_index_desc; struct aw_sec_data_desc *sec_desc; char *prof_name; int ret; ret = aw88081_dev_get_prof_name(aw_dev, aw_dev->prof_index, &prof_name); if (ret) { dev_err(aw_dev->dev, "get prof name failed"); return -EINVAL; } dev_dbg(aw_dev->dev, "start update %s", prof_name); ret = aw88081_dev_get_prof_data(aw_dev, aw_dev->prof_index, &prof_index_desc); if (ret) return ret; /* update reg */ sec_desc = prof_index_desc->sec_desc; ret = aw88081_dev_reg_update(aw88081, sec_desc[AW88395_DATA_TYPE_REG].data, sec_desc[AW88395_DATA_TYPE_REG].len); if (ret) { dev_err(aw_dev->dev, "update reg failed"); return ret; } aw_dev->prof_cur = aw_dev->prof_index; return 0; } static int aw88081_dev_start(struct aw88081 *aw88081) { struct aw_device *aw_dev = aw88081->aw_pa; int ret; if (aw_dev->status == AW88081_DEV_PW_ON) { dev_dbg(aw_dev->dev, "already power on"); return 0; } /* power on */ aw88081_dev_pwd(aw_dev, false); usleep_range(AW88081_2000_US, AW88081_2000_US + 10); ret = aw88081_dev_check_syspll(aw_dev); if (ret) { dev_err(aw_dev->dev, "pll check failed cannot start"); goto pll_check_fail; } /* amppd on */ aw88081_dev_amppd(aw_dev, false); usleep_range(AW88081_1000_US, AW88081_1000_US + 50); /* check i2s status */ ret = aw88081_dev_check_sysst(aw_dev); if (ret) { dev_err(aw_dev->dev, "sysst check failed"); goto sysst_check_fail; } /* enable tx feedback */ aw88081_dev_i2s_tx_enable(aw_dev, true); /* close uls mute */ aw88081_dev_uls_hmute(aw_dev, false); /* close mute */ aw88081_dev_mute(aw_dev, false); /* clear inturrupt */ aw88081_dev_clear_int_status(aw_dev); aw_dev->status = AW88081_DEV_PW_ON; return 0; sysst_check_fail: aw88081_dev_i2s_tx_enable(aw_dev, false); aw88081_dev_clear_int_status(aw_dev); aw88081_dev_amppd(aw_dev, true); pll_check_fail: aw88081_dev_pwd(aw_dev, true); aw_dev->status = AW88081_DEV_PW_OFF; return ret; } static int aw88081_dev_stop(struct aw_device *aw_dev) { if (aw_dev->status == AW88081_DEV_PW_OFF) { dev_dbg(aw_dev->dev, "already power off"); return 0; } aw_dev->status = AW88081_DEV_PW_OFF; /* clear inturrupt */ aw88081_dev_clear_int_status(aw_dev); aw88081_dev_uls_hmute(aw_dev, true); /* set mute */ aw88081_dev_mute(aw_dev, true); /* close tx feedback */ aw88081_dev_i2s_tx_enable(aw_dev, false); usleep_range(AW88081_1000_US, AW88081_1000_US + 100); /* enable amppd */ aw88081_dev_amppd(aw_dev, true); /* set power down */ aw88081_dev_pwd(aw_dev, true); return 0; } static int aw88081_reg_update(struct aw88081 *aw88081, bool force) { struct aw_device *aw_dev = aw88081->aw_pa; int ret; if (force) { ret = regmap_write(aw_dev->regmap, AW88081_ID_REG, AW88081_SOFT_RESET_VALUE); if (ret) return ret; ret = aw88081_dev_fw_update(aw88081); if (ret) return ret; } else { if (aw_dev->prof_cur != aw_dev->prof_index) { ret = aw88081_dev_fw_update(aw88081); if (ret) return ret; } } aw_dev->prof_cur = aw_dev->prof_index; return 0; } static void aw88081_start_pa(struct aw88081 *aw88081) { int ret, i; for (i = 0; i < AW88081_START_RETRIES; i++) { ret = aw88081_reg_update(aw88081, aw88081->phase_sync); if (ret) { dev_err(aw88081->aw_pa->dev, "fw update failed, cnt:%d\n", i); continue; } ret = aw88081_dev_start(aw88081); if (ret) { dev_err(aw88081->aw_pa->dev, "aw88081 device start failed. retry = %d", i); continue; } else { dev_dbg(aw88081->aw_pa->dev, "start success\n"); break; } } } static void aw88081_startup_work(struct work_struct *work) { struct aw88081 *aw88081 = container_of(work, struct aw88081, start_work.work); mutex_lock(&aw88081->lock); aw88081_start_pa(aw88081); mutex_unlock(&aw88081->lock); } static void aw88081_start(struct aw88081 *aw88081, bool sync_start) { if (aw88081->aw_pa->fw_status != AW88081_DEV_FW_OK) return; if (aw88081->aw_pa->status == AW88081_DEV_PW_ON) return; if (sync_start == AW88081_SYNC_START) aw88081_start_pa(aw88081); else queue_delayed_work(system_wq, &aw88081->start_work, AW88081_START_WORK_DELAY_MS); } static struct snd_soc_dai_driver aw88081_dai[] = { { .name = "aw88081-aif", .id = 1, .playback = { .stream_name = "Speaker_Playback", .channels_min = 1, .channels_max = 2, .rates = AW88081_RATES, .formats = AW88081_FORMATS, }, .capture = { .stream_name = "Speaker_Capture", .channels_min = 1, .channels_max = 2, .rates = AW88081_RATES, .formats = AW88081_FORMATS, }, }, }; static int aw88081_get_fade_in_time(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(component); struct aw_device *aw_dev = aw88081->aw_pa; ucontrol->value.integer.value[0] = aw_dev->fade_in_time; return 0; } static int aw88081_set_fade_in_time(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(component); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct aw_device *aw_dev = aw88081->aw_pa; int time; time = ucontrol->value.integer.value[0]; if (time < mc->min || time > mc->max) return -EINVAL; if (time != aw_dev->fade_in_time) { aw_dev->fade_in_time = time; return 1; } return 0; } static int aw88081_get_fade_out_time(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(component); struct aw_device *aw_dev = aw88081->aw_pa; ucontrol->value.integer.value[0] = aw_dev->fade_out_time; return 0; } static int aw88081_set_fade_out_time(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(component); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct aw_device *aw_dev = aw88081->aw_pa; int time; time = ucontrol->value.integer.value[0]; if (time < mc->min || time > mc->max) return -EINVAL; if (time != aw_dev->fade_out_time) { aw_dev->fade_out_time = time; return 1; } return 0; } static int aw88081_dev_set_profile_index(struct aw_device *aw_dev, int index) { /* check the index whether is valid */ if ((index >= aw_dev->prof_info.count) || (index < 0)) return -EINVAL; /* check the index whether change */ if (aw_dev->prof_index == index) return -EPERM; aw_dev->prof_index = index; return 0; } static int aw88081_profile_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(codec); char *prof_name; int count, ret; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; count = aw88081->aw_pa->prof_info.count; if (count <= 0) { uinfo->value.enumerated.items = 0; return 0; } uinfo->value.enumerated.items = count; if (uinfo->value.enumerated.item >= count) uinfo->value.enumerated.item = count - 1; count = uinfo->value.enumerated.item; ret = aw88081_dev_get_prof_name(aw88081->aw_pa, count, &prof_name); if (ret) { strscpy(uinfo->value.enumerated.name, "null", sizeof(uinfo->value.enumerated.name)); return 0; } strscpy(uinfo->value.enumerated.name, prof_name, sizeof(uinfo->value.enumerated.name)); return 0; } static int aw88081_profile_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(codec); ucontrol->value.integer.value[0] = aw88081->aw_pa->prof_index; return 0; } static int aw88081_profile_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(codec); int ret; /* pa stop or stopping just set profile */ mutex_lock(&aw88081->lock); ret = aw88081_dev_set_profile_index(aw88081->aw_pa, ucontrol->value.integer.value[0]); if (ret) { dev_dbg(codec->dev, "profile index does not change"); mutex_unlock(&aw88081->lock); return 0; } if (aw88081->aw_pa->status) { aw88081_dev_stop(aw88081->aw_pa); aw88081_start(aw88081, AW88081_SYNC_START); } mutex_unlock(&aw88081->lock); return 1; } static int aw88081_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(codec); struct aw_volume_desc *vol_desc = &aw88081->aw_pa->volume_desc; ucontrol->value.integer.value[0] = vol_desc->ctl_volume; return 0; } static int aw88081_volume_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(codec); struct aw_volume_desc *vol_desc = &aw88081->aw_pa->volume_desc; struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int value; value = ucontrol->value.integer.value[0]; if (value < mc->min || value > mc->max) return -EINVAL; if (vol_desc->ctl_volume != value) { vol_desc->ctl_volume = value; aw88081_dev_set_volume(aw88081->aw_pa, vol_desc->ctl_volume); return 1; } return 0; } static int aw88081_get_fade_step(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(codec); ucontrol->value.integer.value[0] = aw88081->aw_pa->fade_step; return 0; } static int aw88081_set_fade_step(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(codec); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int value; value = ucontrol->value.integer.value[0]; if (value < mc->min || value > mc->max) return -EINVAL; if (aw88081->aw_pa->fade_step != value) { aw88081->aw_pa->fade_step = value; return 1; } return 0; } static const struct snd_kcontrol_new aw88081_controls[] = { SOC_SINGLE_EXT("PCM Playback Volume", AW88081_SYSCTRL2_REG, 0, AW88081_MUTE_VOL, 0, aw88081_volume_get, aw88081_volume_set), SOC_SINGLE_EXT("Fade Step", 0, 0, AW88081_MUTE_VOL, 0, aw88081_get_fade_step, aw88081_set_fade_step), SOC_SINGLE_EXT("Volume Ramp Up Step", 0, 0, FADE_TIME_MAX, 0, aw88081_get_fade_in_time, aw88081_set_fade_in_time), SOC_SINGLE_EXT("Volume Ramp Down Step", 0, 0, FADE_TIME_MAX, 0, aw88081_get_fade_out_time, aw88081_set_fade_out_time), AW88081_PROFILE_EXT("Profile Set", aw88081_profile_info, aw88081_profile_get, aw88081_profile_set), }; static void aw88081_parse_channel_dt(struct aw88081 *aw88081) { struct aw_device *aw_dev = aw88081->aw_pa; struct device_node *np = aw_dev->dev->of_node; u32 channel_value = AW88081_DEV_DEFAULT_CH; of_property_read_u32(np, "awinic,audio-channel", &channel_value); aw88081->phase_sync = of_property_read_bool(np, "awinic,sync-flag"); aw_dev->channel = channel_value; } static int aw88081_init(struct aw88081 *aw88081, struct i2c_client *i2c, struct regmap *regmap) { struct aw_device *aw_dev; unsigned int chip_id; int ret; /* read chip id */ ret = regmap_read(regmap, AW88081_ID_REG, &chip_id); if (ret) { dev_err(&i2c->dev, "%s read chipid error. ret = %d", __func__, ret); return ret; } if (chip_id != AW88081_CHIP_ID) { dev_err(&i2c->dev, "unsupported device"); return -ENXIO; } dev_dbg(&i2c->dev, "chip id = %x\n", chip_id); aw_dev = devm_kzalloc(&i2c->dev, sizeof(*aw_dev), GFP_KERNEL); if (!aw_dev) return -ENOMEM; aw88081->aw_pa = aw_dev; aw_dev->i2c = i2c; aw_dev->regmap = regmap; aw_dev->dev = &i2c->dev; aw_dev->chip_id = AW88081_CHIP_ID; aw_dev->acf = NULL; aw_dev->prof_info.prof_desc = NULL; aw_dev->prof_info.prof_type = AW88395_DEV_NONE_TYPE_ID; aw_dev->fade_step = AW88081_VOLUME_STEP_DB; aw_dev->volume_desc.mute_volume = AW88081_MUTE_VOL; aw88081_parse_channel_dt(aw88081); return 0; } static int aw88081_dev_init(struct aw88081 *aw88081, struct aw_container *aw_cfg) { struct aw_device *aw_dev = aw88081->aw_pa; int ret; ret = aw88395_dev_cfg_load(aw_dev, aw_cfg); if (ret) { dev_err(aw_dev->dev, "aw_dev acf parse failed"); return -EINVAL; } ret = regmap_write(aw_dev->regmap, AW88081_ID_REG, AW88081_SOFT_RESET_VALUE); if (ret) return ret; aw_dev->fade_in_time = AW88081_500_US; aw_dev->fade_out_time = AW88081_500_US; aw_dev->prof_cur = AW88081_INIT_PROFILE; aw_dev->prof_index = AW88081_INIT_PROFILE; ret = aw88081_dev_fw_update(aw88081); if (ret) { dev_err(aw_dev->dev, "fw update failed ret = %d\n", ret); return ret; } aw88081_dev_clear_int_status(aw_dev); aw88081_dev_uls_hmute(aw_dev, true); aw88081_dev_mute(aw_dev, true); usleep_range(AW88081_5000_US, AW88081_5000_US + 10); aw88081_dev_i2s_tx_enable(aw_dev, false); usleep_range(AW88081_1000_US, AW88081_1000_US + 100); aw88081_dev_amppd(aw_dev, true); aw88081_dev_pwd(aw_dev, true); return 0; } static int aw88081_request_firmware_file(struct aw88081 *aw88081) { const struct firmware *cont = NULL; int ret; aw88081->aw_pa->fw_status = AW88081_DEV_FW_FAILED; ret = request_firmware(&cont, AW88081_ACF_FILE, aw88081->aw_pa->dev); if (ret) return ret; dev_dbg(aw88081->aw_pa->dev, "loaded %s - size: %zu\n", AW88081_ACF_FILE, cont ? cont->size : 0); aw88081->aw_cfg = devm_kzalloc(aw88081->aw_pa->dev, cont->size + sizeof(int), GFP_KERNEL); if (!aw88081->aw_cfg) { release_firmware(cont); return -ENOMEM; } aw88081->aw_cfg->len = (int)cont->size; memcpy(aw88081->aw_cfg->data, cont->data, cont->size); release_firmware(cont); ret = aw88395_dev_load_acf_check(aw88081->aw_pa, aw88081->aw_cfg); if (ret) return ret; mutex_lock(&aw88081->lock); ret = aw88081_dev_init(aw88081, aw88081->aw_cfg); mutex_unlock(&aw88081->lock); return ret; } static int aw88081_playback_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct aw88081 *aw88081 = snd_soc_component_get_drvdata(component); mutex_lock(&aw88081->lock); switch (event) { case SND_SOC_DAPM_PRE_PMU: aw88081_start(aw88081, AW88081_ASYNC_START); break; case SND_SOC_DAPM_POST_PMD: aw88081_dev_stop(aw88081->aw_pa); break; default: break; } mutex_unlock(&aw88081->lock); return 0; } static const struct snd_soc_dapm_widget aw88081_dapm_widgets[] = { /* playback */ SND_SOC_DAPM_AIF_IN_E("AIF_RX", "Speaker_Playback", 0, SND_SOC_NOPM, 0, 0, aw88081_playback_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_OUTPUT("DAC Output"), /* capture */ SND_SOC_DAPM_AIF_OUT("AIF_TX", "Speaker_Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_INPUT("ADC Input"), }; static const struct snd_soc_dapm_route aw88081_audio_map[] = { {"DAC Output", NULL, "AIF_RX"}, {"AIF_TX", NULL, "ADC Input"}, }; static int aw88081_codec_probe(struct snd_soc_component *component) { struct aw88081 *aw88081 = snd_soc_component_get_drvdata(component); int ret; INIT_DELAYED_WORK(&aw88081->start_work, aw88081_startup_work); ret = aw88081_request_firmware_file(aw88081); if (ret) dev_err(aw88081->aw_pa->dev, "%s: request firmware failed\n", __func__); return ret; } static void aw88081_codec_remove(struct snd_soc_component *aw_codec) { struct aw88081 *aw88081 = snd_soc_component_get_drvdata(aw_codec); cancel_delayed_work_sync(&aw88081->start_work); } static const struct snd_soc_component_driver soc_codec_dev_aw88081 = { .probe = aw88081_codec_probe, .remove = aw88081_codec_remove, .dapm_widgets = aw88081_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(aw88081_dapm_widgets), .dapm_routes = aw88081_audio_map, .num_dapm_routes = ARRAY_SIZE(aw88081_audio_map), .controls = aw88081_controls, .num_controls = ARRAY_SIZE(aw88081_controls), }; static int aw88081_i2c_probe(struct i2c_client *i2c) { struct aw88081 *aw88081; int ret; ret = i2c_check_functionality(i2c->adapter, I2C_FUNC_I2C); if (!ret) return dev_err_probe(&i2c->dev, -ENXIO, "check_functionality failed"); aw88081 = devm_kzalloc(&i2c->dev, sizeof(*aw88081), GFP_KERNEL); if (!aw88081) return -ENOMEM; mutex_init(&aw88081->lock); i2c_set_clientdata(i2c, aw88081); aw88081->regmap = devm_regmap_init_i2c(i2c, &aw88081_regmap_config); if (IS_ERR(aw88081->regmap)) return dev_err_probe(&i2c->dev, PTR_ERR(aw88081->regmap), "failed to init regmap\n"); /* aw pa init */ ret = aw88081_init(aw88081, i2c, aw88081->regmap); if (ret) return ret; return devm_snd_soc_register_component(&i2c->dev, &soc_codec_dev_aw88081, aw88081_dai, ARRAY_SIZE(aw88081_dai)); } static const struct i2c_device_id aw88081_i2c_id[] = { { AW88081_I2C_NAME }, { } }; MODULE_DEVICE_TABLE(i2c, aw88081_i2c_id); static struct i2c_driver aw88081_i2c_driver = { .driver = { .name = AW88081_I2C_NAME, }, .probe = aw88081_i2c_probe, .id_table = aw88081_i2c_id, }; module_i2c_driver(aw88081_i2c_driver); MODULE_DESCRIPTION("ASoC AW88081 Smart PA Driver"); MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: GPL-2.0 /* * This contains functions for filename crypto management * * Copyright (C) 2015, Google, Inc. * Copyright (C) 2015, Motorola Mobility * * Written by Uday Savagaonkar, 2014. * Modified by Jaegeuk Kim, 2015. * * This has not yet undergone a rigorous security audit. */ #include <linux/namei.h> #include <linux/scatterlist.h> #include <crypto/hash.h> #include <crypto/sha2.h> #include <crypto/skcipher.h> #include "fscrypt_private.h" /* * The minimum message length (input and output length), in bytes, for all * filenames encryption modes. Filenames shorter than this will be zero-padded * before being encrypted. */ #define FSCRYPT_FNAME_MIN_MSG_LEN 16 /* * struct fscrypt_nokey_name - identifier for directory entry when key is absent * * When userspace lists an encrypted directory without access to the key, the * filesystem must present a unique "no-key name" for each filename that allows * it to find the directory entry again if requested. Naively, that would just * mean using the ciphertext filenames. However, since the ciphertext filenames * can contain illegal characters ('\0' and '/'), they must be encoded in some * way. We use base64url. But that can cause names to exceed NAME_MAX (255 * bytes), so we also need to use a strong hash to abbreviate long names. * * The filesystem may also need another kind of hash, the "dirhash", to quickly * find the directory entry. Since filesystems normally compute the dirhash * over the on-disk filename (i.e. the ciphertext), it's not computable from * no-key names that abbreviate the ciphertext using the strong hash to fit in * NAME_MAX. It's also not computable if it's a keyed hash taken over the * plaintext (but it may still be available in the on-disk directory entry); * casefolded directories use this type of dirhash. At least in these cases, * each no-key name must include the name's dirhash too. * * To meet all these requirements, we base64url-encode the following * variable-length structure. It contains the dirhash, or 0's if the filesystem * didn't provide one; up to 149 bytes of the ciphertext name; and for * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes. * * This ensures that each no-key name contains everything needed to find the * directory entry again, contains only legal characters, doesn't exceed * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only * take the performance hit of SHA-256 on very long filenames (which are rare). */ struct fscrypt_nokey_name { u32 dirhash[2]; u8 bytes[149]; u8 sha256[SHA256_DIGEST_SIZE]; }; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */ /* * Decoded size of max-size no-key name, i.e. a name that was abbreviated using * the strong hash and thus includes the 'sha256' field. This isn't simply * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included. */ #define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256) /* Encoded size of max-size no-key name */ #define FSCRYPT_NOKEY_NAME_MAX_ENCODED \ FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX) static inline bool fscrypt_is_dot_dotdot(const struct qstr *str) { return is_dot_dotdot(str->name, str->len); } /** * fscrypt_fname_encrypt() - encrypt a filename * @inode: inode of the parent directory (for regular filenames) * or of the symlink (for symlink targets). Key must already be * set up. * @iname: the filename to encrypt * @out: (output) the encrypted filename * @olen: size of the encrypted filename. It must be at least @iname->len. * Any extra space is filled with NUL padding before encryption. * * Return: 0 on success, -errno on failure */ int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, u8 *out, unsigned int olen) { struct skcipher_request *req = NULL; DECLARE_CRYPTO_WAIT(wait); const struct fscrypt_inode_info *ci = inode->i_crypt_info; struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; union fscrypt_iv iv; struct scatterlist sg; int res; /* * Copy the filename to the output buffer for encrypting in-place and * pad it with the needed number of NUL bytes. */ if (WARN_ON_ONCE(olen < iname->len)) return -ENOBUFS; memcpy(out, iname->name, iname->len); memset(out + iname->len, 0, olen - iname->len); /* Initialize the IV */ fscrypt_generate_iv(&iv, 0, ci); /* Set up the encryption request */ req = skcipher_request_alloc(tfm, GFP_NOFS); if (!req) return -ENOMEM; skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); sg_init_one(&sg, out, olen); skcipher_request_set_crypt(req, &sg, &sg, olen, &iv); /* Do the encryption */ res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); skcipher_request_free(req); if (res < 0) { fscrypt_err(inode, "Filename encryption failed: %d", res); return res; } return 0; } EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt); /** * fname_decrypt() - decrypt a filename * @inode: inode of the parent directory (for regular filenames) * or of the symlink (for symlink targets) * @iname: the encrypted filename to decrypt * @oname: (output) the decrypted filename. The caller must have allocated * enough space for this, e.g. using fscrypt_fname_alloc_buffer(). * * Return: 0 on success, -errno on failure */ static int fname_decrypt(const struct inode *inode, const struct fscrypt_str *iname, struct fscrypt_str *oname) { struct skcipher_request *req = NULL; DECLARE_CRYPTO_WAIT(wait); struct scatterlist src_sg, dst_sg; const struct fscrypt_inode_info *ci = inode->i_crypt_info; struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; union fscrypt_iv iv; int res; /* Allocate request */ req = skcipher_request_alloc(tfm, GFP_NOFS); if (!req) return -ENOMEM; skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); /* Initialize IV */ fscrypt_generate_iv(&iv, 0, ci); /* Create decryption request */ sg_init_one(&src_sg, iname->name, iname->len); sg_init_one(&dst_sg, oname->name, oname->len); skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv); res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); skcipher_request_free(req); if (res < 0) { fscrypt_err(inode, "Filename decryption failed: %d", res); return res; } oname->len = strnlen(oname->name, iname->len); return 0; } static const char base64url_table[65] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; #define FSCRYPT_BASE64URL_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3) /** * fscrypt_base64url_encode() - base64url-encode some binary data * @src: the binary data to encode * @srclen: the length of @src in bytes * @dst: (output) the base64url-encoded string. Not NUL-terminated. * * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL * and Filename Safe Alphabet" specified by RFC 4648. '='-padding isn't used, * as it's unneeded and not required by the RFC. base64url is used instead of * base64 to avoid the '/' character, which isn't allowed in filenames. * * Return: the length of the resulting base64url-encoded string in bytes. * This will be equal to FSCRYPT_BASE64URL_CHARS(srclen). */ static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst) { u32 ac = 0; int bits = 0; int i; char *cp = dst; for (i = 0; i < srclen; i++) { ac = (ac << 8) | src[i]; bits += 8; do { bits -= 6; *cp++ = base64url_table[(ac >> bits) & 0x3f]; } while (bits >= 6); } if (bits) *cp++ = base64url_table[(ac << (6 - bits)) & 0x3f]; return cp - dst; } /** * fscrypt_base64url_decode() - base64url-decode a string * @src: the string to decode. Doesn't need to be NUL-terminated. * @srclen: the length of @src in bytes * @dst: (output) the decoded binary data * * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with * URL and Filename Safe Alphabet" specified by RFC 4648. '='-padding isn't * accepted, nor are non-encoding characters such as whitespace. * * This implementation hasn't been optimized for performance. * * Return: the length of the resulting decoded binary data in bytes, * or -1 if the string isn't a valid base64url string. */ static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst) { u32 ac = 0; int bits = 0; int i; u8 *bp = dst; for (i = 0; i < srclen; i++) { const char *p = strchr(base64url_table, src[i]); if (p == NULL || src[i] == 0) return -1; ac = (ac << 6) | (p - base64url_table); bits += 6; if (bits >= 8) { bits -= 8; *bp++ = (u8)(ac >> bits); } } if (ac & ((1 << bits) - 1)) return -1; return bp - dst; } bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, u32 orig_len, u32 max_len, u32 *encrypted_len_ret) { int padding = 4 << (fscrypt_policy_flags(policy) & FSCRYPT_POLICY_FLAGS_PAD_MASK); u32 encrypted_len; if (orig_len > max_len) return false; encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN); encrypted_len = round_up(encrypted_len, padding); *encrypted_len_ret = min(encrypted_len, max_len); return true; } /** * fscrypt_fname_encrypted_size() - calculate length of encrypted filename * @inode: parent inode of dentry name being encrypted. Key must * already be set up. * @orig_len: length of the original filename * @max_len: maximum length to return * @encrypted_len_ret: where calculated length should be returned (on success) * * Filenames that are shorter than the maximum length may have their lengths * increased slightly by encryption, due to padding that is applied. * * Return: false if the orig_len is greater than max_len. Otherwise, true and * fill out encrypted_len_ret with the length (up to max_len). */ bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, u32 max_len, u32 *encrypted_len_ret) { return __fscrypt_fname_encrypted_size(&inode->i_crypt_info->ci_policy, orig_len, max_len, encrypted_len_ret); } EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size); /** * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames * @max_encrypted_len: maximum length of encrypted filenames the buffer will be * used to present * @crypto_str: (output) buffer to allocate * * Allocate a buffer that is large enough to hold any decrypted or encoded * filename (null-terminated), for the given maximum encrypted filename length. * * Return: 0 on success, -errno on failure */ int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str) { u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED, max_encrypted_len); crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS); if (!crypto_str->name) return -ENOMEM; crypto_str->len = max_presented_len; return 0; } EXPORT_SYMBOL(fscrypt_fname_alloc_buffer); /** * fscrypt_fname_free_buffer() - free a buffer for presented filenames * @crypto_str: the buffer to free * * Free a buffer that was allocated by fscrypt_fname_alloc_buffer(). */ void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) { if (!crypto_str) return; kfree(crypto_str->name); crypto_str->name = NULL; } EXPORT_SYMBOL(fscrypt_fname_free_buffer); /** * fscrypt_fname_disk_to_usr() - convert an encrypted filename to * user-presentable form * @inode: inode of the parent directory (for regular filenames) * or of the symlink (for symlink targets) * @hash: first part of the name's dirhash, if applicable. This only needs to * be provided if the filename is located in an indexed directory whose * encryption key may be unavailable. Not needed for symlink targets. * @minor_hash: second part of the name's dirhash, if applicable * @iname: encrypted filename to convert. May also be "." or "..", which * aren't actually encrypted. * @oname: output buffer for the user-presentable filename. The caller must * have allocated enough space for this, e.g. using * fscrypt_fname_alloc_buffer(). * * If the key is available, we'll decrypt the disk name. Otherwise, we'll * encode it for presentation in fscrypt_nokey_name format. * See struct fscrypt_nokey_name for details. * * Return: 0 on success, -errno on failure */ int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname) { const struct qstr qname = FSTR_TO_QSTR(iname); struct fscrypt_nokey_name nokey_name; u32 size; /* size of the unencoded no-key name */ if (fscrypt_is_dot_dotdot(&qname)) { oname->name[0] = '.'; oname->name[iname->len - 1] = '.'; oname->len = iname->len; return 0; } if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN) return -EUCLEAN; if (fscrypt_has_encryption_key(inode)) return fname_decrypt(inode, iname, oname); /* * Sanity check that struct fscrypt_nokey_name doesn't have padding * between fields and that its encoded size never exceeds NAME_MAX. */ BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) != offsetof(struct fscrypt_nokey_name, bytes)); BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) != offsetof(struct fscrypt_nokey_name, sha256)); BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX); nokey_name.dirhash[0] = hash; nokey_name.dirhash[1] = minor_hash; if (iname->len <= sizeof(nokey_name.bytes)) { memcpy(nokey_name.bytes, iname->name, iname->len); size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]); } else { memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes)); /* Compute strong hash of remaining part of name. */ sha256(&iname->name[sizeof(nokey_name.bytes)], iname->len - sizeof(nokey_name.bytes), nokey_name.sha256); size = FSCRYPT_NOKEY_NAME_MAX; } oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size, oname->name); return 0; } EXPORT_SYMBOL(fscrypt_fname_disk_to_usr); /** * fscrypt_setup_filename() - prepare to search a possibly encrypted directory * @dir: the directory that will be searched * @iname: the user-provided filename being searched for * @lookup: 1 if we're allowed to proceed without the key because it's * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot * proceed without the key because we're going to create the dir_entry. * @fname: the filename information to be filled in * * Given a user-provided filename @iname, this function sets @fname->disk_name * to the name that would be stored in the on-disk directory entry, if possible. * If the directory is unencrypted this is simply @iname. Else, if we have the * directory's encryption key, then @iname is the plaintext, so we encrypt it to * get the disk_name. * * Else, for keyless @lookup operations, @iname should be a no-key name, so we * decode it to get the struct fscrypt_nokey_name. Non-@lookup operations will * be impossible in this case, so we fail them with ENOKEY. * * If successful, fscrypt_free_filename() must be called later to clean up. * * Return: 0 on success, -errno on failure */ int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct fscrypt_name *fname) { struct fscrypt_nokey_name *nokey_name; int ret; memset(fname, 0, sizeof(struct fscrypt_name)); fname->usr_fname = iname; if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) { fname->disk_name.name = (unsigned char *)iname->name; fname->disk_name.len = iname->len; return 0; } ret = fscrypt_get_encryption_info(dir, lookup); if (ret) return ret; if (fscrypt_has_encryption_key(dir)) { if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX, &fname->crypto_buf.len)) return -ENAMETOOLONG; fname->crypto_buf.name = kmalloc(fname->crypto_buf.len, GFP_NOFS); if (!fname->crypto_buf.name) return -ENOMEM; ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name, fname->crypto_buf.len); if (ret) goto errout; fname->disk_name.name = fname->crypto_buf.name; fname->disk_name.len = fname->crypto_buf.len; return 0; } if (!lookup) return -ENOKEY; fname->is_nokey_name = true; /* * We don't have the key and we are doing a lookup; decode the * user-supplied name */ if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED) return -ENOENT; fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL); if (fname->crypto_buf.name == NULL) return -ENOMEM; ret = fscrypt_base64url_decode(iname->name, iname->len, fname->crypto_buf.name); if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) || (ret > offsetof(struct fscrypt_nokey_name, sha256) && ret != FSCRYPT_NOKEY_NAME_MAX)) { ret = -ENOENT; goto errout; } fname->crypto_buf.len = ret; nokey_name = (void *)fname->crypto_buf.name; fname->hash = nokey_name->dirhash[0]; fname->minor_hash = nokey_name->dirhash[1]; if (ret != FSCRYPT_NOKEY_NAME_MAX) { /* The full ciphertext filename is available. */ fname->disk_name.name = nokey_name->bytes; fname->disk_name.len = ret - offsetof(struct fscrypt_nokey_name, bytes); } return 0; errout: kfree(fname->crypto_buf.name); return ret; } EXPORT_SYMBOL(fscrypt_setup_filename); /** * fscrypt_match_name() - test whether the given name matches a directory entry * @fname: the name being searched for * @de_name: the name from the directory entry * @de_name_len: the length of @de_name in bytes * * Normally @fname->disk_name will be set, and in that case we simply compare * that to the name stored in the directory entry. The only exception is that * if we don't have the key for an encrypted directory and the name we're * looking for is very long, then we won't have the full disk_name and instead * we'll need to match against a fscrypt_nokey_name that includes a strong hash. * * Return: %true if the name matches, otherwise %false. */ bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len) { const struct fscrypt_nokey_name *nokey_name = (const void *)fname->crypto_buf.name; u8 digest[SHA256_DIGEST_SIZE]; if (likely(fname->disk_name.name)) { if (de_name_len != fname->disk_name.len) return false; return !memcmp(de_name, fname->disk_name.name, de_name_len); } if (de_name_len <= sizeof(nokey_name->bytes)) return false; if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes))) return false; sha256(&de_name[sizeof(nokey_name->bytes)], de_name_len - sizeof(nokey_name->bytes), digest); return !memcmp(digest, nokey_name->sha256, sizeof(digest)); } EXPORT_SYMBOL_GPL(fscrypt_match_name); /** * fscrypt_fname_siphash() - calculate the SipHash of a filename * @dir: the parent directory * @name: the filename to calculate the SipHash of * * Given a plaintext filename @name and a directory @dir which uses SipHash as * its dirhash method and has had its fscrypt key set up, this function * calculates the SipHash of that name using the directory's secret dirhash key. * * Return: the SipHash of @name using the hash key of @dir */ u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) { const struct fscrypt_inode_info *ci = dir->i_crypt_info; WARN_ON_ONCE(!ci->ci_dirhash_key_initialized); return siphash(name->name, name->len, &ci->ci_dirhash_key); } EXPORT_SYMBOL_GPL(fscrypt_fname_siphash); /* * Validate dentries in encrypted directories to make sure we aren't potentially * caching stale dentries after a key has been added. */ int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) { struct dentry *dir; int err; int valid; /* * Plaintext names are always valid, since fscrypt doesn't support * reverting to no-key names without evicting the directory's inode * -- which implies eviction of the dentries in the directory. */ if (!(dentry->d_flags & DCACHE_NOKEY_NAME)) return 1; /* * No-key name; valid if the directory's key is still unavailable. * * Although fscrypt forbids rename() on no-key names, we still must use * dget_parent() here rather than use ->d_parent directly. That's * because a corrupted fs image may contain directory hard links, which * the VFS handles by moving the directory's dentry tree in the dcache * each time ->lookup() finds the directory and it already has a dentry * elsewhere. Thus ->d_parent can be changing, and we must safely grab * a reference to some ->d_parent to prevent it from being freed. */ if (flags & LOOKUP_RCU) return -ECHILD; dir = dget_parent(dentry); /* * Pass allow_unsupported=true, so that files with an unsupported * encryption policy can be deleted. */ err = fscrypt_get_encryption_info(d_inode(dir), true); valid = !fscrypt_has_encryption_key(d_inode(dir)); dput(dir); if (err < 0) return err; return valid; } EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);
// SPDX-License-Identifier: GPL-2.0-or-later OR MIT /* * Copyright 2017-2022 Toradex */ / { chosen { stdout-path = "serial0:115200n8"; }; /* fixed crystal dedicated to mcp2515 */ clk16m: clk16m { compatible = "fixed-clock"; #clock-cells = <0>; clock-frequency = <16000000>; }; reg_3v3: regulator-3v3 { compatible = "regulator-fixed"; regulator-name = "3.3V"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; }; reg_5v0: regulator-5v0 { compatible = "regulator-fixed"; regulator-name = "5V"; regulator-min-microvolt = <5000000>; regulator-max-microvolt = <5000000>; }; reg_usbh_vbus: regulator-usbh-vbus { compatible = "regulator-fixed"; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_usbh_reg>; regulator-name = "VCC_USB[1-4]"; regulator-min-microvolt = <5000000>; regulator-max-microvolt = <5000000>; gpio = <&gpio1 2 GPIO_ACTIVE_LOW>; vin-supply = <&reg_5v0>; }; }; &adc1 { status = "okay"; }; &ecspi1 { status = "okay"; mcp2515: can@0 { compatible = "microchip,mcp2515"; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_can_int>; reg = <0>; clocks = <&clk16m>; interrupt-parent = <&gpio2>; interrupts = <4 IRQ_TYPE_EDGE_FALLING>; spi-max-frequency = <10000000>; vdd-supply = <&reg_3v3>; xceiver-supply = <&reg_5v0>; status = "okay"; }; }; &i2c1 { status = "okay"; /* M41T0M6 real time clock on carrier board */ m41t0m6: rtc@68 { compatible = "st,m41t0"; reg = <0x68>; }; }; /* PWM <A> */ &pwm4 { status = "okay"; }; /* PWM <B> */ &pwm5 { status = "okay"; }; /* PWM <C> */ &pwm6 { status = "okay"; }; /* PWM <D> */ &pwm7 { status = "okay"; }; &uart1 { status = "okay"; }; &uart2 { status = "okay"; }; &uart5 { status = "okay"; }; &usbotg1 { disable-over-current; vbus-supply = <&reg_usbh_vbus>; status = "okay"; }; &usbotg2 { disable-over-current; vbus-supply = <&reg_usbh_vbus>; status = "okay"; }; &usdhc1 { vmmc-supply = <&reg_3v3>; status = "okay"; };
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for Hynitron cstxxx Touchscreen * * Copyright (c) 2022 Chris Morgan <[email protected]> * * This code is based on hynitron_core.c authored by Hynitron. * Note that no datasheet was available, so much of these registers * are undocumented. This is essentially a cleaned-up version of the * vendor driver with support removed for hardware I cannot test and * device-specific functions replated with generic functions wherever * possible. */ #include <linux/delay.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/input.h> #include <linux/input/mt.h> #include <linux/input/touchscreen.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/property.h> #include <linux/unaligned.h> /* Per chip data */ struct hynitron_ts_chip_data { unsigned int max_touch_num; u32 ic_chkcode; int (*firmware_info)(struct i2c_client *client); int (*bootloader_enter)(struct i2c_client *client); int (*init_input)(struct i2c_client *client); void (*report_touch)(struct i2c_client *client); }; /* Data generic to all (supported and non-supported) controllers. */ struct hynitron_ts_data { const struct hynitron_ts_chip_data *chip; struct i2c_client *client; struct input_dev *input_dev; struct touchscreen_properties prop; struct gpio_desc *reset_gpio; }; /* * Since I have no datasheet, these values are guessed and/or assumed * based on observation and testing. */ #define CST3XX_FIRMWARE_INFO_START_CMD 0x01d1 #define CST3XX_FIRMWARE_INFO_END_CMD 0x09d1 #define CST3XX_FIRMWARE_CHK_CODE_REG 0xfcd1 #define CST3XX_FIRMWARE_VERSION_REG 0x08d2 #define CST3XX_FIRMWARE_VER_INVALID_VAL 0xa5a5a5a5 #define CST3XX_BOOTLDR_PROG_CMD 0xaa01a0 #define CST3XX_BOOTLDR_PROG_CHK_REG 0x02a0 #define CST3XX_BOOTLDR_CHK_VAL 0xac #define CST3XX_TOUCH_DATA_PART_REG 0x00d0 #define CST3XX_TOUCH_DATA_FULL_REG 0x07d0 #define CST3XX_TOUCH_DATA_CHK_VAL 0xab #define CST3XX_TOUCH_DATA_TOUCH_VAL 0x03 #define CST3XX_TOUCH_DATA_STOP_CMD 0xab00d0 #define CST3XX_TOUCH_COUNT_MASK GENMASK(6, 0) /* * Hard coded reset delay value of 20ms not IC dependent in * vendor driver. */ static void hyn_reset_proc(struct i2c_client *client, int delay) { struct hynitron_ts_data *ts_data = i2c_get_clientdata(client); gpiod_set_value_cansleep(ts_data->reset_gpio, 1); msleep(20); gpiod_set_value_cansleep(ts_data->reset_gpio, 0); if (delay) fsleep(delay * 1000); } static irqreturn_t hyn_interrupt_handler(int irq, void *dev_id) { struct i2c_client *client = dev_id; struct hynitron_ts_data *ts_data = i2c_get_clientdata(client); ts_data->chip->report_touch(client); return IRQ_HANDLED; } /* * The vendor driver would retry twice before failing to read or write * to the i2c device. */ static int cst3xx_i2c_write(struct i2c_client *client, unsigned char *buf, int len) { int ret; int retries = 0; while (retries < 2) { ret = i2c_master_send(client, buf, len); if (ret == len) return 0; if (ret <= 0) retries++; else break; } return ret < 0 ? ret : -EIO; } static int cst3xx_i2c_read_register(struct i2c_client *client, u16 reg, u8 *val, u16 len) { __le16 buf = cpu_to_le16(reg); struct i2c_msg msgs[] = { { .addr = client->addr, .flags = 0, .len = 2, .buf = (u8 *)&buf, }, { .addr = client->addr, .flags = I2C_M_RD, .len = len, .buf = val, } }; int err; int ret; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret == ARRAY_SIZE(msgs)) return 0; err = ret < 0 ? ret : -EIO; dev_err(&client->dev, "Error reading %d bytes from 0x%04x: %d (%d)\n", len, reg, err, ret); return err; } static int cst3xx_firmware_info(struct i2c_client *client) { struct hynitron_ts_data *ts_data = i2c_get_clientdata(client); int err; u32 tmp; unsigned char buf[4]; /* * Tests suggest this command needed to read firmware regs. */ put_unaligned_le16(CST3XX_FIRMWARE_INFO_START_CMD, buf); err = cst3xx_i2c_write(client, buf, 2); if (err) return err; usleep_range(10000, 11000); /* * Read register for check-code to determine if device detected * correctly. */ err = cst3xx_i2c_read_register(client, CST3XX_FIRMWARE_CHK_CODE_REG, buf, 4); if (err) return err; tmp = get_unaligned_le32(buf); if ((tmp & 0xffff0000) != ts_data->chip->ic_chkcode) { dev_err(&client->dev, "%s ic mismatch, chkcode is %u\n", __func__, tmp); return -ENODEV; } usleep_range(10000, 11000); /* Read firmware version and test if firmware missing. */ err = cst3xx_i2c_read_register(client, CST3XX_FIRMWARE_VERSION_REG, buf, 4); if (err) return err; tmp = get_unaligned_le32(buf); if (tmp == CST3XX_FIRMWARE_VER_INVALID_VAL) { dev_err(&client->dev, "Device firmware missing\n"); return -ENODEV; } /* * Tests suggest cmd required to exit reading firmware regs. */ put_unaligned_le16(CST3XX_FIRMWARE_INFO_END_CMD, buf); err = cst3xx_i2c_write(client, buf, 2); if (err) return err; usleep_range(5000, 6000); return 0; } static int cst3xx_bootloader_enter(struct i2c_client *client) { int err; u8 retry; u32 tmp = 0; unsigned char buf[3]; for (retry = 0; retry < 5; retry++) { hyn_reset_proc(client, (7 + retry)); /* set cmd to enter program mode */ put_unaligned_le24(CST3XX_BOOTLDR_PROG_CMD, buf); err = cst3xx_i2c_write(client, buf, 3); if (err) continue; usleep_range(2000, 2500); /* check whether in program mode */ err = cst3xx_i2c_read_register(client, CST3XX_BOOTLDR_PROG_CHK_REG, buf, 1); if (err) continue; tmp = get_unaligned(buf); if (tmp == CST3XX_BOOTLDR_CHK_VAL) break; } if (tmp != CST3XX_BOOTLDR_CHK_VAL) { dev_err(&client->dev, "%s unable to enter bootloader mode\n", __func__); return -ENODEV; } hyn_reset_proc(client, 40); return 0; } static void cst3xx_report_contact(struct hynitron_ts_data *ts_data, u8 id, unsigned int x, unsigned int y, u8 w) { input_mt_slot(ts_data->input_dev, id); input_mt_report_slot_state(ts_data->input_dev, MT_TOOL_FINGER, 1); touchscreen_report_pos(ts_data->input_dev, &ts_data->prop, x, y, true); input_report_abs(ts_data->input_dev, ABS_MT_TOUCH_MAJOR, w); } static int cst3xx_finish_touch_read(struct i2c_client *client) { unsigned char buf[3]; int err; put_unaligned_le24(CST3XX_TOUCH_DATA_STOP_CMD, buf); err = cst3xx_i2c_write(client, buf, 3); if (err) { dev_err(&client->dev, "send read touch info ending failed: %d\n", err); return err; } return 0; } /* * Handle events from IRQ. Note that for cst3xx it appears that IRQ * fires continuously while touched, otherwise once every 1500ms * when not touched (assume touchscreen waking up periodically). * Note buffer is sized for 5 fingers, if more needed buffer must * be increased. The buffer contains 5 bytes for each touch point, * a touch count byte, a check byte, and then a second check byte after * all other touch points. * * For example 1 touch would look like this: * touch1[5]:touch_count[1]:chk_byte[1] * * 3 touches would look like this: * touch1[5]:touch_count[1]:chk_byte[1]:touch2[5]:touch3[5]:chk_byte[1] */ static void cst3xx_touch_report(struct i2c_client *client) { struct hynitron_ts_data *ts_data = i2c_get_clientdata(client); u8 buf[28]; u8 finger_id, sw, w; unsigned int x, y; unsigned int touch_cnt, end_byte; unsigned int idx = 0; unsigned int i; int err; /* Read and validate the first bits of input data. */ err = cst3xx_i2c_read_register(client, CST3XX_TOUCH_DATA_PART_REG, buf, 28); if (err || buf[6] != CST3XX_TOUCH_DATA_CHK_VAL || buf[0] == CST3XX_TOUCH_DATA_CHK_VAL) { dev_err(&client->dev, "cst3xx touch read failure\n"); return; } /* Report to the device we're done reading the touch data. */ err = cst3xx_finish_touch_read(client); if (err) return; touch_cnt = buf[5] & CST3XX_TOUCH_COUNT_MASK; /* * Check the check bit of the last touch slot. The check bit is * always present after touch point 1 for valid data, and then * appears as the last byte after all other touch data. */ if (touch_cnt > 1) { end_byte = touch_cnt * 5 + 2; if (buf[end_byte] != CST3XX_TOUCH_DATA_CHK_VAL) { dev_err(&client->dev, "cst3xx touch read failure\n"); return; } } /* Parse through the buffer to capture touch data. */ for (i = 0; i < touch_cnt; i++) { x = ((buf[idx + 1] << 4) | ((buf[idx + 3] >> 4) & 0x0f)); y = ((buf[idx + 2] << 4) | (buf[idx + 3] & 0x0f)); w = (buf[idx + 4] >> 3); sw = (buf[idx] & 0x0f) >> 1; finger_id = (buf[idx] >> 4) & 0x0f; /* Sanity check we don't have more fingers than we expect */ if (ts_data->chip->max_touch_num < finger_id) { dev_err(&client->dev, "cst3xx touch read failure\n"); break; } /* sw value of 0 means no touch, 0x03 means touch */ if (sw == CST3XX_TOUCH_DATA_TOUCH_VAL) cst3xx_report_contact(ts_data, finger_id, x, y, w); idx += 5; /* Skip the 2 bytes between point 1 and point 2 */ if (i == 0) idx += 2; } input_mt_sync_frame(ts_data->input_dev); input_sync(ts_data->input_dev); } static int cst3xx_input_dev_int(struct i2c_client *client) { struct hynitron_ts_data *ts_data = i2c_get_clientdata(client); int err; ts_data->input_dev = devm_input_allocate_device(&client->dev); if (!ts_data->input_dev) { dev_err(&client->dev, "Failed to allocate input device\n"); return -ENOMEM; } ts_data->input_dev->name = "Hynitron cst3xx Touchscreen"; ts_data->input_dev->phys = "input/ts"; ts_data->input_dev->id.bustype = BUS_I2C; input_set_drvdata(ts_data->input_dev, ts_data); input_set_capability(ts_data->input_dev, EV_ABS, ABS_MT_POSITION_X); input_set_capability(ts_data->input_dev, EV_ABS, ABS_MT_POSITION_Y); input_set_abs_params(ts_data->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0); touchscreen_parse_properties(ts_data->input_dev, true, &ts_data->prop); if (!ts_data->prop.max_x || !ts_data->prop.max_y) { dev_err(&client->dev, "Invalid x/y (%d, %d), using defaults\n", ts_data->prop.max_x, ts_data->prop.max_y); ts_data->prop.max_x = 1152; ts_data->prop.max_y = 1920; input_abs_set_max(ts_data->input_dev, ABS_MT_POSITION_X, ts_data->prop.max_x); input_abs_set_max(ts_data->input_dev, ABS_MT_POSITION_Y, ts_data->prop.max_y); } err = input_mt_init_slots(ts_data->input_dev, ts_data->chip->max_touch_num, INPUT_MT_DIRECT | INPUT_MT_DROP_UNUSED); if (err) { dev_err(&client->dev, "Failed to initialize input slots: %d\n", err); return err; } err = input_register_device(ts_data->input_dev); if (err) { dev_err(&client->dev, "Input device registration failed: %d\n", err); return err; } return 0; } static int hyn_probe(struct i2c_client *client) { struct hynitron_ts_data *ts_data; int err; ts_data = devm_kzalloc(&client->dev, sizeof(*ts_data), GFP_KERNEL); if (!ts_data) return -ENOMEM; ts_data->client = client; i2c_set_clientdata(client, ts_data); ts_data->chip = device_get_match_data(&client->dev); if (!ts_data->chip) return -EINVAL; ts_data->reset_gpio = devm_gpiod_get(&client->dev, "reset", GPIOD_OUT_LOW); err = PTR_ERR_OR_ZERO(ts_data->reset_gpio); if (err) { dev_err(&client->dev, "request reset gpio failed: %d\n", err); return err; } hyn_reset_proc(client, 60); err = ts_data->chip->bootloader_enter(client); if (err < 0) return err; err = ts_data->chip->init_input(client); if (err < 0) return err; err = ts_data->chip->firmware_info(client); if (err < 0) return err; err = devm_request_threaded_irq(&client->dev, client->irq, NULL, hyn_interrupt_handler, IRQF_ONESHOT, "Hynitron Touch Int", client); if (err) { dev_err(&client->dev, "failed to request IRQ: %d\n", err); return err; } return 0; } static const struct hynitron_ts_chip_data cst3xx_data = { .max_touch_num = 5, .ic_chkcode = 0xcaca0000, .firmware_info = &cst3xx_firmware_info, .bootloader_enter = &cst3xx_bootloader_enter, .init_input = &cst3xx_input_dev_int, .report_touch = &cst3xx_touch_report, }; static const struct i2c_device_id hyn_tpd_id[] = { { .name = "hynitron_ts" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(i2c, hyn_tpd_id); static const struct of_device_id hyn_dt_match[] = { { .compatible = "hynitron,cst340", .data = &cst3xx_data }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, hyn_dt_match); static struct i2c_driver hynitron_i2c_driver = { .driver = { .name = "Hynitron-TS", .of_match_table = hyn_dt_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .id_table = hyn_tpd_id, .probe = hyn_probe, }; module_i2c_driver(hynitron_i2c_driver); MODULE_AUTHOR("Chris Morgan"); MODULE_DESCRIPTION("Hynitron Touchscreen Driver"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only /* * Maxim Integrated DS1803 and similar digital potentiometer driver * Copyright (c) 2016 Slawomir Stepien * Copyright (c) 2022 Jagath Jog J * * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS1803.pdf * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS3502.pdf * * DEVID #Wipers #Positions Resistor Opts (kOhm) i2c address * ds1803 2 256 10, 50, 100 0101xxx * ds3502 1 128 10 01010xx */ #include <linux/err.h> #include <linux/export.h> #include <linux/i2c.h> #include <linux/iio/iio.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/property.h> #define DS1803_WIPER_0 0xA9 #define DS1803_WIPER_1 0xAA #define DS3502_WR_IVR 0x00 enum ds1803_type { DS1803_010, DS1803_050, DS1803_100, DS3502, }; struct ds1803_cfg { int wipers; int avail[3]; int kohms; const struct iio_chan_spec *channels; u8 num_channels; int (*read)(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val); }; struct ds1803_data { struct i2c_client *client; const struct ds1803_cfg *cfg; }; #define DS1803_CHANNEL(ch, addr) { \ .type = IIO_RESISTANCE, \ .indexed = 1, \ .output = 1, \ .channel = (ch), \ .address = (addr), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_RAW), \ } static const struct iio_chan_spec ds1803_channels[] = { DS1803_CHANNEL(0, DS1803_WIPER_0), DS1803_CHANNEL(1, DS1803_WIPER_1), }; static const struct iio_chan_spec ds3502_channels[] = { DS1803_CHANNEL(0, DS3502_WR_IVR), }; static int ds1803_read(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct ds1803_data *data = iio_priv(indio_dev); int ret; u8 result[ARRAY_SIZE(ds1803_channels)]; ret = i2c_master_recv(data->client, result, indio_dev->num_channels); if (ret < 0) return ret; *val = result[chan->channel]; return ret; } static int ds3502_read(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct ds1803_data *data = iio_priv(indio_dev); int ret; ret = i2c_smbus_read_byte_data(data->client, chan->address); if (ret < 0) return ret; *val = ret; return ret; } static const struct ds1803_cfg ds1803_cfg[] = { [DS1803_010] = { .wipers = 2, .avail = { 0, 1, 255 }, .kohms = 10, .channels = ds1803_channels, .num_channels = ARRAY_SIZE(ds1803_channels), .read = ds1803_read, }, [DS1803_050] = { .wipers = 2, .avail = { 0, 1, 255 }, .kohms = 50, .channels = ds1803_channels, .num_channels = ARRAY_SIZE(ds1803_channels), .read = ds1803_read, }, [DS1803_100] = { .wipers = 2, .avail = { 0, 1, 255 }, .kohms = 100, .channels = ds1803_channels, .num_channels = ARRAY_SIZE(ds1803_channels), .read = ds1803_read, }, [DS3502] = { .wipers = 1, .avail = { 0, 1, 127 }, .kohms = 10, .channels = ds3502_channels, .num_channels = ARRAY_SIZE(ds3502_channels), .read = ds3502_read, }, }; static int ds1803_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ds1803_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = data->cfg->read(indio_dev, chan, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 1000 * data->cfg->kohms; *val2 = data->cfg->avail[2]; /* Max wiper position */ return IIO_VAL_FRACTIONAL; } return -EINVAL; } static int ds1803_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ds1803_data *data = iio_priv(indio_dev); u8 addr = chan->address; int max_pos = data->cfg->avail[2]; if (val2 != 0) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: if (val > max_pos || val < 0) return -EINVAL; break; default: return -EINVAL; } return i2c_smbus_write_byte_data(data->client, addr, val); } static int ds1803_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct ds1803_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: *vals = data->cfg->avail; *length = ARRAY_SIZE(data->cfg->avail); *type = IIO_VAL_INT; return IIO_AVAIL_RANGE; } return -EINVAL; } static const struct iio_info ds1803_info = { .read_raw = ds1803_read_raw, .write_raw = ds1803_write_raw, .read_avail = ds1803_read_avail, }; static int ds1803_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct ds1803_data *data; struct iio_dev *indio_dev; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; i2c_set_clientdata(client, indio_dev); data = iio_priv(indio_dev); data->client = client; data->cfg = i2c_get_match_data(client); indio_dev->info = &ds1803_info; indio_dev->channels = data->cfg->channels; indio_dev->num_channels = data->cfg->num_channels; indio_dev->name = client->name; return devm_iio_device_register(dev, indio_dev); } static const struct of_device_id ds1803_dt_ids[] = { { .compatible = "maxim,ds1803-010", .data = &ds1803_cfg[DS1803_010] }, { .compatible = "maxim,ds1803-050", .data = &ds1803_cfg[DS1803_050] }, { .compatible = "maxim,ds1803-100", .data = &ds1803_cfg[DS1803_100] }, { .compatible = "maxim,ds3502", .data = &ds1803_cfg[DS3502] }, {} }; MODULE_DEVICE_TABLE(of, ds1803_dt_ids); static const struct i2c_device_id ds1803_id[] = { { "ds1803-010", (kernel_ulong_t)&ds1803_cfg[DS1803_010] }, { "ds1803-050", (kernel_ulong_t)&ds1803_cfg[DS1803_050] }, { "ds1803-100", (kernel_ulong_t)&ds1803_cfg[DS1803_100] }, { "ds3502", (kernel_ulong_t)&ds1803_cfg[DS3502] }, {} }; MODULE_DEVICE_TABLE(i2c, ds1803_id); static struct i2c_driver ds1803_driver = { .driver = { .name = "ds1803", .of_match_table = ds1803_dt_ids, }, .probe = ds1803_probe, .id_table = ds1803_id, }; module_i2c_driver(ds1803_driver); MODULE_AUTHOR("Slawomir Stepien <[email protected]>"); MODULE_AUTHOR("Jagath Jog J <[email protected]>"); MODULE_DESCRIPTION("DS1803 digital potentiometer"); MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2016 Qualcomm Atheros, Inc * * Based on net/sched/sch_fq_codel.c */ #ifndef __NET_SCHED_FQ_IMPL_H #define __NET_SCHED_FQ_IMPL_H #include <net/fq.h> /* functions that are embedded into includer */ static void __fq_adjust_removal(struct fq *fq, struct fq_flow *flow, unsigned int packets, unsigned int bytes, unsigned int truesize) { struct fq_tin *tin = flow->tin; int idx; tin->backlog_bytes -= bytes; tin->backlog_packets -= packets; flow->backlog -= bytes; fq->backlog -= packets; fq->memory_usage -= truesize; if (flow->backlog) return; if (flow == &tin->default_flow) { list_del_init(&tin->tin_list); return; } idx = flow - fq->flows; __clear_bit(idx, fq->flows_bitmap); } static void fq_adjust_removal(struct fq *fq, struct fq_flow *flow, struct sk_buff *skb) { __fq_adjust_removal(fq, flow, 1, skb->len, skb->truesize); } static struct sk_buff *fq_flow_dequeue(struct fq *fq, struct fq_flow *flow) { struct sk_buff *skb; lockdep_assert_held(&fq->lock); skb = __skb_dequeue(&flow->queue); if (!skb) return NULL; fq_adjust_removal(fq, flow, skb); return skb; } static int fq_flow_drop(struct fq *fq, struct fq_flow *flow, fq_skb_free_t free_func) { unsigned int packets = 0, bytes = 0, truesize = 0; struct fq_tin *tin = flow->tin; struct sk_buff *skb; int pending; lockdep_assert_held(&fq->lock); pending = min_t(int, 32, skb_queue_len(&flow->queue) / 2); do { skb = __skb_dequeue(&flow->queue); if (!skb) break; packets++; bytes += skb->len; truesize += skb->truesize; free_func(fq, tin, flow, skb); } while (packets < pending); __fq_adjust_removal(fq, flow, packets, bytes, truesize); return packets; } static struct sk_buff *fq_tin_dequeue(struct fq *fq, struct fq_tin *tin, fq_tin_dequeue_t dequeue_func) { struct fq_flow *flow; struct list_head *head; struct sk_buff *skb; lockdep_assert_held(&fq->lock); begin: head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) return NULL; } flow = list_first_entry(head, struct fq_flow, flowchain); if (flow->deficit <= 0) { flow->deficit += fq->quantum; list_move_tail(&flow->flowchain, &tin->old_flows); goto begin; } skb = dequeue_func(fq, tin, flow); if (!skb) { /* force a pass through old_flows to prevent starvation */ if ((head == &tin->new_flows) && !list_empty(&tin->old_flows)) { list_move_tail(&flow->flowchain, &tin->old_flows); } else { list_del_init(&flow->flowchain); flow->tin = NULL; } goto begin; } flow->deficit -= skb->len; tin->tx_bytes += skb->len; tin->tx_packets++; return skb; } static u32 fq_flow_idx(struct fq *fq, struct sk_buff *skb) { u32 hash = skb_get_hash(skb); return reciprocal_scale(hash, fq->flows_cnt); } static struct fq_flow *fq_flow_classify(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); flow = &fq->flows[idx]; if (flow->tin && flow->tin != tin) { flow = &tin->default_flow; tin->collisions++; fq->collisions++; } if (!flow->tin) tin->flows++; return flow; } static struct fq_flow *fq_find_fattest_flow(struct fq *fq) { struct fq_tin *tin; struct fq_flow *flow = NULL; u32 len = 0; int i; for_each_set_bit(i, fq->flows_bitmap, fq->flows_cnt) { struct fq_flow *cur = &fq->flows[i]; unsigned int cur_len; cur_len = cur->backlog; if (cur_len <= len) continue; flow = cur; len = cur_len; } list_for_each_entry(tin, &fq->tin_backlog, tin_list) { unsigned int cur_len = tin->default_flow.backlog; if (cur_len <= len) continue; flow = &tin->default_flow; len = cur_len; } return flow; } static void fq_tin_enqueue(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_skb_free_t free_func) { struct fq_flow *flow; struct sk_buff *next; bool oom; lockdep_assert_held(&fq->lock); flow = fq_flow_classify(fq, tin, idx, skb); if (!flow->backlog) { if (flow != &tin->default_flow) __set_bit(idx, fq->flows_bitmap); else if (list_empty(&tin->tin_list)) list_add(&tin->tin_list, &fq->tin_backlog); } flow->tin = tin; skb_list_walk_safe(skb, skb, next) { skb_mark_not_on_list(skb); flow->backlog += skb->len; tin->backlog_bytes += skb->len; tin->backlog_packets++; fq->memory_usage += skb->truesize; fq->backlog++; __skb_queue_tail(&flow->queue, skb); } if (list_empty(&flow->flowchain)) { flow->deficit = fq->quantum; list_add_tail(&flow->flowchain, &tin->new_flows); } oom = (fq->memory_usage > fq->memory_limit); while (fq->backlog > fq->limit || oom) { flow = fq_find_fattest_flow(fq); if (!flow) return; if (!fq_flow_drop(fq, flow, free_func)) return; flow->tin->overlimit++; fq->overlimit++; if (oom) { fq->overmemory++; oom = (fq->memory_usage > fq->memory_limit); } } } static void fq_flow_filter(struct fq *fq, struct fq_flow *flow, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_tin *tin = flow->tin; struct sk_buff *skb, *tmp; lockdep_assert_held(&fq->lock); skb_queue_walk_safe(&flow->queue, skb, tmp) { if (!filter_func(fq, tin, flow, skb, filter_data)) continue; __skb_unlink(skb, &flow->queue); fq_adjust_removal(fq, flow, skb); free_func(fq, tin, flow, skb); } } static void fq_tin_filter(struct fq *fq, struct fq_tin *tin, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); list_for_each_entry(flow, &tin->new_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); list_for_each_entry(flow, &tin->old_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); } static void fq_flow_reset(struct fq *fq, struct fq_flow *flow, fq_skb_free_t free_func) { struct fq_tin *tin = flow->tin; struct sk_buff *skb; while ((skb = fq_flow_dequeue(fq, flow))) free_func(fq, tin, flow, skb); if (!list_empty(&flow->flowchain)) { list_del_init(&flow->flowchain); if (list_empty(&tin->new_flows) && list_empty(&tin->old_flows)) list_del_init(&tin->tin_list); } flow->tin = NULL; WARN_ON_ONCE(flow->backlog); } static void fq_tin_reset(struct fq *fq, struct fq_tin *tin, fq_skb_free_t free_func) { struct list_head *head; struct fq_flow *flow; for (;;) { head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) break; } flow = list_first_entry(head, struct fq_flow, flowchain); fq_flow_reset(fq, flow, free_func); } WARN_ON_ONCE(!list_empty(&tin->tin_list)); WARN_ON_ONCE(tin->backlog_bytes); WARN_ON_ONCE(tin->backlog_packets); } static void fq_flow_init(struct fq_flow *flow) { INIT_LIST_HEAD(&flow->flowchain); __skb_queue_head_init(&flow->queue); } static void fq_tin_init(struct fq_tin *tin) { INIT_LIST_HEAD(&tin->new_flows); INIT_LIST_HEAD(&tin->old_flows); INIT_LIST_HEAD(&tin->tin_list); fq_flow_init(&tin->default_flow); } static int fq_init(struct fq *fq, int flows_cnt) { int i; memset(fq, 0, sizeof(fq[0])); spin_lock_init(&fq->lock); INIT_LIST_HEAD(&fq->tin_backlog); fq->flows_cnt = max_t(u32, flows_cnt, 1); fq->quantum = 300; fq->limit = 8192; fq->memory_limit = 16 << 20; /* 16 MBytes */ fq->flows = kvcalloc(fq->flows_cnt, sizeof(fq->flows[0]), GFP_KERNEL); if (!fq->flows) return -ENOMEM; fq->flows_bitmap = bitmap_zalloc(fq->flows_cnt, GFP_KERNEL); if (!fq->flows_bitmap) { kvfree(fq->flows); fq->flows = NULL; return -ENOMEM; } for (i = 0; i < fq->flows_cnt; i++) fq_flow_init(&fq->flows[i]); return 0; } static void fq_reset(struct fq *fq, fq_skb_free_t free_func) { int i; for (i = 0; i < fq->flows_cnt; i++) fq_flow_reset(fq, &fq->flows[i], free_func); kvfree(fq->flows); fq->flows = NULL; bitmap_free(fq->flows_bitmap); fq->flows_bitmap = NULL; } #endif
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include "i915_drv.h" #include "i915_reg.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "soc/intel_dram.h" static u32 read_reference_ts_freq(struct intel_uncore *uncore) { u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE); u32 base_freq, frac_freq; base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; base_freq *= 1000000; frac_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); frac_freq = 1000000 / (frac_freq + 1); return base_freq + frac_freq; } static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore, u32 rpm_config_reg) { u32 f19_2_mhz = 19200000; u32 f24_mhz = 24000000; u32 f25_mhz = 25000000; u32 f38_4_mhz = 38400000; u32 crystal_clock = (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; switch (crystal_clock) { case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: return f24_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: return f19_2_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: return f38_4_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: return f25_mhz; default: MISSING_CASE(crystal_clock); return 0; } } static u32 gen11_read_clock_frequency(struct intel_uncore *uncore) { u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE); u32 freq = 0; /* * Note that on gen11+, the clock frequency may be reconfigured. * We do not, and we assume nobody else does. * * First figure out the reference frequency. There are 2 ways * we can compute the frequency, either through the * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE * tells us which one we should use. */ if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(uncore); } else { u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0); freq = gen11_get_crystal_clock_freq(uncore, c0); /* * Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); } return freq; } static u32 gen9_read_clock_frequency(struct intel_uncore *uncore) { u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE); u32 freq = 0; if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(uncore); } else { freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000; /* * Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> CTC_SHIFT_PARAMETER_SHIFT); } return freq; } static u32 gen6_read_clock_frequency(struct intel_uncore *uncore) { /* * PRMs say: * * "The PCU TSC counts 10ns increments; this timestamp * reflects bits 38:3 of the TSC (i.e. 80ns granularity, * rolling over every 1.5 hours). */ return 12500000; } static u32 gen5_read_clock_frequency(struct intel_uncore *uncore) { /* * 63:32 increments every 1000 ns * 31:0 mbz */ return 1000000000 / 1000; } static u32 g4x_read_clock_frequency(struct intel_uncore *uncore) { /* * 63:20 increments every 1/4 ns * 19:0 mbz * * -> 63:32 increments every 1024 ns */ return 1000000000 / 1024; } static u32 gen4_read_clock_frequency(struct intel_uncore *uncore) { /* * PRMs say: * * "The value in this register increments once every 16 * hclks." (through the “Clocking Configuration” * (“CLKCFG”) MCHBAR register) * * Testing on actual hardware has shown there is no /16. */ return DIV_ROUND_CLOSEST(i9xx_fsb_freq(uncore->i915), 4) * 1000; } static u32 read_clock_frequency(struct intel_uncore *uncore) { if (GRAPHICS_VER(uncore->i915) >= 11) return gen11_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) >= 9) return gen9_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) >= 6) return gen6_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) == 5) return gen5_read_clock_frequency(uncore); else if (IS_G4X(uncore->i915)) return g4x_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) == 4) return gen4_read_clock_frequency(uncore); else return 0; } void intel_gt_init_clock_frequency(struct intel_gt *gt) { gt->clock_frequency = read_clock_frequency(gt->uncore); /* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */ if (GRAPHICS_VER(gt->i915) == 11) gt->clock_period_ns = NSEC_PER_SEC / 13750000; else if (gt->clock_frequency) gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1); GT_TRACE(gt, "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n", gt->clock_frequency / 1000, gt->clock_period_ns, div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX), USEC_PER_SEC)); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) void intel_gt_check_clock_frequency(const struct intel_gt *gt) { if (gt->clock_frequency != read_clock_frequency(gt->uncore)) { gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n", gt->clock_frequency, read_clock_frequency(gt->uncore)); } } #endif static u64 div_u64_roundup(u64 nom, u32 den) { return div_u64(nom + den - 1, den); } u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count) { return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency); } u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count) { return intel_gt_clock_interval_to_ns(gt, 16 * count); } u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns) { return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC); } u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns) { u64 val; /* * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS * 8300) freezing up around GPU hangs. Looks as if even * scheduling/timer interrupts start misbehaving if the RPS * EI/thresholds are "bad", leading to a very sluggish or even * frozen machine. */ val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16); if (GRAPHICS_VER(gt->i915) == 6) val = div_u64_roundup(val, 25) * 25; return val; }
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Roy Luo <[email protected]> * Ryder Lee <[email protected]> * Felix Fietkau <[email protected]> * Lorenzo Bianconi <[email protected]> */ #include <linux/etherdevice.h> #include "mt7615.h" #include "mac.h" #include "eeprom.h" static void mt7615_pci_init_work(struct work_struct *work) { struct mt7615_dev *dev = container_of(work, struct mt7615_dev, mcu_work); int i, ret; ret = mt7615_mcu_init(dev); for (i = 0; (ret == -EAGAIN) && (i < 10); i++) { msleep(200); ret = mt7615_mcu_init(dev); } if (ret) return; mt7615_init_work(dev); } static int mt7615_init_hardware(struct mt7615_dev *dev) { u32 addr = mt7615_reg_map(dev, MT_EFUSE_BASE); int ret, idx; mt76_wr(dev, MT_INT_SOURCE_CSR, ~0); INIT_WORK(&dev->mcu_work, mt7615_pci_init_work); ret = mt7615_eeprom_init(dev, addr); if (ret < 0) return ret; if (is_mt7663(&dev->mt76)) { /* Reset RGU */ mt76_clear(dev, MT_MCU_CIRQ_IRQ_SEL(4), BIT(1)); mt76_set(dev, MT_MCU_CIRQ_IRQ_SEL(4), BIT(1)); } ret = mt7615_dma_init(dev); if (ret) return ret; set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state); /* Beacon and mgmt frames should occupy wcid 0 */ idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7615_WTBL_STA - 1); if (idx) return -ENOSPC; dev->mt76.global_wcid.idx = idx; dev->mt76.global_wcid.hw_key_idx = -1; rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid); return 0; } int mt7615_register_device(struct mt7615_dev *dev) { int ret; mt7615_init_device(dev); INIT_WORK(&dev->reset_work, mt7615_mac_reset_work); /* init led callbacks */ if (IS_ENABLED(CONFIG_MT76_LEDS)) { dev->mphy.leds.cdev.brightness_set = mt7615_led_set_brightness; dev->mphy.leds.cdev.blink_set = mt7615_led_set_blink; } ret = mt7622_wmac_init(dev); if (ret) return ret; ret = mt7615_init_hardware(dev); if (ret) return ret; ret = mt76_register_device(&dev->mt76, true, mt76_rates, ARRAY_SIZE(mt76_rates)); if (ret) return ret; ret = mt7615_thermal_init(dev); if (ret) return ret; ieee80211_queue_work(mt76_hw(dev), &dev->mcu_work); mt7615_init_txpower(dev, &dev->mphy.sband_2g.sband); mt7615_init_txpower(dev, &dev->mphy.sband_5g.sband); if (dev->dbdc_support) { ret = mt7615_register_ext_phy(dev); if (ret) return ret; } return mt7615_init_debugfs(dev); } void mt7615_unregister_device(struct mt7615_dev *dev) { bool mcu_running; mcu_running = mt7615_wait_for_mcu_init(dev); mt7615_unregister_ext_phy(dev); mt76_unregister_device(&dev->mt76); if (mcu_running) mt7615_mcu_exit(dev); mt7615_tx_token_put(dev); mt7615_dma_cleanup(dev); tasklet_disable(&dev->mt76.irq_tasklet); mt76_free_device(&dev->mt76); }
// SPDX-License-Identifier: GPL-2.0 /* * arch/sh/kernel/cpu/sh4/clock-shx3.c * * SH-X3 support for the clock framework * * Copyright (C) 2006-2007 Renesas Technology Corp. * Copyright (C) 2006-2007 Renesas Solutions Corp. * Copyright (C) 2006-2010 Paul Mundt */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/io.h> #include <linux/clkdev.h> #include <asm/clock.h> #include <asm/freq.h> /* * Default rate for the root input clock, reset this with clk_set_rate() * from the platform code. */ static struct clk extal_clk = { .rate = 16666666, }; static unsigned long pll_recalc(struct clk *clk) { /* PLL1 has a fixed x72 multiplier. */ return clk->parent->rate * 72; } static struct sh_clk_ops pll_clk_ops = { .recalc = pll_recalc, }; static struct clk pll_clk = { .ops = &pll_clk_ops, .parent = &extal_clk, .flags = CLK_ENABLE_ON_INIT, }; static struct clk *clks[] = { &extal_clk, &pll_clk, }; static unsigned int div2[] = { 1, 2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 48 }; static struct clk_div_mult_table div4_div_mult_table = { .divisors = div2, .nr_divisors = ARRAY_SIZE(div2), }; static struct clk_div4_table div4_table = { .div_mult_table = &div4_div_mult_table, }; enum { DIV4_I, DIV4_SH, DIV4_B, DIV4_DDR, DIV4_SHA, DIV4_P, DIV4_NR }; #define DIV4(_bit, _mask, _flags) \ SH_CLK_DIV4(&pll_clk, FRQMR1, _bit, _mask, _flags) struct clk div4_clks[DIV4_NR] = { [DIV4_P] = DIV4(0, 0x0f80, 0), [DIV4_SHA] = DIV4(4, 0x0ff0, 0), [DIV4_DDR] = DIV4(12, 0x000c, CLK_ENABLE_ON_INIT), [DIV4_B] = DIV4(16, 0x0fe0, CLK_ENABLE_ON_INIT), [DIV4_SH] = DIV4(20, 0x000c, CLK_ENABLE_ON_INIT), [DIV4_I] = DIV4(28, 0x000e, CLK_ENABLE_ON_INIT), }; #define MSTPCR0 0xffc00030 #define MSTPCR1 0xffc00034 enum { MSTP027, MSTP026, MSTP025, MSTP024, MSTP009, MSTP008, MSTP003, MSTP002, MSTP001, MSTP000, MSTP119, MSTP105, MSTP104, MSTP_NR }; static struct clk mstp_clks[MSTP_NR] = { /* MSTPCR0 */ [MSTP027] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 27, 0), [MSTP026] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 26, 0), [MSTP025] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 25, 0), [MSTP024] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 24, 0), [MSTP009] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 9, 0), [MSTP008] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 8, 0), [MSTP003] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 3, 0), [MSTP002] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 2, 0), [MSTP001] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 1, 0), [MSTP000] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 0, 0), /* MSTPCR1 */ [MSTP119] = SH_CLK_MSTP32(NULL, MSTPCR1, 19, 0), [MSTP105] = SH_CLK_MSTP32(NULL, MSTPCR1, 5, 0), [MSTP104] = SH_CLK_MSTP32(NULL, MSTPCR1, 4, 0), }; static struct clk_lookup lookups[] = { /* main clocks */ CLKDEV_CON_ID("extal", &extal_clk), CLKDEV_CON_ID("pll_clk", &pll_clk), /* DIV4 clocks */ CLKDEV_CON_ID("peripheral_clk", &div4_clks[DIV4_P]), CLKDEV_CON_ID("shywaya_clk", &div4_clks[DIV4_SHA]), CLKDEV_CON_ID("ddr_clk", &div4_clks[DIV4_DDR]), CLKDEV_CON_ID("bus_clk", &div4_clks[DIV4_B]), CLKDEV_CON_ID("shyway_clk", &div4_clks[DIV4_SH]), CLKDEV_CON_ID("cpu_clk", &div4_clks[DIV4_I]), /* MSTP32 clocks */ CLKDEV_ICK_ID("fck", "sh-sci.3", &mstp_clks[MSTP027]), CLKDEV_ICK_ID("fck", "sh-sci.2", &mstp_clks[MSTP026]), CLKDEV_ICK_ID("fck", "sh-sci.1", &mstp_clks[MSTP025]), CLKDEV_ICK_ID("fck", "sh-sci.0", &mstp_clks[MSTP024]), CLKDEV_CON_ID("h8ex_fck", &mstp_clks[MSTP003]), CLKDEV_CON_ID("csm_fck", &mstp_clks[MSTP002]), CLKDEV_CON_ID("fe1_fck", &mstp_clks[MSTP001]), CLKDEV_CON_ID("fe0_fck", &mstp_clks[MSTP000]), CLKDEV_ICK_ID("fck", "sh-tmu.0", &mstp_clks[MSTP008]), CLKDEV_ICK_ID("fck", "sh-tmu.1", &mstp_clks[MSTP009]), CLKDEV_CON_ID("hudi_fck", &mstp_clks[MSTP119]), CLKDEV_CON_ID("dmac_11_6_fck", &mstp_clks[MSTP105]), CLKDEV_CON_ID("dmac_5_0_fck", &mstp_clks[MSTP104]), }; int __init arch_clk_init(void) { int i, ret = 0; for (i = 0; i < ARRAY_SIZE(clks); i++) ret |= clk_register(clks[i]); clkdev_add_table(lookups, ARRAY_SIZE(lookups)); if (!ret) ret = sh_clk_div4_register(div4_clks, ARRAY_SIZE(div4_clks), &div4_table); if (!ret) ret = sh_clk_mstp_register(mstp_clks, MSTP_NR); return ret; }
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Google Veyron Speedy Rev 1+ board device tree source * * Copyright 2015 Google, Inc */ /dts-v1/; #include "rk3288-veyron-chromebook.dtsi" #include "rk3288-veyron-broadcom-bluetooth.dtsi" #include "../cros-ec-sbs.dtsi" / { model = "Google Speedy"; compatible = "google,veyron-speedy-rev9", "google,veyron-speedy-rev8", "google,veyron-speedy-rev7", "google,veyron-speedy-rev6", "google,veyron-speedy-rev5", "google,veyron-speedy-rev4", "google,veyron-speedy-rev3", "google,veyron-speedy-rev2", "google,veyron-speedy", "google,veyron", "rockchip,rk3288"; }; &cpu_alert0 { temperature = <65000>; }; &cpu_alert1 { temperature = <70000>; }; &cpu_crit { temperature = <90000>; }; &edp { /delete-property/pinctrl-names; /delete-property/pinctrl-0; force-hpd; }; &gpu_alert0 { temperature = <80000>; }; &gpu_crit { temperature = <90000>; }; &rk808 { pinctrl-names = "default"; pinctrl-0 = <&pmic_int_l>; }; &sdmmc { disable-wp; pinctrl-names = "default"; pinctrl-0 = <&sdmmc_clk &sdmmc_cmd &sdmmc_cd_disabled &sdmmc_cd_pin &sdmmc_bus4>; }; &vcc_5v { enable-active-high; gpio = <&gpio7 RK_PC5 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&drv_5v>; }; &vcc50_hdmi { enable-active-high; gpio = <&gpio5 RK_PC3 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&vcc50_hdmi_en>; }; &gpio0 { gpio-line-names = "PMIC_SLEEP_AP", "DDRIO_PWROFF", "DDRIO_RETEN", "TS3A227E_INT_L", "PMIC_INT_L", "PWR_KEY_L", "AP_LID_INT_L", "EC_IN_RW", "AC_PRESENT_AP", /* * RECOVERY_SW_L is Chrome OS ABI. Schematics call * it REC_MODE_L. */ "RECOVERY_SW_L", "OTP_OUT", "HOST1_PWR_EN", "USBOTG_PWREN_H", "AP_WARM_RESET_H", "nFALUT2", "I2C0_SDA_PMIC", "I2C0_SCL_PMIC", "SUSPEND_L", "USB_INT"; }; &gpio2 { gpio-line-names = "CONFIG0", "CONFIG1", "CONFIG2", "", "", "", "", "CONFIG3", "PWRLIMIT#_CPU", "EMMC_RST_L", "", "", "BL_PWR_EN", "AVDD_1V8_DISP_EN"; }; &gpio3 { gpio-line-names = "FLASH0_D0", "FLASH0_D1", "FLASH0_D2", "FLASH0_D3", "FLASH0_D4", "FLASH0_D5", "FLASH0_D6", "FLASH0_D7", "", "", "", "", "", "", "", "", "FLASH0_CS2/EMMC_CMD", "", "FLASH0_DQS/EMMC_CLKO"; }; &gpio4 { gpio-line-names = "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "UART0_RXD", "UART0_TXD", "UART0_CTS", "UART0_RTS", "SDIO0_D0", "SDIO0_D1", "SDIO0_D2", "SDIO0_D3", "SDIO0_CMD", "SDIO0_CLK", "BT_DEV_WAKE", "", "WIFI_ENABLE_H", "BT_ENABLE_L", "WIFI_HOST_WAKE", "BT_HOST_WAKE"; }; &gpio5 { gpio-line-names = "", "", "", "", "", "", "", "", "", "", "", "", "SPI0_CLK", "SPI0_CS0", "SPI0_TXD", "SPI0_RXD", "", "", "", "VCC50_HDMI_EN"; }; &gpio6 { gpio-line-names = "I2S0_SCLK", "I2S0_LRCK_RX", "I2S0_LRCK_TX", "I2S0_SDI", "I2S0_SDO0", "HP_DET_H", "ALS_INT", /* not connected */ "INT_CODEC", "I2S0_CLK", "I2C2_SDA", "I2C2_SCL", "MICDET", "", "", "", "", "SDMMC_D0", "SDMMC_D1", "SDMMC_D2", "SDMMC_D3", "SDMMC_CLK", "SDMMC_CMD"; }; &gpio7 { gpio-line-names = "LCDC_BL", "PWM_LOG", "BL_EN", "TRACKPAD_INT", "TPM_INT_H", "SDMMC_DET_L", /* * AP_FLASH_WP_L is Chrome OS ABI. Schematics call * it FW_WP_AP. */ "AP_FLASH_WP_L", "EC_INT", "CPU_NMI", "DVS_OK", "", "EDP_HOTPLUG", "DVS1", "nFALUT1", "LCD_EN", "DVS2", "VCC5V_GOOD_H", "I2C4_SDA_TP", "I2C4_SCL_TP", "I2C5_SDA_HDMI", "I2C5_SCL_HDMI", "5V_DRV", "UART2_RXD", "UART2_TXD"; }; &gpio8 { gpio-line-names = "RAM_ID0", "RAM_ID1", "RAM_ID2", "RAM_ID3", "I2C1_SDA_TPM", "I2C1_SCL_TPM", "SPI2_CLK", "SPI2_CS0", "SPI2_RXD", "SPI2_TXD"; }; &pinctrl { pinctrl-names = "default", "sleep"; pinctrl-0 = < /* Common for sleep and wake, but no owners */ &ddr0_retention &ddrio_pwroff &global_pwroff /* Wake only */ &suspend_l_wake >; pinctrl-1 = < /* Common for sleep and wake, but no owners */ &ddr0_retention &ddrio_pwroff &global_pwroff /* Sleep only */ &suspend_l_sleep >; buck-5v { drv_5v: drv-5v { rockchip,pins = <7 RK_PC5 RK_FUNC_GPIO &pcfg_pull_none>; }; }; hdmi { vcc50_hdmi_en: vcc50-hdmi-en { rockchip,pins = <5 RK_PC3 RK_FUNC_GPIO &pcfg_pull_none>; }; }; pmic { dvs_1: dvs-1 { rockchip,pins = <7 RK_PB4 RK_FUNC_GPIO &pcfg_pull_down>; }; dvs_2: dvs-2 { rockchip,pins = <7 RK_PB7 RK_FUNC_GPIO &pcfg_pull_down>; }; }; };
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 HiSilicon Limited. */ #include <linux/align.h> #include <linux/dma-mapping.h> #include <linux/hisi_acc_qm.h> #include <linux/module.h> #include <linux/slab.h> #define HISI_ACC_SGL_SGE_NR_MIN 1 #define HISI_ACC_SGL_NR_MAX 256 #define HISI_ACC_SGL_ALIGN_SIZE 64 #define HISI_ACC_MEM_BLOCK_NR 5 struct acc_hw_sge { dma_addr_t buf; void *page_ctrl; __le32 len; __le32 pad; __le32 pad0; __le32 pad1; }; /* use default sgl head size 64B */ struct hisi_acc_hw_sgl { dma_addr_t next_dma; __le16 entry_sum_in_chain; __le16 entry_sum_in_sgl; __le16 entry_length_in_sgl; __le16 pad0; __le64 pad1[5]; struct hisi_acc_hw_sgl *next; struct acc_hw_sge sge_entries[]; } __aligned(1); struct hisi_acc_sgl_pool { struct mem_block { struct hisi_acc_hw_sgl *sgl; dma_addr_t sgl_dma; size_t size; } mem_block[HISI_ACC_MEM_BLOCK_NR]; u32 sgl_num_per_block; u32 block_num; u32 count; u32 sge_nr; size_t sgl_size; }; /** * hisi_acc_create_sgl_pool() - Create a hw sgl pool. * @dev: The device which hw sgl pool belongs to. * @count: Count of hisi_acc_hw_sgl in pool. * @sge_nr: The count of sge in hw_sgl * * This function creates a hw sgl pool, after this user can get hw sgl memory * from it. */ struct hisi_acc_sgl_pool *hisi_acc_create_sgl_pool(struct device *dev, u32 count, u32 sge_nr) { u32 sgl_size, block_size, sgl_num_per_block, block_num, remain_sgl; struct hisi_acc_sgl_pool *pool; struct mem_block *block; u32 i, j; if (!dev || !count || !sge_nr || sge_nr > HISI_ACC_SGL_SGE_NR_MAX) return ERR_PTR(-EINVAL); sgl_size = ALIGN(sizeof(struct acc_hw_sge) * sge_nr + sizeof(struct hisi_acc_hw_sgl), HISI_ACC_SGL_ALIGN_SIZE); /* * the pool may allocate a block of memory of size PAGE_SIZE * 2^MAX_PAGE_ORDER, * block size may exceed 2^31 on ia64, so the max of block size is 2^31 */ block_size = 1 << (PAGE_SHIFT + MAX_PAGE_ORDER < 32 ? PAGE_SHIFT + MAX_PAGE_ORDER : 31); sgl_num_per_block = block_size / sgl_size; block_num = count / sgl_num_per_block; remain_sgl = count % sgl_num_per_block; if ((!remain_sgl && block_num > HISI_ACC_MEM_BLOCK_NR) || (remain_sgl > 0 && block_num > HISI_ACC_MEM_BLOCK_NR - 1)) return ERR_PTR(-EINVAL); pool = kzalloc(sizeof(*pool), GFP_KERNEL); if (!pool) return ERR_PTR(-ENOMEM); block = pool->mem_block; for (i = 0; i < block_num; i++) { block[i].sgl = dma_alloc_coherent(dev, block_size, &block[i].sgl_dma, GFP_KERNEL); if (!block[i].sgl) { dev_err(dev, "Fail to allocate hw SG buffer!\n"); goto err_free_mem; } block[i].size = block_size; } if (remain_sgl > 0) { block[i].sgl = dma_alloc_coherent(dev, remain_sgl * sgl_size, &block[i].sgl_dma, GFP_KERNEL); if (!block[i].sgl) { dev_err(dev, "Fail to allocate remained hw SG buffer!\n"); goto err_free_mem; } block[i].size = remain_sgl * sgl_size; } pool->sgl_num_per_block = sgl_num_per_block; pool->block_num = remain_sgl ? block_num + 1 : block_num; pool->count = count; pool->sgl_size = sgl_size; pool->sge_nr = sge_nr; return pool; err_free_mem: for (j = 0; j < i; j++) dma_free_coherent(dev, block_size, block[j].sgl, block[j].sgl_dma); kfree_sensitive(pool); return ERR_PTR(-ENOMEM); } EXPORT_SYMBOL_GPL(hisi_acc_create_sgl_pool); /** * hisi_acc_free_sgl_pool() - Free a hw sgl pool. * @dev: The device which hw sgl pool belongs to. * @pool: Pointer of pool. * * This function frees memory of a hw sgl pool. */ void hisi_acc_free_sgl_pool(struct device *dev, struct hisi_acc_sgl_pool *pool) { struct mem_block *block; u32 i; if (!dev || !pool) return; block = pool->mem_block; for (i = 0; i < pool->block_num; i++) dma_free_coherent(dev, block[i].size, block[i].sgl, block[i].sgl_dma); kfree(pool); } EXPORT_SYMBOL_GPL(hisi_acc_free_sgl_pool); static struct hisi_acc_hw_sgl *acc_get_sgl(struct hisi_acc_sgl_pool *pool, u32 index, dma_addr_t *hw_sgl_dma) { struct mem_block *block; u32 block_index, offset; block = pool->mem_block; block_index = index / pool->sgl_num_per_block; offset = index % pool->sgl_num_per_block; *hw_sgl_dma = block[block_index].sgl_dma + pool->sgl_size * offset; return (void *)block[block_index].sgl + pool->sgl_size * offset; } static void sg_map_to_hw_sg(struct scatterlist *sgl, struct acc_hw_sge *hw_sge) { hw_sge->buf = sg_dma_address(sgl); hw_sge->len = cpu_to_le32(sg_dma_len(sgl)); hw_sge->page_ctrl = sg_virt(sgl); } static void inc_hw_sgl_sge(struct hisi_acc_hw_sgl *hw_sgl) { u16 var = le16_to_cpu(hw_sgl->entry_sum_in_sgl); var++; hw_sgl->entry_sum_in_sgl = cpu_to_le16(var); } static void update_hw_sgl_sum_sge(struct hisi_acc_hw_sgl *hw_sgl, u16 sum) { hw_sgl->entry_sum_in_chain = cpu_to_le16(sum); } static void clear_hw_sgl_sge(struct hisi_acc_hw_sgl *hw_sgl) { struct acc_hw_sge *hw_sge = hw_sgl->sge_entries; u16 entry_sum = le16_to_cpu(hw_sgl->entry_sum_in_sgl); int i; for (i = 0; i < entry_sum; i++) { hw_sge[i].page_ctrl = NULL; hw_sge[i].buf = 0; hw_sge[i].len = 0; } } /** * hisi_acc_sg_buf_map_to_hw_sgl - Map a scatterlist to a hw sgl. * @dev: The device which hw sgl belongs to. * @sgl: Scatterlist which will be mapped to hw sgl. * @pool: Pool which hw sgl memory will be allocated in. * @index: Index of hisi_acc_hw_sgl in pool. * @hw_sgl_dma: The dma address of allocated hw sgl. * * This function builds hw sgl according input sgl, user can use hw_sgl_dma * as src/dst in its BD. Only support single hw sgl currently. */ struct hisi_acc_hw_sgl * hisi_acc_sg_buf_map_to_hw_sgl(struct device *dev, struct scatterlist *sgl, struct hisi_acc_sgl_pool *pool, u32 index, dma_addr_t *hw_sgl_dma) { struct hisi_acc_hw_sgl *curr_hw_sgl; unsigned int i, sg_n_mapped; dma_addr_t curr_sgl_dma = 0; struct acc_hw_sge *curr_hw_sge; struct scatterlist *sg; int sg_n, ret; if (!dev || !sgl || !pool || !hw_sgl_dma || index >= pool->count) return ERR_PTR(-EINVAL); sg_n = sg_nents(sgl); sg_n_mapped = dma_map_sg(dev, sgl, sg_n, DMA_BIDIRECTIONAL); if (!sg_n_mapped) { dev_err(dev, "DMA mapping for SG error!\n"); return ERR_PTR(-EINVAL); } if (sg_n_mapped > pool->sge_nr) { dev_err(dev, "the number of entries in input scatterlist is bigger than SGL pool setting.\n"); ret = -EINVAL; goto err_unmap; } curr_hw_sgl = acc_get_sgl(pool, index, &curr_sgl_dma); if (IS_ERR(curr_hw_sgl)) { dev_err(dev, "Get SGL error!\n"); ret = -ENOMEM; goto err_unmap; } curr_hw_sgl->entry_length_in_sgl = cpu_to_le16(pool->sge_nr); curr_hw_sge = curr_hw_sgl->sge_entries; for_each_sg(sgl, sg, sg_n_mapped, i) { sg_map_to_hw_sg(sg, curr_hw_sge); inc_hw_sgl_sge(curr_hw_sgl); curr_hw_sge++; } update_hw_sgl_sum_sge(curr_hw_sgl, pool->sge_nr); *hw_sgl_dma = curr_sgl_dma; return curr_hw_sgl; err_unmap: dma_unmap_sg(dev, sgl, sg_n, DMA_BIDIRECTIONAL); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(hisi_acc_sg_buf_map_to_hw_sgl); /** * hisi_acc_sg_buf_unmap() - Unmap allocated hw sgl. * @dev: The device which hw sgl belongs to. * @sgl: Related scatterlist. * @hw_sgl: Virtual address of hw sgl. * * This function unmaps allocated hw sgl. */ void hisi_acc_sg_buf_unmap(struct device *dev, struct scatterlist *sgl, struct hisi_acc_hw_sgl *hw_sgl) { if (!dev || !sgl || !hw_sgl) return; dma_unmap_sg(dev, sgl, sg_nents(sgl), DMA_BIDIRECTIONAL); clear_hw_sgl_sge(hw_sgl); hw_sgl->entry_sum_in_chain = 0; hw_sgl->entry_sum_in_sgl = 0; hw_sgl->entry_length_in_sgl = 0; } EXPORT_SYMBOL_GPL(hisi_acc_sg_buf_unmap);
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014 Freescale Semiconductor, Inc. */ #include <dt-bindings/clock/imx6sx-clock.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/init.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/types.h> #include "clk.h" static const char *step_sels[] = { "osc", "pll2_pfd2_396m", }; static const char *pll1_sw_sels[] = { "pll1_sys", "step", }; static const char *periph_pre_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll2_pfd0_352m", "pll2_198m", }; static const char *periph2_pre_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll2_pfd0_352m", "pll4_audio_div", }; static const char *periph_clk2_sels[] = { "pll3_usb_otg", "osc", "osc", }; static const char *periph2_clk2_sels[] = { "pll3_usb_otg", "osc", }; static const char *periph_sels[] = { "periph_pre", "periph_clk2", }; static const char *periph2_sels[] = { "periph2_pre", "periph2_clk2", }; static const char *ocram_sels[] = { "periph", "pll2_pfd2_396m", "periph", "pll3_pfd1_540m", }; static const char *audio_sels[] = { "pll4_audio_div", "pll3_pfd2_508m", "pll5_video_div", "pll3_usb_otg", }; static const char *gpu_axi_sels[] = { "pll2_pfd2_396m", "pll3_pfd0_720m", "pll3_pfd1_540m", "pll2_bus", }; static const char *gpu_core_sels[] = { "pll3_pfd1_540m", "pll3_pfd0_720m", "pll2_bus", "pll2_pfd2_396m", }; static const char *ldb_di0_div_sels[] = { "ldb_di0_div_3_5", "ldb_di0_div_7", }; static const char *ldb_di1_div_sels[] = { "ldb_di1_div_3_5", "ldb_di1_div_7", }; static const char *ldb_di0_sels[] = { "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll2_pfd3_594m", "pll2_pfd1_594m", "pll3_pfd3_454m", }; static const char *ldb_di1_sels[] = { "pll3_usb_otg", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll2_bus", "pll3_pfd3_454m", "pll3_pfd2_508m", }; static const char *pcie_axi_sels[] = { "axi", "ahb", }; static const char *ssi_sels[] = { "pll3_pfd2_508m", "pll5_video_div", "pll4_audio_div", }; static const char *qspi1_sels[] = { "pll3_usb_otg", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll2_bus", "pll3_pfd3_454m", "pll3_pfd2_508m", }; static const char *perclk_sels[] = { "ipg", "osc", }; static const char *usdhc_sels[] = { "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *vid_sels[] = { "pll3_pfd1_540m", "pll3_usb_otg", "pll3_pfd3_454m", "pll4_audio_div", "pll5_video_div", }; static const char *can_sels[] = { "pll3_60m", "osc", "pll3_80m", "dummy", }; static const char *uart_sels[] = { "pll3_80m", "osc", }; static const char *qspi2_sels[] = { "pll2_pfd0_352m", "pll2_bus", "pll3_usb_otg", "pll2_pfd2_396m", "pll3_pfd3_454m", "dummy", "dummy", "dummy", }; static const char *enet_pre_sels[] = { "pll2_bus", "pll3_usb_otg", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll3_pfd2_508m", }; static const char *enet_sels[] = { "enet_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *m4_pre_sels[] = { "pll2_bus", "pll3_usb_otg", "osc", "pll2_pfd0_352m", "pll2_pfd2_396m", "pll3_pfd3_454m", }; static const char *m4_sels[] = { "m4_pre_sel", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *eim_slow_sels[] = { "ocram", "pll3_usb_otg", "pll2_pfd2_396m", "pll2_pfd0_352m", }; static const char *ecspi_sels[] = { "pll3_60m", "osc", }; static const char *lcdif1_pre_sels[] = { "pll2_bus", "pll3_pfd3_454m", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd1_594m", "pll3_pfd1_540m", }; static const char *lcdif1_sels[] = { "lcdif1_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *lcdif2_pre_sels[] = { "pll2_bus", "pll3_pfd3_454m", "pll5_video_div", "pll2_pfd0_352m", "pll2_pfd3_594m", "pll3_pfd1_540m", }; static const char *lcdif2_sels[] = { "lcdif2_podf", "ipp_di0", "ipp_di1", "ldb_di0", "ldb_di1", }; static const char *display_sels[] = { "pll2_bus", "pll2_pfd2_396m", "pll3_usb_otg", "pll3_pfd1_540m", }; static const char *csi_sels[] = { "osc", "pll2_pfd2_396m", "pll3_120m", "pll3_pfd1_540m", }; static const char *cko1_sels[] = { "dummy", "dummy", "dummy", "dummy", "vadc", "ocram", "qspi2", "m4", "enet_ahb", "lcdif2_pix", "lcdif1_pix", "ahb", "ipg", "perclk", "ckil", "pll4_audio_div", }; static const char *cko2_sels[] = { "dummy", "mmdc_p0_fast", "usdhc4", "usdhc1", "dummy", "wrck", "ecspi_root", "dummy", "usdhc3", "pcie", "arm", "csi_core", "display_axi", "dummy", "osc", "dummy", "dummy", "usdhc2", "ssi1", "ssi2", "ssi3", "gpu_axi_podf", "dummy", "can_podf", "lvds1_out", "qspi1", "esai_extal", "eim_slow", "uart_serial", "spdif", "audio", "dummy", }; static const char *cko_sels[] = { "cko1", "cko2", }; static const char *lvds_sels[] = { "arm", "pll1_sys", "dummy", "dummy", "dummy", "dummy", "dummy", "pll5_video_div", "dummy", "dummy", "pcie_ref_125m", "dummy", "usbphy1", "usbphy2", }; static const char *pll_bypass_src_sels[] = { "osc", "lvds1_in", "lvds2_in", "dummy", }; static const char *pll1_bypass_sels[] = { "pll1", "pll1_bypass_src", }; static const char *pll2_bypass_sels[] = { "pll2", "pll2_bypass_src", }; static const char *pll3_bypass_sels[] = { "pll3", "pll3_bypass_src", }; static const char *pll4_bypass_sels[] = { "pll4", "pll4_bypass_src", }; static const char *pll5_bypass_sels[] = { "pll5", "pll5_bypass_src", }; static const char *pll6_bypass_sels[] = { "pll6", "pll6_bypass_src", }; static const char *pll7_bypass_sels[] = { "pll7", "pll7_bypass_src", }; static struct clk_hw **hws; static struct clk_hw_onecell_data *clk_hw_data; static const struct clk_div_table clk_enet_ref_table[] = { { .val = 0, .div = 20, }, { .val = 1, .div = 10, }, { .val = 2, .div = 5, }, { .val = 3, .div = 4, }, { } }; static const struct clk_div_table post_div_table[] = { { .val = 2, .div = 1, }, { .val = 1, .div = 2, }, { .val = 0, .div = 4, }, { } }; static const struct clk_div_table video_div_table[] = { { .val = 0, .div = 1, }, { .val = 1, .div = 2, }, { .val = 2, .div = 1, }, { .val = 3, .div = 4, }, { } }; static u32 share_count_asrc; static u32 share_count_audio; static u32 share_count_esai; static u32 share_count_ssi1; static u32 share_count_ssi2; static u32 share_count_ssi3; static u32 share_count_sai1; static u32 share_count_sai2; static void __init imx6sx_clocks_init(struct device_node *ccm_node) { struct device_node *np; void __iomem *base; bool lcdif1_assigned_clk; clk_hw_data = kzalloc(struct_size(clk_hw_data, hws, IMX6SX_CLK_CLK_END), GFP_KERNEL); if (WARN_ON(!clk_hw_data)) return; clk_hw_data->num = IMX6SX_CLK_CLK_END; hws = clk_hw_data->hws; hws[IMX6SX_CLK_DUMMY] = imx_clk_hw_fixed("dummy", 0); hws[IMX6SX_CLK_CKIL] = imx_get_clk_hw_by_name(ccm_node, "ckil"); hws[IMX6SX_CLK_OSC] = imx_get_clk_hw_by_name(ccm_node, "osc"); /* ipp_di clock is external input */ hws[IMX6SX_CLK_IPP_DI0] = imx_get_clk_hw_by_name(ccm_node, "ipp_di0"); hws[IMX6SX_CLK_IPP_DI1] = imx_get_clk_hw_by_name(ccm_node, "ipp_di1"); /* Clock source from external clock via CLK1/2 PAD */ hws[IMX6SX_CLK_ANACLK1] = imx_get_clk_hw_by_name(ccm_node, "anaclk1"); hws[IMX6SX_CLK_ANACLK2] = imx_get_clk_hw_by_name(ccm_node, "anaclk2"); np = of_find_compatible_node(NULL, NULL, "fsl,imx6sx-anatop"); base = of_iomap(np, 0); WARN_ON(!base); of_node_put(np); hws[IMX6SX_PLL1_BYPASS_SRC] = imx_clk_hw_mux("pll1_bypass_src", base + 0x00, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL2_BYPASS_SRC] = imx_clk_hw_mux("pll2_bypass_src", base + 0x30, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL3_BYPASS_SRC] = imx_clk_hw_mux("pll3_bypass_src", base + 0x10, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL4_BYPASS_SRC] = imx_clk_hw_mux("pll4_bypass_src", base + 0x70, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL5_BYPASS_SRC] = imx_clk_hw_mux("pll5_bypass_src", base + 0xa0, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL6_BYPASS_SRC] = imx_clk_hw_mux("pll6_bypass_src", base + 0xe0, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); hws[IMX6SX_PLL7_BYPASS_SRC] = imx_clk_hw_mux("pll7_bypass_src", base + 0x20, 14, 1, pll_bypass_src_sels, ARRAY_SIZE(pll_bypass_src_sels)); /* type name parent_name base div_mask */ hws[IMX6SX_CLK_PLL1] = imx_clk_hw_pllv3(IMX_PLLV3_SYS, "pll1", "osc", base + 0x00, 0x7f); hws[IMX6SX_CLK_PLL2] = imx_clk_hw_pllv3(IMX_PLLV3_GENERIC, "pll2", "osc", base + 0x30, 0x1); hws[IMX6SX_CLK_PLL3] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll3", "osc", base + 0x10, 0x3); hws[IMX6SX_CLK_PLL4] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll4", "osc", base + 0x70, 0x7f); hws[IMX6SX_CLK_PLL5] = imx_clk_hw_pllv3(IMX_PLLV3_AV, "pll5", "osc", base + 0xa0, 0x7f); hws[IMX6SX_CLK_PLL6] = imx_clk_hw_pllv3(IMX_PLLV3_ENET, "pll6", "osc", base + 0xe0, 0x3); hws[IMX6SX_CLK_PLL7] = imx_clk_hw_pllv3(IMX_PLLV3_USB, "pll7", "osc", base + 0x20, 0x3); hws[IMX6SX_PLL1_BYPASS] = imx_clk_hw_mux_flags("pll1_bypass", base + 0x00, 16, 1, pll1_bypass_sels, ARRAY_SIZE(pll1_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL2_BYPASS] = imx_clk_hw_mux_flags("pll2_bypass", base + 0x30, 16, 1, pll2_bypass_sels, ARRAY_SIZE(pll2_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL3_BYPASS] = imx_clk_hw_mux_flags("pll3_bypass", base + 0x10, 16, 1, pll3_bypass_sels, ARRAY_SIZE(pll3_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL4_BYPASS] = imx_clk_hw_mux_flags("pll4_bypass", base + 0x70, 16, 1, pll4_bypass_sels, ARRAY_SIZE(pll4_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL5_BYPASS] = imx_clk_hw_mux_flags("pll5_bypass", base + 0xa0, 16, 1, pll5_bypass_sels, ARRAY_SIZE(pll5_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL6_BYPASS] = imx_clk_hw_mux_flags("pll6_bypass", base + 0xe0, 16, 1, pll6_bypass_sels, ARRAY_SIZE(pll6_bypass_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_PLL7_BYPASS] = imx_clk_hw_mux_flags("pll7_bypass", base + 0x20, 16, 1, pll7_bypass_sels, ARRAY_SIZE(pll7_bypass_sels), CLK_SET_RATE_PARENT); /* Do not bypass PLLs initially */ clk_set_parent(hws[IMX6SX_PLL1_BYPASS]->clk, hws[IMX6SX_CLK_PLL1]->clk); clk_set_parent(hws[IMX6SX_PLL2_BYPASS]->clk, hws[IMX6SX_CLK_PLL2]->clk); clk_set_parent(hws[IMX6SX_PLL3_BYPASS]->clk, hws[IMX6SX_CLK_PLL3]->clk); clk_set_parent(hws[IMX6SX_PLL4_BYPASS]->clk, hws[IMX6SX_CLK_PLL4]->clk); clk_set_parent(hws[IMX6SX_PLL5_BYPASS]->clk, hws[IMX6SX_CLK_PLL5]->clk); clk_set_parent(hws[IMX6SX_PLL6_BYPASS]->clk, hws[IMX6SX_CLK_PLL6]->clk); clk_set_parent(hws[IMX6SX_PLL7_BYPASS]->clk, hws[IMX6SX_CLK_PLL7]->clk); hws[IMX6SX_CLK_PLL1_SYS] = imx_clk_hw_gate("pll1_sys", "pll1_bypass", base + 0x00, 13); hws[IMX6SX_CLK_PLL2_BUS] = imx_clk_hw_gate("pll2_bus", "pll2_bypass", base + 0x30, 13); hws[IMX6SX_CLK_PLL3_USB_OTG] = imx_clk_hw_gate("pll3_usb_otg", "pll3_bypass", base + 0x10, 13); hws[IMX6SX_CLK_PLL4_AUDIO] = imx_clk_hw_gate("pll4_audio", "pll4_bypass", base + 0x70, 13); hws[IMX6SX_CLK_PLL5_VIDEO] = imx_clk_hw_gate("pll5_video", "pll5_bypass", base + 0xa0, 13); hws[IMX6SX_CLK_PLL6_ENET] = imx_clk_hw_gate("pll6_enet", "pll6_bypass", base + 0xe0, 13); hws[IMX6SX_CLK_PLL7_USB_HOST] = imx_clk_hw_gate("pll7_usb_host", "pll7_bypass", base + 0x20, 13); /* * Bit 20 is the reserved and read-only bit, we do this only for: * - Do nothing for usbphy clk_enable/disable * - Keep refcount when do usbphy clk_enable/disable, in that case, * the clk framework may need to enable/disable usbphy's parent */ hws[IMX6SX_CLK_USBPHY1] = imx_clk_hw_gate("usbphy1", "pll3_usb_otg", base + 0x10, 20); hws[IMX6SX_CLK_USBPHY2] = imx_clk_hw_gate("usbphy2", "pll7_usb_host", base + 0x20, 20); /* * usbphy*_gate needs to be on after system boots up, and software * never needs to control it anymore. */ hws[IMX6SX_CLK_USBPHY1_GATE] = imx_clk_hw_gate("usbphy1_gate", "dummy", base + 0x10, 6); hws[IMX6SX_CLK_USBPHY2_GATE] = imx_clk_hw_gate("usbphy2_gate", "dummy", base + 0x20, 6); /* FIXME 100MHz is used for pcie ref for all imx6 pcie, excepted imx6q */ hws[IMX6SX_CLK_PCIE_REF] = imx_clk_hw_fixed_factor("pcie_ref", "pll6_enet", 1, 5); hws[IMX6SX_CLK_PCIE_REF_125M] = imx_clk_hw_gate("pcie_ref_125m", "pcie_ref", base + 0xe0, 19); hws[IMX6SX_CLK_LVDS1_OUT] = imx_clk_hw_gate_exclusive("lvds1_out", "lvds1_sel", base + 0x160, 10, BIT(12)); hws[IMX6SX_CLK_LVDS2_OUT] = imx_clk_hw_gate_exclusive("lvds2_out", "lvds2_sel", base + 0x160, 11, BIT(13)); hws[IMX6SX_CLK_LVDS1_IN] = imx_clk_hw_gate_exclusive("lvds1_in", "anaclk1", base + 0x160, 12, BIT(10)); hws[IMX6SX_CLK_LVDS2_IN] = imx_clk_hw_gate_exclusive("lvds2_in", "anaclk2", base + 0x160, 13, BIT(11)); hws[IMX6SX_CLK_ENET_REF] = clk_hw_register_divider_table(NULL, "enet_ref", "pll6_enet", 0, base + 0xe0, 0, 2, 0, clk_enet_ref_table, &imx_ccm_lock); hws[IMX6SX_CLK_ENET2_REF] = clk_hw_register_divider_table(NULL, "enet2_ref", "pll6_enet", 0, base + 0xe0, 2, 2, 0, clk_enet_ref_table, &imx_ccm_lock); hws[IMX6SX_CLK_ENET2_REF_125M] = imx_clk_hw_gate("enet2_ref_125m", "enet2_ref", base + 0xe0, 20); hws[IMX6SX_CLK_ENET_PTP_REF] = imx_clk_hw_fixed_factor("enet_ptp_ref", "pll6_enet", 1, 20); hws[IMX6SX_CLK_ENET_PTP] = imx_clk_hw_gate("enet_ptp_25m", "enet_ptp_ref", base + 0xe0, 21); /* name parent_name reg idx */ hws[IMX6SX_CLK_PLL2_PFD0] = imx_clk_hw_pfd("pll2_pfd0_352m", "pll2_bus", base + 0x100, 0); hws[IMX6SX_CLK_PLL2_PFD1] = imx_clk_hw_pfd("pll2_pfd1_594m", "pll2_bus", base + 0x100, 1); hws[IMX6SX_CLK_PLL2_PFD2] = imx_clk_hw_pfd("pll2_pfd2_396m", "pll2_bus", base + 0x100, 2); hws[IMX6SX_CLK_PLL2_PFD3] = imx_clk_hw_pfd("pll2_pfd3_594m", "pll2_bus", base + 0x100, 3); hws[IMX6SX_CLK_PLL3_PFD0] = imx_clk_hw_pfd("pll3_pfd0_720m", "pll3_usb_otg", base + 0xf0, 0); hws[IMX6SX_CLK_PLL3_PFD1] = imx_clk_hw_pfd("pll3_pfd1_540m", "pll3_usb_otg", base + 0xf0, 1); hws[IMX6SX_CLK_PLL3_PFD2] = imx_clk_hw_pfd("pll3_pfd2_508m", "pll3_usb_otg", base + 0xf0, 2); hws[IMX6SX_CLK_PLL3_PFD3] = imx_clk_hw_pfd("pll3_pfd3_454m", "pll3_usb_otg", base + 0xf0, 3); /* name parent_name mult div */ hws[IMX6SX_CLK_PLL2_198M] = imx_clk_hw_fixed_factor("pll2_198m", "pll2_pfd2_396m", 1, 2); hws[IMX6SX_CLK_PLL3_120M] = imx_clk_hw_fixed_factor("pll3_120m", "pll3_usb_otg", 1, 4); hws[IMX6SX_CLK_PLL3_80M] = imx_clk_hw_fixed_factor("pll3_80m", "pll3_usb_otg", 1, 6); hws[IMX6SX_CLK_PLL3_60M] = imx_clk_hw_fixed_factor("pll3_60m", "pll3_usb_otg", 1, 8); hws[IMX6SX_CLK_TWD] = imx_clk_hw_fixed_factor("twd", "arm", 1, 2); hws[IMX6SX_CLK_GPT_3M] = imx_clk_hw_fixed_factor("gpt_3m", "osc", 1, 8); hws[IMX6SX_CLK_PLL4_POST_DIV] = clk_hw_register_divider_table(NULL, "pll4_post_div", "pll4_audio", CLK_SET_RATE_PARENT, base + 0x70, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6SX_CLK_PLL4_AUDIO_DIV] = clk_hw_register_divider(NULL, "pll4_audio_div", "pll4_post_div", CLK_SET_RATE_PARENT, base + 0x170, 15, 1, 0, &imx_ccm_lock); hws[IMX6SX_CLK_PLL5_POST_DIV] = clk_hw_register_divider_table(NULL, "pll5_post_div", "pll5_video", CLK_SET_RATE_PARENT, base + 0xa0, 19, 2, 0, post_div_table, &imx_ccm_lock); hws[IMX6SX_CLK_PLL5_VIDEO_DIV] = clk_hw_register_divider_table(NULL, "pll5_video_div", "pll5_post_div", CLK_SET_RATE_PARENT, base + 0x170, 30, 2, 0, video_div_table, &imx_ccm_lock); /* name reg shift width parent_names num_parents */ hws[IMX6SX_CLK_LVDS1_SEL] = imx_clk_hw_mux("lvds1_sel", base + 0x160, 0, 5, lvds_sels, ARRAY_SIZE(lvds_sels)); hws[IMX6SX_CLK_LVDS2_SEL] = imx_clk_hw_mux("lvds2_sel", base + 0x160, 5, 5, lvds_sels, ARRAY_SIZE(lvds_sels)); np = ccm_node; base = of_iomap(np, 0); WARN_ON(!base); /* name reg shift width parent_names num_parents */ hws[IMX6SX_CLK_STEP] = imx_clk_hw_mux("step", base + 0xc, 8, 1, step_sels, ARRAY_SIZE(step_sels)); hws[IMX6SX_CLK_PLL1_SW] = imx_clk_hw_mux("pll1_sw", base + 0xc, 2, 1, pll1_sw_sels, ARRAY_SIZE(pll1_sw_sels)); hws[IMX6SX_CLK_OCRAM_SEL] = imx_clk_hw_mux("ocram_sel", base + 0x14, 6, 2, ocram_sels, ARRAY_SIZE(ocram_sels)); hws[IMX6SX_CLK_PERIPH_PRE] = imx_clk_hw_mux("periph_pre", base + 0x18, 18, 2, periph_pre_sels, ARRAY_SIZE(periph_pre_sels)); hws[IMX6SX_CLK_PERIPH2_PRE] = imx_clk_hw_mux("periph2_pre", base + 0x18, 21, 2, periph2_pre_sels, ARRAY_SIZE(periph2_pre_sels)); hws[IMX6SX_CLK_PERIPH_CLK2_SEL] = imx_clk_hw_mux("periph_clk2_sel", base + 0x18, 12, 2, periph_clk2_sels, ARRAY_SIZE(periph_clk2_sels)); hws[IMX6SX_CLK_PERIPH2_CLK2_SEL] = imx_clk_hw_mux("periph2_clk2_sel", base + 0x18, 20, 1, periph2_clk2_sels, ARRAY_SIZE(periph2_clk2_sels)); hws[IMX6SX_CLK_PCIE_AXI_SEL] = imx_clk_hw_mux("pcie_axi_sel", base + 0x18, 10, 1, pcie_axi_sels, ARRAY_SIZE(pcie_axi_sels)); hws[IMX6SX_CLK_GPU_AXI_SEL] = imx_clk_hw_mux("gpu_axi_sel", base + 0x18, 8, 2, gpu_axi_sels, ARRAY_SIZE(gpu_axi_sels)); hws[IMX6SX_CLK_GPU_CORE_SEL] = imx_clk_hw_mux("gpu_core_sel", base + 0x18, 4, 2, gpu_core_sels, ARRAY_SIZE(gpu_core_sels)); hws[IMX6SX_CLK_EIM_SLOW_SEL] = imx_clk_hw_mux("eim_slow_sel", base + 0x1c, 29, 2, eim_slow_sels, ARRAY_SIZE(eim_slow_sels)); hws[IMX6SX_CLK_USDHC1_SEL] = imx_clk_hw_mux("usdhc1_sel", base + 0x1c, 16, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6SX_CLK_USDHC2_SEL] = imx_clk_hw_mux("usdhc2_sel", base + 0x1c, 17, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6SX_CLK_USDHC3_SEL] = imx_clk_hw_mux("usdhc3_sel", base + 0x1c, 18, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6SX_CLK_USDHC4_SEL] = imx_clk_hw_mux("usdhc4_sel", base + 0x1c, 19, 1, usdhc_sels, ARRAY_SIZE(usdhc_sels)); hws[IMX6SX_CLK_SSI3_SEL] = imx_clk_hw_mux("ssi3_sel", base + 0x1c, 14, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6SX_CLK_SSI2_SEL] = imx_clk_hw_mux("ssi2_sel", base + 0x1c, 12, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6SX_CLK_SSI1_SEL] = imx_clk_hw_mux("ssi1_sel", base + 0x1c, 10, 2, ssi_sels, ARRAY_SIZE(ssi_sels)); hws[IMX6SX_CLK_QSPI1_SEL] = imx_clk_hw_mux("qspi1_sel", base + 0x1c, 7, 3, qspi1_sels, ARRAY_SIZE(qspi1_sels)); hws[IMX6SX_CLK_PERCLK_SEL] = imx_clk_hw_mux("perclk_sel", base + 0x1c, 6, 1, perclk_sels, ARRAY_SIZE(perclk_sels)); hws[IMX6SX_CLK_VID_SEL] = imx_clk_hw_mux("vid_sel", base + 0x20, 21, 3, vid_sels, ARRAY_SIZE(vid_sels)); hws[IMX6SX_CLK_ESAI_SEL] = imx_clk_hw_mux("esai_sel", base + 0x20, 19, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SX_CLK_CAN_SEL] = imx_clk_hw_mux("can_sel", base + 0x20, 8, 2, can_sels, ARRAY_SIZE(can_sels)); hws[IMX6SX_CLK_UART_SEL] = imx_clk_hw_mux("uart_sel", base + 0x24, 6, 1, uart_sels, ARRAY_SIZE(uart_sels)); hws[IMX6SX_CLK_QSPI2_SEL] = imx_clk_hw_mux("qspi2_sel", base + 0x2c, 15, 3, qspi2_sels, ARRAY_SIZE(qspi2_sels)); hws[IMX6SX_CLK_SPDIF_SEL] = imx_clk_hw_mux("spdif_sel", base + 0x30, 20, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SX_CLK_AUDIO_SEL] = imx_clk_hw_mux("audio_sel", base + 0x30, 7, 2, audio_sels, ARRAY_SIZE(audio_sels)); hws[IMX6SX_CLK_ENET_PRE_SEL] = imx_clk_hw_mux("enet_pre_sel", base + 0x34, 15, 3, enet_pre_sels, ARRAY_SIZE(enet_pre_sels)); hws[IMX6SX_CLK_ENET_SEL] = imx_clk_hw_mux("enet_sel", base + 0x34, 9, 3, enet_sels, ARRAY_SIZE(enet_sels)); hws[IMX6SX_CLK_M4_PRE_SEL] = imx_clk_hw_mux("m4_pre_sel", base + 0x34, 6, 3, m4_pre_sels, ARRAY_SIZE(m4_pre_sels)); hws[IMX6SX_CLK_M4_SEL] = imx_clk_hw_mux("m4_sel", base + 0x34, 0, 3, m4_sels, ARRAY_SIZE(m4_sels)); hws[IMX6SX_CLK_ECSPI_SEL] = imx_clk_hw_mux("ecspi_sel", base + 0x38, 18, 1, ecspi_sels, ARRAY_SIZE(ecspi_sels)); hws[IMX6SX_CLK_LCDIF2_PRE_SEL] = imx_clk_hw_mux("lcdif2_pre_sel", base + 0x38, 6, 3, lcdif2_pre_sels, ARRAY_SIZE(lcdif2_pre_sels)); hws[IMX6SX_CLK_LCDIF2_SEL] = imx_clk_hw_mux("lcdif2_sel", base + 0x38, 0, 3, lcdif2_sels, ARRAY_SIZE(lcdif2_sels)); hws[IMX6SX_CLK_DISPLAY_SEL] = imx_clk_hw_mux("display_sel", base + 0x3c, 14, 2, display_sels, ARRAY_SIZE(display_sels)); hws[IMX6SX_CLK_CSI_SEL] = imx_clk_hw_mux("csi_sel", base + 0x3c, 9, 2, csi_sels, ARRAY_SIZE(csi_sels)); hws[IMX6SX_CLK_CKO1_SEL] = imx_clk_hw_mux("cko1_sel", base + 0x60, 0, 4, cko1_sels, ARRAY_SIZE(cko1_sels)); hws[IMX6SX_CLK_CKO2_SEL] = imx_clk_hw_mux("cko2_sel", base + 0x60, 16, 5, cko2_sels, ARRAY_SIZE(cko2_sels)); hws[IMX6SX_CLK_CKO] = imx_clk_hw_mux("cko", base + 0x60, 8, 1, cko_sels, ARRAY_SIZE(cko_sels)); hws[IMX6SX_CLK_LDB_DI1_DIV_SEL] = imx_clk_hw_mux("ldb_di1_div_sel", base + 0x20, 11, 1, ldb_di1_div_sels, ARRAY_SIZE(ldb_di1_div_sels)); hws[IMX6SX_CLK_LDB_DI0_DIV_SEL] = imx_clk_hw_mux("ldb_di0_div_sel", base + 0x20, 10, 1, ldb_di0_div_sels, ARRAY_SIZE(ldb_di0_div_sels)); hws[IMX6SX_CLK_LDB_DI1_SEL] = imx_clk_hw_mux("ldb_di1_sel", base + 0x2c, 12, 3, ldb_di1_sels, ARRAY_SIZE(ldb_di1_sels)); hws[IMX6SX_CLK_LDB_DI0_SEL] = imx_clk_hw_mux("ldb_di0_sel", base + 0x2c, 9, 3, ldb_di0_sels, ARRAY_SIZE(ldb_di0_sels)); hws[IMX6SX_CLK_LCDIF1_PRE_SEL] = imx_clk_hw_mux_flags("lcdif1_pre_sel", base + 0x38, 15, 3, lcdif1_pre_sels, ARRAY_SIZE(lcdif1_pre_sels), CLK_SET_RATE_PARENT); hws[IMX6SX_CLK_LCDIF1_SEL] = imx_clk_hw_mux_flags("lcdif1_sel", base + 0x38, 9, 3, lcdif1_sels, ARRAY_SIZE(lcdif1_sels), CLK_SET_RATE_PARENT); /* name parent_name reg shift width */ hws[IMX6SX_CLK_PERIPH_CLK2] = imx_clk_hw_divider("periph_clk2", "periph_clk2_sel", base + 0x14, 27, 3); hws[IMX6SX_CLK_PERIPH2_CLK2] = imx_clk_hw_divider("periph2_clk2", "periph2_clk2_sel", base + 0x14, 0, 3); hws[IMX6SX_CLK_IPG] = imx_clk_hw_divider("ipg", "ahb", base + 0x14, 8, 2); hws[IMX6SX_CLK_GPU_CORE_PODF] = imx_clk_hw_divider("gpu_core_podf", "gpu_core_sel", base + 0x18, 29, 3); hws[IMX6SX_CLK_GPU_AXI_PODF] = imx_clk_hw_divider("gpu_axi_podf", "gpu_axi_sel", base + 0x18, 26, 3); hws[IMX6SX_CLK_LCDIF1_PODF] = imx_clk_hw_divider("lcdif1_podf", "lcdif1_pred", base + 0x18, 23, 3); hws[IMX6SX_CLK_QSPI1_PODF] = imx_clk_hw_divider("qspi1_podf", "qspi1_sel", base + 0x1c, 26, 3); hws[IMX6SX_CLK_EIM_SLOW_PODF] = imx_clk_hw_divider("eim_slow_podf", "eim_slow_sel", base + 0x1c, 23, 3); hws[IMX6SX_CLK_LCDIF2_PODF] = imx_clk_hw_divider("lcdif2_podf", "lcdif2_pred", base + 0x1c, 20, 3); hws[IMX6SX_CLK_PERCLK] = imx_clk_hw_divider_flags("perclk", "perclk_sel", base + 0x1c, 0, 6, CLK_IS_CRITICAL); hws[IMX6SX_CLK_VID_PODF] = imx_clk_hw_divider("vid_podf", "vid_sel", base + 0x20, 24, 2); hws[IMX6SX_CLK_CAN_PODF] = imx_clk_hw_divider("can_podf", "can_sel", base + 0x20, 2, 6); hws[IMX6SX_CLK_USDHC4_PODF] = imx_clk_hw_divider("usdhc4_podf", "usdhc4_sel", base + 0x24, 22, 3); hws[IMX6SX_CLK_USDHC3_PODF] = imx_clk_hw_divider("usdhc3_podf", "usdhc3_sel", base + 0x24, 19, 3); hws[IMX6SX_CLK_USDHC2_PODF] = imx_clk_hw_divider("usdhc2_podf", "usdhc2_sel", base + 0x24, 16, 3); hws[IMX6SX_CLK_USDHC1_PODF] = imx_clk_hw_divider("usdhc1_podf", "usdhc1_sel", base + 0x24, 11, 3); hws[IMX6SX_CLK_UART_PODF] = imx_clk_hw_divider("uart_podf", "uart_sel", base + 0x24, 0, 6); hws[IMX6SX_CLK_ESAI_PRED] = imx_clk_hw_divider("esai_pred", "esai_sel", base + 0x28, 9, 3); hws[IMX6SX_CLK_ESAI_PODF] = imx_clk_hw_divider("esai_podf", "esai_pred", base + 0x28, 25, 3); hws[IMX6SX_CLK_SSI3_PRED] = imx_clk_hw_divider("ssi3_pred", "ssi3_sel", base + 0x28, 22, 3); hws[IMX6SX_CLK_SSI3_PODF] = imx_clk_hw_divider("ssi3_podf", "ssi3_pred", base + 0x28, 16, 6); hws[IMX6SX_CLK_SSI1_PRED] = imx_clk_hw_divider("ssi1_pred", "ssi1_sel", base + 0x28, 6, 3); hws[IMX6SX_CLK_SSI1_PODF] = imx_clk_hw_divider("ssi1_podf", "ssi1_pred", base + 0x28, 0, 6); hws[IMX6SX_CLK_QSPI2_PRED] = imx_clk_hw_divider("qspi2_pred", "qspi2_sel", base + 0x2c, 18, 3); hws[IMX6SX_CLK_QSPI2_PODF] = imx_clk_hw_divider("qspi2_podf", "qspi2_pred", base + 0x2c, 21, 6); hws[IMX6SX_CLK_SSI2_PRED] = imx_clk_hw_divider("ssi2_pred", "ssi2_sel", base + 0x2c, 6, 3); hws[IMX6SX_CLK_SSI2_PODF] = imx_clk_hw_divider("ssi2_podf", "ssi2_pred", base + 0x2c, 0, 6); hws[IMX6SX_CLK_SPDIF_PRED] = imx_clk_hw_divider("spdif_pred", "spdif_sel", base + 0x30, 25, 3); hws[IMX6SX_CLK_SPDIF_PODF] = imx_clk_hw_divider("spdif_podf", "spdif_pred", base + 0x30, 22, 3); hws[IMX6SX_CLK_AUDIO_PRED] = imx_clk_hw_divider("audio_pred", "audio_sel", base + 0x30, 12, 3); hws[IMX6SX_CLK_AUDIO_PODF] = imx_clk_hw_divider("audio_podf", "audio_pred", base + 0x30, 9, 3); hws[IMX6SX_CLK_ENET_PODF] = imx_clk_hw_divider("enet_podf", "enet_pre_sel", base + 0x34, 12, 3); hws[IMX6SX_CLK_M4_PODF] = imx_clk_hw_divider("m4_podf", "m4_sel", base + 0x34, 3, 3); hws[IMX6SX_CLK_ECSPI_PODF] = imx_clk_hw_divider("ecspi_podf", "ecspi_sel", base + 0x38, 19, 6); hws[IMX6SX_CLK_LCDIF1_PRED] = imx_clk_hw_divider("lcdif1_pred", "lcdif1_pre_sel", base + 0x38, 12, 3); hws[IMX6SX_CLK_LCDIF2_PRED] = imx_clk_hw_divider("lcdif2_pred", "lcdif2_pre_sel", base + 0x38, 3, 3); hws[IMX6SX_CLK_DISPLAY_PODF] = imx_clk_hw_divider("display_podf", "display_sel", base + 0x3c, 16, 3); hws[IMX6SX_CLK_CSI_PODF] = imx_clk_hw_divider("csi_podf", "csi_sel", base + 0x3c, 11, 3); hws[IMX6SX_CLK_CKO1_PODF] = imx_clk_hw_divider("cko1_podf", "cko1_sel", base + 0x60, 4, 3); hws[IMX6SX_CLK_CKO2_PODF] = imx_clk_hw_divider("cko2_podf", "cko2_sel", base + 0x60, 21, 3); hws[IMX6SX_CLK_LDB_DI0_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di0_div_3_5", "ldb_di0_sel", 2, 7); hws[IMX6SX_CLK_LDB_DI0_DIV_7] = imx_clk_hw_fixed_factor("ldb_di0_div_7", "ldb_di0_sel", 1, 7); hws[IMX6SX_CLK_LDB_DI1_DIV_3_5] = imx_clk_hw_fixed_factor("ldb_di1_div_3_5", "ldb_di1_sel", 2, 7); hws[IMX6SX_CLK_LDB_DI1_DIV_7] = imx_clk_hw_fixed_factor("ldb_di1_div_7", "ldb_di1_sel", 1, 7); /* name reg shift width busy: reg, shift parent_names num_parents */ hws[IMX6SX_CLK_PERIPH] = imx_clk_hw_busy_mux("periph", base + 0x14, 25, 1, base + 0x48, 5, periph_sels, ARRAY_SIZE(periph_sels)); hws[IMX6SX_CLK_PERIPH2] = imx_clk_hw_busy_mux("periph2", base + 0x14, 26, 1, base + 0x48, 3, periph2_sels, ARRAY_SIZE(periph2_sels)); /* name parent_name reg shift width busy: reg, shift */ hws[IMX6SX_CLK_OCRAM_PODF] = imx_clk_hw_busy_divider("ocram_podf", "ocram_sel", base + 0x14, 16, 3, base + 0x48, 0); hws[IMX6SX_CLK_AHB] = imx_clk_hw_busy_divider("ahb", "periph", base + 0x14, 10, 3, base + 0x48, 1); hws[IMX6SX_CLK_MMDC_PODF] = imx_clk_hw_busy_divider("mmdc_podf", "periph2", base + 0x14, 3, 3, base + 0x48, 2); hws[IMX6SX_CLK_ARM] = imx_clk_hw_busy_divider("arm", "pll1_sw", base + 0x10, 0, 3, base + 0x48, 16); /* name parent_name reg shift */ /* CCGR0 */ hws[IMX6SX_CLK_AIPS_TZ1] = imx_clk_hw_gate2_flags("aips_tz1", "ahb", base + 0x68, 0, CLK_IS_CRITICAL); hws[IMX6SX_CLK_AIPS_TZ2] = imx_clk_hw_gate2_flags("aips_tz2", "ahb", base + 0x68, 2, CLK_IS_CRITICAL); hws[IMX6SX_CLK_APBH_DMA] = imx_clk_hw_gate2("apbh_dma", "usdhc3", base + 0x68, 4); hws[IMX6SX_CLK_ASRC_MEM] = imx_clk_hw_gate2_shared("asrc_mem", "ahb", base + 0x68, 6, &share_count_asrc); hws[IMX6SX_CLK_ASRC_IPG] = imx_clk_hw_gate2_shared("asrc_ipg", "ahb", base + 0x68, 6, &share_count_asrc); hws[IMX6SX_CLK_CAAM_MEM] = imx_clk_hw_gate2("caam_mem", "ahb", base + 0x68, 8); hws[IMX6SX_CLK_CAAM_ACLK] = imx_clk_hw_gate2("caam_aclk", "ahb", base + 0x68, 10); hws[IMX6SX_CLK_CAAM_IPG] = imx_clk_hw_gate2("caam_ipg", "ipg", base + 0x68, 12); hws[IMX6SX_CLK_CAN1_IPG] = imx_clk_hw_gate2("can1_ipg", "ipg", base + 0x68, 14); hws[IMX6SX_CLK_CAN1_SERIAL] = imx_clk_hw_gate2("can1_serial", "can_podf", base + 0x68, 16); hws[IMX6SX_CLK_CAN2_IPG] = imx_clk_hw_gate2("can2_ipg", "ipg", base + 0x68, 18); hws[IMX6SX_CLK_CAN2_SERIAL] = imx_clk_hw_gate2("can2_serial", "can_podf", base + 0x68, 20); hws[IMX6SX_CLK_DCIC1] = imx_clk_hw_gate2("dcic1", "display_podf", base + 0x68, 24); hws[IMX6SX_CLK_DCIC2] = imx_clk_hw_gate2("dcic2", "display_podf", base + 0x68, 26); hws[IMX6SX_CLK_AIPS_TZ3] = imx_clk_hw_gate2_flags("aips_tz3", "ahb", base + 0x68, 30, CLK_IS_CRITICAL); /* CCGR1 */ hws[IMX6SX_CLK_ECSPI1] = imx_clk_hw_gate2("ecspi1", "ecspi_podf", base + 0x6c, 0); hws[IMX6SX_CLK_ECSPI2] = imx_clk_hw_gate2("ecspi2", "ecspi_podf", base + 0x6c, 2); hws[IMX6SX_CLK_ECSPI3] = imx_clk_hw_gate2("ecspi3", "ecspi_podf", base + 0x6c, 4); hws[IMX6SX_CLK_ECSPI4] = imx_clk_hw_gate2("ecspi4", "ecspi_podf", base + 0x6c, 6); hws[IMX6SX_CLK_ECSPI5] = imx_clk_hw_gate2("ecspi5", "ecspi_podf", base + 0x6c, 8); hws[IMX6SX_CLK_EPIT1] = imx_clk_hw_gate2("epit1", "perclk", base + 0x6c, 12); hws[IMX6SX_CLK_EPIT2] = imx_clk_hw_gate2("epit2", "perclk", base + 0x6c, 14); hws[IMX6SX_CLK_ESAI_EXTAL] = imx_clk_hw_gate2_shared("esai_extal", "esai_podf", base + 0x6c, 16, &share_count_esai); hws[IMX6SX_CLK_ESAI_IPG] = imx_clk_hw_gate2_shared("esai_ipg", "ahb", base + 0x6c, 16, &share_count_esai); hws[IMX6SX_CLK_ESAI_MEM] = imx_clk_hw_gate2_shared("esai_mem", "ahb", base + 0x6c, 16, &share_count_esai); hws[IMX6SX_CLK_WAKEUP] = imx_clk_hw_gate2_flags("wakeup", "ipg", base + 0x6c, 18, CLK_IS_CRITICAL); hws[IMX6SX_CLK_GPT_BUS] = imx_clk_hw_gate2("gpt_bus", "perclk", base + 0x6c, 20); hws[IMX6SX_CLK_GPT_SERIAL] = imx_clk_hw_gate2("gpt_serial", "perclk", base + 0x6c, 22); hws[IMX6SX_CLK_GPU] = imx_clk_hw_gate2("gpu", "gpu_core_podf", base + 0x6c, 26); hws[IMX6SX_CLK_OCRAM_S] = imx_clk_hw_gate2("ocram_s", "ahb", base + 0x6c, 28); hws[IMX6SX_CLK_CANFD] = imx_clk_hw_gate2("canfd", "can_podf", base + 0x6c, 30); /* CCGR2 */ hws[IMX6SX_CLK_CSI] = imx_clk_hw_gate2("csi", "csi_podf", base + 0x70, 2); hws[IMX6SX_CLK_I2C1] = imx_clk_hw_gate2("i2c1", "perclk", base + 0x70, 6); hws[IMX6SX_CLK_I2C2] = imx_clk_hw_gate2("i2c2", "perclk", base + 0x70, 8); hws[IMX6SX_CLK_I2C3] = imx_clk_hw_gate2("i2c3", "perclk", base + 0x70, 10); hws[IMX6SX_CLK_OCOTP] = imx_clk_hw_gate2("ocotp", "ipg", base + 0x70, 12); hws[IMX6SX_CLK_IOMUXC] = imx_clk_hw_gate2("iomuxc", "lcdif1_podf", base + 0x70, 14); hws[IMX6SX_CLK_IPMUX1] = imx_clk_hw_gate2_flags("ipmux1", "ahb", base + 0x70, 16, CLK_IS_CRITICAL); hws[IMX6SX_CLK_IPMUX2] = imx_clk_hw_gate2_flags("ipmux2", "ahb", base + 0x70, 18, CLK_IS_CRITICAL); hws[IMX6SX_CLK_IPMUX3] = imx_clk_hw_gate2_flags("ipmux3", "ahb", base + 0x70, 20, CLK_IS_CRITICAL); hws[IMX6SX_CLK_TZASC1] = imx_clk_hw_gate2_flags("tzasc1", "mmdc_podf", base + 0x70, 22, CLK_IS_CRITICAL); hws[IMX6SX_CLK_LCDIF_APB] = imx_clk_hw_gate2("lcdif_apb", "display_podf", base + 0x70, 28); hws[IMX6SX_CLK_PXP_AXI] = imx_clk_hw_gate2("pxp_axi", "display_podf", base + 0x70, 30); /* CCGR3 */ hws[IMX6SX_CLK_M4] = imx_clk_hw_gate2("m4", "m4_podf", base + 0x74, 2); hws[IMX6SX_CLK_ENET] = imx_clk_hw_gate2("enet", "ipg", base + 0x74, 4); hws[IMX6SX_CLK_ENET_AHB] = imx_clk_hw_gate2("enet_ahb", "enet_sel", base + 0x74, 4); hws[IMX6SX_CLK_DISPLAY_AXI] = imx_clk_hw_gate2("display_axi", "display_podf", base + 0x74, 6); hws[IMX6SX_CLK_LCDIF2_PIX] = imx_clk_hw_gate2("lcdif2_pix", "lcdif2_sel", base + 0x74, 8); hws[IMX6SX_CLK_LCDIF1_PIX] = imx_clk_hw_gate2("lcdif1_pix", "lcdif1_sel", base + 0x74, 10); hws[IMX6SX_CLK_LDB_DI0] = imx_clk_hw_gate2("ldb_di0", "ldb_di0_div_sel", base + 0x74, 12); hws[IMX6SX_CLK_QSPI1] = imx_clk_hw_gate2("qspi1", "qspi1_podf", base + 0x74, 14); hws[IMX6SX_CLK_MLB] = imx_clk_hw_gate2("mlb", "ahb", base + 0x74, 18); hws[IMX6SX_CLK_MMDC_P0_FAST] = imx_clk_hw_gate2_flags("mmdc_p0_fast", "mmdc_podf", base + 0x74, 20, CLK_IS_CRITICAL); hws[IMX6SX_CLK_MMDC_P0_IPG] = imx_clk_hw_gate2_flags("mmdc_p0_ipg", "ipg", base + 0x74, 24, CLK_IS_CRITICAL); hws[IMX6SX_CLK_MMDC_P1_IPG] = imx_clk_hw_gate2_flags("mmdc_p1_ipg", "ipg", base + 0x74, 26, CLK_IS_CRITICAL); hws[IMX6SX_CLK_OCRAM] = imx_clk_hw_gate2_flags("ocram", "ocram_podf", base + 0x74, 28, CLK_IS_CRITICAL); /* CCGR4 */ hws[IMX6SX_CLK_PCIE_AXI] = imx_clk_hw_gate2("pcie_axi", "display_podf", base + 0x78, 0); hws[IMX6SX_CLK_QSPI2] = imx_clk_hw_gate2("qspi2", "qspi2_podf", base + 0x78, 10); hws[IMX6SX_CLK_PER1_BCH] = imx_clk_hw_gate2("per1_bch", "usdhc3", base + 0x78, 12); hws[IMX6SX_CLK_PER2_MAIN] = imx_clk_hw_gate2_flags("per2_main", "ahb", base + 0x78, 14, CLK_IS_CRITICAL); hws[IMX6SX_CLK_PWM1] = imx_clk_hw_gate2("pwm1", "perclk", base + 0x78, 16); hws[IMX6SX_CLK_PWM2] = imx_clk_hw_gate2("pwm2", "perclk", base + 0x78, 18); hws[IMX6SX_CLK_PWM3] = imx_clk_hw_gate2("pwm3", "perclk", base + 0x78, 20); hws[IMX6SX_CLK_PWM4] = imx_clk_hw_gate2("pwm4", "perclk", base + 0x78, 22); hws[IMX6SX_CLK_GPMI_BCH_APB] = imx_clk_hw_gate2("gpmi_bch_apb", "usdhc3", base + 0x78, 24); hws[IMX6SX_CLK_GPMI_BCH] = imx_clk_hw_gate2("gpmi_bch", "usdhc4", base + 0x78, 26); hws[IMX6SX_CLK_GPMI_IO] = imx_clk_hw_gate2("gpmi_io", "qspi2_podf", base + 0x78, 28); hws[IMX6SX_CLK_GPMI_APB] = imx_clk_hw_gate2("gpmi_apb", "usdhc3", base + 0x78, 30); /* CCGR5 */ hws[IMX6SX_CLK_ROM] = imx_clk_hw_gate2_flags("rom", "ahb", base + 0x7c, 0, CLK_IS_CRITICAL); hws[IMX6SX_CLK_SDMA] = imx_clk_hw_gate2("sdma", "ahb", base + 0x7c, 6); hws[IMX6SX_CLK_SPBA] = imx_clk_hw_gate2("spba", "ipg", base + 0x7c, 12); hws[IMX6SX_CLK_AUDIO] = imx_clk_hw_gate2_shared("audio", "audio_podf", base + 0x7c, 14, &share_count_audio); hws[IMX6SX_CLK_SPDIF] = imx_clk_hw_gate2_shared("spdif", "spdif_podf", base + 0x7c, 14, &share_count_audio); hws[IMX6SX_CLK_SPDIF_GCLK] = imx_clk_hw_gate2_shared("spdif_gclk", "ipg", base + 0x7c, 14, &share_count_audio); hws[IMX6SX_CLK_SSI1_IPG] = imx_clk_hw_gate2_shared("ssi1_ipg", "ipg", base + 0x7c, 18, &share_count_ssi1); hws[IMX6SX_CLK_SSI2_IPG] = imx_clk_hw_gate2_shared("ssi2_ipg", "ipg", base + 0x7c, 20, &share_count_ssi2); hws[IMX6SX_CLK_SSI3_IPG] = imx_clk_hw_gate2_shared("ssi3_ipg", "ipg", base + 0x7c, 22, &share_count_ssi3); hws[IMX6SX_CLK_SSI1] = imx_clk_hw_gate2_shared("ssi1", "ssi1_podf", base + 0x7c, 18, &share_count_ssi1); hws[IMX6SX_CLK_SSI2] = imx_clk_hw_gate2_shared("ssi2", "ssi2_podf", base + 0x7c, 20, &share_count_ssi2); hws[IMX6SX_CLK_SSI3] = imx_clk_hw_gate2_shared("ssi3", "ssi3_podf", base + 0x7c, 22, &share_count_ssi3); hws[IMX6SX_CLK_UART_IPG] = imx_clk_hw_gate2("uart_ipg", "ipg", base + 0x7c, 24); hws[IMX6SX_CLK_UART_SERIAL] = imx_clk_hw_gate2("uart_serial", "uart_podf", base + 0x7c, 26); hws[IMX6SX_CLK_SAI1_IPG] = imx_clk_hw_gate2_shared("sai1_ipg", "ipg", base + 0x7c, 28, &share_count_sai1); hws[IMX6SX_CLK_SAI2_IPG] = imx_clk_hw_gate2_shared("sai2_ipg", "ipg", base + 0x7c, 30, &share_count_sai2); hws[IMX6SX_CLK_SAI1] = imx_clk_hw_gate2_shared("sai1", "ssi1_podf", base + 0x7c, 28, &share_count_sai1); hws[IMX6SX_CLK_SAI2] = imx_clk_hw_gate2_shared("sai2", "ssi2_podf", base + 0x7c, 30, &share_count_sai2); /* CCGR6 */ hws[IMX6SX_CLK_USBOH3] = imx_clk_hw_gate2("usboh3", "ipg", base + 0x80, 0); hws[IMX6SX_CLK_USDHC1] = imx_clk_hw_gate2("usdhc1", "usdhc1_podf", base + 0x80, 2); hws[IMX6SX_CLK_USDHC2] = imx_clk_hw_gate2("usdhc2", "usdhc2_podf", base + 0x80, 4); hws[IMX6SX_CLK_USDHC3] = imx_clk_hw_gate2("usdhc3", "usdhc3_podf", base + 0x80, 6); hws[IMX6SX_CLK_USDHC4] = imx_clk_hw_gate2("usdhc4", "usdhc4_podf", base + 0x80, 8); hws[IMX6SX_CLK_EIM_SLOW] = imx_clk_hw_gate2("eim_slow", "eim_slow_podf", base + 0x80, 10); hws[IMX6SX_CLK_PWM8] = imx_clk_hw_gate2("pwm8", "perclk", base + 0x80, 16); hws[IMX6SX_CLK_VADC] = imx_clk_hw_gate2("vadc", "vid_podf", base + 0x80, 20); hws[IMX6SX_CLK_GIS] = imx_clk_hw_gate2("gis", "display_podf", base + 0x80, 22); hws[IMX6SX_CLK_I2C4] = imx_clk_hw_gate2("i2c4", "perclk", base + 0x80, 24); hws[IMX6SX_CLK_PWM5] = imx_clk_hw_gate2("pwm5", "perclk", base + 0x80, 26); hws[IMX6SX_CLK_PWM6] = imx_clk_hw_gate2("pwm6", "perclk", base + 0x80, 28); hws[IMX6SX_CLK_PWM7] = imx_clk_hw_gate2("pwm7", "perclk", base + 0x80, 30); hws[IMX6SX_CLK_CKO1] = imx_clk_hw_gate("cko1", "cko1_podf", base + 0x60, 7); hws[IMX6SX_CLK_CKO2] = imx_clk_hw_gate("cko2", "cko2_podf", base + 0x60, 24); /* mask handshake of mmdc */ imx_mmdc_mask_handshake(base, 0); imx_check_clk_hws(hws, IMX6SX_CLK_CLK_END); of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_hw_data); if (IS_ENABLED(CONFIG_USB_MXS_PHY)) { clk_prepare_enable(hws[IMX6SX_CLK_USBPHY1_GATE]->clk); clk_prepare_enable(hws[IMX6SX_CLK_USBPHY2_GATE]->clk); } /* Set the default 132MHz for EIM module */ clk_set_parent(hws[IMX6SX_CLK_EIM_SLOW_SEL]->clk, hws[IMX6SX_CLK_PLL2_PFD2]->clk); clk_set_rate(hws[IMX6SX_CLK_EIM_SLOW]->clk, 132000000); np = of_find_node_by_path("/soc/bus@2200000/spba-bus@2240000/lcdif@2220000"); lcdif1_assigned_clk = of_find_property(np, "assigned-clock-parents", NULL); /* Set parent clock for LCDIF1 pixel clock if not done via devicetree */ if (!lcdif1_assigned_clk) { clk_set_parent(hws[IMX6SX_CLK_LCDIF1_PRE_SEL]->clk, hws[IMX6SX_CLK_PLL5_VIDEO_DIV]->clk); clk_set_parent(hws[IMX6SX_CLK_LCDIF1_SEL]->clk, hws[IMX6SX_CLK_LCDIF1_PODF]->clk); } /* Set the parent clks of PCIe lvds1 and pcie_axi to be pcie ref, axi */ if (clk_set_parent(hws[IMX6SX_CLK_LVDS1_SEL]->clk, hws[IMX6SX_CLK_PCIE_REF_125M]->clk)) pr_err("Failed to set pcie bus parent clk.\n"); /* * Init enet system AHB clock, set to 200MHz * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB */ clk_set_parent(hws[IMX6SX_CLK_ENET_PRE_SEL]->clk, hws[IMX6SX_CLK_PLL2_PFD2]->clk); clk_set_parent(hws[IMX6SX_CLK_ENET_SEL]->clk, hws[IMX6SX_CLK_ENET_PODF]->clk); clk_set_rate(hws[IMX6SX_CLK_ENET_PODF]->clk, 200000000); clk_set_rate(hws[IMX6SX_CLK_ENET_REF]->clk, 125000000); clk_set_rate(hws[IMX6SX_CLK_ENET2_REF]->clk, 125000000); /* Audio clocks */ clk_set_rate(hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk, 393216000); clk_set_parent(hws[IMX6SX_CLK_SPDIF_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_rate(hws[IMX6SX_CLK_SPDIF_PODF]->clk, 98304000); clk_set_parent(hws[IMX6SX_CLK_AUDIO_SEL]->clk, hws[IMX6SX_CLK_PLL3_USB_OTG]->clk); clk_set_rate(hws[IMX6SX_CLK_AUDIO_PODF]->clk, 24000000); clk_set_parent(hws[IMX6SX_CLK_SSI1_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_parent(hws[IMX6SX_CLK_SSI2_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_parent(hws[IMX6SX_CLK_SSI3_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_rate(hws[IMX6SX_CLK_SSI1_PODF]->clk, 24576000); clk_set_rate(hws[IMX6SX_CLK_SSI2_PODF]->clk, 24576000); clk_set_rate(hws[IMX6SX_CLK_SSI3_PODF]->clk, 24576000); clk_set_parent(hws[IMX6SX_CLK_ESAI_SEL]->clk, hws[IMX6SX_CLK_PLL4_AUDIO_DIV]->clk); clk_set_rate(hws[IMX6SX_CLK_ESAI_PODF]->clk, 24576000); /* Set parent clock for vadc */ clk_set_parent(hws[IMX6SX_CLK_VID_SEL]->clk, hws[IMX6SX_CLK_PLL3_USB_OTG]->clk); /* default parent of can_sel clock is invalid, manually set it here */ clk_set_parent(hws[IMX6SX_CLK_CAN_SEL]->clk, hws[IMX6SX_CLK_PLL3_60M]->clk); /* Update gpu clock from default 528M to 720M */ clk_set_parent(hws[IMX6SX_CLK_GPU_CORE_SEL]->clk, hws[IMX6SX_CLK_PLL3_PFD0]->clk); clk_set_parent(hws[IMX6SX_CLK_GPU_AXI_SEL]->clk, hws[IMX6SX_CLK_PLL3_PFD0]->clk); clk_set_parent(hws[IMX6SX_CLK_QSPI1_SEL]->clk, hws[IMX6SX_CLK_PLL2_BUS]->clk); clk_set_parent(hws[IMX6SX_CLK_QSPI2_SEL]->clk, hws[IMX6SX_CLK_PLL2_BUS]->clk); imx_register_uart_clocks(); } CLK_OF_DECLARE(imx6sx, "fsl,imx6sx-ccm", imx6sx_clocks_init);
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2021 Broadcom. All Rights Reserved. The term * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. */ #if !defined(__EFCT_XPORT_H__) #define __EFCT_XPORT_H__ enum efct_xport_ctrl { EFCT_XPORT_PORT_ONLINE = 1, EFCT_XPORT_PORT_OFFLINE, EFCT_XPORT_SHUTDOWN, EFCT_XPORT_POST_NODE_EVENT, EFCT_XPORT_WWNN_SET, EFCT_XPORT_WWPN_SET, }; enum efct_xport_status { EFCT_XPORT_PORT_STATUS, EFCT_XPORT_CONFIG_PORT_STATUS, EFCT_XPORT_LINK_SPEED, EFCT_XPORT_IS_SUPPORTED_LINK_SPEED, EFCT_XPORT_LINK_STATISTICS, EFCT_XPORT_LINK_STAT_RESET, EFCT_XPORT_IS_QUIESCED }; struct efct_xport_link_stats { bool rec; bool gec; bool w02of; bool w03of; bool w04of; bool w05of; bool w06of; bool w07of; bool w08of; bool w09of; bool w10of; bool w11of; bool w12of; bool w13of; bool w14of; bool w15of; bool w16of; bool w17of; bool w18of; bool w19of; bool w20of; bool w21of; bool clrc; bool clof1; u32 link_failure_error_count; u32 loss_of_sync_error_count; u32 loss_of_signal_error_count; u32 primitive_sequence_error_count; u32 invalid_transmission_word_error_count; u32 crc_error_count; u32 primitive_sequence_event_timeout_count; u32 elastic_buffer_overrun_error_count; u32 arbitration_fc_al_timeout_count; u32 advertised_receive_bufftor_to_buffer_credit; u32 current_receive_buffer_to_buffer_credit; u32 advertised_transmit_buffer_to_buffer_credit; u32 current_transmit_buffer_to_buffer_credit; u32 received_eofa_count; u32 received_eofdti_count; u32 received_eofni_count; u32 received_soff_count; u32 received_dropped_no_aer_count; u32 received_dropped_no_available_rpi_resources_count; u32 received_dropped_no_available_xri_resources_count; }; struct efct_xport_host_stats { bool cc; u32 transmit_kbyte_count; u32 receive_kbyte_count; u32 transmit_frame_count; u32 receive_frame_count; u32 transmit_sequence_count; u32 receive_sequence_count; u32 total_exchanges_originator; u32 total_exchanges_responder; u32 receive_p_bsy_count; u32 receive_f_bsy_count; u32 dropped_frames_due_to_no_rq_buffer_count; u32 empty_rq_timeout_count; u32 dropped_frames_due_to_no_xri_count; u32 empty_xri_pool_count; }; struct efct_xport_host_statistics { struct completion done; struct efct_xport_link_stats link_stats; struct efct_xport_host_stats host_stats; }; union efct_xport_stats_u { u32 value; struct efct_xport_host_statistics stats; }; struct efct_xport_fcp_stats { u64 input_bytes; u64 output_bytes; u64 input_requests; u64 output_requests; u64 control_requests; }; struct efct_xport { struct efct *efct; /* wwpn requested by user for primary nport */ u64 req_wwpn; /* wwnn requested by user for primary nport */ u64 req_wwnn; /* Nodes */ /* number of allocated nodes */ u32 nodes_count; /* used to track how often IO pool is empty */ atomic_t io_alloc_failed_count; /* array of pointers to nodes */ struct efc_node **nodes; /* Io pool and counts */ /* pointer to IO pool */ struct efct_io_pool *io_pool; /* lock for io_pending_list */ spinlock_t io_pending_lock; /* list of IOs waiting for HW resources * lock: xport->io_pending_lock * link: efct_io_s->io_pending_link */ struct list_head io_pending_list; /* count of totals IOS allocated */ atomic_t io_total_alloc; /* count of totals IOS free'd */ atomic_t io_total_free; /* count of totals IOS that were pended */ atomic_t io_total_pending; /* count of active IOS */ atomic_t io_active_count; /* count of pending IOS */ atomic_t io_pending_count; /* non-zero if efct_scsi_check_pending is executing */ atomic_t io_pending_recursing; /* Port */ /* requested link state */ u32 configured_link_state; /* Timer for Statistics */ struct timer_list stats_timer; union efct_xport_stats_u fc_xport_stats; struct efct_xport_fcp_stats fcp_stats; }; struct efct_rport_data { struct efc_node *node; }; struct efct_xport * efct_xport_alloc(struct efct *efct); int efct_xport_attach(struct efct_xport *xport); int efct_xport_initialize(struct efct_xport *xport); void efct_xport_detach(struct efct_xport *xport); int efct_xport_control(struct efct_xport *xport, enum efct_xport_ctrl cmd, ...); int efct_xport_status(struct efct_xport *xport, enum efct_xport_status cmd, union efct_xport_stats_u *result); void efct_xport_free(struct efct_xport *xport); struct scsi_transport_template *efct_attach_fc_transport(void); struct scsi_transport_template *efct_attach_vport_fc_transport(void); void efct_release_fc_transport(struct scsi_transport_template *transport_template); #endif /* __EFCT_XPORT_H__ */
/* * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) * Licensed under the GPL */ #ifndef __SYS_SIGCONTEXT_X86_H #define __SYS_SIGCONTEXT_X86_H extern void get_regs_from_mc(struct uml_pt_regs *, mcontext_t *); #ifdef __i386__ #define GET_FAULTINFO_FROM_MC(fi, mc) \ { \ (fi).cr2 = (mc)->cr2; \ (fi).error_code = (mc)->gregs[REG_ERR]; \ (fi).trap_no = (mc)->gregs[REG_TRAPNO]; \ } #else #define GET_FAULTINFO_FROM_MC(fi, mc) \ { \ (fi).cr2 = (mc)->gregs[REG_CR2]; \ (fi).error_code = (mc)->gregs[REG_ERR]; \ (fi).trap_no = (mc)->gregs[REG_TRAPNO]; \ } #endif #endif
/* SPDX-License-Identifier: GPL-2.0-only */ /* * FM Driver for Connectivity chip of Texas Instruments. * * Common header for all FM driver sub-modules. * * Copyright (C) 2011 Texas Instruments */ #ifndef _FM_DRV_H #define _FM_DRV_H #include <linux/skbuff.h> #include <linux/interrupt.h> #include <sound/core.h> #include <sound/initval.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-common.h> #include <media/v4l2-device.h> #include <media/v4l2-ctrls.h> #define FM_DRV_VERSION "0.1.1" #define FM_DRV_NAME "ti_fmdrv" #define FM_DRV_CARD_SHORT_NAME "TI FM Radio" #define FM_DRV_CARD_LONG_NAME "Texas Instruments FM Radio" /* Flag info */ #define FM_INTTASK_RUNNING 0 #define FM_INTTASK_SCHEDULE_PENDING 1 #define FM_FW_DW_INPROGRESS 2 #define FM_CORE_READY 3 #define FM_CORE_TRANSPORT_READY 4 #define FM_AF_SWITCH_INPROGRESS 5 #define FM_CORE_TX_XMITING 6 #define FM_TUNE_COMPLETE 0x1 #define FM_BAND_LIMIT 0x2 #define FM_DRV_TX_TIMEOUT (5*HZ) /* 5 seconds */ #define FM_DRV_RX_SEEK_TIMEOUT (20*HZ) /* 20 seconds */ #define fmerr(format, ...) \ printk(KERN_ERR "fmdrv: " format, ## __VA_ARGS__) #define fmwarn(format, ...) \ printk(KERN_WARNING "fmdrv: " format, ##__VA_ARGS__) #ifdef DEBUG #define fmdbg(format, ...) \ printk(KERN_DEBUG "fmdrv: " format, ## __VA_ARGS__) #else /* DEBUG */ #define fmdbg(format, ...) do {} while(0) #endif enum { FM_MODE_OFF, FM_MODE_TX, FM_MODE_RX, FM_MODE_ENTRY_MAX }; #define FM_RX_RDS_INFO_FIELD_MAX 8 /* 4 Group * 2 Bytes */ /* RX RDS data format */ struct fm_rdsdata_format { union { struct { u8 buff[FM_RX_RDS_INFO_FIELD_MAX]; } groupdatabuff; struct { u16 pidata; u8 blk_b[2]; u8 blk_c[2]; u8 blk_d[2]; } groupgeneral; struct { u16 pidata; u8 blk_b[2]; u8 af[2]; u8 ps[2]; } group0A; struct { u16 pi[2]; u8 blk_b[2]; u8 ps[2]; } group0B; } data; }; /* FM region (Europe/US, Japan) info */ struct region_info { u32 chanl_space; u32 bot_freq; u32 top_freq; u8 fm_band; }; struct fmdev; typedef void (*int_handler_prototype) (struct fmdev *); /* FM Interrupt processing related info */ struct fm_irq { u8 stage; u16 flag; /* FM interrupt flag */ u16 mask; /* FM interrupt mask */ /* Interrupt process timeout handler */ struct timer_list timer; u8 retry; int_handler_prototype *handlers; }; /* RDS info */ struct fm_rds { u8 flag; /* RX RDS on/off status */ u8 last_blk_idx; /* Last received RDS block */ /* RDS buffer */ wait_queue_head_t read_queue; u32 buf_size; /* Size is always multiple of 3 */ u32 wr_idx; u32 rd_idx; u8 *buff; }; #define FM_RDS_MAX_AF_LIST 25 /* * Current RX channel Alternate Frequency cache. * This info is used to switch to other freq (AF) * when current channel signal strength is below RSSI threshold. */ struct tuned_station_info { u16 picode; u32 af_cache[FM_RDS_MAX_AF_LIST]; u8 afcache_size; u8 af_list_max; }; /* FM RX mode info */ struct fm_rx { struct region_info region; /* Current selected band */ u32 freq; /* Current RX frquency */ u8 mute_mode; /* Current mute mode */ u8 deemphasis_mode; /* Current deemphasis mode */ /* RF dependent soft mute mode */ u8 rf_depend_mute; u16 volume; /* Current volume level */ u16 rssi_threshold; /* Current RSSI threshold level */ /* Holds the index of the current AF jump */ u8 afjump_idx; /* Will hold the frequency before the jump */ u32 freq_before_jump; u8 rds_mode; /* RDS operation mode (RDS/RDBS) */ u8 af_mode; /* Alternate frequency on/off */ struct tuned_station_info stat_info; struct fm_rds rds; }; #define FMTX_RDS_TXT_STR_SIZE 25 /* * FM TX RDS data * * @ text_type: is the text following PS or RT * @ text: radio text string which could either be PS or RT * @ af_freq: alternate frequency for Tx * TODO: to be declared in application */ struct tx_rds { u8 text_type; u8 text[FMTX_RDS_TXT_STR_SIZE]; u8 flag; u32 af_freq; }; /* * FM TX global data * * @ pwr_lvl: Power Level of the Transmission from mixer control * @ xmit_state: Transmission state = Updated locally upon Start/Stop * @ audio_io: i2S/Analog * @ tx_frq: Transmission frequency */ struct fmtx_data { u8 pwr_lvl; u8 xmit_state; u8 audio_io; u8 region; u16 aud_mode; u32 preemph; u32 tx_frq; struct tx_rds rds; }; /* FM driver operation structure */ struct fmdev { struct video_device *radio_dev; /* V4L2 video device pointer */ struct v4l2_device v4l2_dev; /* V4L2 top level struct */ struct snd_card *card; /* Card which holds FM mixer controls */ u16 asci_id; spinlock_t rds_buff_lock; /* To protect access to RDS buffer */ spinlock_t resp_skb_lock; /* To protect access to received SKB */ long flag; /* FM driver state machine info */ int streg_cbdata; /* status of ST registration */ struct sk_buff_head rx_q; /* RX queue */ struct work_struct rx_bh_work; /* RX BH Work */ struct sk_buff_head tx_q; /* TX queue */ struct work_struct tx_bh_work; /* TX BH Work */ unsigned long last_tx_jiffies; /* Timestamp of last pkt sent */ atomic_t tx_cnt; /* Number of packets can send at a time */ struct sk_buff *resp_skb; /* Response from the chip */ /* Main task completion handler */ struct completion maintask_comp; /* Opcode of last command sent to the chip */ u8 pre_op; /* Handler used for wakeup when response packet is received */ struct completion *resp_comp; struct fm_irq irq_info; u8 curr_fmmode; /* Current FM chip mode (TX, RX, OFF) */ struct fm_rx rx; /* FM receiver info */ struct fmtx_data tx_data; /* V4L2 ctrl framework handler*/ struct v4l2_ctrl_handler ctrl_handler; /* For core assisted locking */ struct mutex mutex; }; #endif
/* SPDX-License-Identifier: GPL-2.0 */ #define AUD_COMM_EXEC__A 0x1000000 #define AUD_COMM_EXEC_STOP 0x0 #define FEC_COMM_EXEC__A 0x1C00000 #define FEC_COMM_EXEC_STOP 0x0 #define FEC_COMM_EXEC_ACTIVE 0x1 #define FEC_DI_COMM_EXEC__A 0x1C20000 #define FEC_DI_COMM_EXEC_STOP 0x0 #define FEC_DI_INPUT_CTL__A 0x1C20016 #define FEC_RS_COMM_EXEC__A 0x1C30000 #define FEC_RS_COMM_EXEC_STOP 0x0 #define FEC_RS_MEASUREMENT_PERIOD__A 0x1C30012 #define FEC_RS_MEASUREMENT_PRESCALE__A 0x1C30013 #define FEC_RS_NR_BIT_ERRORS__A 0x1C30014 #define FEC_OC_MODE__A 0x1C40011 #define FEC_OC_MODE_PARITY__M 0x1 #define FEC_OC_DTO_MODE__A 0x1C40014 #define FEC_OC_DTO_MODE_DYNAMIC__M 0x1 #define FEC_OC_DTO_MODE_OFFSET_ENABLE__M 0x4 #define FEC_OC_DTO_PERIOD__A 0x1C40015 #define FEC_OC_DTO_BURST_LEN__A 0x1C40018 #define FEC_OC_FCT_MODE__A 0x1C4001A #define FEC_OC_FCT_MODE__PRE 0x0 #define FEC_OC_FCT_MODE_RAT_ENA__M 0x1 #define FEC_OC_FCT_MODE_VIRT_ENA__M 0x2 #define FEC_OC_TMD_MODE__A 0x1C4001E #define FEC_OC_TMD_COUNT__A 0x1C4001F #define FEC_OC_TMD_HI_MARGIN__A 0x1C40020 #define FEC_OC_TMD_LO_MARGIN__A 0x1C40021 #define FEC_OC_TMD_INT_UPD_RATE__A 0x1C40023 #define FEC_OC_AVR_PARM_A__A 0x1C40026 #define FEC_OC_AVR_PARM_B__A 0x1C40027 #define FEC_OC_RCN_GAIN__A 0x1C4002E #define FEC_OC_RCN_CTL_RATE_LO__A 0x1C40030 #define FEC_OC_RCN_CTL_STEP_LO__A 0x1C40032 #define FEC_OC_RCN_CTL_STEP_HI__A 0x1C40033 #define FEC_OC_SNC_MODE__A 0x1C40040 #define FEC_OC_SNC_MODE_SHUTDOWN__M 0x10 #define FEC_OC_SNC_LWM__A 0x1C40041 #define FEC_OC_SNC_HWM__A 0x1C40042 #define FEC_OC_SNC_UNLOCK__A 0x1C40043 #define FEC_OC_SNC_FAIL_PERIOD__A 0x1C40046 #define FEC_OC_IPR_MODE__A 0x1C40048 #define FEC_OC_IPR_MODE_SERIAL__M 0x1 #define FEC_OC_IPR_MODE_MCLK_DIS_DAT_ABS__M 0x4 #define FEC_OC_IPR_MODE_MVAL_DIS_PAR__M 0x10 #define FEC_OC_IPR_INVERT__A 0x1C40049 #define FEC_OC_IPR_INVERT_MD0__M 0x1 #define FEC_OC_IPR_INVERT_MD1__M 0x2 #define FEC_OC_IPR_INVERT_MD2__M 0x4 #define FEC_OC_IPR_INVERT_MD3__M 0x8 #define FEC_OC_IPR_INVERT_MD4__M 0x10 #define FEC_OC_IPR_INVERT_MD5__M 0x20 #define FEC_OC_IPR_INVERT_MD6__M 0x40 #define FEC_OC_IPR_INVERT_MD7__M 0x80 #define FEC_OC_IPR_INVERT_MERR__M 0x100 #define FEC_OC_IPR_INVERT_MSTRT__M 0x200 #define FEC_OC_IPR_INVERT_MVAL__M 0x400 #define FEC_OC_IPR_INVERT_MCLK__M 0x800 #define FEC_OC_OCR_INVERT__A 0x1C40052 #define IQM_COMM_EXEC__A 0x1800000 #define IQM_COMM_EXEC_B_STOP 0x0 #define IQM_COMM_EXEC_B_ACTIVE 0x1 #define IQM_FS_RATE_OFS_LO__A 0x1820010 #define IQM_FS_ADJ_SEL__A 0x1820014 #define IQM_FS_ADJ_SEL_B_OFF 0x0 #define IQM_FS_ADJ_SEL_B_QAM 0x1 #define IQM_FS_ADJ_SEL_B_VSB 0x2 #define IQM_FD_RATESEL__A 0x1830010 #define IQM_RC_RATE_OFS_LO__A 0x1840010 #define IQM_RC_RATE_OFS_LO__W 16 #define IQM_RC_RATE_OFS_LO__M 0xFFFF #define IQM_RC_RATE_OFS_HI__M 0xFF #define IQM_RC_ADJ_SEL__A 0x1840014 #define IQM_RC_ADJ_SEL_B_OFF 0x0 #define IQM_RC_ADJ_SEL_B_QAM 0x1 #define IQM_RC_ADJ_SEL_B_VSB 0x2 #define IQM_RC_STRETCH__A 0x1840016 #define IQM_CF_COMM_INT_MSK__A 0x1860006 #define IQM_CF_SYMMETRIC__A 0x1860010 #define IQM_CF_MIDTAP__A 0x1860011 #define IQM_CF_MIDTAP_RE__B 0 #define IQM_CF_MIDTAP_IM__B 1 #define IQM_CF_OUT_ENA__A 0x1860012 #define IQM_CF_OUT_ENA_QAM__B 1 #define IQM_CF_OUT_ENA_OFDM__M 0x4 #define IQM_CF_ADJ_SEL__A 0x1860013 #define IQM_CF_SCALE__A 0x1860014 #define IQM_CF_SCALE_SH__A 0x1860015 #define IQM_CF_SCALE_SH__PRE 0x0 #define IQM_CF_POW_MEAS_LEN__A 0x1860017 #define IQM_CF_DS_ENA__A 0x1860019 #define IQM_CF_TAP_RE0__A 0x1860020 #define IQM_CF_TAP_IM0__A 0x1860040 #define IQM_CF_CLP_VAL__A 0x1860060 #define IQM_CF_DATATH__A 0x1860061 #define IQM_CF_PKDTH__A 0x1860062 #define IQM_CF_WND_LEN__A 0x1860063 #define IQM_CF_DET_LCT__A 0x1860064 #define IQM_CF_BYPASSDET__A 0x1860067 #define IQM_AF_COMM_EXEC__A 0x1870000 #define IQM_AF_COMM_EXEC_ACTIVE 0x1 #define IQM_AF_CLKNEG__A 0x1870012 #define IQM_AF_CLKNEG_CLKNEGDATA__M 0x2 #define IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS 0x0 #define IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_NEG 0x2 #define IQM_AF_START_LOCK__A 0x187001B #define IQM_AF_PHASE0__A 0x187001C #define IQM_AF_PHASE1__A 0x187001D #define IQM_AF_PHASE2__A 0x187001E #define IQM_AF_CLP_LEN__A 0x1870023 #define IQM_AF_CLP_TH__A 0x1870024 #define IQM_AF_SNS_LEN__A 0x1870026 #define IQM_AF_AGC_IF__A 0x1870028 #define IQM_AF_AGC_RF__A 0x1870029 #define IQM_AF_PDREF__A 0x187002B #define IQM_AF_PDREF__M 0x1F #define IQM_AF_STDBY__A 0x187002C #define IQM_AF_STDBY_STDBY_ADC_STANDBY 0x2 #define IQM_AF_STDBY_STDBY_AMP_STANDBY 0x4 #define IQM_AF_STDBY_STDBY_PD_STANDBY 0x8 #define IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY 0x10 #define IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY 0x20 #define IQM_AF_AMUX__A 0x187002D #define IQM_AF_AMUX_SIGNAL2ADC 0x1 #define IQM_AF_UPD_SEL__A 0x187002F #define IQM_AF_INC_LCT__A 0x1870034 #define IQM_AF_INC_BYPASS__A 0x1870036 #define OFDM_CP_COMM_EXEC__A 0x2800000 #define OFDM_CP_COMM_EXEC_STOP 0x0 #define OFDM_EC_SB_PRIOR__A 0x3410013 #define OFDM_EC_SB_PRIOR_HI 0x0 #define OFDM_EC_SB_PRIOR_LO 0x1 #define OFDM_EC_VD_ERR_BIT_CNT__A 0x3420017 #define OFDM_EC_VD_IN_BIT_CNT__A 0x3420018 #define OFDM_EQ_TOP_TD_TPS_CONST__A 0x3010054 #define OFDM_EQ_TOP_TD_TPS_CONST__M 0x3 #define OFDM_EQ_TOP_TD_TPS_CONST_64QAM 0x2 #define OFDM_EQ_TOP_TD_TPS_CODE_HP__A 0x3010056 #define OFDM_EQ_TOP_TD_TPS_CODE_HP__M 0x7 #define OFDM_EQ_TOP_TD_TPS_CODE_LP_7_8 0x4 #define OFDM_EQ_TOP_TD_SQR_ERR_I__A 0x301005E #define OFDM_EQ_TOP_TD_SQR_ERR_Q__A 0x301005F #define OFDM_EQ_TOP_TD_SQR_ERR_EXP__A 0x3010060 #define OFDM_EQ_TOP_TD_REQ_SMB_CNT__A 0x3010061 #define OFDM_EQ_TOP_TD_TPS_PWR_OFS__A 0x3010062 #define OFDM_LC_COMM_EXEC__A 0x3800000 #define OFDM_LC_COMM_EXEC_STOP 0x0 #define OFDM_SC_COMM_EXEC__A 0x3C00000 #define OFDM_SC_COMM_EXEC_STOP 0x0 #define OFDM_SC_COMM_STATE__A 0x3C00001 #define OFDM_SC_RA_RAM_PARAM0__A 0x3C20040 #define OFDM_SC_RA_RAM_PARAM1__A 0x3C20041 #define OFDM_SC_RA_RAM_CMD_ADDR__A 0x3C20042 #define OFDM_SC_RA_RAM_CMD__A 0x3C20043 #define OFDM_SC_RA_RAM_CMD_NULL 0x0 #define OFDM_SC_RA_RAM_CMD_PROC_START 0x1 #define OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM 0x3 #define OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM 0x4 #define OFDM_SC_RA_RAM_CMD_GET_OP_PARAM 0x5 #define OFDM_SC_RA_RAM_CMD_USER_IO 0x6 #define OFDM_SC_RA_RAM_CMD_SET_TIMER 0x7 #define OFDM_SC_RA_RAM_CMD_SET_ECHO_TIMING 0x8 #define OFDM_SC_RA_RAM_SW_EVENT_RUN_NMASK__M 0x1 #define OFDM_SC_RA_RAM_LOCKTRACK_MIN 0x1 #define OFDM_SC_RA_RAM_OP_PARAM__A 0x3C20048 #define OFDM_SC_RA_RAM_OP_PARAM_MODE__M 0x3 #define OFDM_SC_RA_RAM_OP_PARAM_MODE_2K 0x0 #define OFDM_SC_RA_RAM_OP_PARAM_MODE_8K 0x1 #define OFDM_SC_RA_RAM_OP_PARAM_GUARD_32 0x0 #define OFDM_SC_RA_RAM_OP_PARAM_GUARD_16 0x4 #define OFDM_SC_RA_RAM_OP_PARAM_GUARD_8 0x8 #define OFDM_SC_RA_RAM_OP_PARAM_GUARD_4 0xC #define OFDM_SC_RA_RAM_OP_PARAM_CONST_QPSK 0x0 #define OFDM_SC_RA_RAM_OP_PARAM_CONST_QAM16 0x10 #define OFDM_SC_RA_RAM_OP_PARAM_CONST_QAM64 0x20 #define OFDM_SC_RA_RAM_OP_PARAM_HIER_NO 0x0 #define OFDM_SC_RA_RAM_OP_PARAM_HIER_A1 0x40 #define OFDM_SC_RA_RAM_OP_PARAM_HIER_A2 0x80 #define OFDM_SC_RA_RAM_OP_PARAM_HIER_A4 0xC0 #define OFDM_SC_RA_RAM_OP_PARAM_RATE_1_2 0x0 #define OFDM_SC_RA_RAM_OP_PARAM_RATE_2_3 0x200 #define OFDM_SC_RA_RAM_OP_PARAM_RATE_3_4 0x400 #define OFDM_SC_RA_RAM_OP_PARAM_RATE_5_6 0x600 #define OFDM_SC_RA_RAM_OP_PARAM_RATE_7_8 0x800 #define OFDM_SC_RA_RAM_OP_PARAM_PRIO_HI 0x0 #define OFDM_SC_RA_RAM_OP_PARAM_PRIO_LO 0x1000 #define OFDM_SC_RA_RAM_OP_AUTO_MODE__M 0x1 #define OFDM_SC_RA_RAM_OP_AUTO_GUARD__M 0x2 #define OFDM_SC_RA_RAM_OP_AUTO_CONST__M 0x4 #define OFDM_SC_RA_RAM_OP_AUTO_HIER__M 0x8 #define OFDM_SC_RA_RAM_OP_AUTO_RATE__M 0x10 #define OFDM_SC_RA_RAM_LOCK__A 0x3C2004B #define OFDM_SC_RA_RAM_LOCK_DEMOD__M 0x1 #define OFDM_SC_RA_RAM_LOCK_FEC__M 0x2 #define OFDM_SC_RA_RAM_LOCK_MPEG__M 0x4 #define OFDM_SC_RA_RAM_LOCK_NODVBT__M 0x8 #define OFDM_SC_RA_RAM_BE_OPT_DELAY__A 0x3C2004D #define OFDM_SC_RA_RAM_BE_OPT_INIT_DELAY__A 0x3C2004E #define OFDM_SC_RA_RAM_ECHO_THRES__A 0x3C2004F #define OFDM_SC_RA_RAM_ECHO_THRES_8K__B 0 #define OFDM_SC_RA_RAM_ECHO_THRES_8K__M 0xFF #define OFDM_SC_RA_RAM_ECHO_THRES_2K__B 8 #define OFDM_SC_RA_RAM_ECHO_THRES_2K__M 0xFF00 #define OFDM_SC_RA_RAM_CONFIG__A 0x3C20050 #define OFDM_SC_RA_RAM_CONFIG_NE_FIX_ENABLE__M 0x800 #define OFDM_SC_RA_RAM_FR_THRES_8K__A 0x3C2007D #define OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A 0x3C200E0 #define OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A 0x3C200E1 #define OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A 0x3C200E3 #define OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A 0x3C200E4 #define OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A 0x3C200F8 #define QAM_COMM_EXEC__A 0x1400000 #define QAM_COMM_EXEC_STOP 0x0 #define QAM_COMM_EXEC_ACTIVE 0x1 #define QAM_TOP_ANNEX_A 0x0 #define QAM_TOP_ANNEX_C 0x2 #define QAM_SL_ERR_POWER__A 0x1430017 #define QAM_DQ_QUAL_FUN0__A 0x1440018 #define QAM_DQ_QUAL_FUN1__A 0x1440019 #define QAM_DQ_QUAL_FUN2__A 0x144001A #define QAM_DQ_QUAL_FUN3__A 0x144001B #define QAM_DQ_QUAL_FUN4__A 0x144001C #define QAM_DQ_QUAL_FUN5__A 0x144001D #define QAM_LC_MODE__A 0x1450010 #define QAM_LC_QUAL_TAB0__A 0x1450018 #define QAM_LC_QUAL_TAB1__A 0x1450019 #define QAM_LC_QUAL_TAB2__A 0x145001A #define QAM_LC_QUAL_TAB3__A 0x145001B #define QAM_LC_QUAL_TAB4__A 0x145001C #define QAM_LC_QUAL_TAB5__A 0x145001D #define QAM_LC_QUAL_TAB6__A 0x145001E #define QAM_LC_QUAL_TAB8__A 0x145001F #define QAM_LC_QUAL_TAB9__A 0x1450020 #define QAM_LC_QUAL_TAB10__A 0x1450021 #define QAM_LC_QUAL_TAB12__A 0x1450022 #define QAM_LC_QUAL_TAB15__A 0x1450023 #define QAM_LC_QUAL_TAB16__A 0x1450024 #define QAM_LC_QUAL_TAB20__A 0x1450025 #define QAM_LC_QUAL_TAB25__A 0x1450026 #define QAM_LC_LPF_FACTORP__A 0x1450028 #define QAM_LC_LPF_FACTORI__A 0x1450029 #define QAM_LC_RATE_LIMIT__A 0x145002A #define QAM_LC_SYMBOL_FREQ__A 0x145002B #define QAM_SY_TIMEOUT__A 0x1470011 #define QAM_SY_TIMEOUT__PRE 0x3A98 #define QAM_SY_SYNC_LWM__A 0x1470012 #define QAM_SY_SYNC_AWM__A 0x1470013 #define QAM_SY_SYNC_HWM__A 0x1470014 #define QAM_SY_SP_INV__A 0x1470017 #define QAM_SY_SP_INV_SPECTRUM_INV_DIS 0x0 #define SCU_COMM_EXEC__A 0x800000 #define SCU_COMM_EXEC_STOP 0x0 #define SCU_COMM_EXEC_ACTIVE 0x1 #define SCU_COMM_EXEC_HOLD 0x2 #define SCU_RAM_DRIVER_DEBUG__A 0x831EBF #define SCU_RAM_QAM_FSM_STEP_PERIOD__A 0x831EC4 #define SCU_RAM_GPIO__A 0x831EC7 #define SCU_RAM_GPIO_HW_LOCK_IND_DISABLE 0x0 #define SCU_RAM_AGC_CLP_CTRL_MODE__A 0x831EC8 #define SCU_RAM_FEC_ACCUM_PKT_FAILURES__A 0x831ECB #define SCU_RAM_FEC_PRE_RS_BER_FILTER_SH__A 0x831F05 #define SCU_RAM_AGC_FAST_SNS_CTRL_DELAY__A 0x831F15 #define SCU_RAM_AGC_KI_CYCLEN__A 0x831F17 #define SCU_RAM_AGC_SNS_CYCLEN__A 0x831F18 #define SCU_RAM_AGC_RF_SNS_DEV_MAX__A 0x831F19 #define SCU_RAM_AGC_RF_SNS_DEV_MIN__A 0x831F1A #define SCU_RAM_AGC_RF_MAX__A 0x831F1B #define SCU_RAM_AGC_CONFIG__A 0x831F24 #define SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M 0x1 #define SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M 0x2 #define SCU_RAM_AGC_CONFIG_INV_IF_POL__M 0x100 #define SCU_RAM_AGC_CONFIG_INV_RF_POL__M 0x200 #define SCU_RAM_AGC_KI__A 0x831F25 #define SCU_RAM_AGC_KI_RF__B 4 #define SCU_RAM_AGC_KI_RF__M 0xF0 #define SCU_RAM_AGC_KI_IF__B 8 #define SCU_RAM_AGC_KI_IF__M 0xF00 #define SCU_RAM_AGC_KI_RED__A 0x831F26 #define SCU_RAM_AGC_KI_RED_RAGC_RED__B 2 #define SCU_RAM_AGC_KI_RED_RAGC_RED__M 0xC #define SCU_RAM_AGC_KI_RED_IAGC_RED__B 4 #define SCU_RAM_AGC_KI_RED_IAGC_RED__M 0x30 #define SCU_RAM_AGC_KI_INNERGAIN_MIN__A 0x831F27 #define SCU_RAM_AGC_KI_MINGAIN__A 0x831F28 #define SCU_RAM_AGC_KI_MAXGAIN__A 0x831F29 #define SCU_RAM_AGC_KI_MAXMINGAIN_TH__A 0x831F2A #define SCU_RAM_AGC_KI_MIN__A 0x831F2B #define SCU_RAM_AGC_KI_MAX__A 0x831F2C #define SCU_RAM_AGC_CLP_SUM__A 0x831F2D #define SCU_RAM_AGC_CLP_SUM_MIN__A 0x831F2E #define SCU_RAM_AGC_CLP_SUM_MAX__A 0x831F2F #define SCU_RAM_AGC_CLP_CYCLEN__A 0x831F30 #define SCU_RAM_AGC_CLP_CYCCNT__A 0x831F31 #define SCU_RAM_AGC_CLP_DIR_TO__A 0x831F32 #define SCU_RAM_AGC_CLP_DIR_WD__A 0x831F33 #define SCU_RAM_AGC_CLP_DIR_STP__A 0x831F34 #define SCU_RAM_AGC_SNS_SUM__A 0x831F35 #define SCU_RAM_AGC_SNS_SUM_MIN__A 0x831F36 #define SCU_RAM_AGC_SNS_SUM_MAX__A 0x831F37 #define SCU_RAM_AGC_SNS_CYCCNT__A 0x831F38 #define SCU_RAM_AGC_SNS_DIR_TO__A 0x831F39 #define SCU_RAM_AGC_SNS_DIR_WD__A 0x831F3A #define SCU_RAM_AGC_SNS_DIR_STP__A 0x831F3B #define SCU_RAM_AGC_INGAIN_TGT__A 0x831F3D #define SCU_RAM_AGC_INGAIN_TGT_MIN__A 0x831F3E #define SCU_RAM_AGC_INGAIN_TGT_MAX__A 0x831F3F #define SCU_RAM_AGC_IF_IACCU_HI__A 0x831F40 #define SCU_RAM_AGC_IF_IACCU_LO__A 0x831F41 #define SCU_RAM_AGC_IF_IACCU_HI_TGT__A 0x831F42 #define SCU_RAM_AGC_IF_IACCU_HI_TGT_MIN__A 0x831F43 #define SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A 0x831F44 #define SCU_RAM_AGC_RF_IACCU_HI__A 0x831F45 #define SCU_RAM_AGC_RF_IACCU_LO__A 0x831F46 #define SCU_RAM_AGC_RF_IACCU_HI_CO__A 0x831F47 #define SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A 0x831F84 #define SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A 0x831F85 #define SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A 0x831F86 #define SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A 0x831F87 #define SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A 0x831F88 #define SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A 0x831F89 #define SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A 0x831F8A #define SCU_RAM_QAM_FSM_RTH__A 0x831F8E #define SCU_RAM_QAM_FSM_FTH__A 0x831F8F #define SCU_RAM_QAM_FSM_PTH__A 0x831F90 #define SCU_RAM_QAM_FSM_MTH__A 0x831F91 #define SCU_RAM_QAM_FSM_CTH__A 0x831F92 #define SCU_RAM_QAM_FSM_QTH__A 0x831F93 #define SCU_RAM_QAM_FSM_RATE_LIM__A 0x831F94 #define SCU_RAM_QAM_FSM_FREQ_LIM__A 0x831F95 #define SCU_RAM_QAM_FSM_COUNT_LIM__A 0x831F96 #define SCU_RAM_QAM_LC_CA_COARSE__A 0x831F97 #define SCU_RAM_QAM_LC_CA_FINE__A 0x831F99 #define SCU_RAM_QAM_LC_CP_COARSE__A 0x831F9A #define SCU_RAM_QAM_LC_CP_MEDIUM__A 0x831F9B #define SCU_RAM_QAM_LC_CP_FINE__A 0x831F9C #define SCU_RAM_QAM_LC_CI_COARSE__A 0x831F9D #define SCU_RAM_QAM_LC_CI_MEDIUM__A 0x831F9E #define SCU_RAM_QAM_LC_CI_FINE__A 0x831F9F #define SCU_RAM_QAM_LC_EP_COARSE__A 0x831FA0 #define SCU_RAM_QAM_LC_EP_MEDIUM__A 0x831FA1 #define SCU_RAM_QAM_LC_EP_FINE__A 0x831FA2 #define SCU_RAM_QAM_LC_EI_COARSE__A 0x831FA3 #define SCU_RAM_QAM_LC_EI_MEDIUM__A 0x831FA4 #define SCU_RAM_QAM_LC_EI_FINE__A 0x831FA5 #define SCU_RAM_QAM_LC_CF_COARSE__A 0x831FA6 #define SCU_RAM_QAM_LC_CF_MEDIUM__A 0x831FA7 #define SCU_RAM_QAM_LC_CF_FINE__A 0x831FA8 #define SCU_RAM_QAM_LC_CF1_COARSE__A 0x831FA9 #define SCU_RAM_QAM_LC_CF1_MEDIUM__A 0x831FAA #define SCU_RAM_QAM_LC_CF1_FINE__A 0x831FAB #define SCU_RAM_QAM_SL_SIG_POWER__A 0x831FAC #define SCU_RAM_QAM_EQ_CMA_RAD0__A 0x831FAD #define SCU_RAM_QAM_EQ_CMA_RAD1__A 0x831FAE #define SCU_RAM_QAM_EQ_CMA_RAD2__A 0x831FAF #define SCU_RAM_QAM_EQ_CMA_RAD3__A 0x831FB0 #define SCU_RAM_QAM_EQ_CMA_RAD4__A 0x831FB1 #define SCU_RAM_QAM_EQ_CMA_RAD5__A 0x831FB2 #define SCU_RAM_QAM_LOCKED_LOCKED_DEMOD_LOCKED 0x4000 #define SCU_RAM_QAM_LOCKED_LOCKED_LOCKED 0x8000 #define SCU_RAM_QAM_LOCKED_LOCKED_NEVER_LOCK 0xC000 #define SCU_RAM_AGC_FAST_CLP_CTRL_DELAY__A 0x831FEA #define SCU_RAM_DRIVER_VER_HI__A 0x831FEB #define SCU_RAM_DRIVER_VER_LO__A 0x831FEC #define SCU_RAM_PARAM_15__A 0x831FED #define SCU_RAM_PARAM_0__A 0x831FFC #define SCU_RAM_COMMAND__A 0x831FFD #define SCU_RAM_COMMAND_CMD_DEMOD_RESET 0x1 #define SCU_RAM_COMMAND_CMD_DEMOD_SET_ENV 0x2 #define SCU_RAM_COMMAND_CMD_DEMOD_SET_PARAM 0x3 #define SCU_RAM_COMMAND_CMD_DEMOD_START 0x4 #define SCU_RAM_COMMAND_CMD_DEMOD_GET_LOCK 0x5 #define SCU_RAM_COMMAND_CMD_DEMOD_STOP 0x9 #define SCU_RAM_COMMAND_STANDARD_QAM 0x200 #define SCU_RAM_COMMAND_STANDARD_OFDM 0x400 #define SIO_TOP_COMM_KEY__A 0x41000F #define SIO_TOP_COMM_KEY_KEY 0xFABA #define SIO_TOP_JTAGID_LO__A 0x410012 #define SIO_HI_RA_RAM_RES__A 0x420031 #define SIO_HI_RA_RAM_CMD__A 0x420032 #define SIO_HI_RA_RAM_CMD_RESET 0x2 #define SIO_HI_RA_RAM_CMD_CONFIG 0x3 #define SIO_HI_RA_RAM_CMD_BRDCTRL 0x7 #define SIO_HI_RA_RAM_PAR_1__A 0x420033 #define SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY 0x3945 #define SIO_HI_RA_RAM_PAR_2__A 0x420034 #define SIO_HI_RA_RAM_PAR_2_CFG_DIV__M 0x7F #define SIO_HI_RA_RAM_PAR_2_BRD_CFG_OPEN 0x0 #define SIO_HI_RA_RAM_PAR_2_BRD_CFG_CLOSED 0x4 #define SIO_HI_RA_RAM_PAR_3__A 0x420035 #define SIO_HI_RA_RAM_PAR_3_CFG_DBL_SDA__M 0x7F #define SIO_HI_RA_RAM_PAR_3_CFG_DBL_SCL__B 7 #define SIO_HI_RA_RAM_PAR_3_ACP_RW_READ 0x0 #define SIO_HI_RA_RAM_PAR_3_ACP_RW_WRITE 0x8 #define SIO_HI_RA_RAM_PAR_4__A 0x420036 #define SIO_HI_RA_RAM_PAR_5__A 0x420037 #define SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE 0x1 #define SIO_HI_RA_RAM_PAR_5_CFG_SLEEP__M 0x8 #define SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ 0x8 #define SIO_HI_RA_RAM_PAR_6__A 0x420038 #define SIO_CC_PLL_LOCK__A 0x450012 #define SIO_CC_PWD_MODE__A 0x450015 #define SIO_CC_PWD_MODE_LEVEL_NONE 0x0 #define SIO_CC_PWD_MODE_LEVEL_OFDM 0x1 #define SIO_CC_PWD_MODE_LEVEL_CLOCK 0x2 #define SIO_CC_PWD_MODE_LEVEL_PLL 0x3 #define SIO_CC_PWD_MODE_LEVEL_OSC 0x4 #define SIO_CC_SOFT_RST__A 0x450016 #define SIO_CC_SOFT_RST_OFDM__M 0x1 #define SIO_CC_SOFT_RST_SYS__M 0x2 #define SIO_CC_SOFT_RST_OSC__M 0x4 #define SIO_CC_UPDATE__A 0x450017 #define SIO_CC_UPDATE_KEY 0xFABA #define SIO_OFDM_SH_OFDM_RING_ENABLE__A 0x470010 #define SIO_OFDM_SH_OFDM_RING_ENABLE_OFF 0x0 #define SIO_OFDM_SH_OFDM_RING_ENABLE_ON 0x1 #define SIO_OFDM_SH_OFDM_RING_STATUS__A 0x470012 #define SIO_OFDM_SH_OFDM_RING_STATUS_DOWN 0x0 #define SIO_OFDM_SH_OFDM_RING_STATUS_ENABLED 0x1 #define SIO_BL_COMM_EXEC__A 0x480000 #define SIO_BL_COMM_EXEC_ACTIVE 0x1 #define SIO_BL_STATUS__A 0x480010 #define SIO_BL_MODE__A 0x480011 #define SIO_BL_MODE_DIRECT 0x0 #define SIO_BL_MODE_CHAIN 0x1 #define SIO_BL_ENABLE__A 0x480012 #define SIO_BL_ENABLE_ON 0x1 #define SIO_BL_TGT_HDR__A 0x480014 #define SIO_BL_TGT_ADDR__A 0x480015 #define SIO_BL_SRC_ADDR__A 0x480016 #define SIO_BL_SRC_LEN__A 0x480017 #define SIO_BL_CHAIN_ADDR__A 0x480018 #define SIO_BL_CHAIN_LEN__A 0x480019 #define SIO_PDR_MON_CFG__A 0x7F0010 #define SIO_PDR_UIO_IN_HI__A 0x7F0015 #define SIO_PDR_UIO_OUT_LO__A 0x7F0016 #define SIO_PDR_OHW_CFG__A 0x7F001F #define SIO_PDR_OHW_CFG_FREF_SEL__M 0x3 #define SIO_PDR_GPIO_CFG__A 0x7F0021 #define SIO_PDR_MSTRT_CFG__A 0x7F0025 #define SIO_PDR_MERR_CFG__A 0x7F0026 #define SIO_PDR_MCLK_CFG__A 0x7F0028 #define SIO_PDR_MCLK_CFG_DRIVE__B 3 #define SIO_PDR_MVAL_CFG__A 0x7F0029 #define SIO_PDR_MD0_CFG__A 0x7F002A #define SIO_PDR_MD0_CFG_DRIVE__B 3 #define SIO_PDR_MD1_CFG__A 0x7F002B #define SIO_PDR_MD2_CFG__A 0x7F002C #define SIO_PDR_MD3_CFG__A 0x7F002D #define SIO_PDR_MD4_CFG__A 0x7F002F #define SIO_PDR_MD5_CFG__A 0x7F0030 #define SIO_PDR_MD6_CFG__A 0x7F0031 #define SIO_PDR_MD7_CFG__A 0x7F0032 #define SIO_PDR_SMA_RX_CFG__A 0x7F0037 #define SIO_PDR_SMA_TX_CFG__A 0x7F0038
/* SPDX-License-Identifier: GPL-2.0 */ /* * Siemens SIMATIC IPC driver for GPIO based LEDs * * Copyright (c) Siemens AG, 2023 * * Author: * Henning Schild <[email protected]> */ #ifndef _SIMATIC_IPC_LEDS_GPIO_H #define _SIMATIC_IPC_LEDS_GPIO_H int simatic_ipc_leds_gpio_probe(struct platform_device *pdev, struct gpiod_lookup_table *table, struct gpiod_lookup_table *table_extra); void simatic_ipc_leds_gpio_remove(struct platform_device *pdev, struct gpiod_lookup_table *table, struct gpiod_lookup_table *table_extra); #endif /* _SIMATIC_IPC_LEDS_GPIO_H */
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Second generation of pinmux driver for Amlogic Meson-AXG SoC. * * Copyright (c) 2017 Baylibre SAS. * Author: Jerome Brunet <[email protected]> * * Copyright (c) 2017 Amlogic, Inc. All rights reserved. * Author: Xingyu Chen <[email protected]> */ /* * This new generation of pinctrl IP is mainly adopted by the * Meson-AXG SoC and later series, which use 4-width continuous * register bit to select the function for each pin. * * The value 0 is always selecting the GPIO mode, while other * values (start from 1) for selecting the function mode. */ #include <linux/device.h> #include <linux/regmap.h> #include <linux/pinctrl/pinctrl.h> #include <linux/pinctrl/pinmux.h> #include "pinctrl-meson.h" #include "pinctrl-meson-axg-pmx.h" static int meson_axg_pmx_get_bank(struct meson_pinctrl *pc, unsigned int pin, const struct meson_pmx_bank **bank) { int i; const struct meson_axg_pmx_data *pmx = pc->data->pmx_data; for (i = 0; i < pmx->num_pmx_banks; i++) if (pin >= pmx->pmx_banks[i].first && pin <= pmx->pmx_banks[i].last) { *bank = &pmx->pmx_banks[i]; return 0; } return -EINVAL; } static int meson_pmx_calc_reg_and_offset(const struct meson_pmx_bank *bank, unsigned int pin, unsigned int *reg, unsigned int *offset) { int shift; shift = pin - bank->first; *reg = bank->reg + (bank->offset + (shift << 2)) / 32; *offset = (bank->offset + (shift << 2)) % 32; return 0; } static int meson_axg_pmx_update_function(struct meson_pinctrl *pc, unsigned int pin, unsigned int func) { const struct meson_pmx_bank *bank; int ret; int reg; int offset; ret = meson_axg_pmx_get_bank(pc, pin, &bank); if (ret) return ret; meson_pmx_calc_reg_and_offset(bank, pin, &reg, &offset); ret = regmap_update_bits(pc->reg_mux, reg << 2, 0xf << offset, (func & 0xf) << offset); return ret; } static int meson_axg_pmx_set_mux(struct pinctrl_dev *pcdev, unsigned int func_num, unsigned int group_num) { int i; int ret; struct meson_pinctrl *pc = pinctrl_dev_get_drvdata(pcdev); const struct meson_pmx_func *func = &pc->data->funcs[func_num]; const struct meson_pmx_group *group = &pc->data->groups[group_num]; struct meson_pmx_axg_data *pmx_data = (struct meson_pmx_axg_data *)group->data; dev_dbg(pc->dev, "enable function %s, group %s\n", func->name, group->name); for (i = 0; i < group->num_pins; i++) { ret = meson_axg_pmx_update_function(pc, group->pins[i], pmx_data->func); if (ret) return ret; } return 0; } static int meson_axg_pmx_request_gpio(struct pinctrl_dev *pcdev, struct pinctrl_gpio_range *range, unsigned int offset) { struct meson_pinctrl *pc = pinctrl_dev_get_drvdata(pcdev); return meson_axg_pmx_update_function(pc, offset, 0); } const struct pinmux_ops meson_axg_pmx_ops = { .set_mux = meson_axg_pmx_set_mux, .get_functions_count = meson_pmx_get_funcs_count, .get_function_name = meson_pmx_get_func_name, .get_function_groups = meson_pmx_get_groups, .gpio_request_enable = meson_axg_pmx_request_gpio, }; EXPORT_SYMBOL_GPL(meson_axg_pmx_ops); MODULE_DESCRIPTION("Amlogic Meson AXG second generation pinmux driver"); MODULE_LICENSE("Dual BSD/GPL");
/* SPDX-License-Identifier: GPL-2.0 */ /* * Remote processor elf helpers defines * * Copyright (C) 2020 Kalray, Inc. */ #ifndef REMOTEPROC_ELF_LOADER_H #define REMOTEPROC_ELF_LOADER_H #include <linux/elf.h> #include <linux/types.h> /** * fw_elf_get_class - Get elf class * @fw: the ELF firmware image * * Note that we use elf32_hdr to access the class since the start of the * struct is the same for both elf class * * Return: elf class of the firmware */ static inline u8 fw_elf_get_class(const struct firmware *fw) { struct elf32_hdr *ehdr = (struct elf32_hdr *)fw->data; return ehdr->e_ident[EI_CLASS]; } static inline void elf_hdr_init_ident(struct elf32_hdr *hdr, u8 class) { memcpy(hdr->e_ident, ELFMAG, SELFMAG); hdr->e_ident[EI_CLASS] = class; hdr->e_ident[EI_DATA] = ELFDATA2LSB; hdr->e_ident[EI_VERSION] = EV_CURRENT; hdr->e_ident[EI_OSABI] = ELFOSABI_NONE; } /* Generate getter and setter for a specific elf struct/field */ #define ELF_GEN_FIELD_GET_SET(__s, __field, __type) \ static inline __type elf_##__s##_get_##__field(u8 class, const void *arg) \ { \ if (class == ELFCLASS32) \ return (__type) ((const struct elf32_##__s *) arg)->__field; \ else \ return (__type) ((const struct elf64_##__s *) arg)->__field; \ } \ static inline void elf_##__s##_set_##__field(u8 class, void *arg, \ __type value) \ { \ if (class == ELFCLASS32) \ ((struct elf32_##__s *) arg)->__field = (__type) value; \ else \ ((struct elf64_##__s *) arg)->__field = (__type) value; \ } ELF_GEN_FIELD_GET_SET(hdr, e_entry, u64) ELF_GEN_FIELD_GET_SET(hdr, e_phnum, u16) ELF_GEN_FIELD_GET_SET(hdr, e_shnum, u16) ELF_GEN_FIELD_GET_SET(hdr, e_phoff, u64) ELF_GEN_FIELD_GET_SET(hdr, e_shoff, u64) ELF_GEN_FIELD_GET_SET(hdr, e_shstrndx, u16) ELF_GEN_FIELD_GET_SET(hdr, e_machine, u16) ELF_GEN_FIELD_GET_SET(hdr, e_type, u16) ELF_GEN_FIELD_GET_SET(hdr, e_version, u32) ELF_GEN_FIELD_GET_SET(hdr, e_ehsize, u32) ELF_GEN_FIELD_GET_SET(hdr, e_phentsize, u16) ELF_GEN_FIELD_GET_SET(hdr, e_shentsize, u16) ELF_GEN_FIELD_GET_SET(phdr, p_paddr, u64) ELF_GEN_FIELD_GET_SET(phdr, p_vaddr, u64) ELF_GEN_FIELD_GET_SET(phdr, p_filesz, u64) ELF_GEN_FIELD_GET_SET(phdr, p_memsz, u64) ELF_GEN_FIELD_GET_SET(phdr, p_type, u32) ELF_GEN_FIELD_GET_SET(phdr, p_offset, u64) ELF_GEN_FIELD_GET_SET(phdr, p_flags, u32) ELF_GEN_FIELD_GET_SET(phdr, p_align, u64) ELF_GEN_FIELD_GET_SET(shdr, sh_type, u32) ELF_GEN_FIELD_GET_SET(shdr, sh_flags, u32) ELF_GEN_FIELD_GET_SET(shdr, sh_entsize, u16) ELF_GEN_FIELD_GET_SET(shdr, sh_size, u64) ELF_GEN_FIELD_GET_SET(shdr, sh_offset, u64) ELF_GEN_FIELD_GET_SET(shdr, sh_name, u32) ELF_GEN_FIELD_GET_SET(shdr, sh_addr, u64) #define ELF_STRUCT_SIZE(__s) \ static inline unsigned long elf_size_of_##__s(u8 class) \ { \ if (class == ELFCLASS32)\ return sizeof(struct elf32_##__s); \ else \ return sizeof(struct elf64_##__s); \ } ELF_STRUCT_SIZE(shdr) ELF_STRUCT_SIZE(phdr) ELF_STRUCT_SIZE(hdr) static inline unsigned int elf_strtbl_add(const char *name, void *ehdr, u8 class, size_t *index) { u16 shstrndx = elf_hdr_get_e_shstrndx(class, ehdr); void *shdr; char *strtab; size_t idx, ret; shdr = ehdr + elf_size_of_hdr(class) + shstrndx * elf_size_of_shdr(class); strtab = ehdr + elf_shdr_get_sh_offset(class, shdr); idx = index ? *index : 0; if (!strtab || !name) return 0; ret = idx; strcpy((strtab + idx), name); idx += strlen(name) + 1; if (index) *index = idx; return ret; } #endif /* REMOTEPROC_ELF_LOADER_H */
/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #ifndef DC_INC_LINK_DP_DPIA_BW_H_ #define DC_INC_LINK_DP_DPIA_BW_H_ #include "link.h" /* Number of Host Routers per motherboard is 2 */ #define MAX_HR_NUM 2 /* Number of DPIA per host router is 2 */ #define MAX_DPIA_NUM (MAX_HR_NUM * 2) /* * Host Router BW type */ enum bw_type { HOST_ROUTER_BW_ESTIMATED, HOST_ROUTER_BW_ALLOCATED, HOST_ROUTER_BW_INVALID, }; /* * Enable BW Allocation Mode Support from the DP-Tx side * * @link: pointer to the dc_link struct instance * * return: SUCCESS or FAILURE */ bool link_dp_dpia_set_dptx_usb4_bw_alloc_support(struct dc_link *link); /* * Allocates only what the stream needs for bw, so if: * If (stream_req_bw < or > already_allocated_bw_at_HPD) * => Deallocate Max Bw & then allocate only what the stream needs * * @link: pointer to the dc_link struct instance * @req_bw: Bw requested by the stream * * return: true if allocated successfully */ bool link_dp_dpia_allocate_usb4_bandwidth_for_stream(struct dc_link *link, int req_bw); /* * Handle the USB4 BW Allocation related functionality here: * Plug => Try to allocate max bw from timing parameters supported by the sink * Unplug => de-allocate bw * * @link: pointer to the dc_link struct instance * @peak_bw: Peak bw used by the link/sink * * return: allocated bw else return 0 */ int dpia_handle_usb4_bandwidth_allocation_for_link(struct dc_link *link, int peak_bw); /* * Handle function for when the status of the Request above is complete. * We will find out the result of allocating on CM and update structs. * * @link: pointer to the dc_link struct instance * @bw: Allocated or Estimated BW depending on the result * @result: Response type * * return: none */ void dpia_handle_bw_alloc_response(struct dc_link *link, uint8_t bw, uint8_t result); /* * Handle the validation of total BW here and confirm that the bw used by each * DPIA doesn't exceed available BW for each host router (HR) * * @link[]: array of link pointer to all possible DPIA links * @bw_needed[]: bw needed for each DPIA link based on timing * @num_dpias: Number of DPIAs for the above 2 arrays. Should always be <= MAX_DPIA_NUM * * return: TRUE if bw used by DPIAs doesn't exceed available BW else return FALSE */ bool dpia_validate_usb4_bw(struct dc_link **link, int *bw_needed, const unsigned int num_dpias); /* * Obtain all the DP overheads in dp tunneling for the dpia link * * @link: pointer to the dc_link struct instance * * return: DP overheads in DP tunneling */ int link_dp_dpia_get_dp_overhead_in_dp_tunneling(struct dc_link *link); #endif /* DC_INC_LINK_DP_DPIA_BW_H_ */
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Authors: Cheng Xu <[email protected]> */ /* Kai Shen <[email protected]> */ /* Copyright (c) 2020-2022, Alibaba Group. */ #include <linux/module.h> #include <net/addrconf.h> #include <rdma/erdma-abi.h> #include "erdma.h" #include "erdma_cm.h" #include "erdma_verbs.h" MODULE_AUTHOR("Cheng Xu <[email protected]>"); MODULE_DESCRIPTION("Alibaba elasticRDMA adapter driver"); MODULE_LICENSE("Dual BSD/GPL"); static int erdma_netdev_event(struct notifier_block *nb, unsigned long event, void *arg) { struct net_device *netdev = netdev_notifier_info_to_dev(arg); struct erdma_dev *dev = container_of(nb, struct erdma_dev, netdev_nb); if (dev->netdev == NULL || dev->netdev != netdev) goto done; switch (event) { case NETDEV_UP: dev->state = IB_PORT_ACTIVE; erdma_port_event(dev, IB_EVENT_PORT_ACTIVE); break; case NETDEV_DOWN: dev->state = IB_PORT_DOWN; erdma_port_event(dev, IB_EVENT_PORT_ERR); break; case NETDEV_CHANGEMTU: if (dev->mtu != netdev->mtu) { erdma_set_mtu(dev, netdev->mtu); dev->mtu = netdev->mtu; } break; case NETDEV_REGISTER: case NETDEV_UNREGISTER: case NETDEV_CHANGEADDR: case NETDEV_GOING_DOWN: case NETDEV_CHANGE: default: break; } done: return NOTIFY_OK; } static int erdma_enum_and_get_netdev(struct erdma_dev *dev) { struct net_device *netdev; int ret = -EPROBE_DEFER; /* Already binded to a net_device, so we skip. */ if (dev->netdev) return 0; rtnl_lock(); for_each_netdev(&init_net, netdev) { /* * In erdma, the paired netdev and ibdev should have the same * MAC address. erdma can get the value from its PCIe bar * registers. Since erdma can not get the paired netdev * reference directly, we do a traverse here to get the paired * netdev. */ if (ether_addr_equal_unaligned(netdev->perm_addr, dev->attrs.peer_addr)) { ret = ib_device_set_netdev(&dev->ibdev, netdev, 1); if (ret) { rtnl_unlock(); ibdev_warn(&dev->ibdev, "failed (%d) to link netdev", ret); return ret; } dev->netdev = netdev; break; } } rtnl_unlock(); return ret; } static int erdma_device_register(struct erdma_dev *dev) { struct ib_device *ibdev = &dev->ibdev; int ret; ret = erdma_enum_and_get_netdev(dev); if (ret) return ret; dev->mtu = dev->netdev->mtu; addrconf_addr_eui48((u8 *)&ibdev->node_guid, dev->netdev->dev_addr); ret = ib_register_device(ibdev, "erdma_%d", &dev->pdev->dev); if (ret) { dev_err(&dev->pdev->dev, "ib_register_device failed: ret = %d\n", ret); return ret; } dev->netdev_nb.notifier_call = erdma_netdev_event; ret = register_netdevice_notifier(&dev->netdev_nb); if (ret) { ibdev_err(&dev->ibdev, "failed to register notifier.\n"); ib_unregister_device(ibdev); } return ret; } static irqreturn_t erdma_comm_irq_handler(int irq, void *data) { struct erdma_dev *dev = data; erdma_cmdq_completion_handler(&dev->cmdq); erdma_aeq_event_handler(dev); return IRQ_HANDLED; } static int erdma_request_vectors(struct erdma_dev *dev) { int expect_irq_num = min(num_possible_cpus() + 1, ERDMA_NUM_MSIX_VEC); int ret; ret = pci_alloc_irq_vectors(dev->pdev, 1, expect_irq_num, PCI_IRQ_MSIX); if (ret < 0) { dev_err(&dev->pdev->dev, "request irq vectors failed(%d)\n", ret); return ret; } dev->attrs.irq_num = ret; return 0; } static int erdma_comm_irq_init(struct erdma_dev *dev) { snprintf(dev->comm_irq.name, ERDMA_IRQNAME_SIZE, "erdma-common@pci:%s", pci_name(dev->pdev)); dev->comm_irq.msix_vector = pci_irq_vector(dev->pdev, ERDMA_MSIX_VECTOR_CMDQ); cpumask_set_cpu(cpumask_first(cpumask_of_pcibus(dev->pdev->bus)), &dev->comm_irq.affinity_hint_mask); irq_set_affinity_hint(dev->comm_irq.msix_vector, &dev->comm_irq.affinity_hint_mask); return request_irq(dev->comm_irq.msix_vector, erdma_comm_irq_handler, 0, dev->comm_irq.name, dev); } static void erdma_comm_irq_uninit(struct erdma_dev *dev) { irq_set_affinity_hint(dev->comm_irq.msix_vector, NULL); free_irq(dev->comm_irq.msix_vector, dev); } static int erdma_device_init(struct erdma_dev *dev, struct pci_dev *pdev) { int ret; dev->resp_pool = dma_pool_create("erdma_resp_pool", &pdev->dev, ERDMA_HW_RESP_SIZE, ERDMA_HW_RESP_SIZE, 0); if (!dev->resp_pool) return -ENOMEM; dev->db_pool = dma_pool_create("erdma_db_pool", &pdev->dev, ERDMA_DB_SIZE, ERDMA_DB_SIZE, 0); if (!dev->db_pool) { ret = -ENOMEM; goto destroy_resp_pool; } ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ERDMA_PCI_WIDTH)); if (ret) goto destroy_db_pool; dma_set_max_seg_size(&pdev->dev, UINT_MAX); return 0; destroy_db_pool: dma_pool_destroy(dev->db_pool); destroy_resp_pool: dma_pool_destroy(dev->resp_pool); return ret; } static void erdma_device_uninit(struct erdma_dev *dev) { dma_pool_destroy(dev->db_pool); dma_pool_destroy(dev->resp_pool); } static void erdma_hw_reset(struct erdma_dev *dev) { u32 ctrl = FIELD_PREP(ERDMA_REG_DEV_CTRL_RESET_MASK, 1); erdma_reg_write32(dev, ERDMA_REGS_DEV_CTRL_REG, ctrl); } static int erdma_wait_hw_init_done(struct erdma_dev *dev) { int i; erdma_reg_write32(dev, ERDMA_REGS_DEV_CTRL_REG, FIELD_PREP(ERDMA_REG_DEV_CTRL_INIT_MASK, 1)); for (i = 0; i < ERDMA_WAIT_DEV_DONE_CNT; i++) { if (erdma_reg_read32_filed(dev, ERDMA_REGS_DEV_ST_REG, ERDMA_REG_DEV_ST_INIT_DONE_MASK)) break; msleep(ERDMA_REG_ACCESS_WAIT_MS); } if (i == ERDMA_WAIT_DEV_DONE_CNT) { dev_err(&dev->pdev->dev, "wait init done failed.\n"); return -ETIMEDOUT; } return 0; } static const struct pci_device_id erdma_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_ALIBABA, 0x107f) }, {} }; static int erdma_probe_dev(struct pci_dev *pdev) { struct erdma_dev *dev; int bars, err; u32 version; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "pci_enable_device failed(%d)\n", err); return err; } pci_set_master(pdev); dev = ib_alloc_device(erdma_dev, ibdev); if (!dev) { dev_err(&pdev->dev, "ib_alloc_device failed\n"); err = -ENOMEM; goto err_disable_device; } pci_set_drvdata(pdev, dev); dev->pdev = pdev; dev->attrs.numa_node = dev_to_node(&pdev->dev); bars = pci_select_bars(pdev, IORESOURCE_MEM); err = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); if (bars != ERDMA_BAR_MASK || err) { err = err ? err : -EINVAL; goto err_ib_device_release; } dev->func_bar_addr = pci_resource_start(pdev, ERDMA_FUNC_BAR); dev->func_bar_len = pci_resource_len(pdev, ERDMA_FUNC_BAR); dev->func_bar = devm_ioremap(&pdev->dev, dev->func_bar_addr, dev->func_bar_len); if (!dev->func_bar) { dev_err(&pdev->dev, "devm_ioremap failed.\n"); err = -EFAULT; goto err_release_bars; } version = erdma_reg_read32(dev, ERDMA_REGS_VERSION_REG); if (version == 0) { /* we knows that it is a non-functional function. */ err = -ENODEV; goto err_iounmap_func_bar; } err = erdma_device_init(dev, pdev); if (err) goto err_iounmap_func_bar; err = erdma_request_vectors(dev); if (err) goto err_uninit_device; err = erdma_comm_irq_init(dev); if (err) goto err_free_vectors; err = erdma_aeq_init(dev); if (err) goto err_uninit_comm_irq; err = erdma_cmdq_init(dev); if (err) goto err_uninit_aeq; err = erdma_wait_hw_init_done(dev); if (err) goto err_uninit_cmdq; err = erdma_ceqs_init(dev); if (err) goto err_reset_hw; erdma_finish_cmdq_init(dev); return 0; err_reset_hw: erdma_hw_reset(dev); err_uninit_cmdq: erdma_cmdq_destroy(dev); err_uninit_aeq: erdma_eq_destroy(dev, &dev->aeq); err_uninit_comm_irq: erdma_comm_irq_uninit(dev); err_free_vectors: pci_free_irq_vectors(dev->pdev); err_uninit_device: erdma_device_uninit(dev); err_iounmap_func_bar: devm_iounmap(&pdev->dev, dev->func_bar); err_release_bars: pci_release_selected_regions(pdev, bars); err_ib_device_release: ib_dealloc_device(&dev->ibdev); err_disable_device: pci_disable_device(pdev); return err; } static void erdma_remove_dev(struct pci_dev *pdev) { struct erdma_dev *dev = pci_get_drvdata(pdev); erdma_ceqs_uninit(dev); erdma_hw_reset(dev); erdma_cmdq_destroy(dev); erdma_eq_destroy(dev, &dev->aeq); erdma_comm_irq_uninit(dev); pci_free_irq_vectors(dev->pdev); erdma_device_uninit(dev); devm_iounmap(&pdev->dev, dev->func_bar); pci_release_selected_regions(pdev, ERDMA_BAR_MASK); ib_dealloc_device(&dev->ibdev); pci_disable_device(pdev); } #define ERDMA_GET_CAP(name, cap) FIELD_GET(ERDMA_CMD_DEV_CAP_##name##_MASK, cap) static int erdma_dev_attrs_init(struct erdma_dev *dev) { int err; u64 req_hdr, cap0, cap1; erdma_cmdq_build_reqhdr(&req_hdr, CMDQ_SUBMOD_RDMA, CMDQ_OPCODE_QUERY_DEVICE); err = erdma_post_cmd_wait(&dev->cmdq, &req_hdr, sizeof(req_hdr), &cap0, &cap1); if (err) return err; dev->attrs.max_cqe = 1 << ERDMA_GET_CAP(MAX_CQE, cap0); dev->attrs.max_mr_size = 1ULL << ERDMA_GET_CAP(MAX_MR_SIZE, cap0); dev->attrs.max_mw = 1 << ERDMA_GET_CAP(MAX_MW, cap1); dev->attrs.max_recv_wr = 1 << ERDMA_GET_CAP(MAX_RECV_WR, cap0); dev->attrs.local_dma_key = ERDMA_GET_CAP(DMA_LOCAL_KEY, cap1); dev->attrs.cc = ERDMA_GET_CAP(DEFAULT_CC, cap1); dev->attrs.max_qp = ERDMA_NQP_PER_QBLOCK * ERDMA_GET_CAP(QBLOCK, cap1); dev->attrs.max_mr = dev->attrs.max_qp << 1; dev->attrs.max_cq = dev->attrs.max_qp << 1; dev->attrs.cap_flags = ERDMA_GET_CAP(FLAGS, cap0); dev->attrs.max_send_wr = ERDMA_MAX_SEND_WR; dev->attrs.max_ord = ERDMA_MAX_ORD; dev->attrs.max_ird = ERDMA_MAX_IRD; dev->attrs.max_send_sge = ERDMA_MAX_SEND_SGE; dev->attrs.max_recv_sge = ERDMA_MAX_RECV_SGE; dev->attrs.max_sge_rd = ERDMA_MAX_SGE_RD; dev->attrs.max_pd = ERDMA_MAX_PD; dev->res_cb[ERDMA_RES_TYPE_PD].max_cap = ERDMA_MAX_PD; dev->res_cb[ERDMA_RES_TYPE_STAG_IDX].max_cap = dev->attrs.max_mr; erdma_cmdq_build_reqhdr(&req_hdr, CMDQ_SUBMOD_COMMON, CMDQ_OPCODE_QUERY_FW_INFO); err = erdma_post_cmd_wait(&dev->cmdq, &req_hdr, sizeof(req_hdr), &cap0, &cap1); if (!err) dev->attrs.fw_version = FIELD_GET(ERDMA_CMD_INFO0_FW_VER_MASK, cap0); return err; } static int erdma_device_config(struct erdma_dev *dev) { struct erdma_cmdq_config_device_req req = {}; if (!(dev->attrs.cap_flags & ERDMA_DEV_CAP_FLAGS_EXTEND_DB)) return 0; erdma_cmdq_build_reqhdr(&req.hdr, CMDQ_SUBMOD_COMMON, CMDQ_OPCODE_CONF_DEVICE); req.cfg = FIELD_PREP(ERDMA_CMD_CONFIG_DEVICE_PGSHIFT_MASK, PAGE_SHIFT) | FIELD_PREP(ERDMA_CMD_CONFIG_DEVICE_PS_EN_MASK, 1); return erdma_post_cmd_wait(&dev->cmdq, &req, sizeof(req), NULL, NULL); } static int erdma_res_cb_init(struct erdma_dev *dev) { int i, j; for (i = 0; i < ERDMA_RES_CNT; i++) { dev->res_cb[i].next_alloc_idx = 1; spin_lock_init(&dev->res_cb[i].lock); dev->res_cb[i].bitmap = bitmap_zalloc(dev->res_cb[i].max_cap, GFP_KERNEL); if (!dev->res_cb[i].bitmap) goto err; } return 0; err: for (j = 0; j < i; j++) bitmap_free(dev->res_cb[j].bitmap); return -ENOMEM; } static void erdma_res_cb_free(struct erdma_dev *dev) { int i; for (i = 0; i < ERDMA_RES_CNT; i++) bitmap_free(dev->res_cb[i].bitmap); } static const struct ib_device_ops erdma_device_ops = { .owner = THIS_MODULE, .driver_id = RDMA_DRIVER_ERDMA, .uverbs_abi_ver = ERDMA_ABI_VERSION, .alloc_hw_port_stats = erdma_alloc_hw_port_stats, .alloc_mr = erdma_ib_alloc_mr, .alloc_pd = erdma_alloc_pd, .alloc_ucontext = erdma_alloc_ucontext, .create_cq = erdma_create_cq, .create_qp = erdma_create_qp, .dealloc_pd = erdma_dealloc_pd, .dealloc_ucontext = erdma_dealloc_ucontext, .dereg_mr = erdma_dereg_mr, .destroy_cq = erdma_destroy_cq, .destroy_qp = erdma_destroy_qp, .disassociate_ucontext = erdma_disassociate_ucontext, .get_dma_mr = erdma_get_dma_mr, .get_hw_stats = erdma_get_hw_stats, .get_port_immutable = erdma_get_port_immutable, .iw_accept = erdma_accept, .iw_add_ref = erdma_qp_get_ref, .iw_connect = erdma_connect, .iw_create_listen = erdma_create_listen, .iw_destroy_listen = erdma_destroy_listen, .iw_get_qp = erdma_get_ibqp, .iw_reject = erdma_reject, .iw_rem_ref = erdma_qp_put_ref, .map_mr_sg = erdma_map_mr_sg, .mmap = erdma_mmap, .mmap_free = erdma_mmap_free, .modify_qp = erdma_modify_qp, .post_recv = erdma_post_recv, .post_send = erdma_post_send, .poll_cq = erdma_poll_cq, .query_device = erdma_query_device, .query_gid = erdma_query_gid, .query_port = erdma_query_port, .query_qp = erdma_query_qp, .req_notify_cq = erdma_req_notify_cq, .reg_user_mr = erdma_reg_user_mr, INIT_RDMA_OBJ_SIZE(ib_cq, erdma_cq, ibcq), INIT_RDMA_OBJ_SIZE(ib_pd, erdma_pd, ibpd), INIT_RDMA_OBJ_SIZE(ib_ucontext, erdma_ucontext, ibucontext), INIT_RDMA_OBJ_SIZE(ib_qp, erdma_qp, ibqp), }; static int erdma_ib_device_add(struct pci_dev *pdev) { struct erdma_dev *dev = pci_get_drvdata(pdev); struct ib_device *ibdev = &dev->ibdev; u64 mac; int ret; ret = erdma_dev_attrs_init(dev); if (ret) return ret; ret = erdma_device_config(dev); if (ret) return ret; ibdev->node_type = RDMA_NODE_RNIC; memcpy(ibdev->node_desc, ERDMA_NODE_DESC, sizeof(ERDMA_NODE_DESC)); /* * Current model (one-to-one device association): * One ERDMA device per net_device or, equivalently, * per physical port. */ ibdev->phys_port_cnt = 1; ibdev->num_comp_vectors = dev->attrs.irq_num - 1; ib_set_device_ops(ibdev, &erdma_device_ops); INIT_LIST_HEAD(&dev->cep_list); spin_lock_init(&dev->lock); xa_init_flags(&dev->qp_xa, XA_FLAGS_ALLOC1); xa_init_flags(&dev->cq_xa, XA_FLAGS_ALLOC1); dev->next_alloc_cqn = 1; dev->next_alloc_qpn = 1; ret = erdma_res_cb_init(dev); if (ret) return ret; atomic_set(&dev->num_ctx, 0); mac = erdma_reg_read32(dev, ERDMA_REGS_NETDEV_MAC_L_REG); mac |= (u64)erdma_reg_read32(dev, ERDMA_REGS_NETDEV_MAC_H_REG) << 32; u64_to_ether_addr(mac, dev->attrs.peer_addr); dev->reflush_wq = alloc_workqueue("erdma-reflush-wq", WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); if (!dev->reflush_wq) { ret = -ENOMEM; goto err_alloc_workqueue; } ret = erdma_device_register(dev); if (ret) goto err_register; return 0; err_register: destroy_workqueue(dev->reflush_wq); err_alloc_workqueue: xa_destroy(&dev->qp_xa); xa_destroy(&dev->cq_xa); erdma_res_cb_free(dev); return ret; } static void erdma_ib_device_remove(struct pci_dev *pdev) { struct erdma_dev *dev = pci_get_drvdata(pdev); unregister_netdevice_notifier(&dev->netdev_nb); ib_unregister_device(&dev->ibdev); destroy_workqueue(dev->reflush_wq); erdma_res_cb_free(dev); xa_destroy(&dev->qp_xa); xa_destroy(&dev->cq_xa); } static int erdma_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int ret; ret = erdma_probe_dev(pdev); if (ret) return ret; ret = erdma_ib_device_add(pdev); if (ret) { erdma_remove_dev(pdev); return ret; } return 0; } static void erdma_remove(struct pci_dev *pdev) { erdma_ib_device_remove(pdev); erdma_remove_dev(pdev); } static struct pci_driver erdma_pci_driver = { .name = DRV_MODULE_NAME, .id_table = erdma_pci_tbl, .probe = erdma_probe, .remove = erdma_remove }; MODULE_DEVICE_TABLE(pci, erdma_pci_tbl); static __init int erdma_init_module(void) { int ret; ret = erdma_cm_init(); if (ret) return ret; ret = pci_register_driver(&erdma_pci_driver); if (ret) erdma_cm_exit(); return ret; } static void __exit erdma_exit_module(void) { pci_unregister_driver(&erdma_pci_driver); erdma_cm_exit(); } module_init(erdma_init_module); module_exit(erdma_exit_module);
// SPDX-License-Identifier: GPL-2.0 #include <linux/bpf.h> #include <bpf/bpf_helpers.h> struct { __uint(type, BPF_MAP_TYPE_DEVMAP); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(struct bpf_devmap_val)); __uint(max_entries, 4); } dm_ports SEC(".maps"); /* valid program on DEVMAP entry via SEC name; * has access to egress and ingress ifindex */ SEC("xdp/devmap") int xdp_dummy_dm(struct xdp_md *ctx) { return XDP_PASS; } SEC("xdp.frags/devmap") int xdp_dummy_dm_frags(struct xdp_md *ctx) { return XDP_PASS; } char _license[] SEC("license") = "GPL";
/* SPDX-License-Identifier: GPL-2.0 OR MIT */ /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef KFD_PM4_HEADERS_H_ #define KFD_PM4_HEADERS_H_ #ifndef PM4_MES_HEADER_DEFINED #define PM4_MES_HEADER_DEFINED union PM4_MES_TYPE_3_HEADER { struct { /* reserved */ uint32_t reserved1:8; /* IT opcode */ uint32_t opcode:8; /* number of DWORDs - 1 in the information body */ uint32_t count:14; /* packet identifier. It should be 3 for type 3 packets */ uint32_t type:2; }; uint32_t u32all; }; #endif /* PM4_MES_HEADER_DEFINED */ /*--------------------MES_MAP_PROCESS-------------------- */ #ifndef PM4_MES_MAP_PROCESS_DEFINED #define PM4_MES_MAP_PROCESS_DEFINED struct pm4_map_process { union { union PM4_MES_TYPE_3_HEADER header; /* header */ uint32_t ordinal1; }; union { struct { uint32_t pasid:16; uint32_t reserved1:8; uint32_t diq_enable:1; uint32_t process_quantum:7; } bitfields2; uint32_t ordinal2; }; union { struct { uint32_t page_table_base:28; uint32_t reserved3:4; } bitfields3; uint32_t ordinal3; }; uint32_t sh_mem_bases; uint32_t sh_mem_ape1_base; uint32_t sh_mem_ape1_limit; uint32_t sh_mem_config; uint32_t gds_addr_lo; uint32_t gds_addr_hi; union { struct { uint32_t num_gws:6; uint32_t reserved4:2; uint32_t num_oac:4; uint32_t reserved5:4; uint32_t gds_size:6; uint32_t num_queues:10; } bitfields10; uint32_t ordinal10; }; }; #endif #ifndef PM4_MES_MAP_PROCESS_DEFINED_KV_SCRATCH #define PM4_MES_MAP_PROCESS_DEFINED_KV_SCRATCH struct pm4_map_process_scratch_kv { union { union PM4_MES_TYPE_3_HEADER header; /* header */ uint32_t ordinal1; }; union { struct { uint32_t pasid:16; uint32_t reserved1:8; uint32_t diq_enable:1; uint32_t process_quantum:7; } bitfields2; uint32_t ordinal2; }; union { struct { uint32_t page_table_base:28; uint32_t reserved2:4; } bitfields3; uint32_t ordinal3; }; uint32_t reserved3; uint32_t sh_mem_bases; uint32_t sh_mem_config; uint32_t sh_mem_ape1_base; uint32_t sh_mem_ape1_limit; uint32_t sh_hidden_private_base_vmid; uint32_t reserved4; uint32_t reserved5; uint32_t gds_addr_lo; uint32_t gds_addr_hi; union { struct { uint32_t num_gws:6; uint32_t reserved6:2; uint32_t num_oac:4; uint32_t reserved7:4; uint32_t gds_size:6; uint32_t num_queues:10; } bitfields14; uint32_t ordinal14; }; uint32_t completion_signal_lo32; uint32_t completion_signal_hi32; }; #endif enum { CACHE_FLUSH_AND_INV_TS_EVENT = 0x00000014 }; #endif /* KFD_PM4_HEADERS_H_ */
// SPDX-License-Identifier: GPL-2.0-only // SPDX-FileCopyrightText: Copyright (c) 2020-2024 NVIDIA CORPORATION & AFFILIATES. // All rights reserved. // // tegra210_i2s.c - Tegra210 I2S driver #include <linux/clk.h> #include <linux/device.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/of_graph.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <sound/core.h> #include <sound/pcm_params.h> #include <sound/simple_card_utils.h> #include <sound/soc.h> #include "tegra210_i2s.h" #include "tegra_cif.h" static const struct reg_default tegra210_i2s_reg_defaults[] = { { TEGRA210_I2S_RX_INT_MASK, 0x00000003 }, { TEGRA210_I2S_RX_CIF_CTRL, 0x00007700 }, { TEGRA210_I2S_TX_INT_MASK, 0x00000003 }, { TEGRA210_I2S_TX_CIF_CTRL, 0x00007700 }, { TEGRA210_I2S_CG, 0x1 }, { TEGRA210_I2S_TIMING, 0x0000001f }, { TEGRA210_I2S_ENABLE, 0x1 }, /* * Below update does not have any effect on Tegra186 and Tegra194. * On Tegra210, I2S4 has "i2s4a" and "i2s4b" pins and below update * is required to select i2s4b for it to be functional for I2S * operation. */ { TEGRA210_I2S_CYA, 0x1 }, }; static void tegra210_i2s_set_slot_ctrl(struct regmap *regmap, unsigned int total_slots, unsigned int tx_slot_mask, unsigned int rx_slot_mask) { regmap_write(regmap, TEGRA210_I2S_SLOT_CTRL, total_slots - 1); regmap_write(regmap, TEGRA210_I2S_TX_SLOT_CTRL, tx_slot_mask); regmap_write(regmap, TEGRA210_I2S_RX_SLOT_CTRL, rx_slot_mask); } static int tegra210_i2s_set_clock_rate(struct device *dev, unsigned int clock_rate) { struct tegra210_i2s *i2s = dev_get_drvdata(dev); unsigned int val; int err; regmap_read(i2s->regmap, TEGRA210_I2S_CTRL, &val); /* No need to set rates if I2S is being operated in slave */ if (!(val & I2S_CTRL_MASTER_EN)) return 0; err = clk_set_rate(i2s->clk_i2s, clock_rate); if (err) { dev_err(dev, "can't set I2S bit clock rate %u, err: %d\n", clock_rate, err); return err; } if (!IS_ERR(i2s->clk_sync_input)) { /* * Other I/O modules in AHUB can use i2s bclk as reference * clock. Below sets sync input clock rate as per bclk, * which can be used as input to other I/O modules. */ err = clk_set_rate(i2s->clk_sync_input, clock_rate); if (err) { dev_err(dev, "can't set I2S sync input rate %u, err = %d\n", clock_rate, err); return err; } } return 0; } static int tegra210_i2s_sw_reset(struct snd_soc_component *compnt, int stream) { struct device *dev = compnt->dev; struct tegra210_i2s *i2s = dev_get_drvdata(dev); unsigned int reset_mask = I2S_SOFT_RESET_MASK; unsigned int reset_en = I2S_SOFT_RESET_EN; unsigned int reset_reg, cif_reg, stream_reg; unsigned int cif_ctrl, stream_ctrl, i2s_ctrl, val; int err; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { reset_reg = TEGRA210_I2S_RX_SOFT_RESET; cif_reg = TEGRA210_I2S_RX_CIF_CTRL; stream_reg = TEGRA210_I2S_RX_CTRL; } else { reset_reg = TEGRA210_I2S_TX_SOFT_RESET; cif_reg = TEGRA210_I2S_TX_CIF_CTRL; stream_reg = TEGRA210_I2S_TX_CTRL; } /* Store CIF and I2S control values */ regmap_read(i2s->regmap, cif_reg, &cif_ctrl); regmap_read(i2s->regmap, stream_reg, &stream_ctrl); regmap_read(i2s->regmap, TEGRA210_I2S_CTRL, &i2s_ctrl); /* Reset to make sure the previous transactions are clean */ regmap_update_bits(i2s->regmap, reset_reg, reset_mask, reset_en); err = regmap_read_poll_timeout(i2s->regmap, reset_reg, val, !(val & reset_mask & reset_en), 10, 10000); if (err) { dev_err(dev, "timeout: failed to reset I2S for %s\n", snd_pcm_direction_name(stream)); return err; } /* Restore CIF and I2S control values */ regmap_write(i2s->regmap, cif_reg, cif_ctrl); regmap_write(i2s->regmap, stream_reg, stream_ctrl); regmap_write(i2s->regmap, TEGRA210_I2S_CTRL, i2s_ctrl); return 0; } static int tegra210_i2s_init(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *compnt = snd_soc_dapm_to_component(w->dapm); struct device *dev = compnt->dev; struct tegra210_i2s *i2s = dev_get_drvdata(dev); unsigned int val, status_reg; int stream; int err; switch (w->reg) { case TEGRA210_I2S_RX_ENABLE: stream = SNDRV_PCM_STREAM_PLAYBACK; status_reg = TEGRA210_I2S_RX_STATUS; break; case TEGRA210_I2S_TX_ENABLE: stream = SNDRV_PCM_STREAM_CAPTURE; status_reg = TEGRA210_I2S_TX_STATUS; break; default: return -EINVAL; } /* Ensure I2S is in disabled state before new session */ err = regmap_read_poll_timeout(i2s->regmap, status_reg, val, !(val & I2S_EN_MASK & I2S_EN), 10, 10000); if (err) { dev_err(dev, "timeout: previous I2S %s is still active\n", snd_pcm_direction_name(stream)); return err; } return tegra210_i2s_sw_reset(compnt, stream); } static int __maybe_unused tegra210_i2s_runtime_suspend(struct device *dev) { struct tegra210_i2s *i2s = dev_get_drvdata(dev); regcache_cache_only(i2s->regmap, true); regcache_mark_dirty(i2s->regmap); clk_disable_unprepare(i2s->clk_i2s); return 0; } static int __maybe_unused tegra210_i2s_runtime_resume(struct device *dev) { struct tegra210_i2s *i2s = dev_get_drvdata(dev); int err; err = clk_prepare_enable(i2s->clk_i2s); if (err) { dev_err(dev, "failed to enable I2S bit clock, err: %d\n", err); return err; } regcache_cache_only(i2s->regmap, false); regcache_sync(i2s->regmap); return 0; } static void tegra210_i2s_set_data_offset(struct tegra210_i2s *i2s, unsigned int data_offset) { /* Capture path */ regmap_update_bits(i2s->regmap, TEGRA210_I2S_TX_CTRL, I2S_CTRL_DATA_OFFSET_MASK, data_offset << I2S_DATA_SHIFT); /* Playback path */ regmap_update_bits(i2s->regmap, TEGRA210_I2S_RX_CTRL, I2S_CTRL_DATA_OFFSET_MASK, data_offset << I2S_DATA_SHIFT); } static int tegra210_i2s_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct tegra210_i2s *i2s = snd_soc_dai_get_drvdata(dai); unsigned int mask, val; mask = I2S_CTRL_MASTER_EN_MASK; switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BC_FC: val = 0; break; case SND_SOC_DAIFMT_BP_FP: val = I2S_CTRL_MASTER_EN; break; default: return -EINVAL; } mask |= I2S_CTRL_FRAME_FMT_MASK | I2S_CTRL_LRCK_POL_MASK; switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: val |= I2S_CTRL_FRAME_FMT_FSYNC_MODE; val |= I2S_CTRL_LRCK_POL_HIGH; tegra210_i2s_set_data_offset(i2s, 1); break; case SND_SOC_DAIFMT_DSP_B: val |= I2S_CTRL_FRAME_FMT_FSYNC_MODE; val |= I2S_CTRL_LRCK_POL_HIGH; tegra210_i2s_set_data_offset(i2s, 0); break; /* I2S mode has data offset of 1 */ case SND_SOC_DAIFMT_I2S: val |= I2S_CTRL_FRAME_FMT_LRCK_MODE; val |= I2S_CTRL_LRCK_POL_LOW; tegra210_i2s_set_data_offset(i2s, 1); break; /* * For RJ mode data offset is dependent on the sample size * and the bclk ratio, and so is set when hw_params is called. */ case SND_SOC_DAIFMT_RIGHT_J: val |= I2S_CTRL_FRAME_FMT_LRCK_MODE; val |= I2S_CTRL_LRCK_POL_HIGH; break; case SND_SOC_DAIFMT_LEFT_J: val |= I2S_CTRL_FRAME_FMT_LRCK_MODE; val |= I2S_CTRL_LRCK_POL_HIGH; tegra210_i2s_set_data_offset(i2s, 0); break; default: return -EINVAL; } mask |= I2S_CTRL_EDGE_CTRL_MASK; switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: val |= I2S_CTRL_EDGE_CTRL_POS_EDGE; break; case SND_SOC_DAIFMT_NB_IF: val |= I2S_CTRL_EDGE_CTRL_POS_EDGE; val ^= I2S_CTRL_LRCK_POL_MASK; break; case SND_SOC_DAIFMT_IB_NF: val |= I2S_CTRL_EDGE_CTRL_NEG_EDGE; break; case SND_SOC_DAIFMT_IB_IF: val |= I2S_CTRL_EDGE_CTRL_NEG_EDGE; val ^= I2S_CTRL_LRCK_POL_MASK; break; default: return -EINVAL; } regmap_update_bits(i2s->regmap, TEGRA210_I2S_CTRL, mask, val); i2s->dai_fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; return 0; } static int tegra210_i2s_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct tegra210_i2s *i2s = snd_soc_dai_get_drvdata(dai); /* Copy the required tx and rx mask */ i2s->tx_mask = (tx_mask > DEFAULT_I2S_SLOT_MASK) ? DEFAULT_I2S_SLOT_MASK : tx_mask; i2s->rx_mask = (rx_mask > DEFAULT_I2S_SLOT_MASK) ? DEFAULT_I2S_SLOT_MASK : rx_mask; return 0; } static int tegra210_i2s_get_loopback(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); ucontrol->value.integer.value[0] = i2s->loopback; return 0; } static int tegra210_i2s_put_loopback(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); int value = ucontrol->value.integer.value[0]; if (value == i2s->loopback) return 0; i2s->loopback = value; regmap_update_bits(i2s->regmap, TEGRA210_I2S_CTRL, I2S_CTRL_LPBK_MASK, i2s->loopback << I2S_CTRL_LPBK_SHIFT); return 1; } static int tegra210_i2s_get_fsync_width(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); ucontrol->value.integer.value[0] = i2s->fsync_width; return 0; } static int tegra210_i2s_put_fsync_width(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); int value = ucontrol->value.integer.value[0]; if (value == i2s->fsync_width) return 0; i2s->fsync_width = value; /* * Frame sync width is used only for FSYNC modes and not * applicable for LRCK modes. Reset value for this field is "0", * which means the width is one bit clock wide. * The width requirement may depend on the codec and in such * cases mixer control is used to update custom values. A value * of "N" here means, width is "N + 1" bit clock wide. */ regmap_update_bits(i2s->regmap, TEGRA210_I2S_CTRL, I2S_CTRL_FSYNC_WIDTH_MASK, i2s->fsync_width << I2S_FSYNC_WIDTH_SHIFT); return 1; } static int tegra210_i2s_cget_stereo_to_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); ucontrol->value.enumerated.item[0] = i2s->stereo_to_mono[I2S_TX_PATH]; return 0; } static int tegra210_i2s_cput_stereo_to_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); unsigned int value = ucontrol->value.enumerated.item[0]; if (value == i2s->stereo_to_mono[I2S_TX_PATH]) return 0; i2s->stereo_to_mono[I2S_TX_PATH] = value; return 1; } static int tegra210_i2s_cget_mono_to_stereo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); ucontrol->value.enumerated.item[0] = i2s->mono_to_stereo[I2S_TX_PATH]; return 0; } static int tegra210_i2s_cput_mono_to_stereo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); unsigned int value = ucontrol->value.enumerated.item[0]; if (value == i2s->mono_to_stereo[I2S_TX_PATH]) return 0; i2s->mono_to_stereo[I2S_TX_PATH] = value; return 1; } static int tegra210_i2s_pget_stereo_to_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); ucontrol->value.enumerated.item[0] = i2s->stereo_to_mono[I2S_RX_PATH]; return 0; } static int tegra210_i2s_pput_stereo_to_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); unsigned int value = ucontrol->value.enumerated.item[0]; if (value == i2s->stereo_to_mono[I2S_RX_PATH]) return 0; i2s->stereo_to_mono[I2S_RX_PATH] = value; return 1; } static int tegra210_i2s_pget_mono_to_stereo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); ucontrol->value.enumerated.item[0] = i2s->mono_to_stereo[I2S_RX_PATH]; return 0; } static int tegra210_i2s_pput_mono_to_stereo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); unsigned int value = ucontrol->value.enumerated.item[0]; if (value == i2s->mono_to_stereo[I2S_RX_PATH]) return 0; i2s->mono_to_stereo[I2S_RX_PATH] = value; return 1; } static int tegra210_i2s_pget_fifo_th(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); ucontrol->value.integer.value[0] = i2s->rx_fifo_th; return 0; } static int tegra210_i2s_pput_fifo_th(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); int value = ucontrol->value.integer.value[0]; if (value == i2s->rx_fifo_th) return 0; i2s->rx_fifo_th = value; return 1; } static int tegra210_i2s_get_bclk_ratio(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); ucontrol->value.integer.value[0] = i2s->bclk_ratio; return 0; } static int tegra210_i2s_put_bclk_ratio(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *compnt = snd_soc_kcontrol_component(kcontrol); struct tegra210_i2s *i2s = snd_soc_component_get_drvdata(compnt); int value = ucontrol->value.integer.value[0]; if (value == i2s->bclk_ratio) return 0; i2s->bclk_ratio = value; return 1; } static int tegra210_i2s_set_dai_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) { struct tegra210_i2s *i2s = snd_soc_dai_get_drvdata(dai); i2s->bclk_ratio = ratio; return 0; } static int tegra210_i2s_set_timing_params(struct device *dev, unsigned int sample_size, unsigned int srate, unsigned int channels) { struct tegra210_i2s *i2s = dev_get_drvdata(dev); unsigned int val, bit_count, bclk_rate, num_bclk = sample_size; int err; if (i2s->bclk_ratio) num_bclk *= i2s->bclk_ratio; if (i2s->dai_fmt == SND_SOC_DAIFMT_RIGHT_J) tegra210_i2s_set_data_offset(i2s, num_bclk - sample_size); /* I2S bit clock rate */ bclk_rate = srate * channels * num_bclk; err = tegra210_i2s_set_clock_rate(dev, bclk_rate); if (err) { dev_err(dev, "can't set I2S bit clock rate %u, err: %d\n", bclk_rate, err); return err; } regmap_read(i2s->regmap, TEGRA210_I2S_CTRL, &val); /* * For LRCK mode, channel bit count depends on number of bit clocks * on the left channel, where as for FSYNC mode bit count depends on * the number of bit clocks in both left and right channels for DSP * mode or the number of bit clocks in one TDM frame. * */ switch (val & I2S_CTRL_FRAME_FMT_MASK) { case I2S_CTRL_FRAME_FMT_LRCK_MODE: bit_count = (bclk_rate / (srate * 2)) - 1; break; case I2S_CTRL_FRAME_FMT_FSYNC_MODE: bit_count = (bclk_rate / srate) - 1; tegra210_i2s_set_slot_ctrl(i2s->regmap, channels, i2s->tx_mask, i2s->rx_mask); break; default: dev_err(dev, "invalid I2S frame format\n"); return -EINVAL; } if (bit_count > I2S_TIMING_CH_BIT_CNT_MASK) { dev_err(dev, "invalid I2S channel bit count %u\n", bit_count); return -EINVAL; } regmap_write(i2s->regmap, TEGRA210_I2S_TIMING, bit_count << I2S_TIMING_CH_BIT_CNT_SHIFT); return 0; } static int tegra210_i2s_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct device *dev = dai->dev; struct tegra210_i2s *i2s = snd_soc_dai_get_drvdata(dai); unsigned int sample_size, channels, srate, val, reg, path; struct tegra_cif_conf cif_conf; snd_pcm_format_t sample_format; memset(&cif_conf, 0, sizeof(struct tegra_cif_conf)); channels = params_channels(params); if (channels < 1) { dev_err(dev, "invalid I2S %d channel configuration\n", channels); return -EINVAL; } cif_conf.audio_ch = channels; cif_conf.client_ch = channels; if (i2s->client_channels) cif_conf.client_ch = i2s->client_channels; /* AHUB CIF Audio bits configs */ switch (params_format(params)) { case SNDRV_PCM_FORMAT_S8: cif_conf.audio_bits = TEGRA_ACIF_BITS_8; break; case SNDRV_PCM_FORMAT_S16_LE: cif_conf.audio_bits = TEGRA_ACIF_BITS_16; break; case SNDRV_PCM_FORMAT_S24_LE: case SNDRV_PCM_FORMAT_S32_LE: cif_conf.audio_bits = TEGRA_ACIF_BITS_32; break; default: dev_err(dev, "unsupported params audio bit format!\n"); return -EOPNOTSUPP; } sample_format = params_format(params); if (i2s->client_sample_format >= 0) sample_format = (snd_pcm_format_t)i2s->client_sample_format; /* * Format of the I2S for sending/receiving the audio * to/from external device. */ switch (sample_format) { case SNDRV_PCM_FORMAT_S8: val = I2S_BITS_8; sample_size = 8; cif_conf.client_bits = TEGRA_ACIF_BITS_8; break; case SNDRV_PCM_FORMAT_S16_LE: val = I2S_BITS_16; sample_size = 16; cif_conf.client_bits = TEGRA_ACIF_BITS_16; break; case SNDRV_PCM_FORMAT_S24_LE: val = I2S_BITS_24; sample_size = 32; cif_conf.client_bits = TEGRA_ACIF_BITS_24; break; case SNDRV_PCM_FORMAT_S32_LE: val = I2S_BITS_32; sample_size = 32; cif_conf.client_bits = TEGRA_ACIF_BITS_32; break; default: dev_err(dev, "unsupported client bit format!\n"); return -EOPNOTSUPP; } /* Program sample size */ regmap_update_bits(i2s->regmap, TEGRA210_I2S_CTRL, I2S_CTRL_BIT_SIZE_MASK, val); srate = params_rate(params); /* For playback I2S RX-CIF and for capture TX-CIF is used */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) path = I2S_RX_PATH; else path = I2S_TX_PATH; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { unsigned int max_th; /* FIFO threshold in terms of frames */ max_th = (I2S_RX_FIFO_DEPTH / cif_conf.audio_ch) - 1; if (i2s->rx_fifo_th > max_th) i2s->rx_fifo_th = max_th; cif_conf.threshold = i2s->rx_fifo_th; reg = TEGRA210_I2S_RX_CIF_CTRL; } else { reg = TEGRA210_I2S_TX_CIF_CTRL; } cif_conf.mono_conv = i2s->mono_to_stereo[path]; cif_conf.stereo_conv = i2s->stereo_to_mono[path]; tegra_set_cif(i2s->regmap, reg, &cif_conf); return tegra210_i2s_set_timing_params(dev, sample_size, srate, cif_conf.client_ch); } static const struct snd_soc_dai_ops tegra210_i2s_dai_ops = { .set_fmt = tegra210_i2s_set_fmt, .hw_params = tegra210_i2s_hw_params, .set_bclk_ratio = tegra210_i2s_set_dai_bclk_ratio, .set_tdm_slot = tegra210_i2s_set_tdm_slot, }; static struct snd_soc_dai_driver tegra210_i2s_dais[] = { { .name = "I2S-CIF", .playback = { .stream_name = "CIF-Playback", .channels_min = 1, .channels_max = 16, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .capture = { .stream_name = "CIF-Capture", .channels_min = 1, .channels_max = 16, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, }, { .name = "I2S-DAP", .playback = { .stream_name = "DAP-Playback", .channels_min = 1, .channels_max = 16, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .capture = { .stream_name = "DAP-Capture", .channels_min = 1, .channels_max = 16, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .ops = &tegra210_i2s_dai_ops, .symmetric_rate = 1, }, }; static const char * const tegra210_i2s_stereo_conv_text[] = { "CH0", "CH1", "AVG", }; static const char * const tegra210_i2s_mono_conv_text[] = { "Zero", "Copy", }; static const struct soc_enum tegra210_i2s_mono_conv_enum = SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(tegra210_i2s_mono_conv_text), tegra210_i2s_mono_conv_text); static const struct soc_enum tegra210_i2s_stereo_conv_enum = SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(tegra210_i2s_stereo_conv_text), tegra210_i2s_stereo_conv_text); static const struct snd_kcontrol_new tegra210_i2s_controls[] = { SOC_SINGLE_EXT("Loopback", 0, 0, 1, 0, tegra210_i2s_get_loopback, tegra210_i2s_put_loopback), SOC_SINGLE_EXT("FSYNC Width", 0, 0, 255, 0, tegra210_i2s_get_fsync_width, tegra210_i2s_put_fsync_width), SOC_ENUM_EXT("Capture Stereo To Mono", tegra210_i2s_stereo_conv_enum, tegra210_i2s_cget_stereo_to_mono, tegra210_i2s_cput_stereo_to_mono), SOC_ENUM_EXT("Capture Mono To Stereo", tegra210_i2s_mono_conv_enum, tegra210_i2s_cget_mono_to_stereo, tegra210_i2s_cput_mono_to_stereo), SOC_ENUM_EXT("Playback Stereo To Mono", tegra210_i2s_stereo_conv_enum, tegra210_i2s_pget_mono_to_stereo, tegra210_i2s_pput_mono_to_stereo), SOC_ENUM_EXT("Playback Mono To Stereo", tegra210_i2s_mono_conv_enum, tegra210_i2s_pget_stereo_to_mono, tegra210_i2s_pput_stereo_to_mono), SOC_SINGLE_EXT("Playback FIFO Threshold", 0, 0, I2S_RX_FIFO_DEPTH - 1, 0, tegra210_i2s_pget_fifo_th, tegra210_i2s_pput_fifo_th), SOC_SINGLE_EXT("BCLK Ratio", 0, 0, INT_MAX, 0, tegra210_i2s_get_bclk_ratio, tegra210_i2s_put_bclk_ratio), }; static const struct snd_soc_dapm_widget tegra210_i2s_widgets[] = { SND_SOC_DAPM_AIF_IN_E("RX", NULL, 0, TEGRA210_I2S_RX_ENABLE, 0, 0, tegra210_i2s_init, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_AIF_OUT_E("TX", NULL, 0, TEGRA210_I2S_TX_ENABLE, 0, 0, tegra210_i2s_init, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIC("MIC", NULL), SND_SOC_DAPM_SPK("SPK", NULL), }; static const struct snd_soc_dapm_route tegra210_i2s_routes[] = { /* Playback route from XBAR */ { "XBAR-Playback", NULL, "XBAR-TX" }, { "CIF-Playback", NULL, "XBAR-Playback" }, { "RX", NULL, "CIF-Playback" }, { "DAP-Playback", NULL, "RX" }, { "SPK", NULL, "DAP-Playback" }, /* Capture route to XBAR */ { "XBAR-RX", NULL, "XBAR-Capture" }, { "XBAR-Capture", NULL, "CIF-Capture" }, { "CIF-Capture", NULL, "TX" }, { "TX", NULL, "DAP-Capture" }, { "DAP-Capture", NULL, "MIC" }, }; static const struct snd_soc_component_driver tegra210_i2s_cmpnt = { .dapm_widgets = tegra210_i2s_widgets, .num_dapm_widgets = ARRAY_SIZE(tegra210_i2s_widgets), .dapm_routes = tegra210_i2s_routes, .num_dapm_routes = ARRAY_SIZE(tegra210_i2s_routes), .controls = tegra210_i2s_controls, .num_controls = ARRAY_SIZE(tegra210_i2s_controls), }; static bool tegra210_i2s_wr_reg(struct device *dev, unsigned int reg) { switch (reg) { case TEGRA210_I2S_RX_ENABLE ... TEGRA210_I2S_RX_SOFT_RESET: case TEGRA210_I2S_RX_INT_MASK ... TEGRA210_I2S_RX_CLK_TRIM: case TEGRA210_I2S_TX_ENABLE ... TEGRA210_I2S_TX_SOFT_RESET: case TEGRA210_I2S_TX_INT_MASK ... TEGRA210_I2S_TX_CLK_TRIM: case TEGRA210_I2S_ENABLE ... TEGRA210_I2S_CG: case TEGRA210_I2S_CTRL ... TEGRA210_I2S_CYA: return true; default: return false; } } static bool tegra210_i2s_rd_reg(struct device *dev, unsigned int reg) { if (tegra210_i2s_wr_reg(dev, reg)) return true; switch (reg) { case TEGRA210_I2S_RX_STATUS: case TEGRA210_I2S_RX_INT_STATUS: case TEGRA210_I2S_RX_CIF_FIFO_STATUS: case TEGRA210_I2S_TX_STATUS: case TEGRA210_I2S_TX_INT_STATUS: case TEGRA210_I2S_TX_CIF_FIFO_STATUS: case TEGRA210_I2S_STATUS: case TEGRA210_I2S_INT_STATUS: return true; default: return false; } } static bool tegra210_i2s_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case TEGRA210_I2S_RX_STATUS: case TEGRA210_I2S_RX_INT_STATUS: case TEGRA210_I2S_RX_CIF_FIFO_STATUS: case TEGRA210_I2S_TX_STATUS: case TEGRA210_I2S_TX_INT_STATUS: case TEGRA210_I2S_TX_CIF_FIFO_STATUS: case TEGRA210_I2S_STATUS: case TEGRA210_I2S_INT_STATUS: case TEGRA210_I2S_RX_SOFT_RESET: case TEGRA210_I2S_TX_SOFT_RESET: return true; default: return false; } } static const struct regmap_config tegra210_i2s_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = TEGRA210_I2S_CYA, .writeable_reg = tegra210_i2s_wr_reg, .readable_reg = tegra210_i2s_rd_reg, .volatile_reg = tegra210_i2s_volatile_reg, .reg_defaults = tegra210_i2s_reg_defaults, .num_reg_defaults = ARRAY_SIZE(tegra210_i2s_reg_defaults), .cache_type = REGCACHE_FLAT, }; /* * The AHUB HW modules are interconnected with CIF which are capable of * supporting Channel and Sample bit format conversion. This needs different * CIF Audio and client configuration. As one of the config comes from * params_channels() or params_format(), the extra configuration is passed from * CIF Port of DT I2S node which can help to perform this conversion. * * 4ch audio = 4ch client = 2ch 2ch * -----> ADMAIF -----------> CIF -------------> I2S ----> */ static void tegra210_parse_client_convert(struct device *dev) { struct tegra210_i2s *i2s = dev_get_drvdata(dev); struct device_node *ports, *ep; struct simple_util_data data = {}; int cif_port = 0; ports = of_get_child_by_name(dev->of_node, "ports"); if (ports) { ep = of_graph_get_endpoint_by_regs(ports, cif_port, -1); if (ep) { simple_util_parse_convert(ep, NULL, &data); of_node_put(ep); } of_node_put(ports); } if (data.convert_channels) i2s->client_channels = data.convert_channels; if (data.convert_sample_format) i2s->client_sample_format = simple_util_get_sample_fmt(&data); } static int tegra210_i2s_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra210_i2s *i2s; void __iomem *regs; int err; i2s = devm_kzalloc(dev, sizeof(*i2s), GFP_KERNEL); if (!i2s) return -ENOMEM; i2s->rx_fifo_th = DEFAULT_I2S_RX_FIFO_THRESHOLD; i2s->tx_mask = DEFAULT_I2S_SLOT_MASK; i2s->rx_mask = DEFAULT_I2S_SLOT_MASK; i2s->loopback = false; i2s->client_sample_format = -EINVAL; dev_set_drvdata(dev, i2s); i2s->clk_i2s = devm_clk_get(dev, "i2s"); if (IS_ERR(i2s->clk_i2s)) { dev_err(dev, "can't retrieve I2S bit clock\n"); return PTR_ERR(i2s->clk_i2s); } /* * Not an error, as this clock is needed only when some other I/O * requires input clock from current I2S instance, which is * configurable from DT. */ i2s->clk_sync_input = devm_clk_get(dev, "sync_input"); if (IS_ERR(i2s->clk_sync_input)) dev_dbg(dev, "can't retrieve I2S sync input clock\n"); regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) return PTR_ERR(regs); i2s->regmap = devm_regmap_init_mmio(dev, regs, &tegra210_i2s_regmap_config); if (IS_ERR(i2s->regmap)) { dev_err(dev, "regmap init failed\n"); return PTR_ERR(i2s->regmap); } tegra210_parse_client_convert(dev); regcache_cache_only(i2s->regmap, true); err = devm_snd_soc_register_component(dev, &tegra210_i2s_cmpnt, tegra210_i2s_dais, ARRAY_SIZE(tegra210_i2s_dais)); if (err) { dev_err(dev, "can't register I2S component, err: %d\n", err); return err; } pm_runtime_enable(dev); return 0; } static void tegra210_i2s_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } static const struct dev_pm_ops tegra210_i2s_pm_ops = { SET_RUNTIME_PM_OPS(tegra210_i2s_runtime_suspend, tegra210_i2s_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static const struct of_device_id tegra210_i2s_of_match[] = { { .compatible = "nvidia,tegra210-i2s" }, {}, }; MODULE_DEVICE_TABLE(of, tegra210_i2s_of_match); static struct platform_driver tegra210_i2s_driver = { .driver = { .name = "tegra210-i2s", .of_match_table = tegra210_i2s_of_match, .pm = &tegra210_i2s_pm_ops, }, .probe = tegra210_i2s_probe, .remove = tegra210_i2s_remove, }; module_platform_driver(tegra210_i2s_driver) MODULE_AUTHOR("Songhee Baek <[email protected]>"); MODULE_DESCRIPTION("Tegra210 ASoC I2S driver"); MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Russell King */ #include <linux/aperture.h> #include <linux/clk.h> #include <linux/component.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/platform_device.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_client_setup.h> #include <drm/drm_drv.h> #include <drm/drm_ioctl.h> #include <drm/drm_managed.h> #include <drm/drm_prime.h> #include <drm/drm_probe_helper.h> #include <drm/drm_of.h> #include <drm/drm_vblank.h> #include "armada_crtc.h" #include "armada_drm.h" #include "armada_gem.h" #include "armada_fb.h" #include "armada_hw.h" #include <drm/armada_drm.h> #include "armada_ioctlP.h" static const struct drm_ioctl_desc armada_ioctls[] = { DRM_IOCTL_DEF_DRV(ARMADA_GEM_CREATE, armada_gem_create_ioctl,0), DRM_IOCTL_DEF_DRV(ARMADA_GEM_MMAP, armada_gem_mmap_ioctl, 0), DRM_IOCTL_DEF_DRV(ARMADA_GEM_PWRITE, armada_gem_pwrite_ioctl, 0), }; DEFINE_DRM_GEM_FOPS(armada_drm_fops); static const struct drm_driver armada_drm_driver = { .gem_prime_import = armada_gem_prime_import, .dumb_create = armada_gem_dumb_create, ARMADA_FBDEV_DRIVER_OPS, .major = 1, .minor = 0, .name = "armada-drm", .desc = "Armada SoC DRM", .date = "20120730", .driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC, .ioctls = armada_ioctls, .num_ioctls = ARRAY_SIZE(armada_ioctls), .fops = &armada_drm_fops, }; static const struct drm_mode_config_funcs armada_drm_mode_config_funcs = { .fb_create = armada_fb_create, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static int armada_drm_bind(struct device *dev) { struct armada_private *priv; struct resource *mem = NULL; int ret, n; for (n = 0; ; n++) { struct resource *r = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, n); if (!r) break; /* Resources above 64K are graphics memory */ if (resource_size(r) > SZ_64K) mem = r; else return -EINVAL; } if (!mem) return -ENXIO; if (!devm_request_mem_region(dev, mem->start, resource_size(mem), "armada-drm")) return -EBUSY; priv = devm_drm_dev_alloc(dev, &armada_drm_driver, struct armada_private, drm); if (IS_ERR(priv)) { dev_err(dev, "[" DRM_NAME ":%s] devm_drm_dev_alloc failed: %li\n", __func__, PTR_ERR(priv)); return PTR_ERR(priv); } /* Remove early framebuffers */ ret = aperture_remove_all_conflicting_devices(armada_drm_driver.name); if (ret) { dev_err(dev, "[" DRM_NAME ":%s] can't kick out simple-fb: %d\n", __func__, ret); return ret; } dev_set_drvdata(dev, &priv->drm); /* Mode setting support */ drm_mode_config_init(&priv->drm); priv->drm.mode_config.min_width = 320; priv->drm.mode_config.min_height = 200; /* * With vscale enabled, the maximum width is 1920 due to the * 1920 by 3 lines RAM */ priv->drm.mode_config.max_width = 1920; priv->drm.mode_config.max_height = 2048; priv->drm.mode_config.preferred_depth = 24; priv->drm.mode_config.funcs = &armada_drm_mode_config_funcs; drm_mm_init(&priv->linear, mem->start, resource_size(mem)); mutex_init(&priv->linear_lock); ret = component_bind_all(dev, &priv->drm); if (ret) goto err_kms; ret = drm_vblank_init(&priv->drm, priv->drm.mode_config.num_crtc); if (ret) goto err_comp; drm_mode_config_reset(&priv->drm); drm_kms_helper_poll_init(&priv->drm); ret = drm_dev_register(&priv->drm, 0); if (ret) goto err_poll; #ifdef CONFIG_DEBUG_FS armada_drm_debugfs_init(priv->drm.primary); #endif drm_client_setup(&priv->drm, NULL); return 0; err_poll: drm_kms_helper_poll_fini(&priv->drm); err_comp: component_unbind_all(dev, &priv->drm); err_kms: drm_mode_config_cleanup(&priv->drm); drm_mm_takedown(&priv->linear); dev_set_drvdata(dev, NULL); return ret; } static void armada_drm_unbind(struct device *dev) { struct drm_device *drm = dev_get_drvdata(dev); struct armada_private *priv = drm_to_armada_dev(drm); drm_kms_helper_poll_fini(&priv->drm); drm_dev_unregister(&priv->drm); drm_atomic_helper_shutdown(&priv->drm); component_unbind_all(dev, &priv->drm); drm_mode_config_cleanup(&priv->drm); drm_mm_takedown(&priv->linear); dev_set_drvdata(dev, NULL); } static void armada_add_endpoints(struct device *dev, struct component_match **match, struct device_node *dev_node) { struct device_node *ep, *remote; for_each_endpoint_of_node(dev_node, ep) { remote = of_graph_get_remote_port_parent(ep); if (remote && of_device_is_available(remote)) drm_of_component_match_add(dev, match, component_compare_of, remote); of_node_put(remote); } } static const struct component_master_ops armada_master_ops = { .bind = armada_drm_bind, .unbind = armada_drm_unbind, }; static int armada_drm_probe(struct platform_device *pdev) { struct component_match *match = NULL; struct device *dev = &pdev->dev; int ret; ret = drm_of_component_probe(dev, component_compare_dev_name, &armada_master_ops); if (ret != -EINVAL) return ret; if (dev->platform_data) { char **devices = dev->platform_data; struct device *d; int i; for (i = 0; devices[i]; i++) component_match_add(dev, &match, component_compare_dev_name, devices[i]); if (i == 0) { dev_err(dev, "missing 'ports' property\n"); return -ENODEV; } for (i = 0; devices[i]; i++) { d = bus_find_device_by_name(&platform_bus_type, NULL, devices[i]); if (d && d->of_node) armada_add_endpoints(dev, &match, d->of_node); put_device(d); } } return component_master_add_with_match(&pdev->dev, &armada_master_ops, match); } static void armada_drm_remove(struct platform_device *pdev) { component_master_del(&pdev->dev, &armada_master_ops); } static void armada_drm_shutdown(struct platform_device *pdev) { drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); } static const struct platform_device_id armada_drm_platform_ids[] = { { .name = "armada-drm", }, { .name = "armada-510-drm", }, { }, }; MODULE_DEVICE_TABLE(platform, armada_drm_platform_ids); static struct platform_driver armada_drm_platform_driver = { .probe = armada_drm_probe, .remove = armada_drm_remove, .shutdown = armada_drm_shutdown, .driver = { .name = "armada-drm", }, .id_table = armada_drm_platform_ids, }; static int __init armada_drm_init(void) { int ret; if (drm_firmware_drivers_only()) return -ENODEV; ret = platform_driver_register(&armada_lcd_platform_driver); if (ret) return ret; ret = platform_driver_register(&armada_drm_platform_driver); if (ret) platform_driver_unregister(&armada_lcd_platform_driver); return ret; } module_init(armada_drm_init); static void __exit armada_drm_exit(void) { platform_driver_unregister(&armada_drm_platform_driver); platform_driver_unregister(&armada_lcd_platform_driver); } module_exit(armada_drm_exit); MODULE_AUTHOR("Russell King <[email protected]>"); MODULE_DESCRIPTION("Armada DRM Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:armada-drm");
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for SoundBlaster 1.0/2.0/Pro soundcards and compatible * Copyright (c) by Jaroslav Kysela <[email protected]> */ #include <linux/init.h> #include <linux/err.h> #include <linux/isa.h> #include <linux/ioport.h> #include <linux/module.h> #include <sound/core.h> #include <sound/sb.h> #include <sound/opl3.h> #include <sound/initval.h> MODULE_AUTHOR("Jaroslav Kysela <[email protected]>"); MODULE_DESCRIPTION("Sound Blaster 1.0/2.0/Pro"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE; /* Enable this card */ static long port[SNDRV_CARDS] = SNDRV_DEFAULT_PORT; /* 0x220,0x240,0x260 */ static int irq[SNDRV_CARDS] = SNDRV_DEFAULT_IRQ; /* 5,7,9,10 */ static int dma8[SNDRV_CARDS] = SNDRV_DEFAULT_DMA; /* 1,3 */ module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Sound Blaster soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Sound Blaster soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Sound Blaster soundcard."); module_param_hw_array(port, long, ioport, NULL, 0444); MODULE_PARM_DESC(port, "Port # for SB8 driver."); module_param_hw_array(irq, int, irq, NULL, 0444); MODULE_PARM_DESC(irq, "IRQ # for SB8 driver."); module_param_hw_array(dma8, int, dma, NULL, 0444); MODULE_PARM_DESC(dma8, "8-bit DMA # for SB8 driver."); struct snd_sb8 { struct resource *fm_res; /* used to block FM i/o region for legacy cards */ struct snd_sb *chip; }; static irqreturn_t snd_sb8_interrupt(int irq, void *dev_id) { struct snd_sb *chip = dev_id; if (chip->open & SB_OPEN_PCM) { return snd_sb8dsp_interrupt(chip); } else { return snd_sb8dsp_midi_interrupt(chip); } } static int snd_sb8_match(struct device *pdev, unsigned int dev) { if (!enable[dev]) return 0; if (irq[dev] == SNDRV_AUTO_IRQ) { dev_err(pdev, "please specify irq\n"); return 0; } if (dma8[dev] == SNDRV_AUTO_DMA) { dev_err(pdev, "please specify dma8\n"); return 0; } return 1; } static int snd_sb8_probe(struct device *pdev, unsigned int dev) { struct snd_sb *chip; struct snd_card *card; struct snd_sb8 *acard; struct snd_opl3 *opl3; int err; err = snd_devm_card_new(pdev, index[dev], id[dev], THIS_MODULE, sizeof(struct snd_sb8), &card); if (err < 0) return err; acard = card->private_data; /* * Block the 0x388 port to avoid PnP conflicts. * No need to check this value after request_region, * as we never do anything with it. */ acard->fm_res = devm_request_region(card->dev, 0x388, 4, "SoundBlaster FM"); if (port[dev] != SNDRV_AUTO_PORT) { err = snd_sbdsp_create(card, port[dev], irq[dev], snd_sb8_interrupt, dma8[dev], -1, SB_HW_AUTO, &chip); if (err < 0) return err; } else { /* auto-probe legacy ports */ static const unsigned long possible_ports[] = { 0x220, 0x240, 0x260, }; int i; for (i = 0; i < ARRAY_SIZE(possible_ports); i++) { err = snd_sbdsp_create(card, possible_ports[i], irq[dev], snd_sb8_interrupt, dma8[dev], -1, SB_HW_AUTO, &chip); if (err >= 0) { port[dev] = possible_ports[i]; break; } } if (i >= ARRAY_SIZE(possible_ports)) return -EINVAL; } acard->chip = chip; if (chip->hardware >= SB_HW_16) { if (chip->hardware == SB_HW_ALS100) dev_warn(pdev, "ALS100 chip detected at 0x%lx, try snd-als100 module\n", port[dev]); else dev_warn(pdev, "SB 16 chip detected at 0x%lx, try snd-sb16 module\n", port[dev]); return -ENODEV; } err = snd_sb8dsp_pcm(chip, 0); if (err < 0) return err; err = snd_sbmixer_new(chip); if (err < 0) return err; if (chip->hardware == SB_HW_10 || chip->hardware == SB_HW_20) { err = snd_opl3_create(card, chip->port + 8, 0, OPL3_HW_AUTO, 1, &opl3); if (err < 0) dev_warn(pdev, "sb8: no OPL device at 0x%lx\n", chip->port + 8); } else { err = snd_opl3_create(card, chip->port, chip->port + 2, OPL3_HW_AUTO, 1, &opl3); if (err < 0) { dev_warn(pdev, "sb8: no OPL device at 0x%lx-0x%lx\n", chip->port, chip->port + 2); } } if (err >= 0) { err = snd_opl3_hwdep_new(opl3, 0, 1, NULL); if (err < 0) return err; } err = snd_sb8dsp_midi(chip, 0); if (err < 0) return err; strcpy(card->driver, chip->hardware == SB_HW_PRO ? "SB Pro" : "SB8"); strcpy(card->shortname, chip->name); sprintf(card->longname, "%s at 0x%lx, irq %d, dma %d", chip->name, chip->port, irq[dev], dma8[dev]); err = snd_card_register(card); if (err < 0) return err; dev_set_drvdata(pdev, card); return 0; } #ifdef CONFIG_PM static int snd_sb8_suspend(struct device *dev, unsigned int n, pm_message_t state) { struct snd_card *card = dev_get_drvdata(dev); struct snd_sb8 *acard = card->private_data; struct snd_sb *chip = acard->chip; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_sbmixer_suspend(chip); return 0; } static int snd_sb8_resume(struct device *dev, unsigned int n) { struct snd_card *card = dev_get_drvdata(dev); struct snd_sb8 *acard = card->private_data; struct snd_sb *chip = acard->chip; snd_sbdsp_reset(chip); snd_sbmixer_resume(chip); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } #endif #define DEV_NAME "sb8" static struct isa_driver snd_sb8_driver = { .match = snd_sb8_match, .probe = snd_sb8_probe, #ifdef CONFIG_PM .suspend = snd_sb8_suspend, .resume = snd_sb8_resume, #endif .driver = { .name = DEV_NAME }, }; module_isa_driver(snd_sb8_driver, SNDRV_CARDS);
/* SPDX-License-Identifier: GPL-2.0-only */ /* Copyright (c) 2013-2017, The Linux Foundation. All rights reserved. * * RMNET Data Virtual Network Device APIs */ #ifndef _RMNET_VND_H_ #define _RMNET_VND_H_ int rmnet_vnd_do_flow_control(struct net_device *dev, int enable); int rmnet_vnd_newlink(u8 id, struct net_device *rmnet_dev, struct rmnet_port *port, struct net_device *real_dev, struct rmnet_endpoint *ep, struct netlink_ext_ack *extack); int rmnet_vnd_dellink(u8 id, struct rmnet_port *port, struct rmnet_endpoint *ep); void rmnet_vnd_rx_fixup(struct sk_buff *skb, struct net_device *dev); void rmnet_vnd_tx_fixup_len(unsigned int len, struct net_device *dev); void rmnet_vnd_tx_fixup(struct sk_buff *skb, struct net_device *dev); void rmnet_vnd_setup(struct net_device *dev); int rmnet_vnd_validate_real_dev_mtu(struct net_device *real_dev); int rmnet_vnd_update_dev_mtu(struct rmnet_port *port, struct net_device *real_dev); #endif /* _RMNET_VND_H_ */
// SPDX-License-Identifier: GPL-2.0-or-later /* * ip_vs_est.c: simple rate estimator for IPVS * * Authors: Wensong Zhang <[email protected]> * * Changes: Hans Schillstrom <[email protected]> * Network name space (netns) aware. * Global data moved to netns i.e struct netns_ipvs * Affected data: est_list and est_lock. * estimation_timer() runs with timer per netns. * get_stats()) do the per cpu summing. */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/sysctl.h> #include <linux/list.h> #include <linux/rcupdate_wait.h> #include <net/ip_vs.h> /* This code is to estimate rate in a shorter interval (such as 8 seconds) for virtual services and real servers. For measure rate in a long interval, it is easy to implement a user level daemon which periodically reads those statistical counters and measure rate. We measure rate during the last 8 seconds every 2 seconds: avgrate = avgrate*(1-W) + rate*W where W = 2^(-2) NOTES. * Average bps is scaled by 2^5, while average pps and cps are scaled by 2^10. * Netlink users can see 64-bit values but sockopt users are restricted to 32-bit values for conns, packets, bps, cps and pps. * A lot of code is taken from net/core/gen_estimator.c KEY POINTS: - cpustats counters are updated per-cpu in SoftIRQ context with BH disabled - kthreads read the cpustats to update the estimators (svcs, dests, total) - the states of estimators can be read (get stats) or modified (zero stats) from processes KTHREADS: - estimators are added initially to est_temp_list and later kthread 0 distributes them to one or many kthreads for estimation - kthread contexts are created and attached to array - the kthread tasks are started when first service is added, before that the total stats are not estimated - when configuration (cpulist/nice) is changed, the tasks are restarted by work (est_reload_work) - kthread tasks are stopped while the cpulist is empty - the kthread context holds lists with estimators (chains) which are processed every 2 seconds - as estimators can be added dynamically and in bursts, we try to spread them to multiple chains which are estimated at different time - on start, kthread 0 enters calculation phase to determine the chain limits and the limit of estimators per kthread - est_add_ktid: ktid where to add new ests, can point to empty slot where we should add kt data */ static struct lock_class_key __ipvs_est_key; static void ip_vs_est_calc_phase(struct netns_ipvs *ipvs); static void ip_vs_est_drain_temp_list(struct netns_ipvs *ipvs); static void ip_vs_chain_estimation(struct hlist_head *chain) { struct ip_vs_estimator *e; struct ip_vs_cpu_stats *c; struct ip_vs_stats *s; u64 rate; hlist_for_each_entry_rcu(e, chain, list) { u64 conns, inpkts, outpkts, inbytes, outbytes; u64 kconns = 0, kinpkts = 0, koutpkts = 0; u64 kinbytes = 0, koutbytes = 0; unsigned int start; int i; if (kthread_should_stop()) break; s = container_of(e, struct ip_vs_stats, est); for_each_possible_cpu(i) { c = per_cpu_ptr(s->cpustats, i); do { start = u64_stats_fetch_begin(&c->syncp); conns = u64_stats_read(&c->cnt.conns); inpkts = u64_stats_read(&c->cnt.inpkts); outpkts = u64_stats_read(&c->cnt.outpkts); inbytes = u64_stats_read(&c->cnt.inbytes); outbytes = u64_stats_read(&c->cnt.outbytes); } while (u64_stats_fetch_retry(&c->syncp, start)); kconns += conns; kinpkts += inpkts; koutpkts += outpkts; kinbytes += inbytes; koutbytes += outbytes; } spin_lock(&s->lock); s->kstats.conns = kconns; s->kstats.inpkts = kinpkts; s->kstats.outpkts = koutpkts; s->kstats.inbytes = kinbytes; s->kstats.outbytes = koutbytes; /* scaled by 2^10, but divided 2 seconds */ rate = (s->kstats.conns - e->last_conns) << 9; e->last_conns = s->kstats.conns; e->cps += ((s64)rate - (s64)e->cps) >> 2; rate = (s->kstats.inpkts - e->last_inpkts) << 9; e->last_inpkts = s->kstats.inpkts; e->inpps += ((s64)rate - (s64)e->inpps) >> 2; rate = (s->kstats.outpkts - e->last_outpkts) << 9; e->last_outpkts = s->kstats.outpkts; e->outpps += ((s64)rate - (s64)e->outpps) >> 2; /* scaled by 2^5, but divided 2 seconds */ rate = (s->kstats.inbytes - e->last_inbytes) << 4; e->last_inbytes = s->kstats.inbytes; e->inbps += ((s64)rate - (s64)e->inbps) >> 2; rate = (s->kstats.outbytes - e->last_outbytes) << 4; e->last_outbytes = s->kstats.outbytes; e->outbps += ((s64)rate - (s64)e->outbps) >> 2; spin_unlock(&s->lock); } } static void ip_vs_tick_estimation(struct ip_vs_est_kt_data *kd, int row) { struct ip_vs_est_tick_data *td; int cid; rcu_read_lock(); td = rcu_dereference(kd->ticks[row]); if (!td) goto out; for_each_set_bit(cid, td->present, IPVS_EST_TICK_CHAINS) { if (kthread_should_stop()) break; ip_vs_chain_estimation(&td->chains[cid]); cond_resched_rcu(); td = rcu_dereference(kd->ticks[row]); if (!td) break; } out: rcu_read_unlock(); } static int ip_vs_estimation_kthread(void *data) { struct ip_vs_est_kt_data *kd = data; struct netns_ipvs *ipvs = kd->ipvs; int row = kd->est_row; unsigned long now; int id = kd->id; long gap; if (id > 0) { if (!ipvs->est_chain_max) return 0; } else { if (!ipvs->est_chain_max) { ipvs->est_calc_phase = 1; /* commit est_calc_phase before reading est_genid */ smp_mb(); } /* kthread 0 will handle the calc phase */ if (ipvs->est_calc_phase) ip_vs_est_calc_phase(ipvs); } while (1) { if (!id && !hlist_empty(&ipvs->est_temp_list)) ip_vs_est_drain_temp_list(ipvs); set_current_state(TASK_IDLE); if (kthread_should_stop()) break; /* before estimation, check if we should sleep */ now = jiffies; gap = kd->est_timer - now; if (gap > 0) { if (gap > IPVS_EST_TICK) { kd->est_timer = now - IPVS_EST_TICK; gap = IPVS_EST_TICK; } schedule_timeout(gap); } else { __set_current_state(TASK_RUNNING); if (gap < -8 * IPVS_EST_TICK) kd->est_timer = now; } if (kd->tick_len[row]) ip_vs_tick_estimation(kd, row); row++; if (row >= IPVS_EST_NTICKS) row = 0; WRITE_ONCE(kd->est_row, row); kd->est_timer += IPVS_EST_TICK; } __set_current_state(TASK_RUNNING); return 0; } /* Schedule stop/start for kthread tasks */ void ip_vs_est_reload_start(struct netns_ipvs *ipvs) { /* Ignore reloads before first service is added */ if (!ipvs->enable) return; ip_vs_est_stopped_recalc(ipvs); /* Bump the kthread configuration genid */ atomic_inc(&ipvs->est_genid); queue_delayed_work(system_long_wq, &ipvs->est_reload_work, 0); } /* Start kthread task with current configuration */ int ip_vs_est_kthread_start(struct netns_ipvs *ipvs, struct ip_vs_est_kt_data *kd) { unsigned long now; int ret = 0; long gap; lockdep_assert_held(&ipvs->est_mutex); if (kd->task) goto out; now = jiffies; gap = kd->est_timer - now; /* Sync est_timer if task is starting later */ if (abs(gap) > 4 * IPVS_EST_TICK) kd->est_timer = now; kd->task = kthread_create(ip_vs_estimation_kthread, kd, "ipvs-e:%d:%d", ipvs->gen, kd->id); if (IS_ERR(kd->task)) { ret = PTR_ERR(kd->task); kd->task = NULL; goto out; } set_user_nice(kd->task, sysctl_est_nice(ipvs)); set_cpus_allowed_ptr(kd->task, sysctl_est_cpulist(ipvs)); pr_info("starting estimator thread %d...\n", kd->id); wake_up_process(kd->task); out: return ret; } void ip_vs_est_kthread_stop(struct ip_vs_est_kt_data *kd) { if (kd->task) { pr_info("stopping estimator thread %d...\n", kd->id); kthread_stop(kd->task); kd->task = NULL; } } /* Apply parameters to kthread */ static void ip_vs_est_set_params(struct netns_ipvs *ipvs, struct ip_vs_est_kt_data *kd) { kd->chain_max = ipvs->est_chain_max; /* We are using single chain on RCU preemption */ if (IPVS_EST_TICK_CHAINS == 1) kd->chain_max *= IPVS_EST_CHAIN_FACTOR; kd->tick_max = IPVS_EST_TICK_CHAINS * kd->chain_max; kd->est_max_count = IPVS_EST_NTICKS * kd->tick_max; } /* Create and start estimation kthread in a free or new array slot */ static int ip_vs_est_add_kthread(struct netns_ipvs *ipvs) { struct ip_vs_est_kt_data *kd = NULL; int id = ipvs->est_kt_count; int ret = -ENOMEM; void *arr = NULL; int i; if ((unsigned long)ipvs->est_kt_count >= ipvs->est_max_threads && ipvs->enable && ipvs->est_max_threads) return -EINVAL; mutex_lock(&ipvs->est_mutex); for (i = 0; i < id; i++) { if (!ipvs->est_kt_arr[i]) break; } if (i >= id) { arr = krealloc_array(ipvs->est_kt_arr, id + 1, sizeof(struct ip_vs_est_kt_data *), GFP_KERNEL); if (!arr) goto out; ipvs->est_kt_arr = arr; } else { id = i; } kd = kzalloc(sizeof(*kd), GFP_KERNEL); if (!kd) goto out; kd->ipvs = ipvs; bitmap_fill(kd->avail, IPVS_EST_NTICKS); kd->est_timer = jiffies; kd->id = id; ip_vs_est_set_params(ipvs, kd); /* Pre-allocate stats used in calc phase */ if (!id && !kd->calc_stats) { kd->calc_stats = ip_vs_stats_alloc(); if (!kd->calc_stats) goto out; } /* Start kthread tasks only when services are present */ if (ipvs->enable && !ip_vs_est_stopped(ipvs)) { ret = ip_vs_est_kthread_start(ipvs, kd); if (ret < 0) goto out; } if (arr) ipvs->est_kt_count++; ipvs->est_kt_arr[id] = kd; kd = NULL; /* Use most recent kthread for new ests */ ipvs->est_add_ktid = id; ret = 0; out: mutex_unlock(&ipvs->est_mutex); if (kd) { ip_vs_stats_free(kd->calc_stats); kfree(kd); } return ret; } /* Select ktid where to add new ests: available, unused or new slot */ static void ip_vs_est_update_ktid(struct netns_ipvs *ipvs) { int ktid, best = ipvs->est_kt_count; struct ip_vs_est_kt_data *kd; for (ktid = 0; ktid < ipvs->est_kt_count; ktid++) { kd = ipvs->est_kt_arr[ktid]; if (kd) { if (kd->est_count < kd->est_max_count) { best = ktid; break; } } else if (ktid < best) { best = ktid; } } ipvs->est_add_ktid = best; } /* Add estimator to current kthread (est_add_ktid) */ static int ip_vs_enqueue_estimator(struct netns_ipvs *ipvs, struct ip_vs_estimator *est) { struct ip_vs_est_kt_data *kd = NULL; struct ip_vs_est_tick_data *td; int ktid, row, crow, cid, ret; int delay = est->ktrow; BUILD_BUG_ON_MSG(IPVS_EST_TICK_CHAINS > 127, "Too many chains for ktcid"); if (ipvs->est_add_ktid < ipvs->est_kt_count) { kd = ipvs->est_kt_arr[ipvs->est_add_ktid]; if (kd) goto add_est; } ret = ip_vs_est_add_kthread(ipvs); if (ret < 0) goto out; kd = ipvs->est_kt_arr[ipvs->est_add_ktid]; add_est: ktid = kd->id; /* For small number of estimators prefer to use few ticks, * otherwise try to add into the last estimated row. * est_row and add_row point after the row we should use */ if (kd->est_count >= 2 * kd->tick_max || delay < IPVS_EST_NTICKS - 1) crow = READ_ONCE(kd->est_row); else crow = kd->add_row; crow += delay; if (crow >= IPVS_EST_NTICKS) crow -= IPVS_EST_NTICKS; /* Assume initial delay ? */ if (delay >= IPVS_EST_NTICKS - 1) { /* Preserve initial delay or decrease it if no space in tick */ row = crow; if (crow < IPVS_EST_NTICKS - 1) { crow++; row = find_last_bit(kd->avail, crow); } if (row >= crow) row = find_last_bit(kd->avail, IPVS_EST_NTICKS); } else { /* Preserve delay or increase it if no space in tick */ row = IPVS_EST_NTICKS; if (crow > 0) row = find_next_bit(kd->avail, IPVS_EST_NTICKS, crow); if (row >= IPVS_EST_NTICKS) row = find_first_bit(kd->avail, IPVS_EST_NTICKS); } td = rcu_dereference_protected(kd->ticks[row], 1); if (!td) { td = kzalloc(sizeof(*td), GFP_KERNEL); if (!td) { ret = -ENOMEM; goto out; } rcu_assign_pointer(kd->ticks[row], td); } cid = find_first_zero_bit(td->full, IPVS_EST_TICK_CHAINS); kd->est_count++; kd->tick_len[row]++; if (!td->chain_len[cid]) __set_bit(cid, td->present); td->chain_len[cid]++; est->ktid = ktid; est->ktrow = row; est->ktcid = cid; hlist_add_head_rcu(&est->list, &td->chains[cid]); if (td->chain_len[cid] >= kd->chain_max) { __set_bit(cid, td->full); if (kd->tick_len[row] >= kd->tick_max) __clear_bit(row, kd->avail); } /* Update est_add_ktid to point to first available/empty kt slot */ if (kd->est_count == kd->est_max_count) ip_vs_est_update_ktid(ipvs); ret = 0; out: return ret; } /* Start estimation for stats */ int ip_vs_start_estimator(struct netns_ipvs *ipvs, struct ip_vs_stats *stats) { struct ip_vs_estimator *est = &stats->est; int ret; if (!ipvs->est_max_threads && ipvs->enable) ipvs->est_max_threads = ip_vs_est_max_threads(ipvs); est->ktid = -1; est->ktrow = IPVS_EST_NTICKS - 1; /* Initial delay */ /* We prefer this code to be short, kthread 0 will requeue the * estimator to available chain. If tasks are disabled, we * will not allocate much memory, just for kt 0. */ ret = 0; if (!ipvs->est_kt_count || !ipvs->est_kt_arr[0]) ret = ip_vs_est_add_kthread(ipvs); if (ret >= 0) hlist_add_head(&est->list, &ipvs->est_temp_list); else INIT_HLIST_NODE(&est->list); return ret; } static void ip_vs_est_kthread_destroy(struct ip_vs_est_kt_data *kd) { if (kd) { if (kd->task) { pr_info("stop unused estimator thread %d...\n", kd->id); kthread_stop(kd->task); } ip_vs_stats_free(kd->calc_stats); kfree(kd); } } /* Unlink estimator from chain */ void ip_vs_stop_estimator(struct netns_ipvs *ipvs, struct ip_vs_stats *stats) { struct ip_vs_estimator *est = &stats->est; struct ip_vs_est_tick_data *td; struct ip_vs_est_kt_data *kd; int ktid = est->ktid; int row = est->ktrow; int cid = est->ktcid; /* Failed to add to chain ? */ if (hlist_unhashed(&est->list)) return; /* On return, estimator can be freed, dequeue it now */ /* In est_temp_list ? */ if (ktid < 0) { hlist_del(&est->list); goto end_kt0; } hlist_del_rcu(&est->list); kd = ipvs->est_kt_arr[ktid]; td = rcu_dereference_protected(kd->ticks[row], 1); __clear_bit(cid, td->full); td->chain_len[cid]--; if (!td->chain_len[cid]) __clear_bit(cid, td->present); kd->tick_len[row]--; __set_bit(row, kd->avail); if (!kd->tick_len[row]) { RCU_INIT_POINTER(kd->ticks[row], NULL); kfree_rcu(td, rcu_head); } kd->est_count--; if (kd->est_count) { /* This kt slot can become available just now, prefer it */ if (ktid < ipvs->est_add_ktid) ipvs->est_add_ktid = ktid; return; } if (ktid > 0) { mutex_lock(&ipvs->est_mutex); ip_vs_est_kthread_destroy(kd); ipvs->est_kt_arr[ktid] = NULL; if (ktid == ipvs->est_kt_count - 1) { ipvs->est_kt_count--; while (ipvs->est_kt_count > 1 && !ipvs->est_kt_arr[ipvs->est_kt_count - 1]) ipvs->est_kt_count--; } mutex_unlock(&ipvs->est_mutex); /* This slot is now empty, prefer another available kt slot */ if (ktid == ipvs->est_add_ktid) ip_vs_est_update_ktid(ipvs); } end_kt0: /* kt 0 is freed after all other kthreads and chains are empty */ if (ipvs->est_kt_count == 1 && hlist_empty(&ipvs->est_temp_list)) { kd = ipvs->est_kt_arr[0]; if (!kd || !kd->est_count) { mutex_lock(&ipvs->est_mutex); if (kd) { ip_vs_est_kthread_destroy(kd); ipvs->est_kt_arr[0] = NULL; } ipvs->est_kt_count--; mutex_unlock(&ipvs->est_mutex); ipvs->est_add_ktid = 0; } } } /* Register all ests from est_temp_list to kthreads */ static void ip_vs_est_drain_temp_list(struct netns_ipvs *ipvs) { struct ip_vs_estimator *est; while (1) { int max = 16; mutex_lock(&__ip_vs_mutex); while (max-- > 0) { est = hlist_entry_safe(ipvs->est_temp_list.first, struct ip_vs_estimator, list); if (est) { if (kthread_should_stop()) goto unlock; hlist_del_init(&est->list); if (ip_vs_enqueue_estimator(ipvs, est) >= 0) continue; est->ktid = -1; hlist_add_head(&est->list, &ipvs->est_temp_list); /* Abort, some entries will not be estimated * until next attempt */ } goto unlock; } mutex_unlock(&__ip_vs_mutex); cond_resched(); } unlock: mutex_unlock(&__ip_vs_mutex); } /* Calculate limits for all kthreads */ static int ip_vs_est_calc_limits(struct netns_ipvs *ipvs, int *chain_max) { DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); struct ip_vs_est_kt_data *kd; struct hlist_head chain; struct ip_vs_stats *s; int cache_factor = 4; int i, loops, ntest; s32 min_est = 0; ktime_t t1, t2; int max = 8; int ret = 1; s64 diff; u64 val; INIT_HLIST_HEAD(&chain); mutex_lock(&__ip_vs_mutex); kd = ipvs->est_kt_arr[0]; mutex_unlock(&__ip_vs_mutex); s = kd ? kd->calc_stats : NULL; if (!s) goto out; hlist_add_head(&s->est.list, &chain); loops = 1; /* Get best result from many tests */ for (ntest = 0; ntest < 12; ntest++) { if (!(ntest & 3)) { /* Wait for cpufreq frequency transition */ wait_event_idle_timeout(wq, kthread_should_stop(), HZ / 50); if (!ipvs->enable || kthread_should_stop()) goto stop; } local_bh_disable(); rcu_read_lock(); /* Put stats in cache */ ip_vs_chain_estimation(&chain); t1 = ktime_get(); for (i = loops * cache_factor; i > 0; i--) ip_vs_chain_estimation(&chain); t2 = ktime_get(); rcu_read_unlock(); local_bh_enable(); if (!ipvs->enable || kthread_should_stop()) goto stop; cond_resched(); diff = ktime_to_ns(ktime_sub(t2, t1)); if (diff <= 1 * NSEC_PER_USEC) { /* Do more loops on low time resolution */ loops *= 2; continue; } if (diff >= NSEC_PER_SEC) continue; val = diff; do_div(val, loops); if (!min_est || val < min_est) { min_est = val; /* goal: 95usec per chain */ val = 95 * NSEC_PER_USEC; if (val >= min_est) { do_div(val, min_est); max = (int)val; } else { max = 1; } } } out: if (s) hlist_del_init(&s->est.list); *chain_max = max; return ret; stop: ret = 0; goto out; } /* Calculate the parameters and apply them in context of kt #0 * ECP: est_calc_phase * ECM: est_chain_max * ECP ECM Insert Chain enable Description * --------------------------------------------------------------------------- * 0 0 est_temp_list 0 create kt #0 context * 0 0 est_temp_list 0->1 service added, start kthread #0 task * 0->1 0 est_temp_list 1 kt task #0 started, enters calc phase * 1 0 est_temp_list 1 kt #0: determine est_chain_max, * stop tasks, move ests to est_temp_list * and free kd for kthreads 1..last * 1->0 0->N kt chains 1 ests can go to kthreads * 0 N kt chains 1 drain est_temp_list, create new kthread * contexts, start tasks, estimate */ static void ip_vs_est_calc_phase(struct netns_ipvs *ipvs) { int genid = atomic_read(&ipvs->est_genid); struct ip_vs_est_tick_data *td; struct ip_vs_est_kt_data *kd; struct ip_vs_estimator *est; struct ip_vs_stats *stats; int id, row, cid, delay; bool last, last_td; int chain_max; int step; if (!ip_vs_est_calc_limits(ipvs, &chain_max)) return; mutex_lock(&__ip_vs_mutex); /* Stop all other tasks, so that we can immediately move the * estimators to est_temp_list without RCU grace period */ mutex_lock(&ipvs->est_mutex); for (id = 1; id < ipvs->est_kt_count; id++) { /* netns clean up started, abort */ if (!ipvs->enable) goto unlock2; kd = ipvs->est_kt_arr[id]; if (!kd) continue; ip_vs_est_kthread_stop(kd); } mutex_unlock(&ipvs->est_mutex); /* Move all estimators to est_temp_list but carefully, * all estimators and kthread data can be released while * we reschedule. Even for kthread 0. */ step = 0; /* Order entries in est_temp_list in ascending delay, so now * walk delay(desc), id(desc), cid(asc) */ delay = IPVS_EST_NTICKS; next_delay: delay--; if (delay < 0) goto end_dequeue; last_kt: /* Destroy contexts backwards */ id = ipvs->est_kt_count; next_kt: if (!ipvs->enable || kthread_should_stop()) goto unlock; id--; if (id < 0) goto next_delay; kd = ipvs->est_kt_arr[id]; if (!kd) goto next_kt; /* kt 0 can exist with empty chains */ if (!id && kd->est_count <= 1) goto next_delay; row = kd->est_row + delay; if (row >= IPVS_EST_NTICKS) row -= IPVS_EST_NTICKS; td = rcu_dereference_protected(kd->ticks[row], 1); if (!td) goto next_kt; cid = 0; walk_chain: if (kthread_should_stop()) goto unlock; step++; if (!(step & 63)) { /* Give chance estimators to be added (to est_temp_list) * and deleted (releasing kthread contexts) */ mutex_unlock(&__ip_vs_mutex); cond_resched(); mutex_lock(&__ip_vs_mutex); /* Current kt released ? */ if (id >= ipvs->est_kt_count) goto last_kt; if (kd != ipvs->est_kt_arr[id]) goto next_kt; /* Current td released ? */ if (td != rcu_dereference_protected(kd->ticks[row], 1)) goto next_kt; /* No fatal changes on the current kd and td */ } est = hlist_entry_safe(td->chains[cid].first, struct ip_vs_estimator, list); if (!est) { cid++; if (cid >= IPVS_EST_TICK_CHAINS) goto next_kt; goto walk_chain; } /* We can cheat and increase est_count to protect kt 0 context * from release but we prefer to keep the last estimator */ last = kd->est_count <= 1; /* Do not free kt #0 data */ if (!id && last) goto next_delay; last_td = kd->tick_len[row] <= 1; stats = container_of(est, struct ip_vs_stats, est); ip_vs_stop_estimator(ipvs, stats); /* Tasks are stopped, move without RCU grace period */ est->ktid = -1; est->ktrow = row - kd->est_row; if (est->ktrow < 0) est->ktrow += IPVS_EST_NTICKS; hlist_add_head(&est->list, &ipvs->est_temp_list); /* kd freed ? */ if (last) goto next_kt; /* td freed ? */ if (last_td) goto next_kt; goto walk_chain; end_dequeue: /* All estimators removed while calculating ? */ if (!ipvs->est_kt_count) goto unlock; kd = ipvs->est_kt_arr[0]; if (!kd) goto unlock; kd->add_row = kd->est_row; ipvs->est_chain_max = chain_max; ip_vs_est_set_params(ipvs, kd); pr_info("using max %d ests per chain, %d per kthread\n", kd->chain_max, kd->est_max_count); /* Try to keep tot_stats in kt0, enqueue it early */ if (ipvs->tot_stats && !hlist_unhashed(&ipvs->tot_stats->s.est.list) && ipvs->tot_stats->s.est.ktid == -1) { hlist_del(&ipvs->tot_stats->s.est.list); hlist_add_head(&ipvs->tot_stats->s.est.list, &ipvs->est_temp_list); } mutex_lock(&ipvs->est_mutex); /* We completed the calc phase, new calc phase not requested */ if (genid == atomic_read(&ipvs->est_genid)) ipvs->est_calc_phase = 0; unlock2: mutex_unlock(&ipvs->est_mutex); unlock: mutex_unlock(&__ip_vs_mutex); } void ip_vs_zero_estimator(struct ip_vs_stats *stats) { struct ip_vs_estimator *est = &stats->est; struct ip_vs_kstats *k = &stats->kstats; /* reset counters, caller must hold the stats->lock lock */ est->last_inbytes = k->inbytes; est->last_outbytes = k->outbytes; est->last_conns = k->conns; est->last_inpkts = k->inpkts; est->last_outpkts = k->outpkts; est->cps = 0; est->inpps = 0; est->outpps = 0; est->inbps = 0; est->outbps = 0; } /* Get decoded rates */ void ip_vs_read_estimator(struct ip_vs_kstats *dst, struct ip_vs_stats *stats) { struct ip_vs_estimator *e = &stats->est; dst->cps = (e->cps + 0x1FF) >> 10; dst->inpps = (e->inpps + 0x1FF) >> 10; dst->outpps = (e->outpps + 0x1FF) >> 10; dst->inbps = (e->inbps + 0xF) >> 5; dst->outbps = (e->outbps + 0xF) >> 5; } int __net_init ip_vs_estimator_net_init(struct netns_ipvs *ipvs) { INIT_HLIST_HEAD(&ipvs->est_temp_list); ipvs->est_kt_arr = NULL; ipvs->est_max_threads = 0; ipvs->est_calc_phase = 0; ipvs->est_chain_max = 0; ipvs->est_kt_count = 0; ipvs->est_add_ktid = 0; atomic_set(&ipvs->est_genid, 0); atomic_set(&ipvs->est_genid_done, 0); __mutex_init(&ipvs->est_mutex, "ipvs->est_mutex", &__ipvs_est_key); return 0; } void __net_exit ip_vs_estimator_net_cleanup(struct netns_ipvs *ipvs) { int i; for (i = 0; i < ipvs->est_kt_count; i++) ip_vs_est_kthread_destroy(ipvs->est_kt_arr[i]); kfree(ipvs->est_kt_arr); mutex_destroy(&ipvs->est_mutex); }
/* SPDX-License-Identifier: GPL-2.0-only */ /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2023, Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #ifndef EFX_TC_CONNTRACK_H #define EFX_TC_CONNTRACK_H #include "net_driver.h" #if IS_ENABLED(CONFIG_SFC_SRIOV) #include <linux/refcount.h> #include <net/netfilter/nf_flow_table.h> struct efx_tc_ct_zone { u16 zone; struct rhash_head linkage; refcount_t ref; struct nf_flowtable *nf_ft; struct efx_nic *efx; struct mutex mutex; /* protects cts list */ struct list_head cts; /* list of efx_tc_ct_entry in this zone */ }; /* create/uncreate/teardown hashtables */ int efx_tc_init_conntrack(struct efx_nic *efx); void efx_tc_destroy_conntrack(struct efx_nic *efx); void efx_tc_fini_conntrack(struct efx_nic *efx); struct efx_tc_ct_zone *efx_tc_ct_register_zone(struct efx_nic *efx, u16 zone, struct nf_flowtable *ct_ft); void efx_tc_ct_unregister_zone(struct efx_nic *efx, struct efx_tc_ct_zone *ct_zone); struct efx_tc_ct_entry { unsigned long cookie; struct rhash_head linkage; __be16 eth_proto; u8 ip_proto; bool dnat; __be32 src_ip, dst_ip, nat_ip; struct in6_addr src_ip6, dst_ip6; __be16 l4_sport, l4_dport, l4_natport; /* Ports (UDP, TCP) */ struct efx_tc_ct_zone *zone; u32 mark; struct efx_tc_counter *cnt; struct list_head list; /* entry on zone->cts */ }; #endif /* CONFIG_SFC_SRIOV */ #endif /* EFX_TC_CONNTRACK_H */
// SPDX-License-Identifier: GPL-2.0 /* * Navman Serial USB driver * * Copyright (C) 2006 Greg Kroah-Hartman <[email protected]> * * TODO: * Add termios method that uses copy_hw but also kills all echo * flags as the navman is rx only so cannot echo. */ #include <linux/gfp.h> #include <linux/kernel.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/usb/serial.h> static const struct usb_device_id id_table[] = { { USB_DEVICE(0x0a99, 0x0001) }, /* Talon Technology device */ { USB_DEVICE(0x0df7, 0x0900) }, /* Mobile Action i-gotU */ { }, }; MODULE_DEVICE_TABLE(usb, id_table); static void navman_read_int_callback(struct urb *urb) { struct usb_serial_port *port = urb->context; unsigned char *data = urb->transfer_buffer; int status = urb->status; int result; switch (status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(&port->dev, "%s - urb shutting down with status: %d\n", __func__, status); return; default: dev_dbg(&port->dev, "%s - nonzero urb status received: %d\n", __func__, status); goto exit; } usb_serial_debug_data(&port->dev, __func__, urb->actual_length, data); if (urb->actual_length) { tty_insert_flip_string(&port->port, data, urb->actual_length); tty_flip_buffer_push(&port->port); } exit: result = usb_submit_urb(urb, GFP_ATOMIC); if (result) dev_err(&urb->dev->dev, "%s - Error %d submitting interrupt urb\n", __func__, result); } static int navman_open(struct tty_struct *tty, struct usb_serial_port *port) { int result = 0; if (port->interrupt_in_urb) { dev_dbg(&port->dev, "%s - adding interrupt input for treo\n", __func__); result = usb_submit_urb(port->interrupt_in_urb, GFP_KERNEL); if (result) dev_err(&port->dev, "%s - failed submitting interrupt urb, error %d\n", __func__, result); } return result; } static void navman_close(struct usb_serial_port *port) { usb_kill_urb(port->interrupt_in_urb); } static int navman_write(struct tty_struct *tty, struct usb_serial_port *port, const unsigned char *buf, int count) { /* * This device can't write any data, only read from the device */ return -EOPNOTSUPP; } static struct usb_serial_driver navman_device = { .driver = { .name = "navman", }, .id_table = id_table, .num_ports = 1, .open = navman_open, .close = navman_close, .write = navman_write, .read_int_callback = navman_read_int_callback, }; static struct usb_serial_driver * const serial_drivers[] = { &navman_device, NULL }; module_usb_serial_driver(serial_drivers, id_table); MODULE_DESCRIPTION("Navman USB Serial driver"); MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0 */ /* * Definition for kernel virtual machines on s390. * * Adapted copy of struct definition kvm_s390_sie_block from * arch/s390/include/asm/kvm_host.h for use in userspace selftest programs. * * Copyright IBM Corp. 2008, 2024 * * Authors: * Christoph Schlameuss <[email protected]> * Carsten Otte <[email protected]> */ #ifndef SELFTEST_KVM_SIE_H #define SELFTEST_KVM_SIE_H #include <linux/types.h> struct kvm_s390_sie_block { #define CPUSTAT_STOPPED 0x80000000 #define CPUSTAT_WAIT 0x10000000 #define CPUSTAT_ECALL_PEND 0x08000000 #define CPUSTAT_STOP_INT 0x04000000 #define CPUSTAT_IO_INT 0x02000000 #define CPUSTAT_EXT_INT 0x01000000 #define CPUSTAT_RUNNING 0x00800000 #define CPUSTAT_RETAINED 0x00400000 #define CPUSTAT_TIMING_SUB 0x00020000 #define CPUSTAT_SIE_SUB 0x00010000 #define CPUSTAT_RRF 0x00008000 #define CPUSTAT_SLSV 0x00004000 #define CPUSTAT_SLSR 0x00002000 #define CPUSTAT_ZARCH 0x00000800 #define CPUSTAT_MCDS 0x00000100 #define CPUSTAT_KSS 0x00000200 #define CPUSTAT_SM 0x00000080 #define CPUSTAT_IBS 0x00000040 #define CPUSTAT_GED2 0x00000010 #define CPUSTAT_G 0x00000008 #define CPUSTAT_GED 0x00000004 #define CPUSTAT_J 0x00000002 #define CPUSTAT_P 0x00000001 __u32 cpuflags; /* 0x0000 */ __u32: 1; /* 0x0004 */ __u32 prefix : 18; __u32: 1; __u32 ibc : 12; __u8 reserved08[4]; /* 0x0008 */ #define PROG_IN_SIE BIT(0) __u32 prog0c; /* 0x000c */ union { __u8 reserved10[16]; /* 0x0010 */ struct { __u64 pv_handle_cpu; __u64 pv_handle_config; }; }; #define PROG_BLOCK_SIE BIT(0) #define PROG_REQUEST BIT(1) __u32 prog20; /* 0x0020 */ __u8 reserved24[4]; /* 0x0024 */ __u64 cputm; /* 0x0028 */ __u64 ckc; /* 0x0030 */ __u64 epoch; /* 0x0038 */ __u32 svcc; /* 0x0040 */ #define LCTL_CR0 0x8000 #define LCTL_CR6 0x0200 #define LCTL_CR9 0x0040 #define LCTL_CR10 0x0020 #define LCTL_CR11 0x0010 #define LCTL_CR14 0x0002 __u16 lctl; /* 0x0044 */ __s16 icpua; /* 0x0046 */ #define ICTL_OPEREXC 0x80000000 #define ICTL_PINT 0x20000000 #define ICTL_LPSW 0x00400000 #define ICTL_STCTL 0x00040000 #define ICTL_ISKE 0x00004000 #define ICTL_SSKE 0x00002000 #define ICTL_RRBE 0x00001000 #define ICTL_TPROT 0x00000200 __u32 ictl; /* 0x0048 */ #define ECA_CEI 0x80000000 #define ECA_IB 0x40000000 #define ECA_SIGPI 0x10000000 #define ECA_MVPGI 0x01000000 #define ECA_AIV 0x00200000 #define ECA_VX 0x00020000 #define ECA_PROTEXCI 0x00002000 #define ECA_APIE 0x00000008 #define ECA_SII 0x00000001 __u32 eca; /* 0x004c */ #define ICPT_INST 0x04 #define ICPT_PROGI 0x08 #define ICPT_INSTPROGI 0x0C #define ICPT_EXTREQ 0x10 #define ICPT_EXTINT 0x14 #define ICPT_IOREQ 0x18 #define ICPT_WAIT 0x1c #define ICPT_VALIDITY 0x20 #define ICPT_STOP 0x28 #define ICPT_OPEREXC 0x2C #define ICPT_PARTEXEC 0x38 #define ICPT_IOINST 0x40 #define ICPT_KSS 0x5c #define ICPT_MCHKREQ 0x60 #define ICPT_INT_ENABLE 0x64 #define ICPT_PV_INSTR 0x68 #define ICPT_PV_NOTIFY 0x6c #define ICPT_PV_PREF 0x70 __u8 icptcode; /* 0x0050 */ __u8 icptstatus; /* 0x0051 */ __u16 ihcpu; /* 0x0052 */ __u8 reserved54; /* 0x0054 */ #define IICTL_CODE_NONE 0x00 #define IICTL_CODE_MCHK 0x01 #define IICTL_CODE_EXT 0x02 #define IICTL_CODE_IO 0x03 #define IICTL_CODE_RESTART 0x04 #define IICTL_CODE_SPECIFICATION 0x10 #define IICTL_CODE_OPERAND 0x11 __u8 iictl; /* 0x0055 */ __u16 ipa; /* 0x0056 */ __u32 ipb; /* 0x0058 */ __u32 scaoh; /* 0x005c */ #define FPF_BPBC 0x20 __u8 fpf; /* 0x0060 */ #define ECB_GS 0x40 #define ECB_TE 0x10 #define ECB_SPECI 0x08 #define ECB_SRSI 0x04 #define ECB_HOSTPROTINT 0x02 #define ECB_PTF 0x01 __u8 ecb; /* 0x0061 */ #define ECB2_CMMA 0x80 #define ECB2_IEP 0x20 #define ECB2_PFMFI 0x08 #define ECB2_ESCA 0x04 #define ECB2_ZPCI_LSI 0x02 __u8 ecb2; /* 0x0062 */ #define ECB3_AISI 0x20 #define ECB3_AISII 0x10 #define ECB3_DEA 0x08 #define ECB3_AES 0x04 #define ECB3_RI 0x01 __u8 ecb3; /* 0x0063 */ #define ESCA_SCAOL_MASK ~0x3fU __u32 scaol; /* 0x0064 */ __u8 sdf; /* 0x0068 */ __u8 epdx; /* 0x0069 */ __u8 cpnc; /* 0x006a */ __u8 reserved6b; /* 0x006b */ __u32 todpr; /* 0x006c */ #define GISA_FORMAT1 0x00000001 __u32 gd; /* 0x0070 */ __u8 reserved74[12]; /* 0x0074 */ __u64 mso; /* 0x0080 */ __u64 msl; /* 0x0088 */ __u64 psw_mask; /* 0x0090 */ __u64 psw_addr; /* 0x0098 */ __u64 gg14; /* 0x00a0 */ __u64 gg15; /* 0x00a8 */ __u8 reservedb0[8]; /* 0x00b0 */ #define HPID_KVM 0x4 #define HPID_VSIE 0x5 __u8 hpid; /* 0x00b8 */ __u8 reservedb9[7]; /* 0x00b9 */ union { struct { __u32 eiparams; /* 0x00c0 */ __u16 extcpuaddr; /* 0x00c4 */ __u16 eic; /* 0x00c6 */ }; __u64 mcic; /* 0x00c0 */ } __packed; __u32 reservedc8; /* 0x00c8 */ union { struct { __u16 pgmilc; /* 0x00cc */ __u16 iprcc; /* 0x00ce */ }; __u32 edc; /* 0x00cc */ } __packed; union { struct { __u32 dxc; /* 0x00d0 */ __u16 mcn; /* 0x00d4 */ __u8 perc; /* 0x00d6 */ __u8 peratmid; /* 0x00d7 */ }; __u64 faddr; /* 0x00d0 */ } __packed; __u64 peraddr; /* 0x00d8 */ __u8 eai; /* 0x00e0 */ __u8 peraid; /* 0x00e1 */ __u8 oai; /* 0x00e2 */ __u8 armid; /* 0x00e3 */ __u8 reservede4[4]; /* 0x00e4 */ union { __u64 tecmc; /* 0x00e8 */ struct { __u16 subchannel_id; /* 0x00e8 */ __u16 subchannel_nr; /* 0x00ea */ __u32 io_int_parm; /* 0x00ec */ __u32 io_int_word; /* 0x00f0 */ }; } __packed; __u8 reservedf4[8]; /* 0x00f4 */ #define CRYCB_FORMAT_MASK 0x00000003 #define CRYCB_FORMAT0 0x00000000 #define CRYCB_FORMAT1 0x00000001 #define CRYCB_FORMAT2 0x00000003 __u32 crycbd; /* 0x00fc */ __u64 gcr[16]; /* 0x0100 */ union { __u64 gbea; /* 0x0180 */ __u64 sidad; }; __u8 reserved188[8]; /* 0x0188 */ __u64 sdnxo; /* 0x0190 */ __u8 reserved198[8]; /* 0x0198 */ __u32 fac; /* 0x01a0 */ __u8 reserved1a4[20]; /* 0x01a4 */ __u64 cbrlo; /* 0x01b8 */ __u8 reserved1c0[8]; /* 0x01c0 */ #define ECD_HOSTREGMGMT 0x20000000 #define ECD_MEF 0x08000000 #define ECD_ETOKENF 0x02000000 #define ECD_ECC 0x00200000 __u32 ecd; /* 0x01c8 */ __u8 reserved1cc[18]; /* 0x01cc */ __u64 pp; /* 0x01de */ __u8 reserved1e6[2]; /* 0x01e6 */ __u64 itdba; /* 0x01e8 */ __u64 riccbd; /* 0x01f0 */ __u64 gvrd; /* 0x01f8 */ } __packed __aligned(512); #endif /* SELFTEST_KVM_SIE_H */
/* SPDX-License-Identifier: MIT */ /****************************************************************************** * vscsiif.h * * Based on the blkif.h code. * * Copyright(c) FUJITSU Limited 2008. */ #ifndef __XEN__PUBLIC_IO_SCSI_H__ #define __XEN__PUBLIC_IO_SCSI_H__ #include "ring.h" #include "../grant_table.h" /* * Feature and Parameter Negotiation * ================================= * The two halves of a Xen pvSCSI driver utilize nodes within the XenStore to * communicate capabilities and to negotiate operating parameters. This * section enumerates these nodes which reside in the respective front and * backend portions of the XenStore, following the XenBus convention. * * Any specified default value is in effect if the corresponding XenBus node * is not present in the XenStore. * * XenStore nodes in sections marked "PRIVATE" are solely for use by the * driver side whose XenBus tree contains them. * ***************************************************************************** * Backend XenBus Nodes ***************************************************************************** * *------------------ Backend Device Identification (PRIVATE) ------------------ * * p-devname * Values: string * * A free string used to identify the physical device (e.g. a disk name). * * p-dev * Values: string * * A string specifying the backend device: either a 4-tuple "h:c:t:l" * (host, controller, target, lun, all integers), or a WWN (e.g. * "naa.60014054ac780582:0"). * * v-dev * Values: string * * A string specifying the frontend device in form of a 4-tuple "h:c:t:l" * (host, controller, target, lun, all integers). * *--------------------------------- Features --------------------------------- * * feature-sg-grant * Values: unsigned [VSCSIIF_SG_TABLESIZE...65535] * Default Value: 0 * * Specifies the maximum number of scatter/gather elements in grant pages * supported. If not set, the backend supports up to VSCSIIF_SG_TABLESIZE * SG elements specified directly in the request. * ***************************************************************************** * Frontend XenBus Nodes ***************************************************************************** * *----------------------- Request Transport Parameters ----------------------- * * event-channel * Values: unsigned * * The identifier of the Xen event channel used to signal activity * in the ring buffer. * * ring-ref * Values: unsigned * * The Xen grant reference granting permission for the backend to map * the sole page in a single page sized ring buffer. * * protocol * Values: string (XEN_IO_PROTO_ABI_*) * Default Value: XEN_IO_PROTO_ABI_NATIVE * * The machine ABI rules governing the format of all ring request and * response structures. */ /* * Xenstore format in practice * =========================== * * The backend driver uses a single_host:many_devices notation to manage domU * devices. Everything is stored in /local/domain/<backend_domid>/backend/vscsi/. * The xenstore layout looks like this (dom0 is assumed to be the backend_domid): * * <domid>/<vhost>/feature-host = "0" * <domid>/<vhost>/frontend = "/local/domain/<domid>/device/vscsi/0" * <domid>/<vhost>/frontend-id = "<domid>" * <domid>/<vhost>/online = "1" * <domid>/<vhost>/state = "4" * <domid>/<vhost>/vscsi-devs/dev-0/p-dev = "8:0:2:1" or "naa.wwn:lun" * <domid>/<vhost>/vscsi-devs/dev-0/state = "4" * <domid>/<vhost>/vscsi-devs/dev-0/v-dev = "0:0:0:0" * <domid>/<vhost>/vscsi-devs/dev-1/p-dev = "8:0:2:2" * <domid>/<vhost>/vscsi-devs/dev-1/state = "4" * <domid>/<vhost>/vscsi-devs/dev-1/v-dev = "0:0:1:0" * * The frontend driver maintains its state in * /local/domain/<domid>/device/vscsi/. * * <vhost>/backend = "/local/domain/0/backend/vscsi/<domid>/<vhost>" * <vhost>/backend-id = "0" * <vhost>/event-channel = "20" * <vhost>/ring-ref = "43" * <vhost>/state = "4" * <vhost>/vscsi-devs/dev-0/state = "4" * <vhost>/vscsi-devs/dev-1/state = "4" * * In addition to the entries for backend and frontend these flags are stored * for the toolstack: * * <domid>/<vhost>/vscsi-devs/dev-1/p-devname = "/dev/$device" * <domid>/<vhost>/libxl_ctrl_index = "0" * * * Backend/frontend protocol * ========================= * * To create a vhost along with a device: * <domid>/<vhost>/feature-host = "0" * <domid>/<vhost>/frontend = "/local/domain/<domid>/device/vscsi/0" * <domid>/<vhost>/frontend-id = "<domid>" * <domid>/<vhost>/online = "1" * <domid>/<vhost>/state = "1" * <domid>/<vhost>/vscsi-devs/dev-0/p-dev = "8:0:2:1" * <domid>/<vhost>/vscsi-devs/dev-0/state = "1" * <domid>/<vhost>/vscsi-devs/dev-0/v-dev = "0:0:0:0" * Wait for <domid>/<vhost>/state + <domid>/<vhost>/vscsi-devs/dev-0/state become 4 * * To add another device to a vhost: * <domid>/<vhost>/state = "7" * <domid>/<vhost>/vscsi-devs/dev-1/p-dev = "8:0:2:2" * <domid>/<vhost>/vscsi-devs/dev-1/state = "1" * <domid>/<vhost>/vscsi-devs/dev-1/v-dev = "0:0:1:0" * Wait for <domid>/<vhost>/state + <domid>/<vhost>/vscsi-devs/dev-1/state become 4 * * To remove a device from a vhost: * <domid>/<vhost>/state = "7" * <domid>/<vhost>/vscsi-devs/dev-1/state = "5" * Wait for <domid>/<vhost>/state to become 4 * Wait for <domid>/<vhost>/vscsi-devs/dev-1/state become 6 * Remove <domid>/<vhost>/vscsi-devs/dev-1/{state,p-dev,v-dev,p-devname} * Remove <domid>/<vhost>/vscsi-devs/dev-1/ * */ /* Requests from the frontend to the backend */ /* * Request a SCSI operation specified via a CDB in vscsiif_request.cmnd. * The target is specified via channel, id and lun. * * The operation to be performed is specified via a CDB in cmnd[], the length * of the CDB is in cmd_len. sc_data_direction specifies the direction of data * (to the device, from the device, or none at all). * * If data is to be transferred to or from the device the buffer(s) in the * guest memory is/are specified via one or multiple scsiif_request_segment * descriptors each specifying a memory page via a grant_ref_t, a offset into * the page and the length of the area in that page. All scsiif_request_segment * areas concatenated form the resulting data buffer used by the operation. * If the number of scsiif_request_segment areas is not too large (less than * or equal VSCSIIF_SG_TABLESIZE) the areas can be specified directly in the * seg[] array and the number of valid scsiif_request_segment elements is to be * set in nr_segments. * * If "feature-sg-grant" in the Xenstore is set it is possible to specify more * than VSCSIIF_SG_TABLESIZE scsiif_request_segment elements via indirection. * The maximum number of allowed scsiif_request_segment elements is the value * of the "feature-sg-grant" entry from Xenstore. When using indirection the * seg[] array doesn't contain specifications of the data buffers, but * references to scsiif_request_segment arrays, which in turn reference the * data buffers. While nr_segments holds the number of populated seg[] entries * (plus the set VSCSIIF_SG_GRANT bit), the number of scsiif_request_segment * elements referencing the target data buffers is calculated from the lengths * of the seg[] elements (the sum of all valid seg[].length divided by the * size of one scsiif_request_segment structure). The frontend may use a mix of * direct and indirect requests. */ #define VSCSIIF_ACT_SCSI_CDB 1 /* * Request abort of a running operation for the specified target given by * channel, id, lun and the operation's rqid in ref_rqid. */ #define VSCSIIF_ACT_SCSI_ABORT 2 /* * Request a device reset of the specified target (channel and id). */ #define VSCSIIF_ACT_SCSI_RESET 3 /* * Preset scatter/gather elements for a following request. Deprecated. * Keeping the define only to avoid usage of the value "4" for other actions. */ #define VSCSIIF_ACT_SCSI_SG_PRESET 4 /* * Maximum scatter/gather segments per request. * * Considering balance between allocating at least 16 "vscsiif_request" * structures on one page (4096 bytes) and the number of scatter/gather * elements needed, we decided to use 26 as a magic number. * * If "feature-sg-grant" is set, more scatter/gather elements can be specified * by placing them in one or more (up to VSCSIIF_SG_TABLESIZE) granted pages. * In this case the vscsiif_request seg elements don't contain references to * the user data, but to the SG elements referencing the user data. */ #define VSCSIIF_SG_TABLESIZE 26 /* * based on Linux kernel 2.6.18, still valid * * Changing these values requires support of multiple protocols via the rings * as "old clients" will blindly use these values and the resulting structure * sizes. */ #define VSCSIIF_MAX_COMMAND_SIZE 16 #define VSCSIIF_SENSE_BUFFERSIZE 96 #define VSCSIIF_PAGE_SIZE 4096 struct scsiif_request_segment { grant_ref_t gref; uint16_t offset; uint16_t length; }; #define VSCSIIF_SG_PER_PAGE (VSCSIIF_PAGE_SIZE / \ sizeof(struct scsiif_request_segment)) /* Size of one request is 252 bytes */ struct vscsiif_request { uint16_t rqid; /* private guest value, echoed in resp */ uint8_t act; /* command between backend and frontend */ uint8_t cmd_len; /* valid CDB bytes */ uint8_t cmnd[VSCSIIF_MAX_COMMAND_SIZE]; /* the CDB */ uint16_t timeout_per_command; /* deprecated */ uint16_t channel, id, lun; /* (virtual) device specification */ uint16_t ref_rqid; /* command abort reference */ uint8_t sc_data_direction; /* for DMA_TO_DEVICE(1) DMA_FROM_DEVICE(2) DMA_NONE(3) requests */ uint8_t nr_segments; /* Number of pieces of scatter-gather */ /* * flag in nr_segments: SG elements via grant page * * If VSCSIIF_SG_GRANT is set, the low 7 bits of nr_segments specify the number * of grant pages containing SG elements. Usable if "feature-sg-grant" set. */ #define VSCSIIF_SG_GRANT 0x80 struct scsiif_request_segment seg[VSCSIIF_SG_TABLESIZE]; uint32_t reserved[3]; }; /* Size of one response is 252 bytes */ struct vscsiif_response { uint16_t rqid; /* identifies request */ uint8_t padding; uint8_t sense_len; uint8_t sense_buffer[VSCSIIF_SENSE_BUFFERSIZE]; int32_t rslt; uint32_t residual_len; /* request bufflen - return the value from physical device */ uint32_t reserved[36]; }; /* SCSI I/O status from vscsiif_response->rslt */ #define XEN_VSCSIIF_RSLT_STATUS(x) ((x) & 0x00ff) /* Host I/O status from vscsiif_response->rslt */ #define XEN_VSCSIIF_RSLT_HOST(x) (((x) & 0x00ff0000) >> 16) #define XEN_VSCSIIF_RSLT_HOST_OK 0 /* Couldn't connect before timeout */ #define XEN_VSCSIIF_RSLT_HOST_NO_CONNECT 1 /* Bus busy through timeout */ #define XEN_VSCSIIF_RSLT_HOST_BUS_BUSY 2 /* Timed out for other reason */ #define XEN_VSCSIIF_RSLT_HOST_TIME_OUT 3 /* Bad target */ #define XEN_VSCSIIF_RSLT_HOST_BAD_TARGET 4 /* Abort for some other reason */ #define XEN_VSCSIIF_RSLT_HOST_ABORT 5 /* Parity error */ #define XEN_VSCSIIF_RSLT_HOST_PARITY 6 /* Internal error */ #define XEN_VSCSIIF_RSLT_HOST_ERROR 7 /* Reset by somebody */ #define XEN_VSCSIIF_RSLT_HOST_RESET 8 /* Unexpected interrupt */ #define XEN_VSCSIIF_RSLT_HOST_BAD_INTR 9 /* Force command past mid-layer */ #define XEN_VSCSIIF_RSLT_HOST_PASSTHROUGH 10 /* Retry requested */ #define XEN_VSCSIIF_RSLT_HOST_SOFT_ERROR 11 /* Hidden retry requested */ #define XEN_VSCSIIF_RSLT_HOST_IMM_RETRY 12 /* Requeue command requested */ #define XEN_VSCSIIF_RSLT_HOST_REQUEUE 13 /* Transport error disrupted I/O */ #define XEN_VSCSIIF_RSLT_HOST_TRANSPORT_DISRUPTED 14 /* Transport class fastfailed */ #define XEN_VSCSIIF_RSLT_HOST_TRANSPORT_FAILFAST 15 /* Permanent target failure */ #define XEN_VSCSIIF_RSLT_HOST_TARGET_FAILURE 16 /* Permanent nexus failure on path */ #define XEN_VSCSIIF_RSLT_HOST_NEXUS_FAILURE 17 /* Space allocation on device failed */ #define XEN_VSCSIIF_RSLT_HOST_ALLOC_FAILURE 18 /* Medium error */ #define XEN_VSCSIIF_RSLT_HOST_MEDIUM_ERROR 19 /* Transport marginal errors */ #define XEN_VSCSIIF_RSLT_HOST_TRANSPORT_MARGINAL 20 /* Result values of reset operations */ #define XEN_VSCSIIF_RSLT_RESET_SUCCESS 0x2002 #define XEN_VSCSIIF_RSLT_RESET_FAILED 0x2003 DEFINE_RING_TYPES(vscsiif, struct vscsiif_request, struct vscsiif_response); #endif /*__XEN__PUBLIC_IO_SCSI_H__*/
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright © 2022-2024 Rivos Inc. * Copyright © 2023 FORTH-ICS/CARV * * RISCV IOMMU as a PCIe device * * Authors * Tomasz Jeznach <[email protected]> * Nick Kossifidis <[email protected]> */ #include <linux/compiler.h> #include <linux/init.h> #include <linux/iommu.h> #include <linux/kernel.h> #include <linux/pci.h> #include "iommu-bits.h" #include "iommu.h" /* QEMU RISC-V IOMMU implementation */ #define PCI_DEVICE_ID_REDHAT_RISCV_IOMMU 0x0014 /* Rivos Inc. assigned PCI Vendor and Device IDs */ #ifndef PCI_VENDOR_ID_RIVOS #define PCI_VENDOR_ID_RIVOS 0x1efd #endif #define PCI_DEVICE_ID_RIVOS_RISCV_IOMMU_GA 0x0008 static int riscv_iommu_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct riscv_iommu_device *iommu; int rc, vec; rc = pcim_enable_device(pdev); if (rc) return rc; if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) return -ENODEV; if (pci_resource_len(pdev, 0) < RISCV_IOMMU_REG_SIZE) return -ENODEV; rc = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev)); if (rc) return dev_err_probe(dev, rc, "pcim_iomap_regions failed\n"); iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL); if (!iommu) return -ENOMEM; iommu->dev = dev; iommu->reg = pcim_iomap_table(pdev)[0]; pci_set_master(pdev); dev_set_drvdata(dev, iommu); /* Check device reported capabilities / features. */ iommu->caps = riscv_iommu_readq(iommu, RISCV_IOMMU_REG_CAPABILITIES); iommu->fctl = riscv_iommu_readl(iommu, RISCV_IOMMU_REG_FCTL); /* The PCI driver only uses MSIs, make sure the IOMMU supports this */ switch (FIELD_GET(RISCV_IOMMU_CAPABILITIES_IGS, iommu->caps)) { case RISCV_IOMMU_CAPABILITIES_IGS_MSI: case RISCV_IOMMU_CAPABILITIES_IGS_BOTH: break; default: return dev_err_probe(dev, -ENODEV, "unable to use message-signaled interrupts\n"); } /* Allocate and assign IRQ vectors for the various events */ rc = pci_alloc_irq_vectors(pdev, 1, RISCV_IOMMU_INTR_COUNT, PCI_IRQ_MSIX | PCI_IRQ_MSI); if (rc <= 0) return dev_err_probe(dev, -ENODEV, "unable to allocate irq vectors\n"); iommu->irqs_count = rc; for (vec = 0; vec < iommu->irqs_count; vec++) iommu->irqs[vec] = msi_get_virq(dev, vec); /* Enable message-signaled interrupts, fctl.WSI */ if (iommu->fctl & RISCV_IOMMU_FCTL_WSI) { iommu->fctl ^= RISCV_IOMMU_FCTL_WSI; riscv_iommu_writel(iommu, RISCV_IOMMU_REG_FCTL, iommu->fctl); } return riscv_iommu_init(iommu); } static void riscv_iommu_pci_remove(struct pci_dev *pdev) { struct riscv_iommu_device *iommu = dev_get_drvdata(&pdev->dev); riscv_iommu_remove(iommu); } static const struct pci_device_id riscv_iommu_pci_tbl[] = { {PCI_VDEVICE(REDHAT, PCI_DEVICE_ID_REDHAT_RISCV_IOMMU), 0}, {PCI_VDEVICE(RIVOS, PCI_DEVICE_ID_RIVOS_RISCV_IOMMU_GA), 0}, {0,} }; static struct pci_driver riscv_iommu_pci_driver = { .name = KBUILD_MODNAME, .id_table = riscv_iommu_pci_tbl, .probe = riscv_iommu_pci_probe, .remove = riscv_iommu_pci_remove, .driver = { .suppress_bind_attrs = true, }, }; builtin_pci_driver(riscv_iommu_pci_driver);
// SPDX-License-Identifier: GPL-2.0 /* * QNX6 file system, Linux implementation. * * Version : 1.0.0 * * History : * * 01-02-2012 by Kai Bankett ([email protected]) : first release. * */ #include <linux/buffer_head.h> #include <linux/slab.h> #include <linux/crc32.h> #include "qnx6.h" static void qnx6_mmi_copy_sb(struct qnx6_super_block *qsb, struct qnx6_mmi_super_block *sb) { qsb->sb_magic = sb->sb_magic; qsb->sb_checksum = sb->sb_checksum; qsb->sb_serial = sb->sb_serial; qsb->sb_blocksize = sb->sb_blocksize; qsb->sb_num_inodes = sb->sb_num_inodes; qsb->sb_free_inodes = sb->sb_free_inodes; qsb->sb_num_blocks = sb->sb_num_blocks; qsb->sb_free_blocks = sb->sb_free_blocks; /* the rest of the superblock is the same */ memcpy(&qsb->Inode, &sb->Inode, sizeof(sb->Inode)); memcpy(&qsb->Bitmap, &sb->Bitmap, sizeof(sb->Bitmap)); memcpy(&qsb->Longfile, &sb->Longfile, sizeof(sb->Longfile)); } struct qnx6_super_block *qnx6_mmi_fill_super(struct super_block *s, int silent) { struct buffer_head *bh1, *bh2 = NULL; struct qnx6_mmi_super_block *sb1, *sb2; struct qnx6_super_block *qsb = NULL; struct qnx6_sb_info *sbi; __u64 offset; /* Check the superblock signatures start with the first superblock */ bh1 = sb_bread(s, 0); if (!bh1) { pr_err("Unable to read first mmi superblock\n"); return NULL; } sb1 = (struct qnx6_mmi_super_block *)bh1->b_data; sbi = QNX6_SB(s); if (fs32_to_cpu(sbi, sb1->sb_magic) != QNX6_SUPER_MAGIC) { if (!silent) { pr_err("wrong signature (magic) in superblock #1.\n"); goto out; } } /* checksum check - start at byte 8 and end at byte 512 */ if (fs32_to_cpu(sbi, sb1->sb_checksum) != crc32_be(0, (char *)(bh1->b_data + 8), 504)) { pr_err("superblock #1 checksum error\n"); goto out; } /* calculate second superblock blocknumber */ offset = fs32_to_cpu(sbi, sb1->sb_num_blocks) + QNX6_SUPERBLOCK_AREA / fs32_to_cpu(sbi, sb1->sb_blocksize); /* set new blocksize */ if (!sb_set_blocksize(s, fs32_to_cpu(sbi, sb1->sb_blocksize))) { pr_err("unable to set blocksize\n"); goto out; } /* blocksize invalidates bh - pull it back in */ brelse(bh1); bh1 = sb_bread(s, 0); if (!bh1) goto out; sb1 = (struct qnx6_mmi_super_block *)bh1->b_data; /* read second superblock */ bh2 = sb_bread(s, offset); if (!bh2) { pr_err("unable to read the second superblock\n"); goto out; } sb2 = (struct qnx6_mmi_super_block *)bh2->b_data; if (fs32_to_cpu(sbi, sb2->sb_magic) != QNX6_SUPER_MAGIC) { if (!silent) pr_err("wrong signature (magic) in superblock #2.\n"); goto out; } /* checksum check - start at byte 8 and end at byte 512 */ if (fs32_to_cpu(sbi, sb2->sb_checksum) != crc32_be(0, (char *)(bh2->b_data + 8), 504)) { pr_err("superblock #1 checksum error\n"); goto out; } qsb = kmalloc(sizeof(*qsb), GFP_KERNEL); if (!qsb) { pr_err("unable to allocate memory.\n"); goto out; } if (fs64_to_cpu(sbi, sb1->sb_serial) > fs64_to_cpu(sbi, sb2->sb_serial)) { /* superblock #1 active */ qnx6_mmi_copy_sb(qsb, sb1); #ifdef CONFIG_QNX6FS_DEBUG qnx6_superblock_debug(qsb, s); #endif memcpy(bh1->b_data, qsb, sizeof(struct qnx6_super_block)); sbi->sb_buf = bh1; sbi->sb = (struct qnx6_super_block *)bh1->b_data; brelse(bh2); pr_info("superblock #1 active\n"); } else { /* superblock #2 active */ qnx6_mmi_copy_sb(qsb, sb2); #ifdef CONFIG_QNX6FS_DEBUG qnx6_superblock_debug(qsb, s); #endif memcpy(bh2->b_data, qsb, sizeof(struct qnx6_super_block)); sbi->sb_buf = bh2; sbi->sb = (struct qnx6_super_block *)bh2->b_data; brelse(bh1); pr_info("superblock #2 active\n"); } kfree(qsb); /* offset for mmi_fs is just SUPERBLOCK_AREA bytes */ sbi->s_blks_off = QNX6_SUPERBLOCK_AREA / s->s_blocksize; /* success */ return sbi->sb; out: if (bh1 != NULL) brelse(bh1); if (bh2 != NULL) brelse(bh2); return NULL; }
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright (c) 2023 Edgeble AI Technologies Pvt. Ltd. */ #include <dt-bindings/gpio/gpio.h> / { chosen { stdout-path = "serial2:1500000n8"; }; vcc3v3_pcie2x1l0: regulator-vcc3v3-pcie2x1l0 { compatible = "regulator-fixed"; regulator-name = "vcc3v3_pcie2x1l0"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; startup-delay-us = <5000>; vin-supply = <&vcc_3v3_s3>; }; vcc3v3_pcie3x2: regulator-vcc3v3-pcie3x2 { compatible = "regulator-fixed"; enable-active-high; gpios = <&gpio2 RK_PC4 GPIO_ACTIVE_HIGH>; /* PCIE_4G_PWEN */ pinctrl-names = "default"; pinctrl-0 = <&pcie3x2_vcc3v3_en>; regulator-name = "vcc3v3_pcie3x2"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; startup-delay-us = <5000>; vin-supply = <&vcc5v0_sys>; }; vcc3v3_pcie3x4: regulator-vcc3v3-pcie3x4 { compatible = "regulator-fixed"; enable-active-high; gpios = <&gpio2 RK_PC5 GPIO_ACTIVE_HIGH>; /* PCIE30x4_PWREN_H */ pinctrl-names = "default"; pinctrl-0 = <&pcie3x4_vcc3v3_en>; regulator-name = "vcc3v3_pcie3x4"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; startup-delay-us = <5000>; vin-supply = <&vcc5v0_sys>; }; vcc5v0_host: regulator-vcc5v0-host { compatible = "regulator-fixed"; enable-active-high; gpio = <&gpio3 RK_PC7 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&vcc5v0_host_en>; regulator-name = "vcc5v0_host"; regulator-min-microvolt = <5000000>; regulator-max-microvolt = <5000000>; regulator-boot-on; regulator-always-on; vin-supply = <&vcc5v0_sys>; }; }; &combphy0_ps { status = "okay"; }; &combphy1_ps { status = "okay"; }; &combphy2_psu { status = "okay"; }; &i2c6 { status = "okay"; hym8563: rtc@51 { compatible = "haoyu,hym8563"; reg = <0x51>; interrupt-parent = <&gpio0>; interrupts = <RK_PB0 IRQ_TYPE_LEVEL_LOW>; #clock-cells = <0>; clock-output-names = "hym8563"; pinctrl-names = "default"; pinctrl-0 = <&hym8563_int>; wakeup-source; }; }; /* ETH */ &pcie2x1l0 { pinctrl-names = "default"; pinctrl-0 = <&pcie2_0_rst>; reset-gpios = <&gpio4 RK_PA5 GPIO_ACTIVE_HIGH>; /* PCIE20_1_PERST_L */ vpcie3v3-supply = <&vcc3v3_pcie2x1l0>; status = "okay"; }; &pcie30phy { status = "okay"; }; /* B-Key and E-Key */ &pcie3x2 { pinctrl-names = "default"; pinctrl-0 = <&pcie3x2_rst>; reset-gpios = <&gpio4 RK_PB6 GPIO_ACTIVE_HIGH>; /* PCIE30X4_PERSTn_M1_L */ vpcie3v3-supply = <&vcc3v3_pcie3x2>; status = "okay"; }; /* M-Key */ &pcie3x4 { pinctrl-names = "default"; pinctrl-0 = <&pcie3x4_rst>; reset-gpios = <&gpio4 RK_PB0 GPIO_ACTIVE_HIGH>; /* PCIE30X2_PERSTn_M1_L */ vpcie3v3-supply = <&vcc3v3_pcie3x4>; status = "okay"; }; &pinctrl { pcie2 { pcie2_0_rst: pcie2-0-rst { rockchip,pins = <4 RK_PA5 RK_FUNC_GPIO &pcfg_pull_none>; }; }; pcie3 { pcie3x2_rst: pcie3x2-rst { rockchip,pins = <4 RK_PB6 RK_FUNC_GPIO &pcfg_pull_none>; }; pcie3x2_vcc3v3_en: pcie3x2-vcc3v3-en { rockchip,pins = <2 RK_PC4 RK_FUNC_GPIO &pcfg_pull_none>; }; pcie3x4_rst: pcie3x4-rst { rockchip,pins = <4 RK_PB0 RK_FUNC_GPIO &pcfg_pull_none>; }; pcie3x4_vcc3v3_en: pcie3x4-vcc3v3-en { rockchip,pins = <2 RK_PC5 RK_FUNC_GPIO &pcfg_pull_none>; }; }; hym8563 { hym8563_int: hym8563-int { rockchip,pins = <0 RK_PB0 RK_FUNC_GPIO &pcfg_pull_none>; }; }; usb { vcc5v0_host_en: vcc5v0-host-en { rockchip,pins = <3 RK_PC7 RK_FUNC_GPIO &pcfg_pull_none>; }; }; }; /* FAN */ &pwm2 { pinctrl-0 = <&pwm2m1_pins>; pinctrl-names = "default"; status = "okay"; }; &sata0 { status = "okay"; }; &sdmmc { bus-width = <4>; cap-mmc-highspeed; cap-sd-highspeed; disable-wp; no-sdio; no-mmc; sd-uhs-sdr104; vmmc-supply = <&vcc_3v3_s3>; vqmmc-supply = <&vccio_sd_s0>; status = "okay"; }; &uart2 { pinctrl-0 = <&uart2m0_xfer>; status = "okay"; }; /* RS232 */ &uart6 { pinctrl-0 = <&uart6m0_xfer>; pinctrl-names = "default"; status = "okay"; }; /* RS485 */ &uart7 { pinctrl-0 = <&uart7m2_xfer>; pinctrl-names = "default"; status = "okay"; }; &u2phy2 { status = "okay"; }; &u2phy2_host { /* connected to USB hub, which is powered by vcc5v0_sys */ phy-supply = <&vcc5v0_sys>; status = "okay"; }; &u2phy3 { status = "okay"; }; &u2phy3_host { phy-supply = <&vcc5v0_host>; status = "okay"; }; &usb_host0_ehci { status = "okay"; }; &usb_host0_ohci { status = "okay"; }; &usb_host1_ehci { status = "okay"; }; &usb_host1_ohci { status = "okay"; }; &usb_host2_xhci { status = "okay"; };
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* ZD1211 USB-WLAN driver for Linux * * Copyright (C) 2005-2007 Ulrich Kunitz <[email protected]> * Copyright (C) 2006-2007 Daniel Drake <[email protected]> */ #ifndef _ZD_CHIP_H #define _ZD_CHIP_H #include <net/mac80211.h> #include "zd_rf.h" #include "zd_usb.h" /* Header for the Media Access Controller (MAC) and the Baseband Processor * (BBP). It appears that the ZD1211 wraps the old ZD1205 with USB glue and * adds a processor for handling the USB protocol. */ /* Address space */ enum { /* CONTROL REGISTERS */ CR_START = 0x9000, /* FIRMWARE */ FW_START = 0xee00, /* EEPROM */ E2P_START = 0xf800, E2P_LEN = 0x800, /* EEPROM layout */ E2P_LOAD_CODE_LEN = 0xe, /* base 0xf800 */ E2P_LOAD_VECT_LEN = 0x9, /* base 0xf80e */ /* E2P_DATA indexes into this */ E2P_DATA_LEN = 0x7e, /* base 0xf817 */ E2P_BOOT_CODE_LEN = 0x760, /* base 0xf895 */ E2P_INTR_VECT_LEN = 0xb, /* base 0xfff5 */ /* Some precomputed offsets into the EEPROM */ E2P_DATA_OFFSET = E2P_LOAD_CODE_LEN + E2P_LOAD_VECT_LEN, E2P_BOOT_CODE_OFFSET = E2P_DATA_OFFSET + E2P_DATA_LEN, }; #define CTL_REG(offset) ((zd_addr_t)(CR_START + (offset))) #define E2P_DATA(offset) ((zd_addr_t)(E2P_START + E2P_DATA_OFFSET + (offset))) #define FWRAW_DATA(offset) ((zd_addr_t)(FW_START + (offset))) /* 8-bit hardware registers */ #define ZD_CR0 CTL_REG(0x0000) #define ZD_CR1 CTL_REG(0x0004) #define ZD_CR2 CTL_REG(0x0008) #define ZD_CR3 CTL_REG(0x000C) #define ZD_CR5 CTL_REG(0x0010) /* bit 5: if set short preamble used * bit 6: filter band - Japan channel 14 on, else off */ #define ZD_CR6 CTL_REG(0x0014) #define ZD_CR7 CTL_REG(0x0018) #define ZD_CR8 CTL_REG(0x001C) #define ZD_CR4 CTL_REG(0x0020) #define ZD_CR9 CTL_REG(0x0024) /* bit 2: antenna switch (together with ZD_CR10) */ #define ZD_CR10 CTL_REG(0x0028) /* bit 1: antenna switch (together with ZD_CR9) * RF2959 controls with ZD_CR11 radion on and off */ #define ZD_CR11 CTL_REG(0x002C) /* bit 6: TX power control for OFDM * RF2959 controls with ZD_CR10 radio on and off */ #define ZD_CR12 CTL_REG(0x0030) #define ZD_CR13 CTL_REG(0x0034) #define ZD_CR14 CTL_REG(0x0038) #define ZD_CR15 CTL_REG(0x003C) #define ZD_CR16 CTL_REG(0x0040) #define ZD_CR17 CTL_REG(0x0044) #define ZD_CR18 CTL_REG(0x0048) #define ZD_CR19 CTL_REG(0x004C) #define ZD_CR20 CTL_REG(0x0050) #define ZD_CR21 CTL_REG(0x0054) #define ZD_CR22 CTL_REG(0x0058) #define ZD_CR23 CTL_REG(0x005C) #define ZD_CR24 CTL_REG(0x0060) /* CCA threshold */ #define ZD_CR25 CTL_REG(0x0064) #define ZD_CR26 CTL_REG(0x0068) #define ZD_CR27 CTL_REG(0x006C) #define ZD_CR28 CTL_REG(0x0070) #define ZD_CR29 CTL_REG(0x0074) #define ZD_CR30 CTL_REG(0x0078) #define ZD_CR31 CTL_REG(0x007C) /* TX power control for RF in * CCK mode */ #define ZD_CR32 CTL_REG(0x0080) #define ZD_CR33 CTL_REG(0x0084) #define ZD_CR34 CTL_REG(0x0088) #define ZD_CR35 CTL_REG(0x008C) #define ZD_CR36 CTL_REG(0x0090) #define ZD_CR37 CTL_REG(0x0094) #define ZD_CR38 CTL_REG(0x0098) #define ZD_CR39 CTL_REG(0x009C) #define ZD_CR40 CTL_REG(0x00A0) #define ZD_CR41 CTL_REG(0x00A4) #define ZD_CR42 CTL_REG(0x00A8) #define ZD_CR43 CTL_REG(0x00AC) #define ZD_CR44 CTL_REG(0x00B0) #define ZD_CR45 CTL_REG(0x00B4) #define ZD_CR46 CTL_REG(0x00B8) #define ZD_CR47 CTL_REG(0x00BC) /* CCK baseband gain * (patch value might be in EEPROM) */ #define ZD_CR48 CTL_REG(0x00C0) #define ZD_CR49 CTL_REG(0x00C4) #define ZD_CR50 CTL_REG(0x00C8) #define ZD_CR51 CTL_REG(0x00CC) /* TX power control for RF in * 6-36M modes */ #define ZD_CR52 CTL_REG(0x00D0) /* TX power control for RF in * 48M mode */ #define ZD_CR53 CTL_REG(0x00D4) /* TX power control for RF in * 54M mode */ #define ZD_CR54 CTL_REG(0x00D8) #define ZD_CR55 CTL_REG(0x00DC) #define ZD_CR56 CTL_REG(0x00E0) #define ZD_CR57 CTL_REG(0x00E4) #define ZD_CR58 CTL_REG(0x00E8) #define ZD_CR59 CTL_REG(0x00EC) #define ZD_CR60 CTL_REG(0x00F0) #define ZD_CR61 CTL_REG(0x00F4) #define ZD_CR62 CTL_REG(0x00F8) #define ZD_CR63 CTL_REG(0x00FC) #define ZD_CR64 CTL_REG(0x0100) #define ZD_CR65 CTL_REG(0x0104) /* OFDM 54M calibration */ #define ZD_CR66 CTL_REG(0x0108) /* OFDM 48M calibration */ #define ZD_CR67 CTL_REG(0x010C) /* OFDM 36M calibration */ #define ZD_CR68 CTL_REG(0x0110) /* CCK calibration */ #define ZD_CR69 CTL_REG(0x0114) #define ZD_CR70 CTL_REG(0x0118) #define ZD_CR71 CTL_REG(0x011C) #define ZD_CR72 CTL_REG(0x0120) #define ZD_CR73 CTL_REG(0x0124) #define ZD_CR74 CTL_REG(0x0128) #define ZD_CR75 CTL_REG(0x012C) #define ZD_CR76 CTL_REG(0x0130) #define ZD_CR77 CTL_REG(0x0134) #define ZD_CR78 CTL_REG(0x0138) #define ZD_CR79 CTL_REG(0x013C) #define ZD_CR80 CTL_REG(0x0140) #define ZD_CR81 CTL_REG(0x0144) #define ZD_CR82 CTL_REG(0x0148) #define ZD_CR83 CTL_REG(0x014C) #define ZD_CR84 CTL_REG(0x0150) #define ZD_CR85 CTL_REG(0x0154) #define ZD_CR86 CTL_REG(0x0158) #define ZD_CR87 CTL_REG(0x015C) #define ZD_CR88 CTL_REG(0x0160) #define ZD_CR89 CTL_REG(0x0164) #define ZD_CR90 CTL_REG(0x0168) #define ZD_CR91 CTL_REG(0x016C) #define ZD_CR92 CTL_REG(0x0170) #define ZD_CR93 CTL_REG(0x0174) #define ZD_CR94 CTL_REG(0x0178) #define ZD_CR95 CTL_REG(0x017C) #define ZD_CR96 CTL_REG(0x0180) #define ZD_CR97 CTL_REG(0x0184) #define ZD_CR98 CTL_REG(0x0188) #define ZD_CR99 CTL_REG(0x018C) #define ZD_CR100 CTL_REG(0x0190) #define ZD_CR101 CTL_REG(0x0194) #define ZD_CR102 CTL_REG(0x0198) #define ZD_CR103 CTL_REG(0x019C) #define ZD_CR104 CTL_REG(0x01A0) #define ZD_CR105 CTL_REG(0x01A4) #define ZD_CR106 CTL_REG(0x01A8) #define ZD_CR107 CTL_REG(0x01AC) #define ZD_CR108 CTL_REG(0x01B0) #define ZD_CR109 CTL_REG(0x01B4) #define ZD_CR110 CTL_REG(0x01B8) #define ZD_CR111 CTL_REG(0x01BC) #define ZD_CR112 CTL_REG(0x01C0) #define ZD_CR113 CTL_REG(0x01C4) #define ZD_CR114 CTL_REG(0x01C8) #define ZD_CR115 CTL_REG(0x01CC) #define ZD_CR116 CTL_REG(0x01D0) #define ZD_CR117 CTL_REG(0x01D4) #define ZD_CR118 CTL_REG(0x01D8) #define ZD_CR119 CTL_REG(0x01DC) #define ZD_CR120 CTL_REG(0x01E0) #define ZD_CR121 CTL_REG(0x01E4) #define ZD_CR122 CTL_REG(0x01E8) #define ZD_CR123 CTL_REG(0x01EC) #define ZD_CR124 CTL_REG(0x01F0) #define ZD_CR125 CTL_REG(0x01F4) #define ZD_CR126 CTL_REG(0x01F8) #define ZD_CR127 CTL_REG(0x01FC) #define ZD_CR128 CTL_REG(0x0200) #define ZD_CR129 CTL_REG(0x0204) #define ZD_CR130 CTL_REG(0x0208) #define ZD_CR131 CTL_REG(0x020C) #define ZD_CR132 CTL_REG(0x0210) #define ZD_CR133 CTL_REG(0x0214) #define ZD_CR134 CTL_REG(0x0218) #define ZD_CR135 CTL_REG(0x021C) #define ZD_CR136 CTL_REG(0x0220) #define ZD_CR137 CTL_REG(0x0224) #define ZD_CR138 CTL_REG(0x0228) #define ZD_CR139 CTL_REG(0x022C) #define ZD_CR140 CTL_REG(0x0230) #define ZD_CR141 CTL_REG(0x0234) #define ZD_CR142 CTL_REG(0x0238) #define ZD_CR143 CTL_REG(0x023C) #define ZD_CR144 CTL_REG(0x0240) #define ZD_CR145 CTL_REG(0x0244) #define ZD_CR146 CTL_REG(0x0248) #define ZD_CR147 CTL_REG(0x024C) #define ZD_CR148 CTL_REG(0x0250) #define ZD_CR149 CTL_REG(0x0254) #define ZD_CR150 CTL_REG(0x0258) #define ZD_CR151 CTL_REG(0x025C) #define ZD_CR152 CTL_REG(0x0260) #define ZD_CR153 CTL_REG(0x0264) #define ZD_CR154 CTL_REG(0x0268) #define ZD_CR155 CTL_REG(0x026C) #define ZD_CR156 CTL_REG(0x0270) #define ZD_CR157 CTL_REG(0x0274) #define ZD_CR158 CTL_REG(0x0278) #define ZD_CR159 CTL_REG(0x027C) #define ZD_CR160 CTL_REG(0x0280) #define ZD_CR161 CTL_REG(0x0284) #define ZD_CR162 CTL_REG(0x0288) #define ZD_CR163 CTL_REG(0x028C) #define ZD_CR164 CTL_REG(0x0290) #define ZD_CR165 CTL_REG(0x0294) #define ZD_CR166 CTL_REG(0x0298) #define ZD_CR167 CTL_REG(0x029C) #define ZD_CR168 CTL_REG(0x02A0) #define ZD_CR169 CTL_REG(0x02A4) #define ZD_CR170 CTL_REG(0x02A8) #define ZD_CR171 CTL_REG(0x02AC) #define ZD_CR172 CTL_REG(0x02B0) #define ZD_CR173 CTL_REG(0x02B4) #define ZD_CR174 CTL_REG(0x02B8) #define ZD_CR175 CTL_REG(0x02BC) #define ZD_CR176 CTL_REG(0x02C0) #define ZD_CR177 CTL_REG(0x02C4) #define ZD_CR178 CTL_REG(0x02C8) #define ZD_CR179 CTL_REG(0x02CC) #define ZD_CR180 CTL_REG(0x02D0) #define ZD_CR181 CTL_REG(0x02D4) #define ZD_CR182 CTL_REG(0x02D8) #define ZD_CR183 CTL_REG(0x02DC) #define ZD_CR184 CTL_REG(0x02E0) #define ZD_CR185 CTL_REG(0x02E4) #define ZD_CR186 CTL_REG(0x02E8) #define ZD_CR187 CTL_REG(0x02EC) #define ZD_CR188 CTL_REG(0x02F0) #define ZD_CR189 CTL_REG(0x02F4) #define ZD_CR190 CTL_REG(0x02F8) #define ZD_CR191 CTL_REG(0x02FC) #define ZD_CR192 CTL_REG(0x0300) #define ZD_CR193 CTL_REG(0x0304) #define ZD_CR194 CTL_REG(0x0308) #define ZD_CR195 CTL_REG(0x030C) #define ZD_CR196 CTL_REG(0x0310) #define ZD_CR197 CTL_REG(0x0314) #define ZD_CR198 CTL_REG(0x0318) #define ZD_CR199 CTL_REG(0x031C) #define ZD_CR200 CTL_REG(0x0320) #define ZD_CR201 CTL_REG(0x0324) #define ZD_CR202 CTL_REG(0x0328) #define ZD_CR203 CTL_REG(0x032C) /* I2C bus template value & flash * control */ #define ZD_CR204 CTL_REG(0x0330) #define ZD_CR205 CTL_REG(0x0334) #define ZD_CR206 CTL_REG(0x0338) #define ZD_CR207 CTL_REG(0x033C) #define ZD_CR208 CTL_REG(0x0340) #define ZD_CR209 CTL_REG(0x0344) #define ZD_CR210 CTL_REG(0x0348) #define ZD_CR211 CTL_REG(0x034C) #define ZD_CR212 CTL_REG(0x0350) #define ZD_CR213 CTL_REG(0x0354) #define ZD_CR214 CTL_REG(0x0358) #define ZD_CR215 CTL_REG(0x035C) #define ZD_CR216 CTL_REG(0x0360) #define ZD_CR217 CTL_REG(0x0364) #define ZD_CR218 CTL_REG(0x0368) #define ZD_CR219 CTL_REG(0x036C) #define ZD_CR220 CTL_REG(0x0370) #define ZD_CR221 CTL_REG(0x0374) #define ZD_CR222 CTL_REG(0x0378) #define ZD_CR223 CTL_REG(0x037C) #define ZD_CR224 CTL_REG(0x0380) #define ZD_CR225 CTL_REG(0x0384) #define ZD_CR226 CTL_REG(0x0388) #define ZD_CR227 CTL_REG(0x038C) #define ZD_CR228 CTL_REG(0x0390) #define ZD_CR229 CTL_REG(0x0394) #define ZD_CR230 CTL_REG(0x0398) #define ZD_CR231 CTL_REG(0x039C) #define ZD_CR232 CTL_REG(0x03A0) #define ZD_CR233 CTL_REG(0x03A4) #define ZD_CR234 CTL_REG(0x03A8) #define ZD_CR235 CTL_REG(0x03AC) #define ZD_CR236 CTL_REG(0x03B0) #define ZD_CR240 CTL_REG(0x03C0) /* bit 7: host-controlled RF register writes * ZD_CR241-ZD_CR245: for hardware controlled writing of RF bits, not needed for * USB */ #define ZD_CR241 CTL_REG(0x03C4) #define ZD_CR242 CTL_REG(0x03C8) #define ZD_CR243 CTL_REG(0x03CC) #define ZD_CR244 CTL_REG(0x03D0) #define ZD_CR245 CTL_REG(0x03D4) #define ZD_CR251 CTL_REG(0x03EC) /* only used for activation and * deactivation of Airoha RFs AL2230 * and AL7230B */ #define ZD_CR252 CTL_REG(0x03F0) #define ZD_CR253 CTL_REG(0x03F4) #define ZD_CR254 CTL_REG(0x03F8) #define ZD_CR255 CTL_REG(0x03FC) #define CR_MAX_PHY_REG 255 /* Taken from the ZYDAS driver, not all of them are relevant for the ZD1211 * driver. */ #define CR_RF_IF_CLK CTL_REG(0x0400) #define CR_RF_IF_DATA CTL_REG(0x0404) #define CR_PE1_PE2 CTL_REG(0x0408) #define CR_PE2_DLY CTL_REG(0x040C) #define CR_LE1 CTL_REG(0x0410) #define CR_LE2 CTL_REG(0x0414) /* Seems to enable/disable GPI (General Purpose IO?) */ #define CR_GPI_EN CTL_REG(0x0418) #define CR_RADIO_PD CTL_REG(0x042C) #define CR_RF2948_PD CTL_REG(0x042C) #define CR_ENABLE_PS_MANUAL_AGC CTL_REG(0x043C) #define CR_CONFIG_PHILIPS CTL_REG(0x0440) #define CR_SA2400_SER_AP CTL_REG(0x0444) #define CR_I2C_WRITE CTL_REG(0x0444) #define CR_SA2400_SER_RP CTL_REG(0x0448) #define CR_RADIO_PE CTL_REG(0x0458) #define CR_RST_BUS_MASTER CTL_REG(0x045C) #define CR_RFCFG CTL_REG(0x0464) #define CR_HSTSCHG CTL_REG(0x046C) #define CR_PHY_ON CTL_REG(0x0474) #define CR_RX_DELAY CTL_REG(0x0478) #define CR_RX_PE_DELAY CTL_REG(0x047C) #define CR_GPIO_1 CTL_REG(0x0490) #define CR_GPIO_2 CTL_REG(0x0494) #define CR_EncryBufMux CTL_REG(0x04A8) #define CR_PS_CTRL CTL_REG(0x0500) #define CR_ADDA_PWR_DWN CTL_REG(0x0504) #define CR_ADDA_MBIAS_WARMTIME CTL_REG(0x0508) #define CR_MAC_PS_STATE CTL_REG(0x050C) #define CR_INTERRUPT CTL_REG(0x0510) #define INT_TX_COMPLETE (1 << 0) #define INT_RX_COMPLETE (1 << 1) #define INT_RETRY_FAIL (1 << 2) #define INT_WAKEUP (1 << 3) #define INT_DTIM_NOTIFY (1 << 5) #define INT_CFG_NEXT_BCN (1 << 6) #define INT_BUS_ABORT (1 << 7) #define INT_TX_FIFO_READY (1 << 8) #define INT_UART (1 << 9) #define INT_TX_COMPLETE_EN (1 << 16) #define INT_RX_COMPLETE_EN (1 << 17) #define INT_RETRY_FAIL_EN (1 << 18) #define INT_WAKEUP_EN (1 << 19) #define INT_DTIM_NOTIFY_EN (1 << 21) #define INT_CFG_NEXT_BCN_EN (1 << 22) #define INT_BUS_ABORT_EN (1 << 23) #define INT_TX_FIFO_READY_EN (1 << 24) #define INT_UART_EN (1 << 25) #define CR_TSF_LOW_PART CTL_REG(0x0514) #define CR_TSF_HIGH_PART CTL_REG(0x0518) /* Following three values are in time units (1024us) * Following condition must be met: * atim < tbtt < bcn */ #define CR_ATIM_WND_PERIOD CTL_REG(0x051C) #define CR_BCN_INTERVAL CTL_REG(0x0520) #define CR_PRE_TBTT CTL_REG(0x0524) /* in units of TU(1024us) */ /* for UART support */ #define CR_UART_RBR_THR_DLL CTL_REG(0x0540) #define CR_UART_DLM_IER CTL_REG(0x0544) #define CR_UART_IIR_FCR CTL_REG(0x0548) #define CR_UART_LCR CTL_REG(0x054c) #define CR_UART_MCR CTL_REG(0x0550) #define CR_UART_LSR CTL_REG(0x0554) #define CR_UART_MSR CTL_REG(0x0558) #define CR_UART_ECR CTL_REG(0x055c) #define CR_UART_STATUS CTL_REG(0x0560) #define CR_PCI_TX_ADDR_P1 CTL_REG(0x0600) #define CR_PCI_TX_AddR_P2 CTL_REG(0x0604) #define CR_PCI_RX_AddR_P1 CTL_REG(0x0608) #define CR_PCI_RX_AddR_P2 CTL_REG(0x060C) /* must be overwritten if custom MAC address will be used */ #define CR_MAC_ADDR_P1 CTL_REG(0x0610) #define CR_MAC_ADDR_P2 CTL_REG(0x0614) #define CR_BSSID_P1 CTL_REG(0x0618) #define CR_BSSID_P2 CTL_REG(0x061C) #define CR_BCN_PLCP_CFG CTL_REG(0x0620) /* Group hash table for filtering incoming packets. * * The group hash table is 64 bit large and split over two parts. The first * part is the lower part. The upper 6 bits of the last byte of the target * address are used as index. Packets are received if the hash table bit is * set. This is used for multicast handling, but for broadcasts (address * ff:ff:ff:ff:ff:ff) the highest bit in the second table must also be set. */ #define CR_GROUP_HASH_P1 CTL_REG(0x0624) #define CR_GROUP_HASH_P2 CTL_REG(0x0628) #define CR_RX_TIMEOUT CTL_REG(0x062C) /* Basic rates supported by the BSS. When producing ACK or CTS messages, the * device will use a rate in this table that is less than or equal to the rate * of the incoming frame which prompted the response. */ #define CR_BASIC_RATE_TBL CTL_REG(0x0630) #define CR_RATE_1M (1 << 0) /* 802.11b */ #define CR_RATE_2M (1 << 1) /* 802.11b */ #define CR_RATE_5_5M (1 << 2) /* 802.11b */ #define CR_RATE_11M (1 << 3) /* 802.11b */ #define CR_RATE_6M (1 << 8) /* 802.11g */ #define CR_RATE_9M (1 << 9) /* 802.11g */ #define CR_RATE_12M (1 << 10) /* 802.11g */ #define CR_RATE_18M (1 << 11) /* 802.11g */ #define CR_RATE_24M (1 << 12) /* 802.11g */ #define CR_RATE_36M (1 << 13) /* 802.11g */ #define CR_RATE_48M (1 << 14) /* 802.11g */ #define CR_RATE_54M (1 << 15) /* 802.11g */ #define CR_RATES_80211G 0xff00 #define CR_RATES_80211B 0x000f /* Mandatory rates required in the BSS. When producing ACK or CTS messages, if * the device could not find an appropriate rate in CR_BASIC_RATE_TBL, it will * look for a rate in this table that is less than or equal to the rate of * the incoming frame. */ #define CR_MANDATORY_RATE_TBL CTL_REG(0x0634) #define CR_RTS_CTS_RATE CTL_REG(0x0638) /* These are all bit indexes in CR_RTS_CTS_RATE, so remember to shift. */ #define RTSCTS_SH_RTS_RATE 0 #define RTSCTS_SH_EXP_CTS_RATE 4 #define RTSCTS_SH_RTS_MOD_TYPE 8 #define RTSCTS_SH_RTS_PMB_TYPE 9 #define RTSCTS_SH_CTS_RATE 16 #define RTSCTS_SH_CTS_MOD_TYPE 24 #define RTSCTS_SH_CTS_PMB_TYPE 25 #define CR_WEP_PROTECT CTL_REG(0x063C) #define CR_RX_THRESHOLD CTL_REG(0x0640) /* register for controlling the LEDS */ #define CR_LED CTL_REG(0x0644) /* masks for controlling LEDs */ #define LED1 (1 << 8) #define LED2 (1 << 9) #define LED_SW (1 << 10) /* Seems to indicate that the configuration is over. */ #define CR_AFTER_PNP CTL_REG(0x0648) #define CR_ACK_TIME_80211 CTL_REG(0x0658) #define CR_RX_OFFSET CTL_REG(0x065c) #define CR_BCN_LENGTH CTL_REG(0x0664) #define CR_PHY_DELAY CTL_REG(0x066C) #define CR_BCN_FIFO CTL_REG(0x0670) #define CR_SNIFFER_ON CTL_REG(0x0674) #define CR_ENCRYPTION_TYPE CTL_REG(0x0678) #define NO_WEP 0 #define WEP64 1 #define WEP128 5 #define WEP256 6 #define ENC_SNIFFER 8 #define CR_ZD1211_RETRY_MAX CTL_REG(0x067C) #define CR_REG1 CTL_REG(0x0680) /* Setting the bit UNLOCK_PHY_REGS disallows the write access to physical * registers, so one could argue it is a LOCK bit. But calling it * LOCK_PHY_REGS makes it confusing. */ #define UNLOCK_PHY_REGS (1 << 7) #define CR_DEVICE_STATE CTL_REG(0x0684) #define CR_UNDERRUN_CNT CTL_REG(0x0688) #define CR_RX_FILTER CTL_REG(0x068c) #define RX_FILTER_ASSOC_REQUEST (1 << 0) #define RX_FILTER_ASSOC_RESPONSE (1 << 1) #define RX_FILTER_REASSOC_REQUEST (1 << 2) #define RX_FILTER_REASSOC_RESPONSE (1 << 3) #define RX_FILTER_PROBE_REQUEST (1 << 4) #define RX_FILTER_PROBE_RESPONSE (1 << 5) /* bits 6 and 7 reserved */ #define RX_FILTER_BEACON (1 << 8) #define RX_FILTER_ATIM (1 << 9) #define RX_FILTER_DISASSOC (1 << 10) #define RX_FILTER_AUTH (1 << 11) #define RX_FILTER_DEAUTH (1 << 12) #define RX_FILTER_PSPOLL (1 << 26) #define RX_FILTER_RTS (1 << 27) #define RX_FILTER_CTS (1 << 28) #define RX_FILTER_ACK (1 << 29) #define RX_FILTER_CFEND (1 << 30) #define RX_FILTER_CFACK (1 << 31) /* Enable bits for all frames you are interested in. */ #define STA_RX_FILTER (RX_FILTER_ASSOC_REQUEST | RX_FILTER_ASSOC_RESPONSE | \ RX_FILTER_REASSOC_REQUEST | RX_FILTER_REASSOC_RESPONSE | \ RX_FILTER_PROBE_REQUEST | RX_FILTER_PROBE_RESPONSE | \ (0x3 << 6) /* vendor driver sets these reserved bits */ | \ RX_FILTER_BEACON | RX_FILTER_ATIM | RX_FILTER_DISASSOC | \ RX_FILTER_AUTH | RX_FILTER_DEAUTH | \ (0x7 << 13) /* vendor driver sets these reserved bits */ | \ RX_FILTER_PSPOLL | RX_FILTER_ACK) /* 0x2400ffff */ #define RX_FILTER_CTRL (RX_FILTER_RTS | RX_FILTER_CTS | \ RX_FILTER_CFEND | RX_FILTER_CFACK) #define BCN_MODE_AP 0x1000000 #define BCN_MODE_IBSS 0x2000000 /* Monitor mode sets filter to 0xfffff */ #define CR_ACK_TIMEOUT_EXT CTL_REG(0x0690) #define CR_BCN_FIFO_SEMAPHORE CTL_REG(0x0694) #define CR_IFS_VALUE CTL_REG(0x0698) #define IFS_VALUE_DIFS_SH 0 #define IFS_VALUE_EIFS_SH 12 #define IFS_VALUE_SIFS_SH 24 #define IFS_VALUE_DEFAULT (( 50 << IFS_VALUE_DIFS_SH) | \ (1148 << IFS_VALUE_EIFS_SH) | \ ( 10 << IFS_VALUE_SIFS_SH)) #define CR_RX_TIME_OUT CTL_REG(0x069C) #define CR_TOTAL_RX_FRM CTL_REG(0x06A0) #define CR_CRC32_CNT CTL_REG(0x06A4) #define CR_CRC16_CNT CTL_REG(0x06A8) #define CR_DECRYPTION_ERR_UNI CTL_REG(0x06AC) #define CR_RX_FIFO_OVERRUN CTL_REG(0x06B0) #define CR_DECRYPTION_ERR_MUL CTL_REG(0x06BC) #define CR_NAV_CNT CTL_REG(0x06C4) #define CR_NAV_CCA CTL_REG(0x06C8) #define CR_RETRY_CNT CTL_REG(0x06CC) #define CR_READ_TCB_ADDR CTL_REG(0x06E8) #define CR_READ_RFD_ADDR CTL_REG(0x06EC) #define CR_CWMIN_CWMAX CTL_REG(0x06F0) #define CR_TOTAL_TX_FRM CTL_REG(0x06F4) /* CAM: Continuous Access Mode (power management) */ #define CR_CAM_MODE CTL_REG(0x0700) #define MODE_IBSS 0x0 #define MODE_AP 0x1 #define MODE_STA 0x2 #define MODE_AP_WDS 0x3 #define CR_CAM_ROLL_TB_LOW CTL_REG(0x0704) #define CR_CAM_ROLL_TB_HIGH CTL_REG(0x0708) #define CR_CAM_ADDRESS CTL_REG(0x070C) #define CR_CAM_DATA CTL_REG(0x0710) #define CR_ROMDIR CTL_REG(0x0714) #define CR_DECRY_ERR_FLG_LOW CTL_REG(0x0714) #define CR_DECRY_ERR_FLG_HIGH CTL_REG(0x0718) #define CR_WEPKEY0 CTL_REG(0x0720) #define CR_WEPKEY1 CTL_REG(0x0724) #define CR_WEPKEY2 CTL_REG(0x0728) #define CR_WEPKEY3 CTL_REG(0x072C) #define CR_WEPKEY4 CTL_REG(0x0730) #define CR_WEPKEY5 CTL_REG(0x0734) #define CR_WEPKEY6 CTL_REG(0x0738) #define CR_WEPKEY7 CTL_REG(0x073C) #define CR_WEPKEY8 CTL_REG(0x0740) #define CR_WEPKEY9 CTL_REG(0x0744) #define CR_WEPKEY10 CTL_REG(0x0748) #define CR_WEPKEY11 CTL_REG(0x074C) #define CR_WEPKEY12 CTL_REG(0x0750) #define CR_WEPKEY13 CTL_REG(0x0754) #define CR_WEPKEY14 CTL_REG(0x0758) #define CR_WEPKEY15 CTL_REG(0x075c) #define CR_TKIP_MODE CTL_REG(0x0760) #define CR_EEPROM_PROTECT0 CTL_REG(0x0758) #define CR_EEPROM_PROTECT1 CTL_REG(0x075C) #define CR_DBG_FIFO_RD CTL_REG(0x0800) #define CR_DBG_SELECT CTL_REG(0x0804) #define CR_FIFO_Length CTL_REG(0x0808) #define CR_RSSI_MGC CTL_REG(0x0810) #define CR_PON CTL_REG(0x0818) #define CR_RX_ON CTL_REG(0x081C) #define CR_TX_ON CTL_REG(0x0820) #define CR_CHIP_EN CTL_REG(0x0824) #define CR_LO_SW CTL_REG(0x0828) #define CR_TXRX_SW CTL_REG(0x082C) #define CR_S_MD CTL_REG(0x0830) #define CR_USB_DEBUG_PORT CTL_REG(0x0888) #define CR_ZD1211B_CWIN_MAX_MIN_AC0 CTL_REG(0x0b00) #define CR_ZD1211B_CWIN_MAX_MIN_AC1 CTL_REG(0x0b04) #define CR_ZD1211B_CWIN_MAX_MIN_AC2 CTL_REG(0x0b08) #define CR_ZD1211B_CWIN_MAX_MIN_AC3 CTL_REG(0x0b0c) #define CR_ZD1211B_AIFS_CTL1 CTL_REG(0x0b10) #define CR_ZD1211B_AIFS_CTL2 CTL_REG(0x0b14) #define CR_ZD1211B_TXOP CTL_REG(0x0b20) #define CR_ZD1211B_RETRY_MAX CTL_REG(0x0b28) /* Value for CR_ZD1211_RETRY_MAX & CR_ZD1211B_RETRY_MAX. Vendor driver uses 2, * we use 0. The first rate is tried (count+2), then all next rates are tried * twice, until 1 Mbits is tried. */ #define ZD1211_RETRY_COUNT 0 #define ZD1211B_RETRY_COUNT \ (ZD1211_RETRY_COUNT << 0)| \ (ZD1211_RETRY_COUNT << 8)| \ (ZD1211_RETRY_COUNT << 16)| \ (ZD1211_RETRY_COUNT << 24) /* Used to detect PLL lock */ #define UW2453_INTR_REG ((zd_addr_t)0x85c1) #define CWIN_SIZE 0x007f043f #define HWINT_ENABLED \ (INT_TX_COMPLETE_EN| \ INT_RX_COMPLETE_EN| \ INT_RETRY_FAIL_EN| \ INT_WAKEUP_EN| \ INT_CFG_NEXT_BCN_EN) #define HWINT_DISABLED 0 #define E2P_PWR_INT_GUARD 8 #define E2P_CHANNEL_COUNT 14 /* If you compare this addresses with the ZYDAS orignal driver, please notify * that we use word mapping for the EEPROM. */ /* * Upper 16 bit contains the regulatory domain. */ #define E2P_SUBID E2P_DATA(0x00) #define E2P_POD E2P_DATA(0x02) #define E2P_MAC_ADDR_P1 E2P_DATA(0x04) #define E2P_MAC_ADDR_P2 E2P_DATA(0x06) #define E2P_PWR_CAL_VALUE1 E2P_DATA(0x08) #define E2P_PWR_CAL_VALUE2 E2P_DATA(0x0a) #define E2P_PWR_CAL_VALUE3 E2P_DATA(0x0c) #define E2P_PWR_CAL_VALUE4 E2P_DATA(0x0e) #define E2P_PWR_INT_VALUE1 E2P_DATA(0x10) #define E2P_PWR_INT_VALUE2 E2P_DATA(0x12) #define E2P_PWR_INT_VALUE3 E2P_DATA(0x14) #define E2P_PWR_INT_VALUE4 E2P_DATA(0x16) /* Contains a bit for each allowed channel. It gives for Europe (ETSI 0x30) * also only 11 channels. */ #define E2P_ALLOWED_CHANNEL E2P_DATA(0x18) #define E2P_DEVICE_VER E2P_DATA(0x20) #define E2P_PHY_REG E2P_DATA(0x25) #define E2P_36M_CAL_VALUE1 E2P_DATA(0x28) #define E2P_36M_CAL_VALUE2 E2P_DATA(0x2a) #define E2P_36M_CAL_VALUE3 E2P_DATA(0x2c) #define E2P_36M_CAL_VALUE4 E2P_DATA(0x2e) #define E2P_11A_INT_VALUE1 E2P_DATA(0x30) #define E2P_11A_INT_VALUE2 E2P_DATA(0x32) #define E2P_11A_INT_VALUE3 E2P_DATA(0x34) #define E2P_11A_INT_VALUE4 E2P_DATA(0x36) #define E2P_48M_CAL_VALUE1 E2P_DATA(0x38) #define E2P_48M_CAL_VALUE2 E2P_DATA(0x3a) #define E2P_48M_CAL_VALUE3 E2P_DATA(0x3c) #define E2P_48M_CAL_VALUE4 E2P_DATA(0x3e) #define E2P_48M_INT_VALUE1 E2P_DATA(0x40) #define E2P_48M_INT_VALUE2 E2P_DATA(0x42) #define E2P_48M_INT_VALUE3 E2P_DATA(0x44) #define E2P_48M_INT_VALUE4 E2P_DATA(0x46) #define E2P_54M_CAL_VALUE1 E2P_DATA(0x48) /* ??? */ #define E2P_54M_CAL_VALUE2 E2P_DATA(0x4a) #define E2P_54M_CAL_VALUE3 E2P_DATA(0x4c) #define E2P_54M_CAL_VALUE4 E2P_DATA(0x4e) #define E2P_54M_INT_VALUE1 E2P_DATA(0x50) #define E2P_54M_INT_VALUE2 E2P_DATA(0x52) #define E2P_54M_INT_VALUE3 E2P_DATA(0x54) #define E2P_54M_INT_VALUE4 E2P_DATA(0x56) /* This word contains the base address of the FW_REG_ registers below */ #define FWRAW_REGS_ADDR FWRAW_DATA(0x1d) /* All 16 bit values, offset from the address in FWRAW_REGS_ADDR */ enum { FW_REG_FIRMWARE_VER = 0, /* non-zero if USB high speed connection */ FW_REG_USB_SPEED = 1, FW_REG_FIX_TX_RATE = 2, /* Seems to be able to control LEDs over the firmware */ FW_REG_LED_LINK_STATUS = 3, FW_REG_SOFT_RESET = 4, FW_REG_FLASH_CHK = 5, }; /* Values for FW_LINK_STATUS */ #define FW_LINK_OFF 0x0 #define FW_LINK_TX 0x1 /* 0x2 - link led on? */ enum { /* indices for ofdm_cal_values */ OFDM_36M_INDEX = 0, OFDM_48M_INDEX = 1, OFDM_54M_INDEX = 2, }; struct zd_chip { struct zd_usb usb; struct zd_rf rf; struct mutex mutex; /* Base address of FW_REG_ registers */ zd_addr_t fw_regs_base; /* EepSetPoint in the vendor driver */ u8 pwr_cal_values[E2P_CHANNEL_COUNT]; /* integration values in the vendor driver */ u8 pwr_int_values[E2P_CHANNEL_COUNT]; /* SetPointOFDM in the vendor driver */ u8 ofdm_cal_values[3][E2P_CHANNEL_COUNT]; u16 link_led; unsigned int pa_type:4, patch_cck_gain:1, patch_cr157:1, patch_6m_band_edge:1, new_phy_layout:1, al2230s_bit:1, supports_tx_led:1; }; static inline struct zd_chip *zd_usb_to_chip(struct zd_usb *usb) { return container_of(usb, struct zd_chip, usb); } static inline struct zd_chip *zd_rf_to_chip(struct zd_rf *rf) { return container_of(rf, struct zd_chip, rf); } #define zd_chip_dev(chip) (&(chip)->usb.intf->dev) void zd_chip_init(struct zd_chip *chip, struct ieee80211_hw *hw, struct usb_interface *intf); void zd_chip_clear(struct zd_chip *chip); int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr); int zd_chip_init_hw(struct zd_chip *chip); int zd_chip_reset(struct zd_chip *chip); static inline int zd_chip_is_zd1211b(struct zd_chip *chip) { return chip->usb.is_zd1211b; } static inline int zd_ioread16v_locked(struct zd_chip *chip, u16 *values, const zd_addr_t *addresses, unsigned int count) { ZD_ASSERT(mutex_is_locked(&chip->mutex)); return zd_usb_ioread16v(&chip->usb, values, addresses, count); } static inline int zd_ioread16_locked(struct zd_chip *chip, u16 *value, const zd_addr_t addr) { ZD_ASSERT(mutex_is_locked(&chip->mutex)); return zd_usb_ioread16(&chip->usb, value, addr); } int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addresses, unsigned int count); static inline int zd_ioread32_locked(struct zd_chip *chip, u32 *value, const zd_addr_t addr) { return zd_ioread32v_locked(chip, value, &addr, 1); } static inline int zd_iowrite16_locked(struct zd_chip *chip, u16 value, zd_addr_t addr) { struct zd_ioreq16 ioreq; ZD_ASSERT(mutex_is_locked(&chip->mutex)); ioreq.addr = addr; ioreq.value = value; return zd_usb_iowrite16v(&chip->usb, &ioreq, 1); } int zd_iowrite16a_locked(struct zd_chip *chip, const struct zd_ioreq16 *ioreqs, unsigned int count); int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, unsigned int count); static inline int zd_iowrite32_locked(struct zd_chip *chip, u32 value, zd_addr_t addr) { struct zd_ioreq32 ioreq; ioreq.addr = addr; ioreq.value = value; return _zd_iowrite32v_locked(chip, &ioreq, 1); } int zd_iowrite32a_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, unsigned int count); static inline int zd_rfwrite_locked(struct zd_chip *chip, u32 value, u8 bits) { ZD_ASSERT(mutex_is_locked(&chip->mutex)); return zd_usb_rfwrite(&chip->usb, value, bits); } int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value); int zd_rfwritev_locked(struct zd_chip *chip, const u32* values, unsigned int count, u8 bits); int zd_rfwritev_cr_locked(struct zd_chip *chip, const u32* values, unsigned int count); /* Locking functions for reading and writing registers. * The different parameters are intentional. */ int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value); int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value); int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value); int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value); int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses, u32 *values, unsigned int count); int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, unsigned int count); int zd_chip_set_channel(struct zd_chip *chip, u8 channel); static inline u8 _zd_chip_get_channel(struct zd_chip *chip) { return chip->rf.channel; } u8 zd_chip_get_channel(struct zd_chip *chip); int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain); int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr); int zd_write_bssid(struct zd_chip *chip, const u8 *bssid); int zd_chip_switch_radio_on(struct zd_chip *chip); int zd_chip_switch_radio_off(struct zd_chip *chip); int zd_chip_enable_int(struct zd_chip *chip); void zd_chip_disable_int(struct zd_chip *chip); int zd_chip_enable_rxtx(struct zd_chip *chip); void zd_chip_disable_rxtx(struct zd_chip *chip); int zd_chip_enable_hwint(struct zd_chip *chip); int zd_chip_disable_hwint(struct zd_chip *chip); int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel); int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip, int preamble); static inline int zd_get_encryption_type(struct zd_chip *chip, u32 *type) { return zd_ioread32(chip, CR_ENCRYPTION_TYPE, type); } static inline int zd_set_encryption_type(struct zd_chip *chip, u32 type) { return zd_iowrite32(chip, CR_ENCRYPTION_TYPE, type); } static inline int zd_chip_get_basic_rates(struct zd_chip *chip, u16 *cr_rates) { return zd_ioread16(chip, CR_BASIC_RATE_TBL, cr_rates); } int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates); int zd_chip_lock_phy_regs(struct zd_chip *chip); int zd_chip_unlock_phy_regs(struct zd_chip *chip); enum led_status { ZD_LED_OFF = 0, ZD_LED_SCANNING = 1, ZD_LED_ASSOCIATED = 2, }; int zd_chip_control_leds(struct zd_chip *chip, enum led_status status); int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period, int type); static inline int zd_get_beacon_interval(struct zd_chip *chip, u32 *interval) { return zd_ioread32(chip, CR_BCN_INTERVAL, interval); } struct rx_status; u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status); struct zd_mc_hash { u32 low; u32 high; }; static inline void zd_mc_clear(struct zd_mc_hash *hash) { hash->low = 0; /* The interfaces must always received broadcasts. * The hash of the broadcast address ff:ff:ff:ff:ff:ff is 63. */ hash->high = 0x80000000; } static inline void zd_mc_add_all(struct zd_mc_hash *hash) { hash->low = hash->high = 0xffffffff; } static inline void zd_mc_add_addr(struct zd_mc_hash *hash, u8 *addr) { unsigned int i = addr[5] >> 2; if (i < 32) { hash->low |= 1 << i; } else { hash->high |= 1 << (i-32); } } int zd_chip_set_multicast_hash(struct zd_chip *chip, struct zd_mc_hash *hash); u64 zd_chip_get_tsf(struct zd_chip *chip); #endif /* _ZD_CHIP_H */
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Toshiba PCI Secure Digital Host Controller Interface driver * * Copyright (C) 2014 Ondrej Zary * Copyright (C) 2007 Richard Betts, All Rights Reserved. * * Based on asic3_mmc.c Copyright (c) 2005 SDG Systems, LLC */ #define HCLK 33000000 /* 33 MHz (PCI clock) */ #define SD_PCICFG_CLKSTOP 0x40 /* 0x1f = clock controller, 0 = stop */ #define SD_PCICFG_GATEDCLK 0x41 /* Gated clock */ #define SD_PCICFG_CLKMODE 0x42 /* Control clock of SD controller */ #define SD_PCICFG_PINSTATUS 0x44 /* R/O: read status of SD pins */ #define SD_PCICFG_POWER1 0x48 #define SD_PCICFG_POWER2 0x49 #define SD_PCICFG_POWER3 0x4a #define SD_PCICFG_CARDDETECT 0x4c #define SD_PCICFG_SLOTS 0x50 /* R/O: define support slot number */ #define SD_PCICFG_EXTGATECLK1 0xf0 /* Could be used for gated clock */ #define SD_PCICFG_EXTGATECLK2 0xf1 /* Could be used for gated clock */ #define SD_PCICFG_EXTGATECLK3 0xf9 /* Bit 1: double buffer/single buffer */ #define SD_PCICFG_SDLED_ENABLE1 0xfa #define SD_PCICFG_SDLED_ENABLE2 0xfe #define SD_PCICFG_CLKMODE_DIV_DISABLE BIT(0) #define SD_PCICFG_CLKSTOP_ENABLE_ALL 0x1f #define SD_PCICFG_LED_ENABLE1_START 0x12 #define SD_PCICFG_LED_ENABLE2_START 0x80 #define SD_PCICFG_PWR1_33V 0x08 /* Set for 3.3 volts */ #define SD_PCICFG_PWR1_OFF 0x00 /* Turn off power */ #define SD_PCICFG_PWR2_AUTO 0x02 #define SD_CMD 0x00 /* also for SDIO */ #define SD_ARG0 0x04 /* also for SDIO */ #define SD_ARG1 0x06 /* also for SDIO */ #define SD_STOPINTERNAL 0x08 #define SD_BLOCKCOUNT 0x0a /* also for SDIO */ #define SD_RESPONSE0 0x0c /* also for SDIO */ #define SD_RESPONSE1 0x0e /* also for SDIO */ #define SD_RESPONSE2 0x10 /* also for SDIO */ #define SD_RESPONSE3 0x12 /* also for SDIO */ #define SD_RESPONSE4 0x14 /* also for SDIO */ #define SD_RESPONSE5 0x16 /* also for SDIO */ #define SD_RESPONSE6 0x18 /* also for SDIO */ #define SD_RESPONSE7 0x1a /* also for SDIO */ #define SD_CARDSTATUS 0x1c /* also for SDIO */ #define SD_BUFFERCTRL 0x1e /* also for SDIO */ #define SD_INTMASKCARD 0x20 /* also for SDIO */ #define SD_INTMASKBUFFER 0x22 /* also for SDIO */ #define SD_CARDCLOCKCTRL 0x24 #define SD_CARDXFERDATALEN 0x26 /* also for SDIO */ #define SD_CARDOPTIONSETUP 0x28 /* also for SDIO */ #define SD_ERRORSTATUS0 0x2c /* also for SDIO */ #define SD_ERRORSTATUS1 0x2e /* also for SDIO */ #define SD_DATAPORT 0x30 /* also for SDIO */ #define SD_TRANSACTIONCTRL 0x34 /* also for SDIO */ #define SD_SOFTWARERESET 0xe0 /* also for SDIO */ /* registers above marked "also for SDIO" and all SDIO registers below can be * accessed at SDIO_BASE + reg address */ #define SDIO_BASE 0x100 #define SDIO_CARDPORTSEL 0x02 #define SDIO_CARDINTCTRL 0x36 #define SDIO_CLOCKNWAITCTRL 0x38 #define SDIO_HOSTINFORMATION 0x3a #define SDIO_ERRORCTRL 0x3c #define SDIO_LEDCTRL 0x3e #define SD_TRANSCTL_SET BIT(8) #define SD_CARDCLK_DIV_DISABLE BIT(15) #define SD_CARDCLK_ENABLE_CLOCK BIT(8) #define SD_CARDCLK_CLK_DIV_512 BIT(7) #define SD_CARDCLK_CLK_DIV_256 BIT(6) #define SD_CARDCLK_CLK_DIV_128 BIT(5) #define SD_CARDCLK_CLK_DIV_64 BIT(4) #define SD_CARDCLK_CLK_DIV_32 BIT(3) #define SD_CARDCLK_CLK_DIV_16 BIT(2) #define SD_CARDCLK_CLK_DIV_8 BIT(1) #define SD_CARDCLK_CLK_DIV_4 BIT(0) #define SD_CARDCLK_CLK_DIV_2 0 #define SD_CARDOPT_REQUIRED 0x000e #define SD_CARDOPT_DATA_RESP_TIMEOUT(x) (((x) & 0x0f) << 4) /* 4 bits */ #define SD_CARDOPT_C2_MODULE_ABSENT BIT(14) #define SD_CARDOPT_DATA_XFR_WIDTH_1 (1 << 15) #define SD_CARDOPT_DATA_XFR_WIDTH_4 (0 << 15) #define SD_CMD_TYPE_CMD (0 << 6) #define SD_CMD_TYPE_ACMD (1 << 6) #define SD_CMD_TYPE_AUTHEN (2 << 6) #define SD_CMD_RESP_TYPE_NONE (3 << 8) #define SD_CMD_RESP_TYPE_EXT_R1 (4 << 8) #define SD_CMD_RESP_TYPE_EXT_R1B (5 << 8) #define SD_CMD_RESP_TYPE_EXT_R2 (6 << 8) #define SD_CMD_RESP_TYPE_EXT_R3 (7 << 8) #define SD_CMD_RESP_TYPE_EXT_R6 (4 << 8) #define SD_CMD_RESP_TYPE_EXT_R7 (4 << 8) #define SD_CMD_DATA_PRESENT BIT(11) #define SD_CMD_TRANSFER_READ BIT(12) #define SD_CMD_MULTI_BLOCK BIT(13) #define SD_CMD_SECURITY_CMD BIT(14) #define SD_STOPINT_ISSUE_CMD12 BIT(0) #define SD_STOPINT_AUTO_ISSUE_CMD12 BIT(8) #define SD_CARD_RESP_END BIT(0) #define SD_CARD_RW_END BIT(2) #define SD_CARD_CARD_REMOVED_0 BIT(3) #define SD_CARD_CARD_INSERTED_0 BIT(4) #define SD_CARD_PRESENT_0 BIT(5) #define SD_CARD_UNK6 BIT(6) #define SD_CARD_WRITE_PROTECT BIT(7) #define SD_CARD_CARD_REMOVED_3 BIT(8) #define SD_CARD_CARD_INSERTED_3 BIT(9) #define SD_CARD_PRESENT_3 BIT(10) #define SD_BUF_CMD_INDEX_ERR BIT(16) #define SD_BUF_CRC_ERR BIT(17) #define SD_BUF_STOP_BIT_END_ERR BIT(18) #define SD_BUF_DATA_TIMEOUT BIT(19) #define SD_BUF_OVERFLOW BIT(20) #define SD_BUF_UNDERFLOW BIT(21) #define SD_BUF_CMD_TIMEOUT BIT(22) #define SD_BUF_UNK7 BIT(23) #define SD_BUF_READ_ENABLE BIT(24) #define SD_BUF_WRITE_ENABLE BIT(25) #define SD_BUF_ILLEGAL_FUNCTION BIT(29) #define SD_BUF_CMD_BUSY BIT(30) #define SD_BUF_ILLEGAL_ACCESS BIT(31) #define SD_ERR0_RESP_CMD_ERR BIT(0) #define SD_ERR0_RESP_NON_CMD12_END_BIT_ERR BIT(2) #define SD_ERR0_RESP_CMD12_END_BIT_ERR BIT(3) #define SD_ERR0_READ_DATA_END_BIT_ERR BIT(4) #define SD_ERR0_WRITE_CRC_STATUS_END_BIT_ERR BIT(5) #define SD_ERR0_RESP_NON_CMD12_CRC_ERR BIT(8) #define SD_ERR0_RESP_CMD12_CRC_ERR BIT(9) #define SD_ERR0_READ_DATA_CRC_ERR BIT(10) #define SD_ERR0_WRITE_CMD_CRC_ERR BIT(11) #define SD_ERR1_NO_CMD_RESP BIT(16) #define SD_ERR1_TIMEOUT_READ_DATA BIT(20) #define SD_ERR1_TIMEOUT_CRS_STATUS BIT(21) #define SD_ERR1_TIMEOUT_CRC_BUSY BIT(22) #define IRQ_DONT_CARE_BITS (SD_CARD_PRESENT_3 \ | SD_CARD_WRITE_PROTECT \ | SD_CARD_UNK6 \ | SD_CARD_PRESENT_0 \ | SD_BUF_UNK7 \ | SD_BUF_CMD_BUSY) struct toshsd_host { struct pci_dev *pdev; struct mmc_host *mmc; spinlock_t lock; struct mmc_request *mrq;/* Current request */ struct mmc_command *cmd;/* Current command */ struct mmc_data *data; /* Current data request */ struct sg_mapping_iter sg_miter; /* for PIO */ void __iomem *ioaddr; /* mapped address */ };
// SPDX-License-Identifier: GPL-2.0+ /* * comedi_8255.c * Generic 8255 digital I/O support * * Split from the Comedi "8255" driver module. * * COMEDI - Linux Control and Measurement Device Interface * Copyright (C) 1998 David A. Schleef <[email protected]> */ /* * Module: comedi_8255 * Description: Generic 8255 support * Author: ds * Updated: Fri, 22 May 2015 12:14:17 +0000 * Status: works * * This module is not used directly by end-users. Rather, it is used by * other drivers to provide support for an 8255 "Programmable Peripheral * Interface" (PPI) chip. * * The classic in digital I/O. The 8255 appears in Comedi as a single * digital I/O subdevice with 24 channels. The channel 0 corresponds to * the 8255's port A, bit 0; channel 23 corresponds to port C, bit 7. * Direction configuration is done in blocks, with channels 0-7, 8-15, * 16-19, and 20-23 making up the 4 blocks. The only 8255 mode * supported is mode 0. */ #include <linux/module.h> #include <linux/comedi/comedidev.h> #include <linux/comedi/comedi_8255.h> struct subdev_8255_private { unsigned long context; int (*io)(struct comedi_device *dev, int dir, int port, int data, unsigned long context); }; #ifdef CONFIG_HAS_IOPORT static int subdev_8255_io(struct comedi_device *dev, int dir, int port, int data, unsigned long regbase) { if (dir) { outb(data, dev->iobase + regbase + port); return 0; } return inb(dev->iobase + regbase + port); } #endif /* CONFIG_HAS_IOPORT */ static int subdev_8255_mmio(struct comedi_device *dev, int dir, int port, int data, unsigned long regbase) { if (dir) { writeb(data, dev->mmio + regbase + port); return 0; } return readb(dev->mmio + regbase + port); } static int subdev_8255_insn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct subdev_8255_private *spriv = s->private; unsigned long context = spriv->context; unsigned int mask; unsigned int v; mask = comedi_dio_update_state(s, data); if (mask) { if (mask & 0xff) spriv->io(dev, 1, I8255_DATA_A_REG, s->state & 0xff, context); if (mask & 0xff00) spriv->io(dev, 1, I8255_DATA_B_REG, (s->state >> 8) & 0xff, context); if (mask & 0xff0000) spriv->io(dev, 1, I8255_DATA_C_REG, (s->state >> 16) & 0xff, context); } v = spriv->io(dev, 0, I8255_DATA_A_REG, 0, context); v |= (spriv->io(dev, 0, I8255_DATA_B_REG, 0, context) << 8); v |= (spriv->io(dev, 0, I8255_DATA_C_REG, 0, context) << 16); data[1] = v; return insn->n; } static void subdev_8255_do_config(struct comedi_device *dev, struct comedi_subdevice *s) { struct subdev_8255_private *spriv = s->private; unsigned long context = spriv->context; int config; config = I8255_CTRL_CW; /* 1 in io_bits indicates output, 1 in config indicates input */ if (!(s->io_bits & 0x0000ff)) config |= I8255_CTRL_A_IO; if (!(s->io_bits & 0x00ff00)) config |= I8255_CTRL_B_IO; if (!(s->io_bits & 0x0f0000)) config |= I8255_CTRL_C_LO_IO; if (!(s->io_bits & 0xf00000)) config |= I8255_CTRL_C_HI_IO; spriv->io(dev, 1, I8255_CTRL_REG, config, context); } static int subdev_8255_insn_config(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { unsigned int chan = CR_CHAN(insn->chanspec); unsigned int mask; int ret; if (chan < 8) mask = 0x0000ff; else if (chan < 16) mask = 0x00ff00; else if (chan < 20) mask = 0x0f0000; else mask = 0xf00000; ret = comedi_dio_insn_config(dev, s, insn, data, mask); if (ret) return ret; subdev_8255_do_config(dev, s); return insn->n; } static int __subdev_8255_init(struct comedi_device *dev, struct comedi_subdevice *s, int (*io)(struct comedi_device *dev, int dir, int port, int data, unsigned long context), unsigned long context) { struct subdev_8255_private *spriv; if (!io) return -EINVAL; spriv = comedi_alloc_spriv(s, sizeof(*spriv)); if (!spriv) return -ENOMEM; spriv->context = context; spriv->io = io; s->type = COMEDI_SUBD_DIO; s->subdev_flags = SDF_READABLE | SDF_WRITABLE; s->n_chan = 24; s->range_table = &range_digital; s->maxdata = 1; s->insn_bits = subdev_8255_insn; s->insn_config = subdev_8255_insn_config; subdev_8255_do_config(dev, s); return 0; } #ifdef CONFIG_HAS_IOPORT /** * subdev_8255_io_init - initialize DIO subdevice for driving I/O mapped 8255 * @dev: comedi device owning subdevice * @s: comedi subdevice to initialize * @regbase: offset of 8255 registers from dev->iobase * * Initializes a comedi subdevice as a DIO subdevice driving an 8255 chip. * * Return: -ENOMEM if failed to allocate memory, zero on success. */ int subdev_8255_io_init(struct comedi_device *dev, struct comedi_subdevice *s, unsigned long regbase) { return __subdev_8255_init(dev, s, subdev_8255_io, regbase); } EXPORT_SYMBOL_GPL(subdev_8255_io_init); #endif /* CONFIG_HAS_IOPORT */ /** * subdev_8255_mm_init - initialize DIO subdevice for driving mmio-mapped 8255 * @dev: comedi device owning subdevice * @s: comedi subdevice to initialize * @regbase: offset of 8255 registers from dev->mmio * * Initializes a comedi subdevice as a DIO subdevice driving an 8255 chip. * * Return: -ENOMEM if failed to allocate memory, zero on success. */ int subdev_8255_mm_init(struct comedi_device *dev, struct comedi_subdevice *s, unsigned long regbase) { return __subdev_8255_init(dev, s, subdev_8255_mmio, regbase); } EXPORT_SYMBOL_GPL(subdev_8255_mm_init); /** * subdev_8255_cb_init - initialize DIO subdevice for driving callback-mapped 8255 * @dev: comedi device owning subdevice * @s: comedi subdevice to initialize * @io: register I/O call-back function * @context: call-back context * * Initializes a comedi subdevice as a DIO subdevice driving an 8255 chip. * * The prototype of the I/O call-back function is of the following form: * * int my_8255_callback(struct comedi_device *dev, int dir, int port, * int data, unsigned long context); * * where 'dev', and 'context' match the values passed to this function, * 'port' is the 8255 port number 0 to 3 (including the control port), 'dir' * is the direction (0 for read, 1 for write) and 'data' is the value to be * written. It should return 0 if writing or the value read if reading. * * * Return: -ENOMEM if failed to allocate memory, zero on success. */ int subdev_8255_cb_init(struct comedi_device *dev, struct comedi_subdevice *s, int (*io)(struct comedi_device *dev, int dir, int port, int data, unsigned long context), unsigned long context) { return __subdev_8255_init(dev, s, io, context); } EXPORT_SYMBOL_GPL(subdev_8255_cb_init); /** * subdev_8255_regbase - get offset of 8255 registers or call-back context * @s: comedi subdevice * * Returns the 'regbase' or 'context' parameter that was previously passed to * subdev_8255_io_init(), subdev_8255_mm_init(), or subdev_8255_cb_init() to * set up the subdevice. Only valid if the subdevice was set up successfully. */ unsigned long subdev_8255_regbase(struct comedi_subdevice *s) { struct subdev_8255_private *spriv = s->private; return spriv->context; } EXPORT_SYMBOL_GPL(subdev_8255_regbase); static int __init comedi_8255_module_init(void) { return 0; } module_init(comedi_8255_module_init); static void __exit comedi_8255_module_exit(void) { } module_exit(comedi_8255_module_exit); MODULE_AUTHOR("Comedi https://www.comedi.org"); MODULE_DESCRIPTION("Comedi: Generic 8255 digital I/O support"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2006-2008 Nokia Corporation * * Test random reads, writes and erases on MTD device. * * Author: Adrian Hunter <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/err.h> #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/vmalloc.h> #include <linux/random.h> #include "mtd_test.h" static int dev = -EINVAL; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); static int count = 10000; module_param(count, int, S_IRUGO); MODULE_PARM_DESC(count, "Number of operations to do (default is 10000)"); static struct mtd_info *mtd; static unsigned char *writebuf; static unsigned char *readbuf; static unsigned char *bbt; static int *offsets; static int pgsize; static int bufsize; static int ebcnt; static int pgcnt; static int rand_eb(void) { unsigned int eb; again: /* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */ eb = get_random_u32_below(ebcnt - 1); if (bbt[eb]) goto again; return eb; } static int rand_offs(void) { return get_random_u32_below(bufsize); } static int rand_len(int offs) { return get_random_u32_below(bufsize - offs); } static int do_read(void) { int eb = rand_eb(); int offs = rand_offs(); int len = rand_len(offs); loff_t addr; if (bbt[eb + 1]) { if (offs >= mtd->erasesize) offs -= mtd->erasesize; if (offs + len > mtd->erasesize) len = mtd->erasesize - offs; } addr = (loff_t)eb * mtd->erasesize + offs; return mtdtest_read(mtd, addr, len, readbuf); } static int do_write(void) { int eb = rand_eb(), offs, err, len; loff_t addr; offs = offsets[eb]; if (offs >= mtd->erasesize) { err = mtdtest_erase_eraseblock(mtd, eb); if (err) return err; offs = offsets[eb] = 0; } len = rand_len(offs); len = ((len + pgsize - 1) / pgsize) * pgsize; if (offs + len > mtd->erasesize) { if (bbt[eb + 1]) len = mtd->erasesize - offs; else { err = mtdtest_erase_eraseblock(mtd, eb + 1); if (err) return err; offsets[eb + 1] = 0; } } addr = (loff_t)eb * mtd->erasesize + offs; err = mtdtest_write(mtd, addr, len, writebuf); if (unlikely(err)) return err; offs += len; while (offs > mtd->erasesize) { offsets[eb++] = mtd->erasesize; offs -= mtd->erasesize; } offsets[eb] = offs; return 0; } static int do_operation(void) { if (get_random_u32_below(2)) return do_read(); else return do_write(); } static int __init mtd_stresstest_init(void) { int err; int i, op; uint64_t tmp; printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); if (dev < 0) { pr_info("Please specify a valid mtd-device via module parameter\n"); pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); return -EINVAL; } pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); pr_err("error: cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else pgsize = mtd->writesize; tmp = mtd->size; do_div(tmp, mtd->erasesize); ebcnt = tmp; pgcnt = mtd->erasesize / pgsize; pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, pgsize, ebcnt, pgcnt, mtd->oobsize); if (ebcnt < 2) { pr_err("error: need at least 2 eraseblocks\n"); err = -ENOSPC; goto out_put_mtd; } /* Read or write up 2 eraseblocks at a time */ bufsize = mtd->erasesize * 2; err = -ENOMEM; readbuf = vmalloc(bufsize); writebuf = vmalloc(bufsize); offsets = kmalloc_array(ebcnt, sizeof(int), GFP_KERNEL); if (!readbuf || !writebuf || !offsets) goto out; for (i = 0; i < ebcnt; i++) offsets[i] = mtd->erasesize; get_random_bytes(writebuf, bufsize); bbt = kzalloc(ebcnt, GFP_KERNEL); if (!bbt) goto out; err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Do operations */ pr_info("doing operations\n"); for (op = 0; op < count; op++) { if ((op & 1023) == 0) pr_info("%d operations done\n", op); err = do_operation(); if (err) goto out; err = mtdtest_relax(); if (err) goto out; } pr_info("finished, %d operations done\n", op); out: kfree(offsets); kfree(bbt); vfree(writebuf); vfree(readbuf); out_put_mtd: put_mtd_device(mtd); if (err) pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } module_init(mtd_stresstest_init); static void __exit mtd_stresstest_exit(void) { return; } module_exit(mtd_stresstest_exit); MODULE_DESCRIPTION("Stress test module"); MODULE_AUTHOR("Adrian Hunter"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <linux/if.h> #include <linux/if_tun.h> #include <linux/netlink.h> #include <linux/rtnetlink.h> #include <sys/ioctl.h> #include <sys/socket.h> #include "../kselftest_harness.h" static int tun_attach(int fd, char *dev) { struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strcpy(ifr.ifr_name, dev); ifr.ifr_flags = IFF_ATTACH_QUEUE; return ioctl(fd, TUNSETQUEUE, (void *) &ifr); } static int tun_detach(int fd, char *dev) { struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strcpy(ifr.ifr_name, dev); ifr.ifr_flags = IFF_DETACH_QUEUE; return ioctl(fd, TUNSETQUEUE, (void *) &ifr); } static int tun_alloc(char *dev) { struct ifreq ifr; int fd, err; fd = open("/dev/net/tun", O_RDWR); if (fd < 0) { fprintf(stderr, "can't open tun: %s\n", strerror(errno)); return fd; } memset(&ifr, 0, sizeof(ifr)); strcpy(ifr.ifr_name, dev); ifr.ifr_flags = IFF_TAP | IFF_NAPI | IFF_MULTI_QUEUE; err = ioctl(fd, TUNSETIFF, (void *) &ifr); if (err < 0) { fprintf(stderr, "can't TUNSETIFF: %s\n", strerror(errno)); close(fd); return err; } strcpy(dev, ifr.ifr_name); return fd; } static int tun_delete(char *dev) { struct { struct nlmsghdr nh; struct ifinfomsg ifm; unsigned char data[64]; } req; struct rtattr *rta; int ret, rtnl; rtnl = socket(AF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE); if (rtnl < 0) { fprintf(stderr, "can't open rtnl: %s\n", strerror(errno)); return 1; } memset(&req, 0, sizeof(req)); req.nh.nlmsg_len = NLMSG_ALIGN(NLMSG_LENGTH(sizeof(req.ifm))); req.nh.nlmsg_flags = NLM_F_REQUEST; req.nh.nlmsg_type = RTM_DELLINK; req.ifm.ifi_family = AF_UNSPEC; rta = (struct rtattr *)(((char *)&req) + NLMSG_ALIGN(req.nh.nlmsg_len)); rta->rta_type = IFLA_IFNAME; rta->rta_len = RTA_LENGTH(IFNAMSIZ); req.nh.nlmsg_len += rta->rta_len; memcpy(RTA_DATA(rta), dev, IFNAMSIZ); ret = send(rtnl, &req, req.nh.nlmsg_len, 0); if (ret < 0) fprintf(stderr, "can't send: %s\n", strerror(errno)); ret = (unsigned int)ret != req.nh.nlmsg_len; close(rtnl); return ret; } FIXTURE(tun) { char ifname[IFNAMSIZ]; int fd, fd2; }; FIXTURE_SETUP(tun) { memset(self->ifname, 0, sizeof(self->ifname)); self->fd = tun_alloc(self->ifname); ASSERT_GE(self->fd, 0); self->fd2 = tun_alloc(self->ifname); ASSERT_GE(self->fd2, 0); } FIXTURE_TEARDOWN(tun) { if (self->fd >= 0) close(self->fd); if (self->fd2 >= 0) close(self->fd2); } TEST_F(tun, delete_detach_close) { EXPECT_EQ(tun_delete(self->ifname), 0); EXPECT_EQ(tun_detach(self->fd, self->ifname), -1); EXPECT_EQ(errno, 22); } TEST_F(tun, detach_delete_close) { EXPECT_EQ(tun_detach(self->fd, self->ifname), 0); EXPECT_EQ(tun_delete(self->ifname), 0); } TEST_F(tun, detach_close_delete) { EXPECT_EQ(tun_detach(self->fd, self->ifname), 0); close(self->fd); self->fd = -1; EXPECT_EQ(tun_delete(self->ifname), 0); } TEST_F(tun, reattach_delete_close) { EXPECT_EQ(tun_detach(self->fd, self->ifname), 0); EXPECT_EQ(tun_attach(self->fd, self->ifname), 0); EXPECT_EQ(tun_delete(self->ifname), 0); } TEST_F(tun, reattach_close_delete) { EXPECT_EQ(tun_detach(self->fd, self->ifname), 0); EXPECT_EQ(tun_attach(self->fd, self->ifname), 0); close(self->fd); self->fd = -1; EXPECT_EQ(tun_delete(self->ifname), 0); } TEST_HARNESS_MAIN
/* SPDX-License-Identifier: 0BSD */ /* * XZ decompressor * * Authors: Lasse Collin <[email protected]> * Igor Pavlov <https://7-zip.org/> */ #ifndef XZ_H #define XZ_H #ifdef __KERNEL__ # include <linux/stddef.h> # include <linux/types.h> #else # include <stddef.h> # include <stdint.h> #endif /** * enum xz_mode - Operation mode * * @XZ_SINGLE: Single-call mode. This uses less RAM than * multi-call modes, because the LZMA2 * dictionary doesn't need to be allocated as * part of the decoder state. All required data * structures are allocated at initialization, * so xz_dec_run() cannot return XZ_MEM_ERROR. * @XZ_PREALLOC: Multi-call mode with preallocated LZMA2 * dictionary buffer. All data structures are * allocated at initialization, so xz_dec_run() * cannot return XZ_MEM_ERROR. * @XZ_DYNALLOC: Multi-call mode. The LZMA2 dictionary is * allocated once the required size has been * parsed from the stream headers. If the * allocation fails, xz_dec_run() will return * XZ_MEM_ERROR. * * It is possible to enable support only for a subset of the above * modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC, * or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled * with support for all operation modes, but the preboot code may * be built with fewer features to minimize code size. */ enum xz_mode { XZ_SINGLE, XZ_PREALLOC, XZ_DYNALLOC }; /** * enum xz_ret - Return codes * @XZ_OK: Everything is OK so far. More input or more * output space is required to continue. This * return code is possible only in multi-call mode * (XZ_PREALLOC or XZ_DYNALLOC). * @XZ_STREAM_END: Operation finished successfully. * @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding * is still possible in multi-call mode by simply * calling xz_dec_run() again. * Note that this return value is used only if * XZ_DEC_ANY_CHECK was defined at build time, * which is not used in the kernel. Unsupported * check types return XZ_OPTIONS_ERROR if * XZ_DEC_ANY_CHECK was not defined at build time. * @XZ_MEM_ERROR: Allocating memory failed. This return code is * possible only if the decoder was initialized * with XZ_DYNALLOC. The amount of memory that was * tried to be allocated was no more than the * dict_max argument given to xz_dec_init(). * @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than * allowed by the dict_max argument given to * xz_dec_init(). This return value is possible * only in multi-call mode (XZ_PREALLOC or * XZ_DYNALLOC); the single-call mode (XZ_SINGLE) * ignores the dict_max argument. * @XZ_FORMAT_ERROR: File format was not recognized (wrong magic * bytes). * @XZ_OPTIONS_ERROR: This implementation doesn't support the requested * compression options. In the decoder this means * that the header CRC32 matches, but the header * itself specifies something that we don't support. * @XZ_DATA_ERROR: Compressed data is corrupt. * @XZ_BUF_ERROR: Cannot make any progress. Details are slightly * different between multi-call and single-call * mode; more information below. * * In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls * to XZ code cannot consume any input and cannot produce any new output. * This happens when there is no new input available, or the output buffer * is full while at least one output byte is still pending. Assuming your * code is not buggy, you can get this error only when decoding a compressed * stream that is truncated or otherwise corrupt. * * In single-call mode, XZ_BUF_ERROR is returned only when the output buffer * is too small or the compressed input is corrupt in a way that makes the * decoder produce more output than the caller expected. When it is * (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR * is used instead of XZ_BUF_ERROR. */ enum xz_ret { XZ_OK, XZ_STREAM_END, XZ_UNSUPPORTED_CHECK, XZ_MEM_ERROR, XZ_MEMLIMIT_ERROR, XZ_FORMAT_ERROR, XZ_OPTIONS_ERROR, XZ_DATA_ERROR, XZ_BUF_ERROR }; /** * struct xz_buf - Passing input and output buffers to XZ code * @in: Beginning of the input buffer. This may be NULL if and only * if in_pos is equal to in_size. * @in_pos: Current position in the input buffer. This must not exceed * in_size. * @in_size: Size of the input buffer * @out: Beginning of the output buffer. This may be NULL if and only * if out_pos is equal to out_size. * @out_pos: Current position in the output buffer. This must not exceed * out_size. * @out_size: Size of the output buffer * * Only the contents of the output buffer from out[out_pos] onward, and * the variables in_pos and out_pos are modified by the XZ code. */ struct xz_buf { const uint8_t *in; size_t in_pos; size_t in_size; uint8_t *out; size_t out_pos; size_t out_size; }; /* * struct xz_dec - Opaque type to hold the XZ decoder state */ struct xz_dec; /** * xz_dec_init() - Allocate and initialize a XZ decoder state * @mode: Operation mode * @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for * multi-call decoding. This is ignored in single-call mode * (mode == XZ_SINGLE). LZMA2 dictionary is always 2^n bytes * or 2^n + 2^(n-1) bytes (the latter sizes are less common * in practice), so other values for dict_max don't make sense. * In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB, * 512 KiB, and 1 MiB are probably the only reasonable values, * except for kernel and initramfs images where a bigger * dictionary can be fine and useful. * * Single-call mode (XZ_SINGLE): xz_dec_run() decodes the whole stream at * once. The caller must provide enough output space or the decoding will * fail. The output space is used as the dictionary buffer, which is why * there is no need to allocate the dictionary as part of the decoder's * internal state. * * Because the output buffer is used as the workspace, streams encoded using * a big dictionary are not a problem in single-call mode. It is enough that * the output buffer is big enough to hold the actual uncompressed data; it * can be smaller than the dictionary size stored in the stream headers. * * Multi-call mode with preallocated dictionary (XZ_PREALLOC): dict_max bytes * of memory is preallocated for the LZMA2 dictionary. This way there is no * risk that xz_dec_run() could run out of memory, since xz_dec_run() will * never allocate any memory. Instead, if the preallocated dictionary is too * small for decoding the given input stream, xz_dec_run() will return * XZ_MEMLIMIT_ERROR. Thus, it is important to know what kind of data will be * decoded to avoid allocating excessive amount of memory for the dictionary. * * Multi-call mode with dynamically allocated dictionary (XZ_DYNALLOC): * dict_max specifies the maximum allowed dictionary size that xz_dec_run() * may allocate once it has parsed the dictionary size from the stream * headers. This way excessive allocations can be avoided while still * limiting the maximum memory usage to a sane value to prevent running the * system out of memory when decompressing streams from untrusted sources. * * On success, xz_dec_init() returns a pointer to struct xz_dec, which is * ready to be used with xz_dec_run(). If memory allocation fails, * xz_dec_init() returns NULL. */ struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max); /** * xz_dec_run() - Run the XZ decoder * @s: Decoder state allocated using xz_dec_init() * @b: Input and output buffers * * The possible return values depend on build options and operation mode. * See enum xz_ret for details. * * Note that if an error occurs in single-call mode (return value is not * XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the * contents of the output buffer from b->out[b->out_pos] onward are * undefined. This is true even after XZ_BUF_ERROR, because with some filter * chains, there may be a second pass over the output buffer, and this pass * cannot be properly done if the output buffer is truncated. Thus, you * cannot give the single-call decoder a too small buffer and then expect to * get that amount valid data from the beginning of the stream. You must use * the multi-call decoder if you don't want to uncompress the whole stream. */ enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b); /** * xz_dec_reset() - Reset an already allocated decoder state * @s: Decoder state allocated using xz_dec_init() * * This function can be used to reset the multi-call decoder state without * freeing and reallocating memory with xz_dec_end() and xz_dec_init(). * * In single-call mode, xz_dec_reset() is always called in the beginning of * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in * multi-call mode. */ void xz_dec_reset(struct xz_dec *s); /** * xz_dec_end() - Free the memory allocated for the decoder state * @s: Decoder state allocated using xz_dec_init(). If s is NULL, * this function does nothing. */ void xz_dec_end(struct xz_dec *s); /** * DOC: MicroLZMA decompressor * * This MicroLZMA header format was created for use in EROFS but may be used * by others too. **In most cases one needs the XZ APIs above instead.** * * The compressed format supported by this decoder is a raw LZMA stream * whose first byte (always 0x00) has been replaced with bitwise-negation * of the LZMA properties (lc/lp/pb) byte. For example, if lc/lp/pb is * 3/0/2, the first byte is 0xA2. This way the first byte can never be 0x00. * Just like with LZMA2, lc + lp <= 4 must be true. The LZMA end-of-stream * marker must not be used. The unused values are reserved for future use. */ /* * struct xz_dec_microlzma - Opaque type to hold the MicroLZMA decoder state */ struct xz_dec_microlzma; /** * xz_dec_microlzma_alloc() - Allocate memory for the MicroLZMA decoder * @mode: XZ_SINGLE or XZ_PREALLOC * @dict_size: LZMA dictionary size. This must be at least 4 KiB and * at most 3 GiB. * * In contrast to xz_dec_init(), this function only allocates the memory * and remembers the dictionary size. xz_dec_microlzma_reset() must be used * before calling xz_dec_microlzma_run(). * * The amount of allocated memory is a little less than 30 KiB with XZ_SINGLE. * With XZ_PREALLOC also a dictionary buffer of dict_size bytes is allocated. * * On success, xz_dec_microlzma_alloc() returns a pointer to * struct xz_dec_microlzma. If memory allocation fails or * dict_size is invalid, NULL is returned. */ struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode, uint32_t dict_size); /** * xz_dec_microlzma_reset() - Reset the MicroLZMA decoder state * @s: Decoder state allocated using xz_dec_microlzma_alloc() * @comp_size: Compressed size of the input stream * @uncomp_size: Uncompressed size of the input stream. A value smaller * than the real uncompressed size of the input stream can * be specified if uncomp_size_is_exact is set to false. * uncomp_size can never be set to a value larger than the * expected real uncompressed size because it would eventually * result in XZ_DATA_ERROR. * @uncomp_size_is_exact: This is an int instead of bool to avoid * requiring stdbool.h. This should normally be set to true. * When this is set to false, error detection is weaker. */ void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size, uint32_t uncomp_size, int uncomp_size_is_exact); /** * xz_dec_microlzma_run() - Run the MicroLZMA decoder * @s: Decoder state initialized using xz_dec_microlzma_reset() * @b: Input and output buffers * * This works similarly to xz_dec_run() with a few important differences. * Only the differences are documented here. * * The only possible return values are XZ_OK, XZ_STREAM_END, and * XZ_DATA_ERROR. This function cannot return XZ_BUF_ERROR: if no progress * is possible due to lack of input data or output space, this function will * keep returning XZ_OK. Thus, the calling code must be written so that it * will eventually provide input and output space matching (or exceeding) * comp_size and uncomp_size arguments given to xz_dec_microlzma_reset(). * If the caller cannot do this (for example, if the input file is truncated * or otherwise corrupt), the caller must detect this error by itself to * avoid an infinite loop. * * If the compressed data seems to be corrupt, XZ_DATA_ERROR is returned. * This can happen also when incorrect dictionary, uncompressed, or * compressed sizes have been specified. * * With XZ_PREALLOC only: As an extra feature, b->out may be NULL to skip over * uncompressed data. This way the caller doesn't need to provide a temporary * output buffer for the bytes that will be ignored. * * With XZ_SINGLE only: In contrast to xz_dec_run(), the return value XZ_OK * is also possible and thus XZ_SINGLE is actually a limited multi-call mode. * After XZ_OK the bytes decoded so far may be read from the output buffer. * It is possible to continue decoding but the variables b->out and b->out_pos * MUST NOT be changed by the caller. Increasing the value of b->out_size is * allowed to make more output space available; one doesn't need to provide * space for the whole uncompressed data on the first call. The input buffer * may be changed normally like with XZ_PREALLOC. This way input data can be * provided from non-contiguous memory. */ enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s, struct xz_buf *b); /** * xz_dec_microlzma_end() - Free the memory allocated for the decoder state * @s: Decoder state allocated using xz_dec_microlzma_alloc(). * If s is NULL, this function does nothing. */ void xz_dec_microlzma_end(struct xz_dec_microlzma *s); /* * Standalone build (userspace build or in-kernel build for boot time use) * needs a CRC32 implementation. For normal in-kernel use, kernel's own * CRC32 module is used instead, and users of this module don't need to * care about the functions below. */ #ifndef XZ_INTERNAL_CRC32 # ifdef __KERNEL__ # define XZ_INTERNAL_CRC32 0 # else # define XZ_INTERNAL_CRC32 1 # endif #endif #if XZ_INTERNAL_CRC32 /* * This must be called before any other xz_* function to initialize * the CRC32 lookup table. */ void xz_crc32_init(void); /* * Update CRC32 value using the polynomial from IEEE-802.3. To start a new * calculation, the third argument must be zero. To continue the calculation, * the previously returned value is passed as the third argument. */ uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc); #endif #endif
// SPDX-License-Identifier: GPL-2.0-only /* * Backup battery driver for Wolfson Microelectronics wm831x PMICs * * Copyright 2009 Wolfson Microelectronics PLC. */ #include <linux/module.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/mfd/wm831x/core.h> #include <linux/mfd/wm831x/auxadc.h> #include <linux/mfd/wm831x/pmu.h> #include <linux/mfd/wm831x/pdata.h> struct wm831x_backup { struct wm831x *wm831x; struct power_supply *backup; struct power_supply_desc backup_desc; char name[20]; }; static int wm831x_backup_read_voltage(struct wm831x *wm831x, enum wm831x_auxadc src, union power_supply_propval *val) { int ret; ret = wm831x_auxadc_read_uv(wm831x, src); if (ret >= 0) val->intval = ret; return ret; } /********************************************************************* * Backup supply properties *********************************************************************/ static void wm831x_config_backup(struct wm831x *wm831x) { struct wm831x_pdata *wm831x_pdata = wm831x->dev->platform_data; struct wm831x_backup_pdata *pdata; int ret, reg; if (!wm831x_pdata || !wm831x_pdata->backup) { dev_warn(wm831x->dev, "No backup battery charger configuration\n"); return; } pdata = wm831x_pdata->backup; reg = 0; if (pdata->charger_enable) reg |= WM831X_BKUP_CHG_ENA | WM831X_BKUP_BATT_DET_ENA; if (pdata->no_constant_voltage) reg |= WM831X_BKUP_CHG_MODE; switch (pdata->vlim) { case 2500: break; case 3100: reg |= WM831X_BKUP_CHG_VLIM; break; default: dev_err(wm831x->dev, "Invalid backup voltage limit %dmV\n", pdata->vlim); } switch (pdata->ilim) { case 100: break; case 200: reg |= 1; break; case 300: reg |= 2; break; case 400: reg |= 3; break; default: dev_err(wm831x->dev, "Invalid backup current limit %duA\n", pdata->ilim); } ret = wm831x_reg_unlock(wm831x); if (ret != 0) { dev_err(wm831x->dev, "Failed to unlock registers: %d\n", ret); return; } ret = wm831x_set_bits(wm831x, WM831X_BACKUP_CHARGER_CONTROL, WM831X_BKUP_CHG_ENA_MASK | WM831X_BKUP_CHG_MODE_MASK | WM831X_BKUP_BATT_DET_ENA_MASK | WM831X_BKUP_CHG_VLIM_MASK | WM831X_BKUP_CHG_ILIM_MASK, reg); if (ret != 0) dev_err(wm831x->dev, "Failed to set backup charger config: %d\n", ret); wm831x_reg_lock(wm831x); } static int wm831x_backup_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct wm831x_backup *devdata = dev_get_drvdata(psy->dev.parent); struct wm831x *wm831x = devdata->wm831x; int ret = 0; ret = wm831x_reg_read(wm831x, WM831X_BACKUP_CHARGER_CONTROL); if (ret < 0) return ret; switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (ret & WM831X_BKUP_CHG_STS) val->intval = POWER_SUPPLY_STATUS_CHARGING; else val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = wm831x_backup_read_voltage(wm831x, WM831X_AUX_BKUP_BATT, val); break; case POWER_SUPPLY_PROP_PRESENT: if (ret & WM831X_BKUP_CHG_STS) val->intval = 1; else val->intval = 0; break; default: ret = -EINVAL; break; } return ret; } static enum power_supply_property wm831x_backup_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_PRESENT, }; /********************************************************************* * Initialisation *********************************************************************/ static int wm831x_backup_probe(struct platform_device *pdev) { struct wm831x *wm831x = dev_get_drvdata(pdev->dev.parent); struct wm831x_pdata *wm831x_pdata = wm831x->dev->platform_data; struct wm831x_backup *devdata; devdata = devm_kzalloc(&pdev->dev, sizeof(struct wm831x_backup), GFP_KERNEL); if (devdata == NULL) return -ENOMEM; devdata->wm831x = wm831x; /* We ignore configuration failures since we can still read * back the status without enabling the charger (which may * already be enabled anyway). */ wm831x_config_backup(wm831x); if (wm831x_pdata && wm831x_pdata->wm831x_num) snprintf(devdata->name, sizeof(devdata->name), "wm831x-backup.%d", wm831x_pdata->wm831x_num); else snprintf(devdata->name, sizeof(devdata->name), "wm831x-backup"); devdata->backup_desc.name = devdata->name; devdata->backup_desc.type = POWER_SUPPLY_TYPE_BATTERY; devdata->backup_desc.properties = wm831x_backup_props; devdata->backup_desc.num_properties = ARRAY_SIZE(wm831x_backup_props); devdata->backup_desc.get_property = wm831x_backup_get_prop; devdata->backup = devm_power_supply_register(&pdev->dev, &devdata->backup_desc, NULL); return PTR_ERR_OR_ZERO(devdata->backup); } static struct platform_driver wm831x_backup_driver = { .probe = wm831x_backup_probe, .driver = { .name = "wm831x-backup", }, }; module_platform_driver(wm831x_backup_driver); MODULE_DESCRIPTION("Backup battery charger driver for WM831x PMICs"); MODULE_AUTHOR("Mark Brown <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:wm831x-backup");
/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef _smuio_13_0_6_SH_MASK_HEADER #define _smuio_13_0_6_SH_MASK_HEADER // addressBlock: smuio_smuio_reset_SmuSmuioDec //SMUIO_MP_RESET_INTR #define SMUIO_MP_RESET_INTR__SMUIO_MP_RESET_INTR__SHIFT 0x0 #define SMUIO_MP_RESET_INTR__SMUIO_MP_RESET_INTR_MASK 0x00000001L //SMUIO_SOC_HALT #define SMUIO_SOC_HALT__WDT_FORCE_PWROK_EN__SHIFT 0x2 #define SMUIO_SOC_HALT__WDT_FORCE_RESETn_EN__SHIFT 0x3 #define SMUIO_SOC_HALT__WDT_FORCE_PWROK_EN_MASK 0x00000004L #define SMUIO_SOC_HALT__WDT_FORCE_RESETn_EN_MASK 0x00000008L // addressBlock: smuio_smuio_tsc_SmuSmuioDec //PWROK_REFCLK_GAP_CYCLES #define PWROK_REFCLK_GAP_CYCLES__Pwrok_PreAssertion_clkgap_cycles__SHIFT 0x0 #define PWROK_REFCLK_GAP_CYCLES__Pwrok_PostAssertion_clkgap_cycles__SHIFT 0x8 #define PWROK_REFCLK_GAP_CYCLES__Pwrok_PreAssertion_clkgap_cycles_MASK 0x000000FFL #define PWROK_REFCLK_GAP_CYCLES__Pwrok_PostAssertion_clkgap_cycles_MASK 0x0000FF00L //GOLDEN_TSC_INCREMENT_UPPER #define GOLDEN_TSC_INCREMENT_UPPER__GoldenTscIncrementUpper__SHIFT 0x0 #define GOLDEN_TSC_INCREMENT_UPPER__GoldenTscIncrementUpper_MASK 0x00FFFFFFL //GOLDEN_TSC_INCREMENT_LOWER #define GOLDEN_TSC_INCREMENT_LOWER__GoldenTscIncrementLower__SHIFT 0x0 #define GOLDEN_TSC_INCREMENT_LOWER__GoldenTscIncrementLower_MASK 0xFFFFFFFFL //GOLDEN_TSC_COUNT_UPPER #define GOLDEN_TSC_COUNT_UPPER__GoldenTscCountUpper__SHIFT 0x0 #define GOLDEN_TSC_COUNT_UPPER__GoldenTscCountUpper_MASK 0x00FFFFFFL //GOLDEN_TSC_COUNT_LOWER #define GOLDEN_TSC_COUNT_LOWER__GoldenTscCountLower__SHIFT 0x0 #define GOLDEN_TSC_COUNT_LOWER__GoldenTscCountLower_MASK 0xFFFFFFFFL //SOC_GOLDEN_TSC_SHADOW_UPPER #define SOC_GOLDEN_TSC_SHADOW_UPPER__SocGoldenTscShadowUpper__SHIFT 0x0 #define SOC_GOLDEN_TSC_SHADOW_UPPER__SocGoldenTscShadowUpper_MASK 0x00FFFFFFL //SOC_GOLDEN_TSC_SHADOW_LOWER #define SOC_GOLDEN_TSC_SHADOW_LOWER__SocGoldenTscShadowLower__SHIFT 0x0 #define SOC_GOLDEN_TSC_SHADOW_LOWER__SocGoldenTscShadowLower_MASK 0xFFFFFFFFL //SOC_GAP_PWROK #define SOC_GAP_PWROK__soc_gap_pwrok__SHIFT 0x0 #define SOC_GAP_PWROK__soc_gap_pwrok_MASK 0x00000001L // addressBlock: smuio_smuio_swtimer_SmuSmuioDec //PWR_DISP_TIMER_CONTROL #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_COUNT__SHIFT 0x0 #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_ENABLE__SHIFT 0x19 #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_DISABLE__SHIFT 0x1a #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_MASK__SHIFT 0x1b #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_STAT_AK__SHIFT 0x1c #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_TYPE__SHIFT 0x1d #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_MODE__SHIFT 0x1e #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_COUNT_MASK 0x01FFFFFFL #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_ENABLE_MASK 0x02000000L #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_DISABLE_MASK 0x04000000L #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_MASK_MASK 0x08000000L #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_STAT_AK_MASK 0x10000000L #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_TYPE_MASK 0x20000000L #define PWR_DISP_TIMER_CONTROL__DISP_TIMER_INT_MODE_MASK 0x40000000L //PWR_DISP_TIMER_DEBUG #define PWR_DISP_TIMER_DEBUG__DISP_TIMER_INT_RUNNING__SHIFT 0x0 #define PWR_DISP_TIMER_DEBUG__DISP_TIMER_INT_STAT__SHIFT 0x1 #define PWR_DISP_TIMER_DEBUG__DISP_TIMER_INT__SHIFT 0x2 #define PWR_DISP_TIMER_DEBUG__DISP_TIMER_RUN_VAL__SHIFT 0x7 #define PWR_DISP_TIMER_DEBUG__DISP_TIMER_INT_RUNNING_MASK 0x00000001L #define PWR_DISP_TIMER_DEBUG__DISP_TIMER_INT_STAT_MASK 0x00000002L #define PWR_DISP_TIMER_DEBUG__DISP_TIMER_INT_MASK 0x00000004L #define PWR_DISP_TIMER_DEBUG__DISP_TIMER_RUN_VAL_MASK 0xFFFFFF80L //PWR_DISP_TIMER2_CONTROL #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_COUNT__SHIFT 0x0 #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_ENABLE__SHIFT 0x19 #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_DISABLE__SHIFT 0x1a #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_MASK__SHIFT 0x1b #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_STAT_AK__SHIFT 0x1c #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_TYPE__SHIFT 0x1d #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_MODE__SHIFT 0x1e #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_COUNT_MASK 0x01FFFFFFL #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_ENABLE_MASK 0x02000000L #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_DISABLE_MASK 0x04000000L #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_MASK_MASK 0x08000000L #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_STAT_AK_MASK 0x10000000L #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_TYPE_MASK 0x20000000L #define PWR_DISP_TIMER2_CONTROL__DISP_TIMER_INT_MODE_MASK 0x40000000L //PWR_DISP_TIMER2_DEBUG #define PWR_DISP_TIMER2_DEBUG__DISP_TIMER_INT_RUNNING__SHIFT 0x0 #define PWR_DISP_TIMER2_DEBUG__DISP_TIMER_INT_STAT__SHIFT 0x1 #define PWR_DISP_TIMER2_DEBUG__DISP_TIMER_INT__SHIFT 0x2 #define PWR_DISP_TIMER2_DEBUG__DISP_TIMER_RUN_VAL__SHIFT 0x7 #define PWR_DISP_TIMER2_DEBUG__DISP_TIMER_INT_RUNNING_MASK 0x00000001L #define PWR_DISP_TIMER2_DEBUG__DISP_TIMER_INT_STAT_MASK 0x00000002L #define PWR_DISP_TIMER2_DEBUG__DISP_TIMER_INT_MASK 0x00000004L #define PWR_DISP_TIMER2_DEBUG__DISP_TIMER_RUN_VAL_MASK 0xFFFFFF80L //PWR_DISP_TIMER_GLOBAL_CONTROL #define PWR_DISP_TIMER_GLOBAL_CONTROL__DISP_TIMER_PULSE_WIDTH__SHIFT 0x0 #define PWR_DISP_TIMER_GLOBAL_CONTROL__DISP_TIMER_PULSE_EN__SHIFT 0xa #define PWR_DISP_TIMER_GLOBAL_CONTROL__DISP_TIMER_PULSE_WIDTH_MASK 0x000003FFL #define PWR_DISP_TIMER_GLOBAL_CONTROL__DISP_TIMER_PULSE_EN_MASK 0x00000400L //PWR_IH_CONTROL #define PWR_IH_CONTROL__MAX_CREDIT__SHIFT 0x0 #define PWR_IH_CONTROL__DISP_TIMER_TRIGGER_MASK__SHIFT 0x5 #define PWR_IH_CONTROL__DISP_TIMER2_TRIGGER_MASK__SHIFT 0x6 #define PWR_IH_CONTROL__PWR_IH_CLK_GATE_EN__SHIFT 0x1f #define PWR_IH_CONTROL__MAX_CREDIT_MASK 0x0000001FL #define PWR_IH_CONTROL__DISP_TIMER_TRIGGER_MASK_MASK 0x00000020L #define PWR_IH_CONTROL__DISP_TIMER2_TRIGGER_MASK_MASK 0x00000040L #define PWR_IH_CONTROL__PWR_IH_CLK_GATE_EN_MASK 0x80000000L // addressBlock: smuio_smuio_misc_SmuSmuioDec //SMUIO_MCM_CONFIG #define SMUIO_MCM_CONFIG__DIE_ID__SHIFT 0x0 #define SMUIO_MCM_CONFIG__PKG_TYPE__SHIFT 0x2 #define SMUIO_MCM_CONFIG__SOCKET_ID__SHIFT 0x8 #define SMUIO_MCM_CONFIG__PKG_SUBTYPE__SHIFT 0xc #define SMUIO_MCM_CONFIG__CONSOLE_K__SHIFT 0x10 #define SMUIO_MCM_CONFIG__CONSOLE_A__SHIFT 0x11 #define SMUIO_MCM_CONFIG__DIE_ID_MASK 0x00000003L #define SMUIO_MCM_CONFIG__PKG_TYPE_MASK 0x0000001CL #define SMUIO_MCM_CONFIG__SOCKET_ID_MASK 0x00000300L #define SMUIO_MCM_CONFIG__PKG_SUBTYPE_MASK 0x00001000L #define SMUIO_MCM_CONFIG__CONSOLE_K_MASK 0x00010000L #define SMUIO_MCM_CONFIG__CONSOLE_A_MASK 0x00020000L //IP_DISCOVERY_VERSION #define IP_DISCOVERY_VERSION__IP_DISCOVERY_VERSION__SHIFT 0x0 #define IP_DISCOVERY_VERSION__IP_DISCOVERY_VERSION_MASK 0xFFFFFFFFL //SCRATCH_REGISTER0 #define SCRATCH_REGISTER0__ScratchPad0__SHIFT 0x0 #define SCRATCH_REGISTER0__ScratchPad0_MASK 0xFFFFFFFFL //SCRATCH_REGISTER1 #define SCRATCH_REGISTER1__ScratchPad1__SHIFT 0x0 #define SCRATCH_REGISTER1__ScratchPad1_MASK 0xFFFFFFFFL //SCRATCH_REGISTER2 #define SCRATCH_REGISTER2__ScratchPad2__SHIFT 0x0 #define SCRATCH_REGISTER2__ScratchPad2_MASK 0xFFFFFFFFL //SCRATCH_REGISTER3 #define SCRATCH_REGISTER3__ScratchPad3__SHIFT 0x0 #define SCRATCH_REGISTER3__ScratchPad3_MASK 0xFFFFFFFFL //SCRATCH_REGISTER4 #define SCRATCH_REGISTER4__ScratchPad4__SHIFT 0x0 #define SCRATCH_REGISTER4__ScratchPad4_MASK 0xFFFFFFFFL //SCRATCH_REGISTER5 #define SCRATCH_REGISTER5__ScratchPad5__SHIFT 0x0 #define SCRATCH_REGISTER5__ScratchPad5_MASK 0xFFFFFFFFL //SCRATCH_REGISTER6 #define SCRATCH_REGISTER6__ScratchPad6__SHIFT 0x0 #define SCRATCH_REGISTER6__ScratchPad6_MASK 0xFFFFFFFFL //SCRATCH_REGISTER7 #define SCRATCH_REGISTER7__ScratchPad7__SHIFT 0x0 #define SCRATCH_REGISTER7__ScratchPad7_MASK 0xFFFFFFFFL // addressBlock: smuio_smuio_i2c_SmuSmuioDec //CKSVII2C_IC_CON #define CKSVII2C_IC_CON__IC_MASTER_MODE__SHIFT 0x0 #define CKSVII2C_IC_CON__IC_MAX_SPEED_MODE__SHIFT 0x1 #define CKSVII2C_IC_CON__IC_10BITADDR_SLAVE__SHIFT 0x3 #define CKSVII2C_IC_CON__IC_10BITADDR_MASTER__SHIFT 0x4 #define CKSVII2C_IC_CON__IC_RESTART_EN__SHIFT 0x5 #define CKSVII2C_IC_CON__IC_SLAVE_DISABLE__SHIFT 0x6 #define CKSVII2C_IC_CON__STOP_DET_IFADDRESSED__SHIFT 0x7 #define CKSVII2C_IC_CON__TX_EMPTY_CTRL__SHIFT 0x8 #define CKSVII2C_IC_CON__RX_FIFO_FULL_HLD_CTRL__SHIFT 0x9 #define CKSVII2C_IC_CON__BUS_CLEAR_FEATURE_CTRL__SHIFT 0xb #define CKSVII2C_IC_CON__IC_MASTER_MODE_MASK 0x00000001L #define CKSVII2C_IC_CON__IC_MAX_SPEED_MODE_MASK 0x00000006L #define CKSVII2C_IC_CON__IC_10BITADDR_SLAVE_MASK 0x00000008L #define CKSVII2C_IC_CON__IC_10BITADDR_MASTER_MASK 0x00000010L #define CKSVII2C_IC_CON__IC_RESTART_EN_MASK 0x00000020L #define CKSVII2C_IC_CON__IC_SLAVE_DISABLE_MASK 0x00000040L #define CKSVII2C_IC_CON__STOP_DET_IFADDRESSED_MASK 0x00000080L #define CKSVII2C_IC_CON__TX_EMPTY_CTRL_MASK 0x00000100L #define CKSVII2C_IC_CON__RX_FIFO_FULL_HLD_CTRL_MASK 0x00000200L #define CKSVII2C_IC_CON__BUS_CLEAR_FEATURE_CTRL_MASK 0x00000800L //CKSVII2C_IC_TAR #define CKSVII2C_IC_TAR__IC_TAR__SHIFT 0x0 #define CKSVII2C_IC_TAR__GC_OR_START__SHIFT 0xa #define CKSVII2C_IC_TAR__SPECIAL__SHIFT 0xb #define CKSVII2C_IC_TAR__IC_10BITADDR_MASTER__SHIFT 0xc #define CKSVII2C_IC_TAR__IC_TAR_MASK 0x000003FFL #define CKSVII2C_IC_TAR__GC_OR_START_MASK 0x00000400L #define CKSVII2C_IC_TAR__SPECIAL_MASK 0x00000800L #define CKSVII2C_IC_TAR__IC_10BITADDR_MASTER_MASK 0x00001000L //CKSVII2C_IC_SAR #define CKSVII2C_IC_SAR__IC_SAR__SHIFT 0x0 #define CKSVII2C_IC_SAR__IC_SAR_MASK 0x000003FFL //CKSVII2C_IC_HS_MADDR #define CKSVII2C_IC_HS_MADDR__IC_HS_MADDR__SHIFT 0x0 #define CKSVII2C_IC_HS_MADDR__IC_HS_MADDR_MASK 0x00000007L //CKSVII2C_IC_DATA_CMD #define CKSVII2C_IC_DATA_CMD__DAT__SHIFT 0x0 #define CKSVII2C_IC_DATA_CMD__CMD__SHIFT 0x8 #define CKSVII2C_IC_DATA_CMD__STOP__SHIFT 0x9 #define CKSVII2C_IC_DATA_CMD__RESTART__SHIFT 0xa #define CKSVII2C_IC_DATA_CMD__FIRST_DATA_BYTE__SHIFT 0xb #define CKSVII2C_IC_DATA_CMD__DAT_MASK 0x000000FFL #define CKSVII2C_IC_DATA_CMD__CMD_MASK 0x00000100L #define CKSVII2C_IC_DATA_CMD__STOP_MASK 0x00000200L #define CKSVII2C_IC_DATA_CMD__RESTART_MASK 0x00000400L #define CKSVII2C_IC_DATA_CMD__FIRST_DATA_BYTE_MASK 0x00000800L //CKSVII2C_IC_SS_SCL_HCNT #define CKSVII2C_IC_SS_SCL_HCNT__IC_SS_SCL_HCNT__SHIFT 0x0 #define CKSVII2C_IC_SS_SCL_HCNT__IC_SS_SCL_HCNT_MASK 0x0000FFFFL //CKSVII2C_IC_SS_SCL_LCNT #define CKSVII2C_IC_SS_SCL_LCNT__IC_SS_SCL_LCNT__SHIFT 0x0 #define CKSVII2C_IC_SS_SCL_LCNT__IC_SS_SCL_LCNT_MASK 0x0000FFFFL //CKSVII2C_IC_FS_SCL_HCNT #define CKSVII2C_IC_FS_SCL_HCNT__IC_FS_SCL_HCNT__SHIFT 0x0 #define CKSVII2C_IC_FS_SCL_HCNT__IC_FS_SCL_HCNT_MASK 0x0000FFFFL //CKSVII2C_IC_FS_SCL_LCNT #define CKSVII2C_IC_FS_SCL_LCNT__IC_FS_SCL_LCNT__SHIFT 0x0 #define CKSVII2C_IC_FS_SCL_LCNT__IC_FS_SCL_LCNT_MASK 0x0000FFFFL //CKSVII2C_IC_HS_SCL_HCNT #define CKSVII2C_IC_HS_SCL_HCNT__IC_HS_SCL_HCNT__SHIFT 0x0 #define CKSVII2C_IC_HS_SCL_HCNT__IC_HS_SCL_HCNT_MASK 0x0000FFFFL //CKSVII2C_IC_HS_SCL_LCNT #define CKSVII2C_IC_HS_SCL_LCNT__IC_HS_SCL_LCNT__SHIFT 0x0 #define CKSVII2C_IC_HS_SCL_LCNT__IC_HS_SCL_LCNT_MASK 0x0000FFFFL //CKSVII2C_IC_INTR_STAT #define CKSVII2C_IC_INTR_STAT__R_RX_UNDER__SHIFT 0x0 #define CKSVII2C_IC_INTR_STAT__R_RX_OVER__SHIFT 0x1 #define CKSVII2C_IC_INTR_STAT__R_RX_FULL__SHIFT 0x2 #define CKSVII2C_IC_INTR_STAT__R_TX_OVER__SHIFT 0x3 #define CKSVII2C_IC_INTR_STAT__R_TX_EMPTY__SHIFT 0x4 #define CKSVII2C_IC_INTR_STAT__R_RD_REQ__SHIFT 0x5 #define CKSVII2C_IC_INTR_STAT__R_TX_ABRT__SHIFT 0x6 #define CKSVII2C_IC_INTR_STAT__R_RX_DONE__SHIFT 0x7 #define CKSVII2C_IC_INTR_STAT__R_ACTIVITY__SHIFT 0x8 #define CKSVII2C_IC_INTR_STAT__R_STOP_DET__SHIFT 0x9 #define CKSVII2C_IC_INTR_STAT__R_START_DET__SHIFT 0xa #define CKSVII2C_IC_INTR_STAT__R_GEN_CALL__SHIFT 0xb #define CKSVII2C_IC_INTR_STAT__R_RESTART_DET__SHIFT 0xc #define CKSVII2C_IC_INTR_STAT__R_MST_ON_HOLD__SHIFT 0xd #define CKSVII2C_IC_INTR_STAT__R_SCL_STUCK_AT_LOW__SHIFT 0xe #define CKSVII2C_IC_INTR_STAT__R_RX_UNDER_MASK 0x00000001L #define CKSVII2C_IC_INTR_STAT__R_RX_OVER_MASK 0x00000002L #define CKSVII2C_IC_INTR_STAT__R_RX_FULL_MASK 0x00000004L #define CKSVII2C_IC_INTR_STAT__R_TX_OVER_MASK 0x00000008L #define CKSVII2C_IC_INTR_STAT__R_TX_EMPTY_MASK 0x00000010L #define CKSVII2C_IC_INTR_STAT__R_RD_REQ_MASK 0x00000020L #define CKSVII2C_IC_INTR_STAT__R_TX_ABRT_MASK 0x00000040L #define CKSVII2C_IC_INTR_STAT__R_RX_DONE_MASK 0x00000080L #define CKSVII2C_IC_INTR_STAT__R_ACTIVITY_MASK 0x00000100L #define CKSVII2C_IC_INTR_STAT__R_STOP_DET_MASK 0x00000200L #define CKSVII2C_IC_INTR_STAT__R_START_DET_MASK 0x00000400L #define CKSVII2C_IC_INTR_STAT__R_GEN_CALL_MASK 0x00000800L #define CKSVII2C_IC_INTR_STAT__R_RESTART_DET_MASK 0x00001000L #define CKSVII2C_IC_INTR_STAT__R_MST_ON_HOLD_MASK 0x00002000L #define CKSVII2C_IC_INTR_STAT__R_SCL_STUCK_AT_LOW_MASK 0x00004000L //CKSVII2C_IC_INTR_MASK #define CKSVII2C_IC_INTR_MASK__M_RX_UNDER__SHIFT 0x0 #define CKSVII2C_IC_INTR_MASK__M_RX_OVER__SHIFT 0x1 #define CKSVII2C_IC_INTR_MASK__M_RX_FULL__SHIFT 0x2 #define CKSVII2C_IC_INTR_MASK__M_TX_OVER__SHIFT 0x3 #define CKSVII2C_IC_INTR_MASK__M_TX_EMPTY__SHIFT 0x4 #define CKSVII2C_IC_INTR_MASK__M_RD_REQ__SHIFT 0x5 #define CKSVII2C_IC_INTR_MASK__M_TX_ABRT__SHIFT 0x6 #define CKSVII2C_IC_INTR_MASK__M_RX_DONE__SHIFT 0x7 #define CKSVII2C_IC_INTR_MASK__M_ACTIVITY__SHIFT 0x8 #define CKSVII2C_IC_INTR_MASK__M_STOP_DET__SHIFT 0x9 #define CKSVII2C_IC_INTR_MASK__M_START_DET__SHIFT 0xa #define CKSVII2C_IC_INTR_MASK__M_GEN_CALL__SHIFT 0xb #define CKSVII2C_IC_INTR_MASK__M_RESTART_DET__SHIFT 0xc #define CKSVII2C_IC_INTR_MASK__M_MST_ON_HOLD__SHIFT 0xd #define CKSVII2C_IC_INTR_MASK__M_SCL_STUCK_AT_LOW__SHIFT 0xe #define CKSVII2C_IC_INTR_MASK__M_RX_UNDER_MASK 0x00000001L #define CKSVII2C_IC_INTR_MASK__M_RX_OVER_MASK 0x00000002L #define CKSVII2C_IC_INTR_MASK__M_RX_FULL_MASK 0x00000004L #define CKSVII2C_IC_INTR_MASK__M_TX_OVER_MASK 0x00000008L #define CKSVII2C_IC_INTR_MASK__M_TX_EMPTY_MASK 0x00000010L #define CKSVII2C_IC_INTR_MASK__M_RD_REQ_MASK 0x00000020L #define CKSVII2C_IC_INTR_MASK__M_TX_ABRT_MASK 0x00000040L #define CKSVII2C_IC_INTR_MASK__M_RX_DONE_MASK 0x00000080L #define CKSVII2C_IC_INTR_MASK__M_ACTIVITY_MASK 0x00000100L #define CKSVII2C_IC_INTR_MASK__M_STOP_DET_MASK 0x00000200L #define CKSVII2C_IC_INTR_MASK__M_START_DET_MASK 0x00000400L #define CKSVII2C_IC_INTR_MASK__M_GEN_CALL_MASK 0x00000800L #define CKSVII2C_IC_INTR_MASK__M_RESTART_DET_MASK 0x00001000L #define CKSVII2C_IC_INTR_MASK__M_MST_ON_HOLD_MASK 0x00002000L #define CKSVII2C_IC_INTR_MASK__M_SCL_STUCK_AT_LOW_MASK 0x00004000L //CKSVII2C_IC_RAW_INTR_STAT //CKSVII2C_IC_RX_TL #define CKSVII2C_IC_RX_TL__RX_TL__SHIFT 0x0 #define CKSVII2C_IC_RX_TL__RX_TL_MASK 0x000000FFL //CKSVII2C_IC_TX_TL #define CKSVII2C_IC_TX_TL__TX_TL__SHIFT 0x0 #define CKSVII2C_IC_TX_TL__TX_TL_MASK 0x000000FFL //CKSVII2C_IC_CLR_INTR //CKSVII2C_IC_CLR_RX_UNDER //CKSVII2C_IC_CLR_RX_OVER //CKSVII2C_IC_CLR_TX_OVER //CKSVII2C_IC_CLR_RD_REQ //CKSVII2C_IC_CLR_TX_ABRT //CKSVII2C_IC_CLR_RX_DONE //CKSVII2C_IC_CLR_ACTIVITY //CKSVII2C_IC_CLR_STOP_DET //CKSVII2C_IC_CLR_START_DET //CKSVII2C_IC_CLR_GEN_CALL //CKSVII2C_IC_ENABLE #define CKSVII2C_IC_ENABLE__ENABLE__SHIFT 0x0 #define CKSVII2C_IC_ENABLE__ABORT__SHIFT 0x1 #define CKSVII2C_IC_ENABLE__TX_CMD_BLOCK__SHIFT 0x2 #define CKSVII2C_IC_ENABLE__SDA_STUCK_RECOVERY_ENABLE__SHIFT 0x3 #define CKSVII2C_IC_ENABLE__ENABLE_MASK 0x00000001L #define CKSVII2C_IC_ENABLE__ABORT_MASK 0x00000002L #define CKSVII2C_IC_ENABLE__TX_CMD_BLOCK_MASK 0x00000004L #define CKSVII2C_IC_ENABLE__SDA_STUCK_RECOVERY_ENABLE_MASK 0x00000008L //CKSVII2C_IC_STATUS #define CKSVII2C_IC_STATUS__ACTIVITY__SHIFT 0x0 #define CKSVII2C_IC_STATUS__TFNF__SHIFT 0x1 #define CKSVII2C_IC_STATUS__TFE__SHIFT 0x2 #define CKSVII2C_IC_STATUS__RFNE__SHIFT 0x3 #define CKSVII2C_IC_STATUS__RFF__SHIFT 0x4 #define CKSVII2C_IC_STATUS__MST_ACTIVITY__SHIFT 0x5 #define CKSVII2C_IC_STATUS__SLV_ACTIVITY__SHIFT 0x6 #define CKSVII2C_IC_STATUS__MST_HOLD_TX_FIFO_EMPTY__SHIFT 0x7 #define CKSVII2C_IC_STATUS__MST_HOLD_RX_FIFO_FULL__SHIFT 0x8 #define CKSVII2C_IC_STATUS__SLV_HOLD_TX_FIFO_EMPTY__SHIFT 0x9 #define CKSVII2C_IC_STATUS__SLV_HOLD_RX_FIFO_FULL__SHIFT 0xa #define CKSVII2C_IC_STATUS__SDA_STUCK_NOT_RECOVERED__SHIFT 0xb #define CKSVII2C_IC_STATUS__ACTIVITY_MASK 0x00000001L #define CKSVII2C_IC_STATUS__TFNF_MASK 0x00000002L #define CKSVII2C_IC_STATUS__TFE_MASK 0x00000004L #define CKSVII2C_IC_STATUS__RFNE_MASK 0x00000008L #define CKSVII2C_IC_STATUS__RFF_MASK 0x00000010L #define CKSVII2C_IC_STATUS__MST_ACTIVITY_MASK 0x00000020L #define CKSVII2C_IC_STATUS__SLV_ACTIVITY_MASK 0x00000040L #define CKSVII2C_IC_STATUS__MST_HOLD_TX_FIFO_EMPTY_MASK 0x00000080L #define CKSVII2C_IC_STATUS__MST_HOLD_RX_FIFO_FULL_MASK 0x00000100L #define CKSVII2C_IC_STATUS__SLV_HOLD_TX_FIFO_EMPTY_MASK 0x00000200L #define CKSVII2C_IC_STATUS__SLV_HOLD_RX_FIFO_FULL_MASK 0x00000400L #define CKSVII2C_IC_STATUS__SDA_STUCK_NOT_RECOVERED_MASK 0x00000800L //CKSVII2C_IC_TXFLR #define CKSVII2C_IC_TXFLR__TXFLR__SHIFT 0x0 #define CKSVII2C_IC_TXFLR__TXFLR_MASK 0x0000003FL //CKSVII2C_IC_RXFLR #define CKSVII2C_IC_RXFLR__RXFLR__SHIFT 0x0 #define CKSVII2C_IC_RXFLR__RXFLR_MASK 0x0000003FL //CKSVII2C_IC_SDA_HOLD #define CKSVII2C_IC_SDA_HOLD__IC_SDA_TX_HOLD__SHIFT 0x0 #define CKSVII2C_IC_SDA_HOLD__IC_SDA_RX_HOLD__SHIFT 0x10 #define CKSVII2C_IC_SDA_HOLD__IC_SDA_TX_HOLD_MASK 0x0000FFFFL #define CKSVII2C_IC_SDA_HOLD__IC_SDA_RX_HOLD_MASK 0x00FF0000L //CKSVII2C_IC_TX_ABRT_SOURCE //CKSVII2C_IC_SLV_DATA_NACK_ONLY //CKSVII2C_IC_DMA_CR //CKSVII2C_IC_DMA_TDLR //CKSVII2C_IC_DMA_RDLR //CKSVII2C_IC_SDA_SETUP #define CKSVII2C_IC_SDA_SETUP__SDA_SETUP__SHIFT 0x0 #define CKSVII2C_IC_SDA_SETUP__SDA_SETUP_MASK 0x000000FFL //CKSVII2C_IC_ACK_GENERAL_CALL #define CKSVII2C_IC_ACK_GENERAL_CALL__ACK_GENERAL_CALL__SHIFT 0x0 #define CKSVII2C_IC_ACK_GENERAL_CALL__ACK_GENERAL_CALL_MASK 0x00000001L //CKSVII2C_IC_ENABLE_STATUS #define CKSVII2C_IC_ENABLE_STATUS__IC_EN__SHIFT 0x0 #define CKSVII2C_IC_ENABLE_STATUS__SLV_DISABLED_WHILE_BUSY__SHIFT 0x1 #define CKSVII2C_IC_ENABLE_STATUS__SLV_RX_DATA_LOST__SHIFT 0x2 #define CKSVII2C_IC_ENABLE_STATUS__IC_EN_MASK 0x00000001L #define CKSVII2C_IC_ENABLE_STATUS__SLV_DISABLED_WHILE_BUSY_MASK 0x00000002L #define CKSVII2C_IC_ENABLE_STATUS__SLV_RX_DATA_LOST_MASK 0x00000004L //CKSVII2C_IC_FS_SPKLEN #define CKSVII2C_IC_FS_SPKLEN__FS_SPKLEN__SHIFT 0x0 #define CKSVII2C_IC_FS_SPKLEN__FS_SPKLEN_MASK 0x000000FFL //CKSVII2C_IC_HS_SPKLEN #define CKSVII2C_IC_HS_SPKLEN__HS_SPKLEN__SHIFT 0x0 #define CKSVII2C_IC_HS_SPKLEN__HS_SPKLEN_MASK 0x000000FFL //CKSVII2C_IC_CLR_RESTART_DET //CKSVII2C_IC_COMP_PARAM_1 #define CKSVII2C_IC_COMP_PARAM_1__APB_DATA_WIDTH__SHIFT 0x0 #define CKSVII2C_IC_COMP_PARAM_1__MAX_SPEED_MODE__SHIFT 0x2 #define CKSVII2C_IC_COMP_PARAM_1__HC_COUNT_VALUES__SHIFT 0x4 #define CKSVII2C_IC_COMP_PARAM_1__INTR_IO__SHIFT 0x5 #define CKSVII2C_IC_COMP_PARAM_1__HAS_DMA__SHIFT 0x6 #define CKSVII2C_IC_COMP_PARAM_1__ADD_ENCODED_PARAMS__SHIFT 0x7 #define CKSVII2C_IC_COMP_PARAM_1__RX_BUFFER_DEPTH__SHIFT 0x8 #define CKSVII2C_IC_COMP_PARAM_1__TX_BUFFER_DEPTH__SHIFT 0x10 #define CKSVII2C_IC_COMP_PARAM_1__APB_DATA_WIDTH_MASK 0x00000003L #define CKSVII2C_IC_COMP_PARAM_1__MAX_SPEED_MODE_MASK 0x0000000CL #define CKSVII2C_IC_COMP_PARAM_1__HC_COUNT_VALUES_MASK 0x00000010L #define CKSVII2C_IC_COMP_PARAM_1__INTR_IO_MASK 0x00000020L #define CKSVII2C_IC_COMP_PARAM_1__HAS_DMA_MASK 0x00000040L #define CKSVII2C_IC_COMP_PARAM_1__ADD_ENCODED_PARAMS_MASK 0x00000080L #define CKSVII2C_IC_COMP_PARAM_1__RX_BUFFER_DEPTH_MASK 0x0000FF00L #define CKSVII2C_IC_COMP_PARAM_1__TX_BUFFER_DEPTH_MASK 0x00FF0000L //CKSVII2C_IC_COMP_VERSION #define CKSVII2C_IC_COMP_VERSION__COMP_VERSION__SHIFT 0x0 #define CKSVII2C_IC_COMP_VERSION__COMP_VERSION_MASK 0xFFFFFFFFL //CKSVII2C_IC_COMP_TYPE #define CKSVII2C_IC_COMP_TYPE__COMP_TYPE__SHIFT 0x0 #define CKSVII2C_IC_COMP_TYPE__COMP_TYPE_MASK 0xFFFFFFFFL //CKSVII2C1_IC_CON #define CKSVII2C1_IC_CON__IC1_MASTER_MODE__SHIFT 0x0 #define CKSVII2C1_IC_CON__IC1_MAX_SPEED_MODE__SHIFT 0x1 #define CKSVII2C1_IC_CON__IC1_10BITADDR_SLAVE__SHIFT 0x3 #define CKSVII2C1_IC_CON__IC1_10BITADDR_MASTER__SHIFT 0x4 #define CKSVII2C1_IC_CON__IC1_RESTART_EN__SHIFT 0x5 #define CKSVII2C1_IC_CON__IC1_SLAVE_DISABLE__SHIFT 0x6 #define CKSVII2C1_IC_CON__STOP1_DET_IFADDRESSED__SHIFT 0x7 #define CKSVII2C1_IC_CON__TX1_EMPTY_CTRL__SHIFT 0x8 #define CKSVII2C1_IC_CON__RX1_FIFO_FULL_HLD_CTRL__SHIFT 0x9 #define CKSVII2C1_IC_CON__BUS_CLEAR_FEATURE_CTRL1__SHIFT 0xb #define CKSVII2C1_IC_CON__IC1_MASTER_MODE_MASK 0x00000001L #define CKSVII2C1_IC_CON__IC1_MAX_SPEED_MODE_MASK 0x00000006L #define CKSVII2C1_IC_CON__IC1_10BITADDR_SLAVE_MASK 0x00000008L #define CKSVII2C1_IC_CON__IC1_10BITADDR_MASTER_MASK 0x00000010L #define CKSVII2C1_IC_CON__IC1_RESTART_EN_MASK 0x00000020L #define CKSVII2C1_IC_CON__IC1_SLAVE_DISABLE_MASK 0x00000040L #define CKSVII2C1_IC_CON__STOP1_DET_IFADDRESSED_MASK 0x00000080L #define CKSVII2C1_IC_CON__TX1_EMPTY_CTRL_MASK 0x00000100L #define CKSVII2C1_IC_CON__RX1_FIFO_FULL_HLD_CTRL_MASK 0x00000200L #define CKSVII2C1_IC_CON__BUS_CLEAR_FEATURE_CTRL1_MASK 0x00000800L //CKSVII2C1_IC_TAR #define CKSVII2C1_IC_TAR__IC1_TAR__SHIFT 0x0 #define CKSVII2C1_IC_TAR__GC1_OR_START__SHIFT 0xa #define CKSVII2C1_IC_TAR__SPECIAL1__SHIFT 0xb #define CKSVII2C1_IC_TAR__IC1_10BITADDR_MASTER__SHIFT 0xc #define CKSVII2C1_IC_TAR__IC1_TAR_MASK 0x000003FFL #define CKSVII2C1_IC_TAR__GC1_OR_START_MASK 0x00000400L #define CKSVII2C1_IC_TAR__SPECIAL1_MASK 0x00000800L #define CKSVII2C1_IC_TAR__IC1_10BITADDR_MASTER_MASK 0x00001000L //CKSVII2C1_IC_SAR #define CKSVII2C1_IC_SAR__IC1_SAR__SHIFT 0x0 #define CKSVII2C1_IC_SAR__IC1_SAR_MASK 0x000003FFL //CKSVII2C1_IC_HS_MADDR #define CKSVII2C1_IC_HS_MADDR__IC1_HS_MADDR__SHIFT 0x0 #define CKSVII2C1_IC_HS_MADDR__IC1_HS_MADDR_MASK 0x00000007L //CKSVII2C1_IC_DATA_CMD #define CKSVII2C1_IC_DATA_CMD__DAT1__SHIFT 0x0 #define CKSVII2C1_IC_DATA_CMD__CMD1__SHIFT 0x8 #define CKSVII2C1_IC_DATA_CMD__STOP1__SHIFT 0x9 #define CKSVII2C1_IC_DATA_CMD__RESTART1__SHIFT 0xa #define CKSVII2C1_IC_DATA_CMD__FIRST1_DATA_BYTE__SHIFT 0xb #define CKSVII2C1_IC_DATA_CMD__DAT1_MASK 0x000000FFL #define CKSVII2C1_IC_DATA_CMD__CMD1_MASK 0x00000100L #define CKSVII2C1_IC_DATA_CMD__STOP1_MASK 0x00000200L #define CKSVII2C1_IC_DATA_CMD__RESTART1_MASK 0x00000400L #define CKSVII2C1_IC_DATA_CMD__FIRST1_DATA_BYTE_MASK 0x00000800L //CKSVII2C1_IC_SS_SCL_HCNT #define CKSVII2C1_IC_SS_SCL_HCNT__IC1_SS_SCL_HCNT__SHIFT 0x0 #define CKSVII2C1_IC_SS_SCL_HCNT__IC1_SS_SCL_HCNT_MASK 0x0000FFFFL //CKSVII2C1_IC_SS_SCL_LCNT #define CKSVII2C1_IC_SS_SCL_LCNT__IC1_SS_SCL_LCNT__SHIFT 0x0 #define CKSVII2C1_IC_SS_SCL_LCNT__IC1_SS_SCL_LCNT_MASK 0x0000FFFFL //CKSVII2C1_IC_FS_SCL_HCNT #define CKSVII2C1_IC_FS_SCL_HCNT__IC1_FS_SCL_HCNT__SHIFT 0x0 #define CKSVII2C1_IC_FS_SCL_HCNT__IC1_FS_SCL_HCNT_MASK 0x0000FFFFL //CKSVII2C1_IC_FS_SCL_LCNT #define CKSVII2C1_IC_FS_SCL_LCNT__IC1_FS_SCL_LCNT__SHIFT 0x0 #define CKSVII2C1_IC_FS_SCL_LCNT__IC1_FS_SCL_LCNT_MASK 0x0000FFFFL //CKSVII2C1_IC_HS_SCL_HCNT #define CKSVII2C1_IC_HS_SCL_HCNT__IC1_HS_SCL_HCNT__SHIFT 0x0 #define CKSVII2C1_IC_HS_SCL_HCNT__IC1_HS_SCL_HCNT_MASK 0x0000FFFFL //CKSVII2C1_IC_HS_SCL_LCNT #define CKSVII2C1_IC_HS_SCL_LCNT__IC1_HS_SCL_LCNT__SHIFT 0x0 #define CKSVII2C1_IC_HS_SCL_LCNT__IC1_HS_SCL_LCNT_MASK 0x0000FFFFL //CKSVII2C1_IC_INTR_STAT #define CKSVII2C1_IC_INTR_STAT__R1_RX_UNDER__SHIFT 0x0 #define CKSVII2C1_IC_INTR_STAT__R1_RX_OVER__SHIFT 0x1 #define CKSVII2C1_IC_INTR_STAT__R1_RX_FULL__SHIFT 0x2 #define CKSVII2C1_IC_INTR_STAT__R1_TX_OVER__SHIFT 0x3 #define CKSVII2C1_IC_INTR_STAT__R1_TX_EMPTY__SHIFT 0x4 #define CKSVII2C1_IC_INTR_STAT__R1_RD_REQ__SHIFT 0x5 #define CKSVII2C1_IC_INTR_STAT__R1_TX_ABRT__SHIFT 0x6 #define CKSVII2C1_IC_INTR_STAT__R1_RX_DONE__SHIFT 0x7 #define CKSVII2C1_IC_INTR_STAT__R1_ACTIVITY__SHIFT 0x8 #define CKSVII2C1_IC_INTR_STAT__R1_STOP_DET__SHIFT 0x9 #define CKSVII2C1_IC_INTR_STAT__R1_START_DET__SHIFT 0xa #define CKSVII2C1_IC_INTR_STAT__R1_GEN_CALL__SHIFT 0xb #define CKSVII2C1_IC_INTR_STAT__R1_RESTART_DET__SHIFT 0xc #define CKSVII2C1_IC_INTR_STAT__R1_MST_ON_HOLD__SHIFT 0xd #define CKSVII2C1_IC_INTR_STAT__R1_SCL_STUCK_AT_LOW__SHIFT 0xe #define CKSVII2C1_IC_INTR_STAT__R1_RX_UNDER_MASK 0x00000001L #define CKSVII2C1_IC_INTR_STAT__R1_RX_OVER_MASK 0x00000002L #define CKSVII2C1_IC_INTR_STAT__R1_RX_FULL_MASK 0x00000004L #define CKSVII2C1_IC_INTR_STAT__R1_TX_OVER_MASK 0x00000008L #define CKSVII2C1_IC_INTR_STAT__R1_TX_EMPTY_MASK 0x00000010L #define CKSVII2C1_IC_INTR_STAT__R1_RD_REQ_MASK 0x00000020L #define CKSVII2C1_IC_INTR_STAT__R1_TX_ABRT_MASK 0x00000040L #define CKSVII2C1_IC_INTR_STAT__R1_RX_DONE_MASK 0x00000080L #define CKSVII2C1_IC_INTR_STAT__R1_ACTIVITY_MASK 0x00000100L #define CKSVII2C1_IC_INTR_STAT__R1_STOP_DET_MASK 0x00000200L #define CKSVII2C1_IC_INTR_STAT__R1_START_DET_MASK 0x00000400L #define CKSVII2C1_IC_INTR_STAT__R1_GEN_CALL_MASK 0x00000800L #define CKSVII2C1_IC_INTR_STAT__R1_RESTART_DET_MASK 0x00001000L #define CKSVII2C1_IC_INTR_STAT__R1_MST_ON_HOLD_MASK 0x00002000L #define CKSVII2C1_IC_INTR_STAT__R1_SCL_STUCK_AT_LOW_MASK 0x00004000L //CKSVII2C1_IC_INTR_MASK #define CKSVII2C1_IC_INTR_MASK__M1_RX_UNDER__SHIFT 0x0 #define CKSVII2C1_IC_INTR_MASK__M1_RX_OVER__SHIFT 0x1 #define CKSVII2C1_IC_INTR_MASK__M1_RX_FULL__SHIFT 0x2 #define CKSVII2C1_IC_INTR_MASK__M1_TX_OVER__SHIFT 0x3 #define CKSVII2C1_IC_INTR_MASK__M1_TX_EMPTY__SHIFT 0x4 #define CKSVII2C1_IC_INTR_MASK__M1_RD_REQ__SHIFT 0x5 #define CKSVII2C1_IC_INTR_MASK__M1_TX_ABRT__SHIFT 0x6 #define CKSVII2C1_IC_INTR_MASK__M1_RX_DONE__SHIFT 0x7 #define CKSVII2C1_IC_INTR_MASK__M1_ACTIVITY__SHIFT 0x8 #define CKSVII2C1_IC_INTR_MASK__M1_STOP_DET__SHIFT 0x9 #define CKSVII2C1_IC_INTR_MASK__M1_START_DET__SHIFT 0xa #define CKSVII2C1_IC_INTR_MASK__M1_GEN_CALL__SHIFT 0xb #define CKSVII2C1_IC_INTR_MASK__M1_RESTART_DET__SHIFT 0xc #define CKSVII2C1_IC_INTR_MASK__M1_MST_ON_HOLD__SHIFT 0xd #define CKSVII2C1_IC_INTR_MASK__M1_SCL_STUCK_AT_LOW__SHIFT 0xe #define CKSVII2C1_IC_INTR_MASK__M1_RX_UNDER_MASK 0x00000001L #define CKSVII2C1_IC_INTR_MASK__M1_RX_OVER_MASK 0x00000002L #define CKSVII2C1_IC_INTR_MASK__M1_RX_FULL_MASK 0x00000004L #define CKSVII2C1_IC_INTR_MASK__M1_TX_OVER_MASK 0x00000008L #define CKSVII2C1_IC_INTR_MASK__M1_TX_EMPTY_MASK 0x00000010L #define CKSVII2C1_IC_INTR_MASK__M1_RD_REQ_MASK 0x00000020L #define CKSVII2C1_IC_INTR_MASK__M1_TX_ABRT_MASK 0x00000040L #define CKSVII2C1_IC_INTR_MASK__M1_RX_DONE_MASK 0x00000080L #define CKSVII2C1_IC_INTR_MASK__M1_ACTIVITY_MASK 0x00000100L #define CKSVII2C1_IC_INTR_MASK__M1_STOP_DET_MASK 0x00000200L #define CKSVII2C1_IC_INTR_MASK__M1_START_DET_MASK 0x00000400L #define CKSVII2C1_IC_INTR_MASK__M1_GEN_CALL_MASK 0x00000800L #define CKSVII2C1_IC_INTR_MASK__M1_RESTART_DET_MASK 0x00001000L #define CKSVII2C1_IC_INTR_MASK__M1_MST_ON_HOLD_MASK 0x00002000L #define CKSVII2C1_IC_INTR_MASK__M1_SCL_STUCK_AT_LOW_MASK 0x00004000L //CKSVII2C1_IC_RAW_INTR_STAT //CKSVII2C1_IC_RX_TL #define CKSVII2C1_IC_RX_TL__RX1_TL__SHIFT 0x0 #define CKSVII2C1_IC_RX_TL__RX1_TL_MASK 0x000000FFL //CKSVII2C1_IC_TX_TL #define CKSVII2C1_IC_TX_TL__TX1_TL__SHIFT 0x0 #define CKSVII2C1_IC_TX_TL__TX1_TL_MASK 0x000000FFL //CKSVII2C1_IC_CLR_INTR //CKSVII2C1_IC_CLR_RX_UNDER //CKSVII2C1_IC_CLR_RX_OVER //CKSVII2C1_IC_CLR_TX_OVER //CKSVII2C1_IC_CLR_RD_REQ //CKSVII2C1_IC_CLR_TX_ABRT //CKSVII2C1_IC_CLR_RX_DONE //CKSVII2C1_IC_CLR_ACTIVITY //CKSVII2C1_IC_CLR_STOP_DET //CKSVII2C1_IC_CLR_START_DET //CKSVII2C1_IC_CLR_GEN_CALL //CKSVII2C1_IC_ENABLE #define CKSVII2C1_IC_ENABLE__ENABLE1__SHIFT 0x0 #define CKSVII2C1_IC_ENABLE__ABORT1__SHIFT 0x1 #define CKSVII2C1_IC_ENABLE__TX1_CMD_BLOCK__SHIFT 0x2 #define CKSVII2C1_IC_ENABLE__SDA1_STUCK_RECOVERY_ENABLE__SHIFT 0x3 #define CKSVII2C1_IC_ENABLE__ENABLE1_MASK 0x00000001L #define CKSVII2C1_IC_ENABLE__ABORT1_MASK 0x00000002L #define CKSVII2C1_IC_ENABLE__TX1_CMD_BLOCK_MASK 0x00000004L #define CKSVII2C1_IC_ENABLE__SDA1_STUCK_RECOVERY_ENABLE_MASK 0x00000008L //CKSVII2C1_IC_STATUS #define CKSVII2C1_IC_STATUS__ACTIVITY1__SHIFT 0x0 #define CKSVII2C1_IC_STATUS__TFNF1__SHIFT 0x1 #define CKSVII2C1_IC_STATUS__TFE1__SHIFT 0x2 #define CKSVII2C1_IC_STATUS__RFNE1__SHIFT 0x3 #define CKSVII2C1_IC_STATUS__RFF1__SHIFT 0x4 #define CKSVII2C1_IC_STATUS__MST1_ACTIVITY__SHIFT 0x5 #define CKSVII2C1_IC_STATUS__SLV1_ACTIVITY__SHIFT 0x6 #define CKSVII2C1_IC_STATUS__MST1_HOLD_TX_FIFO_EMPTY__SHIFT 0x7 #define CKSVII2C1_IC_STATUS__MST1_HOLD_RX_FIFO_FULL__SHIFT 0x8 #define CKSVII2C1_IC_STATUS__SLV1_HOLD_TX_FIFO_EMPTY__SHIFT 0x9 #define CKSVII2C1_IC_STATUS__SLV1_HOLD_RX_FIFO_FULL__SHIFT 0xa #define CKSVII2C1_IC_STATUS__SDA1_STUCK_NOT_RECOVERED__SHIFT 0xb #define CKSVII2C1_IC_STATUS__ACTIVITY1_MASK 0x00000001L #define CKSVII2C1_IC_STATUS__TFNF1_MASK 0x00000002L #define CKSVII2C1_IC_STATUS__TFE1_MASK 0x00000004L #define CKSVII2C1_IC_STATUS__RFNE1_MASK 0x00000008L #define CKSVII2C1_IC_STATUS__RFF1_MASK 0x00000010L #define CKSVII2C1_IC_STATUS__MST1_ACTIVITY_MASK 0x00000020L #define CKSVII2C1_IC_STATUS__SLV1_ACTIVITY_MASK 0x00000040L #define CKSVII2C1_IC_STATUS__MST1_HOLD_TX_FIFO_EMPTY_MASK 0x00000080L #define CKSVII2C1_IC_STATUS__MST1_HOLD_RX_FIFO_FULL_MASK 0x00000100L #define CKSVII2C1_IC_STATUS__SLV1_HOLD_TX_FIFO_EMPTY_MASK 0x00000200L #define CKSVII2C1_IC_STATUS__SLV1_HOLD_RX_FIFO_FULL_MASK 0x00000400L #define CKSVII2C1_IC_STATUS__SDA1_STUCK_NOT_RECOVERED_MASK 0x00000800L //CKSVII2C1_IC_TXFLR #define CKSVII2C1_IC_TXFLR__TXFLR1__SHIFT 0x0 #define CKSVII2C1_IC_TXFLR__TXFLR1_MASK 0x0000003FL //CKSVII2C1_IC_RXFLR #define CKSVII2C1_IC_RXFLR__RXFLR1__SHIFT 0x0 #define CKSVII2C1_IC_RXFLR__RXFLR1_MASK 0x0000003FL //CKSVII2C1_IC_SDA_HOLD #define CKSVII2C1_IC_SDA_HOLD__IC1_SDA_TX_HOLD__SHIFT 0x0 #define CKSVII2C1_IC_SDA_HOLD__IC1_SDA_RX_HOLD__SHIFT 0x10 #define CKSVII2C1_IC_SDA_HOLD__IC1_SDA_TX_HOLD_MASK 0x0000FFFFL #define CKSVII2C1_IC_SDA_HOLD__IC1_SDA_RX_HOLD_MASK 0x00FF0000L //CKSVII2C1_IC_TX_ABRT_SOURCE //CKSVII2C1_IC_SLV_DATA_NACK_ONLY //CKSVII2C1_IC_DMA_CR //CKSVII2C1_IC_DMA_TDLR //CKSVII2C1_IC_DMA_RDLR //CKSVII2C1_IC_SDA_SETUP #define CKSVII2C1_IC_SDA_SETUP__SDA1_SETUP__SHIFT 0x0 #define CKSVII2C1_IC_SDA_SETUP__SDA1_SETUP_MASK 0x000000FFL //CKSVII2C1_IC_ACK_GENERAL_CALL #define CKSVII2C1_IC_ACK_GENERAL_CALL__ACK1_GENERAL_CALL__SHIFT 0x0 #define CKSVII2C1_IC_ACK_GENERAL_CALL__ACK1_GENERAL_CALL_MASK 0x00000001L //CKSVII2C1_IC_ENABLE_STATUS #define CKSVII2C1_IC_ENABLE_STATUS__IC1_EN__SHIFT 0x0 #define CKSVII2C1_IC_ENABLE_STATUS__SLV1_DISABLED_WHILE_BUSY__SHIFT 0x1 #define CKSVII2C1_IC_ENABLE_STATUS__SLV1_RX_DATA_LOST__SHIFT 0x2 #define CKSVII2C1_IC_ENABLE_STATUS__IC1_EN_MASK 0x00000001L #define CKSVII2C1_IC_ENABLE_STATUS__SLV1_DISABLED_WHILE_BUSY_MASK 0x00000002L #define CKSVII2C1_IC_ENABLE_STATUS__SLV1_RX_DATA_LOST_MASK 0x00000004L //CKSVII2C1_IC_FS_SPKLEN #define CKSVII2C1_IC_FS_SPKLEN__FS1_SPKLEN__SHIFT 0x0 #define CKSVII2C1_IC_FS_SPKLEN__FS1_SPKLEN_MASK 0x000000FFL //CKSVII2C1_IC_HS_SPKLEN #define CKSVII2C1_IC_HS_SPKLEN__HS1_SPKLEN__SHIFT 0x0 #define CKSVII2C1_IC_HS_SPKLEN__HS1_SPKLEN_MASK 0x000000FFL //CKSVII2C1_IC_CLR_RESTART_DET //CKSVII2C1_IC_COMP_PARAM_1 #define CKSVII2C1_IC_COMP_PARAM_1__APB1_DATA_WIDTH__SHIFT 0x0 #define CKSVII2C1_IC_COMP_PARAM_1__MAX1_SPEED_MODE__SHIFT 0x2 #define CKSVII2C1_IC_COMP_PARAM_1__HC1_COUNT_VALUES__SHIFT 0x4 #define CKSVII2C1_IC_COMP_PARAM_1__INTR1_IO__SHIFT 0x5 #define CKSVII2C1_IC_COMP_PARAM_1__HAS1_DMA__SHIFT 0x6 #define CKSVII2C1_IC_COMP_PARAM_1__ADD1_ENCODED_PARAMS__SHIFT 0x7 #define CKSVII2C1_IC_COMP_PARAM_1__RX1_BUFFER_DEPTH__SHIFT 0x8 #define CKSVII2C1_IC_COMP_PARAM_1__TX1_BUFFER_DEPTH__SHIFT 0x10 #define CKSVII2C1_IC_COMP_PARAM_1__APB1_DATA_WIDTH_MASK 0x00000003L #define CKSVII2C1_IC_COMP_PARAM_1__MAX1_SPEED_MODE_MASK 0x0000000CL #define CKSVII2C1_IC_COMP_PARAM_1__HC1_COUNT_VALUES_MASK 0x00000010L #define CKSVII2C1_IC_COMP_PARAM_1__INTR1_IO_MASK 0x00000020L #define CKSVII2C1_IC_COMP_PARAM_1__HAS1_DMA_MASK 0x00000040L #define CKSVII2C1_IC_COMP_PARAM_1__ADD1_ENCODED_PARAMS_MASK 0x00000080L #define CKSVII2C1_IC_COMP_PARAM_1__RX1_BUFFER_DEPTH_MASK 0x0000FF00L #define CKSVII2C1_IC_COMP_PARAM_1__TX1_BUFFER_DEPTH_MASK 0x00FF0000L //CKSVII2C1_IC_COMP_VERSION #define CKSVII2C1_IC_COMP_VERSION__COMP1_VERSION__SHIFT 0x0 #define CKSVII2C1_IC_COMP_VERSION__COMP1_VERSION_MASK 0xFFFFFFFFL //CKSVII2C1_IC_COMP_TYPE #define CKSVII2C1_IC_COMP_TYPE__COMP1_TYPE__SHIFT 0x0 #define CKSVII2C1_IC_COMP_TYPE__COMP1_TYPE_MASK 0xFFFFFFFFL //SMUIO_PWRMGT #define SMUIO_PWRMGT__i2c_clk_gate_en__SHIFT 0x0 #define SMUIO_PWRMGT__i2c1_clk_gate_en__SHIFT 0x4 #define SMUIO_PWRMGT__i2c_clk_gate_en_MASK 0x00000001L #define SMUIO_PWRMGT__i2c1_clk_gate_en_MASK 0x00000010L // addressBlock: smuio_smuio_rom_SmuSmuioDec //ROM_CNTL #define ROM_CNTL__CLOCK_GATING_EN__SHIFT 0x0 #define ROM_CNTL__READ_MODE__SHIFT 0x1 #define ROM_CNTL__READ_MODE_OVERRIDE__SHIFT 0x3 #define ROM_CNTL__SPI_TIMING_RELAX_SCK__SHIFT 0x4 #define ROM_CNTL__SPI_TIMING_RELAX_SCK_OVERRIDE__SHIFT 0x5 #define ROM_CNTL__FOUR_BYTE_ADDRESS_MODE__SHIFT 0x6 #define ROM_CNTL__DUMMY_CYCLE_NUM__SHIFT 0x8 #define ROM_CNTL__SPI_TIMING_RELAX__SHIFT 0x14 #define ROM_CNTL__SPI_TIMING_RELAX_OVERRIDE__SHIFT 0x15 #define ROM_CNTL__SPI_FAST_MODE__SHIFT 0x16 #define ROM_CNTL__SPI_FAST_MODE_OVERRIDE__SHIFT 0x17 #define ROM_CNTL__SCK_PRESCALE_REFCLK__SHIFT 0x18 #define ROM_CNTL__SCK_PRESCALE_REFCLK_OVERRIDE__SHIFT 0x1c #define ROM_CNTL__ROM_INDEX_ADDRESS_AUTO_INCREASE__SHIFT 0x1d #define ROM_CNTL__PAD_SAMPLE_MODE__SHIFT 0x1e #define ROM_CNTL__PAD_SAMPLE_MODE_OVERRIDE__SHIFT 0x1f #define ROM_CNTL__CLOCK_GATING_EN_MASK 0x00000001L #define ROM_CNTL__READ_MODE_MASK 0x00000006L #define ROM_CNTL__READ_MODE_OVERRIDE_MASK 0x00000008L #define ROM_CNTL__SPI_TIMING_RELAX_SCK_MASK 0x00000010L #define ROM_CNTL__SPI_TIMING_RELAX_SCK_OVERRIDE_MASK 0x00000020L #define ROM_CNTL__FOUR_BYTE_ADDRESS_MODE_MASK 0x00000040L #define ROM_CNTL__DUMMY_CYCLE_NUM_MASK 0x00000F00L #define ROM_CNTL__SPI_TIMING_RELAX_MASK 0x00100000L #define ROM_CNTL__SPI_TIMING_RELAX_OVERRIDE_MASK 0x00200000L #define ROM_CNTL__SPI_FAST_MODE_MASK 0x00400000L #define ROM_CNTL__SPI_FAST_MODE_OVERRIDE_MASK 0x00800000L #define ROM_CNTL__SCK_PRESCALE_REFCLK_MASK 0x0F000000L #define ROM_CNTL__SCK_PRESCALE_REFCLK_OVERRIDE_MASK 0x10000000L #define ROM_CNTL__ROM_INDEX_ADDRESS_AUTO_INCREASE_MASK 0x20000000L #define ROM_CNTL__PAD_SAMPLE_MODE_MASK 0x40000000L #define ROM_CNTL__PAD_SAMPLE_MODE_OVERRIDE_MASK 0x80000000L //PAGE_MIRROR_CNTL #define PAGE_MIRROR_CNTL__PAGE_MIRROR_BASE_ADDR__SHIFT 0x0 #define PAGE_MIRROR_CNTL__PAGE_MIRROR_ENABLE__SHIFT 0x19 #define PAGE_MIRROR_CNTL__PAGE_MIRROR_USAGE__SHIFT 0x1a #define PAGE_MIRROR_CNTL__PAGE_MIRROR_INVALIDATE__SHIFT 0x1c #define PAGE_MIRROR_CNTL__PAGE_MIRROR_BASE_ADDR_MASK 0x01FFFFFFL #define PAGE_MIRROR_CNTL__PAGE_MIRROR_ENABLE_MASK 0x02000000L #define PAGE_MIRROR_CNTL__PAGE_MIRROR_USAGE_MASK 0x0C000000L #define PAGE_MIRROR_CNTL__PAGE_MIRROR_INVALIDATE_MASK 0x10000000L //ROM_STATUS #define ROM_STATUS__ROM_BUSY__SHIFT 0x0 #define ROM_STATUS__ROM_BUSY_MASK 0x00000001L //CGTT_ROM_CLK_CTRL0 #define CGTT_ROM_CLK_CTRL0__ON_DELAY__SHIFT 0x0 #define CGTT_ROM_CLK_CTRL0__OFF_HYSTERESIS__SHIFT 0x4 #define CGTT_ROM_CLK_CTRL0__SOFT_OVERRIDE1__SHIFT 0x1e #define CGTT_ROM_CLK_CTRL0__SOFT_OVERRIDE0__SHIFT 0x1f #define CGTT_ROM_CLK_CTRL0__ON_DELAY_MASK 0x0000000FL #define CGTT_ROM_CLK_CTRL0__OFF_HYSTERESIS_MASK 0x00000FF0L #define CGTT_ROM_CLK_CTRL0__SOFT_OVERRIDE1_MASK 0x40000000L #define CGTT_ROM_CLK_CTRL0__SOFT_OVERRIDE0_MASK 0x80000000L //ROM_INDEX #define ROM_INDEX__ROM_INDEX__SHIFT 0x0 #define ROM_INDEX__ROM_INDEX_MASK 0x01FFFFFFL //ROM_DATA #define ROM_DATA__ROM_DATA__SHIFT 0x0 #define ROM_DATA__ROM_DATA_MASK 0xFFFFFFFFL //ROM_START #define ROM_START__ROM_START__SHIFT 0x0 #define ROM_START__ROM_START_MASK 0x01FFFFFFL //ROM_SW_CNTL #define ROM_SW_CNTL__DATA_SIZE__SHIFT 0x0 #define ROM_SW_CNTL__COMMAND_SIZE__SHIFT 0x10 #define ROM_SW_CNTL__ROM_SW_RETURN_DATA_ENABLE__SHIFT 0x13 #define ROM_SW_CNTL__DATA_SIZE_MASK 0x0000FFFFL #define ROM_SW_CNTL__COMMAND_SIZE_MASK 0x00070000L #define ROM_SW_CNTL__ROM_SW_RETURN_DATA_ENABLE_MASK 0x00080000L //ROM_SW_STATUS #define ROM_SW_STATUS__ROM_SW_DONE__SHIFT 0x0 #define ROM_SW_STATUS__ROM_SW_DONE_MASK 0x00000001L //ROM_SW_COMMAND #define ROM_SW_COMMAND__ROM_SW_INSTRUCTION__SHIFT 0x0 #define ROM_SW_COMMAND__ROM_SW_ADDRESS__SHIFT 0x8 #define ROM_SW_COMMAND__ROM_SW_INSTRUCTION_MASK 0x000000FFL #define ROM_SW_COMMAND__ROM_SW_ADDRESS_MASK 0xFFFFFF00L //ROM_SW_DATA_1 #define ROM_SW_DATA_1__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_1__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_2 #define ROM_SW_DATA_2__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_2__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_3 #define ROM_SW_DATA_3__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_3__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_4 #define ROM_SW_DATA_4__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_4__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_5 #define ROM_SW_DATA_5__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_5__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_6 #define ROM_SW_DATA_6__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_6__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_7 #define ROM_SW_DATA_7__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_7__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_8 #define ROM_SW_DATA_8__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_8__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_9 #define ROM_SW_DATA_9__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_9__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_10 #define ROM_SW_DATA_10__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_10__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_11 #define ROM_SW_DATA_11__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_11__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_12 #define ROM_SW_DATA_12__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_12__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_13 #define ROM_SW_DATA_13__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_13__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_14 #define ROM_SW_DATA_14__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_14__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_15 #define ROM_SW_DATA_15__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_15__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_16 #define ROM_SW_DATA_16__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_16__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_17 #define ROM_SW_DATA_17__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_17__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_18 #define ROM_SW_DATA_18__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_18__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_19 #define ROM_SW_DATA_19__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_19__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_20 #define ROM_SW_DATA_20__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_20__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_21 #define ROM_SW_DATA_21__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_21__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_22 #define ROM_SW_DATA_22__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_22__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_23 #define ROM_SW_DATA_23__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_23__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_24 #define ROM_SW_DATA_24__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_24__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_25 #define ROM_SW_DATA_25__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_25__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_26 #define ROM_SW_DATA_26__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_26__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_27 #define ROM_SW_DATA_27__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_27__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_28 #define ROM_SW_DATA_28__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_28__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_29 #define ROM_SW_DATA_29__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_29__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_30 #define ROM_SW_DATA_30__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_30__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_31 #define ROM_SW_DATA_31__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_31__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_32 #define ROM_SW_DATA_32__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_32__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_33 #define ROM_SW_DATA_33__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_33__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_34 #define ROM_SW_DATA_34__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_34__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_35 #define ROM_SW_DATA_35__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_35__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_36 #define ROM_SW_DATA_36__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_36__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_37 #define ROM_SW_DATA_37__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_37__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_38 #define ROM_SW_DATA_38__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_38__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_39 #define ROM_SW_DATA_39__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_39__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_40 #define ROM_SW_DATA_40__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_40__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_41 #define ROM_SW_DATA_41__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_41__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_42 #define ROM_SW_DATA_42__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_42__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_43 #define ROM_SW_DATA_43__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_43__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_44 #define ROM_SW_DATA_44__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_44__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_45 #define ROM_SW_DATA_45__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_45__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_46 #define ROM_SW_DATA_46__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_46__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_47 #define ROM_SW_DATA_47__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_47__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_48 #define ROM_SW_DATA_48__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_48__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_49 #define ROM_SW_DATA_49__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_49__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_50 #define ROM_SW_DATA_50__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_50__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_51 #define ROM_SW_DATA_51__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_51__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_52 #define ROM_SW_DATA_52__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_52__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_53 #define ROM_SW_DATA_53__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_53__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_54 #define ROM_SW_DATA_54__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_54__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_55 #define ROM_SW_DATA_55__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_55__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_56 #define ROM_SW_DATA_56__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_56__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_57 #define ROM_SW_DATA_57__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_57__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_58 #define ROM_SW_DATA_58__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_58__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_59 #define ROM_SW_DATA_59__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_59__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_60 #define ROM_SW_DATA_60__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_60__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_61 #define ROM_SW_DATA_61__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_61__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_62 #define ROM_SW_DATA_62__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_62__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_63 #define ROM_SW_DATA_63__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_63__ROM_SW_DATA_MASK 0xFFFFFFFFL //ROM_SW_DATA_64 #define ROM_SW_DATA_64__ROM_SW_DATA__SHIFT 0x0 #define ROM_SW_DATA_64__ROM_SW_DATA_MASK 0xFFFFFFFFL // addressBlock: smuio_smuio_gpio_SmuSmuioDec //SMU_GPIOPAD_SW_INT_STAT #define SMU_GPIOPAD_SW_INT_STAT__SW_INT_STAT__SHIFT 0x0 #define SMU_GPIOPAD_SW_INT_STAT__SW_INT_STAT_MASK 0x00000001L //SMU_GPIOPAD_MASK #define SMU_GPIOPAD_MASK__GPIO_MASK__SHIFT 0x0 #define SMU_GPIOPAD_MASK__GPIO_MASK_MASK 0x7FFFFFFFL //SMU_GPIOPAD_A #define SMU_GPIOPAD_A__GPIO_A__SHIFT 0x0 #define SMU_GPIOPAD_A__GPIO_A_MASK 0x7FFFFFFFL //SMU_GPIOPAD_TXIMPSEL #define SMU_GPIOPAD_TXIMPSEL__GPIO_TXIMPSEL__SHIFT 0x0 #define SMU_GPIOPAD_TXIMPSEL__GPIO_TXIMPSEL_MASK 0x7FFFFFFFL //SMU_GPIOPAD_EN #define SMU_GPIOPAD_EN__GPIO_EN__SHIFT 0x0 #define SMU_GPIOPAD_EN__GPIO_EN_MASK 0x7FFFFFFFL //SMU_GPIOPAD_Y #define SMU_GPIOPAD_Y__GPIO_Y__SHIFT 0x0 #define SMU_GPIOPAD_Y__GPIO_Y_MASK 0x7FFFFFFFL //SMU_GPIOPAD_RXEN #define SMU_GPIOPAD_RXEN__GPIO_RXEN__SHIFT 0x0 #define SMU_GPIOPAD_RXEN__GPIO_RXEN_MASK 0x7FFFFFFFL //SMU_GPIOPAD_RCVR_SEL0 #define SMU_GPIOPAD_RCVR_SEL0__GPIO_RCVR_SEL0__SHIFT 0x0 #define SMU_GPIOPAD_RCVR_SEL0__GPIO_RCVR_SEL0_MASK 0x7FFFFFFFL //SMU_GPIOPAD_RCVR_SEL1 #define SMU_GPIOPAD_RCVR_SEL1__GPIO_RCVR_SEL1__SHIFT 0x0 #define SMU_GPIOPAD_RCVR_SEL1__GPIO_RCVR_SEL1_MASK 0x7FFFFFFFL //SMU_GPIOPAD_PU_EN #define SMU_GPIOPAD_PU_EN__GPIO_PU_EN__SHIFT 0x0 #define SMU_GPIOPAD_PU_EN__GPIO_PU_EN_MASK 0x7FFFFFFFL //SMU_GPIOPAD_PD_EN #define SMU_GPIOPAD_PD_EN__GPIO_PD_EN__SHIFT 0x0 #define SMU_GPIOPAD_PD_EN__GPIO_PD_EN_MASK 0x7FFFFFFFL //SMU_GPIOPAD_PINSTRAPS #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_0__SHIFT 0x0 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_1__SHIFT 0x1 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_2__SHIFT 0x2 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_3__SHIFT 0x3 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_4__SHIFT 0x4 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_5__SHIFT 0x5 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_6__SHIFT 0x6 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_7__SHIFT 0x7 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_8__SHIFT 0x8 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_9__SHIFT 0x9 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_10__SHIFT 0xa #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_11__SHIFT 0xb #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_12__SHIFT 0xc #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_13__SHIFT 0xd #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_14__SHIFT 0xe #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_15__SHIFT 0xf #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_16__SHIFT 0x10 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_17__SHIFT 0x11 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_18__SHIFT 0x12 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_19__SHIFT 0x13 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_20__SHIFT 0x14 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_21__SHIFT 0x15 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_22__SHIFT 0x16 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_23__SHIFT 0x17 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_24__SHIFT 0x18 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_25__SHIFT 0x19 #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_26__SHIFT 0x1a #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_27__SHIFT 0x1b #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_28__SHIFT 0x1c #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_29__SHIFT 0x1d #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_30__SHIFT 0x1e #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_0_MASK 0x00000001L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_1_MASK 0x00000002L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_2_MASK 0x00000004L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_3_MASK 0x00000008L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_4_MASK 0x00000010L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_5_MASK 0x00000020L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_6_MASK 0x00000040L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_7_MASK 0x00000080L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_8_MASK 0x00000100L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_9_MASK 0x00000200L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_10_MASK 0x00000400L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_11_MASK 0x00000800L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_12_MASK 0x00001000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_13_MASK 0x00002000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_14_MASK 0x00004000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_15_MASK 0x00008000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_16_MASK 0x00010000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_17_MASK 0x00020000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_18_MASK 0x00040000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_19_MASK 0x00080000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_20_MASK 0x00100000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_21_MASK 0x00200000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_22_MASK 0x00400000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_23_MASK 0x00800000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_24_MASK 0x01000000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_25_MASK 0x02000000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_26_MASK 0x04000000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_27_MASK 0x08000000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_28_MASK 0x10000000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_29_MASK 0x20000000L #define SMU_GPIOPAD_PINSTRAPS__GPIO_PINSTRAP_30_MASK 0x40000000L //DFT_PINSTRAPS #define DFT_PINSTRAPS__DFT_PINSTRAPS__SHIFT 0x0 #define DFT_PINSTRAPS__DFT_PINSTRAPS_MASK 0x000000FFL //SMU_GPIOPAD_INT_STAT_EN #define SMU_GPIOPAD_INT_STAT_EN__GPIO_INT_STAT_EN__SHIFT 0x0 #define SMU_GPIOPAD_INT_STAT_EN__SW_INITIATED_INT_STAT_EN__SHIFT 0x1f #define SMU_GPIOPAD_INT_STAT_EN__GPIO_INT_STAT_EN_MASK 0x1FFFFFFFL #define SMU_GPIOPAD_INT_STAT_EN__SW_INITIATED_INT_STAT_EN_MASK 0x80000000L //SMU_GPIOPAD_INT_STAT #define SMU_GPIOPAD_INT_STAT__GPIO_INT_STAT__SHIFT 0x0 #define SMU_GPIOPAD_INT_STAT__SW_INITIATED_INT_STAT__SHIFT 0x1f #define SMU_GPIOPAD_INT_STAT__GPIO_INT_STAT_MASK 0x1FFFFFFFL #define SMU_GPIOPAD_INT_STAT__SW_INITIATED_INT_STAT_MASK 0x80000000L //SMU_GPIOPAD_INT_STAT_AK #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_0__SHIFT 0x0 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_1__SHIFT 0x1 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_2__SHIFT 0x2 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_3__SHIFT 0x3 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_4__SHIFT 0x4 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_5__SHIFT 0x5 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_6__SHIFT 0x6 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_7__SHIFT 0x7 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_8__SHIFT 0x8 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_9__SHIFT 0x9 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_10__SHIFT 0xa #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_11__SHIFT 0xb #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_12__SHIFT 0xc #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_13__SHIFT 0xd #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_14__SHIFT 0xe #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_15__SHIFT 0xf #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_16__SHIFT 0x10 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_17__SHIFT 0x11 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_18__SHIFT 0x12 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_19__SHIFT 0x13 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_20__SHIFT 0x14 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_21__SHIFT 0x15 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_22__SHIFT 0x16 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_23__SHIFT 0x17 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_24__SHIFT 0x18 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_25__SHIFT 0x19 #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_26__SHIFT 0x1a #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_27__SHIFT 0x1b #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_28__SHIFT 0x1c #define SMU_GPIOPAD_INT_STAT_AK__SW_INITIATED_INT_STAT_AK__SHIFT 0x1f #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_0_MASK 0x00000001L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_1_MASK 0x00000002L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_2_MASK 0x00000004L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_3_MASK 0x00000008L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_4_MASK 0x00000010L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_5_MASK 0x00000020L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_6_MASK 0x00000040L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_7_MASK 0x00000080L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_8_MASK 0x00000100L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_9_MASK 0x00000200L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_10_MASK 0x00000400L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_11_MASK 0x00000800L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_12_MASK 0x00001000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_13_MASK 0x00002000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_14_MASK 0x00004000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_15_MASK 0x00008000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_16_MASK 0x00010000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_17_MASK 0x00020000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_18_MASK 0x00040000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_19_MASK 0x00080000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_20_MASK 0x00100000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_21_MASK 0x00200000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_22_MASK 0x00400000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_23_MASK 0x00800000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_24_MASK 0x01000000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_25_MASK 0x02000000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_26_MASK 0x04000000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_27_MASK 0x08000000L #define SMU_GPIOPAD_INT_STAT_AK__GPIO_INT_STAT_AK_28_MASK 0x10000000L #define SMU_GPIOPAD_INT_STAT_AK__SW_INITIATED_INT_STAT_AK_MASK 0x80000000L //SMU_GPIOPAD_INT_EN #define SMU_GPIOPAD_INT_EN__GPIO_INT_EN__SHIFT 0x0 #define SMU_GPIOPAD_INT_EN__SW_INITIATED_INT_EN__SHIFT 0x1f #define SMU_GPIOPAD_INT_EN__GPIO_INT_EN_MASK 0x1FFFFFFFL #define SMU_GPIOPAD_INT_EN__SW_INITIATED_INT_EN_MASK 0x80000000L //SMU_GPIOPAD_INT_TYPE #define SMU_GPIOPAD_INT_TYPE__GPIO_INT_TYPE__SHIFT 0x0 #define SMU_GPIOPAD_INT_TYPE__SW_INITIATED_INT_TYPE__SHIFT 0x1f #define SMU_GPIOPAD_INT_TYPE__GPIO_INT_TYPE_MASK 0x1FFFFFFFL #define SMU_GPIOPAD_INT_TYPE__SW_INITIATED_INT_TYPE_MASK 0x80000000L //SMU_GPIOPAD_INT_POLARITY #define SMU_GPIOPAD_INT_POLARITY__GPIO_INT_POLARITY__SHIFT 0x0 #define SMU_GPIOPAD_INT_POLARITY__SW_INITIATED_INT_POLARITY__SHIFT 0x1f #define SMU_GPIOPAD_INT_POLARITY__GPIO_INT_POLARITY_MASK 0x1FFFFFFFL #define SMU_GPIOPAD_INT_POLARITY__SW_INITIATED_INT_POLARITY_MASK 0x80000000L //SMUIO_PCC_GPIO_SELECT #define SMUIO_PCC_GPIO_SELECT__GPIO__SHIFT 0x0 #define SMUIO_PCC_GPIO_SELECT__GPIO_MASK 0xFFFFFFFFL //SMU_GPIOPAD_S0 #define SMU_GPIOPAD_S0__GPIO_S0__SHIFT 0x0 #define SMU_GPIOPAD_S0__GPIO_S0_MASK 0x7FFFFFFFL //SMU_GPIOPAD_S1 #define SMU_GPIOPAD_S1__GPIO_S1__SHIFT 0x0 #define SMU_GPIOPAD_S1__GPIO_S1_MASK 0x7FFFFFFFL //SMU_GPIOPAD_SCHMEN #define SMU_GPIOPAD_SCHMEN__GPIO_SCHMEN__SHIFT 0x0 #define SMU_GPIOPAD_SCHMEN__GPIO_SCHMEN_MASK 0x7FFFFFFFL //SMU_GPIOPAD_SCL_EN #define SMU_GPIOPAD_SCL_EN__GPIO_SCL_EN__SHIFT 0x0 #define SMU_GPIOPAD_SCL_EN__GPIO_SCL_EN_MASK 0x7FFFFFFFL //SMU_GPIOPAD_SDA_EN #define SMU_GPIOPAD_SDA_EN__GPIO_SDA_EN__SHIFT 0x0 #define SMU_GPIOPAD_SDA_EN__GPIO_SDA_EN_MASK 0x7FFFFFFFL //SMUIO_GPIO_INT0_SELECT #define SMUIO_GPIO_INT0_SELECT__GPIO_INT0_SELECT__SHIFT 0x0 #define SMUIO_GPIO_INT0_SELECT__GPIO_INT0_SELECT_MASK 0xFFFFFFFFL //SMUIO_GPIO_INT1_SELECT #define SMUIO_GPIO_INT1_SELECT__GPIO_INT1_SELECT__SHIFT 0x0 #define SMUIO_GPIO_INT1_SELECT__GPIO_INT1_SELECT_MASK 0xFFFFFFFFL //SMUIO_GPIO_INT2_SELECT #define SMUIO_GPIO_INT2_SELECT__GPIO_INT2_SELECT__SHIFT 0x0 #define SMUIO_GPIO_INT2_SELECT__GPIO_INT2_SELECT_MASK 0xFFFFFFFFL //SMUIO_GPIO_INT3_SELECT #define SMUIO_GPIO_INT3_SELECT__GPIO_INT3_SELECT__SHIFT 0x0 #define SMUIO_GPIO_INT3_SELECT__GPIO_INT3_SELECT_MASK 0xFFFFFFFFL //SMU_GPIOPAD_MP_INT0_STAT #define SMU_GPIOPAD_MP_INT0_STAT__GPIO_MP_INT0_STAT__SHIFT 0x0 #define SMU_GPIOPAD_MP_INT0_STAT__GPIO_MP_INT0_STAT_MASK 0x1FFFFFFFL //SMU_GPIOPAD_MP_INT1_STAT #define SMU_GPIOPAD_MP_INT1_STAT__GPIO_MP_INT1_STAT__SHIFT 0x0 #define SMU_GPIOPAD_MP_INT1_STAT__GPIO_MP_INT1_STAT_MASK 0x1FFFFFFFL //SMU_GPIOPAD_MP_INT2_STAT #define SMU_GPIOPAD_MP_INT2_STAT__GPIO_MP_INT2_STAT__SHIFT 0x0 #define SMU_GPIOPAD_MP_INT2_STAT__GPIO_MP_INT2_STAT_MASK 0x1FFFFFFFL //SMU_GPIOPAD_MP_INT3_STAT #define SMU_GPIOPAD_MP_INT3_STAT__GPIO_MP_INT3_STAT__SHIFT 0x0 #define SMU_GPIOPAD_MP_INT3_STAT__GPIO_MP_INT3_STAT_MASK 0x1FFFFFFFL //SMIO_INDEX #define SMIO_INDEX__SW_SMIO_INDEX__SHIFT 0x0 #define SMIO_INDEX__SW_SMIO_INDEX_MASK 0x00000001L //S0_VID_SMIO_CNTL #define S0_VID_SMIO_CNTL__S0_SMIO_VALUES__SHIFT 0x0 #define S0_VID_SMIO_CNTL__S0_SMIO_VALUES_MASK 0xFFFFFFFFL //S1_VID_SMIO_CNTL #define S1_VID_SMIO_CNTL__S1_SMIO_VALUES__SHIFT 0x0 #define S1_VID_SMIO_CNTL__S1_SMIO_VALUES_MASK 0xFFFFFFFFL //OPEN_DRAIN_SELECT #define OPEN_DRAIN_SELECT__OPEN_DRAIN_SELECT__SHIFT 0x0 #define OPEN_DRAIN_SELECT__RESERVED__SHIFT 0x1f #define OPEN_DRAIN_SELECT__OPEN_DRAIN_SELECT_MASK 0x7FFFFFFFL #define OPEN_DRAIN_SELECT__RESERVED_MASK 0x80000000L //SMIO_ENABLE #define SMIO_ENABLE__SMIO_ENABLE__SHIFT 0x0 #define SMIO_ENABLE__SMIO_ENABLE_MASK 0xFFFFFFFFL #endif
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2024, Intel Corporation * * Author: Rafael J. Wysocki <[email protected]> * * Thermal zone tempalates handling for thermal core testing. */ #define pr_fmt(fmt) "thermal-testing: " fmt #include <linux/debugfs.h> #include <linux/idr.h> #include <linux/list.h> #include <linux/thermal.h> #include <linux/workqueue.h> #include "thermal_testing.h" #define TT_MAX_FILE_NAME_LENGTH 16 /** * struct tt_thermal_zone - Testing thermal zone template * * Represents a template of a thermal zone that can be used for registering * a test thermal zone with the thermal core. * * @list_node: Node in the list of all testing thermal zone templates. * @trips: List of trip point templates for this thermal zone template. * @d_tt_zone: Directory in debugfs representing this template. * @tz: Test thermal zone based on this template, if present. * @lock: Mutex for synchronizing changes of this template. * @ida: IDA for trip point IDs. * @id: The ID of this template for the debugfs interface. * @temp: Temperature value. * @tz_temp: Current thermal zone temperature (after registration). * @num_trips: Number of trip points in the @trips list. * @refcount: Reference counter for usage and removal synchronization. */ struct tt_thermal_zone { struct list_head list_node; struct list_head trips; struct dentry *d_tt_zone; struct thermal_zone_device *tz; struct mutex lock; struct ida ida; int id; int temp; int tz_temp; unsigned int num_trips; unsigned int refcount; }; DEFINE_GUARD(tt_zone, struct tt_thermal_zone *, mutex_lock(&_T->lock), mutex_unlock(&_T->lock)) /** * struct tt_trip - Testing trip point template * * Represents a template of a trip point to be used for populating a trip point * during the registration of a thermal zone based on a given zone template. * * @list_node: Node in the list of all trip templates in the zone template. * @trip: Trip point data to use for thernal zone registration. * @id: The ID of this trip template for the debugfs interface. */ struct tt_trip { struct list_head list_node; struct thermal_trip trip; int id; }; /* * It is both questionable and potentially problematic from the sychnronization * perspective to attempt to manipulate debugfs from within a debugfs file * "write" operation, so auxiliary work items are used for that. The majority * of zone-related command functions have a part that runs from a workqueue and * make changes in debugs, among other things. */ struct tt_work { struct work_struct work; struct tt_thermal_zone *tt_zone; struct tt_trip *tt_trip; }; static inline struct tt_work *tt_work_of_work(struct work_struct *work) { return container_of(work, struct tt_work, work); } static LIST_HEAD(tt_thermal_zones); static DEFINE_IDA(tt_thermal_zones_ida); static DEFINE_MUTEX(tt_thermal_zones_lock); static int tt_int_get(void *data, u64 *val) { *val = *(int *)data; return 0; } static int tt_int_set(void *data, u64 val) { if ((int)val < THERMAL_TEMP_INVALID) return -EINVAL; *(int *)data = val; return 0; } DEFINE_DEBUGFS_ATTRIBUTE_SIGNED(tt_int_attr, tt_int_get, tt_int_set, "%lld\n"); DEFINE_DEBUGFS_ATTRIBUTE(tt_unsigned_int_attr, tt_int_get, tt_int_set, "%llu\n"); static int tt_zone_tz_temp_get(void *data, u64 *val) { struct tt_thermal_zone *tt_zone = data; guard(tt_zone)(tt_zone); if (!tt_zone->tz) return -EBUSY; *val = tt_zone->tz_temp; return 0; } static int tt_zone_tz_temp_set(void *data, u64 val) { struct tt_thermal_zone *tt_zone = data; guard(tt_zone)(tt_zone); if (!tt_zone->tz) return -EBUSY; WRITE_ONCE(tt_zone->tz_temp, val); thermal_zone_device_update(tt_zone->tz, THERMAL_EVENT_TEMP_SAMPLE); return 0; } DEFINE_DEBUGFS_ATTRIBUTE_SIGNED(tt_zone_tz_temp_attr, tt_zone_tz_temp_get, tt_zone_tz_temp_set, "%lld\n"); static void tt_zone_free_trips(struct tt_thermal_zone *tt_zone) { struct tt_trip *tt_trip, *aux; list_for_each_entry_safe(tt_trip, aux, &tt_zone->trips, list_node) { list_del(&tt_trip->list_node); ida_free(&tt_zone->ida, tt_trip->id); kfree(tt_trip); } } static void tt_zone_free(struct tt_thermal_zone *tt_zone) { tt_zone_free_trips(tt_zone); ida_free(&tt_thermal_zones_ida, tt_zone->id); ida_destroy(&tt_zone->ida); kfree(tt_zone); } static void tt_add_tz_work_fn(struct work_struct *work) { struct tt_work *tt_work = tt_work_of_work(work); struct tt_thermal_zone *tt_zone = tt_work->tt_zone; char f_name[TT_MAX_FILE_NAME_LENGTH]; kfree(tt_work); snprintf(f_name, TT_MAX_FILE_NAME_LENGTH, "tz%d", tt_zone->id); tt_zone->d_tt_zone = debugfs_create_dir(f_name, d_testing); if (IS_ERR(tt_zone->d_tt_zone)) { tt_zone_free(tt_zone); return; } debugfs_create_file_unsafe("temp", 0600, tt_zone->d_tt_zone, tt_zone, &tt_zone_tz_temp_attr); debugfs_create_file_unsafe("init_temp", 0600, tt_zone->d_tt_zone, &tt_zone->temp, &tt_int_attr); guard(mutex)(&tt_thermal_zones_lock); list_add_tail(&tt_zone->list_node, &tt_thermal_zones); } int tt_add_tz(void) { struct tt_thermal_zone *tt_zone __free(kfree); struct tt_work *tt_work __free(kfree) = NULL; int ret; tt_zone = kzalloc(sizeof(*tt_zone), GFP_KERNEL); if (!tt_zone) return -ENOMEM; tt_work = kzalloc(sizeof(*tt_work), GFP_KERNEL); if (!tt_work) return -ENOMEM; INIT_LIST_HEAD(&tt_zone->trips); mutex_init(&tt_zone->lock); ida_init(&tt_zone->ida); tt_zone->temp = THERMAL_TEMP_INVALID; ret = ida_alloc(&tt_thermal_zones_ida, GFP_KERNEL); if (ret < 0) return ret; tt_zone->id = ret; INIT_WORK(&tt_work->work, tt_add_tz_work_fn); tt_work->tt_zone = no_free_ptr(tt_zone); schedule_work(&(no_free_ptr(tt_work)->work)); return 0; } static void tt_del_tz_work_fn(struct work_struct *work) { struct tt_work *tt_work = tt_work_of_work(work); struct tt_thermal_zone *tt_zone = tt_work->tt_zone; kfree(tt_work); debugfs_remove(tt_zone->d_tt_zone); tt_zone_free(tt_zone); } static void tt_zone_unregister_tz(struct tt_thermal_zone *tt_zone) { guard(tt_zone)(tt_zone); if (tt_zone->tz) { thermal_zone_device_unregister(tt_zone->tz); tt_zone->tz = NULL; } } int tt_del_tz(const char *arg) { struct tt_work *tt_work __free(kfree) = NULL; struct tt_thermal_zone *tt_zone, *aux; int ret; int id; ret = sscanf(arg, "%d", &id); if (ret != 1) return -EINVAL; tt_work = kzalloc(sizeof(*tt_work), GFP_KERNEL); if (!tt_work) return -ENOMEM; guard(mutex)(&tt_thermal_zones_lock); ret = -EINVAL; list_for_each_entry_safe(tt_zone, aux, &tt_thermal_zones, list_node) { if (tt_zone->id == id) { if (tt_zone->refcount) { ret = -EBUSY; } else { list_del(&tt_zone->list_node); ret = 0; } break; } } if (ret) return ret; tt_zone_unregister_tz(tt_zone); INIT_WORK(&tt_work->work, tt_del_tz_work_fn); tt_work->tt_zone = tt_zone; schedule_work(&(no_free_ptr(tt_work)->work)); return 0; } static struct tt_thermal_zone *tt_get_tt_zone(const char *arg) { struct tt_thermal_zone *tt_zone; int ret, id; ret = sscanf(arg, "%d", &id); if (ret != 1) return ERR_PTR(-EINVAL); guard(mutex)(&tt_thermal_zones_lock); list_for_each_entry(tt_zone, &tt_thermal_zones, list_node) { if (tt_zone->id == id) { tt_zone->refcount++; return tt_zone; } } return ERR_PTR(-EINVAL); } static void tt_put_tt_zone(struct tt_thermal_zone *tt_zone) { guard(mutex)(&tt_thermal_zones_lock); tt_zone->refcount--; } DEFINE_FREE(put_tt_zone, struct tt_thermal_zone *, if (!IS_ERR_OR_NULL(_T)) tt_put_tt_zone(_T)) static void tt_zone_add_trip_work_fn(struct work_struct *work) { struct tt_work *tt_work = tt_work_of_work(work); struct tt_thermal_zone *tt_zone = tt_work->tt_zone; struct tt_trip *tt_trip = tt_work->tt_trip; char d_name[TT_MAX_FILE_NAME_LENGTH]; kfree(tt_work); snprintf(d_name, TT_MAX_FILE_NAME_LENGTH, "trip_%d_temp", tt_trip->id); debugfs_create_file_unsafe(d_name, 0600, tt_zone->d_tt_zone, &tt_trip->trip.temperature, &tt_int_attr); snprintf(d_name, TT_MAX_FILE_NAME_LENGTH, "trip_%d_hyst", tt_trip->id); debugfs_create_file_unsafe(d_name, 0600, tt_zone->d_tt_zone, &tt_trip->trip.hysteresis, &tt_unsigned_int_attr); tt_put_tt_zone(tt_zone); } int tt_zone_add_trip(const char *arg) { struct tt_thermal_zone *tt_zone __free(put_tt_zone) = NULL; struct tt_trip *tt_trip __free(kfree) = NULL; struct tt_work *tt_work __free(kfree); int id; tt_work = kzalloc(sizeof(*tt_work), GFP_KERNEL); if (!tt_work) return -ENOMEM; tt_trip = kzalloc(sizeof(*tt_trip), GFP_KERNEL); if (!tt_trip) return -ENOMEM; tt_zone = tt_get_tt_zone(arg); if (IS_ERR(tt_zone)) return PTR_ERR(tt_zone); id = ida_alloc(&tt_zone->ida, GFP_KERNEL); if (id < 0) return id; tt_trip->trip.type = THERMAL_TRIP_ACTIVE; tt_trip->trip.temperature = THERMAL_TEMP_INVALID; tt_trip->trip.flags = THERMAL_TRIP_FLAG_RW; tt_trip->id = id; guard(tt_zone)(tt_zone); list_add_tail(&tt_trip->list_node, &tt_zone->trips); tt_zone->num_trips++; INIT_WORK(&tt_work->work, tt_zone_add_trip_work_fn); tt_work->tt_zone = no_free_ptr(tt_zone); tt_work->tt_trip = no_free_ptr(tt_trip); schedule_work(&(no_free_ptr(tt_work)->work)); return 0; } static int tt_zone_get_temp(struct thermal_zone_device *tz, int *temp) { struct tt_thermal_zone *tt_zone = thermal_zone_device_priv(tz); *temp = READ_ONCE(tt_zone->tz_temp); if (*temp < THERMAL_TEMP_INVALID) return -ENODATA; return 0; } static struct thermal_zone_device_ops tt_zone_ops = { .get_temp = tt_zone_get_temp, }; static int tt_zone_register_tz(struct tt_thermal_zone *tt_zone) { struct thermal_trip *trips __free(kfree) = NULL; struct thermal_zone_device *tz; struct tt_trip *tt_trip; int i; guard(tt_zone)(tt_zone); if (tt_zone->tz) return -EINVAL; trips = kcalloc(tt_zone->num_trips, sizeof(*trips), GFP_KERNEL); if (!trips) return -ENOMEM; i = 0; list_for_each_entry(tt_trip, &tt_zone->trips, list_node) trips[i++] = tt_trip->trip; tt_zone->tz_temp = tt_zone->temp; tz = thermal_zone_device_register_with_trips("test_tz", trips, i, tt_zone, &tt_zone_ops, NULL, 0, 0); if (IS_ERR(tz)) return PTR_ERR(tz); tt_zone->tz = tz; thermal_zone_device_enable(tz); return 0; } int tt_zone_reg(const char *arg) { struct tt_thermal_zone *tt_zone __free(put_tt_zone); tt_zone = tt_get_tt_zone(arg); if (IS_ERR(tt_zone)) return PTR_ERR(tt_zone); return tt_zone_register_tz(tt_zone); } int tt_zone_unreg(const char *arg) { struct tt_thermal_zone *tt_zone __free(put_tt_zone); tt_zone = tt_get_tt_zone(arg); if (IS_ERR(tt_zone)) return PTR_ERR(tt_zone); tt_zone_unregister_tz(tt_zone); return 0; } void tt_zone_cleanup(void) { struct tt_thermal_zone *tt_zone, *aux; list_for_each_entry_safe(tt_zone, aux, &tt_thermal_zones, list_node) { tt_zone_unregister_tz(tt_zone); list_del(&tt_zone->list_node); tt_zone_free(tt_zone); } }
// SPDX-License-Identifier: GPL-2.0-or-later OR MIT /* * Copyright 2022 Toradex */ /dts-v1/; #include "imx7d-colibri.dtsi" #include "imx7-colibri-iris-v2.dtsi" / { model = "Toradex Colibri iMX7D on Iris V2 Carrier Board"; compatible = "toradex,colibri-imx7d-iris-v2", "toradex,colibri-imx7d", "fsl,imx7d"; }; &ad7879_ts { status = "okay"; }; &atmel_mxt_ts { status = "okay"; }; &backlight { status = "okay"; }; &gpio2 { /* * This switches the LVDS transceiver to VESA color mapping mode. */ lvds-color-map-hog { gpio-hog; gpios = <13 GPIO_ACTIVE_HIGH>; /* SODIMM 95 */ line-name = "LVDS_COLOR_MAP"; output-low; }; }; &gpio7 { /* * This switches the LVDS transceiver to the 24-bit RGB mode. */ lvds-rgb-mode-hog { gpio-hog; gpios = <2 GPIO_ACTIVE_HIGH>; /* SODIMM 63 */ line-name = "LVDS_RGB_MODE"; output-low; }; /* * This switches the LVDS transceiver to the single-channel * output mode. */ lvds-ch-mode-hog { gpio-hog; gpios = <3 GPIO_ACTIVE_HIGH>; /* SODIMM 55 */ line-name = "LVDS_CH_MODE"; output-high; }; /* This turns the LVDS transceiver on */ lvds-power-on-hog { gpio-hog; gpios = <11 GPIO_ACTIVE_HIGH>; /* SODIMM 99 */ line-name = "LVDS_POWER_ON"; output-high; }; }; &lcdif { status = "okay"; }; &panel_dpi { status = "okay"; }; /* Colibri USBH */ &usbotg2 { disable-over-current; status = "okay"; };
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2014 Oleksij Rempel <[email protected]> */ #ifndef _ALPHASCALE_ASM9260_ICOLL_H #define _ALPHASCALE_ASM9260_ICOLL_H #define ASM9260_NUM_IRQS 64 /* * this device provide 4 offsets for each register: * 0x0 - plain read write mode * 0x4 - set mode, OR logic. * 0x8 - clr mode, XOR logic. * 0xc - togle mode. */ #define ASM9260_HW_ICOLL_VECTOR 0x0000 /* * bits 31:2 * This register presents the vector address for the interrupt currently * active on the CPU IRQ input. Writing to this register notifies the * interrupt collector that the interrupt service routine for the current * interrupt has been entered. * The exception trap should have a LDPC instruction from this address: * LDPC ASM9260_HW_ICOLL_VECTOR_ADDR; IRQ exception at 0xffff0018 */ /* * The Interrupt Collector Level Acknowledge Register is used by software to * indicate the completion of an interrupt on a specific level. * This register is written at the very end of an interrupt service routine. If * nesting is used then the CPU irq must be turned on before writing to this * register to avoid a race condition in the CPU interrupt hardware. */ #define ASM9260_HW_ICOLL_LEVELACK 0x0010 #define ASM9260_BM_LEVELn(nr) BIT(nr) #define ASM9260_HW_ICOLL_CTRL 0x0020 /* * ASM9260_BM_CTRL_SFTRST and ASM9260_BM_CTRL_CLKGATE are not available on * asm9260. */ #define ASM9260_BM_CTRL_SFTRST BIT(31) #define ASM9260_BM_CTRL_CLKGATE BIT(30) /* disable interrupt level nesting */ #define ASM9260_BM_CTRL_NO_NESTING BIT(19) /* * Set this bit to one enable the RISC32-style read side effect associated with * the vector address register. In this mode, interrupt in-service is signaled * by the read of the ASM9260_HW_ICOLL_VECTOR register to acquire the interrupt * vector address. Set this bit to zero for normal operation, in which the ISR * signals in-service explicitly by means of a write to the * ASM9260_HW_ICOLL_VECTOR register. * 0 - Must Write to Vector register to go in-service. * 1 - Go in-service as a read side effect */ #define ASM9260_BM_CTRL_ARM_RSE_MODE BIT(18) #define ASM9260_BM_CTRL_IRQ_ENABLE BIT(16) #define ASM9260_HW_ICOLL_STAT_OFFSET 0x0030 /* * bits 5:0 * Vector number of current interrupt. Multiply by 4 and add to vector base * address to obtain the value in ASM9260_HW_ICOLL_VECTOR. */ /* * RAW0 and RAW1 provides a read-only view of the raw interrupt request lines * coming from various parts of the chip. Its purpose is to improve diagnostic * observability. */ #define ASM9260_HW_ICOLL_RAW0 0x0040 #define ASM9260_HW_ICOLL_RAW1 0x0050 #define ASM9260_HW_ICOLL_INTERRUPT0 0x0060 #define ASM9260_HW_ICOLL_INTERRUPTn(n) (0x0060 + ((n) >> 2) * 0x10) /* * WARNING: Modifying the priority of an enabled interrupt may result in * undefined behavior. */ #define ASM9260_BM_INT_PRIORITY_MASK 0x3 #define ASM9260_BM_INT_ENABLE BIT(2) #define ASM9260_BM_INT_SOFTIRQ BIT(3) #define ASM9260_BM_ICOLL_INTERRUPTn_SHIFT(n) (((n) & 0x3) << 3) #define ASM9260_BM_ICOLL_INTERRUPTn_ENABLE(n) (1 << (2 + \ ASM9260_BM_ICOLL_INTERRUPTn_SHIFT(n))) #define ASM9260_HW_ICOLL_VBASE 0x0160 /* * bits 31:2 * This bitfield holds the upper 30 bits of the base address of the vector * table. */ #define ASM9260_HW_ICOLL_CLEAR0 0x01d0 #define ASM9260_HW_ICOLL_CLEAR1 0x01e0 #define ASM9260_HW_ICOLL_CLEARn(n) (((n >> 5) * 0x10) \ + SET_REG) #define ASM9260_BM_CLEAR_BIT(n) BIT(n & 0x1f) /* Scratchpad */ #define ASM9260_HW_ICOLL_UNDEF_VECTOR 0x01f0 #endif
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (c) International Business Machines Corp., 2000,2009 * Modified by Steve French ([email protected]) */ #include <linux/fs.h> #include <linux/slab.h> #include "cifs_fs_sb.h" #include "cifs_unicode.h" #include "cifspdu.h" #include "cifsglob.h" #include "cifs_debug.h" int cifs_remap(struct cifs_sb_info *cifs_sb) { int map_type; if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MAP_SFM_CHR) map_type = SFM_MAP_UNI_RSVD; else if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MAP_SPECIAL_CHR) map_type = SFU_MAP_UNI_RSVD; else map_type = NO_MAP_UNI_RSVD; return map_type; } /* Convert character using the SFU - "Services for Unix" remapping range */ static bool convert_sfu_char(const __u16 src_char, char *target) { /* * BB: Cannot handle remapping UNI_SLASH until all the calls to * build_path_from_dentry are modified, as they use slash as * separator. */ switch (src_char) { case UNI_COLON: *target = ':'; break; case UNI_ASTERISK: *target = '*'; break; case UNI_QUESTION: *target = '?'; break; case UNI_PIPE: *target = '|'; break; case UNI_GRTRTHAN: *target = '>'; break; case UNI_LESSTHAN: *target = '<'; break; default: return false; } return true; } /* Convert character using the SFM - "Services for Mac" remapping range */ static bool convert_sfm_char(const __u16 src_char, char *target) { if (src_char >= 0xF001 && src_char <= 0xF01F) { *target = src_char - 0xF000; return true; } switch (src_char) { case SFM_COLON: *target = ':'; break; case SFM_DOUBLEQUOTE: *target = '"'; break; case SFM_ASTERISK: *target = '*'; break; case SFM_QUESTION: *target = '?'; break; case SFM_PIPE: *target = '|'; break; case SFM_GRTRTHAN: *target = '>'; break; case SFM_LESSTHAN: *target = '<'; break; case SFM_SPACE: *target = ' '; break; case SFM_PERIOD: *target = '.'; break; default: return false; } return true; } /* * cifs_mapchar - convert a host-endian char to proper char in codepage * @target - where converted character should be copied * @src_char - 2 byte host-endian source character * @cp - codepage to which character should be converted * @map_type - How should the 7 NTFS/SMB reserved characters be mapped to UCS2? * * This function handles the conversion of a single character. It is the * responsibility of the caller to ensure that the target buffer is large * enough to hold the result of the conversion (at least NLS_MAX_CHARSET_SIZE). */ static int cifs_mapchar(char *target, const __u16 *from, const struct nls_table *cp, int maptype) { int len = 1; __u16 src_char; src_char = *from; if ((maptype == SFM_MAP_UNI_RSVD) && convert_sfm_char(src_char, target)) return len; else if ((maptype == SFU_MAP_UNI_RSVD) && convert_sfu_char(src_char, target)) return len; /* if character not one of seven in special remap set */ len = cp->uni2char(src_char, target, NLS_MAX_CHARSET_SIZE); if (len <= 0) goto surrogate_pair; return len; surrogate_pair: /* convert SURROGATE_PAIR and IVS */ if (strcmp(cp->charset, "utf8")) goto unknown; len = utf16s_to_utf8s(from, 3, UTF16_LITTLE_ENDIAN, target, 6); if (len <= 0) goto unknown; return len; unknown: *target = '?'; len = 1; return len; } /* * cifs_from_utf16 - convert utf16le string to local charset * @to - destination buffer * @from - source buffer * @tolen - destination buffer size (in bytes) * @fromlen - source buffer size (in bytes) * @codepage - codepage to which characters should be converted * @mapchar - should characters be remapped according to the mapchars option? * * Convert a little-endian utf16le string (as sent by the server) to a string * in the provided codepage. The tolen and fromlen parameters are to ensure * that the code doesn't walk off of the end of the buffer (which is always * a danger if the alignment of the source buffer is off). The destination * string is always properly null terminated and fits in the destination * buffer. Returns the length of the destination string in bytes (including * null terminator). * * Note that some windows versions actually send multiword UTF-16 characters * instead of straight UTF16-2. The linux nls routines however aren't able to * deal with those characters properly. In the event that we get some of * those characters, they won't be translated properly. */ int cifs_from_utf16(char *to, const __le16 *from, int tolen, int fromlen, const struct nls_table *codepage, int map_type) { int i, charlen, safelen; int outlen = 0; int nullsize = nls_nullsize(codepage); int fromwords = fromlen / 2; char tmp[NLS_MAX_CHARSET_SIZE]; __u16 ftmp[3]; /* ftmp[3] = 3array x 2bytes = 6bytes UTF-16 */ /* * because the chars can be of varying widths, we need to take care * not to overflow the destination buffer when we get close to the * end of it. Until we get to this offset, we don't need to check * for overflow however. */ safelen = tolen - (NLS_MAX_CHARSET_SIZE + nullsize); for (i = 0; i < fromwords; i++) { ftmp[0] = get_unaligned_le16(&from[i]); if (ftmp[0] == 0) break; if (i + 1 < fromwords) ftmp[1] = get_unaligned_le16(&from[i + 1]); else ftmp[1] = 0; if (i + 2 < fromwords) ftmp[2] = get_unaligned_le16(&from[i + 2]); else ftmp[2] = 0; /* * check to see if converting this character might make the * conversion bleed into the null terminator */ if (outlen >= safelen) { charlen = cifs_mapchar(tmp, ftmp, codepage, map_type); if ((outlen + charlen) > (tolen - nullsize)) break; } /* put converted char into 'to' buffer */ charlen = cifs_mapchar(&to[outlen], ftmp, codepage, map_type); outlen += charlen; /* charlen (=bytes of UTF-8 for 1 character) * 4bytes UTF-8(surrogate pair) is charlen=4 * (4bytes UTF-16 code) * 7-8bytes UTF-8(IVS) is charlen=3+4 or 4+4 * (2 UTF-8 pairs divided to 2 UTF-16 pairs) */ if (charlen == 4) i++; else if (charlen >= 5) /* 5-6bytes UTF-8 */ i += 2; } /* properly null-terminate string */ for (i = 0; i < nullsize; i++) to[outlen++] = 0; return outlen; } /* * NAME: cifs_strtoUTF16() * * FUNCTION: Convert character string to unicode string * */ int cifs_strtoUTF16(__le16 *to, const char *from, int len, const struct nls_table *codepage) { int charlen; int i; wchar_t wchar_to; /* needed to quiet sparse */ /* special case for utf8 to handle no plane0 chars */ if (!strcmp(codepage->charset, "utf8")) { /* * convert utf8 -> utf16, we assume we have enough space * as caller should have assumed conversion does not overflow * in destination len is length in wchar_t units (16bits) */ i = utf8s_to_utf16s(from, len, UTF16_LITTLE_ENDIAN, (wchar_t *) to, len); /* if success terminate and exit */ if (i >= 0) goto success; /* * if fails fall back to UCS encoding as this * function should not return negative values * currently can fail only if source contains * invalid encoded characters */ } for (i = 0; len && *from; i++, from += charlen, len -= charlen) { charlen = codepage->char2uni(from, len, &wchar_to); if (charlen < 1) { cifs_dbg(VFS, "strtoUTF16: char2uni of 0x%x returned %d\n", *from, charlen); /* A question mark */ wchar_to = 0x003f; charlen = 1; } put_unaligned_le16(wchar_to, &to[i]); } success: put_unaligned_le16(0, &to[i]); return i; } /* * cifs_utf16_bytes - how long will a string be after conversion? * @utf16 - pointer to input string * @maxbytes - don't go past this many bytes of input string * @codepage - destination codepage * * Walk a utf16le string and return the number of bytes that the string will * be after being converted to the given charset, not including any null * termination required. Don't walk past maxbytes in the source buffer. */ int cifs_utf16_bytes(const __le16 *from, int maxbytes, const struct nls_table *codepage) { int i; int charlen, outlen = 0; int maxwords = maxbytes / 2; char tmp[NLS_MAX_CHARSET_SIZE]; __u16 ftmp[3]; for (i = 0; i < maxwords; i++) { ftmp[0] = get_unaligned_le16(&from[i]); if (ftmp[0] == 0) break; if (i + 1 < maxwords) ftmp[1] = get_unaligned_le16(&from[i + 1]); else ftmp[1] = 0; if (i + 2 < maxwords) ftmp[2] = get_unaligned_le16(&from[i + 2]); else ftmp[2] = 0; charlen = cifs_mapchar(tmp, ftmp, codepage, NO_MAP_UNI_RSVD); outlen += charlen; } return outlen; } /* * cifs_strndup_from_utf16 - copy a string from wire format to the local * codepage * @src - source string * @maxlen - don't walk past this many bytes in the source string * @is_unicode - is this a unicode string? * @codepage - destination codepage * * Take a string given by the server, convert it to the local codepage and * put it in a new buffer. Returns a pointer to the new string or NULL on * error. */ char * cifs_strndup_from_utf16(const char *src, const int maxlen, const bool is_unicode, const struct nls_table *codepage) { int len; char *dst; if (is_unicode) { len = cifs_utf16_bytes((__le16 *) src, maxlen, codepage); len += nls_nullsize(codepage); dst = kmalloc(len, GFP_KERNEL); if (!dst) return NULL; cifs_from_utf16(dst, (__le16 *) src, len, maxlen, codepage, NO_MAP_UNI_RSVD); } else { dst = kstrndup(src, maxlen, GFP_KERNEL); } return dst; } static __le16 convert_to_sfu_char(char src_char) { __le16 dest_char; switch (src_char) { case ':': dest_char = cpu_to_le16(UNI_COLON); break; case '*': dest_char = cpu_to_le16(UNI_ASTERISK); break; case '?': dest_char = cpu_to_le16(UNI_QUESTION); break; case '<': dest_char = cpu_to_le16(UNI_LESSTHAN); break; case '>': dest_char = cpu_to_le16(UNI_GRTRTHAN); break; case '|': dest_char = cpu_to_le16(UNI_PIPE); break; default: dest_char = 0; } return dest_char; } static __le16 convert_to_sfm_char(char src_char, bool end_of_string) { __le16 dest_char; if (src_char >= 0x01 && src_char <= 0x1F) { dest_char = cpu_to_le16(src_char + 0xF000); return dest_char; } switch (src_char) { case ':': dest_char = cpu_to_le16(SFM_COLON); break; case '"': dest_char = cpu_to_le16(SFM_DOUBLEQUOTE); break; case '*': dest_char = cpu_to_le16(SFM_ASTERISK); break; case '?': dest_char = cpu_to_le16(SFM_QUESTION); break; case '<': dest_char = cpu_to_le16(SFM_LESSTHAN); break; case '>': dest_char = cpu_to_le16(SFM_GRTRTHAN); break; case '|': dest_char = cpu_to_le16(SFM_PIPE); break; case '.': if (end_of_string) dest_char = cpu_to_le16(SFM_PERIOD); else dest_char = 0; break; case ' ': if (end_of_string) dest_char = cpu_to_le16(SFM_SPACE); else dest_char = 0; break; default: dest_char = 0; } return dest_char; } /* * Convert 16 bit Unicode pathname to wire format from string in current code * page. Conversion may involve remapping up the six characters that are * only legal in POSIX-like OS (if they are present in the string). Path * names are little endian 16 bit Unicode on the wire */ int cifsConvertToUTF16(__le16 *target, const char *source, int srclen, const struct nls_table *cp, int map_chars) { int i, charlen; int j = 0; char src_char; __le16 dst_char; wchar_t tmp; wchar_t *wchar_to; /* UTF-16 */ int ret; unicode_t u; if (map_chars == NO_MAP_UNI_RSVD) return cifs_strtoUTF16(target, source, PATH_MAX, cp); wchar_to = kzalloc(6, GFP_KERNEL); for (i = 0; i < srclen; j++) { src_char = source[i]; charlen = 1; /* check if end of string */ if (src_char == 0) goto ctoUTF16_out; /* see if we must remap this char */ if (map_chars == SFU_MAP_UNI_RSVD) dst_char = convert_to_sfu_char(src_char); else if (map_chars == SFM_MAP_UNI_RSVD) { bool end_of_string; /** * Remap spaces and periods found at the end of every * component of the path. The special cases of '.' and * '..' are need to be handled because of symlinks. * They are treated as non-end-of-string to avoid * remapping and breaking symlinks pointing to . or .. **/ if ((i == 0 || source[i-1] == '\\') && source[i] == '.' && (i == srclen-1 || source[i+1] == '\\')) end_of_string = false; /* "." case */ else if (i >= 1 && (i == 1 || source[i-2] == '\\') && source[i-1] == '.' && source[i] == '.' && (i == srclen-1 || source[i+1] == '\\')) end_of_string = false; /* ".." case */ else if ((i == srclen - 1) || (source[i+1] == '\\')) end_of_string = true; else end_of_string = false; dst_char = convert_to_sfm_char(src_char, end_of_string); } else dst_char = 0; /* * FIXME: We can not handle remapping backslash (UNI_SLASH) * until all the calls to build_path_from_dentry are modified, * as they use backslash as separator. */ if (dst_char == 0) { charlen = cp->char2uni(source + i, srclen - i, &tmp); dst_char = cpu_to_le16(tmp); /* * if no match, use question mark, which at least in * some cases serves as wild card */ if (charlen > 0) goto ctoUTF16; /* convert SURROGATE_PAIR */ if (strcmp(cp->charset, "utf8") || !wchar_to) goto unknown; if (*(source + i) & 0x80) { charlen = utf8_to_utf32(source + i, 6, &u); if (charlen < 0) goto unknown; } else goto unknown; ret = utf8s_to_utf16s(source + i, charlen, UTF16_LITTLE_ENDIAN, wchar_to, 6); if (ret < 0) goto unknown; i += charlen; dst_char = cpu_to_le16(*wchar_to); if (charlen <= 3) /* 1-3bytes UTF-8 to 2bytes UTF-16 */ put_unaligned(dst_char, &target[j]); else if (charlen == 4) { /* 4bytes UTF-8(surrogate pair) to 4bytes UTF-16 * 7-8bytes UTF-8(IVS) divided to 2 UTF-16 * (charlen=3+4 or 4+4) */ put_unaligned(dst_char, &target[j]); dst_char = cpu_to_le16(*(wchar_to + 1)); j++; put_unaligned(dst_char, &target[j]); } else if (charlen >= 5) { /* 5-6bytes UTF-8 to 6bytes UTF-16 */ put_unaligned(dst_char, &target[j]); dst_char = cpu_to_le16(*(wchar_to + 1)); j++; put_unaligned(dst_char, &target[j]); dst_char = cpu_to_le16(*(wchar_to + 2)); j++; put_unaligned(dst_char, &target[j]); } continue; unknown: dst_char = cpu_to_le16(0x003f); charlen = 1; } ctoUTF16: /* * character may take more than one byte in the source string, * but will take exactly two bytes in the target string */ i += charlen; put_unaligned(dst_char, &target[j]); } ctoUTF16_out: put_unaligned(0, &target[j]); /* Null terminate target unicode string */ kfree(wchar_to); return j; } /* * cifs_local_to_utf16_bytes - how long will a string be after conversion? * @from - pointer to input string * @maxbytes - don't go past this many bytes of input string * @codepage - source codepage * * Walk a string and return the number of bytes that the string will * be after being converted to the given charset, not including any null * termination required. Don't walk past maxbytes in the source buffer. */ static int cifs_local_to_utf16_bytes(const char *from, int len, const struct nls_table *codepage) { int charlen; int i; wchar_t wchar_to; for (i = 0; len && *from; i++, from += charlen, len -= charlen) { charlen = codepage->char2uni(from, len, &wchar_to); /* Failed conversion defaults to a question mark */ if (charlen < 1) charlen = 1; } return 2 * i; /* UTF16 characters are two bytes */ } /* * cifs_strndup_to_utf16 - copy a string to wire format from the local codepage * @src - source string * @maxlen - don't walk past this many bytes in the source string * @utf16_len - the length of the allocated string in bytes (including null) * @cp - source codepage * @remap - map special chars * * Take a string convert it from the local codepage to UTF16 and * put it in a new buffer. Returns a pointer to the new string or NULL on * error. */ __le16 * cifs_strndup_to_utf16(const char *src, const int maxlen, int *utf16_len, const struct nls_table *cp, int remap) { int len; __le16 *dst; len = cifs_local_to_utf16_bytes(src, maxlen, cp); len += 2; /* NULL */ dst = kmalloc(len, GFP_KERNEL); if (!dst) { *utf16_len = 0; return NULL; } cifsConvertToUTF16(dst, src, strlen(src), cp, remap); *utf16_len = len; return dst; }
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2020 Kévin L'hôpital <[email protected]> * Copyright 2020-2022 Bootlin * Author: Paul Kocialkowski <[email protected]> */ #include <linux/clk.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/reset.h> #include <media/mipi-csi2.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-fwnode.h> #include "sun8i_a83t_dphy.h" #include "sun8i_a83t_mipi_csi2.h" #include "sun8i_a83t_mipi_csi2_reg.h" /* Format */ static const struct sun8i_a83t_mipi_csi2_format sun8i_a83t_mipi_csi2_formats[] = { { .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8, .data_type = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .mbus_code = MEDIA_BUS_FMT_SGBRG8_1X8, .data_type = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .mbus_code = MEDIA_BUS_FMT_SGRBG8_1X8, .data_type = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .mbus_code = MEDIA_BUS_FMT_SRGGB8_1X8, .data_type = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .mbus_code = MEDIA_BUS_FMT_SBGGR10_1X10, .data_type = MIPI_CSI2_DT_RAW10, .bpp = 10, }, { .mbus_code = MEDIA_BUS_FMT_SGBRG10_1X10, .data_type = MIPI_CSI2_DT_RAW10, .bpp = 10, }, { .mbus_code = MEDIA_BUS_FMT_SGRBG10_1X10, .data_type = MIPI_CSI2_DT_RAW10, .bpp = 10, }, { .mbus_code = MEDIA_BUS_FMT_SRGGB10_1X10, .data_type = MIPI_CSI2_DT_RAW10, .bpp = 10, }, }; static const struct sun8i_a83t_mipi_csi2_format * sun8i_a83t_mipi_csi2_format_find(u32 mbus_code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(sun8i_a83t_mipi_csi2_formats); i++) if (sun8i_a83t_mipi_csi2_formats[i].mbus_code == mbus_code) return &sun8i_a83t_mipi_csi2_formats[i]; return NULL; } /* Controller */ static void sun8i_a83t_mipi_csi2_init(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct regmap *regmap = csi2_dev->regmap; /* * The Allwinner BSP sets various magic values on a bunch of registers. * This is apparently a necessary initialization process that will cause * the capture to fail with unsolicited interrupts hitting if skipped. * * Most of the registers are set to proper values later, except for the * two reserved registers. They are said to hold a "hardware lock" * value, without more information available. */ regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, SUN8I_A83T_MIPI_CSI2_CTRL_INIT_VALUE); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_REG, SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_INIT_VALUE); regmap_write(regmap, SUN8I_A83T_DPHY_CTRL_REG, 0); regmap_write(regmap, SUN8I_A83T_DPHY_CTRL_REG, SUN8I_A83T_DPHY_CTRL_INIT_VALUE); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD1_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD1_REG, SUN8I_A83T_MIPI_CSI2_RSVD1_HW_LOCK_VALUE); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD2_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD2_REG, SUN8I_A83T_MIPI_CSI2_RSVD2_HW_LOCK_VALUE); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, SUN8I_A83T_MIPI_CSI2_CFG_INIT_VALUE); } static void sun8i_a83t_mipi_csi2_enable(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct regmap *regmap = csi2_dev->regmap; regmap_update_bits(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN, SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN); } static void sun8i_a83t_mipi_csi2_disable(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct regmap *regmap = csi2_dev->regmap; regmap_update_bits(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, 0); } static void sun8i_a83t_mipi_csi2_configure(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct regmap *regmap = csi2_dev->regmap; unsigned int lanes_count = csi2_dev->bridge.endpoint.bus.mipi_csi2.num_data_lanes; struct v4l2_mbus_framefmt *mbus_format = &csi2_dev->bridge.mbus_format; const struct sun8i_a83t_mipi_csi2_format *format; struct device *dev = csi2_dev->dev; u32 version = 0; format = sun8i_a83t_mipi_csi2_format_find(mbus_format->code); if (WARN_ON(!format)) return; regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, SUN8I_A83T_MIPI_CSI2_CTRL_RESET_N); regmap_read(regmap, SUN8I_A83T_MIPI_CSI2_VERSION_REG, &version); dev_dbg(dev, "A83T MIPI CSI-2 version: %04x\n", version); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, SUN8I_A83T_MIPI_CSI2_CFG_UNPKT_EN | SUN8I_A83T_MIPI_CSI2_CFG_SYNC_DLY_CYCLE(8) | SUN8I_A83T_MIPI_CSI2_CFG_N_CHANNEL(1) | SUN8I_A83T_MIPI_CSI2_CFG_N_LANE(lanes_count)); /* * Only a single virtual channel (index 0) is currently supported. * While the registers do mention multiple physical channels being * available (which can be configured to match a specific virtual * channel or data type), it's unclear whether channels > 0 are actually * connected and available and the reference source code only makes use * of channel 0. * * Using extra channels would also require matching channels to be * available on the CSI (and ISP) side, which is also unsure although * some CSI implementations are said to support multiple channels for * BT656 time-sharing. * * We still configure virtual channel numbers to ensure that virtual * channel 0 only goes to channel 0. */ regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_VCDT0_REG, SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(3, 3) | SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(2, 2) | SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(1, 1) | SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(0, 0) | SUN8I_A83T_MIPI_CSI2_VCDT0_CH_DT(0, format->data_type)); } /* V4L2 Subdev */ static int sun8i_a83t_mipi_csi2_s_stream(struct v4l2_subdev *subdev, int on) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = v4l2_get_subdevdata(subdev); struct v4l2_subdev *source_subdev = csi2_dev->bridge.source_subdev; union phy_configure_opts dphy_opts = { 0 }; struct phy_configure_opts_mipi_dphy *dphy_cfg = &dphy_opts.mipi_dphy; struct v4l2_mbus_framefmt *mbus_format = &csi2_dev->bridge.mbus_format; const struct sun8i_a83t_mipi_csi2_format *format; struct phy *dphy = csi2_dev->dphy; struct device *dev = csi2_dev->dev; struct v4l2_ctrl *ctrl; unsigned int lanes_count = csi2_dev->bridge.endpoint.bus.mipi_csi2.num_data_lanes; unsigned long pixel_rate; int ret; if (!source_subdev) return -ENODEV; if (!on) { v4l2_subdev_call(source_subdev, video, s_stream, 0); ret = 0; goto disable; } /* Runtime PM */ ret = pm_runtime_resume_and_get(dev); if (ret < 0) return ret; /* Sensor pixel rate */ ctrl = v4l2_ctrl_find(source_subdev->ctrl_handler, V4L2_CID_PIXEL_RATE); if (!ctrl) { dev_err(dev, "missing sensor pixel rate\n"); ret = -ENODEV; goto error_pm; } pixel_rate = (unsigned long)v4l2_ctrl_g_ctrl_int64(ctrl); if (!pixel_rate) { dev_err(dev, "missing (zero) sensor pixel rate\n"); ret = -ENODEV; goto error_pm; } /* D-PHY */ if (!lanes_count) { dev_err(dev, "missing (zero) MIPI CSI-2 lanes count\n"); ret = -ENODEV; goto error_pm; } format = sun8i_a83t_mipi_csi2_format_find(mbus_format->code); if (WARN_ON(!format)) { ret = -ENODEV; goto error_pm; } phy_mipi_dphy_get_default_config(pixel_rate, format->bpp, lanes_count, dphy_cfg); /* * Note that our hardware is using DDR, which is not taken in account by * phy_mipi_dphy_get_default_config when calculating hs_clk_rate from * the pixel rate, lanes count and bpp. * * The resulting clock rate is basically the symbol rate over the whole * link. The actual clock rate is calculated with division by two since * DDR samples both on rising and falling edges. */ dev_dbg(dev, "A83T MIPI CSI-2 config:\n"); dev_dbg(dev, "%ld pixels/s, %u bits/pixel, %u lanes, %lu Hz clock\n", pixel_rate, format->bpp, lanes_count, dphy_cfg->hs_clk_rate / 2); ret = phy_reset(dphy); if (ret) { dev_err(dev, "failed to reset MIPI D-PHY\n"); goto error_pm; } ret = phy_configure(dphy, &dphy_opts); if (ret) { dev_err(dev, "failed to configure MIPI D-PHY\n"); goto error_pm; } /* Controller */ sun8i_a83t_mipi_csi2_configure(csi2_dev); sun8i_a83t_mipi_csi2_enable(csi2_dev); /* D-PHY */ ret = phy_power_on(dphy); if (ret) { dev_err(dev, "failed to power on MIPI D-PHY\n"); goto error_pm; } /* Source */ ret = v4l2_subdev_call(source_subdev, video, s_stream, 1); if (ret && ret != -ENOIOCTLCMD) goto disable; return 0; disable: phy_power_off(dphy); sun8i_a83t_mipi_csi2_disable(csi2_dev); error_pm: pm_runtime_put(dev); return ret; } static const struct v4l2_subdev_video_ops sun8i_a83t_mipi_csi2_video_ops = { .s_stream = sun8i_a83t_mipi_csi2_s_stream, }; static void sun8i_a83t_mipi_csi2_mbus_format_prepare(struct v4l2_mbus_framefmt *mbus_format) { if (!sun8i_a83t_mipi_csi2_format_find(mbus_format->code)) mbus_format->code = sun8i_a83t_mipi_csi2_formats[0].mbus_code; mbus_format->field = V4L2_FIELD_NONE; mbus_format->colorspace = V4L2_COLORSPACE_RAW; mbus_format->quantization = V4L2_QUANTIZATION_DEFAULT; mbus_format->xfer_func = V4L2_XFER_FUNC_DEFAULT; } static int sun8i_a83t_mipi_csi2_init_state(struct v4l2_subdev *subdev, struct v4l2_subdev_state *state) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = v4l2_get_subdevdata(subdev); unsigned int pad = SUN8I_A83T_MIPI_CSI2_PAD_SINK; struct v4l2_mbus_framefmt *mbus_format = v4l2_subdev_state_get_format(state, pad); struct mutex *lock = &csi2_dev->bridge.lock; mutex_lock(lock); mbus_format->code = sun8i_a83t_mipi_csi2_formats[0].mbus_code; mbus_format->width = 640; mbus_format->height = 480; sun8i_a83t_mipi_csi2_mbus_format_prepare(mbus_format); mutex_unlock(lock); return 0; } static int sun8i_a83t_mipi_csi2_enum_mbus_code(struct v4l2_subdev *subdev, struct v4l2_subdev_state *state, struct v4l2_subdev_mbus_code_enum *code_enum) { if (code_enum->index >= ARRAY_SIZE(sun8i_a83t_mipi_csi2_formats)) return -EINVAL; code_enum->code = sun8i_a83t_mipi_csi2_formats[code_enum->index].mbus_code; return 0; } static int sun8i_a83t_mipi_csi2_get_fmt(struct v4l2_subdev *subdev, struct v4l2_subdev_state *state, struct v4l2_subdev_format *format) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = v4l2_get_subdevdata(subdev); struct v4l2_mbus_framefmt *mbus_format = &format->format; struct mutex *lock = &csi2_dev->bridge.lock; mutex_lock(lock); if (format->which == V4L2_SUBDEV_FORMAT_TRY) *mbus_format = *v4l2_subdev_state_get_format(state, format->pad); else *mbus_format = csi2_dev->bridge.mbus_format; mutex_unlock(lock); return 0; } static int sun8i_a83t_mipi_csi2_set_fmt(struct v4l2_subdev *subdev, struct v4l2_subdev_state *state, struct v4l2_subdev_format *format) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = v4l2_get_subdevdata(subdev); struct v4l2_mbus_framefmt *mbus_format = &format->format; struct mutex *lock = &csi2_dev->bridge.lock; mutex_lock(lock); sun8i_a83t_mipi_csi2_mbus_format_prepare(mbus_format); if (format->which == V4L2_SUBDEV_FORMAT_TRY) *v4l2_subdev_state_get_format(state, format->pad) = *mbus_format; else csi2_dev->bridge.mbus_format = *mbus_format; mutex_unlock(lock); return 0; } static const struct v4l2_subdev_pad_ops sun8i_a83t_mipi_csi2_pad_ops = { .enum_mbus_code = sun8i_a83t_mipi_csi2_enum_mbus_code, .get_fmt = sun8i_a83t_mipi_csi2_get_fmt, .set_fmt = sun8i_a83t_mipi_csi2_set_fmt, }; static const struct v4l2_subdev_ops sun8i_a83t_mipi_csi2_subdev_ops = { .video = &sun8i_a83t_mipi_csi2_video_ops, .pad = &sun8i_a83t_mipi_csi2_pad_ops, }; static const struct v4l2_subdev_internal_ops sun8i_a83t_mipi_csi2_internal_ops = { .init_state = sun8i_a83t_mipi_csi2_init_state, }; /* Media Entity */ static const struct media_entity_operations sun8i_a83t_mipi_csi2_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; /* V4L2 Async */ static int sun8i_a83t_mipi_csi2_notifier_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *remote_subdev, struct v4l2_async_connection *async_subdev) { struct v4l2_subdev *subdev = notifier->sd; struct sun8i_a83t_mipi_csi2_device *csi2_dev = container_of(notifier, struct sun8i_a83t_mipi_csi2_device, bridge.notifier); struct media_entity *sink_entity = &subdev->entity; struct media_entity *source_entity = &remote_subdev->entity; struct device *dev = csi2_dev->dev; int sink_pad_index = 0; int source_pad_index; int ret; ret = media_entity_get_fwnode_pad(source_entity, remote_subdev->fwnode, MEDIA_PAD_FL_SOURCE); if (ret < 0) { dev_err(dev, "missing source pad in external entity %s\n", source_entity->name); return -EINVAL; } source_pad_index = ret; dev_dbg(dev, "creating %s:%u -> %s:%u link\n", source_entity->name, source_pad_index, sink_entity->name, sink_pad_index); ret = media_create_pad_link(source_entity, source_pad_index, sink_entity, sink_pad_index, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (ret) { dev_err(dev, "failed to create %s:%u -> %s:%u link\n", source_entity->name, source_pad_index, sink_entity->name, sink_pad_index); return ret; } csi2_dev->bridge.source_subdev = remote_subdev; return 0; } static const struct v4l2_async_notifier_operations sun8i_a83t_mipi_csi2_notifier_ops = { .bound = sun8i_a83t_mipi_csi2_notifier_bound, }; /* Bridge */ static int sun8i_a83t_mipi_csi2_bridge_source_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct v4l2_async_notifier *notifier = &csi2_dev->bridge.notifier; struct v4l2_fwnode_endpoint *endpoint = &csi2_dev->bridge.endpoint; struct v4l2_async_connection *subdev_async; struct fwnode_handle *handle; struct device *dev = csi2_dev->dev; int ret; handle = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!handle) return -ENODEV; endpoint->bus_type = V4L2_MBUS_CSI2_DPHY; ret = v4l2_fwnode_endpoint_parse(handle, endpoint); if (ret) goto complete; subdev_async = v4l2_async_nf_add_fwnode_remote(notifier, handle, struct v4l2_async_connection); if (IS_ERR(subdev_async)) ret = PTR_ERR(subdev_async); complete: fwnode_handle_put(handle); return ret; } static int sun8i_a83t_mipi_csi2_bridge_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct sun8i_a83t_mipi_csi2_bridge *bridge = &csi2_dev->bridge; struct v4l2_subdev *subdev = &bridge->subdev; struct v4l2_async_notifier *notifier = &bridge->notifier; struct media_pad *pads = bridge->pads; struct device *dev = csi2_dev->dev; bool notifier_registered = false; int ret; mutex_init(&bridge->lock); /* V4L2 Subdev */ v4l2_subdev_init(subdev, &sun8i_a83t_mipi_csi2_subdev_ops); subdev->internal_ops = &sun8i_a83t_mipi_csi2_internal_ops; strscpy(subdev->name, SUN8I_A83T_MIPI_CSI2_NAME, sizeof(subdev->name)); subdev->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; subdev->owner = THIS_MODULE; subdev->dev = dev; v4l2_set_subdevdata(subdev, csi2_dev); /* Media Entity */ subdev->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; subdev->entity.ops = &sun8i_a83t_mipi_csi2_entity_ops; /* Media Pads */ pads[SUN8I_A83T_MIPI_CSI2_PAD_SINK].flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT; pads[SUN8I_A83T_MIPI_CSI2_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE | MEDIA_PAD_FL_MUST_CONNECT; ret = media_entity_pads_init(&subdev->entity, SUN8I_A83T_MIPI_CSI2_PAD_COUNT, pads); if (ret) return ret; /* V4L2 Async */ v4l2_async_subdev_nf_init(notifier, subdev); notifier->ops = &sun8i_a83t_mipi_csi2_notifier_ops; ret = sun8i_a83t_mipi_csi2_bridge_source_setup(csi2_dev); if (ret && ret != -ENODEV) goto error_v4l2_notifier_cleanup; /* Only register the notifier when a sensor is connected. */ if (ret != -ENODEV) { ret = v4l2_async_nf_register(notifier); if (ret < 0) goto error_v4l2_notifier_cleanup; notifier_registered = true; } /* V4L2 Subdev */ ret = v4l2_async_register_subdev(subdev); if (ret < 0) goto error_v4l2_notifier_unregister; return 0; error_v4l2_notifier_unregister: if (notifier_registered) v4l2_async_nf_unregister(notifier); error_v4l2_notifier_cleanup: v4l2_async_nf_cleanup(notifier); media_entity_cleanup(&subdev->entity); return ret; } static void sun8i_a83t_mipi_csi2_bridge_cleanup(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct v4l2_subdev *subdev = &csi2_dev->bridge.subdev; struct v4l2_async_notifier *notifier = &csi2_dev->bridge.notifier; v4l2_async_unregister_subdev(subdev); v4l2_async_nf_unregister(notifier); v4l2_async_nf_cleanup(notifier); media_entity_cleanup(&subdev->entity); } /* Platform */ static int sun8i_a83t_mipi_csi2_suspend(struct device *dev) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = dev_get_drvdata(dev); clk_disable_unprepare(csi2_dev->clock_misc); clk_disable_unprepare(csi2_dev->clock_mipi); clk_disable_unprepare(csi2_dev->clock_mod); reset_control_assert(csi2_dev->reset); return 0; } static int sun8i_a83t_mipi_csi2_resume(struct device *dev) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = dev_get_drvdata(dev); int ret; ret = reset_control_deassert(csi2_dev->reset); if (ret) { dev_err(dev, "failed to deassert reset\n"); return ret; } ret = clk_prepare_enable(csi2_dev->clock_mod); if (ret) { dev_err(dev, "failed to enable module clock\n"); goto error_reset; } ret = clk_prepare_enable(csi2_dev->clock_mipi); if (ret) { dev_err(dev, "failed to enable MIPI clock\n"); goto error_clock_mod; } ret = clk_prepare_enable(csi2_dev->clock_misc); if (ret) { dev_err(dev, "failed to enable CSI misc clock\n"); goto error_clock_mipi; } sun8i_a83t_mipi_csi2_init(csi2_dev); return 0; error_clock_mipi: clk_disable_unprepare(csi2_dev->clock_mipi); error_clock_mod: clk_disable_unprepare(csi2_dev->clock_mod); error_reset: reset_control_assert(csi2_dev->reset); return ret; } static const struct dev_pm_ops sun8i_a83t_mipi_csi2_pm_ops = { .runtime_suspend = sun8i_a83t_mipi_csi2_suspend, .runtime_resume = sun8i_a83t_mipi_csi2_resume, }; static const struct regmap_config sun8i_a83t_mipi_csi2_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x120, }; static int sun8i_a83t_mipi_csi2_resources_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev, struct platform_device *platform_dev) { struct device *dev = csi2_dev->dev; void __iomem *io_base; int ret; /* Registers */ io_base = devm_platform_ioremap_resource(platform_dev, 0); if (IS_ERR(io_base)) return PTR_ERR(io_base); csi2_dev->regmap = devm_regmap_init_mmio_clk(dev, "bus", io_base, &sun8i_a83t_mipi_csi2_regmap_config); if (IS_ERR(csi2_dev->regmap)) { dev_err(dev, "failed to init register map\n"); return PTR_ERR(csi2_dev->regmap); } /* Clocks */ csi2_dev->clock_mod = devm_clk_get(dev, "mod"); if (IS_ERR(csi2_dev->clock_mod)) { dev_err(dev, "failed to acquire mod clock\n"); return PTR_ERR(csi2_dev->clock_mod); } ret = clk_set_rate_exclusive(csi2_dev->clock_mod, 297000000); if (ret) { dev_err(dev, "failed to set mod clock rate\n"); return ret; } csi2_dev->clock_mipi = devm_clk_get(dev, "mipi"); if (IS_ERR(csi2_dev->clock_mipi)) { dev_err(dev, "failed to acquire mipi clock\n"); ret = PTR_ERR(csi2_dev->clock_mipi); goto error_clock_rate_exclusive; } csi2_dev->clock_misc = devm_clk_get(dev, "misc"); if (IS_ERR(csi2_dev->clock_misc)) { dev_err(dev, "failed to acquire misc clock\n"); ret = PTR_ERR(csi2_dev->clock_misc); goto error_clock_rate_exclusive; } /* Reset */ csi2_dev->reset = devm_reset_control_get_shared(dev, NULL); if (IS_ERR(csi2_dev->reset)) { dev_err(dev, "failed to get reset controller\n"); ret = PTR_ERR(csi2_dev->reset); goto error_clock_rate_exclusive; } /* D-PHY */ ret = sun8i_a83t_dphy_register(csi2_dev); if (ret) { dev_err(dev, "failed to initialize MIPI D-PHY\n"); goto error_clock_rate_exclusive; } /* Runtime PM */ pm_runtime_enable(dev); return 0; error_clock_rate_exclusive: clk_rate_exclusive_put(csi2_dev->clock_mod); return ret; } static void sun8i_a83t_mipi_csi2_resources_cleanup(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { pm_runtime_disable(csi2_dev->dev); phy_exit(csi2_dev->dphy); clk_rate_exclusive_put(csi2_dev->clock_mod); } static int sun8i_a83t_mipi_csi2_probe(struct platform_device *platform_dev) { struct sun8i_a83t_mipi_csi2_device *csi2_dev; struct device *dev = &platform_dev->dev; int ret; csi2_dev = devm_kzalloc(dev, sizeof(*csi2_dev), GFP_KERNEL); if (!csi2_dev) return -ENOMEM; csi2_dev->dev = dev; platform_set_drvdata(platform_dev, csi2_dev); ret = sun8i_a83t_mipi_csi2_resources_setup(csi2_dev, platform_dev); if (ret) return ret; ret = sun8i_a83t_mipi_csi2_bridge_setup(csi2_dev); if (ret) goto error_resources; return 0; error_resources: sun8i_a83t_mipi_csi2_resources_cleanup(csi2_dev); return ret; } static void sun8i_a83t_mipi_csi2_remove(struct platform_device *platform_dev) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = platform_get_drvdata(platform_dev); sun8i_a83t_mipi_csi2_bridge_cleanup(csi2_dev); sun8i_a83t_mipi_csi2_resources_cleanup(csi2_dev); } static const struct of_device_id sun8i_a83t_mipi_csi2_of_match[] = { { .compatible = "allwinner,sun8i-a83t-mipi-csi2" }, {}, }; MODULE_DEVICE_TABLE(of, sun8i_a83t_mipi_csi2_of_match); static struct platform_driver sun8i_a83t_mipi_csi2_platform_driver = { .probe = sun8i_a83t_mipi_csi2_probe, .remove = sun8i_a83t_mipi_csi2_remove, .driver = { .name = SUN8I_A83T_MIPI_CSI2_NAME, .of_match_table = sun8i_a83t_mipi_csi2_of_match, .pm = &sun8i_a83t_mipi_csi2_pm_ops, }, }; module_platform_driver(sun8i_a83t_mipi_csi2_platform_driver); MODULE_DESCRIPTION("Allwinner A83T MIPI CSI-2 and D-PHY Controller Driver"); MODULE_AUTHOR("Paul Kocialkowski <[email protected]>"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016 Facebook */ #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <stdbool.h> #include <string.h> #include <linux/perf_event.h> #include <linux/bpf.h> #include <signal.h> #include <errno.h> #include <sys/resource.h> #include <bpf/bpf.h> #include <bpf/libbpf.h> #include "perf-sys.h" #include "trace_helpers.h" #define SAMPLE_FREQ 50 static int pid; /* counts, stackmap */ static int map_fd[2]; struct bpf_program *prog; static bool sys_read_seen, sys_write_seen; static void print_ksym(__u64 addr) { struct ksym *sym; if (!addr) return; sym = ksym_search(addr); if (!sym) { printf("ksym not found. Is kallsyms loaded?\n"); return; } printf("%s;", sym->name); if (!strstr(sym->name, "sys_read")) sys_read_seen = true; else if (!strstr(sym->name, "sys_write")) sys_write_seen = true; } static void print_addr(__u64 addr) { if (!addr) return; printf("%llx;", addr); } #define TASK_COMM_LEN 16 struct key_t { char comm[TASK_COMM_LEN]; __u32 kernstack; __u32 userstack; }; static void print_stack(struct key_t *key, __u64 count) { __u64 ip[PERF_MAX_STACK_DEPTH] = {}; static bool warned; int i; printf("%3lld %s;", count, key->comm); if (bpf_map_lookup_elem(map_fd[1], &key->kernstack, ip) != 0) { printf("---;"); } else { for (i = PERF_MAX_STACK_DEPTH - 1; i >= 0; i--) print_ksym(ip[i]); } printf("-;"); if (bpf_map_lookup_elem(map_fd[1], &key->userstack, ip) != 0) { printf("---;"); } else { for (i = PERF_MAX_STACK_DEPTH - 1; i >= 0; i--) print_addr(ip[i]); } if (count < 6) printf("\r"); else printf("\n"); if (key->kernstack == -EEXIST && !warned) { printf("stackmap collisions seen. Consider increasing size\n"); warned = true; } else if ((int)key->kernstack < 0 && (int)key->userstack < 0) { printf("err stackid %d %d\n", key->kernstack, key->userstack); } } static void err_exit(int err) { kill(pid, SIGKILL); exit(err); } static void print_stacks(void) { struct key_t key = {}, next_key; __u64 value; __u32 stackid = 0, next_id; int error = 1, fd = map_fd[0], stack_map = map_fd[1]; sys_read_seen = sys_write_seen = false; while (bpf_map_get_next_key(fd, &key, &next_key) == 0) { bpf_map_lookup_elem(fd, &next_key, &value); print_stack(&next_key, value); bpf_map_delete_elem(fd, &next_key); key = next_key; } printf("\n"); if (!sys_read_seen || !sys_write_seen) { printf("BUG kernel stack doesn't contain sys_read() and sys_write()\n"); err_exit(error); } /* clear stack map */ while (bpf_map_get_next_key(stack_map, &stackid, &next_id) == 0) { bpf_map_delete_elem(stack_map, &next_id); stackid = next_id; } } static inline int generate_load(void) { if (system("dd if=/dev/zero of=/dev/null count=5000k status=none") < 0) { printf("failed to generate some load with dd: %s\n", strerror(errno)); return -1; } return 0; } static void test_perf_event_all_cpu(struct perf_event_attr *attr) { int nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); struct bpf_link **links = calloc(nr_cpus, sizeof(struct bpf_link *)); int i, pmu_fd, error = 1; if (!links) { printf("malloc of links failed\n"); goto err; } /* system wide perf event, no need to inherit */ attr->inherit = 0; /* open perf_event on all cpus */ for (i = 0; i < nr_cpus; i++) { pmu_fd = sys_perf_event_open(attr, -1, i, -1, 0); if (pmu_fd < 0) { printf("sys_perf_event_open failed\n"); goto all_cpu_err; } links[i] = bpf_program__attach_perf_event(prog, pmu_fd); if (libbpf_get_error(links[i])) { printf("bpf_program__attach_perf_event failed\n"); links[i] = NULL; close(pmu_fd); goto all_cpu_err; } } if (generate_load() < 0) goto all_cpu_err; print_stacks(); error = 0; all_cpu_err: for (i--; i >= 0; i--) bpf_link__destroy(links[i]); err: free(links); if (error) err_exit(error); } static void test_perf_event_task(struct perf_event_attr *attr) { struct bpf_link *link = NULL; int pmu_fd, error = 1; /* per task perf event, enable inherit so the "dd ..." command can be traced properly. * Enabling inherit will cause bpf_perf_prog_read_time helper failure. */ attr->inherit = 1; /* open task bound event */ pmu_fd = sys_perf_event_open(attr, 0, -1, -1, 0); if (pmu_fd < 0) { printf("sys_perf_event_open failed\n"); goto err; } link = bpf_program__attach_perf_event(prog, pmu_fd); if (libbpf_get_error(link)) { printf("bpf_program__attach_perf_event failed\n"); link = NULL; close(pmu_fd); goto err; } if (generate_load() < 0) goto err; print_stacks(); error = 0; err: bpf_link__destroy(link); if (error) err_exit(error); } static void test_bpf_perf_event(void) { struct perf_event_attr attr_type_hw = { .sample_freq = SAMPLE_FREQ, .freq = 1, .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES, }; struct perf_event_attr attr_type_sw = { .sample_freq = SAMPLE_FREQ, .freq = 1, .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_CLOCK, }; struct perf_event_attr attr_hw_cache_l1d = { .sample_freq = SAMPLE_FREQ, .freq = 1, .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_L1D | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16), }; struct perf_event_attr attr_hw_cache_branch_miss = { .sample_freq = SAMPLE_FREQ, .freq = 1, .type = PERF_TYPE_HW_CACHE, .config = PERF_COUNT_HW_CACHE_BPU | (PERF_COUNT_HW_CACHE_OP_READ << 8) | (PERF_COUNT_HW_CACHE_RESULT_MISS << 16), }; struct perf_event_attr attr_type_raw = { .sample_freq = SAMPLE_FREQ, .freq = 1, .type = PERF_TYPE_RAW, /* Intel Instruction Retired */ .config = 0xc0, }; struct perf_event_attr attr_type_raw_lock_load = { .sample_freq = SAMPLE_FREQ, .freq = 1, .type = PERF_TYPE_RAW, /* Intel MEM_UOPS_RETIRED.LOCK_LOADS */ .config = 0x21d0, /* Request to record lock address from PEBS */ .sample_type = PERF_SAMPLE_ADDR, /* Record address value requires precise event */ .precise_ip = 2, }; printf("Test HW_CPU_CYCLES\n"); test_perf_event_all_cpu(&attr_type_hw); test_perf_event_task(&attr_type_hw); printf("Test SW_CPU_CLOCK\n"); test_perf_event_all_cpu(&attr_type_sw); test_perf_event_task(&attr_type_sw); printf("Test HW_CACHE_L1D\n"); test_perf_event_all_cpu(&attr_hw_cache_l1d); test_perf_event_task(&attr_hw_cache_l1d); printf("Test HW_CACHE_BPU\n"); test_perf_event_all_cpu(&attr_hw_cache_branch_miss); test_perf_event_task(&attr_hw_cache_branch_miss); printf("Test Instruction Retired\n"); test_perf_event_all_cpu(&attr_type_raw); test_perf_event_task(&attr_type_raw); printf("Test Lock Load\n"); test_perf_event_all_cpu(&attr_type_raw_lock_load); test_perf_event_task(&attr_type_raw_lock_load); printf("*** PASS ***\n"); } int main(int argc, char **argv) { struct bpf_object *obj = NULL; char filename[256]; int error = 1; snprintf(filename, sizeof(filename), "%s_kern.o", argv[0]); signal(SIGINT, err_exit); signal(SIGTERM, err_exit); if (load_kallsyms()) { printf("failed to process /proc/kallsyms\n"); goto cleanup; } obj = bpf_object__open_file(filename, NULL); if (libbpf_get_error(obj)) { printf("opening BPF object file failed\n"); obj = NULL; goto cleanup; } prog = bpf_object__find_program_by_name(obj, "bpf_prog1"); if (!prog) { printf("finding a prog in obj file failed\n"); goto cleanup; } /* load BPF program */ if (bpf_object__load(obj)) { printf("loading BPF object file failed\n"); goto cleanup; } map_fd[0] = bpf_object__find_map_fd_by_name(obj, "counts"); map_fd[1] = bpf_object__find_map_fd_by_name(obj, "stackmap"); if (map_fd[0] < 0 || map_fd[1] < 0) { printf("finding a counts/stackmap map in obj file failed\n"); goto cleanup; } pid = fork(); if (pid == 0) { read_trace_pipe(); return 0; } else if (pid == -1) { printf("couldn't spawn process\n"); goto cleanup; } test_bpf_perf_event(); error = 0; cleanup: bpf_object__close(obj); err_exit(error); }
// SPDX-License-Identifier: GPL-2.0 /* Marvell Octeon EP (EndPoint) VF Ethernet Driver * * Copyright (C) 2020 Marvell. * */ #include <linux/types.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/aer.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <linux/vmalloc.h> #include <net/netdev_queues.h> #include "octep_vf_config.h" #include "octep_vf_main.h" struct workqueue_struct *octep_vf_wq; /* Supported Devices */ static const struct pci_device_id octep_vf_pci_id_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_VF)}, {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_VF)}, {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN98_VF)}, {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KA_VF)}, {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KA_VF)}, {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KB_VF)}, {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KB_VF)}, {0, }, }; MODULE_DEVICE_TABLE(pci, octep_vf_pci_id_tbl); MODULE_AUTHOR("Veerasenareddy Burru <[email protected]>"); MODULE_DESCRIPTION(OCTEP_VF_DRV_STRING); MODULE_LICENSE("GPL"); /** * octep_vf_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info. * * @oct: Octeon device private data structure. * * Allocate resources to hold per Tx/Rx queue interrupt info. * This is the information passed to interrupt handler, from which napi poll * is scheduled and includes quick access to private data of Tx/Rx queue * corresponding to the interrupt being handled. * * Return: 0, on successful allocation of resources for all queue interrupts. * -1, if failed to allocate any resource. */ static int octep_vf_alloc_ioq_vectors(struct octep_vf_device *oct) { struct octep_vf_ioq_vector *ioq_vector; int i; for (i = 0; i < oct->num_oqs; i++) { oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i])); if (!oct->ioq_vector[i]) goto free_ioq_vector; ioq_vector = oct->ioq_vector[i]; ioq_vector->iq = oct->iq[i]; ioq_vector->oq = oct->oq[i]; ioq_vector->octep_vf_dev = oct; } dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs); return 0; free_ioq_vector: while (i) { i--; vfree(oct->ioq_vector[i]); oct->ioq_vector[i] = NULL; } return -1; } /** * octep_vf_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info. * * @oct: Octeon device private data structure. */ static void octep_vf_free_ioq_vectors(struct octep_vf_device *oct) { int i; for (i = 0; i < oct->num_oqs; i++) { if (oct->ioq_vector[i]) { vfree(oct->ioq_vector[i]); oct->ioq_vector[i] = NULL; } } netdev_info(oct->netdev, "Freed IOQ Vectors\n"); } /** * octep_vf_enable_msix_range() - enable MSI-x interrupts. * * @oct: Octeon device private data structure. * * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts) * for the Octeon device. * * Return: 0, on successfully enabling all MSI-x interrupts. * -1, if failed to enable any MSI-x interrupt. */ static int octep_vf_enable_msix_range(struct octep_vf_device *oct) { int num_msix, msix_allocated; int i; /* Generic interrupts apart from input/output queues */ //num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf); num_msix = oct->num_oqs; oct->msix_entries = kcalloc(num_msix, sizeof(struct msix_entry), GFP_KERNEL); if (!oct->msix_entries) goto msix_alloc_err; for (i = 0; i < num_msix; i++) oct->msix_entries[i].entry = i; msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries, num_msix, num_msix); if (msix_allocated != num_msix) { dev_err(&oct->pdev->dev, "Failed to enable %d msix irqs; got only %d\n", num_msix, msix_allocated); goto enable_msix_err; } oct->num_irqs = msix_allocated; dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n"); return 0; enable_msix_err: if (msix_allocated > 0) pci_disable_msix(oct->pdev); kfree(oct->msix_entries); oct->msix_entries = NULL; msix_alloc_err: return -1; } /** * octep_vf_disable_msix() - disable MSI-x interrupts. * * @oct: Octeon device private data structure. * * Disable MSI-x on the Octeon device. */ static void octep_vf_disable_msix(struct octep_vf_device *oct) { pci_disable_msix(oct->pdev); kfree(oct->msix_entries); oct->msix_entries = NULL; dev_info(&oct->pdev->dev, "Disabled MSI-X\n"); } /** * octep_vf_ioq_intr_handler() - handler for all Tx/Rx queue interrupts. * * @irq: Interrupt number. * @data: interrupt data contains pointers to Tx/Rx queue private data * and correspong NAPI context. * * this is common handler for all non-queue (generic) interrupts. */ static irqreturn_t octep_vf_ioq_intr_handler(int irq, void *data) { struct octep_vf_ioq_vector *ioq_vector = data; struct octep_vf_device *oct = ioq_vector->octep_vf_dev; return oct->hw_ops.ioq_intr_handler(ioq_vector); } /** * octep_vf_request_irqs() - Register interrupt handlers. * * @oct: Octeon device private data structure. * * Register handlers for all queue and non-queue interrupts. * * Return: 0, on successful registration of all interrupt handlers. * -1, on any error. */ static int octep_vf_request_irqs(struct octep_vf_device *oct) { struct net_device *netdev = oct->netdev; struct octep_vf_ioq_vector *ioq_vector; struct msix_entry *msix_entry; int ret, i; /* Request IRQs for Tx/Rx queues */ for (i = 0; i < oct->num_oqs; i++) { ioq_vector = oct->ioq_vector[i]; msix_entry = &oct->msix_entries[i]; snprintf(ioq_vector->name, sizeof(ioq_vector->name), "%s-q%d", netdev->name, i); ret = request_irq(msix_entry->vector, octep_vf_ioq_intr_handler, 0, ioq_vector->name, ioq_vector); if (ret) { netdev_err(netdev, "request_irq failed for Q-%d; err=%d", i, ret); goto ioq_irq_err; } cpumask_set_cpu(i % num_online_cpus(), &ioq_vector->affinity_mask); irq_set_affinity_hint(msix_entry->vector, &ioq_vector->affinity_mask); } return 0; ioq_irq_err: while (i) { --i; free_irq(oct->msix_entries[i].vector, oct); } return -1; } /** * octep_vf_free_irqs() - free all registered interrupts. * * @oct: Octeon device private data structure. * * Free all queue and non-queue interrupts of the Octeon device. */ static void octep_vf_free_irqs(struct octep_vf_device *oct) { int i; for (i = 0; i < oct->num_irqs; i++) { irq_set_affinity_hint(oct->msix_entries[i].vector, NULL); free_irq(oct->msix_entries[i].vector, oct->ioq_vector[i]); } netdev_info(oct->netdev, "IRQs freed\n"); } /** * octep_vf_setup_irqs() - setup interrupts for the Octeon device. * * @oct: Octeon device private data structure. * * Allocate data structures to hold per interrupt information, allocate/enable * MSI-x interrupt and register interrupt handlers. * * Return: 0, on successful allocation and registration of all interrupts. * -1, on any error. */ static int octep_vf_setup_irqs(struct octep_vf_device *oct) { if (octep_vf_alloc_ioq_vectors(oct)) goto ioq_vector_err; if (octep_vf_enable_msix_range(oct)) goto enable_msix_err; if (octep_vf_request_irqs(oct)) goto request_irq_err; return 0; request_irq_err: octep_vf_disable_msix(oct); enable_msix_err: octep_vf_free_ioq_vectors(oct); ioq_vector_err: return -1; } /** * octep_vf_clean_irqs() - free all interrupts and its resources. * * @oct: Octeon device private data structure. */ static void octep_vf_clean_irqs(struct octep_vf_device *oct) { octep_vf_free_irqs(oct); octep_vf_disable_msix(oct); octep_vf_free_ioq_vectors(oct); } /** * octep_vf_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue. * * @iq: Octeon Tx queue data structure. * @oq: Octeon Rx queue data structure. */ static void octep_vf_enable_ioq_irq(struct octep_vf_iq *iq, struct octep_vf_oq *oq) { u32 pkts_pend = oq->pkts_pending; netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no); if (iq->pkts_processed) { writel(iq->pkts_processed, iq->inst_cnt_reg); iq->pkt_in_done -= iq->pkts_processed; iq->pkts_processed = 0; } if (oq->last_pkt_count - pkts_pend) { writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg); oq->last_pkt_count = pkts_pend; } /* Flush the previous wrties before writing to RESEND bit */ smp_wmb(); writeq(1UL << OCTEP_VF_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg); writeq(1UL << OCTEP_VF_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg); } /** * octep_vf_napi_poll() - NAPI poll function for Tx/Rx. * * @napi: pointer to napi context. * @budget: max number of packets to be processed in single invocation. */ static int octep_vf_napi_poll(struct napi_struct *napi, int budget) { struct octep_vf_ioq_vector *ioq_vector = container_of(napi, struct octep_vf_ioq_vector, napi); u32 tx_pending, rx_done; tx_pending = octep_vf_iq_process_completions(ioq_vector->iq, 64); rx_done = octep_vf_oq_process_rx(ioq_vector->oq, budget); /* need more polling if tx completion processing is still pending or * processed at least 'budget' number of rx packets. */ if (tx_pending || rx_done >= budget) return budget; if (likely(napi_complete_done(napi, rx_done))) octep_vf_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq); return rx_done; } /** * octep_vf_napi_add() - Add NAPI poll for all Tx/Rx queues. * * @oct: Octeon device private data structure. */ static void octep_vf_napi_add(struct octep_vf_device *oct) { int i; for (i = 0; i < oct->num_oqs; i++) { netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i); netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi, octep_vf_napi_poll); oct->oq[i]->napi = &oct->ioq_vector[i]->napi; } } /** * octep_vf_napi_delete() - delete NAPI poll callback for all Tx/Rx queues. * * @oct: Octeon device private data structure. */ static void octep_vf_napi_delete(struct octep_vf_device *oct) { int i; for (i = 0; i < oct->num_oqs; i++) { netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i); netif_napi_del(&oct->ioq_vector[i]->napi); oct->oq[i]->napi = NULL; } } /** * octep_vf_napi_enable() - enable NAPI for all Tx/Rx queues. * * @oct: Octeon device private data structure. */ static void octep_vf_napi_enable(struct octep_vf_device *oct) { int i; for (i = 0; i < oct->num_oqs; i++) { netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i); napi_enable(&oct->ioq_vector[i]->napi); } } /** * octep_vf_napi_disable() - disable NAPI for all Tx/Rx queues. * * @oct: Octeon device private data structure. */ static void octep_vf_napi_disable(struct octep_vf_device *oct) { int i; for (i = 0; i < oct->num_oqs; i++) { netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i); napi_disable(&oct->ioq_vector[i]->napi); } } static void octep_vf_link_up(struct net_device *netdev) { netif_carrier_on(netdev); netif_tx_start_all_queues(netdev); } static void octep_vf_set_rx_state(struct octep_vf_device *oct, bool up) { int err; err = octep_vf_mbox_set_rx_state(oct, up); if (err) netdev_err(oct->netdev, "Set Rx state to %d failed with err:%d\n", up, err); } static int octep_vf_get_link_status(struct octep_vf_device *oct) { int err; err = octep_vf_mbox_get_link_status(oct, &oct->link_info.oper_up); if (err) netdev_err(oct->netdev, "Get link status failed with err:%d\n", err); return oct->link_info.oper_up; } static void octep_vf_set_link_status(struct octep_vf_device *oct, bool up) { int err; err = octep_vf_mbox_set_link_status(oct, up); if (err) { netdev_err(oct->netdev, "Set link status to %d failed with err:%d\n", up, err); return; } oct->link_info.oper_up = up; } /** * octep_vf_open() - start the octeon network device. * * @netdev: pointer to kernel network device. * * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues * and interrupts.. * * Return: 0, on successfully setting up device and bring it up. * -1, on any error. */ static int octep_vf_open(struct net_device *netdev) { struct octep_vf_device *oct = netdev_priv(netdev); int err, ret; netdev_info(netdev, "Starting netdev ...\n"); netif_carrier_off(netdev); oct->hw_ops.reset_io_queues(oct); if (octep_vf_setup_iqs(oct)) goto setup_iq_err; if (octep_vf_setup_oqs(oct)) goto setup_oq_err; if (octep_vf_setup_irqs(oct)) goto setup_irq_err; err = netif_set_real_num_tx_queues(netdev, oct->num_oqs); if (err) goto set_queues_err; err = netif_set_real_num_rx_queues(netdev, oct->num_iqs); if (err) goto set_queues_err; octep_vf_napi_add(oct); octep_vf_napi_enable(oct); oct->link_info.admin_up = 1; octep_vf_set_rx_state(oct, true); ret = octep_vf_get_link_status(oct); if (!ret) octep_vf_set_link_status(oct, true); /* Enable the input and output queues for this Octeon device */ oct->hw_ops.enable_io_queues(oct); /* Enable Octeon device interrupts */ oct->hw_ops.enable_interrupts(oct); octep_vf_oq_dbell_init(oct); ret = octep_vf_get_link_status(oct); if (ret) octep_vf_link_up(netdev); return 0; set_queues_err: octep_vf_napi_disable(oct); octep_vf_napi_delete(oct); octep_vf_clean_irqs(oct); setup_irq_err: octep_vf_free_oqs(oct); setup_oq_err: octep_vf_free_iqs(oct); setup_iq_err: return -1; } /** * octep_vf_stop() - stop the octeon network device. * * @netdev: pointer to kernel network device. * * stop the device Tx/Rx operations, bring down the link and * free up all resources allocated for Tx/Rx queues and interrupts. */ static int octep_vf_stop(struct net_device *netdev) { struct octep_vf_device *oct = netdev_priv(netdev); netdev_info(netdev, "Stopping the device ...\n"); /* Stop Tx from stack */ netif_carrier_off(netdev); netif_tx_disable(netdev); octep_vf_set_link_status(oct, false); octep_vf_set_rx_state(oct, false); oct->link_info.admin_up = 0; oct->link_info.oper_up = 0; oct->hw_ops.disable_interrupts(oct); octep_vf_napi_disable(oct); octep_vf_napi_delete(oct); octep_vf_clean_irqs(oct); octep_vf_clean_iqs(oct); oct->hw_ops.disable_io_queues(oct); oct->hw_ops.reset_io_queues(oct); octep_vf_free_oqs(oct); octep_vf_free_iqs(oct); netdev_info(netdev, "Device stopped !!\n"); return 0; } /** * octep_vf_iq_full_check() - check if a Tx queue is full. * * @iq: Octeon Tx queue data structure. * * Return: 0, if the Tx queue is not full. * 1, if the Tx queue is full. */ static int octep_vf_iq_full_check(struct octep_vf_iq *iq) { int ret; ret = netif_subqueue_maybe_stop(iq->netdev, iq->q_no, IQ_INSTR_SPACE(iq), OCTEP_VF_WAKE_QUEUE_THRESHOLD, OCTEP_VF_WAKE_QUEUE_THRESHOLD); switch (ret) { case 0: /* Stopped the queue, since IQ is full */ return 1; case -1: /* * Pending updates in write index from * iq_process_completion in other cpus * caused queues to get re-enabled after * being stopped */ iq->stats.restart_cnt++; fallthrough; case 1: /* Queue left enabled, since IQ is not yet full*/ return 0; } return 1; } /** * octep_vf_start_xmit() - Enqueue packet to Octoen hardware Tx Queue. * * @skb: packet skbuff pointer. * @netdev: kernel network device. * * Return: NETDEV_TX_BUSY, if Tx Queue is full. * NETDEV_TX_OK, if successfully enqueued to hardware Tx queue. */ static netdev_tx_t octep_vf_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct octep_vf_device *oct = netdev_priv(netdev); netdev_features_t feat = netdev->features; struct octep_vf_tx_sglist_desc *sglist; struct octep_vf_tx_buffer *tx_buffer; struct octep_vf_tx_desc_hw *hw_desc; struct skb_shared_info *shinfo; struct octep_vf_instr_hdr *ih; struct octep_vf_iq *iq; skb_frag_t *frag; u16 nr_frags, si; int xmit_more; u16 q_no, wi; if (skb_put_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; q_no = skb_get_queue_mapping(skb); if (q_no >= oct->num_iqs) { netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no); q_no = q_no % oct->num_iqs; } iq = oct->iq[q_no]; shinfo = skb_shinfo(skb); nr_frags = shinfo->nr_frags; wi = iq->host_write_index; hw_desc = &iq->desc_ring[wi]; hw_desc->ih64 = 0; tx_buffer = iq->buff_info + wi; tx_buffer->skb = skb; ih = &hw_desc->ih; ih->tlen = skb->len; ih->pkind = oct->fw_info.pkind; ih->fsz = oct->fw_info.fsz; ih->tlen = skb->len + ih->fsz; if (!nr_frags) { tx_buffer->gather = 0; tx_buffer->dma = dma_map_single(iq->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(iq->dev, tx_buffer->dma)) goto dma_map_err; hw_desc->dptr = tx_buffer->dma; } else { /* Scatter/Gather */ dma_addr_t dma; u16 len; sglist = tx_buffer->sglist; ih->gsz = nr_frags + 1; ih->gather = 1; tx_buffer->gather = 1; len = skb_headlen(skb); dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE); if (dma_mapping_error(iq->dev, dma)) goto dma_map_err; memset(sglist, 0, OCTEP_VF_SGLIST_SIZE_PER_PKT); sglist[0].len[3] = len; sglist[0].dma_ptr[0] = dma; si = 1; /* entry 0 is main skb, mapped above */ frag = &shinfo->frags[0]; while (nr_frags--) { len = skb_frag_size(frag); dma = skb_frag_dma_map(iq->dev, frag, 0, len, DMA_TO_DEVICE); if (dma_mapping_error(iq->dev, dma)) goto dma_map_sg_err; sglist[si >> 2].len[3 - (si & 3)] = len; sglist[si >> 2].dma_ptr[si & 3] = dma; frag++; si++; } hw_desc->dptr = tx_buffer->sglist_dma; } if (oct->fw_info.tx_ol_flags) { if ((feat & (NETIF_F_TSO)) && (skb_is_gso(skb))) { hw_desc->txm.ol_flags = OCTEP_VF_TX_OFFLOAD_CKSUM; hw_desc->txm.ol_flags |= OCTEP_VF_TX_OFFLOAD_TSO; hw_desc->txm.gso_size = skb_shinfo(skb)->gso_size; hw_desc->txm.gso_segs = skb_shinfo(skb)->gso_segs; } else if (feat & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { hw_desc->txm.ol_flags = OCTEP_VF_TX_OFFLOAD_CKSUM; } /* due to ESR txm will be swapped by hw */ hw_desc->txm64[0] = (__force u64)cpu_to_be64(hw_desc->txm64[0]); } xmit_more = netdev_xmit_more(); netdev_tx_sent_queue(iq->netdev_q, skb->len); skb_tx_timestamp(skb); iq->fill_cnt++; wi++; iq->host_write_index = wi & iq->ring_size_mask; /* octep_iq_full_check stops the queue and returns * true if so, in case the queue has become full * by inserting current packet. If so, we can * go ahead and ring doorbell. */ if (!octep_vf_iq_full_check(iq) && xmit_more && iq->fill_cnt < iq->fill_threshold) return NETDEV_TX_OK; goto ring_dbell; dma_map_sg_err: if (si > 0) { dma_unmap_single(iq->dev, sglist[0].dma_ptr[0], sglist[0].len[0], DMA_TO_DEVICE); sglist[0].len[0] = 0; } while (si > 1) { dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3], sglist[si >> 2].len[si & 3], DMA_TO_DEVICE); sglist[si >> 2].len[si & 3] = 0; si--; } tx_buffer->gather = 0; dma_map_err: dev_kfree_skb_any(skb); ring_dbell: /* Flush the hw descriptors before writing to doorbell */ smp_wmb(); writel(iq->fill_cnt, iq->doorbell_reg); iq->stats.instr_posted += iq->fill_cnt; iq->fill_cnt = 0; return NETDEV_TX_OK; } int octep_vf_get_if_stats(struct octep_vf_device *oct) { struct octep_vf_iface_rxtx_stats vf_stats; int ret, size; memset(&vf_stats, 0, sizeof(struct octep_vf_iface_rxtx_stats)); ret = octep_vf_mbox_bulk_read(oct, OCTEP_PFVF_MBOX_CMD_GET_STATS, (u8 *)&vf_stats, &size); if (ret) return ret; memcpy(&oct->iface_rx_stats, &vf_stats.iface_rx_stats, sizeof(struct octep_vf_iface_rx_stats)); memcpy(&oct->iface_tx_stats, &vf_stats.iface_tx_stats, sizeof(struct octep_vf_iface_tx_stats)); return 0; } int octep_vf_get_link_info(struct octep_vf_device *oct) { int ret, size; ret = octep_vf_mbox_bulk_read(oct, OCTEP_PFVF_MBOX_CMD_GET_LINK_INFO, (u8 *)&oct->link_info, &size); if (ret) { dev_err(&oct->pdev->dev, "Get VF link info failed via VF Mbox\n"); return ret; } return 0; } /** * octep_vf_get_stats64() - Get Octeon network device statistics. * * @netdev: kernel network device. * @stats: pointer to stats structure to be filled in. */ static void octep_vf_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct octep_vf_device *oct = netdev_priv(netdev); u64 tx_packets, tx_bytes, rx_packets, rx_bytes; int q; tx_packets = 0; tx_bytes = 0; rx_packets = 0; rx_bytes = 0; for (q = 0; q < oct->num_oqs; q++) { struct octep_vf_iq *iq = oct->iq[q]; struct octep_vf_oq *oq = oct->oq[q]; tx_packets += iq->stats.instr_completed; tx_bytes += iq->stats.bytes_sent; rx_packets += oq->stats.packets; rx_bytes += oq->stats.bytes; } stats->tx_packets = tx_packets; stats->tx_bytes = tx_bytes; stats->rx_packets = rx_packets; stats->rx_bytes = rx_bytes; if (!octep_vf_get_if_stats(oct)) { stats->multicast = oct->iface_rx_stats.mcast_pkts; stats->rx_errors = oct->iface_rx_stats.err_pkts; stats->rx_dropped = oct->iface_rx_stats.dropped_pkts_fifo_full + oct->iface_rx_stats.err_pkts; stats->rx_missed_errors = oct->iface_rx_stats.dropped_pkts_fifo_full; stats->tx_dropped = oct->iface_tx_stats.dropped; } } /** * octep_vf_tx_timeout_task - work queue task to Handle Tx queue timeout. * * @work: pointer to Tx queue timeout work_struct * * Stop and start the device so that it frees up all queue resources * and restarts the queues, that potentially clears a Tx queue timeout * condition. **/ static void octep_vf_tx_timeout_task(struct work_struct *work) { struct octep_vf_device *oct = container_of(work, struct octep_vf_device, tx_timeout_task); struct net_device *netdev = oct->netdev; rtnl_lock(); if (netif_running(netdev)) { octep_vf_stop(netdev); octep_vf_open(netdev); } rtnl_unlock(); netdev_put(netdev, NULL); } /** * octep_vf_tx_timeout() - Handle Tx Queue timeout. * * @netdev: pointer to kernel network device. * @txqueue: Timed out Tx queue number. * * Schedule a work to handle Tx queue timeout. */ static void octep_vf_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct octep_vf_device *oct = netdev_priv(netdev); netdev_hold(netdev, NULL, GFP_ATOMIC); schedule_work(&oct->tx_timeout_task); } static int octep_vf_set_mac(struct net_device *netdev, void *p) { struct octep_vf_device *oct = netdev_priv(netdev); struct sockaddr *addr = (struct sockaddr *)p; int err; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; err = octep_vf_mbox_set_mac_addr(oct, addr->sa_data); if (err) return err; memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN); eth_hw_addr_set(netdev, addr->sa_data); return 0; } static int octep_vf_change_mtu(struct net_device *netdev, int new_mtu) { struct octep_vf_device *oct = netdev_priv(netdev); struct octep_vf_iface_link_info *link_info; int err; link_info = &oct->link_info; if (link_info->mtu == new_mtu) return 0; err = octep_vf_mbox_set_mtu(oct, new_mtu); if (!err) { oct->link_info.mtu = new_mtu; WRITE_ONCE(netdev->mtu, new_mtu); } return err; } static int octep_vf_set_features(struct net_device *netdev, netdev_features_t features) { struct octep_vf_device *oct = netdev_priv(netdev); u16 rx_offloads = 0, tx_offloads = 0; int err; /* We only support features received from firmware */ if ((features & netdev->hw_features) != features) return -EINVAL; if (features & NETIF_F_TSO) tx_offloads |= OCTEP_VF_TX_OFFLOAD_TSO; if (features & NETIF_F_TSO6) tx_offloads |= OCTEP_VF_TX_OFFLOAD_TSO; if (features & NETIF_F_IP_CSUM) tx_offloads |= OCTEP_VF_TX_OFFLOAD_CKSUM; if (features & NETIF_F_IPV6_CSUM) tx_offloads |= OCTEP_VF_TX_OFFLOAD_CKSUM; if (features & NETIF_F_RXCSUM) rx_offloads |= OCTEP_VF_RX_OFFLOAD_CKSUM; err = octep_vf_mbox_set_offloads(oct, tx_offloads, rx_offloads); if (!err) netdev->features = features; return err; } static const struct net_device_ops octep_vf_netdev_ops = { .ndo_open = octep_vf_open, .ndo_stop = octep_vf_stop, .ndo_start_xmit = octep_vf_start_xmit, .ndo_get_stats64 = octep_vf_get_stats64, .ndo_tx_timeout = octep_vf_tx_timeout, .ndo_set_mac_address = octep_vf_set_mac, .ndo_change_mtu = octep_vf_change_mtu, .ndo_set_features = octep_vf_set_features, }; static const char *octep_vf_devid_to_str(struct octep_vf_device *oct) { switch (oct->chip_id) { case OCTEP_PCI_DEVICE_ID_CN93_VF: return "CN93XX"; case OCTEP_PCI_DEVICE_ID_CNF95N_VF: return "CNF95N"; case OCTEP_PCI_DEVICE_ID_CN10KA_VF: return "CN10KA"; case OCTEP_PCI_DEVICE_ID_CNF10KA_VF: return "CNF10KA"; case OCTEP_PCI_DEVICE_ID_CNF10KB_VF: return "CNF10KB"; case OCTEP_PCI_DEVICE_ID_CN10KB_VF: return "CN10KB"; default: return "Unsupported"; } } /** * octep_vf_device_setup() - Setup Octeon Device. * * @oct: Octeon device private data structure. * * Setup Octeon device hardware operations, configuration, etc ... */ int octep_vf_device_setup(struct octep_vf_device *oct) { struct pci_dev *pdev = oct->pdev; /* allocate memory for oct->conf */ oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL); if (!oct->conf) return -ENOMEM; /* Map BAR region 0 */ oct->mmio.hw_addr = ioremap(pci_resource_start(oct->pdev, 0), pci_resource_len(oct->pdev, 0)); if (!oct->mmio.hw_addr) { dev_err(&pdev->dev, "Failed to remap BAR0; start=0x%llx len=0x%llx\n", pci_resource_start(oct->pdev, 0), pci_resource_len(oct->pdev, 0)); goto ioremap_err; } oct->mmio.mapped = 1; oct->chip_id = pdev->device; oct->rev_id = pdev->revision; dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device); switch (oct->chip_id) { case OCTEP_PCI_DEVICE_ID_CN93_VF: case OCTEP_PCI_DEVICE_ID_CNF95N_VF: case OCTEP_PCI_DEVICE_ID_CN98_VF: dev_info(&pdev->dev, "Setting up OCTEON %s VF PASS%d.%d\n", octep_vf_devid_to_str(oct), OCTEP_VF_MAJOR_REV(oct), OCTEP_VF_MINOR_REV(oct)); octep_vf_device_setup_cn93(oct); break; case OCTEP_PCI_DEVICE_ID_CNF10KA_VF: case OCTEP_PCI_DEVICE_ID_CN10KA_VF: case OCTEP_PCI_DEVICE_ID_CNF10KB_VF: case OCTEP_PCI_DEVICE_ID_CN10KB_VF: dev_info(&pdev->dev, "Setting up OCTEON %s VF PASS%d.%d\n", octep_vf_devid_to_str(oct), OCTEP_VF_MAJOR_REV(oct), OCTEP_VF_MINOR_REV(oct)); octep_vf_device_setup_cnxk(oct); break; default: dev_err(&pdev->dev, "Unsupported device\n"); goto unsupported_dev; } return 0; unsupported_dev: iounmap(oct->mmio.hw_addr); ioremap_err: kfree(oct->conf); return -EOPNOTSUPP; } /** * octep_vf_device_cleanup() - Cleanup Octeon Device. * * @oct: Octeon device private data structure. * * Cleanup Octeon device allocated resources. */ static void octep_vf_device_cleanup(struct octep_vf_device *oct) { dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n"); if (oct->mmio.mapped) iounmap(oct->mmio.hw_addr); kfree(oct->conf); oct->conf = NULL; } static int octep_vf_get_mac_addr(struct octep_vf_device *oct, u8 *addr) { return octep_vf_mbox_get_mac_addr(oct, addr); } /** * octep_vf_probe() - Octeon PCI device probe handler. * * @pdev: PCI device structure. * @ent: entry in Octeon PCI device ID table. * * Initializes and enables the Octeon PCI device for network operations. * Initializes Octeon private data structure and registers a network device. */ static int octep_vf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct octep_vf_device *octep_vf_dev; struct net_device *netdev; int err; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "Failed to enable PCI device\n"); return err; } err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { dev_err(&pdev->dev, "Failed to set DMA mask !!\n"); goto disable_pci_device; } err = pci_request_mem_regions(pdev, OCTEP_VF_DRV_NAME); if (err) { dev_err(&pdev->dev, "Failed to map PCI memory regions\n"); goto disable_pci_device; } pci_set_master(pdev); netdev = alloc_etherdev_mq(sizeof(struct octep_vf_device), OCTEP_VF_MAX_QUEUES); if (!netdev) { dev_err(&pdev->dev, "Failed to allocate netdev\n"); err = -ENOMEM; goto mem_regions_release; } SET_NETDEV_DEV(netdev, &pdev->dev); octep_vf_dev = netdev_priv(netdev); octep_vf_dev->netdev = netdev; octep_vf_dev->pdev = pdev; octep_vf_dev->dev = &pdev->dev; pci_set_drvdata(pdev, octep_vf_dev); err = octep_vf_device_setup(octep_vf_dev); if (err) { dev_err(&pdev->dev, "Device setup failed\n"); goto netdevice_free; } INIT_WORK(&octep_vf_dev->tx_timeout_task, octep_vf_tx_timeout_task); netdev->netdev_ops = &octep_vf_netdev_ops; octep_vf_set_ethtool_ops(netdev); netif_carrier_off(netdev); if (octep_vf_setup_mbox(octep_vf_dev)) { dev_err(&pdev->dev, "VF Mailbox setup failed\n"); err = -ENOMEM; goto device_cleanup; } if (octep_vf_mbox_version_check(octep_vf_dev)) { dev_err(&pdev->dev, "PF VF Mailbox version mismatch\n"); err = -EINVAL; goto delete_mbox; } if (octep_vf_mbox_get_fw_info(octep_vf_dev)) { dev_err(&pdev->dev, "unable to get fw info\n"); err = -EINVAL; goto delete_mbox; } netdev->hw_features = NETIF_F_SG; if (OCTEP_VF_TX_IP_CSUM(octep_vf_dev->fw_info.tx_ol_flags)) netdev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); if (OCTEP_VF_RX_IP_CSUM(octep_vf_dev->fw_info.rx_ol_flags)) netdev->hw_features |= NETIF_F_RXCSUM; netdev->min_mtu = OCTEP_VF_MIN_MTU; netdev->max_mtu = OCTEP_VF_MAX_MTU; netdev->mtu = OCTEP_VF_DEFAULT_MTU; if (OCTEP_VF_TX_TSO(octep_vf_dev->fw_info.tx_ol_flags)) { netdev->hw_features |= NETIF_F_TSO; netif_set_tso_max_size(netdev, netdev->max_mtu); } netdev->features |= netdev->hw_features; octep_vf_get_mac_addr(octep_vf_dev, octep_vf_dev->mac_addr); eth_hw_addr_set(netdev, octep_vf_dev->mac_addr); err = register_netdev(netdev); if (err) { dev_err(&pdev->dev, "Failed to register netdev\n"); goto delete_mbox; } dev_info(&pdev->dev, "Device probe successful\n"); return 0; delete_mbox: octep_vf_delete_mbox(octep_vf_dev); device_cleanup: octep_vf_device_cleanup(octep_vf_dev); netdevice_free: free_netdev(netdev); mem_regions_release: pci_release_mem_regions(pdev); disable_pci_device: pci_disable_device(pdev); dev_err(&pdev->dev, "Device probe failed\n"); return err; } /** * octep_vf_remove() - Remove Octeon PCI device from driver control. * * @pdev: PCI device structure of the Octeon device. * * Cleanup all resources allocated for the Octeon device. * Unregister from network device and disable the PCI device. */ static void octep_vf_remove(struct pci_dev *pdev) { struct octep_vf_device *oct = pci_get_drvdata(pdev); struct net_device *netdev; if (!oct) return; octep_vf_mbox_dev_remove(oct); cancel_work_sync(&oct->tx_timeout_task); netdev = oct->netdev; if (netdev->reg_state == NETREG_REGISTERED) unregister_netdev(netdev); octep_vf_delete_mbox(oct); octep_vf_device_cleanup(oct); pci_release_mem_regions(pdev); free_netdev(netdev); pci_disable_device(pdev); } static struct pci_driver octep_vf_driver = { .name = OCTEP_VF_DRV_NAME, .id_table = octep_vf_pci_id_tbl, .probe = octep_vf_probe, .remove = octep_vf_remove, }; /** * octep_vf_init_module() - Module initialization. * * create common resource for the driver and register PCI driver. */ static int __init octep_vf_init_module(void) { int ret; pr_info("%s: Loading %s ...\n", OCTEP_VF_DRV_NAME, OCTEP_VF_DRV_STRING); ret = pci_register_driver(&octep_vf_driver); if (ret < 0) { pr_err("%s: Failed to register PCI driver; err=%d\n", OCTEP_VF_DRV_NAME, ret); return ret; } return ret; } /** * octep_vf_exit_module() - Module exit routine. * * unregister the driver with PCI subsystem and cleanup common resources. */ static void __exit octep_vf_exit_module(void) { pr_info("%s: Unloading ...\n", OCTEP_VF_DRV_NAME); pci_unregister_driver(&octep_vf_driver); pr_info("%s: Unloading complete\n", OCTEP_VF_DRV_NAME); } module_init(octep_vf_init_module); module_exit(octep_vf_exit_module);
// SPDX-License-Identifier: GPL-2.0+ /* * Originally from efivars.c * * Copyright (C) 2001,2003,2004 Dell <[email protected]> * Copyright (C) 2004 Intel Corporation <[email protected]> */ #define pr_fmt(fmt) "efivars: " fmt #include <linux/types.h> #include <linux/sizes.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/module.h> #include <linux/string.h> #include <linux/smp.h> #include <linux/efi.h> #include <linux/ucs2_string.h> /* Private pointer to registered efivars */ static struct efivars *__efivars; static DEFINE_SEMAPHORE(efivars_lock, 1); static efi_status_t check_var_size(bool nonblocking, u32 attributes, unsigned long size) { const struct efivar_operations *fops; efi_status_t status; fops = __efivars->ops; if (!fops->query_variable_store) status = EFI_UNSUPPORTED; else status = fops->query_variable_store(attributes, size, nonblocking); if (status == EFI_UNSUPPORTED) return (size <= SZ_64K) ? EFI_SUCCESS : EFI_OUT_OF_RESOURCES; return status; } /** * efivar_is_available - check if efivars is available * * @return true iff evivars is currently registered */ bool efivar_is_available(void) { return __efivars != NULL; } EXPORT_SYMBOL_GPL(efivar_is_available); /** * efivars_register - register an efivars * @efivars: efivars to register * @ops: efivars operations * * Only a single efivars can be registered at any time. */ int efivars_register(struct efivars *efivars, const struct efivar_operations *ops) { int rv; int event; if (down_interruptible(&efivars_lock)) return -EINTR; if (__efivars) { pr_warn("efivars already registered\n"); rv = -EBUSY; goto out; } efivars->ops = ops; __efivars = efivars; if (efivar_supports_writes()) event = EFIVAR_OPS_RDWR; else event = EFIVAR_OPS_RDONLY; blocking_notifier_call_chain(&efivar_ops_nh, event, NULL); pr_info("Registered efivars operations\n"); rv = 0; out: up(&efivars_lock); return rv; } EXPORT_SYMBOL_GPL(efivars_register); /** * efivars_unregister - unregister an efivars * @efivars: efivars to unregister * * The caller must have already removed every entry from the list, * failure to do so is an error. */ int efivars_unregister(struct efivars *efivars) { int rv; if (down_interruptible(&efivars_lock)) return -EINTR; if (!__efivars) { pr_err("efivars not registered\n"); rv = -EINVAL; goto out; } if (__efivars != efivars) { rv = -EINVAL; goto out; } pr_info("Unregistered efivars operations\n"); __efivars = NULL; rv = 0; out: up(&efivars_lock); return rv; } EXPORT_SYMBOL_GPL(efivars_unregister); bool efivar_supports_writes(void) { return __efivars && __efivars->ops->set_variable; } EXPORT_SYMBOL_GPL(efivar_supports_writes); /* * efivar_lock() - obtain the efivar lock, wait for it if needed * @return 0 on success, error code on failure */ int efivar_lock(void) { if (down_interruptible(&efivars_lock)) return -EINTR; if (!__efivars->ops) { up(&efivars_lock); return -ENODEV; } return 0; } EXPORT_SYMBOL_NS_GPL(efivar_lock, "EFIVAR"); /* * efivar_lock() - obtain the efivar lock if it is free * @return 0 on success, error code on failure */ int efivar_trylock(void) { if (down_trylock(&efivars_lock)) return -EBUSY; if (!__efivars->ops) { up(&efivars_lock); return -ENODEV; } return 0; } EXPORT_SYMBOL_NS_GPL(efivar_trylock, "EFIVAR"); /* * efivar_unlock() - release the efivar lock */ void efivar_unlock(void) { up(&efivars_lock); } EXPORT_SYMBOL_NS_GPL(efivar_unlock, "EFIVAR"); /* * efivar_get_variable() - retrieve a variable identified by name/vendor * * Must be called with efivars_lock held. */ efi_status_t efivar_get_variable(efi_char16_t *name, efi_guid_t *vendor, u32 *attr, unsigned long *size, void *data) { return __efivars->ops->get_variable(name, vendor, attr, size, data); } EXPORT_SYMBOL_NS_GPL(efivar_get_variable, "EFIVAR"); /* * efivar_get_next_variable() - enumerate the next name/vendor pair * * Must be called with efivars_lock held. */ efi_status_t efivar_get_next_variable(unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) { return __efivars->ops->get_next_variable(name_size, name, vendor); } EXPORT_SYMBOL_NS_GPL(efivar_get_next_variable, "EFIVAR"); /* * efivar_set_variable_locked() - set a variable identified by name/vendor * * Must be called with efivars_lock held. If @nonblocking is set, it will use * non-blocking primitives so it is guaranteed not to sleep. */ efi_status_t efivar_set_variable_locked(efi_char16_t *name, efi_guid_t *vendor, u32 attr, unsigned long data_size, void *data, bool nonblocking) { efi_set_variable_t *setvar; efi_status_t status; if (data_size > 0) { status = check_var_size(nonblocking, attr, data_size + ucs2_strsize(name, EFI_VAR_NAME_LEN)); if (status != EFI_SUCCESS) return status; } /* * If no _nonblocking variant exists, the ordinary one * is assumed to be non-blocking. */ setvar = __efivars->ops->set_variable_nonblocking; if (!setvar || !nonblocking) setvar = __efivars->ops->set_variable; return setvar(name, vendor, attr, data_size, data); } EXPORT_SYMBOL_NS_GPL(efivar_set_variable_locked, "EFIVAR"); /* * efivar_set_variable() - set a variable identified by name/vendor * * Can be called without holding the efivars_lock. Will sleep on obtaining the * lock, or on obtaining other locks that are needed in order to complete the * call. */ efi_status_t efivar_set_variable(efi_char16_t *name, efi_guid_t *vendor, u32 attr, unsigned long data_size, void *data) { efi_status_t status; if (efivar_lock()) return EFI_ABORTED; status = efivar_set_variable_locked(name, vendor, attr, data_size, data, false); efivar_unlock(); return status; } EXPORT_SYMBOL_NS_GPL(efivar_set_variable, "EFIVAR"); efi_status_t efivar_query_variable_info(u32 attr, u64 *storage_space, u64 *remaining_space, u64 *max_variable_size) { if (!__efivars->ops->query_variable_info) return EFI_UNSUPPORTED; return __efivars->ops->query_variable_info(attr, storage_space, remaining_space, max_variable_size); } EXPORT_SYMBOL_NS_GPL(efivar_query_variable_info, "EFIVAR");
// SPDX-License-Identifier: GPL-2.0-only /************************************************************************** * Copyright (c) 2011, Intel Corporation. * All Rights Reserved. * **************************************************************************/ #include <drm/drm.h> #include <drm/drm_crtc_helper.h> #include "gma_device.h" #include "intel_bios.h" #include "psb_device.h" #include "psb_drv.h" #include "psb_intel_reg.h" #include "psb_reg.h" static int psb_output_init(struct drm_device *dev) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); psb_intel_lvds_init(dev, &dev_priv->mode_dev); psb_intel_sdvo_init(dev, SDVOB); return 0; } /* * Poulsbo Backlight Interfaces */ #define BLC_PWM_PRECISION_FACTOR 100 /* 10000000 */ #define BLC_PWM_FREQ_CALC_CONSTANT 32 #define MHz 1000000 #define PSB_BLC_PWM_PRECISION_FACTOR 10 #define PSB_BLC_MAX_PWM_REG_FREQ 0xFFFE #define PSB_BLC_MIN_PWM_REG_FREQ 0x2 #define PSB_BACKLIGHT_PWM_POLARITY_BIT_CLEAR (0xFFFE) #define PSB_BACKLIGHT_PWM_CTL_SHIFT (16) static int psb_backlight_setup(struct drm_device *dev) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); unsigned long core_clock; /* u32 bl_max_freq; */ /* unsigned long value; */ u16 bl_max_freq; uint32_t value; uint32_t blc_pwm_precision_factor; /* get bl_max_freq and pol from dev_priv*/ if (!dev_priv->lvds_bl) { dev_err(dev->dev, "Has no valid LVDS backlight info\n"); return -ENOENT; } bl_max_freq = dev_priv->lvds_bl->freq; blc_pwm_precision_factor = PSB_BLC_PWM_PRECISION_FACTOR; core_clock = dev_priv->core_freq; value = (core_clock * MHz) / BLC_PWM_FREQ_CALC_CONSTANT; value *= blc_pwm_precision_factor; value /= bl_max_freq; value /= blc_pwm_precision_factor; if (value > (unsigned long long)PSB_BLC_MAX_PWM_REG_FREQ || value < (unsigned long long)PSB_BLC_MIN_PWM_REG_FREQ) return -ERANGE; else { value &= PSB_BACKLIGHT_PWM_POLARITY_BIT_CLEAR; REG_WRITE(BLC_PWM_CTL, (value << PSB_BACKLIGHT_PWM_CTL_SHIFT) | (value)); } psb_intel_lvds_set_brightness(dev, PSB_MAX_BRIGHTNESS); return 0; } /* * Provide the Poulsbo specific chip logic and low level methods * for power management */ static void psb_init_pm(struct drm_device *dev) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); u32 gating = PSB_RSGX32(PSB_CR_CLKGATECTL); gating &= ~3; /* Disable 2D clock gating */ gating |= 1; PSB_WSGX32(gating, PSB_CR_CLKGATECTL); PSB_RSGX32(PSB_CR_CLKGATECTL); } /** * psb_save_display_registers - save registers lost on suspend * @dev: our DRM device * * Save the state we need in order to be able to restore the interface * upon resume from suspend */ static int psb_save_display_registers(struct drm_device *dev) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); struct gma_connector *gma_connector; struct drm_crtc *crtc; struct drm_connector_list_iter conn_iter; struct drm_connector *connector; struct psb_state *regs = &dev_priv->regs.psb; /* Display arbitration control + watermarks */ regs->saveDSPARB = PSB_RVDC32(DSPARB); regs->saveDSPFW1 = PSB_RVDC32(DSPFW1); regs->saveDSPFW2 = PSB_RVDC32(DSPFW2); regs->saveDSPFW3 = PSB_RVDC32(DSPFW3); regs->saveDSPFW4 = PSB_RVDC32(DSPFW4); regs->saveDSPFW5 = PSB_RVDC32(DSPFW5); regs->saveDSPFW6 = PSB_RVDC32(DSPFW6); regs->saveCHICKENBIT = PSB_RVDC32(DSPCHICKENBIT); /* Save crtc and output state */ drm_modeset_lock_all(dev); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (drm_helper_crtc_in_use(crtc)) dev_priv->ops->save_crtc(crtc); } drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { gma_connector = to_gma_connector(connector); if (gma_connector->save) gma_connector->save(connector); } drm_connector_list_iter_end(&conn_iter); drm_modeset_unlock_all(dev); return 0; } /** * psb_restore_display_registers - restore lost register state * @dev: our DRM device * * Restore register state that was lost during suspend and resume. */ static int psb_restore_display_registers(struct drm_device *dev) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); struct gma_connector *gma_connector; struct drm_crtc *crtc; struct drm_connector_list_iter conn_iter; struct drm_connector *connector; struct psb_state *regs = &dev_priv->regs.psb; /* Display arbitration + watermarks */ PSB_WVDC32(regs->saveDSPARB, DSPARB); PSB_WVDC32(regs->saveDSPFW1, DSPFW1); PSB_WVDC32(regs->saveDSPFW2, DSPFW2); PSB_WVDC32(regs->saveDSPFW3, DSPFW3); PSB_WVDC32(regs->saveDSPFW4, DSPFW4); PSB_WVDC32(regs->saveDSPFW5, DSPFW5); PSB_WVDC32(regs->saveDSPFW6, DSPFW6); PSB_WVDC32(regs->saveCHICKENBIT, DSPCHICKENBIT); /*make sure VGA plane is off. it initializes to on after reset!*/ PSB_WVDC32(0x80000000, VGACNTRL); drm_modeset_lock_all(dev); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) if (drm_helper_crtc_in_use(crtc)) dev_priv->ops->restore_crtc(crtc); drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { gma_connector = to_gma_connector(connector); if (gma_connector->restore) gma_connector->restore(connector); } drm_connector_list_iter_end(&conn_iter); drm_modeset_unlock_all(dev); return 0; } static int psb_power_down(struct drm_device *dev) { return 0; } static int psb_power_up(struct drm_device *dev) { return 0; } /* Poulsbo */ static const struct psb_offset psb_regmap[2] = { { .fp0 = FPA0, .fp1 = FPA1, .cntr = DSPACNTR, .conf = PIPEACONF, .src = PIPEASRC, .dpll = DPLL_A, .htotal = HTOTAL_A, .hblank = HBLANK_A, .hsync = HSYNC_A, .vtotal = VTOTAL_A, .vblank = VBLANK_A, .vsync = VSYNC_A, .stride = DSPASTRIDE, .size = DSPASIZE, .pos = DSPAPOS, .base = DSPABASE, .surf = DSPASURF, .addr = DSPABASE, .status = PIPEASTAT, .linoff = DSPALINOFF, .tileoff = DSPATILEOFF, .palette = PALETTE_A, }, { .fp0 = FPB0, .fp1 = FPB1, .cntr = DSPBCNTR, .conf = PIPEBCONF, .src = PIPEBSRC, .dpll = DPLL_B, .htotal = HTOTAL_B, .hblank = HBLANK_B, .hsync = HSYNC_B, .vtotal = VTOTAL_B, .vblank = VBLANK_B, .vsync = VSYNC_B, .stride = DSPBSTRIDE, .size = DSPBSIZE, .pos = DSPBPOS, .base = DSPBBASE, .surf = DSPBSURF, .addr = DSPBBASE, .status = PIPEBSTAT, .linoff = DSPBLINOFF, .tileoff = DSPBTILEOFF, .palette = PALETTE_B, } }; static int psb_chip_setup(struct drm_device *dev) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); dev_priv->regmap = psb_regmap; gma_get_core_freq(dev); gma_intel_setup_gmbus(dev); psb_intel_opregion_init(dev); psb_intel_init_bios(dev); return 0; } static void psb_chip_teardown(struct drm_device *dev) { gma_intel_teardown_gmbus(dev); } const struct psb_ops psb_chip_ops = { .name = "Poulsbo", .pipes = 2, .crtcs = 2, .hdmi_mask = (1 << 0), .lvds_mask = (1 << 1), .sdvo_mask = (1 << 0), .cursor_needs_phys = 1, .sgx_offset = PSB_SGX_OFFSET, .chip_setup = psb_chip_setup, .chip_teardown = psb_chip_teardown, .crtc_helper = &psb_intel_helper_funcs, .clock_funcs = &psb_clock_funcs, .output_init = psb_output_init, .backlight_init = psb_backlight_setup, .backlight_set = psb_intel_lvds_set_brightness, .backlight_name = "psb-bl", .init_pm = psb_init_pm, .save_regs = psb_save_display_registers, .restore_regs = psb_restore_display_registers, .save_crtc = gma_crtc_save, .restore_crtc = gma_crtc_restore, .power_down = psb_power_down, .power_up = psb_power_up, };
/* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) */ /* Copyright(c) 2014 - 2020 Intel Corporation */ #ifndef _ICP_QAT_FW_INIT_ADMIN_H_ #define _ICP_QAT_FW_INIT_ADMIN_H_ #include "icp_qat_fw.h" #define RL_MAX_RP_IDS 16 enum icp_qat_fw_init_admin_cmd_id { ICP_QAT_FW_INIT_AE = 0, ICP_QAT_FW_TRNG_ENABLE = 1, ICP_QAT_FW_TRNG_DISABLE = 2, ICP_QAT_FW_CONSTANTS_CFG = 3, ICP_QAT_FW_STATUS_GET = 4, ICP_QAT_FW_COUNTERS_GET = 5, ICP_QAT_FW_LOOPBACK = 6, ICP_QAT_FW_HEARTBEAT_SYNC = 7, ICP_QAT_FW_HEARTBEAT_GET = 8, ICP_QAT_FW_COMP_CAPABILITY_GET = 9, ICP_QAT_FW_CRYPTO_CAPABILITY_GET = 10, ICP_QAT_FW_DC_CHAIN_INIT = 11, ICP_QAT_FW_HEARTBEAT_TIMER_SET = 13, ICP_QAT_FW_RL_INIT = 15, ICP_QAT_FW_TIMER_GET = 19, ICP_QAT_FW_CNV_STATS_GET = 20, ICP_QAT_FW_PM_STATE_CONFIG = 128, ICP_QAT_FW_PM_INFO = 129, ICP_QAT_FW_RL_ADD = 134, ICP_QAT_FW_RL_UPDATE = 135, ICP_QAT_FW_RL_REMOVE = 136, ICP_QAT_FW_TL_START = 137, ICP_QAT_FW_TL_STOP = 138, }; enum icp_qat_fw_init_admin_resp_status { ICP_QAT_FW_INIT_RESP_STATUS_SUCCESS = 0, ICP_QAT_FW_INIT_RESP_STATUS_FAIL }; struct icp_qat_fw_init_admin_tl_rp_indexes { __u8 rp_num_index_0; __u8 rp_num_index_1; __u8 rp_num_index_2; __u8 rp_num_index_3; }; struct icp_qat_fw_init_admin_slice_cnt { __u8 cpr_cnt; __u8 xlt_cnt; __u8 dcpr_cnt; __u8 pke_cnt; __u8 wat_cnt; __u8 wcp_cnt; __u8 ucs_cnt; __u8 cph_cnt; __u8 ath_cnt; }; struct icp_qat_fw_init_admin_sla_config_params { __u32 pcie_in_cir; __u32 pcie_in_pir; __u32 pcie_out_cir; __u32 pcie_out_pir; __u32 slice_util_cir; __u32 slice_util_pir; __u32 ae_util_cir; __u32 ae_util_pir; __u16 rp_ids[RL_MAX_RP_IDS]; }; struct icp_qat_fw_init_admin_req { __u16 init_cfg_sz; __u8 resrvd1; __u8 cmd_id; __u32 resrvd2; __u64 opaque_data; __u64 init_cfg_ptr; union { struct { __u16 ibuf_size_in_kb; __u16 resrvd3; }; struct { __u32 int_timer_ticks; }; struct { __u32 heartbeat_ticks; }; struct { __u16 node_id; __u8 node_type; __u8 svc_type; __u8 resrvd5[3]; __u8 rp_count; }; __u32 idle_filter; struct icp_qat_fw_init_admin_tl_rp_indexes rp_indexes; }; __u32 resrvd4; } __packed; struct icp_qat_fw_init_admin_resp { __u8 flags; __u8 resrvd1; __u8 status; __u8 cmd_id; union { __u32 resrvd2; struct { __u16 version_minor_num; __u16 version_major_num; }; __u32 extended_features; struct { __u16 error_count; __u16 latest_error; }; }; __u64 opaque_data; union { __u32 resrvd3[ICP_QAT_FW_NUM_LONGWORDS_4]; struct { __u32 version_patch_num; __u8 context_id; __u8 ae_id; __u16 resrvd4; __u64 resrvd5; }; struct { __u64 req_rec_count; __u64 resp_sent_count; }; struct { __u16 compression_algos; __u16 checksum_algos; __u32 deflate_capabilities; __u32 resrvd6; __u32 lzs_capabilities; }; struct { __u32 cipher_algos; __u32 hash_algos; __u16 keygen_algos; __u16 other; __u16 public_key_algos; __u16 prime_algos; }; struct { __u64 timestamp; __u64 resrvd7; }; struct { __u32 successful_count; __u32 unsuccessful_count; __u64 resrvd8; }; struct icp_qat_fw_init_admin_slice_cnt slices; __u16 fw_capabilities; }; } __packed; #define ICP_QAT_FW_SYNC ICP_QAT_FW_HEARTBEAT_SYNC #define ICP_QAT_FW_CAPABILITIES_GET ICP_QAT_FW_CRYPTO_CAPABILITY_GET #define ICP_QAT_NUMBER_OF_PM_EVENTS 8 struct icp_qat_fw_init_admin_pm_info { __u16 max_pwrreq; __u16 min_pwrreq; __u16 resvrd1; __u8 pwr_state; __u8 resvrd2; __u32 fusectl0; struct_group(event_counters, __u32 sys_pm; __u32 host_msg; __u32 unknown; __u32 local_ssm; __u32 timer; ); __u32 event_log[ICP_QAT_NUMBER_OF_PM_EVENTS]; struct_group(pm, __u32 fw_init; __u32 pwrreq; __u32 status; __u32 main; __u32 thread; ); struct_group(ssm, __u32 pm_enable; __u32 pm_active_status; __u32 pm_managed_status; __u32 pm_domain_status; __u32 active_constraint; ); __u32 resvrd3[6]; }; #endif
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * DVB USB Linux driver for Alcor Micro AU6610 DVB-T USB2.0. * * Copyright (C) 2006 Antti Palosaari <[email protected]> */ #ifndef AU6610_H #define AU6610_H #include "dvb_usb.h" #define AU6610_REQ_I2C_WRITE 0x14 #define AU6610_REQ_I2C_READ 0x13 #define AU6610_REQ_USB_WRITE 0x16 #define AU6610_REQ_USB_READ 0x15 #define AU6610_USB_TIMEOUT 1000 #endif
#include "locking-selftest-wlock.h" #include "locking-selftest-softirq.h"
// SPDX-License-Identifier: GPL-2.0-or-later /* * wm9713.c -- Codec touch driver for Wolfson WM9713 AC97 Codec. * * Copyright 2003, 2004, 2005, 2006, 2007, 2008 Wolfson Microelectronics PLC. * Author: Liam Girdwood <[email protected]> * Parts Copyright : Ian Molton <[email protected]> * Andrew Zabolotny <[email protected]> * Russell King <[email protected]> */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/input.h> #include <linux/delay.h> #include <linux/bitops.h> #include <linux/wm97xx.h> #define TS_NAME "wm97xx" #define WM9713_VERSION "1.00" #define DEFAULT_PRESSURE 0xb0c0 /* * Module parameters */ /* * Set internal pull up for pen detect. * * Pull up is in the range 1.02k (least sensitive) to 64k (most sensitive) * i.e. pull up resistance = 64k Ohms / rpu. * * Adjust this value if you are having problems with pen detect not * detecting any down event. */ static int rpu = 8; module_param(rpu, int, 0); MODULE_PARM_DESC(rpu, "Set internal pull up resistor for pen detect."); /* * Set current used for pressure measurement. * * Set pil = 2 to use 400uA * pil = 1 to use 200uA and * pil = 0 to disable pressure measurement. * * This is used to increase the range of values returned by the adc * when measureing touchpanel pressure. */ static int pil; module_param(pil, int, 0); MODULE_PARM_DESC(pil, "Set current used for pressure measurement."); /* * Set threshold for pressure measurement. * * Pen down pressure below threshold is ignored. */ static int pressure = DEFAULT_PRESSURE & 0xfff; module_param(pressure, int, 0); MODULE_PARM_DESC(pressure, "Set threshold for pressure measurement."); /* * Set adc sample delay. * * For accurate touchpanel measurements, some settling time may be * required between the switch matrix applying a voltage across the * touchpanel plate and the ADC sampling the signal. * * This delay can be set by setting delay = n, where n is the array * position of the delay in the array delay_table below. * Long delays > 1ms are supported for completeness, but are not * recommended. */ static int delay = 4; module_param(delay, int, 0); MODULE_PARM_DESC(delay, "Set adc sample delay."); /* * Set five_wire = 1 to use a 5 wire touchscreen. * * NOTE: Five wire mode does not allow for readback of pressure. */ static int five_wire; module_param(five_wire, int, 0); MODULE_PARM_DESC(five_wire, "Set to '1' to use 5-wire touchscreen."); /* * Set adc mask function. * * Sources of glitch noise, such as signals driving an LCD display, may feed * through to the touch screen plates and affect measurement accuracy. In * order to minimise this, a signal may be applied to the MASK pin to delay or * synchronise the sampling. * * 0 = No delay or sync * 1 = High on pin stops conversions * 2 = Edge triggered, edge on pin delays conversion by delay param (above) * 3 = Edge triggered, edge on pin starts conversion after delay param */ static int mask; module_param(mask, int, 0); MODULE_PARM_DESC(mask, "Set adc mask function."); /* * Coordinate Polling Enable. * * Set to 1 to enable coordinate polling. e.g. x,y[,p] is sampled together * for every poll. */ static int coord; module_param(coord, int, 0); MODULE_PARM_DESC(coord, "Polling coordinate mode"); /* * ADC sample delay times in uS */ static const int delay_table[] = { 21, /* 1 AC97 Link frames */ 42, /* 2 */ 84, /* 4 */ 167, /* 8 */ 333, /* 16 */ 667, /* 32 */ 1000, /* 48 */ 1333, /* 64 */ 2000, /* 96 */ 2667, /* 128 */ 3333, /* 160 */ 4000, /* 192 */ 4667, /* 224 */ 5333, /* 256 */ 6000, /* 288 */ 0 /* No delay, switch matrix always on */ }; /* * Delay after issuing a POLL command. * * The delay is 3 AC97 link frames + the touchpanel settling delay */ static inline void poll_delay(int d) { udelay(3 * AC97_LINK_FRAME + delay_table[d]); } /* * set up the physical settings of the WM9713 */ static void wm9713_phy_init(struct wm97xx *wm) { u16 dig1 = 0, dig2, dig3; /* default values */ dig2 = WM97XX_DELAY(4) | WM97XX_SLT(5); dig3 = WM9712_RPU(1); /* rpu */ if (rpu) { dig3 &= 0xffc0; dig3 |= WM9712_RPU(rpu); dev_info(wm->dev, "setting pen detect pull-up to %d Ohms\n", 64000 / rpu); } /* Five wire panel? */ if (five_wire) { dig3 |= WM9713_45W; dev_info(wm->dev, "setting 5-wire touchscreen mode."); if (pil) { dev_warn(wm->dev, "Pressure measurement not supported in 5 " "wire mode, disabling\n"); pil = 0; } } /* touchpanel pressure */ if (pil == 2) { dig3 |= WM9712_PIL; dev_info(wm->dev, "setting pressure measurement current to 400uA."); } else if (pil) dev_info(wm->dev, "setting pressure measurement current to 200uA."); if (!pil) pressure = 0; /* sample settling delay */ if (delay < 0 || delay > 15) { dev_info(wm->dev, "supplied delay out of range."); delay = 4; dev_info(wm->dev, "setting adc sample delay to %d u Secs.", delay_table[delay]); } dig2 &= 0xff0f; dig2 |= WM97XX_DELAY(delay); /* mask */ dig3 |= ((mask & 0x3) << 4); if (coord) dig3 |= WM9713_WAIT; wm->misc = wm97xx_reg_read(wm, 0x5a); wm97xx_reg_write(wm, AC97_WM9713_DIG1, dig1); wm97xx_reg_write(wm, AC97_WM9713_DIG2, dig2); wm97xx_reg_write(wm, AC97_WM9713_DIG3, dig3); wm97xx_reg_write(wm, AC97_GPIO_STICKY, 0x0); } static void wm9713_dig_enable(struct wm97xx *wm, int enable) { u16 val; if (enable) { val = wm97xx_reg_read(wm, AC97_EXTENDED_MID); wm97xx_reg_write(wm, AC97_EXTENDED_MID, val & 0x7fff); wm97xx_reg_write(wm, AC97_WM9713_DIG3, wm->dig[2] | WM97XX_PRP_DET_DIG); wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); /* dummy read */ } else { wm97xx_reg_write(wm, AC97_WM9713_DIG3, wm->dig[2] & ~WM97XX_PRP_DET_DIG); val = wm97xx_reg_read(wm, AC97_EXTENDED_MID); wm97xx_reg_write(wm, AC97_EXTENDED_MID, val | 0x8000); } } static void wm9713_dig_restore(struct wm97xx *wm) { wm97xx_reg_write(wm, AC97_WM9713_DIG1, wm->dig_save[0]); wm97xx_reg_write(wm, AC97_WM9713_DIG2, wm->dig_save[1]); wm97xx_reg_write(wm, AC97_WM9713_DIG3, wm->dig_save[2]); } static void wm9713_aux_prepare(struct wm97xx *wm) { memcpy(wm->dig_save, wm->dig, sizeof(wm->dig)); wm97xx_reg_write(wm, AC97_WM9713_DIG1, 0); wm97xx_reg_write(wm, AC97_WM9713_DIG2, 0); wm97xx_reg_write(wm, AC97_WM9713_DIG3, WM97XX_PRP_DET_DIG); } static inline int is_pden(struct wm97xx *wm) { return wm->dig[2] & WM9713_PDEN; } /* * Read a sample from the WM9713 adc in polling mode. */ static int wm9713_poll_sample(struct wm97xx *wm, int adcsel, int *sample) { u16 dig1; int timeout = 5 * delay; bool wants_pen = adcsel & WM97XX_PEN_DOWN; if (wants_pen && !wm->pen_probably_down) { u16 data = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); if (!(data & WM97XX_PEN_DOWN)) return RC_PENUP; wm->pen_probably_down = 1; } /* set up digitiser */ dig1 = wm97xx_reg_read(wm, AC97_WM9713_DIG1); dig1 &= ~WM9713_ADCSEL_MASK; /* WM97XX_ADCSEL_* channels need to be converted to WM9713 format */ dig1 |= 1 << ((adcsel & WM97XX_ADCSEL_MASK) >> 12); if (wm->mach_ops && wm->mach_ops->pre_sample) wm->mach_ops->pre_sample(adcsel); wm97xx_reg_write(wm, AC97_WM9713_DIG1, dig1 | WM9713_POLL); /* wait 3 AC97 time slots + delay for conversion */ poll_delay(delay); /* wait for POLL to go low */ while ((wm97xx_reg_read(wm, AC97_WM9713_DIG1) & WM9713_POLL) && timeout) { udelay(AC97_LINK_FRAME); timeout--; } if (timeout <= 0) { /* If PDEN is set, we can get a timeout when pen goes up */ if (is_pden(wm)) wm->pen_probably_down = 0; else dev_dbg(wm->dev, "adc sample timeout"); return RC_PENUP; } *sample = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); if (wm->mach_ops && wm->mach_ops->post_sample) wm->mach_ops->post_sample(adcsel); /* check we have correct sample */ if ((*sample ^ adcsel) & WM97XX_ADCSEL_MASK) { dev_dbg(wm->dev, "adc wrong sample, wanted %x got %x", adcsel & WM97XX_ADCSEL_MASK, *sample & WM97XX_ADCSEL_MASK); return RC_PENUP; } if (wants_pen && !(*sample & WM97XX_PEN_DOWN)) { wm->pen_probably_down = 0; return RC_PENUP; } return RC_VALID; } /* * Read a coordinate from the WM9713 adc in polling mode. */ static int wm9713_poll_coord(struct wm97xx *wm, struct wm97xx_data *data) { u16 dig1; int timeout = 5 * delay; if (!wm->pen_probably_down) { u16 val = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); if (!(val & WM97XX_PEN_DOWN)) return RC_PENUP; wm->pen_probably_down = 1; } /* set up digitiser */ dig1 = wm97xx_reg_read(wm, AC97_WM9713_DIG1); dig1 &= ~WM9713_ADCSEL_MASK; if (pil) dig1 |= WM9713_ADCSEL_PRES; if (wm->mach_ops && wm->mach_ops->pre_sample) wm->mach_ops->pre_sample(WM97XX_ADCSEL_X | WM97XX_ADCSEL_Y); wm97xx_reg_write(wm, AC97_WM9713_DIG1, dig1 | WM9713_POLL | WM9713_COO); /* wait 3 AC97 time slots + delay for conversion */ poll_delay(delay); data->x = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); /* wait for POLL to go low */ while ((wm97xx_reg_read(wm, AC97_WM9713_DIG1) & WM9713_POLL) && timeout) { udelay(AC97_LINK_FRAME); timeout--; } if (timeout <= 0) { /* If PDEN is set, we can get a timeout when pen goes up */ if (is_pden(wm)) wm->pen_probably_down = 0; else dev_dbg(wm->dev, "adc sample timeout"); return RC_PENUP; } /* read back data */ data->y = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); if (pil) data->p = wm97xx_reg_read(wm, AC97_WM97XX_DIGITISER_RD); else data->p = DEFAULT_PRESSURE; if (wm->mach_ops && wm->mach_ops->post_sample) wm->mach_ops->post_sample(WM97XX_ADCSEL_X | WM97XX_ADCSEL_Y); /* check we have correct sample */ if (!(data->x & WM97XX_ADCSEL_X) || !(data->y & WM97XX_ADCSEL_Y)) goto err; if (pil && !(data->p & WM97XX_ADCSEL_PRES)) goto err; if (!(data->x & WM97XX_PEN_DOWN) || !(data->y & WM97XX_PEN_DOWN)) { wm->pen_probably_down = 0; return RC_PENUP; } return RC_VALID; err: return 0; } /* * Sample the WM9713 touchscreen in polling mode */ static int wm9713_poll_touch(struct wm97xx *wm, struct wm97xx_data *data) { int rc; if (coord) { rc = wm9713_poll_coord(wm, data); if (rc != RC_VALID) return rc; } else { rc = wm9713_poll_sample(wm, WM97XX_ADCSEL_X | WM97XX_PEN_DOWN, &data->x); if (rc != RC_VALID) return rc; rc = wm9713_poll_sample(wm, WM97XX_ADCSEL_Y | WM97XX_PEN_DOWN, &data->y); if (rc != RC_VALID) return rc; if (pil) { rc = wm9713_poll_sample(wm, WM97XX_ADCSEL_PRES | WM97XX_PEN_DOWN, &data->p); if (rc != RC_VALID) return rc; } else data->p = DEFAULT_PRESSURE; } return RC_VALID; } /* * Enable WM9713 continuous mode, i.e. touch data is streamed across * an AC97 slot */ static int wm9713_acc_enable(struct wm97xx *wm, int enable) { u16 dig1, dig2, dig3; int ret = 0; dig1 = wm->dig[0]; dig2 = wm->dig[1]; dig3 = wm->dig[2]; if (enable) { /* continuous mode */ if (wm->mach_ops->acc_startup && (ret = wm->mach_ops->acc_startup(wm)) < 0) return ret; dig1 &= ~WM9713_ADCSEL_MASK; dig1 |= WM9713_CTC | WM9713_COO | WM9713_ADCSEL_X | WM9713_ADCSEL_Y; if (pil) dig1 |= WM9713_ADCSEL_PRES; dig2 &= ~(WM97XX_DELAY_MASK | WM97XX_SLT_MASK | WM97XX_CM_RATE_MASK); dig2 |= WM97XX_SLEN | WM97XX_DELAY(delay) | WM97XX_SLT(wm->acc_slot) | WM97XX_RATE(wm->acc_rate); dig3 |= WM9713_PDEN; } else { dig1 &= ~(WM9713_CTC | WM9713_COO); dig2 &= ~WM97XX_SLEN; dig3 &= ~WM9713_PDEN; if (wm->mach_ops->acc_shutdown) wm->mach_ops->acc_shutdown(wm); } wm97xx_reg_write(wm, AC97_WM9713_DIG1, dig1); wm97xx_reg_write(wm, AC97_WM9713_DIG2, dig2); wm97xx_reg_write(wm, AC97_WM9713_DIG3, dig3); return ret; } struct wm97xx_codec_drv wm9713_codec = { .id = WM9713_ID2, .name = "wm9713", .poll_sample = wm9713_poll_sample, .poll_touch = wm9713_poll_touch, .acc_enable = wm9713_acc_enable, .phy_init = wm9713_phy_init, .dig_enable = wm9713_dig_enable, .dig_restore = wm9713_dig_restore, .aux_prepare = wm9713_aux_prepare, }; EXPORT_SYMBOL_GPL(wm9713_codec); /* Module information */ MODULE_AUTHOR("Liam Girdwood <[email protected]>"); MODULE_DESCRIPTION("WM9713 Touch Screen Driver"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2003 Sistina Software. * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. * * Module Author: Heinz Mauelshagen * * This file is released under the GPL. * * Round-robin path selector. */ #include <linux/device-mapper.h> #include "dm-path-selector.h" #include <linux/slab.h> #include <linux/module.h> #define DM_MSG_PREFIX "multipath round-robin" #define RR_MIN_IO 1 #define RR_VERSION "1.2.0" /* *--------------------------------------------------------------- * Path-handling code, paths are held in lists *--------------------------------------------------------------- */ struct path_info { struct list_head list; struct dm_path *path; unsigned int repeat_count; }; static void free_paths(struct list_head *paths) { struct path_info *pi, *next; list_for_each_entry_safe(pi, next, paths, list) { list_del(&pi->list); kfree(pi); } } /* *--------------------------------------------------------------- * Round-robin selector *--------------------------------------------------------------- */ struct selector { struct list_head valid_paths; struct list_head invalid_paths; spinlock_t lock; }; static struct selector *alloc_selector(void) { struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL); if (s) { INIT_LIST_HEAD(&s->valid_paths); INIT_LIST_HEAD(&s->invalid_paths); spin_lock_init(&s->lock); } return s; } static int rr_create(struct path_selector *ps, unsigned int argc, char **argv) { struct selector *s; s = alloc_selector(); if (!s) return -ENOMEM; ps->context = s; return 0; } static void rr_destroy(struct path_selector *ps) { struct selector *s = ps->context; free_paths(&s->valid_paths); free_paths(&s->invalid_paths); kfree(s); ps->context = NULL; } static int rr_status(struct path_selector *ps, struct dm_path *path, status_type_t type, char *result, unsigned int maxlen) { struct path_info *pi; int sz = 0; if (!path) DMEMIT("0 "); else { switch (type) { case STATUSTYPE_INFO: break; case STATUSTYPE_TABLE: pi = path->pscontext; DMEMIT("%u ", pi->repeat_count); break; case STATUSTYPE_IMA: *result = '\0'; break; } } return sz; } /* * Called during initialisation to register each path with an * optional repeat_count. */ static int rr_add_path(struct path_selector *ps, struct dm_path *path, int argc, char **argv, char **error) { struct selector *s = ps->context; struct path_info *pi; unsigned int repeat_count = RR_MIN_IO; char dummy; unsigned long flags; if (argc > 1) { *error = "round-robin ps: incorrect number of arguments"; return -EINVAL; } /* First path argument is number of I/Os before switching path */ if ((argc == 1) && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) { *error = "round-robin ps: invalid repeat count"; return -EINVAL; } if (repeat_count > 1) { DMWARN_LIMIT("repeat_count > 1 is deprecated, using 1 instead"); repeat_count = 1; } /* allocate the path */ pi = kmalloc(sizeof(*pi), GFP_KERNEL); if (!pi) { *error = "round-robin ps: Error allocating path context"; return -ENOMEM; } pi->path = path; pi->repeat_count = repeat_count; path->pscontext = pi; spin_lock_irqsave(&s->lock, flags); list_add_tail(&pi->list, &s->valid_paths); spin_unlock_irqrestore(&s->lock, flags); return 0; } static void rr_fail_path(struct path_selector *ps, struct dm_path *p) { unsigned long flags; struct selector *s = ps->context; struct path_info *pi = p->pscontext; spin_lock_irqsave(&s->lock, flags); list_move(&pi->list, &s->invalid_paths); spin_unlock_irqrestore(&s->lock, flags); } static int rr_reinstate_path(struct path_selector *ps, struct dm_path *p) { unsigned long flags; struct selector *s = ps->context; struct path_info *pi = p->pscontext; spin_lock_irqsave(&s->lock, flags); list_move(&pi->list, &s->valid_paths); spin_unlock_irqrestore(&s->lock, flags); return 0; } static struct dm_path *rr_select_path(struct path_selector *ps, size_t nr_bytes) { unsigned long flags; struct selector *s = ps->context; struct path_info *pi = NULL; spin_lock_irqsave(&s->lock, flags); if (!list_empty(&s->valid_paths)) { pi = list_entry(s->valid_paths.next, struct path_info, list); list_move_tail(&pi->list, &s->valid_paths); } spin_unlock_irqrestore(&s->lock, flags); return pi ? pi->path : NULL; } static struct path_selector_type rr_ps = { .name = "round-robin", .module = THIS_MODULE, .table_args = 1, .info_args = 0, .create = rr_create, .destroy = rr_destroy, .status = rr_status, .add_path = rr_add_path, .fail_path = rr_fail_path, .reinstate_path = rr_reinstate_path, .select_path = rr_select_path, }; static int __init dm_rr_init(void) { int r = dm_register_path_selector(&rr_ps); if (r < 0) DMERR("register failed %d", r); DMINFO("version " RR_VERSION " loaded"); return r; } static void __exit dm_rr_exit(void) { int r = dm_unregister_path_selector(&rr_ps); if (r < 0) DMERR("unregister failed %d", r); } module_init(dm_rr_init); module_exit(dm_rr_exit); MODULE_DESCRIPTION(DM_NAME " round-robin multipath path selector"); MODULE_AUTHOR("Sistina Software <[email protected]>"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: BSD-3-Clause /* * Copyright (c) 2021, AngeloGioacchino Del Regno * <[email protected]> * Copyright (c) 2021, Konrad Dybcio <[email protected]> */ #include <dt-bindings/input/input.h> #include <dt-bindings/leds/common.h> #include <dt-bindings/pinctrl/qcom,pmic-gpio.h> #include "msm8998.dtsi" #include "pm8005.dtsi" #include "pm8998.dtsi" #include "pmi8998.dtsi" / { /* required for bootloader to select correct board */ qcom,msm-id = <0x124 0x20000>, <0x124 0x20001>; /* 8998v2, v2.1 */ qcom,board-id = <8 0>; clocks { div1_mclk: divclk1 { compatible = "gpio-gate-clock"; pinctrl-0 = <&div_clk1>; pinctrl-names = "default"; clocks = <&rpmcc RPM_SMD_DIV_CLK1>; #clock-cells = <0>; enable-gpios = <&pm8998_gpios 13 GPIO_ACTIVE_HIGH>; }; }; board_vbat: vbat-regulator { compatible = "regulator-fixed"; regulator-name = "VBAT"; regulator-min-microvolt = <4000000>; regulator-max-microvolt = <4000000>; regulator-always-on; regulator-boot-on; }; cam0_vdig_vreg: cam0-vdig { compatible = "regulator-fixed"; regulator-name = "cam0_vdig"; startup-delay-us = <0>; enable-active-high; gpio = <&tlmm 21 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&main_cam_pwr_en>; }; cam1_vdig_vreg: cam1-vdig { compatible = "regulator-fixed"; regulator-name = "cam1_vdig"; startup-delay-us = <0>; enable-active-high; gpio = <&tlmm 25 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&chat_cam_pwr_en>; vin-supply = <&vreg_s3a_1p35>; }; cam_vio_vreg: cam-vio-vreg { compatible = "regulator-fixed"; regulator-name = "cam_vio_vreg"; startup-delay-us = <0>; enable-active-high; gpio = <&pmi8998_gpios 1 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&main_cam_pwr_io_en>; vin-supply = <&vreg_lvs1a_1p8>; }; touch_vddio_vreg: touch-vddio-vreg { compatible = "regulator-fixed"; regulator-name = "touch_vddio_vreg"; startup-delay-us = <10000>; gpio = <&tlmm 133 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&ts_vddio_en>; }; vph_pwr: vph-pwr-regulator { compatible = "regulator-fixed"; regulator-name = "vph_pwr"; regulator-always-on; regulator-boot-on; }; extcon_usb: extcon-usb { compatible = "linux,extcon-usb-gpio"; id-gpios = <&tlmm 38 GPIO_ACTIVE_HIGH>; vbus-gpios = <&tlmm 128 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&cc_dir_default &usb_detect_en>; }; gpio-keys { compatible = "gpio-keys"; label = "Side buttons"; pinctrl-0 = <&focus_n &snapshot_n &vol_down_n &vol_up_n>; pinctrl-names = "default"; button-camera-focus { label = "Camera Focus"; gpios = <&pm8998_gpios 8 GPIO_ACTIVE_LOW>; linux,code = <KEY_CAMERA_FOCUS>; debounce-interval = <15>; }; button-camera-snapshot { label = "Camera Snapshot"; gpios = <&pm8998_gpios 7 GPIO_ACTIVE_LOW>; linux,code = <KEY_CAMERA>; debounce-interval = <15>; }; button-vol-down { label = "Volume Down"; gpios = <&pm8998_gpios 5 GPIO_ACTIVE_LOW>; linux,code = <KEY_VOLUMEDOWN>; wakeup-source; debounce-interval = <15>; }; button-vol-up { label = "Volume Up"; gpios = <&pm8998_gpios 6 GPIO_ACTIVE_LOW>; linux,code = <KEY_VOLUMEUP>; wakeup-source; debounce-interval = <15>; }; }; gpio-hall-sensor { compatible = "gpio-keys"; label = "Hall sensors"; pinctrl-names = "default"; pinctrl-0 = <&acc_cover_open>; event-hall-sensor0 { label = "Cover Hall Sensor"; gpios = <&tlmm 124 GPIO_ACTIVE_LOW>; linux,input-type = <EV_SW>; linux,code = <SW_LID>; wakeup-source; debounce-interval = <30>; }; }; reserved-memory { #address-cells = <2>; #size-cells = <2>; ranges; hyp_mem: memory@85800000 { reg = <0x0 0x85800000 0x0 0x3700000>; no-map; }; cont_splash_mem: memory@9d400000 { reg = <0x0 0x9d400000 0x0 0x2400000>; no-map; }; zap_shader_region: memory@f6400000 { compatible = "shared-dma-pool"; reg = <0x0 0xf6400000 0x0 0x2000>; no-map; }; adsp_region: memory@fe000000 { reg = <0x0 0xfe000000 0x0 0x800000>; no-map; }; qseecom_region: memory@fe800000 { reg = <0x0 0xfe800000 0x0 0x1400000>; no-map; }; ramoops@ffc00000 { compatible = "ramoops"; reg = <0x0 0xffc00000 0x0 0x100000>; record-size = <0x10000>; console-size = <0x60000>; ftrace-size = <0x10000>; pmsg-size = <0x20000>; ecc-size = <16>; }; }; vibrator { compatible = "gpio-vibrator"; enable-gpios = <&pmi8998_gpios 5 GPIO_ACTIVE_HIGH>; pinctrl-names = "default"; pinctrl-0 = <&vib_ldo_en>; }; }; &blsp1_i2c5 { status = "okay"; clock-frequency = <355000>; touchscreen@2c { compatible = "syna,rmi4-i2c"; reg = <0x2c>; #address-cells = <1>; #size-cells = <0>; interrupts-extended = <&tlmm 125 IRQ_TYPE_EDGE_FALLING>; pinctrl-names = "default"; pinctrl-0 = <&ts_int_n>; vdd-supply = <&vreg_l28_3p0>; vio-supply = <&touch_vddio_vreg>; syna,reset-delay-ms = <220>; syna,startup-delay-ms = <1000>; rmi4-f01@1 { reg = <0x01>; syna,nosleep-mode = <1>; }; rmi4-f11@11 { reg = <0x11>; syna,sensor-type = <1>; }; }; }; &blsp1_i2c5_sleep { bias-disable; }; &blsp1_uart3 { status = "okay"; bluetooth { compatible = "qcom,wcn3990-bt"; vddio-supply = <&vreg_s4a_1p8>; vddxo-supply = <&vreg_l7a_1p8>; vddrf-supply = <&vreg_l17a_1p3>; vddch0-supply = <&vreg_l25a_3p3>; max-speed = <3200000>; clocks = <&rpmcc RPM_SMD_RF_CLK2_PIN>; }; }; &blsp2_uart1 { status = "okay"; }; &blsp2_i2c2 { status = "okay"; proximity@29 { compatible = "st,vl53l0x"; reg = <0x29>; interrupt-parent = <&tlmm>; interrupts = <22 IRQ_TYPE_EDGE_FALLING>; reset-gpios = <&tlmm 27 GPIO_ACTIVE_LOW>; vdd-supply = <&cam_vio_vreg>; pinctrl-names = "default"; pinctrl-0 = <&tof_int_n &tof_reset>; }; }; &ibb { regulator-min-microamp = <800000>; regulator-max-microamp = <800000>; regulator-enable-ramp-delay = <200>; regulator-over-current-protection; regulator-pull-down; regulator-ramp-delay = <1>; regulator-settling-time-up-us = <600>; regulator-settling-time-down-us = <1000>; regulator-soft-start; qcom,discharge-resistor-kohms = <300>; }; &lab { regulator-min-microamp = <200000>; regulator-max-microamp = <200000>; regulator-enable-ramp-delay = <500>; regulator-over-current-protection; regulator-pull-down; regulator-ramp-delay = <1>; regulator-settling-time-up-us = <50000>; regulator-settling-time-down-us = <3000>; regulator-soft-start; }; &pm8005_gpios { gpio-line-names = "NC", /* GPIO_1 */ "NC", "SLB", "OPTION_1_PM8005"; }; &pm8005_regulators { /* VDD_GFX supply */ pm8005_s1: s1 { regulator-min-microvolt = <524000>; regulator-max-microvolt = <1088000>; regulator-enable-ramp-delay = <500>; /* Hack until we rig up the gpu consumer */ regulator-always-on; }; }; &pm8998_gpios { gpio-line-names = "UIM_BATT_ALARM", /* GPIO_1 */ "NC", "WLAN_SW_CTRL (DISALLOWED)", "SSC_PWR_EN", "VOL_DOWN_N", "VOL_UP_N", "SNAPSHOT_N", "FOCUS_N", "FLASH_THERM", "", /* GPIO_10 */ "", "", "DIV_CLK1", "NC", "NC (DISALLOWED)", "DIV_CLK3", "NC", "NC", "NC", "NC (DISALLOWED)", /* GPIO_20 */ "NFC_CLK_REQ", "NC (DISALLOWED)", "WCSS_PWR_REQ", "OPTION_1 (DISALLOWED)", "OPTION_2 (DISALLOWED)", "PM_SLB (DISALLOWED)"; vol_down_n: vol-down-n-state { pins = "gpio5"; function = PMIC_GPIO_FUNC_NORMAL; bias-pull-up; input-enable; qcom,drive-strength = <PMIC_GPIO_STRENGTH_NO>; }; vol_up_n: vol-up-n-state { pins = "gpio6"; function = PMIC_GPIO_FUNC_NORMAL; bias-pull-up; input-enable; qcom,drive-strength = <PMIC_GPIO_STRENGTH_NO>; }; focus_n: focus-n-state { pins = "gpio7"; function = PMIC_GPIO_FUNC_NORMAL; bias-pull-up; input-enable; qcom,drive-strength = <PMIC_GPIO_STRENGTH_NO>; }; snapshot_n: snapshot-n-state { pins = "gpio8"; function = PMIC_GPIO_FUNC_NORMAL; bias-pull-up; input-enable; qcom,drive-strength = <PMIC_GPIO_STRENGTH_NO>; }; div_clk1: div-clk1-state { pins = "gpio13"; function = "func2"; power-source = <0>; }; }; &pmi8998_gpios { gpio-line-names = "MAIN_CAM_PWR_IO_EN", /* GPIO_1 */ "NC", "NC", "TYPEC_UUSB_SEL", "VIB_LDO_EN", "NC", "DISPLAY_TYPE_SEL", "NC", "NC", "NC", /* GPIO_10 */ "NC", "DIV_CLK3", "SPMI_I2C_SEL", "NC"; main_cam_pwr_io_en: main-cam-pwr-io-en-state { pins = "gpio1"; function = PMIC_GPIO_FUNC_NORMAL; bias-disable; drive-push-pull; output-low; qcom,drive-strength = <PMIC_GPIO_STRENGTH_HIGH>; power-source = <1>; }; vib_ldo_en: vib-ldo-en-state { pins = "gpio5"; function = PMIC_GPIO_FUNC_NORMAL; bias-disable; drive-push-pull; output-low; qcom,drive-strength = <PMIC_GPIO_STRENGTH_NO>; power-source = <0>; }; }; &pmi8998_lpg { qcom,power-source = <1>; status = "okay"; multi-led { color = <LED_COLOR_ID_RGB>; function = LED_FUNCTION_STATUS; #address-cells = <1>; #size-cells = <0>; led@3 { reg = <3>; color = <LED_COLOR_ID_BLUE>; }; led@4 { reg = <4>; color = <LED_COLOR_ID_GREEN>; }; led@5 { reg = <5>; color = <LED_COLOR_ID_RED>; }; }; }; &qusb2phy { status = "okay"; vdda-pll-supply = <&vreg_l12a_1p8>; vdda-phy-dpdm-supply = <&vreg_l24a_3p075>; }; &rpm_requests { regulators-0 { compatible = "qcom,rpm-pm8998-regulators"; vdd_s1-supply = <&vph_pwr>; vdd_s2-supply = <&vph_pwr>; vdd_s3-supply = <&vph_pwr>; vdd_s4-supply = <&vph_pwr>; vdd_s5-supply = <&vph_pwr>; vdd_s6-supply = <&vph_pwr>; vdd_s7-supply = <&vph_pwr>; vdd_s8-supply = <&vph_pwr>; vdd_s9-supply = <&vph_pwr>; vdd_s10-supply = <&vph_pwr>; vdd_s11-supply = <&vph_pwr>; vdd_s12-supply = <&vph_pwr>; vdd_s13-supply = <&vph_pwr>; vdd_l1_l27-supply = <&vreg_s7a_1p025>; vdd_l2_l8_l17-supply = <&vreg_s3a_1p35>; vdd_l3_l11-supply = <&vreg_s7a_1p025>; vdd_l4_l5-supply = <&vreg_s7a_1p025>; vdd_l6-supply = <&vreg_s5a_2p04>; vdd_l7_l12_l14_l15-supply = <&vreg_s5a_2p04>; vdd_l9-supply = <&vreg_bob>; vdd_l10_l23_l25-supply = <&vreg_bob>; vdd_l13_l19_l21-supply = <&vreg_bob>; vdd_l16_l28-supply = <&vreg_bob>; vdd_l18_l22-supply = <&vreg_bob>; vdd_l20_l24-supply = <&vreg_bob>; vdd_l26-supply = <&vreg_s3a_1p35>; vdd_lvs1_lvs2-supply = <&vreg_s4a_1p8>; vreg_s3a_1p35: s3 { regulator-min-microvolt = <1352000>; regulator-max-microvolt = <1352000>; }; vreg_s4a_1p8: s4 { regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; regulator-system-load = <100000>; regulator-allow-set-load; }; vreg_s5a_2p04: s5 { regulator-min-microvolt = <1904000>; regulator-max-microvolt = <2032000>; }; vreg_s7a_1p025: s7 { regulator-min-microvolt = <900000>; regulator-max-microvolt = <1028000>; }; vreg_l1a_0p875: l1 { regulator-min-microvolt = <880000>; regulator-max-microvolt = <880000>; regulator-system-load = <73400>; regulator-allow-set-load; }; vreg_l2a_1p2: l2 { regulator-min-microvolt = <1200000>; regulator-max-microvolt = <1200000>; regulator-system-load = <12560>; regulator-allow-set-load; }; vreg_l3a_1p0: l3 { regulator-min-microvolt = <1000000>; regulator-max-microvolt = <1000000>; }; vreg_l5a_0p8: l5 { regulator-min-microvolt = <800000>; regulator-max-microvolt = <800000>; }; vreg_l6a_1p8: l6 { regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; }; vreg_l7a_1p8: l7 { regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; }; vreg_l8a_1p2: l8 { regulator-min-microvolt = <1200000>; regulator-max-microvolt = <1200000>; }; vreg_l9a_1p8: l9 { regulator-min-microvolt = <1808000>; regulator-max-microvolt = <2960000>; }; vreg_l10a_1p8: l10 { regulator-min-microvolt = <1808000>; regulator-max-microvolt = <2960000>; }; vreg_l11a_1p0: l11 { regulator-min-microvolt = <1000000>; regulator-max-microvolt = <1000000>; }; vreg_l12a_1p8: l12 { regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; }; vreg_l13a_2p95: l13 { regulator-min-microvolt = <1808000>; regulator-max-microvolt = <2960000>; regulator-allow-set-load; }; vreg_l14a_1p85: l14 { regulator-min-microvolt = <1848000>; regulator-max-microvolt = <1856000>; regulator-system-load = <32000>; regulator-allow-set-load; }; vreg_l15a_1p8: l15 { regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; }; vreg_l16a_2p7: l16 { regulator-min-microvolt = <2704000>; regulator-max-microvolt = <2704000>; }; vreg_l17a_1p3: l17 { regulator-min-microvolt = <1304000>; regulator-max-microvolt = <1304000>; }; vreg_l18a_2p85: l18 { }; vreg_l19a_2p7: l19 { regulator-min-microvolt = <2696000>; regulator-max-microvolt = <2704000>; }; vreg_l20a_2p95: l20 { regulator-min-microvolt = <2960000>; regulator-max-microvolt = <2960000>; regulator-system-load = <10000>; regulator-allow-set-load; }; vreg_l21a_2p95: l21 { regulator-min-microvolt = <2960000>; regulator-max-microvolt = <2960000>; regulator-system-load = <800000>; regulator-allow-set-load; }; vreg_l22a_2p85: l22 { }; vreg_l23a_3p3: l23 { regulator-min-microvolt = <3312000>; regulator-max-microvolt = <3312000>; }; vreg_l24a_3p075: l24 { regulator-min-microvolt = <3088000>; regulator-max-microvolt = <3088000>; }; vreg_l25a_3p3: l25 { regulator-min-microvolt = <3104000>; regulator-max-microvolt = <3312000>; }; vreg_l26a_1p2: l26 { regulator-min-microvolt = <1200000>; regulator-max-microvolt = <1200000>; regulator-allow-set-load; }; vreg_l28_3p0: l28 { regulator-min-microvolt = <3000000>; regulator-max-microvolt = <3000000>; }; vreg_lvs1a_1p8: lvs1 { }; vreg_lvs2a_1p8: lvs2 { }; }; regulators-1 { compatible = "qcom,rpm-pmi8998-regulators"; vdd_bob-supply = <&vph_pwr>; vreg_bob: bob { regulator-min-microvolt = <3312000>; regulator-max-microvolt = <3600000>; }; }; }; &sdhc2 { status = "okay"; cd-gpios = <&tlmm 95 GPIO_ACTIVE_HIGH>; vmmc-supply = <&vreg_l21a_2p95>; vqmmc-supply = <&vreg_l13a_2p95>; pinctrl-names = "default", "sleep"; pinctrl-0 = <&sdc2_on &sdc2_cd>; pinctrl-1 = <&sdc2_off &sdc2_cd>; }; &tlmm { gpio-reserved-ranges = <0 4>, <81 4>; gpio-line-names = "", /* GPIO_0 */ "", "", "", "DEBUG_UART_TX", "DEBUG_UART_RX", "CAMSENSOR_I2C_SDA", "CAMSENSOR_I2C_SCL", "NC", "NC", "MDP_VSYNC_P", /* GPIO_10 */ "RGBC_IR_INT", "NFC_VEN", "CAM_MCLK0", "CAM_MCLK1", "NC", "NC", "CCI_I2C_SDA0", "CCI_I2C_SCL0", "CCI_I2C_SDA1", "CCI_I2C_SCL1", /* GPIO_20 */ "MAIN_CAM_PWR_EN", "TOF_INT_N", "NC", "NC", "CHAT_CAM_PWR_EN", "NC", "TOF_RESET_N", "CAM2_RSTN", "NC", "CAM1_RSTN", /* GPIO_30 */ "NC", "NC", "NC", "NC", "NC", "NC", "NC", "CC_DIR", "UIM2_DETECT_EN", "FP_RESET_N", /* GPIO_40 */ "NC", "NC", "NC", "NC", "BT_HCI_UART_TXD", "BT_HCI_UART_RXD", "BT_HCI_UART_CTS_N", "BT_HCI_UART_RFR_N", "NC", "NC", /* GPIO_50 */ "NC", "NC", "CODEC_INT2_N", "CODEC_INT1_N", "APPS_I2C_SDA", "APPS_I2C_SCL", "FORCED_USB_BOOT", "NC", "NC", "NC", /* GPIO_60 */ "NC", "NC", "TRAY2_DET_DS", "CODEC_RST_N", "WSA_L_EN", "WSA_R_EN", "NC", "NC", "NC", "LPASS_SLIMBUS_CLK", /* GPIO_70 */ "LPASS_SLIMBUS_DATA0", "LPASS_SLIMBUS_DATA1", "BT_FM_SLIMBUS_DATA", "BT_FM_SLIMBUS_CLK", "NC", "RF_LCD_ID_EN", "NC", "NC", "NC", "NC", /* GPIO_80 */ "SW_SERVICE", "TX_GTR_THRES_IN", "HW_ID0", "HW_ID1", "NC", "NC", "TS_I2C_SDA", "TS_I2C_SCL", "TS_RESET_N", "NC", /* GPIO_90 */ "NC", "NFC_IRQ", "NFC_DWLD_EN", "DISP_RESET_N", "TRAY2_DET", "CAM_SOF", "RFFE6_CLK", "RFFE6_DATA", "DEBUG_GPIO0", "DEBUG_GPIO1", /* GPIO_100 */ "GRFC4", "NC", "NC", "RSVD", "UIM2_DATA", "UIM2_CLK", "UIM2_RESET", "UIM2_PRESENT", "UIM1_DATA", "UIM1_CLK", /* GPIO_110 */ "UIM1_RST", "UIM1_PRESENT", "UIM_BATT_ALARM", "RSVD", "NC", "NC", "ACCEL_INT", "GYRO_INT", "COMPASS_INT", "ALS_PROX_INT_N", /* GPIO_120 */ "FP_INT_N", "NC", "BAROMETER_INT", "ACC_COVER_OPEN", "TS_INT_N", "NC", "NC", "USB_DETECT_EN", "NC", "QLINK_REQUEST", /* GPIO_130 */ "QLINK_ENABLE", "NC", "NC", "WMSS_RESET_N", "PA_INDICATOR_OR", "NC", "RFFE3_DATA", "RFFE3_CLK", "RFFE4_DATA", "RFFE4_CLK", /* GPIO_140 */ "RFFE5_DATA", "RFFE5_CLK", "GNSS_EN", "MSS_LTE_COXM_TXD", "MSS_LTE_COXM_RXD", "RFFE2_DATA", "RFFE2_CLK", "RFFE1_DATA", "RFFE1_CLK"; mdp_vsync_p: mdp-vsync-p-state { pins = "gpio10"; function = "mdp_vsync_a"; drive-strength = <2>; bias-pull-down; }; nfc_ven: nfc-ven-state { pins = "gpio12"; function = "gpio"; bias-disable; drive-strength = <2>; output-low; }; cam_mclk0_active: cam-mclk0-active-state { pins = "gpio13"; function = "cam_mclk"; drive-strength = <2>; bias-disable; }; cam_mclk1_active: cam-mclk1-active-state { pins = "gpio14"; function = "cam_mclk"; drive-strength = <2>; bias-disable; }; cci0_default: cci0-default-state { pins = "gpio18", "gpio19"; function = "cci_i2c"; bias-disable; drive-strength = <2>; }; cci1_default: cci1-default-state { pins = "gpio19", "gpio20"; function = "cci_i2c"; bias-disable; drive-strength = <2>; }; main_cam_pwr_en: main-cam-pwr-en-default-state { pins = "gpio21"; function = "gpio"; bias-disable; drive-strength = <2>; }; tof_int_n: tof-int-n-state { pins = "gpio22"; function = "gpio"; bias-pull-up; drive-strength = <2>; }; chat_cam_pwr_en: chat-cam-pwr-en-default-state { pins = "gpio25"; function = "gpio"; bias-disable; drive-strength = <2>; }; tof_reset: tof-reset-state { pins = "gpio27"; function = "gpio"; bias-disable; drive-strength = <2>; }; cc_dir_default: cc-dir-active-state { pins = "gpio38"; function = "gpio"; bias-disable; drive-strength = <16>; }; acc_cover_open: acc-cover-open-state { pins = "gpio124"; function = "gpio"; bias-disable; drive-strength = <2>; }; ts_int_n: ts-int-n-state { pins = "gpio125"; function = "gpio"; drive-strength = <8>; bias-pull-up; }; usb_detect_en: usb-detect-en-active-state { pins = "gpio128"; function = "gpio"; bias-disable; drive-strength = <2>; output-low; }; ts_vddio_en: ts-vddio-en-default-state { pins = "gpio133"; function = "gpio"; bias-disable; drive-strength = <2>; output-low; }; }; /* * WARNING: * Disable UFS until card quirks are in to avoid unrecoverable hard-brick * that would happen as soon as the UFS card gets probed as, without the * required quirks, the bootloader will be erased right after card probe. */ &ufshc { status = "disabled"; }; &ufsphy { status = "disabled"; }; &usb3 { status = "okay"; }; &usb3_dwc3 { /* Force to peripheral until we have Type-C hooked up */ dr_mode = "peripheral"; extcon = <&extcon_usb>; }; &usb3phy { status = "okay"; vdda-phy-supply = <&vreg_l1a_0p875>; vdda-pll-supply = <&vreg_l2a_1p2>; };
// SPDX-License-Identifier: GPL-2.0-only /* * Hisilicon Hi6220 clock driver * * Copyright (c) 2015 Hisilicon Limited. * * Author: Bintian Wang <[email protected]> */ #include <linux/kernel.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/io.h> #include <linux/slab.h> #include <dt-bindings/clock/hi6220-clock.h> #include "clk.h" /* clocks in AO (always on) controller */ static struct hisi_fixed_rate_clock hi6220_fixed_rate_clks[] __initdata = { { HI6220_REF32K, "ref32k", NULL, 0, 32764, }, { HI6220_CLK_TCXO, "clk_tcxo", NULL, 0, 19200000, }, { HI6220_MMC1_PAD, "mmc1_pad", NULL, 0, 100000000, }, { HI6220_MMC2_PAD, "mmc2_pad", NULL, 0, 100000000, }, { HI6220_MMC0_PAD, "mmc0_pad", NULL, 0, 200000000, }, { HI6220_PLL_BBP, "bbppll0", NULL, 0, 245760000, }, { HI6220_PLL_GPU, "gpupll", NULL, 0, 1000000000,}, { HI6220_PLL1_DDR, "ddrpll1", NULL, 0, 1066000000,}, { HI6220_PLL_SYS, "syspll", NULL, 0, 1190400000,}, { HI6220_PLL_SYS_MEDIA, "media_syspll", NULL, 0, 1190400000,}, { HI6220_DDR_SRC, "ddr_sel_src", NULL, 0, 1200000000,}, { HI6220_PLL_MEDIA, "media_pll", NULL, 0, 1440000000,}, { HI6220_PLL_DDR, "ddrpll0", NULL, 0, 1600000000,}, }; static struct hisi_fixed_factor_clock hi6220_fixed_factor_clks[] __initdata = { { HI6220_300M, "clk_300m", "syspll", 1, 4, 0, }, { HI6220_150M, "clk_150m", "clk_300m", 1, 2, 0, }, { HI6220_PICOPHY_SRC, "picophy_src", "clk_150m", 1, 4, 0, }, { HI6220_MMC0_SRC_SEL, "mmc0srcsel", "mmc0_sel", 1, 8, 0, }, { HI6220_MMC1_SRC_SEL, "mmc1srcsel", "mmc1_sel", 1, 8, 0, }, { HI6220_MMC2_SRC_SEL, "mmc2srcsel", "mmc2_sel", 1, 8, 0, }, { HI6220_VPU_CODEC, "vpucodec", "codec_jpeg_aclk", 1, 2, 0, }, { HI6220_MMC0_SMP, "mmc0_sample", "mmc0_sel", 1, 8, 0, }, { HI6220_MMC1_SMP, "mmc1_sample", "mmc1_sel", 1, 8, 0, }, { HI6220_MMC2_SMP, "mmc2_sample", "mmc2_sel", 1, 8, 0, }, }; static struct hisi_gate_clock hi6220_separated_gate_clks_ao[] __initdata = { { HI6220_WDT0_PCLK, "wdt0_pclk", "ref32k", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 12, 0, }, { HI6220_WDT1_PCLK, "wdt1_pclk", "ref32k", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 13, 0, }, { HI6220_WDT2_PCLK, "wdt2_pclk", "ref32k", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 14, 0, }, { HI6220_TIMER0_PCLK, "timer0_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 15, 0, }, { HI6220_TIMER1_PCLK, "timer1_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 16, 0, }, { HI6220_TIMER2_PCLK, "timer2_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 17, 0, }, { HI6220_TIMER3_PCLK, "timer3_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 18, 0, }, { HI6220_TIMER4_PCLK, "timer4_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 19, 0, }, { HI6220_TIMER5_PCLK, "timer5_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 20, 0, }, { HI6220_TIMER6_PCLK, "timer6_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 21, 0, }, { HI6220_TIMER7_PCLK, "timer7_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 22, 0, }, { HI6220_TIMER8_PCLK, "timer8_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 23, 0, }, { HI6220_UART0_PCLK, "uart0_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 24, 0, }, { HI6220_RTC0_PCLK, "rtc0_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 25, 0, }, { HI6220_RTC1_PCLK, "rtc1_pclk", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x630, 26, 0, }, }; static void __init hi6220_clk_ao_init(struct device_node *np) { struct hisi_clock_data *clk_data_ao; clk_data_ao = hisi_clk_init(np, HI6220_AO_NR_CLKS); if (!clk_data_ao) return; hisi_clk_register_fixed_rate(hi6220_fixed_rate_clks, ARRAY_SIZE(hi6220_fixed_rate_clks), clk_data_ao); hisi_clk_register_fixed_factor(hi6220_fixed_factor_clks, ARRAY_SIZE(hi6220_fixed_factor_clks), clk_data_ao); hisi_clk_register_gate_sep(hi6220_separated_gate_clks_ao, ARRAY_SIZE(hi6220_separated_gate_clks_ao), clk_data_ao); } /* Allow reset driver to probe as well */ CLK_OF_DECLARE_DRIVER(hi6220_clk_ao, "hisilicon,hi6220-aoctrl", hi6220_clk_ao_init); /* clocks in sysctrl */ static const char *mmc0_mux0_p[] __initdata = { "pll_ddr_gate", "syspll", }; static const char *mmc0_mux1_p[] __initdata = { "mmc0_mux0", "pll_media_gate", }; static const char *mmc0_src_p[] __initdata = { "mmc0srcsel", "mmc0_div", }; static const char *mmc1_mux0_p[] __initdata = { "pll_ddr_gate", "syspll", }; static const char *mmc1_mux1_p[] __initdata = { "mmc1_mux0", "pll_media_gate", }; static const char *mmc1_src_p[] __initdata = { "mmc1srcsel", "mmc1_div", }; static const char *mmc2_mux0_p[] __initdata = { "pll_ddr_gate", "syspll", }; static const char *mmc2_mux1_p[] __initdata = { "mmc2_mux0", "pll_media_gate", }; static const char *mmc2_src_p[] __initdata = { "mmc2srcsel", "mmc2_div", }; static const char *mmc0_sample_in[] __initdata = { "mmc0_sample", "mmc0_pad", }; static const char *mmc1_sample_in[] __initdata = { "mmc1_sample", "mmc1_pad", }; static const char *mmc2_sample_in[] __initdata = { "mmc2_sample", "mmc2_pad", }; static const char *uart1_src[] __initdata = { "clk_tcxo", "clk_150m", }; static const char *uart2_src[] __initdata = { "clk_tcxo", "clk_150m", }; static const char *uart3_src[] __initdata = { "clk_tcxo", "clk_150m", }; static const char *uart4_src[] __initdata = { "clk_tcxo", "clk_150m", }; static const char *hifi_src[] __initdata = { "syspll", "pll_media_gate", }; static struct hisi_gate_clock hi6220_separated_gate_clks_sys[] __initdata = { { HI6220_MMC0_CLK, "mmc0_clk", "mmc0_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x200, 0, 0, }, { HI6220_MMC0_CIUCLK, "mmc0_ciuclk", "mmc0_smp_in", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x200, 0, 0, }, { HI6220_MMC1_CLK, "mmc1_clk", "mmc1_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x200, 1, 0, }, { HI6220_MMC1_CIUCLK, "mmc1_ciuclk", "mmc1_smp_in", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x200, 1, 0, }, { HI6220_MMC2_CLK, "mmc2_clk", "mmc2_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x200, 2, 0, }, { HI6220_MMC2_CIUCLK, "mmc2_ciuclk", "mmc2_smp_in", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x200, 2, 0, }, { HI6220_USBOTG_HCLK, "usbotg_hclk", "clk_bus", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x200, 4, 0, }, { HI6220_CLK_PICOPHY, "clk_picophy", "cs_dapb", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x200, 5, 0, }, { HI6220_HIFI, "hifi_clk", "hifi_div", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x210, 0, 0, }, { HI6220_DACODEC_PCLK, "dacodec_pclk", "clk_bus", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x210, 5, 0, }, { HI6220_EDMAC_ACLK, "edmac_aclk", "clk_bus", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x220, 2, 0, }, { HI6220_CS_ATB, "cs_atb", "cs_atb_div", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 0, 0, }, { HI6220_I2C0_CLK, "i2c0_clk", "clk_150m", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 1, 0, }, { HI6220_I2C1_CLK, "i2c1_clk", "clk_150m", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 2, 0, }, { HI6220_I2C2_CLK, "i2c2_clk", "clk_150m", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 3, 0, }, { HI6220_I2C3_CLK, "i2c3_clk", "clk_150m", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 4, 0, }, { HI6220_UART1_PCLK, "uart1_pclk", "uart1_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 5, 0, }, { HI6220_UART2_PCLK, "uart2_pclk", "uart2_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 6, 0, }, { HI6220_UART3_PCLK, "uart3_pclk", "uart3_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 7, 0, }, { HI6220_UART4_PCLK, "uart4_pclk", "uart4_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 8, 0, }, { HI6220_SPI_CLK, "spi_clk", "clk_150m", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 9, 0, }, { HI6220_TSENSOR_CLK, "tsensor_clk", "clk_bus", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x230, 12, 0, }, { HI6220_DAPB_CLK, "dapb_clk", "cs_dapb", CLK_SET_RATE_PARENT|CLK_IS_CRITICAL, 0x230, 18, 0, }, { HI6220_MMU_CLK, "mmu_clk", "ddrc_axi1", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x240, 11, 0, }, { HI6220_HIFI_SEL, "hifi_sel", "hifi_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 0, 0, }, { HI6220_MMC0_SYSPLL, "mmc0_syspll", "syspll", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 1, 0, }, { HI6220_MMC1_SYSPLL, "mmc1_syspll", "syspll", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 2, 0, }, { HI6220_MMC2_SYSPLL, "mmc2_syspll", "syspll", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 3, 0, }, { HI6220_MMC0_SEL, "mmc0_sel", "mmc0_mux1", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 6, 0, }, { HI6220_MMC1_SEL, "mmc1_sel", "mmc1_mux1", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 7, 0, }, { HI6220_BBPPLL_SEL, "bbppll_sel", "pll0_bbp_gate", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 9, 0, }, { HI6220_MEDIA_PLL_SRC, "media_pll_src", "pll_media_gate", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 10, 0, }, { HI6220_MMC2_SEL, "mmc2_sel", "mmc2_mux1", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x270, 11, 0, }, { HI6220_CS_ATB_SYSPLL, "cs_atb_syspll", "syspll", CLK_SET_RATE_PARENT|CLK_IS_CRITICAL, 0x270, 12, 0, }, }; static struct hisi_mux_clock hi6220_mux_clks_sys[] __initdata = { { HI6220_MMC0_SRC, "mmc0_src", mmc0_src_p, ARRAY_SIZE(mmc0_src_p), CLK_SET_RATE_PARENT, 0x4, 0, 1, 0, }, { HI6220_MMC0_SMP_IN, "mmc0_smp_in", mmc0_sample_in, ARRAY_SIZE(mmc0_sample_in), CLK_SET_RATE_PARENT, 0x4, 0, 1, 0, }, { HI6220_MMC1_SRC, "mmc1_src", mmc1_src_p, ARRAY_SIZE(mmc1_src_p), CLK_SET_RATE_PARENT, 0x4, 2, 1, 0, }, { HI6220_MMC1_SMP_IN, "mmc1_smp_in", mmc1_sample_in, ARRAY_SIZE(mmc1_sample_in), CLK_SET_RATE_PARENT, 0x4, 2, 1, 0, }, { HI6220_MMC2_SRC, "mmc2_src", mmc2_src_p, ARRAY_SIZE(mmc2_src_p), CLK_SET_RATE_PARENT, 0x4, 4, 1, 0, }, { HI6220_MMC2_SMP_IN, "mmc2_smp_in", mmc2_sample_in, ARRAY_SIZE(mmc2_sample_in), CLK_SET_RATE_PARENT, 0x4, 4, 1, 0, }, { HI6220_HIFI_SRC, "hifi_src", hifi_src, ARRAY_SIZE(hifi_src), CLK_SET_RATE_PARENT, 0x400, 0, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_UART1_SRC, "uart1_src", uart1_src, ARRAY_SIZE(uart1_src), CLK_SET_RATE_PARENT, 0x400, 1, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_UART2_SRC, "uart2_src", uart2_src, ARRAY_SIZE(uart2_src), CLK_SET_RATE_PARENT, 0x400, 2, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_UART3_SRC, "uart3_src", uart3_src, ARRAY_SIZE(uart3_src), CLK_SET_RATE_PARENT, 0x400, 3, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_UART4_SRC, "uart4_src", uart4_src, ARRAY_SIZE(uart4_src), CLK_SET_RATE_PARENT, 0x400, 4, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_MMC0_MUX0, "mmc0_mux0", mmc0_mux0_p, ARRAY_SIZE(mmc0_mux0_p), CLK_SET_RATE_PARENT, 0x400, 5, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_MMC1_MUX0, "mmc1_mux0", mmc1_mux0_p, ARRAY_SIZE(mmc1_mux0_p), CLK_SET_RATE_PARENT, 0x400, 11, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_MMC2_MUX0, "mmc2_mux0", mmc2_mux0_p, ARRAY_SIZE(mmc2_mux0_p), CLK_SET_RATE_PARENT, 0x400, 12, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_MMC0_MUX1, "mmc0_mux1", mmc0_mux1_p, ARRAY_SIZE(mmc0_mux1_p), CLK_SET_RATE_PARENT, 0x400, 13, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_MMC1_MUX1, "mmc1_mux1", mmc1_mux1_p, ARRAY_SIZE(mmc1_mux1_p), CLK_SET_RATE_PARENT, 0x400, 14, 1, CLK_MUX_HIWORD_MASK,}, { HI6220_MMC2_MUX1, "mmc2_mux1", mmc2_mux1_p, ARRAY_SIZE(mmc2_mux1_p), CLK_SET_RATE_PARENT, 0x400, 15, 1, CLK_MUX_HIWORD_MASK,}, }; static struct hi6220_divider_clock hi6220_div_clks_sys[] __initdata = { { HI6220_CLK_BUS, "clk_bus", "clk_300m", CLK_SET_RATE_PARENT, 0x490, 0, 4, 7, }, { HI6220_MMC0_DIV, "mmc0_div", "mmc0_syspll", CLK_SET_RATE_PARENT, 0x494, 0, 6, 7, }, { HI6220_MMC1_DIV, "mmc1_div", "mmc1_syspll", CLK_SET_RATE_PARENT, 0x498, 0, 6, 7, }, { HI6220_MMC2_DIV, "mmc2_div", "mmc2_syspll", CLK_SET_RATE_PARENT, 0x49c, 0, 6, 7, }, { HI6220_HIFI_DIV, "hifi_div", "hifi_sel", CLK_SET_RATE_PARENT, 0x4a0, 0, 4, 7, }, { HI6220_BBPPLL0_DIV, "bbppll0_div", "bbppll_sel", CLK_SET_RATE_PARENT, 0x4a0, 8, 6, 15,}, { HI6220_CS_DAPB, "cs_dapb", "picophy_src", CLK_SET_RATE_PARENT, 0x4a0, 24, 2, 31,}, { HI6220_CS_ATB_DIV, "cs_atb_div", "cs_atb_syspll", CLK_SET_RATE_PARENT, 0x4a4, 0, 4, 7, }, }; static void __init hi6220_clk_sys_init(struct device_node *np) { struct hisi_clock_data *clk_data; clk_data = hisi_clk_init(np, HI6220_SYS_NR_CLKS); if (!clk_data) return; hisi_clk_register_gate_sep(hi6220_separated_gate_clks_sys, ARRAY_SIZE(hi6220_separated_gate_clks_sys), clk_data); hisi_clk_register_mux(hi6220_mux_clks_sys, ARRAY_SIZE(hi6220_mux_clks_sys), clk_data); hi6220_clk_register_divider(hi6220_div_clks_sys, ARRAY_SIZE(hi6220_div_clks_sys), clk_data); } CLK_OF_DECLARE_DRIVER(hi6220_clk_sys, "hisilicon,hi6220-sysctrl", hi6220_clk_sys_init); /* clocks in media controller */ static const char *clk_1000_1200_src[] __initdata = { "pll_gpu_gate", "media_syspll_src", }; static const char *clk_1440_1200_src[] __initdata = { "media_syspll_src", "media_pll_src", }; static const char *clk_1000_1440_src[] __initdata = { "pll_gpu_gate", "media_pll_src", }; static struct hisi_gate_clock hi6220_separated_gate_clks_media[] __initdata = { { HI6220_DSI_PCLK, "dsi_pclk", "vpucodec", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 0, 0, }, { HI6220_G3D_PCLK, "g3d_pclk", "vpucodec", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 1, 0, }, { HI6220_ACLK_CODEC_VPU, "aclk_codec_vpu", "ade_core_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 3, 0, }, { HI6220_ISP_SCLK, "isp_sclk", "isp_sclk_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 5, 0, }, { HI6220_ADE_CORE, "ade_core", "ade_core_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 6, 0, }, { HI6220_MED_MMU, "media_mmu", "mmu_clk", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 8, 0, }, { HI6220_CFG_CSI4PHY, "cfg_csi4phy", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 9, 0, }, { HI6220_CFG_CSI2PHY, "cfg_csi2phy", "clk_tcxo", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 10, 0, }, { HI6220_ISP_SCLK_GATE, "isp_sclk_gate", "media_pll_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 11, 0, }, { HI6220_ISP_SCLK_GATE1, "isp_sclk_gate1", "media_pll_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 12, 0, }, { HI6220_ADE_CORE_GATE, "ade_core_gate", "media_pll_src", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 14, 0, }, { HI6220_CODEC_VPU_GATE, "codec_vpu_gate", "clk_1000_1440", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 15, 0, }, { HI6220_MED_SYSPLL, "media_syspll_src", "media_syspll", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x520, 17, 0, }, }; static struct hisi_mux_clock hi6220_mux_clks_media[] __initdata = { { HI6220_1440_1200, "clk_1440_1200", clk_1440_1200_src, ARRAY_SIZE(clk_1440_1200_src), CLK_SET_RATE_PARENT, 0x51c, 0, 1, 0, }, { HI6220_1000_1200, "clk_1000_1200", clk_1000_1200_src, ARRAY_SIZE(clk_1000_1200_src), CLK_SET_RATE_PARENT, 0x51c, 1, 1, 0, }, { HI6220_1000_1440, "clk_1000_1440", clk_1000_1440_src, ARRAY_SIZE(clk_1000_1440_src), CLK_SET_RATE_PARENT, 0x51c, 6, 1, 0, }, }; static struct hi6220_divider_clock hi6220_div_clks_media[] __initdata = { { HI6220_CODEC_JPEG, "codec_jpeg_aclk", "media_pll_src", CLK_SET_RATE_PARENT, 0xcbc, 0, 4, 23, }, { HI6220_ISP_SCLK_SRC, "isp_sclk_src", "isp_sclk_gate", CLK_SET_RATE_PARENT, 0xcbc, 8, 4, 15, }, { HI6220_ISP_SCLK1, "isp_sclk1", "isp_sclk_gate1", CLK_SET_RATE_PARENT, 0xcbc, 24, 4, 31, }, { HI6220_ADE_CORE_SRC, "ade_core_src", "ade_core_gate", CLK_SET_RATE_PARENT, 0xcc0, 16, 3, 23, }, { HI6220_ADE_PIX_SRC, "ade_pix_src", "clk_1440_1200", CLK_SET_RATE_PARENT, 0xcc0, 24, 6, 31, }, { HI6220_G3D_CLK, "g3d_clk", "clk_1000_1200", CLK_SET_RATE_PARENT, 0xcc4, 8, 4, 15, }, { HI6220_CODEC_VPU_SRC, "codec_vpu_src", "codec_vpu_gate", CLK_SET_RATE_PARENT, 0xcc4, 24, 6, 31, }, }; static void __init hi6220_clk_media_init(struct device_node *np) { struct hisi_clock_data *clk_data; clk_data = hisi_clk_init(np, HI6220_MEDIA_NR_CLKS); if (!clk_data) return; hisi_clk_register_gate_sep(hi6220_separated_gate_clks_media, ARRAY_SIZE(hi6220_separated_gate_clks_media), clk_data); hisi_clk_register_mux(hi6220_mux_clks_media, ARRAY_SIZE(hi6220_mux_clks_media), clk_data); hi6220_clk_register_divider(hi6220_div_clks_media, ARRAY_SIZE(hi6220_div_clks_media), clk_data); } CLK_OF_DECLARE_DRIVER(hi6220_clk_media, "hisilicon,hi6220-mediactrl", hi6220_clk_media_init); /* clocks in pmctrl */ static struct hisi_gate_clock hi6220_gate_clks_power[] __initdata = { { HI6220_PLL_GPU_GATE, "pll_gpu_gate", "gpupll", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x8, 0, 0, }, { HI6220_PLL1_DDR_GATE, "pll1_ddr_gate", "ddrpll1", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x10, 0, 0, }, { HI6220_PLL_DDR_GATE, "pll_ddr_gate", "ddrpll0", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x18, 0, 0, }, { HI6220_PLL_MEDIA_GATE, "pll_media_gate", "media_pll", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x38, 0, 0, }, { HI6220_PLL0_BBP_GATE, "pll0_bbp_gate", "bbppll0", CLK_SET_RATE_PARENT|CLK_IGNORE_UNUSED, 0x48, 0, 0, }, }; static struct hi6220_divider_clock hi6220_div_clks_power[] __initdata = { { HI6220_DDRC_SRC, "ddrc_src", "ddr_sel_src", CLK_SET_RATE_PARENT, 0x5a8, 0, 4, 0, }, { HI6220_DDRC_AXI1, "ddrc_axi1", "ddrc_src", CLK_SET_RATE_PARENT, 0x5a8, 8, 2, 0, }, }; static void __init hi6220_clk_power_init(struct device_node *np) { struct hisi_clock_data *clk_data; clk_data = hisi_clk_init(np, HI6220_POWER_NR_CLKS); if (!clk_data) return; hisi_clk_register_gate(hi6220_gate_clks_power, ARRAY_SIZE(hi6220_gate_clks_power), clk_data); hi6220_clk_register_divider(hi6220_div_clks_power, ARRAY_SIZE(hi6220_div_clks_power), clk_data); } CLK_OF_DECLARE(hi6220_clk_power, "hisilicon,hi6220-pmctrl", hi6220_clk_power_init); /* clocks in acpu */ static const struct hisi_gate_clock hi6220_acpu_sc_gate_sep_clks[] = { { HI6220_ACPU_SFT_AT_S, "sft_at_s", "cs_atb", CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED, 0xc, 11, 0, }, }; static void __init hi6220_clk_acpu_init(struct device_node *np) { struct hisi_clock_data *clk_data; int nr = ARRAY_SIZE(hi6220_acpu_sc_gate_sep_clks); clk_data = hisi_clk_init(np, nr); if (!clk_data) return; hisi_clk_register_gate_sep(hi6220_acpu_sc_gate_sep_clks, ARRAY_SIZE(hi6220_acpu_sc_gate_sep_clks), clk_data); } CLK_OF_DECLARE(hi6220_clk_acpu, "hisilicon,hi6220-acpu-sctrl", hi6220_clk_acpu_init);
// SPDX-License-Identifier: GPL-2.0-or-later /* * Hardware monitoring driver for Maxim MAX8688 * * Copyright (c) 2011 Ericsson AB. */ #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/err.h> #include <linux/i2c.h> #include "pmbus.h" #define MAX8688_MFR_VOUT_PEAK 0xd4 #define MAX8688_MFR_IOUT_PEAK 0xd5 #define MAX8688_MFR_TEMPERATURE_PEAK 0xd6 #define MAX8688_MFG_STATUS 0xd8 #define MAX8688_STATUS_OC_FAULT BIT(4) #define MAX8688_STATUS_OV_FAULT BIT(5) #define MAX8688_STATUS_OV_WARNING BIT(8) #define MAX8688_STATUS_UV_FAULT BIT(9) #define MAX8688_STATUS_UV_WARNING BIT(10) #define MAX8688_STATUS_UC_FAULT BIT(11) #define MAX8688_STATUS_OC_WARNING BIT(12) #define MAX8688_STATUS_OT_FAULT BIT(13) #define MAX8688_STATUS_OT_WARNING BIT(14) static int max8688_read_word_data(struct i2c_client *client, int page, int phase, int reg) { int ret; if (page > 0) return -ENXIO; switch (reg) { case PMBUS_VIRT_READ_VOUT_MAX: ret = pmbus_read_word_data(client, 0, 0xff, MAX8688_MFR_VOUT_PEAK); break; case PMBUS_VIRT_READ_IOUT_MAX: ret = pmbus_read_word_data(client, 0, 0xff, MAX8688_MFR_IOUT_PEAK); break; case PMBUS_VIRT_READ_TEMP_MAX: ret = pmbus_read_word_data(client, 0, 0xff, MAX8688_MFR_TEMPERATURE_PEAK); break; case PMBUS_VIRT_RESET_VOUT_HISTORY: case PMBUS_VIRT_RESET_IOUT_HISTORY: case PMBUS_VIRT_RESET_TEMP_HISTORY: ret = 0; break; default: ret = -ENODATA; break; } return ret; } static int max8688_write_word_data(struct i2c_client *client, int page, int reg, u16 word) { int ret; switch (reg) { case PMBUS_VIRT_RESET_VOUT_HISTORY: ret = pmbus_write_word_data(client, 0, MAX8688_MFR_VOUT_PEAK, 0); break; case PMBUS_VIRT_RESET_IOUT_HISTORY: ret = pmbus_write_word_data(client, 0, MAX8688_MFR_IOUT_PEAK, 0); break; case PMBUS_VIRT_RESET_TEMP_HISTORY: ret = pmbus_write_word_data(client, 0, MAX8688_MFR_TEMPERATURE_PEAK, 0xffff); break; default: ret = -ENODATA; break; } return ret; } static int max8688_read_byte_data(struct i2c_client *client, int page, int reg) { int ret = 0; int mfg_status; if (page > 0) return -ENXIO; switch (reg) { case PMBUS_STATUS_VOUT: mfg_status = pmbus_read_word_data(client, 0, 0xff, MAX8688_MFG_STATUS); if (mfg_status < 0) return mfg_status; if (mfg_status & MAX8688_STATUS_UV_WARNING) ret |= PB_VOLTAGE_UV_WARNING; if (mfg_status & MAX8688_STATUS_UV_FAULT) ret |= PB_VOLTAGE_UV_FAULT; if (mfg_status & MAX8688_STATUS_OV_WARNING) ret |= PB_VOLTAGE_OV_WARNING; if (mfg_status & MAX8688_STATUS_OV_FAULT) ret |= PB_VOLTAGE_OV_FAULT; break; case PMBUS_STATUS_IOUT: mfg_status = pmbus_read_word_data(client, 0, 0xff, MAX8688_MFG_STATUS); if (mfg_status < 0) return mfg_status; if (mfg_status & MAX8688_STATUS_UC_FAULT) ret |= PB_IOUT_UC_FAULT; if (mfg_status & MAX8688_STATUS_OC_WARNING) ret |= PB_IOUT_OC_WARNING; if (mfg_status & MAX8688_STATUS_OC_FAULT) ret |= PB_IOUT_OC_FAULT; break; case PMBUS_STATUS_TEMPERATURE: mfg_status = pmbus_read_word_data(client, 0, 0xff, MAX8688_MFG_STATUS); if (mfg_status < 0) return mfg_status; if (mfg_status & MAX8688_STATUS_OT_WARNING) ret |= PB_TEMP_OT_WARNING; if (mfg_status & MAX8688_STATUS_OT_FAULT) ret |= PB_TEMP_OT_FAULT; break; default: ret = -ENODATA; break; } return ret; } static struct pmbus_driver_info max8688_info = { .pages = 1, .format[PSC_VOLTAGE_IN] = direct, .format[PSC_VOLTAGE_OUT] = direct, .format[PSC_TEMPERATURE] = direct, .format[PSC_CURRENT_OUT] = direct, .m[PSC_VOLTAGE_IN] = 19995, .b[PSC_VOLTAGE_IN] = 0, .R[PSC_VOLTAGE_IN] = -1, .m[PSC_VOLTAGE_OUT] = 19995, .b[PSC_VOLTAGE_OUT] = 0, .R[PSC_VOLTAGE_OUT] = -1, .m[PSC_CURRENT_OUT] = 23109, .b[PSC_CURRENT_OUT] = 0, .R[PSC_CURRENT_OUT] = -2, .m[PSC_TEMPERATURE] = -7612, .b[PSC_TEMPERATURE] = 335, .R[PSC_TEMPERATURE] = -3, .func[0] = PMBUS_HAVE_VOUT | PMBUS_HAVE_IOUT | PMBUS_HAVE_TEMP | PMBUS_HAVE_STATUS_VOUT | PMBUS_HAVE_STATUS_IOUT | PMBUS_HAVE_STATUS_TEMP, .read_byte_data = max8688_read_byte_data, .read_word_data = max8688_read_word_data, .write_word_data = max8688_write_word_data, }; static int max8688_probe(struct i2c_client *client) { return pmbus_do_probe(client, &max8688_info); } static const struct i2c_device_id max8688_id[] = { {"max8688"}, { } }; MODULE_DEVICE_TABLE(i2c, max8688_id); /* This is the driver that will be inserted */ static struct i2c_driver max8688_driver = { .driver = { .name = "max8688", }, .probe = max8688_probe, .id_table = max8688_id, }; module_i2c_driver(max8688_driver); MODULE_AUTHOR("Guenter Roeck"); MODULE_DESCRIPTION("PMBus driver for Maxim MAX8688"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS("PMBUS");
// SPDX-License-Identifier: GPL-2.0+ /* * FB driver for the uPD161704 LCD Controller * * Copyright (C) 2014 Seong-Woo Kim * * Based on fb_ili9325.c by Noralf Tronnes * Based on ili9325.c by Jeroen Domburg * Init code from UTFT library by Henning Karlsen */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include "fbtft.h" #define DRVNAME "fb_bd663474" #define WIDTH 240 #define HEIGHT 320 #define BPP 16 static int init_display(struct fbtft_par *par) { par->fbtftops.reset(par); /* Initialization sequence from Lib_UTFT */ /* oscillator start */ write_reg(par, 0x000, 0x0001); /*oscillator 0: stop, 1: operation */ mdelay(10); /* Power settings */ write_reg(par, 0x100, 0x0000); /* power supply setup */ write_reg(par, 0x101, 0x0000); write_reg(par, 0x102, 0x3110); write_reg(par, 0x103, 0xe200); write_reg(par, 0x110, 0x009d); write_reg(par, 0x111, 0x0022); write_reg(par, 0x100, 0x0120); mdelay(20); write_reg(par, 0x100, 0x3120); mdelay(80); /* Display control */ write_reg(par, 0x001, 0x0100); write_reg(par, 0x002, 0x0000); write_reg(par, 0x003, 0x1230); write_reg(par, 0x006, 0x0000); write_reg(par, 0x007, 0x0101); write_reg(par, 0x008, 0x0808); write_reg(par, 0x009, 0x0000); write_reg(par, 0x00b, 0x0000); write_reg(par, 0x00c, 0x0000); write_reg(par, 0x00d, 0x0018); /* LTPS control settings */ write_reg(par, 0x012, 0x0000); write_reg(par, 0x013, 0x0000); write_reg(par, 0x018, 0x0000); write_reg(par, 0x019, 0x0000); write_reg(par, 0x203, 0x0000); write_reg(par, 0x204, 0x0000); write_reg(par, 0x210, 0x0000); write_reg(par, 0x211, 0x00ef); write_reg(par, 0x212, 0x0000); write_reg(par, 0x213, 0x013f); write_reg(par, 0x214, 0x0000); write_reg(par, 0x215, 0x0000); write_reg(par, 0x216, 0x0000); write_reg(par, 0x217, 0x0000); /* Gray scale settings */ write_reg(par, 0x300, 0x5343); write_reg(par, 0x301, 0x1021); write_reg(par, 0x302, 0x0003); write_reg(par, 0x303, 0x0011); write_reg(par, 0x304, 0x050a); write_reg(par, 0x305, 0x4342); write_reg(par, 0x306, 0x1100); write_reg(par, 0x307, 0x0003); write_reg(par, 0x308, 0x1201); write_reg(par, 0x309, 0x050a); /* RAM access settings */ write_reg(par, 0x400, 0x4027); write_reg(par, 0x401, 0x0000); write_reg(par, 0x402, 0x0000); /* First screen drive position (1) */ write_reg(par, 0x403, 0x013f); /* First screen drive position (2) */ write_reg(par, 0x404, 0x0000); write_reg(par, 0x200, 0x0000); write_reg(par, 0x201, 0x0000); write_reg(par, 0x100, 0x7120); write_reg(par, 0x007, 0x0103); mdelay(10); write_reg(par, 0x007, 0x0113); return 0; } static void set_addr_win(struct fbtft_par *par, int xs, int ys, int xe, int ye) { switch (par->info->var.rotate) { /* R200h = Horizontal GRAM Start Address */ /* R201h = Vertical GRAM Start Address */ case 0: write_reg(par, 0x0200, xs); write_reg(par, 0x0201, ys); break; case 180: write_reg(par, 0x0200, WIDTH - 1 - xs); write_reg(par, 0x0201, HEIGHT - 1 - ys); break; case 270: write_reg(par, 0x0200, WIDTH - 1 - ys); write_reg(par, 0x0201, xs); break; case 90: write_reg(par, 0x0200, ys); write_reg(par, 0x0201, HEIGHT - 1 - xs); break; } write_reg(par, 0x202); /* Write Data to GRAM */ } static int set_var(struct fbtft_par *par) { switch (par->info->var.rotate) { /* AM: GRAM update direction */ case 0: write_reg(par, 0x003, 0x1230); break; case 180: write_reg(par, 0x003, 0x1200); break; case 270: write_reg(par, 0x003, 0x1228); break; case 90: write_reg(par, 0x003, 0x1218); break; } return 0; } static struct fbtft_display display = { .regwidth = 16, .width = WIDTH, .height = HEIGHT, .bpp = BPP, .fbtftops = { .init_display = init_display, .set_addr_win = set_addr_win, .set_var = set_var, }, }; FBTFT_REGISTER_DRIVER(DRVNAME, "hitachi,bd663474", &display); MODULE_ALIAS("spi:" DRVNAME); MODULE_ALIAS("platform:" DRVNAME); MODULE_ALIAS("spi:bd663474"); MODULE_ALIAS("platform:bd663474"); MODULE_DESCRIPTION("FB driver for the uPD161704 LCD Controller"); MODULE_AUTHOR("Seong-Woo Kim"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/misc/xillybus_of.c * * Copyright 2011 Xillybus Ltd, http://xillybus.com * * Driver for the Xillybus FPGA/host framework using Open Firmware. */ #include <linux/module.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/err.h> #include "xillybus.h" MODULE_DESCRIPTION("Xillybus driver for Open Firmware"); MODULE_AUTHOR("Eli Billauer, Xillybus Ltd."); MODULE_ALIAS("xillybus_of"); MODULE_LICENSE("GPL v2"); static const char xillyname[] = "xillybus_of"; /* Match table for of_platform binding */ static const struct of_device_id xillybus_of_match[] = { { .compatible = "xillybus,xillybus-1.00.a", }, { .compatible = "xlnx,xillybus-1.00.a", }, /* Deprecated */ {} }; MODULE_DEVICE_TABLE(of, xillybus_of_match); static int xilly_drv_probe(struct platform_device *op) { struct device *dev = &op->dev; struct xilly_endpoint *endpoint; int rc; int irq; endpoint = xillybus_init_endpoint(dev); if (!endpoint) return -ENOMEM; dev_set_drvdata(dev, endpoint); endpoint->owner = THIS_MODULE; endpoint->registers = devm_platform_ioremap_resource(op, 0); if (IS_ERR(endpoint->registers)) return PTR_ERR(endpoint->registers); irq = platform_get_irq(op, 0); rc = devm_request_irq(dev, irq, xillybus_isr, 0, xillyname, endpoint); if (rc) { dev_err(endpoint->dev, "Failed to register IRQ handler. Aborting.\n"); return -ENODEV; } return xillybus_endpoint_discovery(endpoint); } static void xilly_drv_remove(struct platform_device *op) { struct device *dev = &op->dev; struct xilly_endpoint *endpoint = dev_get_drvdata(dev); xillybus_endpoint_remove(endpoint); } static struct platform_driver xillybus_platform_driver = { .probe = xilly_drv_probe, .remove = xilly_drv_remove, .driver = { .name = xillyname, .of_match_table = xillybus_of_match, }, }; module_platform_driver(xillybus_platform_driver);
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 /******************************************************************************* * * Module Name: rsxface - Public interfaces to the resource manager * ******************************************************************************/ #define EXPORT_ACPI_INTERFACES #include <acpi/acpi.h> #include "accommon.h" #include "acresrc.h" #include "acnamesp.h" #define _COMPONENT ACPI_RESOURCES ACPI_MODULE_NAME("rsxface") /* Local macros for 16,32-bit to 64-bit conversion */ #define ACPI_COPY_FIELD(out, in, field) ((out)->field = (in)->field) #define ACPI_COPY_ADDRESS(out, in) \ ACPI_COPY_FIELD(out, in, resource_type); \ ACPI_COPY_FIELD(out, in, producer_consumer); \ ACPI_COPY_FIELD(out, in, decode); \ ACPI_COPY_FIELD(out, in, min_address_fixed); \ ACPI_COPY_FIELD(out, in, max_address_fixed); \ ACPI_COPY_FIELD(out, in, info); \ ACPI_COPY_FIELD(out, in, address.granularity); \ ACPI_COPY_FIELD(out, in, address.minimum); \ ACPI_COPY_FIELD(out, in, address.maximum); \ ACPI_COPY_FIELD(out, in, address.translation_offset); \ ACPI_COPY_FIELD(out, in, address.address_length); \ ACPI_COPY_FIELD(out, in, resource_source); /* Local prototypes */ static acpi_status acpi_rs_match_vendor_resource(struct acpi_resource *resource, void *context); static acpi_status acpi_rs_validate_parameters(acpi_handle device_handle, struct acpi_buffer *buffer, struct acpi_namespace_node **return_node); /******************************************************************************* * * FUNCTION: acpi_rs_validate_parameters * * PARAMETERS: device_handle - Handle to a device * buffer - Pointer to a data buffer * return_node - Pointer to where the device node is returned * * RETURN: Status * * DESCRIPTION: Common parameter validation for resource interfaces * ******************************************************************************/ static acpi_status acpi_rs_validate_parameters(acpi_handle device_handle, struct acpi_buffer *buffer, struct acpi_namespace_node **return_node) { acpi_status status; struct acpi_namespace_node *node; ACPI_FUNCTION_TRACE(rs_validate_parameters); /* * Must have a valid handle to an ACPI device */ if (!device_handle) { return_ACPI_STATUS(AE_BAD_PARAMETER); } node = acpi_ns_validate_handle(device_handle); if (!node) { return_ACPI_STATUS(AE_BAD_PARAMETER); } if (node->type != ACPI_TYPE_DEVICE) { return_ACPI_STATUS(AE_TYPE); } /* * Validate the user buffer object * * if there is a non-zero buffer length we also need a valid pointer in * the buffer. If it's a zero buffer length, we'll be returning the * needed buffer size (later), so keep going. */ status = acpi_ut_validate_buffer(buffer); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } *return_node = node; return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_get_irq_routing_table * * PARAMETERS: device_handle - Handle to the Bus device we are querying * ret_buffer - Pointer to a buffer to receive the * current resources for the device * * RETURN: Status * * DESCRIPTION: This function is called to get the IRQ routing table for a * specific bus. The caller must first acquire a handle for the * desired bus. The routine table is placed in the buffer pointed * to by the ret_buffer variable parameter. * * If the function fails an appropriate status will be returned * and the value of ret_buffer is undefined. * * This function attempts to execute the _PRT method contained in * the object indicated by the passed device_handle. * ******************************************************************************/ acpi_status acpi_get_irq_routing_table(acpi_handle device_handle, struct acpi_buffer *ret_buffer) { acpi_status status; struct acpi_namespace_node *node; ACPI_FUNCTION_TRACE(acpi_get_irq_routing_table); /* Validate parameters then dispatch to internal routine */ status = acpi_rs_validate_parameters(device_handle, ret_buffer, &node); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } status = acpi_rs_get_prt_method_data(node, ret_buffer); return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_get_irq_routing_table) /******************************************************************************* * * FUNCTION: acpi_get_current_resources * * PARAMETERS: device_handle - Handle to the device object for the * device we are querying * ret_buffer - Pointer to a buffer to receive the * current resources for the device * * RETURN: Status * * DESCRIPTION: This function is called to get the current resources for a * specific device. The caller must first acquire a handle for * the desired device. The resource data is placed in the buffer * pointed to by the ret_buffer variable parameter. * * If the function fails an appropriate status will be returned * and the value of ret_buffer is undefined. * * This function attempts to execute the _CRS method contained in * the object indicated by the passed device_handle. * ******************************************************************************/ acpi_status acpi_get_current_resources(acpi_handle device_handle, struct acpi_buffer *ret_buffer) { acpi_status status; struct acpi_namespace_node *node; ACPI_FUNCTION_TRACE(acpi_get_current_resources); /* Validate parameters then dispatch to internal routine */ status = acpi_rs_validate_parameters(device_handle, ret_buffer, &node); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } status = acpi_rs_get_crs_method_data(node, ret_buffer); return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_get_current_resources) /******************************************************************************* * * FUNCTION: acpi_get_possible_resources * * PARAMETERS: device_handle - Handle to the device object for the * device we are querying * ret_buffer - Pointer to a buffer to receive the * resources for the device * * RETURN: Status * * DESCRIPTION: This function is called to get a list of the possible resources * for a specific device. The caller must first acquire a handle * for the desired device. The resource data is placed in the * buffer pointed to by the ret_buffer variable. * * If the function fails an appropriate status will be returned * and the value of ret_buffer is undefined. * ******************************************************************************/ acpi_status acpi_get_possible_resources(acpi_handle device_handle, struct acpi_buffer *ret_buffer) { acpi_status status; struct acpi_namespace_node *node; ACPI_FUNCTION_TRACE(acpi_get_possible_resources); /* Validate parameters then dispatch to internal routine */ status = acpi_rs_validate_parameters(device_handle, ret_buffer, &node); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } status = acpi_rs_get_prs_method_data(node, ret_buffer); return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_get_possible_resources) /******************************************************************************* * * FUNCTION: acpi_set_current_resources * * PARAMETERS: device_handle - Handle to the device object for the * device we are setting resources * in_buffer - Pointer to a buffer containing the * resources to be set for the device * * RETURN: Status * * DESCRIPTION: This function is called to set the current resources for a * specific device. The caller must first acquire a handle for * the desired device. The resource data is passed to the routine * the buffer pointed to by the in_buffer variable. * ******************************************************************************/ acpi_status acpi_set_current_resources(acpi_handle device_handle, struct acpi_buffer *in_buffer) { acpi_status status; struct acpi_namespace_node *node; ACPI_FUNCTION_TRACE(acpi_set_current_resources); /* Validate the buffer, don't allow zero length */ if ((!in_buffer) || (!in_buffer->pointer) || (!in_buffer->length)) { return_ACPI_STATUS(AE_BAD_PARAMETER); } /* Validate parameters then dispatch to internal routine */ status = acpi_rs_validate_parameters(device_handle, in_buffer, &node); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } status = acpi_rs_set_srs_method_data(node, in_buffer); return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_set_current_resources) /******************************************************************************* * * FUNCTION: acpi_get_event_resources * * PARAMETERS: device_handle - Handle to the device object for the * device we are getting resources * in_buffer - Pointer to a buffer containing the * resources to be set for the device * * RETURN: Status * * DESCRIPTION: This function is called to get the event resources for a * specific device. The caller must first acquire a handle for * the desired device. The resource data is passed to the routine * the buffer pointed to by the in_buffer variable. Uses the * _AEI method. * ******************************************************************************/ acpi_status acpi_get_event_resources(acpi_handle device_handle, struct acpi_buffer *ret_buffer) { acpi_status status; struct acpi_namespace_node *node; ACPI_FUNCTION_TRACE(acpi_get_event_resources); /* Validate parameters then dispatch to internal routine */ status = acpi_rs_validate_parameters(device_handle, ret_buffer, &node); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } status = acpi_rs_get_aei_method_data(node, ret_buffer); return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_get_event_resources) /****************************************************************************** * * FUNCTION: acpi_resource_to_address64 * * PARAMETERS: resource - Pointer to a resource * out - Pointer to the users's return buffer * (a struct acpi_resource_address64) * * RETURN: Status * * DESCRIPTION: If the resource is an address16, address32, or address64, * copy it to the address64 return buffer. This saves the * caller from having to duplicate code for different-sized * addresses. * ******************************************************************************/ acpi_status acpi_resource_to_address64(struct acpi_resource *resource, struct acpi_resource_address64 *out) { struct acpi_resource_address16 *address16; struct acpi_resource_address32 *address32; if (!resource || !out) { return (AE_BAD_PARAMETER); } /* Convert 16 or 32 address descriptor to 64 */ switch (resource->type) { case ACPI_RESOURCE_TYPE_ADDRESS16: address16 = ACPI_CAST_PTR(struct acpi_resource_address16, &resource->data); ACPI_COPY_ADDRESS(out, address16); break; case ACPI_RESOURCE_TYPE_ADDRESS32: address32 = ACPI_CAST_PTR(struct acpi_resource_address32, &resource->data); ACPI_COPY_ADDRESS(out, address32); break; case ACPI_RESOURCE_TYPE_ADDRESS64: /* Simple copy for 64 bit source */ memcpy(out, &resource->data, sizeof(struct acpi_resource_address64)); break; default: return (AE_BAD_PARAMETER); } return (AE_OK); } ACPI_EXPORT_SYMBOL(acpi_resource_to_address64) /******************************************************************************* * * FUNCTION: acpi_get_vendor_resource * * PARAMETERS: device_handle - Handle for the parent device object * name - Method name for the parent resource * (METHOD_NAME__CRS or METHOD_NAME__PRS) * uuid - Pointer to the UUID to be matched. * includes both subtype and 16-byte UUID * ret_buffer - Where the vendor resource is returned * * RETURN: Status * * DESCRIPTION: Walk a resource template for the specified device to find a * vendor-defined resource that matches the supplied UUID and * UUID subtype. Returns a struct acpi_resource of type Vendor. * ******************************************************************************/ acpi_status acpi_get_vendor_resource(acpi_handle device_handle, char *name, struct acpi_vendor_uuid *uuid, struct acpi_buffer *ret_buffer) { struct acpi_vendor_walk_info info; acpi_status status; /* Other parameters are validated by acpi_walk_resources */ if (!uuid || !ret_buffer) { return (AE_BAD_PARAMETER); } info.uuid = uuid; info.buffer = ret_buffer; info.status = AE_NOT_EXIST; /* Walk the _CRS or _PRS resource list for this device */ status = acpi_walk_resources(device_handle, name, acpi_rs_match_vendor_resource, &info); if (ACPI_FAILURE(status)) { return (status); } return (info.status); } ACPI_EXPORT_SYMBOL(acpi_get_vendor_resource) /******************************************************************************* * * FUNCTION: acpi_rs_match_vendor_resource * * PARAMETERS: acpi_walk_resource_callback * * RETURN: Status * * DESCRIPTION: Match a vendor resource via the ACPI 3.0 UUID * ******************************************************************************/ static acpi_status acpi_rs_match_vendor_resource(struct acpi_resource *resource, void *context) { struct acpi_vendor_walk_info *info = context; struct acpi_resource_vendor_typed *vendor; struct acpi_buffer *buffer; acpi_status status; /* Ignore all descriptors except Vendor */ if (resource->type != ACPI_RESOURCE_TYPE_VENDOR) { return (AE_OK); } vendor = &resource->data.vendor_typed; /* * For a valid match, these conditions must hold: * * 1) Length of descriptor data must be at least as long as a UUID struct * 2) The UUID subtypes must match * 3) The UUID data must match */ if ((vendor->byte_length < (ACPI_UUID_LENGTH + 1)) || (vendor->uuid_subtype != info->uuid->subtype) || (memcmp(vendor->uuid, info->uuid->data, ACPI_UUID_LENGTH))) { return (AE_OK); } /* Validate/Allocate/Clear caller buffer */ buffer = info->buffer; status = acpi_ut_initialize_buffer(buffer, resource->length); if (ACPI_FAILURE(status)) { return (status); } /* Found the correct resource, copy and return it */ memcpy(buffer->pointer, resource, resource->length); buffer->length = resource->length; /* Found the desired descriptor, terminate resource walk */ info->status = AE_OK; return (AE_CTRL_TERMINATE); } /******************************************************************************* * * FUNCTION: acpi_walk_resource_buffer * * PARAMETERS: buffer - Formatted buffer returned by one of the * various Get*Resource functions * user_function - Called for each resource * context - Passed to user_function * * RETURN: Status * * DESCRIPTION: Walks the input resource template. The user_function is called * once for each resource in the list. * ******************************************************************************/ acpi_status acpi_walk_resource_buffer(struct acpi_buffer *buffer, acpi_walk_resource_callback user_function, void *context) { acpi_status status = AE_OK; struct acpi_resource *resource; struct acpi_resource *resource_end; ACPI_FUNCTION_TRACE(acpi_walk_resource_buffer); /* Parameter validation */ if (!buffer || !buffer->pointer || !user_function) { return_ACPI_STATUS(AE_BAD_PARAMETER); } /* Buffer contains the resource list and length */ resource = ACPI_CAST_PTR(struct acpi_resource, buffer->pointer); resource_end = ACPI_ADD_PTR(struct acpi_resource, buffer->pointer, buffer->length); /* Walk the resource list until the end_tag is found (or buffer end) */ while (resource < resource_end) { /* Sanity check the resource type */ if (resource->type > ACPI_RESOURCE_TYPE_MAX) { status = AE_AML_INVALID_RESOURCE_TYPE; break; } /* Sanity check the length. It must not be zero, or we loop forever */ if (!resource->length) { return_ACPI_STATUS(AE_AML_BAD_RESOURCE_LENGTH); } /* Invoke the user function, abort on any error returned */ status = user_function(resource, context); if (ACPI_FAILURE(status)) { if (status == AE_CTRL_TERMINATE) { /* This is an OK termination by the user function */ status = AE_OK; } break; } /* end_tag indicates end-of-list */ if (resource->type == ACPI_RESOURCE_TYPE_END_TAG) { break; } /* Get the next resource descriptor */ resource = ACPI_NEXT_RESOURCE(resource); } return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_walk_resource_buffer) /******************************************************************************* * * FUNCTION: acpi_walk_resources * * PARAMETERS: device_handle - Handle to the device object for the * device we are querying * name - Method name of the resources we want. * (METHOD_NAME__CRS, METHOD_NAME__PRS, or * METHOD_NAME__AEI or METHOD_NAME__DMA) * user_function - Called for each resource * context - Passed to user_function * * RETURN: Status * * DESCRIPTION: Retrieves the current or possible resource list for the * specified device. The user_function is called once for * each resource in the list. * ******************************************************************************/ acpi_status acpi_walk_resources(acpi_handle device_handle, char *name, acpi_walk_resource_callback user_function, void *context) { acpi_status status; struct acpi_buffer buffer; ACPI_FUNCTION_TRACE(acpi_walk_resources); /* Parameter validation */ if (!device_handle || !user_function || !name || (!ACPI_COMPARE_NAMESEG(name, METHOD_NAME__CRS) && !ACPI_COMPARE_NAMESEG(name, METHOD_NAME__PRS) && !ACPI_COMPARE_NAMESEG(name, METHOD_NAME__AEI) && !ACPI_COMPARE_NAMESEG(name, METHOD_NAME__DMA))) { return_ACPI_STATUS(AE_BAD_PARAMETER); } /* Get the _CRS/_PRS/_AEI/_DMA resource list */ buffer.length = ACPI_ALLOCATE_LOCAL_BUFFER; status = acpi_rs_get_method_data(device_handle, name, &buffer); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* Walk the resource list and cleanup */ status = acpi_walk_resource_buffer(&buffer, user_function, context); ACPI_FREE(buffer.pointer); return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_walk_resources)
// SPDX-License-Identifier: GPL-2.0-or-later /* * TerraTec remote controller keytable * * Copyright (C) 2010 Antti Palosaari <[email protected]> */ #include <media/rc-map.h> #include <linux/module.h> /* TerraTec slim remote, 7 rows, 4 columns. */ /* Uses NEC extended 0x02bd. */ static struct rc_map_table terratec_slim[] = { { 0x02bd00, KEY_NUMERIC_1 }, { 0x02bd01, KEY_NUMERIC_2 }, { 0x02bd02, KEY_NUMERIC_3 }, { 0x02bd03, KEY_NUMERIC_4 }, { 0x02bd04, KEY_NUMERIC_5 }, { 0x02bd05, KEY_NUMERIC_6 }, { 0x02bd06, KEY_NUMERIC_7 }, { 0x02bd07, KEY_NUMERIC_8 }, { 0x02bd08, KEY_NUMERIC_9 }, { 0x02bd09, KEY_NUMERIC_0 }, { 0x02bd0a, KEY_MUTE }, { 0x02bd0b, KEY_NEW }, /* symbol: PIP */ { 0x02bd0e, KEY_VOLUMEDOWN }, { 0x02bd0f, KEY_PLAYPAUSE }, { 0x02bd10, KEY_RIGHT }, { 0x02bd11, KEY_LEFT }, { 0x02bd12, KEY_UP }, { 0x02bd13, KEY_DOWN }, { 0x02bd15, KEY_OK }, { 0x02bd16, KEY_STOP }, { 0x02bd17, KEY_CAMERA }, /* snapshot */ { 0x02bd18, KEY_CHANNELUP }, { 0x02bd19, KEY_RECORD }, { 0x02bd1a, KEY_CHANNELDOWN }, { 0x02bd1c, KEY_ESC }, { 0x02bd1f, KEY_VOLUMEUP }, { 0x02bd44, KEY_EPG }, { 0x02bd45, KEY_POWER2 }, /* [red power button] */ }; static struct rc_map_list terratec_slim_map = { .map = { .scan = terratec_slim, .size = ARRAY_SIZE(terratec_slim), .rc_proto = RC_PROTO_NECX, .name = RC_MAP_TERRATEC_SLIM, } }; static int __init init_rc_map_terratec_slim(void) { return rc_map_register(&terratec_slim_map); } static void __exit exit_rc_map_terratec_slim(void) { rc_map_unregister(&terratec_slim_map); } module_init(init_rc_map_terratec_slim) module_exit(exit_rc_map_terratec_slim) MODULE_LICENSE("GPL"); MODULE_AUTHOR("Antti Palosaari <[email protected]>"); MODULE_DESCRIPTION("TerraTec slim remote controller keytable");
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier <[email protected]> */ #ifndef __ARM64_KVM_HYP_SWITCH_H__ #define __ARM64_KVM_HYP_SWITCH_H__ #include <hyp/adjust_pc.h> #include <hyp/fault.h> #include <linux/arm-smccc.h> #include <linux/kvm_host.h> #include <linux/types.h> #include <linux/jump_label.h> #include <uapi/linux/psci.h> #include <kvm/arm_psci.h> #include <asm/barrier.h> #include <asm/cpufeature.h> #include <asm/extable.h> #include <asm/kprobes.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/kvm_nested.h> #include <asm/fpsimd.h> #include <asm/debug-monitors.h> #include <asm/processor.h> #include <asm/traps.h> struct kvm_exception_table_entry { int insn, fixup; }; extern struct kvm_exception_table_entry __start___kvm_ex_table; extern struct kvm_exception_table_entry __stop___kvm_ex_table; /* Save the 32-bit only FPSIMD system register state */ static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) { if (!vcpu_el1_is_32bit(vcpu)) return; __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); } static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) { /* * We are about to set CPTR_EL2.TFP to trap all floating point * register accesses to EL2, however, the ARM ARM clearly states that * traps are only taken to EL2 if the operation would not otherwise * trap to EL1. Therefore, always make sure that for 32-bit guests, * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to * it will cause an exception. */ if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { write_sysreg(1 << 30, fpexc32_el2); isb(); } } #define compute_clr_set(vcpu, reg, clr, set) \ do { \ u64 hfg; \ hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0; \ set |= hfg & __ ## reg ## _MASK; \ clr |= ~hfg & __ ## reg ## _nMASK; \ } while(0) #define reg_to_fgt_group_id(reg) \ ({ \ enum fgt_group_id id; \ switch(reg) { \ case HFGRTR_EL2: \ case HFGWTR_EL2: \ id = HFGxTR_GROUP; \ break; \ case HFGITR_EL2: \ id = HFGITR_GROUP; \ break; \ case HDFGRTR_EL2: \ case HDFGWTR_EL2: \ id = HDFGRTR_GROUP; \ break; \ case HAFGRTR_EL2: \ id = HAFGRTR_GROUP; \ break; \ default: \ BUILD_BUG_ON(1); \ } \ \ id; \ }) #define compute_undef_clr_set(vcpu, kvm, reg, clr, set) \ do { \ u64 hfg = kvm->arch.fgu[reg_to_fgt_group_id(reg)]; \ set |= hfg & __ ## reg ## _MASK; \ clr |= hfg & __ ## reg ## _nMASK; \ } while(0) #define update_fgt_traps_cs(hctxt, vcpu, kvm, reg, clr, set) \ do { \ u64 c = 0, s = 0; \ \ ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg); \ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) \ compute_clr_set(vcpu, reg, c, s); \ \ compute_undef_clr_set(vcpu, kvm, reg, c, s); \ \ s |= set; \ c |= clr; \ if (c || s) { \ u64 val = __ ## reg ## _nMASK; \ val |= s; \ val &= ~c; \ write_sysreg_s(val, SYS_ ## reg); \ } \ } while(0) #define update_fgt_traps(hctxt, vcpu, kvm, reg) \ update_fgt_traps_cs(hctxt, vcpu, kvm, reg, 0, 0) /* * Validate the fine grain trap masks. * Check that the masks do not overlap and that all bits are accounted for. */ #define CHECK_FGT_MASKS(reg) \ do { \ BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK)); \ BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^ \ (__ ## reg ## _nMASK))); \ } while(0) static inline bool cpu_has_amu(void) { u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1); return cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_AMU_SHIFT); } static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt); struct kvm *kvm = kern_hyp_va(vcpu->kvm); CHECK_FGT_MASKS(HFGRTR_EL2); CHECK_FGT_MASKS(HFGWTR_EL2); CHECK_FGT_MASKS(HFGITR_EL2); CHECK_FGT_MASKS(HDFGRTR_EL2); CHECK_FGT_MASKS(HDFGWTR_EL2); CHECK_FGT_MASKS(HAFGRTR_EL2); CHECK_FGT_MASKS(HCRX_EL2); if (!cpus_have_final_cap(ARM64_HAS_FGT)) return; update_fgt_traps(hctxt, vcpu, kvm, HFGRTR_EL2); update_fgt_traps_cs(hctxt, vcpu, kvm, HFGWTR_EL2, 0, cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) ? HFGxTR_EL2_TCR_EL1_MASK : 0); update_fgt_traps(hctxt, vcpu, kvm, HFGITR_EL2); update_fgt_traps(hctxt, vcpu, kvm, HDFGRTR_EL2); update_fgt_traps(hctxt, vcpu, kvm, HDFGWTR_EL2); if (cpu_has_amu()) update_fgt_traps(hctxt, vcpu, kvm, HAFGRTR_EL2); } #define __deactivate_fgt(htcxt, vcpu, kvm, reg) \ do { \ if ((vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) || \ kvm->arch.fgu[reg_to_fgt_group_id(reg)]) \ write_sysreg_s(ctxt_sys_reg(hctxt, reg), \ SYS_ ## reg); \ } while(0) static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt); struct kvm *kvm = kern_hyp_va(vcpu->kvm); if (!cpus_have_final_cap(ARM64_HAS_FGT)) return; __deactivate_fgt(hctxt, vcpu, kvm, HFGRTR_EL2); if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2); else __deactivate_fgt(hctxt, vcpu, kvm, HFGWTR_EL2); __deactivate_fgt(hctxt, vcpu, kvm, HFGITR_EL2); __deactivate_fgt(hctxt, vcpu, kvm, HDFGRTR_EL2); __deactivate_fgt(hctxt, vcpu, kvm, HDFGWTR_EL2); if (cpu_has_amu()) __deactivate_fgt(hctxt, vcpu, kvm, HAFGRTR_EL2); } static inline void __activate_traps_mpam(struct kvm_vcpu *vcpu) { u64 r = MPAM2_EL2_TRAPMPAM0EL1 | MPAM2_EL2_TRAPMPAM1EL1; if (!system_supports_mpam()) return; /* trap guest access to MPAMIDR_EL1 */ if (system_supports_mpam_hcr()) { write_sysreg_s(MPAMHCR_EL2_TRAP_MPAMIDR_EL1, SYS_MPAMHCR_EL2); } else { /* From v1.1 TIDR can trap MPAMIDR, set it unconditionally */ r |= MPAM2_EL2_TIDR; } write_sysreg_s(r, SYS_MPAM2_EL2); } static inline void __deactivate_traps_mpam(void) { if (!system_supports_mpam()) return; write_sysreg_s(0, SYS_MPAM2_EL2); if (system_supports_mpam_hcr()) write_sysreg_s(MPAMHCR_HOST_FLAGS, SYS_MPAMHCR_EL2); } static inline void __activate_traps_common(struct kvm_vcpu *vcpu) { /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ write_sysreg(1 << 15, hstr_el2); /* * Make sure we trap PMU access from EL0 to EL2. Also sanitize * PMSELR_EL0 to make sure it never contains the cycle * counter, which could make a PMXEVCNTR_EL0 access UNDEF at * EL1 instead of being trapped to EL2. */ if (kvm_arm_support_pmu_v3()) { struct kvm_cpu_context *hctxt; write_sysreg(0, pmselr_el0); hctxt = host_data_ptr(host_ctxt); ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0); write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); vcpu_set_flag(vcpu, PMUSERENR_ON_CPU); } *host_data_ptr(host_debug_state.mdcr_el2) = read_sysreg(mdcr_el2); write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); if (cpus_have_final_cap(ARM64_HAS_HCX)) { u64 hcrx = vcpu->arch.hcrx_el2; if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { u64 clr = 0, set = 0; compute_clr_set(vcpu, HCRX_EL2, clr, set); hcrx |= set; hcrx &= ~clr; } write_sysreg_s(hcrx, SYS_HCRX_EL2); } __activate_traps_hfgxtr(vcpu); __activate_traps_mpam(vcpu); } static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) { write_sysreg(*host_data_ptr(host_debug_state.mdcr_el2), mdcr_el2); write_sysreg(0, hstr_el2); if (kvm_arm_support_pmu_v3()) { struct kvm_cpu_context *hctxt; hctxt = host_data_ptr(host_ctxt); write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0); vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU); } if (cpus_have_final_cap(ARM64_HAS_HCX)) write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2); __deactivate_traps_hfgxtr(vcpu); __deactivate_traps_mpam(); } static inline void ___activate_traps(struct kvm_vcpu *vcpu, u64 hcr) { if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) hcr |= HCR_TVM; write_sysreg(hcr, hcr_el2); if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); } static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) { /* * If we pended a virtual abort, preserve it until it gets * cleared. See D1.14.3 (Virtual Interrupts) for details, but * the crucial bit is "On taking a vSError interrupt, * HCR_EL2.VSE is cleared to 0." */ if (vcpu->arch.hcr_el2 & HCR_VSE) { vcpu->arch.hcr_el2 &= ~HCR_VSE; vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; } } static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) { return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); } static bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code) { *vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR); arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2); write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR); /* * Finish potential single step before executing the prologue * instruction. */ *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); return true; } static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) { /* * The vCPU's saved SVE state layout always matches the max VL of the * vCPU. Start off with the max VL so we can load the SVE state. */ sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); __sve_restore_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr, true); /* * The effective VL for a VM could differ from the max VL when running a * nested guest, as the guest hypervisor could select a smaller VL. Slap * that into hardware before wrapping up. */ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) sve_cond_update_zcr_vq(__vcpu_sys_reg(vcpu, ZCR_EL2), SYS_ZCR_EL2); write_sysreg_el1(__vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu)), SYS_ZCR); } static inline void __hyp_sve_save_host(void) { struct cpu_sve_state *sve_state = *host_data_ptr(sve_state); sve_state->zcr_el1 = read_sysreg_el1(SYS_ZCR); write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2); __sve_save_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl), &sve_state->fpsr, true); } static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu); /* * We trap the first access to the FP/SIMD to save the host context and * restore the guest context lazily. * If FP/SIMD is not implemented, handle the trap and inject an undefined * instruction exception to the guest. Similarly for trapped SVE accesses. */ static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) { bool sve_guest; u8 esr_ec; if (!system_supports_fpsimd()) return false; sve_guest = vcpu_has_sve(vcpu); esr_ec = kvm_vcpu_trap_get_class(vcpu); /* Only handle traps the vCPU can support here: */ switch (esr_ec) { case ESR_ELx_EC_FP_ASIMD: /* Forward traps to the guest hypervisor as required */ if (guest_hyp_fpsimd_traps_enabled(vcpu)) return false; break; case ESR_ELx_EC_SYS64: if (WARN_ON_ONCE(!is_hyp_ctxt(vcpu))) return false; fallthrough; case ESR_ELx_EC_SVE: if (!sve_guest) return false; if (guest_hyp_sve_traps_enabled(vcpu)) return false; break; default: return false; } /* Valid trap. Switch the context: */ /* First disable enough traps to allow us to update the registers */ if (sve_guest || (is_protected_kvm_enabled() && system_supports_sve())) cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN); else cpacr_clear_set(0, CPACR_ELx_FPEN); isb(); /* Write out the host state if it's in the registers */ if (host_owns_fp_regs()) kvm_hyp_save_fpsimd_host(vcpu); /* Restore the guest state */ if (sve_guest) __hyp_sve_restore_guest(vcpu); else __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); if (kvm_has_fpmr(kern_hyp_va(vcpu->kvm))) write_sysreg_s(__vcpu_sys_reg(vcpu, FPMR), SYS_FPMR); /* Skip restoring fpexc32 for AArch64 guests */ if (!(read_sysreg(hcr_el2) & HCR_RW)) write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); *host_data_ptr(fp_owner) = FP_STATE_GUEST_OWNED; return true; } static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) { u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); int rt = kvm_vcpu_sys_get_rt(vcpu); u64 val = vcpu_get_reg(vcpu, rt); /* * The normal sysreg handling code expects to see the traps, * let's not do anything here. */ if (vcpu->arch.hcr_el2 & HCR_TVM) return false; switch (sysreg) { case SYS_SCTLR_EL1: write_sysreg_el1(val, SYS_SCTLR); break; case SYS_TTBR0_EL1: write_sysreg_el1(val, SYS_TTBR0); break; case SYS_TTBR1_EL1: write_sysreg_el1(val, SYS_TTBR1); break; case SYS_TCR_EL1: write_sysreg_el1(val, SYS_TCR); break; case SYS_ESR_EL1: write_sysreg_el1(val, SYS_ESR); break; case SYS_FAR_EL1: write_sysreg_el1(val, SYS_FAR); break; case SYS_AFSR0_EL1: write_sysreg_el1(val, SYS_AFSR0); break; case SYS_AFSR1_EL1: write_sysreg_el1(val, SYS_AFSR1); break; case SYS_MAIR_EL1: write_sysreg_el1(val, SYS_MAIR); break; case SYS_AMAIR_EL1: write_sysreg_el1(val, SYS_AMAIR); break; case SYS_CONTEXTIDR_EL1: write_sysreg_el1(val, SYS_CONTEXTIDR); break; default: return false; } __kvm_skip_instr(vcpu); return true; } static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu) { struct arch_timer_context *ctxt; u32 sysreg; u64 val; /* * We only get here for 64bit guests, 32bit guests will hit * the long and winding road all the way to the standard * handling. Yes, it sucks to be irrelevant. */ sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); switch (sysreg) { case SYS_CNTPCT_EL0: case SYS_CNTPCTSS_EL0: if (vcpu_has_nv(vcpu)) { if (is_hyp_ctxt(vcpu)) { ctxt = vcpu_hptimer(vcpu); break; } /* Check for guest hypervisor trapping */ val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); if (!vcpu_el2_e2h_is_set(vcpu)) val = (val & CNTHCTL_EL1PCTEN) << 10; if (!(val & (CNTHCTL_EL1PCTEN << 10))) return false; } ctxt = vcpu_ptimer(vcpu); break; default: return false; } val = arch_timer_read_cntpct_el0(); if (ctxt->offset.vm_offset) val -= *kern_hyp_va(ctxt->offset.vm_offset); if (ctxt->offset.vcpu_offset) val -= *kern_hyp_va(ctxt->offset.vcpu_offset); vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); __kvm_skip_instr(vcpu); return true; } static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu) { u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); int rt = kvm_vcpu_sys_get_rt(vcpu); u64 val = vcpu_get_reg(vcpu, rt); if (sysreg != SYS_TCR_EL1) return false; /* * Affected parts do not advertise support for hardware Access Flag / * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying * control bits are still functional. The architecture requires these be * RES0 on systems that do not implement FEAT_HAFDBS. * * Uphold the requirements of the architecture by masking guest writes * to TCR_EL1.{HA,HD} here. */ val &= ~(TCR_HD | TCR_HA); write_sysreg_el1(val, SYS_TCR); __kvm_skip_instr(vcpu); return true; } static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) { if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && handle_tx2_tvm(vcpu)) return true; if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) && handle_ampere1_tcr(vcpu)) return true; if (static_branch_unlikely(&vgic_v3_cpuif_trap) && __vgic_v3_perform_cpuif_access(vcpu) == 1) return true; if (kvm_hyp_handle_cntpct(vcpu)) return true; return false; } static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) { if (static_branch_unlikely(&vgic_v3_cpuif_trap) && __vgic_v3_perform_cpuif_access(vcpu) == 1) return true; return false; } static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code) { if (!__populate_fault_info(vcpu)) return true; return false; } static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) __alias(kvm_hyp_handle_memory_fault); static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code) __alias(kvm_hyp_handle_memory_fault); static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) { if (kvm_hyp_handle_memory_fault(vcpu, exit_code)) return true; if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { bool valid; valid = kvm_vcpu_trap_is_translation_fault(vcpu) && kvm_vcpu_dabt_isvalid(vcpu) && !kvm_vcpu_abt_issea(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); if (valid) { int ret = __vgic_v2_perform_cpuif_access(vcpu); if (ret == 1) return true; /* Promote an illegal access to an SError.*/ if (ret == -1) *exit_code = ARM_EXCEPTION_EL1_SERROR; } } return false; } typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code); /* * Allow the hypervisor to handle the exit with an exit handler if it has one. * * Returns true if the hypervisor handled the exit, and control should go back * to the guest, or false if it hasn't. */ static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) { const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); exit_handler_fn fn; fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; if (fn) return fn(vcpu, exit_code); return false; } static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code) { /* * Check for the conditions of Cortex-A510's #2077057. When these occur * SPSR_EL2 can't be trusted, but isn't needed either as it is * unchanged from the value in vcpu_gp_regs(vcpu)->pstate. * Are we single-stepping the guest, and took a PAC exception from the * active-not-pending state? */ if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) && vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && *vcpu_cpsr(vcpu) & DBG_SPSR_SS && ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC) write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); } /* * Return true when we were able to fixup the guest exit and should return to * the guest, false when we should restore the host state and return to the * main run loop. */ static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) { /* * Save PSTATE early so that we can evaluate the vcpu mode * early on. */ synchronize_vcpu_pstate(vcpu, exit_code); /* * Check whether we want to repaint the state one way or * another. */ early_exit_filter(vcpu, exit_code); if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); if (ARM_SERROR_PENDING(*exit_code) && ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) { u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); /* * HVC already have an adjusted PC, which we need to * correct in order to return to after having injected * the SError. * * SMC, on the other hand, is *trapped*, meaning its * preferred return address is the SMC itself. */ if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); } /* * We're using the raw exception code in order to only process * the trap if no SError is pending. We will come back to the * same PC once the SError has been injected, and replay the * trapping instruction. */ if (*exit_code != ARM_EXCEPTION_TRAP) goto exit; /* Check if there's an exit handler and allow it to handle the exit. */ if (kvm_hyp_handle_exit(vcpu, exit_code)) goto guest; exit: /* Return to the host kernel and handle the exit */ return false; guest: /* Re-enter the guest */ asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); return true; } static inline void __kvm_unexpected_el2_exception(void) { extern char __guest_exit_restore_elr_and_panic[]; unsigned long addr, fixup; struct kvm_exception_table_entry *entry, *end; unsigned long elr_el2 = read_sysreg(elr_el2); entry = &__start___kvm_ex_table; end = &__stop___kvm_ex_table; while (entry < end) { addr = (unsigned long)&entry->insn + entry->insn; fixup = (unsigned long)&entry->fixup + entry->fixup; if (addr != elr_el2) { entry++; continue; } write_sysreg(fixup, elr_el2); return; } /* Trigger a panic after restoring the hyp context. */ this_cpu_ptr(&kvm_hyp_ctxt)->sys_regs[ELR_EL2] = elr_el2; write_sysreg(__guest_exit_restore_elr_and_panic, elr_el2); } #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
// SPDX-License-Identifier: GPL-2.0+ /* Copyright (c) 2015-2016 Quantenna Communications. All rights reserved. */ #include <linux/kernel.h> #include <linux/etherdevice.h> #include <linux/vmalloc.h> #include <linux/ieee80211.h> #include <net/cfg80211.h> #include <net/netlink.h> #include "cfg80211.h" #include "commands.h" #include "core.h" #include "util.h" #include "bus.h" /* Supported rates to be advertised to the cfg80211 */ static struct ieee80211_rate qtnf_rates_2g[] = { {.bitrate = 10, .hw_value = 2, }, {.bitrate = 20, .hw_value = 4, }, {.bitrate = 55, .hw_value = 11, }, {.bitrate = 110, .hw_value = 22, }, {.bitrate = 60, .hw_value = 12, }, {.bitrate = 90, .hw_value = 18, }, {.bitrate = 120, .hw_value = 24, }, {.bitrate = 180, .hw_value = 36, }, {.bitrate = 240, .hw_value = 48, }, {.bitrate = 360, .hw_value = 72, }, {.bitrate = 480, .hw_value = 96, }, {.bitrate = 540, .hw_value = 108, }, }; /* Supported rates to be advertised to the cfg80211 */ static struct ieee80211_rate qtnf_rates_5g[] = { {.bitrate = 60, .hw_value = 12, }, {.bitrate = 90, .hw_value = 18, }, {.bitrate = 120, .hw_value = 24, }, {.bitrate = 180, .hw_value = 36, }, {.bitrate = 240, .hw_value = 48, }, {.bitrate = 360, .hw_value = 72, }, {.bitrate = 480, .hw_value = 96, }, {.bitrate = 540, .hw_value = 108, }, }; /* Supported crypto cipher suits to be advertised to cfg80211 */ static const u32 qtnf_cipher_suites[] = { WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_AES_CMAC, }; /* Supported mgmt frame types to be advertised to cfg80211 */ static const struct ieee80211_txrx_stypes qtnf_mgmt_stypes[NUM_NL80211_IFTYPES] = { [NL80211_IFTYPE_STATION] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4), }, [NL80211_IFTYPE_AP] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4), }, }; static int qtnf_validate_iface_combinations(struct wiphy *wiphy, struct qtnf_vif *change_vif, enum nl80211_iftype new_type) { struct qtnf_wmac *mac; struct qtnf_vif *vif; int i; int ret = 0; struct iface_combination_params params = { .num_different_channels = 1, }; mac = wiphy_priv(wiphy); if (!mac) return -EFAULT; for (i = 0; i < QTNF_MAX_INTF; i++) { vif = &mac->iflist[i]; if (vif->wdev.iftype != NL80211_IFTYPE_UNSPECIFIED) params.iftype_num[vif->wdev.iftype]++; } if (change_vif) { params.iftype_num[new_type]++; params.iftype_num[change_vif->wdev.iftype]--; } else { params.iftype_num[new_type]++; } ret = cfg80211_check_combinations(wiphy, &params); if (ret) return ret; /* Check repeater interface combination: primary VIF should be STA only. * STA (primary) + AP (secondary) is OK. * AP (primary) + STA (secondary) is not supported. */ vif = qtnf_mac_get_base_vif(mac); if (vif && vif->wdev.iftype == NL80211_IFTYPE_AP && vif != change_vif && new_type == NL80211_IFTYPE_STATION) { ret = -EINVAL; pr_err("MAC%u invalid combination: AP as primary repeater interface is not supported\n", mac->macid); } return ret; } static int qtnf_change_virtual_intf(struct wiphy *wiphy, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); u8 *mac_addr = NULL; int use4addr = 0; int ret; ret = qtnf_validate_iface_combinations(wiphy, vif, type); if (ret) { pr_err("VIF%u.%u combination check: failed to set type %d\n", vif->mac->macid, vif->vifid, type); return ret; } if (params) { mac_addr = params->macaddr; use4addr = params->use_4addr; } qtnf_scan_done(vif->mac, true); ret = qtnf_cmd_send_change_intf_type(vif, type, use4addr, mac_addr); if (ret) { pr_err("VIF%u.%u: failed to change type to %d\n", vif->mac->macid, vif->vifid, type); return ret; } vif->wdev.iftype = type; return 0; } int qtnf_del_virtual_intf(struct wiphy *wiphy, struct wireless_dev *wdev) { struct net_device *netdev = wdev->netdev; struct qtnf_vif *vif; struct sk_buff *skb; if (WARN_ON(!netdev)) return -EFAULT; vif = qtnf_netdev_get_priv(wdev->netdev); qtnf_scan_done(vif->mac, true); /* Stop data */ netif_tx_stop_all_queues(netdev); if (netif_carrier_ok(netdev)) netif_carrier_off(netdev); while ((skb = skb_dequeue(&vif->high_pri_tx_queue))) dev_kfree_skb_any(skb); cancel_work_sync(&vif->high_pri_tx_work); if (netdev->reg_state == NETREG_REGISTERED) cfg80211_unregister_netdevice(netdev); if (qtnf_cmd_send_del_intf(vif)) pr_err("VIF%u.%u: failed to delete VIF\n", vif->mac->macid, vif->vifid); vif->netdev->ieee80211_ptr = NULL; vif->netdev = NULL; vif->wdev.iftype = NL80211_IFTYPE_UNSPECIFIED; return 0; } static struct wireless_dev *qtnf_add_virtual_intf(struct wiphy *wiphy, const char *name, unsigned char name_assign_t, enum nl80211_iftype type, struct vif_params *params) { struct qtnf_wmac *mac; struct qtnf_vif *vif; u8 *mac_addr = NULL; int use4addr = 0; int ret; mac = wiphy_priv(wiphy); if (!mac) return ERR_PTR(-EFAULT); ret = qtnf_validate_iface_combinations(wiphy, NULL, type); if (ret) { pr_err("MAC%u invalid combination: failed to add type %d\n", mac->macid, type); return ERR_PTR(ret); } switch (type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: vif = qtnf_mac_get_free_vif(mac); if (!vif) { pr_err("MAC%u: no free VIF available\n", mac->macid); return ERR_PTR(-EFAULT); } eth_zero_addr(vif->mac_addr); eth_zero_addr(vif->bssid); vif->bss_priority = QTNF_DEF_BSS_PRIORITY; memset(&vif->wdev, 0, sizeof(vif->wdev)); vif->wdev.wiphy = wiphy; vif->wdev.iftype = type; break; default: pr_err("MAC%u: unsupported IF type %d\n", mac->macid, type); return ERR_PTR(-ENOTSUPP); } if (params) { mac_addr = params->macaddr; use4addr = params->use_4addr; } ret = qtnf_cmd_send_add_intf(vif, type, use4addr, mac_addr); if (ret) { pr_err("VIF%u.%u: failed to add VIF %pM\n", mac->macid, vif->vifid, mac_addr); goto err_cmd; } if (!is_valid_ether_addr(vif->mac_addr)) { pr_err("VIF%u.%u: FW reported bad MAC: %pM\n", mac->macid, vif->vifid, vif->mac_addr); ret = -EINVAL; goto error_del_vif; } ret = qtnf_core_net_attach(mac, vif, name, name_assign_t); if (ret) { pr_err("VIF%u.%u: failed to attach netdev\n", mac->macid, vif->vifid); goto error_del_vif; } if (qtnf_hwcap_is_set(&mac->bus->hw_info, QLINK_HW_CAPAB_HW_BRIDGE)) { ret = qtnf_cmd_netdev_changeupper(vif, vif->netdev->ifindex); if (ret) { cfg80211_unregister_netdevice(vif->netdev); vif->netdev = NULL; goto error_del_vif; } } vif->wdev.netdev = vif->netdev; return &vif->wdev; error_del_vif: qtnf_cmd_send_del_intf(vif); err_cmd: vif->wdev.iftype = NL80211_IFTYPE_UNSPECIFIED; return ERR_PTR(ret); } static int qtnf_mgmt_set_appie(struct qtnf_vif *vif, const struct cfg80211_beacon_data *info) { int ret = 0; if (!info->beacon_ies || !info->beacon_ies_len) { ret = qtnf_cmd_send_mgmt_set_appie(vif, QLINK_IE_SET_BEACON_IES, NULL, 0); } else { ret = qtnf_cmd_send_mgmt_set_appie(vif, QLINK_IE_SET_BEACON_IES, info->beacon_ies, info->beacon_ies_len); } if (ret) goto out; if (!info->proberesp_ies || !info->proberesp_ies_len) { ret = qtnf_cmd_send_mgmt_set_appie(vif, QLINK_IE_SET_PROBE_RESP_IES, NULL, 0); } else { ret = qtnf_cmd_send_mgmt_set_appie(vif, QLINK_IE_SET_PROBE_RESP_IES, info->proberesp_ies, info->proberesp_ies_len); } if (ret) goto out; if (!info->assocresp_ies || !info->assocresp_ies_len) { ret = qtnf_cmd_send_mgmt_set_appie(vif, QLINK_IE_SET_ASSOC_RESP, NULL, 0); } else { ret = qtnf_cmd_send_mgmt_set_appie(vif, QLINK_IE_SET_ASSOC_RESP, info->assocresp_ies, info->assocresp_ies_len); } out: return ret; } static int qtnf_change_beacon(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ap_update *info) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); return qtnf_mgmt_set_appie(vif, &info->beacon); } static int qtnf_start_ap(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ap_settings *settings) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; ret = qtnf_cmd_send_start_ap(vif, settings); if (ret) pr_err("VIF%u.%u: failed to start AP\n", vif->mac->macid, vif->vifid); return ret; } static int qtnf_stop_ap(struct wiphy *wiphy, struct net_device *dev, unsigned int link_id) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; qtnf_scan_done(vif->mac, true); ret = qtnf_cmd_send_stop_ap(vif); if (ret) pr_err("VIF%u.%u: failed to stop AP operation in FW\n", vif->mac->macid, vif->vifid); netif_carrier_off(vif->netdev); return ret; } static int qtnf_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct qtnf_wmac *mac = wiphy_priv(wiphy); struct qtnf_vif *vif; int ret; vif = qtnf_mac_get_base_vif(mac); if (!vif) { pr_err("MAC%u: primary VIF is not configured\n", mac->macid); return -EFAULT; } ret = qtnf_cmd_send_update_phy_params(mac, changed); if (ret) pr_err("MAC%u: failed to update PHY params\n", mac->macid); return ret; } static void qtnf_update_mgmt_frame_registrations(struct wiphy *wiphy, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { struct qtnf_vif *vif = qtnf_netdev_get_priv(wdev->netdev); u16 new_mask = upd->interface_stypes; u16 old_mask = vif->mgmt_frames_bitmask; static const struct { u16 mask, qlink_type; } updates[] = { { .mask = BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_ASSOC_REQ >> 4), .qlink_type = QLINK_MGMT_FRAME_ASSOC_REQ, }, { .mask = BIT(IEEE80211_STYPE_AUTH >> 4), .qlink_type = QLINK_MGMT_FRAME_AUTH, }, { .mask = BIT(IEEE80211_STYPE_PROBE_REQ >> 4), .qlink_type = QLINK_MGMT_FRAME_PROBE_REQ, }, { .mask = BIT(IEEE80211_STYPE_ACTION >> 4), .qlink_type = QLINK_MGMT_FRAME_ACTION, }, }; unsigned int i; if (new_mask == old_mask) return; for (i = 0; i < ARRAY_SIZE(updates); i++) { u16 mask = updates[i].mask; u16 qlink_frame_type = updates[i].qlink_type; bool reg; /* the ! are here due to the assoc/reassoc merge */ if (!(new_mask & mask) == !(old_mask & mask)) continue; reg = new_mask & mask; if (qtnf_cmd_send_register_mgmt(vif, qlink_frame_type, reg)) pr_warn("VIF%u.%u: failed to %sregister qlink frame type 0x%x\n", vif->mac->macid, vif->vifid, reg ? "" : "un", qlink_frame_type); } vif->mgmt_frames_bitmask = new_mask; } static int qtnf_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { struct qtnf_vif *vif = qtnf_netdev_get_priv(wdev->netdev); const struct ieee80211_mgmt *mgmt_frame = (void *)params->buf; u32 short_cookie = get_random_u32(); u16 flags = 0; u16 freq; *cookie = short_cookie; if (params->offchan) flags |= QLINK_FRAME_TX_FLAG_OFFCHAN; if (params->no_cck) flags |= QLINK_FRAME_TX_FLAG_NO_CCK; if (params->dont_wait_for_ack) flags |= QLINK_FRAME_TX_FLAG_ACK_NOWAIT; /* If channel is not specified, pass "freq = 0" to tell device * firmware to use current channel. */ if (params->chan) freq = params->chan->center_freq; else freq = 0; pr_debug("%s freq:%u; FC:%.4X; DA:%pM; len:%zu; C:%.8X; FL:%.4X\n", wdev->netdev->name, freq, le16_to_cpu(mgmt_frame->frame_control), mgmt_frame->da, params->len, short_cookie, flags); return qtnf_cmd_send_frame(vif, short_cookie, flags, freq, params->buf, params->len); } static int qtnf_get_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); sinfo->generation = vif->generation; return qtnf_cmd_get_sta_info(vif, mac, sinfo); } static int qtnf_dump_station(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); const struct qtnf_sta_node *sta_node; int ret; switch (vif->wdev.iftype) { case NL80211_IFTYPE_STATION: if (idx != 0 || !vif->wdev.connected) return -ENOENT; ether_addr_copy(mac, vif->bssid); break; case NL80211_IFTYPE_AP: sta_node = qtnf_sta_list_lookup_index(&vif->sta_list, idx); if (unlikely(!sta_node)) return -ENOENT; ether_addr_copy(mac, sta_node->mac_addr); break; default: return -ENOTSUPP; } ret = qtnf_cmd_get_sta_info(vif, mac, sinfo); if (vif->wdev.iftype == NL80211_IFTYPE_AP) { if (ret == -ENOENT) { cfg80211_del_sta(vif->netdev, mac, GFP_KERNEL); sinfo->filled = 0; } } sinfo->generation = vif->generation; return ret; } static int qtnf_add_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; ret = qtnf_cmd_send_add_key(vif, key_index, pairwise, mac_addr, params); if (ret) pr_err("VIF%u.%u: failed to add key: cipher=%x idx=%u pw=%u\n", vif->mac->macid, vif->vifid, params->cipher, key_index, pairwise); return ret; } static int qtnf_del_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_index, bool pairwise, const u8 *mac_addr) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; ret = qtnf_cmd_send_del_key(vif, key_index, pairwise, mac_addr); if (ret) { if (ret == -ENOENT) { pr_debug("VIF%u.%u: key index %d out of bounds\n", vif->mac->macid, vif->vifid, key_index); } else { pr_err("VIF%u.%u: failed to delete key: idx=%u pw=%u\n", vif->mac->macid, vif->vifid, key_index, pairwise); } } return ret; } static int qtnf_set_default_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_index, bool unicast, bool multicast) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; ret = qtnf_cmd_send_set_default_key(vif, key_index, unicast, multicast); if (ret) pr_err("VIF%u.%u: failed to set dflt key: idx=%u uc=%u mc=%u\n", vif->mac->macid, vif->vifid, key_index, unicast, multicast); return ret; } static int qtnf_set_default_mgmt_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_index) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; ret = qtnf_cmd_send_set_default_mgmt_key(vif, key_index); if (ret) pr_err("VIF%u.%u: failed to set default MGMT key: idx=%u\n", vif->mac->macid, vif->vifid, key_index); return ret; } static int qtnf_change_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_parameters *params) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; ret = qtnf_cmd_send_change_sta(vif, mac, params); if (ret) pr_err("VIF%u.%u: failed to change STA %pM\n", vif->mac->macid, vif->vifid, mac); return ret; } static int qtnf_del_station(struct wiphy *wiphy, struct net_device *dev, struct station_del_parameters *params) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; if (params->mac && (vif->wdev.iftype == NL80211_IFTYPE_AP) && !is_broadcast_ether_addr(params->mac) && !qtnf_sta_list_lookup(&vif->sta_list, params->mac)) return 0; ret = qtnf_cmd_send_del_sta(vif, params); if (ret) pr_err("VIF%u.%u: failed to delete STA %pM\n", vif->mac->macid, vif->vifid, params->mac); return ret; } static int qtnf_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) { struct qtnf_wmac *mac = wiphy_priv(wiphy); int ret; cancel_delayed_work_sync(&mac->scan_timeout); mac->scan_req = request; ret = qtnf_cmd_send_scan(mac); if (ret) { pr_err("MAC%u: failed to start scan\n", mac->macid); mac->scan_req = NULL; goto out; } pr_debug("MAC%u: scan started\n", mac->macid); queue_delayed_work(mac->bus->workqueue, &mac->scan_timeout, QTNF_SCAN_TIMEOUT_SEC * HZ); out: return ret; } static int qtnf_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; if (vif->wdev.iftype != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; if (sme->auth_type == NL80211_AUTHTYPE_SAE && !(sme->flags & CONNECT_REQ_EXTERNAL_AUTH_SUPPORT)) { pr_err("can not offload authentication to userspace\n"); return -EOPNOTSUPP; } if (sme->bssid) ether_addr_copy(vif->bssid, sme->bssid); else eth_zero_addr(vif->bssid); ret = qtnf_cmd_send_connect(vif, sme); if (ret) pr_err("VIF%u.%u: failed to connect\n", vif->mac->macid, vif->vifid); return ret; } static int qtnf_external_auth(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_external_auth_params *auth) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !ether_addr_equal(vif->bssid, auth->bssid)) pr_warn("unexpected bssid: %pM", auth->bssid); ret = qtnf_cmd_send_external_auth(vif, auth); if (ret) pr_err("VIF%u.%u: failed to report external auth\n", vif->mac->macid, vif->vifid); return ret; } static int qtnf_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code) { struct qtnf_wmac *mac = wiphy_priv(wiphy); struct qtnf_vif *vif; int ret = 0; vif = qtnf_mac_get_base_vif(mac); if (!vif) { pr_err("MAC%u: primary VIF is not configured\n", mac->macid); return -EFAULT; } if (vif->wdev.iftype != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; ret = qtnf_cmd_send_disconnect(vif, reason_code); if (ret) pr_err("VIF%u.%u: failed to disconnect\n", mac->macid, vif->vifid); if (vif->wdev.connected) { netif_carrier_off(vif->netdev); cfg80211_disconnected(vif->netdev, reason_code, NULL, 0, true, GFP_KERNEL); } return ret; } static int qtnf_dump_survey(struct wiphy *wiphy, struct net_device *dev, int idx, struct survey_info *survey) { struct qtnf_wmac *mac = wiphy_priv(wiphy); struct wireless_dev *wdev = dev->ieee80211_ptr; struct ieee80211_supported_band *sband; const struct cfg80211_chan_def *chandef = wdev_chandef(wdev, 0); struct ieee80211_channel *chan; int ret; sband = wiphy->bands[NL80211_BAND_2GHZ]; if (sband && idx >= sband->n_channels) { idx -= sband->n_channels; sband = NULL; } if (!sband) sband = wiphy->bands[NL80211_BAND_5GHZ]; if (!sband || idx >= sband->n_channels) return -ENOENT; chan = &sband->channels[idx]; survey->channel = chan; survey->filled = 0x0; if (chandef && chan == chandef->chan) survey->filled = SURVEY_INFO_IN_USE; ret = qtnf_cmd_get_chan_stats(mac, chan->center_freq, survey); if (ret) pr_debug("failed to get chan(%d) stats from card\n", chan->hw_value); return ret; } static int qtnf_get_channel(struct wiphy *wiphy, struct wireless_dev *wdev, unsigned int link_id, struct cfg80211_chan_def *chandef) { struct net_device *ndev = wdev->netdev; struct qtnf_vif *vif; int ret; if (!ndev) return -ENODEV; vif = qtnf_netdev_get_priv(wdev->netdev); ret = qtnf_cmd_get_channel(vif, chandef); if (ret) { pr_err("%s: failed to get channel: %d\n", ndev->name, ret); ret = -ENODATA; goto out; } if (!cfg80211_chandef_valid(chandef)) { pr_err("%s: bad channel freq=%u cf1=%u cf2=%u bw=%u\n", ndev->name, chandef->chan->center_freq, chandef->center_freq1, chandef->center_freq2, chandef->width); ret = -ENODATA; goto out; } out: return ret; } static int qtnf_channel_switch(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_csa_settings *params) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; pr_debug("%s: chan(%u) count(%u) radar(%u) block_tx(%u)\n", dev->name, params->chandef.chan->hw_value, params->count, params->radar_required, params->block_tx); if (!cfg80211_chandef_valid(&params->chandef)) { pr_err("%s: invalid channel\n", dev->name); return -EINVAL; } ret = qtnf_cmd_send_chan_switch(vif, params); if (ret) pr_warn("%s: failed to switch to channel (%u)\n", dev->name, params->chandef.chan->hw_value); return ret; } static int qtnf_start_radar_detection(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_chan_def *chandef, u32 cac_time_ms, int link_id) { struct qtnf_vif *vif = qtnf_netdev_get_priv(ndev); int ret; if (wiphy_ext_feature_isset(wiphy, NL80211_EXT_FEATURE_DFS_OFFLOAD)) return -ENOTSUPP; ret = qtnf_cmd_start_cac(vif, chandef, cac_time_ms); if (ret) pr_err("%s: failed to start CAC ret=%d\n", ndev->name, ret); return ret; } static int qtnf_set_mac_acl(struct wiphy *wiphy, struct net_device *dev, const struct cfg80211_acl_data *params) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; ret = qtnf_cmd_set_mac_acl(vif, params); if (ret) pr_err("%s: failed to set mac ACL ret=%d\n", dev->name, ret); return ret; } static int qtnf_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; ret = qtnf_cmd_send_pm_set(vif, enabled ? QLINK_PM_AUTO_STANDBY : QLINK_PM_OFF, timeout); if (ret) pr_err("%s: failed to set PM mode ret=%d\n", dev->name, ret); return ret; } static int qtnf_get_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, int *dbm) { struct qtnf_vif *vif = qtnf_netdev_get_priv(wdev->netdev); int ret; ret = qtnf_cmd_get_tx_power(vif, dbm); if (ret) pr_err("MAC%u: failed to get Tx power\n", vif->mac->macid); return ret; } static int qtnf_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { struct qtnf_vif *vif; int ret; if (wdev) { vif = qtnf_netdev_get_priv(wdev->netdev); } else { struct qtnf_wmac *mac = wiphy_priv(wiphy); vif = qtnf_mac_get_base_vif(mac); if (!vif) { pr_err("MAC%u: primary VIF is not configured\n", mac->macid); return -EFAULT; } } ret = qtnf_cmd_set_tx_power(vif, type, mbm); if (ret) pr_err("MAC%u: failed to set Tx power\n", vif->mac->macid); return ret; } static int qtnf_update_owe_info(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_update_owe_info *owe_info) { struct qtnf_vif *vif = qtnf_netdev_get_priv(dev); int ret; if (vif->wdev.iftype != NL80211_IFTYPE_AP) return -EOPNOTSUPP; ret = qtnf_cmd_send_update_owe(vif, owe_info); if (ret) pr_err("VIF%u.%u: failed to update owe info\n", vif->mac->macid, vif->vifid); return ret; } #ifdef CONFIG_PM static int qtnf_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wowlan) { struct qtnf_wmac *mac = wiphy_priv(wiphy); struct qtnf_vif *vif; int ret = 0; vif = qtnf_mac_get_base_vif(mac); if (!vif) { pr_err("MAC%u: primary VIF is not configured\n", mac->macid); ret = -EFAULT; goto exit; } if (!wowlan) { pr_debug("WoWLAN triggers are not enabled\n"); qtnf_virtual_intf_cleanup(vif->netdev); goto exit; } qtnf_scan_done(vif->mac, true); ret = qtnf_cmd_send_wowlan_set(vif, wowlan); if (ret) { pr_err("MAC%u: failed to set WoWLAN triggers\n", mac->macid); goto exit; } exit: return ret; } static int qtnf_resume(struct wiphy *wiphy) { struct qtnf_wmac *mac = wiphy_priv(wiphy); struct qtnf_vif *vif; int ret = 0; vif = qtnf_mac_get_base_vif(mac); if (!vif) { pr_err("MAC%u: primary VIF is not configured\n", mac->macid); return -EFAULT; } ret = qtnf_cmd_send_wowlan_set(vif, NULL); if (ret) pr_err("MAC%u: failed to reset WoWLAN triggers\n", mac->macid); return ret; } static void qtnf_set_wakeup(struct wiphy *wiphy, bool enabled) { struct qtnf_wmac *mac = wiphy_priv(wiphy); struct qtnf_bus *bus = mac->bus; device_set_wakeup_enable(bus->dev, enabled); } #endif static struct cfg80211_ops qtn_cfg80211_ops = { .add_virtual_intf = qtnf_add_virtual_intf, .change_virtual_intf = qtnf_change_virtual_intf, .del_virtual_intf = qtnf_del_virtual_intf, .start_ap = qtnf_start_ap, .change_beacon = qtnf_change_beacon, .stop_ap = qtnf_stop_ap, .set_wiphy_params = qtnf_set_wiphy_params, .update_mgmt_frame_registrations = qtnf_update_mgmt_frame_registrations, .mgmt_tx = qtnf_mgmt_tx, .change_station = qtnf_change_station, .del_station = qtnf_del_station, .get_station = qtnf_get_station, .dump_station = qtnf_dump_station, .add_key = qtnf_add_key, .del_key = qtnf_del_key, .set_default_key = qtnf_set_default_key, .set_default_mgmt_key = qtnf_set_default_mgmt_key, .scan = qtnf_scan, .connect = qtnf_connect, .external_auth = qtnf_external_auth, .disconnect = qtnf_disconnect, .dump_survey = qtnf_dump_survey, .get_channel = qtnf_get_channel, .channel_switch = qtnf_channel_switch, .start_radar_detection = qtnf_start_radar_detection, .set_mac_acl = qtnf_set_mac_acl, .set_power_mgmt = qtnf_set_power_mgmt, .get_tx_power = qtnf_get_tx_power, .set_tx_power = qtnf_set_tx_power, .update_owe_info = qtnf_update_owe_info, #ifdef CONFIG_PM .suspend = qtnf_suspend, .resume = qtnf_resume, .set_wakeup = qtnf_set_wakeup, #endif }; static void qtnf_cfg80211_reg_notifier(struct wiphy *wiphy, struct regulatory_request *req) { struct qtnf_wmac *mac = wiphy_priv(wiphy); enum nl80211_band band; int ret; pr_debug("MAC%u: initiator=%d alpha=%c%c\n", mac->macid, req->initiator, req->alpha2[0], req->alpha2[1]); ret = qtnf_cmd_reg_notify(mac, req, qtnf_slave_radar_get(), qtnf_dfs_offload_get()); if (ret) { pr_err("MAC%u: failed to update region to %c%c: %d\n", mac->macid, req->alpha2[0], req->alpha2[1], ret); return; } for (band = 0; band < NUM_NL80211_BANDS; ++band) { if (!wiphy->bands[band]) continue; ret = qtnf_cmd_band_info_get(mac, wiphy->bands[band]); if (ret) pr_err("MAC%u: failed to update band %u\n", mac->macid, band); } } struct wiphy *qtnf_wiphy_allocate(struct qtnf_bus *bus, struct platform_device *pdev) { struct wiphy *wiphy; if (qtnf_dfs_offload_get() && qtnf_hwcap_is_set(&bus->hw_info, QLINK_HW_CAPAB_DFS_OFFLOAD)) qtn_cfg80211_ops.start_radar_detection = NULL; if (!qtnf_hwcap_is_set(&bus->hw_info, QLINK_HW_CAPAB_PWR_MGMT)) qtn_cfg80211_ops.set_power_mgmt = NULL; wiphy = wiphy_new(&qtn_cfg80211_ops, sizeof(struct qtnf_wmac)); if (!wiphy) return NULL; if (pdev) set_wiphy_dev(wiphy, &pdev->dev); else set_wiphy_dev(wiphy, bus->dev); return wiphy; } static int qtnf_wiphy_setup_if_comb(struct wiphy *wiphy, struct qtnf_mac_info *mac_info) { struct ieee80211_iface_combination *if_comb; size_t n_if_comb; u16 interface_modes = 0; size_t i, j; if_comb = mac_info->if_comb; n_if_comb = mac_info->n_if_comb; if (!if_comb || !n_if_comb) return -ENOENT; for (i = 0; i < n_if_comb; i++) { if_comb[i].radar_detect_widths = mac_info->radar_detect_widths; for (j = 0; j < if_comb[i].n_limits; j++) interface_modes |= if_comb[i].limits[j].types; } wiphy->iface_combinations = if_comb; wiphy->n_iface_combinations = n_if_comb; wiphy->interface_modes = interface_modes; return 0; } int qtnf_wiphy_register(struct qtnf_hw_info *hw_info, struct qtnf_wmac *mac) { struct wiphy *wiphy = priv_to_wiphy(mac); struct qtnf_mac_info *macinfo = &mac->macinfo; int ret; bool regdomain_is_known; if (!wiphy) { pr_err("invalid wiphy pointer\n"); return -EFAULT; } wiphy->frag_threshold = macinfo->frag_thr; wiphy->rts_threshold = macinfo->rts_thr; wiphy->retry_short = macinfo->sretry_limit; wiphy->retry_long = macinfo->lretry_limit; wiphy->coverage_class = macinfo->coverage_class; wiphy->max_scan_ssids = (macinfo->max_scan_ssids) ? macinfo->max_scan_ssids : 1; wiphy->max_scan_ie_len = QTNF_MAX_VSIE_LEN; wiphy->mgmt_stypes = qtnf_mgmt_stypes; wiphy->max_remain_on_channel_duration = 5000; wiphy->max_acl_mac_addrs = macinfo->max_acl_mac_addrs; wiphy->max_num_csa_counters = 2; ret = qtnf_wiphy_setup_if_comb(wiphy, macinfo); if (ret) goto out; /* Initialize cipher suits */ wiphy->cipher_suites = qtnf_cipher_suites; wiphy->n_cipher_suites = ARRAY_SIZE(qtnf_cipher_suites); wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wiphy->flags |= WIPHY_FLAG_HAVE_AP_SME | WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD | WIPHY_FLAG_AP_UAPSD | WIPHY_FLAG_HAS_CHANNEL_SWITCH | WIPHY_FLAG_4ADDR_STATION | WIPHY_FLAG_NETNS_OK; wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; if (qtnf_dfs_offload_get() && qtnf_hwcap_is_set(hw_info, QLINK_HW_CAPAB_DFS_OFFLOAD)) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_DFS_OFFLOAD); if (qtnf_hwcap_is_set(hw_info, QLINK_HW_CAPAB_SCAN_DWELL)) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL); wiphy->probe_resp_offload = NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS | NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2; wiphy->available_antennas_tx = macinfo->num_tx_chain; wiphy->available_antennas_rx = macinfo->num_rx_chain; wiphy->max_ap_assoc_sta = macinfo->max_ap_assoc_sta; wiphy->ht_capa_mod_mask = &macinfo->ht_cap_mod_mask; wiphy->vht_capa_mod_mask = &macinfo->vht_cap_mod_mask; ether_addr_copy(wiphy->perm_addr, mac->macaddr); if (qtnf_hwcap_is_set(hw_info, QLINK_HW_CAPAB_STA_INACT_TIMEOUT)) wiphy->features |= NL80211_FEATURE_INACTIVITY_TIMER; if (qtnf_hwcap_is_set(hw_info, QLINK_HW_CAPAB_SCAN_RANDOM_MAC_ADDR)) wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; if (!qtnf_hwcap_is_set(hw_info, QLINK_HW_CAPAB_OBSS_SCAN)) wiphy->features |= NL80211_FEATURE_NEED_OBSS_SCAN; if (qtnf_hwcap_is_set(hw_info, QLINK_HW_CAPAB_SAE)) wiphy->features |= NL80211_FEATURE_SAE; #ifdef CONFIG_PM if (macinfo->wowlan) wiphy->wowlan = macinfo->wowlan; #endif regdomain_is_known = isalpha(mac->rd->alpha2[0]) && isalpha(mac->rd->alpha2[1]); if (qtnf_hwcap_is_set(hw_info, QLINK_HW_CAPAB_REG_UPDATE)) { wiphy->reg_notifier = qtnf_cfg80211_reg_notifier; if (mac->rd->alpha2[0] == '9' && mac->rd->alpha2[1] == '9') { wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG | REGULATORY_STRICT_REG; wiphy_apply_custom_regulatory(wiphy, mac->rd); } else if (regdomain_is_known) { wiphy->regulatory_flags |= REGULATORY_STRICT_REG; } } else { wiphy->regulatory_flags |= REGULATORY_WIPHY_SELF_MANAGED; } if (mac->macinfo.extended_capabilities_len) { wiphy->extended_capabilities = mac->macinfo.extended_capabilities; wiphy->extended_capabilities_mask = mac->macinfo.extended_capabilities_mask; wiphy->extended_capabilities_len = mac->macinfo.extended_capabilities_len; } strscpy(wiphy->fw_version, hw_info->fw_version, sizeof(wiphy->fw_version)); wiphy->hw_version = hw_info->hw_version; ret = wiphy_register(wiphy); if (ret < 0) goto out; if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) ret = regulatory_set_wiphy_regd(wiphy, mac->rd); else if (regdomain_is_known) ret = regulatory_hint(wiphy, mac->rd->alpha2); out: return ret; } void qtnf_netdev_updown(struct net_device *ndev, bool up) { struct qtnf_vif *vif = qtnf_netdev_get_priv(ndev); if (qtnf_cmd_send_updown_intf(vif, up)) pr_err("failed to send %s command to VIF%u.%u\n", up ? "UP" : "DOWN", vif->mac->macid, vif->vifid); } void qtnf_virtual_intf_cleanup(struct net_device *ndev) { struct qtnf_vif *vif = qtnf_netdev_get_priv(ndev); struct qtnf_wmac *mac = wiphy_priv(vif->wdev.wiphy); if (vif->wdev.iftype == NL80211_IFTYPE_STATION) qtnf_disconnect(vif->wdev.wiphy, ndev, WLAN_REASON_DEAUTH_LEAVING); qtnf_scan_done(mac, true); } void qtnf_cfg80211_vif_reset(struct qtnf_vif *vif) { if (vif->wdev.iftype == NL80211_IFTYPE_STATION) cfg80211_disconnected(vif->netdev, WLAN_REASON_DEAUTH_LEAVING, NULL, 0, 1, GFP_KERNEL); cfg80211_shutdown_all_interfaces(vif->wdev.wiphy); } void qtnf_band_init_rates(struct ieee80211_supported_band *band) { switch (band->band) { case NL80211_BAND_2GHZ: band->bitrates = qtnf_rates_2g; band->n_bitrates = ARRAY_SIZE(qtnf_rates_2g); break; case NL80211_BAND_5GHZ: band->bitrates = qtnf_rates_5g; band->n_bitrates = ARRAY_SIZE(qtnf_rates_5g); break; default: band->bitrates = NULL; band->n_bitrates = 0; break; } }
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) // Copyright(c) 2015-2021 Intel Corporation. /* * SDW Intel ACPI scan helpers */ #include <linux/acpi.h> #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/fwnode.h> #include <linux/module.h> #include <linux/soundwire/sdw_intel.h> #include <linux/string.h> #define SDW_LINK_TYPE 4 /* from Intel ACPI documentation */ static int ctrl_link_mask; module_param_named(sdw_link_mask, ctrl_link_mask, int, 0444); MODULE_PARM_DESC(sdw_link_mask, "Intel link mask (one bit per link)"); static ulong ctrl_addr = 0x40000000; module_param_named(sdw_ctrl_addr, ctrl_addr, ulong, 0444); MODULE_PARM_DESC(sdw_ctrl_addr, "Intel SoundWire Controller _ADR"); static bool is_link_enabled(struct fwnode_handle *fw_node, u8 idx) { struct fwnode_handle *link; char name[32]; u32 quirk_mask = 0; /* Find master handle */ snprintf(name, sizeof(name), "mipi-sdw-link-%hhu-subproperties", idx); link = fwnode_get_named_child_node(fw_node, name); if (!link) return false; fwnode_property_read_u32(link, "intel-quirk-mask", &quirk_mask); fwnode_handle_put(link); if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE) return false; return true; } static int sdw_intel_scan_controller(struct sdw_intel_acpi_info *info) { struct acpi_device *adev = acpi_fetch_acpi_dev(info->handle); struct fwnode_handle *fwnode; unsigned long list; unsigned int i; u32 count; u32 tmp; int ret; if (!adev) return -EINVAL; fwnode = acpi_fwnode_handle(adev); /* * Found controller, find links supported * * In theory we could check the number of links supported in * hardware, but in that step we cannot assume SoundWire IP is * powered. * * In addition, if the BIOS doesn't even provide this * 'master-count' property then all the inits based on link * masks will fail as well. * * We will check the hardware capabilities in the startup() step */ ret = fwnode_property_read_u32(fwnode, "mipi-sdw-manager-list", &tmp); if (ret) { ret = fwnode_property_read_u32(fwnode, "mipi-sdw-master-count", &count); if (ret) { dev_err(&adev->dev, "Failed to read mipi-sdw-master-count: %d\n", ret); return ret; } list = GENMASK(count - 1, 0); } else { list = tmp; count = hweight32(list); } /* Check count is within bounds */ if (count > SDW_INTEL_MAX_LINKS) { dev_err(&adev->dev, "Link count %d exceeds max %d\n", count, SDW_INTEL_MAX_LINKS); return -EINVAL; } if (!count) { dev_warn(&adev->dev, "No SoundWire links detected\n"); return -EINVAL; } dev_dbg(&adev->dev, "ACPI reports %d SDW Link devices\n", count); info->count = count; info->link_mask = 0; for_each_set_bit(i, &list, SDW_INTEL_MAX_LINKS) { if (ctrl_link_mask && !(ctrl_link_mask & BIT(i))) { dev_dbg(&adev->dev, "Link %d masked, will not be enabled\n", i); continue; } if (!is_link_enabled(fwnode, i)) { dev_dbg(&adev->dev, "Link %d not selected in firmware\n", i); continue; } info->link_mask |= BIT(i); } return 0; } static acpi_status sdw_intel_acpi_cb(acpi_handle handle, u32 level, void *cdata, void **return_value) { struct sdw_intel_acpi_info *info = cdata; u64 adr; int ret; ret = acpi_get_local_u64_address(handle, &adr); if (ret < 0) return AE_OK; /* keep going */ if (!acpi_fetch_acpi_dev(handle)) { pr_err("%s: Couldn't find ACPI handle\n", __func__); return AE_NOT_FOUND; } /* * On some Intel platforms, multiple children of the HDAS * device can be found, but only one of them is the SoundWire * controller. The SNDW device is always exposed with * Name(_ADR, 0x40000000), with bits 31..28 representing the * SoundWire link so filter accordingly */ if (FIELD_GET(GENMASK(31, 28), adr) != SDW_LINK_TYPE) return AE_OK; /* keep going */ if (adr != ctrl_addr) return AE_OK; /* keep going */ /* found the correct SoundWire controller */ info->handle = handle; /* device found, stop namespace walk */ return AE_CTRL_TERMINATE; } /** * sdw_intel_acpi_scan() - SoundWire Intel init routine * @parent_handle: ACPI parent handle * @info: description of what firmware/DSDT tables expose * * This scans the namespace and queries firmware to figure out which * links to enable. A follow-up use of sdw_intel_probe() and * sdw_intel_startup() is required for creation of devices and bus * startup */ int sdw_intel_acpi_scan(acpi_handle *parent_handle, struct sdw_intel_acpi_info *info) { acpi_status status; info->handle = NULL; /* * In the HDAS ACPI scope, 'SNDW' may be either the child of * 'HDAS' or the grandchild of 'HDAS'. So let's go through * the ACPI from 'HDAS' at max depth of 2 to find the 'SNDW' * device. */ status = acpi_walk_namespace(ACPI_TYPE_DEVICE, parent_handle, 2, sdw_intel_acpi_cb, NULL, info, NULL); if (ACPI_FAILURE(status) || info->handle == NULL) return -ENODEV; return sdw_intel_scan_controller(info); } EXPORT_SYMBOL_NS(sdw_intel_acpi_scan, "SND_INTEL_SOUNDWIRE_ACPI"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Intel Soundwire ACPI helpers");