module_content
stringlengths 18
1.05M
|
---|
module generic_baseblocks_v2_1_carry_latch_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN | I;
end else begin : USE_FPGA
OR2L or2l_inst1
(
.O(O),
.DI(CIN),
.SRI(I)
);
end
endgenerate
endmodule |
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule |
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule |
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule |
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule |
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule |
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule |
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule |
module generic_baseblocks_v2_1_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule |
module generic_baseblocks_v2_1_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule |
module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule |
module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule |
module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule |
module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule |
module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule |
module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule |
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule |
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule |
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule |
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule |
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.