module_content
stringlengths 18
1.05M
|
---|
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module glbl ();
parameter ROC_WIDTH = 100000;
parameter TOC_WIDTH = 0;
//-------- STARTUP Globals --------------
wire GSR;
wire GTS;
wire GWE;
wire PRLD;
tri1 p_up_tmp;
tri (weak1, strong0) PLL_LOCKG = p_up_tmp;
wire PROGB_GLBL;
wire CCLKO_GLBL;
wire FCSBO_GLBL;
wire [3:0] DO_GLBL;
wire [3:0] DI_GLBL;
reg GSR_int;
reg GTS_int;
reg PRLD_int;
//-------- JTAG Globals --------------
wire JTAG_TDO_GLBL;
wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG_TRST_GLBL;
reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;
reg JTAG_RUNTEST_GLBL;
reg JTAG_SEL1_GLBL = 0;
reg JTAG_SEL2_GLBL = 0 ;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;
reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG_USER_TDO2_GLBL = 1'bz;
reg JTAG_USER_TDO3_GLBL = 1'bz;
reg JTAG_USER_TDO4_GLBL = 1'bz;
assign (weak1, weak0) GSR = GSR_int;
assign (weak1, weak0) GTS = GTS_int;
assign (weak1, weak0) PRLD = PRLD_int;
initial begin
GSR_int = 1'b1;
PRLD_int = 1'b1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'b0;
end
initial begin
GTS_int = 1'b1;
#(TOC_WIDTH)
GTS_int = 1'b0;
end
endmodule |
module generic_baseblocks_v2_1_0_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule |
module generic_baseblocks_v2_1_0_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule |
module generic_baseblocks_v2_1_0_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule |
module fifo_with_byteenables (
clk,
areset,
sreset,
write_data,
write_byteenables,
write,
push,
read_data,
pop,
used,
full,
empty
);
parameter DATA_WIDTH = 32;
parameter FIFO_DEPTH = 128;
parameter FIFO_DEPTH_LOG2 = 7; // this impacts the width of the used port so it can't be local
parameter LATENCY = 1; // number of clock cycles after asserting 'pop' that valid data comes out
input clk;
input areset;
input sreset;
input [DATA_WIDTH-1:0] write_data;
input [(DATA_WIDTH/8)-1:0] write_byteenables;
input write;
input push; // when you have written to all the byte lanes assert this to commit the word (you can use it at the same time as the byte enables)
output wire [DATA_WIDTH-1:0] read_data;
input pop; // use this to read a word out of the FIFO
output wire [FIFO_DEPTH_LOG2:0] used;
output wire full;
output wire empty;
reg [FIFO_DEPTH_LOG2-1:0] write_address;
reg [FIFO_DEPTH_LOG2-1:0] read_address;
reg [FIFO_DEPTH_LOG2:0] internal_used;
wire internal_full;
wire internal_empty;
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
write_address <= 0;
end
else
begin
if (sreset)
begin
write_address <= 0;
end
else if (push == 1)
begin
write_address <= write_address + 1'b1;
end
end
end
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
read_address <= 0;
end
else
begin
if (sreset)
begin
read_address <= 0;
end
else if (pop == 1)
begin
read_address <= read_address + 1'b1;
end
end
end
// TODO: Change this to an inferrered RAM when Quartus II supports byte enables for inferred RAM
altsyncram the_dp_ram (
.clock0 (clk),
.wren_a (write),
.byteena_a (write_byteenables),
.data_a (write_data),
.address_a (write_address),
.q_b (read_data),
.address_b (read_address)
);
defparam the_dp_ram.operation_mode = "DUAL_PORT"; // simple dual port (one read, one write port)
defparam the_dp_ram.lpm_type = "altsyncram";
defparam the_dp_ram.read_during_write_mode_mixed_ports = "DONT_CARE";
defparam the_dp_ram.power_up_uninitialized = "TRUE";
defparam the_dp_ram.byte_size = 8;
defparam the_dp_ram.width_a = DATA_WIDTH;
defparam the_dp_ram.width_b = DATA_WIDTH;
defparam the_dp_ram.widthad_a = FIFO_DEPTH_LOG2;
defparam the_dp_ram.widthad_b = FIFO_DEPTH_LOG2;
defparam the_dp_ram.width_byteena_a = (DATA_WIDTH/8);
defparam the_dp_ram.numwords_a = FIFO_DEPTH;
defparam the_dp_ram.numwords_b = FIFO_DEPTH;
defparam the_dp_ram.address_reg_b = "CLOCK0";
defparam the_dp_ram.outdata_reg_b = (LATENCY == 2)? "CLOCK0" : "UNREGISTERED";
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
internal_used <= 0;
end
else
begin
if (sreset)
begin
internal_used <= 0;
end
else
begin
case ({push, pop})
2'b01: internal_used <= internal_used - 1'b1;
2'b10: internal_used <= internal_used + 1'b1;
default: internal_used <= internal_used;
endcase
end
end
end
assign internal_empty = (read_address == write_address) & (internal_used == 0);
assign internal_full = (write_address == read_address) & (internal_used != 0);
assign used = internal_used; // this signal reflects the number of words in the FIFO
assign empty = internal_empty; // combinational so it'll glitch a little bit
assign full = internal_full; // dito
endmodule |
module write_burst_control (
clk,
reset,
sw_reset,
sw_stop,
length,
eop_enabled,
eop,
ready,
valid,
early_termination,
address_in,
write_in,
max_burst_count,
write_fifo_used,
waitrequest,
short_first_access_enable,
short_last_access_enable,
short_first_and_last_access_enable,
address_out,
write_out,
burst_count,
stall,
reset_taken,
stopped
);
parameter BURST_ENABLE = 1; // set to 0 to hardwire the address and write signals straight out
parameter BURST_COUNT_WIDTH = 3;
parameter WORD_SIZE = 4;
parameter WORD_SIZE_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter LENGTH_WIDTH = 32;
parameter WRITE_FIFO_USED_WIDTH = 5;
parameter BURST_WRAPPING_SUPPORT = 1; // set 1 for on, set 0 for off. This parameter can't be enabled when the master supports programmable bursting.
localparam BURST_OFFSET_WIDTH = (BURST_COUNT_WIDTH == 1)? 1: (BURST_COUNT_WIDTH-1);
input clk;
input reset;
input sw_reset;
input sw_stop;
input [LENGTH_WIDTH-1:0] length;
input eop_enabled;
input eop;
input ready;
input valid;
input early_termination;
input [ADDRESS_WIDTH-1:0] address_in;
input write_in;
input [BURST_COUNT_WIDTH-1:0] max_burst_count; // will be either a hardcoded input or programmable
input [WRITE_FIFO_USED_WIDTH:0] write_fifo_used; // using the fifo full MSB as well
input waitrequest; // this needs to be the waitrequest from the fabric and not the byte enable generator since partial transfers count as burst beats
input short_first_access_enable;
input short_last_access_enable;
input short_first_and_last_access_enable;
output wire [ADDRESS_WIDTH-1:0] address_out;
output wire write_out;
output wire [BURST_COUNT_WIDTH-1:0] burst_count;
output wire stall; // need to issue a stall if there isn't enough data buffered to start a burst
output wire reset_taken; // if a reset occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
output wire stopped; // if a stop occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
reg [ADDRESS_WIDTH-1:0] address_d1;
reg [BURST_COUNT_WIDTH-1:0] burst_counter; // interal statemachine register
wire idle_state;
wire decrement_burst_counter;
wire ready_during_idle_state; // when there is enough data buffered to start up the burst counter state machine again
wire ready_for_quick_burst; // when there is enough data bufferred to start another burst immediately
wire burst_begin_from_idle_state;
wire burst_begin_quickly; // start another burst immediately after the previous burst completes
wire burst_begin;
wire burst_of_one_enable; // asserted when partial word accesses are occuring or the last early termination word is being written out
wire [BURST_COUNT_WIDTH-1:0] short_length_burst;
wire [BURST_COUNT_WIDTH-1:0] short_packet_burst;
wire short_length_burst_enable;
wire short_early_termination_burst_enable;
wire short_packet_burst_enable;
wire [3:0] mux_select;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count_d1;
reg packet_complete;
wire [BURST_OFFSET_WIDTH-1:0] burst_offset;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
packet_complete <= 0;
end
else
begin
if ((packet_complete == 1) & (write_fifo_used == 0))
begin
packet_complete <= 0;
end
else if ((eop == 1) & (ready == 1) & (valid == 1))
begin
packet_complete <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_d1 <= 0;
end
else if (burst_begin == 1)
begin
address_d1 <= (burst_begin_quickly == 1)? (address_in + WORD_SIZE) : address_in;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
burst_counter <= 0;
end
else
if ((burst_begin == 1) & (sw_reset == 0) & (sw_stop == 0)) // for reset and stop we need to let the burst complete so the fabric doesn't lock up
begin
burst_counter <= internal_burst_count;
end
else if (decrement_burst_counter == 1)
begin
burst_counter <= burst_counter - 1'b1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
internal_burst_count_d1 <= 0;
end
else if (burst_begin == 1)
begin
internal_burst_count_d1 <= internal_burst_count;
end
end
// state machine status and control
assign idle_state = (burst_counter == 0); // any time idle_state is set then there is no burst underway
assign decrement_burst_counter = (idle_state == 0) & (waitrequest == 0);
// control for all the various cases that a burst of one beat needs to be posted
assign burst_offset = address_in[BURST_OFFSET_WIDTH+WORD_SIZE_LOG2-1:WORD_SIZE_LOG2];
assign burst_of_one_enable = (short_first_access_enable == 1) | (short_last_access_enable == 1) | (short_first_and_last_access_enable == 1) | (early_termination == 1) |
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 1) & (burst_offset != 0)) | // need to make sure bursts start on burst boundaries
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 0) & (burst_offset != (max_burst_count - 1))); // need to make sure bursts start on burst boundaries
assign short_length_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 0) & (burst_of_one_enable == 0);
assign short_early_termination_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 1) & (burst_of_one_enable == 0); // trim back the burst count regardless if there is enough data buffered for a full burst
assign short_packet_burst_enable = (short_early_termination_burst_enable == 0) & (eop_enabled == 1) & (packet_complete == 1) & (write_fifo_used < max_burst_count) & (burst_of_one_enable == 0);
// various burst amounts that are not the max burst count or 1 that feed the internal_burst_count mux. short_length_burst is used when short_length_burst_enable or short_early_termination_burst_enable is asserted.
assign short_length_burst = (length >> WORD_SIZE_LOG2) & {(BURST_COUNT_WIDTH-1){1'b1}};
assign short_packet_burst = (write_fifo_used & {(BURST_COUNT_WIDTH-1){1'b1}});
// since the write master may not have enough data buffered in the FIFO to start a burst the FIFO fill level must be checked before starting another burst
assign ready_during_idle_state = (burst_of_one_enable == 1) | // burst of one is only enabled when there is data in the write fifo so write_fifo_used doesn't need to be checked in this case
((write_fifo_used >= short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used >= short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used >= short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used >= max_burst_count);
// same as ready_during_idle_state only we need to make sure there is more data in the fifo than the burst being posted (since the FIFO is in the middle of being popped)
assign ready_for_quick_burst = (length >= (max_burst_count << WORD_SIZE_LOG2)) & (burst_of_one_enable == 0) & // address and length lags by one clock cycle so this will let the state machine catch up
( ((write_fifo_used > short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used > short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used > short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used > max_burst_count) );
// burst begin signals used to start up the burst counter state machine
assign burst_begin_from_idle_state = (write_in == 1) & (idle_state == 1) & (ready_during_idle_state == 1); // start the state machine up again
assign burst_begin_quickly = (write_in == 1) & (burst_counter == 1) & (waitrequest == 0) & (ready_for_quick_burst == 1); // enough data is buffered to start another burst immediately after the current burst
assign burst_begin = (burst_begin_quickly == 1) | (burst_begin_from_idle_state == 1);
assign mux_select = {short_packet_burst_enable, short_early_termination_burst_enable, short_length_burst_enable, burst_of_one_enable};
// one-hot mux that selects the appropriate burst count to present to the fabric
always @ (short_length_burst or short_packet_burst or max_burst_count or mux_select)
begin
case (mux_select)
4'b0001 : internal_burst_count = 1;
4'b0010 : internal_burst_count = short_length_burst;
4'b0100 : internal_burst_count = short_length_burst;
4'b1000 : internal_burst_count = short_packet_burst;
default : internal_burst_count = max_burst_count;
endcase
end
generate
if (BURST_ENABLE == 1)
begin
// outputs that need to be held constant throughout the entire burst transaction
assign address_out = address_d1;
assign burst_count = internal_burst_count_d1;
assign write_out = (idle_state == 0);
assign stall = (idle_state == 1);
assign reset_taken = (sw_reset == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct reset timing
assign stopped = (sw_stop == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct stop timing
end
else
begin
assign address_out = address_in;
assign burst_count = 1; // this will be stubbed at the top level
assign write_out = write_in;
assign stall = 0;
assign reset_taken = sw_reset;
assign stopped = sw_stop;
end
endgenerate
endmodule |
module write_burst_control (
clk,
reset,
sw_reset,
sw_stop,
length,
eop_enabled,
eop,
ready,
valid,
early_termination,
address_in,
write_in,
max_burst_count,
write_fifo_used,
waitrequest,
short_first_access_enable,
short_last_access_enable,
short_first_and_last_access_enable,
address_out,
write_out,
burst_count,
stall,
reset_taken,
stopped
);
parameter BURST_ENABLE = 1; // set to 0 to hardwire the address and write signals straight out
parameter BURST_COUNT_WIDTH = 3;
parameter WORD_SIZE = 4;
parameter WORD_SIZE_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter LENGTH_WIDTH = 32;
parameter WRITE_FIFO_USED_WIDTH = 5;
parameter BURST_WRAPPING_SUPPORT = 1; // set 1 for on, set 0 for off. This parameter can't be enabled when the master supports programmable bursting.
localparam BURST_OFFSET_WIDTH = (BURST_COUNT_WIDTH == 1)? 1: (BURST_COUNT_WIDTH-1);
input clk;
input reset;
input sw_reset;
input sw_stop;
input [LENGTH_WIDTH-1:0] length;
input eop_enabled;
input eop;
input ready;
input valid;
input early_termination;
input [ADDRESS_WIDTH-1:0] address_in;
input write_in;
input [BURST_COUNT_WIDTH-1:0] max_burst_count; // will be either a hardcoded input or programmable
input [WRITE_FIFO_USED_WIDTH:0] write_fifo_used; // using the fifo full MSB as well
input waitrequest; // this needs to be the waitrequest from the fabric and not the byte enable generator since partial transfers count as burst beats
input short_first_access_enable;
input short_last_access_enable;
input short_first_and_last_access_enable;
output wire [ADDRESS_WIDTH-1:0] address_out;
output wire write_out;
output wire [BURST_COUNT_WIDTH-1:0] burst_count;
output wire stall; // need to issue a stall if there isn't enough data buffered to start a burst
output wire reset_taken; // if a reset occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
output wire stopped; // if a stop occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
reg [ADDRESS_WIDTH-1:0] address_d1;
reg [BURST_COUNT_WIDTH-1:0] burst_counter; // interal statemachine register
wire idle_state;
wire decrement_burst_counter;
wire ready_during_idle_state; // when there is enough data buffered to start up the burst counter state machine again
wire ready_for_quick_burst; // when there is enough data bufferred to start another burst immediately
wire burst_begin_from_idle_state;
wire burst_begin_quickly; // start another burst immediately after the previous burst completes
wire burst_begin;
wire burst_of_one_enable; // asserted when partial word accesses are occuring or the last early termination word is being written out
wire [BURST_COUNT_WIDTH-1:0] short_length_burst;
wire [BURST_COUNT_WIDTH-1:0] short_packet_burst;
wire short_length_burst_enable;
wire short_early_termination_burst_enable;
wire short_packet_burst_enable;
wire [3:0] mux_select;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count_d1;
reg packet_complete;
wire [BURST_OFFSET_WIDTH-1:0] burst_offset;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
packet_complete <= 0;
end
else
begin
if ((packet_complete == 1) & (write_fifo_used == 0))
begin
packet_complete <= 0;
end
else if ((eop == 1) & (ready == 1) & (valid == 1))
begin
packet_complete <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_d1 <= 0;
end
else if (burst_begin == 1)
begin
address_d1 <= (burst_begin_quickly == 1)? (address_in + WORD_SIZE) : address_in;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
burst_counter <= 0;
end
else
if ((burst_begin == 1) & (sw_reset == 0) & (sw_stop == 0)) // for reset and stop we need to let the burst complete so the fabric doesn't lock up
begin
burst_counter <= internal_burst_count;
end
else if (decrement_burst_counter == 1)
begin
burst_counter <= burst_counter - 1'b1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
internal_burst_count_d1 <= 0;
end
else if (burst_begin == 1)
begin
internal_burst_count_d1 <= internal_burst_count;
end
end
// state machine status and control
assign idle_state = (burst_counter == 0); // any time idle_state is set then there is no burst underway
assign decrement_burst_counter = (idle_state == 0) & (waitrequest == 0);
// control for all the various cases that a burst of one beat needs to be posted
assign burst_offset = address_in[BURST_OFFSET_WIDTH+WORD_SIZE_LOG2-1:WORD_SIZE_LOG2];
assign burst_of_one_enable = (short_first_access_enable == 1) | (short_last_access_enable == 1) | (short_first_and_last_access_enable == 1) | (early_termination == 1) |
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 1) & (burst_offset != 0)) | // need to make sure bursts start on burst boundaries
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 0) & (burst_offset != (max_burst_count - 1))); // need to make sure bursts start on burst boundaries
assign short_length_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 0) & (burst_of_one_enable == 0);
assign short_early_termination_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 1) & (burst_of_one_enable == 0); // trim back the burst count regardless if there is enough data buffered for a full burst
assign short_packet_burst_enable = (short_early_termination_burst_enable == 0) & (eop_enabled == 1) & (packet_complete == 1) & (write_fifo_used < max_burst_count) & (burst_of_one_enable == 0);
// various burst amounts that are not the max burst count or 1 that feed the internal_burst_count mux. short_length_burst is used when short_length_burst_enable or short_early_termination_burst_enable is asserted.
assign short_length_burst = (length >> WORD_SIZE_LOG2) & {(BURST_COUNT_WIDTH-1){1'b1}};
assign short_packet_burst = (write_fifo_used & {(BURST_COUNT_WIDTH-1){1'b1}});
// since the write master may not have enough data buffered in the FIFO to start a burst the FIFO fill level must be checked before starting another burst
assign ready_during_idle_state = (burst_of_one_enable == 1) | // burst of one is only enabled when there is data in the write fifo so write_fifo_used doesn't need to be checked in this case
((write_fifo_used >= short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used >= short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used >= short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used >= max_burst_count);
// same as ready_during_idle_state only we need to make sure there is more data in the fifo than the burst being posted (since the FIFO is in the middle of being popped)
assign ready_for_quick_burst = (length >= (max_burst_count << WORD_SIZE_LOG2)) & (burst_of_one_enable == 0) & // address and length lags by one clock cycle so this will let the state machine catch up
( ((write_fifo_used > short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used > short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used > short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used > max_burst_count) );
// burst begin signals used to start up the burst counter state machine
assign burst_begin_from_idle_state = (write_in == 1) & (idle_state == 1) & (ready_during_idle_state == 1); // start the state machine up again
assign burst_begin_quickly = (write_in == 1) & (burst_counter == 1) & (waitrequest == 0) & (ready_for_quick_burst == 1); // enough data is buffered to start another burst immediately after the current burst
assign burst_begin = (burst_begin_quickly == 1) | (burst_begin_from_idle_state == 1);
assign mux_select = {short_packet_burst_enable, short_early_termination_burst_enable, short_length_burst_enable, burst_of_one_enable};
// one-hot mux that selects the appropriate burst count to present to the fabric
always @ (short_length_burst or short_packet_burst or max_burst_count or mux_select)
begin
case (mux_select)
4'b0001 : internal_burst_count = 1;
4'b0010 : internal_burst_count = short_length_burst;
4'b0100 : internal_burst_count = short_length_burst;
4'b1000 : internal_burst_count = short_packet_burst;
default : internal_burst_count = max_burst_count;
endcase
end
generate
if (BURST_ENABLE == 1)
begin
// outputs that need to be held constant throughout the entire burst transaction
assign address_out = address_d1;
assign burst_count = internal_burst_count_d1;
assign write_out = (idle_state == 0);
assign stall = (idle_state == 1);
assign reset_taken = (sw_reset == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct reset timing
assign stopped = (sw_stop == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct stop timing
end
else
begin
assign address_out = address_in;
assign burst_count = 1; // this will be stubbed at the top level
assign write_out = write_in;
assign stall = 0;
assign reset_taken = sw_reset;
assign stopped = sw_stop;
end
endgenerate
endmodule |
module write_burst_control (
clk,
reset,
sw_reset,
sw_stop,
length,
eop_enabled,
eop,
ready,
valid,
early_termination,
address_in,
write_in,
max_burst_count,
write_fifo_used,
waitrequest,
short_first_access_enable,
short_last_access_enable,
short_first_and_last_access_enable,
address_out,
write_out,
burst_count,
stall,
reset_taken,
stopped
);
parameter BURST_ENABLE = 1; // set to 0 to hardwire the address and write signals straight out
parameter BURST_COUNT_WIDTH = 3;
parameter WORD_SIZE = 4;
parameter WORD_SIZE_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter LENGTH_WIDTH = 32;
parameter WRITE_FIFO_USED_WIDTH = 5;
parameter BURST_WRAPPING_SUPPORT = 1; // set 1 for on, set 0 for off. This parameter can't be enabled when the master supports programmable bursting.
localparam BURST_OFFSET_WIDTH = (BURST_COUNT_WIDTH == 1)? 1: (BURST_COUNT_WIDTH-1);
input clk;
input reset;
input sw_reset;
input sw_stop;
input [LENGTH_WIDTH-1:0] length;
input eop_enabled;
input eop;
input ready;
input valid;
input early_termination;
input [ADDRESS_WIDTH-1:0] address_in;
input write_in;
input [BURST_COUNT_WIDTH-1:0] max_burst_count; // will be either a hardcoded input or programmable
input [WRITE_FIFO_USED_WIDTH:0] write_fifo_used; // using the fifo full MSB as well
input waitrequest; // this needs to be the waitrequest from the fabric and not the byte enable generator since partial transfers count as burst beats
input short_first_access_enable;
input short_last_access_enable;
input short_first_and_last_access_enable;
output wire [ADDRESS_WIDTH-1:0] address_out;
output wire write_out;
output wire [BURST_COUNT_WIDTH-1:0] burst_count;
output wire stall; // need to issue a stall if there isn't enough data buffered to start a burst
output wire reset_taken; // if a reset occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
output wire stopped; // if a stop occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
reg [ADDRESS_WIDTH-1:0] address_d1;
reg [BURST_COUNT_WIDTH-1:0] burst_counter; // interal statemachine register
wire idle_state;
wire decrement_burst_counter;
wire ready_during_idle_state; // when there is enough data buffered to start up the burst counter state machine again
wire ready_for_quick_burst; // when there is enough data bufferred to start another burst immediately
wire burst_begin_from_idle_state;
wire burst_begin_quickly; // start another burst immediately after the previous burst completes
wire burst_begin;
wire burst_of_one_enable; // asserted when partial word accesses are occuring or the last early termination word is being written out
wire [BURST_COUNT_WIDTH-1:0] short_length_burst;
wire [BURST_COUNT_WIDTH-1:0] short_packet_burst;
wire short_length_burst_enable;
wire short_early_termination_burst_enable;
wire short_packet_burst_enable;
wire [3:0] mux_select;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count_d1;
reg packet_complete;
wire [BURST_OFFSET_WIDTH-1:0] burst_offset;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
packet_complete <= 0;
end
else
begin
if ((packet_complete == 1) & (write_fifo_used == 0))
begin
packet_complete <= 0;
end
else if ((eop == 1) & (ready == 1) & (valid == 1))
begin
packet_complete <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_d1 <= 0;
end
else if (burst_begin == 1)
begin
address_d1 <= (burst_begin_quickly == 1)? (address_in + WORD_SIZE) : address_in;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
burst_counter <= 0;
end
else
if ((burst_begin == 1) & (sw_reset == 0) & (sw_stop == 0)) // for reset and stop we need to let the burst complete so the fabric doesn't lock up
begin
burst_counter <= internal_burst_count;
end
else if (decrement_burst_counter == 1)
begin
burst_counter <= burst_counter - 1'b1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
internal_burst_count_d1 <= 0;
end
else if (burst_begin == 1)
begin
internal_burst_count_d1 <= internal_burst_count;
end
end
// state machine status and control
assign idle_state = (burst_counter == 0); // any time idle_state is set then there is no burst underway
assign decrement_burst_counter = (idle_state == 0) & (waitrequest == 0);
// control for all the various cases that a burst of one beat needs to be posted
assign burst_offset = address_in[BURST_OFFSET_WIDTH+WORD_SIZE_LOG2-1:WORD_SIZE_LOG2];
assign burst_of_one_enable = (short_first_access_enable == 1) | (short_last_access_enable == 1) | (short_first_and_last_access_enable == 1) | (early_termination == 1) |
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 1) & (burst_offset != 0)) | // need to make sure bursts start on burst boundaries
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 0) & (burst_offset != (max_burst_count - 1))); // need to make sure bursts start on burst boundaries
assign short_length_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 0) & (burst_of_one_enable == 0);
assign short_early_termination_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 1) & (burst_of_one_enable == 0); // trim back the burst count regardless if there is enough data buffered for a full burst
assign short_packet_burst_enable = (short_early_termination_burst_enable == 0) & (eop_enabled == 1) & (packet_complete == 1) & (write_fifo_used < max_burst_count) & (burst_of_one_enable == 0);
// various burst amounts that are not the max burst count or 1 that feed the internal_burst_count mux. short_length_burst is used when short_length_burst_enable or short_early_termination_burst_enable is asserted.
assign short_length_burst = (length >> WORD_SIZE_LOG2) & {(BURST_COUNT_WIDTH-1){1'b1}};
assign short_packet_burst = (write_fifo_used & {(BURST_COUNT_WIDTH-1){1'b1}});
// since the write master may not have enough data buffered in the FIFO to start a burst the FIFO fill level must be checked before starting another burst
assign ready_during_idle_state = (burst_of_one_enable == 1) | // burst of one is only enabled when there is data in the write fifo so write_fifo_used doesn't need to be checked in this case
((write_fifo_used >= short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used >= short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used >= short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used >= max_burst_count);
// same as ready_during_idle_state only we need to make sure there is more data in the fifo than the burst being posted (since the FIFO is in the middle of being popped)
assign ready_for_quick_burst = (length >= (max_burst_count << WORD_SIZE_LOG2)) & (burst_of_one_enable == 0) & // address and length lags by one clock cycle so this will let the state machine catch up
( ((write_fifo_used > short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used > short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used > short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used > max_burst_count) );
// burst begin signals used to start up the burst counter state machine
assign burst_begin_from_idle_state = (write_in == 1) & (idle_state == 1) & (ready_during_idle_state == 1); // start the state machine up again
assign burst_begin_quickly = (write_in == 1) & (burst_counter == 1) & (waitrequest == 0) & (ready_for_quick_burst == 1); // enough data is buffered to start another burst immediately after the current burst
assign burst_begin = (burst_begin_quickly == 1) | (burst_begin_from_idle_state == 1);
assign mux_select = {short_packet_burst_enable, short_early_termination_burst_enable, short_length_burst_enable, burst_of_one_enable};
// one-hot mux that selects the appropriate burst count to present to the fabric
always @ (short_length_burst or short_packet_burst or max_burst_count or mux_select)
begin
case (mux_select)
4'b0001 : internal_burst_count = 1;
4'b0010 : internal_burst_count = short_length_burst;
4'b0100 : internal_burst_count = short_length_burst;
4'b1000 : internal_burst_count = short_packet_burst;
default : internal_burst_count = max_burst_count;
endcase
end
generate
if (BURST_ENABLE == 1)
begin
// outputs that need to be held constant throughout the entire burst transaction
assign address_out = address_d1;
assign burst_count = internal_burst_count_d1;
assign write_out = (idle_state == 0);
assign stall = (idle_state == 1);
assign reset_taken = (sw_reset == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct reset timing
assign stopped = (sw_stop == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct stop timing
end
else
begin
assign address_out = address_in;
assign burst_count = 1; // this will be stubbed at the top level
assign write_out = write_in;
assign stall = 0;
assign reset_taken = sw_reset;
assign stopped = sw_stop;
end
endgenerate
endmodule |
module mem_window (
clk,
reset,
// Memory slave port
s1_address,
s1_read,
s1_readdata,
s1_readdatavalid,
s1_write,
s1_writedata,
s1_burstcount,
s1_byteenable,
s1_waitrequest,
// Configuration register slave port
cra_write,
cra_writedata,
cra_byteenable,
// Bridged master port to memory
m1_address,
m1_read,
m1_readdata,
m1_readdatavalid,
m1_write,
m1_writedata,
m1_burstcount,
m1_byteenable,
m1_waitrequest
);
parameter PAGE_ADDRESS_WIDTH = 20;
parameter MEM_ADDRESS_WIDTH = 32;
parameter NUM_BYTES = 32;
parameter BURSTCOUNT_WIDTH = 1;
parameter CRA_BITWIDTH = 32;
localparam ADDRESS_SHIFT = $clog2(NUM_BYTES);
localparam PAGE_ID_WIDTH = MEM_ADDRESS_WIDTH - PAGE_ADDRESS_WIDTH - ADDRESS_SHIFT;
localparam DATA_WIDTH = NUM_BYTES * 8;
input clk;
input reset;
// Memory slave port
input [PAGE_ADDRESS_WIDTH-1:0] s1_address;
input s1_read;
output [DATA_WIDTH-1:0] s1_readdata;
output s1_readdatavalid;
input s1_write;
input [DATA_WIDTH-1:0] s1_writedata;
input [BURSTCOUNT_WIDTH-1:0] s1_burstcount;
input [NUM_BYTES-1:0] s1_byteenable;
output s1_waitrequest;
// Bridged master port to memory
output [MEM_ADDRESS_WIDTH-1:0] m1_address;
output m1_read;
input [DATA_WIDTH-1:0] m1_readdata;
input m1_readdatavalid;
output m1_write;
output [DATA_WIDTH-1:0] m1_writedata;
output [BURSTCOUNT_WIDTH-1:0] m1_burstcount;
output [NUM_BYTES-1:0] m1_byteenable;
input m1_waitrequest;
// CRA slave
input cra_write;
input [CRA_BITWIDTH-1:0] cra_writedata;
input [CRA_BITWIDTH/8-1:0] cra_byteenable;
// Architecture
// CRA slave allows the master to change the active page
reg [PAGE_ID_WIDTH-1:0] page_id;
reg [CRA_BITWIDTH-1:0] cra_writemask;
integer i;
always@*
for (i=0; i<CRA_BITWIDTH; i=i+1)
cra_writemask[i] = cra_byteenable[i/8] & cra_write;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
page_id <= {PAGE_ID_WIDTH{1'b0}};
else
page_id <= (cra_writedata & cra_writemask) | (page_id & ~cra_writemask);
end
// The s1 port bridges to the m1 port - with the page ID tacked on to the address
assign m1_address = {page_id, s1_address, {ADDRESS_SHIFT{1'b0}}};
assign m1_read = s1_read;
assign s1_readdata = m1_readdata;
assign s1_readdatavalid = m1_readdatavalid;
assign m1_write = s1_write;
assign m1_writedata = s1_writedata;
assign m1_burstcount = s1_burstcount;
assign m1_byteenable = s1_byteenable;
assign s1_waitrequest = m1_waitrequest;
endmodule |
module mem_window (
clk,
reset,
// Memory slave port
s1_address,
s1_read,
s1_readdata,
s1_readdatavalid,
s1_write,
s1_writedata,
s1_burstcount,
s1_byteenable,
s1_waitrequest,
// Configuration register slave port
cra_write,
cra_writedata,
cra_byteenable,
// Bridged master port to memory
m1_address,
m1_read,
m1_readdata,
m1_readdatavalid,
m1_write,
m1_writedata,
m1_burstcount,
m1_byteenable,
m1_waitrequest
);
parameter PAGE_ADDRESS_WIDTH = 20;
parameter MEM_ADDRESS_WIDTH = 32;
parameter NUM_BYTES = 32;
parameter BURSTCOUNT_WIDTH = 1;
parameter CRA_BITWIDTH = 32;
localparam ADDRESS_SHIFT = $clog2(NUM_BYTES);
localparam PAGE_ID_WIDTH = MEM_ADDRESS_WIDTH - PAGE_ADDRESS_WIDTH - ADDRESS_SHIFT;
localparam DATA_WIDTH = NUM_BYTES * 8;
input clk;
input reset;
// Memory slave port
input [PAGE_ADDRESS_WIDTH-1:0] s1_address;
input s1_read;
output [DATA_WIDTH-1:0] s1_readdata;
output s1_readdatavalid;
input s1_write;
input [DATA_WIDTH-1:0] s1_writedata;
input [BURSTCOUNT_WIDTH-1:0] s1_burstcount;
input [NUM_BYTES-1:0] s1_byteenable;
output s1_waitrequest;
// Bridged master port to memory
output [MEM_ADDRESS_WIDTH-1:0] m1_address;
output m1_read;
input [DATA_WIDTH-1:0] m1_readdata;
input m1_readdatavalid;
output m1_write;
output [DATA_WIDTH-1:0] m1_writedata;
output [BURSTCOUNT_WIDTH-1:0] m1_burstcount;
output [NUM_BYTES-1:0] m1_byteenable;
input m1_waitrequest;
// CRA slave
input cra_write;
input [CRA_BITWIDTH-1:0] cra_writedata;
input [CRA_BITWIDTH/8-1:0] cra_byteenable;
// Architecture
// CRA slave allows the master to change the active page
reg [PAGE_ID_WIDTH-1:0] page_id;
reg [CRA_BITWIDTH-1:0] cra_writemask;
integer i;
always@*
for (i=0; i<CRA_BITWIDTH; i=i+1)
cra_writemask[i] = cra_byteenable[i/8] & cra_write;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
page_id <= {PAGE_ID_WIDTH{1'b0}};
else
page_id <= (cra_writedata & cra_writemask) | (page_id & ~cra_writemask);
end
// The s1 port bridges to the m1 port - with the page ID tacked on to the address
assign m1_address = {page_id, s1_address, {ADDRESS_SHIFT{1'b0}}};
assign m1_read = s1_read;
assign s1_readdata = m1_readdata;
assign s1_readdatavalid = m1_readdatavalid;
assign m1_write = s1_write;
assign m1_writedata = s1_writedata;
assign m1_burstcount = s1_burstcount;
assign m1_byteenable = s1_byteenable;
assign s1_waitrequest = m1_waitrequest;
endmodule |
module read_burst_control (
address,
length,
maximum_burst_count,
short_first_access_enable,
short_last_access_enable,
short_first_and_last_access_enable,
burst_count
);
parameter BURST_ENABLE = 1; // set to 0 to hardwire the address and write signals straight out
parameter BURST_COUNT_WIDTH = 3;
parameter WORD_SIZE_LOG2 = 2; // log2(DATA WIDTH/8)
parameter ADDRESS_WIDTH = 32;
parameter LENGTH_WIDTH = 32;
parameter BURST_WRAPPING_SUPPORT = 1; // set 1 for on, set 0 for off. This parameter can't be enabled when hte master supports programmable burst.
localparam BURST_OFFSET_WIDTH = (BURST_COUNT_WIDTH == 1)? 1: (BURST_COUNT_WIDTH-1);
input [ADDRESS_WIDTH-1:0] address;
input [LENGTH_WIDTH-1:0] length;
input [BURST_COUNT_WIDTH-1:0] maximum_burst_count; // will be either a hardcoded input or programmable
input short_first_access_enable;
input short_last_access_enable;
input short_first_and_last_access_enable;
output wire [BURST_COUNT_WIDTH-1:0] burst_count;
wire [BURST_COUNT_WIDTH-1:0] posted_burst; // when the burst statemachine is used this will be the burst count posted to the fabric
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count; // muxes posted_burst, posted_burst_d1, and '1' since we need to be able to post bursts of '1' for short accesses
wire burst_of_one_enable; // asserted when partial word accesses are occuring
wire short_burst_enable;
wire [BURST_OFFSET_WIDTH-1:0] burst_offset;
assign burst_offset = address[BURST_OFFSET_WIDTH+WORD_SIZE_LOG2-1:WORD_SIZE_LOG2];
// for unaligned or partial transfers we must use a burst length of 1 so that
assign burst_of_one_enable = (short_first_access_enable == 1) | (short_last_access_enable == 1) | (short_first_and_last_access_enable == 1) | // when performing partial accesses use a burst length of 1
((BURST_WRAPPING_SUPPORT == 1) & (burst_offset != 0)); // when the burst boundary offset is non-zero then the master isn't in burst alignment yet as so a burst of 1 needs to be posted
assign short_burst_enable = ((length >> WORD_SIZE_LOG2) < maximum_burst_count);
always @ (maximum_burst_count or length or short_burst_enable or burst_of_one_enable)
begin
case ({short_burst_enable, burst_of_one_enable})
2'b00 : internal_burst_count = maximum_burst_count;
2'b01 : internal_burst_count = 1; // this is when the master starts unaligned
2'b10 : internal_burst_count = ((length >> WORD_SIZE_LOG2) & {(BURST_COUNT_WIDTH-1){1'b1}}); // this could be followed by a burst of 1 if there are a few bytes leftover
2'b11 : internal_burst_count = 1; // burst of 1 needs to win, this is when the master starts with very little data to transfer
endcase
end
generate
if (BURST_ENABLE == 1)
begin
assign burst_count = internal_burst_count;
end
else
begin
assign burst_count = 1; // this will be stubbed at the top level but will be used for the address and pending reads incrementing
end
endgenerate
endmodule |
module read_burst_control (
address,
length,
maximum_burst_count,
short_first_access_enable,
short_last_access_enable,
short_first_and_last_access_enable,
burst_count
);
parameter BURST_ENABLE = 1; // set to 0 to hardwire the address and write signals straight out
parameter BURST_COUNT_WIDTH = 3;
parameter WORD_SIZE_LOG2 = 2; // log2(DATA WIDTH/8)
parameter ADDRESS_WIDTH = 32;
parameter LENGTH_WIDTH = 32;
parameter BURST_WRAPPING_SUPPORT = 1; // set 1 for on, set 0 for off. This parameter can't be enabled when hte master supports programmable burst.
localparam BURST_OFFSET_WIDTH = (BURST_COUNT_WIDTH == 1)? 1: (BURST_COUNT_WIDTH-1);
input [ADDRESS_WIDTH-1:0] address;
input [LENGTH_WIDTH-1:0] length;
input [BURST_COUNT_WIDTH-1:0] maximum_burst_count; // will be either a hardcoded input or programmable
input short_first_access_enable;
input short_last_access_enable;
input short_first_and_last_access_enable;
output wire [BURST_COUNT_WIDTH-1:0] burst_count;
wire [BURST_COUNT_WIDTH-1:0] posted_burst; // when the burst statemachine is used this will be the burst count posted to the fabric
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count; // muxes posted_burst, posted_burst_d1, and '1' since we need to be able to post bursts of '1' for short accesses
wire burst_of_one_enable; // asserted when partial word accesses are occuring
wire short_burst_enable;
wire [BURST_OFFSET_WIDTH-1:0] burst_offset;
assign burst_offset = address[BURST_OFFSET_WIDTH+WORD_SIZE_LOG2-1:WORD_SIZE_LOG2];
// for unaligned or partial transfers we must use a burst length of 1 so that
assign burst_of_one_enable = (short_first_access_enable == 1) | (short_last_access_enable == 1) | (short_first_and_last_access_enable == 1) | // when performing partial accesses use a burst length of 1
((BURST_WRAPPING_SUPPORT == 1) & (burst_offset != 0)); // when the burst boundary offset is non-zero then the master isn't in burst alignment yet as so a burst of 1 needs to be posted
assign short_burst_enable = ((length >> WORD_SIZE_LOG2) < maximum_burst_count);
always @ (maximum_burst_count or length or short_burst_enable or burst_of_one_enable)
begin
case ({short_burst_enable, burst_of_one_enable})
2'b00 : internal_burst_count = maximum_burst_count;
2'b01 : internal_burst_count = 1; // this is when the master starts unaligned
2'b10 : internal_burst_count = ((length >> WORD_SIZE_LOG2) & {(BURST_COUNT_WIDTH-1){1'b1}}); // this could be followed by a burst of 1 if there are a few bytes leftover
2'b11 : internal_burst_count = 1; // burst of 1 needs to win, this is when the master starts with very little data to transfer
endcase
end
generate
if (BURST_ENABLE == 1)
begin
assign burst_count = internal_burst_count;
end
else
begin
assign burst_count = 1; // this will be stubbed at the top level but will be used for the address and pending reads incrementing
end
endgenerate
endmodule |
module channel_demux
#(parameter NUM_CHAN = 2) ( //usb Side
input [31:0]usbdata_final,
input WR_final,
// TX Side
input reset,
input txclk,
output reg [NUM_CHAN:0] WR_channel,
output reg [31:0] ram_data,
output reg [NUM_CHAN:0] WR_done_channel );
/* Parse header and forward to ram */
reg [2:0]reader_state;
reg [4:0]channel ;
reg [6:0]read_length ;
// States
parameter IDLE = 3'd0;
parameter HEADER = 3'd1;
parameter WAIT = 3'd2;
parameter FORWARD = 3'd3;
`define CHANNEL 20:16
`define PKT_SIZE 127
wire [4:0] true_channel;
assign true_channel = (usbdata_final[`CHANNEL] == 5'h1f) ?
NUM_CHAN : (usbdata_final[`CHANNEL]);
always @(posedge txclk)
begin
if (reset)
begin
reader_state <= IDLE;
WR_channel <= 0;
WR_done_channel <= 0;
end
else
case (reader_state)
IDLE: begin
if (WR_final)
reader_state <= HEADER;
end
// Store channel and forware header
HEADER: begin
channel <= true_channel;
WR_channel[true_channel] <= 1;
ram_data <= usbdata_final;
read_length <= 7'd0 ;
reader_state <= WAIT;
end
WAIT: begin
WR_channel[channel] <= 0;
if (read_length == `PKT_SIZE)
reader_state <= IDLE;
else if (WR_final)
reader_state <= FORWARD;
end
FORWARD: begin
WR_channel[channel] <= 1;
ram_data <= usbdata_final;
read_length <= read_length + 7'd1;
reader_state <= WAIT;
end
default:
begin
//error handling
reader_state <= IDLE;
end
endcase
end
endmodule |
module channel_demux
#(parameter NUM_CHAN = 2) ( //usb Side
input [31:0]usbdata_final,
input WR_final,
// TX Side
input reset,
input txclk,
output reg [NUM_CHAN:0] WR_channel,
output reg [31:0] ram_data,
output reg [NUM_CHAN:0] WR_done_channel );
/* Parse header and forward to ram */
reg [2:0]reader_state;
reg [4:0]channel ;
reg [6:0]read_length ;
// States
parameter IDLE = 3'd0;
parameter HEADER = 3'd1;
parameter WAIT = 3'd2;
parameter FORWARD = 3'd3;
`define CHANNEL 20:16
`define PKT_SIZE 127
wire [4:0] true_channel;
assign true_channel = (usbdata_final[`CHANNEL] == 5'h1f) ?
NUM_CHAN : (usbdata_final[`CHANNEL]);
always @(posedge txclk)
begin
if (reset)
begin
reader_state <= IDLE;
WR_channel <= 0;
WR_done_channel <= 0;
end
else
case (reader_state)
IDLE: begin
if (WR_final)
reader_state <= HEADER;
end
// Store channel and forware header
HEADER: begin
channel <= true_channel;
WR_channel[true_channel] <= 1;
ram_data <= usbdata_final;
read_length <= 7'd0 ;
reader_state <= WAIT;
end
WAIT: begin
WR_channel[channel] <= 0;
if (read_length == `PKT_SIZE)
reader_state <= IDLE;
else if (WR_final)
reader_state <= FORWARD;
end
FORWARD: begin
WR_channel[channel] <= 1;
ram_data <= usbdata_final;
read_length <= read_length + 7'd1;
reader_state <= WAIT;
end
default:
begin
//error handling
reader_state <= IDLE;
end
endcase
end
endmodule |
module read_master (
clk,
reset,
// descriptor commands sink port
snk_command_data,
snk_command_valid,
snk_command_ready,
// response source port
src_response_data,
src_response_valid,
src_response_ready,
// data path sink port
src_data,
src_valid,
src_ready,
src_sop,
src_eop,
src_empty,
src_error,
src_channel,
// data path master port
master_address,
master_read,
master_byteenable,
master_readdata,
master_waitrequest,
master_readdatavalid,
master_burstcount
);
parameter UNALIGNED_ACCESSES_ENABLE = 0; // when enabled allows transfers to begin from off word boundaries
parameter ONLY_FULL_ACCESS_ENABLE = 0; // when enabled allows transfers to end with partial access, master achieve a much higher fmax when this is enabled
parameter STRIDE_ENABLE = 0; // stride support can only be enabled when unaligned accesses is disabled
parameter STRIDE_WIDTH = 1; // when stride support is enabled this value controls the rate in which the address increases (in words), the stride width + log2(byte enable width) + 1 cannot exceed address width
parameter PACKET_ENABLE = 0;
parameter ERROR_ENABLE = 0;
parameter ERROR_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when error enable is turned on
parameter CHANNEL_ENABLE = 0;
parameter CHANNEL_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when the channel enable is turned on
parameter DATA_WIDTH = 32;
parameter BYTE_ENABLE_WIDTH = 4; // set by the .tcl file (hidden in GUI)
parameter BYTE_ENABLE_WIDTH_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter ADDRESS_WIDTH = 32; // set in the .tcl file (hidden in GUI) by the address span of the master
parameter LENGTH_WIDTH = 32; // GUI setting with warning if ADDRESS_WIDTH < LENGTH_WIDTH (waste of logic for the length counter)
parameter FIFO_DEPTH = 32;
parameter FIFO_DEPTH_LOG2 = 5; // set by the .tcl file (hidden in GUI)
parameter FIFO_SPEED_OPTIMIZATION = 1; // set by the .tcl file (hidden in GUI) The default will be on since it only impacts the latency of the entire transfer by 1 clock cycle and adds very little additional logic.
parameter SYMBOL_WIDTH = 8; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS = 4; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter BURST_ENABLE = 0; // when enabled stride must be disabled, 1 to enable, 0 to disable
parameter MAX_BURST_COUNT = 2; // must be a power of 2, when BURST_ENABLE = 0 set maximum_burst_count to 1 (will be automatically done by .tcl file)
parameter MAX_BURST_COUNT_WIDTH = 2; // set by the .tcl file (hidden in GUI) = log2(maximum_burst_count) + 1
parameter PROGRAMMABLE_BURST_ENABLE = 0; // when enabled the user must set the burst count, if 0 is set then the value "maximum_burst_count" will be used instead
parameter BURST_WRAPPING_SUPPORT = 1; // will only be used when bursting is enabled. This cannot be enabled with programmable burst capabilities. Enabling it will make sure the master gets back into burst alignment (data width in bytes * maximum burst count alignment)
localparam FIFO_USE_MEMORY = 1; // set to 0 to use LEs instead, not exposed since FPGAs have a lot of memory these days
localparam BIG_ENDIAN_ACCESS = 0; // hiding this since it can blow your foot off if you are not careful. It's big endian with respect to the write master width and not necessarily to the width of the data type used by a host CPU.
// handy mask for seperating the word address from the byte address bits, so for 32 bit masters this mask is 0x3, for 64 bit masters it'll be 0x7
localparam LSB_MASK = {BYTE_ENABLE_WIDTH_LOG2{1'b1}};
// when packet data is supported then we need to buffer the empty, eop, sop, error, and channel bits
localparam FIFO_WIDTH = DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2 + ERROR_WIDTH + CHANNEL_WIDTH;
localparam ADDRESS_INCREMENT_WIDTH = (BYTE_ENABLE_WIDTH_LOG2 + MAX_BURST_COUNT_WIDTH + STRIDE_WIDTH);
localparam FIXED_STRIDE = 1'b1; // default stride distance used when stride is disabled. 1 means increment the address by a word (i.e. sequential transfer)
input clk;
input reset;
// descriptor commands sink port
input [255:0] snk_command_data;
input snk_command_valid;
output reg snk_command_ready;
// response source port
output wire [255:0] src_response_data;
output reg src_response_valid;
input src_response_ready;
// data path source port
output wire [DATA_WIDTH-1:0] src_data;
output wire src_valid;
input src_ready;
output wire src_sop;
output wire src_eop;
output wire [NUMBER_OF_SYMBOLS_LOG2-1:0] src_empty;
output wire [ERROR_WIDTH-1:0] src_error;
output wire [CHANNEL_WIDTH-1:0] src_channel;
// master inputs and outputs
input master_waitrequest;
output wire [ADDRESS_WIDTH-1:0] master_address;
output wire master_read;
output wire [BYTE_ENABLE_WIDTH-1:0] master_byteenable;
input [DATA_WIDTH-1:0] master_readdata;
input master_readdatavalid;
output wire [MAX_BURST_COUNT_WIDTH-1:0] master_burstcount;
// internal signals
wire [63:0] descriptor_address;
wire [31:0] descriptor_length;
wire [15:0] descriptor_stride;
wire [7:0] descriptor_channel;
wire descriptor_generate_sop;
wire descriptor_generate_eop;
wire [7:0] descriptor_error;
wire [7:0] descriptor_programmable_burst_count;
wire descriptor_early_done_enable;
wire sw_stop_in;
wire sw_reset_in;
reg early_done_enable_d1;
reg [ERROR_WIDTH-1:0] error_d1;
reg [MAX_BURST_COUNT_WIDTH-1:0] programmable_burst_count_d1;
wire [MAX_BURST_COUNT_WIDTH-1:0] maximum_burst_count;
reg generate_sop_d1;
reg generate_eop_d1;
reg [ADDRESS_WIDTH-1:0] address_counter;
reg [LENGTH_WIDTH-1:0] length_counter;
reg [CHANNEL_WIDTH-1:0] channel_d1;
reg [STRIDE_WIDTH-1:0] stride_d1;
wire [STRIDE_WIDTH-1:0] stride_amount; // either set to be stride_d1 or hardcoded to 1 depending on the parameterization
reg [BYTE_ENABLE_WIDTH_LOG2-1:0] start_byte_address; // used to determine how far out of alignment the master starts
reg first_access; // used to determine if the first read is occuring
wire first_word_boundary_not_reached; // set when the first access doesn't reach the next word boundary
reg first_word_boundary_not_reached_d1;
reg [FIFO_DEPTH_LOG2:0] pending_reads_counter;
reg [FIFO_DEPTH_LOG2:0] pending_reads_mux;
wire [FIFO_WIDTH-1:0] fifo_write_data;
wire [FIFO_WIDTH-1:0] fifo_read_data;
wire fifo_write;
wire fifo_read;
wire fifo_empty;
wire fifo_full;
wire [FIFO_DEPTH_LOG2-1:0] fifo_used;
wire too_many_pending_reads;
wire read_complete; // handy signal for determining when a read has occured and completed
wire address_increment_enable;
wire [ADDRESS_INCREMENT_WIDTH-1:0] address_increment; // amount of bytes to increment the address
wire [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer;
wire short_first_access_enable; // when starting unaligned and the amount of data to transfer reaches the next word boundary
wire short_last_access_enable; // when address is aligned (can be an unaligned buffer transfer) but the amount of data doesn't reach the next word boundary
wire short_first_and_last_access_enable; // when starting unaligned and the amount of data to transfer doesn't reach the next word boundary
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_last_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_and_last_access_size;
reg [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer_mux;
wire go;
wire done; // asserted when last read is issued
reg done_d1;
wire done_strobe;
wire all_reads_returned; // asserted when last read returns
reg all_reads_returned_d1;
wire all_reads_returned_strobe;
reg all_reads_returned_strobe_d1;
reg all_reads_returned_strobe_d2; // used to trigger src_response_ready later than when the last read returns since the MM to ST has two pipeline stages
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout;
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout_rearranged;
wire MM_to_ST_adapter_sop;
wire MM_to_ST_adapter_eop;
wire [NUMBER_OF_SYMBOLS_LOG2-1:0] MM_to_ST_adapter_empty;
wire masked_sop;
wire masked_eop;
reg flush;
reg stopped;
wire length_sync_reset;
wire set_src_response_valid;
reg master_read_reg;
/********************************************* REGISTERS **************************************************/
// registering descriptor information
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
error_d1 <= 0;
generate_sop_d1 <= 0;
generate_eop_d1 <= 0;
channel_d1 <= 0;
stride_d1 <= 0;
programmable_burst_count_d1 <= 0;
early_done_enable_d1 <= 0;
end
else if (go == 1)
begin
error_d1 <= descriptor_error[ERROR_WIDTH-1:0];
generate_sop_d1 <= descriptor_generate_sop;
generate_eop_d1 <= descriptor_generate_eop;
channel_d1 <= descriptor_channel[CHANNEL_WIDTH-1:0];
stride_d1 <= descriptor_stride[STRIDE_WIDTH-1:0];
programmable_burst_count_d1 <= (descriptor_programmable_burst_count == 0)? MAX_BURST_COUNT : descriptor_programmable_burst_count;
early_done_enable_d1 <= ((UNALIGNED_ACCESSES_ENABLE == 1) | (PACKET_ENABLE == 1))? 0 : descriptor_early_done_enable; // early done cannot be used when unaligned data or packet support is enabled
end
end
// master word increment counter
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_counter <= 0;
end
else
begin
if (go == 1)
begin
address_counter <= descriptor_address[ADDRESS_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
address_counter <= address_counter + address_increment;
end
end
end
// master byte address, used to determine how far out of alignment the master began transfering data
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
start_byte_address <= 0;
end
else if (go == 1)
begin
start_byte_address <= descriptor_address[BYTE_ENABLE_WIDTH_LOG2-1:0];
end
end
// first_access will be asserted only for the first read of a transaction, this will be used to determine what value will be used to increment the counters
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
first_access <= 0;
end
else
begin
if (go == 1)
begin
first_access <= 1;
end
else if ((first_access == 1) & (address_increment_enable == 1))
begin
first_access <= 0;
end
end
end
// this register is used to determine if the first word boundary will be reached
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
first_word_boundary_not_reached_d1 <= 0;
end
else if (go == 1)
begin
first_word_boundary_not_reached_d1 <= first_word_boundary_not_reached;
end
end
// master length logic, this will typically be the critical path followed by the FIFO
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
length_counter <= 0;
end
else
begin
if (length_sync_reset == 1)
begin
length_counter <= 0;
end
else if (go == 1)
begin
length_counter <= descriptor_length[LENGTH_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
length_counter <= length_counter - bytes_to_transfer; // not using address_increment because stride might be enabled
end
end
end
// the pending reads counter is used to determine how many outstanding reads are posted. This will be used to determine
// if more reads can be posted based on the number of unused words in the FIFO.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
pending_reads_counter <= 0;
end
else
begin
pending_reads_counter <= pending_reads_mux;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
done_d1 <= 1; // master is done coming out of reset (need this to be set high so that done_strobe doesn't fire)
end
else
begin
done_d1 <= done;
end
end
// this is the 'final done' condition, since reads are pipelined need to make sure they have all returned before the master is really done.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_d1 <= 1;
end
else
begin
all_reads_returned_d1 <= all_reads_returned;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
flush <= 0;
end
else
begin
if ((pending_reads_counter == 0) & (flush == 1))
begin
flush <= 0;
end
else if ((sw_reset_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
flush <= 1; // will be used to reset the length counter to 0 and flush out pending reads (by letting them return without buffering them)
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped <= 0;
end
else
begin
if ((sw_stop_in == 0) | (sw_reset_in == 1))
begin
stopped <= 0;
end
else if ((sw_stop_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
stopped <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
snk_command_ready <= 1; // have to start ready to take commands
end
else
begin
if (go == 1)
begin
snk_command_ready <= 0;
end
else if ((src_response_ready == 1) & (src_response_valid == 1)) // need to make sure the response is popped before accepting more commands
begin
snk_command_ready <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_strobe_d1 <= 0;
all_reads_returned_strobe_d2 <= 0;
end
else
begin
all_reads_returned_strobe_d1 <= all_reads_returned_strobe;
all_reads_returned_strobe_d2 <= all_reads_returned_strobe_d1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
src_response_valid <= 0;
end
else
begin
if (flush == 1)
begin
src_response_valid <= 0;
end
else if (set_src_response_valid == 1) // all the reads have returned with MM to ST adapter latency taken into consideration
begin
src_response_valid <= 1; // will be set only once
end
else if ((src_response_valid == 1) & (src_response_ready == 1))
begin
src_response_valid <= 0; // will be reset only once when the dispatcher captures the data
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
master_read_reg <= 0;
end
else
begin
if ((done == 0) & (too_many_pending_reads == 0) & (sw_stop_in == 0) & (sw_reset_in == 0))
begin
master_read_reg <= 1;
end
else if ((done == 1) | ((read_complete == 1) & ((too_many_pending_reads == 1) | (sw_stop_in == 1))))
begin
master_read_reg <= 0;
end
end
end
/******************************************* END REGISTERS ************************************************/
/************************************** MODULE INSTANTIATIONS *********************************************/
// This block is pipelined and can't throttle the reads
MM_to_ST_Adapter the_MM_to_ST_adapter (
.clk (clk),
.reset (reset),
.length (descriptor_length[LENGTH_WIDTH-1:0]),
.length_counter (length_counter),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.reads_pending (pending_reads_counter),
.start (go),
.readdata (master_readdata),
.readdatavalid (master_readdatavalid),
.fifo_data (MM_to_ST_adapter_dataout),
.fifo_write (fifo_write),
.fifo_empty (MM_to_ST_adapter_empty),
.fifo_sop (MM_to_ST_adapter_sop),
.fifo_eop (MM_to_ST_adapter_eop)
);
defparam the_MM_to_ST_adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_MM_to_ST_adapter.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_MM_to_ST_adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_MM_to_ST_adapter.BYTE_ADDRESS_WIDTH = BYTE_ENABLE_WIDTH_LOG2;
defparam the_MM_to_ST_adapter.READS_PENDING_WIDTH = FIFO_DEPTH_LOG2 + 1;
defparam the_MM_to_ST_adapter.EMPTY_WIDTH = NUMBER_OF_SYMBOLS_LOG2;
defparam the_MM_to_ST_adapter.PACKET_SUPPORT = PACKET_ENABLE;
defparam the_MM_to_ST_adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
defparam the_MM_to_ST_adapter.FULL_WORD_ACCESS_ONLY = ONLY_FULL_ACCESS_ENABLE;
// buffered sop, eop, empty, data (in that order). sop, eop, and empty are only buffered when packet support is enabled
scfifo the_master_to_st_fifo (
.aclr (reset),
.clock (clk),
.data (fifo_write_data),
.full (fifo_full),
.empty (fifo_empty),
.usedw (fifo_used),
.q (fifo_read_data),
.rdreq (fifo_read),
.wrreq (fifo_write)
);
defparam the_master_to_st_fifo.lpm_width = FIFO_WIDTH;
defparam the_master_to_st_fifo.lpm_numwords = FIFO_DEPTH;
defparam the_master_to_st_fifo.lpm_widthu = FIFO_DEPTH_LOG2;
defparam the_master_to_st_fifo.lpm_showahead = "ON"; // slower but doesn't require complex control logic to time with waitrequest
defparam the_master_to_st_fifo.use_eab = (FIFO_USE_MEMORY == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.add_ram_output_register = (FIFO_SPEED_OPTIMIZATION == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.underflow_checking = "OFF";
defparam the_master_to_st_fifo.overflow_checking = "OFF";
// burst block that takes the length and short access enables and forms a burst count based on them. If any of the short access bits are asserted the block will default to a burst count of 1
read_burst_control the_read_burst_control (
.address (master_address),
.length (length_counter),
.maximum_burst_count (maximum_burst_count),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.burst_count (master_burstcount)
);
defparam the_read_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_read_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_read_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_read_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_read_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_read_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/************************************ END MODULE INSTANTIATIONS *******************************************/
/******************************** CONTROL AND COMBINATIONAL SIGNALS ***************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[140:109], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_channel = snk_command_data[71:64];
assign descriptor_generate_sop = snk_command_data[72];
assign descriptor_generate_eop = snk_command_data[73];
assign descriptor_programmable_burst_count = snk_command_data[83:76];
assign descriptor_stride = snk_command_data[99:84];
assign descriptor_error = snk_command_data[107:100];
assign descriptor_early_done_enable = snk_command_data[108];
assign sw_stop_in = snk_command_data[74];
assign sw_reset_in = snk_command_data[75];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
// swap the bytes if big endian is enabled
generate
if (BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign MM_to_ST_adapter_dataout_rearranged[j +8 -1: j] = MM_to_ST_adapter_dataout[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
end
end
else
begin
assign MM_to_ST_adapter_dataout_rearranged = MM_to_ST_adapter_dataout;
end
endgenerate
assign masked_sop = MM_to_ST_adapter_sop & generate_sop_d1;
assign masked_eop = MM_to_ST_adapter_eop & generate_eop_d1;
assign fifo_write_data = {error_d1, channel_d1, masked_sop, masked_eop, ((masked_eop == 1)? MM_to_ST_adapter_empty : {NUMBER_OF_SYMBOLS_LOG2{1'b0}} ), MM_to_ST_adapter_dataout_rearranged};
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before sending them to the data stream
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign src_data[i +SYMBOL_WIDTH -1: i] = fifo_read_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
assign src_empty = (PACKET_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 - 1) : DATA_WIDTH] : 0;
assign src_eop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2] : 0;
assign src_sop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 1] : 0;
assign src_channel = (CHANNEL_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 1): (DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2)] : 0;
assign src_error = (ERROR_ENABLE == 1)? fifo_read_data[(FIFO_WIDTH-1):(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 2)] : 0;
assign short_first_access_size = BYTE_ENABLE_WIDTH - (address_counter & LSB_MASK);
assign short_last_access_size = length_counter & LSB_MASK;
assign short_first_and_last_access_size = length_counter & LSB_MASK;
/* special case transfer enables and counter increment values (address and length counter)
short_first_access_enable is for transfers that start unaligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (aligned or unaligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
assign short_first_access_enable = ((address_counter & LSB_MASK) != 0) & (first_access == 1) & (first_word_boundary_not_reached_d1 == 0);
assign short_last_access_enable = (first_access == 0) & (length_counter < BYTE_ENABLE_WIDTH);
assign short_first_and_last_access_enable = (first_access == 1) & (first_word_boundary_not_reached_d1 == 1);
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH * master_burstcount;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = length_counter < BYTE_ENABLE_WIDTH; // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
endgenerate
// the burst count will be 1 for all short accesses
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size or master_burstcount)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size;
3'b010: bytes_to_transfer_mux = short_last_access_size;
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size;
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH * master_burstcount; // this is the only time master_burstcount can be a value other than 1
endcase
end
always @ (master_readdatavalid or read_complete or pending_reads_counter or master_burstcount)
begin
case ({master_readdatavalid, read_complete})
2'b00: pending_reads_mux = pending_reads_counter; // no read posted and no read data returned
2'b01: pending_reads_mux = (pending_reads_counter + master_burstcount); // read posted and no read data returned
2'b10: pending_reads_mux = (pending_reads_counter - 1'b1); // no read posted but read data returned
2'b11: pending_reads_mux = (pending_reads_counter + master_burstcount - 1'b1); // read posted and read data returned
endcase
end
assign src_valid = (fifo_empty == 0);
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign done = (length_counter == 0); // all reads are posted but the master is not done since there could be reads pending
assign done_strobe = (done == 1) & (done_d1 == 0);
assign fifo_read = (src_valid == 1) & (src_ready == 1);
assign length_sync_reset = (flush == 1) & (pending_reads_counter == 0); // resetting the length counter will trigger the done condition
assign too_many_pending_reads = (({fifo_full,fifo_used} + pending_reads_counter) > (FIFO_DEPTH - (maximum_burst_count << 1))); // making sure a full burst can be posted, using 2x maximum_burst_count since the read signal is pipelined and so this signal will be late using maximum_burst_count alone
assign read_complete = (master_read == 1) & (master_waitrequest == 0);
assign address_increment_enable = read_complete;
assign master_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // master always asserts all byte enables and filters the data as it comes in (may lead to destructive reads in some cases)
generate if (DATA_WIDTH > 8)
begin
assign master_address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign master_address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign master_read = master_read_reg & (done == 0); // need to mask the read with done so that it doesn't issue one extra read at the end
assign all_reads_returned = (done == 1) & (pending_reads_counter == 0);
assign all_reads_returned_strobe = (all_reads_returned == 1) & (all_reads_returned_d1 == 0);
// for now the done and early done strobes are the same. Both will be triggered when the last data returns
generate
if (UNALIGNED_ACCESSES_ENABLE == 1) // need to use the delayed strobe since there are two stages of pipelining in the MM to ST adapter
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe_d2, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
else
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
endgenerate
assign set_src_response_valid = (UNALIGNED_ACCESSES_ENABLE == 1)? all_reads_returned_strobe_d2 : // all the reads have returned with MM to ST adapter latency taken into consideration
(early_done_enable_d1 == 1)? done_strobe : all_reads_returned_strobe; // when early done is enabled then the done strobe is sufficient to trigger the next command can enter, otherwise need to wait for the pending reads to return
/****************************** END CONTROL AND COMBINATIONAL SIGNALS *************************************/
endmodule |
module fifo_1c_1k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 1024;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [9:0] rdusedw;
output wrfull;
output wrempty;
output [9:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [9:0] rdusedw;
reg [9:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule |
module fifo_1c_1k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 1024;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [9:0] rdusedw;
output wrfull;
output wrempty;
output [9:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [9:0] rdusedw;
reg [9:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule |
module fifo_1c_1k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 1024;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [9:0] rdusedw;
output wrfull;
output wrempty;
output [9:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [9:0] rdusedw;
reg [9:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule |
module fifo_1c_1k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 1024;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [9:0] rdusedw;
output wrfull;
output wrempty;
output [9:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [9:0] rdusedw;
reg [9:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule |
module fifo_1c_1k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 1024;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [9:0] rdusedw;
output wrfull;
output wrempty;
output [9:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [9:0] rdusedw;
reg [9:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule |
module fifo_1c_1k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 1024;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [9:0] rdusedw;
output wrfull;
output wrempty;
output [9:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [9:0] rdusedw;
reg [9:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule |
module pll (
inclk0,
c0);
input inclk0;
output c0;
endmodule |
module rx_chain_dual
(input clock,
input clock_2x,
input reset,
input enable,
input wire [7:0] decim_rate,
input sample_strobe,
input decimator_strobe,
input wire [31:0] freq0,
input wire [15:0] i_in0,
input wire [15:0] q_in0,
output wire [15:0] i_out0,
output wire [15:0] q_out0,
input wire [31:0] freq1,
input wire [15:0] i_in1,
input wire [15:0] q_in1,
output wire [15:0] i_out1,
output wire [15:0] q_out1
);
wire [15:0] phase;
wire [15:0] bb_i, bb_q;
wire [15:0] i_in, q_in;
wire [31:0] phase0;
wire [31:0] phase1;
reg [15:0] bb_i0, bb_q0;
reg [15:0] bb_i1, bb_q1;
// We want to time-share the CORDIC by double-clocking it
phase_acc rx_phase_acc_0
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq0),.phase(phase0) );
phase_acc rx_phase_acc_1
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq1),.phase(phase1) );
assign phase = clock ? phase0[31:16] : phase1[31:16];
assign i_in = clock ? i_in0 : i_in1;
assign q_in = clock ? q_in0 : q_in1;
// This appears reversed because of the number of CORDIC stages
always @(posedge clock_2x)
if(clock)
begin
bb_i1 <= #1 bb_i;
bb_q1 <= #1 bb_q;
end
else
begin
bb_i0 <= #1 bb_i;
bb_q0 <= #1 bb_q;
end
cordic rx_cordic
( .clock(clock_2x),.reset(reset),.enable(enable),
.xi(i_in),.yi(q_in),.zi(phase),
.xo(bb_i),.yo(bb_q),.zo() );
cic_decim cic_decim_i_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i0),.signal_out(i_out0) );
cic_decim cic_decim_q_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q0),.signal_out(q_out0) );
cic_decim cic_decim_i_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i1),.signal_out(i_out1) );
cic_decim cic_decim_q_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q1),.signal_out(q_out1) );
endmodule |
module rx_chain_dual
(input clock,
input clock_2x,
input reset,
input enable,
input wire [7:0] decim_rate,
input sample_strobe,
input decimator_strobe,
input wire [31:0] freq0,
input wire [15:0] i_in0,
input wire [15:0] q_in0,
output wire [15:0] i_out0,
output wire [15:0] q_out0,
input wire [31:0] freq1,
input wire [15:0] i_in1,
input wire [15:0] q_in1,
output wire [15:0] i_out1,
output wire [15:0] q_out1
);
wire [15:0] phase;
wire [15:0] bb_i, bb_q;
wire [15:0] i_in, q_in;
wire [31:0] phase0;
wire [31:0] phase1;
reg [15:0] bb_i0, bb_q0;
reg [15:0] bb_i1, bb_q1;
// We want to time-share the CORDIC by double-clocking it
phase_acc rx_phase_acc_0
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq0),.phase(phase0) );
phase_acc rx_phase_acc_1
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq1),.phase(phase1) );
assign phase = clock ? phase0[31:16] : phase1[31:16];
assign i_in = clock ? i_in0 : i_in1;
assign q_in = clock ? q_in0 : q_in1;
// This appears reversed because of the number of CORDIC stages
always @(posedge clock_2x)
if(clock)
begin
bb_i1 <= #1 bb_i;
bb_q1 <= #1 bb_q;
end
else
begin
bb_i0 <= #1 bb_i;
bb_q0 <= #1 bb_q;
end
cordic rx_cordic
( .clock(clock_2x),.reset(reset),.enable(enable),
.xi(i_in),.yi(q_in),.zi(phase),
.xo(bb_i),.yo(bb_q),.zo() );
cic_decim cic_decim_i_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i0),.signal_out(i_out0) );
cic_decim cic_decim_q_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q0),.signal_out(q_out0) );
cic_decim cic_decim_i_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i1),.signal_out(i_out1) );
cic_decim cic_decim_q_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q1),.signal_out(q_out1) );
endmodule |
module bustri (
data,
enabledt,
tridata);
input [15:0] data;
input enabledt;
inout [15:0] tridata;
lpm_bustri lpm_bustri_component (
.tridata (tridata),
.enabledt (enabledt),
.data (data));
defparam
lpm_bustri_component.lpm_width = 16,
lpm_bustri_component.lpm_type = "LPM_BUSTRI";
endmodule |
module bustri (
data,
enabledt,
tridata);
input [15:0] data;
input enabledt;
inout [15:0] tridata;
lpm_bustri lpm_bustri_component (
.tridata (tridata),
.enabledt (enabledt),
.data (data));
defparam
lpm_bustri_component.lpm_width = 16,
lpm_bustri_component.lpm_type = "LPM_BUSTRI";
endmodule |
module sub32_add_sub_cqa
(
aclr,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [0:0] wire_add_sub_cella_15cout;
wire [0:0] wire_add_sub_cella_16cout;
wire [0:0] wire_add_sub_cella_17cout;
wire [0:0] wire_add_sub_cella_18cout;
wire [0:0] wire_add_sub_cella_19cout;
wire [0:0] wire_add_sub_cella_20cout;
wire [0:0] wire_add_sub_cella_21cout;
wire [0:0] wire_add_sub_cella_22cout;
wire [0:0] wire_add_sub_cella_23cout;
wire [0:0] wire_add_sub_cella_24cout;
wire [0:0] wire_add_sub_cella_25cout;
wire [0:0] wire_add_sub_cella_26cout;
wire [0:0] wire_add_sub_cella_27cout;
wire [0:0] wire_add_sub_cella_28cout;
wire [0:0] wire_add_sub_cella_29cout;
wire [0:0] wire_add_sub_cella_30cout;
wire [31:0] wire_add_sub_cella_dataa;
wire [31:0] wire_add_sub_cella_datab;
wire [31:0] wire_add_sub_cella_regout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(1'b1),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "69b2",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "69b2",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "69b2",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "69b2",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "69b2",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_15cout[0:0]),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "69b2",
add_sub_cella_15.operation_mode = "arithmetic",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_16
(
.aclr(aclr),
.cin(wire_add_sub_cella_15cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_16cout[0:0]),
.dataa(wire_add_sub_cella_dataa[16:16]),
.datab(wire_add_sub_cella_datab[16:16]),
.ena(clken),
.regout(wire_add_sub_cella_regout[16:16]));
defparam
add_sub_cella_16.cin_used = "true",
add_sub_cella_16.lut_mask = "69b2",
add_sub_cella_16.operation_mode = "arithmetic",
add_sub_cella_16.sum_lutc_input = "cin",
add_sub_cella_16.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_17
(
.aclr(aclr),
.cin(wire_add_sub_cella_16cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_17cout[0:0]),
.dataa(wire_add_sub_cella_dataa[17:17]),
.datab(wire_add_sub_cella_datab[17:17]),
.ena(clken),
.regout(wire_add_sub_cella_regout[17:17]));
defparam
add_sub_cella_17.cin_used = "true",
add_sub_cella_17.lut_mask = "69b2",
add_sub_cella_17.operation_mode = "arithmetic",
add_sub_cella_17.sum_lutc_input = "cin",
add_sub_cella_17.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_18
(
.aclr(aclr),
.cin(wire_add_sub_cella_17cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_18cout[0:0]),
.dataa(wire_add_sub_cella_dataa[18:18]),
.datab(wire_add_sub_cella_datab[18:18]),
.ena(clken),
.regout(wire_add_sub_cella_regout[18:18]));
defparam
add_sub_cella_18.cin_used = "true",
add_sub_cella_18.lut_mask = "69b2",
add_sub_cella_18.operation_mode = "arithmetic",
add_sub_cella_18.sum_lutc_input = "cin",
add_sub_cella_18.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_19
(
.aclr(aclr),
.cin(wire_add_sub_cella_18cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_19cout[0:0]),
.dataa(wire_add_sub_cella_dataa[19:19]),
.datab(wire_add_sub_cella_datab[19:19]),
.ena(clken),
.regout(wire_add_sub_cella_regout[19:19]));
defparam
add_sub_cella_19.cin_used = "true",
add_sub_cella_19.lut_mask = "69b2",
add_sub_cella_19.operation_mode = "arithmetic",
add_sub_cella_19.sum_lutc_input = "cin",
add_sub_cella_19.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_20
(
.aclr(aclr),
.cin(wire_add_sub_cella_19cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_20cout[0:0]),
.dataa(wire_add_sub_cella_dataa[20:20]),
.datab(wire_add_sub_cella_datab[20:20]),
.ena(clken),
.regout(wire_add_sub_cella_regout[20:20]));
defparam
add_sub_cella_20.cin_used = "true",
add_sub_cella_20.lut_mask = "69b2",
add_sub_cella_20.operation_mode = "arithmetic",
add_sub_cella_20.sum_lutc_input = "cin",
add_sub_cella_20.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_21
(
.aclr(aclr),
.cin(wire_add_sub_cella_20cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_21cout[0:0]),
.dataa(wire_add_sub_cella_dataa[21:21]),
.datab(wire_add_sub_cella_datab[21:21]),
.ena(clken),
.regout(wire_add_sub_cella_regout[21:21]));
defparam
add_sub_cella_21.cin_used = "true",
add_sub_cella_21.lut_mask = "69b2",
add_sub_cella_21.operation_mode = "arithmetic",
add_sub_cella_21.sum_lutc_input = "cin",
add_sub_cella_21.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_22
(
.aclr(aclr),
.cin(wire_add_sub_cella_21cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_22cout[0:0]),
.dataa(wire_add_sub_cella_dataa[22:22]),
.datab(wire_add_sub_cella_datab[22:22]),
.ena(clken),
.regout(wire_add_sub_cella_regout[22:22]));
defparam
add_sub_cella_22.cin_used = "true",
add_sub_cella_22.lut_mask = "69b2",
add_sub_cella_22.operation_mode = "arithmetic",
add_sub_cella_22.sum_lutc_input = "cin",
add_sub_cella_22.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_23
(
.aclr(aclr),
.cin(wire_add_sub_cella_22cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_23cout[0:0]),
.dataa(wire_add_sub_cella_dataa[23:23]),
.datab(wire_add_sub_cella_datab[23:23]),
.ena(clken),
.regout(wire_add_sub_cella_regout[23:23]));
defparam
add_sub_cella_23.cin_used = "true",
add_sub_cella_23.lut_mask = "69b2",
add_sub_cella_23.operation_mode = "arithmetic",
add_sub_cella_23.sum_lutc_input = "cin",
add_sub_cella_23.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_24
(
.aclr(aclr),
.cin(wire_add_sub_cella_23cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_24cout[0:0]),
.dataa(wire_add_sub_cella_dataa[24:24]),
.datab(wire_add_sub_cella_datab[24:24]),
.ena(clken),
.regout(wire_add_sub_cella_regout[24:24]));
defparam
add_sub_cella_24.cin_used = "true",
add_sub_cella_24.lut_mask = "69b2",
add_sub_cella_24.operation_mode = "arithmetic",
add_sub_cella_24.sum_lutc_input = "cin",
add_sub_cella_24.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_25
(
.aclr(aclr),
.cin(wire_add_sub_cella_24cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_25cout[0:0]),
.dataa(wire_add_sub_cella_dataa[25:25]),
.datab(wire_add_sub_cella_datab[25:25]),
.ena(clken),
.regout(wire_add_sub_cella_regout[25:25]));
defparam
add_sub_cella_25.cin_used = "true",
add_sub_cella_25.lut_mask = "69b2",
add_sub_cella_25.operation_mode = "arithmetic",
add_sub_cella_25.sum_lutc_input = "cin",
add_sub_cella_25.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_26
(
.aclr(aclr),
.cin(wire_add_sub_cella_25cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_26cout[0:0]),
.dataa(wire_add_sub_cella_dataa[26:26]),
.datab(wire_add_sub_cella_datab[26:26]),
.ena(clken),
.regout(wire_add_sub_cella_regout[26:26]));
defparam
add_sub_cella_26.cin_used = "true",
add_sub_cella_26.lut_mask = "69b2",
add_sub_cella_26.operation_mode = "arithmetic",
add_sub_cella_26.sum_lutc_input = "cin",
add_sub_cella_26.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_27
(
.aclr(aclr),
.cin(wire_add_sub_cella_26cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_27cout[0:0]),
.dataa(wire_add_sub_cella_dataa[27:27]),
.datab(wire_add_sub_cella_datab[27:27]),
.ena(clken),
.regout(wire_add_sub_cella_regout[27:27]));
defparam
add_sub_cella_27.cin_used = "true",
add_sub_cella_27.lut_mask = "69b2",
add_sub_cella_27.operation_mode = "arithmetic",
add_sub_cella_27.sum_lutc_input = "cin",
add_sub_cella_27.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_28
(
.aclr(aclr),
.cin(wire_add_sub_cella_27cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_28cout[0:0]),
.dataa(wire_add_sub_cella_dataa[28:28]),
.datab(wire_add_sub_cella_datab[28:28]),
.ena(clken),
.regout(wire_add_sub_cella_regout[28:28]));
defparam
add_sub_cella_28.cin_used = "true",
add_sub_cella_28.lut_mask = "69b2",
add_sub_cella_28.operation_mode = "arithmetic",
add_sub_cella_28.sum_lutc_input = "cin",
add_sub_cella_28.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_29
(
.aclr(aclr),
.cin(wire_add_sub_cella_28cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_29cout[0:0]),
.dataa(wire_add_sub_cella_dataa[29:29]),
.datab(wire_add_sub_cella_datab[29:29]),
.ena(clken),
.regout(wire_add_sub_cella_regout[29:29]));
defparam
add_sub_cella_29.cin_used = "true",
add_sub_cella_29.lut_mask = "69b2",
add_sub_cella_29.operation_mode = "arithmetic",
add_sub_cella_29.sum_lutc_input = "cin",
add_sub_cella_29.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_30
(
.aclr(aclr),
.cin(wire_add_sub_cella_29cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_30cout[0:0]),
.dataa(wire_add_sub_cella_dataa[30:30]),
.datab(wire_add_sub_cella_datab[30:30]),
.ena(clken),
.regout(wire_add_sub_cella_regout[30:30]));
defparam
add_sub_cella_30.cin_used = "true",
add_sub_cella_30.lut_mask = "69b2",
add_sub_cella_30.operation_mode = "arithmetic",
add_sub_cella_30.sum_lutc_input = "cin",
add_sub_cella_30.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_31
(
.aclr(aclr),
.cin(wire_add_sub_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[31:31]),
.datab(wire_add_sub_cella_datab[31:31]),
.ena(clken),
.regout(wire_add_sub_cella_regout[31:31]));
defparam
add_sub_cella_31.cin_used = "true",
add_sub_cella_31.lut_mask = "6969",
add_sub_cella_31.operation_mode = "normal",
add_sub_cella_31.sum_lutc_input = "cin",
add_sub_cella_31.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_regout;
endmodule |
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
sub32_add_sub_cqa sub32_add_sub_cqa_component (
.dataa (dataa),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule |
module sub32_add_sub_cqa
(
aclr,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [0:0] wire_add_sub_cella_15cout;
wire [0:0] wire_add_sub_cella_16cout;
wire [0:0] wire_add_sub_cella_17cout;
wire [0:0] wire_add_sub_cella_18cout;
wire [0:0] wire_add_sub_cella_19cout;
wire [0:0] wire_add_sub_cella_20cout;
wire [0:0] wire_add_sub_cella_21cout;
wire [0:0] wire_add_sub_cella_22cout;
wire [0:0] wire_add_sub_cella_23cout;
wire [0:0] wire_add_sub_cella_24cout;
wire [0:0] wire_add_sub_cella_25cout;
wire [0:0] wire_add_sub_cella_26cout;
wire [0:0] wire_add_sub_cella_27cout;
wire [0:0] wire_add_sub_cella_28cout;
wire [0:0] wire_add_sub_cella_29cout;
wire [0:0] wire_add_sub_cella_30cout;
wire [31:0] wire_add_sub_cella_dataa;
wire [31:0] wire_add_sub_cella_datab;
wire [31:0] wire_add_sub_cella_regout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(1'b1),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "69b2",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "69b2",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "69b2",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "69b2",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "69b2",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_15cout[0:0]),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "69b2",
add_sub_cella_15.operation_mode = "arithmetic",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_16
(
.aclr(aclr),
.cin(wire_add_sub_cella_15cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_16cout[0:0]),
.dataa(wire_add_sub_cella_dataa[16:16]),
.datab(wire_add_sub_cella_datab[16:16]),
.ena(clken),
.regout(wire_add_sub_cella_regout[16:16]));
defparam
add_sub_cella_16.cin_used = "true",
add_sub_cella_16.lut_mask = "69b2",
add_sub_cella_16.operation_mode = "arithmetic",
add_sub_cella_16.sum_lutc_input = "cin",
add_sub_cella_16.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_17
(
.aclr(aclr),
.cin(wire_add_sub_cella_16cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_17cout[0:0]),
.dataa(wire_add_sub_cella_dataa[17:17]),
.datab(wire_add_sub_cella_datab[17:17]),
.ena(clken),
.regout(wire_add_sub_cella_regout[17:17]));
defparam
add_sub_cella_17.cin_used = "true",
add_sub_cella_17.lut_mask = "69b2",
add_sub_cella_17.operation_mode = "arithmetic",
add_sub_cella_17.sum_lutc_input = "cin",
add_sub_cella_17.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_18
(
.aclr(aclr),
.cin(wire_add_sub_cella_17cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_18cout[0:0]),
.dataa(wire_add_sub_cella_dataa[18:18]),
.datab(wire_add_sub_cella_datab[18:18]),
.ena(clken),
.regout(wire_add_sub_cella_regout[18:18]));
defparam
add_sub_cella_18.cin_used = "true",
add_sub_cella_18.lut_mask = "69b2",
add_sub_cella_18.operation_mode = "arithmetic",
add_sub_cella_18.sum_lutc_input = "cin",
add_sub_cella_18.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_19
(
.aclr(aclr),
.cin(wire_add_sub_cella_18cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_19cout[0:0]),
.dataa(wire_add_sub_cella_dataa[19:19]),
.datab(wire_add_sub_cella_datab[19:19]),
.ena(clken),
.regout(wire_add_sub_cella_regout[19:19]));
defparam
add_sub_cella_19.cin_used = "true",
add_sub_cella_19.lut_mask = "69b2",
add_sub_cella_19.operation_mode = "arithmetic",
add_sub_cella_19.sum_lutc_input = "cin",
add_sub_cella_19.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_20
(
.aclr(aclr),
.cin(wire_add_sub_cella_19cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_20cout[0:0]),
.dataa(wire_add_sub_cella_dataa[20:20]),
.datab(wire_add_sub_cella_datab[20:20]),
.ena(clken),
.regout(wire_add_sub_cella_regout[20:20]));
defparam
add_sub_cella_20.cin_used = "true",
add_sub_cella_20.lut_mask = "69b2",
add_sub_cella_20.operation_mode = "arithmetic",
add_sub_cella_20.sum_lutc_input = "cin",
add_sub_cella_20.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_21
(
.aclr(aclr),
.cin(wire_add_sub_cella_20cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_21cout[0:0]),
.dataa(wire_add_sub_cella_dataa[21:21]),
.datab(wire_add_sub_cella_datab[21:21]),
.ena(clken),
.regout(wire_add_sub_cella_regout[21:21]));
defparam
add_sub_cella_21.cin_used = "true",
add_sub_cella_21.lut_mask = "69b2",
add_sub_cella_21.operation_mode = "arithmetic",
add_sub_cella_21.sum_lutc_input = "cin",
add_sub_cella_21.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_22
(
.aclr(aclr),
.cin(wire_add_sub_cella_21cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_22cout[0:0]),
.dataa(wire_add_sub_cella_dataa[22:22]),
.datab(wire_add_sub_cella_datab[22:22]),
.ena(clken),
.regout(wire_add_sub_cella_regout[22:22]));
defparam
add_sub_cella_22.cin_used = "true",
add_sub_cella_22.lut_mask = "69b2",
add_sub_cella_22.operation_mode = "arithmetic",
add_sub_cella_22.sum_lutc_input = "cin",
add_sub_cella_22.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_23
(
.aclr(aclr),
.cin(wire_add_sub_cella_22cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_23cout[0:0]),
.dataa(wire_add_sub_cella_dataa[23:23]),
.datab(wire_add_sub_cella_datab[23:23]),
.ena(clken),
.regout(wire_add_sub_cella_regout[23:23]));
defparam
add_sub_cella_23.cin_used = "true",
add_sub_cella_23.lut_mask = "69b2",
add_sub_cella_23.operation_mode = "arithmetic",
add_sub_cella_23.sum_lutc_input = "cin",
add_sub_cella_23.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_24
(
.aclr(aclr),
.cin(wire_add_sub_cella_23cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_24cout[0:0]),
.dataa(wire_add_sub_cella_dataa[24:24]),
.datab(wire_add_sub_cella_datab[24:24]),
.ena(clken),
.regout(wire_add_sub_cella_regout[24:24]));
defparam
add_sub_cella_24.cin_used = "true",
add_sub_cella_24.lut_mask = "69b2",
add_sub_cella_24.operation_mode = "arithmetic",
add_sub_cella_24.sum_lutc_input = "cin",
add_sub_cella_24.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_25
(
.aclr(aclr),
.cin(wire_add_sub_cella_24cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_25cout[0:0]),
.dataa(wire_add_sub_cella_dataa[25:25]),
.datab(wire_add_sub_cella_datab[25:25]),
.ena(clken),
.regout(wire_add_sub_cella_regout[25:25]));
defparam
add_sub_cella_25.cin_used = "true",
add_sub_cella_25.lut_mask = "69b2",
add_sub_cella_25.operation_mode = "arithmetic",
add_sub_cella_25.sum_lutc_input = "cin",
add_sub_cella_25.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_26
(
.aclr(aclr),
.cin(wire_add_sub_cella_25cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_26cout[0:0]),
.dataa(wire_add_sub_cella_dataa[26:26]),
.datab(wire_add_sub_cella_datab[26:26]),
.ena(clken),
.regout(wire_add_sub_cella_regout[26:26]));
defparam
add_sub_cella_26.cin_used = "true",
add_sub_cella_26.lut_mask = "69b2",
add_sub_cella_26.operation_mode = "arithmetic",
add_sub_cella_26.sum_lutc_input = "cin",
add_sub_cella_26.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_27
(
.aclr(aclr),
.cin(wire_add_sub_cella_26cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_27cout[0:0]),
.dataa(wire_add_sub_cella_dataa[27:27]),
.datab(wire_add_sub_cella_datab[27:27]),
.ena(clken),
.regout(wire_add_sub_cella_regout[27:27]));
defparam
add_sub_cella_27.cin_used = "true",
add_sub_cella_27.lut_mask = "69b2",
add_sub_cella_27.operation_mode = "arithmetic",
add_sub_cella_27.sum_lutc_input = "cin",
add_sub_cella_27.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_28
(
.aclr(aclr),
.cin(wire_add_sub_cella_27cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_28cout[0:0]),
.dataa(wire_add_sub_cella_dataa[28:28]),
.datab(wire_add_sub_cella_datab[28:28]),
.ena(clken),
.regout(wire_add_sub_cella_regout[28:28]));
defparam
add_sub_cella_28.cin_used = "true",
add_sub_cella_28.lut_mask = "69b2",
add_sub_cella_28.operation_mode = "arithmetic",
add_sub_cella_28.sum_lutc_input = "cin",
add_sub_cella_28.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_29
(
.aclr(aclr),
.cin(wire_add_sub_cella_28cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_29cout[0:0]),
.dataa(wire_add_sub_cella_dataa[29:29]),
.datab(wire_add_sub_cella_datab[29:29]),
.ena(clken),
.regout(wire_add_sub_cella_regout[29:29]));
defparam
add_sub_cella_29.cin_used = "true",
add_sub_cella_29.lut_mask = "69b2",
add_sub_cella_29.operation_mode = "arithmetic",
add_sub_cella_29.sum_lutc_input = "cin",
add_sub_cella_29.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_30
(
.aclr(aclr),
.cin(wire_add_sub_cella_29cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_30cout[0:0]),
.dataa(wire_add_sub_cella_dataa[30:30]),
.datab(wire_add_sub_cella_datab[30:30]),
.ena(clken),
.regout(wire_add_sub_cella_regout[30:30]));
defparam
add_sub_cella_30.cin_used = "true",
add_sub_cella_30.lut_mask = "69b2",
add_sub_cella_30.operation_mode = "arithmetic",
add_sub_cella_30.sum_lutc_input = "cin",
add_sub_cella_30.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_31
(
.aclr(aclr),
.cin(wire_add_sub_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[31:31]),
.datab(wire_add_sub_cella_datab[31:31]),
.ena(clken),
.regout(wire_add_sub_cella_regout[31:31]));
defparam
add_sub_cella_31.cin_used = "true",
add_sub_cella_31.lut_mask = "6969",
add_sub_cella_31.operation_mode = "normal",
add_sub_cella_31.sum_lutc_input = "cin",
add_sub_cella_31.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_regout;
endmodule |
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
sub32_add_sub_cqa sub32_add_sub_cqa_component (
.dataa (dataa),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule |
module sub32_add_sub_cqa
(
aclr,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [0:0] wire_add_sub_cella_15cout;
wire [0:0] wire_add_sub_cella_16cout;
wire [0:0] wire_add_sub_cella_17cout;
wire [0:0] wire_add_sub_cella_18cout;
wire [0:0] wire_add_sub_cella_19cout;
wire [0:0] wire_add_sub_cella_20cout;
wire [0:0] wire_add_sub_cella_21cout;
wire [0:0] wire_add_sub_cella_22cout;
wire [0:0] wire_add_sub_cella_23cout;
wire [0:0] wire_add_sub_cella_24cout;
wire [0:0] wire_add_sub_cella_25cout;
wire [0:0] wire_add_sub_cella_26cout;
wire [0:0] wire_add_sub_cella_27cout;
wire [0:0] wire_add_sub_cella_28cout;
wire [0:0] wire_add_sub_cella_29cout;
wire [0:0] wire_add_sub_cella_30cout;
wire [31:0] wire_add_sub_cella_dataa;
wire [31:0] wire_add_sub_cella_datab;
wire [31:0] wire_add_sub_cella_regout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(1'b1),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "69b2",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "69b2",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "69b2",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "69b2",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "69b2",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_15cout[0:0]),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "69b2",
add_sub_cella_15.operation_mode = "arithmetic",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_16
(
.aclr(aclr),
.cin(wire_add_sub_cella_15cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_16cout[0:0]),
.dataa(wire_add_sub_cella_dataa[16:16]),
.datab(wire_add_sub_cella_datab[16:16]),
.ena(clken),
.regout(wire_add_sub_cella_regout[16:16]));
defparam
add_sub_cella_16.cin_used = "true",
add_sub_cella_16.lut_mask = "69b2",
add_sub_cella_16.operation_mode = "arithmetic",
add_sub_cella_16.sum_lutc_input = "cin",
add_sub_cella_16.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_17
(
.aclr(aclr),
.cin(wire_add_sub_cella_16cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_17cout[0:0]),
.dataa(wire_add_sub_cella_dataa[17:17]),
.datab(wire_add_sub_cella_datab[17:17]),
.ena(clken),
.regout(wire_add_sub_cella_regout[17:17]));
defparam
add_sub_cella_17.cin_used = "true",
add_sub_cella_17.lut_mask = "69b2",
add_sub_cella_17.operation_mode = "arithmetic",
add_sub_cella_17.sum_lutc_input = "cin",
add_sub_cella_17.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_18
(
.aclr(aclr),
.cin(wire_add_sub_cella_17cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_18cout[0:0]),
.dataa(wire_add_sub_cella_dataa[18:18]),
.datab(wire_add_sub_cella_datab[18:18]),
.ena(clken),
.regout(wire_add_sub_cella_regout[18:18]));
defparam
add_sub_cella_18.cin_used = "true",
add_sub_cella_18.lut_mask = "69b2",
add_sub_cella_18.operation_mode = "arithmetic",
add_sub_cella_18.sum_lutc_input = "cin",
add_sub_cella_18.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_19
(
.aclr(aclr),
.cin(wire_add_sub_cella_18cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_19cout[0:0]),
.dataa(wire_add_sub_cella_dataa[19:19]),
.datab(wire_add_sub_cella_datab[19:19]),
.ena(clken),
.regout(wire_add_sub_cella_regout[19:19]));
defparam
add_sub_cella_19.cin_used = "true",
add_sub_cella_19.lut_mask = "69b2",
add_sub_cella_19.operation_mode = "arithmetic",
add_sub_cella_19.sum_lutc_input = "cin",
add_sub_cella_19.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_20
(
.aclr(aclr),
.cin(wire_add_sub_cella_19cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_20cout[0:0]),
.dataa(wire_add_sub_cella_dataa[20:20]),
.datab(wire_add_sub_cella_datab[20:20]),
.ena(clken),
.regout(wire_add_sub_cella_regout[20:20]));
defparam
add_sub_cella_20.cin_used = "true",
add_sub_cella_20.lut_mask = "69b2",
add_sub_cella_20.operation_mode = "arithmetic",
add_sub_cella_20.sum_lutc_input = "cin",
add_sub_cella_20.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_21
(
.aclr(aclr),
.cin(wire_add_sub_cella_20cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_21cout[0:0]),
.dataa(wire_add_sub_cella_dataa[21:21]),
.datab(wire_add_sub_cella_datab[21:21]),
.ena(clken),
.regout(wire_add_sub_cella_regout[21:21]));
defparam
add_sub_cella_21.cin_used = "true",
add_sub_cella_21.lut_mask = "69b2",
add_sub_cella_21.operation_mode = "arithmetic",
add_sub_cella_21.sum_lutc_input = "cin",
add_sub_cella_21.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_22
(
.aclr(aclr),
.cin(wire_add_sub_cella_21cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_22cout[0:0]),
.dataa(wire_add_sub_cella_dataa[22:22]),
.datab(wire_add_sub_cella_datab[22:22]),
.ena(clken),
.regout(wire_add_sub_cella_regout[22:22]));
defparam
add_sub_cella_22.cin_used = "true",
add_sub_cella_22.lut_mask = "69b2",
add_sub_cella_22.operation_mode = "arithmetic",
add_sub_cella_22.sum_lutc_input = "cin",
add_sub_cella_22.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_23
(
.aclr(aclr),
.cin(wire_add_sub_cella_22cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_23cout[0:0]),
.dataa(wire_add_sub_cella_dataa[23:23]),
.datab(wire_add_sub_cella_datab[23:23]),
.ena(clken),
.regout(wire_add_sub_cella_regout[23:23]));
defparam
add_sub_cella_23.cin_used = "true",
add_sub_cella_23.lut_mask = "69b2",
add_sub_cella_23.operation_mode = "arithmetic",
add_sub_cella_23.sum_lutc_input = "cin",
add_sub_cella_23.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_24
(
.aclr(aclr),
.cin(wire_add_sub_cella_23cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_24cout[0:0]),
.dataa(wire_add_sub_cella_dataa[24:24]),
.datab(wire_add_sub_cella_datab[24:24]),
.ena(clken),
.regout(wire_add_sub_cella_regout[24:24]));
defparam
add_sub_cella_24.cin_used = "true",
add_sub_cella_24.lut_mask = "69b2",
add_sub_cella_24.operation_mode = "arithmetic",
add_sub_cella_24.sum_lutc_input = "cin",
add_sub_cella_24.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_25
(
.aclr(aclr),
.cin(wire_add_sub_cella_24cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_25cout[0:0]),
.dataa(wire_add_sub_cella_dataa[25:25]),
.datab(wire_add_sub_cella_datab[25:25]),
.ena(clken),
.regout(wire_add_sub_cella_regout[25:25]));
defparam
add_sub_cella_25.cin_used = "true",
add_sub_cella_25.lut_mask = "69b2",
add_sub_cella_25.operation_mode = "arithmetic",
add_sub_cella_25.sum_lutc_input = "cin",
add_sub_cella_25.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_26
(
.aclr(aclr),
.cin(wire_add_sub_cella_25cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_26cout[0:0]),
.dataa(wire_add_sub_cella_dataa[26:26]),
.datab(wire_add_sub_cella_datab[26:26]),
.ena(clken),
.regout(wire_add_sub_cella_regout[26:26]));
defparam
add_sub_cella_26.cin_used = "true",
add_sub_cella_26.lut_mask = "69b2",
add_sub_cella_26.operation_mode = "arithmetic",
add_sub_cella_26.sum_lutc_input = "cin",
add_sub_cella_26.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_27
(
.aclr(aclr),
.cin(wire_add_sub_cella_26cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_27cout[0:0]),
.dataa(wire_add_sub_cella_dataa[27:27]),
.datab(wire_add_sub_cella_datab[27:27]),
.ena(clken),
.regout(wire_add_sub_cella_regout[27:27]));
defparam
add_sub_cella_27.cin_used = "true",
add_sub_cella_27.lut_mask = "69b2",
add_sub_cella_27.operation_mode = "arithmetic",
add_sub_cella_27.sum_lutc_input = "cin",
add_sub_cella_27.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_28
(
.aclr(aclr),
.cin(wire_add_sub_cella_27cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_28cout[0:0]),
.dataa(wire_add_sub_cella_dataa[28:28]),
.datab(wire_add_sub_cella_datab[28:28]),
.ena(clken),
.regout(wire_add_sub_cella_regout[28:28]));
defparam
add_sub_cella_28.cin_used = "true",
add_sub_cella_28.lut_mask = "69b2",
add_sub_cella_28.operation_mode = "arithmetic",
add_sub_cella_28.sum_lutc_input = "cin",
add_sub_cella_28.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_29
(
.aclr(aclr),
.cin(wire_add_sub_cella_28cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_29cout[0:0]),
.dataa(wire_add_sub_cella_dataa[29:29]),
.datab(wire_add_sub_cella_datab[29:29]),
.ena(clken),
.regout(wire_add_sub_cella_regout[29:29]));
defparam
add_sub_cella_29.cin_used = "true",
add_sub_cella_29.lut_mask = "69b2",
add_sub_cella_29.operation_mode = "arithmetic",
add_sub_cella_29.sum_lutc_input = "cin",
add_sub_cella_29.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_30
(
.aclr(aclr),
.cin(wire_add_sub_cella_29cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_30cout[0:0]),
.dataa(wire_add_sub_cella_dataa[30:30]),
.datab(wire_add_sub_cella_datab[30:30]),
.ena(clken),
.regout(wire_add_sub_cella_regout[30:30]));
defparam
add_sub_cella_30.cin_used = "true",
add_sub_cella_30.lut_mask = "69b2",
add_sub_cella_30.operation_mode = "arithmetic",
add_sub_cella_30.sum_lutc_input = "cin",
add_sub_cella_30.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_31
(
.aclr(aclr),
.cin(wire_add_sub_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[31:31]),
.datab(wire_add_sub_cella_datab[31:31]),
.ena(clken),
.regout(wire_add_sub_cella_regout[31:31]));
defparam
add_sub_cella_31.cin_used = "true",
add_sub_cella_31.lut_mask = "6969",
add_sub_cella_31.operation_mode = "normal",
add_sub_cella_31.sum_lutc_input = "cin",
add_sub_cella_31.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_regout;
endmodule |
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
sub32_add_sub_cqa sub32_add_sub_cqa_component (
.dataa (dataa),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule |
module sub32_add_sub_cqa
(
aclr,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [0:0] wire_add_sub_cella_15cout;
wire [0:0] wire_add_sub_cella_16cout;
wire [0:0] wire_add_sub_cella_17cout;
wire [0:0] wire_add_sub_cella_18cout;
wire [0:0] wire_add_sub_cella_19cout;
wire [0:0] wire_add_sub_cella_20cout;
wire [0:0] wire_add_sub_cella_21cout;
wire [0:0] wire_add_sub_cella_22cout;
wire [0:0] wire_add_sub_cella_23cout;
wire [0:0] wire_add_sub_cella_24cout;
wire [0:0] wire_add_sub_cella_25cout;
wire [0:0] wire_add_sub_cella_26cout;
wire [0:0] wire_add_sub_cella_27cout;
wire [0:0] wire_add_sub_cella_28cout;
wire [0:0] wire_add_sub_cella_29cout;
wire [0:0] wire_add_sub_cella_30cout;
wire [31:0] wire_add_sub_cella_dataa;
wire [31:0] wire_add_sub_cella_datab;
wire [31:0] wire_add_sub_cella_regout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(1'b1),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "69b2",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "69b2",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "69b2",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "69b2",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "69b2",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_15cout[0:0]),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "69b2",
add_sub_cella_15.operation_mode = "arithmetic",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_16
(
.aclr(aclr),
.cin(wire_add_sub_cella_15cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_16cout[0:0]),
.dataa(wire_add_sub_cella_dataa[16:16]),
.datab(wire_add_sub_cella_datab[16:16]),
.ena(clken),
.regout(wire_add_sub_cella_regout[16:16]));
defparam
add_sub_cella_16.cin_used = "true",
add_sub_cella_16.lut_mask = "69b2",
add_sub_cella_16.operation_mode = "arithmetic",
add_sub_cella_16.sum_lutc_input = "cin",
add_sub_cella_16.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_17
(
.aclr(aclr),
.cin(wire_add_sub_cella_16cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_17cout[0:0]),
.dataa(wire_add_sub_cella_dataa[17:17]),
.datab(wire_add_sub_cella_datab[17:17]),
.ena(clken),
.regout(wire_add_sub_cella_regout[17:17]));
defparam
add_sub_cella_17.cin_used = "true",
add_sub_cella_17.lut_mask = "69b2",
add_sub_cella_17.operation_mode = "arithmetic",
add_sub_cella_17.sum_lutc_input = "cin",
add_sub_cella_17.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_18
(
.aclr(aclr),
.cin(wire_add_sub_cella_17cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_18cout[0:0]),
.dataa(wire_add_sub_cella_dataa[18:18]),
.datab(wire_add_sub_cella_datab[18:18]),
.ena(clken),
.regout(wire_add_sub_cella_regout[18:18]));
defparam
add_sub_cella_18.cin_used = "true",
add_sub_cella_18.lut_mask = "69b2",
add_sub_cella_18.operation_mode = "arithmetic",
add_sub_cella_18.sum_lutc_input = "cin",
add_sub_cella_18.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_19
(
.aclr(aclr),
.cin(wire_add_sub_cella_18cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_19cout[0:0]),
.dataa(wire_add_sub_cella_dataa[19:19]),
.datab(wire_add_sub_cella_datab[19:19]),
.ena(clken),
.regout(wire_add_sub_cella_regout[19:19]));
defparam
add_sub_cella_19.cin_used = "true",
add_sub_cella_19.lut_mask = "69b2",
add_sub_cella_19.operation_mode = "arithmetic",
add_sub_cella_19.sum_lutc_input = "cin",
add_sub_cella_19.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_20
(
.aclr(aclr),
.cin(wire_add_sub_cella_19cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_20cout[0:0]),
.dataa(wire_add_sub_cella_dataa[20:20]),
.datab(wire_add_sub_cella_datab[20:20]),
.ena(clken),
.regout(wire_add_sub_cella_regout[20:20]));
defparam
add_sub_cella_20.cin_used = "true",
add_sub_cella_20.lut_mask = "69b2",
add_sub_cella_20.operation_mode = "arithmetic",
add_sub_cella_20.sum_lutc_input = "cin",
add_sub_cella_20.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_21
(
.aclr(aclr),
.cin(wire_add_sub_cella_20cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_21cout[0:0]),
.dataa(wire_add_sub_cella_dataa[21:21]),
.datab(wire_add_sub_cella_datab[21:21]),
.ena(clken),
.regout(wire_add_sub_cella_regout[21:21]));
defparam
add_sub_cella_21.cin_used = "true",
add_sub_cella_21.lut_mask = "69b2",
add_sub_cella_21.operation_mode = "arithmetic",
add_sub_cella_21.sum_lutc_input = "cin",
add_sub_cella_21.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_22
(
.aclr(aclr),
.cin(wire_add_sub_cella_21cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_22cout[0:0]),
.dataa(wire_add_sub_cella_dataa[22:22]),
.datab(wire_add_sub_cella_datab[22:22]),
.ena(clken),
.regout(wire_add_sub_cella_regout[22:22]));
defparam
add_sub_cella_22.cin_used = "true",
add_sub_cella_22.lut_mask = "69b2",
add_sub_cella_22.operation_mode = "arithmetic",
add_sub_cella_22.sum_lutc_input = "cin",
add_sub_cella_22.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_23
(
.aclr(aclr),
.cin(wire_add_sub_cella_22cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_23cout[0:0]),
.dataa(wire_add_sub_cella_dataa[23:23]),
.datab(wire_add_sub_cella_datab[23:23]),
.ena(clken),
.regout(wire_add_sub_cella_regout[23:23]));
defparam
add_sub_cella_23.cin_used = "true",
add_sub_cella_23.lut_mask = "69b2",
add_sub_cella_23.operation_mode = "arithmetic",
add_sub_cella_23.sum_lutc_input = "cin",
add_sub_cella_23.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_24
(
.aclr(aclr),
.cin(wire_add_sub_cella_23cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_24cout[0:0]),
.dataa(wire_add_sub_cella_dataa[24:24]),
.datab(wire_add_sub_cella_datab[24:24]),
.ena(clken),
.regout(wire_add_sub_cella_regout[24:24]));
defparam
add_sub_cella_24.cin_used = "true",
add_sub_cella_24.lut_mask = "69b2",
add_sub_cella_24.operation_mode = "arithmetic",
add_sub_cella_24.sum_lutc_input = "cin",
add_sub_cella_24.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_25
(
.aclr(aclr),
.cin(wire_add_sub_cella_24cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_25cout[0:0]),
.dataa(wire_add_sub_cella_dataa[25:25]),
.datab(wire_add_sub_cella_datab[25:25]),
.ena(clken),
.regout(wire_add_sub_cella_regout[25:25]));
defparam
add_sub_cella_25.cin_used = "true",
add_sub_cella_25.lut_mask = "69b2",
add_sub_cella_25.operation_mode = "arithmetic",
add_sub_cella_25.sum_lutc_input = "cin",
add_sub_cella_25.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_26
(
.aclr(aclr),
.cin(wire_add_sub_cella_25cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_26cout[0:0]),
.dataa(wire_add_sub_cella_dataa[26:26]),
.datab(wire_add_sub_cella_datab[26:26]),
.ena(clken),
.regout(wire_add_sub_cella_regout[26:26]));
defparam
add_sub_cella_26.cin_used = "true",
add_sub_cella_26.lut_mask = "69b2",
add_sub_cella_26.operation_mode = "arithmetic",
add_sub_cella_26.sum_lutc_input = "cin",
add_sub_cella_26.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_27
(
.aclr(aclr),
.cin(wire_add_sub_cella_26cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_27cout[0:0]),
.dataa(wire_add_sub_cella_dataa[27:27]),
.datab(wire_add_sub_cella_datab[27:27]),
.ena(clken),
.regout(wire_add_sub_cella_regout[27:27]));
defparam
add_sub_cella_27.cin_used = "true",
add_sub_cella_27.lut_mask = "69b2",
add_sub_cella_27.operation_mode = "arithmetic",
add_sub_cella_27.sum_lutc_input = "cin",
add_sub_cella_27.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_28
(
.aclr(aclr),
.cin(wire_add_sub_cella_27cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_28cout[0:0]),
.dataa(wire_add_sub_cella_dataa[28:28]),
.datab(wire_add_sub_cella_datab[28:28]),
.ena(clken),
.regout(wire_add_sub_cella_regout[28:28]));
defparam
add_sub_cella_28.cin_used = "true",
add_sub_cella_28.lut_mask = "69b2",
add_sub_cella_28.operation_mode = "arithmetic",
add_sub_cella_28.sum_lutc_input = "cin",
add_sub_cella_28.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_29
(
.aclr(aclr),
.cin(wire_add_sub_cella_28cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_29cout[0:0]),
.dataa(wire_add_sub_cella_dataa[29:29]),
.datab(wire_add_sub_cella_datab[29:29]),
.ena(clken),
.regout(wire_add_sub_cella_regout[29:29]));
defparam
add_sub_cella_29.cin_used = "true",
add_sub_cella_29.lut_mask = "69b2",
add_sub_cella_29.operation_mode = "arithmetic",
add_sub_cella_29.sum_lutc_input = "cin",
add_sub_cella_29.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_30
(
.aclr(aclr),
.cin(wire_add_sub_cella_29cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_30cout[0:0]),
.dataa(wire_add_sub_cella_dataa[30:30]),
.datab(wire_add_sub_cella_datab[30:30]),
.ena(clken),
.regout(wire_add_sub_cella_regout[30:30]));
defparam
add_sub_cella_30.cin_used = "true",
add_sub_cella_30.lut_mask = "69b2",
add_sub_cella_30.operation_mode = "arithmetic",
add_sub_cella_30.sum_lutc_input = "cin",
add_sub_cella_30.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_31
(
.aclr(aclr),
.cin(wire_add_sub_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[31:31]),
.datab(wire_add_sub_cella_datab[31:31]),
.ena(clken),
.regout(wire_add_sub_cella_regout[31:31]));
defparam
add_sub_cella_31.cin_used = "true",
add_sub_cella_31.lut_mask = "6969",
add_sub_cella_31.operation_mode = "normal",
add_sub_cella_31.sum_lutc_input = "cin",
add_sub_cella_31.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_regout;
endmodule |
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
sub32_add_sub_cqa sub32_add_sub_cqa_component (
.dataa (dataa),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule |
module sub32_add_sub_cqa
(
aclr,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [0:0] wire_add_sub_cella_15cout;
wire [0:0] wire_add_sub_cella_16cout;
wire [0:0] wire_add_sub_cella_17cout;
wire [0:0] wire_add_sub_cella_18cout;
wire [0:0] wire_add_sub_cella_19cout;
wire [0:0] wire_add_sub_cella_20cout;
wire [0:0] wire_add_sub_cella_21cout;
wire [0:0] wire_add_sub_cella_22cout;
wire [0:0] wire_add_sub_cella_23cout;
wire [0:0] wire_add_sub_cella_24cout;
wire [0:0] wire_add_sub_cella_25cout;
wire [0:0] wire_add_sub_cella_26cout;
wire [0:0] wire_add_sub_cella_27cout;
wire [0:0] wire_add_sub_cella_28cout;
wire [0:0] wire_add_sub_cella_29cout;
wire [0:0] wire_add_sub_cella_30cout;
wire [31:0] wire_add_sub_cella_dataa;
wire [31:0] wire_add_sub_cella_datab;
wire [31:0] wire_add_sub_cella_regout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(1'b1),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "69b2",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "69b2",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "69b2",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "69b2",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "69b2",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_15cout[0:0]),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "69b2",
add_sub_cella_15.operation_mode = "arithmetic",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_16
(
.aclr(aclr),
.cin(wire_add_sub_cella_15cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_16cout[0:0]),
.dataa(wire_add_sub_cella_dataa[16:16]),
.datab(wire_add_sub_cella_datab[16:16]),
.ena(clken),
.regout(wire_add_sub_cella_regout[16:16]));
defparam
add_sub_cella_16.cin_used = "true",
add_sub_cella_16.lut_mask = "69b2",
add_sub_cella_16.operation_mode = "arithmetic",
add_sub_cella_16.sum_lutc_input = "cin",
add_sub_cella_16.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_17
(
.aclr(aclr),
.cin(wire_add_sub_cella_16cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_17cout[0:0]),
.dataa(wire_add_sub_cella_dataa[17:17]),
.datab(wire_add_sub_cella_datab[17:17]),
.ena(clken),
.regout(wire_add_sub_cella_regout[17:17]));
defparam
add_sub_cella_17.cin_used = "true",
add_sub_cella_17.lut_mask = "69b2",
add_sub_cella_17.operation_mode = "arithmetic",
add_sub_cella_17.sum_lutc_input = "cin",
add_sub_cella_17.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_18
(
.aclr(aclr),
.cin(wire_add_sub_cella_17cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_18cout[0:0]),
.dataa(wire_add_sub_cella_dataa[18:18]),
.datab(wire_add_sub_cella_datab[18:18]),
.ena(clken),
.regout(wire_add_sub_cella_regout[18:18]));
defparam
add_sub_cella_18.cin_used = "true",
add_sub_cella_18.lut_mask = "69b2",
add_sub_cella_18.operation_mode = "arithmetic",
add_sub_cella_18.sum_lutc_input = "cin",
add_sub_cella_18.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_19
(
.aclr(aclr),
.cin(wire_add_sub_cella_18cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_19cout[0:0]),
.dataa(wire_add_sub_cella_dataa[19:19]),
.datab(wire_add_sub_cella_datab[19:19]),
.ena(clken),
.regout(wire_add_sub_cella_regout[19:19]));
defparam
add_sub_cella_19.cin_used = "true",
add_sub_cella_19.lut_mask = "69b2",
add_sub_cella_19.operation_mode = "arithmetic",
add_sub_cella_19.sum_lutc_input = "cin",
add_sub_cella_19.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_20
(
.aclr(aclr),
.cin(wire_add_sub_cella_19cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_20cout[0:0]),
.dataa(wire_add_sub_cella_dataa[20:20]),
.datab(wire_add_sub_cella_datab[20:20]),
.ena(clken),
.regout(wire_add_sub_cella_regout[20:20]));
defparam
add_sub_cella_20.cin_used = "true",
add_sub_cella_20.lut_mask = "69b2",
add_sub_cella_20.operation_mode = "arithmetic",
add_sub_cella_20.sum_lutc_input = "cin",
add_sub_cella_20.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_21
(
.aclr(aclr),
.cin(wire_add_sub_cella_20cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_21cout[0:0]),
.dataa(wire_add_sub_cella_dataa[21:21]),
.datab(wire_add_sub_cella_datab[21:21]),
.ena(clken),
.regout(wire_add_sub_cella_regout[21:21]));
defparam
add_sub_cella_21.cin_used = "true",
add_sub_cella_21.lut_mask = "69b2",
add_sub_cella_21.operation_mode = "arithmetic",
add_sub_cella_21.sum_lutc_input = "cin",
add_sub_cella_21.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_22
(
.aclr(aclr),
.cin(wire_add_sub_cella_21cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_22cout[0:0]),
.dataa(wire_add_sub_cella_dataa[22:22]),
.datab(wire_add_sub_cella_datab[22:22]),
.ena(clken),
.regout(wire_add_sub_cella_regout[22:22]));
defparam
add_sub_cella_22.cin_used = "true",
add_sub_cella_22.lut_mask = "69b2",
add_sub_cella_22.operation_mode = "arithmetic",
add_sub_cella_22.sum_lutc_input = "cin",
add_sub_cella_22.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_23
(
.aclr(aclr),
.cin(wire_add_sub_cella_22cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_23cout[0:0]),
.dataa(wire_add_sub_cella_dataa[23:23]),
.datab(wire_add_sub_cella_datab[23:23]),
.ena(clken),
.regout(wire_add_sub_cella_regout[23:23]));
defparam
add_sub_cella_23.cin_used = "true",
add_sub_cella_23.lut_mask = "69b2",
add_sub_cella_23.operation_mode = "arithmetic",
add_sub_cella_23.sum_lutc_input = "cin",
add_sub_cella_23.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_24
(
.aclr(aclr),
.cin(wire_add_sub_cella_23cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_24cout[0:0]),
.dataa(wire_add_sub_cella_dataa[24:24]),
.datab(wire_add_sub_cella_datab[24:24]),
.ena(clken),
.regout(wire_add_sub_cella_regout[24:24]));
defparam
add_sub_cella_24.cin_used = "true",
add_sub_cella_24.lut_mask = "69b2",
add_sub_cella_24.operation_mode = "arithmetic",
add_sub_cella_24.sum_lutc_input = "cin",
add_sub_cella_24.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_25
(
.aclr(aclr),
.cin(wire_add_sub_cella_24cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_25cout[0:0]),
.dataa(wire_add_sub_cella_dataa[25:25]),
.datab(wire_add_sub_cella_datab[25:25]),
.ena(clken),
.regout(wire_add_sub_cella_regout[25:25]));
defparam
add_sub_cella_25.cin_used = "true",
add_sub_cella_25.lut_mask = "69b2",
add_sub_cella_25.operation_mode = "arithmetic",
add_sub_cella_25.sum_lutc_input = "cin",
add_sub_cella_25.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_26
(
.aclr(aclr),
.cin(wire_add_sub_cella_25cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_26cout[0:0]),
.dataa(wire_add_sub_cella_dataa[26:26]),
.datab(wire_add_sub_cella_datab[26:26]),
.ena(clken),
.regout(wire_add_sub_cella_regout[26:26]));
defparam
add_sub_cella_26.cin_used = "true",
add_sub_cella_26.lut_mask = "69b2",
add_sub_cella_26.operation_mode = "arithmetic",
add_sub_cella_26.sum_lutc_input = "cin",
add_sub_cella_26.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_27
(
.aclr(aclr),
.cin(wire_add_sub_cella_26cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_27cout[0:0]),
.dataa(wire_add_sub_cella_dataa[27:27]),
.datab(wire_add_sub_cella_datab[27:27]),
.ena(clken),
.regout(wire_add_sub_cella_regout[27:27]));
defparam
add_sub_cella_27.cin_used = "true",
add_sub_cella_27.lut_mask = "69b2",
add_sub_cella_27.operation_mode = "arithmetic",
add_sub_cella_27.sum_lutc_input = "cin",
add_sub_cella_27.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_28
(
.aclr(aclr),
.cin(wire_add_sub_cella_27cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_28cout[0:0]),
.dataa(wire_add_sub_cella_dataa[28:28]),
.datab(wire_add_sub_cella_datab[28:28]),
.ena(clken),
.regout(wire_add_sub_cella_regout[28:28]));
defparam
add_sub_cella_28.cin_used = "true",
add_sub_cella_28.lut_mask = "69b2",
add_sub_cella_28.operation_mode = "arithmetic",
add_sub_cella_28.sum_lutc_input = "cin",
add_sub_cella_28.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_29
(
.aclr(aclr),
.cin(wire_add_sub_cella_28cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_29cout[0:0]),
.dataa(wire_add_sub_cella_dataa[29:29]),
.datab(wire_add_sub_cella_datab[29:29]),
.ena(clken),
.regout(wire_add_sub_cella_regout[29:29]));
defparam
add_sub_cella_29.cin_used = "true",
add_sub_cella_29.lut_mask = "69b2",
add_sub_cella_29.operation_mode = "arithmetic",
add_sub_cella_29.sum_lutc_input = "cin",
add_sub_cella_29.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_30
(
.aclr(aclr),
.cin(wire_add_sub_cella_29cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_30cout[0:0]),
.dataa(wire_add_sub_cella_dataa[30:30]),
.datab(wire_add_sub_cella_datab[30:30]),
.ena(clken),
.regout(wire_add_sub_cella_regout[30:30]));
defparam
add_sub_cella_30.cin_used = "true",
add_sub_cella_30.lut_mask = "69b2",
add_sub_cella_30.operation_mode = "arithmetic",
add_sub_cella_30.sum_lutc_input = "cin",
add_sub_cella_30.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_31
(
.aclr(aclr),
.cin(wire_add_sub_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[31:31]),
.datab(wire_add_sub_cella_datab[31:31]),
.ena(clken),
.regout(wire_add_sub_cella_regout[31:31]));
defparam
add_sub_cella_31.cin_used = "true",
add_sub_cella_31.lut_mask = "6969",
add_sub_cella_31.operation_mode = "normal",
add_sub_cella_31.sum_lutc_input = "cin",
add_sub_cella_31.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_regout;
endmodule |
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
sub32_add_sub_cqa sub32_add_sub_cqa_component (
.dataa (dataa),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule |
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
endmodule |
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
endmodule |
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
endmodule |
module rx_chain
(input clock,
input reset,
input enable,
input wire [7:0] decim_rate,
input sample_strobe,
input decimator_strobe,
output wire hb_strobe,
input [6:0] serial_addr, input [31:0] serial_data, input serial_strobe,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out,
output wire [15:0] debugdata,output wire [15:0] debugctrl
);
parameter FREQADDR = 0;
parameter PHASEADDR = 0;
wire [31:0] phase;
wire [15:0] bb_i, bb_q;
wire [15:0] hb_in_i, hb_in_q;
assign debugdata = hb_in_i;
`ifdef RX_NCO_ON
phase_acc #(FREQADDR,PHASEADDR,32) rx_phase_acc
(.clk(clock),.reset(reset),.enable(enable),
.serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe),
.strobe(sample_strobe),.phase(phase) );
cordic rx_cordic
( .clock(clock),.reset(reset),.enable(enable),
.xi(i_in),.yi(q_in),.zi(phase[31:16]),
.xo(bb_i),.yo(bb_q),.zo() );
`else
assign bb_i = i_in;
assign bb_q = q_in;
assign sample_strobe = 1;
`endif // !`ifdef RX_NCO_ON
`ifdef RX_CIC_ON
cic_decim cic_decim_i_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i),.signal_out(hb_in_i) );
`else
assign hb_in_i = bb_i;
assign decimator_strobe = sample_strobe;
`endif
`ifdef RX_HB_ON
halfband_decim hbd_i_0
( .clock(clock),.reset(reset),.enable(enable),
.strobe_in(decimator_strobe),.strobe_out(hb_strobe),
.data_in(hb_in_i),.data_out(i_out),.debugctrl(debugctrl) );
`else
assign i_out = hb_in_i;
assign hb_strobe = decimator_strobe;
`endif
`ifdef RX_CIC_ON
cic_decim cic_decim_q_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q),.signal_out(hb_in_q) );
`else
assign hb_in_q = bb_q;
`endif
`ifdef RX_HB_ON
halfband_decim hbd_q_0
( .clock(clock),.reset(reset),.enable(enable),
.strobe_in(decimator_strobe),.strobe_out(),
.data_in(hb_in_q),.data_out(q_out) );
`else
assign q_out = hb_in_q;
`endif
endmodule |
module my_dcm (
input CLKIN,
output CLKFX,
output LOCKED,
input RST,
output[7:0] STATUS
);
// DCM: Digital Clock Manager Circuit
// Spartan-3
// Xilinx HDL Language Template, version 11.1
DCM #(
.SIM_MODE("SAFE"), // Simulation: "SAFE" vs. "FAST", see "Synthesis and Simulation Design Guide" for details
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(1), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(41.667), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK("NONE"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hFFFF), // FACTORY JF values
// .LOC("DCM_X0Y0"),
.PHASE_SHIFT(0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("TRUE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) DCM_inst (
.CLK0(CLK0), // 0 degree DCM CLK output
.CLK180(CLK180), // 180 degree DCM CLK output
.CLK270(CLK270), // 270 degree DCM CLK output
.CLK2X(CLK2X), // 2X DCM CLK output
.CLK2X180(CLK2X180), // 2X, 180 degree DCM CLK out
.CLK90(CLK90), // 90 degree DCM CLK output
.CLKDV(CLKDV), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX(CLKFX), // DCM CLK synthesis out (M/D)
.CLKFX180(CLKFX180), // 180 degree CLK synthesis out
.LOCKED(LOCKED), // DCM LOCK status output
.PSDONE(PSDONE), // Dynamic phase adjust done output
.STATUS(STATUS), // 8-bit DCM status bits output
.CLKFB(CLKFB), // DCM clock feedback
.CLKIN(CLKIN), // Clock input (from IBUFG, BUFG or DCM)
.PSCLK(PSCLK), // Dynamic phase adjust clock input
.PSEN(PSEN), // Dynamic phase adjust enable input
.PSINCDEC(PSINCDEC), // Dynamic phase adjust increment/decrement
.RST(RST) // DCM asynchronous reset input
);
endmodule |
module halfband_interp
(input clock, input reset, input enable,
input strobe_in, input strobe_out,
input [15:0] signal_in_i, input [15:0] signal_in_q,
output reg [15:0] signal_out_i, output reg [15:0] signal_out_q,
output wire [12:0] debug);
wire [15:0] coeff_ram_out;
wire [15:0] data_ram_out_i;
wire [15:0] data_ram_out_q;
wire [3:0] data_rd_addr;
reg [3:0] data_wr_addr;
reg [2:0] coeff_rd_addr;
wire filt_done;
wire [15:0] mac_out_i;
wire [15:0] mac_out_q;
reg [15:0] delayed_middle_i, delayed_middle_q;
wire [7:0] shift = 8'd9;
reg stb_out_happened;
wire [15:0] data_ram_out_i_b;
always @(posedge clock)
if(strobe_in)
stb_out_happened <= #1 1'b0;
else if(strobe_out)
stb_out_happened <= #1 1'b1;
assign debug = {filt_done,data_rd_addr,data_wr_addr,coeff_rd_addr};
wire [15:0] signal_out_i = stb_out_happened ? mac_out_i : delayed_middle_i;
wire [15:0] signal_out_q = stb_out_happened ? mac_out_q : delayed_middle_q;
/* always @(posedge clock)
if(reset)
begin
signal_out_i <= #1 16'd0;
signal_out_q <= #1 16'd0;
end
else if(strobe_in)
begin
signal_out_i <= #1 delayed_middle_i; // Multiply by 1 for middle coeff
signal_out_q <= #1 delayed_middle_q;
end
//else if(filt_done&stb_out_happened)
else if(stb_out_happened)
begin
signal_out_i <= #1 mac_out_i;
signal_out_q <= #1 mac_out_q;
end
*/
always @(posedge clock)
if(reset)
coeff_rd_addr <= #1 3'd0;
else if(coeff_rd_addr != 3'd0)
coeff_rd_addr <= #1 coeff_rd_addr + 3'd1;
else if(strobe_in)
coeff_rd_addr <= #1 3'd1;
reg filt_done_d1;
always@(posedge clock)
filt_done_d1 <= #1 filt_done;
always @(posedge clock)
if(reset)
data_wr_addr <= #1 4'd0;
//else if(strobe_in)
else if(filt_done & ~filt_done_d1)
data_wr_addr <= #1 data_wr_addr + 4'd1;
always @(posedge clock)
if(coeff_rd_addr == 3'd7)
begin
delayed_middle_i <= #1 data_ram_out_i_b;
// delayed_middle_q <= #1 data_ram_out_q_b;
end
// always @(posedge clock)
// if(reset)
// data_rd_addr <= #1 4'd0;
// else if(strobe_in)
// data_rd_addr <= #1 data_wr_addr + 4'd1;
// else if(!filt_done)
// data_rd_addr <= #1 data_rd_addr + 4'd1;
// else
// data_rd_addr <= #1 data_wr_addr;
wire [3:0] data_rd_addr1 = data_wr_addr + {1'b0,coeff_rd_addr};
wire [3:0] data_rd_addr2 = data_wr_addr + 15 - {1'b0,coeff_rd_addr};
// always @(posedge clock)
// if(reset)
// filt_done <= #1 1'b1;
// else if(strobe_in)
// filt_done <= #1 1'b0;
// else if(coeff_rd_addr == 4'd0)
// filt_done <= #1 1'b1;
assign filt_done = (coeff_rd_addr == 3'd0);
coeff_ram coeff_ram ( .clock(clock),.rd_addr({1'b0,coeff_rd_addr}),.rd_data(coeff_ram_out) );
ram16_2sum data_ram_i ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_i),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_i_b),.sum(data_ram_out_i));
ram16_2sum data_ram_q ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_q),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_q));
mac mac_i (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_i),.y(coeff_ram_out),.shift(shift),.z(mac_out_i) );
mac mac_q (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_q),.y(coeff_ram_out),.shift(shift),.z(mac_out_q) );
endmodule |
module halfband_interp
(input clock, input reset, input enable,
input strobe_in, input strobe_out,
input [15:0] signal_in_i, input [15:0] signal_in_q,
output reg [15:0] signal_out_i, output reg [15:0] signal_out_q,
output wire [12:0] debug);
wire [15:0] coeff_ram_out;
wire [15:0] data_ram_out_i;
wire [15:0] data_ram_out_q;
wire [3:0] data_rd_addr;
reg [3:0] data_wr_addr;
reg [2:0] coeff_rd_addr;
wire filt_done;
wire [15:0] mac_out_i;
wire [15:0] mac_out_q;
reg [15:0] delayed_middle_i, delayed_middle_q;
wire [7:0] shift = 8'd9;
reg stb_out_happened;
wire [15:0] data_ram_out_i_b;
always @(posedge clock)
if(strobe_in)
stb_out_happened <= #1 1'b0;
else if(strobe_out)
stb_out_happened <= #1 1'b1;
assign debug = {filt_done,data_rd_addr,data_wr_addr,coeff_rd_addr};
wire [15:0] signal_out_i = stb_out_happened ? mac_out_i : delayed_middle_i;
wire [15:0] signal_out_q = stb_out_happened ? mac_out_q : delayed_middle_q;
/* always @(posedge clock)
if(reset)
begin
signal_out_i <= #1 16'd0;
signal_out_q <= #1 16'd0;
end
else if(strobe_in)
begin
signal_out_i <= #1 delayed_middle_i; // Multiply by 1 for middle coeff
signal_out_q <= #1 delayed_middle_q;
end
//else if(filt_done&stb_out_happened)
else if(stb_out_happened)
begin
signal_out_i <= #1 mac_out_i;
signal_out_q <= #1 mac_out_q;
end
*/
always @(posedge clock)
if(reset)
coeff_rd_addr <= #1 3'd0;
else if(coeff_rd_addr != 3'd0)
coeff_rd_addr <= #1 coeff_rd_addr + 3'd1;
else if(strobe_in)
coeff_rd_addr <= #1 3'd1;
reg filt_done_d1;
always@(posedge clock)
filt_done_d1 <= #1 filt_done;
always @(posedge clock)
if(reset)
data_wr_addr <= #1 4'd0;
//else if(strobe_in)
else if(filt_done & ~filt_done_d1)
data_wr_addr <= #1 data_wr_addr + 4'd1;
always @(posedge clock)
if(coeff_rd_addr == 3'd7)
begin
delayed_middle_i <= #1 data_ram_out_i_b;
// delayed_middle_q <= #1 data_ram_out_q_b;
end
// always @(posedge clock)
// if(reset)
// data_rd_addr <= #1 4'd0;
// else if(strobe_in)
// data_rd_addr <= #1 data_wr_addr + 4'd1;
// else if(!filt_done)
// data_rd_addr <= #1 data_rd_addr + 4'd1;
// else
// data_rd_addr <= #1 data_wr_addr;
wire [3:0] data_rd_addr1 = data_wr_addr + {1'b0,coeff_rd_addr};
wire [3:0] data_rd_addr2 = data_wr_addr + 15 - {1'b0,coeff_rd_addr};
// always @(posedge clock)
// if(reset)
// filt_done <= #1 1'b1;
// else if(strobe_in)
// filt_done <= #1 1'b0;
// else if(coeff_rd_addr == 4'd0)
// filt_done <= #1 1'b1;
assign filt_done = (coeff_rd_addr == 3'd0);
coeff_ram coeff_ram ( .clock(clock),.rd_addr({1'b0,coeff_rd_addr}),.rd_data(coeff_ram_out) );
ram16_2sum data_ram_i ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_i),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_i_b),.sum(data_ram_out_i));
ram16_2sum data_ram_q ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_q),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_q));
mac mac_i (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_i),.y(coeff_ram_out),.shift(shift),.z(mac_out_i) );
mac mac_q (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_q),.y(coeff_ram_out),.shift(shift),.z(mac_out_q) );
endmodule |
module add32_add_sub_nq7
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [7:0] wire_add_sub_cella_dataa;
wire [7:0] wire_add_sub_cella_datab;
stratix_lcell add_sub_cella_0
(
.cin(1'b0),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "9696",
add_sub_cella_7.operation_mode = "normal",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule |
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] sub_wire0;
wire [7:0] result = sub_wire0[7:0];
add32_add_sub_nq7 add32_add_sub_nq7_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0));
endmodule |
module add32_add_sub_nq7
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [7:0] wire_add_sub_cella_dataa;
wire [7:0] wire_add_sub_cella_datab;
stratix_lcell add_sub_cella_0
(
.cin(1'b0),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "9696",
add_sub_cella_7.operation_mode = "normal",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule |
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] sub_wire0;
wire [7:0] result = sub_wire0[7:0];
add32_add_sub_nq7 add32_add_sub_nq7_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0));
endmodule |
module add32_add_sub_nq7
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [7:0] wire_add_sub_cella_dataa;
wire [7:0] wire_add_sub_cella_datab;
stratix_lcell add_sub_cella_0
(
.cin(1'b0),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "9696",
add_sub_cella_7.operation_mode = "normal",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule |
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] sub_wire0;
wire [7:0] result = sub_wire0[7:0];
add32_add_sub_nq7 add32_add_sub_nq7_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0));
endmodule |
module add32_add_sub_nq7
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [7:0] wire_add_sub_cella_dataa;
wire [7:0] wire_add_sub_cella_datab;
stratix_lcell add_sub_cella_0
(
.cin(1'b0),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "9696",
add_sub_cella_7.operation_mode = "normal",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule |
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] sub_wire0;
wire [7:0] result = sub_wire0[7:0];
add32_add_sub_nq7 add32_add_sub_nq7_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0));
endmodule |
module tx_chain
(input clock,
input reset,
input enable,
input wire [7:0] interp_rate,
input sample_strobe,
input interpolator_strobe,
input wire [31:0] freq,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out
);
wire [15:0] bb_i, bb_q;
cic_interp cic_interp_i
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(i_in),.signal_out(bb_i) );
cic_interp cic_interp_q
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(q_in),.signal_out(bb_q) );
`define NOCORDIC_TX
`ifdef NOCORDIC_TX
assign i_out = bb_i;
assign q_out = bb_q;
`else
wire [31:0] phase;
phase_acc phase_acc_tx
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq),.phase(phase) );
cordic tx_cordic_0
( .clock(clock),.reset(reset),.enable(sample_strobe),
.xi(bb_i),.yi(bb_q),.zi(phase[31:16]),
.xo(i_out),.yo(q_out),.zo() );
`endif
endmodule |
module tx_chain
(input clock,
input reset,
input enable,
input wire [7:0] interp_rate,
input sample_strobe,
input interpolator_strobe,
input wire [31:0] freq,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out
);
wire [15:0] bb_i, bb_q;
cic_interp cic_interp_i
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(i_in),.signal_out(bb_i) );
cic_interp cic_interp_q
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(q_in),.signal_out(bb_q) );
`define NOCORDIC_TX
`ifdef NOCORDIC_TX
assign i_out = bb_i;
assign q_out = bb_q;
`else
wire [31:0] phase;
phase_acc phase_acc_tx
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq),.phase(phase) );
cordic tx_cordic_0
( .clock(clock),.reset(reset),.enable(sample_strobe),
.xi(bb_i),.yi(bb_q),.zi(phase[31:16]),
.xo(i_out),.yo(q_out),.zo() );
`endif
endmodule |
module tx_chain
(input clock,
input reset,
input enable,
input wire [7:0] interp_rate,
input sample_strobe,
input interpolator_strobe,
input wire [31:0] freq,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out
);
wire [15:0] bb_i, bb_q;
cic_interp cic_interp_i
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(i_in),.signal_out(bb_i) );
cic_interp cic_interp_q
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(q_in),.signal_out(bb_q) );
`define NOCORDIC_TX
`ifdef NOCORDIC_TX
assign i_out = bb_i;
assign q_out = bb_q;
`else
wire [31:0] phase;
phase_acc phase_acc_tx
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq),.phase(phase) );
cordic tx_cordic_0
( .clock(clock),.reset(reset),.enable(sample_strobe),
.xi(bb_i),.yi(bb_q),.zi(phase[31:16]),
.xo(i_out),.yo(q_out),.zo() );
`endif
endmodule |
module tx_chain
(input clock,
input reset,
input enable,
input wire [7:0] interp_rate,
input sample_strobe,
input interpolator_strobe,
input wire [31:0] freq,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out
);
wire [15:0] bb_i, bb_q;
cic_interp cic_interp_i
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(i_in),.signal_out(bb_i) );
cic_interp cic_interp_q
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(q_in),.signal_out(bb_q) );
`define NOCORDIC_TX
`ifdef NOCORDIC_TX
assign i_out = bb_i;
assign q_out = bb_q;
`else
wire [31:0] phase;
phase_acc phase_acc_tx
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq),.phase(phase) );
cordic tx_cordic_0
( .clock(clock),.reset(reset),.enable(sample_strobe),
.xi(bb_i),.yi(bb_q),.zi(phase[31:16]),
.xo(i_out),.yo(q_out),.zo() );
`endif
endmodule |
module tx_chain
(input clock,
input reset,
input enable,
input wire [7:0] interp_rate,
input sample_strobe,
input interpolator_strobe,
input wire [31:0] freq,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out
);
wire [15:0] bb_i, bb_q;
cic_interp cic_interp_i
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(i_in),.signal_out(bb_i) );
cic_interp cic_interp_q
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(q_in),.signal_out(bb_q) );
`define NOCORDIC_TX
`ifdef NOCORDIC_TX
assign i_out = bb_i;
assign q_out = bb_q;
`else
wire [31:0] phase;
phase_acc phase_acc_tx
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq),.phase(phase) );
cordic tx_cordic_0
( .clock(clock),.reset(reset),.enable(sample_strobe),
.xi(bb_i),.yi(bb_q),.zi(phase[31:16]),
.xo(i_out),.yo(q_out),.zo() );
`endif
endmodule |
module tx_chain
(input clock,
input reset,
input enable,
input wire [7:0] interp_rate,
input sample_strobe,
input interpolator_strobe,
input wire [31:0] freq,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out
);
wire [15:0] bb_i, bb_q;
cic_interp cic_interp_i
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(i_in),.signal_out(bb_i) );
cic_interp cic_interp_q
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(interpolator_strobe),.strobe_out(sample_strobe),
.signal_in(q_in),.signal_out(bb_q) );
`define NOCORDIC_TX
`ifdef NOCORDIC_TX
assign i_out = bb_i;
assign q_out = bb_q;
`else
wire [31:0] phase;
phase_acc phase_acc_tx
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq),.phase(phase) );
cordic tx_cordic_0
( .clock(clock),.reset(reset),.enable(sample_strobe),
.xi(bb_i),.yi(bb_q),.zi(phase[31:16]),
.xo(i_out),.yo(q_out),.zo() );
`endif
endmodule |
module pll (
inclk0,
c0);
input inclk0;
output c0;
wire [5:0] sub_wire0;
wire [0:0] sub_wire4 = 1'h0;
wire [0:0] sub_wire1 = sub_wire0[0:0];
wire c0 = sub_wire1;
wire sub_wire2 = inclk0;
wire [1:0] sub_wire3 = {sub_wire4, sub_wire2};
altpll altpll_component (
.inclk (sub_wire3),
.clk (sub_wire0)
// synopsys translate_off
,
.fbin (),
.pllena (),
.clkswitch (),
.areset (),
.pfdena (),
.clkena (),
.extclkena (),
.scanclk (),
.scanaclr (),
.scandata (),
.scanread (),
.scanwrite (),
.extclk (),
.clkbad (),
.activeclock (),
.locked (),
.clkloss (),
.scandataout (),
.scandone (),
.sclkout1 (),
.sclkout0 (),
.enable0 (),
.enable1 ()
// synopsys translate_on
);
defparam
altpll_component.clk0_duty_cycle = 50,
altpll_component.lpm_type = "altpll",
altpll_component.clk0_multiply_by = 1,
altpll_component.inclk0_input_frequency = 20833,
altpll_component.clk0_divide_by = 1,
altpll_component.pll_type = "AUTO",
altpll_component.clk0_time_delay = "0",
altpll_component.intended_device_family = "Cyclone",
altpll_component.operation_mode = "NORMAL",
altpll_component.compensate_clock = "CLK0",
altpll_component.clk0_phase_shift = "-3000";
endmodule |
module pll (
inclk0,
c0);
input inclk0;
output c0;
wire [5:0] sub_wire0;
wire [0:0] sub_wire4 = 1'h0;
wire [0:0] sub_wire1 = sub_wire0[0:0];
wire c0 = sub_wire1;
wire sub_wire2 = inclk0;
wire [1:0] sub_wire3 = {sub_wire4, sub_wire2};
altpll altpll_component (
.inclk (sub_wire3),
.clk (sub_wire0)
// synopsys translate_off
,
.fbin (),
.pllena (),
.clkswitch (),
.areset (),
.pfdena (),
.clkena (),
.extclkena (),
.scanclk (),
.scanaclr (),
.scandata (),
.scanread (),
.scanwrite (),
.extclk (),
.clkbad (),
.activeclock (),
.locked (),
.clkloss (),
.scandataout (),
.scandone (),
.sclkout1 (),
.sclkout0 (),
.enable0 (),
.enable1 ()
// synopsys translate_on
);
defparam
altpll_component.clk0_duty_cycle = 50,
altpll_component.lpm_type = "altpll",
altpll_component.clk0_multiply_by = 1,
altpll_component.inclk0_input_frequency = 20833,
altpll_component.clk0_divide_by = 1,
altpll_component.pll_type = "AUTO",
altpll_component.clk0_time_delay = "0",
altpll_component.intended_device_family = "Cyclone",
altpll_component.operation_mode = "NORMAL",
altpll_component.compensate_clock = "CLK0",
altpll_component.clk0_phase_shift = "-3000";
endmodule |
module pll (
inclk0,
c0);
input inclk0;
output c0;
wire [5:0] sub_wire0;
wire [0:0] sub_wire4 = 1'h0;
wire [0:0] sub_wire1 = sub_wire0[0:0];
wire c0 = sub_wire1;
wire sub_wire2 = inclk0;
wire [1:0] sub_wire3 = {sub_wire4, sub_wire2};
altpll altpll_component (
.inclk (sub_wire3),
.clk (sub_wire0)
// synopsys translate_off
,
.fbin (),
.pllena (),
.clkswitch (),
.areset (),
.pfdena (),
.clkena (),
.extclkena (),
.scanclk (),
.scanaclr (),
.scandata (),
.scanread (),
.scanwrite (),
.extclk (),
.clkbad (),
.activeclock (),
.locked (),
.clkloss (),
.scandataout (),
.scandone (),
.sclkout1 (),
.sclkout0 (),
.enable0 (),
.enable1 ()
// synopsys translate_on
);
defparam
altpll_component.clk0_duty_cycle = 50,
altpll_component.lpm_type = "altpll",
altpll_component.clk0_multiply_by = 1,
altpll_component.inclk0_input_frequency = 20833,
altpll_component.clk0_divide_by = 1,
altpll_component.pll_type = "AUTO",
altpll_component.clk0_time_delay = "0",
altpll_component.intended_device_family = "Cyclone",
altpll_component.operation_mode = "NORMAL",
altpll_component.compensate_clock = "CLK0",
altpll_component.clk0_phase_shift = "-3000";
endmodule |
module bustri (
data,
enabledt,
tridata);
input [15:0] data;
input enabledt;
inout [15:0] tridata;
endmodule |
module as members of the synchronizer
// to enable automatic metastability MTBF analysis.
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON "} *) reg din_s1;
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON"} *) reg [depth-2:0] dreg;
//synthesis translate_off
initial begin
if (depth <2) begin
$display("%m: Error: synchronizer length: %0d less than 2.", depth);
end
end
// the first synchronizer register is either a simple D flop for synthesis
// and non-metastable simulation or a D flop with a method to inject random
// metastable events resulting in random delay of [0,1] cycles
`ifdef __ALTERA_STD__METASTABLE_SIM
reg[31:0] RANDOM_SEED = 123456;
wire next_din_s1;
wire dout;
reg din_last;
reg random;
event metastable_event; // hook for debug monitoring
initial begin
$display("%m: Info: Metastable event injection simulation mode enabled");
end
always @(posedge clk) begin
if (reset_n == 0)
random <= $random(RANDOM_SEED);
else
random <= $random;
end
assign next_din_s1 = (din_last ^ din) ? random : din;
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_last <= 1'b0;
else
din_last <= din;
end
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= next_din_s1;
end
`else
//synthesis translate_on
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= din;
end
//synthesis translate_off
`endif
`ifdef __ALTERA_STD__METASTABLE_SIM_VERBOSE
always @(*) begin
if (reset_n && (din_last != din) && (random != din)) begin
$display("%m: Verbose Info: metastable event @ time %t", $time);
->metastable_event;
end
end
`endif
//synthesis translate_on
// the remaining synchronizer registers form a simple shift register
// of length depth-1
generate
if (depth < 3) begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= din_s1;
end
end else begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= {dreg[depth-3:0], din_s1};
end
end
endgenerate
assign dout = dreg[depth-2];
endmodule |
module as members of the synchronizer
// to enable automatic metastability MTBF analysis.
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON "} *) reg din_s1;
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON"} *) reg [depth-2:0] dreg;
//synthesis translate_off
initial begin
if (depth <2) begin
$display("%m: Error: synchronizer length: %0d less than 2.", depth);
end
end
// the first synchronizer register is either a simple D flop for synthesis
// and non-metastable simulation or a D flop with a method to inject random
// metastable events resulting in random delay of [0,1] cycles
`ifdef __ALTERA_STD__METASTABLE_SIM
reg[31:0] RANDOM_SEED = 123456;
wire next_din_s1;
wire dout;
reg din_last;
reg random;
event metastable_event; // hook for debug monitoring
initial begin
$display("%m: Info: Metastable event injection simulation mode enabled");
end
always @(posedge clk) begin
if (reset_n == 0)
random <= $random(RANDOM_SEED);
else
random <= $random;
end
assign next_din_s1 = (din_last ^ din) ? random : din;
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_last <= 1'b0;
else
din_last <= din;
end
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= next_din_s1;
end
`else
//synthesis translate_on
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= din;
end
//synthesis translate_off
`endif
`ifdef __ALTERA_STD__METASTABLE_SIM_VERBOSE
always @(*) begin
if (reset_n && (din_last != din) && (random != din)) begin
$display("%m: Verbose Info: metastable event @ time %t", $time);
->metastable_event;
end
end
`endif
//synthesis translate_on
// the remaining synchronizer registers form a simple shift register
// of length depth-1
generate
if (depth < 3) begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= din_s1;
end
end else begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= {dreg[depth-3:0], din_s1};
end
end
endgenerate
assign dout = dreg[depth-2];
endmodule |
module as members of the synchronizer
// to enable automatic metastability MTBF analysis.
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON "} *) reg din_s1;
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON"} *) reg [depth-2:0] dreg;
//synthesis translate_off
initial begin
if (depth <2) begin
$display("%m: Error: synchronizer length: %0d less than 2.", depth);
end
end
// the first synchronizer register is either a simple D flop for synthesis
// and non-metastable simulation or a D flop with a method to inject random
// metastable events resulting in random delay of [0,1] cycles
`ifdef __ALTERA_STD__METASTABLE_SIM
reg[31:0] RANDOM_SEED = 123456;
wire next_din_s1;
wire dout;
reg din_last;
reg random;
event metastable_event; // hook for debug monitoring
initial begin
$display("%m: Info: Metastable event injection simulation mode enabled");
end
always @(posedge clk) begin
if (reset_n == 0)
random <= $random(RANDOM_SEED);
else
random <= $random;
end
assign next_din_s1 = (din_last ^ din) ? random : din;
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_last <= 1'b0;
else
din_last <= din;
end
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= next_din_s1;
end
`else
//synthesis translate_on
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= din;
end
//synthesis translate_off
`endif
`ifdef __ALTERA_STD__METASTABLE_SIM_VERBOSE
always @(*) begin
if (reset_n && (din_last != din) && (random != din)) begin
$display("%m: Verbose Info: metastable event @ time %t", $time);
->metastable_event;
end
end
`endif
//synthesis translate_on
// the remaining synchronizer registers form a simple shift register
// of length depth-1
generate
if (depth < 3) begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= din_s1;
end
end else begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= {dreg[depth-3:0], din_s1};
end
end
endgenerate
assign dout = dreg[depth-2];
endmodule |
module as members of the synchronizer
// to enable automatic metastability MTBF analysis.
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON "} *) reg din_s1;
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON"} *) reg [depth-2:0] dreg;
//synthesis translate_off
initial begin
if (depth <2) begin
$display("%m: Error: synchronizer length: %0d less than 2.", depth);
end
end
// the first synchronizer register is either a simple D flop for synthesis
// and non-metastable simulation or a D flop with a method to inject random
// metastable events resulting in random delay of [0,1] cycles
`ifdef __ALTERA_STD__METASTABLE_SIM
reg[31:0] RANDOM_SEED = 123456;
wire next_din_s1;
wire dout;
reg din_last;
reg random;
event metastable_event; // hook for debug monitoring
initial begin
$display("%m: Info: Metastable event injection simulation mode enabled");
end
always @(posedge clk) begin
if (reset_n == 0)
random <= $random(RANDOM_SEED);
else
random <= $random;
end
assign next_din_s1 = (din_last ^ din) ? random : din;
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_last <= 1'b0;
else
din_last <= din;
end
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= next_din_s1;
end
`else
//synthesis translate_on
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= din;
end
//synthesis translate_off
`endif
`ifdef __ALTERA_STD__METASTABLE_SIM_VERBOSE
always @(*) begin
if (reset_n && (din_last != din) && (random != din)) begin
$display("%m: Verbose Info: metastable event @ time %t", $time);
->metastable_event;
end
end
`endif
//synthesis translate_on
// the remaining synchronizer registers form a simple shift register
// of length depth-1
generate
if (depth < 3) begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= din_s1;
end
end else begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= {dreg[depth-3:0], din_s1};
end
end
endgenerate
assign dout = dreg[depth-2];
endmodule |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.