module_content
stringlengths 18
1.05M
|
---|
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => RESERVED (all outputs driven to 0).
// 5 => RESERVED (all outputs driven to 0).
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
(* use_clock_enable = "yes" *)
generate
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 0
// Bypass mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000) begin
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 1 (or 8)
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg [C_DATA_WIDTH-1:0] skid_buffer;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else begin
s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID);
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY);
end
if (M_READY | ~m_valid_i) begin
m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer;
end
if (s_ready_i) begin
skid_buffer <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 2
// Only FWD mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000002)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
wire s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ~ARESET;
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data;
// M_Valid set to high when we have a completed transfer on slave side
// Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK)
begin
if (~aresetn_d)
m_valid_i <= 1'b0;
else
if (S_VALID) // Always set m_valid_i when slave side is valid
m_valid_i <= 1'b1;
else
if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready
m_valid_i <= 1'b0;
end // always @ (posedge ACLK)
// Slave Ready is either when Master side drives M_Ready or we have space in our storage data
assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d;
end // if (C_REG_CONFIG == 2)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 3
// Only REV mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000003)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
reg s_ready_i; //local signal of output
reg has_valid_storage_i;
reg has_valid_storage;
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA;
// Need to determine when we need to save a payload
// Need a combinatorial signals since it will also effect S_READY
always @ *
begin
// Set the value if we have a slave transaction but master side is not ready
if (S_VALID & s_ready_i & ~M_READY)
has_valid_storage_i = 1'b1;
// Clear the value if it's set and Master side completes the transaction but we don't have a new slave side
// transaction
else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0)))
has_valid_storage_i = 1'b0;
else
has_valid_storage_i = has_valid_storage;
end // always @ *
always @(posedge ACLK)
begin
if (~aresetn_d[0])
has_valid_storage <= 1'b0;
else
has_valid_storage <= has_valid_storage_i;
end
// S_READY is either clocked M_READY or that we have room in local storage
always @(posedge ACLK)
begin
if (~aresetn_d[0])
s_ready_i <= 1'b0;
else
s_ready_i <= M_READY | ~has_valid_storage_i;
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
// M_READY is either combinatorial S_READY or that we have valid data in local storage
assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1];
end // if (C_REG_CONFIG == 3)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005))
begin
// synthesis translate_off
initial begin
$display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED.");
end
// synthesis translate_on
assign M_PAYLOAD_DATA = 0;
assign M_VALID = 1'b0;
assign S_READY = 1'b0;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 6
// INPUTS mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000006)
begin
reg [1:0] state;
reg [1:0] next_state;
localparam [1:0]
ZERO = 2'b00,
ONE = 2'b01,
TWO = 2'b11;
reg [C_DATA_WIDTH-1:0] storage_data1;
reg [C_DATA_WIDTH-1:0] storage_data2;
reg s_valid_d;
reg s_ready_d;
reg m_ready_d;
reg m_valid_d;
reg load_s2;
reg sel_s2;
wire new_access;
wire access_done;
wire s_ready_i; //local signal of output
reg s_ready_ii;
reg m_valid_i; //local signal of output
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign s_ready_i = s_ready_ii & aresetn_d[1];
// Registrate input control signals
always @(posedge ACLK)
begin
if (~aresetn_d[0]) begin
s_valid_d <= 1'b0;
s_ready_d <= 1'b0;
m_ready_d <= 1'b0;
end else begin
s_valid_d <= S_VALID;
s_ready_d <= s_ready_i;
m_ready_d <= M_READY;
end
end // always @ (posedge ACLK)
// Load storage1 with slave side payload data when slave side ready is high
always @(posedge ACLK)
begin
if (s_ready_i)
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with storage data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= storage_data1;
end
always @(posedge ACLK)
begin
if (~aresetn_d[0])
m_valid_d <= 1'b0;
else
m_valid_d <= m_valid_i;
end
// Local help signals
assign new_access = s_ready_d & s_valid_d;
assign access_done = m_ready_d & m_valid_d;
// State Machine for handling output signals
always @*
begin
next_state = state; // Stay in the same state unless we need to move to another state
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 0;
case (state)
// No transaction stored locally
ZERO: begin
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 1;
if (new_access) begin
next_state = ONE; // Got one so move to ONE
load_s2 = 1;
m_valid_i = 0;
end
else begin
next_state = next_state;
load_s2 = load_s2;
m_valid_i = m_valid_i;
end
end // case: ZERO
// One transaction stored locally
ONE: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 1;
if (~new_access & access_done) begin
next_state = ZERO; // Read out one so move to ZERO
m_valid_i = 0;
end
else if (new_access & ~access_done) begin
next_state = TWO; // Got another one so move to TWO
s_ready_ii = 0;
end
else if (new_access & access_done) begin
load_s2 = 1;
sel_s2 = 0;
end
else begin
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: ONE
// TWO transaction stored locally
TWO: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 0;
if (access_done) begin
next_state = ONE; // Read out one so move to ONE
s_ready_ii = 1;
load_s2 = 1;
sel_s2 = 0;
end
else begin
next_state = next_state;
s_ready_ii = s_ready_ii;
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: TWO
endcase // case (state)
end // always @ *
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (~aresetn_d[0])
state <= ZERO;
else
state <= next_state; // Stay in the same state unless we need to move to another state
end
// Master Payload mux
assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1;
end // if (C_REG_CONFIG == 6)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 7
// Light-weight mode.
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000007) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else if (~aresetn_d[1]) begin
s_ready_i <= 1'b1;
end else begin
s_ready_i <= m_valid_i ? M_READY : ~S_VALID;
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= s_ready_i ? S_VALID : ~M_READY;
end
if (~m_valid_i) begin
m_payload_i <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => RESERVED (all outputs driven to 0).
// 5 => RESERVED (all outputs driven to 0).
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
(* use_clock_enable = "yes" *)
generate
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 0
// Bypass mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000) begin
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 1 (or 8)
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg [C_DATA_WIDTH-1:0] skid_buffer;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else begin
s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID);
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY);
end
if (M_READY | ~m_valid_i) begin
m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer;
end
if (s_ready_i) begin
skid_buffer <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 2
// Only FWD mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000002)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
wire s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ~ARESET;
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data;
// M_Valid set to high when we have a completed transfer on slave side
// Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK)
begin
if (~aresetn_d)
m_valid_i <= 1'b0;
else
if (S_VALID) // Always set m_valid_i when slave side is valid
m_valid_i <= 1'b1;
else
if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready
m_valid_i <= 1'b0;
end // always @ (posedge ACLK)
// Slave Ready is either when Master side drives M_Ready or we have space in our storage data
assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d;
end // if (C_REG_CONFIG == 2)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 3
// Only REV mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000003)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
reg s_ready_i; //local signal of output
reg has_valid_storage_i;
reg has_valid_storage;
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA;
// Need to determine when we need to save a payload
// Need a combinatorial signals since it will also effect S_READY
always @ *
begin
// Set the value if we have a slave transaction but master side is not ready
if (S_VALID & s_ready_i & ~M_READY)
has_valid_storage_i = 1'b1;
// Clear the value if it's set and Master side completes the transaction but we don't have a new slave side
// transaction
else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0)))
has_valid_storage_i = 1'b0;
else
has_valid_storage_i = has_valid_storage;
end // always @ *
always @(posedge ACLK)
begin
if (~aresetn_d[0])
has_valid_storage <= 1'b0;
else
has_valid_storage <= has_valid_storage_i;
end
// S_READY is either clocked M_READY or that we have room in local storage
always @(posedge ACLK)
begin
if (~aresetn_d[0])
s_ready_i <= 1'b0;
else
s_ready_i <= M_READY | ~has_valid_storage_i;
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
// M_READY is either combinatorial S_READY or that we have valid data in local storage
assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1];
end // if (C_REG_CONFIG == 3)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005))
begin
// synthesis translate_off
initial begin
$display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED.");
end
// synthesis translate_on
assign M_PAYLOAD_DATA = 0;
assign M_VALID = 1'b0;
assign S_READY = 1'b0;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 6
// INPUTS mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000006)
begin
reg [1:0] state;
reg [1:0] next_state;
localparam [1:0]
ZERO = 2'b00,
ONE = 2'b01,
TWO = 2'b11;
reg [C_DATA_WIDTH-1:0] storage_data1;
reg [C_DATA_WIDTH-1:0] storage_data2;
reg s_valid_d;
reg s_ready_d;
reg m_ready_d;
reg m_valid_d;
reg load_s2;
reg sel_s2;
wire new_access;
wire access_done;
wire s_ready_i; //local signal of output
reg s_ready_ii;
reg m_valid_i; //local signal of output
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign s_ready_i = s_ready_ii & aresetn_d[1];
// Registrate input control signals
always @(posedge ACLK)
begin
if (~aresetn_d[0]) begin
s_valid_d <= 1'b0;
s_ready_d <= 1'b0;
m_ready_d <= 1'b0;
end else begin
s_valid_d <= S_VALID;
s_ready_d <= s_ready_i;
m_ready_d <= M_READY;
end
end // always @ (posedge ACLK)
// Load storage1 with slave side payload data when slave side ready is high
always @(posedge ACLK)
begin
if (s_ready_i)
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with storage data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= storage_data1;
end
always @(posedge ACLK)
begin
if (~aresetn_d[0])
m_valid_d <= 1'b0;
else
m_valid_d <= m_valid_i;
end
// Local help signals
assign new_access = s_ready_d & s_valid_d;
assign access_done = m_ready_d & m_valid_d;
// State Machine for handling output signals
always @*
begin
next_state = state; // Stay in the same state unless we need to move to another state
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 0;
case (state)
// No transaction stored locally
ZERO: begin
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 1;
if (new_access) begin
next_state = ONE; // Got one so move to ONE
load_s2 = 1;
m_valid_i = 0;
end
else begin
next_state = next_state;
load_s2 = load_s2;
m_valid_i = m_valid_i;
end
end // case: ZERO
// One transaction stored locally
ONE: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 1;
if (~new_access & access_done) begin
next_state = ZERO; // Read out one so move to ZERO
m_valid_i = 0;
end
else if (new_access & ~access_done) begin
next_state = TWO; // Got another one so move to TWO
s_ready_ii = 0;
end
else if (new_access & access_done) begin
load_s2 = 1;
sel_s2 = 0;
end
else begin
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: ONE
// TWO transaction stored locally
TWO: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 0;
if (access_done) begin
next_state = ONE; // Read out one so move to ONE
s_ready_ii = 1;
load_s2 = 1;
sel_s2 = 0;
end
else begin
next_state = next_state;
s_ready_ii = s_ready_ii;
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: TWO
endcase // case (state)
end // always @ *
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (~aresetn_d[0])
state <= ZERO;
else
state <= next_state; // Stay in the same state unless we need to move to another state
end
// Master Payload mux
assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1;
end // if (C_REG_CONFIG == 6)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 7
// Light-weight mode.
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000007) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else if (~aresetn_d[1]) begin
s_ready_i <= 1'b1;
end else begin
s_ready_i <= m_valid_i ? M_READY : ~S_VALID;
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= s_ready_i ? S_VALID : ~M_READY;
end
if (~m_valid_i) begin
m_payload_i <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => RESERVED (all outputs driven to 0).
// 5 => RESERVED (all outputs driven to 0).
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
(* use_clock_enable = "yes" *)
generate
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 0
// Bypass mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000) begin
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 1 (or 8)
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg [C_DATA_WIDTH-1:0] skid_buffer;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else begin
s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID);
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY);
end
if (M_READY | ~m_valid_i) begin
m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer;
end
if (s_ready_i) begin
skid_buffer <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 2
// Only FWD mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000002)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
wire s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ~ARESET;
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data;
// M_Valid set to high when we have a completed transfer on slave side
// Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK)
begin
if (~aresetn_d)
m_valid_i <= 1'b0;
else
if (S_VALID) // Always set m_valid_i when slave side is valid
m_valid_i <= 1'b1;
else
if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready
m_valid_i <= 1'b0;
end // always @ (posedge ACLK)
// Slave Ready is either when Master side drives M_Ready or we have space in our storage data
assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d;
end // if (C_REG_CONFIG == 2)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 3
// Only REV mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000003)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
reg s_ready_i; //local signal of output
reg has_valid_storage_i;
reg has_valid_storage;
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA;
// Need to determine when we need to save a payload
// Need a combinatorial signals since it will also effect S_READY
always @ *
begin
// Set the value if we have a slave transaction but master side is not ready
if (S_VALID & s_ready_i & ~M_READY)
has_valid_storage_i = 1'b1;
// Clear the value if it's set and Master side completes the transaction but we don't have a new slave side
// transaction
else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0)))
has_valid_storage_i = 1'b0;
else
has_valid_storage_i = has_valid_storage;
end // always @ *
always @(posedge ACLK)
begin
if (~aresetn_d[0])
has_valid_storage <= 1'b0;
else
has_valid_storage <= has_valid_storage_i;
end
// S_READY is either clocked M_READY or that we have room in local storage
always @(posedge ACLK)
begin
if (~aresetn_d[0])
s_ready_i <= 1'b0;
else
s_ready_i <= M_READY | ~has_valid_storage_i;
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
// M_READY is either combinatorial S_READY or that we have valid data in local storage
assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1];
end // if (C_REG_CONFIG == 3)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005))
begin
// synthesis translate_off
initial begin
$display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED.");
end
// synthesis translate_on
assign M_PAYLOAD_DATA = 0;
assign M_VALID = 1'b0;
assign S_READY = 1'b0;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 6
// INPUTS mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000006)
begin
reg [1:0] state;
reg [1:0] next_state;
localparam [1:0]
ZERO = 2'b00,
ONE = 2'b01,
TWO = 2'b11;
reg [C_DATA_WIDTH-1:0] storage_data1;
reg [C_DATA_WIDTH-1:0] storage_data2;
reg s_valid_d;
reg s_ready_d;
reg m_ready_d;
reg m_valid_d;
reg load_s2;
reg sel_s2;
wire new_access;
wire access_done;
wire s_ready_i; //local signal of output
reg s_ready_ii;
reg m_valid_i; //local signal of output
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign s_ready_i = s_ready_ii & aresetn_d[1];
// Registrate input control signals
always @(posedge ACLK)
begin
if (~aresetn_d[0]) begin
s_valid_d <= 1'b0;
s_ready_d <= 1'b0;
m_ready_d <= 1'b0;
end else begin
s_valid_d <= S_VALID;
s_ready_d <= s_ready_i;
m_ready_d <= M_READY;
end
end // always @ (posedge ACLK)
// Load storage1 with slave side payload data when slave side ready is high
always @(posedge ACLK)
begin
if (s_ready_i)
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with storage data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= storage_data1;
end
always @(posedge ACLK)
begin
if (~aresetn_d[0])
m_valid_d <= 1'b0;
else
m_valid_d <= m_valid_i;
end
// Local help signals
assign new_access = s_ready_d & s_valid_d;
assign access_done = m_ready_d & m_valid_d;
// State Machine for handling output signals
always @*
begin
next_state = state; // Stay in the same state unless we need to move to another state
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 0;
case (state)
// No transaction stored locally
ZERO: begin
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 1;
if (new_access) begin
next_state = ONE; // Got one so move to ONE
load_s2 = 1;
m_valid_i = 0;
end
else begin
next_state = next_state;
load_s2 = load_s2;
m_valid_i = m_valid_i;
end
end // case: ZERO
// One transaction stored locally
ONE: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 1;
if (~new_access & access_done) begin
next_state = ZERO; // Read out one so move to ZERO
m_valid_i = 0;
end
else if (new_access & ~access_done) begin
next_state = TWO; // Got another one so move to TWO
s_ready_ii = 0;
end
else if (new_access & access_done) begin
load_s2 = 1;
sel_s2 = 0;
end
else begin
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: ONE
// TWO transaction stored locally
TWO: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 0;
if (access_done) begin
next_state = ONE; // Read out one so move to ONE
s_ready_ii = 1;
load_s2 = 1;
sel_s2 = 0;
end
else begin
next_state = next_state;
s_ready_ii = s_ready_ii;
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: TWO
endcase // case (state)
end // always @ *
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (~aresetn_d[0])
state <= ZERO;
else
state <= next_state; // Stay in the same state unless we need to move to another state
end
// Master Payload mux
assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1;
end // if (C_REG_CONFIG == 6)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 7
// Light-weight mode.
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000007) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else if (~aresetn_d[1]) begin
s_ready_i <= 1'b1;
end else begin
s_ready_i <= m_valid_i ? M_READY : ~S_VALID;
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= s_ready_i ? S_VALID : ~M_READY;
end
if (~m_valid_i) begin
m_payload_i <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => RESERVED (all outputs driven to 0).
// 5 => RESERVED (all outputs driven to 0).
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
(* use_clock_enable = "yes" *)
generate
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 0
// Bypass mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000) begin
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 1 (or 8)
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg [C_DATA_WIDTH-1:0] skid_buffer;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else begin
s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID);
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY);
end
if (M_READY | ~m_valid_i) begin
m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer;
end
if (s_ready_i) begin
skid_buffer <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 2
// Only FWD mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000002)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
wire s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ~ARESET;
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data;
// M_Valid set to high when we have a completed transfer on slave side
// Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK)
begin
if (~aresetn_d)
m_valid_i <= 1'b0;
else
if (S_VALID) // Always set m_valid_i when slave side is valid
m_valid_i <= 1'b1;
else
if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready
m_valid_i <= 1'b0;
end // always @ (posedge ACLK)
// Slave Ready is either when Master side drives M_Ready or we have space in our storage data
assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d;
end // if (C_REG_CONFIG == 2)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 3
// Only REV mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000003)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
reg s_ready_i; //local signal of output
reg has_valid_storage_i;
reg has_valid_storage;
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA;
// Need to determine when we need to save a payload
// Need a combinatorial signals since it will also effect S_READY
always @ *
begin
// Set the value if we have a slave transaction but master side is not ready
if (S_VALID & s_ready_i & ~M_READY)
has_valid_storage_i = 1'b1;
// Clear the value if it's set and Master side completes the transaction but we don't have a new slave side
// transaction
else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0)))
has_valid_storage_i = 1'b0;
else
has_valid_storage_i = has_valid_storage;
end // always @ *
always @(posedge ACLK)
begin
if (~aresetn_d[0])
has_valid_storage <= 1'b0;
else
has_valid_storage <= has_valid_storage_i;
end
// S_READY is either clocked M_READY or that we have room in local storage
always @(posedge ACLK)
begin
if (~aresetn_d[0])
s_ready_i <= 1'b0;
else
s_ready_i <= M_READY | ~has_valid_storage_i;
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
// M_READY is either combinatorial S_READY or that we have valid data in local storage
assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1];
end // if (C_REG_CONFIG == 3)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005))
begin
// synthesis translate_off
initial begin
$display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED.");
end
// synthesis translate_on
assign M_PAYLOAD_DATA = 0;
assign M_VALID = 1'b0;
assign S_READY = 1'b0;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 6
// INPUTS mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000006)
begin
reg [1:0] state;
reg [1:0] next_state;
localparam [1:0]
ZERO = 2'b00,
ONE = 2'b01,
TWO = 2'b11;
reg [C_DATA_WIDTH-1:0] storage_data1;
reg [C_DATA_WIDTH-1:0] storage_data2;
reg s_valid_d;
reg s_ready_d;
reg m_ready_d;
reg m_valid_d;
reg load_s2;
reg sel_s2;
wire new_access;
wire access_done;
wire s_ready_i; //local signal of output
reg s_ready_ii;
reg m_valid_i; //local signal of output
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign s_ready_i = s_ready_ii & aresetn_d[1];
// Registrate input control signals
always @(posedge ACLK)
begin
if (~aresetn_d[0]) begin
s_valid_d <= 1'b0;
s_ready_d <= 1'b0;
m_ready_d <= 1'b0;
end else begin
s_valid_d <= S_VALID;
s_ready_d <= s_ready_i;
m_ready_d <= M_READY;
end
end // always @ (posedge ACLK)
// Load storage1 with slave side payload data when slave side ready is high
always @(posedge ACLK)
begin
if (s_ready_i)
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with storage data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= storage_data1;
end
always @(posedge ACLK)
begin
if (~aresetn_d[0])
m_valid_d <= 1'b0;
else
m_valid_d <= m_valid_i;
end
// Local help signals
assign new_access = s_ready_d & s_valid_d;
assign access_done = m_ready_d & m_valid_d;
// State Machine for handling output signals
always @*
begin
next_state = state; // Stay in the same state unless we need to move to another state
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 0;
case (state)
// No transaction stored locally
ZERO: begin
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 1;
if (new_access) begin
next_state = ONE; // Got one so move to ONE
load_s2 = 1;
m_valid_i = 0;
end
else begin
next_state = next_state;
load_s2 = load_s2;
m_valid_i = m_valid_i;
end
end // case: ZERO
// One transaction stored locally
ONE: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 1;
if (~new_access & access_done) begin
next_state = ZERO; // Read out one so move to ZERO
m_valid_i = 0;
end
else if (new_access & ~access_done) begin
next_state = TWO; // Got another one so move to TWO
s_ready_ii = 0;
end
else if (new_access & access_done) begin
load_s2 = 1;
sel_s2 = 0;
end
else begin
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: ONE
// TWO transaction stored locally
TWO: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 0;
if (access_done) begin
next_state = ONE; // Read out one so move to ONE
s_ready_ii = 1;
load_s2 = 1;
sel_s2 = 0;
end
else begin
next_state = next_state;
s_ready_ii = s_ready_ii;
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: TWO
endcase // case (state)
end // always @ *
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (~aresetn_d[0])
state <= ZERO;
else
state <= next_state; // Stay in the same state unless we need to move to another state
end
// Master Payload mux
assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1;
end // if (C_REG_CONFIG == 6)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 7
// Light-weight mode.
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000007) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else if (~aresetn_d[1]) begin
s_ready_i <= 1'b1;
end else begin
s_ready_i <= m_valid_i ? M_READY : ~S_VALID;
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= s_ready_i ? S_VALID : ~M_READY;
end
if (~m_valid_i) begin
m_payload_i <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => RESERVED (all outputs driven to 0).
// 5 => RESERVED (all outputs driven to 0).
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
(* use_clock_enable = "yes" *)
generate
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 0
// Bypass mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000) begin
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 1 (or 8)
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg [C_DATA_WIDTH-1:0] skid_buffer;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else begin
s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID);
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY);
end
if (M_READY | ~m_valid_i) begin
m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer;
end
if (s_ready_i) begin
skid_buffer <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 2
// Only FWD mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000002)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
wire s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ~ARESET;
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data;
// M_Valid set to high when we have a completed transfer on slave side
// Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK)
begin
if (~aresetn_d)
m_valid_i <= 1'b0;
else
if (S_VALID) // Always set m_valid_i when slave side is valid
m_valid_i <= 1'b1;
else
if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready
m_valid_i <= 1'b0;
end // always @ (posedge ACLK)
// Slave Ready is either when Master side drives M_Ready or we have space in our storage data
assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d;
end // if (C_REG_CONFIG == 2)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 3
// Only REV mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000003)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
reg s_ready_i; //local signal of output
reg has_valid_storage_i;
reg has_valid_storage;
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA;
// Need to determine when we need to save a payload
// Need a combinatorial signals since it will also effect S_READY
always @ *
begin
// Set the value if we have a slave transaction but master side is not ready
if (S_VALID & s_ready_i & ~M_READY)
has_valid_storage_i = 1'b1;
// Clear the value if it's set and Master side completes the transaction but we don't have a new slave side
// transaction
else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0)))
has_valid_storage_i = 1'b0;
else
has_valid_storage_i = has_valid_storage;
end // always @ *
always @(posedge ACLK)
begin
if (~aresetn_d[0])
has_valid_storage <= 1'b0;
else
has_valid_storage <= has_valid_storage_i;
end
// S_READY is either clocked M_READY or that we have room in local storage
always @(posedge ACLK)
begin
if (~aresetn_d[0])
s_ready_i <= 1'b0;
else
s_ready_i <= M_READY | ~has_valid_storage_i;
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
// M_READY is either combinatorial S_READY or that we have valid data in local storage
assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1];
end // if (C_REG_CONFIG == 3)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005))
begin
// synthesis translate_off
initial begin
$display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED.");
end
// synthesis translate_on
assign M_PAYLOAD_DATA = 0;
assign M_VALID = 1'b0;
assign S_READY = 1'b0;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 6
// INPUTS mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000006)
begin
reg [1:0] state;
reg [1:0] next_state;
localparam [1:0]
ZERO = 2'b00,
ONE = 2'b01,
TWO = 2'b11;
reg [C_DATA_WIDTH-1:0] storage_data1;
reg [C_DATA_WIDTH-1:0] storage_data2;
reg s_valid_d;
reg s_ready_d;
reg m_ready_d;
reg m_valid_d;
reg load_s2;
reg sel_s2;
wire new_access;
wire access_done;
wire s_ready_i; //local signal of output
reg s_ready_ii;
reg m_valid_i; //local signal of output
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign s_ready_i = s_ready_ii & aresetn_d[1];
// Registrate input control signals
always @(posedge ACLK)
begin
if (~aresetn_d[0]) begin
s_valid_d <= 1'b0;
s_ready_d <= 1'b0;
m_ready_d <= 1'b0;
end else begin
s_valid_d <= S_VALID;
s_ready_d <= s_ready_i;
m_ready_d <= M_READY;
end
end // always @ (posedge ACLK)
// Load storage1 with slave side payload data when slave side ready is high
always @(posedge ACLK)
begin
if (s_ready_i)
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with storage data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= storage_data1;
end
always @(posedge ACLK)
begin
if (~aresetn_d[0])
m_valid_d <= 1'b0;
else
m_valid_d <= m_valid_i;
end
// Local help signals
assign new_access = s_ready_d & s_valid_d;
assign access_done = m_ready_d & m_valid_d;
// State Machine for handling output signals
always @*
begin
next_state = state; // Stay in the same state unless we need to move to another state
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 0;
case (state)
// No transaction stored locally
ZERO: begin
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 1;
if (new_access) begin
next_state = ONE; // Got one so move to ONE
load_s2 = 1;
m_valid_i = 0;
end
else begin
next_state = next_state;
load_s2 = load_s2;
m_valid_i = m_valid_i;
end
end // case: ZERO
// One transaction stored locally
ONE: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 1;
if (~new_access & access_done) begin
next_state = ZERO; // Read out one so move to ZERO
m_valid_i = 0;
end
else if (new_access & ~access_done) begin
next_state = TWO; // Got another one so move to TWO
s_ready_ii = 0;
end
else if (new_access & access_done) begin
load_s2 = 1;
sel_s2 = 0;
end
else begin
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: ONE
// TWO transaction stored locally
TWO: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 0;
if (access_done) begin
next_state = ONE; // Read out one so move to ONE
s_ready_ii = 1;
load_s2 = 1;
sel_s2 = 0;
end
else begin
next_state = next_state;
s_ready_ii = s_ready_ii;
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: TWO
endcase // case (state)
end // always @ *
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (~aresetn_d[0])
state <= ZERO;
else
state <= next_state; // Stay in the same state unless we need to move to another state
end
// Master Payload mux
assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1;
end // if (C_REG_CONFIG == 6)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 7
// Light-weight mode.
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000007) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else if (~aresetn_d[1]) begin
s_ready_i <= 1'b1;
end else begin
s_ready_i <= m_valid_i ? M_READY : ~S_VALID;
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= s_ready_i ? S_VALID : ~M_READY;
end
if (~m_valid_i) begin
m_payload_i <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => RESERVED (all outputs driven to 0).
// 5 => RESERVED (all outputs driven to 0).
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
(* use_clock_enable = "yes" *)
generate
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 0
// Bypass mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000) begin
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 1 (or 8)
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg [C_DATA_WIDTH-1:0] skid_buffer;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else begin
s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID);
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY);
end
if (M_READY | ~m_valid_i) begin
m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer;
end
if (s_ready_i) begin
skid_buffer <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 2
// Only FWD mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000002)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
wire s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ~ARESET;
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data;
// M_Valid set to high when we have a completed transfer on slave side
// Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK)
begin
if (~aresetn_d)
m_valid_i <= 1'b0;
else
if (S_VALID) // Always set m_valid_i when slave side is valid
m_valid_i <= 1'b1;
else
if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready
m_valid_i <= 1'b0;
end // always @ (posedge ACLK)
// Slave Ready is either when Master side drives M_Ready or we have space in our storage data
assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d;
end // if (C_REG_CONFIG == 2)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 3
// Only REV mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000003)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
reg s_ready_i; //local signal of output
reg has_valid_storage_i;
reg has_valid_storage;
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA;
// Need to determine when we need to save a payload
// Need a combinatorial signals since it will also effect S_READY
always @ *
begin
// Set the value if we have a slave transaction but master side is not ready
if (S_VALID & s_ready_i & ~M_READY)
has_valid_storage_i = 1'b1;
// Clear the value if it's set and Master side completes the transaction but we don't have a new slave side
// transaction
else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0)))
has_valid_storage_i = 1'b0;
else
has_valid_storage_i = has_valid_storage;
end // always @ *
always @(posedge ACLK)
begin
if (~aresetn_d[0])
has_valid_storage <= 1'b0;
else
has_valid_storage <= has_valid_storage_i;
end
// S_READY is either clocked M_READY or that we have room in local storage
always @(posedge ACLK)
begin
if (~aresetn_d[0])
s_ready_i <= 1'b0;
else
s_ready_i <= M_READY | ~has_valid_storage_i;
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
// M_READY is either combinatorial S_READY or that we have valid data in local storage
assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1];
end // if (C_REG_CONFIG == 3)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005))
begin
// synthesis translate_off
initial begin
$display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED.");
end
// synthesis translate_on
assign M_PAYLOAD_DATA = 0;
assign M_VALID = 1'b0;
assign S_READY = 1'b0;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 6
// INPUTS mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000006)
begin
reg [1:0] state;
reg [1:0] next_state;
localparam [1:0]
ZERO = 2'b00,
ONE = 2'b01,
TWO = 2'b11;
reg [C_DATA_WIDTH-1:0] storage_data1;
reg [C_DATA_WIDTH-1:0] storage_data2;
reg s_valid_d;
reg s_ready_d;
reg m_ready_d;
reg m_valid_d;
reg load_s2;
reg sel_s2;
wire new_access;
wire access_done;
wire s_ready_i; //local signal of output
reg s_ready_ii;
reg m_valid_i; //local signal of output
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign s_ready_i = s_ready_ii & aresetn_d[1];
// Registrate input control signals
always @(posedge ACLK)
begin
if (~aresetn_d[0]) begin
s_valid_d <= 1'b0;
s_ready_d <= 1'b0;
m_ready_d <= 1'b0;
end else begin
s_valid_d <= S_VALID;
s_ready_d <= s_ready_i;
m_ready_d <= M_READY;
end
end // always @ (posedge ACLK)
// Load storage1 with slave side payload data when slave side ready is high
always @(posedge ACLK)
begin
if (s_ready_i)
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with storage data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= storage_data1;
end
always @(posedge ACLK)
begin
if (~aresetn_d[0])
m_valid_d <= 1'b0;
else
m_valid_d <= m_valid_i;
end
// Local help signals
assign new_access = s_ready_d & s_valid_d;
assign access_done = m_ready_d & m_valid_d;
// State Machine for handling output signals
always @*
begin
next_state = state; // Stay in the same state unless we need to move to another state
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 0;
case (state)
// No transaction stored locally
ZERO: begin
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 1;
if (new_access) begin
next_state = ONE; // Got one so move to ONE
load_s2 = 1;
m_valid_i = 0;
end
else begin
next_state = next_state;
load_s2 = load_s2;
m_valid_i = m_valid_i;
end
end // case: ZERO
// One transaction stored locally
ONE: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 1;
if (~new_access & access_done) begin
next_state = ZERO; // Read out one so move to ZERO
m_valid_i = 0;
end
else if (new_access & ~access_done) begin
next_state = TWO; // Got another one so move to TWO
s_ready_ii = 0;
end
else if (new_access & access_done) begin
load_s2 = 1;
sel_s2 = 0;
end
else begin
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: ONE
// TWO transaction stored locally
TWO: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 0;
if (access_done) begin
next_state = ONE; // Read out one so move to ONE
s_ready_ii = 1;
load_s2 = 1;
sel_s2 = 0;
end
else begin
next_state = next_state;
s_ready_ii = s_ready_ii;
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: TWO
endcase // case (state)
end // always @ *
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (~aresetn_d[0])
state <= ZERO;
else
state <= next_state; // Stay in the same state unless we need to move to another state
end
// Master Payload mux
assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1;
end // if (C_REG_CONFIG == 6)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 7
// Light-weight mode.
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000007) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else if (~aresetn_d[1]) begin
s_ready_i <= 1'b1;
end else begin
s_ready_i <= m_valid_i ? M_READY : ~S_VALID;
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= s_ready_i ? S_VALID : ~M_READY;
end
if (~m_valid_i) begin
m_payload_i <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => RESERVED (all outputs driven to 0).
// 5 => RESERVED (all outputs driven to 0).
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
(* use_clock_enable = "yes" *)
generate
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 0
// Bypass mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000) begin
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 1 (or 8)
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg [C_DATA_WIDTH-1:0] skid_buffer;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else begin
s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID);
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY);
end
if (M_READY | ~m_valid_i) begin
m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer;
end
if (s_ready_i) begin
skid_buffer <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 2
// Only FWD mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000002)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
wire s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ~ARESET;
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data;
// M_Valid set to high when we have a completed transfer on slave side
// Is removed on a M_READY except if we have a new transfer on the slave side
always @(posedge ACLK)
begin
if (~aresetn_d)
m_valid_i <= 1'b0;
else
if (S_VALID) // Always set m_valid_i when slave side is valid
m_valid_i <= 1'b1;
else
if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready
m_valid_i <= 1'b0;
end // always @ (posedge ACLK)
// Slave Ready is either when Master side drives M_Ready or we have space in our storage data
assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d;
end // if (C_REG_CONFIG == 2)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 3
// Only REV mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000003)
begin
reg [C_DATA_WIDTH-1:0] storage_data;
reg s_ready_i; //local signal of output
reg has_valid_storage_i;
reg has_valid_storage;
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// Save payload data whenever we have a transaction on the slave side
always @(posedge ACLK)
begin
if (S_VALID & s_ready_i)
storage_data <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA;
// Need to determine when we need to save a payload
// Need a combinatorial signals since it will also effect S_READY
always @ *
begin
// Set the value if we have a slave transaction but master side is not ready
if (S_VALID & s_ready_i & ~M_READY)
has_valid_storage_i = 1'b1;
// Clear the value if it's set and Master side completes the transaction but we don't have a new slave side
// transaction
else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0)))
has_valid_storage_i = 1'b0;
else
has_valid_storage_i = has_valid_storage;
end // always @ *
always @(posedge ACLK)
begin
if (~aresetn_d[0])
has_valid_storage <= 1'b0;
else
has_valid_storage <= has_valid_storage_i;
end
// S_READY is either clocked M_READY or that we have room in local storage
always @(posedge ACLK)
begin
if (~aresetn_d[0])
s_ready_i <= 1'b0;
else
s_ready_i <= M_READY | ~has_valid_storage_i;
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
// M_READY is either combinatorial S_READY or that we have valid data in local storage
assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1];
end // if (C_REG_CONFIG == 3)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED
//
////////////////////////////////////////////////////////////////////
else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005))
begin
// synthesis translate_off
initial begin
$display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED.");
end
// synthesis translate_on
assign M_PAYLOAD_DATA = 0;
assign M_VALID = 1'b0;
assign S_READY = 1'b0;
end
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 6
// INPUTS mode
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000006)
begin
reg [1:0] state;
reg [1:0] next_state;
localparam [1:0]
ZERO = 2'b00,
ONE = 2'b01,
TWO = 2'b11;
reg [C_DATA_WIDTH-1:0] storage_data1;
reg [C_DATA_WIDTH-1:0] storage_data2;
reg s_valid_d;
reg s_ready_d;
reg m_ready_d;
reg m_valid_d;
reg load_s2;
reg sel_s2;
wire new_access;
wire access_done;
wire s_ready_i; //local signal of output
reg s_ready_ii;
reg m_valid_i; //local signal of output
reg [1:0] aresetn_d = 2'b00; // Reset delay register
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign s_ready_i = s_ready_ii & aresetn_d[1];
// Registrate input control signals
always @(posedge ACLK)
begin
if (~aresetn_d[0]) begin
s_valid_d <= 1'b0;
s_ready_d <= 1'b0;
m_ready_d <= 1'b0;
end else begin
s_valid_d <= S_VALID;
s_ready_d <= s_ready_i;
m_ready_d <= M_READY;
end
end // always @ (posedge ACLK)
// Load storage1 with slave side payload data when slave side ready is high
always @(posedge ACLK)
begin
if (s_ready_i)
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with storage data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= storage_data1;
end
always @(posedge ACLK)
begin
if (~aresetn_d[0])
m_valid_d <= 1'b0;
else
m_valid_d <= m_valid_i;
end
// Local help signals
assign new_access = s_ready_d & s_valid_d;
assign access_done = m_ready_d & m_valid_d;
// State Machine for handling output signals
always @*
begin
next_state = state; // Stay in the same state unless we need to move to another state
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 0;
case (state)
// No transaction stored locally
ZERO: begin
load_s2 = 0;
sel_s2 = 0;
m_valid_i = 0;
s_ready_ii = 1;
if (new_access) begin
next_state = ONE; // Got one so move to ONE
load_s2 = 1;
m_valid_i = 0;
end
else begin
next_state = next_state;
load_s2 = load_s2;
m_valid_i = m_valid_i;
end
end // case: ZERO
// One transaction stored locally
ONE: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 1;
if (~new_access & access_done) begin
next_state = ZERO; // Read out one so move to ZERO
m_valid_i = 0;
end
else if (new_access & ~access_done) begin
next_state = TWO; // Got another one so move to TWO
s_ready_ii = 0;
end
else if (new_access & access_done) begin
load_s2 = 1;
sel_s2 = 0;
end
else begin
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: ONE
// TWO transaction stored locally
TWO: begin
load_s2 = 0;
sel_s2 = 1;
m_valid_i = 1;
s_ready_ii = 0;
if (access_done) begin
next_state = ONE; // Read out one so move to ONE
s_ready_ii = 1;
load_s2 = 1;
sel_s2 = 0;
end
else begin
next_state = next_state;
s_ready_ii = s_ready_ii;
load_s2 = load_s2;
sel_s2 = sel_s2;
end
end // case: TWO
endcase // case (state)
end // always @ *
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (~aresetn_d[0])
state <= ZERO;
else
state <= next_state; // Stay in the same state unless we need to move to another state
end
// Master Payload mux
assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1;
end // if (C_REG_CONFIG == 6)
////////////////////////////////////////////////////////////////////
//
// C_REG_CONFIG = 7
// Light-weight mode.
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000007) begin
reg [C_DATA_WIDTH-1:0] m_payload_i;
reg s_ready_i;
reg m_valid_i;
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
assign M_PAYLOAD_DATA = m_payload_i;
reg [1:0] aresetn_d = 2'b00; // Reset delay shifter
always @(posedge ACLK) begin
if (ARESET) begin
aresetn_d <= 2'b00;
end else begin
aresetn_d <= {aresetn_d[0], ~ARESET};
end
end
always @(posedge ACLK) begin
if (~aresetn_d[0]) begin
s_ready_i <= 1'b0;
end else if (~aresetn_d[1]) begin
s_ready_i <= 1'b1;
end else begin
s_ready_i <= m_valid_i ? M_READY : ~S_VALID;
end
if (~aresetn_d[1]) begin
m_valid_i <= 1'b0;
end else begin
m_valid_i <= s_ready_i ? S_VALID : ~M_READY;
end
if (~m_valid_i) begin
m_payload_i <= S_PAYLOAD_DATA;
end
end
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module fifo_1kx16 (
aclr,
clock,
data,
rdreq,
wrreq,
almost_empty,
empty,
full,
q,
usedw);
input aclr;
input clock;
input [15:0] data;
input rdreq;
input wrreq;
output almost_empty;
output empty;
output full;
output [15:0] q;
output [9:0] usedw;
wire [9:0] sub_wire0;
wire sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire sub_wire4;
wire [9:0] usedw = sub_wire0[9:0];
wire empty = sub_wire1;
wire almost_empty = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire full = sub_wire4;
scfifo scfifo_component (
.rdreq (rdreq),
.aclr (aclr),
.clock (clock),
.wrreq (wrreq),
.data (data),
.usedw (sub_wire0),
.empty (sub_wire1),
.almost_empty (sub_wire2),
.q (sub_wire3),
.full (sub_wire4)
// synopsys translate_off
,
.sclr (),
.almost_full ()
// synopsys translate_on
);
defparam
scfifo_component.add_ram_output_register = "OFF",
scfifo_component.almost_empty_value = 504,
scfifo_component.intended_device_family = "Cyclone",
scfifo_component.lpm_hint = "RAM_BLOCK_TYPE=M4K",
scfifo_component.lpm_numwords = 1024,
scfifo_component.lpm_showahead = "OFF",
scfifo_component.lpm_type = "scfifo",
scfifo_component.lpm_width = 16,
scfifo_component.lpm_widthu = 10,
scfifo_component.overflow_checking = "ON",
scfifo_component.underflow_checking = "ON",
scfifo_component.use_eab = "ON";
endmodule |
module fifo_1kx16 (
aclr,
clock,
data,
rdreq,
wrreq,
almost_empty,
empty,
full,
q,
usedw);
input aclr;
input clock;
input [15:0] data;
input rdreq;
input wrreq;
output almost_empty;
output empty;
output full;
output [15:0] q;
output [9:0] usedw;
wire [9:0] sub_wire0;
wire sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire sub_wire4;
wire [9:0] usedw = sub_wire0[9:0];
wire empty = sub_wire1;
wire almost_empty = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire full = sub_wire4;
scfifo scfifo_component (
.rdreq (rdreq),
.aclr (aclr),
.clock (clock),
.wrreq (wrreq),
.data (data),
.usedw (sub_wire0),
.empty (sub_wire1),
.almost_empty (sub_wire2),
.q (sub_wire3),
.full (sub_wire4)
// synopsys translate_off
,
.sclr (),
.almost_full ()
// synopsys translate_on
);
defparam
scfifo_component.add_ram_output_register = "OFF",
scfifo_component.almost_empty_value = 504,
scfifo_component.intended_device_family = "Cyclone",
scfifo_component.lpm_hint = "RAM_BLOCK_TYPE=M4K",
scfifo_component.lpm_numwords = 1024,
scfifo_component.lpm_showahead = "OFF",
scfifo_component.lpm_type = "scfifo",
scfifo_component.lpm_width = 16,
scfifo_component.lpm_widthu = 10,
scfifo_component.overflow_checking = "ON",
scfifo_component.underflow_checking = "ON",
scfifo_component.use_eab = "ON";
endmodule |
module master_control_multi
( input master_clk, input usbclk,
input wire [6:0] serial_addr, input wire [31:0] serial_data, input wire serial_strobe,
input wire rx_slave_sync,
output tx_bus_reset, output rx_bus_reset,
output wire tx_dsp_reset, output wire rx_dsp_reset,
output wire enable_tx, output wire enable_rx,
output wire sync_rx,
output wire [7:0] interp_rate, output wire [7:0] decim_rate,
output tx_sample_strobe, output strobe_interp,
output rx_sample_strobe, output strobe_decim,
input tx_empty,
input wire [15:0] debug_0,input wire [15:0] debug_1,input wire [15:0] debug_2,input wire [15:0] debug_3,
output wire [15:0] reg_0, output wire [15:0] reg_1, output wire [15:0] reg_2, output wire [15:0] reg_3
);
wire [15:0] reg_1_std;
master_control master_control_standard
( .master_clk(master_clk),.usbclk(usbclk),
.serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe),
.tx_bus_reset(tx_bus_reset),.rx_bus_reset(rx_bus_reset),
.tx_dsp_reset(tx_dsp_reset),.rx_dsp_reset(rx_dsp_reset),
.enable_tx(enable_tx),.enable_rx(enable_rx),
.interp_rate(interp_rate),.decim_rate(decim_rate),
.tx_sample_strobe(tx_sample_strobe),.strobe_interp(strobe_interp),
.rx_sample_strobe(rx_sample_strobe),.strobe_decim(strobe_decim),
.tx_empty(tx_empty),
.debug_0(debug_0),.debug_1(debug_1),
.debug_2(debug_2),.debug_3(debug_3),
.reg_0(reg_0),.reg_1(reg_1_std),.reg_2(reg_2),.reg_3(reg_3) );
// FIXME need a separate reset for all control settings
// Master/slave Controls assignments
wire [7:0] rx_master_slave_controls;
setting_reg_masked #(`FR_RX_MASTER_SLAVE) sr_rx_mstr_slv_ctrl(.clock(master_clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(rx_master_slave_controls));
assign sync_rx = rx_master_slave_controls[`bitnoFR_RX_SYNC] | (rx_master_slave_controls[`bitnoFR_RX_SYNC_SLAVE] & rx_slave_sync);
//sync if we are told by master_control or if we get a hardware slave sync
//TODO There can be a one sample difference between master and slave sync.
// Maybe use a register for sync_rx which uses the (neg or pos) edge of master_clock and/or rx_slave_sync to trigger
// Or even use a seperate sync_rx_out and sync_rx_internal (which lags behind)
//TODO make output pin not hardwired
assign reg_1 ={(rx_master_slave_controls[`bitnoFR_RX_SYNC_MASTER])? sync_rx:reg_1_std[15],reg_1_std[14:0]};
endmodule |
module master_control_multi
( input master_clk, input usbclk,
input wire [6:0] serial_addr, input wire [31:0] serial_data, input wire serial_strobe,
input wire rx_slave_sync,
output tx_bus_reset, output rx_bus_reset,
output wire tx_dsp_reset, output wire rx_dsp_reset,
output wire enable_tx, output wire enable_rx,
output wire sync_rx,
output wire [7:0] interp_rate, output wire [7:0] decim_rate,
output tx_sample_strobe, output strobe_interp,
output rx_sample_strobe, output strobe_decim,
input tx_empty,
input wire [15:0] debug_0,input wire [15:0] debug_1,input wire [15:0] debug_2,input wire [15:0] debug_3,
output wire [15:0] reg_0, output wire [15:0] reg_1, output wire [15:0] reg_2, output wire [15:0] reg_3
);
wire [15:0] reg_1_std;
master_control master_control_standard
( .master_clk(master_clk),.usbclk(usbclk),
.serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe),
.tx_bus_reset(tx_bus_reset),.rx_bus_reset(rx_bus_reset),
.tx_dsp_reset(tx_dsp_reset),.rx_dsp_reset(rx_dsp_reset),
.enable_tx(enable_tx),.enable_rx(enable_rx),
.interp_rate(interp_rate),.decim_rate(decim_rate),
.tx_sample_strobe(tx_sample_strobe),.strobe_interp(strobe_interp),
.rx_sample_strobe(rx_sample_strobe),.strobe_decim(strobe_decim),
.tx_empty(tx_empty),
.debug_0(debug_0),.debug_1(debug_1),
.debug_2(debug_2),.debug_3(debug_3),
.reg_0(reg_0),.reg_1(reg_1_std),.reg_2(reg_2),.reg_3(reg_3) );
// FIXME need a separate reset for all control settings
// Master/slave Controls assignments
wire [7:0] rx_master_slave_controls;
setting_reg_masked #(`FR_RX_MASTER_SLAVE) sr_rx_mstr_slv_ctrl(.clock(master_clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(rx_master_slave_controls));
assign sync_rx = rx_master_slave_controls[`bitnoFR_RX_SYNC] | (rx_master_slave_controls[`bitnoFR_RX_SYNC_SLAVE] & rx_slave_sync);
//sync if we are told by master_control or if we get a hardware slave sync
//TODO There can be a one sample difference between master and slave sync.
// Maybe use a register for sync_rx which uses the (neg or pos) edge of master_clock and/or rx_slave_sync to trigger
// Or even use a seperate sync_rx_out and sync_rx_internal (which lags behind)
//TODO make output pin not hardwired
assign reg_1 ={(rx_master_slave_controls[`bitnoFR_RX_SYNC_MASTER])? sync_rx:reg_1_std[15],reg_1_std[14:0]};
endmodule |
module t (clk);
input clk;
reg [0:0] d1;
reg [2:0] d3;
reg [7:0] d8;
wire [0:0] q1;
wire [2:0] q3;
wire [7:0] q8;
// verilator lint_off UNOPTFLAT
reg ena;
// verilator lint_on UNOPTFLAT
condff #(12) condff
(.clk(clk), .sen(1'b0), .ena(ena),
.d({d8,d3,d1}),
.q({q8,q3,q1}));
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
//$write("%x %x %x %x\n", cyc, q8, q3, q1);
cyc <= cyc + 1;
if (cyc==1) begin
d1 <= 1'b1; d3<=3'h1; d8<=8'h11;
ena <= 1'b1;
end
if (cyc==2) begin
d1 <= 1'b0; d3<=3'h2; d8<=8'h33;
ena <= 1'b0;
end
if (cyc==3) begin
d1 <= 1'b1; d3<=3'h3; d8<=8'h44;
ena <= 1'b1;
if (q8 != 8'h11) $stop;
end
if (cyc==4) begin
d1 <= 1'b1; d3<=3'h4; d8<=8'h77;
ena <= 1'b1;
if (q8 != 8'h11) $stop;
end
if (cyc==5) begin
d1 <= 1'b1; d3<=3'h0; d8<=8'h88;
ena <= 1'b1;
if (q8 != 8'h44) $stop;
end
if (cyc==6) begin
if (q8 != 8'h77) $stop;
end
if (cyc==7) begin
if (q8 != 8'h88) $stop;
end
//
if (cyc==20) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule |
module condff (clk, sen, ena, d, q);
parameter WIDTH = 1;
input clk;
input sen;
input ena;
input [WIDTH-1:0] d;
output [WIDTH-1:0] q;
condffimp #(.WIDTH(WIDTH))
imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q));
endmodule |
module condffimp (clk, sen, ena, d, q);
parameter WIDTH = 1;
input clk;
input sen;
input ena;
input [WIDTH-1:0] d;
output reg [WIDTH-1:0] q;
wire gatedclk;
clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk));
always @(posedge gatedclk) begin
if (gatedclk === 1'bX) begin
q <= {WIDTH{1'bX}};
end
else begin
q <= d;
end
end
endmodule |
module clockgate (clk, sen, ena, gatedclk);
input clk;
input sen;
input ena;
output gatedclk;
reg ena_b;
wire gatedclk = clk & ena_b;
// verilator lint_off COMBDLY
always @(clk or ena or sen) begin
if (~clk) begin
ena_b <= ena | sen;
end
else begin
if ((clk^sen)===1'bX) ena_b <= 1'bX;
end
end
// verilator lint_on COMBDLY
endmodule |
module t (clk);
input clk;
reg [0:0] d1;
reg [2:0] d3;
reg [7:0] d8;
wire [0:0] q1;
wire [2:0] q3;
wire [7:0] q8;
// verilator lint_off UNOPTFLAT
reg ena;
// verilator lint_on UNOPTFLAT
condff #(12) condff
(.clk(clk), .sen(1'b0), .ena(ena),
.d({d8,d3,d1}),
.q({q8,q3,q1}));
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
//$write("%x %x %x %x\n", cyc, q8, q3, q1);
cyc <= cyc + 1;
if (cyc==1) begin
d1 <= 1'b1; d3<=3'h1; d8<=8'h11;
ena <= 1'b1;
end
if (cyc==2) begin
d1 <= 1'b0; d3<=3'h2; d8<=8'h33;
ena <= 1'b0;
end
if (cyc==3) begin
d1 <= 1'b1; d3<=3'h3; d8<=8'h44;
ena <= 1'b1;
if (q8 != 8'h11) $stop;
end
if (cyc==4) begin
d1 <= 1'b1; d3<=3'h4; d8<=8'h77;
ena <= 1'b1;
if (q8 != 8'h11) $stop;
end
if (cyc==5) begin
d1 <= 1'b1; d3<=3'h0; d8<=8'h88;
ena <= 1'b1;
if (q8 != 8'h44) $stop;
end
if (cyc==6) begin
if (q8 != 8'h77) $stop;
end
if (cyc==7) begin
if (q8 != 8'h88) $stop;
end
//
if (cyc==20) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule |
module condff (clk, sen, ena, d, q);
parameter WIDTH = 1;
input clk;
input sen;
input ena;
input [WIDTH-1:0] d;
output [WIDTH-1:0] q;
condffimp #(.WIDTH(WIDTH))
imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q));
endmodule |
module condffimp (clk, sen, ena, d, q);
parameter WIDTH = 1;
input clk;
input sen;
input ena;
input [WIDTH-1:0] d;
output reg [WIDTH-1:0] q;
wire gatedclk;
clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk));
always @(posedge gatedclk) begin
if (gatedclk === 1'bX) begin
q <= {WIDTH{1'bX}};
end
else begin
q <= d;
end
end
endmodule |
module clockgate (clk, sen, ena, gatedclk);
input clk;
input sen;
input ena;
output gatedclk;
reg ena_b;
wire gatedclk = clk & ena_b;
// verilator lint_off COMBDLY
always @(clk or ena or sen) begin
if (~clk) begin
ena_b <= ena | sen;
end
else begin
if ((clk^sen)===1'bX) ena_b <= 1'bX;
end
end
// verilator lint_on COMBDLY
endmodule |
module t (clk);
input clk;
reg [0:0] d1;
reg [2:0] d3;
reg [7:0] d8;
wire [0:0] q1;
wire [2:0] q3;
wire [7:0] q8;
// verilator lint_off UNOPTFLAT
reg ena;
// verilator lint_on UNOPTFLAT
condff #(12) condff
(.clk(clk), .sen(1'b0), .ena(ena),
.d({d8,d3,d1}),
.q({q8,q3,q1}));
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
//$write("%x %x %x %x\n", cyc, q8, q3, q1);
cyc <= cyc + 1;
if (cyc==1) begin
d1 <= 1'b1; d3<=3'h1; d8<=8'h11;
ena <= 1'b1;
end
if (cyc==2) begin
d1 <= 1'b0; d3<=3'h2; d8<=8'h33;
ena <= 1'b0;
end
if (cyc==3) begin
d1 <= 1'b1; d3<=3'h3; d8<=8'h44;
ena <= 1'b1;
if (q8 != 8'h11) $stop;
end
if (cyc==4) begin
d1 <= 1'b1; d3<=3'h4; d8<=8'h77;
ena <= 1'b1;
if (q8 != 8'h11) $stop;
end
if (cyc==5) begin
d1 <= 1'b1; d3<=3'h0; d8<=8'h88;
ena <= 1'b1;
if (q8 != 8'h44) $stop;
end
if (cyc==6) begin
if (q8 != 8'h77) $stop;
end
if (cyc==7) begin
if (q8 != 8'h88) $stop;
end
//
if (cyc==20) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule |
module condff (clk, sen, ena, d, q);
parameter WIDTH = 1;
input clk;
input sen;
input ena;
input [WIDTH-1:0] d;
output [WIDTH-1:0] q;
condffimp #(.WIDTH(WIDTH))
imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q));
endmodule |
module condffimp (clk, sen, ena, d, q);
parameter WIDTH = 1;
input clk;
input sen;
input ena;
input [WIDTH-1:0] d;
output reg [WIDTH-1:0] q;
wire gatedclk;
clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk));
always @(posedge gatedclk) begin
if (gatedclk === 1'bX) begin
q <= {WIDTH{1'bX}};
end
else begin
q <= d;
end
end
endmodule |
module clockgate (clk, sen, ena, gatedclk);
input clk;
input sen;
input ena;
output gatedclk;
reg ena_b;
wire gatedclk = clk & ena_b;
// verilator lint_off COMBDLY
always @(clk or ena or sen) begin
if (~clk) begin
ena_b <= ena | sen;
end
else begin
if ((clk^sen)===1'bX) ena_b <= 1'bX;
end
end
// verilator lint_on COMBDLY
endmodule |
module fifo_4kx16_dc (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [15:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output reg next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg sel_first;
wire [11:0] axaddr_i;
wire [3:0] axlen_i;
reg [11:0] wrap_boundary_axaddr;
reg [3:0] axaddr_offset;
reg [3:0] wrap_second_len;
reg [11:0] wrap_boundary_axaddr_r;
reg [3:0] axaddr_offset_r;
reg [3:0] wrap_second_len_r;
reg [4:0] axlen_cnt;
reg [4:0] wrap_cnt_r;
wire [4:0] wrap_cnt;
reg [11:0] axaddr_wrap;
reg next_pending_r;
localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K
assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]};
end else begin : ADDR_4K
assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0];
end
endgenerate
assign axaddr_i = axaddr[11:0];
assign axlen_i = axlen[3:0];
// Mask bits based on transaction length to get wrap boundary low address
// Offset used to calculate the length of each transaction
always @( * ) begin
if(axhandshake) begin
wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]);
axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i;
end else begin
wrap_boundary_axaddr = wrap_boundary_axaddr_r;
axaddr_offset = axaddr_offset_r;
end
end
// case (axsize[1:0])
// 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i;
// 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i;
// 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i;
// 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i;
// default : axaddr_offset = axaddr_i[7:3] & axlen_i;
// endcase
// The first and the second command from the wrap transaction could
// be of odd length or even length with address offset. This will be
// an issue with BL8, extra transactions have to be issued.
// Rounding up the length to account for extra transactions.
always @( * ) begin
if(axhandshake) begin
wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0;
end else begin
wrap_second_len = wrap_second_len_r;
end
end
// registering to be used in the combo logic.
always @(posedge clk) begin
wrap_boundary_axaddr_r <= wrap_boundary_axaddr;
axaddr_offset_r <= axaddr_offset;
wrap_second_len_r <= wrap_second_len;
end
// determining if extra data is required for even offsets
// wrap_cnt used to switch the address for first and second transaction.
assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}};
always @(posedge clk)
wrap_cnt_r <= wrap_cnt;
always @(posedge clk) begin
if (axhandshake) begin
axaddr_wrap <= axaddr[11:0];
end if(next)begin
if(axlen_cnt == wrap_cnt_r) begin
axaddr_wrap <= wrap_boundary_axaddr_r;
end else begin
axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]);
end
end
end
// Even numbber of transactions with offset, inc len by 2 for BL8
always @(posedge clk) begin
if (axhandshake)begin
axlen_cnt <= axlen_i;
next_pending_r <= axlen_i >= 1;
end else if (next) begin
if (axlen_cnt > 1) begin
axlen_cnt <= axlen_cnt - 1;
next_pending_r <= (axlen_cnt - 1) >= 1;
end else begin
axlen_cnt <= 5'd0;
next_pending_r <= 1'b0;
end
end
end
always @( * ) begin
if (axhandshake)begin
next_pending = axlen_i >= 1;
end else if (next) begin
if (axlen_cnt > 1) begin
next_pending = (axlen_cnt - 1) >= 1;
end else begin
next_pending = 1'b0;
end
end else begin
next_pending = next_pending_r;
end
end
// last and ignore signals to data channel. These signals are used for
// BL8 to ignore and insert data for even len transactions with offset
// and odd len transactions
// For odd len transactions with no offset the last read is ignored and
// last write is masked
// For odd len transactions with offset the first read is ignored and
// first write is masked
// For even len transactions with offset the last & first read is ignored and
// last& first write is masked
// For even len transactions no ingnores or masks.
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output reg next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg sel_first;
wire [11:0] axaddr_i;
wire [3:0] axlen_i;
reg [11:0] wrap_boundary_axaddr;
reg [3:0] axaddr_offset;
reg [3:0] wrap_second_len;
reg [11:0] wrap_boundary_axaddr_r;
reg [3:0] axaddr_offset_r;
reg [3:0] wrap_second_len_r;
reg [4:0] axlen_cnt;
reg [4:0] wrap_cnt_r;
wire [4:0] wrap_cnt;
reg [11:0] axaddr_wrap;
reg next_pending_r;
localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K
assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]};
end else begin : ADDR_4K
assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0];
end
endgenerate
assign axaddr_i = axaddr[11:0];
assign axlen_i = axlen[3:0];
// Mask bits based on transaction length to get wrap boundary low address
// Offset used to calculate the length of each transaction
always @( * ) begin
if(axhandshake) begin
wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]);
axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i;
end else begin
wrap_boundary_axaddr = wrap_boundary_axaddr_r;
axaddr_offset = axaddr_offset_r;
end
end
// case (axsize[1:0])
// 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i;
// 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i;
// 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i;
// 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i;
// default : axaddr_offset = axaddr_i[7:3] & axlen_i;
// endcase
// The first and the second command from the wrap transaction could
// be of odd length or even length with address offset. This will be
// an issue with BL8, extra transactions have to be issued.
// Rounding up the length to account for extra transactions.
always @( * ) begin
if(axhandshake) begin
wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0;
end else begin
wrap_second_len = wrap_second_len_r;
end
end
// registering to be used in the combo logic.
always @(posedge clk) begin
wrap_boundary_axaddr_r <= wrap_boundary_axaddr;
axaddr_offset_r <= axaddr_offset;
wrap_second_len_r <= wrap_second_len;
end
// determining if extra data is required for even offsets
// wrap_cnt used to switch the address for first and second transaction.
assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}};
always @(posedge clk)
wrap_cnt_r <= wrap_cnt;
always @(posedge clk) begin
if (axhandshake) begin
axaddr_wrap <= axaddr[11:0];
end if(next)begin
if(axlen_cnt == wrap_cnt_r) begin
axaddr_wrap <= wrap_boundary_axaddr_r;
end else begin
axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]);
end
end
end
// Even numbber of transactions with offset, inc len by 2 for BL8
always @(posedge clk) begin
if (axhandshake)begin
axlen_cnt <= axlen_i;
next_pending_r <= axlen_i >= 1;
end else if (next) begin
if (axlen_cnt > 1) begin
axlen_cnt <= axlen_cnt - 1;
next_pending_r <= (axlen_cnt - 1) >= 1;
end else begin
axlen_cnt <= 5'd0;
next_pending_r <= 1'b0;
end
end
end
always @( * ) begin
if (axhandshake)begin
next_pending = axlen_i >= 1;
end else if (next) begin
if (axlen_cnt > 1) begin
next_pending = (axlen_cnt - 1) >= 1;
end else begin
next_pending = 1'b0;
end
end else begin
next_pending = next_pending_r;
end
end
// last and ignore signals to data channel. These signals are used for
// BL8 to ignore and insert data for even len transactions with offset
// and odd len transactions
// For odd len transactions with no offset the last read is ignored and
// last write is masked
// For odd len transactions with offset the first read is ignored and
// first write is masked
// For even len transactions with offset the last & first read is ignored and
// last& first write is masked
// For even len transactions no ingnores or masks.
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output reg next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg sel_first;
wire [11:0] axaddr_i;
wire [3:0] axlen_i;
reg [11:0] wrap_boundary_axaddr;
reg [3:0] axaddr_offset;
reg [3:0] wrap_second_len;
reg [11:0] wrap_boundary_axaddr_r;
reg [3:0] axaddr_offset_r;
reg [3:0] wrap_second_len_r;
reg [4:0] axlen_cnt;
reg [4:0] wrap_cnt_r;
wire [4:0] wrap_cnt;
reg [11:0] axaddr_wrap;
reg next_pending_r;
localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K
assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]};
end else begin : ADDR_4K
assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0];
end
endgenerate
assign axaddr_i = axaddr[11:0];
assign axlen_i = axlen[3:0];
// Mask bits based on transaction length to get wrap boundary low address
// Offset used to calculate the length of each transaction
always @( * ) begin
if(axhandshake) begin
wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]);
axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i;
end else begin
wrap_boundary_axaddr = wrap_boundary_axaddr_r;
axaddr_offset = axaddr_offset_r;
end
end
// case (axsize[1:0])
// 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i;
// 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i;
// 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i;
// 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i;
// default : axaddr_offset = axaddr_i[7:3] & axlen_i;
// endcase
// The first and the second command from the wrap transaction could
// be of odd length or even length with address offset. This will be
// an issue with BL8, extra transactions have to be issued.
// Rounding up the length to account for extra transactions.
always @( * ) begin
if(axhandshake) begin
wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0;
end else begin
wrap_second_len = wrap_second_len_r;
end
end
// registering to be used in the combo logic.
always @(posedge clk) begin
wrap_boundary_axaddr_r <= wrap_boundary_axaddr;
axaddr_offset_r <= axaddr_offset;
wrap_second_len_r <= wrap_second_len;
end
// determining if extra data is required for even offsets
// wrap_cnt used to switch the address for first and second transaction.
assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}};
always @(posedge clk)
wrap_cnt_r <= wrap_cnt;
always @(posedge clk) begin
if (axhandshake) begin
axaddr_wrap <= axaddr[11:0];
end if(next)begin
if(axlen_cnt == wrap_cnt_r) begin
axaddr_wrap <= wrap_boundary_axaddr_r;
end else begin
axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]);
end
end
end
// Even numbber of transactions with offset, inc len by 2 for BL8
always @(posedge clk) begin
if (axhandshake)begin
axlen_cnt <= axlen_i;
next_pending_r <= axlen_i >= 1;
end else if (next) begin
if (axlen_cnt > 1) begin
axlen_cnt <= axlen_cnt - 1;
next_pending_r <= (axlen_cnt - 1) >= 1;
end else begin
axlen_cnt <= 5'd0;
next_pending_r <= 1'b0;
end
end
end
always @( * ) begin
if (axhandshake)begin
next_pending = axlen_i >= 1;
end else if (next) begin
if (axlen_cnt > 1) begin
next_pending = (axlen_cnt - 1) >= 1;
end else begin
next_pending = 1'b0;
end
end else begin
next_pending = next_pending_r;
end
end
// last and ignore signals to data channel. These signals are used for
// BL8 to ignore and insert data for even len transactions with offset
// and odd len transactions
// For odd len transactions with no offset the last read is ignored and
// last write is masked
// For odd len transactions with offset the first read is ignored and
// first write is masked
// For even len transactions with offset the last & first read is ignored and
// last& first write is masked
// For even len transactions no ingnores or masks.
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
endmodule |
module processing_system7_v5_5_w_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_WUSER_WIDTH = 1
// Width of AWUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface (In)
input wire cmd_w_valid,
input wire cmd_w_check,
input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id,
output wire cmd_w_ready,
// Command Interface (Out)
output wire cmd_b_push,
output wire cmd_b_error,
output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id,
input wire cmd_b_full,
// Slave Interface Write Port
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Detecttion.
wire any_strb_deasserted;
wire incoming_strb_issue;
reg first_word;
reg strb_issue;
// Data flow.
wire data_pop;
wire cmd_b_push_blocked;
reg cmd_b_push_i;
/////////////////////////////////////////////////////////////////////////////
// Detect error:
//
// Detect and accumulate error when a transaction shall be scanned for
// potential issues.
// Accumulation of error is restarted for each ne transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Check stobe information
assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} );
assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted;
// Keep track of first word in a transaction.
always @ (posedge ACLK) begin
if (ARESET) begin
first_word <= 1'b1;
end else if ( data_pop ) begin
first_word <= S_AXI_WLAST;
end
end
// Keep track of error status.
always @ (posedge ACLK) begin
if (ARESET) begin
strb_issue <= 1'b0;
cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}};
end else if ( data_pop ) begin
if ( first_word ) begin
strb_issue <= incoming_strb_issue;
end else begin
strb_issue <= incoming_strb_issue | strb_issue;
end
cmd_b_id <= cmd_w_id;
end
end
assign cmd_b_error = strb_issue;
/////////////////////////////////////////////////////////////////////////////
// Control command queue to B:
//
// Push command to B queue when all data for the transaction has flowed
// through.
// Delay pipelined command until there is room in the Queue.
//
/////////////////////////////////////////////////////////////////////////////
// Detect when data is popped.
assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Push command when last word in transfered (pipelined).
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_i <= 1'b0;
end else begin
cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked;
end
end
// Detect if pipelined push is blocked.
assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full;
// Assign output.
assign cmd_b_push = cmd_b_push_i & ~cmd_b_full;
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Stall commands if FIFO is full or there is no valid command information
// from AW.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Return ready with push back.
assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// End of burst.
assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST;
/////////////////////////////////////////////////////////////////////////////
// Write propagation:
//
// All information is simply forwarded on from the SI- to MI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
endmodule |
module processing_system7_v5_5_w_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_WUSER_WIDTH = 1
// Width of AWUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface (In)
input wire cmd_w_valid,
input wire cmd_w_check,
input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id,
output wire cmd_w_ready,
// Command Interface (Out)
output wire cmd_b_push,
output wire cmd_b_error,
output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id,
input wire cmd_b_full,
// Slave Interface Write Port
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Detecttion.
wire any_strb_deasserted;
wire incoming_strb_issue;
reg first_word;
reg strb_issue;
// Data flow.
wire data_pop;
wire cmd_b_push_blocked;
reg cmd_b_push_i;
/////////////////////////////////////////////////////////////////////////////
// Detect error:
//
// Detect and accumulate error when a transaction shall be scanned for
// potential issues.
// Accumulation of error is restarted for each ne transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Check stobe information
assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} );
assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted;
// Keep track of first word in a transaction.
always @ (posedge ACLK) begin
if (ARESET) begin
first_word <= 1'b1;
end else if ( data_pop ) begin
first_word <= S_AXI_WLAST;
end
end
// Keep track of error status.
always @ (posedge ACLK) begin
if (ARESET) begin
strb_issue <= 1'b0;
cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}};
end else if ( data_pop ) begin
if ( first_word ) begin
strb_issue <= incoming_strb_issue;
end else begin
strb_issue <= incoming_strb_issue | strb_issue;
end
cmd_b_id <= cmd_w_id;
end
end
assign cmd_b_error = strb_issue;
/////////////////////////////////////////////////////////////////////////////
// Control command queue to B:
//
// Push command to B queue when all data for the transaction has flowed
// through.
// Delay pipelined command until there is room in the Queue.
//
/////////////////////////////////////////////////////////////////////////////
// Detect when data is popped.
assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Push command when last word in transfered (pipelined).
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_i <= 1'b0;
end else begin
cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked;
end
end
// Detect if pipelined push is blocked.
assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full;
// Assign output.
assign cmd_b_push = cmd_b_push_i & ~cmd_b_full;
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Stall commands if FIFO is full or there is no valid command information
// from AW.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Return ready with push back.
assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// End of burst.
assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST;
/////////////////////////////////////////////////////////////////////////////
// Write propagation:
//
// All information is simply forwarded on from the SI- to MI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
endmodule |
module processing_system7_v5_5_w_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_WUSER_WIDTH = 1
// Width of AWUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface (In)
input wire cmd_w_valid,
input wire cmd_w_check,
input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id,
output wire cmd_w_ready,
// Command Interface (Out)
output wire cmd_b_push,
output wire cmd_b_error,
output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id,
input wire cmd_b_full,
// Slave Interface Write Port
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Detecttion.
wire any_strb_deasserted;
wire incoming_strb_issue;
reg first_word;
reg strb_issue;
// Data flow.
wire data_pop;
wire cmd_b_push_blocked;
reg cmd_b_push_i;
/////////////////////////////////////////////////////////////////////////////
// Detect error:
//
// Detect and accumulate error when a transaction shall be scanned for
// potential issues.
// Accumulation of error is restarted for each ne transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Check stobe information
assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} );
assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted;
// Keep track of first word in a transaction.
always @ (posedge ACLK) begin
if (ARESET) begin
first_word <= 1'b1;
end else if ( data_pop ) begin
first_word <= S_AXI_WLAST;
end
end
// Keep track of error status.
always @ (posedge ACLK) begin
if (ARESET) begin
strb_issue <= 1'b0;
cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}};
end else if ( data_pop ) begin
if ( first_word ) begin
strb_issue <= incoming_strb_issue;
end else begin
strb_issue <= incoming_strb_issue | strb_issue;
end
cmd_b_id <= cmd_w_id;
end
end
assign cmd_b_error = strb_issue;
/////////////////////////////////////////////////////////////////////////////
// Control command queue to B:
//
// Push command to B queue when all data for the transaction has flowed
// through.
// Delay pipelined command until there is room in the Queue.
//
/////////////////////////////////////////////////////////////////////////////
// Detect when data is popped.
assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Push command when last word in transfered (pipelined).
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_i <= 1'b0;
end else begin
cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked;
end
end
// Detect if pipelined push is blocked.
assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full;
// Assign output.
assign cmd_b_push = cmd_b_push_i & ~cmd_b_full;
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Stall commands if FIFO is full or there is no valid command information
// from AW.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Return ready with push back.
assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// End of burst.
assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST;
/////////////////////////////////////////////////////////////////////////////
// Write propagation:
//
// All information is simply forwarded on from the SI- to MI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
endmodule |
module processing_system7_v5_5_w_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_WUSER_WIDTH = 1
// Width of AWUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface (In)
input wire cmd_w_valid,
input wire cmd_w_check,
input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id,
output wire cmd_w_ready,
// Command Interface (Out)
output wire cmd_b_push,
output wire cmd_b_error,
output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id,
input wire cmd_b_full,
// Slave Interface Write Port
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Detecttion.
wire any_strb_deasserted;
wire incoming_strb_issue;
reg first_word;
reg strb_issue;
// Data flow.
wire data_pop;
wire cmd_b_push_blocked;
reg cmd_b_push_i;
/////////////////////////////////////////////////////////////////////////////
// Detect error:
//
// Detect and accumulate error when a transaction shall be scanned for
// potential issues.
// Accumulation of error is restarted for each ne transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Check stobe information
assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} );
assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted;
// Keep track of first word in a transaction.
always @ (posedge ACLK) begin
if (ARESET) begin
first_word <= 1'b1;
end else if ( data_pop ) begin
first_word <= S_AXI_WLAST;
end
end
// Keep track of error status.
always @ (posedge ACLK) begin
if (ARESET) begin
strb_issue <= 1'b0;
cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}};
end else if ( data_pop ) begin
if ( first_word ) begin
strb_issue <= incoming_strb_issue;
end else begin
strb_issue <= incoming_strb_issue | strb_issue;
end
cmd_b_id <= cmd_w_id;
end
end
assign cmd_b_error = strb_issue;
/////////////////////////////////////////////////////////////////////////////
// Control command queue to B:
//
// Push command to B queue when all data for the transaction has flowed
// through.
// Delay pipelined command until there is room in the Queue.
//
/////////////////////////////////////////////////////////////////////////////
// Detect when data is popped.
assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Push command when last word in transfered (pipelined).
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_i <= 1'b0;
end else begin
cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked;
end
end
// Detect if pipelined push is blocked.
assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full;
// Assign output.
assign cmd_b_push = cmd_b_push_i & ~cmd_b_full;
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Stall commands if FIFO is full or there is no valid command information
// from AW.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Return ready with push back.
assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// End of burst.
assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST;
/////////////////////////////////////////////////////////////////////////////
// Write propagation:
//
// All information is simply forwarded on from the SI- to MI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
endmodule |
module processing_system7_v5_5_w_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_WUSER_WIDTH = 1
// Width of AWUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface (In)
input wire cmd_w_valid,
input wire cmd_w_check,
input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id,
output wire cmd_w_ready,
// Command Interface (Out)
output wire cmd_b_push,
output wire cmd_b_error,
output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id,
input wire cmd_b_full,
// Slave Interface Write Port
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Detecttion.
wire any_strb_deasserted;
wire incoming_strb_issue;
reg first_word;
reg strb_issue;
// Data flow.
wire data_pop;
wire cmd_b_push_blocked;
reg cmd_b_push_i;
/////////////////////////////////////////////////////////////////////////////
// Detect error:
//
// Detect and accumulate error when a transaction shall be scanned for
// potential issues.
// Accumulation of error is restarted for each ne transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Check stobe information
assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} );
assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted;
// Keep track of first word in a transaction.
always @ (posedge ACLK) begin
if (ARESET) begin
first_word <= 1'b1;
end else if ( data_pop ) begin
first_word <= S_AXI_WLAST;
end
end
// Keep track of error status.
always @ (posedge ACLK) begin
if (ARESET) begin
strb_issue <= 1'b0;
cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}};
end else if ( data_pop ) begin
if ( first_word ) begin
strb_issue <= incoming_strb_issue;
end else begin
strb_issue <= incoming_strb_issue | strb_issue;
end
cmd_b_id <= cmd_w_id;
end
end
assign cmd_b_error = strb_issue;
/////////////////////////////////////////////////////////////////////////////
// Control command queue to B:
//
// Push command to B queue when all data for the transaction has flowed
// through.
// Delay pipelined command until there is room in the Queue.
//
/////////////////////////////////////////////////////////////////////////////
// Detect when data is popped.
assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Push command when last word in transfered (pipelined).
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_i <= 1'b0;
end else begin
cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked;
end
end
// Detect if pipelined push is blocked.
assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full;
// Assign output.
assign cmd_b_push = cmd_b_push_i & ~cmd_b_full;
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Stall commands if FIFO is full or there is no valid command information
// from AW.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Return ready with push back.
assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// End of burst.
assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST;
/////////////////////////////////////////////////////////////////////////////
// Write propagation:
//
// All information is simply forwarded on from the SI- to MI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
endmodule |
module processing_system7_v5_5_w_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_WUSER_WIDTH = 1
// Width of AWUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface (In)
input wire cmd_w_valid,
input wire cmd_w_check,
input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id,
output wire cmd_w_ready,
// Command Interface (Out)
output wire cmd_b_push,
output wire cmd_b_error,
output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id,
input wire cmd_b_full,
// Slave Interface Write Port
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Detecttion.
wire any_strb_deasserted;
wire incoming_strb_issue;
reg first_word;
reg strb_issue;
// Data flow.
wire data_pop;
wire cmd_b_push_blocked;
reg cmd_b_push_i;
/////////////////////////////////////////////////////////////////////////////
// Detect error:
//
// Detect and accumulate error when a transaction shall be scanned for
// potential issues.
// Accumulation of error is restarted for each ne transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Check stobe information
assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} );
assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted;
// Keep track of first word in a transaction.
always @ (posedge ACLK) begin
if (ARESET) begin
first_word <= 1'b1;
end else if ( data_pop ) begin
first_word <= S_AXI_WLAST;
end
end
// Keep track of error status.
always @ (posedge ACLK) begin
if (ARESET) begin
strb_issue <= 1'b0;
cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}};
end else if ( data_pop ) begin
if ( first_word ) begin
strb_issue <= incoming_strb_issue;
end else begin
strb_issue <= incoming_strb_issue | strb_issue;
end
cmd_b_id <= cmd_w_id;
end
end
assign cmd_b_error = strb_issue;
/////////////////////////////////////////////////////////////////////////////
// Control command queue to B:
//
// Push command to B queue when all data for the transaction has flowed
// through.
// Delay pipelined command until there is room in the Queue.
//
/////////////////////////////////////////////////////////////////////////////
// Detect when data is popped.
assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Push command when last word in transfered (pipelined).
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_i <= 1'b0;
end else begin
cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked;
end
end
// Detect if pipelined push is blocked.
assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full;
// Assign output.
assign cmd_b_push = cmd_b_push_i & ~cmd_b_full;
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Stall commands if FIFO is full or there is no valid command information
// from AW.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// Return ready with push back.
assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked;
// End of burst.
assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST;
/////////////////////////////////////////////////////////////////////////////
// Write propagation:
//
// All information is simply forwarded on from the SI- to MI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
endmodule |
module lo_simulate(
pck0, ck_1356meg, ck_1356megb,
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
adc_d, adc_clk,
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
divisor
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
input [7:0] adc_d;
output adc_clk;
input ssp_dout;
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
input [7:0] divisor;
// No logic, straight through.
assign pwr_oe3 = 1'b0;
assign pwr_oe1 = ssp_dout;
assign pwr_oe2 = ssp_dout;
assign pwr_oe4 = ssp_dout;
assign ssp_clk = cross_lo;
assign pwr_lo = 1'b0;
assign pwr_hi = 1'b0;
assign dbg = ssp_frame;
// Divide the clock to be used for the ADC
reg [7:0] pck_divider;
reg clk_state;
always @(posedge pck0)
begin
if(pck_divider == divisor[7:0])
begin
pck_divider <= 8'd0;
clk_state = !clk_state;
end
else
begin
pck_divider <= pck_divider + 1;
end
end
assign adc_clk = ~clk_state;
// Toggle the output with hysteresis
// Set to high if the ADC value is above 200
// Set to low if the ADC value is below 64
reg is_high;
reg is_low;
reg output_state;
always @(posedge pck0)
begin
if((pck_divider == 8'd7) && !clk_state) begin
is_high = (adc_d >= 8'd200);
is_low = (adc_d <= 8'd64);
end
end
always @(posedge is_high or posedge is_low)
begin
if(is_high)
output_state <= 1'd1;
else if(is_low)
output_state <= 1'd0;
end
assign ssp_frame = output_state;
endmodule |
module lo_simulate(
pck0, ck_1356meg, ck_1356megb,
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
adc_d, adc_clk,
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
divisor
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
input [7:0] adc_d;
output adc_clk;
input ssp_dout;
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
input [7:0] divisor;
// No logic, straight through.
assign pwr_oe3 = 1'b0;
assign pwr_oe1 = ssp_dout;
assign pwr_oe2 = ssp_dout;
assign pwr_oe4 = ssp_dout;
assign ssp_clk = cross_lo;
assign pwr_lo = 1'b0;
assign pwr_hi = 1'b0;
assign dbg = ssp_frame;
// Divide the clock to be used for the ADC
reg [7:0] pck_divider;
reg clk_state;
always @(posedge pck0)
begin
if(pck_divider == divisor[7:0])
begin
pck_divider <= 8'd0;
clk_state = !clk_state;
end
else
begin
pck_divider <= pck_divider + 1;
end
end
assign adc_clk = ~clk_state;
// Toggle the output with hysteresis
// Set to high if the ADC value is above 200
// Set to low if the ADC value is below 64
reg is_high;
reg is_low;
reg output_state;
always @(posedge pck0)
begin
if((pck_divider == 8'd7) && !clk_state) begin
is_high = (adc_d >= 8'd200);
is_low = (adc_d <= 8'd64);
end
end
always @(posedge is_high or posedge is_low)
begin
if(is_high)
output_state <= 1'd1;
else if(is_low)
output_state <= 1'd0;
end
assign ssp_frame = output_state;
endmodule |
module lo_simulate(
pck0, ck_1356meg, ck_1356megb,
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
adc_d, adc_clk,
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
divisor
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
input [7:0] adc_d;
output adc_clk;
input ssp_dout;
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
input [7:0] divisor;
// No logic, straight through.
assign pwr_oe3 = 1'b0;
assign pwr_oe1 = ssp_dout;
assign pwr_oe2 = ssp_dout;
assign pwr_oe4 = ssp_dout;
assign ssp_clk = cross_lo;
assign pwr_lo = 1'b0;
assign pwr_hi = 1'b0;
assign dbg = ssp_frame;
// Divide the clock to be used for the ADC
reg [7:0] pck_divider;
reg clk_state;
always @(posedge pck0)
begin
if(pck_divider == divisor[7:0])
begin
pck_divider <= 8'd0;
clk_state = !clk_state;
end
else
begin
pck_divider <= pck_divider + 1;
end
end
assign adc_clk = ~clk_state;
// Toggle the output with hysteresis
// Set to high if the ADC value is above 200
// Set to low if the ADC value is below 64
reg is_high;
reg is_low;
reg output_state;
always @(posedge pck0)
begin
if((pck_divider == 8'd7) && !clk_state) begin
is_high = (adc_d >= 8'd200);
is_low = (adc_d <= 8'd64);
end
end
always @(posedge is_high or posedge is_low)
begin
if(is_high)
output_state <= 1'd1;
else if(is_low)
output_state <= 1'd0;
end
assign ssp_frame = output_state;
endmodule |
module dyn_pll_ctrl # (parameter SPEED_MHZ = 25, parameter SPEED_LIMIT = 100, parameter SPEED_MIN = 25, parameter OSC_MHZ = 100)
(clk,
clk_valid,
speed_in,
start,
progclk,
progdata,
progen,
reset,
locked,
status);
input clk; // NB Assumed to be 12.5MHz uart_clk
input clk_valid; // Drive from LOCKED output of first dcm (ie uart_clk valid)
input [7:0] speed_in;
input start;
output reg progclk = 0;
output reg progdata = 0;
output reg progen = 0;
output reg reset = 0;
input locked;
input [2:1] status;
// NB spec says to use (dval-1) and (mval-1), but I don't think we need to be that accurate
// and this saves an adder. Feel free to amend it.
reg [23:0] watchdog = 0;
reg [7:0] state = 0;
reg [7:0] dval = OSC_MHZ; // Osc clock speed (hence mval scales in MHz)
reg [7:0] mval = SPEED_MHZ;
reg start_d1 = 0;
always @ (posedge clk)
begin
progclk <= ~progclk;
start_d1 <= start;
reset <= 1'b0;
// Watchdog is just using locked, perhaps also need | ~status[2]
if (locked)
watchdog <= 0;
else
watchdog <= watchdog + 1'b1;
if (watchdog[23]) // Approx 670mS at 12.5MHz - NB spec is 5ms to lock at >50MHz CLKIN (50ms at <50MHz CLKIN)
begin // but allow longer just in case
watchdog <= 0;
reset <= 1'b1; // One cycle at 12.5MHz should suffice (requirment is 3 CLKIN at 100MHz)
end
if (~clk_valid) // Try not to run while clk is unstable
begin
progen <= 0;
progdata <= 0;
state <= 0;
end
else
begin
// The documentation is unclear as to whether the DCM loads data on positive or negative edge. The timing
// diagram unhelpfully shows data changing on the positive edge, which could mean either its sampled on
// negative, or it was clocked on positive! However the following (WRONGLY) says NEGATIVE ...
// http://forums.xilinx.com/t5/Spartan-Family-FPGAs/Spartan6-DCM-CLKGEN-does-PROGCLK-have-a-maximum-period-minimum/td-p/175642
// BUT this can lock up the DCM, positive clock seems more reliable (but it can still lock up for low values of M, eg 2).
// Added SPEED_MIN to prevent this (and positive clock is correct, after looking at other implementations eg ztex/theseven)
if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==1) // positive clock
// if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==0) // negative clock
begin
progen <= 0;
progdata <= 0;
mval <= speed_in;
dval <= OSC_MHZ;
state <= 1;
end
if (state != 0)
state <= state + 1'd1;
case (state) // Even values to sync with progclk
// Send D
2: begin
progen <= 1;
progdata <= 1;
end
4: begin
progdata <= 0;
end
6,8,10,12,14,16,18,20: begin
progdata <= dval[0];
dval[6:0] <= dval[7:1];
end
22: begin
progen <= 0;
progdata <= 0;
end
// Send M
32: begin
progen <= 1;
progdata <= 1;
end
36,38,40,42,44,46,48,50: begin
progdata <= mval[0];
mval[6:0] <= mval[7:1];
end
52: begin
progen <= 0;
progdata <= 0;
end
// Send GO - NB 1 clock cycle
62: begin
progen <= 1;
end
64: begin
progen <= 0;
end
// We should wait on progdone/locked, but just go straight back to idle
254: begin
state <= 0;
end
endcase
end
end
endmodule |
module dyn_pll_ctrl # (parameter SPEED_MHZ = 25, parameter SPEED_LIMIT = 100, parameter SPEED_MIN = 25, parameter OSC_MHZ = 100)
(clk,
clk_valid,
speed_in,
start,
progclk,
progdata,
progen,
reset,
locked,
status);
input clk; // NB Assumed to be 12.5MHz uart_clk
input clk_valid; // Drive from LOCKED output of first dcm (ie uart_clk valid)
input [7:0] speed_in;
input start;
output reg progclk = 0;
output reg progdata = 0;
output reg progen = 0;
output reg reset = 0;
input locked;
input [2:1] status;
// NB spec says to use (dval-1) and (mval-1), but I don't think we need to be that accurate
// and this saves an adder. Feel free to amend it.
reg [23:0] watchdog = 0;
reg [7:0] state = 0;
reg [7:0] dval = OSC_MHZ; // Osc clock speed (hence mval scales in MHz)
reg [7:0] mval = SPEED_MHZ;
reg start_d1 = 0;
always @ (posedge clk)
begin
progclk <= ~progclk;
start_d1 <= start;
reset <= 1'b0;
// Watchdog is just using locked, perhaps also need | ~status[2]
if (locked)
watchdog <= 0;
else
watchdog <= watchdog + 1'b1;
if (watchdog[23]) // Approx 670mS at 12.5MHz - NB spec is 5ms to lock at >50MHz CLKIN (50ms at <50MHz CLKIN)
begin // but allow longer just in case
watchdog <= 0;
reset <= 1'b1; // One cycle at 12.5MHz should suffice (requirment is 3 CLKIN at 100MHz)
end
if (~clk_valid) // Try not to run while clk is unstable
begin
progen <= 0;
progdata <= 0;
state <= 0;
end
else
begin
// The documentation is unclear as to whether the DCM loads data on positive or negative edge. The timing
// diagram unhelpfully shows data changing on the positive edge, which could mean either its sampled on
// negative, or it was clocked on positive! However the following (WRONGLY) says NEGATIVE ...
// http://forums.xilinx.com/t5/Spartan-Family-FPGAs/Spartan6-DCM-CLKGEN-does-PROGCLK-have-a-maximum-period-minimum/td-p/175642
// BUT this can lock up the DCM, positive clock seems more reliable (but it can still lock up for low values of M, eg 2).
// Added SPEED_MIN to prevent this (and positive clock is correct, after looking at other implementations eg ztex/theseven)
if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==1) // positive clock
// if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==0) // negative clock
begin
progen <= 0;
progdata <= 0;
mval <= speed_in;
dval <= OSC_MHZ;
state <= 1;
end
if (state != 0)
state <= state + 1'd1;
case (state) // Even values to sync with progclk
// Send D
2: begin
progen <= 1;
progdata <= 1;
end
4: begin
progdata <= 0;
end
6,8,10,12,14,16,18,20: begin
progdata <= dval[0];
dval[6:0] <= dval[7:1];
end
22: begin
progen <= 0;
progdata <= 0;
end
// Send M
32: begin
progen <= 1;
progdata <= 1;
end
36,38,40,42,44,46,48,50: begin
progdata <= mval[0];
mval[6:0] <= mval[7:1];
end
52: begin
progen <= 0;
progdata <= 0;
end
// Send GO - NB 1 clock cycle
62: begin
progen <= 1;
end
64: begin
progen <= 0;
end
// We should wait on progdone/locked, but just go straight back to idle
254: begin
state <= 0;
end
endcase
end
end
endmodule |
module
input wire r_push ,
output wire r_full ,
// length not needed. Can be removed.
input wire [C_ID_WIDTH-1:0] r_arid ,
input wire r_rlast
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam P_WIDTH = 1+C_ID_WIDTH;
localparam P_DEPTH = 32;
localparam P_AWIDTH = 5;
localparam P_D_WIDTH = C_DATA_WIDTH + 2;
// rd data FIFO depth varies based on burst length.
// For Bl8 it is two times the size of transaction FIFO.
// Only in 2:1 mode BL8 transactions will happen which results in
// two beats of read data per read transaction.
localparam P_D_DEPTH = 32;
localparam P_D_AWIDTH = 5;
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_ID_WIDTH+1-1:0] trans_in;
wire [C_ID_WIDTH+1-1:0] trans_out;
wire tr_empty;
wire rhandshake;
wire r_valid_i;
wire [P_D_WIDTH-1:0] rd_data_fifo_in;
wire [P_D_WIDTH-1:0] rd_data_fifo_out;
wire rd_en;
wire rd_full;
wire rd_empty;
wire rd_a_full;
wire fifo_a_full;
reg [C_ID_WIDTH-1:0] r_arid_r;
reg r_rlast_r;
reg r_push_r;
wire fifo_full;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH];
assign s_rid = trans_out[1+:C_ID_WIDTH];
assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0];
assign s_rlast = trans_out[0];
assign s_rvalid = ~rd_empty & ~tr_empty;
// assign MCB outputs
assign rd_en = rhandshake & (~rd_empty);
assign rhandshake =(s_rvalid & s_rready);
// register for timing
always @(posedge clk) begin
r_arid_r <= r_arid;
r_rlast_r <= r_rlast;
r_push_r <= r_push;
end
assign trans_in[0] = r_rlast_r;
assign trans_in[1+:C_ID_WIDTH] = r_arid_r;
// rd data fifo
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_D_WIDTH),
.C_AWIDTH (P_D_AWIDTH),
.C_DEPTH (P_D_DEPTH)
)
rd_data_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( m_rvalid & m_rready ) ,
.rd_en ( rd_en ) ,
.din ( rd_data_fifo_in ) ,
.dout ( rd_data_fifo_out ) ,
.a_full ( rd_a_full ) ,
.full ( rd_full ) ,
.a_empty ( ) ,
.empty ( rd_empty )
);
assign rd_data_fifo_in = {m_rresp, m_rdata};
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_WIDTH),
.C_AWIDTH (P_AWIDTH),
.C_DEPTH (P_DEPTH)
)
transaction_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( r_push_r ) ,
.rd_en ( rd_en ) ,
.din ( trans_in ) ,
.dout ( trans_out ) ,
.a_full ( fifo_a_full ) ,
.full ( ) ,
.a_empty ( ) ,
.empty ( tr_empty )
);
assign fifo_full = fifo_a_full | rd_a_full ;
assign r_full = fifo_full ;
assign m_rready = ~rd_a_full;
endmodule |
module
input wire r_push ,
output wire r_full ,
// length not needed. Can be removed.
input wire [C_ID_WIDTH-1:0] r_arid ,
input wire r_rlast
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam P_WIDTH = 1+C_ID_WIDTH;
localparam P_DEPTH = 32;
localparam P_AWIDTH = 5;
localparam P_D_WIDTH = C_DATA_WIDTH + 2;
// rd data FIFO depth varies based on burst length.
// For Bl8 it is two times the size of transaction FIFO.
// Only in 2:1 mode BL8 transactions will happen which results in
// two beats of read data per read transaction.
localparam P_D_DEPTH = 32;
localparam P_D_AWIDTH = 5;
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_ID_WIDTH+1-1:0] trans_in;
wire [C_ID_WIDTH+1-1:0] trans_out;
wire tr_empty;
wire rhandshake;
wire r_valid_i;
wire [P_D_WIDTH-1:0] rd_data_fifo_in;
wire [P_D_WIDTH-1:0] rd_data_fifo_out;
wire rd_en;
wire rd_full;
wire rd_empty;
wire rd_a_full;
wire fifo_a_full;
reg [C_ID_WIDTH-1:0] r_arid_r;
reg r_rlast_r;
reg r_push_r;
wire fifo_full;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH];
assign s_rid = trans_out[1+:C_ID_WIDTH];
assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0];
assign s_rlast = trans_out[0];
assign s_rvalid = ~rd_empty & ~tr_empty;
// assign MCB outputs
assign rd_en = rhandshake & (~rd_empty);
assign rhandshake =(s_rvalid & s_rready);
// register for timing
always @(posedge clk) begin
r_arid_r <= r_arid;
r_rlast_r <= r_rlast;
r_push_r <= r_push;
end
assign trans_in[0] = r_rlast_r;
assign trans_in[1+:C_ID_WIDTH] = r_arid_r;
// rd data fifo
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_D_WIDTH),
.C_AWIDTH (P_D_AWIDTH),
.C_DEPTH (P_D_DEPTH)
)
rd_data_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( m_rvalid & m_rready ) ,
.rd_en ( rd_en ) ,
.din ( rd_data_fifo_in ) ,
.dout ( rd_data_fifo_out ) ,
.a_full ( rd_a_full ) ,
.full ( rd_full ) ,
.a_empty ( ) ,
.empty ( rd_empty )
);
assign rd_data_fifo_in = {m_rresp, m_rdata};
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_WIDTH),
.C_AWIDTH (P_AWIDTH),
.C_DEPTH (P_DEPTH)
)
transaction_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( r_push_r ) ,
.rd_en ( rd_en ) ,
.din ( trans_in ) ,
.dout ( trans_out ) ,
.a_full ( fifo_a_full ) ,
.full ( ) ,
.a_empty ( ) ,
.empty ( tr_empty )
);
assign fifo_full = fifo_a_full | rd_a_full ;
assign r_full = fifo_full ;
assign m_rready = ~rd_a_full;
endmodule |
module axi_data_fifo_v2_1_fifo_gen #(
parameter C_FAMILY = "virtex7",
parameter integer C_COMMON_CLOCK = 1,
parameter integer C_SYNCHRONIZER_STAGE = 3,
parameter integer C_FIFO_DEPTH_LOG = 5,
parameter integer C_FIFO_WIDTH = 64,
parameter C_FIFO_TYPE = "lut"
)(
clk,
rst,
wr_clk,
wr_en,
wr_ready,
wr_data,
rd_clk,
rd_en,
rd_valid,
rd_data);
input clk;
input wr_clk;
input rd_clk;
input rst;
input [C_FIFO_WIDTH-1 : 0] wr_data;
input wr_en;
input rd_en;
output [C_FIFO_WIDTH-1 : 0] rd_data;
output wr_ready;
output rd_valid;
wire full;
wire empty;
wire rd_valid = ~empty;
wire wr_ready = ~full;
localparam C_MEMORY_TYPE = (C_FIFO_TYPE == "bram")? 1 : 2;
localparam C_IMPLEMENTATION_TYPE = (C_COMMON_CLOCK == 1)? 0 : 2;
fifo_generator_v12_0 #(
.C_COMMON_CLOCK(C_COMMON_CLOCK),
.C_DIN_WIDTH(C_FIFO_WIDTH),
.C_DOUT_WIDTH(C_FIFO_WIDTH),
.C_FAMILY(C_FAMILY),
.C_IMPLEMENTATION_TYPE(C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE(C_MEMORY_TYPE),
.C_RD_DEPTH(1<<C_FIFO_DEPTH_LOG),
.C_RD_PNTR_WIDTH(C_FIFO_DEPTH_LOG),
.C_WR_DEPTH(1<<C_FIFO_DEPTH_LOG),
.C_WR_PNTR_WIDTH(C_FIFO_DEPTH_LOG),
.C_ADD_NGC_CONSTRAINT(0),
.C_APPLICATION_TYPE_AXIS(0),
.C_APPLICATION_TYPE_RACH(0),
.C_APPLICATION_TYPE_RDCH(0),
.C_APPLICATION_TYPE_WACH(0),
.C_APPLICATION_TYPE_WDCH(0),
.C_APPLICATION_TYPE_WRCH(0),
.C_AXIS_TDATA_WIDTH(64),
.C_AXIS_TDEST_WIDTH(4),
.C_AXIS_TID_WIDTH(8),
.C_AXIS_TKEEP_WIDTH(4),
.C_AXIS_TSTRB_WIDTH(4),
.C_AXIS_TUSER_WIDTH(4),
.C_AXIS_TYPE(0),
.C_AXI_ADDR_WIDTH(32),
.C_AXI_ARUSER_WIDTH(1),
.C_AXI_AWUSER_WIDTH(1),
.C_AXI_BUSER_WIDTH(1),
.C_AXI_DATA_WIDTH(64),
.C_AXI_ID_WIDTH(4),
.C_AXI_LEN_WIDTH(8),
.C_AXI_LOCK_WIDTH(2),
.C_AXI_RUSER_WIDTH(1),
.C_AXI_TYPE(0),
.C_AXI_WUSER_WIDTH(1),
.C_COUNT_TYPE(0),
.C_DATA_COUNT_WIDTH(6),
.C_DEFAULT_VALUE("BlankString"),
.C_DIN_WIDTH_AXIS(1),
.C_DIN_WIDTH_RACH(32),
.C_DIN_WIDTH_RDCH(64),
.C_DIN_WIDTH_WACH(32),
.C_DIN_WIDTH_WDCH(64),
.C_DIN_WIDTH_WRCH(2),
.C_DOUT_RST_VAL("0"),
.C_ENABLE_RLOCS(0),
.C_ENABLE_RST_SYNC(1),
.C_ERROR_INJECTION_TYPE(0),
.C_ERROR_INJECTION_TYPE_AXIS(0),
.C_ERROR_INJECTION_TYPE_RACH(0),
.C_ERROR_INJECTION_TYPE_RDCH(0),
.C_ERROR_INJECTION_TYPE_WACH(0),
.C_ERROR_INJECTION_TYPE_WDCH(0),
.C_ERROR_INJECTION_TYPE_WRCH(0),
.C_FULL_FLAGS_RST_VAL(0),
.C_HAS_ALMOST_EMPTY(0),
.C_HAS_ALMOST_FULL(0),
.C_HAS_AXIS_TDATA(0),
.C_HAS_AXIS_TDEST(0),
.C_HAS_AXIS_TID(0),
.C_HAS_AXIS_TKEEP(0),
.C_HAS_AXIS_TLAST(0),
.C_HAS_AXIS_TREADY(1),
.C_HAS_AXIS_TSTRB(0),
.C_HAS_AXIS_TUSER(0),
.C_HAS_AXI_ARUSER(0),
.C_HAS_AXI_AWUSER(0),
.C_HAS_AXI_BUSER(0),
.C_HAS_AXI_RD_CHANNEL(0),
.C_HAS_AXI_RUSER(0),
.C_HAS_AXI_WR_CHANNEL(0),
.C_HAS_AXI_WUSER(0),
.C_HAS_BACKUP(0),
.C_HAS_DATA_COUNT(0),
.C_HAS_DATA_COUNTS_AXIS(0),
.C_HAS_DATA_COUNTS_RACH(0),
.C_HAS_DATA_COUNTS_RDCH(0),
.C_HAS_DATA_COUNTS_WACH(0),
.C_HAS_DATA_COUNTS_WDCH(0),
.C_HAS_DATA_COUNTS_WRCH(0),
.C_HAS_INT_CLK(0),
.C_HAS_MASTER_CE(0),
.C_HAS_MEMINIT_FILE(0),
.C_HAS_OVERFLOW(0),
.C_HAS_PROG_FLAGS_AXIS(0),
.C_HAS_PROG_FLAGS_RACH(0),
.C_HAS_PROG_FLAGS_RDCH(0),
.C_HAS_PROG_FLAGS_WACH(0),
.C_HAS_PROG_FLAGS_WDCH(0),
.C_HAS_PROG_FLAGS_WRCH(0),
.C_HAS_RD_DATA_COUNT(0),
.C_HAS_RD_RST(0),
.C_HAS_RST(1),
.C_HAS_SLAVE_CE(0),
.C_HAS_SRST(0),
.C_HAS_UNDERFLOW(0),
.C_HAS_VALID(0),
.C_HAS_WR_ACK(0),
.C_HAS_WR_DATA_COUNT(0),
.C_HAS_WR_RST(0),
.C_IMPLEMENTATION_TYPE_AXIS(1),
.C_IMPLEMENTATION_TYPE_RACH(1),
.C_IMPLEMENTATION_TYPE_RDCH(1),
.C_IMPLEMENTATION_TYPE_WACH(1),
.C_IMPLEMENTATION_TYPE_WDCH(1),
.C_IMPLEMENTATION_TYPE_WRCH(1),
.C_INIT_WR_PNTR_VAL(0),
.C_INTERFACE_TYPE(0),
.C_MIF_FILE_NAME("BlankString"),
.C_MSGON_VAL(1),
.C_OPTIMIZATION_MODE(0),
.C_OVERFLOW_LOW(0),
.C_PRELOAD_LATENCY(0),
.C_PRELOAD_REGS(1),
.C_PRIM_FIFO_TYPE("512x36"),
.C_PROG_EMPTY_THRESH_ASSERT_VAL(4),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(1022),
.C_PROG_EMPTY_THRESH_NEGATE_VAL(5),
.C_PROG_EMPTY_TYPE(0),
.C_PROG_EMPTY_TYPE_AXIS(0),
.C_PROG_EMPTY_TYPE_RACH(0),
.C_PROG_EMPTY_TYPE_RDCH(0),
.C_PROG_EMPTY_TYPE_WACH(0),
.C_PROG_EMPTY_TYPE_WDCH(0),
.C_PROG_EMPTY_TYPE_WRCH(0),
.C_PROG_FULL_THRESH_ASSERT_VAL(31),
.C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_RACH(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_WACH(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(1023),
.C_PROG_FULL_THRESH_NEGATE_VAL(30),
.C_PROG_FULL_TYPE(0),
.C_PROG_FULL_TYPE_AXIS(0),
.C_PROG_FULL_TYPE_RACH(0),
.C_PROG_FULL_TYPE_RDCH(0),
.C_PROG_FULL_TYPE_WACH(0),
.C_PROG_FULL_TYPE_WDCH(0),
.C_PROG_FULL_TYPE_WRCH(0),
.C_RACH_TYPE(0),
.C_RDCH_TYPE(0),
.C_RD_DATA_COUNT_WIDTH(6),
.C_RD_FREQ(1),
.C_REG_SLICE_MODE_AXIS(0),
.C_REG_SLICE_MODE_RACH(0),
.C_REG_SLICE_MODE_RDCH(0),
.C_REG_SLICE_MODE_WACH(0),
.C_REG_SLICE_MODE_WDCH(0),
.C_REG_SLICE_MODE_WRCH(0),
.C_SYNCHRONIZER_STAGE(C_SYNCHRONIZER_STAGE),
.C_UNDERFLOW_LOW(0),
.C_USE_COMMON_OVERFLOW(0),
.C_USE_COMMON_UNDERFLOW(0),
.C_USE_DEFAULT_SETTINGS(0),
.C_USE_DOUT_RST(0),
.C_USE_ECC(0),
.C_USE_ECC_AXIS(0),
.C_USE_ECC_RACH(0),
.C_USE_ECC_RDCH(0),
.C_USE_ECC_WACH(0),
.C_USE_ECC_WDCH(0),
.C_USE_ECC_WRCH(0),
.C_USE_EMBEDDED_REG(0),
.C_USE_FIFO16_FLAGS(0),
.C_USE_FWFT_DATA_COUNT(1),
.C_VALID_LOW(0),
.C_WACH_TYPE(0),
.C_WDCH_TYPE(0),
.C_WRCH_TYPE(0),
.C_WR_ACK_LOW(0),
.C_WR_DATA_COUNT_WIDTH(6),
.C_WR_DEPTH_AXIS(1024),
.C_WR_DEPTH_RACH(16),
.C_WR_DEPTH_RDCH(1024),
.C_WR_DEPTH_WACH(16),
.C_WR_DEPTH_WDCH(1024),
.C_WR_DEPTH_WRCH(16),
.C_WR_FREQ(1),
.C_WR_PNTR_WIDTH_AXIS(10),
.C_WR_PNTR_WIDTH_RACH(4),
.C_WR_PNTR_WIDTH_RDCH(10),
.C_WR_PNTR_WIDTH_WACH(4),
.C_WR_PNTR_WIDTH_WDCH(10),
.C_WR_PNTR_WIDTH_WRCH(4),
.C_WR_RESPONSE_LATENCY(1)
)
fifo_gen_inst (
.clk(clk),
.din(wr_data),
.dout(rd_data),
.empty(empty),
.full(full),
.rd_clk(rd_clk),
.rd_en(rd_en),
.rst(rst),
.wr_clk(wr_clk),
.wr_en(wr_en),
.almost_empty(),
.almost_full(),
.axi_ar_data_count(),
.axi_ar_dbiterr(),
.axi_ar_injectdbiterr(1'b0),
.axi_ar_injectsbiterr(1'b0),
.axi_ar_overflow(),
.axi_ar_prog_empty(),
.axi_ar_prog_empty_thresh(4'b0),
.axi_ar_prog_full(),
.axi_ar_prog_full_thresh(4'b0),
.axi_ar_rd_data_count(),
.axi_ar_sbiterr(),
.axi_ar_underflow(),
.axi_ar_wr_data_count(),
.axi_aw_data_count(),
.axi_aw_dbiterr(),
.axi_aw_injectdbiterr(1'b0),
.axi_aw_injectsbiterr(1'b0),
.axi_aw_overflow(),
.axi_aw_prog_empty(),
.axi_aw_prog_empty_thresh(4'b0),
.axi_aw_prog_full(),
.axi_aw_prog_full_thresh(4'b0),
.axi_aw_rd_data_count(),
.axi_aw_sbiterr(),
.axi_aw_underflow(),
.axi_aw_wr_data_count(),
.axi_b_data_count(),
.axi_b_dbiterr(),
.axi_b_injectdbiterr(1'b0),
.axi_b_injectsbiterr(1'b0),
.axi_b_overflow(),
.axi_b_prog_empty(),
.axi_b_prog_empty_thresh(4'b0),
.axi_b_prog_full(),
.axi_b_prog_full_thresh(4'b0),
.axi_b_rd_data_count(),
.axi_b_sbiterr(),
.axi_b_underflow(),
.axi_b_wr_data_count(),
.axi_r_data_count(),
.axi_r_dbiterr(),
.axi_r_injectdbiterr(1'b0),
.axi_r_injectsbiterr(1'b0),
.axi_r_overflow(),
.axi_r_prog_empty(),
.axi_r_prog_empty_thresh(10'b0),
.axi_r_prog_full(),
.axi_r_prog_full_thresh(10'b0),
.axi_r_rd_data_count(),
.axi_r_sbiterr(),
.axi_r_underflow(),
.axi_r_wr_data_count(),
.axi_w_data_count(),
.axi_w_dbiterr(),
.axi_w_injectdbiterr(1'b0),
.axi_w_injectsbiterr(1'b0),
.axi_w_overflow(),
.axi_w_prog_empty(),
.axi_w_prog_empty_thresh(10'b0),
.axi_w_prog_full(),
.axi_w_prog_full_thresh(10'b0),
.axi_w_rd_data_count(),
.axi_w_sbiterr(),
.axi_w_underflow(),
.axi_w_wr_data_count(),
.axis_data_count(),
.axis_dbiterr(),
.axis_injectdbiterr(1'b0),
.axis_injectsbiterr(1'b0),
.axis_overflow(),
.axis_prog_empty(),
.axis_prog_empty_thresh(10'b0),
.axis_prog_full(),
.axis_prog_full_thresh(10'b0),
.axis_rd_data_count(),
.axis_sbiterr(),
.axis_underflow(),
.axis_wr_data_count(),
.backup(1'b0),
.backup_marker(1'b0),
.data_count(),
.dbiterr(),
.injectdbiterr(1'b0),
.injectsbiterr(1'b0),
.int_clk(1'b0),
.m_aclk(1'b0),
.m_aclk_en(1'b0),
.m_axi_araddr(),
.m_axi_arburst(),
.m_axi_arcache(),
.m_axi_arid(),
.m_axi_arlen(),
.m_axi_arlock(),
.m_axi_arprot(),
.m_axi_arqos(),
.m_axi_arready(1'b0),
.m_axi_arregion(),
.m_axi_arsize(),
.m_axi_aruser(),
.m_axi_arvalid(),
.m_axi_awaddr(),
.m_axi_awburst(),
.m_axi_awcache(),
.m_axi_awid(),
.m_axi_awlen(),
.m_axi_awlock(),
.m_axi_awprot(),
.m_axi_awqos(),
.m_axi_awready(1'b0),
.m_axi_awregion(),
.m_axi_awsize(),
.m_axi_awuser(),
.m_axi_awvalid(),
.m_axi_bid(4'b0),
.m_axi_bready(),
.m_axi_bresp(2'b0),
.m_axi_buser(1'b0),
.m_axi_bvalid(1'b0),
.m_axi_rdata(64'b0),
.m_axi_rid(4'b0),
.m_axi_rlast(1'b0),
.m_axi_rready(),
.m_axi_rresp(2'b0),
.m_axi_ruser(1'b0),
.m_axi_rvalid(1'b0),
.m_axi_wdata(),
.m_axi_wid(),
.m_axi_wlast(),
.m_axi_wready(1'b0),
.m_axi_wstrb(),
.m_axi_wuser(),
.m_axi_wvalid(),
.m_axis_tdata(),
.m_axis_tdest(),
.m_axis_tid(),
.m_axis_tkeep(),
.m_axis_tlast(),
.m_axis_tready(1'b0),
.m_axis_tstrb(),
.m_axis_tuser(),
.m_axis_tvalid(),
.overflow(),
.prog_empty(),
.prog_empty_thresh(5'b0),
.prog_empty_thresh_assert(5'b0),
.prog_empty_thresh_negate(5'b0),
.prog_full(),
.prog_full_thresh(5'b0),
.prog_full_thresh_assert(5'b0),
.prog_full_thresh_negate(5'b0),
.rd_data_count(),
.rd_rst(1'b0),
.s_aclk(1'b0),
.s_aclk_en(1'b0),
.s_aresetn(1'b0),
.s_axi_araddr(32'b0),
.s_axi_arburst(2'b0),
.s_axi_arcache(4'b0),
.s_axi_arid(4'b0),
.s_axi_arlen(8'b0),
.s_axi_arlock(2'b0),
.s_axi_arprot(3'b0),
.s_axi_arqos(4'b0),
.s_axi_arready(),
.s_axi_arregion(4'b0),
.s_axi_arsize(3'b0),
.s_axi_aruser(1'b0),
.s_axi_arvalid(1'b0),
.s_axi_awaddr(32'b0),
.s_axi_awburst(2'b0),
.s_axi_awcache(4'b0),
.s_axi_awid(4'b0),
.s_axi_awlen(8'b0),
.s_axi_awlock(2'b0),
.s_axi_awprot(3'b0),
.s_axi_awqos(4'b0),
.s_axi_awready(),
.s_axi_awregion(4'b0),
.s_axi_awsize(3'b0),
.s_axi_awuser(1'b0),
.s_axi_awvalid(1'b0),
.s_axi_bid(),
.s_axi_bready(1'b0),
.s_axi_bresp(),
.s_axi_buser(),
.s_axi_bvalid(),
.s_axi_rdata(),
.s_axi_rid(),
.s_axi_rlast(),
.s_axi_rready(1'b0),
.s_axi_rresp(),
.s_axi_ruser(),
.s_axi_rvalid(),
.s_axi_wdata(64'b0),
.s_axi_wid(4'b0),
.s_axi_wlast(1'b0),
.s_axi_wready(),
.s_axi_wstrb(8'b0),
.s_axi_wuser(1'b0),
.s_axi_wvalid(1'b0),
.s_axis_tdata(64'b0),
.s_axis_tdest(4'b0),
.s_axis_tid(8'b0),
.s_axis_tkeep(4'b0),
.s_axis_tlast(1'b0),
.s_axis_tready(),
.s_axis_tstrb(4'b0),
.s_axis_tuser(4'b0),
.s_axis_tvalid(1'b0),
.sbiterr(),
.srst(1'b0),
.underflow(),
.valid(),
.wr_ack(),
.wr_data_count(),
.wr_rst(1'b0),
.wr_rst_busy(),
.rd_rst_busy(),
.sleep(1'b0)
);
endmodule |
module axi_data_fifo_v2_1_fifo_gen #(
parameter C_FAMILY = "virtex7",
parameter integer C_COMMON_CLOCK = 1,
parameter integer C_SYNCHRONIZER_STAGE = 3,
parameter integer C_FIFO_DEPTH_LOG = 5,
parameter integer C_FIFO_WIDTH = 64,
parameter C_FIFO_TYPE = "lut"
)(
clk,
rst,
wr_clk,
wr_en,
wr_ready,
wr_data,
rd_clk,
rd_en,
rd_valid,
rd_data);
input clk;
input wr_clk;
input rd_clk;
input rst;
input [C_FIFO_WIDTH-1 : 0] wr_data;
input wr_en;
input rd_en;
output [C_FIFO_WIDTH-1 : 0] rd_data;
output wr_ready;
output rd_valid;
wire full;
wire empty;
wire rd_valid = ~empty;
wire wr_ready = ~full;
localparam C_MEMORY_TYPE = (C_FIFO_TYPE == "bram")? 1 : 2;
localparam C_IMPLEMENTATION_TYPE = (C_COMMON_CLOCK == 1)? 0 : 2;
fifo_generator_v12_0 #(
.C_COMMON_CLOCK(C_COMMON_CLOCK),
.C_DIN_WIDTH(C_FIFO_WIDTH),
.C_DOUT_WIDTH(C_FIFO_WIDTH),
.C_FAMILY(C_FAMILY),
.C_IMPLEMENTATION_TYPE(C_IMPLEMENTATION_TYPE),
.C_MEMORY_TYPE(C_MEMORY_TYPE),
.C_RD_DEPTH(1<<C_FIFO_DEPTH_LOG),
.C_RD_PNTR_WIDTH(C_FIFO_DEPTH_LOG),
.C_WR_DEPTH(1<<C_FIFO_DEPTH_LOG),
.C_WR_PNTR_WIDTH(C_FIFO_DEPTH_LOG),
.C_ADD_NGC_CONSTRAINT(0),
.C_APPLICATION_TYPE_AXIS(0),
.C_APPLICATION_TYPE_RACH(0),
.C_APPLICATION_TYPE_RDCH(0),
.C_APPLICATION_TYPE_WACH(0),
.C_APPLICATION_TYPE_WDCH(0),
.C_APPLICATION_TYPE_WRCH(0),
.C_AXIS_TDATA_WIDTH(64),
.C_AXIS_TDEST_WIDTH(4),
.C_AXIS_TID_WIDTH(8),
.C_AXIS_TKEEP_WIDTH(4),
.C_AXIS_TSTRB_WIDTH(4),
.C_AXIS_TUSER_WIDTH(4),
.C_AXIS_TYPE(0),
.C_AXI_ADDR_WIDTH(32),
.C_AXI_ARUSER_WIDTH(1),
.C_AXI_AWUSER_WIDTH(1),
.C_AXI_BUSER_WIDTH(1),
.C_AXI_DATA_WIDTH(64),
.C_AXI_ID_WIDTH(4),
.C_AXI_LEN_WIDTH(8),
.C_AXI_LOCK_WIDTH(2),
.C_AXI_RUSER_WIDTH(1),
.C_AXI_TYPE(0),
.C_AXI_WUSER_WIDTH(1),
.C_COUNT_TYPE(0),
.C_DATA_COUNT_WIDTH(6),
.C_DEFAULT_VALUE("BlankString"),
.C_DIN_WIDTH_AXIS(1),
.C_DIN_WIDTH_RACH(32),
.C_DIN_WIDTH_RDCH(64),
.C_DIN_WIDTH_WACH(32),
.C_DIN_WIDTH_WDCH(64),
.C_DIN_WIDTH_WRCH(2),
.C_DOUT_RST_VAL("0"),
.C_ENABLE_RLOCS(0),
.C_ENABLE_RST_SYNC(1),
.C_ERROR_INJECTION_TYPE(0),
.C_ERROR_INJECTION_TYPE_AXIS(0),
.C_ERROR_INJECTION_TYPE_RACH(0),
.C_ERROR_INJECTION_TYPE_RDCH(0),
.C_ERROR_INJECTION_TYPE_WACH(0),
.C_ERROR_INJECTION_TYPE_WDCH(0),
.C_ERROR_INJECTION_TYPE_WRCH(0),
.C_FULL_FLAGS_RST_VAL(0),
.C_HAS_ALMOST_EMPTY(0),
.C_HAS_ALMOST_FULL(0),
.C_HAS_AXIS_TDATA(0),
.C_HAS_AXIS_TDEST(0),
.C_HAS_AXIS_TID(0),
.C_HAS_AXIS_TKEEP(0),
.C_HAS_AXIS_TLAST(0),
.C_HAS_AXIS_TREADY(1),
.C_HAS_AXIS_TSTRB(0),
.C_HAS_AXIS_TUSER(0),
.C_HAS_AXI_ARUSER(0),
.C_HAS_AXI_AWUSER(0),
.C_HAS_AXI_BUSER(0),
.C_HAS_AXI_RD_CHANNEL(0),
.C_HAS_AXI_RUSER(0),
.C_HAS_AXI_WR_CHANNEL(0),
.C_HAS_AXI_WUSER(0),
.C_HAS_BACKUP(0),
.C_HAS_DATA_COUNT(0),
.C_HAS_DATA_COUNTS_AXIS(0),
.C_HAS_DATA_COUNTS_RACH(0),
.C_HAS_DATA_COUNTS_RDCH(0),
.C_HAS_DATA_COUNTS_WACH(0),
.C_HAS_DATA_COUNTS_WDCH(0),
.C_HAS_DATA_COUNTS_WRCH(0),
.C_HAS_INT_CLK(0),
.C_HAS_MASTER_CE(0),
.C_HAS_MEMINIT_FILE(0),
.C_HAS_OVERFLOW(0),
.C_HAS_PROG_FLAGS_AXIS(0),
.C_HAS_PROG_FLAGS_RACH(0),
.C_HAS_PROG_FLAGS_RDCH(0),
.C_HAS_PROG_FLAGS_WACH(0),
.C_HAS_PROG_FLAGS_WDCH(0),
.C_HAS_PROG_FLAGS_WRCH(0),
.C_HAS_RD_DATA_COUNT(0),
.C_HAS_RD_RST(0),
.C_HAS_RST(1),
.C_HAS_SLAVE_CE(0),
.C_HAS_SRST(0),
.C_HAS_UNDERFLOW(0),
.C_HAS_VALID(0),
.C_HAS_WR_ACK(0),
.C_HAS_WR_DATA_COUNT(0),
.C_HAS_WR_RST(0),
.C_IMPLEMENTATION_TYPE_AXIS(1),
.C_IMPLEMENTATION_TYPE_RACH(1),
.C_IMPLEMENTATION_TYPE_RDCH(1),
.C_IMPLEMENTATION_TYPE_WACH(1),
.C_IMPLEMENTATION_TYPE_WDCH(1),
.C_IMPLEMENTATION_TYPE_WRCH(1),
.C_INIT_WR_PNTR_VAL(0),
.C_INTERFACE_TYPE(0),
.C_MIF_FILE_NAME("BlankString"),
.C_MSGON_VAL(1),
.C_OPTIMIZATION_MODE(0),
.C_OVERFLOW_LOW(0),
.C_PRELOAD_LATENCY(0),
.C_PRELOAD_REGS(1),
.C_PRIM_FIFO_TYPE("512x36"),
.C_PROG_EMPTY_THRESH_ASSERT_VAL(4),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(1022),
.C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(1022),
.C_PROG_EMPTY_THRESH_NEGATE_VAL(5),
.C_PROG_EMPTY_TYPE(0),
.C_PROG_EMPTY_TYPE_AXIS(0),
.C_PROG_EMPTY_TYPE_RACH(0),
.C_PROG_EMPTY_TYPE_RDCH(0),
.C_PROG_EMPTY_TYPE_WACH(0),
.C_PROG_EMPTY_TYPE_WDCH(0),
.C_PROG_EMPTY_TYPE_WRCH(0),
.C_PROG_FULL_THRESH_ASSERT_VAL(31),
.C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_RACH(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_WACH(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(1023),
.C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(1023),
.C_PROG_FULL_THRESH_NEGATE_VAL(30),
.C_PROG_FULL_TYPE(0),
.C_PROG_FULL_TYPE_AXIS(0),
.C_PROG_FULL_TYPE_RACH(0),
.C_PROG_FULL_TYPE_RDCH(0),
.C_PROG_FULL_TYPE_WACH(0),
.C_PROG_FULL_TYPE_WDCH(0),
.C_PROG_FULL_TYPE_WRCH(0),
.C_RACH_TYPE(0),
.C_RDCH_TYPE(0),
.C_RD_DATA_COUNT_WIDTH(6),
.C_RD_FREQ(1),
.C_REG_SLICE_MODE_AXIS(0),
.C_REG_SLICE_MODE_RACH(0),
.C_REG_SLICE_MODE_RDCH(0),
.C_REG_SLICE_MODE_WACH(0),
.C_REG_SLICE_MODE_WDCH(0),
.C_REG_SLICE_MODE_WRCH(0),
.C_SYNCHRONIZER_STAGE(C_SYNCHRONIZER_STAGE),
.C_UNDERFLOW_LOW(0),
.C_USE_COMMON_OVERFLOW(0),
.C_USE_COMMON_UNDERFLOW(0),
.C_USE_DEFAULT_SETTINGS(0),
.C_USE_DOUT_RST(0),
.C_USE_ECC(0),
.C_USE_ECC_AXIS(0),
.C_USE_ECC_RACH(0),
.C_USE_ECC_RDCH(0),
.C_USE_ECC_WACH(0),
.C_USE_ECC_WDCH(0),
.C_USE_ECC_WRCH(0),
.C_USE_EMBEDDED_REG(0),
.C_USE_FIFO16_FLAGS(0),
.C_USE_FWFT_DATA_COUNT(1),
.C_VALID_LOW(0),
.C_WACH_TYPE(0),
.C_WDCH_TYPE(0),
.C_WRCH_TYPE(0),
.C_WR_ACK_LOW(0),
.C_WR_DATA_COUNT_WIDTH(6),
.C_WR_DEPTH_AXIS(1024),
.C_WR_DEPTH_RACH(16),
.C_WR_DEPTH_RDCH(1024),
.C_WR_DEPTH_WACH(16),
.C_WR_DEPTH_WDCH(1024),
.C_WR_DEPTH_WRCH(16),
.C_WR_FREQ(1),
.C_WR_PNTR_WIDTH_AXIS(10),
.C_WR_PNTR_WIDTH_RACH(4),
.C_WR_PNTR_WIDTH_RDCH(10),
.C_WR_PNTR_WIDTH_WACH(4),
.C_WR_PNTR_WIDTH_WDCH(10),
.C_WR_PNTR_WIDTH_WRCH(4),
.C_WR_RESPONSE_LATENCY(1)
)
fifo_gen_inst (
.clk(clk),
.din(wr_data),
.dout(rd_data),
.empty(empty),
.full(full),
.rd_clk(rd_clk),
.rd_en(rd_en),
.rst(rst),
.wr_clk(wr_clk),
.wr_en(wr_en),
.almost_empty(),
.almost_full(),
.axi_ar_data_count(),
.axi_ar_dbiterr(),
.axi_ar_injectdbiterr(1'b0),
.axi_ar_injectsbiterr(1'b0),
.axi_ar_overflow(),
.axi_ar_prog_empty(),
.axi_ar_prog_empty_thresh(4'b0),
.axi_ar_prog_full(),
.axi_ar_prog_full_thresh(4'b0),
.axi_ar_rd_data_count(),
.axi_ar_sbiterr(),
.axi_ar_underflow(),
.axi_ar_wr_data_count(),
.axi_aw_data_count(),
.axi_aw_dbiterr(),
.axi_aw_injectdbiterr(1'b0),
.axi_aw_injectsbiterr(1'b0),
.axi_aw_overflow(),
.axi_aw_prog_empty(),
.axi_aw_prog_empty_thresh(4'b0),
.axi_aw_prog_full(),
.axi_aw_prog_full_thresh(4'b0),
.axi_aw_rd_data_count(),
.axi_aw_sbiterr(),
.axi_aw_underflow(),
.axi_aw_wr_data_count(),
.axi_b_data_count(),
.axi_b_dbiterr(),
.axi_b_injectdbiterr(1'b0),
.axi_b_injectsbiterr(1'b0),
.axi_b_overflow(),
.axi_b_prog_empty(),
.axi_b_prog_empty_thresh(4'b0),
.axi_b_prog_full(),
.axi_b_prog_full_thresh(4'b0),
.axi_b_rd_data_count(),
.axi_b_sbiterr(),
.axi_b_underflow(),
.axi_b_wr_data_count(),
.axi_r_data_count(),
.axi_r_dbiterr(),
.axi_r_injectdbiterr(1'b0),
.axi_r_injectsbiterr(1'b0),
.axi_r_overflow(),
.axi_r_prog_empty(),
.axi_r_prog_empty_thresh(10'b0),
.axi_r_prog_full(),
.axi_r_prog_full_thresh(10'b0),
.axi_r_rd_data_count(),
.axi_r_sbiterr(),
.axi_r_underflow(),
.axi_r_wr_data_count(),
.axi_w_data_count(),
.axi_w_dbiterr(),
.axi_w_injectdbiterr(1'b0),
.axi_w_injectsbiterr(1'b0),
.axi_w_overflow(),
.axi_w_prog_empty(),
.axi_w_prog_empty_thresh(10'b0),
.axi_w_prog_full(),
.axi_w_prog_full_thresh(10'b0),
.axi_w_rd_data_count(),
.axi_w_sbiterr(),
.axi_w_underflow(),
.axi_w_wr_data_count(),
.axis_data_count(),
.axis_dbiterr(),
.axis_injectdbiterr(1'b0),
.axis_injectsbiterr(1'b0),
.axis_overflow(),
.axis_prog_empty(),
.axis_prog_empty_thresh(10'b0),
.axis_prog_full(),
.axis_prog_full_thresh(10'b0),
.axis_rd_data_count(),
.axis_sbiterr(),
.axis_underflow(),
.axis_wr_data_count(),
.backup(1'b0),
.backup_marker(1'b0),
.data_count(),
.dbiterr(),
.injectdbiterr(1'b0),
.injectsbiterr(1'b0),
.int_clk(1'b0),
.m_aclk(1'b0),
.m_aclk_en(1'b0),
.m_axi_araddr(),
.m_axi_arburst(),
.m_axi_arcache(),
.m_axi_arid(),
.m_axi_arlen(),
.m_axi_arlock(),
.m_axi_arprot(),
.m_axi_arqos(),
.m_axi_arready(1'b0),
.m_axi_arregion(),
.m_axi_arsize(),
.m_axi_aruser(),
.m_axi_arvalid(),
.m_axi_awaddr(),
.m_axi_awburst(),
.m_axi_awcache(),
.m_axi_awid(),
.m_axi_awlen(),
.m_axi_awlock(),
.m_axi_awprot(),
.m_axi_awqos(),
.m_axi_awready(1'b0),
.m_axi_awregion(),
.m_axi_awsize(),
.m_axi_awuser(),
.m_axi_awvalid(),
.m_axi_bid(4'b0),
.m_axi_bready(),
.m_axi_bresp(2'b0),
.m_axi_buser(1'b0),
.m_axi_bvalid(1'b0),
.m_axi_rdata(64'b0),
.m_axi_rid(4'b0),
.m_axi_rlast(1'b0),
.m_axi_rready(),
.m_axi_rresp(2'b0),
.m_axi_ruser(1'b0),
.m_axi_rvalid(1'b0),
.m_axi_wdata(),
.m_axi_wid(),
.m_axi_wlast(),
.m_axi_wready(1'b0),
.m_axi_wstrb(),
.m_axi_wuser(),
.m_axi_wvalid(),
.m_axis_tdata(),
.m_axis_tdest(),
.m_axis_tid(),
.m_axis_tkeep(),
.m_axis_tlast(),
.m_axis_tready(1'b0),
.m_axis_tstrb(),
.m_axis_tuser(),
.m_axis_tvalid(),
.overflow(),
.prog_empty(),
.prog_empty_thresh(5'b0),
.prog_empty_thresh_assert(5'b0),
.prog_empty_thresh_negate(5'b0),
.prog_full(),
.prog_full_thresh(5'b0),
.prog_full_thresh_assert(5'b0),
.prog_full_thresh_negate(5'b0),
.rd_data_count(),
.rd_rst(1'b0),
.s_aclk(1'b0),
.s_aclk_en(1'b0),
.s_aresetn(1'b0),
.s_axi_araddr(32'b0),
.s_axi_arburst(2'b0),
.s_axi_arcache(4'b0),
.s_axi_arid(4'b0),
.s_axi_arlen(8'b0),
.s_axi_arlock(2'b0),
.s_axi_arprot(3'b0),
.s_axi_arqos(4'b0),
.s_axi_arready(),
.s_axi_arregion(4'b0),
.s_axi_arsize(3'b0),
.s_axi_aruser(1'b0),
.s_axi_arvalid(1'b0),
.s_axi_awaddr(32'b0),
.s_axi_awburst(2'b0),
.s_axi_awcache(4'b0),
.s_axi_awid(4'b0),
.s_axi_awlen(8'b0),
.s_axi_awlock(2'b0),
.s_axi_awprot(3'b0),
.s_axi_awqos(4'b0),
.s_axi_awready(),
.s_axi_awregion(4'b0),
.s_axi_awsize(3'b0),
.s_axi_awuser(1'b0),
.s_axi_awvalid(1'b0),
.s_axi_bid(),
.s_axi_bready(1'b0),
.s_axi_bresp(),
.s_axi_buser(),
.s_axi_bvalid(),
.s_axi_rdata(),
.s_axi_rid(),
.s_axi_rlast(),
.s_axi_rready(1'b0),
.s_axi_rresp(),
.s_axi_ruser(),
.s_axi_rvalid(),
.s_axi_wdata(64'b0),
.s_axi_wid(4'b0),
.s_axi_wlast(1'b0),
.s_axi_wready(),
.s_axi_wstrb(8'b0),
.s_axi_wuser(1'b0),
.s_axi_wvalid(1'b0),
.s_axis_tdata(64'b0),
.s_axis_tdest(4'b0),
.s_axis_tid(8'b0),
.s_axis_tkeep(4'b0),
.s_axis_tlast(1'b0),
.s_axis_tready(),
.s_axis_tstrb(4'b0),
.s_axis_tuser(4'b0),
.s_axis_tvalid(1'b0),
.sbiterr(),
.srst(1'b0),
.underflow(),
.valid(),
.wr_ack(),
.wr_data_count(),
.wr_rst(1'b0),
.wr_rst_busy(),
.rd_rst_busy(),
.sleep(1'b0)
);
endmodule |
module axi_protocol_converter_v2_1_b2s_b_channel #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
// Width of ID signals.
// Range: >= 1.
parameter integer C_ID_WIDTH = 4
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire clk,
input wire reset,
// AXI signals
output wire [C_ID_WIDTH-1:0] s_bid,
output wire [1:0] s_bresp,
output wire s_bvalid,
input wire s_bready,
input wire [1:0] m_bresp,
input wire m_bvalid,
output wire m_bready,
// Signals to/from the axi_protocol_converter_v2_1_b2s_aw_channel modules
input wire b_push,
input wire [C_ID_WIDTH-1:0] b_awid,
input wire [7:0] b_awlen,
input wire b_resp_rdy,
output wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXI protocol responses:
localparam [1:0] LP_RESP_OKAY = 2'b00;
localparam [1:0] LP_RESP_EXOKAY = 2'b01;
localparam [1:0] LP_RESP_SLVERROR = 2'b10;
localparam [1:0] LP_RESP_DECERR = 2'b11;
// FIFO settings
localparam P_WIDTH = C_ID_WIDTH + 8;
localparam P_DEPTH = 4;
localparam P_AWIDTH = 2;
localparam P_RWIDTH = 2;
localparam P_RDEPTH = 4;
localparam P_RAWIDTH = 2;
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg bvalid_i;
wire [C_ID_WIDTH-1:0] bid_i;
wire shandshake;
reg shandshake_r;
wire mhandshake;
reg mhandshake_r;
wire b_empty;
wire bresp_full;
wire bresp_empty;
wire [7:0] b_awlen_i;
reg [7:0] bresp_cnt;
reg [1:0] s_bresp_acc;
wire [1:0] s_bresp_acc_r;
reg [1:0] s_bresp_i;
wire need_to_update_bresp;
wire bresp_push;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// assign AXI outputs
assign s_bid = bid_i;
assign s_bresp = s_bresp_acc_r;
assign s_bvalid = bvalid_i;
assign shandshake = s_bvalid & s_bready;
assign mhandshake = m_bvalid & m_bready;
always @(posedge clk) begin
if (reset | shandshake) begin
bvalid_i <= 1'b0;
end else if (~b_empty & ~shandshake_r & ~bresp_empty) begin
bvalid_i <= 1'b1;
end
end
always @(posedge clk) begin
shandshake_r <= shandshake;
mhandshake_r <= mhandshake;
end
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_WIDTH),
.C_AWIDTH (P_AWIDTH),
.C_DEPTH (P_DEPTH)
)
bid_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( b_push ) ,
.rd_en ( shandshake_r ) ,
.din ( {b_awid, b_awlen} ) ,
.dout ( {bid_i, b_awlen_i}) ,
.a_full ( ) ,
.full ( b_full ) ,
.a_empty ( ) ,
.empty ( b_empty )
);
assign m_bready = ~mhandshake_r & bresp_empty;
/////////////////////////////////////////////////////////////////////////////
// Update if more critical.
assign need_to_update_bresp = ( m_bresp > s_bresp_acc );
// Select accumultated or direct depending on setting.
always @( * ) begin
if ( need_to_update_bresp ) begin
s_bresp_i = m_bresp;
end else begin
s_bresp_i = s_bresp_acc;
end
end
/////////////////////////////////////////////////////////////////////////////
// Accumulate MI-side BRESP.
always @ (posedge clk) begin
if (reset | bresp_push ) begin
s_bresp_acc <= LP_RESP_OKAY;
end else if ( mhandshake ) begin
s_bresp_acc <= s_bresp_i;
end
end
assign bresp_push = ( mhandshake_r ) & (bresp_cnt == b_awlen_i) & ~b_empty;
always @ (posedge clk) begin
if (reset | bresp_push ) begin
bresp_cnt <= 8'h00;
end else if ( mhandshake_r ) begin
bresp_cnt <= bresp_cnt + 1'b1;
end
end
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_RWIDTH),
.C_AWIDTH (P_RAWIDTH),
.C_DEPTH (P_RDEPTH)
)
bresp_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( bresp_push ) ,
.rd_en ( shandshake_r ) ,
.din ( s_bresp_acc ) ,
.dout ( s_bresp_acc_r) ,
.a_full ( ) ,
.full ( bresp_full ) ,
.a_empty ( ) ,
.empty ( bresp_empty )
);
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module WireDelay # (
parameter Delay_g = 0,
parameter Delay_rd = 0,
parameter ERR_INSERT = "OFF"
)
(
inout A,
inout B,
input reset,
input phy_init_done
);
reg A_r;
reg B_r;
reg B_inv ;
reg line_en;
reg B_nonX;
assign A = A_r;
assign B = B_r;
always @ (*)
begin
if (B === 1'bx)
B_nonX <= $random;
else
B_nonX <= B;
end
always @(*)
begin
if((B_nonX == 'b1) || (B_nonX == 'b0))
B_inv <= #0 ~B_nonX ;
else
B_inv <= #0 'bz ;
end
always @(*) begin
if (!reset) begin
A_r <= 1'bz;
B_r <= 1'bz;
line_en <= 1'b0;
end else begin
if (line_en) begin
B_r <= 1'bz;
if ((ERR_INSERT == "ON") & (phy_init_done))
A_r <= #Delay_rd B_inv;
else
A_r <= #Delay_rd B_nonX;
end else begin
B_r <= #Delay_g A;
A_r <= 1'bz;
end
end
end
always @(A or B) begin
if (!reset) begin
line_en <= 1'b0;
end else if (A !== A_r) begin
line_en <= 1'b0;
end else if (B_r !== B) begin
line_en <= 1'b1;
end else begin
line_en <= line_en;
end
end
endmodule |
module WireDelay # (
parameter Delay_g = 0,
parameter Delay_rd = 0,
parameter ERR_INSERT = "OFF"
)
(
inout A,
inout B,
input reset,
input phy_init_done
);
reg A_r;
reg B_r;
reg B_inv ;
reg line_en;
reg B_nonX;
assign A = A_r;
assign B = B_r;
always @ (*)
begin
if (B === 1'bx)
B_nonX <= $random;
else
B_nonX <= B;
end
always @(*)
begin
if((B_nonX == 'b1) || (B_nonX == 'b0))
B_inv <= #0 ~B_nonX ;
else
B_inv <= #0 'bz ;
end
always @(*) begin
if (!reset) begin
A_r <= 1'bz;
B_r <= 1'bz;
line_en <= 1'b0;
end else begin
if (line_en) begin
B_r <= 1'bz;
if ((ERR_INSERT == "ON") & (phy_init_done))
A_r <= #Delay_rd B_inv;
else
A_r <= #Delay_rd B_nonX;
end else begin
B_r <= #Delay_g A;
A_r <= 1'bz;
end
end
end
always @(A or B) begin
if (!reset) begin
line_en <= 1'b0;
end else if (A !== A_r) begin
line_en <= 1'b0;
end else if (B_r !== B) begin
line_en <= 1'b1;
end else begin
line_en <= line_en;
end
end
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module control(clk,en,dsp_sel,an);
input clk, en;
output [1:0]dsp_sel;
output [3:0]an;
wire a,b,c,d,e,f,g,h,i,j,k,l;
assign an[3] = a;
assign an[2] = b;
assign an[1] = c;
assign an[0] = d;
assign dsp_sel[1] = e;
assign dsp_sel[0] = i;
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF3(
.Q(a), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(d), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF2(
.Q(b), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(a), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF1(
.Q(c), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(b), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF0(
.Q(d), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(c), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF7(
.Q(e), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(h), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF6(
.Q(f), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(e), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF5(
.Q(g), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(f), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF4(
.Q(h), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(g), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF11(
.Q(i), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(l), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF10(
.Q(j), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(i), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b1) // Initial value of register (1'b0 or 1'b1)
) DFF9(
.Q(k), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(j), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
FDRSE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) DFF8(
.Q(l), // Data output
.C(clk), // Clock input
.CE(en), // Clock enable input
.D(k), // Data input
.R(1'b0), // Synchronous reset input
.S(1'b0) // Synchronous set input
);
endmodule |
module fifo_1kx16 (
aclr,
clock,
data,
rdreq,
wrreq,
almost_empty,
empty,
full,
q,
usedw);
input aclr;
input clock;
input [15:0] data;
input rdreq;
input wrreq;
output almost_empty;
output empty;
output full;
output [15:0] q;
output [9:0] usedw;
endmodule |
module fifo_1kx16 (
aclr,
clock,
data,
rdreq,
wrreq,
almost_empty,
empty,
full,
q,
usedw);
input aclr;
input clock;
input [15:0] data;
input rdreq;
input wrreq;
output almost_empty;
output empty;
output full;
output [15:0] q;
output [9:0] usedw;
endmodule |
module fifo_1kx16 (
aclr,
clock,
data,
rdreq,
wrreq,
almost_empty,
empty,
full,
q,
usedw);
input aclr;
input clock;
input [15:0] data;
input rdreq;
input wrreq;
output almost_empty;
output empty;
output full;
output [15:0] q;
output [9:0] usedw;
endmodule |
module fifo_1kx16 (
aclr,
clock,
data,
rdreq,
wrreq,
almost_empty,
empty,
full,
q,
usedw);
input aclr;
input clock;
input [15:0] data;
input rdreq;
input wrreq;
output almost_empty;
output empty;
output full;
output [15:0] q;
output [9:0] usedw;
endmodule |
module fifo_4kx16_dc (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [15:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.wrempty (),
.rdfull ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 16,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule |
module fifo_4kx16_dc (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [15:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.wrempty (),
.rdfull ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 16,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule |
module fifo_4kx16_dc (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [15:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.wrempty (),
.rdfull ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 16,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule |
module fifo_4kx16_dc (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [15:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.wrempty (),
.rdfull ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 16,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated.
// 5 => SLAVE_RDY = All slave side signals and master READY are registrated.
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
parameter integer C_REG_CONFIG_AW = 0,
parameter integer C_REG_CONFIG_W = 0,
parameter integer C_REG_CONFIG_B = 0,
parameter integer C_REG_CONFIG_AR = 0,
parameter integer C_REG_CONFIG_R = 0
)
(
// System Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
wire reset;
localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0;
`include "axi_infrastructure_v1_1_header.vh"
wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload;
wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload;
wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload;
wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload;
wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload;
wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload;
wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload;
wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload;
wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload;
wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload;
assign reset = ~aresetn;
axi_infrastructure_v1_1_axi2vector #(
.C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) ,
.C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) ,
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ,
.C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ,
.C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) ,
.C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) ,
.C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) ,
.C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) ,
.C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) ,
.C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) ,
.C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) ,
.C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH )
)
axi_infrastructure_v1_1_axi2vector_0 (
.s_axi_awid ( s_axi_awid ) ,
.s_axi_awaddr ( s_axi_awaddr ) ,
.s_axi_awlen ( s_axi_awlen ) ,
.s_axi_awsize ( s_axi_awsize ) ,
.s_axi_awburst ( s_axi_awburst ) ,
.s_axi_awlock ( s_axi_awlock ) ,
.s_axi_awcache ( s_axi_awcache ) ,
.s_axi_awprot ( s_axi_awprot ) ,
.s_axi_awqos ( s_axi_awqos ) ,
.s_axi_awuser ( s_axi_awuser ) ,
.s_axi_awregion ( s_axi_awregion ) ,
.s_axi_wid ( s_axi_wid ) ,
.s_axi_wdata ( s_axi_wdata ) ,
.s_axi_wstrb ( s_axi_wstrb ) ,
.s_axi_wlast ( s_axi_wlast ) ,
.s_axi_wuser ( s_axi_wuser ) ,
.s_axi_bid ( s_axi_bid ) ,
.s_axi_bresp ( s_axi_bresp ) ,
.s_axi_buser ( s_axi_buser ) ,
.s_axi_arid ( s_axi_arid ) ,
.s_axi_araddr ( s_axi_araddr ) ,
.s_axi_arlen ( s_axi_arlen ) ,
.s_axi_arsize ( s_axi_arsize ) ,
.s_axi_arburst ( s_axi_arburst ) ,
.s_axi_arlock ( s_axi_arlock ) ,
.s_axi_arcache ( s_axi_arcache ) ,
.s_axi_arprot ( s_axi_arprot ) ,
.s_axi_arqos ( s_axi_arqos ) ,
.s_axi_aruser ( s_axi_aruser ) ,
.s_axi_arregion ( s_axi_arregion ) ,
.s_axi_rid ( s_axi_rid ) ,
.s_axi_rdata ( s_axi_rdata ) ,
.s_axi_rresp ( s_axi_rresp ) ,
.s_axi_rlast ( s_axi_rlast ) ,
.s_axi_ruser ( s_axi_ruser ) ,
.s_awpayload ( s_awpayload ) ,
.s_wpayload ( s_wpayload ) ,
.s_bpayload ( s_bpayload ) ,
.s_arpayload ( s_arpayload ) ,
.s_rpayload ( s_rpayload )
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_AW )
)
aw_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_awpayload),
.S_VALID(s_axi_awvalid),
.S_READY(s_axi_awready),
// Master side
.M_PAYLOAD_DATA(m_awpayload),
.M_VALID(m_axi_awvalid),
.M_READY(m_axi_awready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_W )
)
w_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_wpayload),
.S_VALID(s_axi_wvalid),
.S_READY(s_axi_wready),
// Master side
.M_PAYLOAD_DATA(m_wpayload),
.M_VALID(m_axi_wvalid),
.M_READY(m_axi_wready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_B )
)
b_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(m_bpayload),
.S_VALID(m_axi_bvalid),
.S_READY(m_axi_bready),
// Master side
.M_PAYLOAD_DATA(s_bpayload),
.M_VALID(s_axi_bvalid),
.M_READY(s_axi_bready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_AR )
)
ar_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_arpayload),
.S_VALID(s_axi_arvalid),
.S_READY(s_axi_arready),
// Master side
.M_PAYLOAD_DATA(m_arpayload),
.M_VALID(m_axi_arvalid),
.M_READY(m_axi_arready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_R )
)
r_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(m_rpayload),
.S_VALID(m_axi_rvalid),
.S_READY(m_axi_rready),
// Master side
.M_PAYLOAD_DATA(s_rpayload),
.M_VALID(s_axi_rvalid),
.M_READY(s_axi_rready)
);
axi_infrastructure_v1_1_vector2axi #(
.C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) ,
.C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) ,
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ,
.C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ,
.C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) ,
.C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) ,
.C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) ,
.C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) ,
.C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) ,
.C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) ,
.C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) ,
.C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH )
)
axi_infrastructure_v1_1_vector2axi_0 (
.m_awpayload ( m_awpayload ) ,
.m_wpayload ( m_wpayload ) ,
.m_bpayload ( m_bpayload ) ,
.m_arpayload ( m_arpayload ) ,
.m_rpayload ( m_rpayload ) ,
.m_axi_awid ( m_axi_awid ) ,
.m_axi_awaddr ( m_axi_awaddr ) ,
.m_axi_awlen ( m_axi_awlen ) ,
.m_axi_awsize ( m_axi_awsize ) ,
.m_axi_awburst ( m_axi_awburst ) ,
.m_axi_awlock ( m_axi_awlock ) ,
.m_axi_awcache ( m_axi_awcache ) ,
.m_axi_awprot ( m_axi_awprot ) ,
.m_axi_awqos ( m_axi_awqos ) ,
.m_axi_awuser ( m_axi_awuser ) ,
.m_axi_awregion ( m_axi_awregion ) ,
.m_axi_wid ( m_axi_wid ) ,
.m_axi_wdata ( m_axi_wdata ) ,
.m_axi_wstrb ( m_axi_wstrb ) ,
.m_axi_wlast ( m_axi_wlast ) ,
.m_axi_wuser ( m_axi_wuser ) ,
.m_axi_bid ( m_axi_bid ) ,
.m_axi_bresp ( m_axi_bresp ) ,
.m_axi_buser ( m_axi_buser ) ,
.m_axi_arid ( m_axi_arid ) ,
.m_axi_araddr ( m_axi_araddr ) ,
.m_axi_arlen ( m_axi_arlen ) ,
.m_axi_arsize ( m_axi_arsize ) ,
.m_axi_arburst ( m_axi_arburst ) ,
.m_axi_arlock ( m_axi_arlock ) ,
.m_axi_arcache ( m_axi_arcache ) ,
.m_axi_arprot ( m_axi_arprot ) ,
.m_axi_arqos ( m_axi_arqos ) ,
.m_axi_aruser ( m_axi_aruser ) ,
.m_axi_arregion ( m_axi_arregion ) ,
.m_axi_rid ( m_axi_rid ) ,
.m_axi_rdata ( m_axi_rdata ) ,
.m_axi_rresp ( m_axi_rresp ) ,
.m_axi_rlast ( m_axi_rlast ) ,
.m_axi_ruser ( m_axi_ruser )
);
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated.
// 5 => SLAVE_RDY = All slave side signals and master READY are registrated.
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
parameter integer C_REG_CONFIG_AW = 0,
parameter integer C_REG_CONFIG_W = 0,
parameter integer C_REG_CONFIG_B = 0,
parameter integer C_REG_CONFIG_AR = 0,
parameter integer C_REG_CONFIG_R = 0
)
(
// System Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
wire reset;
localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0;
`include "axi_infrastructure_v1_1_header.vh"
wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload;
wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload;
wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload;
wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload;
wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload;
wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload;
wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload;
wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload;
wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload;
wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload;
assign reset = ~aresetn;
axi_infrastructure_v1_1_axi2vector #(
.C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) ,
.C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) ,
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ,
.C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ,
.C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) ,
.C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) ,
.C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) ,
.C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) ,
.C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) ,
.C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) ,
.C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) ,
.C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH )
)
axi_infrastructure_v1_1_axi2vector_0 (
.s_axi_awid ( s_axi_awid ) ,
.s_axi_awaddr ( s_axi_awaddr ) ,
.s_axi_awlen ( s_axi_awlen ) ,
.s_axi_awsize ( s_axi_awsize ) ,
.s_axi_awburst ( s_axi_awburst ) ,
.s_axi_awlock ( s_axi_awlock ) ,
.s_axi_awcache ( s_axi_awcache ) ,
.s_axi_awprot ( s_axi_awprot ) ,
.s_axi_awqos ( s_axi_awqos ) ,
.s_axi_awuser ( s_axi_awuser ) ,
.s_axi_awregion ( s_axi_awregion ) ,
.s_axi_wid ( s_axi_wid ) ,
.s_axi_wdata ( s_axi_wdata ) ,
.s_axi_wstrb ( s_axi_wstrb ) ,
.s_axi_wlast ( s_axi_wlast ) ,
.s_axi_wuser ( s_axi_wuser ) ,
.s_axi_bid ( s_axi_bid ) ,
.s_axi_bresp ( s_axi_bresp ) ,
.s_axi_buser ( s_axi_buser ) ,
.s_axi_arid ( s_axi_arid ) ,
.s_axi_araddr ( s_axi_araddr ) ,
.s_axi_arlen ( s_axi_arlen ) ,
.s_axi_arsize ( s_axi_arsize ) ,
.s_axi_arburst ( s_axi_arburst ) ,
.s_axi_arlock ( s_axi_arlock ) ,
.s_axi_arcache ( s_axi_arcache ) ,
.s_axi_arprot ( s_axi_arprot ) ,
.s_axi_arqos ( s_axi_arqos ) ,
.s_axi_aruser ( s_axi_aruser ) ,
.s_axi_arregion ( s_axi_arregion ) ,
.s_axi_rid ( s_axi_rid ) ,
.s_axi_rdata ( s_axi_rdata ) ,
.s_axi_rresp ( s_axi_rresp ) ,
.s_axi_rlast ( s_axi_rlast ) ,
.s_axi_ruser ( s_axi_ruser ) ,
.s_awpayload ( s_awpayload ) ,
.s_wpayload ( s_wpayload ) ,
.s_bpayload ( s_bpayload ) ,
.s_arpayload ( s_arpayload ) ,
.s_rpayload ( s_rpayload )
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_AW )
)
aw_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_awpayload),
.S_VALID(s_axi_awvalid),
.S_READY(s_axi_awready),
// Master side
.M_PAYLOAD_DATA(m_awpayload),
.M_VALID(m_axi_awvalid),
.M_READY(m_axi_awready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_W )
)
w_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_wpayload),
.S_VALID(s_axi_wvalid),
.S_READY(s_axi_wready),
// Master side
.M_PAYLOAD_DATA(m_wpayload),
.M_VALID(m_axi_wvalid),
.M_READY(m_axi_wready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_B )
)
b_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(m_bpayload),
.S_VALID(m_axi_bvalid),
.S_READY(m_axi_bready),
// Master side
.M_PAYLOAD_DATA(s_bpayload),
.M_VALID(s_axi_bvalid),
.M_READY(s_axi_bready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_AR )
)
ar_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_arpayload),
.S_VALID(s_axi_arvalid),
.S_READY(s_axi_arready),
// Master side
.M_PAYLOAD_DATA(m_arpayload),
.M_VALID(m_axi_arvalid),
.M_READY(m_axi_arready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_R )
)
r_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(m_rpayload),
.S_VALID(m_axi_rvalid),
.S_READY(m_axi_rready),
// Master side
.M_PAYLOAD_DATA(s_rpayload),
.M_VALID(s_axi_rvalid),
.M_READY(s_axi_rready)
);
axi_infrastructure_v1_1_vector2axi #(
.C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) ,
.C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) ,
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ,
.C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ,
.C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) ,
.C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) ,
.C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) ,
.C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) ,
.C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) ,
.C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) ,
.C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) ,
.C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH )
)
axi_infrastructure_v1_1_vector2axi_0 (
.m_awpayload ( m_awpayload ) ,
.m_wpayload ( m_wpayload ) ,
.m_bpayload ( m_bpayload ) ,
.m_arpayload ( m_arpayload ) ,
.m_rpayload ( m_rpayload ) ,
.m_axi_awid ( m_axi_awid ) ,
.m_axi_awaddr ( m_axi_awaddr ) ,
.m_axi_awlen ( m_axi_awlen ) ,
.m_axi_awsize ( m_axi_awsize ) ,
.m_axi_awburst ( m_axi_awburst ) ,
.m_axi_awlock ( m_axi_awlock ) ,
.m_axi_awcache ( m_axi_awcache ) ,
.m_axi_awprot ( m_axi_awprot ) ,
.m_axi_awqos ( m_axi_awqos ) ,
.m_axi_awuser ( m_axi_awuser ) ,
.m_axi_awregion ( m_axi_awregion ) ,
.m_axi_wid ( m_axi_wid ) ,
.m_axi_wdata ( m_axi_wdata ) ,
.m_axi_wstrb ( m_axi_wstrb ) ,
.m_axi_wlast ( m_axi_wlast ) ,
.m_axi_wuser ( m_axi_wuser ) ,
.m_axi_bid ( m_axi_bid ) ,
.m_axi_bresp ( m_axi_bresp ) ,
.m_axi_buser ( m_axi_buser ) ,
.m_axi_arid ( m_axi_arid ) ,
.m_axi_araddr ( m_axi_araddr ) ,
.m_axi_arlen ( m_axi_arlen ) ,
.m_axi_arsize ( m_axi_arsize ) ,
.m_axi_arburst ( m_axi_arburst ) ,
.m_axi_arlock ( m_axi_arlock ) ,
.m_axi_arcache ( m_axi_arcache ) ,
.m_axi_arprot ( m_axi_arprot ) ,
.m_axi_arqos ( m_axi_arqos ) ,
.m_axi_aruser ( m_axi_aruser ) ,
.m_axi_arregion ( m_axi_arregion ) ,
.m_axi_rid ( m_axi_rid ) ,
.m_axi_rdata ( m_axi_rdata ) ,
.m_axi_rresp ( m_axi_rresp ) ,
.m_axi_rlast ( m_axi_rlast ) ,
.m_axi_ruser ( m_axi_ruser )
);
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated.
// 5 => SLAVE_RDY = All slave side signals and master READY are registrated.
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
parameter integer C_REG_CONFIG_AW = 0,
parameter integer C_REG_CONFIG_W = 0,
parameter integer C_REG_CONFIG_B = 0,
parameter integer C_REG_CONFIG_AR = 0,
parameter integer C_REG_CONFIG_R = 0
)
(
// System Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
wire reset;
localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0;
`include "axi_infrastructure_v1_1_header.vh"
wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload;
wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload;
wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload;
wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload;
wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload;
wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload;
wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload;
wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload;
wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload;
wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload;
assign reset = ~aresetn;
axi_infrastructure_v1_1_axi2vector #(
.C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) ,
.C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) ,
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ,
.C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ,
.C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) ,
.C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) ,
.C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) ,
.C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) ,
.C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) ,
.C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) ,
.C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) ,
.C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH )
)
axi_infrastructure_v1_1_axi2vector_0 (
.s_axi_awid ( s_axi_awid ) ,
.s_axi_awaddr ( s_axi_awaddr ) ,
.s_axi_awlen ( s_axi_awlen ) ,
.s_axi_awsize ( s_axi_awsize ) ,
.s_axi_awburst ( s_axi_awburst ) ,
.s_axi_awlock ( s_axi_awlock ) ,
.s_axi_awcache ( s_axi_awcache ) ,
.s_axi_awprot ( s_axi_awprot ) ,
.s_axi_awqos ( s_axi_awqos ) ,
.s_axi_awuser ( s_axi_awuser ) ,
.s_axi_awregion ( s_axi_awregion ) ,
.s_axi_wid ( s_axi_wid ) ,
.s_axi_wdata ( s_axi_wdata ) ,
.s_axi_wstrb ( s_axi_wstrb ) ,
.s_axi_wlast ( s_axi_wlast ) ,
.s_axi_wuser ( s_axi_wuser ) ,
.s_axi_bid ( s_axi_bid ) ,
.s_axi_bresp ( s_axi_bresp ) ,
.s_axi_buser ( s_axi_buser ) ,
.s_axi_arid ( s_axi_arid ) ,
.s_axi_araddr ( s_axi_araddr ) ,
.s_axi_arlen ( s_axi_arlen ) ,
.s_axi_arsize ( s_axi_arsize ) ,
.s_axi_arburst ( s_axi_arburst ) ,
.s_axi_arlock ( s_axi_arlock ) ,
.s_axi_arcache ( s_axi_arcache ) ,
.s_axi_arprot ( s_axi_arprot ) ,
.s_axi_arqos ( s_axi_arqos ) ,
.s_axi_aruser ( s_axi_aruser ) ,
.s_axi_arregion ( s_axi_arregion ) ,
.s_axi_rid ( s_axi_rid ) ,
.s_axi_rdata ( s_axi_rdata ) ,
.s_axi_rresp ( s_axi_rresp ) ,
.s_axi_rlast ( s_axi_rlast ) ,
.s_axi_ruser ( s_axi_ruser ) ,
.s_awpayload ( s_awpayload ) ,
.s_wpayload ( s_wpayload ) ,
.s_bpayload ( s_bpayload ) ,
.s_arpayload ( s_arpayload ) ,
.s_rpayload ( s_rpayload )
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_AW )
)
aw_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_awpayload),
.S_VALID(s_axi_awvalid),
.S_READY(s_axi_awready),
// Master side
.M_PAYLOAD_DATA(m_awpayload),
.M_VALID(m_axi_awvalid),
.M_READY(m_axi_awready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_W )
)
w_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_wpayload),
.S_VALID(s_axi_wvalid),
.S_READY(s_axi_wready),
// Master side
.M_PAYLOAD_DATA(m_wpayload),
.M_VALID(m_axi_wvalid),
.M_READY(m_axi_wready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_B )
)
b_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(m_bpayload),
.S_VALID(m_axi_bvalid),
.S_READY(m_axi_bready),
// Master side
.M_PAYLOAD_DATA(s_bpayload),
.M_VALID(s_axi_bvalid),
.M_READY(s_axi_bready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_AR )
)
ar_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_arpayload),
.S_VALID(s_axi_arvalid),
.S_READY(s_axi_arready),
// Master side
.M_PAYLOAD_DATA(m_arpayload),
.M_VALID(m_axi_arvalid),
.M_READY(m_axi_arready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_R )
)
r_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(m_rpayload),
.S_VALID(m_axi_rvalid),
.S_READY(m_axi_rready),
// Master side
.M_PAYLOAD_DATA(s_rpayload),
.M_VALID(s_axi_rvalid),
.M_READY(s_axi_rready)
);
axi_infrastructure_v1_1_vector2axi #(
.C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) ,
.C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) ,
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ,
.C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ,
.C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) ,
.C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) ,
.C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) ,
.C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) ,
.C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) ,
.C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) ,
.C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) ,
.C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH )
)
axi_infrastructure_v1_1_vector2axi_0 (
.m_awpayload ( m_awpayload ) ,
.m_wpayload ( m_wpayload ) ,
.m_bpayload ( m_bpayload ) ,
.m_arpayload ( m_arpayload ) ,
.m_rpayload ( m_rpayload ) ,
.m_axi_awid ( m_axi_awid ) ,
.m_axi_awaddr ( m_axi_awaddr ) ,
.m_axi_awlen ( m_axi_awlen ) ,
.m_axi_awsize ( m_axi_awsize ) ,
.m_axi_awburst ( m_axi_awburst ) ,
.m_axi_awlock ( m_axi_awlock ) ,
.m_axi_awcache ( m_axi_awcache ) ,
.m_axi_awprot ( m_axi_awprot ) ,
.m_axi_awqos ( m_axi_awqos ) ,
.m_axi_awuser ( m_axi_awuser ) ,
.m_axi_awregion ( m_axi_awregion ) ,
.m_axi_wid ( m_axi_wid ) ,
.m_axi_wdata ( m_axi_wdata ) ,
.m_axi_wstrb ( m_axi_wstrb ) ,
.m_axi_wlast ( m_axi_wlast ) ,
.m_axi_wuser ( m_axi_wuser ) ,
.m_axi_bid ( m_axi_bid ) ,
.m_axi_bresp ( m_axi_bresp ) ,
.m_axi_buser ( m_axi_buser ) ,
.m_axi_arid ( m_axi_arid ) ,
.m_axi_araddr ( m_axi_araddr ) ,
.m_axi_arlen ( m_axi_arlen ) ,
.m_axi_arsize ( m_axi_arsize ) ,
.m_axi_arburst ( m_axi_arburst ) ,
.m_axi_arlock ( m_axi_arlock ) ,
.m_axi_arcache ( m_axi_arcache ) ,
.m_axi_arprot ( m_axi_arprot ) ,
.m_axi_arqos ( m_axi_arqos ) ,
.m_axi_aruser ( m_axi_aruser ) ,
.m_axi_arregion ( m_axi_arregion ) ,
.m_axi_rid ( m_axi_rid ) ,
.m_axi_rdata ( m_axi_rdata ) ,
.m_axi_rresp ( m_axi_rresp ) ,
.m_axi_rlast ( m_axi_rlast ) ,
.m_axi_ruser ( m_axi_ruser )
);
endmodule |
module.
// 1 => FWD_REV = Both FWD and REV (fully-registered)
// 2 => FWD = The master VALID and payload signals are registrated.
// 3 => REV = The slave ready signal is registrated
// 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated.
// 5 => SLAVE_RDY = All slave side signals and master READY are registrated.
// 6 => INPUTS = Slave and Master side inputs are registrated.
// 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
parameter integer C_REG_CONFIG_AW = 0,
parameter integer C_REG_CONFIG_W = 0,
parameter integer C_REG_CONFIG_B = 0,
parameter integer C_REG_CONFIG_AR = 0,
parameter integer C_REG_CONFIG_R = 0
)
(
// System Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
wire reset;
localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0;
`include "axi_infrastructure_v1_1_header.vh"
wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload;
wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload;
wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload;
wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload;
wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload;
wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload;
wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload;
wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload;
wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload;
wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload;
assign reset = ~aresetn;
axi_infrastructure_v1_1_axi2vector #(
.C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) ,
.C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) ,
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ,
.C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ,
.C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) ,
.C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) ,
.C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) ,
.C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) ,
.C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) ,
.C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) ,
.C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) ,
.C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH )
)
axi_infrastructure_v1_1_axi2vector_0 (
.s_axi_awid ( s_axi_awid ) ,
.s_axi_awaddr ( s_axi_awaddr ) ,
.s_axi_awlen ( s_axi_awlen ) ,
.s_axi_awsize ( s_axi_awsize ) ,
.s_axi_awburst ( s_axi_awburst ) ,
.s_axi_awlock ( s_axi_awlock ) ,
.s_axi_awcache ( s_axi_awcache ) ,
.s_axi_awprot ( s_axi_awprot ) ,
.s_axi_awqos ( s_axi_awqos ) ,
.s_axi_awuser ( s_axi_awuser ) ,
.s_axi_awregion ( s_axi_awregion ) ,
.s_axi_wid ( s_axi_wid ) ,
.s_axi_wdata ( s_axi_wdata ) ,
.s_axi_wstrb ( s_axi_wstrb ) ,
.s_axi_wlast ( s_axi_wlast ) ,
.s_axi_wuser ( s_axi_wuser ) ,
.s_axi_bid ( s_axi_bid ) ,
.s_axi_bresp ( s_axi_bresp ) ,
.s_axi_buser ( s_axi_buser ) ,
.s_axi_arid ( s_axi_arid ) ,
.s_axi_araddr ( s_axi_araddr ) ,
.s_axi_arlen ( s_axi_arlen ) ,
.s_axi_arsize ( s_axi_arsize ) ,
.s_axi_arburst ( s_axi_arburst ) ,
.s_axi_arlock ( s_axi_arlock ) ,
.s_axi_arcache ( s_axi_arcache ) ,
.s_axi_arprot ( s_axi_arprot ) ,
.s_axi_arqos ( s_axi_arqos ) ,
.s_axi_aruser ( s_axi_aruser ) ,
.s_axi_arregion ( s_axi_arregion ) ,
.s_axi_rid ( s_axi_rid ) ,
.s_axi_rdata ( s_axi_rdata ) ,
.s_axi_rresp ( s_axi_rresp ) ,
.s_axi_rlast ( s_axi_rlast ) ,
.s_axi_ruser ( s_axi_ruser ) ,
.s_awpayload ( s_awpayload ) ,
.s_wpayload ( s_wpayload ) ,
.s_bpayload ( s_bpayload ) ,
.s_arpayload ( s_arpayload ) ,
.s_rpayload ( s_rpayload )
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_AW )
)
aw_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_awpayload),
.S_VALID(s_axi_awvalid),
.S_READY(s_axi_awready),
// Master side
.M_PAYLOAD_DATA(m_awpayload),
.M_VALID(m_axi_awvalid),
.M_READY(m_axi_awready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_W )
)
w_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_wpayload),
.S_VALID(s_axi_wvalid),
.S_READY(s_axi_wready),
// Master side
.M_PAYLOAD_DATA(m_wpayload),
.M_VALID(m_axi_wvalid),
.M_READY(m_axi_wready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_B )
)
b_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(m_bpayload),
.S_VALID(m_axi_bvalid),
.S_READY(m_axi_bready),
// Master side
.M_PAYLOAD_DATA(s_bpayload),
.M_VALID(s_axi_bvalid),
.M_READY(s_axi_bready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_AR )
)
ar_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(s_arpayload),
.S_VALID(s_axi_arvalid),
.S_READY(s_axi_arready),
// Master side
.M_PAYLOAD_DATA(m_arpayload),
.M_VALID(m_axi_arvalid),
.M_READY(m_axi_arready)
);
axi_register_slice_v2_1_axic_register_slice # (
.C_FAMILY ( C_FAMILY ) ,
.C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ,
.C_REG_CONFIG ( C_REG_CONFIG_R )
)
r_pipe (
// System Signals
.ACLK(aclk),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(m_rpayload),
.S_VALID(m_axi_rvalid),
.S_READY(m_axi_rready),
// Master side
.M_PAYLOAD_DATA(s_rpayload),
.M_VALID(s_axi_rvalid),
.M_READY(s_axi_rready)
);
axi_infrastructure_v1_1_vector2axi #(
.C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) ,
.C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) ,
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ,
.C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ,
.C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) ,
.C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) ,
.C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) ,
.C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) ,
.C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) ,
.C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) ,
.C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) ,
.C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) ,
.C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) ,
.C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) ,
.C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) ,
.C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH )
)
axi_infrastructure_v1_1_vector2axi_0 (
.m_awpayload ( m_awpayload ) ,
.m_wpayload ( m_wpayload ) ,
.m_bpayload ( m_bpayload ) ,
.m_arpayload ( m_arpayload ) ,
.m_rpayload ( m_rpayload ) ,
.m_axi_awid ( m_axi_awid ) ,
.m_axi_awaddr ( m_axi_awaddr ) ,
.m_axi_awlen ( m_axi_awlen ) ,
.m_axi_awsize ( m_axi_awsize ) ,
.m_axi_awburst ( m_axi_awburst ) ,
.m_axi_awlock ( m_axi_awlock ) ,
.m_axi_awcache ( m_axi_awcache ) ,
.m_axi_awprot ( m_axi_awprot ) ,
.m_axi_awqos ( m_axi_awqos ) ,
.m_axi_awuser ( m_axi_awuser ) ,
.m_axi_awregion ( m_axi_awregion ) ,
.m_axi_wid ( m_axi_wid ) ,
.m_axi_wdata ( m_axi_wdata ) ,
.m_axi_wstrb ( m_axi_wstrb ) ,
.m_axi_wlast ( m_axi_wlast ) ,
.m_axi_wuser ( m_axi_wuser ) ,
.m_axi_bid ( m_axi_bid ) ,
.m_axi_bresp ( m_axi_bresp ) ,
.m_axi_buser ( m_axi_buser ) ,
.m_axi_arid ( m_axi_arid ) ,
.m_axi_araddr ( m_axi_araddr ) ,
.m_axi_arlen ( m_axi_arlen ) ,
.m_axi_arsize ( m_axi_arsize ) ,
.m_axi_arburst ( m_axi_arburst ) ,
.m_axi_arlock ( m_axi_arlock ) ,
.m_axi_arcache ( m_axi_arcache ) ,
.m_axi_arprot ( m_axi_arprot ) ,
.m_axi_arqos ( m_axi_arqos ) ,
.m_axi_aruser ( m_axi_aruser ) ,
.m_axi_arregion ( m_axi_arregion ) ,
.m_axi_rid ( m_axi_rid ) ,
.m_axi_rdata ( m_axi_rdata ) ,
.m_axi_rresp ( m_axi_rresp ) ,
.m_axi_rlast ( m_axi_rlast ) ,
.m_axi_ruser ( m_axi_ruser )
);
endmodule |
module axi_infrastructure_v1_1_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module ps2_mouse (
input clk, // Clock Input
input reset, // Reset Input
inout ps2_clk, // PS2 Clock, Bidirectional
inout ps2_dat, // PS2 Data, Bidirectional
input [7:0] the_command, // Command to send to mouse
input send_command, // Signal to send
output command_was_sent, // Signal command finished sending
output error_communication_timed_out,
output [7:0] received_data, // Received data
output received_data_en, // If 1 - new data has been received
output start_receiving_data,
output wait_for_incoming_data
);
// --------------------------------------------------------------------
// Internal wires and registers Declarations
// --------------------------------------------------------------------
wire ps2_clk_posedge; // Internal Wires
wire ps2_clk_negedge;
reg [7:0] idle_counter; // Internal Registers
reg ps2_clk_reg;
reg ps2_data_reg;
reg last_ps2_clk;
reg [2:0] ns_ps2_transceiver; // State Machine Registers
reg [2:0] s_ps2_transceiver;
// --------------------------------------------------------------------
// Constant Declarations
// --------------------------------------------------------------------
localparam PS2_STATE_0_IDLE = 3'h0, // states
PS2_STATE_1_DATA_IN = 3'h1,
PS2_STATE_2_COMMAND_OUT = 3'h2,
PS2_STATE_3_END_TRANSFER = 3'h3,
PS2_STATE_4_END_DELAYED = 3'h4;
// --------------------------------------------------------------------
// Finite State Machine(s)
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE;
else s_ps2_transceiver <= ns_ps2_transceiver;
end
always @(*) begin
ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults
case (s_ps2_transceiver)
PS2_STATE_0_IDLE:
begin
if((idle_counter == 8'hFF) && (send_command == 1'b1))
ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
else ns_ps2_transceiver = PS2_STATE_0_IDLE;
end
PS2_STATE_1_DATA_IN:
begin
// if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1))
if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_1_DATA_IN;
end
PS2_STATE_2_COMMAND_OUT:
begin
if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1))
ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT;
end
PS2_STATE_3_END_TRANSFER:
begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1))
ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
PS2_STATE_4_END_DELAYED:
begin
if(received_data_en == 1'b1) begin
if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE;
else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER;
end
else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED;
end
default:
ns_ps2_transceiver = PS2_STATE_0_IDLE;
endcase
end
// --------------------------------------------------------------------
// Sequential logic
// --------------------------------------------------------------------
always @(posedge clk) begin
if(reset == 1'b1) begin
last_ps2_clk <= 1'b1;
ps2_clk_reg <= 1'b1;
ps2_data_reg <= 1'b1;
end
else begin
last_ps2_clk <= ps2_clk_reg;
ps2_clk_reg <= ps2_clk;
ps2_data_reg <= ps2_dat;
end
end
always @(posedge clk) begin
if(reset == 1'b1) idle_counter <= 6'h00;
else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF))
idle_counter <= idle_counter + 6'h01;
else if (s_ps2_transceiver != PS2_STATE_0_IDLE)
idle_counter <= 6'h00;
end
// --------------------------------------------------------------------
// Combinational logic
// --------------------------------------------------------------------
assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0;
assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0;
assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN);
assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER);
// --------------------------------------------------------------------
// Internal Modules
// --------------------------------------------------------------------
ps2_mouse_cmdout mouse_cmdout (
.clk (clk), // Inputs
.reset (reset),
.the_command (the_command),
.send_command (send_command),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_clk (ps2_clk), // Bidirectionals
.ps2_dat (ps2_dat),
.command_was_sent (command_was_sent), // Outputs
.error_communication_timed_out (error_communication_timed_out)
);
ps2_mouse_datain mouse_datain (
.clk (clk), // Inputs
.reset (reset),
.wait_for_incoming_data (wait_for_incoming_data),
.start_receiving_data (start_receiving_data),
.ps2_clk_posedge (ps2_clk_posedge),
.ps2_clk_negedge (ps2_clk_negedge),
.ps2_data (ps2_data_reg),
.received_data (received_data), // Outputs
.received_data_en (received_data_en)
);
endmodule |
module LZD#(parameter SWR=26, parameter EWR=5)(
//#(parameter SWR=55, parameter EWR=6)(
input wire clk,
input wire rst,
input wire load_i,
input wire [SWR-1:0] Add_subt_result_i,
/////////////////////////////////////////////7
output wire [EWR-1:0] Shift_Value_o
);
wire [EWR-1:0] Codec_to_Reg;
generate
case (SWR)
26:begin
Priority_Codec_32 Codec_32(
.Data_Dec_i(Add_subt_result_i),
.Data_Bin_o(Codec_to_Reg)
);
end
55:begin
Priority_Codec_64 Codec_64(
.Data_Dec_i(Add_subt_result_i),
.Data_Bin_o(Codec_to_Reg)
);
end
endcase
endgenerate
RegisterAdd #(.W(EWR)) Output_Reg(
.clk(clk),
.rst(rst),
.load(load_i),
.D(Codec_to_Reg),
.Q(Shift_Value_o)
);
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module sync_signal #(
parameter WIDTH=1, // width of the input and output signals
parameter N=2 // depth of synchronizer
)(
input wire clk,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [WIDTH-1:0] sync_reg[N-1:0];
/*
* The synchronized output is the last register in the pipeline.
*/
assign out = sync_reg[N-1];
integer k;
always @(posedge clk) begin
sync_reg[0] <= in;
for (k = 1; k < N; k = k + 1) begin
sync_reg[k] <= sync_reg[k-1];
end
end
endmodule |
module wdt(clk, ena, cnt, out);
input clk, ena, cnt;
output out;
reg [6:0] timer;
wire timer_top = (timer == 7'd127);
reg internal_enable;
wire out = internal_enable && timer_top;
always @(posedge clk) begin
if(ena) begin
internal_enable <= 1;
timer <= 0;
end else if(cnt && !timer_top) timer <= timer + 7'd1;
end
endmodule |
module wdt(clk, ena, cnt, out);
input clk, ena, cnt;
output out;
reg [6:0] timer;
wire timer_top = (timer == 7'd127);
reg internal_enable;
wire out = internal_enable && timer_top;
always @(posedge clk) begin
if(ena) begin
internal_enable <= 1;
timer <= 0;
end else if(cnt && !timer_top) timer <= timer + 7'd1;
end
endmodule |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.