module_content
stringlengths
18
1.05M
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; wire [9:0] sub_wire0; wire sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire sub_wire4; wire [9:0] usedw = sub_wire0[9:0]; wire empty = sub_wire1; wire almost_empty = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire full = sub_wire4; scfifo scfifo_component ( .rdreq (rdreq), .aclr (aclr), .clock (clock), .wrreq (wrreq), .data (data), .usedw (sub_wire0), .empty (sub_wire1), .almost_empty (sub_wire2), .q (sub_wire3), .full (sub_wire4) // synopsys translate_off , .sclr (), .almost_full () // synopsys translate_on ); defparam scfifo_component.add_ram_output_register = "OFF", scfifo_component.almost_empty_value = 504, scfifo_component.intended_device_family = "Cyclone", scfifo_component.lpm_hint = "RAM_BLOCK_TYPE=M4K", scfifo_component.lpm_numwords = 1024, scfifo_component.lpm_showahead = "OFF", scfifo_component.lpm_type = "scfifo", scfifo_component.lpm_width = 16, scfifo_component.lpm_widthu = 10, scfifo_component.overflow_checking = "ON", scfifo_component.underflow_checking = "ON", scfifo_component.use_eab = "ON"; endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; wire [9:0] sub_wire0; wire sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire sub_wire4; wire [9:0] usedw = sub_wire0[9:0]; wire empty = sub_wire1; wire almost_empty = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire full = sub_wire4; scfifo scfifo_component ( .rdreq (rdreq), .aclr (aclr), .clock (clock), .wrreq (wrreq), .data (data), .usedw (sub_wire0), .empty (sub_wire1), .almost_empty (sub_wire2), .q (sub_wire3), .full (sub_wire4) // synopsys translate_off , .sclr (), .almost_full () // synopsys translate_on ); defparam scfifo_component.add_ram_output_register = "OFF", scfifo_component.almost_empty_value = 504, scfifo_component.intended_device_family = "Cyclone", scfifo_component.lpm_hint = "RAM_BLOCK_TYPE=M4K", scfifo_component.lpm_numwords = 1024, scfifo_component.lpm_showahead = "OFF", scfifo_component.lpm_type = "scfifo", scfifo_component.lpm_width = 16, scfifo_component.lpm_widthu = 10, scfifo_component.overflow_checking = "ON", scfifo_component.underflow_checking = "ON", scfifo_component.use_eab = "ON"; endmodule
module master_control_multi ( input master_clk, input usbclk, input wire [6:0] serial_addr, input wire [31:0] serial_data, input wire serial_strobe, input wire rx_slave_sync, output tx_bus_reset, output rx_bus_reset, output wire tx_dsp_reset, output wire rx_dsp_reset, output wire enable_tx, output wire enable_rx, output wire sync_rx, output wire [7:0] interp_rate, output wire [7:0] decim_rate, output tx_sample_strobe, output strobe_interp, output rx_sample_strobe, output strobe_decim, input tx_empty, input wire [15:0] debug_0,input wire [15:0] debug_1,input wire [15:0] debug_2,input wire [15:0] debug_3, output wire [15:0] reg_0, output wire [15:0] reg_1, output wire [15:0] reg_2, output wire [15:0] reg_3 ); wire [15:0] reg_1_std; master_control master_control_standard ( .master_clk(master_clk),.usbclk(usbclk), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe), .tx_bus_reset(tx_bus_reset),.rx_bus_reset(rx_bus_reset), .tx_dsp_reset(tx_dsp_reset),.rx_dsp_reset(rx_dsp_reset), .enable_tx(enable_tx),.enable_rx(enable_rx), .interp_rate(interp_rate),.decim_rate(decim_rate), .tx_sample_strobe(tx_sample_strobe),.strobe_interp(strobe_interp), .rx_sample_strobe(rx_sample_strobe),.strobe_decim(strobe_decim), .tx_empty(tx_empty), .debug_0(debug_0),.debug_1(debug_1), .debug_2(debug_2),.debug_3(debug_3), .reg_0(reg_0),.reg_1(reg_1_std),.reg_2(reg_2),.reg_3(reg_3) ); // FIXME need a separate reset for all control settings // Master/slave Controls assignments wire [7:0] rx_master_slave_controls; setting_reg_masked #(`FR_RX_MASTER_SLAVE) sr_rx_mstr_slv_ctrl(.clock(master_clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(rx_master_slave_controls)); assign sync_rx = rx_master_slave_controls[`bitnoFR_RX_SYNC] | (rx_master_slave_controls[`bitnoFR_RX_SYNC_SLAVE] & rx_slave_sync); //sync if we are told by master_control or if we get a hardware slave sync //TODO There can be a one sample difference between master and slave sync. // Maybe use a register for sync_rx which uses the (neg or pos) edge of master_clock and/or rx_slave_sync to trigger // Or even use a seperate sync_rx_out and sync_rx_internal (which lags behind) //TODO make output pin not hardwired assign reg_1 ={(rx_master_slave_controls[`bitnoFR_RX_SYNC_MASTER])? sync_rx:reg_1_std[15],reg_1_std[14:0]}; endmodule
module master_control_multi ( input master_clk, input usbclk, input wire [6:0] serial_addr, input wire [31:0] serial_data, input wire serial_strobe, input wire rx_slave_sync, output tx_bus_reset, output rx_bus_reset, output wire tx_dsp_reset, output wire rx_dsp_reset, output wire enable_tx, output wire enable_rx, output wire sync_rx, output wire [7:0] interp_rate, output wire [7:0] decim_rate, output tx_sample_strobe, output strobe_interp, output rx_sample_strobe, output strobe_decim, input tx_empty, input wire [15:0] debug_0,input wire [15:0] debug_1,input wire [15:0] debug_2,input wire [15:0] debug_3, output wire [15:0] reg_0, output wire [15:0] reg_1, output wire [15:0] reg_2, output wire [15:0] reg_3 ); wire [15:0] reg_1_std; master_control master_control_standard ( .master_clk(master_clk),.usbclk(usbclk), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe), .tx_bus_reset(tx_bus_reset),.rx_bus_reset(rx_bus_reset), .tx_dsp_reset(tx_dsp_reset),.rx_dsp_reset(rx_dsp_reset), .enable_tx(enable_tx),.enable_rx(enable_rx), .interp_rate(interp_rate),.decim_rate(decim_rate), .tx_sample_strobe(tx_sample_strobe),.strobe_interp(strobe_interp), .rx_sample_strobe(rx_sample_strobe),.strobe_decim(strobe_decim), .tx_empty(tx_empty), .debug_0(debug_0),.debug_1(debug_1), .debug_2(debug_2),.debug_3(debug_3), .reg_0(reg_0),.reg_1(reg_1_std),.reg_2(reg_2),.reg_3(reg_3) ); // FIXME need a separate reset for all control settings // Master/slave Controls assignments wire [7:0] rx_master_slave_controls; setting_reg_masked #(`FR_RX_MASTER_SLAVE) sr_rx_mstr_slv_ctrl(.clock(master_clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(rx_master_slave_controls)); assign sync_rx = rx_master_slave_controls[`bitnoFR_RX_SYNC] | (rx_master_slave_controls[`bitnoFR_RX_SYNC_SLAVE] & rx_slave_sync); //sync if we are told by master_control or if we get a hardware slave sync //TODO There can be a one sample difference between master and slave sync. // Maybe use a register for sync_rx which uses the (neg or pos) edge of master_clock and/or rx_slave_sync to trigger // Or even use a seperate sync_rx_out and sync_rx_internal (which lags behind) //TODO make output pin not hardwired assign reg_1 ={(rx_master_slave_controls[`bitnoFR_RX_SYNC_MASTER])? sync_rx:reg_1_std[15],reg_1_std[14:0]}; endmodule
module t (clk); input clk; reg [0:0] d1; reg [2:0] d3; reg [7:0] d8; wire [0:0] q1; wire [2:0] q3; wire [7:0] q8; // verilator lint_off UNOPTFLAT reg ena; // verilator lint_on UNOPTFLAT condff #(12) condff (.clk(clk), .sen(1'b0), .ena(ena), .d({d8,d3,d1}), .q({q8,q3,q1})); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin //$write("%x %x %x %x\n", cyc, q8, q3, q1); cyc <= cyc + 1; if (cyc==1) begin d1 <= 1'b1; d3<=3'h1; d8<=8'h11; ena <= 1'b1; end if (cyc==2) begin d1 <= 1'b0; d3<=3'h2; d8<=8'h33; ena <= 1'b0; end if (cyc==3) begin d1 <= 1'b1; d3<=3'h3; d8<=8'h44; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==4) begin d1 <= 1'b1; d3<=3'h4; d8<=8'h77; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==5) begin d1 <= 1'b1; d3<=3'h0; d8<=8'h88; ena <= 1'b1; if (q8 != 8'h44) $stop; end if (cyc==6) begin if (q8 != 8'h77) $stop; end if (cyc==7) begin if (q8 != 8'h88) $stop; end // if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module condff (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output [WIDTH-1:0] q; condffimp #(.WIDTH(WIDTH)) imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q)); endmodule
module condffimp (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output reg [WIDTH-1:0] q; wire gatedclk; clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk)); always @(posedge gatedclk) begin if (gatedclk === 1'bX) begin q <= {WIDTH{1'bX}}; end else begin q <= d; end end endmodule
module clockgate (clk, sen, ena, gatedclk); input clk; input sen; input ena; output gatedclk; reg ena_b; wire gatedclk = clk & ena_b; // verilator lint_off COMBDLY always @(clk or ena or sen) begin if (~clk) begin ena_b <= ena | sen; end else begin if ((clk^sen)===1'bX) ena_b <= 1'bX; end end // verilator lint_on COMBDLY endmodule
module t (clk); input clk; reg [0:0] d1; reg [2:0] d3; reg [7:0] d8; wire [0:0] q1; wire [2:0] q3; wire [7:0] q8; // verilator lint_off UNOPTFLAT reg ena; // verilator lint_on UNOPTFLAT condff #(12) condff (.clk(clk), .sen(1'b0), .ena(ena), .d({d8,d3,d1}), .q({q8,q3,q1})); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin //$write("%x %x %x %x\n", cyc, q8, q3, q1); cyc <= cyc + 1; if (cyc==1) begin d1 <= 1'b1; d3<=3'h1; d8<=8'h11; ena <= 1'b1; end if (cyc==2) begin d1 <= 1'b0; d3<=3'h2; d8<=8'h33; ena <= 1'b0; end if (cyc==3) begin d1 <= 1'b1; d3<=3'h3; d8<=8'h44; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==4) begin d1 <= 1'b1; d3<=3'h4; d8<=8'h77; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==5) begin d1 <= 1'b1; d3<=3'h0; d8<=8'h88; ena <= 1'b1; if (q8 != 8'h44) $stop; end if (cyc==6) begin if (q8 != 8'h77) $stop; end if (cyc==7) begin if (q8 != 8'h88) $stop; end // if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module condff (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output [WIDTH-1:0] q; condffimp #(.WIDTH(WIDTH)) imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q)); endmodule
module condffimp (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output reg [WIDTH-1:0] q; wire gatedclk; clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk)); always @(posedge gatedclk) begin if (gatedclk === 1'bX) begin q <= {WIDTH{1'bX}}; end else begin q <= d; end end endmodule
module clockgate (clk, sen, ena, gatedclk); input clk; input sen; input ena; output gatedclk; reg ena_b; wire gatedclk = clk & ena_b; // verilator lint_off COMBDLY always @(clk or ena or sen) begin if (~clk) begin ena_b <= ena | sen; end else begin if ((clk^sen)===1'bX) ena_b <= 1'bX; end end // verilator lint_on COMBDLY endmodule
module t (clk); input clk; reg [0:0] d1; reg [2:0] d3; reg [7:0] d8; wire [0:0] q1; wire [2:0] q3; wire [7:0] q8; // verilator lint_off UNOPTFLAT reg ena; // verilator lint_on UNOPTFLAT condff #(12) condff (.clk(clk), .sen(1'b0), .ena(ena), .d({d8,d3,d1}), .q({q8,q3,q1})); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin //$write("%x %x %x %x\n", cyc, q8, q3, q1); cyc <= cyc + 1; if (cyc==1) begin d1 <= 1'b1; d3<=3'h1; d8<=8'h11; ena <= 1'b1; end if (cyc==2) begin d1 <= 1'b0; d3<=3'h2; d8<=8'h33; ena <= 1'b0; end if (cyc==3) begin d1 <= 1'b1; d3<=3'h3; d8<=8'h44; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==4) begin d1 <= 1'b1; d3<=3'h4; d8<=8'h77; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==5) begin d1 <= 1'b1; d3<=3'h0; d8<=8'h88; ena <= 1'b1; if (q8 != 8'h44) $stop; end if (cyc==6) begin if (q8 != 8'h77) $stop; end if (cyc==7) begin if (q8 != 8'h88) $stop; end // if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module condff (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output [WIDTH-1:0] q; condffimp #(.WIDTH(WIDTH)) imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q)); endmodule
module condffimp (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output reg [WIDTH-1:0] q; wire gatedclk; clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk)); always @(posedge gatedclk) begin if (gatedclk === 1'bX) begin q <= {WIDTH{1'bX}}; end else begin q <= d; end end endmodule
module clockgate (clk, sen, ena, gatedclk); input clk; input sen; input ena; output gatedclk; reg ena_b; wire gatedclk = clk & ena_b; // verilator lint_off COMBDLY always @(clk or ena or sen) begin if (~clk) begin ena_b <= ena | sen; end else begin if ((clk^sen)===1'bX) ena_b <= 1'bX; end end // verilator lint_on COMBDLY endmodule
module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; wire [11:0] axaddr_i; wire [3:0] axlen_i; reg [11:0] wrap_boundary_axaddr; reg [3:0] axaddr_offset; reg [3:0] wrap_second_len; reg [11:0] wrap_boundary_axaddr_r; reg [3:0] axaddr_offset_r; reg [3:0] wrap_second_len_r; reg [4:0] axlen_cnt; reg [4:0] wrap_cnt_r; wire [4:0] wrap_cnt; reg [11:0] axaddr_wrap; reg next_pending_r; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0]; end endgenerate assign axaddr_i = axaddr[11:0]; assign axlen_i = axlen[3:0]; // Mask bits based on transaction length to get wrap boundary low address // Offset used to calculate the length of each transaction always @( * ) begin if(axhandshake) begin wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]); axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i; end else begin wrap_boundary_axaddr = wrap_boundary_axaddr_r; axaddr_offset = axaddr_offset_r; end end // case (axsize[1:0]) // 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i; // 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i; // 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i; // 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i; // default : axaddr_offset = axaddr_i[7:3] & axlen_i; // endcase // The first and the second command from the wrap transaction could // be of odd length or even length with address offset. This will be // an issue with BL8, extra transactions have to be issued. // Rounding up the length to account for extra transactions. always @( * ) begin if(axhandshake) begin wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0; end else begin wrap_second_len = wrap_second_len_r; end end // registering to be used in the combo logic. always @(posedge clk) begin wrap_boundary_axaddr_r <= wrap_boundary_axaddr; axaddr_offset_r <= axaddr_offset; wrap_second_len_r <= wrap_second_len; end // determining if extra data is required for even offsets // wrap_cnt used to switch the address for first and second transaction. assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}}; always @(posedge clk) wrap_cnt_r <= wrap_cnt; always @(posedge clk) begin if (axhandshake) begin axaddr_wrap <= axaddr[11:0]; end if(next)begin if(axlen_cnt == wrap_cnt_r) begin axaddr_wrap <= wrap_boundary_axaddr_r; end else begin axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]); end end end // Even numbber of transactions with offset, inc len by 2 for BL8 always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen_i; next_pending_r <= axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= (axlen_cnt - 1) >= 1; end else begin axlen_cnt <= 5'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin next_pending = (axlen_cnt - 1) >= 1; end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; wire [11:0] axaddr_i; wire [3:0] axlen_i; reg [11:0] wrap_boundary_axaddr; reg [3:0] axaddr_offset; reg [3:0] wrap_second_len; reg [11:0] wrap_boundary_axaddr_r; reg [3:0] axaddr_offset_r; reg [3:0] wrap_second_len_r; reg [4:0] axlen_cnt; reg [4:0] wrap_cnt_r; wire [4:0] wrap_cnt; reg [11:0] axaddr_wrap; reg next_pending_r; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0]; end endgenerate assign axaddr_i = axaddr[11:0]; assign axlen_i = axlen[3:0]; // Mask bits based on transaction length to get wrap boundary low address // Offset used to calculate the length of each transaction always @( * ) begin if(axhandshake) begin wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]); axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i; end else begin wrap_boundary_axaddr = wrap_boundary_axaddr_r; axaddr_offset = axaddr_offset_r; end end // case (axsize[1:0]) // 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i; // 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i; // 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i; // 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i; // default : axaddr_offset = axaddr_i[7:3] & axlen_i; // endcase // The first and the second command from the wrap transaction could // be of odd length or even length with address offset. This will be // an issue with BL8, extra transactions have to be issued. // Rounding up the length to account for extra transactions. always @( * ) begin if(axhandshake) begin wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0; end else begin wrap_second_len = wrap_second_len_r; end end // registering to be used in the combo logic. always @(posedge clk) begin wrap_boundary_axaddr_r <= wrap_boundary_axaddr; axaddr_offset_r <= axaddr_offset; wrap_second_len_r <= wrap_second_len; end // determining if extra data is required for even offsets // wrap_cnt used to switch the address for first and second transaction. assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}}; always @(posedge clk) wrap_cnt_r <= wrap_cnt; always @(posedge clk) begin if (axhandshake) begin axaddr_wrap <= axaddr[11:0]; end if(next)begin if(axlen_cnt == wrap_cnt_r) begin axaddr_wrap <= wrap_boundary_axaddr_r; end else begin axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]); end end end // Even numbber of transactions with offset, inc len by 2 for BL8 always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen_i; next_pending_r <= axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= (axlen_cnt - 1) >= 1; end else begin axlen_cnt <= 5'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin next_pending = (axlen_cnt - 1) >= 1; end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; wire [11:0] axaddr_i; wire [3:0] axlen_i; reg [11:0] wrap_boundary_axaddr; reg [3:0] axaddr_offset; reg [3:0] wrap_second_len; reg [11:0] wrap_boundary_axaddr_r; reg [3:0] axaddr_offset_r; reg [3:0] wrap_second_len_r; reg [4:0] axlen_cnt; reg [4:0] wrap_cnt_r; wire [4:0] wrap_cnt; reg [11:0] axaddr_wrap; reg next_pending_r; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0]; end endgenerate assign axaddr_i = axaddr[11:0]; assign axlen_i = axlen[3:0]; // Mask bits based on transaction length to get wrap boundary low address // Offset used to calculate the length of each transaction always @( * ) begin if(axhandshake) begin wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]); axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i; end else begin wrap_boundary_axaddr = wrap_boundary_axaddr_r; axaddr_offset = axaddr_offset_r; end end // case (axsize[1:0]) // 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i; // 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i; // 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i; // 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i; // default : axaddr_offset = axaddr_i[7:3] & axlen_i; // endcase // The first and the second command from the wrap transaction could // be of odd length or even length with address offset. This will be // an issue with BL8, extra transactions have to be issued. // Rounding up the length to account for extra transactions. always @( * ) begin if(axhandshake) begin wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0; end else begin wrap_second_len = wrap_second_len_r; end end // registering to be used in the combo logic. always @(posedge clk) begin wrap_boundary_axaddr_r <= wrap_boundary_axaddr; axaddr_offset_r <= axaddr_offset; wrap_second_len_r <= wrap_second_len; end // determining if extra data is required for even offsets // wrap_cnt used to switch the address for first and second transaction. assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}}; always @(posedge clk) wrap_cnt_r <= wrap_cnt; always @(posedge clk) begin if (axhandshake) begin axaddr_wrap <= axaddr[11:0]; end if(next)begin if(axlen_cnt == wrap_cnt_r) begin axaddr_wrap <= wrap_boundary_axaddr_r; end else begin axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]); end end end // Even numbber of transactions with offset, inc len by 2 for BL8 always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen_i; next_pending_r <= axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= (axlen_cnt - 1) >= 1; end else begin axlen_cnt <= 5'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin next_pending = (axlen_cnt - 1) >= 1; end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule
module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
module lo_simulate( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, adc_d, adc_clk, ssp_frame, ssp_din, ssp_dout, ssp_clk, cross_hi, cross_lo, dbg, divisor ); input pck0, ck_1356meg, ck_1356megb; output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; input [7:0] adc_d; output adc_clk; input ssp_dout; output ssp_frame, ssp_din, ssp_clk; input cross_hi, cross_lo; output dbg; input [7:0] divisor; // No logic, straight through. assign pwr_oe3 = 1'b0; assign pwr_oe1 = ssp_dout; assign pwr_oe2 = ssp_dout; assign pwr_oe4 = ssp_dout; assign ssp_clk = cross_lo; assign pwr_lo = 1'b0; assign pwr_hi = 1'b0; assign dbg = ssp_frame; // Divide the clock to be used for the ADC reg [7:0] pck_divider; reg clk_state; always @(posedge pck0) begin if(pck_divider == divisor[7:0]) begin pck_divider <= 8'd0; clk_state = !clk_state; end else begin pck_divider <= pck_divider + 1; end end assign adc_clk = ~clk_state; // Toggle the output with hysteresis // Set to high if the ADC value is above 200 // Set to low if the ADC value is below 64 reg is_high; reg is_low; reg output_state; always @(posedge pck0) begin if((pck_divider == 8'd7) && !clk_state) begin is_high = (adc_d >= 8'd200); is_low = (adc_d <= 8'd64); end end always @(posedge is_high or posedge is_low) begin if(is_high) output_state <= 1'd1; else if(is_low) output_state <= 1'd0; end assign ssp_frame = output_state; endmodule
module lo_simulate( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, adc_d, adc_clk, ssp_frame, ssp_din, ssp_dout, ssp_clk, cross_hi, cross_lo, dbg, divisor ); input pck0, ck_1356meg, ck_1356megb; output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; input [7:0] adc_d; output adc_clk; input ssp_dout; output ssp_frame, ssp_din, ssp_clk; input cross_hi, cross_lo; output dbg; input [7:0] divisor; // No logic, straight through. assign pwr_oe3 = 1'b0; assign pwr_oe1 = ssp_dout; assign pwr_oe2 = ssp_dout; assign pwr_oe4 = ssp_dout; assign ssp_clk = cross_lo; assign pwr_lo = 1'b0; assign pwr_hi = 1'b0; assign dbg = ssp_frame; // Divide the clock to be used for the ADC reg [7:0] pck_divider; reg clk_state; always @(posedge pck0) begin if(pck_divider == divisor[7:0]) begin pck_divider <= 8'd0; clk_state = !clk_state; end else begin pck_divider <= pck_divider + 1; end end assign adc_clk = ~clk_state; // Toggle the output with hysteresis // Set to high if the ADC value is above 200 // Set to low if the ADC value is below 64 reg is_high; reg is_low; reg output_state; always @(posedge pck0) begin if((pck_divider == 8'd7) && !clk_state) begin is_high = (adc_d >= 8'd200); is_low = (adc_d <= 8'd64); end end always @(posedge is_high or posedge is_low) begin if(is_high) output_state <= 1'd1; else if(is_low) output_state <= 1'd0; end assign ssp_frame = output_state; endmodule
module lo_simulate( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, adc_d, adc_clk, ssp_frame, ssp_din, ssp_dout, ssp_clk, cross_hi, cross_lo, dbg, divisor ); input pck0, ck_1356meg, ck_1356megb; output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; input [7:0] adc_d; output adc_clk; input ssp_dout; output ssp_frame, ssp_din, ssp_clk; input cross_hi, cross_lo; output dbg; input [7:0] divisor; // No logic, straight through. assign pwr_oe3 = 1'b0; assign pwr_oe1 = ssp_dout; assign pwr_oe2 = ssp_dout; assign pwr_oe4 = ssp_dout; assign ssp_clk = cross_lo; assign pwr_lo = 1'b0; assign pwr_hi = 1'b0; assign dbg = ssp_frame; // Divide the clock to be used for the ADC reg [7:0] pck_divider; reg clk_state; always @(posedge pck0) begin if(pck_divider == divisor[7:0]) begin pck_divider <= 8'd0; clk_state = !clk_state; end else begin pck_divider <= pck_divider + 1; end end assign adc_clk = ~clk_state; // Toggle the output with hysteresis // Set to high if the ADC value is above 200 // Set to low if the ADC value is below 64 reg is_high; reg is_low; reg output_state; always @(posedge pck0) begin if((pck_divider == 8'd7) && !clk_state) begin is_high = (adc_d >= 8'd200); is_low = (adc_d <= 8'd64); end end always @(posedge is_high or posedge is_low) begin if(is_high) output_state <= 1'd1; else if(is_low) output_state <= 1'd0; end assign ssp_frame = output_state; endmodule
module dyn_pll_ctrl # (parameter SPEED_MHZ = 25, parameter SPEED_LIMIT = 100, parameter SPEED_MIN = 25, parameter OSC_MHZ = 100) (clk, clk_valid, speed_in, start, progclk, progdata, progen, reset, locked, status); input clk; // NB Assumed to be 12.5MHz uart_clk input clk_valid; // Drive from LOCKED output of first dcm (ie uart_clk valid) input [7:0] speed_in; input start; output reg progclk = 0; output reg progdata = 0; output reg progen = 0; output reg reset = 0; input locked; input [2:1] status; // NB spec says to use (dval-1) and (mval-1), but I don't think we need to be that accurate // and this saves an adder. Feel free to amend it. reg [23:0] watchdog = 0; reg [7:0] state = 0; reg [7:0] dval = OSC_MHZ; // Osc clock speed (hence mval scales in MHz) reg [7:0] mval = SPEED_MHZ; reg start_d1 = 0; always @ (posedge clk) begin progclk <= ~progclk; start_d1 <= start; reset <= 1'b0; // Watchdog is just using locked, perhaps also need | ~status[2] if (locked) watchdog <= 0; else watchdog <= watchdog + 1'b1; if (watchdog[23]) // Approx 670mS at 12.5MHz - NB spec is 5ms to lock at >50MHz CLKIN (50ms at <50MHz CLKIN) begin // but allow longer just in case watchdog <= 0; reset <= 1'b1; // One cycle at 12.5MHz should suffice (requirment is 3 CLKIN at 100MHz) end if (~clk_valid) // Try not to run while clk is unstable begin progen <= 0; progdata <= 0; state <= 0; end else begin // The documentation is unclear as to whether the DCM loads data on positive or negative edge. The timing // diagram unhelpfully shows data changing on the positive edge, which could mean either its sampled on // negative, or it was clocked on positive! However the following (WRONGLY) says NEGATIVE ... // http://forums.xilinx.com/t5/Spartan-Family-FPGAs/Spartan6-DCM-CLKGEN-does-PROGCLK-have-a-maximum-period-minimum/td-p/175642 // BUT this can lock up the DCM, positive clock seems more reliable (but it can still lock up for low values of M, eg 2). // Added SPEED_MIN to prevent this (and positive clock is correct, after looking at other implementations eg ztex/theseven) if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==1) // positive clock // if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==0) // negative clock begin progen <= 0; progdata <= 0; mval <= speed_in; dval <= OSC_MHZ; state <= 1; end if (state != 0) state <= state + 1'd1; case (state) // Even values to sync with progclk // Send D 2: begin progen <= 1; progdata <= 1; end 4: begin progdata <= 0; end 6,8,10,12,14,16,18,20: begin progdata <= dval[0]; dval[6:0] <= dval[7:1]; end 22: begin progen <= 0; progdata <= 0; end // Send M 32: begin progen <= 1; progdata <= 1; end 36,38,40,42,44,46,48,50: begin progdata <= mval[0]; mval[6:0] <= mval[7:1]; end 52: begin progen <= 0; progdata <= 0; end // Send GO - NB 1 clock cycle 62: begin progen <= 1; end 64: begin progen <= 0; end // We should wait on progdone/locked, but just go straight back to idle 254: begin state <= 0; end endcase end end endmodule
module dyn_pll_ctrl # (parameter SPEED_MHZ = 25, parameter SPEED_LIMIT = 100, parameter SPEED_MIN = 25, parameter OSC_MHZ = 100) (clk, clk_valid, speed_in, start, progclk, progdata, progen, reset, locked, status); input clk; // NB Assumed to be 12.5MHz uart_clk input clk_valid; // Drive from LOCKED output of first dcm (ie uart_clk valid) input [7:0] speed_in; input start; output reg progclk = 0; output reg progdata = 0; output reg progen = 0; output reg reset = 0; input locked; input [2:1] status; // NB spec says to use (dval-1) and (mval-1), but I don't think we need to be that accurate // and this saves an adder. Feel free to amend it. reg [23:0] watchdog = 0; reg [7:0] state = 0; reg [7:0] dval = OSC_MHZ; // Osc clock speed (hence mval scales in MHz) reg [7:0] mval = SPEED_MHZ; reg start_d1 = 0; always @ (posedge clk) begin progclk <= ~progclk; start_d1 <= start; reset <= 1'b0; // Watchdog is just using locked, perhaps also need | ~status[2] if (locked) watchdog <= 0; else watchdog <= watchdog + 1'b1; if (watchdog[23]) // Approx 670mS at 12.5MHz - NB spec is 5ms to lock at >50MHz CLKIN (50ms at <50MHz CLKIN) begin // but allow longer just in case watchdog <= 0; reset <= 1'b1; // One cycle at 12.5MHz should suffice (requirment is 3 CLKIN at 100MHz) end if (~clk_valid) // Try not to run while clk is unstable begin progen <= 0; progdata <= 0; state <= 0; end else begin // The documentation is unclear as to whether the DCM loads data on positive or negative edge. The timing // diagram unhelpfully shows data changing on the positive edge, which could mean either its sampled on // negative, or it was clocked on positive! However the following (WRONGLY) says NEGATIVE ... // http://forums.xilinx.com/t5/Spartan-Family-FPGAs/Spartan6-DCM-CLKGEN-does-PROGCLK-have-a-maximum-period-minimum/td-p/175642 // BUT this can lock up the DCM, positive clock seems more reliable (but it can still lock up for low values of M, eg 2). // Added SPEED_MIN to prevent this (and positive clock is correct, after looking at other implementations eg ztex/theseven) if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==1) // positive clock // if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==0) // negative clock begin progen <= 0; progdata <= 0; mval <= speed_in; dval <= OSC_MHZ; state <= 1; end if (state != 0) state <= state + 1'd1; case (state) // Even values to sync with progclk // Send D 2: begin progen <= 1; progdata <= 1; end 4: begin progdata <= 0; end 6,8,10,12,14,16,18,20: begin progdata <= dval[0]; dval[6:0] <= dval[7:1]; end 22: begin progen <= 0; progdata <= 0; end // Send M 32: begin progen <= 1; progdata <= 1; end 36,38,40,42,44,46,48,50: begin progdata <= mval[0]; mval[6:0] <= mval[7:1]; end 52: begin progen <= 0; progdata <= 0; end // Send GO - NB 1 clock cycle 62: begin progen <= 1; end 64: begin progen <= 0; end // We should wait on progdone/locked, but just go straight back to idle 254: begin state <= 0; end endcase end end endmodule
module input wire r_push , output wire r_full , // length not needed. Can be removed. input wire [C_ID_WIDTH-1:0] r_arid , input wire r_rlast ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam P_WIDTH = 1+C_ID_WIDTH; localparam P_DEPTH = 32; localparam P_AWIDTH = 5; localparam P_D_WIDTH = C_DATA_WIDTH + 2; // rd data FIFO depth varies based on burst length. // For Bl8 it is two times the size of transaction FIFO. // Only in 2:1 mode BL8 transactions will happen which results in // two beats of read data per read transaction. localparam P_D_DEPTH = 32; localparam P_D_AWIDTH = 5; //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// wire [C_ID_WIDTH+1-1:0] trans_in; wire [C_ID_WIDTH+1-1:0] trans_out; wire tr_empty; wire rhandshake; wire r_valid_i; wire [P_D_WIDTH-1:0] rd_data_fifo_in; wire [P_D_WIDTH-1:0] rd_data_fifo_out; wire rd_en; wire rd_full; wire rd_empty; wire rd_a_full; wire fifo_a_full; reg [C_ID_WIDTH-1:0] r_arid_r; reg r_rlast_r; reg r_push_r; wire fifo_full; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH]; assign s_rid = trans_out[1+:C_ID_WIDTH]; assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0]; assign s_rlast = trans_out[0]; assign s_rvalid = ~rd_empty & ~tr_empty; // assign MCB outputs assign rd_en = rhandshake & (~rd_empty); assign rhandshake =(s_rvalid & s_rready); // register for timing always @(posedge clk) begin r_arid_r <= r_arid; r_rlast_r <= r_rlast; r_push_r <= r_push; end assign trans_in[0] = r_rlast_r; assign trans_in[1+:C_ID_WIDTH] = r_arid_r; // rd data fifo axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_D_WIDTH), .C_AWIDTH (P_D_AWIDTH), .C_DEPTH (P_D_DEPTH) ) rd_data_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( m_rvalid & m_rready ) , .rd_en ( rd_en ) , .din ( rd_data_fifo_in ) , .dout ( rd_data_fifo_out ) , .a_full ( rd_a_full ) , .full ( rd_full ) , .a_empty ( ) , .empty ( rd_empty ) ); assign rd_data_fifo_in = {m_rresp, m_rdata}; axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_WIDTH), .C_AWIDTH (P_AWIDTH), .C_DEPTH (P_DEPTH) ) transaction_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( r_push_r ) , .rd_en ( rd_en ) , .din ( trans_in ) , .dout ( trans_out ) , .a_full ( fifo_a_full ) , .full ( ) , .a_empty ( ) , .empty ( tr_empty ) ); assign fifo_full = fifo_a_full | rd_a_full ; assign r_full = fifo_full ; assign m_rready = ~rd_a_full; endmodule
module input wire r_push , output wire r_full , // length not needed. Can be removed. input wire [C_ID_WIDTH-1:0] r_arid , input wire r_rlast ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam P_WIDTH = 1+C_ID_WIDTH; localparam P_DEPTH = 32; localparam P_AWIDTH = 5; localparam P_D_WIDTH = C_DATA_WIDTH + 2; // rd data FIFO depth varies based on burst length. // For Bl8 it is two times the size of transaction FIFO. // Only in 2:1 mode BL8 transactions will happen which results in // two beats of read data per read transaction. localparam P_D_DEPTH = 32; localparam P_D_AWIDTH = 5; //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// wire [C_ID_WIDTH+1-1:0] trans_in; wire [C_ID_WIDTH+1-1:0] trans_out; wire tr_empty; wire rhandshake; wire r_valid_i; wire [P_D_WIDTH-1:0] rd_data_fifo_in; wire [P_D_WIDTH-1:0] rd_data_fifo_out; wire rd_en; wire rd_full; wire rd_empty; wire rd_a_full; wire fifo_a_full; reg [C_ID_WIDTH-1:0] r_arid_r; reg r_rlast_r; reg r_push_r; wire fifo_full; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH]; assign s_rid = trans_out[1+:C_ID_WIDTH]; assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0]; assign s_rlast = trans_out[0]; assign s_rvalid = ~rd_empty & ~tr_empty; // assign MCB outputs assign rd_en = rhandshake & (~rd_empty); assign rhandshake =(s_rvalid & s_rready); // register for timing always @(posedge clk) begin r_arid_r <= r_arid; r_rlast_r <= r_rlast; r_push_r <= r_push; end assign trans_in[0] = r_rlast_r; assign trans_in[1+:C_ID_WIDTH] = r_arid_r; // rd data fifo axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_D_WIDTH), .C_AWIDTH (P_D_AWIDTH), .C_DEPTH (P_D_DEPTH) ) rd_data_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( m_rvalid & m_rready ) , .rd_en ( rd_en ) , .din ( rd_data_fifo_in ) , .dout ( rd_data_fifo_out ) , .a_full ( rd_a_full ) , .full ( rd_full ) , .a_empty ( ) , .empty ( rd_empty ) ); assign rd_data_fifo_in = {m_rresp, m_rdata}; axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_WIDTH), .C_AWIDTH (P_AWIDTH), .C_DEPTH (P_DEPTH) ) transaction_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( r_push_r ) , .rd_en ( rd_en ) , .din ( trans_in ) , .dout ( trans_out ) , .a_full ( fifo_a_full ) , .full ( ) , .a_empty ( ) , .empty ( tr_empty ) ); assign fifo_full = fifo_a_full | rd_a_full ; assign r_full = fifo_full ; assign m_rready = ~rd_a_full; endmodule
module axi_data_fifo_v2_1_fifo_gen #( parameter C_FAMILY = "virtex7", parameter integer C_COMMON_CLOCK = 1, parameter integer C_SYNCHRONIZER_STAGE = 3, parameter integer C_FIFO_DEPTH_LOG = 5, parameter integer C_FIFO_WIDTH = 64, parameter C_FIFO_TYPE = "lut" )( clk, rst, wr_clk, wr_en, wr_ready, wr_data, rd_clk, rd_en, rd_valid, rd_data); input clk; input wr_clk; input rd_clk; input rst; input [C_FIFO_WIDTH-1 : 0] wr_data; input wr_en; input rd_en; output [C_FIFO_WIDTH-1 : 0] rd_data; output wr_ready; output rd_valid; wire full; wire empty; wire rd_valid = ~empty; wire wr_ready = ~full; localparam C_MEMORY_TYPE = (C_FIFO_TYPE == "bram")? 1 : 2; localparam C_IMPLEMENTATION_TYPE = (C_COMMON_CLOCK == 1)? 0 : 2; fifo_generator_v12_0 #( .C_COMMON_CLOCK(C_COMMON_CLOCK), .C_DIN_WIDTH(C_FIFO_WIDTH), .C_DOUT_WIDTH(C_FIFO_WIDTH), .C_FAMILY(C_FAMILY), .C_IMPLEMENTATION_TYPE(C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE(C_MEMORY_TYPE), .C_RD_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_RD_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_WR_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_WR_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_AXI_ADDR_WIDTH(32), .C_AXI_ARUSER_WIDTH(1), .C_AXI_AWUSER_WIDTH(1), .C_AXI_BUSER_WIDTH(1), .C_AXI_DATA_WIDTH(64), .C_AXI_ID_WIDTH(4), .C_AXI_LEN_WIDTH(8), .C_AXI_LOCK_WIDTH(2), .C_AXI_RUSER_WIDTH(1), .C_AXI_TYPE(0), .C_AXI_WUSER_WIDTH(1), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(6), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH_AXIS(1), .C_DIN_WIDTH_RACH(32), .C_DIN_WIDTH_RDCH(64), .C_DIN_WIDTH_WACH(32), .C_DIN_WIDTH_WDCH(64), .C_DIN_WIDTH_WRCH(2), .C_DOUT_RST_VAL("0"), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FULL_FLAGS_RST_VAL(0), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_AXI_ARUSER(0), .C_HAS_AXI_AWUSER(0), .C_HAS_AXI_BUSER(0), .C_HAS_AXI_RD_CHANNEL(0), .C_HAS_AXI_RUSER(0), .C_HAS_AXI_WR_CHANNEL(0), .C_HAS_AXI_WUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(1), .C_IMPLEMENTATION_TYPE_RDCH(1), .C_IMPLEMENTATION_TYPE_WACH(1), .C_IMPLEMENTATION_TYPE_WDCH(1), .C_IMPLEMENTATION_TYPE_WRCH(1), .C_INIT_WR_PNTR_VAL(0), .C_INTERFACE_TYPE(0), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(0), .C_PRELOAD_REGS(1), .C_PRIM_FIFO_TYPE("512x36"), .C_PROG_EMPTY_THRESH_ASSERT_VAL(4), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(1022), .C_PROG_EMPTY_THRESH_NEGATE_VAL(5), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(0), .C_PROG_EMPTY_TYPE_RACH(0), .C_PROG_EMPTY_TYPE_RDCH(0), .C_PROG_EMPTY_TYPE_WACH(0), .C_PROG_EMPTY_TYPE_WDCH(0), .C_PROG_EMPTY_TYPE_WRCH(0), .C_PROG_FULL_THRESH_ASSERT_VAL(31), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(1023), .C_PROG_FULL_THRESH_NEGATE_VAL(30), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(0), .C_PROG_FULL_TYPE_RACH(0), .C_PROG_FULL_TYPE_RDCH(0), .C_PROG_FULL_TYPE_WACH(0), .C_PROG_FULL_TYPE_WDCH(0), .C_PROG_FULL_TYPE_WRCH(0), .C_RACH_TYPE(0), .C_RDCH_TYPE(0), .C_RD_DATA_COUNT_WIDTH(6), .C_RD_FREQ(1), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_SYNCHRONIZER_STAGE(C_SYNCHRONIZER_STAGE), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(0), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(1), .C_VALID_LOW(0), .C_WACH_TYPE(0), .C_WDCH_TYPE(0), .C_WRCH_TYPE(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(6), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(16), .C_WR_DEPTH_RDCH(1024), .C_WR_DEPTH_WACH(16), .C_WR_DEPTH_WDCH(1024), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(4), .C_WR_PNTR_WIDTH_RDCH(10), .C_WR_PNTR_WIDTH_WACH(4), .C_WR_PNTR_WIDTH_WDCH(10), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .clk(clk), .din(wr_data), .dout(rd_data), .empty(empty), .full(full), .rd_clk(rd_clk), .rd_en(rd_en), .rst(rst), .wr_clk(wr_clk), .wr_en(wr_en), .almost_empty(), .almost_full(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(4'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(4'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(4'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(4'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh(10'b0), .axi_r_prog_full(), .axi_r_prog_full_thresh(10'b0), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh(10'b0), .axi_w_prog_full(), .axi_w_prog_full_thresh(10'b0), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .data_count(), .dbiterr(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_aclk(1'b0), .m_aclk_en(1'b0), .m_axi_araddr(), .m_axi_arburst(), .m_axi_arcache(), .m_axi_arid(), .m_axi_arlen(), .m_axi_arlock(), .m_axi_arprot(), .m_axi_arqos(), .m_axi_arready(1'b0), .m_axi_arregion(), .m_axi_arsize(), .m_axi_aruser(), .m_axi_arvalid(), .m_axi_awaddr(), .m_axi_awburst(), .m_axi_awcache(), .m_axi_awid(), .m_axi_awlen(), .m_axi_awlock(), .m_axi_awprot(), .m_axi_awqos(), .m_axi_awready(1'b0), .m_axi_awregion(), .m_axi_awsize(), .m_axi_awuser(), .m_axi_awvalid(), .m_axi_bid(4'b0), .m_axi_bready(), .m_axi_bresp(2'b0), .m_axi_buser(1'b0), .m_axi_bvalid(1'b0), .m_axi_rdata(64'b0), .m_axi_rid(4'b0), .m_axi_rlast(1'b0), .m_axi_rready(), .m_axi_rresp(2'b0), .m_axi_ruser(1'b0), .m_axi_rvalid(1'b0), .m_axi_wdata(), .m_axi_wid(), .m_axi_wlast(), .m_axi_wready(1'b0), .m_axi_wstrb(), .m_axi_wuser(), .m_axi_wvalid(), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(5'b0), .prog_empty_thresh_assert(5'b0), .prog_empty_thresh_negate(5'b0), .prog_full(), .prog_full_thresh(5'b0), .prog_full_thresh_assert(5'b0), .prog_full_thresh_negate(5'b0), .rd_data_count(), .rd_rst(1'b0), .s_aclk(1'b0), .s_aclk_en(1'b0), .s_aresetn(1'b0), .s_axi_araddr(32'b0), .s_axi_arburst(2'b0), .s_axi_arcache(4'b0), .s_axi_arid(4'b0), .s_axi_arlen(8'b0), .s_axi_arlock(2'b0), .s_axi_arprot(3'b0), .s_axi_arqos(4'b0), .s_axi_arready(), .s_axi_arregion(4'b0), .s_axi_arsize(3'b0), .s_axi_aruser(1'b0), .s_axi_arvalid(1'b0), .s_axi_awaddr(32'b0), .s_axi_awburst(2'b0), .s_axi_awcache(4'b0), .s_axi_awid(4'b0), .s_axi_awlen(8'b0), .s_axi_awlock(2'b0), .s_axi_awprot(3'b0), .s_axi_awqos(4'b0), .s_axi_awready(), .s_axi_awregion(4'b0), .s_axi_awsize(3'b0), .s_axi_awuser(1'b0), .s_axi_awvalid(1'b0), .s_axi_bid(), .s_axi_bready(1'b0), .s_axi_bresp(), .s_axi_buser(), .s_axi_bvalid(), .s_axi_rdata(), .s_axi_rid(), .s_axi_rlast(), .s_axi_rready(1'b0), .s_axi_rresp(), .s_axi_ruser(), .s_axi_rvalid(), .s_axi_wdata(64'b0), .s_axi_wid(4'b0), .s_axi_wlast(1'b0), .s_axi_wready(), .s_axi_wstrb(8'b0), .s_axi_wuser(1'b0), .s_axi_wvalid(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .sbiterr(), .srst(1'b0), .underflow(), .valid(), .wr_ack(), .wr_data_count(), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); endmodule
module axi_data_fifo_v2_1_fifo_gen #( parameter C_FAMILY = "virtex7", parameter integer C_COMMON_CLOCK = 1, parameter integer C_SYNCHRONIZER_STAGE = 3, parameter integer C_FIFO_DEPTH_LOG = 5, parameter integer C_FIFO_WIDTH = 64, parameter C_FIFO_TYPE = "lut" )( clk, rst, wr_clk, wr_en, wr_ready, wr_data, rd_clk, rd_en, rd_valid, rd_data); input clk; input wr_clk; input rd_clk; input rst; input [C_FIFO_WIDTH-1 : 0] wr_data; input wr_en; input rd_en; output [C_FIFO_WIDTH-1 : 0] rd_data; output wr_ready; output rd_valid; wire full; wire empty; wire rd_valid = ~empty; wire wr_ready = ~full; localparam C_MEMORY_TYPE = (C_FIFO_TYPE == "bram")? 1 : 2; localparam C_IMPLEMENTATION_TYPE = (C_COMMON_CLOCK == 1)? 0 : 2; fifo_generator_v12_0 #( .C_COMMON_CLOCK(C_COMMON_CLOCK), .C_DIN_WIDTH(C_FIFO_WIDTH), .C_DOUT_WIDTH(C_FIFO_WIDTH), .C_FAMILY(C_FAMILY), .C_IMPLEMENTATION_TYPE(C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE(C_MEMORY_TYPE), .C_RD_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_RD_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_WR_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_WR_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_AXI_ADDR_WIDTH(32), .C_AXI_ARUSER_WIDTH(1), .C_AXI_AWUSER_WIDTH(1), .C_AXI_BUSER_WIDTH(1), .C_AXI_DATA_WIDTH(64), .C_AXI_ID_WIDTH(4), .C_AXI_LEN_WIDTH(8), .C_AXI_LOCK_WIDTH(2), .C_AXI_RUSER_WIDTH(1), .C_AXI_TYPE(0), .C_AXI_WUSER_WIDTH(1), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(6), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH_AXIS(1), .C_DIN_WIDTH_RACH(32), .C_DIN_WIDTH_RDCH(64), .C_DIN_WIDTH_WACH(32), .C_DIN_WIDTH_WDCH(64), .C_DIN_WIDTH_WRCH(2), .C_DOUT_RST_VAL("0"), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FULL_FLAGS_RST_VAL(0), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_AXI_ARUSER(0), .C_HAS_AXI_AWUSER(0), .C_HAS_AXI_BUSER(0), .C_HAS_AXI_RD_CHANNEL(0), .C_HAS_AXI_RUSER(0), .C_HAS_AXI_WR_CHANNEL(0), .C_HAS_AXI_WUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(1), .C_IMPLEMENTATION_TYPE_RDCH(1), .C_IMPLEMENTATION_TYPE_WACH(1), .C_IMPLEMENTATION_TYPE_WDCH(1), .C_IMPLEMENTATION_TYPE_WRCH(1), .C_INIT_WR_PNTR_VAL(0), .C_INTERFACE_TYPE(0), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(0), .C_PRELOAD_REGS(1), .C_PRIM_FIFO_TYPE("512x36"), .C_PROG_EMPTY_THRESH_ASSERT_VAL(4), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(1022), .C_PROG_EMPTY_THRESH_NEGATE_VAL(5), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(0), .C_PROG_EMPTY_TYPE_RACH(0), .C_PROG_EMPTY_TYPE_RDCH(0), .C_PROG_EMPTY_TYPE_WACH(0), .C_PROG_EMPTY_TYPE_WDCH(0), .C_PROG_EMPTY_TYPE_WRCH(0), .C_PROG_FULL_THRESH_ASSERT_VAL(31), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(1023), .C_PROG_FULL_THRESH_NEGATE_VAL(30), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(0), .C_PROG_FULL_TYPE_RACH(0), .C_PROG_FULL_TYPE_RDCH(0), .C_PROG_FULL_TYPE_WACH(0), .C_PROG_FULL_TYPE_WDCH(0), .C_PROG_FULL_TYPE_WRCH(0), .C_RACH_TYPE(0), .C_RDCH_TYPE(0), .C_RD_DATA_COUNT_WIDTH(6), .C_RD_FREQ(1), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_SYNCHRONIZER_STAGE(C_SYNCHRONIZER_STAGE), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(0), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(1), .C_VALID_LOW(0), .C_WACH_TYPE(0), .C_WDCH_TYPE(0), .C_WRCH_TYPE(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(6), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(16), .C_WR_DEPTH_RDCH(1024), .C_WR_DEPTH_WACH(16), .C_WR_DEPTH_WDCH(1024), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(4), .C_WR_PNTR_WIDTH_RDCH(10), .C_WR_PNTR_WIDTH_WACH(4), .C_WR_PNTR_WIDTH_WDCH(10), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .clk(clk), .din(wr_data), .dout(rd_data), .empty(empty), .full(full), .rd_clk(rd_clk), .rd_en(rd_en), .rst(rst), .wr_clk(wr_clk), .wr_en(wr_en), .almost_empty(), .almost_full(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(4'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(4'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(4'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(4'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh(10'b0), .axi_r_prog_full(), .axi_r_prog_full_thresh(10'b0), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh(10'b0), .axi_w_prog_full(), .axi_w_prog_full_thresh(10'b0), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .data_count(), .dbiterr(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_aclk(1'b0), .m_aclk_en(1'b0), .m_axi_araddr(), .m_axi_arburst(), .m_axi_arcache(), .m_axi_arid(), .m_axi_arlen(), .m_axi_arlock(), .m_axi_arprot(), .m_axi_arqos(), .m_axi_arready(1'b0), .m_axi_arregion(), .m_axi_arsize(), .m_axi_aruser(), .m_axi_arvalid(), .m_axi_awaddr(), .m_axi_awburst(), .m_axi_awcache(), .m_axi_awid(), .m_axi_awlen(), .m_axi_awlock(), .m_axi_awprot(), .m_axi_awqos(), .m_axi_awready(1'b0), .m_axi_awregion(), .m_axi_awsize(), .m_axi_awuser(), .m_axi_awvalid(), .m_axi_bid(4'b0), .m_axi_bready(), .m_axi_bresp(2'b0), .m_axi_buser(1'b0), .m_axi_bvalid(1'b0), .m_axi_rdata(64'b0), .m_axi_rid(4'b0), .m_axi_rlast(1'b0), .m_axi_rready(), .m_axi_rresp(2'b0), .m_axi_ruser(1'b0), .m_axi_rvalid(1'b0), .m_axi_wdata(), .m_axi_wid(), .m_axi_wlast(), .m_axi_wready(1'b0), .m_axi_wstrb(), .m_axi_wuser(), .m_axi_wvalid(), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(5'b0), .prog_empty_thresh_assert(5'b0), .prog_empty_thresh_negate(5'b0), .prog_full(), .prog_full_thresh(5'b0), .prog_full_thresh_assert(5'b0), .prog_full_thresh_negate(5'b0), .rd_data_count(), .rd_rst(1'b0), .s_aclk(1'b0), .s_aclk_en(1'b0), .s_aresetn(1'b0), .s_axi_araddr(32'b0), .s_axi_arburst(2'b0), .s_axi_arcache(4'b0), .s_axi_arid(4'b0), .s_axi_arlen(8'b0), .s_axi_arlock(2'b0), .s_axi_arprot(3'b0), .s_axi_arqos(4'b0), .s_axi_arready(), .s_axi_arregion(4'b0), .s_axi_arsize(3'b0), .s_axi_aruser(1'b0), .s_axi_arvalid(1'b0), .s_axi_awaddr(32'b0), .s_axi_awburst(2'b0), .s_axi_awcache(4'b0), .s_axi_awid(4'b0), .s_axi_awlen(8'b0), .s_axi_awlock(2'b0), .s_axi_awprot(3'b0), .s_axi_awqos(4'b0), .s_axi_awready(), .s_axi_awregion(4'b0), .s_axi_awsize(3'b0), .s_axi_awuser(1'b0), .s_axi_awvalid(1'b0), .s_axi_bid(), .s_axi_bready(1'b0), .s_axi_bresp(), .s_axi_buser(), .s_axi_bvalid(), .s_axi_rdata(), .s_axi_rid(), .s_axi_rlast(), .s_axi_rready(1'b0), .s_axi_rresp(), .s_axi_ruser(), .s_axi_rvalid(), .s_axi_wdata(64'b0), .s_axi_wid(4'b0), .s_axi_wlast(1'b0), .s_axi_wready(), .s_axi_wstrb(8'b0), .s_axi_wuser(1'b0), .s_axi_wvalid(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .sbiterr(), .srst(1'b0), .underflow(), .valid(), .wr_ack(), .wr_data_count(), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); endmodule
module axi_protocol_converter_v2_1_b2s_b_channel # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of ID signals. // Range: >= 1. parameter integer C_ID_WIDTH = 4 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk, input wire reset, // AXI signals output wire [C_ID_WIDTH-1:0] s_bid, output wire [1:0] s_bresp, output wire s_bvalid, input wire s_bready, input wire [1:0] m_bresp, input wire m_bvalid, output wire m_bready, // Signals to/from the axi_protocol_converter_v2_1_b2s_aw_channel modules input wire b_push, input wire [C_ID_WIDTH-1:0] b_awid, input wire [7:0] b_awlen, input wire b_resp_rdy, output wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // AXI protocol responses: localparam [1:0] LP_RESP_OKAY = 2'b00; localparam [1:0] LP_RESP_EXOKAY = 2'b01; localparam [1:0] LP_RESP_SLVERROR = 2'b10; localparam [1:0] LP_RESP_DECERR = 2'b11; // FIFO settings localparam P_WIDTH = C_ID_WIDTH + 8; localparam P_DEPTH = 4; localparam P_AWIDTH = 2; localparam P_RWIDTH = 2; localparam P_RDEPTH = 4; localparam P_RAWIDTH = 2; //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg bvalid_i; wire [C_ID_WIDTH-1:0] bid_i; wire shandshake; reg shandshake_r; wire mhandshake; reg mhandshake_r; wire b_empty; wire bresp_full; wire bresp_empty; wire [7:0] b_awlen_i; reg [7:0] bresp_cnt; reg [1:0] s_bresp_acc; wire [1:0] s_bresp_acc_r; reg [1:0] s_bresp_i; wire need_to_update_bresp; wire bresp_push; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // assign AXI outputs assign s_bid = bid_i; assign s_bresp = s_bresp_acc_r; assign s_bvalid = bvalid_i; assign shandshake = s_bvalid & s_bready; assign mhandshake = m_bvalid & m_bready; always @(posedge clk) begin if (reset | shandshake) begin bvalid_i <= 1'b0; end else if (~b_empty & ~shandshake_r & ~bresp_empty) begin bvalid_i <= 1'b1; end end always @(posedge clk) begin shandshake_r <= shandshake; mhandshake_r <= mhandshake; end axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_WIDTH), .C_AWIDTH (P_AWIDTH), .C_DEPTH (P_DEPTH) ) bid_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( b_push ) , .rd_en ( shandshake_r ) , .din ( {b_awid, b_awlen} ) , .dout ( {bid_i, b_awlen_i}) , .a_full ( ) , .full ( b_full ) , .a_empty ( ) , .empty ( b_empty ) ); assign m_bready = ~mhandshake_r & bresp_empty; ///////////////////////////////////////////////////////////////////////////// // Update if more critical. assign need_to_update_bresp = ( m_bresp > s_bresp_acc ); // Select accumultated or direct depending on setting. always @( * ) begin if ( need_to_update_bresp ) begin s_bresp_i = m_bresp; end else begin s_bresp_i = s_bresp_acc; end end ///////////////////////////////////////////////////////////////////////////// // Accumulate MI-side BRESP. always @ (posedge clk) begin if (reset | bresp_push ) begin s_bresp_acc <= LP_RESP_OKAY; end else if ( mhandshake ) begin s_bresp_acc <= s_bresp_i; end end assign bresp_push = ( mhandshake_r ) & (bresp_cnt == b_awlen_i) & ~b_empty; always @ (posedge clk) begin if (reset | bresp_push ) begin bresp_cnt <= 8'h00; end else if ( mhandshake_r ) begin bresp_cnt <= bresp_cnt + 1'b1; end end axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_RWIDTH), .C_AWIDTH (P_RAWIDTH), .C_DEPTH (P_RDEPTH) ) bresp_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( bresp_push ) , .rd_en ( shandshake_r ) , .din ( s_bresp_acc ) , .dout ( s_bresp_acc_r) , .a_full ( ) , .full ( bresp_full ) , .a_empty ( ) , .empty ( bresp_empty ) ); endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module WireDelay # ( parameter Delay_g = 0, parameter Delay_rd = 0, parameter ERR_INSERT = "OFF" ) ( inout A, inout B, input reset, input phy_init_done ); reg A_r; reg B_r; reg B_inv ; reg line_en; reg B_nonX; assign A = A_r; assign B = B_r; always @ (*) begin if (B === 1'bx) B_nonX <= $random; else B_nonX <= B; end always @(*) begin if((B_nonX == 'b1) || (B_nonX == 'b0)) B_inv <= #0 ~B_nonX ; else B_inv <= #0 'bz ; end always @(*) begin if (!reset) begin A_r <= 1'bz; B_r <= 1'bz; line_en <= 1'b0; end else begin if (line_en) begin B_r <= 1'bz; if ((ERR_INSERT == "ON") & (phy_init_done)) A_r <= #Delay_rd B_inv; else A_r <= #Delay_rd B_nonX; end else begin B_r <= #Delay_g A; A_r <= 1'bz; end end end always @(A or B) begin if (!reset) begin line_en <= 1'b0; end else if (A !== A_r) begin line_en <= 1'b0; end else if (B_r !== B) begin line_en <= 1'b1; end else begin line_en <= line_en; end end endmodule
module WireDelay # ( parameter Delay_g = 0, parameter Delay_rd = 0, parameter ERR_INSERT = "OFF" ) ( inout A, inout B, input reset, input phy_init_done ); reg A_r; reg B_r; reg B_inv ; reg line_en; reg B_nonX; assign A = A_r; assign B = B_r; always @ (*) begin if (B === 1'bx) B_nonX <= $random; else B_nonX <= B; end always @(*) begin if((B_nonX == 'b1) || (B_nonX == 'b0)) B_inv <= #0 ~B_nonX ; else B_inv <= #0 'bz ; end always @(*) begin if (!reset) begin A_r <= 1'bz; B_r <= 1'bz; line_en <= 1'b0; end else begin if (line_en) begin B_r <= 1'bz; if ((ERR_INSERT == "ON") & (phy_init_done)) A_r <= #Delay_rd B_inv; else A_r <= #Delay_rd B_nonX; end else begin B_r <= #Delay_g A; A_r <= 1'bz; end end end always @(A or B) begin if (!reset) begin line_en <= 1'b0; end else if (A !== A_r) begin line_en <= 1'b0; end else if (B_r !== B) begin line_en <= 1'b1; end else begin line_en <= line_en; end end endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .wrempty (), .rdfull () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 16, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule
module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .wrempty (), .rdfull () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 16, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule
module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .wrempty (), .rdfull () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 16, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule
module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .wrempty (), .rdfull () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 16, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module LZD#(parameter SWR=26, parameter EWR=5)( //#(parameter SWR=55, parameter EWR=6)( input wire clk, input wire rst, input wire load_i, input wire [SWR-1:0] Add_subt_result_i, /////////////////////////////////////////////7 output wire [EWR-1:0] Shift_Value_o ); wire [EWR-1:0] Codec_to_Reg; generate case (SWR) 26:begin Priority_Codec_32 Codec_32( .Data_Dec_i(Add_subt_result_i), .Data_Bin_o(Codec_to_Reg) ); end 55:begin Priority_Codec_64 Codec_64( .Data_Dec_i(Add_subt_result_i), .Data_Bin_o(Codec_to_Reg) ); end endcase endgenerate RegisterAdd #(.W(EWR)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Codec_to_Reg), .Q(Shift_Value_o) ); endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module wdt(clk, ena, cnt, out); input clk, ena, cnt; output out; reg [6:0] timer; wire timer_top = (timer == 7'd127); reg internal_enable; wire out = internal_enable && timer_top; always @(posedge clk) begin if(ena) begin internal_enable <= 1; timer <= 0; end else if(cnt && !timer_top) timer <= timer + 7'd1; end endmodule
module wdt(clk, ena, cnt, out); input clk, ena, cnt; output out; reg [6:0] timer; wire timer_top = (timer == 7'd127); reg internal_enable; wire out = internal_enable && timer_top; always @(posedge clk) begin if(ena) begin internal_enable <= 1; timer <= 0; end else if(cnt && !timer_top) timer <= timer + 7'd1; end endmodule