module_content
stringlengths 18
1.05M
|
---|
module fifo_generator_v13_1_3_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input SAFETY_CKT_RD_RST,
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output USERVALID,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg STAGE2_REG_EN,
output fab_read_data_valid_i_o,
output read_data_valid_i_o,
output ram_valid_i_o,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg fab_valid;
reg read_data_valid_i;
reg fab_read_data_valid_i;
reg fab_read_data_valid_i_1;
reg ram_valid_i_d;
reg read_data_valid_i_d;
reg fab_read_data_valid_i_d;
wire ram_regout_en;
reg ram_regout_en_d1;
reg ram_regout_en_d2;
wire fab_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_sckt = 1'b1;
reg sckt_rrst_q = 1'b0;
reg sckt_rrst_done = 1'b0;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
reg [C_DOUT_WIDTH-1:0] userdata_both;
wire uservalid_both;
wire uservalid_one;
reg user_sbiterr_both = 1'b0;
reg user_dbiterr_both = 1'b0;
assign ram_valid_i_o = ram_valid_i;
assign read_data_valid_i_o = read_data_valid_i;
assign fab_read_data_valid_i_o = fab_read_data_valid_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
fab_valid = 1'b0;
read_data_valid_i = 1'b0;
fab_read_data_valid_i = 1'b0;
fab_read_data_valid_i_1 = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
userdata_both = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
user_sbiterr_both = 1'b0;
user_dbiterr_both = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_EN_SAFETY_CKT ? SAFETY_CKT_RD_RST : C_HAS_SRST ? SRST : 0;
reg sckt_rd_rst_fwft = 1'b0;
reg fwft_rst_done_i = 1'b0;
wire fwft_rst_done;
assign fwft_rst_done = C_EN_SAFETY_CKT ? fwft_rst_done_i : 1'b1;
always @ (posedge RD_CLK) begin
sckt_rd_rst_fwft <= #`TCQ SAFETY_CKT_RD_RST;
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
fwft_rst_done_i <= 1'b0;
else if (sckt_rd_rst_fwft & ~SAFETY_CKT_RD_RST)
fwft_rst_done_i <= #`TCQ 1'b1;
end
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_USE_EMBEDDED_REG < 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i && C_EN_SAFETY_CKT == 0)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
ram_valid_i <= #`TCQ next_state;
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i && C_EN_SAFETY_CKT == 0) begin
curr_state <= 1'b0;
end else if (srst_i) begin
curr_state <= #`TCQ 1'b0;
end else begin
curr_state <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
//assign ram_regout_en_d1 = ram_rd_en_fwft;
//assign ram_regout_en_d2 = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG < 3) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
generate if ( C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
// BRAM resets synchronously
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @ ( posedge rd_rst_i)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else if (fwft_rst_done) begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
//safety ckt with one register
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
//@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else if (fwft_rst_done) begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i && C_EN_SAFETY_CKT == 0)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay
if (rd_rst_i == 1) begin
ram_regout_en_d1 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d1 <= #`TCQ 1'b0;
else
ram_regout_en_d1 <= #`TCQ ram_regout_en;
end
end //always
// assign fab_regout_en = ((ram_regout_en_d1 & ~(ram_regout_en_d2) & empty_i) | (RD_EN & !empty_i));
assign fab_regout_en = ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b0 )? 1'b1: ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1) ? RD_EN : 1'b0;
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay1
if (rd_rst_i == 1) begin
ram_regout_en_d2 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d2 <= #`TCQ 1'b0;
else
ram_regout_en_d2 <= #`TCQ ram_regout_en_d1;
end
end //always
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
always @ (posedge RD_CLK) begin
ram_valid_i_d <= #`TCQ ram_valid_i;
read_data_valid_i_d <= #`TCQ read_data_valid_i;
fab_read_data_valid_i_d <= #`TCQ fab_read_data_valid_i;
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = (ram_valid_i == 1'b1 && (read_data_valid_i == 1'b0 || fab_read_data_valid_i == 1'b0)) ? 1'b1 : (read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1 && ram_valid_i == 1'b1) ? RD_EN : 1'b0;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = ((RD_EN | ~ fab_read_data_valid_i) & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false // Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3) begin : gnll_fifo_fab_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (ram_regout_en == 1'b1) begin
fab_valid <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
fab_valid <= #`TCQ 1'b0;
else
fab_valid <= #`TCQ fab_valid;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_fab_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG == 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else begin
if (ram_regout_en == 1'b1) begin
read_data_valid_i <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ read_data_valid_i;
end
end
end //always
end
endgenerate
//generate if(C_USE_EMBEDDED_REG == 3) begin
// always @ (posedge RD_CLK or posedge rd_rst_i) begin
// if (rd_rst_i)
// read_data_valid_i <= #`TCQ 1'b0;
// else if (srst_i)
// read_data_valid_i <= #`TCQ 1'b0;
//
// if (ram_regout_en == 1'b1) begin
// fab_read_data_valid_i <= #`TCQ 1'b0;
// end else begin
// if (fab_regout_en == 1'b1)
// fab_read_data_valid_i <= #`TCQ 1'b1;
// else
// fab_read_data_valid_i <= #`TCQ fab_read_data_valid_i;
// end
// end //always
//end
//endgenerate
generate if(C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin :fabout_dvalid
if (rd_rst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else
fab_read_data_valid_i <= #`TCQ fab_valid | (fab_read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
always @ (posedge RD_CLK ) begin : proc_del1
begin
fab_read_data_valid_i_1 <= #`TCQ fab_read_data_valid_i;
end
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3 ) begin : gnll_fifo_empty_both
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~fab_valid & ~fab_read_data_valid_i) | (~fab_valid & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty_both
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
reg FIFOEMPTY_1;
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @(posedge RD_CLK) begin
FIFOEMPTY_1 <= #`TCQ FIFOEMPTY;
end
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((fab_regout_en) | (ram_valid_i & fab_read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ (~ram_valid_i);
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_sckt <= #`TCQ 1'b1;
sckt_rrst_q <= #`TCQ 1'b0;
sckt_rrst_done <= #`TCQ 1'b0;
end else begin
sckt_rrst_q <= #`TCQ SAFETY_CKT_RD_RST;
if (sckt_rrst_q && ~SAFETY_CKT_RD_RST) begin
sckt_rrst_done <= #`TCQ 1'b1;
end else if (sckt_rrst_done) begin
// rising clock edge
empty_sckt <= #`TCQ 1'b0;
end
end
end //always
// assign USEREMPTY = C_EN_SAFETY_CKT ? (sckt_rrst_done ? empty_i : empty_sckt) : empty_i;
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = (C_USE_EMBEDDED_REG == 3)? fab_valid : ram_valid_i;
assign uservalid_both = (C_USERVALID_LOW && C_USE_EMBEDDED_REG == 3) ? ~fab_read_data_valid_i : ((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG == 3) ? fab_read_data_valid_i : 1'b0);
assign uservalid_one = (C_USERVALID_LOW && C_USE_EMBEDDED_REG < 3) ? ~read_data_valid_i :((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG < 3) ? read_data_valid_i : 1'b0);
assign USERVALID = (C_USE_EMBEDDED_REG == 3) ? uservalid_both : uservalid_one;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
//no safety ckt with both reg
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end else begin
if (fwft_rst_done) begin
if (ram_regout_en) begin
userdata_both <= #`TCQ FIFODATA;
user_dbiterr_both <= #`TCQ FIFODBITERR;
user_sbiterr_both <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en) begin
USERDATA <= #`TCQ userdata_both;
USERDBITERR <= #`TCQ user_dbiterr_both;
USERSBITERR <= #`TCQ user_sbiterr_both;
end
end
end
end
end //always
end //if
endgenerate
//safety_ckt with both registers
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK) begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK) begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else if (fwft_rst_done) begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
userdata_both <= #`TCQ FIFODATA;
user_dbiterr_both <= #`TCQ FIFODBITERR;
user_sbiterr_both <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ userdata_both;
USERDBITERR <= #`TCQ user_dbiterr_both;
USERSBITERR <= #`TCQ user_sbiterr_both;
end
end
end
end //always
end //if
endgenerate
endmodule |
module fifo_generator_v13_1_3_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module fifo_generator_vlog_beh
#(
//-----------------------------------------------------------------------
// Generic Declarations
//-----------------------------------------------------------------------
parameter C_COMMON_CLOCK = 0,
parameter C_COUNT_TYPE = 0,
parameter C_DATA_COUNT_WIDTH = 2,
parameter C_DEFAULT_VALUE = "",
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_ENABLE_RLOCS = 0,
parameter C_FAMILY = "",
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_ALMOST_EMPTY = 0,
parameter C_HAS_ALMOST_FULL = 0,
parameter C_HAS_BACKUP = 0,
parameter C_HAS_DATA_COUNT = 0,
parameter C_HAS_INT_CLK = 0,
parameter C_HAS_MEMINIT_FILE = 0,
parameter C_HAS_OVERFLOW = 0,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_RD_RST = 0,
parameter C_HAS_RST = 1,
parameter C_HAS_SRST = 0,
parameter C_HAS_UNDERFLOW = 0,
parameter C_HAS_VALID = 0,
parameter C_HAS_WR_ACK = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_HAS_WR_RST = 0,
parameter C_IMPLEMENTATION_TYPE = 0,
parameter C_INIT_WR_PNTR_VAL = 0,
parameter C_MEMORY_TYPE = 1,
parameter C_MIF_FILE_NAME = "",
parameter C_OPTIMIZATION_MODE = 0,
parameter C_OVERFLOW_LOW = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_PRELOAD_LATENCY = 1,
parameter C_PRELOAD_REGS = 0,
parameter C_PRIM_FIFO_TYPE = "4kx4",
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0,
parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0,
parameter C_PROG_EMPTY_TYPE = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0,
parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0,
parameter C_PROG_FULL_TYPE = 0,
parameter C_RD_DATA_COUNT_WIDTH = 2,
parameter C_RD_DEPTH = 256,
parameter C_RD_FREQ = 1,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_UNDERFLOW_LOW = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_USE_PIPELINE_REG = 0,
parameter C_POWER_SAVING_MODE = 0,
parameter C_USE_FIFO16_FLAGS = 0,
parameter C_USE_FWFT_DATA_COUNT = 0,
parameter C_VALID_LOW = 0,
parameter C_WR_ACK_LOW = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_FREQ = 1,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_WR_RESPONSE_LATENCY = 1,
parameter C_MSGON_VAL = 1,
parameter C_ENABLE_RST_SYNC = 1,
parameter C_ERROR_INJECTION_TYPE = 0,
parameter C_SYNCHRONIZER_STAGE = 2,
// AXI Interface related parameters start here
parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3
parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3
parameter C_HAS_AXI_WR_CHANNEL = 0,
parameter C_HAS_AXI_RD_CHANNEL = 0,
parameter C_HAS_SLAVE_CE = 0,
parameter C_HAS_MASTER_CE = 0,
parameter C_ADD_NGC_CONSTRAINT = 0,
parameter C_USE_COMMON_UNDERFLOW = 0,
parameter C_USE_COMMON_OVERFLOW = 0,
parameter C_USE_DEFAULT_SETTINGS = 0,
// AXI Full/Lite
parameter C_AXI_ID_WIDTH = 0,
parameter C_AXI_ADDR_WIDTH = 0,
parameter C_AXI_DATA_WIDTH = 0,
parameter C_AXI_LEN_WIDTH = 8,
parameter C_AXI_LOCK_WIDTH = 2,
parameter C_HAS_AXI_ID = 0,
parameter C_HAS_AXI_AWUSER = 0,
parameter C_HAS_AXI_WUSER = 0,
parameter C_HAS_AXI_BUSER = 0,
parameter C_HAS_AXI_ARUSER = 0,
parameter C_HAS_AXI_RUSER = 0,
parameter C_AXI_ARUSER_WIDTH = 0,
parameter C_AXI_AWUSER_WIDTH = 0,
parameter C_AXI_WUSER_WIDTH = 0,
parameter C_AXI_BUSER_WIDTH = 0,
parameter C_AXI_RUSER_WIDTH = 0,
// AXI Streaming
parameter C_HAS_AXIS_TDATA = 0,
parameter C_HAS_AXIS_TID = 0,
parameter C_HAS_AXIS_TDEST = 0,
parameter C_HAS_AXIS_TUSER = 0,
parameter C_HAS_AXIS_TREADY = 0,
parameter C_HAS_AXIS_TLAST = 0,
parameter C_HAS_AXIS_TSTRB = 0,
parameter C_HAS_AXIS_TKEEP = 0,
parameter C_AXIS_TDATA_WIDTH = 1,
parameter C_AXIS_TID_WIDTH = 1,
parameter C_AXIS_TDEST_WIDTH = 1,
parameter C_AXIS_TUSER_WIDTH = 1,
parameter C_AXIS_TSTRB_WIDTH = 1,
parameter C_AXIS_TKEEP_WIDTH = 1,
// AXI Channel Type
// WACH --> Write Address Channel
// WDCH --> Write Data Channel
// WRCH --> Write Response Channel
// RACH --> Read Address Channel
// RDCH --> Read Data Channel
// AXIS --> AXI Streaming
parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic
parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie
// AXI Implementation Type
// 1 = Common Clock Block RAM FIFO
// 2 = Common Clock Distributed RAM FIFO
// 11 = Independent Clock Block RAM FIFO
// 12 = Independent Clock Distributed RAM FIFO
parameter C_IMPLEMENTATION_TYPE_WACH = 0,
parameter C_IMPLEMENTATION_TYPE_WDCH = 0,
parameter C_IMPLEMENTATION_TYPE_WRCH = 0,
parameter C_IMPLEMENTATION_TYPE_RACH = 0,
parameter C_IMPLEMENTATION_TYPE_RDCH = 0,
parameter C_IMPLEMENTATION_TYPE_AXIS = 0,
// AXI FIFO Type
// 0 = Data FIFO
// 1 = Packet FIFO
// 2 = Low Latency Sync FIFO
// 3 = Low Latency Async FIFO
parameter C_APPLICATION_TYPE_WACH = 0,
parameter C_APPLICATION_TYPE_WDCH = 0,
parameter C_APPLICATION_TYPE_WRCH = 0,
parameter C_APPLICATION_TYPE_RACH = 0,
parameter C_APPLICATION_TYPE_RDCH = 0,
parameter C_APPLICATION_TYPE_AXIS = 0,
// AXI Built-in FIFO Primitive Type
// 512x36, 1kx18, 2kx9, 4kx4, etc
parameter C_PRIM_FIFO_TYPE_WACH = "512x36",
parameter C_PRIM_FIFO_TYPE_WDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_WRCH = "512x36",
parameter C_PRIM_FIFO_TYPE_RACH = "512x36",
parameter C_PRIM_FIFO_TYPE_RDCH = "512x36",
parameter C_PRIM_FIFO_TYPE_AXIS = "512x36",
// Enable ECC
// 0 = ECC disabled
// 1 = ECC enabled
parameter C_USE_ECC_WACH = 0,
parameter C_USE_ECC_WDCH = 0,
parameter C_USE_ECC_WRCH = 0,
parameter C_USE_ECC_RACH = 0,
parameter C_USE_ECC_RDCH = 0,
parameter C_USE_ECC_AXIS = 0,
// ECC Error Injection Type
// 0 = No Error Injection
// 1 = Single Bit Error Injection
// 2 = Double Bit Error Injection
// 3 = Single Bit and Double Bit Error Injection
parameter C_ERROR_INJECTION_TYPE_WACH = 0,
parameter C_ERROR_INJECTION_TYPE_WDCH = 0,
parameter C_ERROR_INJECTION_TYPE_WRCH = 0,
parameter C_ERROR_INJECTION_TYPE_RACH = 0,
parameter C_ERROR_INJECTION_TYPE_RDCH = 0,
parameter C_ERROR_INJECTION_TYPE_AXIS = 0,
// Input Data Width
// Accumulation of all AXI input signal's width
parameter C_DIN_WIDTH_WACH = 1,
parameter C_DIN_WIDTH_WDCH = 1,
parameter C_DIN_WIDTH_WRCH = 1,
parameter C_DIN_WIDTH_RACH = 1,
parameter C_DIN_WIDTH_RDCH = 1,
parameter C_DIN_WIDTH_AXIS = 1,
parameter C_WR_DEPTH_WACH = 16,
parameter C_WR_DEPTH_WDCH = 16,
parameter C_WR_DEPTH_WRCH = 16,
parameter C_WR_DEPTH_RACH = 16,
parameter C_WR_DEPTH_RDCH = 16,
parameter C_WR_DEPTH_AXIS = 16,
parameter C_WR_PNTR_WIDTH_WACH = 4,
parameter C_WR_PNTR_WIDTH_WDCH = 4,
parameter C_WR_PNTR_WIDTH_WRCH = 4,
parameter C_WR_PNTR_WIDTH_RACH = 4,
parameter C_WR_PNTR_WIDTH_RDCH = 4,
parameter C_WR_PNTR_WIDTH_AXIS = 4,
parameter C_HAS_DATA_COUNTS_WACH = 0,
parameter C_HAS_DATA_COUNTS_WDCH = 0,
parameter C_HAS_DATA_COUNTS_WRCH = 0,
parameter C_HAS_DATA_COUNTS_RACH = 0,
parameter C_HAS_DATA_COUNTS_RDCH = 0,
parameter C_HAS_DATA_COUNTS_AXIS = 0,
parameter C_HAS_PROG_FLAGS_WACH = 0,
parameter C_HAS_PROG_FLAGS_WDCH = 0,
parameter C_HAS_PROG_FLAGS_WRCH = 0,
parameter C_HAS_PROG_FLAGS_RACH = 0,
parameter C_HAS_PROG_FLAGS_RDCH = 0,
parameter C_HAS_PROG_FLAGS_AXIS = 0,
parameter C_PROG_FULL_TYPE_WACH = 0,
parameter C_PROG_FULL_TYPE_WDCH = 0,
parameter C_PROG_FULL_TYPE_WRCH = 0,
parameter C_PROG_FULL_TYPE_RACH = 0,
parameter C_PROG_FULL_TYPE_RDCH = 0,
parameter C_PROG_FULL_TYPE_AXIS = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_PROG_EMPTY_TYPE_WACH = 0,
parameter C_PROG_EMPTY_TYPE_WDCH = 0,
parameter C_PROG_EMPTY_TYPE_WRCH = 0,
parameter C_PROG_EMPTY_TYPE_RACH = 0,
parameter C_PROG_EMPTY_TYPE_RDCH = 0,
parameter C_PROG_EMPTY_TYPE_AXIS = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0,
parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0,
parameter C_REG_SLICE_MODE_WACH = 0,
parameter C_REG_SLICE_MODE_WDCH = 0,
parameter C_REG_SLICE_MODE_WRCH = 0,
parameter C_REG_SLICE_MODE_RACH = 0,
parameter C_REG_SLICE_MODE_RDCH = 0,
parameter C_REG_SLICE_MODE_AXIS = 0
)
(
//------------------------------------------------------------------------------
// Input and Output Declarations
//------------------------------------------------------------------------------
// Conventional FIFO Interface Signals
input backup,
input backup_marker,
input clk,
input rst,
input srst,
input wr_clk,
input wr_rst,
input rd_clk,
input rd_rst,
input [C_DIN_WIDTH-1:0] din,
input wr_en,
input rd_en,
// Optional inputs
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert,
input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert,
input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate,
input int_clk,
input injectdbiterr,
input injectsbiterr,
input sleep,
output [C_DOUT_WIDTH-1:0] dout,
output full,
output almost_full,
output wr_ack,
output overflow,
output empty,
output almost_empty,
output valid,
output underflow,
output [C_DATA_COUNT_WIDTH-1:0] data_count,
output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count,
output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count,
output prog_full,
output prog_empty,
output sbiterr,
output dbiterr,
output wr_rst_busy,
output rd_rst_busy,
// AXI Global Signal
input m_aclk,
input s_aclk,
input s_aresetn,
input s_aclk_en,
input m_aclk_en,
// AXI Full/Lite Slave Write Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen,
input [3-1:0] s_axi_awsize,
input [2-1:0] s_axi_awburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock,
input [4-1:0] s_axi_awcache,
input [3-1:0] s_axi_awprot,
input [4-1:0] s_axi_awqos,
input [4-1:0] s_axi_awregion,
input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input s_axi_awvalid,
output s_axi_awready,
input [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input s_axi_wlast,
input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input s_axi_wvalid,
output s_axi_wready,
output [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output [2-1:0] s_axi_bresp,
output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output s_axi_bvalid,
input s_axi_bready,
// AXI Full/Lite Master Write Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen,
output [3-1:0] m_axi_awsize,
output [2-1:0] m_axi_awburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock,
output [4-1:0] m_axi_awcache,
output [3-1:0] m_axi_awprot,
output [4-1:0] m_axi_awqos,
output [4-1:0] m_axi_awregion,
output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output m_axi_awvalid,
input m_axi_awready,
output [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output m_axi_wlast,
output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output m_axi_wvalid,
input m_axi_wready,
input [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input [2-1:0] m_axi_bresp,
input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input m_axi_bvalid,
output m_axi_bready,
// AXI Full/Lite Slave Read Channel (write side)
input [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen,
input [3-1:0] s_axi_arsize,
input [2-1:0] s_axi_arburst,
input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock,
input [4-1:0] s_axi_arcache,
input [3-1:0] s_axi_arprot,
input [4-1:0] s_axi_arqos,
input [4-1:0] s_axi_arregion,
input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input s_axi_arvalid,
output s_axi_arready,
output [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output [2-1:0] s_axi_rresp,
output s_axi_rlast,
output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output s_axi_rvalid,
input s_axi_rready,
// AXI Full/Lite Master Read Channel (read side)
output [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen,
output [3-1:0] m_axi_arsize,
output [2-1:0] m_axi_arburst,
output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock,
output [4-1:0] m_axi_arcache,
output [3-1:0] m_axi_arprot,
output [4-1:0] m_axi_arqos,
output [4-1:0] m_axi_arregion,
output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output m_axi_arvalid,
input m_axi_arready,
input [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input [2-1:0] m_axi_rresp,
input m_axi_rlast,
input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input m_axi_rvalid,
output m_axi_rready,
// AXI Streaming Slave Signals (Write side)
input s_axis_tvalid,
output s_axis_tready,
input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata,
input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb,
input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep,
input s_axis_tlast,
input [C_AXIS_TID_WIDTH-1:0] s_axis_tid,
input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest,
input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser,
// AXI Streaming Master Signals (Read side)
output m_axis_tvalid,
input m_axis_tready,
output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata,
output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb,
output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep,
output m_axis_tlast,
output [C_AXIS_TID_WIDTH-1:0] m_axis_tid,
output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest,
output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser,
// AXI Full/Lite Write Address Channel signals
input axi_aw_injectsbiterr,
input axi_aw_injectdbiterr,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count,
output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count,
output axi_aw_sbiterr,
output axi_aw_dbiterr,
output axi_aw_overflow,
output axi_aw_underflow,
output axi_aw_prog_full,
output axi_aw_prog_empty,
// AXI Full/Lite Write Data Channel signals
input axi_w_injectsbiterr,
input axi_w_injectdbiterr,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count,
output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count,
output axi_w_sbiterr,
output axi_w_dbiterr,
output axi_w_overflow,
output axi_w_underflow,
output axi_w_prog_full,
output axi_w_prog_empty,
// AXI Full/Lite Write Response Channel signals
input axi_b_injectsbiterr,
input axi_b_injectdbiterr,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh,
input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count,
output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count,
output axi_b_sbiterr,
output axi_b_dbiterr,
output axi_b_overflow,
output axi_b_underflow,
output axi_b_prog_full,
output axi_b_prog_empty,
// AXI Full/Lite Read Address Channel signals
input axi_ar_injectsbiterr,
input axi_ar_injectdbiterr,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count,
output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count,
output axi_ar_sbiterr,
output axi_ar_dbiterr,
output axi_ar_overflow,
output axi_ar_underflow,
output axi_ar_prog_full,
output axi_ar_prog_empty,
// AXI Full/Lite Read Data Channel Signals
input axi_r_injectsbiterr,
input axi_r_injectdbiterr,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh,
input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count,
output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count,
output axi_r_sbiterr,
output axi_r_dbiterr,
output axi_r_overflow,
output axi_r_underflow,
output axi_r_prog_full,
output axi_r_prog_empty,
// AXI Streaming FIFO Related Signals
input axis_injectsbiterr,
input axis_injectdbiterr,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh,
input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count,
output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count,
output axis_sbiterr,
output axis_dbiterr,
output axis_overflow,
output axis_underflow,
output axis_prog_full,
output axis_prog_empty
);
wire BACKUP;
wire BACKUP_MARKER;
wire CLK;
wire RST;
wire SRST;
wire WR_CLK;
wire WR_RST;
wire RD_CLK;
wire RD_RST;
wire [C_DIN_WIDTH-1:0] DIN;
wire WR_EN;
wire RD_EN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire INT_CLK;
wire INJECTDBITERR;
wire INJECTSBITERR;
wire SLEEP;
wire [C_DOUT_WIDTH-1:0] DOUT;
wire FULL;
wire ALMOST_FULL;
wire WR_ACK;
wire OVERFLOW;
wire EMPTY;
wire ALMOST_EMPTY;
wire VALID;
wire UNDERFLOW;
wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT;
wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT;
wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT;
wire PROG_FULL;
wire PROG_EMPTY;
wire SBITERR;
wire DBITERR;
wire WR_RST_BUSY;
wire RD_RST_BUSY;
wire M_ACLK;
wire S_ACLK;
wire S_ARESETN;
wire S_ACLK_EN;
wire M_ACLK_EN;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN;
wire [3-1:0] S_AXI_AWSIZE;
wire [2-1:0] S_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK;
wire [4-1:0] S_AXI_AWCACHE;
wire [3-1:0] S_AXI_AWPROT;
wire [4-1:0] S_AXI_AWQOS;
wire [4-1:0] S_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER;
wire S_AXI_AWVALID;
wire S_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB;
wire S_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER;
wire S_AXI_WVALID;
wire S_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID;
wire [2-1:0] S_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER;
wire S_AXI_BVALID;
wire S_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN;
wire [3-1:0] M_AXI_AWSIZE;
wire [2-1:0] M_AXI_AWBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK;
wire [4-1:0] M_AXI_AWCACHE;
wire [3-1:0] M_AXI_AWPROT;
wire [4-1:0] M_AXI_AWQOS;
wire [4-1:0] M_AXI_AWREGION;
wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER;
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID;
wire [2-1:0] M_AXI_BRESP;
wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN;
wire [3-1:0] S_AXI_ARSIZE;
wire [2-1:0] S_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK;
wire [4-1:0] S_AXI_ARCACHE;
wire [3-1:0] S_AXI_ARPROT;
wire [4-1:0] S_AXI_ARQOS;
wire [4-1:0] S_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER;
wire S_AXI_ARVALID;
wire S_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA;
wire [2-1:0] S_AXI_RRESP;
wire S_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER;
wire S_AXI_RVALID;
wire S_AXI_RREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID;
wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR;
wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN;
wire [3-1:0] M_AXI_ARSIZE;
wire [2-1:0] M_AXI_ARBURST;
wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK;
wire [4-1:0] M_AXI_ARCACHE;
wire [3-1:0] M_AXI_ARPROT;
wire [4-1:0] M_AXI_ARQOS;
wire [4-1:0] M_AXI_ARREGION;
wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA;
wire [2-1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
wire S_AXIS_TVALID;
wire S_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP;
wire S_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER;
wire M_AXIS_TVALID;
wire M_AXIS_TREADY;
wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA;
wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB;
wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP;
wire M_AXIS_TLAST;
wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID;
wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST;
wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER;
wire AXI_AW_INJECTSBITERR;
wire AXI_AW_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT;
wire AXI_AW_SBITERR;
wire AXI_AW_DBITERR;
wire AXI_AW_OVERFLOW;
wire AXI_AW_UNDERFLOW;
wire AXI_AW_PROG_FULL;
wire AXI_AW_PROG_EMPTY;
wire AXI_W_INJECTSBITERR;
wire AXI_W_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT;
wire AXI_W_SBITERR;
wire AXI_W_DBITERR;
wire AXI_W_OVERFLOW;
wire AXI_W_UNDERFLOW;
wire AXI_W_PROG_FULL;
wire AXI_W_PROG_EMPTY;
wire AXI_B_INJECTSBITERR;
wire AXI_B_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT;
wire AXI_B_SBITERR;
wire AXI_B_DBITERR;
wire AXI_B_OVERFLOW;
wire AXI_B_UNDERFLOW;
wire AXI_B_PROG_FULL;
wire AXI_B_PROG_EMPTY;
wire AXI_AR_INJECTSBITERR;
wire AXI_AR_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT;
wire AXI_AR_SBITERR;
wire AXI_AR_DBITERR;
wire AXI_AR_OVERFLOW;
wire AXI_AR_UNDERFLOW;
wire AXI_AR_PROG_FULL;
wire AXI_AR_PROG_EMPTY;
wire AXI_R_INJECTSBITERR;
wire AXI_R_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT;
wire AXI_R_SBITERR;
wire AXI_R_DBITERR;
wire AXI_R_OVERFLOW;
wire AXI_R_UNDERFLOW;
wire AXI_R_PROG_FULL;
wire AXI_R_PROG_EMPTY;
wire AXIS_INJECTSBITERR;
wire AXIS_INJECTDBITERR;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT;
wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT;
wire AXIS_SBITERR;
wire AXIS_DBITERR;
wire AXIS_OVERFLOW;
wire AXIS_UNDERFLOW;
wire AXIS_PROG_FULL;
wire AXIS_PROG_EMPTY;
wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in;
wire wr_rst_int;
wire rd_rst_int;
wire wr_rst_busy_o;
wire wr_rst_busy_ntve;
wire wr_rst_busy_axis;
wire wr_rst_busy_wach;
wire wr_rst_busy_wdch;
wire wr_rst_busy_wrch;
wire wr_rst_busy_rach;
wire wr_rst_busy_rdch;
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// Conventional FIFO Interface Signals
assign BACKUP = backup;
assign BACKUP_MARKER = backup_marker;
assign CLK = clk;
assign RST = rst;
assign SRST = srst;
assign WR_CLK = wr_clk;
assign WR_RST = wr_rst;
assign RD_CLK = rd_clk;
assign RD_RST = rd_rst;
assign WR_EN = wr_en;
assign RD_EN = rd_en;
assign INT_CLK = int_clk;
assign INJECTDBITERR = injectdbiterr;
assign INJECTSBITERR = injectsbiterr;
assign SLEEP = sleep;
assign full = FULL;
assign almost_full = ALMOST_FULL;
assign wr_ack = WR_ACK;
assign overflow = OVERFLOW;
assign empty = EMPTY;
assign almost_empty = ALMOST_EMPTY;
assign valid = VALID;
assign underflow = UNDERFLOW;
assign prog_full = PROG_FULL;
assign prog_empty = PROG_EMPTY;
assign sbiterr = SBITERR;
assign dbiterr = DBITERR;
// assign wr_rst_busy = WR_RST_BUSY | wr_rst_busy_o;
assign wr_rst_busy = wr_rst_busy_o;
assign rd_rst_busy = RD_RST_BUSY;
assign M_ACLK = m_aclk;
assign S_ACLK = s_aclk;
assign S_ARESETN = s_aresetn;
assign S_ACLK_EN = s_aclk_en;
assign M_ACLK_EN = m_aclk_en;
assign S_AXI_AWVALID = s_axi_awvalid;
assign s_axi_awready = S_AXI_AWREADY;
assign S_AXI_WLAST = s_axi_wlast;
assign S_AXI_WVALID = s_axi_wvalid;
assign s_axi_wready = S_AXI_WREADY;
assign s_axi_bvalid = S_AXI_BVALID;
assign S_AXI_BREADY = s_axi_bready;
assign m_axi_awvalid = M_AXI_AWVALID;
assign M_AXI_AWREADY = m_axi_awready;
assign m_axi_wlast = M_AXI_WLAST;
assign m_axi_wvalid = M_AXI_WVALID;
assign M_AXI_WREADY = m_axi_wready;
assign M_AXI_BVALID = m_axi_bvalid;
assign m_axi_bready = M_AXI_BREADY;
assign S_AXI_ARVALID = s_axi_arvalid;
assign s_axi_arready = S_AXI_ARREADY;
assign s_axi_rlast = S_AXI_RLAST;
assign s_axi_rvalid = S_AXI_RVALID;
assign S_AXI_RREADY = s_axi_rready;
assign m_axi_arvalid = M_AXI_ARVALID;
assign M_AXI_ARREADY = m_axi_arready;
assign M_AXI_RLAST = m_axi_rlast;
assign M_AXI_RVALID = m_axi_rvalid;
assign m_axi_rready = M_AXI_RREADY;
assign S_AXIS_TVALID = s_axis_tvalid;
assign s_axis_tready = S_AXIS_TREADY;
assign S_AXIS_TLAST = s_axis_tlast;
assign m_axis_tvalid = M_AXIS_TVALID;
assign M_AXIS_TREADY = m_axis_tready;
assign m_axis_tlast = M_AXIS_TLAST;
assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr;
assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr;
assign axi_aw_sbiterr = AXI_AW_SBITERR;
assign axi_aw_dbiterr = AXI_AW_DBITERR;
assign axi_aw_overflow = AXI_AW_OVERFLOW;
assign axi_aw_underflow = AXI_AW_UNDERFLOW;
assign axi_aw_prog_full = AXI_AW_PROG_FULL;
assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY;
assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr;
assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr;
assign axi_w_sbiterr = AXI_W_SBITERR;
assign axi_w_dbiterr = AXI_W_DBITERR;
assign axi_w_overflow = AXI_W_OVERFLOW;
assign axi_w_underflow = AXI_W_UNDERFLOW;
assign axi_w_prog_full = AXI_W_PROG_FULL;
assign axi_w_prog_empty = AXI_W_PROG_EMPTY;
assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr;
assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr;
assign axi_b_sbiterr = AXI_B_SBITERR;
assign axi_b_dbiterr = AXI_B_DBITERR;
assign axi_b_overflow = AXI_B_OVERFLOW;
assign axi_b_underflow = AXI_B_UNDERFLOW;
assign axi_b_prog_full = AXI_B_PROG_FULL;
assign axi_b_prog_empty = AXI_B_PROG_EMPTY;
assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr;
assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr;
assign axi_ar_sbiterr = AXI_AR_SBITERR;
assign axi_ar_dbiterr = AXI_AR_DBITERR;
assign axi_ar_overflow = AXI_AR_OVERFLOW;
assign axi_ar_underflow = AXI_AR_UNDERFLOW;
assign axi_ar_prog_full = AXI_AR_PROG_FULL;
assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY;
assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr;
assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr;
assign axi_r_sbiterr = AXI_R_SBITERR;
assign axi_r_dbiterr = AXI_R_DBITERR;
assign axi_r_overflow = AXI_R_OVERFLOW;
assign axi_r_underflow = AXI_R_UNDERFLOW;
assign axi_r_prog_full = AXI_R_PROG_FULL;
assign axi_r_prog_empty = AXI_R_PROG_EMPTY;
assign AXIS_INJECTSBITERR = axis_injectsbiterr;
assign AXIS_INJECTDBITERR = axis_injectdbiterr;
assign axis_sbiterr = AXIS_SBITERR;
assign axis_dbiterr = AXIS_DBITERR;
assign axis_overflow = AXIS_OVERFLOW;
assign axis_underflow = AXIS_UNDERFLOW;
assign axis_prog_full = AXIS_PROG_FULL;
assign axis_prog_empty = AXIS_PROG_EMPTY;
assign DIN = din;
assign PROG_EMPTY_THRESH = prog_empty_thresh;
assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert;
assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate;
assign PROG_FULL_THRESH = prog_full_thresh;
assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert;
assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate;
assign dout = DOUT;
assign data_count = DATA_COUNT;
assign rd_data_count = RD_DATA_COUNT;
assign wr_data_count = WR_DATA_COUNT;
assign S_AXI_AWID = s_axi_awid;
assign S_AXI_AWADDR = s_axi_awaddr;
assign S_AXI_AWLEN = s_axi_awlen;
assign S_AXI_AWSIZE = s_axi_awsize;
assign S_AXI_AWBURST = s_axi_awburst;
assign S_AXI_AWLOCK = s_axi_awlock;
assign S_AXI_AWCACHE = s_axi_awcache;
assign S_AXI_AWPROT = s_axi_awprot;
assign S_AXI_AWQOS = s_axi_awqos;
assign S_AXI_AWREGION = s_axi_awregion;
assign S_AXI_AWUSER = s_axi_awuser;
assign S_AXI_WID = s_axi_wid;
assign S_AXI_WDATA = s_axi_wdata;
assign S_AXI_WSTRB = s_axi_wstrb;
assign S_AXI_WUSER = s_axi_wuser;
assign s_axi_bid = S_AXI_BID;
assign s_axi_bresp = S_AXI_BRESP;
assign s_axi_buser = S_AXI_BUSER;
assign m_axi_awid = M_AXI_AWID;
assign m_axi_awaddr = M_AXI_AWADDR;
assign m_axi_awlen = M_AXI_AWLEN;
assign m_axi_awsize = M_AXI_AWSIZE;
assign m_axi_awburst = M_AXI_AWBURST;
assign m_axi_awlock = M_AXI_AWLOCK;
assign m_axi_awcache = M_AXI_AWCACHE;
assign m_axi_awprot = M_AXI_AWPROT;
assign m_axi_awqos = M_AXI_AWQOS;
assign m_axi_awregion = M_AXI_AWREGION;
assign m_axi_awuser = M_AXI_AWUSER;
assign m_axi_wid = M_AXI_WID;
assign m_axi_wdata = M_AXI_WDATA;
assign m_axi_wstrb = M_AXI_WSTRB;
assign m_axi_wuser = M_AXI_WUSER;
assign M_AXI_BID = m_axi_bid;
assign M_AXI_BRESP = m_axi_bresp;
assign M_AXI_BUSER = m_axi_buser;
assign S_AXI_ARID = s_axi_arid;
assign S_AXI_ARADDR = s_axi_araddr;
assign S_AXI_ARLEN = s_axi_arlen;
assign S_AXI_ARSIZE = s_axi_arsize;
assign S_AXI_ARBURST = s_axi_arburst;
assign S_AXI_ARLOCK = s_axi_arlock;
assign S_AXI_ARCACHE = s_axi_arcache;
assign S_AXI_ARPROT = s_axi_arprot;
assign S_AXI_ARQOS = s_axi_arqos;
assign S_AXI_ARREGION = s_axi_arregion;
assign S_AXI_ARUSER = s_axi_aruser;
assign s_axi_rid = S_AXI_RID;
assign s_axi_rdata = S_AXI_RDATA;
assign s_axi_rresp = S_AXI_RRESP;
assign s_axi_ruser = S_AXI_RUSER;
assign m_axi_arid = M_AXI_ARID;
assign m_axi_araddr = M_AXI_ARADDR;
assign m_axi_arlen = M_AXI_ARLEN;
assign m_axi_arsize = M_AXI_ARSIZE;
assign m_axi_arburst = M_AXI_ARBURST;
assign m_axi_arlock = M_AXI_ARLOCK;
assign m_axi_arcache = M_AXI_ARCACHE;
assign m_axi_arprot = M_AXI_ARPROT;
assign m_axi_arqos = M_AXI_ARQOS;
assign m_axi_arregion = M_AXI_ARREGION;
assign m_axi_aruser = M_AXI_ARUSER;
assign M_AXI_RID = m_axi_rid;
assign M_AXI_RDATA = m_axi_rdata;
assign M_AXI_RRESP = m_axi_rresp;
assign M_AXI_RUSER = m_axi_ruser;
assign S_AXIS_TDATA = s_axis_tdata;
assign S_AXIS_TSTRB = s_axis_tstrb;
assign S_AXIS_TKEEP = s_axis_tkeep;
assign S_AXIS_TID = s_axis_tid;
assign S_AXIS_TDEST = s_axis_tdest;
assign S_AXIS_TUSER = s_axis_tuser;
assign m_axis_tdata = M_AXIS_TDATA;
assign m_axis_tstrb = M_AXIS_TSTRB;
assign m_axis_tkeep = M_AXIS_TKEEP;
assign m_axis_tid = M_AXIS_TID;
assign m_axis_tdest = M_AXIS_TDEST;
assign m_axis_tuser = M_AXIS_TUSER;
assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh;
assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh;
assign axi_aw_data_count = AXI_AW_DATA_COUNT;
assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT;
assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT;
assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh;
assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh;
assign axi_w_data_count = AXI_W_DATA_COUNT;
assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT;
assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT;
assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh;
assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh;
assign axi_b_data_count = AXI_B_DATA_COUNT;
assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT;
assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT;
assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh;
assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh;
assign axi_ar_data_count = AXI_AR_DATA_COUNT;
assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT;
assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT;
assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh;
assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh;
assign axi_r_data_count = AXI_R_DATA_COUNT;
assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT;
assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT;
assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh;
assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh;
assign axis_data_count = AXIS_DATA_COUNT;
assign axis_wr_data_count = AXIS_WR_DATA_COUNT;
assign axis_rd_data_count = AXIS_RD_DATA_COUNT;
generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo
fifo_generator_v13_1_3_CONV_VER
#(
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_DIN_WIDTH (C_DIN_WIDTH),
.C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0),
.C_DOUT_WIDTH (C_DOUT_WIDTH),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_FAMILY (C_FAMILY),
.C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL),
.C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY),
.C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_DATA_COUNT (C_HAS_DATA_COUNT),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT),
.C_HAS_RD_RST (C_HAS_RD_RST),
.C_HAS_RST (C_HAS_RST),
.C_HAS_SRST (C_HAS_SRST),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_HAS_VALID (C_HAS_VALID),
.C_HAS_WR_ACK (C_HAS_WR_ACK),
.C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT),
.C_HAS_WR_RST (C_HAS_WR_RST),
.C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_MEMORY_TYPE (C_MEMORY_TYPE),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_PRELOAD_LATENCY (C_PRELOAD_LATENCY),
.C_PRELOAD_REGS (C_PRELOAD_REGS),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL),
.C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL),
.C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE),
.C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH),
.C_RD_DEPTH (C_RD_DEPTH),
.C_RD_FREQ (C_RD_FREQ),
.C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_USE_DOUT_RST (C_USE_DOUT_RST),
.C_USE_ECC (C_USE_ECC),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_EN_SAFETY_CKT (C_EN_SAFETY_CKT),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT),
.C_VALID_LOW (C_VALID_LOW),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH),
.C_WR_DEPTH (C_WR_DEPTH),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE),
.C_AXI_TYPE (C_AXI_TYPE),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE)
)
fifo_generator_v13_1_3_conv_dut
(
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.CLK (CLK),
.RST (RST),
.SRST (SRST),
.WR_CLK (WR_CLK),
.WR_RST (WR_RST),
.RD_CLK (RD_CLK),
.RD_RST (RD_RST),
.DIN (DIN),
.WR_EN (WR_EN),
.RD_EN (RD_EN),
.PROG_EMPTY_THRESH (PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT),
.PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE),
.PROG_FULL_THRESH (PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT),
.PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE),
.INT_CLK (INT_CLK),
.INJECTDBITERR (INJECTDBITERR),
.INJECTSBITERR (INJECTSBITERR),
.DOUT (DOUT),
.FULL (FULL),
.ALMOST_FULL (ALMOST_FULL),
.WR_ACK (WR_ACK),
.OVERFLOW (OVERFLOW),
.EMPTY (EMPTY),
.ALMOST_EMPTY (ALMOST_EMPTY),
.VALID (VALID),
.UNDERFLOW (UNDERFLOW),
.DATA_COUNT (DATA_COUNT),
.RD_DATA_COUNT (RD_DATA_COUNT),
.WR_DATA_COUNT (wr_data_count_in),
.PROG_FULL (PROG_FULL),
.PROG_EMPTY (PROG_EMPTY),
.SBITERR (SBITERR),
.DBITERR (DBITERR),
.wr_rst_busy_o (wr_rst_busy_o),
.wr_rst_busy (wr_rst_busy_i),
.rd_rst_busy (rd_rst_busy),
.wr_rst_i_out (wr_rst_int),
.rd_rst_i_out (rd_rst_int)
);
end endgenerate
localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0;
localparam C_AXI_SIZE_WIDTH = 3;
localparam C_AXI_BURST_WIDTH = 2;
localparam C_AXI_CACHE_WIDTH = 4;
localparam C_AXI_PROT_WIDTH = 3;
localparam C_AXI_QOS_WIDTH = 4;
localparam C_AXI_REGION_WIDTH = 4;
localparam C_AXI_BRESP_WIDTH = 2;
localparam C_AXI_RRESP_WIDTH = 2;
localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0;
localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS;
localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET;
localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET;
localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET;
localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET;
localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET;
localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS);
localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH);
function [LOG_DEPTH_AXIS-1:0] bin2gray;
input [LOG_DEPTH_AXIS-1:0] x;
begin
bin2gray = x ^ (x>>1);
end
endfunction
function [LOG_DEPTH_AXIS-1:0] gray2bin;
input [LOG_DEPTH_AXIS-1:0] x;
integer i;
begin
gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1];
for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin
gray2bin[i] = gray2bin[i+1] ^ x[i];
end
end
endfunction
wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last;
wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ;
wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0;
reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0;
reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0;
wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad;
wire [LOG_WR_DEPTH : 0] r_inv_pad;
wire [LOG_WR_DEPTH-1 : 0] d_cnt;
reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0;
reg adj_w_cnt_rd_pad_0 = 0;
reg r_inv_pad_0 = 0;
genvar l;
generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage
fifo_generator_v13_1_3_sync_stage
#(
.C_WIDTH (LOG_WR_DEPTH)
)
rd_stg_inst
(
.RST (rd_rst_int),
.CLK (RD_CLK),
.DIN (w_q[l-1]),
.DOUT (w_q[l])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter
assign wr_eop_ad = WR_EN & !(FULL);
assign rd_eop_ad = RD_EN & !(EMPTY);
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt <= 1'b0;
else if (wr_eop_ad)
w_cnt <= w_cnt + 1;
end
always @ (posedge wr_rst_int or posedge WR_CLK)
begin
if (wr_rst_int)
w_cnt_gc <= 1'b0;
else
w_cnt_gc <= bin2gray(w_cnt);
end
assign w_q[0] = w_cnt_gc;
assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE];
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
w_cnt_rd <= 1'b0;
else
w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last);
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
r_cnt <= 1'b0;
else if (rd_eop_ad)
r_cnt <= r_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd;
assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt;
assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0;
assign r_inv_pad[0] = r_inv_pad_0;
always @ ( rd_eop_ad )
begin
if (!rd_eop_ad) begin
adj_w_cnt_rd_pad_0 <= 1'b1;
r_inv_pad_0 <= 1'b1;
end else begin
adj_w_cnt_rd_pad_0 <= 1'b0;
r_inv_pad_0 <= 1'b0;
end
end
always @ (posedge rd_rst_int or posedge RD_CLK)
begin
if (rd_rst_int)
d_cnt_pad <= 1'b0;
else
d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ;
end
assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ;
assign WR_DATA_COUNT = d_cnt;
end endgenerate // fifo_ic_adapter
generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter
assign WR_DATA_COUNT = wr_data_count_in;
end endgenerate // fifo_icn_adapter
wire inverted_reset = ~S_ARESETN;
wire axi_rs_rst;
wire [C_DIN_WIDTH_AXIS-1:0] axis_din ;
wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ;
wire axis_full ;
wire axis_almost_full ;
wire axis_empty ;
wire axis_s_axis_tready;
wire axis_m_axis_tvalid;
wire axis_wr_en ;
wire axis_rd_en ;
wire axis_we ;
wire axis_re ;
wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc;
reg axis_pkt_read = 1'b0;
wire axis_rd_rst;
wire axis_wr_rst;
generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 ||
C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst
reg rst_d1 = 0 ;
reg rst_d2 = 0 ;
reg [3:0] axi_rst = 4'h0 ;
always @ (posedge inverted_reset or posedge S_ACLK) begin
if (inverted_reset) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
axi_rst <= 4'hf;
end else begin
rst_d1 <= #`TCQ 1'b0;
rst_d2 <= #`TCQ rst_d1;
axi_rst <= #`TCQ {axi_rst[2:0],1'b0};
end
end
assign axi_rs_rst = axi_rst[3];//rst_d2;
end endgenerate // gaxi_rs_rst
generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming
// Write protection when almost full or prog_full is high
assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID;
// Read protection when almost empty or prog_empty is high
assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY :
(C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY;
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re;
fifo_generator_v13_1_3_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_AXIS),
.C_WR_DEPTH (C_WR_DEPTH_AXIS),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_DOUT_WIDTH (C_DIN_WIDTH_AXIS),
.C_RD_DEPTH (C_WR_DEPTH_AXIS),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS),
.C_USE_ECC (C_USE_ECC_AXIS),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG),
.C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 : 0),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_3_axis_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (axis_wr_en),
.RD_EN (axis_rd_en),
.PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}),
.INJECTDBITERR (AXIS_INJECTDBITERR),
.INJECTSBITERR (AXIS_INJECTSBITERR),
.DIN (axis_din),
.DOUT (axis_dout),
.FULL (axis_full),
.EMPTY (axis_empty),
.ALMOST_FULL (axis_almost_full),
.PROG_FULL (AXIS_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXIS_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (AXIS_OVERFLOW),
.VALID (),
.UNDERFLOW (AXIS_UNDERFLOW),
.DATA_COUNT (axis_dc),
.RD_DATA_COUNT (AXIS_RD_DATA_COUNT),
.WR_DATA_COUNT (AXIS_WR_DATA_COUNT),
.SBITERR (AXIS_SBITERR),
.DBITERR (AXIS_DBITERR),
.wr_rst_busy (wr_rst_busy_axis),
.rd_rst_busy (rd_rst_busy_axis),
.wr_rst_i_out (axis_wr_rst),
.rd_rst_i_out (axis_rd_rst),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full;
assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read;
assign S_AXIS_TREADY = axis_s_axis_tready;
assign M_AXIS_TVALID = axis_m_axis_tvalid;
end endgenerate // axi_streaming
wire axis_wr_eop;
reg axis_wr_eop_d1 = 1'b0;
wire axis_rd_eop;
integer axis_pkt_cnt;
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1)
axis_pkt_read <= 1'b0;
else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_wr_eop_d1 <= 1'b0;
else
axis_wr_eop_d1 <= axis_wr_eop;
end
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_pkt_cnt <= 0;
else if (axis_wr_eop_d1 && ~axis_rd_eop)
axis_pkt_cnt <= axis_pkt_cnt + 1;
else if (axis_rd_eop && ~axis_wr_eop_d1)
axis_pkt_cnt <= axis_pkt_cnt - 1;
end
end endgenerate // gaxis_pkt_fifo_cc
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0;
wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last;
wire axis_rd_has_rst;
wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ;
wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0;
wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0;
reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0;
wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad;
wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad;
wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt;
reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0;
reg adj_axis_wpkt_cnt_rd_pad_0 = 0;
reg rpkt_inv_pad_0 = 0;
wire axis_af_rd ;
generate if (C_HAS_RST == 1) begin : rst_blk_has
assign axis_rd_has_rst = axis_rd_rst;
end endgenerate //rst_blk_has
generate if (C_HAS_RST == 0) begin :rst_blk_no
assign axis_rd_has_rst = 1'b0;
end endgenerate //rst_blk_no
genvar i;
generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage
fifo_generator_v13_1_3_sync_stage
#(
.C_WIDTH (LOG_DEPTH_AXIS)
)
rd_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (wpkt_q[i-1]),
.DOUT (wpkt_q[i])
);
fifo_generator_v13_1_3_sync_stage
#(
.C_WIDTH (1)
)
wr_stg_inst
(
.RST (axis_rd_has_rst),
.CLK (M_ACLK),
.DIN (axis_af_q[i-1]),
.DOUT (axis_af_q[i])
);
end endgenerate // gpkt_cnt_sync_stage
generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic
assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST;
assign axis_rd_eop = axis_rd_en & axis_dout[0];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_pkt_read <= 1'b0;
else if (axis_rd_eop && (diff_pkt_cnt == 1))
axis_pkt_read <= 1'b0;
else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty))
axis_pkt_read <= 1'b1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt <= 1'b0;
else if (axis_wr_eop)
axis_wpkt_cnt <= axis_wpkt_cnt + 1;
end
always @ (posedge axis_wr_rst or posedge S_ACLK)
begin
if (axis_wr_rst)
axis_wpkt_cnt_gc <= 1'b0;
else
axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt);
end
assign wpkt_q[0] = axis_wpkt_cnt_gc;
assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE];
assign axis_af_q[0] = axis_almost_full;
//assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE];
assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE];
always @ (posedge axis_rd_has_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_wpkt_cnt_rd <= 1'b0;
else
axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last);
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
axis_rpkt_cnt <= 1'b0;
else if (axis_rd_eop)
axis_rpkt_cnt <= axis_rpkt_cnt + 1;
end
// Take the difference of write and read packet count
// Logic is similar to rd_pe_as
assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd;
assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt;
assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0;
assign rpkt_inv_pad[0] = rpkt_inv_pad_0;
always @ ( axis_rd_eop )
begin
if (!axis_rd_eop) begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1;
rpkt_inv_pad_0 <= 1'b1;
end else begin
adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0;
rpkt_inv_pad_0 <= 1'b0;
end
end
always @ (posedge axis_rd_rst or posedge M_ACLK)
begin
if (axis_rd_has_rst)
diff_pkt_cnt_pad <= 1'b0;
else
diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ;
end
assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ;
end endgenerate // gaxis_pkt_fifo_ic
// Generate the accurate data count for axi stream packet fifo configuration
reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0;
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt
always @ (posedge inverted_reset or posedge S_ACLK)
begin
if (inverted_reset)
axis_dc_pkt_fifo <= 0;
else if (axis_wr_en && (~axis_rd_en))
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1;
else if (~axis_wr_en && axis_rd_en)
axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1;
end
assign AXIS_DATA_COUNT = axis_dc_pkt_fifo;
end endgenerate // gdc_pkt
generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt
assign AXIS_DATA_COUNT = 0;
end endgenerate // gndc_pkt
generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc
assign AXIS_DATA_COUNT = axis_dc;
end endgenerate // gdc
// Register Slice for Write Address Channel
generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice
assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID;
assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY;
fifo_generator_v13_1_3_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_AXIS),
.C_REG_CONFIG (C_REG_SLICE_MODE_AXIS)
)
axis_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (axis_din),
.S_VALID (axis_wr_en),
.S_READY (S_AXIS_TREADY),
// Master side
.M_PAYLOAD_DATA (axis_dout),
.M_VALID (M_AXIS_TVALID),
.M_READY (axis_rd_en)
);
end endgenerate // gaxis_reg_slice
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata
assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA;
assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb
assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB;
assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep
assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP;
assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid
assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID;
assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest
assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST;
assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser
assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER;
assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET];
end endgenerate
generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast
assign axis_din[0] = S_AXIS_TLAST;
assign M_AXIS_TLAST = axis_dout[0];
end endgenerate
//###########################################################################
// AXI FULL Write Channel (axi_write_channel)
//###########################################################################
localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0;
localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0;
localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0;
localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0;
localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0;
localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0;
localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0;
localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0;
localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH;
localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH;
localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET;
localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET;
localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET;
localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET;
localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET;
localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET;
localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET;
localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH;
localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH;
localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8;
localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET;
localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH;
localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH;
localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET;
wire [C_DIN_WIDTH_WACH-1:0] wach_din ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout ;
wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ;
wire wach_full ;
wire wach_almost_full ;
wire wach_prog_full ;
wire wach_empty ;
wire wach_almost_empty ;
wire wach_prog_empty ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ;
wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ;
wire wdch_full ;
wire wdch_almost_full ;
wire wdch_prog_full ;
wire wdch_empty ;
wire wdch_almost_empty ;
wire wdch_prog_empty ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ;
wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ;
wire wrch_full ;
wire wrch_almost_full ;
wire wrch_prog_full ;
wire wrch_empty ;
wire wrch_almost_empty ;
wire wrch_prog_empty ;
wire axi_aw_underflow_i;
wire axi_w_underflow_i ;
wire axi_b_underflow_i ;
wire axi_aw_overflow_i ;
wire axi_w_overflow_i ;
wire axi_b_overflow_i ;
wire axi_wr_underflow_i;
wire axi_wr_overflow_i ;
wire wach_s_axi_awready;
wire wach_m_axi_awvalid;
wire wach_wr_en ;
wire wach_rd_en ;
wire wdch_s_axi_wready ;
wire wdch_m_axi_wvalid ;
wire wdch_wr_en ;
wire wdch_rd_en ;
wire wrch_s_axi_bvalid ;
wire wrch_m_axi_bready ;
wire wrch_wr_en ;
wire wrch_rd_en ;
wire txn_count_up ;
wire txn_count_down ;
wire awvalid_en ;
wire awvalid_pkt ;
wire awready_pkt ;
integer wr_pkt_count ;
wire wach_we ;
wire wach_re ;
wire wdch_we ;
wire wdch_re ;
wire wrch_we ;
wire wrch_re ;
generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel
// Write protection when almost full or prog_full is high
assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID;
// Read protection when almost empty or prog_empty is high
assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ?
wach_m_axi_awvalid & awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY && wach_m_axi_awvalid :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ?
awready_pkt & awvalid_en :
(C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ?
M_AXI_AWREADY : 1'b0;
assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we;
assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re;
fifo_generator_v13_1_3_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_DEPTH (C_WR_DEPTH_WACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WACH),
.C_RD_DEPTH (C_WR_DEPTH_WACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH),
.C_USE_ECC (C_USE_ECC_WACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 : 0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_3_wach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wach_wr_en),
.RD_EN (wach_rd_en),
.PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}),
.INJECTDBITERR (AXI_AW_INJECTDBITERR),
.INJECTSBITERR (AXI_AW_INJECTSBITERR),
.DIN (wach_din),
.DOUT (wach_dout_pkt),
.FULL (wach_full),
.EMPTY (wach_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_AW_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_AW_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_aw_overflow_i),
.VALID (),
.UNDERFLOW (axi_aw_underflow_i),
.DATA_COUNT (AXI_AW_DATA_COUNT),
.RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT),
.SBITERR (AXI_AW_SBITERR),
.DBITERR (AXI_AW_DBITERR),
.wr_rst_busy (wr_rst_busy_wach),
.rd_rst_busy (rd_rst_busy_wach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full;
assign wach_m_axi_awvalid = ~wach_empty;
assign S_AXI_AWREADY = wach_s_axi_awready;
assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0;
assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0;
end endgenerate // axi_write_address_channel
// Register Slice for Write Address Channel
generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice
fifo_generator_v13_1_3_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WACH)
)
wach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wach_din),
.S_VALID (S_AXI_AWVALID),
.S_READY (S_AXI_AWREADY),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
end endgenerate // gwach_reg_slice
generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr
fifo_generator_v13_1_3_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WACH),
.C_REG_CONFIG (1)
)
wach_pkt_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (wach_dout_pkt),
.S_VALID (awvalid_pkt),
.S_READY (awready_pkt),
// Master side
.M_PAYLOAD_DATA (wach_dout),
.M_VALID (M_AXI_AWVALID),
.M_READY (M_AXI_AWREADY)
);
assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en;
assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0];
assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset == 1) begin
wr_pkt_count <= 0;
end else begin
if(txn_count_up == 1 && txn_count_down == 0) begin
wr_pkt_count <= wr_pkt_count + 1;
end else if(txn_count_up == 0 && txn_count_down == 1) begin
wr_pkt_count <= wr_pkt_count - 1;
end
end
end //Always end
assign awvalid_en = (wr_pkt_count > 0)?1:0;
end endgenerate
generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr
assign awvalid_en = 1;
assign wach_dout = wach_dout_pkt;
assign M_AXI_AWVALID = wach_m_axi_awvalid;
end
endgenerate
generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel
// Write protection when almost full or prog_full is high
assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID;
// Read protection when almost empty or prog_empty is high
assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY;
assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we;
assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re;
fifo_generator_v13_1_3_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WDCH),
.C_WR_DEPTH (C_WR_DEPTH_WDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WDCH),
.C_RD_DEPTH (C_WR_DEPTH_WDCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH),
.C_USE_ECC (C_USE_ECC_WDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 : 0),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_3_wdch_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wdch_wr_en),
.RD_EN (wdch_rd_en),
.PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}),
.INJECTDBITERR (AXI_W_INJECTDBITERR),
.INJECTSBITERR (AXI_W_INJECTSBITERR),
.DIN (wdch_din),
.DOUT (wdch_dout),
.FULL (wdch_full),
.EMPTY (wdch_empty),
.ALMOST_FULL (),
.PROG_FULL (AXI_W_PROG_FULL),
.ALMOST_EMPTY (),
.PROG_EMPTY (AXI_W_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_w_overflow_i),
.VALID (),
.UNDERFLOW (axi_w_underflow_i),
.DATA_COUNT (AXI_W_DATA_COUNT),
.RD_DATA_COUNT (AXI_W_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_W_WR_DATA_COUNT),
.SBITERR (AXI_W_SBITERR),
.DBITERR (AXI_W_DBITERR),
.wr_rst_busy (wr_rst_busy_wdch),
.rd_rst_busy (rd_rst_busy_wdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full;
assign wdch_m_axi_wvalid = ~wdch_empty;
assign S_AXI_WREADY = wdch_s_axi_wready;
assign M_AXI_WVALID = wdch_m_axi_wvalid;
assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0;
assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0;
end endgenerate // axi_write_data_channel
// Register Slice for Write Data Channel
generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice
fifo_generator_v13_1_3_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WDCH)
)
wdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wdch_din),
.S_VALID (S_AXI_WVALID),
.S_READY (S_AXI_WREADY),
// Master side
.M_PAYLOAD_DATA (wdch_dout),
.M_VALID (M_AXI_WVALID),
.M_READY (M_AXI_WREADY)
);
end endgenerate // gwdch_reg_slice
generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel
// Write protection when almost full or prog_full is high
assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID;
// Read protection when almost empty or prog_empty is high
assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY;
assign wrch_wr_en = (C_HAS_MASTER_CE == 1) ? wrch_we & M_ACLK_EN : wrch_we;
assign wrch_rd_en = (C_HAS_SLAVE_CE == 1) ? wrch_re & S_ACLK_EN : wrch_re;
fifo_generator_v13_1_3_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_WRCH),
.C_WR_DEPTH (C_WR_DEPTH_WRCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_WRCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_DEPTH (C_WR_DEPTH_WRCH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH),
.C_USE_ECC (C_USE_ECC_WRCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 : 0),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_3_wrch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (wrch_wr_en),
.RD_EN (wrch_rd_en),
.PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}),
.INJECTDBITERR (AXI_B_INJECTDBITERR),
.INJECTSBITERR (AXI_B_INJECTSBITERR),
.DIN (wrch_din),
.DOUT (wrch_dout),
.FULL (wrch_full),
.EMPTY (wrch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_B_PROG_FULL),
.PROG_EMPTY (AXI_B_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_b_overflow_i),
.VALID (),
.UNDERFLOW (axi_b_underflow_i),
.DATA_COUNT (AXI_B_DATA_COUNT),
.RD_DATA_COUNT (AXI_B_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_B_WR_DATA_COUNT),
.SBITERR (AXI_B_SBITERR),
.DBITERR (AXI_B_DBITERR),
.wr_rst_busy (wr_rst_busy_wrch),
.rd_rst_busy (rd_rst_busy_wrch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign wrch_s_axi_bvalid = ~wrch_empty;
assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full;
assign S_AXI_BVALID = wrch_s_axi_bvalid;
assign M_AXI_BREADY = wrch_m_axi_bready;
assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0;
assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0;
end endgenerate // axi_write_resp_channel
// Register Slice for Write Response Channel
generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice
fifo_generator_v13_1_3_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_WRCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_WRCH)
)
wrch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (wrch_din),
.S_VALID (M_AXI_BVALID),
.S_READY (M_AXI_BREADY),
// Master side
.M_PAYLOAD_DATA (wrch_dout),
.M_VALID (S_AXI_BVALID),
.M_READY (S_AXI_BREADY)
);
end endgenerate // gwrch_reg_slice
assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0;
assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0;
generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output
assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET];
assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET];
assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET];
assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET];
assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET];
assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET];
assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET];
assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR;
assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN;
assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE;
assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST;
assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK;
assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE;
assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT;
assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS;
end endgenerate // axi_wach_output
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion
assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET];
end endgenerate // axi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion
assign M_AXI_AWREGION = 0;
end endgenerate // naxi_awregion
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser
assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET];
end endgenerate // axi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser
assign M_AXI_AWUSER = 0;
end endgenerate // naxi_awuser
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid
assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET];
end endgenerate //axi_awid
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid
assign M_AXI_AWID = 0;
end endgenerate //naxi_awid
generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output
assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
assign M_AXI_WLAST = wdch_dout[0];
assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA;
assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB;
assign wdch_din[0] = S_AXI_WLAST;
end endgenerate // axi_wdch_output
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin
assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET];
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin
assign M_AXI_WID = 0;
end endgenerate
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin
assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET];
end endgenerate
generate if (C_HAS_AXI_WUSER == 0) begin
assign M_AXI_WUSER = 0;
end endgenerate
generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output
assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET];
assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP;
end endgenerate // axi_wrch_output
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser
assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET];
end endgenerate // axi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser
assign S_AXI_BUSER = 0;
end endgenerate // naxi_buser
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid
assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET];
end endgenerate // axi_bid
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid
assign S_AXI_BID = 0 ;
end endgenerate // naxi_bid
generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1
assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT};
assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET];
assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET];
end endgenerate // axi_wach_output1
generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1
assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB};
assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET];
assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET];
end endgenerate // axi_wdch_output1
generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1
assign wrch_din = M_AXI_BRESP;
assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET];
end endgenerate // axi_wrch_output1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1
assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER;
end endgenerate // gwach_din1
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2
assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID;
end endgenerate // gwach_din2
generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3
assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION;
end endgenerate // gwach_din3
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1
assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER;
end endgenerate // gwdch_din1
generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2
assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID;
end endgenerate // gwdch_din2
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1
assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER;
end endgenerate // gwrch_din1
generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2
assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID;
end endgenerate // gwrch_din2
//end of axi_write_channel
//###########################################################################
// AXI FULL Read Channel (axi_read_channel)
//###########################################################################
wire [C_DIN_WIDTH_RACH-1:0] rach_din ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout ;
wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ;
wire rach_full ;
wire rach_almost_full ;
wire rach_prog_full ;
wire rach_empty ;
wire rach_almost_empty ;
wire rach_prog_empty ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ;
wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ;
wire rdch_full ;
wire rdch_almost_full ;
wire rdch_prog_full ;
wire rdch_empty ;
wire rdch_almost_empty ;
wire rdch_prog_empty ;
wire axi_ar_underflow_i ;
wire axi_r_underflow_i ;
wire axi_ar_overflow_i ;
wire axi_r_overflow_i ;
wire axi_rd_underflow_i ;
wire axi_rd_overflow_i ;
wire rach_s_axi_arready ;
wire rach_m_axi_arvalid ;
wire rach_wr_en ;
wire rach_rd_en ;
wire rdch_m_axi_rready ;
wire rdch_s_axi_rvalid ;
wire rdch_wr_en ;
wire rdch_rd_en ;
wire arvalid_pkt ;
wire arready_pkt ;
wire arvalid_en ;
wire rdch_rd_ok ;
wire accept_next_pkt ;
integer rdch_free_space ;
integer rdch_commited_space ;
wire rach_we ;
wire rach_re ;
wire rdch_we ;
wire rdch_re ;
localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH;
localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH;
localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET;
localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET;
localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET;
localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET;
localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET;
localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH;
localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH;
localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET;
localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET;
localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH;
localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH;
localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH;
localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET;
generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel
// Write protection when almost full or prog_full is high
assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID;
// Read protection when almost empty or prog_empty is high
// assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en;
assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ?
rach_m_axi_arvalid & arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY && rach_m_axi_arvalid :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ?
arready_pkt & arvalid_en :
(C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ?
M_AXI_ARREADY : 1'b0;
assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we;
assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re;
fifo_generator_v13_1_3_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RACH),
.C_WR_DEPTH (C_WR_DEPTH_RACH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_DOUT_WIDTH (C_DIN_WIDTH_RACH),
.C_RD_DEPTH (C_WR_DEPTH_RACH),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH),
.C_USE_ECC (C_USE_ECC_RACH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 : 0),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_3_rach_dut
(
.CLK (S_ACLK),
.WR_CLK (S_ACLK),
.RD_CLK (M_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rach_wr_en),
.RD_EN (rach_rd_en),
.PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}),
.INJECTDBITERR (AXI_AR_INJECTDBITERR),
.INJECTSBITERR (AXI_AR_INJECTSBITERR),
.DIN (rach_din),
.DOUT (rach_dout_pkt),
.FULL (rach_full),
.EMPTY (rach_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_AR_PROG_FULL),
.PROG_EMPTY (AXI_AR_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_ar_overflow_i),
.VALID (),
.UNDERFLOW (axi_ar_underflow_i),
.DATA_COUNT (AXI_AR_DATA_COUNT),
.RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT),
.SBITERR (AXI_AR_SBITERR),
.DBITERR (AXI_AR_DBITERR),
.wr_rst_busy (wr_rst_busy_rach),
.rd_rst_busy (rd_rst_busy_rach),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full;
assign rach_m_axi_arvalid = ~rach_empty;
assign S_AXI_ARREADY = rach_s_axi_arready;
assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0;
assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0;
end endgenerate // axi_read_addr_channel
// Register Slice for Read Address Channel
generate if (C_RACH_TYPE == 1) begin : grach_reg_slice
fifo_generator_v13_1_3_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RACH)
)
rach_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rach_din),
.S_VALID (S_AXI_ARVALID),
.S_READY (S_AXI_ARREADY),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice
// Register Slice for Read Address Channel for MM Packet FIFO
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo
fifo_generator_v13_1_3_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RACH),
.C_REG_CONFIG (1)
)
reg_slice_mm_pkt_fifo_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (inverted_reset),
// Slave side
.S_PAYLOAD_DATA (rach_dout_pkt),
.S_VALID (arvalid_pkt),
.S_READY (arready_pkt),
// Master side
.M_PAYLOAD_DATA (rach_dout),
.M_VALID (M_AXI_ARVALID),
.M_READY (M_AXI_ARREADY)
);
end endgenerate // grach_reg_slice_mm_pkt_fifo
generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid
assign M_AXI_ARVALID = rach_m_axi_arvalid;
assign rach_dout = rach_dout_pkt;
end endgenerate // grach_m_axi_arvalid
generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd
assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en;
assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en;
assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en;
always@(posedge S_ACLK or posedge inverted_reset) begin
if(inverted_reset) begin
rdch_commited_space <= 0;
end else begin
if(rdch_rd_ok && !accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space-1;
end else if(!rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1);
end else if(rdch_rd_ok && accept_next_pkt) begin
rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]);
end
end
end //Always end
always@(*) begin
rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1));
end
assign arvalid_en = (rdch_free_space >= 0)?1:0;
end
endgenerate
generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd
assign arvalid_en = 1;
end
endgenerate
generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel
// Write protection when almost full or prog_full is high
assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID;
// Read protection when almost empty or prog_empty is high
assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY;
assign rdch_wr_en = (C_HAS_MASTER_CE == 1) ? rdch_we & M_ACLK_EN : rdch_we;
assign rdch_rd_en = (C_HAS_SLAVE_CE == 1) ? rdch_re & S_ACLK_EN : rdch_re;
fifo_generator_v13_1_3_CONV_VER
#(
.C_FAMILY (C_FAMILY),
.C_COMMON_CLOCK (C_COMMON_CLOCK),
.C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 :
(C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4),
.C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 :
(C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6),
.C_PRELOAD_REGS (1), // always FWFT for AXI
.C_PRELOAD_LATENCY (0), // always FWFT for AXI
.C_DIN_WIDTH (C_DIN_WIDTH_RDCH),
.C_WR_DEPTH (C_WR_DEPTH_RDCH),
.C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_DOUT_WIDTH (C_DIN_WIDTH_RDCH),
.C_RD_DEPTH (C_WR_DEPTH_RDCH),
.C_INTERFACE_TYPE (C_INTERFACE_TYPE),
.C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH),
.C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH),
.C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH),
.C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH),
.C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH),
.C_USE_ECC (C_USE_ECC_RDCH),
.C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH),
.C_HAS_ALMOST_EMPTY (0),
.C_HAS_ALMOST_FULL (0),
.C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE),
.C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH),
.C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE),
.C_HAS_WR_RST (0),
.C_HAS_RD_RST (0),
.C_HAS_RST (1),
.C_HAS_SRST (0),
.C_DOUT_RST_VAL (0),
.C_HAS_VALID (0),
.C_VALID_LOW (C_VALID_LOW),
.C_HAS_UNDERFLOW (C_HAS_UNDERFLOW),
.C_UNDERFLOW_LOW (C_UNDERFLOW_LOW),
.C_HAS_WR_ACK (0),
.C_WR_ACK_LOW (C_WR_ACK_LOW),
.C_HAS_OVERFLOW (C_HAS_OVERFLOW),
.C_OVERFLOW_LOW (C_OVERFLOW_LOW),
.C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true
.C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0),
.C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1),
.C_FULL_FLAGS_RST_VAL (1),
.C_USE_EMBEDDED_REG (0),
.C_USE_DOUT_RST (0),
.C_MSGON_VAL (C_MSGON_VAL),
.C_ENABLE_RST_SYNC (1),
.C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 : 0),
.C_COUNT_TYPE (C_COUNT_TYPE),
.C_DEFAULT_VALUE (C_DEFAULT_VALUE),
.C_ENABLE_RLOCS (C_ENABLE_RLOCS),
.C_HAS_BACKUP (C_HAS_BACKUP),
.C_HAS_INT_CLK (C_HAS_INT_CLK),
.C_MIF_FILE_NAME (C_MIF_FILE_NAME),
.C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE),
.C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL),
.C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE),
.C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE),
.C_RD_FREQ (C_RD_FREQ),
.C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS),
.C_WR_FREQ (C_WR_FREQ),
.C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY)
)
fifo_generator_v13_1_3_rdch_dut
(
.CLK (S_ACLK),
.WR_CLK (M_ACLK),
.RD_CLK (S_ACLK),
.RST (inverted_reset),
.SRST (1'b0),
.WR_RST (inverted_reset),
.RD_RST (inverted_reset),
.WR_EN (rdch_wr_en),
.RD_EN (rdch_rd_en),
.PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH),
.PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH),
.PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}),
.INJECTDBITERR (AXI_R_INJECTDBITERR),
.INJECTSBITERR (AXI_R_INJECTSBITERR),
.DIN (rdch_din),
.DOUT (rdch_dout),
.FULL (rdch_full),
.EMPTY (rdch_empty),
.ALMOST_FULL (),
.ALMOST_EMPTY (),
.PROG_FULL (AXI_R_PROG_FULL),
.PROG_EMPTY (AXI_R_PROG_EMPTY),
.WR_ACK (),
.OVERFLOW (axi_r_overflow_i),
.VALID (),
.UNDERFLOW (axi_r_underflow_i),
.DATA_COUNT (AXI_R_DATA_COUNT),
.RD_DATA_COUNT (AXI_R_RD_DATA_COUNT),
.WR_DATA_COUNT (AXI_R_WR_DATA_COUNT),
.SBITERR (AXI_R_SBITERR),
.DBITERR (AXI_R_DBITERR),
.wr_rst_busy (wr_rst_busy_rdch),
.rd_rst_busy (rd_rst_busy_rdch),
.wr_rst_i_out (),
.rd_rst_i_out (),
.BACKUP (BACKUP),
.BACKUP_MARKER (BACKUP_MARKER),
.INT_CLK (INT_CLK)
);
assign rdch_s_axi_rvalid = ~rdch_empty;
assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full;
assign S_AXI_RVALID = rdch_s_axi_rvalid;
assign M_AXI_RREADY = rdch_m_axi_rready;
assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0;
assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0;
end endgenerate //axi_read_data_channel
// Register Slice for read Data Channel
generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice
fifo_generator_v13_1_3_axic_reg_slice
#(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (C_DIN_WIDTH_RDCH),
.C_REG_CONFIG (C_REG_SLICE_MODE_RDCH)
)
rdch_reg_slice_inst
(
// System Signals
.ACLK (S_ACLK),
.ARESET (axi_rs_rst),
// Slave side
.S_PAYLOAD_DATA (rdch_din),
.S_VALID (M_AXI_RVALID),
.S_READY (M_AXI_RREADY),
// Master side
.M_PAYLOAD_DATA (rdch_dout),
.M_VALID (S_AXI_RVALID),
.M_READY (S_AXI_RREADY)
);
end endgenerate // grdch_reg_slice
assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0;
assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0;
generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output
assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET];
assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET];
assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET];
assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET];
assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET];
assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET];
assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET];
assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR;
assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN;
assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE;
assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST;
assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK;
assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE;
assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT;
assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS;
end endgenerate // axi_full_rach_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion
assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET];
end endgenerate // axi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion
assign M_AXI_ARREGION = 0;
end endgenerate // naxi_arregion
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser
assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET];
end endgenerate // axi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser
assign M_AXI_ARUSER = 0;
end endgenerate // naxi_aruser
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid
assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET];
end endgenerate // axi_arid
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid
assign M_AXI_ARID = 0;
end endgenerate // naxi_arid
generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output
assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
assign S_AXI_RLAST = rdch_dout[0];
assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA;
assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP;
assign rdch_din[0] = M_AXI_RLAST;
end endgenerate // axi_full_rdch_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output
assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET];
end endgenerate // axi_full_ruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output
assign S_AXI_RUSER = 0;
end endgenerate // axi_full_nruser_output
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid
assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET];
end endgenerate // axi_rid
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid
assign S_AXI_RID = 0;
end endgenerate // naxi_rid
generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1
assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT};
assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET];
assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET];
end endgenerate // axi_lite_rach_output
generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1
assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP};
assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET];
assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET];
end endgenerate // axi_lite_rdch_output
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1
assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER;
end endgenerate // grach_din1
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2
assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID;
end endgenerate // grach_din2
generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin
assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION;
end endgenerate
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1
assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER;
end endgenerate // grdch_din1
generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2
assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID;
end endgenerate // grdch_din2
//end of axi_read_channel
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf
assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0;
end endgenerate // gaxi_comm_uf
generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of
assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) :
(C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i :
(C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0;
end endgenerate // gaxi_comm_of
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic or Wiring Logic
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Write Address Channel
generate if (C_WACH_TYPE == 2) begin : gwach_pass_through
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = S_AXI_AWLEN;
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = S_AXI_AWLOCK;
assign M_AXI_AWCACHE = S_AXI_AWCACHE;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign M_AXI_AWREGION = S_AXI_AWREGION;
assign M_AXI_AWUSER = S_AXI_AWUSER;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWVALID = S_AXI_AWVALID;
end endgenerate // gwach_pass_through;
// Wiring logic for Write Data Channel
generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through
assign M_AXI_WID = S_AXI_WID;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_WLAST = S_AXI_WLAST;
assign M_AXI_WUSER = S_AXI_WUSER;
assign S_AXI_WREADY = M_AXI_WREADY;
assign M_AXI_WVALID = S_AXI_WVALID;
end endgenerate // gwdch_pass_through;
// Wiring logic for Write Response Channel
generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BVALID = M_AXI_BVALID;
end endgenerate // gwrch_pass_through;
//-------------------------------------------------------------------------
// Pass Through Logic for Read Channel
//-------------------------------------------------------------------------
// Wiring logic for Read Address Channel
generate if (C_RACH_TYPE == 2) begin : grach_pass_through
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARREGION = S_AXI_ARREGION;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARVALID = S_AXI_ARVALID;
end endgenerate // grach_pass_through;
// Wiring logic for Read Data Channel
generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end endgenerate // grdch_pass_through;
// Wiring logic for AXI Streaming
generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through
assign M_AXIS_TDATA = S_AXIS_TDATA;
assign M_AXIS_TSTRB = S_AXIS_TSTRB;
assign M_AXIS_TKEEP = S_AXIS_TKEEP;
assign M_AXIS_TID = S_AXIS_TID;
assign M_AXIS_TDEST = S_AXIS_TDEST;
assign M_AXIS_TUSER = S_AXIS_TUSER;
assign M_AXIS_TLAST = S_AXIS_TLAST;
assign S_AXIS_TREADY = M_AXIS_TREADY;
assign M_AXIS_TVALID = S_AXIS_TVALID;
end endgenerate // gaxis_pass_through;
endmodule |
module.
//***********************************************
assign RD_CLK_P0_IN = 0;
assign RST_P0_IN = 0;
assign RD_EN_P0_IN = 0;
assign RD_EN_FIFO_IN = rd_en_delayed;
assign DOUT = DOUT_FIFO_OUT;
assign DATA_P0_IN = 0;
assign VALID = VALID_FIFO_OUT;
assign EMPTY = EMPTY_FIFO_OUT;
assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT;
assign EMPTY_P0_IN = 0;
assign UNDERFLOW = UNDERFLOW_FIFO_OUT;
assign DATA_COUNT = DATA_COUNT_FIFO_OUT;
assign SBITERR = sbiterr_fifo_out;
assign DBITERR = dbiterr_fifo_out;
end endgenerate // STD_FIFO
generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO
assign empty_p0_out = empty_fwft;
assign SBITERR = sbiterr_fwft;
assign DBITERR = dbiterr_fwft;
assign DOUT = dout_fwft;
assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo;
end endgenerate // NO_PKT_FIFO
//***********************************************
// Connect user flags to internal signals
//***********************************************
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block3
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT);
end //block_ic
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block30
if (C_COMMON_CLOCK == 0) begin : block_ic
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT);
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30
endgenerate
//If we are using extra logic for the FWFT data count, then override the
//RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY.
//Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY.
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block30_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : (RD_DATA_COUNT_FIFO_OUT));
end
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block30_both
endgenerate
generate
if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block3_both
if (C_COMMON_CLOCK == 0) begin : block_ic_both
assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : (RD_DATA_COUNT_FIFO_OUT));
end //block_ic_both
else begin
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
end //block3_both
endgenerate
//If we are not using extra logic for the FWFT data count,
//then connect RD_DATA_COUNT to the RD_DATA_COUNT from the
//internal FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31
assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal
//FIFO instance
generate
if (C_USE_FWFT_DATA_COUNT==1) begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
else begin : block4
assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT;
end
endgenerate
//Connect other flags to the internal FIFO instance
assign FULL = FULL_FIFO_OUT;
assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT;
assign WR_ACK = WR_ACK_FIFO_OUT;
assign OVERFLOW = OVERFLOW_FIFO_OUT;
assign PROG_FULL = PROG_FULL_FIFO_OUT;
assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT;
/**************************************************************************
* find_log2
* Returns the 'log2' value for the input value for the supported ratios
***************************************************************************/
function integer find_log2;
input integer int_val;
integer i,j;
begin
i = 1;
j = 0;
for (i = 1; i < int_val; i = i*2) begin
j = j + 1;
end
find_log2 = j;
end
endfunction
// if an asynchronous FIFO has been selected, display a message that the FIFO
// will not be cycle-accurate in simulation
initial begin
if (C_IMPLEMENTATION_TYPE == 2) begin
$display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information.");
end else if (C_MEMORY_TYPE == 4) begin
$display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado.");
$finish;
end
if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin
$display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH.");
$finish;
end
if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin
$display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH.");
$finish;
end
if (C_USE_ECC == 1) begin
if (C_DIN_WIDTH != C_DOUT_WIDTH) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration.");
$finish;
end
if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin
$display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection.");
$finish;
end
end
end //initial
/**************************************************************************
* Internal reset logic
**************************************************************************/
assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0;
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0;
assign rst_i = C_HAS_RST ? rst_reg : 0;
wire rst_2_sync;
wire rst_2_sync_safety = (C_ENABLE_RST_SYNC == 1) ? rst_delayed : RD_RST;
wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK;
wire clk_2_sync_safety = (C_COMMON_CLOCK == 1) ? CLK : RD_CLK;
localparam RST_SYNC_STAGES = (C_EN_SAFETY_CKT == 0) ? C_SYNCHRONIZER_STAGE :
(C_COMMON_CLOCK == 1) ? 3 : C_SYNCHRONIZER_STAGE+2;
reg [RST_SYNC_STAGES-1:0] wrst_reg = {RST_SYNC_STAGES{1'b0}};
reg [RST_SYNC_STAGES-1:0] rrst_reg = {RST_SYNC_STAGES{1'b0}};
reg [RST_SYNC_STAGES-1:0] arst_sync_q = {RST_SYNC_STAGES{1'b0}};
reg [RST_SYNC_STAGES-1:0] wrst_q = {RST_SYNC_STAGES{1'b0}};
reg [RST_SYNC_STAGES-1:0] rrst_q = {RST_SYNC_STAGES{1'b0}};
reg [RST_SYNC_STAGES-1:0] rrst_wr = {RST_SYNC_STAGES{1'b0}};
reg [RST_SYNC_STAGES-1:0] wrst_ext = {RST_SYNC_STAGES{1'b0}};
reg [1:0] wrst_cc = {2{1'b0}};
reg [1:0] rrst_cc = {2{1'b0}};
generate
if (C_EN_SAFETY_CKT == 1 && C_INTERFACE_TYPE == 0) begin : grst_safety_ckt
reg[1:0] rst_d1_safety =1;
reg[1:0] rst_d2_safety =1;
reg[1:0] rst_d3_safety =1;
reg[1:0] rst_d4_safety =1;
reg[1:0] rst_d5_safety =1;
reg[1:0] rst_d6_safety =1;
reg[1:0] rst_d7_safety =1;
always@(posedge rst_2_sync_safety or posedge clk_2_sync_safety) begin : prst
if (rst_2_sync_safety == 1'b1) begin
rst_d1_safety <= 1'b1;
rst_d2_safety <= 1'b1;
rst_d3_safety <= 1'b1;
rst_d4_safety <= 1'b1;
rst_d5_safety <= 1'b1;
rst_d6_safety <= 1'b1;
rst_d7_safety <= 1'b1;
end
else begin
rst_d1_safety <= #`TCQ 1'b0;
rst_d2_safety <= #`TCQ rst_d1_safety;
rst_d3_safety <= #`TCQ rst_d2_safety;
rst_d4_safety <= #`TCQ rst_d3_safety;
rst_d5_safety <= #`TCQ rst_d4_safety;
rst_d6_safety <= #`TCQ rst_d5_safety;
rst_d7_safety <= #`TCQ rst_d6_safety;
end //if
end //prst
always@(posedge rst_d7_safety or posedge WR_EN) begin : assert_safety
if(rst_d7_safety == 1 && WR_EN == 1) begin
$display("WARNING:A write attempt has been made within the 7 clock cycles of reset de-assertion. This can lead to data discrepancy when safety circuit is enabled.");
end //if
end //always
end // grst_safety_ckt
endgenerate
// if (C_EN_SAFET_CKT == 1)
// assertion:the reset shud be atleast 3 cycles wide.
generate
reg safety_ckt_wr_rst_i = 1'b0;
if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync
always @* begin
wr_rst_reg <= wr_rst_delayed;
rd_rst_reg <= rd_rst_delayed;
rst_reg <= 1'b0;
srst_reg <= 1'b0;
end
assign rst_2_sync = wr_rst_delayed;
assign wr_rst_busy = C_EN_SAFETY_CKT ? wr_rst_delayed : 1'b0;
assign rd_rst_busy = C_EN_SAFETY_CKT ? rd_rst_delayed : 1'b0;
assign safety_ckt_wr_rst = C_EN_SAFETY_CKT ? wr_rst_delayed : 1'b0;
assign safety_ckt_rd_rst = C_EN_SAFETY_CKT ? rd_rst_delayed : 1'b0;
// end : gnrst_sync
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst
reg fifo_wrst_done = 1'b0;
reg fifo_rrst_done = 1'b0;
reg sckt_wrst_i = 1'b0;
reg sckt_wrst_i_q = 1'b0;
reg rd_rst_active = 1'b0;
reg rd_rst_middle = 1'b0;
reg sckt_rd_rst_d1 = 1'b0;
reg [1:0] rst_delayed_ic_w = 2'h0;
wire rst_delayed_ic_w_i;
reg [1:0] rst_delayed_ic_r = 2'h0;
wire rst_delayed_ic_r_i;
wire arst_sync_rst;
wire fifo_rst_done;
wire fifo_rst_active;
assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg;
assign rd_rst_comb = C_EN_SAFETY_CKT ? (!rd_rst_asreg_d2 && rd_rst_asreg) || rd_rst_active : !rd_rst_asreg_d2 && rd_rst_asreg;
assign rst_2_sync = rst_delayed_ic_w_i;
assign arst_sync_rst = arst_sync_q[RST_SYNC_STAGES-1];
assign wr_rst_busy = C_EN_SAFETY_CKT ? |arst_sync_q[RST_SYNC_STAGES-1:1] | fifo_rst_active : 1'b0;
assign rd_rst_busy = C_EN_SAFETY_CKT ? safety_ckt_rd_rst : 1'b0;
assign fifo_rst_done = fifo_wrst_done & fifo_rrst_done;
assign fifo_rst_active = sckt_wrst_i | wrst_ext[RST_SYNC_STAGES-1] | rrst_wr[RST_SYNC_STAGES-1];
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1 && C_HAS_RST)
rst_delayed_ic_w <= 2'b11;
else
rst_delayed_ic_w <= #`TCQ {rst_delayed_ic_w[0],1'b0};
end
assign rst_delayed_ic_w_i = rst_delayed_ic_w[1];
always @(posedge RD_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1 && C_HAS_RST)
rst_delayed_ic_r <= 2'b11;
else
rst_delayed_ic_r <= #`TCQ {rst_delayed_ic_r[0],1'b0};
end
assign rst_delayed_ic_r_i = rst_delayed_ic_r[1];
always @(posedge WR_CLK) begin
sckt_wrst_i_q <= #`TCQ sckt_wrst_i;
sckt_wr_rst_i_q <= #`TCQ wr_rst_busy;
safety_ckt_wr_rst_i <= #`TCQ sckt_wrst_i | wr_rst_busy | sckt_wr_rst_i_q;
if (arst_sync_rst && ~fifo_rst_active)
sckt_wrst_i <= #`TCQ 1'b1;
else if (sckt_wrst_i && fifo_rst_done)
sckt_wrst_i <= #`TCQ 1'b0;
else
sckt_wrst_i <= #`TCQ sckt_wrst_i;
if (rrst_wr[RST_SYNC_STAGES-2] & ~rrst_wr[RST_SYNC_STAGES-1])
fifo_rrst_done <= #`TCQ 1'b1;
else if (fifo_rst_done)
fifo_rrst_done <= #`TCQ 1'b0;
else
fifo_rrst_done <= #`TCQ fifo_rrst_done;
if (wrst_ext[RST_SYNC_STAGES-2] & ~wrst_ext[RST_SYNC_STAGES-1])
fifo_wrst_done <= #`TCQ 1'b1;
else if (fifo_rst_done)
fifo_wrst_done <= #`TCQ 1'b0;
else
fifo_wrst_done <= #`TCQ fifo_wrst_done;
end
always @(posedge WR_CLK or posedge rst_delayed_ic_w_i) begin
if (rst_delayed_ic_w_i == 1'b1) begin
wr_rst_asreg <= 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1) begin
wr_rst_asreg <= 1'b1;
end else begin
if (wr_rst_asreg_d1 == 1'b1) begin
wr_rst_asreg <= #`TCQ 1'b0;
end else begin
wr_rst_asreg <= #`TCQ wr_rst_asreg;
end
end
end
always @(posedge WR_CLK) begin
wrst_reg <= #`TCQ {wrst_reg[RST_SYNC_STAGES-2:0],wr_rst_asreg};
wrst_ext <= #`TCQ {wrst_ext[RST_SYNC_STAGES-2:0],sckt_wrst_i};
rrst_wr <= #`TCQ {rrst_wr[RST_SYNC_STAGES-2:0],safety_ckt_rd_rst};
arst_sync_q <= #`TCQ {arst_sync_q[RST_SYNC_STAGES-2:0],rst_delayed_ic_w_i};
end
assign wr_rst_asreg_d1 = wrst_reg[RST_SYNC_STAGES-2];
assign wr_rst_asreg_d2 = C_EN_SAFETY_CKT ? wrst_reg[RST_SYNC_STAGES-1] : wrst_reg[1];
assign safety_ckt_wr_rst = C_EN_SAFETY_CKT ? safety_ckt_wr_rst_i : 1'b0;
always @(posedge WR_CLK or posedge wr_rst_comb) begin
if (wr_rst_comb == 1'b1) begin
wr_rst_reg <= 1'b1;
end else begin
wr_rst_reg <= #`TCQ 1'b0;
end
end
always @(posedge RD_CLK or posedge rst_delayed_ic_r_i) begin
if (rst_delayed_ic_r_i == 1'b1) begin
rd_rst_asreg <= 1'b1;
end else begin
if (rd_rst_asreg_d1 == 1'b1) begin
rd_rst_asreg <= #`TCQ 1'b0;
end else begin
rd_rst_asreg <= #`TCQ rd_rst_asreg;
end
end
end
always @(posedge RD_CLK) begin
rrst_reg <= #`TCQ {rrst_reg[RST_SYNC_STAGES-2:0],rd_rst_asreg};
rrst_q <= #`TCQ {rrst_q[RST_SYNC_STAGES-2:0],sckt_wrst_i};
rrst_cc <= #`TCQ {rrst_cc[0],rd_rst_asreg_d2};
sckt_rd_rst_d1 <= #`TCQ safety_ckt_rd_rst;
if (!rd_rst_middle && rrst_reg[1] && !rrst_reg[2]) begin
rd_rst_active <= #`TCQ 1'b1;
rd_rst_middle <= #`TCQ 1'b1;
end else if (safety_ckt_rd_rst)
rd_rst_active <= #`TCQ 1'b0;
else if (sckt_rd_rst_d1 && !safety_ckt_rd_rst)
rd_rst_middle <= #`TCQ 1'b0;
end
assign rd_rst_asreg_d1 = rrst_reg[RST_SYNC_STAGES-2];
assign rd_rst_asreg_d2 = C_EN_SAFETY_CKT ? rrst_reg[RST_SYNC_STAGES-1] : rrst_reg[1];
assign safety_ckt_rd_rst = C_EN_SAFETY_CKT ? rrst_q[2] : 1'b0;
always @(posedge RD_CLK or posedge rd_rst_comb) begin
if (rd_rst_comb == 1'b1) begin
rd_rst_reg <= 1'b1;
end else begin
rd_rst_reg <= #`TCQ 1'b0;
end
end
// end : g7s_ic_rst
end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst
reg [1:0] rst_delayed_cc = 2'h0;
wire rst_delayed_cc_i;
assign rst_comb = !rst_asreg_d2 && rst_asreg;
assign rst_2_sync = rst_delayed_cc_i;
assign wr_rst_busy = C_EN_SAFETY_CKT ? |arst_sync_q[RST_SYNC_STAGES-1:1] | wrst_cc[1] : 1'b0;
assign rd_rst_busy = C_EN_SAFETY_CKT ? arst_sync_q[1] | arst_sync_q[RST_SYNC_STAGES-1] | wrst_cc[1] : 1'b0;
always @(posedge CLK or posedge rst_delayed) begin
if (rst_delayed == 1'b1)
rst_delayed_cc <= 2'b11;
else
rst_delayed_cc <= #`TCQ {rst_delayed_cc,1'b0};
end
assign rst_delayed_cc_i = rst_delayed_cc[1];
always @(posedge CLK or posedge rst_delayed_cc_i) begin
if (rst_delayed_cc_i == 1'b1) begin
rst_asreg <= 1'b1;
end else begin
if (rst_asreg_d1 == 1'b1) begin
rst_asreg <= #`TCQ 1'b0;
end else begin
rst_asreg <= #`TCQ rst_asreg;
end
end
end
always @(posedge CLK) begin
wrst_reg <= #`TCQ {wrst_reg[RST_SYNC_STAGES-2:0],rst_asreg};
wrst_cc <= #`TCQ {wrst_cc[0],arst_sync_q[RST_SYNC_STAGES-1]};
sckt_wr_rst_i_q <= #`TCQ wr_rst_busy;
safety_ckt_wr_rst_i <= #`TCQ wrst_cc[1] | wr_rst_busy | sckt_wr_rst_i_q;
arst_sync_q <= #`TCQ {arst_sync_q[RST_SYNC_STAGES-2:0],rst_delayed_cc_i};
end
assign rst_asreg_d1 = wrst_reg[RST_SYNC_STAGES-2];
assign rst_asreg_d2 = C_EN_SAFETY_CKT ? wrst_reg[RST_SYNC_STAGES-1] : wrst_reg[1];
assign safety_ckt_wr_rst = C_EN_SAFETY_CKT ? safety_ckt_wr_rst_i : 1'b0;
assign safety_ckt_rd_rst = C_EN_SAFETY_CKT ? safety_ckt_wr_rst_i : 1'b0;
always @(posedge CLK or posedge rst_comb) begin
if (rst_comb == 1'b1) begin
rst_reg <= 1'b1;
end else begin
rst_reg <= #`TCQ 1'b0;
end
end
// end : g7s_cc_rst
end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst
assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i;
assign rd_rst_busy = rst_reg;
assign rst_2_sync = srst_delayed;
always @* rst_full_ff_i <= rst_reg;
always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0;
assign safety_ckt_wr_rst = C_EN_SAFETY_CKT ? rst_reg | wr_rst_busy | sckt_wr_rst_i_q : 1'b0;
assign safety_ckt_rd_rst = C_EN_SAFETY_CKT ? rst_reg | wr_rst_busy | sckt_wr_rst_i_q : 1'b0;
always @(posedge CLK) begin
rst_delayed_d1 <= #`TCQ srst_delayed;
rst_delayed_d2 <= #`TCQ rst_delayed_d1;
sckt_wr_rst_i_q <= #`TCQ wr_rst_busy;
if (rst_reg || rst_delayed_d2) begin
rst_active_i <= #`TCQ 1'b1;
end else begin
rst_active_i <= #`TCQ rst_reg;
end
end
always @(posedge CLK) begin
if (~rst_reg && srst_delayed) begin
rst_reg <= #`TCQ 1'b1;
end else if (rst_reg) begin
rst_reg <= #`TCQ 1'b0;
end else begin
rst_reg <= #`TCQ rst_reg;
end
end
// end : g8s_cc_rst
end else begin
assign wr_rst_busy = 1'b0;
assign rd_rst_busy = 1'b0;
assign safety_ckt_wr_rst = 1'b0;
assign safety_ckt_rd_rst = 1'b0;
end
endgenerate
generate
if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1) begin : grstd1
// RST_FULL_GEN replaces the reset falling edge detection used to de-assert
// FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1.
// RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL &
// PROG_FULL
reg rst_d1 = 1'b0;
reg rst_d2 = 1'b0;
reg rst_d3 = 1'b0;
reg rst_d4 = 1'b0;
reg rst_d5 = 1'b0;
always @ (posedge rst_2_sync or posedge clk_2_sync) begin
if (rst_2_sync) begin
rst_d1 <= 1'b1;
rst_d2 <= 1'b1;
rst_d3 <= 1'b1;
rst_d4 <= 1'b1;
end else begin
if (srst_delayed) begin
rst_d1 <= #`TCQ 1'b1;
rst_d2 <= #`TCQ 1'b1;
rst_d3 <= #`TCQ 1'b1;
rst_d4 <= #`TCQ 1'b1;
end else begin
rst_d1 <= #`TCQ wr_rst_busy;
rst_d2 <= #`TCQ rst_d1;
rst_d3 <= #`TCQ rst_d2 | safety_ckt_wr_rst;
rst_d4 <= #`TCQ rst_d3;
end
end
end
always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ;
always @* rst_full_gen_i <= rst_d3;
end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0) begin : gnrst_full
always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i;
end
endgenerate // grstd1
endmodule |
module fifo_generator_v13_1_3_sync_stage
#(
parameter C_WIDTH = 10
)
(
input RST,
input CLK,
input [C_WIDTH-1:0] DIN,
output reg [C_WIDTH-1:0] DOUT = 0
);
always @ (posedge RST or posedge CLK) begin
if (RST)
DOUT <= 0;
else
DOUT <= #`TCQ DIN;
end
endmodule |
module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_CLK;
wire RD_EN;
wire RST;
wire WR_CLK;
wire WR_EN;
*/
//***************************************************************************
// Dout may change behavior based on latency
//***************************************************************************
assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) )?
ideal_dout_d1: ideal_dout;
assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out;
//***************************************************************************
// Assign SBITERR and DBITERR based on latency
//***************************************************************************
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY == 2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) ) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
(C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
//***************************************************************************
// Safety-ckt logic with embedded reg/fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
// if (C_HAS_VALID == 1) begin
// assign valid_out = valid_d1;
// end
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK)
begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else
ram_rd_en_d1 <= #`TCQ ram_rd_en;
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else begin
if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end
end
endgenerate
//***************************************************************************
// Safety-ckt logic with embedded reg + fabric reg
//***************************************************************************
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK) begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK) begin
if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1)
ram_rd_en_d1 <= #`TCQ 1'b0;
else begin
ram_rd_en_d1 <= #`TCQ ram_rd_en;
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
end
end
always@(posedge rst_delayed_sft2 or posedge RD_CLK) begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
end
end
endgenerate
//***************************************************************************
// Overflow may be active-low
//***************************************************************************
generate
if (C_HAS_OVERFLOW==1) begin : blockOF1
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end
endgenerate
assign PROG_EMPTY = ideal_prog_empty;
assign PROG_FULL = ideal_prog_full;
//***************************************************************************
// Valid may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_VALID==1) begin : blockVL1
assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out1 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG < 3)?
valid_d1: valid_i;
assign valid_out2 = (C_PRELOAD_LATENCY==2 &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG == 3)?
valid_d2: valid_i;
assign valid_out = (C_USE_EMBEDDED_REG == 3) ? valid_out2 : valid_out1;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end
endgenerate
//***************************************************************************
// Underflow may change behavior based on latency or active-low
//***************************************************************************
generate
if (C_HAS_UNDERFLOW==1) begin : blockUF1
assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end
endgenerate
//***************************************************************************
// Write acknowledge may be active low
//***************************************************************************
generate
if (C_HAS_WR_ACK==1) begin : blockWK1
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext
reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0;
reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0;
wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp;
wire [C_PNTR_WIDTH:0] diff_wr_rd;
reg [C_PNTR_WIDTH:0] wr_data_count_i = 0;
always @* begin
if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = 0;
adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr;
end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin
adjusted_rd_pntr = rd_pntr_wr;
adjusted_wr_pntr = 0;
adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
end else begin
adjusted_wr_pntr = wr_pntr;
adjusted_rd_pntr = rd_pntr_wr;
end
end // always @*
assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr;
assign diff_wr_rd = {1'b0,diff_wr_rd_tmp};
always @ (posedge wr_rst_i or posedge WR_CLK)
begin
if (wr_rst_i)
wr_data_count_i <= 0;
else
wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC;
end // always @ (posedge WR_CLK or posedge WR_CLK)
always @* begin
if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH)
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0];
else
wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end // always @*
end // wdc_fwft_ext
endgenerate
//***************************************************************************
// Generate RD_DATA_COUNT if Use Extra Logic option is selected
//***************************************************************************
reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0;
generate if (C_USE_EMBEDDED_REG < 3) begin: rdc_fwft_ext_both
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= 0;
end else begin
if (!stage2_valid)
rdc_fwft_ext_as <= #`TCQ 0;
else if (!stage1_valid && stage2_valid)
rdc_fwft_ext_as <= #`TCQ 1;
else
rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2;
end
end // always @ (posedge WR_CLK or posedge WR_CLK)
end // rdc_fwft_ext
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3) begin
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext
reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp;
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr;
always @* begin
if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin
adjusted_wr_pntr_rd = 0;
adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd;
end else begin
adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end
end // always @*
assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr;
assign diff_rd_wr = {1'b0,diff_rd_wr_tmp};
wire [C_RD_PNTR_WIDTH:0] diff_rd_wr_1;
// assign diff_rd_wr_1 = diff_rd_wr +2'h2;
always @ (posedge rd_rst_i or posedge RD_CLK)
begin
if (rd_rst_i) begin
rdc_fwft_ext_as <= #`TCQ 0;
end else begin
//if (fab_read_data_valid_i == 1'b0 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b0;
//else if (fab_read_data_valid_i == 1'b1 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1)))
// rdc_fwft_ext_as <= 1'b1;
//else
rdc_fwft_ext_as <= diff_rd_wr + 2'h2 ;
end
end
end
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ?
rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] :
rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ?
wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] :
wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate
if (C_HAS_VALID==1) begin : blockVL2
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
valid_d1 <= 1'b0;
valid_d2 <= 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
valid_d2 <= #`TCQ valid_d1;
end
// if (C_USE_EMBEDDED_REG == 3 && (C_EN_SAFETY_CKT == 0 || C_EN_SAFETY_CKT == 1 ) begin
// valid_d2 <= #`TCQ valid_d1;
// end
end
end
endgenerate
//Capture delayed version of dout
/**************************************************************************
*embedded/fabric reg with no safety ckt
**************************************************************************/
generate
if (C_USE_EMBEDDED_REG < 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0)
err_type_d1 <= #`TCQ 0;
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
endgenerate
/**************************************************************************
*embedded + fabric reg with no safety ckt
**************************************************************************/
generate
if (C_USE_EMBEDDED_REG == 3) begin
always @(posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge RD_CLK)
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
err_type_both <= #`TCQ 0;
end
end else begin
if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate
if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge WR_CLK) begin
ideal_overflow <= #`TCQ WR_EN & FULL;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge WR_CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i);
ideal_overflow <= #`TCQ WR_EN & (FULL );
end
end
endgenerate
generate
if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ EMPTY & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge RD_CLK) begin
ideal_underflow <= #`TCQ (EMPTY) & RD_EN;
//ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN;
end
end
endgenerate
/**************************************************************************
* Write/Read Pointer Synchronization
**************************************************************************/
localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1;
wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B];
genvar gss;
generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst
fifo_generator_v13_1_3_sync_stage
#(
.C_WIDTH (C_WR_PNTR_WIDTH)
)
rd_stg_inst
(
.RST (rd_rst_i),
.CLK (RD_CLK),
.DIN (wr_pntr_sync_stgs[gss-1]),
.DOUT (wr_pntr_sync_stgs[gss])
);
fifo_generator_v13_1_3_sync_stage
#(
.C_WIDTH (C_RD_PNTR_WIDTH)
)
wr_stg_inst
(
.RST (wr_rst_i),
.CLK (WR_CLK),
.DIN (rd_pntr_sync_stgs[gss-1]),
.DOUT (rd_pntr_sync_stgs[gss])
);
end endgenerate // Sync_stage_inst
assign wr_pntr_sync_stgs[0] = wr_pntr_rd1;
assign rd_pntr_sync_stgs[0] = rd_pntr_wr1;
always@* begin
wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B];
end
/**************************************************************************
* Write Domain Logic
**************************************************************************/
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_wp
if (wr_rst_i == 1'b1 && C_EN_SAFETY_CKT == 0)
wr_pntr <= 0;
else if (C_EN_SAFETY_CKT == 1 && SAFETY_CKT_WR_RST == 1'b1)
wr_pntr <= #`TCQ 0;
end
always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (wr_rst_i == 1'b1) begin
num_wr_bits <= 0;
next_num_wr_bits = 0;
wr_ptr <= C_WR_DEPTH - 1;
rd_ptr_wrclk <= C_RD_DEPTH - 1;
ideal_wr_ack <= 0;
ideal_wr_count <= 0;
tmp_wr_listsize = 0;
rd_ptr_wrclk_next <= 0;
wr_pntr_rd1 <= 0;
end else begin //wr_rst_i==0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
//If this is a write, handle the write by adding the value
// to the linked list, and updating all outputs appropriately
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD
>= C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full, but reporting full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//With DEPTH-1 words in the FIFO, it is almost_full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is completely empty, but it is
// reporting FULL for some reason (like reset)
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <=
C_FIFO_WR_DEPTH-2) begin
//No change to FIFO
//Write not successful
ideal_wr_ack <= #`TCQ 0;
//FIFO is really not close to full, so change flag status.
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end //(tmp_wr_listsize == 0)
end else begin
//If the FIFO is full, do NOT perform the write,
// update flags accordingly
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >=
C_FIFO_WR_DEPTH) begin
//write unsuccessful - do not change contents
//Do not acknowledge the write
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is one from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-1) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//This write is CAUSING the FIFO to go full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is 2 from full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD ==
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Still 2 from full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
//If the FIFO is not close to being full
end else
if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <
C_FIFO_WR_DEPTH-2) begin
//Add value on DIN port to FIFO
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //wr_rst_i==0
end // gen_fifo_w
/***************************************************************************
* Programmable FULL flags
***************************************************************************/
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val;
wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val;
generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC;
end else begin // STD
assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL;
assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL;
end endgenerate
always @(posedge WR_CLK or posedge wr_rst_i) begin
if (wr_rst_i == 1'b1) begin
diff_pntr <= 0;
end else begin
if (ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1);
else if (!ram_wr_en)
diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr);
end
end
always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf
if (RST_FULL_FF == 1'b1) begin
ideal_prog_full <= C_FULL_FLAGS_RST_VAL;
end else begin
if (RST_FULL_GEN)
ideal_prog_full <= #`TCQ 0;
//Single Programmable Full Constant Threshold
else if (C_PROG_FULL_TYPE == 1) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Constant Thresholds
end else if (C_PROG_FULL_TYPE == 2) begin
if (FULL == 0) begin
if (diff_pntr >= pf_thr_assert_val)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < pf_thr_negate_val)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Single Programmable Full Threshold Input
end else if (C_PROG_FULL_TYPE == 3) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH)
ideal_prog_full <= #`TCQ 1;
else
ideal_prog_full <= #`TCQ 0;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
//Two Programmable Full Threshold Inputs
end else if (C_PROG_FULL_TYPE == 4) begin
if (FULL == 0) begin
if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT
if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC))
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end else begin // STD
if (diff_pntr >= PROG_FULL_THRESH_ASSERT)
ideal_prog_full <= #`TCQ 1;
else if (diff_pntr < PROG_FULL_THRESH_NEGATE)
ideal_prog_full <= #`TCQ 0;
else
ideal_prog_full <= #`TCQ ideal_prog_full;
end
end else
ideal_prog_full <= #`TCQ ideal_prog_full;
end // C_PROG_FULL_TYPE
end //wr_rst_i==0
end //
/**************************************************************************
* Read Domain Logic
**************************************************************************/
/*********************************************************
* Programmable EMPTY flags
*********************************************************/
//Determine the Assert and Negate thresholds for Programmable Empty
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val;
wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0;
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe
if (rd_rst_i) begin
diff_pntr_rd <= 0;
ideal_prog_empty <= 1'b1;
end else begin
if (ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1;
else if (!ram_rd_en)
diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr);
else
diff_pntr_rd <= #`TCQ diff_pntr_rd;
if (C_PROG_EMPTY_TYPE == 1) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 2) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 3) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else
ideal_prog_empty <= #`TCQ 0;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else if (C_PROG_EMPTY_TYPE == 4) begin
if (EMPTY == 0) begin
if (diff_pntr_rd <= pe_thr_assert_val)
ideal_prog_empty <= #`TCQ 1;
else if (diff_pntr_rd > pe_thr_negate_val)
ideal_prog_empty <= #`TCQ 0;
else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end else
ideal_prog_empty <= #`TCQ ideal_prog_empty;
end //C_PROG_EMPTY_TYPE
end
end // gen_pe
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH;
end endgenerate // single_pe_thr_input
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE;
end endgenerate // multiple_pe_thr_input
generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const
assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL;
assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL;
end endgenerate // single_multiple_pe_thr_const
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_rp
if (rd_rst_i && C_EN_SAFETY_CKT == 0)
rd_pntr <= 0;
else if (C_EN_SAFETY_CKT == 1 && SAFETY_CKT_RD_RST == 1'b1)
rd_pntr <= #`TCQ 0;
end
always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r_as
/****** Reset fifo (case 1)***************************************/
if (rd_rst_i) begin
num_rd_bits <= 0;
next_num_rd_bits = 0;
rd_ptr <= C_RD_DEPTH -1;
rd_pntr_wr1 <= 0;
wr_ptr_rdclk <= C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1)
ideal_dout <= dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type <= 0;
err_type_d1 <= 0;
err_type_both <= 0;
end
ideal_valid <= 1'b0;
ideal_rd_count <= 0;
end else begin //rd_rst_i==0
rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
/*****************************************************************/
// Read Operation - Read Latency 1
/*****************************************************************/
if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
//If the FIFO is one from empty, but it is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is two from empty, and is reporting empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH))
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end // else: if(ideal_empty == 1'b1)
else //if (ideal_empty == 1'b0)
begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH)
//If the FIFO is not close to being empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
//If the FIFO is two from empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2)
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
//If the FIFO is one from empty
else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1))
begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 1)
//If the FIFO is completely empty
else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0)
begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end //(RD_EN == 1'b1)
else //if (RD_EN == 1'b0)
begin
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
/*****************************************************************/
// Read Operation - Read Latency 0
/*****************************************************************/
end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin
ideal_valid <= #`TCQ 1'b0;
if (ram_rd_en == 1'b1) begin
if (EMPTY == 1'b1) begin
//If the FIFO is completely empty, and is reporting empty
if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty, but it is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that FIFO is no longer empty, but is almost empty (has one word left)
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty, and is reporting empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Fifo has two words, so is neither empty or almost empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to empty, but is reporting that it is
// Treat the FIFO as empty this time, but unset EMPTY flags.
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Note that the FIFO is No Longer Empty or Almost Empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1))
end else begin
//If the FIFO is completely full, and we are successfully reading from it
if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is not close to being empty
end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) &&
(tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Not close to empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is two from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Fifo is not yet empty. It is going almost_empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is one from empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin
//Read the value from the FIFO
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
//Note that FIFO is GOING empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
//If the FIFO is completely empty
end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin
//Do not change the contents of the FIFO
//Do not acknowledge the read from empty FIFO
ideal_valid <= #`TCQ 1'b0;
//Reminder that FIFO is still empty
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize <= 0)
end // if (ideal_empty == 1'b0)
end else begin//(RD_EN == 1'b0)
//If user did not attempt a read, do not give an ack or err
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // else: !if(RD_EN == 1'b1)
end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0)
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //rd_rst_i==0
end //always gen_fifo_r_as
endmodule |
module fifo_generator_v13_1_3_beh_ver_ll_afifo
/***************************************************************************
* Declare user parameters and their defaults
***************************************************************************/
#(
parameter C_DIN_WIDTH = 8,
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_FULL_FLAGS_RST_VAL = 1,
parameter C_HAS_RD_DATA_COUNT = 0,
parameter C_HAS_WR_DATA_COUNT = 0,
parameter C_RD_DEPTH = 256,
parameter C_RD_PNTR_WIDTH = 8,
parameter C_USE_DOUT_RST = 0,
parameter C_WR_DATA_COUNT_WIDTH = 2,
parameter C_WR_DEPTH = 256,
parameter C_WR_PNTR_WIDTH = 8,
parameter C_FIFO_TYPE = 0
)
/***************************************************************************
* Declare Input and Output Ports
***************************************************************************/
(
input [C_DIN_WIDTH-1:0] DIN,
input RD_CLK,
input RD_EN,
input WR_RST,
input RD_RST,
input WR_CLK,
input WR_EN,
output reg [C_DOUT_WIDTH-1:0] DOUT = 0,
output reg EMPTY = 1'b1,
output reg FULL = C_FULL_FLAGS_RST_VAL
);
//-----------------------------------------------------------------------------
// Low Latency Asynchronous FIFO
//-----------------------------------------------------------------------------
// Memory which will be used to simulate a FIFO
reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0];
integer i;
initial begin
for (i = 0; i < C_WR_DEPTH; i = i + 1)
memory[i] = 0;
end
reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0;
wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo;
reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0;
reg ll_afifo_full = 1'b0;
reg ll_afifo_empty = 1'b1;
wire write_allow;
wire read_allow;
assign write_allow = WR_EN & ~ll_afifo_full;
assign read_allow = RD_EN & ~ll_afifo_empty;
//-----------------------------------------------------------------------------
// Write Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
wr_pntr_ll_afifo <= 0;
else if (write_allow)
wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1;
end
//-----------------------------------------------------------------------------
// Read Pointer Generation
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
rd_pntr_ll_afifo_q <= 0;
else
rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo;
end
assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q;
//-----------------------------------------------------------------------------
// Fill the Memory
//-----------------------------------------------------------------------------
always @(posedge WR_CLK) begin
if (write_allow)
memory[wr_pntr_ll_afifo] <= #`TCQ DIN;
end
//-----------------------------------------------------------------------------
// Generate DOUT
//-----------------------------------------------------------------------------
always @(posedge RD_CLK) begin
DOUT <= #`TCQ memory[rd_pntr_ll_afifo];
end
//-----------------------------------------------------------------------------
// Generate EMPTY
//-----------------------------------------------------------------------------
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST)
ll_afifo_empty <= 1'b1;
else
ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) |
(read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1))));
end
//-----------------------------------------------------------------------------
// Generate FULL
//-----------------------------------------------------------------------------
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST)
ll_afifo_full <= 1'b1;
else
ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) |
(write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2))));
end
always @* begin
FULL <= ll_afifo_full;
EMPTY <= ll_afifo_empty;
end
endmodule |
module inputs and outputs to the internal signals of the
* behavioral model.
*************************************************************************/
//Inputs
/*
wire CLK;
wire [C_DIN_WIDTH-1:0] DIN;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT;
wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT;
wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE;
wire RD_EN;
wire RST;
wire WR_EN;
*/
// Assign ALMOST_EPMTY
generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae
assign ALMOST_EMPTY = almost_empty_i;
end else begin : gnae
assign ALMOST_EMPTY = 0;
end endgenerate // gae
// Assign ALMOST_FULL
generate if (C_HAS_ALMOST_FULL==1) begin : gaf
assign ALMOST_FULL = almost_full_i;
end else begin : gnaf
assign ALMOST_FULL = 0;
end endgenerate // gaf
// Dout may change behavior based on latency
localparam C_FWFT_ENABLED = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)?
1: 0;
assign ideal_dout_out= ((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))?
ideal_dout_d1: ideal_dout;
assign DOUT = ideal_dout_out;
// Assign SBITERR and DBITERR based on latency
assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[0]: err_type[0];
assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) &&
((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) &&
(C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ?
err_type_d1[1]: err_type[1];
assign EMPTY = empty_i;
assign FULL = full_i;
//saftey_ckt with one register
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && (C_USE_EMBEDDED_REG == 1 || C_USE_EMBEDDED_REG == 2 )) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK)
begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK)
begin
if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end
else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
valid_d1 <= #`TCQ valid_i;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK)
begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end
else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (ram_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1[0] <= #`TCQ err_type[0];
err_type_d1[1] <= #`TCQ err_type[1];
end
end
end //if
endgenerate
//safety ckt with both registers
generate
if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge CLK) begin
rst_delayed_sft1 <= #`TCQ rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK) begin
if (rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
valid_d1 <= #`TCQ 1'b0;
end else begin
ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i));
fab_rd_en_d1 <= #`TCQ ram_rd_en_d1;
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
always@(posedge rst_delayed_sft2 or posedge CLK) begin
if (rst_delayed_sft2 == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else if (srst_rrst_busy == 1'b1) begin
if (C_USE_DOUT_RST == 1'b1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both[0] <= #`TCQ err_type[0];
err_type_both[1] <= #`TCQ err_type[1];
end
if (fab_rd_en_d1) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1[0] <= #`TCQ err_type_both[0];
err_type_d1[1] <= #`TCQ err_type_both[1];
end
end
end
end //if
endgenerate
//Overflow may be active-low
generate if (C_HAS_OVERFLOW==1) begin : gof
assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW;
end else begin : gnof
assign OVERFLOW = 0;
end endgenerate // gof
assign PROG_EMPTY = prog_empty_i;
assign PROG_FULL = prog_full_i;
//Valid may change behavior based on latency or active-low
generate if (C_HAS_VALID==1) begin : gvalid
assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid;
assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ?
valid_d1 : valid_i;
assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW;
end else begin : gnvalid
assign VALID = 0;
end endgenerate // gvalid
//Trim data count differently depending on set widths
generate if (C_HAS_DATA_COUNT == 1) begin : gdc
always @* begin
diff_count <= wr_pntr - rd_pntr;
if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin
DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count;
DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ;
end else begin
DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH];
end
end
// end else begin : gndc
// always @* DATA_COUNT <= 0;
end endgenerate // gdc
//Underflow may change behavior based on latency or active-low
generate if (C_HAS_UNDERFLOW==1) begin : guf
assign underflow_i = ideal_underflow;
assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW;
end else begin : gnuf
assign UNDERFLOW = 0;
end endgenerate // guf
//Write acknowledge may be active low
generate if (C_HAS_WR_ACK==1) begin : gwr_ack
assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW;
end else begin : gnwr_ack
assign WR_ACK = 0;
end endgenerate // gwr_ack
/*****************************************************************************
* Internal reset logic
****************************************************************************/
assign srst_i = C_EN_SAFETY_CKT ? SAFETY_CKT_WR_RST : C_HAS_SRST ? (SRST | WR_RST_BUSY) : 0;
assign rst_i = C_HAS_RST ? RST : 0;
assign srst_wrst_busy = srst_i;
assign srst_rrst_busy = srst_i;
/**************************************************************************
* Assorted registers for delayed versions of signals
**************************************************************************/
//Capture delayed version of valid
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG <3)) begin : blockVL20
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
end else begin
valid_d1 <= #`TCQ valid_i;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG == 3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
valid_d1 <= 1'b0;
valid_both <= 1'b0;
end else begin
if (srst_rrst_busy) begin
valid_d1 <= #`TCQ 1'b0;
valid_both <= #`TCQ 1'b0;
end else begin
valid_both <= #`TCQ valid_i;
valid_d1 <= #`TCQ valid_both;
end
end
end // always @ (posedge CLK or posedge rst_i)
end
endgenerate // blockVL20
// Determine which stage in FWFT registers are valid
reg stage1_valid = 0;
reg stage2_valid = 0;
generate
if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc
always @ (posedge CLK or posedge rst_i) begin
if (rst_i) begin
stage1_valid <= #`TCQ 0;
stage2_valid <= #`TCQ 0;
end else begin
if (!stage1_valid && !stage2_valid) begin
if (!EMPTY)
stage1_valid <= #`TCQ 1'b1;
else
stage1_valid <= #`TCQ 1'b0;
end else if (stage1_valid && !stage2_valid) begin
if (EMPTY) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else if (!stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b0;
end else if (!EMPTY && !RD_EN) begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end
end else if (stage1_valid && stage2_valid) begin
if (EMPTY && RD_EN) begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b1;
end else begin
stage1_valid <= #`TCQ 1'b1;
stage2_valid <= #`TCQ 1'b1;
end
end else begin
stage1_valid <= #`TCQ 1'b0;
stage2_valid <= #`TCQ 1'b0;
end
end // rd_rst_i
end // always
end
endgenerate
//***************************************************************************
// Assign the read data count value only if it is selected,
// otherwise output zeros.
//***************************************************************************
generate
if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH];
end
endgenerate
generate
if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc
assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//***************************************************************************
// Assign the write data count value only if it is selected,
// otherwise output zeros
//***************************************************************************
generate
if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ;
end
endgenerate
generate
if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc
assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}};
end
endgenerate
//reg ram_rd_en_d1 = 1'b0;
//Capture delayed version of dout
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG<3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
err_type_both <= #`TCQ 0;
end
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
ram_rd_en_d1 <= #`TCQ 1'b0;
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
err_type_both <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
if (ram_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout;
err_type_d1 <= #`TCQ err_type;
end
end
end
end // always
end
endgenerate
//no safety ckt with both registers
generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG==3)) begin
always @(posedge CLK or posedge rst_i) begin
if (rst_i == 1'b1) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
fab_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
err_type_both <= #`TCQ 0;
end
// DRAM and SRAM reset asynchronously
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
@(posedge CLK)
ideal_dout_d1 <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end else begin
if (srst_rrst_busy) begin
ram_rd_en_d1 <= #`TCQ 1'b0;
fab_rd_en_d1 <= #`TCQ 1'b0;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type_d1 <= #`TCQ 0;
err_type_both <= #`TCQ 0;
end
// Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above
if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
if (C_USE_DOUT_RST == 1) begin
ideal_dout_d1 <= #`TCQ dout_reset_val;
end
end else begin
ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY;
fab_rd_en_d1 <= #`TCQ (ram_rd_en_d1);
if (ram_rd_en_d1 ) begin
ideal_dout_both <= #`TCQ ideal_dout;
err_type_both <= #`TCQ err_type;
end
if (fab_rd_en_d1 ) begin
ideal_dout_d1 <= #`TCQ ideal_dout_both;
err_type_d1 <= #`TCQ err_type_both;
end
end
end
end // always
end
endgenerate
/**************************************************************************
* Overflow and Underflow Flag calculation
* (handled separately because they don't support rst)
**************************************************************************/
generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw
always @(posedge CLK) begin
ideal_overflow <= #`TCQ WR_EN & full_i;
end
end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw
always @(posedge CLK) begin
//ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i);
ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i);
end
end endgenerate // blockOF20
generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw
always @(posedge CLK) begin
ideal_underflow <= #`TCQ empty_i & RD_EN;
end
end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw
always @(posedge CLK) begin
//ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN;
ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN;
end
end endgenerate // blockUF20
/**************************
* Read Data Count
*************************/
reg [31:0] num_read_words_dc;
reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i;
always @(num_rd_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//If using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain,
// and add two read words for FWFT stages
//This value is only a temporary value and not used in the code.
num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2);
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1];
end else begin
//If not using extra logic for FWFT Data Counts,
// then scale FIFO contents to read domain.
//This value is only a temporary value and not used in the code.
num_read_words_dc = num_rd_bits/C_DOUT_WIDTH;
//Trim the read words for use with RD_DATA_COUNT
num_read_words_sized_i =
num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/**************************
* Write Data Count
*************************/
reg [31:0] num_write_words_dc;
reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i;
always @(num_wr_bits) begin
if (C_USE_FWFT_DATA_COUNT) begin
//Calculate the Data Count value for the number of write words,
// when using First-Word Fall-Through with extra logic for Data
// Counts. This takes into consideration the number of words that
// are expected to be stored in the FWFT register stages (it always
// assumes they are filled).
//This value is scaled to the Write Domain.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//EXTRA_WORDS_DC is the number of words added to write_words
// due to FWFT.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ;
//Trim the write words for use with WR_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1];
end else begin
//Calculate the Data Count value for the number of write words, when NOT
// using First-Word Fall-Through with extra logic for Data Counts. This
// calculates only the number of words in the internal FIFO.
//The expression (((A-1)/B))+1 divides A/B, but takes the
// ceiling of the result.
//This value is scaled to the Write Domain.
//When num_wr_bits==0, set the result manually to prevent
// division errors.
//This value is only a temporary value and not used in the code.
num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1;
//Trim the read words for use with RD_DATA_COUNT
num_write_words_sized_i =
num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH];
end //if (C_USE_FWFT_DATA_COUNT)
end //always
/*************************************************************************
* Write and Read Logic
************************************************************************/
wire write_allow;
wire read_allow;
wire read_allow_dc;
wire write_only;
wire read_only;
//wire write_only_q;
reg write_only_q;
//wire read_only_q;
reg read_only_q;
reg full_reg;
reg rst_full_ff_reg1;
reg rst_full_ff_reg2;
wire ram_full_comb;
wire carry;
assign write_allow = WR_EN & ~full_i;
assign read_allow = RD_EN & ~empty_i;
assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB;
//assign write_only = write_allow & ~read_allow;
//assign write_only_q = write_allow_q;
//assign read_only = read_allow & ~write_allow;
//assign read_only_q = read_allow_q ;
wire [C_WR_PNTR_WIDTH-1:0] diff_pntr;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0;
reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0;
reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0;
wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ;
wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0;
reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max;
wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max;
assign diff_pntr_pe_max = DIFF_MAX_RD;
assign diff_pntr_max = DIFF_MAX_WR;
generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym
assign write_only = write_allow & ~read_allow;
assign read_only = read_allow & ~write_allow;
end endgenerate
generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd
assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow;
assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr
assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow;
end endgenerate
//-----------------------------------------------------------------------------
// Write and Read pointer generation
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i && C_EN_SAFETY_CKT == 0) begin
wr_pntr <= 0;
rd_pntr <= 0;
end else begin
if (srst_i) begin
wr_pntr <= #`TCQ 0;
rd_pntr <= #`TCQ 0;
end else begin
if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1;
if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1;
end
end
end
generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout
always @(posedge CLK) begin
if (write_allow) begin
if (ENABLE_ERR_INJECTION == 1)
memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN};
else
memory[wr_pntr] <= #`TCQ DIN;
end
end
reg [C_DATA_WIDTH-1:0] dout_tmp_q;
reg [C_DATA_WIDTH-1:0] dout_tmp = 0;
reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0;
always @(posedge CLK) begin
dout_tmp_q <= #`TCQ ideal_dout;
end
always @* begin
if (read_allow)
ideal_dout <= memory[rd_pntr];
else
ideal_dout <= dout_tmp_q;
end
end endgenerate // gll_dm_dout
/**************************************************************************
* Write Domain Logic
**************************************************************************/
assign ram_rd_en = RD_EN & !EMPTY;
//reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0;
generate if (C_FIFO_TYPE != 2) begin : gnll_din
always @(posedge CLK or posedge rst_i) begin : gen_fifo_w
/****** Reset fifo (case 1)***************************************/
if (rst_i == 1'b1) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin //rst_i==0
if (srst_wrst_busy) begin
num_wr_bits <= #`TCQ 0;
next_num_wr_bits = #`TCQ 0;
wr_ptr <= #`TCQ C_WR_DEPTH - 1;
rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1;
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ 0;
tmp_wr_listsize = #`TCQ 0;
rd_ptr_wrclk_next <= #`TCQ 0;
wr_pntr <= #`TCQ 0;
wr_pntr_rd1 <= #`TCQ 0;
end else begin//srst_i=0
wr_pntr_rd1 <= #`TCQ wr_pntr;
//Determine the current number of words in the FIFO
tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH :
num_wr_bits/C_DIN_WIDTH;
rd_ptr_wrclk_next = rd_ptr;
if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH
- rd_ptr_wrclk_next);
end else begin
next_num_wr_bits = num_wr_bits -
C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next);
end
if (WR_EN == 1'b1) begin
if (FULL == 1'b1) begin
ideal_wr_ack <= #`TCQ 0;
//Reminder that FIFO is still full
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end else begin
write_fifo;
next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH;
//Write successful, so issue acknowledge
// and no error
ideal_wr_ack <= #`TCQ 1;
//Not even close to full.
ideal_wr_count <= num_write_words_sized_i;
//end
end
end else begin //(WR_EN == 1'b1)
//If user did not attempt a write, then do not
// give ack or err
ideal_wr_ack <= #`TCQ 0;
ideal_wr_count <= #`TCQ num_write_words_sized_i;
end
num_wr_bits <= #`TCQ next_num_wr_bits;
rd_ptr_wrclk <= #`TCQ rd_ptr;
end //srst_i==0
end //wr_rst_i==0
end // gen_fifo_w
end endgenerate
generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2) begin : gnll_dm_dout
always @(posedge CLK) begin
if (rst_i || srst_rrst_busy) begin
if (C_USE_DOUT_RST == 1) begin
ideal_dout <= #`TCQ dout_reset_val;
ideal_dout_both <= #`TCQ dout_reset_val;
end
end
end
end endgenerate
generate if (C_FIFO_TYPE != 2) begin : gnll_dout
always @(posedge CLK or posedge rst_i) begin : gen_fifo_r
/****** Reset fifo (case 1)***************************************/
if (rst_i) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets asynchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type <= #`TCQ 0;
err_type_d1 <= 0;
err_type_both <= 0;
end
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end else begin //rd_rst_i==0
if (srst_rrst_busy) begin
num_rd_bits <= #`TCQ 0;
next_num_rd_bits = #`TCQ 0;
rd_ptr <= #`TCQ C_RD_DEPTH -1;
rd_pntr <= #`TCQ 0;
//rd_pntr_wr1 <= #`TCQ 0;
wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1;
// DRAM resets synchronously
if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1)
ideal_dout <= #`TCQ dout_reset_val;
// Reset err_type only if ECC is not selected
if (C_USE_ECC == 0) begin
err_type <= #`TCQ 0;
err_type_d1 <= #`TCQ 0;
err_type_both <= #`TCQ 0;
end
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ 0;
end //srst_i
else begin
//rd_pntr_wr1 <= #`TCQ rd_pntr;
//Determine the current number of words in the FIFO
tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH :
num_rd_bits/C_DOUT_WIDTH;
wr_ptr_rdclk_next = wr_ptr;
if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH
- wr_ptr_rdclk_next);
end else begin
next_num_rd_bits = num_rd_bits +
C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next);
end
if (RD_EN == 1'b1) begin
if (EMPTY == 1'b1) begin
ideal_valid <= #`TCQ 1'b0;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end
else
begin
read_fifo;
next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH;
//Acknowledge the read from the FIFO, no error
ideal_valid <= #`TCQ 1'b1;
ideal_rd_count <= #`TCQ num_read_words_sized_i;
end // if (tmp_rd_listsize == 2)
end
num_rd_bits <= #`TCQ next_num_rd_bits;
wr_ptr_rdclk <= #`TCQ wr_ptr;
end //s_rst_i==0
end //rd_rst_i==0
end //always
end endgenerate
//-----------------------------------------------------------------------------
// Generate diff_pntr for PROG_FULL generation
// Generate diff_pntr_pe for PROG_EMPTY generation
//-----------------------------------------------------------------------------
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow
always @(posedge CLK ) begin
if (rst_i) begin
write_only_q <= 1'b0;
read_only_q <= 1'b0;
diff_pntr_reg1 <= 0;
diff_pntr_pe_reg1 <= 0;
diff_pntr_reg2 <= 0;
diff_pntr_pe_reg2 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_rrst_busy) begin
read_only_q <= #`TCQ 1'b0;
diff_pntr_pe_reg1 <= #`TCQ 0;
diff_pntr_pe_reg2 <= #`TCQ 0;
end
if (srst_wrst_busy) begin
write_only_q <= #`TCQ 1'b0;
diff_pntr_reg1 <= #`TCQ 0;
diff_pntr_reg2 <= #`TCQ 0;
end
end else begin
write_only_q <= #`TCQ write_only;
read_only_q <= #`TCQ read_only;
diff_pntr_reg2 <= #`TCQ diff_pntr_reg1;
diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1;
// Add 1 to the difference pointer value when only write happens.
if (write_only)
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1;
else
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
// Add 1 to the difference pointer value when write or both write & read or no write & read happen.
if (read_only)
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1;
else
diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr;
end
end
end
assign diff_pntr_pe = diff_pntr_pe_reg1;
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow
generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym
assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1};
assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1};
always @(posedge CLK ) begin
if (rst_i) begin
diff_pntr_pe_asym <= 0;
diff_pntr_reg1 <= 0;
full_reg <= 0;
rst_full_ff_reg1 <= 1;
rst_full_ff_reg2 <= 1;
diff_pntr_pe_reg1 <= 0;
end else begin
if (srst_i || srst_wrst_busy || srst_rrst_busy) begin
if (srst_wrst_busy)
diff_pntr_reg1 <= #`TCQ 0;
if (srst_rrst_busy)
full_reg <= #`TCQ 0;
rst_full_ff_reg1 <= #`TCQ 1;
rst_full_ff_reg2 <= #`TCQ 1;
diff_pntr_pe_asym <= #`TCQ 0;
diff_pntr_pe_reg1 <= #`TCQ 0;
end else begin
diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym;
full_reg <= #`TCQ full_i;
rst_full_ff_reg1 <= #`TCQ RST_FULL_FF;
rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1;
if (~full_i) begin
diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr;
end
end
end
end
assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1])));
assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1];
assign diff_pntr = diff_pntr_reg1;
end endgenerate // reg_write_allow_asym
//-----------------------------------------------------------------------------
// Generate FULL flag
//-----------------------------------------------------------------------------
wire comp0;
wire comp1;
wire going_full;
wire leaving_full;
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad
assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr;
assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim
assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1));
assign comp0 = (adj_rd_pntr_wr == wr_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym
assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp
assign going_full = (comp1 & write_allow & ~read_allow);
assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_full_comb = going_full | (~leaving_full & full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
full_i <= #`TCQ ram_full_comb;
end
//-----------------------------------------------------------------------------
// Generate EMPTY flag
//-----------------------------------------------------------------------------
wire ecomp0;
wire ecomp1;
wire going_empty;
wire leaving_empty;
wire ram_empty_comb;
generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad
assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr;
assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0;
end endgenerate
generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim
assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1));
assign ecomp0 = (adj_wr_pntr_rd == rd_pntr);
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty = (ecomp0 & write_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp
assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp
assign going_empty = (ecomp1 & ~write_allow & read_allow);
assign leaving_empty =(ecomp0 & write_allow);
end endgenerate
assign ram_empty_comb = going_empty | (~leaving_empty & empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
empty_i <= 1'b1;
else if (srst_rrst_busy)
empty_i <= #`TCQ 1'b1;
else
empty_i <= #`TCQ ram_empty_comb;
end
always @(posedge CLK or posedge rst_i) begin
if (rst_i && C_EN_SAFETY_CKT == 0) begin
EMPTY_FB <= 1'b1;
end else begin
if (srst_rrst_busy || (SAFETY_CKT_WR_RST && C_EN_SAFETY_CKT))
EMPTY_FB <= #`TCQ 1'b1;
else
EMPTY_FB <= #`TCQ ram_empty_comb;
end
end // always
//-----------------------------------------------------------------------------
// Generate Read and write data counts for asymmetic common clock
//-----------------------------------------------------------------------------
reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0;
wire [C_GRTR_PNTR_WIDTH :0] ratio;
wire decr_by_one;
wire incr_by_ratio;
wire incr_by_one;
wire decr_by_ratio;
localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0;
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr
assign ratio = C_DEPTH_RATIO_RD;
assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow;
assign incr_by_ratio = write_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (decr_by_one) begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc - 1;
else
count_dc <= #`TCQ count_dc - 1 + ratio ;
end
else begin
if (!incr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc + ratio ;
end
end
end
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc;
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH];
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd
assign ratio = C_DEPTH_RATIO_WR;
assign incr_by_one = write_allow;
assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow;
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
count_dc <= #`TCQ 0;
else if (srst_wrst_busy)
count_dc <= #`TCQ 0;
else begin
if (incr_by_one) begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc + 1;
else
count_dc <= #`TCQ count_dc + 1 - ratio ;
end
else begin
if (!decr_by_ratio)
count_dc <= #`TCQ count_dc ;
else
count_dc <= #`TCQ count_dc - ratio ;
end
end
end
assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc;
assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH];
end endgenerate
//-----------------------------------------------------------------------------
// Generate WR_ACK flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_wr_ack <= 1'b0;
else if (srst_wrst_busy)
ideal_wr_ack <= #`TCQ 1'b0;
else if (WR_EN & ~full_i)
ideal_wr_ack <= #`TCQ 1'b1;
else
ideal_wr_ack <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate VALID flag
//-----------------------------------------------------------------------------
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
ideal_valid <= 1'b0;
else if (srst_rrst_busy)
ideal_valid <= #`TCQ 1'b0;
else if (RD_EN & ~empty_i)
ideal_valid <= #`TCQ 1'b1;
else
ideal_valid <= #`TCQ 1'b0;
end
//-----------------------------------------------------------------------------
// Generate ALMOST_FULL flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss
wire fcomp2;
wire going_afull;
wire leaving_afull;
wire ram_afull_comb;
assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN;
end endgenerate
// Write data width is bigger than read data width
// Write depth is smaller than read depth
// One write could be equal to 2 or 4 or 8 reads
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym
assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]))));
assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN;
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp
assign going_afull = (fcomp2 & write_allow & ~read_allow);
assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN;
end endgenerate
assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i);
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF)
almost_full_i <= C_FULL_FLAGS_RST_VAL;
else if (srst_wrst_busy)
almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else
almost_full_i <= #`TCQ ram_afull_comb;
end
// end endgenerate // gaf_ss
//-----------------------------------------------------------------------------
// Generate ALMOST_EMPTY flag
//-----------------------------------------------------------------------------
//generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss
wire ecomp2;
wire going_aempty;
wire leaving_aempty;
wire ram_aempty_comb;
assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2));
generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty = (ecomp1 & write_allow & ~read_allow);
end endgenerate
generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp
assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]))));
assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]));
end endgenerate
generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp
assign going_aempty = (ecomp2 & ~write_allow & read_allow);
assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow);
end endgenerate
assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i);
always @(posedge CLK or posedge rst_i) begin
if (rst_i)
almost_empty_i <= 1'b1;
else if (srst_rrst_busy)
almost_empty_i <= #`TCQ 1'b1;
else
almost_empty_i <= #`TCQ ram_aempty_comb;
end
// end endgenerate // gae_ss
//-----------------------------------------------------------------------------
// Generate PROG_FULL
//-----------------------------------------------------------------------------
localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT
C_PROG_FULL_THRESH_ASSERT_VAL; // STD
localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT
C_PROG_FULL_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold constant
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL;
generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr>= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr) < C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b0;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate // single_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const
always @(posedge CLK or posedge RST_FULL_FF) begin
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~RST_FULL_GEN ) begin
if (diff_pntr >= C_PF_ASSERT_VAL )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < C_PF_NEGATE_VAL)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_const
//-----------------------------------------------------------------------------
// Generate PROG_FULL for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ?
PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT
PROG_FULL_THRESH; // STD
generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input
always @(posedge CLK or posedge RST_FULL_FF) begin//0
//if (RST_FULL_FF)
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin //1
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin//2
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin//3
if (diff_pntr > pf3_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr == pf3_assert_val) begin//4
if (read_only_q)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ 1'b1;
end else//4
prog_full_i <= #`TCQ 1'b0;
end else//3
prog_full_i <= #`TCQ prog_full_i;
end //2
else begin//5
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin//6
if (diff_pntr >= pf3_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf3_assert_val) begin//7
prog_full_i <= #`TCQ 1'b0;
end//7
end//6
else
prog_full_i <= #`TCQ prog_full_i;
end//5
end//1
end//0
end endgenerate //single_pf_input
//-----------------------------------------------------------------------------
// Generate PROG_FULL for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_ASSERT; // STD
wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT
PROG_FULL_THRESH_NEGATE; // STD
generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs
always @(posedge CLK or posedge RST_FULL_FF) begin
if (RST_FULL_FF && C_HAS_RST)
prog_full_i <= C_FULL_FLAGS_RST_VAL;
else begin
if (srst_wrst_busy)
prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL;
else if (IS_ASYMMETRY == 0) begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~almost_full_i) begin
if (diff_pntr >= pf_assert_val)
prog_full_i <= #`TCQ 1'b1;
else if ((diff_pntr == pf_negate_val && read_only_q) ||
diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end else
prog_full_i <= #`TCQ prog_full_i;
end
else begin
if (RST_FULL_GEN)
prog_full_i <= #`TCQ 1'b0;
else if (~full_i ) begin
if (diff_pntr >= pf_assert_val )
prog_full_i <= #`TCQ 1'b1;
else if (diff_pntr < pf_negate_val)
prog_full_i <= #`TCQ 1'b0;
else
prog_full_i <= #`TCQ prog_full_i;
end
else
prog_full_i <= #`TCQ prog_full_i;
end
end
end
end endgenerate //multiple_pf_inputs
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY
//-----------------------------------------------------------------------------
localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD
localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ?
C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT
C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold constant
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_ASSERT_VAL)
prog_empty_i <= #`TCQ 1'b0;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold constants
//-----------------------------------------------------------------------------
generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (~rst_i ) begin
if (diff_pntr_pe <= C_PE_ASSERT_VAL )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > C_PE_NEGATE_VAL)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate //multiple_pe_const
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for single programmable threshold input port
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH -2) : // FWFT
PROG_EMPTY_THRESH; // STD
generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe < pe3_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe == pe3_assert_val) begin
if (write_only_q)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ 1'b1;
end else
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe3_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe3_assert_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // single_pe_input
//-----------------------------------------------------------------------------
// Generate PROG_EMPTY for multiple programmable threshold input ports
//-----------------------------------------------------------------------------
wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT
PROG_EMPTY_THRESH_ASSERT; // STD
wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ?
(PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT
PROG_EMPTY_THRESH_NEGATE; // STD
generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs
always @(posedge CLK or posedge rst_i) begin
//if (rst_i)
if (rst_i && C_HAS_RST)
prog_empty_i <= 1'b1;
else begin
if (srst_rrst_busy)
prog_empty_i <= #`TCQ 1'b1;
else if (IS_ASYMMETRY == 0) begin
if (~almost_full_i) begin
if (diff_pntr_pe <= pe4_assert_val)
prog_empty_i <= #`TCQ 1'b1;
else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) ||
(diff_pntr_pe > pe4_negate_val)) begin
prog_empty_i <= #`TCQ 1'b0;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end else
prog_empty_i <= #`TCQ prog_empty_i;
end
else begin
if (diff_pntr_pe <= pe4_assert_val )
prog_empty_i <= #`TCQ 1'b1;
else if (diff_pntr_pe > pe4_negate_val)
prog_empty_i <= #`TCQ 1'b0;
else
prog_empty_i <= #`TCQ prog_empty_i;
end
end
end
end endgenerate // multiple_pe_inputs
endmodule |
module fifo_generator_v13_1_3_bhv_ver_preload0
#(
parameter C_DOUT_RST_VAL = "",
parameter C_DOUT_WIDTH = 8,
parameter C_HAS_RST = 0,
parameter C_ENABLE_RST_SYNC = 0,
parameter C_HAS_SRST = 0,
parameter C_USE_EMBEDDED_REG = 0,
parameter C_EN_SAFETY_CKT = 0,
parameter C_USE_DOUT_RST = 0,
parameter C_USE_ECC = 0,
parameter C_USERVALID_LOW = 0,
parameter C_USERUNDERFLOW_LOW = 0,
parameter C_MEMORY_TYPE = 0,
parameter C_FIFO_TYPE = 0
)
(
//Inputs
input SAFETY_CKT_RD_RST,
input RD_CLK,
input RD_RST,
input SRST,
input WR_RST_BUSY,
input RD_RST_BUSY,
input RD_EN,
input FIFOEMPTY,
input [C_DOUT_WIDTH-1:0] FIFODATA,
input FIFOSBITERR,
input FIFODBITERR,
//Outputs
output reg [C_DOUT_WIDTH-1:0] USERDATA,
output USERVALID,
output USERUNDERFLOW,
output USEREMPTY,
output USERALMOSTEMPTY,
output RAMVALID,
output FIFORDEN,
output reg USERSBITERR,
output reg USERDBITERR,
output reg STAGE2_REG_EN,
output fab_read_data_valid_i_o,
output read_data_valid_i_o,
output ram_valid_i_o,
output [1:0] VALID_STAGES
);
//Internal signals
wire preloadstage1;
wire preloadstage2;
reg ram_valid_i;
reg fab_valid;
reg read_data_valid_i;
reg fab_read_data_valid_i;
reg fab_read_data_valid_i_1;
reg ram_valid_i_d;
reg read_data_valid_i_d;
reg fab_read_data_valid_i_d;
wire ram_regout_en;
reg ram_regout_en_d1;
reg ram_regout_en_d2;
wire fab_regout_en;
wire ram_rd_en;
reg empty_i = 1'b1;
reg empty_sckt = 1'b1;
reg sckt_rrst_q = 1'b0;
reg sckt_rrst_done = 1'b0;
reg empty_q = 1'b1;
reg rd_en_q = 1'b0;
reg almost_empty_i = 1'b1;
reg almost_empty_q = 1'b1;
wire rd_rst_i;
wire srst_i;
reg [C_DOUT_WIDTH-1:0] userdata_both;
wire uservalid_both;
wire uservalid_one;
reg user_sbiterr_both = 1'b0;
reg user_dbiterr_both = 1'b0;
assign ram_valid_i_o = ram_valid_i;
assign read_data_valid_i_o = read_data_valid_i;
assign fab_read_data_valid_i_o = fab_read_data_valid_i;
/*************************************************************************
* FUNCTIONS
*************************************************************************/
/*************************************************************************
* hexstr_conv
* Converts a string of type hex to a binary value (for C_DOUT_RST_VAL)
***********************************************************************/
function [C_DOUT_WIDTH-1:0] hexstr_conv;
input [(C_DOUT_WIDTH*8)-1:0] def_data;
integer index,i,j;
reg [3:0] bin;
begin
index = 0;
hexstr_conv = 'b0;
for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 )
begin
case (def_data[7:0])
8'b00000000 :
begin
bin = 4'b0000;
i = -1;
end
8'b00110000 : bin = 4'b0000;
8'b00110001 : bin = 4'b0001;
8'b00110010 : bin = 4'b0010;
8'b00110011 : bin = 4'b0011;
8'b00110100 : bin = 4'b0100;
8'b00110101 : bin = 4'b0101;
8'b00110110 : bin = 4'b0110;
8'b00110111 : bin = 4'b0111;
8'b00111000 : bin = 4'b1000;
8'b00111001 : bin = 4'b1001;
8'b01000001 : bin = 4'b1010;
8'b01000010 : bin = 4'b1011;
8'b01000011 : bin = 4'b1100;
8'b01000100 : bin = 4'b1101;
8'b01000101 : bin = 4'b1110;
8'b01000110 : bin = 4'b1111;
8'b01100001 : bin = 4'b1010;
8'b01100010 : bin = 4'b1011;
8'b01100011 : bin = 4'b1100;
8'b01100100 : bin = 4'b1101;
8'b01100101 : bin = 4'b1110;
8'b01100110 : bin = 4'b1111;
default :
begin
bin = 4'bx;
end
endcase
for( j=0; j<4; j=j+1)
begin
if ((index*4)+j < C_DOUT_WIDTH)
begin
hexstr_conv[(index*4)+j] = bin[j];
end
end
index = index + 1;
def_data = def_data >> 8;
end
end
endfunction
//*************************************************************************
// Set power-on states for regs
//*************************************************************************
initial begin
ram_valid_i = 1'b0;
fab_valid = 1'b0;
read_data_valid_i = 1'b0;
fab_read_data_valid_i = 1'b0;
fab_read_data_valid_i_1 = 1'b0;
USERDATA = hexstr_conv(C_DOUT_RST_VAL);
userdata_both = hexstr_conv(C_DOUT_RST_VAL);
USERSBITERR = 1'b0;
USERDBITERR = 1'b0;
user_sbiterr_both = 1'b0;
user_dbiterr_both = 1'b0;
end //initial
//***************************************************************************
// connect up optional reset
//***************************************************************************
assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0;
assign srst_i = C_EN_SAFETY_CKT ? SAFETY_CKT_RD_RST : C_HAS_SRST ? SRST : 0;
reg sckt_rd_rst_fwft = 1'b0;
reg fwft_rst_done_i = 1'b0;
wire fwft_rst_done;
assign fwft_rst_done = C_EN_SAFETY_CKT ? fwft_rst_done_i : 1'b1;
always @ (posedge RD_CLK) begin
sckt_rd_rst_fwft <= #`TCQ SAFETY_CKT_RD_RST;
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i)
fwft_rst_done_i <= 1'b0;
else if (sckt_rd_rst_fwft & ~SAFETY_CKT_RD_RST)
fwft_rst_done_i <= #`TCQ 1'b1;
end
localparam INVALID = 0;
localparam STAGE1_VALID = 2;
localparam STAGE2_VALID = 1;
localparam BOTH_STAGES_VALID = 3;
reg [1:0] curr_fwft_state = INVALID;
reg [1:0] next_fwft_state = INVALID;
generate if (C_USE_EMBEDDED_REG < 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i && C_EN_SAFETY_CKT == 0)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = preloadstage2;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
reg curr_state = 0;
reg next_state = 0;
reg leaving_empty_fwft = 0;
reg going_empty_fwft = 0;
reg empty_i_q = 0;
reg ram_rd_en_fwft = 0;
generate if (C_FIFO_TYPE == 2) begin : gll_fifo
always @* begin // FSM fo FWFT
case (curr_state)
1'b0: begin
if (~FIFOEMPTY)
next_state <= 1'b1;
else
next_state <= 1'b0;
end
1'b1: begin
if (FIFOEMPTY && RD_EN)
next_state <= 1'b0;
else
next_state <= 1'b1;
end
default: next_state <= 1'b0;
endcase
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_i <= 1'b1;
empty_i_q <= 1'b1;
ram_valid_i <= 1'b0;
end else if (srst_i) begin
empty_i <= #`TCQ 1'b1;
empty_i_q <= #`TCQ 1'b1;
ram_valid_i <= #`TCQ 1'b0;
end else begin
empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i);
empty_i_q <= #`TCQ FIFOEMPTY;
ram_valid_i <= #`TCQ next_state;
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i && C_EN_SAFETY_CKT == 0) begin
curr_state <= 1'b0;
end else if (srst_i) begin
curr_state <= #`TCQ 1'b0;
end else begin
curr_state <= #`TCQ next_state;
end
end //always
wire fe_of_empty;
assign fe_of_empty = empty_i_q & ~FIFOEMPTY;
always @* begin // Finding leaving empty
case (curr_state)
1'b0: leaving_empty_fwft <= fe_of_empty;
1'b1: leaving_empty_fwft <= 1'b1;
default: leaving_empty_fwft <= 1'b0;
endcase
end
always @* begin // Finding going empty
case (curr_state)
1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN;
default: going_empty_fwft <= 1'b0;
endcase
end
always @* begin // Generating FWFT rd_en
case (curr_state)
1'b0: ram_rd_en_fwft <= ~FIFOEMPTY;
1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN;
default: ram_rd_en_fwft <= 1'b0;
endcase
end
assign ram_regout_en = ram_rd_en_fwft;
//assign ram_regout_en_d1 = ram_rd_en_fwft;
//assign ram_regout_en_d2 = ram_rd_en_fwft;
assign ram_rd_en = ram_rd_en_fwft;
end endgenerate // gll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false.
// Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
ram_valid_i <= #`TCQ 1'b0;
end else begin
if (ram_rd_en == 1'b1) begin
ram_valid_i <= #`TCQ 1'b1;
end else begin
if (ram_regout_en == 1'b1)
ram_valid_i <= #`TCQ 1'b0;
else
ram_valid_i <= #`TCQ ram_valid_i;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_ram_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG < 3) begin : gnll_fifo_empty
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
generate if ( C_USE_EMBEDDED_REG < 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ FIFOEMPTY;
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
// BRAM resets synchronously
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin
always @ ( posedge rd_rst_i)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else if (fwft_rst_done) begin
if (ram_regout_en) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
//safety ckt with one register
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK)
begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
//@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end
else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1) begin
// @(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else if (fwft_rst_done) begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ FIFODATA;
USERSBITERR <= #`TCQ FIFOSBITERR;
USERDBITERR <= #`TCQ FIFODBITERR;
end
end
end
end //always
end //if
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 && C_FIFO_TYPE != 2) begin
always @* begin
case (curr_fwft_state)
INVALID: begin
if (~FIFOEMPTY)
next_fwft_state <= STAGE1_VALID;
else
next_fwft_state <= INVALID;
end
STAGE1_VALID: begin
if (FIFOEMPTY)
next_fwft_state <= STAGE2_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
STAGE2_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= INVALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE1_VALID;
else if (~FIFOEMPTY && ~RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= STAGE2_VALID;
end
BOTH_STAGES_VALID: begin
if (FIFOEMPTY && RD_EN)
next_fwft_state <= STAGE2_VALID;
else if (~FIFOEMPTY && RD_EN)
next_fwft_state <= BOTH_STAGES_VALID;
else
next_fwft_state <= BOTH_STAGES_VALID;
end
default: next_fwft_state <= INVALID;
endcase
end
always @ (posedge rd_rst_i or posedge RD_CLK) begin
if (rd_rst_i && C_EN_SAFETY_CKT == 0)
curr_fwft_state <= INVALID;
else if (srst_i)
curr_fwft_state <= #`TCQ INVALID;
else
curr_fwft_state <= #`TCQ next_fwft_state;
end
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay
if (rd_rst_i == 1) begin
ram_regout_en_d1 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d1 <= #`TCQ 1'b0;
else
ram_regout_en_d1 <= #`TCQ ram_regout_en;
end
end //always
// assign fab_regout_en = ((ram_regout_en_d1 & ~(ram_regout_en_d2) & empty_i) | (RD_EN & !empty_i));
assign fab_regout_en = ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b0 )? 1'b1: ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1) ? RD_EN : 1'b0;
always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay1
if (rd_rst_i == 1) begin
ram_regout_en_d2 <= #`TCQ 1'b0;
end
else begin
if (srst_i == 1'b1)
ram_regout_en_d2 <= #`TCQ 1'b0;
else
ram_regout_en_d2 <= #`TCQ ram_regout_en_d1;
end
end //always
always @* begin
case (curr_fwft_state)
INVALID: STAGE2_REG_EN <= 1'b0;
STAGE1_VALID: STAGE2_REG_EN <= 1'b1;
STAGE2_VALID: STAGE2_REG_EN <= 1'b0;
BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN;
default: STAGE2_REG_EN <= 1'b0;
endcase
end
always @ (posedge RD_CLK) begin
ram_valid_i_d <= #`TCQ ram_valid_i;
read_data_valid_i_d <= #`TCQ read_data_valid_i;
fab_read_data_valid_i_d <= #`TCQ fab_read_data_valid_i;
end
assign VALID_STAGES = curr_fwft_state;
//***************************************************************************
// preloadstage2 indicates that stage2 needs to be updated. This is true
// whenever read_data_valid is false, and RAM_valid is true.
//***************************************************************************
assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN );
//***************************************************************************
// preloadstage1 indicates that stage1 needs to be updated. This is true
// whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is
// false (indicating that Stage1 needs updating), or preloadstage2 is active
// (indicating that Stage2 is going to update, so Stage1, therefore, must
// also be updated to keep it valid.
//***************************************************************************
assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY);
//***************************************************************************
// Calculate RAM_REGOUT_EN
// The output registers are controlled by the ram_regout_en signal.
// These registers should be updated either when the output in Stage2 is
// invalid (preloadstage2), OR when the user is reading, in which case the
// Stage2 value will go invalid unless it is replenished.
//***************************************************************************
assign ram_regout_en = (ram_valid_i == 1'b1 && (read_data_valid_i == 1'b0 || fab_read_data_valid_i == 1'b0)) ? 1'b1 : (read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1 && ram_valid_i == 1'b1) ? RD_EN : 1'b0;
//***************************************************************************
// Calculate RAM_RD_EN
// RAM_RD_EN will be asserted whenever the RAM needs to be read in order to
// update the value in Stage1.
// One case when this happens is when preloadstage1=true, which indicates
// that the data in Stage1 or Stage2 is invalid, and needs to automatically
// be updated.
// The other case is when the user is reading from the FIFO, which
// guarantees that Stage1 or Stage2 will be invalid on the next clock
// cycle, unless it is replinished by data from the memory. So, as long
// as the RAM has data in it, a read of the RAM should occur.
//***************************************************************************
assign ram_rd_en = ((RD_EN | ~ fab_read_data_valid_i) & ~FIFOEMPTY) | preloadstage1;
end
endgenerate // gnll_fifo
//***************************************************************************
// Calculate RAMVALID_P0_OUT
// RAMVALID_P0_OUT indicates that the data in Stage1 is valid.
//
// If the RAM is being read from on this clock cycle (ram_rd_en=1), then
// RAMVALID_P0_OUT is certainly going to be true.
// If the RAM is not being read from, but the output registers are being
// updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying,
// therefore causing RAMVALID_P0_OUT to be false // Otherwise, RAMVALID_P0_OUT will remain unchanged.
//***************************************************************************
// PROCESS regout_valid
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3) begin : gnll_fifo_fab_valid
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (srst_i) begin
// synchronous reset (active high)
fab_valid <= #`TCQ 1'b0;
end else begin
if (ram_regout_en == 1'b1) begin
fab_valid <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
fab_valid <= #`TCQ 1'b0;
else
fab_valid <= #`TCQ fab_valid;
end
end //srst_i
end //rd_rst_i
end //always
end endgenerate // gnll_fifo_fab_valid
//***************************************************************************
// Calculate READ_DATA_VALID
// READ_DATA_VALID indicates whether the value in Stage2 is valid or not.
// Stage2 has valid data whenever Stage1 had valid data and
// ram_regout_en_i=1, such that the data in Stage1 is propogated
// into Stage2.
//***************************************************************************
generate if(C_USE_EMBEDDED_REG == 3) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i)
read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
read_data_valid_i <= #`TCQ 1'b0;
else begin
if (ram_regout_en == 1'b1) begin
read_data_valid_i <= #`TCQ 1'b1;
end else begin
if (fab_regout_en == 1'b1)
read_data_valid_i <= #`TCQ 1'b0;
else
read_data_valid_i <= #`TCQ read_data_valid_i;
end
end
end //always
end
endgenerate
//generate if(C_USE_EMBEDDED_REG == 3) begin
// always @ (posedge RD_CLK or posedge rd_rst_i) begin
// if (rd_rst_i)
// read_data_valid_i <= #`TCQ 1'b0;
// else if (srst_i)
// read_data_valid_i <= #`TCQ 1'b0;
//
// if (ram_regout_en == 1'b1) begin
// fab_read_data_valid_i <= #`TCQ 1'b0;
// end else begin
// if (fab_regout_en == 1'b1)
// fab_read_data_valid_i <= #`TCQ 1'b1;
// else
// fab_read_data_valid_i <= #`TCQ fab_read_data_valid_i;
// end
// end //always
//end
//endgenerate
generate if(C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i) begin :fabout_dvalid
if (rd_rst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else if (srst_i)
fab_read_data_valid_i <= #`TCQ 1'b0;
else
fab_read_data_valid_i <= #`TCQ fab_valid | (fab_read_data_valid_i & ~RD_EN);
end //always
end
endgenerate
always @ (posedge RD_CLK ) begin : proc_del1
begin
fab_read_data_valid_i_1 <= #`TCQ fab_read_data_valid_i;
end
end //always
//**************************************************************************
// Calculate EMPTY
// Defined as the inverse of READ_DATA_VALID
//
// Description:
//
// If read_data_valid_i indicates that the output is not valid,
// and there is no valid data on the output of the ram to preload it
// with, then we will report empty.
//
// If there is no valid data on the output of the ram and we are
// reading, then the FIFO will go empty.
//
//**************************************************************************
generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3 ) begin : gnll_fifo_empty_both
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
// asynchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
if (srst_i) begin
// synchronous reset (active high)
empty_i <= #`TCQ 1'b1;
end else begin
// rising clock edge
empty_i <= #`TCQ (~fab_valid & ~fab_read_data_valid_i) | (~fab_valid & RD_EN);
end
end
end //always
end endgenerate // gnll_fifo_empty_both
// Register RD_EN from user to calculate USERUNDERFLOW.
// Register empty_i to calculate USERUNDERFLOW.
always @ (posedge RD_CLK) begin
rd_en_q <= #`TCQ RD_EN;
empty_q <= #`TCQ empty_i;
end //always
//***************************************************************************
// Calculate user_almost_empty
// user_almost_empty is defined such that, unless more words are written
// to the FIFO, the next read will cause the FIFO to go EMPTY.
//
// In most cases, whenever the output registers are updated (due to a user
// read or a preload condition), then user_almost_empty will update to
// whatever RAM_EMPTY is.
//
// The exception is when the output is valid, the user is not reading, and
// Stage1 is not empty. In this condition, Stage1 will be preloaded from the
// memory, so we need to make sure user_almost_empty deasserts properly under
// this condition.
//***************************************************************************
reg FIFOEMPTY_1;
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @(posedge RD_CLK) begin
FIFOEMPTY_1 <= #`TCQ FIFOEMPTY;
end
end
endgenerate
generate if (C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin // asynchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin // rising clock edge
if (srst_i) begin // synchronous reset (active high)
almost_empty_i <= #`TCQ 1'b1;
almost_empty_q <= #`TCQ 1'b1;
end else begin
if ((fab_regout_en) | (ram_valid_i & fab_read_data_valid_i & ~RD_EN)) begin
almost_empty_i <= #`TCQ (~ram_valid_i);
end
almost_empty_q <= #`TCQ empty_i;
end
end
end //always
end
endgenerate
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin
empty_sckt <= #`TCQ 1'b1;
sckt_rrst_q <= #`TCQ 1'b0;
sckt_rrst_done <= #`TCQ 1'b0;
end else begin
sckt_rrst_q <= #`TCQ SAFETY_CKT_RD_RST;
if (sckt_rrst_q && ~SAFETY_CKT_RD_RST) begin
sckt_rrst_done <= #`TCQ 1'b1;
end else if (sckt_rrst_done) begin
// rising clock edge
empty_sckt <= #`TCQ 1'b0;
end
end
end //always
// assign USEREMPTY = C_EN_SAFETY_CKT ? (sckt_rrst_done ? empty_i : empty_sckt) : empty_i;
assign USEREMPTY = empty_i;
assign USERALMOSTEMPTY = almost_empty_i;
assign FIFORDEN = ram_rd_en;
assign RAMVALID = (C_USE_EMBEDDED_REG == 3)? fab_valid : ram_valid_i;
assign uservalid_both = (C_USERVALID_LOW && C_USE_EMBEDDED_REG == 3) ? ~fab_read_data_valid_i : ((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG == 3) ? fab_read_data_valid_i : 1'b0);
assign uservalid_one = (C_USERVALID_LOW && C_USE_EMBEDDED_REG < 3) ? ~read_data_valid_i :((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG < 3) ? read_data_valid_i : 1'b0);
assign USERVALID = (C_USE_EMBEDDED_REG == 3) ? uservalid_both : uservalid_one;
assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q;
//no safety ckt with both reg
generate
if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3 ) begin
always @ (posedge RD_CLK)
begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i)
begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end else begin
if (fwft_rst_done) begin
if (ram_regout_en) begin
userdata_both <= #`TCQ FIFODATA;
user_dbiterr_both <= #`TCQ FIFODBITERR;
user_sbiterr_both <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en) begin
USERDATA <= #`TCQ userdata_both;
USERDBITERR <= #`TCQ user_dbiterr_both;
USERSBITERR <= #`TCQ user_sbiterr_both;
end
end
end
end
end //always
end //if
endgenerate
//safety_ckt with both registers
generate
if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1;
reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2;
reg [1:0] rst_delayed_sft1 =1;
reg [1:0] rst_delayed_sft2 =1;
reg [1:0] rst_delayed_sft3 =1;
reg [1:0] rst_delayed_sft4 =1;
always@(posedge RD_CLK) begin
rst_delayed_sft1 <= #`TCQ rd_rst_i;
rst_delayed_sft2 <= #`TCQ rst_delayed_sft1;
rst_delayed_sft3 <= #`TCQ rst_delayed_sft2;
rst_delayed_sft4 <= #`TCQ rst_delayed_sft3;
end
always @ (posedge RD_CLK) begin
if (rd_rst_i || srst_i) begin
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin
@(posedge RD_CLK)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end
end //always
always @ (posedge RD_CLK or posedge rd_rst_i) begin
if (rd_rst_i) begin //asynchronous reset (active high)
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
// DRAM resets asynchronously
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high)
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
end else begin // rising clock edge
if (srst_i) begin
if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF
USERSBITERR <= #`TCQ 0;
USERDBITERR <= #`TCQ 0;
user_sbiterr_both <= #`TCQ 0;
user_dbiterr_both <= #`TCQ 0;
end
if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin
USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL);
end
end else if (fwft_rst_done) begin
if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
userdata_both <= #`TCQ FIFODATA;
user_dbiterr_both <= #`TCQ FIFODBITERR;
user_sbiterr_both <= #`TCQ FIFOSBITERR;
end
if (fab_regout_en == 1'b1 && rd_rst_i == 1'b0) begin
USERDATA <= #`TCQ userdata_both;
USERDBITERR <= #`TCQ user_dbiterr_both;
USERSBITERR <= #`TCQ user_sbiterr_both;
end
end
end
end //always
end //if
endgenerate
endmodule |
module fifo_generator_v13_1_3_axic_reg_slice #
(
parameter C_FAMILY = "virtex7",
parameter C_DATA_WIDTH = 32,
parameter C_REG_CONFIG = 32'h00000000
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave side
input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA,
input wire S_VALID,
output wire S_READY,
// Master side
output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA,
output wire M_VALID,
input wire M_READY
);
generate
////////////////////////////////////////////////////////////////////
//
// Both FWD and REV mode
//
////////////////////////////////////////////////////////////////////
if (C_REG_CONFIG == 32'h00000000)
begin
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg [C_DATA_WIDTH-1:0] storage_data2 = 0;
reg load_s1;
wire load_s2;
wire load_s1_from_s2;
reg s_ready_i; //local signal of output
wire m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_PAYLOAD_DATA;
end
// Load storage2 with slave side data
always @(posedge ACLK)
begin
if (load_s2)
storage_data2 <= S_PAYLOAD_DATA;
end
assign M_PAYLOAD_DATA = storage_data1;
// Always load s2 on a valid transaction even if it's unnecessary
assign load_s2 = S_VALID & s_ready_i;
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
state <= ZERO;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else begin
case (state)
// No transaction stored locally
ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO
if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
s_ready_i <= 1'b0;
end
end
// TWO transaction stored locally
TWO: if (M_READY) begin
state <= ONE; // Read out one so move to ONE
s_ready_i <= 1'b1;
end
endcase // case (state)
end
end // always @ (posedge ACLK)
assign m_valid_i = state[0];
end // if (C_REG_CONFIG == 1)
////////////////////////////////////////////////////////////////////
//
// 1-stage pipeline register with bubble cycle, both FWD and REV pipelining
// Operates same as 1-deep FIFO
//
////////////////////////////////////////////////////////////////////
else if (C_REG_CONFIG == 32'h00000001)
begin
reg [C_DATA_WIDTH-1:0] storage_data1 = 0;
reg s_ready_i; //local signal of output
reg m_valid_i; //local signal of output
// assign local signal to its output signal
assign S_READY = s_ready_i;
assign M_VALID = m_valid_i;
reg areset_d1; // Reset delay register
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with slave side data
always @(posedge ACLK)
begin
if (ARESET) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (m_valid_i & M_READY) begin
s_ready_i <= 1'b1;
m_valid_i <= 1'b0;
end else if (S_VALID & s_ready_i) begin
s_ready_i <= 1'b0;
m_valid_i <= 1'b1;
end
if (~m_valid_i) begin
storage_data1 <= S_PAYLOAD_DATA;
end
end
assign M_PAYLOAD_DATA = storage_data1;
end // if (C_REG_CONFIG == 7)
else begin : default_case
// Passthrough
assign M_PAYLOAD_DATA = S_PAYLOAD_DATA;
assign M_VALID = S_VALID;
assign S_READY = M_READY;
end
endgenerate
endmodule |
module dividerp1(input wire clk,
output wire clk_out);
//-- Valor por defecto de la velocidad en baudios
parameter M = `T_100ms;
//-- Numero de bits para almacenar el divisor de baudios
localparam N = $clog2(M);
//-- Registro para implementar el contador modulo M
reg [N-1:0] divcounter = 0;
//-- Contador módulo M
always @(posedge clk)
divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1;
//-- Sacar un pulso de anchura 1 ciclo de reloj si el generador
assign clk_out = (divcounter == 0) ? 1 : 0;
endmodule |
module dividerp1(input wire clk,
output wire clk_out);
//-- Valor por defecto de la velocidad en baudios
parameter M = `T_100ms;
//-- Numero de bits para almacenar el divisor de baudios
localparam N = $clog2(M);
//-- Registro para implementar el contador modulo M
reg [N-1:0] divcounter = 0;
//-- Contador módulo M
always @(posedge clk)
divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1;
//-- Sacar un pulso de anchura 1 ciclo de reloj si el generador
assign clk_out = (divcounter == 0) ? 1 : 0;
endmodule |
module dividerp1(input wire clk,
output wire clk_out);
//-- Valor por defecto de la velocidad en baudios
parameter M = `T_100ms;
//-- Numero de bits para almacenar el divisor de baudios
localparam N = $clog2(M);
//-- Registro para implementar el contador modulo M
reg [N-1:0] divcounter = 0;
//-- Contador módulo M
always @(posedge clk)
divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1;
//-- Sacar un pulso de anchura 1 ciclo de reloj si el generador
assign clk_out = (divcounter == 0) ? 1 : 0;
endmodule |
module duc(input clock,
input reset,
input enable,
input [3:0] rate1,
input [3:0] rate2,
output strobe,
input [31:0] freq,
input [15:0] i_in,
input [15:0] q_in,
output [15:0] i_out,
output [15:0] q_out
);
parameter bw = 16;
parameter zw = 16;
wire [15:0] i_interp_out, q_interp_out;
wire [31:0] phase;
wire strobe1, strobe2;
reg [3:0] strobe_ctr1,strobe_ctr2;
always @(posedge clock)
if(reset | ~enable)
strobe_ctr2 <= #1 4'd0;
else if(strobe2)
strobe_ctr2 <= #1 4'd0;
else
strobe_ctr2 <= #1 strobe_ctr2 + 4'd1;
always @(posedge clock)
if(reset | ~enable)
strobe_ctr1 <= #1 4'd0;
else if(strobe1)
strobe_ctr1 <= #1 4'd0;
else if(strobe2)
strobe_ctr1 <= #1 strobe_ctr1 + 4'd1;
assign strobe2 = enable & ( strobe_ctr2 == rate2 );
assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 );
assign strobe = strobe1;
function [2:0] log_ceil;
input [3:0] val;
log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1;
endfunction
wire [2:0] shift1 = log_ceil(rate1);
wire [2:0] shift2 = log_ceil(rate2);
cordic #(.bitwidth(bw),.zwidth(zw),.stages(16))
cordic(.clock(clock), .reset(reset), .enable(enable),
.xi(i_interp_out), .yi(q_interp_out), .zi(phase[31:32-zw]),
.xo(i_out), .yo(q_out), .zo() );
cic_interp_2stage #(.bw(bw),.N(4))
interp_i(.clock(clock),.reset(reset),.enable(enable),
.strobe1(strobe1),.strobe2(strobe2),.strobe3(1'b1),.shift1(shift1),.shift2(shift2),
.signal_in(i_in),.signal_out(i_interp_out));
cic_interp_2stage #(.bw(bw),.N(4))
interp_q(.clock(clock),.reset(reset),.enable(enable),
.strobe1(strobe1),.strobe2(strobe2),.strobe3(1'b1),.shift1(shift1),.shift2(shift2),
.signal_in(q_in),.signal_out(q_interp_out));
phase_acc #(.resolution(32))
nco (.clk(clock),.reset(reset),.enable(enable),
.freq(freq),.phase(phase));
endmodule |
module axi_crossbar_v2_1_addr_decoder #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_TARGETS = 2, // Number of decode targets = [1:16]
parameter integer C_NUM_TARGETS_LOG = 1, // Log2(C_NUM_TARGETS)
parameter integer C_NUM_RANGES = 1, // Number of alternative ranges that
// can match each target [1:16]
parameter integer C_ADDR_WIDTH = 32, // Width of decoder operand and of
// each base and high address [2:64]
parameter integer C_TARGET_ENC = 0, // Enable encoded target output
parameter integer C_TARGET_HOT = 1, // Enable 1-hot target output
parameter integer C_REGION_ENC = 0, // Enable REGION output
parameter [C_NUM_TARGETS*C_NUM_RANGES*64-1:0] C_BASE_ADDR = {C_NUM_TARGETS*C_NUM_RANGES*64{1'b1}},
parameter [C_NUM_TARGETS*C_NUM_RANGES*64-1:0] C_HIGH_ADDR = {C_NUM_TARGETS*C_NUM_RANGES*64{1'b0}},
parameter [C_NUM_TARGETS:0] C_TARGET_QUAL = {C_NUM_TARGETS{1'b1}},
// Indicates whether each target has connectivity.
// Format: C_NUM_TARGETS{Bit1}.
parameter integer C_RESOLUTION = 0,
// Number of low-order ADDR bits that can be ignored when decoding.
parameter integer C_COMPARATOR_THRESHOLD = 6
// Number of decoded ADDR bits above which will implement comparator_static.
)
(
input wire [C_ADDR_WIDTH-1:0] ADDR, // Decoder input operand
output wire [C_NUM_TARGETS-1:0] TARGET_HOT, // Target matching address (1-hot)
output wire [C_NUM_TARGETS_LOG-1:0] TARGET_ENC, // Target matching address (encoded)
output wire MATCH, // Decode successful
output wire [3:0] REGION // Range within target matching address (encoded)
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
genvar target_cnt;
genvar region_cnt;
/////////////////////////////////////////////////////////////////////////////
// Function to detect addrs is in the addressable range.
// Only compare 4KB page address (ignore low-order 12 bits)
function decode_address;
input [C_ADDR_WIDTH-1:0] base, high, addr;
reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] mask;
reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] addr_page;
reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] base_page;
reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] high_page;
begin
addr_page = addr[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION];
base_page = base[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION];
high_page = high[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION];
if (base[C_ADDR_WIDTH-1] & ~high[C_ADDR_WIDTH-1]) begin
decode_address = 1'b0;
end else begin
mask = base_page ^ high_page;
if ( (base_page & ~mask) == (addr_page & ~mask) ) begin
decode_address = 1'b1;
end else begin
decode_address = 1'b0;
end
end
end
endfunction
// Generates a binary coded from onehotone encoded
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
/////////////////////////////////////////////////////////////////////////////
// Internal signals
wire [C_NUM_TARGETS-1:0] TARGET_HOT_I; // Target matching address (1-hot).
wire [C_NUM_TARGETS*C_NUM_RANGES-1:0] ADDRESS_HIT; // For address hit (1-hot).
wire [C_NUM_TARGETS*C_NUM_RANGES-1:0] ADDRESS_HIT_REG; // For address hit (1-hot).
wire [C_NUM_RANGES-1:0] REGION_HOT; // Reginon matching address (1-hot).
wire [3:0] TARGET_ENC_I; // Internal version of encoded hit.
/////////////////////////////////////////////////////////////////////////////
// Generate detection per region per target.
generate
for (target_cnt = 0; target_cnt < C_NUM_TARGETS; target_cnt = target_cnt + 1) begin : gen_target
for (region_cnt = 0; region_cnt < C_NUM_RANGES; region_cnt = region_cnt + 1) begin : gen_region
// Detect if this is an address hit (including used region decoding).
if ((C_ADDR_WIDTH - C_RESOLUTION) > C_COMPARATOR_THRESHOLD) begin : gen_comparator_static
if (C_TARGET_QUAL[target_cnt] &&
((C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH] == 0) ||
(C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH] != 0))) begin : gen_addr_range
generic_baseblocks_v2_1_comparator_static #
(
.C_FAMILY("rtl"),
.C_VALUE(C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION]),
.C_DATA_WIDTH(C_ADDR_WIDTH-C_RESOLUTION)
) addr_decode_comparator
(
.CIN(1'b1),
.A(ADDR[C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION] &
~(C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION] ^
C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION])),
.COUT(ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt])
);
end else begin : gen_null_range
assign ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt] = 1'b0;
end
end else begin : gen_no_comparator_static
assign ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt] = C_TARGET_QUAL[target_cnt] ?
decode_address(
C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH],
C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH],
ADDR)
: 1'b0;
end // gen_comparator_static
assign ADDRESS_HIT_REG[region_cnt*C_NUM_TARGETS+target_cnt] = ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt];
assign REGION_HOT[region_cnt] = | ADDRESS_HIT_REG[region_cnt*C_NUM_TARGETS +: C_NUM_TARGETS];
end // gen_region
// All regions are non-overlapping
// => Or all the region detections for this target to determine if it is a hit.
assign TARGET_HOT_I[target_cnt] = | ADDRESS_HIT[target_cnt*C_NUM_RANGES +: C_NUM_RANGES];
end // gen_target
endgenerate
/////////////////////////////////////////////////////////////////////////////
// All regions are non-overlapping
// => Or all the target hit detections if it is a match.
assign MATCH = | TARGET_HOT_I;
/////////////////////////////////////////////////////////////////////////////
// Assign conditional onehot target output signal.
generate
if (C_TARGET_HOT == 1) begin : USE_TARGET_ONEHOT
assign TARGET_HOT = MATCH ? TARGET_HOT_I : 1;
end else begin : NO_TARGET_ONEHOT
assign TARGET_HOT = {C_NUM_TARGETS{1'b0}};
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded target output signal.
generate
if (C_TARGET_ENC == 1) begin : USE_TARGET_ENCODED
assign TARGET_ENC_I = f_hot2enc(TARGET_HOT_I);
assign TARGET_ENC = TARGET_ENC_I[C_NUM_TARGETS_LOG-1:0];
end else begin : NO_TARGET_ENCODED
assign TARGET_ENC = {C_NUM_TARGETS_LOG{1'b0}};
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded region output signal.
generate
if (C_TARGET_ENC == 1) begin : USE_REGION_ENCODED
assign REGION = f_hot2enc(REGION_HOT);
end else begin : NO_REGION_ENCODED
assign REGION = 4'b0;
end
endgenerate
endmodule |
module axi_crossbar_v2_1_addr_decoder #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_TARGETS = 2, // Number of decode targets = [1:16]
parameter integer C_NUM_TARGETS_LOG = 1, // Log2(C_NUM_TARGETS)
parameter integer C_NUM_RANGES = 1, // Number of alternative ranges that
// can match each target [1:16]
parameter integer C_ADDR_WIDTH = 32, // Width of decoder operand and of
// each base and high address [2:64]
parameter integer C_TARGET_ENC = 0, // Enable encoded target output
parameter integer C_TARGET_HOT = 1, // Enable 1-hot target output
parameter integer C_REGION_ENC = 0, // Enable REGION output
parameter [C_NUM_TARGETS*C_NUM_RANGES*64-1:0] C_BASE_ADDR = {C_NUM_TARGETS*C_NUM_RANGES*64{1'b1}},
parameter [C_NUM_TARGETS*C_NUM_RANGES*64-1:0] C_HIGH_ADDR = {C_NUM_TARGETS*C_NUM_RANGES*64{1'b0}},
parameter [C_NUM_TARGETS:0] C_TARGET_QUAL = {C_NUM_TARGETS{1'b1}},
// Indicates whether each target has connectivity.
// Format: C_NUM_TARGETS{Bit1}.
parameter integer C_RESOLUTION = 0,
// Number of low-order ADDR bits that can be ignored when decoding.
parameter integer C_COMPARATOR_THRESHOLD = 6
// Number of decoded ADDR bits above which will implement comparator_static.
)
(
input wire [C_ADDR_WIDTH-1:0] ADDR, // Decoder input operand
output wire [C_NUM_TARGETS-1:0] TARGET_HOT, // Target matching address (1-hot)
output wire [C_NUM_TARGETS_LOG-1:0] TARGET_ENC, // Target matching address (encoded)
output wire MATCH, // Decode successful
output wire [3:0] REGION // Range within target matching address (encoded)
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
genvar target_cnt;
genvar region_cnt;
/////////////////////////////////////////////////////////////////////////////
// Function to detect addrs is in the addressable range.
// Only compare 4KB page address (ignore low-order 12 bits)
function decode_address;
input [C_ADDR_WIDTH-1:0] base, high, addr;
reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] mask;
reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] addr_page;
reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] base_page;
reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] high_page;
begin
addr_page = addr[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION];
base_page = base[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION];
high_page = high[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION];
if (base[C_ADDR_WIDTH-1] & ~high[C_ADDR_WIDTH-1]) begin
decode_address = 1'b0;
end else begin
mask = base_page ^ high_page;
if ( (base_page & ~mask) == (addr_page & ~mask) ) begin
decode_address = 1'b1;
end else begin
decode_address = 1'b0;
end
end
end
endfunction
// Generates a binary coded from onehotone encoded
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
/////////////////////////////////////////////////////////////////////////////
// Internal signals
wire [C_NUM_TARGETS-1:0] TARGET_HOT_I; // Target matching address (1-hot).
wire [C_NUM_TARGETS*C_NUM_RANGES-1:0] ADDRESS_HIT; // For address hit (1-hot).
wire [C_NUM_TARGETS*C_NUM_RANGES-1:0] ADDRESS_HIT_REG; // For address hit (1-hot).
wire [C_NUM_RANGES-1:0] REGION_HOT; // Reginon matching address (1-hot).
wire [3:0] TARGET_ENC_I; // Internal version of encoded hit.
/////////////////////////////////////////////////////////////////////////////
// Generate detection per region per target.
generate
for (target_cnt = 0; target_cnt < C_NUM_TARGETS; target_cnt = target_cnt + 1) begin : gen_target
for (region_cnt = 0; region_cnt < C_NUM_RANGES; region_cnt = region_cnt + 1) begin : gen_region
// Detect if this is an address hit (including used region decoding).
if ((C_ADDR_WIDTH - C_RESOLUTION) > C_COMPARATOR_THRESHOLD) begin : gen_comparator_static
if (C_TARGET_QUAL[target_cnt] &&
((C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH] == 0) ||
(C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH] != 0))) begin : gen_addr_range
generic_baseblocks_v2_1_comparator_static #
(
.C_FAMILY("rtl"),
.C_VALUE(C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION]),
.C_DATA_WIDTH(C_ADDR_WIDTH-C_RESOLUTION)
) addr_decode_comparator
(
.CIN(1'b1),
.A(ADDR[C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION] &
~(C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION] ^
C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION])),
.COUT(ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt])
);
end else begin : gen_null_range
assign ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt] = 1'b0;
end
end else begin : gen_no_comparator_static
assign ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt] = C_TARGET_QUAL[target_cnt] ?
decode_address(
C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH],
C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH],
ADDR)
: 1'b0;
end // gen_comparator_static
assign ADDRESS_HIT_REG[region_cnt*C_NUM_TARGETS+target_cnt] = ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt];
assign REGION_HOT[region_cnt] = | ADDRESS_HIT_REG[region_cnt*C_NUM_TARGETS +: C_NUM_TARGETS];
end // gen_region
// All regions are non-overlapping
// => Or all the region detections for this target to determine if it is a hit.
assign TARGET_HOT_I[target_cnt] = | ADDRESS_HIT[target_cnt*C_NUM_RANGES +: C_NUM_RANGES];
end // gen_target
endgenerate
/////////////////////////////////////////////////////////////////////////////
// All regions are non-overlapping
// => Or all the target hit detections if it is a match.
assign MATCH = | TARGET_HOT_I;
/////////////////////////////////////////////////////////////////////////////
// Assign conditional onehot target output signal.
generate
if (C_TARGET_HOT == 1) begin : USE_TARGET_ONEHOT
assign TARGET_HOT = MATCH ? TARGET_HOT_I : 1;
end else begin : NO_TARGET_ONEHOT
assign TARGET_HOT = {C_NUM_TARGETS{1'b0}};
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded target output signal.
generate
if (C_TARGET_ENC == 1) begin : USE_TARGET_ENCODED
assign TARGET_ENC_I = f_hot2enc(TARGET_HOT_I);
assign TARGET_ENC = TARGET_ENC_I[C_NUM_TARGETS_LOG-1:0];
end else begin : NO_TARGET_ENCODED
assign TARGET_ENC = {C_NUM_TARGETS_LOG{1'b0}};
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded region output signal.
generate
if (C_TARGET_ENC == 1) begin : USE_REGION_ENCODED
assign REGION = f_hot2enc(REGION_HOT);
end else begin : NO_REGION_ENCODED
assign REGION = 4'b0;
end
endgenerate
endmodule |
module Tenth_Phase
//Module Parameters
/***SINGLE PRECISION***/
// W = 32
// EW = 8
// SW = 23
/***DOUBLE PRECISION***/
// W = 64
// EW = 11
// SW = 52
# (parameter W = 32, parameter EW = 8, parameter SW = 23)
// # (parameter W = 64, parameter EW = 11, parameter SW = 52)
(
//INPUTS
input wire clk, //Clock Signal
input wire rst, //Reset Signal
input wire load_i,
input wire sel_a_i, //Overflow/add/subt result's mux's selector
input wire sel_b_i, //underflow/add/subt result's mux's selector
input wire sign_i, //Sign of the largest Operand
input wire [EW-1:0] exp_ieee_i, //Final Exponent
input wire [SW-1:0] sgf_ieee_i,//Final Significand
//OUTPUTS
output wire [W-1:0] final_result_ieee_o //Final Result
);
//Wire Connection signals
wire [SW-1:0] Sgf_S_mux;
wire [EW-1:0] Exp_S_mux;
wire Sign_S_mux;
wire [W-1:0] final_result_reg;
wire overunder;
wire [EW-1:0] exp_mux_D1;
wire [SW-1:0] sgf_mux_D1;
//////////////////////////////////////////////////////////
assign overunder = sel_a_i | sel_b_i;
Mux_3x1 #(.W(1)) Sign_Mux (
.ctrl({sel_a_i,sel_b_i}),
.D0(sign_i),
.D1(1'b1),
.D2(1'b0),
.S(Sign_S_mux)
);
Multiplexer_AC #(.W(EW)) Exp_Mux (
.ctrl(overunder),
.D0(exp_ieee_i),
.D1(exp_mux_D1),
.S(Exp_S_mux)
);
Multiplexer_AC #(.W(SW)) Sgf_Mux (
.ctrl(overunder),
.D0(sgf_ieee_i),
.D1(sgf_mux_D1),
.S(Sgf_S_mux)
);
/////////////////////////////////////////////////////////
generate
if(W == 32) begin
assign exp_mux_D1 =8'hff;
assign sgf_mux_D1 =23'd0;
end
else begin
assign exp_mux_D1 =11'hfff;
assign sgf_mux_D1 =52'd0;
end
endgenerate
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
RegisterAdd #(.W(W)) Final_Result_IEEE (
.clk(clk),
.rst(rst),
.load(load_i),
.D({Sign_S_mux,Exp_S_mux,Sgf_S_mux}),
.Q(final_result_ieee_o)
);
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule |
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule |
module adder(
input_a,
input_b,
input_a_stb,
input_b_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack,
input_b_ack);
input clk;
input rst;
input [31:0] input_a;
input input_a_stb;
output input_a_ack;
input [31:0] input_b;
input input_b_stb;
output input_b_ack;
output [31:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [31:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [3:0] state;
parameter get_a = 4'd0,
get_b = 4'd1,
unpack = 4'd2,
special_cases = 4'd3,
align = 4'd4,
add_0 = 4'd5,
add_1 = 4'd6,
normalise_1 = 4'd7,
normalise_2 = 4'd8,
round = 4'd9,
pack = 4'd10,
put_z = 4'd11;
reg [31:0] a, b, z;
reg [26:0] a_m, b_m;
reg [23:0] z_m;
reg [9:0] a_e, b_e, z_e;
reg a_s, b_s, z_s;
reg guard, round_bit, sticky;
reg [27:0] sum;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= get_b;
end
end
get_b:
begin
s_input_b_ack <= 1;
if (s_input_b_ack && input_b_stb) begin
b <= input_b;
s_input_b_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m <= {a[22 : 0], 3'd0};
b_m <= {b[22 : 0], 3'd0};
a_e <= a[30 : 23] - 127;
b_e <= b[30 : 23] - 127;
a_s <= a[31];
b_s <= b[31];
state <= special_cases;
end
special_cases:
begin
//if a is NaN or b is NaN return NaN
if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
//if a is inf return inf
end else if (a_e == 128) begin
z[31] <= a_s;
z[30:23] <= 255;
z[22:0] <= 0;
state <= put_z;
//if b is inf return inf
end else if (b_e == 128) begin
z[31] <= b_s;
z[30:23] <= 255;
z[22:0] <= 0;
state <= put_z;
//if a is zero return b
end else if ((($signed(a_e) == -127) && (a_m == 0)) && (($signed(b_e) == -127) && (b_m == 0))) begin
z[31] <= a_s & b_s;
z[30:23] <= b_e[7:0] + 127;
z[22:0] <= b_m[26:3];
state <= put_z;
//if a is zero return b
end else if (($signed(a_e) == -127) && (a_m == 0)) begin
z[31] <= b_s;
z[30:23] <= b_e[7:0] + 127;
z[22:0] <= b_m[26:3];
state <= put_z;
//if b is zero return a
end else if (($signed(b_e) == -127) && (b_m == 0)) begin
z[31] <= a_s;
z[30:23] <= a_e[7:0] + 127;
z[22:0] <= a_m[26:3];
state <= put_z;
end else begin
//Denormalised Number
if ($signed(a_e) == -127) begin
a_e <= -126;
end else begin
a_m[26] <= 1;
end
//Denormalised Number
if ($signed(b_e) == -127) begin
b_e <= -126;
end else begin
b_m[26] <= 1;
end
state <= align;
end
end
align:
begin
if ($signed(a_e) > $signed(b_e)) begin
b_e <= b_e + 1;
b_m <= b_m >> 1;
b_m[0] <= b_m[0] | b_m[1];
end else if ($signed(a_e) < $signed(b_e)) begin
a_e <= a_e + 1;
a_m <= a_m >> 1;
a_m[0] <= a_m[0] | a_m[1];
end else begin
state <= add_0;
end
end
add_0:
begin
z_e <= a_e;
if (a_s == b_s) begin
sum <= a_m + b_m;
z_s <= a_s;
end else begin
if (a_m >= b_m) begin
sum <= a_m - b_m;
z_s <= a_s;
end else begin
sum <= b_m - a_m;
z_s <= b_s;
end
end
state <= add_1;
end
add_1:
begin
if (sum[27]) begin
z_m <= sum[27:4];
guard <= sum[3];
round_bit <= sum[2];
sticky <= sum[1] | sum[0];
z_e <= z_e + 1;
end else begin
z_m <= sum[26:3];
guard <= sum[2];
round_bit <= sum[1];
sticky <= sum[0];
end
state <= normalise_1;
end
normalise_1:
begin
if (z_m[23] == 0 && $signed(z_e) > -126) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= guard;
guard <= round_bit;
round_bit <= 0;
end else begin
state <= normalise_2;
end
end
normalise_2:
begin
if ($signed(z_e) < -126) begin
z_e <= z_e + 1;
z_m <= z_m >> 1;
guard <= z_m[0];
round_bit <= guard;
sticky <= sticky | round_bit;
end else begin
state <= round;
end
end
round:
begin
if (guard && (round_bit | sticky | z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 24'hffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[22 : 0] <= z_m[22:0];
z[30 : 23] <= z_e[7:0] + 127;
z[31] <= z_s;
if ($signed(z_e) == -126 && z_m[23] == 0) begin
z[30 : 23] <= 0;
end
//if overflow occurs, return inf
if ($signed(z_e) > 127) begin
z[22 : 0] <= 0;
z[30 : 23] <= 255;
z[31] <= z_s;
end
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_input_b_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign input_b_ack = s_input_b_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module divider(
input_a,
input_b,
input_a_stb,
input_b_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack,
input_b_ack);
input clk;
input rst;
input [31:0] input_a;
input input_a_stb;
output input_a_ack;
input [31:0] input_b;
input input_b_stb;
output input_b_ack;
output [31:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [31:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [3:0] state;
parameter get_a = 4'd0,
get_b = 4'd1,
unpack = 4'd2,
special_cases = 4'd3,
normalise_a = 4'd4,
normalise_b = 4'd5,
divide_0 = 4'd6,
divide_1 = 4'd7,
divide_2 = 4'd8,
divide_3 = 4'd9,
normalise_1 = 4'd10,
normalise_2 = 4'd11,
round = 4'd12,
pack = 4'd13,
put_z = 4'd14;
reg [31:0] a, b, z;
reg [23:0] a_m, b_m, z_m;
reg [9:0] a_e, b_e, z_e;
reg a_s, b_s, z_s;
reg guard, round_bit, sticky;
reg [50:0] quotient, divisor, dividend, remainder;
reg [5:0] count;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= get_b;
end
end
get_b:
begin
s_input_b_ack <= 1;
if (s_input_b_ack && input_b_stb) begin
b <= input_b;
s_input_b_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m <= a[22 : 0];
b_m <= b[22 : 0];
a_e <= a[30 : 23] - 127;
b_e <= b[30 : 23] - 127;
a_s <= a[31];
b_s <= b[31];
state <= special_cases;
end
special_cases:
begin
//if a is NaN or b is NaN return NaN
if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
//if a is inf and b is inf return NaN
end else if ((a_e == 128) && (b_e == 128)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
//if a is inf return inf
end else if (a_e == 128) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 255;
z[22:0] <= 0;
state <= put_z;
//if b is zero return NaN
if ($signed(b_e == -127) && (b_m == 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
end
//if b is inf return zero
end else if (b_e == 128) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 0;
z[22:0] <= 0;
state <= put_z;
//if a is zero return zero
end else if (($signed(a_e) == -127) && (a_m == 0)) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 0;
z[22:0] <= 0;
state <= put_z;
//if b is zero return NaN
if (($signed(b_e) == -127) && (b_m == 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
end
//if b is zero return inf
end else if (($signed(b_e) == -127) && (b_m == 0)) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 255;
z[22:0] <= 0;
state <= put_z;
end else begin
//Denormalised Number
if ($signed(a_e) == -127) begin
a_e <= -126;
end else begin
a_m[23] <= 1;
end
//Denormalised Number
if ($signed(b_e) == -127) begin
b_e <= -126;
end else begin
b_m[23] <= 1;
end
state <= normalise_a;
end
end
normalise_a:
begin
if (a_m[23]) begin
state <= normalise_b;
end else begin
a_m <= a_m << 1;
a_e <= a_e - 1;
end
end
normalise_b:
begin
if (b_m[23]) begin
state <= divide_0;
end else begin
b_m <= b_m << 1;
b_e <= b_e - 1;
end
end
divide_0:
begin
z_s <= a_s ^ b_s;
z_e <= a_e - b_e;
quotient <= 0;
remainder <= 0;
count <= 0;
dividend <= a_m << 27;
divisor <= b_m;
state <= divide_1;
end
divide_1:
begin
quotient <= quotient << 1;
remainder <= remainder << 1;
remainder[0] <= dividend[50];
dividend <= dividend << 1;
state <= divide_2;
end
divide_2:
begin
if (remainder >= divisor) begin
quotient[0] <= 1;
remainder <= remainder - divisor;
end
if (count == 49) begin
state <= divide_3;
end else begin
count <= count + 1;
state <= divide_1;
end
end
divide_3:
begin
z_m <= quotient[26:3];
guard <= quotient[2];
round_bit <= quotient[1];
sticky <= quotient[0] | (remainder != 0);
state <= normalise_1;
end
normalise_1:
begin
if (z_m[23] == 0 && $signed(z_e) > -126) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= guard;
guard <= round_bit;
round_bit <= 0;
end else begin
state <= normalise_2;
end
end
normalise_2:
begin
if ($signed(z_e) < -126) begin
z_e <= z_e + 1;
z_m <= z_m >> 1;
guard <= z_m[0];
round_bit <= guard;
sticky <= sticky | round_bit;
end else begin
state <= round;
end
end
round:
begin
if (guard && (round_bit | sticky | z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 24'hffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[22 : 0] <= z_m[22:0];
z[30 : 23] <= z_e[7:0] + 127;
z[31] <= z_s;
if ($signed(z_e) == -126 && z_m[23] == 0) begin
z[30 : 23] <= 0;
end
//if overflow occurs, return inf
if ($signed(z_e) > 127) begin
z[22 : 0] <= 0;
z[30 : 23] <= 255;
z[31] <= z_s;
end
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_input_b_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign input_b_ack = s_input_b_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module multiplier(
input_a,
input_b,
input_a_stb,
input_b_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack,
input_b_ack);
input clk;
input rst;
input [31:0] input_a;
input input_a_stb;
output input_a_ack;
input [31:0] input_b;
input input_b_stb;
output input_b_ack;
output [31:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [31:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [3:0] state;
parameter get_a = 4'd0,
get_b = 4'd1,
unpack = 4'd2,
special_cases = 4'd3,
normalise_a = 4'd4,
normalise_b = 4'd5,
multiply_0 = 4'd6,
multiply_1 = 4'd7,
normalise_1 = 4'd8,
normalise_2 = 4'd9,
round = 4'd10,
pack = 4'd11,
put_z = 4'd12;
reg [31:0] a, b, z;
reg [23:0] a_m, b_m, z_m;
reg [9:0] a_e, b_e, z_e;
reg a_s, b_s, z_s;
reg guard, round_bit, sticky;
reg [49:0] product;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= get_b;
end
end
get_b:
begin
s_input_b_ack <= 1;
if (s_input_b_ack && input_b_stb) begin
b <= input_b;
s_input_b_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m <= a[22 : 0];
b_m <= b[22 : 0];
a_e <= a[30 : 23] - 127;
b_e <= b[30 : 23] - 127;
a_s <= a[31];
b_s <= b[31];
state <= special_cases;
end
special_cases:
begin
//if a is NaN or b is NaN return NaN
if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
//if a is inf return inf
end else if (a_e == 128) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 255;
z[22:0] <= 0;
state <= put_z;
//if b is zero return NaN
if ($signed(b_e == -127) && (b_m == 0)) begin
z[31] <= 1;
z[30:23] <= 255;
z[22] <= 1;
z[21:0] <= 0;
state <= put_z;
end
//if b is inf return inf
end else if (b_e == 128) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 255;
z[22:0] <= 0;
state <= put_z;
//if a is zero return zero
end else if (($signed(a_e) == -127) && (a_m == 0)) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 0;
z[22:0] <= 0;
state <= put_z;
//if b is zero return zero
end else if (($signed(b_e) == -127) && (b_m == 0)) begin
z[31] <= a_s ^ b_s;
z[30:23] <= 0;
z[22:0] <= 0;
state <= put_z;
end else begin
//Denormalised Number
if ($signed(a_e) == -127) begin
a_e <= -126;
end else begin
a_m[23] <= 1;
end
//Denormalised Number
if ($signed(b_e) == -127) begin
b_e <= -126;
end else begin
b_m[23] <= 1;
end
state <= normalise_a;
end
end
normalise_a:
begin
if (a_m[23]) begin
state <= normalise_b;
end else begin
a_m <= a_m << 1;
a_e <= a_e - 1;
end
end
normalise_b:
begin
if (b_m[23]) begin
state <= multiply_0;
end else begin
b_m <= b_m << 1;
b_e <= b_e - 1;
end
end
multiply_0:
begin
z_s <= a_s ^ b_s;
z_e <= a_e + b_e + 1;
product <= a_m * b_m * 4;
state <= multiply_1;
end
multiply_1:
begin
z_m <= product[49:26];
guard <= product[25];
round_bit <= product[24];
sticky <= (product[23:0] != 0);
state <= normalise_1;
end
normalise_1:
begin
if (z_m[23] == 0) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= guard;
guard <= round_bit;
round_bit <= 0;
end else begin
state <= normalise_2;
end
end
normalise_2:
begin
if ($signed(z_e) < -126) begin
z_e <= z_e + 1;
z_m <= z_m >> 1;
guard <= z_m[0];
round_bit <= guard;
sticky <= sticky | round_bit;
end else begin
state <= round;
end
end
round:
begin
if (guard && (round_bit | sticky | z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 24'hffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[22 : 0] <= z_m[22:0];
z[30 : 23] <= z_e[7:0] + 127;
z[31] <= z_s;
if ($signed(z_e) == -126 && z_m[23] == 0) begin
z[30 : 23] <= 0;
end
//if overflow occurs, return inf
if ($signed(z_e) > 127) begin
z[22 : 0] <= 0;
z[30 : 23] <= 255;
z[31] <= z_s;
end
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_input_b_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign input_b_ack = s_input_b_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module double_divider(
input_a,
input_b,
input_a_stb,
input_b_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack,
input_b_ack);
input clk;
input rst;
input [63:0] input_a;
input input_a_stb;
output input_a_ack;
input [63:0] input_b;
input input_b_stb;
output input_b_ack;
output [63:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [63:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [3:0] state;
parameter get_a = 4'd0,
get_b = 4'd1,
unpack = 4'd2,
special_cases = 4'd3,
normalise_a = 4'd4,
normalise_b = 4'd5,
divide_0 = 4'd6,
divide_1 = 4'd7,
divide_2 = 4'd8,
divide_3 = 4'd9,
normalise_1 = 4'd10,
normalise_2 = 4'd11,
round = 4'd12,
pack = 4'd13,
put_z = 4'd14;
reg [63:0] a, b, z;
reg [52:0] a_m, b_m, z_m;
reg [12:0] a_e, b_e, z_e;
reg a_s, b_s, z_s;
reg guard, round_bit, sticky;
reg [108:0] quotient, divisor, dividend, remainder;
reg [6:0] count;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= get_b;
end
end
get_b:
begin
s_input_b_ack <= 1;
if (s_input_b_ack && input_b_stb) begin
b <= input_b;
s_input_b_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m <= a[51 : 0];
b_m <= b[51 : 0];
a_e <= a[62 : 52] - 1023;
b_e <= b[62 : 52] - 1023;
a_s <= a[63];
b_s <= b[63];
state <= special_cases;
end
special_cases:
begin
//if a is NaN or b is NaN return NaN
if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin
z[63] <= 1;
z[62:52] <= 2047;
z[51] <= 1;
z[50:0] <= 0;
state <= put_z;
//if a is inf and b is inf return NaN
end else if ((a_e == 1024) && (b_e == 1024)) begin
z[63] <= 1;
z[62:52] <= 2047;
z[51] <= 1;
z[50:0] <= 0;
state <= put_z;
//if a is inf return inf
end else if (a_e == 1024) begin
z[63] <= a_s ^ b_s;
z[62:52] <= 2047;
z[51:0] <= 0;
state <= put_z;
//if b is zero return NaN
if ($signed(b_e == -1023) && (b_m == 0)) begin
z[63] <= 1;
z[62:52] <= 2047;
z[51] <= 1;
z[50:0] <= 0;
state <= put_z;
end
//if b is inf return zero
end else if (b_e == 1024) begin
z[63] <= a_s ^ b_s;
z[62:52] <= 0;
z[51:0] <= 0;
state <= put_z;
//if a is zero return zero
end else if (($signed(a_e) == -1023) && (a_m == 0)) begin
z[63] <= a_s ^ b_s;
z[62:52] <= 0;
z[51:0] <= 0;
state <= put_z;
//if b is zero return NaN
if (($signed(b_e) == -1023) && (b_m == 0)) begin
z[63] <= 1;
z[62:52] <= 2047;
z[51] <= 1;
z[50:0] <= 0;
state <= put_z;
end
//if b is zero return inf
end else if (($signed(b_e) == -1023) && (b_m == 0)) begin
z[63] <= a_s ^ b_s;
z[62:52] <= 2047;
z[51:0] <= 0;
state <= put_z;
end else begin
//Denormalised Number
if ($signed(a_e) == -1023) begin
a_e <= -1022;
end else begin
a_m[52] <= 1;
end
//Denormalised Number
if ($signed(b_e) == -1023) begin
b_e <= -1022;
end else begin
b_m[52] <= 1;
end
state <= normalise_a;
end
end
normalise_a:
begin
if (a_m[52]) begin
state <= normalise_b;
end else begin
a_m <= a_m << 1;
a_e <= a_e - 1;
end
end
normalise_b:
begin
if (b_m[52]) begin
state <= divide_0;
end else begin
b_m <= b_m << 1;
b_e <= b_e - 1;
end
end
divide_0:
begin
z_s <= a_s ^ b_s;
z_e <= a_e - b_e;
quotient <= 0;
remainder <= 0;
count <= 0;
dividend <= a_m << 56;
divisor <= b_m;
state <= divide_1;
end
divide_1:
begin
quotient <= quotient << 1;
remainder <= remainder << 1;
remainder[0] <= dividend[108];
dividend <= dividend << 1;
state <= divide_2;
end
divide_2:
begin
if (remainder >= divisor) begin
quotient[0] <= 1;
remainder <= remainder - divisor;
end
if (count == 107) begin
state <= divide_3;
end else begin
count <= count + 1;
state <= divide_1;
end
end
divide_3:
begin
z_m <= quotient[55:3];
guard <= quotient[2];
round_bit <= quotient[1];
sticky <= quotient[0] | (remainder != 0);
state <= normalise_1;
end
normalise_1:
begin
if (z_m[52] == 0 && $signed(z_e) > -1022) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= guard;
guard <= round_bit;
round_bit <= 0;
end else begin
state <= normalise_2;
end
end
normalise_2:
begin
if ($signed(z_e) < -1022) begin
z_e <= z_e + 1;
z_m <= z_m >> 1;
guard <= z_m[0];
round_bit <= guard;
sticky <= sticky | round_bit;
end else begin
state <= round;
end
end
round:
begin
if (guard && (round_bit | sticky | z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 53'hffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[51 : 0] <= z_m[51:0];
z[62 : 52] <= z_e[10:0] + 1023;
z[63] <= z_s;
if ($signed(z_e) == -1022 && z_m[52] == 0) begin
z[62 : 52] <= 0;
end
//if overflow occurs, return inf
if ($signed(z_e) > 1023) begin
z[51 : 0] <= 0;
z[62 : 52] <= 2047;
z[63] <= z_s;
end
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_input_b_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign input_b_ack = s_input_b_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module double_multiplier(
input_a,
input_b,
input_a_stb,
input_b_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack,
input_b_ack);
input clk;
input rst;
input [63:0] input_a;
input input_a_stb;
output input_a_ack;
input [63:0] input_b;
input input_b_stb;
output input_b_ack;
output [63:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [63:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [3:0] state;
parameter get_a = 4'd0,
get_b = 4'd1,
unpack = 4'd2,
special_cases = 4'd3,
normalise_a = 4'd4,
normalise_b = 4'd5,
multiply_0 = 4'd6,
multiply_1 = 4'd7,
normalise_1 = 4'd8,
normalise_2 = 4'd9,
round = 4'd10,
pack = 4'd11,
put_z = 4'd12;
reg [63:0] a, b, z;
reg [52:0] a_m, b_m, z_m;
reg [12:0] a_e, b_e, z_e;
reg a_s, b_s, z_s;
reg guard, round_bit, sticky;
reg [107:0] product;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= get_b;
end
end
get_b:
begin
s_input_b_ack <= 1;
if (s_input_b_ack && input_b_stb) begin
b <= input_b;
s_input_b_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m <= a[51 : 0];
b_m <= b[51 : 0];
a_e <= a[62 : 52] - 1023;
b_e <= b[62 : 52] - 1023;
a_s <= a[63];
b_s <= b[63];
state <= special_cases;
end
special_cases:
begin
//if a is NaN or b is NaN return NaN
if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin
z[63] <= 1;
z[62:52] <= 2047;
z[51] <= 1;
z[50:0] <= 0;
state <= put_z;
//if a is inf return inf
end else if (a_e == 1024) begin
z[63] <= a_s ^ b_s;
z[62:52] <= 2047;
z[51:0] <= 0;
state <= put_z;
//if b is zero return NaN
if ($signed(b_e == -1023) && (b_m == 0)) begin
z[63] <= 1;
z[62:52] <= 2047;
z[51] <= 1;
z[50:0] <= 0;
state <= put_z;
end
//if b is inf return inf
end else if (b_e == 1024) begin
z[63] <= a_s ^ b_s;
z[62:52] <= 2047;
z[51:0] <= 0;
state <= put_z;
//if a is zero return zero
end else if (($signed(a_e) == -1023) && (a_m == 0)) begin
z[63] <= a_s ^ b_s;
z[62:52] <= 0;
z[51:0] <= 0;
state <= put_z;
//if b is zero return zero
end else if (($signed(b_e) == -1023) && (b_m == 0)) begin
z[63] <= a_s ^ b_s;
z[62:52] <= 0;
z[51:0] <= 0;
state <= put_z;
end else begin
//Denormalised Number
if ($signed(a_e) == -1023) begin
a_e <= -1022;
end else begin
a_m[52] <= 1;
end
//Denormalised Number
if ($signed(b_e) == -1023) begin
b_e <= -1022;
end else begin
b_m[52] <= 1;
end
state <= normalise_a;
end
end
normalise_a:
begin
if (a_m[52]) begin
state <= normalise_b;
end else begin
a_m <= a_m << 1;
a_e <= a_e - 1;
end
end
normalise_b:
begin
if (b_m[52]) begin
state <= multiply_0;
end else begin
b_m <= b_m << 1;
b_e <= b_e - 1;
end
end
multiply_0:
begin
z_s <= a_s ^ b_s;
z_e <= a_e + b_e + 1;
product <= a_m * b_m * 4;
state <= multiply_1;
end
multiply_1:
begin
z_m <= product[107:55];
guard <= product[54];
round_bit <= product[53];
sticky <= (product[52:0] != 0);
state <= normalise_1;
end
normalise_1:
begin
if (z_m[52] == 0) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= guard;
guard <= round_bit;
round_bit <= 0;
end else begin
state <= normalise_2;
end
end
normalise_2:
begin
if ($signed(z_e) < -1022) begin
z_e <= z_e + 1;
z_m <= z_m >> 1;
guard <= z_m[0];
round_bit <= guard;
sticky <= sticky | round_bit;
end else begin
state <= round;
end
end
round:
begin
if (guard && (round_bit | sticky | z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 53'hffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[51 : 0] <= z_m[51:0];
z[62 : 52] <= z_e[11:0] + 1023;
z[63] <= z_s;
if ($signed(z_e) == -1022 && z_m[52] == 0) begin
z[62 : 52] <= 0;
end
//if overflow occurs, return inf
if ($signed(z_e) > 1023) begin
z[51 : 0] <= 0;
z[62 : 52] <= 2047;
z[63] <= z_s;
end
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_input_b_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign input_b_ack = s_input_b_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module double_adder(
input_a,
input_b,
input_a_stb,
input_b_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack,
input_b_ack);
input clk;
input rst;
input [63:0] input_a;
input input_a_stb;
output input_a_ack;
input [63:0] input_b;
input input_b_stb;
output input_b_ack;
output [63:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [63:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [3:0] state;
parameter get_a = 4'd0,
get_b = 4'd1,
unpack = 4'd2,
special_cases = 4'd3,
align = 4'd4,
add_0 = 4'd5,
add_1 = 4'd6,
normalise_1 = 4'd7,
normalise_2 = 4'd8,
round = 4'd9,
pack = 4'd10,
put_z = 4'd11;
reg [63:0] a, b, z;
reg [55:0] a_m, b_m;
reg [52:0] z_m;
reg [12:0] a_e, b_e, z_e;
reg a_s, b_s, z_s;
reg guard, round_bit, sticky;
reg [56:0] sum;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= get_b;
end
end
get_b:
begin
s_input_b_ack <= 1;
if (s_input_b_ack && input_b_stb) begin
b <= input_b;
s_input_b_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m <= {a[51 : 0], 3'd0};
b_m <= {b[51 : 0], 3'd0};
a_e <= a[62 : 52] - 1023;
b_e <= b[62 : 52] - 1023;
a_s <= a[63];
b_s <= b[63];
state <= special_cases;
end
special_cases:
begin
//if a is NaN or b is NaN return NaN
if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin
z[63] <= 1;
z[62:52] <= 2047;
z[51] <= 1;
z[50:0] <= 0;
state <= put_z;
//if a is inf return inf
end else if (a_e == 1024) begin
z[63] <= a_s;
z[62:52] <= 2047;
z[51:0] <= 0;
state <= put_z;
//if b is inf return inf
end else if (b_e == 1024) begin
z[63] <= b_s;
z[62:52] <= 2047;
z[51:0] <= 0;
state <= put_z;
//if a is zero return b
end else if ((($signed(a_e) == -1023) && (a_m == 0)) && (($signed(b_e) == -1023) && (b_m == 0))) begin
z[63] <= a_s & b_s;
z[62:52] <= b_e[10:0] + 1023;
z[51:0] <= b_m[55:3];
state <= put_z;
//if a is zero return b
end else if (($signed(a_e) == -1023) && (a_m == 0)) begin
z[63] <= b_s;
z[62:52] <= b_e[10:0] + 1023;
z[51:0] <= b_m[55:3];
state <= put_z;
//if b is zero return a
end else if (($signed(b_e) == -1023) && (b_m == 0)) begin
z[63] <= a_s;
z[62:52] <= a_e[10:0] + 1023;
z[51:0] <= a_m[55:3];
state <= put_z;
end else begin
//Denormalised Number
if ($signed(a_e) == -1023) begin
a_e <= -1022;
end else begin
a_m[55] <= 1;
end
//Denormalised Number
if ($signed(b_e) == -1023) begin
b_e <= -1022;
end else begin
b_m[55] <= 1;
end
state <= align;
end
end
align:
begin
if ($signed(a_e) > $signed(b_e)) begin
b_e <= b_e + 1;
b_m <= b_m >> 1;
b_m[0] <= b_m[0] | b_m[1];
end else if ($signed(a_e) < $signed(b_e)) begin
a_e <= a_e + 1;
a_m <= a_m >> 1;
a_m[0] <= a_m[0] | a_m[1];
end else begin
state <= add_0;
end
end
add_0:
begin
z_e <= a_e;
if (a_s == b_s) begin
sum <= {1'd0, a_m} + b_m;
z_s <= a_s;
end else begin
if (a_m > b_m) begin
sum <= {1'd0, a_m} - b_m;
z_s <= a_s;
end else begin
sum <= {1'd0, b_m} - a_m;
z_s <= b_s;
end
end
state <= add_1;
end
add_1:
begin
if (sum[56]) begin
z_m <= sum[56:4];
guard <= sum[3];
round_bit <= sum[2];
sticky <= sum[1] | sum[0];
z_e <= z_e + 1;
end else begin
z_m <= sum[55:3];
guard <= sum[2];
round_bit <= sum[1];
sticky <= sum[0];
end
state <= normalise_1;
end
normalise_1:
begin
if (z_m[52] == 0 && $signed(z_e) > -1022) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= guard;
guard <= round_bit;
round_bit <= 0;
end else begin
state <= normalise_2;
end
end
normalise_2:
begin
if ($signed(z_e) < -1022) begin
z_e <= z_e + 1;
z_m <= z_m >> 1;
guard <= z_m[0];
round_bit <= guard;
sticky <= sticky | round_bit;
end else begin
state <= round;
end
end
round:
begin
if (guard && (round_bit | sticky | z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 53'h1fffffffffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[51 : 0] <= z_m[51:0];
z[62 : 52] <= z_e[10:0] + 1023;
z[63] <= z_s;
if ($signed(z_e) == -1022 && z_m[52] == 0) begin
z[62 : 52] <= 0;
end
//if overflow occurs, return inf
if ($signed(z_e) > 1023) begin
z[51 : 0] <= 0;
z[62 : 52] <= 2047;
z[63] <= z_s;
end
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_input_b_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign input_b_ack = s_input_b_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module int_to_float(
input_a,
input_a_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack);
input clk;
input rst;
input [31:0] input_a;
input input_a_stb;
output input_a_ack;
output [31:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [31:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [2:0] state;
parameter get_a = 3'd0,
convert_0 = 3'd1,
convert_1 = 3'd2,
convert_2 = 3'd3,
round = 3'd4,
pack = 3'd5,
put_z = 3'd6;
reg [31:0] a, z, value;
reg [23:0] z_m;
reg [7:0] z_r;
reg [7:0] z_e;
reg z_s;
reg guard, round_bit, sticky;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= convert_0;
end
end
convert_0:
begin
if ( a == 0 ) begin
z_s <= 0;
z_m <= 0;
z_e <= -127;
state <= pack;
end else begin
value <= a[31] ? -a : a;
z_s <= a[31];
state <= convert_1;
end
end
convert_1:
begin
z_e <= 31;
z_m <= value[31:8];
z_r <= value[7:0];
state <= convert_2;
end
convert_2:
begin
if (!z_m[23]) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= z_r[7];
z_r <= z_r << 1;
end else begin
guard <= z_r[7];
round_bit <= z_r[6];
sticky <= z_r[5:0] != 0;
state <= round;
end
end
round:
begin
if (guard && (round_bit || sticky || z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 24'hffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[22 : 0] <= z_m[22:0];
z[30 : 23] <= z_e + 127;
z[31] <= z_s;
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module float_to_int(
input_a,
input_a_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack);
input clk;
input rst;
input [31:0] input_a;
input input_a_stb;
output input_a_ack;
output [31:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [31:0] s_output_z;
reg s_input_a_ack;
reg [2:0] state;
parameter get_a = 3'd0,
special_cases = 3'd1,
unpack = 3'd2,
convert = 3'd3,
put_z = 3'd4;
reg [31:0] a_m, a, z;
reg [8:0] a_e;
reg a_s;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m[31:8] <= {1'b1, a[22 : 0]};
a_m[7:0] <= 0;
a_e <= a[30 : 23] - 127;
a_s <= a[31];
state <= special_cases;
end
special_cases:
begin
if ($signed(a_e) == -127) begin
z <= 0;
state <= put_z;
end else if ($signed(a_e) > 31) begin
z <= 32'h80000000;
state <= put_z;
end else begin
state <= convert;
end
end
convert:
begin
if ($signed(a_e) < 31 && a_m) begin
a_e <= a_e + 1;
a_m <= a_m >> 1;
end else begin
if (a_m[31]) begin
z <= 32'h80000000;
end else begin
z <= a_s ? -a_m : a_m;
end
state <= put_z;
end
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module long_to_double(
input_a,
input_a_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack);
input clk;
input rst;
input [63:0] input_a;
input input_a_stb;
output input_a_ack;
output [63:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [63:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [2:0] state;
parameter get_a = 3'd0,
convert_0 = 3'd1,
convert_1 = 3'd2,
convert_2 = 3'd3,
round = 3'd4,
pack = 3'd5,
put_z = 3'd6;
reg [63:0] a, z, value;
reg [52:0] z_m;
reg [10:0] z_r;
reg [10:0] z_e;
reg z_s;
reg guard, round_bit, sticky;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= convert_0;
end
end
convert_0:
begin
if ( a == 0 ) begin
z_s <= 0;
z_m <= 0;
z_e <= -1023;
state <= pack;
end else begin
value <= a[63] ? -a : a;
z_s <= a[63];
state <= convert_1;
end
end
convert_1:
begin
z_e <= 63;
z_m <= value[63:11];
z_r <= value[10:0];
state <= convert_2;
end
convert_2:
begin
if (!z_m[52]) begin
z_e <= z_e - 1;
z_m <= z_m << 1;
z_m[0] <= z_r[10];
z_r <= z_r << 1;
end else begin
guard <= z_r[10];
round_bit <= z_r[9];
sticky <= z_r[8:0] != 0;
state <= round;
end
end
round:
begin
if (guard && (round_bit || sticky || z_m[0])) begin
z_m <= z_m + 1;
if (z_m == 53'h1fffffffffffff) begin
z_e <=z_e + 1;
end
end
state <= pack;
end
pack:
begin
z[51 : 0] <= z_m[51:0];
z[62 : 52] <= z_e + 1023;
z[63] <= z_s;
state <= put_z;
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module double_to_long(
input_a,
input_a_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack);
input clk;
input rst;
input [63:0] input_a;
input input_a_stb;
output input_a_ack;
output [63:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [63:0] s_output_z;
reg s_input_a_ack;
reg [2:0] state;
parameter get_a = 3'd0,
special_cases = 3'd1,
unpack = 3'd2,
convert = 3'd3,
put_z = 3'd4;
reg [63:0] a_m, a, z;
reg [11:0] a_e;
reg a_s;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= unpack;
end
end
unpack:
begin
a_m[63:11] <= {1'b1, a[51 : 0]};
a_m[10:0] <= 0;
a_e <= a[62 : 52] - 1023;
a_s <= a[63];
state <= special_cases;
end
special_cases:
begin
if ($signed(a_e) == -1023) begin
//zero
z <= 0;
state <= put_z;
end else if ($signed(a_e) == 1024 && a[51:0] != 0) begin
//nan
z <= 64'h8000000000000000;
state <= put_z;
end else if ($signed(a_e) > 63) begin
//too big
if (a_s) begin
z <= 64'h8000000000000000;
end else begin
z <= 64'h0000000000000000;
end
state <= put_z;
end else begin
state <= convert;
end
end
convert:
begin
if ($signed(a_e) < 63 && a_m) begin
a_e <= a_e + 1;
a_m <= a_m >> 1;
end else begin
if (a_m[63] && a_s) begin
z <= 64'h8000000000000000;
end else begin
z <= a_s ? -a_m : a_m;
end
state <= put_z;
end
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module float_to_double(
input_a,
input_a_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack);
input clk;
input rst;
input [31:0] input_a;
input input_a_stb;
output input_a_ack;
output [63:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [63:0] s_output_z;
reg s_input_a_ack;
reg s_input_b_ack;
reg [1:0] state;
parameter get_a = 3'd0,
convert_0 = 3'd1,
normalise_0 = 3'd2,
put_z = 3'd3;
reg [63:0] z;
reg [10:0] z_e;
reg [52:0] z_m;
reg [31:0] a;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= convert_0;
end
end
convert_0:
begin
z[63] <= a[31];
z[62:52] <= (a[30:23] - 127) + 1023;
z[51:0] <= {a[22:0], 29'd0};
if (a[30:23] == 255) begin
z[62:52] <= 2047;
end
state <= put_z;
if (a[30:23] == 0) begin
if (a[23:0]) begin
state <= normalise_0;
z_e <= 897;
z_m <= {1'd0, a[22:0], 29'd0};
end
z[62:52] <= 0;
end
end
normalise_0:
begin
if (z_m[52]) begin
z[62:52] <= z_e;
z[51:0] <= z_m[51:0];
state <= put_z;
end else begin
z_m <= {z_m[51:0], 1'd0};
z_e <= z_e - 1;
end
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module double_to_float(
input_a,
input_a_stb,
output_z_ack,
clk,
rst,
output_z,
output_z_stb,
input_a_ack);
input clk;
input rst;
input [63:0] input_a;
input input_a_stb;
output input_a_ack;
output [31:0] output_z;
output output_z_stb;
input output_z_ack;
reg s_output_z_stb;
reg [31:0] s_output_z;
reg s_input_a_ack;
reg [1:0] state;
parameter get_a = 3'd0,
unpack = 3'd1,
denormalise = 3'd2,
put_z = 3'd3;
reg [63:0] a;
reg [31:0] z;
reg [10:0] z_e;
reg [23:0] z_m;
reg guard;
reg round;
reg sticky;
always @(posedge clk)
begin
case(state)
get_a:
begin
s_input_a_ack <= 1;
if (s_input_a_ack && input_a_stb) begin
a <= input_a;
s_input_a_ack <= 0;
state <= unpack;
end
end
unpack:
begin
z[31] <= a[63];
state <= put_z;
if (a[62:52] == 0) begin
z[30:23] <= 0;
z[22:0] <= 0;
end else if (a[62:52] < 897) begin
z[30:23] <= 0;
z_m <= {1'd1, a[51:29]};
z_e <= a[62:52];
guard <= a[28];
round <= a[27];
sticky <= a[26:0] != 0;
state <= denormalise;
end else if (a[62:52] == 2047) begin
z[30:23] <= 255;
z[22:0] <= 0;
if (a[51:0]) begin
z[22] <= 1;
end
end else if (a[62:52] > 1150) begin
z[30:23] <= 255;
z[22:0] <= 0;
end else begin
z[30:23] <= (a[62:52] - 1023) + 127;
if (a[28] && (a[27] || a[26:0])) begin
z[22:0] <= a[51:29] + 1;
end else begin
z[22:0] <= a[51:29];
end
end
end
denormalise:
begin
if (z_e == 897 || (z_m == 0 && guard == 0)) begin
state <= put_z;
z[22:0] <= z_m;
if (guard && (round || sticky)) begin
z[22:0] <= z_m + 1;
end
end else begin
z_e <= z_e + 1;
z_m <= {1'd0, z_m[23:1]};
guard <= z_m[0];
round <= guard;
sticky <= sticky | round;
end
end
put_z:
begin
s_output_z_stb <= 1;
s_output_z <= z;
if (s_output_z_stb && output_z_ack) begin
s_output_z_stb <= 0;
state <= get_a;
end
end
endcase
if (rst == 1) begin
state <= get_a;
s_input_a_ack <= 0;
s_output_z_stb <= 0;
end
end
assign input_a_ack = s_input_a_ack;
assign output_z_stb = s_output_z_stb;
assign output_z = s_output_z;
endmodule |
module testbed_lo_read;
reg pck0;
reg [7:0] adc_d;
reg lo_is_125khz;
reg [15:0] divisor;
wire pwr_lo;
wire adc_clk;
wire ck_1356meg;
wire ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
lo_read #(5,10) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.lo_is_125khz(lo_is_125khz),
.divisor(divisor)
);
integer idx, i, adc_val=8;
// main clock
always #5 pck0 = !pck0;
task crank_dut;
begin
@(posedge adc_clk) ;
adc_d = adc_val;
adc_val = (adc_val *2) + 53;
end
endtask
initial begin
// init inputs
pck0 = 0;
adc_d = 0;
ssp_dout = 0;
lo_is_125khz = 1;
divisor = 255; //min 16, 95=125Khz, max 255
// simulate 4 A/D cycles at 125Khz
for (i = 0 ; i < 8 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule |
module testbed_lo_read;
reg pck0;
reg [7:0] adc_d;
reg lo_is_125khz;
reg [15:0] divisor;
wire pwr_lo;
wire adc_clk;
wire ck_1356meg;
wire ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
lo_read #(5,10) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.lo_is_125khz(lo_is_125khz),
.divisor(divisor)
);
integer idx, i, adc_val=8;
// main clock
always #5 pck0 = !pck0;
task crank_dut;
begin
@(posedge adc_clk) ;
adc_d = adc_val;
adc_val = (adc_val *2) + 53;
end
endtask
initial begin
// init inputs
pck0 = 0;
adc_d = 0;
ssp_dout = 0;
lo_is_125khz = 1;
divisor = 255; //min 16, 95=125Khz, max 255
// simulate 4 A/D cycles at 125Khz
for (i = 0 ; i < 8 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule |
module testbed_lo_read;
reg pck0;
reg [7:0] adc_d;
reg lo_is_125khz;
reg [15:0] divisor;
wire pwr_lo;
wire adc_clk;
wire ck_1356meg;
wire ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
lo_read #(5,10) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.lo_is_125khz(lo_is_125khz),
.divisor(divisor)
);
integer idx, i, adc_val=8;
// main clock
always #5 pck0 = !pck0;
task crank_dut;
begin
@(posedge adc_clk) ;
adc_d = adc_val;
adc_val = (adc_val *2) + 53;
end
endtask
initial begin
// init inputs
pck0 = 0;
adc_d = 0;
ssp_dout = 0;
lo_is_125khz = 1;
divisor = 255; //min 16, 95=125Khz, max 255
// simulate 4 A/D cycles at 125Khz
for (i = 0 ; i < 8 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule |
module testbed_lo_read;
reg pck0;
reg [7:0] adc_d;
reg lo_is_125khz;
reg [15:0] divisor;
wire pwr_lo;
wire adc_clk;
wire ck_1356meg;
wire ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
lo_read #(5,10) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.lo_is_125khz(lo_is_125khz),
.divisor(divisor)
);
integer idx, i, adc_val=8;
// main clock
always #5 pck0 = !pck0;
task crank_dut;
begin
@(posedge adc_clk) ;
adc_d = adc_val;
adc_val = (adc_val *2) + 53;
end
endtask
initial begin
// init inputs
pck0 = 0;
adc_d = 0;
ssp_dout = 0;
lo_is_125khz = 1;
divisor = 255; //min 16, 95=125Khz, max 255
// simulate 4 A/D cycles at 125Khz
for (i = 0 ; i < 8 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule |
module soc_design_niosII_core_cpu_debug_slave_tck (
// inputs:
MonDReg,
break_readreg,
dbrk_hit0_latch,
dbrk_hit1_latch,
dbrk_hit2_latch,
dbrk_hit3_latch,
debugack,
ir_in,
jtag_state_rti,
monitor_error,
monitor_ready,
reset_n,
resetlatch,
tck,
tdi,
tracemem_on,
tracemem_trcdata,
tracemem_tw,
trc_im_addr,
trc_on,
trc_wrap,
trigbrktype,
trigger_state_1,
vs_cdr,
vs_sdr,
vs_uir,
// outputs:
ir_out,
jrst_n,
sr,
st_ready_test_idle,
tdo
)
;
output [ 1: 0] ir_out;
output jrst_n;
output [ 37: 0] sr;
output st_ready_test_idle;
output tdo;
input [ 31: 0] MonDReg;
input [ 31: 0] break_readreg;
input dbrk_hit0_latch;
input dbrk_hit1_latch;
input dbrk_hit2_latch;
input dbrk_hit3_latch;
input debugack;
input [ 1: 0] ir_in;
input jtag_state_rti;
input monitor_error;
input monitor_ready;
input reset_n;
input resetlatch;
input tck;
input tdi;
input tracemem_on;
input [ 35: 0] tracemem_trcdata;
input tracemem_tw;
input [ 6: 0] trc_im_addr;
input trc_on;
input trc_wrap;
input trigbrktype;
input trigger_state_1;
input vs_cdr;
input vs_sdr;
input vs_uir;
reg [ 2: 0] DRsize /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103,R101\"" */;
wire debugack_sync;
reg [ 1: 0] ir_out;
wire jrst_n;
wire monitor_ready_sync;
reg [ 37: 0] sr /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103,R101\"" */;
wire st_ready_test_idle;
wire tdo;
wire unxcomplemented_resetxx1;
wire unxcomplemented_resetxx2;
always @(posedge tck)
begin
if (vs_cdr)
case (ir_in)
2'b00: begin
sr[35] <= debugack_sync;
sr[34] <= monitor_error;
sr[33] <= resetlatch;
sr[32 : 1] <= MonDReg;
sr[0] <= monitor_ready_sync;
end // 2'b00
2'b01: begin
sr[35 : 0] <= tracemem_trcdata;
sr[37] <= tracemem_tw;
sr[36] <= tracemem_on;
end // 2'b01
2'b10: begin
sr[37] <= trigger_state_1;
sr[36] <= dbrk_hit3_latch;
sr[35] <= dbrk_hit2_latch;
sr[34] <= dbrk_hit1_latch;
sr[33] <= dbrk_hit0_latch;
sr[32 : 1] <= break_readreg;
sr[0] <= trigbrktype;
end // 2'b10
2'b11: begin
sr[15 : 2] <= trc_im_addr;
sr[1] <= trc_wrap;
sr[0] <= trc_on;
end // 2'b11
endcase // ir_in
if (vs_sdr)
case (DRsize)
3'b000: begin
sr <= {tdi, sr[37 : 2], tdi};
end // 3'b000
3'b001: begin
sr <= {tdi, sr[37 : 9], tdi, sr[7 : 1]};
end // 3'b001
3'b010: begin
sr <= {tdi, sr[37 : 17], tdi, sr[15 : 1]};
end // 3'b010
3'b011: begin
sr <= {tdi, sr[37 : 33], tdi, sr[31 : 1]};
end // 3'b011
3'b100: begin
sr <= {tdi, sr[37], tdi, sr[35 : 1]};
end // 3'b100
3'b101: begin
sr <= {tdi, sr[37 : 1]};
end // 3'b101
default: begin
sr <= {tdi, sr[37 : 2], tdi};
end // default
endcase // DRsize
if (vs_uir)
case (ir_in)
2'b00: begin
DRsize <= 3'b100;
end // 2'b00
2'b01: begin
DRsize <= 3'b101;
end // 2'b01
2'b10: begin
DRsize <= 3'b101;
end // 2'b10
2'b11: begin
DRsize <= 3'b010;
end // 2'b11
endcase // ir_in
end
assign tdo = sr[0];
assign st_ready_test_idle = jtag_state_rti;
assign unxcomplemented_resetxx1 = jrst_n;
altera_std_synchronizer the_altera_std_synchronizer1
(
.clk (tck),
.din (debugack),
.dout (debugack_sync),
.reset_n (unxcomplemented_resetxx1)
);
defparam the_altera_std_synchronizer1.depth = 2;
assign unxcomplemented_resetxx2 = jrst_n;
altera_std_synchronizer the_altera_std_synchronizer2
(
.clk (tck),
.din (monitor_ready),
.dout (monitor_ready_sync),
.reset_n (unxcomplemented_resetxx2)
);
defparam the_altera_std_synchronizer2.depth = 2;
always @(posedge tck or negedge jrst_n)
begin
if (jrst_n == 0)
ir_out <= 2'b0;
else
ir_out <= {debugack_sync, monitor_ready_sync};
end
//synthesis translate_off
//////////////// SIMULATION-ONLY CONTENTS
assign jrst_n = reset_n;
//////////////// END SIMULATION-ONLY CONTENTS
//synthesis translate_on
//synthesis read_comments_as_HDL on
// assign jrst_n = 1;
//synthesis read_comments_as_HDL off
endmodule |
module soc_design_niosII_core_cpu_debug_slave_tck (
// inputs:
MonDReg,
break_readreg,
dbrk_hit0_latch,
dbrk_hit1_latch,
dbrk_hit2_latch,
dbrk_hit3_latch,
debugack,
ir_in,
jtag_state_rti,
monitor_error,
monitor_ready,
reset_n,
resetlatch,
tck,
tdi,
tracemem_on,
tracemem_trcdata,
tracemem_tw,
trc_im_addr,
trc_on,
trc_wrap,
trigbrktype,
trigger_state_1,
vs_cdr,
vs_sdr,
vs_uir,
// outputs:
ir_out,
jrst_n,
sr,
st_ready_test_idle,
tdo
)
;
output [ 1: 0] ir_out;
output jrst_n;
output [ 37: 0] sr;
output st_ready_test_idle;
output tdo;
input [ 31: 0] MonDReg;
input [ 31: 0] break_readreg;
input dbrk_hit0_latch;
input dbrk_hit1_latch;
input dbrk_hit2_latch;
input dbrk_hit3_latch;
input debugack;
input [ 1: 0] ir_in;
input jtag_state_rti;
input monitor_error;
input monitor_ready;
input reset_n;
input resetlatch;
input tck;
input tdi;
input tracemem_on;
input [ 35: 0] tracemem_trcdata;
input tracemem_tw;
input [ 6: 0] trc_im_addr;
input trc_on;
input trc_wrap;
input trigbrktype;
input trigger_state_1;
input vs_cdr;
input vs_sdr;
input vs_uir;
reg [ 2: 0] DRsize /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103,R101\"" */;
wire debugack_sync;
reg [ 1: 0] ir_out;
wire jrst_n;
wire monitor_ready_sync;
reg [ 37: 0] sr /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103,R101\"" */;
wire st_ready_test_idle;
wire tdo;
wire unxcomplemented_resetxx1;
wire unxcomplemented_resetxx2;
always @(posedge tck)
begin
if (vs_cdr)
case (ir_in)
2'b00: begin
sr[35] <= debugack_sync;
sr[34] <= monitor_error;
sr[33] <= resetlatch;
sr[32 : 1] <= MonDReg;
sr[0] <= monitor_ready_sync;
end // 2'b00
2'b01: begin
sr[35 : 0] <= tracemem_trcdata;
sr[37] <= tracemem_tw;
sr[36] <= tracemem_on;
end // 2'b01
2'b10: begin
sr[37] <= trigger_state_1;
sr[36] <= dbrk_hit3_latch;
sr[35] <= dbrk_hit2_latch;
sr[34] <= dbrk_hit1_latch;
sr[33] <= dbrk_hit0_latch;
sr[32 : 1] <= break_readreg;
sr[0] <= trigbrktype;
end // 2'b10
2'b11: begin
sr[15 : 2] <= trc_im_addr;
sr[1] <= trc_wrap;
sr[0] <= trc_on;
end // 2'b11
endcase // ir_in
if (vs_sdr)
case (DRsize)
3'b000: begin
sr <= {tdi, sr[37 : 2], tdi};
end // 3'b000
3'b001: begin
sr <= {tdi, sr[37 : 9], tdi, sr[7 : 1]};
end // 3'b001
3'b010: begin
sr <= {tdi, sr[37 : 17], tdi, sr[15 : 1]};
end // 3'b010
3'b011: begin
sr <= {tdi, sr[37 : 33], tdi, sr[31 : 1]};
end // 3'b011
3'b100: begin
sr <= {tdi, sr[37], tdi, sr[35 : 1]};
end // 3'b100
3'b101: begin
sr <= {tdi, sr[37 : 1]};
end // 3'b101
default: begin
sr <= {tdi, sr[37 : 2], tdi};
end // default
endcase // DRsize
if (vs_uir)
case (ir_in)
2'b00: begin
DRsize <= 3'b100;
end // 2'b00
2'b01: begin
DRsize <= 3'b101;
end // 2'b01
2'b10: begin
DRsize <= 3'b101;
end // 2'b10
2'b11: begin
DRsize <= 3'b010;
end // 2'b11
endcase // ir_in
end
assign tdo = sr[0];
assign st_ready_test_idle = jtag_state_rti;
assign unxcomplemented_resetxx1 = jrst_n;
altera_std_synchronizer the_altera_std_synchronizer1
(
.clk (tck),
.din (debugack),
.dout (debugack_sync),
.reset_n (unxcomplemented_resetxx1)
);
defparam the_altera_std_synchronizer1.depth = 2;
assign unxcomplemented_resetxx2 = jrst_n;
altera_std_synchronizer the_altera_std_synchronizer2
(
.clk (tck),
.din (monitor_ready),
.dout (monitor_ready_sync),
.reset_n (unxcomplemented_resetxx2)
);
defparam the_altera_std_synchronizer2.depth = 2;
always @(posedge tck or negedge jrst_n)
begin
if (jrst_n == 0)
ir_out <= 2'b0;
else
ir_out <= {debugack_sync, monitor_ready_sync};
end
//synthesis translate_off
//////////////// SIMULATION-ONLY CONTENTS
assign jrst_n = reset_n;
//////////////// END SIMULATION-ONLY CONTENTS
//synthesis translate_on
//synthesis read_comments_as_HDL on
// assign jrst_n = 1;
//synthesis read_comments_as_HDL off
endmodule |
module soc_design_niosII_core_cpu_debug_slave_sysclk (
// inputs:
clk,
ir_in,
sr,
vs_udr,
vs_uir,
// outputs:
jdo,
take_action_break_a,
take_action_break_b,
take_action_break_c,
take_action_ocimem_a,
take_action_ocimem_b,
take_action_tracectrl,
take_no_action_break_a,
take_no_action_break_b,
take_no_action_break_c,
take_no_action_ocimem_a
)
;
output [ 37: 0] jdo;
output take_action_break_a;
output take_action_break_b;
output take_action_break_c;
output take_action_ocimem_a;
output take_action_ocimem_b;
output take_action_tracectrl;
output take_no_action_break_a;
output take_no_action_break_b;
output take_no_action_break_c;
output take_no_action_ocimem_a;
input clk;
input [ 1: 0] ir_in;
input [ 37: 0] sr;
input vs_udr;
input vs_uir;
reg enable_action_strobe /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */;
reg [ 1: 0] ir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,R101\"" */;
reg [ 37: 0] jdo /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,R101\"" */;
reg jxuir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */;
reg sync2_udr /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */;
reg sync2_uir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */;
wire sync_udr;
wire sync_uir;
wire take_action_break_a;
wire take_action_break_b;
wire take_action_break_c;
wire take_action_ocimem_a;
wire take_action_ocimem_b;
wire take_action_tracectrl;
wire take_no_action_break_a;
wire take_no_action_break_b;
wire take_no_action_break_c;
wire take_no_action_ocimem_a;
wire unxunused_resetxx3;
wire unxunused_resetxx4;
reg update_jdo_strobe /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */;
assign unxunused_resetxx3 = 1'b1;
altera_std_synchronizer the_altera_std_synchronizer3
(
.clk (clk),
.din (vs_udr),
.dout (sync_udr),
.reset_n (unxunused_resetxx3)
);
defparam the_altera_std_synchronizer3.depth = 2;
assign unxunused_resetxx4 = 1'b1;
altera_std_synchronizer the_altera_std_synchronizer4
(
.clk (clk),
.din (vs_uir),
.dout (sync_uir),
.reset_n (unxunused_resetxx4)
);
defparam the_altera_std_synchronizer4.depth = 2;
always @(posedge clk)
begin
sync2_udr <= sync_udr;
update_jdo_strobe <= sync_udr & ~sync2_udr;
enable_action_strobe <= update_jdo_strobe;
sync2_uir <= sync_uir;
jxuir <= sync_uir & ~sync2_uir;
end
assign take_action_ocimem_a = enable_action_strobe && (ir == 2'b00) &&
~jdo[35] && jdo[34];
assign take_no_action_ocimem_a = enable_action_strobe && (ir == 2'b00) &&
~jdo[35] && ~jdo[34];
assign take_action_ocimem_b = enable_action_strobe && (ir == 2'b00) &&
jdo[35];
assign take_action_break_a = enable_action_strobe && (ir == 2'b10) &&
~jdo[36] &&
jdo[37];
assign take_no_action_break_a = enable_action_strobe && (ir == 2'b10) &&
~jdo[36] &&
~jdo[37];
assign take_action_break_b = enable_action_strobe && (ir == 2'b10) &&
jdo[36] && ~jdo[35] &&
jdo[37];
assign take_no_action_break_b = enable_action_strobe && (ir == 2'b10) &&
jdo[36] && ~jdo[35] &&
~jdo[37];
assign take_action_break_c = enable_action_strobe && (ir == 2'b10) &&
jdo[36] && jdo[35] &&
jdo[37];
assign take_no_action_break_c = enable_action_strobe && (ir == 2'b10) &&
jdo[36] && jdo[35] &&
~jdo[37];
assign take_action_tracectrl = enable_action_strobe && (ir == 2'b11) &&
jdo[15];
always @(posedge clk)
begin
if (jxuir)
ir <= ir_in;
if (update_jdo_strobe)
jdo <= sr;
end
endmodule |
module processing_system7_v5_5_b_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_FIFO_DEPTH_LOG = 4
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface
input wire cmd_b_push,
input wire cmd_b_error,
input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id,
output wire cmd_b_ready,
output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr,
output reg cmd_b_full,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output reg [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Trigger detection
output reg ERROR_TRIGGER,
output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
// Command FIFO settings
localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1;
localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG;
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
integer index;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Command Queue.
reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr;
reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0];
reg cmd_b_valid;
wire cmd_b_ready_i;
wire inject_error;
wire [C_AXI_ID_WIDTH-1:0] current_id;
// Search command.
wire found_match;
wire use_match;
wire matching_id;
// Manage valid command.
wire write_valid_cmd;
reg [C_FIFO_DEPTH-2:0] valid_cmd;
reg [C_FIFO_DEPTH-2:0] updated_valid_cmd;
reg [C_FIFO_DEPTH-2:0] next_valid_cmd;
reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr;
reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr;
// Pipelined data
reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I;
reg [2-1:0] M_AXI_BRESP_I;
reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I;
reg M_AXI_BVALID_I;
wire M_AXI_BREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue:
//
// Keep track of depth of Queue to generate full flag.
//
// Also generate valid to mark pressence of commands in Queue.
//
// Maintain Queue and extract data from currently searched entry.
//
/////////////////////////////////////////////////////////////////////////////
// SRL FIFO Pointer.
always @ (posedge ACLK) begin
if (ARESET) begin
addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
// Pushing data increase length/addr.
addr_ptr <= addr_ptr + 1;
end else if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
addr_ptr <= collapsed_addr_ptr;
end
end
end
// FIFO Flags.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= 1'b0;
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 );
cmd_b_valid <= 1'b1;
end else if ( ~cmd_b_push & cmd_b_ready_i ) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 );
end
end
end
// Infere SRL for storage.
always @ (posedge ACLK) begin
if ( cmd_b_push ) begin
for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= {cmd_b_error, cmd_b_id};
end
end
// Get current transaction info.
assign {inject_error, current_id} = data_srl[search_addr_ptr];
// Assign outputs.
assign cmd_b_addr = collapsed_addr_ptr;
/////////////////////////////////////////////////////////////////////////////
// Search Command Queue:
//
// Search for matching valid command in queue.
//
// A command is found when an valid entry with correct ID is found. The queue
// is search from the oldest entry, i.e. from a high value.
// When new commands are pushed the search address has to be updated to always
// start the search from the oldest available.
//
/////////////////////////////////////////////////////////////////////////////
// Handle search addr.
always @ (posedge ACLK) begin
if (ARESET) begin
search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
search_addr_ptr <= collapsed_addr_ptr;
end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin
// Skip non valid command.
search_addr_ptr <= search_addr_ptr - 1;
end else if ( cmd_b_push ) begin
search_addr_ptr <= search_addr_ptr + 1;
end
end
end
// Check if searched command is valid and match ID (for existing response on MI side).
assign matching_id = ( M_AXI_BID_I == current_id );
assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I;
assign use_match = found_match & S_AXI_BREADY;
/////////////////////////////////////////////////////////////////////////////
// Track Used Commands:
//
// Actions that affect Valid Command:
// * When a new command is pushed
// => Shift valid vector one step
// * When a command is used
// => Clear corresponding valid bit
//
/////////////////////////////////////////////////////////////////////////////
// Valid command status is updated when a command is used or a new one is pushed.
assign write_valid_cmd = cmd_b_push | cmd_b_ready_i;
// Update the used command valid bit.
always @ *
begin
updated_valid_cmd = valid_cmd;
updated_valid_cmd[search_addr_ptr] = ~use_match;
end
// Shift valid vector when command is pushed.
always @ *
begin
if ( cmd_b_push ) begin
next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1};
end else begin
next_valid_cmd = updated_valid_cmd;
end
end
// Valid signals for next cycle.
always @ (posedge ACLK) begin
if (ARESET) begin
valid_cmd <= {C_FIFO_WIDTH{1'b0}};
end else if ( write_valid_cmd ) begin
valid_cmd <= next_valid_cmd;
end
end
// Detect oldest available command in Queue.
always @ *
begin
// Default to empty.
collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}};
for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin
if ( next_valid_cmd[index] ) begin
collapsed_addr_ptr = index;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Pipe incoming data:
//
// The B channel is piped to improve timing and avoid impact in search
// mechanism due to late arriving signals.
//
/////////////////////////////////////////////////////////////////////////////
// Clock data.
always @ (posedge ACLK) begin
if (ARESET) begin
M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}};
M_AXI_BRESP_I <= 2'b00;
M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}};
M_AXI_BVALID_I <= 1'b0;
end else begin
if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin
M_AXI_BVALID_I <= 1'b0;
end
if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin
M_AXI_BID_I <= M_AXI_BID;
M_AXI_BRESP_I <= M_AXI_BRESP;
M_AXI_BUSER_I <= M_AXI_BUSER;
M_AXI_BVALID_I <= 1'b1;
end
end
end
// Generate ready to get new transaction.
assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I;
/////////////////////////////////////////////////////////////////////////////
// Inject Error:
//
// BRESP is modified according to command information.
//
/////////////////////////////////////////////////////////////////////////////
// Inject error in response.
always @ *
begin
if ( inject_error ) begin
S_AXI_BRESP = C_RESP_SLVERROR;
end else begin
S_AXI_BRESP = M_AXI_BRESP_I;
end
end
// Handle interrupt generation.
always @ (posedge ACLK) begin
if (ARESET) begin
ERROR_TRIGGER <= 1'b0;
ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}};
end else begin
if ( inject_error & cmd_b_ready_i ) begin
ERROR_TRIGGER <= 1'b1;
ERROR_TRANSACTION_ID <= M_AXI_BID_I;
end else begin
ERROR_TRIGGER <= 1'b0;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Response is passed forward when a matching entry has been found in queue.
// Both ready and valid are set when the command is completed.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match;
// Return ready with push back.
assign M_AXI_BREADY_I = cmd_b_valid & use_match;
// Command has been handled.
assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match;
assign cmd_b_ready = cmd_b_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Write Response Propagation:
//
// All information is simply forwarded on from MI- to SI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign S_AXI_BID = M_AXI_BID_I;
assign S_AXI_BUSER = M_AXI_BUSER_I;
endmodule |
module processing_system7_v5_5_b_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_FIFO_DEPTH_LOG = 4
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface
input wire cmd_b_push,
input wire cmd_b_error,
input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id,
output wire cmd_b_ready,
output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr,
output reg cmd_b_full,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output reg [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Trigger detection
output reg ERROR_TRIGGER,
output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
// Command FIFO settings
localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1;
localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG;
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
integer index;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Command Queue.
reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr;
reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0];
reg cmd_b_valid;
wire cmd_b_ready_i;
wire inject_error;
wire [C_AXI_ID_WIDTH-1:0] current_id;
// Search command.
wire found_match;
wire use_match;
wire matching_id;
// Manage valid command.
wire write_valid_cmd;
reg [C_FIFO_DEPTH-2:0] valid_cmd;
reg [C_FIFO_DEPTH-2:0] updated_valid_cmd;
reg [C_FIFO_DEPTH-2:0] next_valid_cmd;
reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr;
reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr;
// Pipelined data
reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I;
reg [2-1:0] M_AXI_BRESP_I;
reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I;
reg M_AXI_BVALID_I;
wire M_AXI_BREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue:
//
// Keep track of depth of Queue to generate full flag.
//
// Also generate valid to mark pressence of commands in Queue.
//
// Maintain Queue and extract data from currently searched entry.
//
/////////////////////////////////////////////////////////////////////////////
// SRL FIFO Pointer.
always @ (posedge ACLK) begin
if (ARESET) begin
addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
// Pushing data increase length/addr.
addr_ptr <= addr_ptr + 1;
end else if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
addr_ptr <= collapsed_addr_ptr;
end
end
end
// FIFO Flags.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= 1'b0;
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 );
cmd_b_valid <= 1'b1;
end else if ( ~cmd_b_push & cmd_b_ready_i ) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 );
end
end
end
// Infere SRL for storage.
always @ (posedge ACLK) begin
if ( cmd_b_push ) begin
for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= {cmd_b_error, cmd_b_id};
end
end
// Get current transaction info.
assign {inject_error, current_id} = data_srl[search_addr_ptr];
// Assign outputs.
assign cmd_b_addr = collapsed_addr_ptr;
/////////////////////////////////////////////////////////////////////////////
// Search Command Queue:
//
// Search for matching valid command in queue.
//
// A command is found when an valid entry with correct ID is found. The queue
// is search from the oldest entry, i.e. from a high value.
// When new commands are pushed the search address has to be updated to always
// start the search from the oldest available.
//
/////////////////////////////////////////////////////////////////////////////
// Handle search addr.
always @ (posedge ACLK) begin
if (ARESET) begin
search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
search_addr_ptr <= collapsed_addr_ptr;
end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin
// Skip non valid command.
search_addr_ptr <= search_addr_ptr - 1;
end else if ( cmd_b_push ) begin
search_addr_ptr <= search_addr_ptr + 1;
end
end
end
// Check if searched command is valid and match ID (for existing response on MI side).
assign matching_id = ( M_AXI_BID_I == current_id );
assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I;
assign use_match = found_match & S_AXI_BREADY;
/////////////////////////////////////////////////////////////////////////////
// Track Used Commands:
//
// Actions that affect Valid Command:
// * When a new command is pushed
// => Shift valid vector one step
// * When a command is used
// => Clear corresponding valid bit
//
/////////////////////////////////////////////////////////////////////////////
// Valid command status is updated when a command is used or a new one is pushed.
assign write_valid_cmd = cmd_b_push | cmd_b_ready_i;
// Update the used command valid bit.
always @ *
begin
updated_valid_cmd = valid_cmd;
updated_valid_cmd[search_addr_ptr] = ~use_match;
end
// Shift valid vector when command is pushed.
always @ *
begin
if ( cmd_b_push ) begin
next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1};
end else begin
next_valid_cmd = updated_valid_cmd;
end
end
// Valid signals for next cycle.
always @ (posedge ACLK) begin
if (ARESET) begin
valid_cmd <= {C_FIFO_WIDTH{1'b0}};
end else if ( write_valid_cmd ) begin
valid_cmd <= next_valid_cmd;
end
end
// Detect oldest available command in Queue.
always @ *
begin
// Default to empty.
collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}};
for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin
if ( next_valid_cmd[index] ) begin
collapsed_addr_ptr = index;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Pipe incoming data:
//
// The B channel is piped to improve timing and avoid impact in search
// mechanism due to late arriving signals.
//
/////////////////////////////////////////////////////////////////////////////
// Clock data.
always @ (posedge ACLK) begin
if (ARESET) begin
M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}};
M_AXI_BRESP_I <= 2'b00;
M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}};
M_AXI_BVALID_I <= 1'b0;
end else begin
if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin
M_AXI_BVALID_I <= 1'b0;
end
if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin
M_AXI_BID_I <= M_AXI_BID;
M_AXI_BRESP_I <= M_AXI_BRESP;
M_AXI_BUSER_I <= M_AXI_BUSER;
M_AXI_BVALID_I <= 1'b1;
end
end
end
// Generate ready to get new transaction.
assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I;
/////////////////////////////////////////////////////////////////////////////
// Inject Error:
//
// BRESP is modified according to command information.
//
/////////////////////////////////////////////////////////////////////////////
// Inject error in response.
always @ *
begin
if ( inject_error ) begin
S_AXI_BRESP = C_RESP_SLVERROR;
end else begin
S_AXI_BRESP = M_AXI_BRESP_I;
end
end
// Handle interrupt generation.
always @ (posedge ACLK) begin
if (ARESET) begin
ERROR_TRIGGER <= 1'b0;
ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}};
end else begin
if ( inject_error & cmd_b_ready_i ) begin
ERROR_TRIGGER <= 1'b1;
ERROR_TRANSACTION_ID <= M_AXI_BID_I;
end else begin
ERROR_TRIGGER <= 1'b0;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Response is passed forward when a matching entry has been found in queue.
// Both ready and valid are set when the command is completed.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match;
// Return ready with push back.
assign M_AXI_BREADY_I = cmd_b_valid & use_match;
// Command has been handled.
assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match;
assign cmd_b_ready = cmd_b_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Write Response Propagation:
//
// All information is simply forwarded on from MI- to SI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign S_AXI_BID = M_AXI_BID_I;
assign S_AXI_BUSER = M_AXI_BUSER_I;
endmodule |
module processing_system7_v5_5_b_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_FIFO_DEPTH_LOG = 4
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface
input wire cmd_b_push,
input wire cmd_b_error,
input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id,
output wire cmd_b_ready,
output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr,
output reg cmd_b_full,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output reg [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Trigger detection
output reg ERROR_TRIGGER,
output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
// Command FIFO settings
localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1;
localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG;
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
integer index;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Command Queue.
reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr;
reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0];
reg cmd_b_valid;
wire cmd_b_ready_i;
wire inject_error;
wire [C_AXI_ID_WIDTH-1:0] current_id;
// Search command.
wire found_match;
wire use_match;
wire matching_id;
// Manage valid command.
wire write_valid_cmd;
reg [C_FIFO_DEPTH-2:0] valid_cmd;
reg [C_FIFO_DEPTH-2:0] updated_valid_cmd;
reg [C_FIFO_DEPTH-2:0] next_valid_cmd;
reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr;
reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr;
// Pipelined data
reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I;
reg [2-1:0] M_AXI_BRESP_I;
reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I;
reg M_AXI_BVALID_I;
wire M_AXI_BREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue:
//
// Keep track of depth of Queue to generate full flag.
//
// Also generate valid to mark pressence of commands in Queue.
//
// Maintain Queue and extract data from currently searched entry.
//
/////////////////////////////////////////////////////////////////////////////
// SRL FIFO Pointer.
always @ (posedge ACLK) begin
if (ARESET) begin
addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
// Pushing data increase length/addr.
addr_ptr <= addr_ptr + 1;
end else if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
addr_ptr <= collapsed_addr_ptr;
end
end
end
// FIFO Flags.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= 1'b0;
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 );
cmd_b_valid <= 1'b1;
end else if ( ~cmd_b_push & cmd_b_ready_i ) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 );
end
end
end
// Infere SRL for storage.
always @ (posedge ACLK) begin
if ( cmd_b_push ) begin
for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= {cmd_b_error, cmd_b_id};
end
end
// Get current transaction info.
assign {inject_error, current_id} = data_srl[search_addr_ptr];
// Assign outputs.
assign cmd_b_addr = collapsed_addr_ptr;
/////////////////////////////////////////////////////////////////////////////
// Search Command Queue:
//
// Search for matching valid command in queue.
//
// A command is found when an valid entry with correct ID is found. The queue
// is search from the oldest entry, i.e. from a high value.
// When new commands are pushed the search address has to be updated to always
// start the search from the oldest available.
//
/////////////////////////////////////////////////////////////////////////////
// Handle search addr.
always @ (posedge ACLK) begin
if (ARESET) begin
search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
search_addr_ptr <= collapsed_addr_ptr;
end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin
// Skip non valid command.
search_addr_ptr <= search_addr_ptr - 1;
end else if ( cmd_b_push ) begin
search_addr_ptr <= search_addr_ptr + 1;
end
end
end
// Check if searched command is valid and match ID (for existing response on MI side).
assign matching_id = ( M_AXI_BID_I == current_id );
assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I;
assign use_match = found_match & S_AXI_BREADY;
/////////////////////////////////////////////////////////////////////////////
// Track Used Commands:
//
// Actions that affect Valid Command:
// * When a new command is pushed
// => Shift valid vector one step
// * When a command is used
// => Clear corresponding valid bit
//
/////////////////////////////////////////////////////////////////////////////
// Valid command status is updated when a command is used or a new one is pushed.
assign write_valid_cmd = cmd_b_push | cmd_b_ready_i;
// Update the used command valid bit.
always @ *
begin
updated_valid_cmd = valid_cmd;
updated_valid_cmd[search_addr_ptr] = ~use_match;
end
// Shift valid vector when command is pushed.
always @ *
begin
if ( cmd_b_push ) begin
next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1};
end else begin
next_valid_cmd = updated_valid_cmd;
end
end
// Valid signals for next cycle.
always @ (posedge ACLK) begin
if (ARESET) begin
valid_cmd <= {C_FIFO_WIDTH{1'b0}};
end else if ( write_valid_cmd ) begin
valid_cmd <= next_valid_cmd;
end
end
// Detect oldest available command in Queue.
always @ *
begin
// Default to empty.
collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}};
for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin
if ( next_valid_cmd[index] ) begin
collapsed_addr_ptr = index;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Pipe incoming data:
//
// The B channel is piped to improve timing and avoid impact in search
// mechanism due to late arriving signals.
//
/////////////////////////////////////////////////////////////////////////////
// Clock data.
always @ (posedge ACLK) begin
if (ARESET) begin
M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}};
M_AXI_BRESP_I <= 2'b00;
M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}};
M_AXI_BVALID_I <= 1'b0;
end else begin
if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin
M_AXI_BVALID_I <= 1'b0;
end
if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin
M_AXI_BID_I <= M_AXI_BID;
M_AXI_BRESP_I <= M_AXI_BRESP;
M_AXI_BUSER_I <= M_AXI_BUSER;
M_AXI_BVALID_I <= 1'b1;
end
end
end
// Generate ready to get new transaction.
assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I;
/////////////////////////////////////////////////////////////////////////////
// Inject Error:
//
// BRESP is modified according to command information.
//
/////////////////////////////////////////////////////////////////////////////
// Inject error in response.
always @ *
begin
if ( inject_error ) begin
S_AXI_BRESP = C_RESP_SLVERROR;
end else begin
S_AXI_BRESP = M_AXI_BRESP_I;
end
end
// Handle interrupt generation.
always @ (posedge ACLK) begin
if (ARESET) begin
ERROR_TRIGGER <= 1'b0;
ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}};
end else begin
if ( inject_error & cmd_b_ready_i ) begin
ERROR_TRIGGER <= 1'b1;
ERROR_TRANSACTION_ID <= M_AXI_BID_I;
end else begin
ERROR_TRIGGER <= 1'b0;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Response is passed forward when a matching entry has been found in queue.
// Both ready and valid are set when the command is completed.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match;
// Return ready with push back.
assign M_AXI_BREADY_I = cmd_b_valid & use_match;
// Command has been handled.
assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match;
assign cmd_b_ready = cmd_b_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Write Response Propagation:
//
// All information is simply forwarded on from MI- to SI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign S_AXI_BID = M_AXI_BID_I;
assign S_AXI_BUSER = M_AXI_BUSER_I;
endmodule |
module processing_system7_v5_5_b_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_FIFO_DEPTH_LOG = 4
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface
input wire cmd_b_push,
input wire cmd_b_error,
input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id,
output wire cmd_b_ready,
output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr,
output reg cmd_b_full,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output reg [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Trigger detection
output reg ERROR_TRIGGER,
output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
// Command FIFO settings
localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1;
localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG;
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
integer index;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Command Queue.
reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr;
reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0];
reg cmd_b_valid;
wire cmd_b_ready_i;
wire inject_error;
wire [C_AXI_ID_WIDTH-1:0] current_id;
// Search command.
wire found_match;
wire use_match;
wire matching_id;
// Manage valid command.
wire write_valid_cmd;
reg [C_FIFO_DEPTH-2:0] valid_cmd;
reg [C_FIFO_DEPTH-2:0] updated_valid_cmd;
reg [C_FIFO_DEPTH-2:0] next_valid_cmd;
reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr;
reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr;
// Pipelined data
reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I;
reg [2-1:0] M_AXI_BRESP_I;
reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I;
reg M_AXI_BVALID_I;
wire M_AXI_BREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue:
//
// Keep track of depth of Queue to generate full flag.
//
// Also generate valid to mark pressence of commands in Queue.
//
// Maintain Queue and extract data from currently searched entry.
//
/////////////////////////////////////////////////////////////////////////////
// SRL FIFO Pointer.
always @ (posedge ACLK) begin
if (ARESET) begin
addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
// Pushing data increase length/addr.
addr_ptr <= addr_ptr + 1;
end else if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
addr_ptr <= collapsed_addr_ptr;
end
end
end
// FIFO Flags.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= 1'b0;
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 );
cmd_b_valid <= 1'b1;
end else if ( ~cmd_b_push & cmd_b_ready_i ) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 );
end
end
end
// Infere SRL for storage.
always @ (posedge ACLK) begin
if ( cmd_b_push ) begin
for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= {cmd_b_error, cmd_b_id};
end
end
// Get current transaction info.
assign {inject_error, current_id} = data_srl[search_addr_ptr];
// Assign outputs.
assign cmd_b_addr = collapsed_addr_ptr;
/////////////////////////////////////////////////////////////////////////////
// Search Command Queue:
//
// Search for matching valid command in queue.
//
// A command is found when an valid entry with correct ID is found. The queue
// is search from the oldest entry, i.e. from a high value.
// When new commands are pushed the search address has to be updated to always
// start the search from the oldest available.
//
/////////////////////////////////////////////////////////////////////////////
// Handle search addr.
always @ (posedge ACLK) begin
if (ARESET) begin
search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
search_addr_ptr <= collapsed_addr_ptr;
end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin
// Skip non valid command.
search_addr_ptr <= search_addr_ptr - 1;
end else if ( cmd_b_push ) begin
search_addr_ptr <= search_addr_ptr + 1;
end
end
end
// Check if searched command is valid and match ID (for existing response on MI side).
assign matching_id = ( M_AXI_BID_I == current_id );
assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I;
assign use_match = found_match & S_AXI_BREADY;
/////////////////////////////////////////////////////////////////////////////
// Track Used Commands:
//
// Actions that affect Valid Command:
// * When a new command is pushed
// => Shift valid vector one step
// * When a command is used
// => Clear corresponding valid bit
//
/////////////////////////////////////////////////////////////////////////////
// Valid command status is updated when a command is used or a new one is pushed.
assign write_valid_cmd = cmd_b_push | cmd_b_ready_i;
// Update the used command valid bit.
always @ *
begin
updated_valid_cmd = valid_cmd;
updated_valid_cmd[search_addr_ptr] = ~use_match;
end
// Shift valid vector when command is pushed.
always @ *
begin
if ( cmd_b_push ) begin
next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1};
end else begin
next_valid_cmd = updated_valid_cmd;
end
end
// Valid signals for next cycle.
always @ (posedge ACLK) begin
if (ARESET) begin
valid_cmd <= {C_FIFO_WIDTH{1'b0}};
end else if ( write_valid_cmd ) begin
valid_cmd <= next_valid_cmd;
end
end
// Detect oldest available command in Queue.
always @ *
begin
// Default to empty.
collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}};
for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin
if ( next_valid_cmd[index] ) begin
collapsed_addr_ptr = index;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Pipe incoming data:
//
// The B channel is piped to improve timing and avoid impact in search
// mechanism due to late arriving signals.
//
/////////////////////////////////////////////////////////////////////////////
// Clock data.
always @ (posedge ACLK) begin
if (ARESET) begin
M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}};
M_AXI_BRESP_I <= 2'b00;
M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}};
M_AXI_BVALID_I <= 1'b0;
end else begin
if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin
M_AXI_BVALID_I <= 1'b0;
end
if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin
M_AXI_BID_I <= M_AXI_BID;
M_AXI_BRESP_I <= M_AXI_BRESP;
M_AXI_BUSER_I <= M_AXI_BUSER;
M_AXI_BVALID_I <= 1'b1;
end
end
end
// Generate ready to get new transaction.
assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I;
/////////////////////////////////////////////////////////////////////////////
// Inject Error:
//
// BRESP is modified according to command information.
//
/////////////////////////////////////////////////////////////////////////////
// Inject error in response.
always @ *
begin
if ( inject_error ) begin
S_AXI_BRESP = C_RESP_SLVERROR;
end else begin
S_AXI_BRESP = M_AXI_BRESP_I;
end
end
// Handle interrupt generation.
always @ (posedge ACLK) begin
if (ARESET) begin
ERROR_TRIGGER <= 1'b0;
ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}};
end else begin
if ( inject_error & cmd_b_ready_i ) begin
ERROR_TRIGGER <= 1'b1;
ERROR_TRANSACTION_ID <= M_AXI_BID_I;
end else begin
ERROR_TRIGGER <= 1'b0;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Response is passed forward when a matching entry has been found in queue.
// Both ready and valid are set when the command is completed.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match;
// Return ready with push back.
assign M_AXI_BREADY_I = cmd_b_valid & use_match;
// Command has been handled.
assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match;
assign cmd_b_ready = cmd_b_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Write Response Propagation:
//
// All information is simply forwarded on from MI- to SI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign S_AXI_BID = M_AXI_BID_I;
assign S_AXI_BUSER = M_AXI_BUSER_I;
endmodule |
module processing_system7_v5_5_b_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_FIFO_DEPTH_LOG = 4
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface
input wire cmd_b_push,
input wire cmd_b_error,
input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id,
output wire cmd_b_ready,
output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr,
output reg cmd_b_full,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output reg [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Trigger detection
output reg ERROR_TRIGGER,
output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
// Command FIFO settings
localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1;
localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG;
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
integer index;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Command Queue.
reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr;
reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0];
reg cmd_b_valid;
wire cmd_b_ready_i;
wire inject_error;
wire [C_AXI_ID_WIDTH-1:0] current_id;
// Search command.
wire found_match;
wire use_match;
wire matching_id;
// Manage valid command.
wire write_valid_cmd;
reg [C_FIFO_DEPTH-2:0] valid_cmd;
reg [C_FIFO_DEPTH-2:0] updated_valid_cmd;
reg [C_FIFO_DEPTH-2:0] next_valid_cmd;
reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr;
reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr;
// Pipelined data
reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I;
reg [2-1:0] M_AXI_BRESP_I;
reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I;
reg M_AXI_BVALID_I;
wire M_AXI_BREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue:
//
// Keep track of depth of Queue to generate full flag.
//
// Also generate valid to mark pressence of commands in Queue.
//
// Maintain Queue and extract data from currently searched entry.
//
/////////////////////////////////////////////////////////////////////////////
// SRL FIFO Pointer.
always @ (posedge ACLK) begin
if (ARESET) begin
addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
// Pushing data increase length/addr.
addr_ptr <= addr_ptr + 1;
end else if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
addr_ptr <= collapsed_addr_ptr;
end
end
end
// FIFO Flags.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= 1'b0;
end else begin
if ( cmd_b_push & ~cmd_b_ready_i ) begin
cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 );
cmd_b_valid <= 1'b1;
end else if ( ~cmd_b_push & cmd_b_ready_i ) begin
cmd_b_full <= 1'b0;
cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 );
end
end
end
// Infere SRL for storage.
always @ (posedge ACLK) begin
if ( cmd_b_push ) begin
for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= {cmd_b_error, cmd_b_id};
end
end
// Get current transaction info.
assign {inject_error, current_id} = data_srl[search_addr_ptr];
// Assign outputs.
assign cmd_b_addr = collapsed_addr_ptr;
/////////////////////////////////////////////////////////////////////////////
// Search Command Queue:
//
// Search for matching valid command in queue.
//
// A command is found when an valid entry with correct ID is found. The queue
// is search from the oldest entry, i.e. from a high value.
// When new commands are pushed the search address has to be updated to always
// start the search from the oldest available.
//
/////////////////////////////////////////////////////////////////////////////
// Handle search addr.
always @ (posedge ACLK) begin
if (ARESET) begin
search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}};
end else begin
if ( cmd_b_ready_i ) begin
// Collapse addr when data is popped.
search_addr_ptr <= collapsed_addr_ptr;
end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin
// Skip non valid command.
search_addr_ptr <= search_addr_ptr - 1;
end else if ( cmd_b_push ) begin
search_addr_ptr <= search_addr_ptr + 1;
end
end
end
// Check if searched command is valid and match ID (for existing response on MI side).
assign matching_id = ( M_AXI_BID_I == current_id );
assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I;
assign use_match = found_match & S_AXI_BREADY;
/////////////////////////////////////////////////////////////////////////////
// Track Used Commands:
//
// Actions that affect Valid Command:
// * When a new command is pushed
// => Shift valid vector one step
// * When a command is used
// => Clear corresponding valid bit
//
/////////////////////////////////////////////////////////////////////////////
// Valid command status is updated when a command is used or a new one is pushed.
assign write_valid_cmd = cmd_b_push | cmd_b_ready_i;
// Update the used command valid bit.
always @ *
begin
updated_valid_cmd = valid_cmd;
updated_valid_cmd[search_addr_ptr] = ~use_match;
end
// Shift valid vector when command is pushed.
always @ *
begin
if ( cmd_b_push ) begin
next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1};
end else begin
next_valid_cmd = updated_valid_cmd;
end
end
// Valid signals for next cycle.
always @ (posedge ACLK) begin
if (ARESET) begin
valid_cmd <= {C_FIFO_WIDTH{1'b0}};
end else if ( write_valid_cmd ) begin
valid_cmd <= next_valid_cmd;
end
end
// Detect oldest available command in Queue.
always @ *
begin
// Default to empty.
collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}};
for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin
if ( next_valid_cmd[index] ) begin
collapsed_addr_ptr = index;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Pipe incoming data:
//
// The B channel is piped to improve timing and avoid impact in search
// mechanism due to late arriving signals.
//
/////////////////////////////////////////////////////////////////////////////
// Clock data.
always @ (posedge ACLK) begin
if (ARESET) begin
M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}};
M_AXI_BRESP_I <= 2'b00;
M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}};
M_AXI_BVALID_I <= 1'b0;
end else begin
if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin
M_AXI_BVALID_I <= 1'b0;
end
if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin
M_AXI_BID_I <= M_AXI_BID;
M_AXI_BRESP_I <= M_AXI_BRESP;
M_AXI_BUSER_I <= M_AXI_BUSER;
M_AXI_BVALID_I <= 1'b1;
end
end
end
// Generate ready to get new transaction.
assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I;
/////////////////////////////////////////////////////////////////////////////
// Inject Error:
//
// BRESP is modified according to command information.
//
/////////////////////////////////////////////////////////////////////////////
// Inject error in response.
always @ *
begin
if ( inject_error ) begin
S_AXI_BRESP = C_RESP_SLVERROR;
end else begin
S_AXI_BRESP = M_AXI_BRESP_I;
end
end
// Handle interrupt generation.
always @ (posedge ACLK) begin
if (ARESET) begin
ERROR_TRIGGER <= 1'b0;
ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}};
end else begin
if ( inject_error & cmd_b_ready_i ) begin
ERROR_TRIGGER <= 1'b1;
ERROR_TRANSACTION_ID <= M_AXI_BID_I;
end else begin
ERROR_TRIGGER <= 1'b0;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Transaction Throttling:
//
// Response is passed forward when a matching entry has been found in queue.
// Both ready and valid are set when the command is completed.
//
/////////////////////////////////////////////////////////////////////////////
// Propagate masked valid.
assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match;
// Return ready with push back.
assign M_AXI_BREADY_I = cmd_b_valid & use_match;
// Command has been handled.
assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match;
assign cmd_b_ready = cmd_b_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Write Response Propagation:
//
// All information is simply forwarded on from MI- to SI-Side untouched.
//
/////////////////////////////////////////////////////////////////////////////
// 1:1 mapping.
assign S_AXI_BID = M_AXI_BID_I;
assign S_AXI_BUSER = M_AXI_BUSER_I;
endmodule |
module Priority_Codec_32(
input wire [25:0] Data_Dec_i,
output reg [4:0] Data_Bin_o
);
always @(Data_Dec_i)
begin
if(~Data_Dec_i[25]) begin Data_Bin_o = 5'b00000;//0
end else if(~Data_Dec_i[24]) begin Data_Bin_o = 5'b00001;//1
end else if(~Data_Dec_i[23]) begin Data_Bin_o = 5'b00010;//2
end else if(~Data_Dec_i[22]) begin Data_Bin_o = 5'b00011;//3
end else if(~Data_Dec_i[21]) begin Data_Bin_o = 5'b00100;//4
end else if(~Data_Dec_i[20]) begin Data_Bin_o = 5'b00101;//5
end else if(~Data_Dec_i[19]) begin Data_Bin_o = 5'b00110;//6
end else if(~Data_Dec_i[18]) begin Data_Bin_o = 5'b00111;//7
end else if(~Data_Dec_i[17]) begin Data_Bin_o = 5'b01000;//8
end else if(~Data_Dec_i[16]) begin Data_Bin_o = 5'b01001;//9
end else if(~Data_Dec_i[15]) begin Data_Bin_o = 5'b01010;//10
end else if(~Data_Dec_i[14]) begin Data_Bin_o = 5'b01011;//11
end else if(~Data_Dec_i[13]) begin Data_Bin_o = 5'b01100;//12
end else if(~Data_Dec_i[12]) begin Data_Bin_o = 5'b01101;//13
end else if(~Data_Dec_i[11]) begin Data_Bin_o = 5'b01110;//14
end else if(~Data_Dec_i[10]) begin Data_Bin_o = 5'b01111;//15
end else if(~Data_Dec_i[9]) begin Data_Bin_o = 5'b10000;//16
end else if(~Data_Dec_i[8]) begin Data_Bin_o = 5'b10001;//17
end else if(~Data_Dec_i[7]) begin Data_Bin_o = 5'b10010;//18
end else if(~Data_Dec_i[6]) begin Data_Bin_o = 5'b10011;//19
end else if(~Data_Dec_i[5]) begin Data_Bin_o = 5'b10100;//20
end else if(~Data_Dec_i[4]) begin Data_Bin_o = 5'b10101;//21
end else if(~Data_Dec_i[3]) begin Data_Bin_o = 5'b10110;//22
end else if(~Data_Dec_i[2]) begin Data_Bin_o = 5'b10111;//23
end else if(~Data_Dec_i[1]) begin Data_Bin_o = 5'b11000;//24
end else if(~Data_Dec_i[0]) begin Data_Bin_o = 5'b10101;//25
end
else Data_Bin_o = 5'b00000;//zero value
end
endmodule |
module Priority_Codec_32(
input wire [25:0] Data_Dec_i,
output reg [4:0] Data_Bin_o
);
always @(Data_Dec_i)
begin
if(~Data_Dec_i[25]) begin Data_Bin_o = 5'b00000;//0
end else if(~Data_Dec_i[24]) begin Data_Bin_o = 5'b00001;//1
end else if(~Data_Dec_i[23]) begin Data_Bin_o = 5'b00010;//2
end else if(~Data_Dec_i[22]) begin Data_Bin_o = 5'b00011;//3
end else if(~Data_Dec_i[21]) begin Data_Bin_o = 5'b00100;//4
end else if(~Data_Dec_i[20]) begin Data_Bin_o = 5'b00101;//5
end else if(~Data_Dec_i[19]) begin Data_Bin_o = 5'b00110;//6
end else if(~Data_Dec_i[18]) begin Data_Bin_o = 5'b00111;//7
end else if(~Data_Dec_i[17]) begin Data_Bin_o = 5'b01000;//8
end else if(~Data_Dec_i[16]) begin Data_Bin_o = 5'b01001;//9
end else if(~Data_Dec_i[15]) begin Data_Bin_o = 5'b01010;//10
end else if(~Data_Dec_i[14]) begin Data_Bin_o = 5'b01011;//11
end else if(~Data_Dec_i[13]) begin Data_Bin_o = 5'b01100;//12
end else if(~Data_Dec_i[12]) begin Data_Bin_o = 5'b01101;//13
end else if(~Data_Dec_i[11]) begin Data_Bin_o = 5'b01110;//14
end else if(~Data_Dec_i[10]) begin Data_Bin_o = 5'b01111;//15
end else if(~Data_Dec_i[9]) begin Data_Bin_o = 5'b10000;//16
end else if(~Data_Dec_i[8]) begin Data_Bin_o = 5'b10001;//17
end else if(~Data_Dec_i[7]) begin Data_Bin_o = 5'b10010;//18
end else if(~Data_Dec_i[6]) begin Data_Bin_o = 5'b10011;//19
end else if(~Data_Dec_i[5]) begin Data_Bin_o = 5'b10100;//20
end else if(~Data_Dec_i[4]) begin Data_Bin_o = 5'b10101;//21
end else if(~Data_Dec_i[3]) begin Data_Bin_o = 5'b10110;//22
end else if(~Data_Dec_i[2]) begin Data_Bin_o = 5'b10111;//23
end else if(~Data_Dec_i[1]) begin Data_Bin_o = 5'b11000;//24
end else if(~Data_Dec_i[0]) begin Data_Bin_o = 5'b10101;//25
end
else Data_Bin_o = 5'b00000;//zero value
end
endmodule |
module Priority_Codec_32(
input wire [25:0] Data_Dec_i,
output reg [4:0] Data_Bin_o
);
always @(Data_Dec_i)
begin
if(~Data_Dec_i[25]) begin Data_Bin_o = 5'b00000;//0
end else if(~Data_Dec_i[24]) begin Data_Bin_o = 5'b00001;//1
end else if(~Data_Dec_i[23]) begin Data_Bin_o = 5'b00010;//2
end else if(~Data_Dec_i[22]) begin Data_Bin_o = 5'b00011;//3
end else if(~Data_Dec_i[21]) begin Data_Bin_o = 5'b00100;//4
end else if(~Data_Dec_i[20]) begin Data_Bin_o = 5'b00101;//5
end else if(~Data_Dec_i[19]) begin Data_Bin_o = 5'b00110;//6
end else if(~Data_Dec_i[18]) begin Data_Bin_o = 5'b00111;//7
end else if(~Data_Dec_i[17]) begin Data_Bin_o = 5'b01000;//8
end else if(~Data_Dec_i[16]) begin Data_Bin_o = 5'b01001;//9
end else if(~Data_Dec_i[15]) begin Data_Bin_o = 5'b01010;//10
end else if(~Data_Dec_i[14]) begin Data_Bin_o = 5'b01011;//11
end else if(~Data_Dec_i[13]) begin Data_Bin_o = 5'b01100;//12
end else if(~Data_Dec_i[12]) begin Data_Bin_o = 5'b01101;//13
end else if(~Data_Dec_i[11]) begin Data_Bin_o = 5'b01110;//14
end else if(~Data_Dec_i[10]) begin Data_Bin_o = 5'b01111;//15
end else if(~Data_Dec_i[9]) begin Data_Bin_o = 5'b10000;//16
end else if(~Data_Dec_i[8]) begin Data_Bin_o = 5'b10001;//17
end else if(~Data_Dec_i[7]) begin Data_Bin_o = 5'b10010;//18
end else if(~Data_Dec_i[6]) begin Data_Bin_o = 5'b10011;//19
end else if(~Data_Dec_i[5]) begin Data_Bin_o = 5'b10100;//20
end else if(~Data_Dec_i[4]) begin Data_Bin_o = 5'b10101;//21
end else if(~Data_Dec_i[3]) begin Data_Bin_o = 5'b10110;//22
end else if(~Data_Dec_i[2]) begin Data_Bin_o = 5'b10111;//23
end else if(~Data_Dec_i[1]) begin Data_Bin_o = 5'b11000;//24
end else if(~Data_Dec_i[0]) begin Data_Bin_o = 5'b10101;//25
end
else Data_Bin_o = 5'b00000;//zero value
end
endmodule |
module clk_test(
input clk,
input sysclk,
output [31:0] snes_sysclk_freq
);
reg [31:0] snes_sysclk_freq_r;
assign snes_sysclk_freq = snes_sysclk_freq_r;
reg [31:0] sysclk_counter;
reg [31:0] sysclk_value;
initial snes_sysclk_freq_r = 32'hFFFFFFFF;
initial sysclk_counter = 0;
initial sysclk_value = 0;
reg [1:0] sysclk_sreg;
always @(posedge clk) sysclk_sreg <= {sysclk_sreg[0], sysclk};
wire sysclk_rising = (sysclk_sreg == 2'b01);
always @(posedge clk) begin
if(sysclk_counter < 96000000) begin
sysclk_counter <= sysclk_counter + 1;
if(sysclk_rising) sysclk_value <= sysclk_value + 1;
end else begin
snes_sysclk_freq_r <= sysclk_value;
sysclk_counter <= 0;
sysclk_value <= 0;
end
end
endmodule |
module axi_infrastructure_v1_1_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule |
module axi_infrastructure_v1_1_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule |
module sky130_fd_sc_ls__sdfrtp_1 (
Q ,
CLK ,
D ,
SCD ,
SCE ,
RESET_B,
VPWR ,
VGND ,
VPB ,
VNB
);
output Q ;
input CLK ;
input D ;
input SCD ;
input SCE ;
input RESET_B;
input VPWR ;
input VGND ;
input VPB ;
input VNB ;
sky130_fd_sc_ls__sdfrtp base (
.Q(Q),
.CLK(CLK),
.D(D),
.SCD(SCD),
.SCE(SCE),
.RESET_B(RESET_B),
.VPWR(VPWR),
.VGND(VGND),
.VPB(VPB),
.VNB(VNB)
);
endmodule |
module sky130_fd_sc_ls__sdfrtp_1 (
Q ,
CLK ,
D ,
SCD ,
SCE ,
RESET_B
);
output Q ;
input CLK ;
input D ;
input SCD ;
input SCE ;
input RESET_B;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
sky130_fd_sc_ls__sdfrtp base (
.Q(Q),
.CLK(CLK),
.D(D),
.SCD(SCD),
.SCE(SCE),
.RESET_B(RESET_B)
);
endmodule |
module*/
generate
for(i = 0 ; i < C_NUM_MUXES ; i = i + 1) begin : muxes
assign _wTxMuxSelect[i*C_CLOG_MUX_INPUTS +: C_CLOG_MUX_INPUTS] = wSchedule[i][wScheduleSelect];
end
endgenerate
offset_to_mask
#(// Parameters
.C_MASK_SWAP (0),
.C_MASK_WIDTH (C_NUM_MUXES)
/*AUTOINSTPARAM*/)
packet_mask
(
// Outputs
.MASK (__wTxHdrPacketMask),
// Inputs
.OFFSET_ENABLE (1),
.OFFSET (__wTxHdrPacketLenMinus1[clog2s(C_NUM_MUXES)-1:0])
/*AUTOINST*/);
offset_to_mask
#(// Parameters
.C_MASK_SWAP (0),
.C_MASK_WIDTH (C_NUM_MUXES)
/*AUTOINSTPARAM*/)
len_mask
(// Outputs
.MASK (__wTxHdrLenMask),
// Inputs
.OFFSET_ENABLE (1),
.OFFSET (__wTxHdrPayloadLen[clog2s(C_NUM_MUXES)-1:0]-1)
/*AUTOINST*/);
rotate
#(// Parameters
.C_DIRECTION ("RIGHT"),
.C_WIDTH (C_NUM_MUXES)
/*AUTOINSTPARAM*/)
rot_inst
(
// Outputs
.RD_DATA (__wTxHdrEndReady),
// Inputs
.WR_DATA (__wTxHdrPacketMask),
.WR_SHIFTAMT (__wTxHdrNonpayLen[C_OFFSET_WIDTH-1:0])
/*AUTOINST*/);
pipeline
#(
// Parameters
.C_DEPTH (C_PIPELINE_HDR_INPUT?1:0),
.C_WIDTH (C_MAX_HDR_WIDTH + `SIG_NONPAY_W + `SIG_PACKETLEN_W + `SIG_LEN_W + 1),
.C_USE_MEMORY (0)
/*AUTOINSTPARAM*/)
hdr_input_reg
(
// Outputs
.WR_DATA_READY (TX_HDR_READY),
.RD_DATA ({__wTxHdr,__wTxHdrNonpayLen,__wTxHdrPacketLen,__wTxHdrPayloadLen,__wTxHdrNoPayload}),
.RD_DATA_VALID (__wTxHdrValid),
// Inputs
.WR_DATA ({TX_HDR,TX_HDR_NONPAY_LEN,TX_HDR_PACKET_LEN,TX_HDR_PAYLOAD_LEN,TX_HDR_NOPAYLOAD}),
.WR_DATA_VALID (TX_HDR_VALID),
.RD_DATA_READY (__wTxHdrReady),
/*AUTOINST*/
// Inputs
.CLK (CLK),
.RST_IN (RST_IN));
pipeline
#(
// Parameters
.C_DEPTH (C_USE_COMPUTE_REG?1:0),
.C_WIDTH (C_MAX_HDR_WIDTH + `SIG_NONPAY_W + `SIG_PACKETLEN_W + `SIG_LEN_W + 1 + 4*C_MASK_WIDTH),
.C_USE_MEMORY (0)
/*AUTOINSTPARAM*/)
compute_reg
(
// Outputs
.WR_DATA_READY (__wTxHdrReady),
.RD_DATA ({_wTxHdr,_wTxHdrNonpayLen,_wTxHdrPacketLen,_wTxHdrPayloadLen,_wTxHdrNoPayload,
_wTxHdrSteadyStateReady,_wTxHdrStartReady,_wTxHdrEndReady,_wTxHdrStartEndReady}),
.RD_DATA_VALID (_wTxHdrValid),
// Inputs
.WR_DATA ({__wTxHdr,__wTxHdrNonpayLen,__wTxHdrPacketLen,__wTxHdrPayloadLen,__wTxHdrNoPayload,
__wTxHdrSteadyStateReady,__wTxHdrStartReady,__wTxHdrEndReady,__wTxHdrStartEndReady}),
.WR_DATA_VALID (__wTxHdrValid),
.RD_DATA_READY (_wTxMuxSelectDataEndFlag & _wTxMuxSelectReady),
/*AUTOINST*/
// Inputs
.CLK (CLK),
.RST_IN (RST_IN));
pipeline
#(
// Parameters
.C_DEPTH (C_USE_READY_REG?1:0),
.C_WIDTH (C_MAX_HDR_WIDTH + `SIG_NONPAY_W + `SIG_PACKETLEN_W + `SIG_LEN_W + 1),
.C_USE_MEMORY (0)
/*AUTOINSTPARAM*/)
ready_reg
(
// Outputs
.WR_DATA_READY (_wTxHdrReady),
.RD_DATA ({wTxHdr,wTxHdrNonpayLen,wTxHdrPacketLen,wTxHdrPayloadLen,wTxHdrNoPayload}),
.RD_DATA_VALID (wTxHdrValid),
// Inputs
.WR_DATA ({_wTxHdr,_wTxHdrNonpayLen,_wTxHdrPacketLen,_wTxHdrPayloadLen,_wTxHdrNoPayload}),
.WR_DATA_VALID (_wTxHdrValid),
.RD_DATA_READY (wTxHdrReady),
/*AUTOINST*/
// Inputs
.CLK (CLK),
.RST_IN (RST_IN));
pipeline
#(
// Parameters
.C_DEPTH (C_USE_READY_REG?1:0),
.C_WIDTH (C_NUM_MUXES + C_CLOG_MUX_INPUTS * C_NUM_MUXES + 3),
.C_USE_MEMORY (0)
/*AUTOINSTPARAM*/)
select_reg
(
// Outputs
.WR_DATA_READY (_wTxMuxSelectReady),
.RD_DATA ({wTxMuxSelectDataReady,wTxMuxSelect,wTxMuxSelectDataEndFlag,wTxMuxSelectDataStartFlag,wTxMuxSelectPktStartFlag}),
.RD_DATA_VALID (wTxMuxSelectValid),
// Inputs
.WR_DATA ({_wTxMuxSelectDataReady,_wTxMuxSelect,_wTxMuxSelectDataEndFlag,_wTxMuxSelectDataStartFlag,_wTxMuxSelectPktStartFlag}),
.WR_DATA_VALID (_wTxMuxSelectValid),
.RD_DATA_READY (wTxMuxSelectReady),
/*AUTOINST*/
// Inputs
.CLK (CLK),
.RST_IN (RST_IN));
counter
#(// Parameters
.C_MAX_VALUE (C_MAX_SCHEDULE-1),
.C_SAT_VALUE (C_MAX_SCHEDULE-1),
.C_RST_VALUE (0)
/*AUTOINSTPARAM*/)
satctr_inst
(// Outputs
.VALUE (wSatCtr),
// Inputs
.CLK (CLK),
.RST_IN (wSatCtrReset),
.ENABLE (wSatCtrEnable)
/*AUTOINST*/);
counter
#(// Parameters
.C_MAX_VALUE (1<<`SIG_PACKETLEN_W),
.C_SAT_VALUE (1<<`SIG_PACKETLEN_W + 1), // Never saturate
.C_RST_VALUE (0)
/*AUTOINSTPARAM*/)
pktctr_inst
(// Outputs
.VALUE (wPktCtr),
// Inputs
.CLK (CLK),
.RST_IN (wPktCtrReset),
.ENABLE (wPktCtrEnable)
/*AUTOINST*/);
generate
for( i = 0 ; i < C_MAX_HDR_WIDTH/32 ; i = i + 1) begin : gen_aggregate
assign wAggregate[i] = wTxHdr[i*32 +: 32];
end
for( i = 0; i < C_NUM_MUXES ; i = i + 1) begin : gen_data_input_regs
assign wAggregate[i + C_MAX_HDR_WIDTH/32] = wTxData[32*i +: 32];
pipeline
#(// Parameters
.C_DEPTH (C_PIPELINE_DATA_INPUT?1:0),
.C_WIDTH (32 + 1),
.C_USE_MEMORY (0)
/*AUTOINSTPARAM*/)
data_register_
(// Outputs
.WR_DATA_READY (TX_DATA_WORD_READY[i]),
.RD_DATA ({wTxData[32*i +: 32],wTxDataEndFlags[i]}),
.RD_DATA_VALID (wTxDataWordValid[i]),
// Inputs
.WR_DATA ({TX_DATA[32*i +: 32],TX_DATA_END_FLAGS[i] & TX_DATA_WORD_VALID[i]}),
.WR_DATA_VALID (TX_DATA_WORD_VALID[i]),
.RD_DATA_READY (wTxDataWordReady[i]),
/*AUTOINST*/
// Inputs
.CLK (CLK),
.RST_IN (RST_IN));
end
for( i = 0 ; i < C_NUM_MUXES ; i = i + 1) begin : gen_packet_format_multiplexers
mux
#(
// Parameters
.C_NUM_INPUTS (C_MUX_INPUTS),
.C_CLOG_NUM_INPUTS (C_CLOG_MUX_INPUTS),
.C_WIDTH (32),
.C_MUX_TYPE ("SELECT")
/*AUTOINSTPARAM*/)
dw_mux_
(
// Outputs
.MUX_OUTPUT (wTxPkt[32*i +: 32]),
// Inputs
.MUX_INPUTS (wTxMuxInputs[i]),
.MUX_SELECT (wTxMuxSelect[i*C_CLOG_MUX_INPUTS +: C_CLOG_MUX_INPUTS])
/*AUTOINST*/);
end
endgenerate
pipeline
#(
// Parameters
.C_DEPTH (C_PIPELINE_OUTPUT?1:0),
.C_WIDTH (C_DATA_WIDTH + 2 + C_OFFSET_WIDTH),
.C_USE_MEMORY (0)
/*AUTOINSTPARAM*/)
output_register_inst
(
// Outputs
.WR_DATA_READY (wTxPktReady),
.RD_DATA ({TX_PKT,TX_PKT_START_FLAG,TX_PKT_END_FLAG,TX_PKT_END_OFFSET}),
.RD_DATA_VALID (TX_PKT_VALID),
// Inputs
.WR_DATA ({wTxPkt,wTxPktStartFlag,wTxPktEndFlag,wTxPktEndOffset[C_OFFSET_WIDTH-1:0]}),
.WR_DATA_VALID (wTxPktValid),
.RD_DATA_READY (TX_PKT_READY),
/*AUTOINST*/
// Inputs
.CLK (CLK),
.RST_IN (RST_IN));
endmodule |
module Approx_adder_W16 ( add_sub, in1, in2, res );
input [15:0] in1;
input [15:0] in2;
output [16:0] res;
input add_sub;
wire n32, n33, n34, n35, n36, n37, n38, n39, n40, n41, n42, n43, n44, n45,
n46, n47, n48, n49, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59,
n60, n61, n62, n63, n64, n65, n66, n67, n68, n69, n70, n71, n72, n73,
n74, n75, n76, n77, n78, n79, n80, n81, n82, n83, n84, n85, n86, n88,
n89, n90, n91, n92, n93, n94, n95, n96, n97, n98, n99, n100, n101,
n102, n103, n104, n105, n106, n107, n108, n109, n110, n111, n112,
n113, n114, n115, n116, n117, n118, n119, n120, n121, n122, n123,
n124, n125, n126, n127, n128, n129, n130, n131, n132, n133, n134,
n135, n136, n137, n138, n139, n140, n141, n142, n143, n144, n145;
NAND2XLTS U50 ( .A(n86), .B(n127), .Y(n129) );
NOR2X2TS U51 ( .A(n112), .B(in1[14]), .Y(n122) );
OR2X2TS U52 ( .A(n115), .B(in1[13]), .Y(n86) );
NAND2X1TS U53 ( .A(n110), .B(add_sub), .Y(n111) );
NAND2X1TS U54 ( .A(n58), .B(n61), .Y(n57) );
NAND2BX1TS U55 ( .AN(in2[13]), .B(n113), .Y(n110) );
NOR2X1TS U56 ( .A(n113), .B(n78), .Y(n114) );
INVX2TS U57 ( .A(in1[11]), .Y(n61) );
CLKXOR2X2TS U58 ( .A(n103), .B(in2[11]), .Y(n131) );
NAND2XLTS U59 ( .A(n100), .B(add_sub), .Y(n99) );
NOR2X2TS U60 ( .A(n106), .B(in2[12]), .Y(n113) );
OR2X2TS U61 ( .A(n136), .B(in1[7]), .Y(n51) );
INVX2TS U62 ( .A(in2[9]), .Y(n38) );
XNOR2X2TS U63 ( .A(n88), .B(in2[6]), .Y(n94) );
NAND2X1TS U64 ( .A(n95), .B(in2[7]), .Y(n53) );
NAND2X1TS U65 ( .A(n78), .B(in2[7]), .Y(n52) );
CLKINVX6TS U66 ( .A(add_sub), .Y(n78) );
INVX2TS U67 ( .A(in2[7]), .Y(n63) );
NOR2X1TS U68 ( .A(n102), .B(n78), .Y(n103) );
XNOR2X2TS U69 ( .A(n101), .B(in2[12]), .Y(n117) );
XNOR2X4TS U70 ( .A(n111), .B(in2[14]), .Y(n112) );
INVX2TS U71 ( .A(in2[5]), .Y(n75) );
NOR2X2TS U72 ( .A(n127), .B(n48), .Y(n47) );
NAND3X4TS U73 ( .A(n54), .B(n53), .C(n52), .Y(n136) );
NAND2X2TS U74 ( .A(n91), .B(add_sub), .Y(n88) );
NAND2X6TS U75 ( .A(n41), .B(n75), .Y(n91) );
NOR2X2TS U76 ( .A(n41), .B(n78), .Y(n90) );
NAND2X4TS U77 ( .A(n72), .B(n73), .Y(n64) );
INVX2TS U78 ( .A(n117), .Y(n72) );
NOR2X4TS U79 ( .A(n100), .B(in2[10]), .Y(n102) );
OR2X4TS U80 ( .A(n95), .B(n55), .Y(n54) );
NOR2X4TS U81 ( .A(n96), .B(in2[8]), .Y(n98) );
NAND2X6TS U82 ( .A(n63), .B(n95), .Y(n96) );
NAND2X2TS U83 ( .A(n119), .B(n118), .Y(n121) );
INVX2TS U84 ( .A(n122), .Y(n124) );
NAND2X4TS U85 ( .A(n37), .B(n69), .Y(n68) );
XNOR2X2TS U86 ( .A(n107), .B(in2[15]), .Y(n108) );
INVX2TS U87 ( .A(n131), .Y(n58) );
NAND2X6TS U88 ( .A(n137), .B(n51), .Y(n50) );
XNOR2X2TS U89 ( .A(n99), .B(in2[10]), .Y(n104) );
NAND2X4TS U90 ( .A(n98), .B(n38), .Y(n100) );
XOR2X1TS U91 ( .A(n126), .B(n125), .Y(res[14]) );
AND2X4TS U92 ( .A(n47), .B(n43), .Y(n42) );
AND2X4TS U93 ( .A(n46), .B(n71), .Y(n45) );
NAND2X2TS U94 ( .A(n108), .B(in1[15]), .Y(n118) );
NAND2X6TS U95 ( .A(n68), .B(n67), .Y(n132) );
NAND2X2TS U96 ( .A(n112), .B(in1[14]), .Y(n123) );
NOR2X2TS U97 ( .A(n108), .B(in1[15]), .Y(n109) );
NAND2X2TS U98 ( .A(n117), .B(in1[12]), .Y(n71) );
OAI21X2TS U99 ( .A0(n110), .A1(in2[14]), .B0(add_sub), .Y(n107) );
NAND2X6TS U100 ( .A(n135), .B(in1[8]), .Y(n69) );
NAND2BX2TS U101 ( .AN(n61), .B(n131), .Y(n60) );
NAND2BXLTS U102 ( .AN(in1[4]), .B(n145), .Y(res[4]) );
OAI21XLTS U103 ( .A0(in2[1]), .A1(n140), .B0(n139), .Y(res[1]) );
OAI21XLTS U104 ( .A0(in2[2]), .A1(n142), .B0(n141), .Y(res[2]) );
INVX4TS U105 ( .A(n39), .Y(n76) );
OAI21XLTS U106 ( .A0(in2[3]), .A1(n144), .B0(n143), .Y(res[3]) );
OR2X1TS U107 ( .A(in2[0]), .B(in1[0]), .Y(res[0]) );
AND2X2TS U108 ( .A(in2[4]), .B(add_sub), .Y(n33) );
NAND2X2TS U109 ( .A(n124), .B(n123), .Y(n126) );
NAND2X4TS U110 ( .A(n76), .B(n79), .Y(n81) );
NAND2X2TS U111 ( .A(n79), .B(n78), .Y(n77) );
XOR2X2TS U112 ( .A(n90), .B(in2[5]), .Y(n138) );
OR2X8TS U113 ( .A(n135), .B(in1[8]), .Y(n67) );
NOR2X2TS U114 ( .A(n98), .B(n78), .Y(n92) );
NAND3X6TS U115 ( .A(n81), .B(n80), .C(n77), .Y(n145) );
NOR2X6TS U116 ( .A(n145), .B(n82), .Y(n36) );
BUFX8TS U117 ( .A(n89), .Y(n39) );
NAND2X8TS U118 ( .A(n84), .B(n85), .Y(n89) );
NAND2X4TS U119 ( .A(n33), .B(n39), .Y(n80) );
NAND2BX4TS U120 ( .AN(in2[11]), .B(n102), .Y(n106) );
NAND2BX2TS U121 ( .AN(n60), .B(n64), .Y(n43) );
NAND2BX2TS U122 ( .AN(n60), .B(n64), .Y(n46) );
NAND2X2TS U123 ( .A(n136), .B(in1[7]), .Y(n49) );
NAND2X2TS U124 ( .A(n96), .B(add_sub), .Y(n97) );
NAND2X1TS U125 ( .A(n56), .B(n63), .Y(n55) );
INVX2TS U126 ( .A(in1[12]), .Y(n73) );
INVX2TS U127 ( .A(n71), .Y(n48) );
OAI21X2TS U128 ( .A0(in1[5]), .A1(n36), .B0(n138), .Y(n34) );
INVX2TS U129 ( .A(in1[4]), .Y(n82) );
NAND2X1TS U130 ( .A(in2[0]), .B(n56), .Y(n140) );
OAI21X1TS U131 ( .A0(in2[1]), .A1(in2[0]), .B0(n56), .Y(n142) );
OAI31X1TS U132 ( .A0(in2[2]), .A1(in2[1]), .A2(in2[0]), .B0(add_sub), .Y(
n144) );
XNOR2X1TS U133 ( .A(n35), .B(n138), .Y(res[5]) );
XNOR2X1TS U134 ( .A(n36), .B(in1[5]), .Y(n35) );
XNOR2X1TS U135 ( .A(n65), .B(n136), .Y(res[7]) );
XNOR2X1TS U136 ( .A(n137), .B(in1[7]), .Y(n65) );
XNOR2X1TS U137 ( .A(n135), .B(in1[8]), .Y(n70) );
XOR2XLTS U138 ( .A(n66), .B(n105), .Y(res[10]) );
XOR2X1TS U139 ( .A(n116), .B(n74), .Y(res[12]) );
XOR2X1TS U140 ( .A(n117), .B(in1[12]), .Y(n74) );
NAND2X1TS U141 ( .A(n62), .B(n60), .Y(n116) );
XNOR2X1TS U142 ( .A(n129), .B(n128), .Y(res[13]) );
OA21X4TS U143 ( .A0(n62), .A1(n44), .B0(n42), .Y(n32) );
NAND2X2TS U144 ( .A(n115), .B(in1[13]), .Y(n127) );
INVX2TS U145 ( .A(in2[4]), .Y(n79) );
INVX2TS U146 ( .A(n109), .Y(n119) );
INVX2TS U147 ( .A(n78), .Y(n56) );
OAI21X2TS U148 ( .A0(n105), .A1(in1[10]), .B0(n104), .Y(n40) );
OAI2BB1X4TS U149 ( .A0N(n36), .A1N(in1[5]), .B0(n34), .Y(n93) );
INVX2TS U150 ( .A(n134), .Y(n37) );
OAI2BB1X4TS U151 ( .A0N(n105), .A1N(in1[10]), .B0(n40), .Y(n130) );
NOR2X8TS U152 ( .A(n89), .B(in2[4]), .Y(n41) );
INVX2TS U153 ( .A(n64), .Y(n44) );
OAI21X4TS U154 ( .A0(n62), .A1(n44), .B0(n45), .Y(n128) );
NAND2X8TS U155 ( .A(n50), .B(n49), .Y(n135) );
NAND2X8TS U156 ( .A(n130), .B(n57), .Y(n62) );
AND2X8TS U157 ( .A(n128), .B(n86), .Y(n83) );
NOR2X8TS U158 ( .A(n83), .B(n32), .Y(n125) );
XNOR2X1TS U159 ( .A(n130), .B(n59), .Y(res[11]) );
XOR2X1TS U160 ( .A(n131), .B(n61), .Y(n59) );
MXI2X4TS U161 ( .A(n122), .B(n123), .S0(n125), .Y(n120) );
MXI2X2TS U162 ( .A(n118), .B(n109), .S0(n120), .Y(res[16]) );
XOR2X1TS U163 ( .A(n104), .B(in1[10]), .Y(n66) );
XNOR2X1TS U164 ( .A(n70), .B(n134), .Y(res[8]) );
XNOR2X1TS U165 ( .A(n120), .B(n121), .Y(res[15]) );
NOR2X8TS U166 ( .A(in2[3]), .B(in2[2]), .Y(n84) );
NOR2X8TS U167 ( .A(in2[1]), .B(in2[0]), .Y(n85) );
AFHCINX4TS U168 ( .CIN(n132), .B(n133), .A(in1[9]), .S(res[9]), .CO(n105) );
NOR2X8TS U169 ( .A(n91), .B(in2[6]), .Y(n95) );
XOR2X4TS U170 ( .A(n114), .B(in2[13]), .Y(n115) );
NAND2X2TS U171 ( .A(n106), .B(add_sub), .Y(n101) );
XOR2X1TS U172 ( .A(n92), .B(in2[9]), .Y(n133) );
ADDFHX4TS U173 ( .A(n94), .B(in1[6]), .CI(n93), .CO(n137), .S(res[6]) );
XNOR2X1TS U174 ( .A(n97), .B(in2[8]), .Y(n134) );
AOI21X1TS U175 ( .A0(in2[1]), .A1(n140), .B0(in1[1]), .Y(n139) );
AOI21X1TS U176 ( .A0(in2[2]), .A1(n142), .B0(in1[2]), .Y(n141) );
AOI21X1TS U177 ( .A0(in2[3]), .A1(n144), .B0(in1[3]), .Y(n143) );
initial $sdf_annotate("Approx_adder_LOALPL5_syn.sdf");
endmodule |
module sky130_fd_sc_hdll__fill (
VPWR,
VGND,
VPB ,
VNB
);
// Module ports
input VPWR;
input VGND;
input VPB ;
input VNB ;
// No contents.
endmodule |
module sky130_fd_sc_ls__nor2b (
Y ,
A ,
B_N ,
VPWR,
VGND,
VPB ,
VNB
);
// Module ports
output Y ;
input A ;
input B_N ;
input VPWR;
input VGND;
input VPB ;
input VNB ;
// Local signals
wire not0_out ;
wire and0_out_Y ;
wire pwrgood_pp0_out_Y;
// Name Output Other arguments
not not0 (not0_out , A );
and and0 (and0_out_Y , not0_out, B_N );
sky130_fd_sc_ls__udp_pwrgood_pp$PG pwrgood_pp0 (pwrgood_pp0_out_Y, and0_out_Y, VPWR, VGND);
buf buf0 (Y , pwrgood_pp0_out_Y );
endmodule |
module Interleaver(
input clk,
input trigger,
input Interleave_b,
input FF_en,
`ifdef XILINX_ISIM
output reg output_en = 1'b1
`else
output reg output_en = 1'b0
`endif
);
(* shreg_extract = "no" *) reg Interleave = 1'b0, Interleave_a = 1'b0;
(* shreg_extract = "no" *) reg FF_en_a = 1'b0, FF_en_b = 1'b0;
always @(posedge clk) begin
Interleave <= Interleave_a;
Interleave_a <= Interleave_b;
FF_en_a <= FF_en;
FF_en_b <= FF_en_a;
//output_en <= (trigger && Interleave) ? ~output_en : 1'b0;
//if (trigger && Interleave) output_en <= ~output_en;
if (trigger && FF_en_b) output_en <= (Interleave) ? ~output_en : 1'b1;
else if (trigger) output_en <= 1'b0;
else output_en <= output_en;
//else if (trigger) output_en <= 1'b1;
//else output_en <= output_en;
end
endmodule |
module sky130_fd_sc_hd__lpflow_lsbuf_lh_isowell (
X ,
A ,
LOWLVPWR,
VPWR ,
VGND ,
VPB ,
VNB
);
output X ;
input A ;
input LOWLVPWR;
input VPWR ;
input VGND ;
input VPB ;
input VNB ;
endmodule |
module sparc_exu_shft (/*AUTOARG*/
// Outputs
shft_alu_shift_out_e,
// Inputs
ecl_shft_lshift_e_l, ecl_shft_op32_e, ecl_shft_shift4_e,
ecl_shft_shift1_e, byp_alu_rs1_data_e, byp_alu_rs2_data_e,
ecl_shft_enshift_e_l, ecl_shft_extendbit_e,
ecl_shft_extend32bit_e_l
) ;
input ecl_shft_lshift_e_l; // if 0 do left shift. else right shift
input ecl_shft_op32_e; // indicates 32 bit operation so upper 32 = 0
//input [3:0] ecl_shft_shift16_e;// [48, 32, 16, 0] shift
input [3:0] ecl_shft_shift4_e;// [12, 8, 4, 0] shift
input [3:0] ecl_shft_shift1_e;// [3, 2, 1, 0] shift
input [63:0] byp_alu_rs1_data_e;
input [5:4] byp_alu_rs2_data_e;
input ecl_shft_enshift_e_l;// enables inputs to shifter
input ecl_shft_extendbit_e;
input ecl_shft_extend32bit_e_l;
output [63:0] shft_alu_shift_out_e;
wire [63:0] shifter_input; // enabled input
wire [63:0] shifter_input_b1;// buffered input
wire [63:0] rshifterinput; // masked for 32-bit operation
wire [63:0] rshifterinput_b1; // masked for 32-bit operation
wire [63:0] lshift16; // output of the respective mux
wire [63:0] rshift16;
wire [63:0] lshift4;
wire [63:0] rshift4;
wire [63:0] lshift1;
wire [63:0] rshift1;
wire [63:0] lshift16_b1; // buffed output of the respective mux
wire [63:0] rshift16_b1;
wire [63:0] lshift4_b1;
wire [63:0] rshift4_b1;
wire [47:0] shft_extendbit_e;
wire [3:0] shift16_e;
wire shiftby_msb;
wire extend32bit_e;
assign shiftby_msb = byp_alu_rs2_data_e[5] & ~ecl_shft_op32_e;
assign shift16_e[0] = ~shiftby_msb & ~byp_alu_rs2_data_e[4];
assign shift16_e[1] = ~shiftby_msb & byp_alu_rs2_data_e[4];
assign shift16_e[2] = shiftby_msb & ~byp_alu_rs2_data_e[4];
assign shift16_e[3] = shiftby_msb & byp_alu_rs2_data_e[4];
// enable inputs
assign shifter_input[63:0] = byp_alu_rs1_data_e[63:0] & {64{~ecl_shft_enshift_e_l}};
// mux between left and right shifts
dp_mux2es #(64) mux_shiftout(.dout(shft_alu_shift_out_e[63:0]), .in0(lshift1[63:0]),
.in1(rshift1[63:0]),
.sel(ecl_shft_lshift_e_l));
// mask out top for r_shift 32bit
assign extend32bit_e = ~ecl_shft_extend32bit_e_l;
dp_mux2es #(32) mux_rshift_extend(.dout(rshifterinput[63:32]),
.in0(byp_alu_rs1_data_e[63:32]),
.in1({32{extend32bit_e}}),
.sel(ecl_shft_op32_e));
assign rshifterinput[31:0] = shifter_input[31:0];
assign shft_extendbit_e[47:0] = {48{ecl_shft_extendbit_e}};
// right shift muxes
mux4ds #(64) mux_right16(.dout(rshift16[63:0]),
.in0({shft_extendbit_e[47:0], rshifterinput_b1[63:48]}),
.in1({shft_extendbit_e[47:16], rshifterinput_b1[63:32]}),
.in2({shft_extendbit_e[47:32], rshifterinput_b1[63:16]}),
.in3(rshifterinput_b1[63:0]),
.sel0(shift16_e[3]),
.sel1(shift16_e[2]),
.sel2(shift16_e[1]),
.sel3(shift16_e[0]));
mux4ds #(64) mux_right4(.dout(rshift4[63:0]),
.in0({shft_extendbit_e[47:36], rshift16_b1[63:12]}),
.in1({shft_extendbit_e[47:40], rshift16_b1[63:8]}),
.in2({shft_extendbit_e[47:44], rshift16_b1[63:4]}),
.in3(rshift16_b1[63:0]),
.sel0(ecl_shft_shift4_e[3]),
.sel1(ecl_shft_shift4_e[2]),
.sel2(ecl_shft_shift4_e[1]),
.sel3(ecl_shft_shift4_e[0]));
mux4ds #(64) mux_right1(.dout(rshift1[63:0]),
.in0({shft_extendbit_e[47:45], rshift4_b1[63:3]}),
.in1({shft_extendbit_e[47:46], rshift4_b1[63:2]}),
.in2({shft_extendbit_e[47], rshift4_b1[63:1]}),
.in3(rshift4_b1[63:0]),
.sel0(ecl_shft_shift1_e[3]),
.sel1(ecl_shft_shift1_e[2]),
.sel2(ecl_shft_shift1_e[1]),
.sel3(ecl_shft_shift1_e[0]));
// buffer signals to right muxes
dp_buffer #(64) buf_rshiftin(.dout(rshifterinput_b1[63:0]), .in(rshifterinput[63:0]));
dp_buffer #(64) buf_rshift16(.dout(rshift16_b1[63:0]), .in(rshift16[63:0]));
dp_buffer #(64) buf_rshift4(.dout(rshift4_b1[63:0]), .in(rshift4[63:0]));
// left shift muxes
mux4ds #(64) mux_left16(.dout(lshift16[63:0]),
.in0({shifter_input_b1[15:0], {48{1'b0}}}),
.in1({shifter_input_b1[31:0], {32{1'b0}}}),
.in2({shifter_input_b1[47:0], {16{1'b0}}}),
.in3(shifter_input_b1[63:0]),
.sel0(shift16_e[3]),
.sel1(shift16_e[2]),
.sel2(shift16_e[1]),
.sel3(shift16_e[0]));
mux4ds #(64) mux_left4(.dout(lshift4[63:0]),
.in0({lshift16_b1[51:0], {12{1'b0}}}),
.in1({lshift16_b1[55:0], {8{1'b0}}}),
.in2({lshift16_b1[59:0], {4{1'b0}}}),
.in3(lshift16_b1[63:0]),
.sel0(ecl_shft_shift4_e[3]),
.sel1(ecl_shft_shift4_e[2]),
.sel2(ecl_shft_shift4_e[1]),
.sel3(ecl_shft_shift4_e[0]));
mux4ds #(64) mux_left1(.dout(lshift1[63:0]),
.in0({lshift4_b1[60:0], {3{1'b0}}}),
.in1({lshift4_b1[61:0], {2{1'b0}}}),
.in2({lshift4_b1[62:0], {1{1'b0}}}),
.in3(lshift4_b1[63:0]),
.sel0(ecl_shft_shift1_e[3]),
.sel1(ecl_shft_shift1_e[2]),
.sel2(ecl_shft_shift1_e[1]),
.sel3(ecl_shft_shift1_e[0]));
// buffer signals to left muxes
dp_buffer #(64) buf_lshiftin(.dout(shifter_input_b1[63:0]), .in(shifter_input[63:0]));
dp_buffer #(64) buf_lshift16(.dout(lshift16_b1[63:0]), .in(lshift16[63:0]));
dp_buffer #(64) buf_lshift4(.dout(lshift4_b1[63:0]), .in(lshift4[63:0]));
endmodule |
module `AUTOTB_TOP;
parameter AUTOTB_TRANSACTION_NUM = 1;
parameter PROGRESS_TIMEOUT = 10000000;
parameter LATENCY_ESTIMATION = 686;
parameter LENGTH_a = 25;
parameter LENGTH_b = 25;
parameter LENGTH_prod = 25;
task read_token;
input integer fp;
output reg [127 : 0] token;
integer ret;
begin
token = "";
ret = 0;
ret = $fscanf(fp,"%s",token);
end
endtask
task post_check;
input integer fp1;
input integer fp2;
reg [127 : 0] token1;
reg [127 : 0] token2;
reg [127 : 0] golden;
reg [127 : 0] result;
integer ret;
begin
read_token(fp1, token1);
read_token(fp2, token2);
if (token1 != "[[[runtime]]]" || token2 != "[[[runtime]]]") begin
$display("ERROR: Simulation using HLS TB failed.");
$finish;
end
read_token(fp1, token1);
read_token(fp2, token2);
while (token1 != "[[[/runtime]]]" && token2 != "[[[/runtime]]]") begin
if (token1 != "[[transaction]]" || token2 != "[[transaction]]") begin
$display("ERROR: Simulation using HLS TB failed.");
$finish;
end
read_token(fp1, token1); // skip transaction number
read_token(fp2, token2); // skip transaction number
read_token(fp1, token1);
read_token(fp2, token2);
while(token1 != "[[/transaction]]" && token2 != "[[/transaction]]") begin
ret = $sscanf(token1, "0x%x", golden);
if (ret != 1) begin
$display("Failed to parse token!");
$display("ERROR: Simulation using HLS TB failed.");
$finish;
end
ret = $sscanf(token2, "0x%x", result);
if (ret != 1) begin
$display("Failed to parse token!");
$display("ERROR: Simulation using HLS TB failed.");
$finish;
end
if(golden != result) begin
$display("%x (expected) vs. %x (actual) - mismatch", golden, result);
$display("ERROR: Simulation using HLS TB failed.");
$finish;
end
read_token(fp1, token1);
read_token(fp2, token2);
end
read_token(fp1, token1);
read_token(fp2, token2);
end
end
endtask
reg AESL_clock;
reg rst;
reg start;
reg ce;
reg tb_continue;
wire AESL_start;
wire AESL_reset;
wire AESL_ce;
wire AESL_ready;
wire AESL_idle;
wire AESL_continue;
wire AESL_done;
reg AESL_done_delay = 0;
reg AESL_done_delay2 = 0;
reg AESL_ready_delay = 0;
wire ready;
wire ready_wire;
wire ap_start;
wire ap_done;
wire ap_idle;
wire ap_ready;
wire [4 : 0] a_address0;
wire a_ce0;
wire [7 : 0] a_q0;
wire [4 : 0] b_address0;
wire b_ce0;
wire [7 : 0] b_q0;
wire [4 : 0] prod_address0;
wire prod_ce0;
wire prod_we0;
wire [15 : 0] prod_d0;
integer done_cnt = 0;
integer AESL_ready_cnt = 0;
integer ready_cnt = 0;
reg ready_initial;
reg ready_initial_n;
reg ready_last_n;
reg ready_delay_last_n;
reg done_delay_last_n;
reg interface_done = 0;
wire ap_clk;
wire ap_rst;
wire ap_rst_n;
`AUTOTB_DUT `AUTOTB_DUT_INST(
.ap_clk(ap_clk),
.ap_rst(ap_rst),
.ap_start(ap_start),
.ap_done(ap_done),
.ap_idle(ap_idle),
.ap_ready(ap_ready),
.a_address0(a_address0),
.a_ce0(a_ce0),
.a_q0(a_q0),
.b_address0(b_address0),
.b_ce0(b_ce0),
.b_q0(b_q0),
.prod_address0(prod_address0),
.prod_ce0(prod_ce0),
.prod_we0(prod_we0),
.prod_d0(prod_d0));
// Assignment for control signal
assign ap_clk = AESL_clock;
assign ap_rst = AESL_reset;
assign ap_rst_n = ~AESL_reset;
assign AESL_reset = rst;
assign ap_start = AESL_start;
assign AESL_start = start;
assign AESL_done = ap_done;
assign AESL_idle = ap_idle;
assign AESL_ready = ap_ready;
assign AESL_ce = ce;
assign AESL_continue = tb_continue;
always @(posedge AESL_clock) begin
if (AESL_reset) begin
end else begin
if (AESL_done !== 1 && AESL_done !== 0) begin
$display("ERROR: Control signal AESL_done is invalid!");
$finish;
end
end
end
always @(posedge AESL_clock) begin
if (AESL_reset) begin
end else begin
if (AESL_ready !== 1 && AESL_ready !== 0) begin
$display("ERROR: Control signal AESL_ready is invalid!");
$finish;
end
end
end
//------------------------arraya Instantiation--------------
// The input and output of arraya
wire arraya_ce0, arraya_ce1;
wire arraya_we0, arraya_we1;
wire [4 : 0] arraya_address0, arraya_address1;
wire [7 : 0] arraya_din0, arraya_din1;
wire [7 : 0] arraya_dout0, arraya_dout1;
wire arraya_ready;
wire arraya_done;
`AESL_MEM_a `AESL_MEM_INST_a(
.clk (AESL_clock),
.rst (AESL_reset),
.ce0 (arraya_ce0),
.we0 (arraya_we0),
.address0 (arraya_address0),
.din0 (arraya_din0),
.dout0 (arraya_dout0),
.ce1 (arraya_ce1),
.we1 (arraya_we1),
.address1 (arraya_address1),
.din1 (arraya_din1),
.dout1 (arraya_dout1),
.ready (arraya_ready),
.done (arraya_done)
);
// Assignment between dut and arraya
assign arraya_address0 = a_address0;
assign arraya_ce0 = a_ce0;
assign a_q0 = arraya_dout0;
assign arraya_we0 = 0;
assign arraya_din0 = 0;
assign arraya_we1 = 0;
assign arraya_din1 = 0;
assign arraya_ready= ready;
assign arraya_done = 0;
//------------------------arrayb Instantiation--------------
// The input and output of arrayb
wire arrayb_ce0, arrayb_ce1;
wire arrayb_we0, arrayb_we1;
wire [4 : 0] arrayb_address0, arrayb_address1;
wire [7 : 0] arrayb_din0, arrayb_din1;
wire [7 : 0] arrayb_dout0, arrayb_dout1;
wire arrayb_ready;
wire arrayb_done;
`AESL_MEM_b `AESL_MEM_INST_b(
.clk (AESL_clock),
.rst (AESL_reset),
.ce0 (arrayb_ce0),
.we0 (arrayb_we0),
.address0 (arrayb_address0),
.din0 (arrayb_din0),
.dout0 (arrayb_dout0),
.ce1 (arrayb_ce1),
.we1 (arrayb_we1),
.address1 (arrayb_address1),
.din1 (arrayb_din1),
.dout1 (arrayb_dout1),
.ready (arrayb_ready),
.done (arrayb_done)
);
// Assignment between dut and arrayb
assign arrayb_address0 = b_address0;
assign arrayb_ce0 = b_ce0;
assign b_q0 = arrayb_dout0;
assign arrayb_we0 = 0;
assign arrayb_din0 = 0;
assign arrayb_we1 = 0;
assign arrayb_din1 = 0;
assign arrayb_ready= ready;
assign arrayb_done = 0;
//------------------------arrayprod Instantiation--------------
// The input and output of arrayprod
wire arrayprod_ce0, arrayprod_ce1;
wire arrayprod_we0, arrayprod_we1;
wire [4 : 0] arrayprod_address0, arrayprod_address1;
wire [15 : 0] arrayprod_din0, arrayprod_din1;
wire [15 : 0] arrayprod_dout0, arrayprod_dout1;
wire arrayprod_ready;
wire arrayprod_done;
`AESL_MEM_prod `AESL_MEM_INST_prod(
.clk (AESL_clock),
.rst (AESL_reset),
.ce0 (arrayprod_ce0),
.we0 (arrayprod_we0),
.address0 (arrayprod_address0),
.din0 (arrayprod_din0),
.dout0 (arrayprod_dout0),
.ce1 (arrayprod_ce1),
.we1 (arrayprod_we1),
.address1 (arrayprod_address1),
.din1 (arrayprod_din1),
.dout1 (arrayprod_dout1),
.ready (arrayprod_ready),
.done (arrayprod_done)
);
// Assignment between dut and arrayprod
assign arrayprod_address0 = prod_address0;
assign arrayprod_ce0 = prod_ce0;
assign arrayprod_we0 = prod_we0;
assign arrayprod_din0 = prod_d0;
assign arrayprod_we1 = 0;
assign arrayprod_din1 = 0;
assign arrayprod_ready= ready_initial | arrayprod_done;
assign arrayprod_done = AESL_done_delay;
initial begin : generate_AESL_ready_cnt_proc
AESL_ready_cnt = 0;
wait(AESL_reset === 0);
while(AESL_ready_cnt != AUTOTB_TRANSACTION_NUM) begin
while(AESL_ready !== 1) begin
@(posedge AESL_clock);
# 0.4;
end
@(negedge AESL_clock);
AESL_ready_cnt = AESL_ready_cnt + 1;
@(posedge AESL_clock);
# 0.4;
end
end
event next_trigger_ready_cnt;
initial begin : gen_ready_cnt
ready_cnt = 0;
wait (AESL_reset === 0);
forever begin
@ (posedge AESL_clock);
if (ready == 1) begin
if (ready_cnt < AUTOTB_TRANSACTION_NUM) begin
ready_cnt = ready_cnt + 1;
end
end
-> next_trigger_ready_cnt;
end
end
wire all_finish = (done_cnt == AUTOTB_TRANSACTION_NUM);
// done_cnt
always @ (posedge AESL_clock) begin
if (AESL_reset) begin
done_cnt <= 0;
end else begin
if (AESL_done == 1) begin
if (done_cnt < AUTOTB_TRANSACTION_NUM) begin
done_cnt <= done_cnt + 1;
end
end
end
end
initial begin : finish_simulation
integer fp1;
integer fp2;
wait (all_finish == 1);
// last transaction is saved at negedge right after last done
@ (posedge AESL_clock);
@ (posedge AESL_clock);
@ (posedge AESL_clock);
@ (posedge AESL_clock);
fp1 = $fopen("./rtl.matrix_mult.autotvout_prod.dat", "r");
fp2 = $fopen("./impl_rtl.matrix_mult.autotvout_prod.dat", "r");
if(fp1 == 0) // Failed to open file
$display("Failed to open file \"./rtl.matrix_mult.autotvout_prod.dat\"!");
else if(fp2 == 0)
$display("Failed to open file \"./impl_rtl.matrix_mult.autotvout_prod.dat\"!");
else begin
$display("Comparing rtl.matrix_mult.autotvout_prod.dat with impl_rtl.matrix_mult.autotvout_prod.dat");
post_check(fp1, fp2);
end
$fclose(fp1);
$fclose(fp2);
$display("Simulation Passed.");
$finish;
end
initial begin
AESL_clock = 0;
forever #`AUTOTB_CLOCK_PERIOD_DIV2 AESL_clock = ~AESL_clock;
end
reg end_a;
reg [31:0] size_a;
reg [31:0] size_a_backup;
reg end_b;
reg [31:0] size_b;
reg [31:0] size_b_backup;
reg end_prod;
reg [31:0] size_prod;
reg [31:0] size_prod_backup;
initial begin : initial_process
integer proc_rand;
rst = 1;
# 100;
repeat(3) @ (posedge AESL_clock);
rst = 0;
end
initial begin : start_process
integer proc_rand;
reg [31:0] start_cnt;
ce = 1;
start = 0;
start_cnt = 0;
wait (AESL_reset === 0);
@ (posedge AESL_clock);
#0 start = 1;
start_cnt = start_cnt + 1;
forever begin
@ (posedge AESL_clock);
if (start_cnt >= AUTOTB_TRANSACTION_NUM) begin
// keep pushing garbage in
#0 start = 1;
end
if (AESL_ready) begin
start_cnt = start_cnt + 1;
end
end
end
always @(AESL_done)
begin
tb_continue = AESL_done;
end
initial begin : ready_initial_process
ready_initial = 0;
wait (AESL_start === 1);
ready_initial = 1;
@(posedge AESL_clock);
ready_initial = 0;
end
always @(posedge AESL_clock)
begin
if(AESL_reset)
AESL_ready_delay = 0;
else
AESL_ready_delay = AESL_ready;
end
initial begin : ready_last_n_process
ready_last_n = 1;
wait(ready_cnt == AUTOTB_TRANSACTION_NUM)
@(posedge AESL_clock);
ready_last_n <= 0;
end
always @(posedge AESL_clock)
begin
if(AESL_reset)
ready_delay_last_n = 0;
else
ready_delay_last_n <= ready_last_n;
end
assign ready = (ready_initial | AESL_ready_delay);
assign ready_wire = ready_initial | AESL_ready_delay;
initial begin : done_delay_last_n_process
done_delay_last_n = 1;
while(done_cnt < AUTOTB_TRANSACTION_NUM)
@(posedge AESL_clock);
# 0.1;
done_delay_last_n = 0;
end
always @(posedge AESL_clock)
begin
if(AESL_reset)
begin
AESL_done_delay <= 0;
AESL_done_delay2 <= 0;
end
else begin
AESL_done_delay <= AESL_done & done_delay_last_n;
AESL_done_delay2 <= AESL_done_delay;
end
end
always @(posedge AESL_clock)
begin
if(AESL_reset)
interface_done = 0;
else begin
# 0.01;
if(ready === 1 && ready_cnt > 0 && ready_cnt < AUTOTB_TRANSACTION_NUM)
interface_done = 1;
else if(AESL_done_delay === 1 && done_cnt == AUTOTB_TRANSACTION_NUM)
interface_done = 1;
else
interface_done = 0;
end
end
reg dump_tvout_finish_prod;
initial begin : dump_tvout_runtime_sign_prod
integer fp;
dump_tvout_finish_prod = 0;
fp = $fopen(`AUTOTB_TVOUT_prod_out_wrapc, "w");
if (fp == 0) begin
$display("Failed to open file \"%s\"!", `AUTOTB_TVOUT_prod_out_wrapc);
$display("ERROR: Simulation using HLS TB failed.");
$finish;
end
$fdisplay(fp,"[[[runtime]]]");
$fclose(fp);
wait (done_cnt == AUTOTB_TRANSACTION_NUM);
// last transaction is saved at negedge right after last done
@ (posedge AESL_clock);
@ (posedge AESL_clock);
@ (posedge AESL_clock);
fp = $fopen(`AUTOTB_TVOUT_prod_out_wrapc, "a");
if (fp == 0) begin
$display("Failed to open file \"%s\"!", `AUTOTB_TVOUT_prod_out_wrapc);
$display("ERROR: Simulation using HLS TB failed.");
$finish;
end
$fdisplay(fp,"[[[/runtime]]]");
$fclose(fp);
dump_tvout_finish_prod = 1;
end
////////////////////////////////////////////
// progress and performance
////////////////////////////////////////////
task wait_start();
while (~AESL_start) begin
@ (posedge AESL_clock);
end
endtask
reg [31:0] clk_cnt = 0;
reg AESL_ready_p1;
always @ (posedge AESL_clock) begin
clk_cnt <= clk_cnt + 1;
AESL_ready_p1 <= AESL_ready;
end
reg [31:0] start_timestamp [0:AUTOTB_TRANSACTION_NUM - 1];
reg [31:0] start_cnt;
reg [31:0] finish_timestamp [0:AUTOTB_TRANSACTION_NUM - 1];
reg [31:0] finish_cnt;
event report_progress;
initial begin
start_cnt = 0;
finish_cnt = 0;
wait (AESL_reset == 0);
wait_start();
start_timestamp[start_cnt] = clk_cnt;
start_cnt = start_cnt + 1;
if (AESL_done) begin
finish_timestamp[finish_cnt] = clk_cnt;
finish_cnt = finish_cnt + 1;
end
-> report_progress;
forever begin
@ (posedge AESL_clock);
if (start_cnt < AUTOTB_TRANSACTION_NUM) begin
if (AESL_start && AESL_ready_p1) begin
start_timestamp[start_cnt] = clk_cnt;
start_cnt = start_cnt + 1;
end
end
if (finish_cnt < AUTOTB_TRANSACTION_NUM) begin
if (AESL_done) begin
finish_timestamp[finish_cnt] = clk_cnt;
finish_cnt = finish_cnt + 1;
end
end
-> report_progress;
end
end
reg [31:0] progress_timeout;
initial begin : simulation_progress
real intra_progress;
wait (AESL_reset == 0);
progress_timeout = PROGRESS_TIMEOUT;
$display("////////////////////////////////////////////////////////////////////////////////////");
$display("// Inter-Transaction Progress: Completed Transaction / Total Transaction");
$display("// Intra-Transaction Progress: Measured Latency / Latency Estimation * 100%%");
$display("//");
$display("// RTL Simulation : \"Inter-Transaction Progress\" [\"Intra-Transaction Progress\"] @ \"Simulation Time\"");
$display("////////////////////////////////////////////////////////////////////////////////////");
print_progress();
while (finish_cnt < AUTOTB_TRANSACTION_NUM) begin
@ (report_progress);
if (finish_cnt < AUTOTB_TRANSACTION_NUM) begin
if (AESL_done) begin
print_progress();
progress_timeout = PROGRESS_TIMEOUT;
end else begin
if (progress_timeout == 0) begin
print_progress();
progress_timeout = PROGRESS_TIMEOUT;
end else begin
progress_timeout = progress_timeout - 1;
end
end
end
end
print_progress();
$display("////////////////////////////////////////////////////////////////////////////////////");
calculate_performance();
end
task get_intra_progress(output real intra_progress);
begin
if (start_cnt > finish_cnt) begin
intra_progress = clk_cnt - start_timestamp[finish_cnt];
end else begin
intra_progress = 0;
end
intra_progress = intra_progress / LATENCY_ESTIMATION;
end
endtask
task print_progress();
real intra_progress;
begin
if (LATENCY_ESTIMATION > 0) begin
get_intra_progress(intra_progress);
$display("// RTL Simulation : %0d / %0d [%2.2f%%] @ \"%0t\"", finish_cnt, AUTOTB_TRANSACTION_NUM, intra_progress * 100, $time);
end else begin
$display("// RTL Simulation : %0d / %0d [n/a] @ \"%0t\"", finish_cnt, AUTOTB_TRANSACTION_NUM, $time);
end
end
endtask
task calculate_performance();
integer i;
integer fp;
reg [31:0] latency [0:AUTOTB_TRANSACTION_NUM - 1];
reg [31:0] latency_min;
reg [31:0] latency_max;
reg [31:0] latency_total;
reg [31:0] latency_average;
reg [31:0] interval [0:AUTOTB_TRANSACTION_NUM - 2];
reg [31:0] interval_min;
reg [31:0] interval_max;
reg [31:0] interval_total;
reg [31:0] interval_average;
begin
latency_min = -1;
latency_max = 0;
latency_total = 0;
interval_min = -1;
interval_max = 0;
interval_total = 0;
for (i = 0; i < AUTOTB_TRANSACTION_NUM; i = i + 1) begin
// calculate latency
latency[i] = finish_timestamp[i] - start_timestamp[i];
if (latency[i] > latency_max) latency_max = latency[i];
if (latency[i] < latency_min) latency_min = latency[i];
latency_total = latency_total + latency[i];
// calculate interval
if (AUTOTB_TRANSACTION_NUM == 1) begin
interval[i] = 0;
interval_max = 0;
interval_min = 0;
interval_total = 0;
end else if (i < AUTOTB_TRANSACTION_NUM - 1) begin
interval[i] = start_timestamp[i + 1] - start_timestamp[i];
if (interval[i] > interval_max) interval_max = interval[i];
if (interval[i] < interval_min) interval_min = interval[i];
interval_total = interval_total + interval[i];
end
end
latency_average = latency_total / AUTOTB_TRANSACTION_NUM;
if (AUTOTB_TRANSACTION_NUM == 1) begin
interval_average = 0;
end else begin
interval_average = interval_total / (AUTOTB_TRANSACTION_NUM - 1);
end
fp = $fopen(`AUTOTB_LAT_RESULT_FILE, "w");
$fdisplay(fp, "$MAX_LATENCY = \"%0d\"", latency_max);
$fdisplay(fp, "$MIN_LATENCY = \"%0d\"", latency_min);
$fdisplay(fp, "$AVER_LATENCY = \"%0d\"", latency_average);
$fdisplay(fp, "$MAX_THROUGHPUT = \"%0d\"", interval_max);
$fdisplay(fp, "$MIN_THROUGHPUT = \"%0d\"", interval_min);
$fdisplay(fp, "$AVER_THROUGHPUT = \"%0d\"", interval_average);
$fclose(fp);
fp = $fopen(`AUTOTB_PER_RESULT_TRANS_FILE, "w");
$fdisplay(fp, "%20s%16s%16s", "", "latency", "interval");
if (AUTOTB_TRANSACTION_NUM == 1) begin
i = 0;
$fdisplay(fp, "transaction%8d:%16d%16d", i, latency[i], interval[i]);
end else begin
for (i = 0; i < AUTOTB_TRANSACTION_NUM; i = i + 1) begin
if (i < AUTOTB_TRANSACTION_NUM - 1) begin
$fdisplay(fp, "transaction%8d:%16d%16d", i, latency[i], interval[i]);
end else begin
$fdisplay(fp, "transaction%8d:%16d x", i, latency[i]);
end
end
end
$fclose(fp);
end
endtask
////////////////////////////////////////////
// Dependence Check
////////////////////////////////////////////
`ifndef POST_SYN
`endif
endmodule |
module sky130_fd_sc_ms__maj3 (
X ,
A ,
B ,
C ,
VPWR,
VGND,
VPB ,
VNB
);
// Module ports
output X ;
input A ;
input B ;
input C ;
input VPWR;
input VGND;
input VPB ;
input VNB ;
// Local signals
wire or0_out ;
wire and0_out ;
wire and1_out ;
wire or1_out_X ;
wire pwrgood_pp0_out_X;
// Name Output Other arguments
or or0 (or0_out , B, A );
and and0 (and0_out , or0_out, C );
and and1 (and1_out , A, B );
or or1 (or1_out_X , and1_out, and0_out );
sky130_fd_sc_ms__udp_pwrgood_pp$PG pwrgood_pp0 (pwrgood_pp0_out_X, or1_out_X, VPWR, VGND);
buf buf0 (X , pwrgood_pp0_out_X );
endmodule |
module and HAZ/FWD
output reg [31:0] DataOut, // Data to CPU
output [31:0] MWriteData, // Data to Memory
output reg [3:0] WriteEnable, // Write Enable to Memory for each of 4 bytes of Memory
output ReadEnable, // Read Enable to Memory
output M_Stall,
output EXC_AdEL, // Load Exception
output EXC_AdES, // Store Exception
// Voter Signals for Registers
input [29:0] LLSC_Address,
input LLSC_Atomic,
input RW_Mask,
output reg [29:0] vote_LLSC_Address,
output reg vote_LLSC_Atomic,
output reg vote_RW_Mask
);
`include "MIPS_Parameters.v"
/*** Reverse Endian Mode
Normal memory accesses in the processor are Big Endian. The endianness can be reversed
to Little Endian in User Mode only.
*/
wire BE = KernelMode | ~ReverseEndian;
/*** Indicator that the current memory reference must be word-aligned ***/
wire Word = ~(Half | Byte | Left | Right);
// Exception Detection
wire EXC_KernelMem = ~KernelMode & (Address < `UMem_Lower);
wire EXC_Word = Word & (Address[1] | Address[0]);
wire EXC_Half = Half & Address[0];
assign EXC_AdEL = MemRead & (EXC_KernelMem | EXC_Word | EXC_Half);
assign EXC_AdES = MemWrite & (EXC_KernelMem | EXC_Word | EXC_Half);
/*** Load Linked and Store Conditional logic ***
A 32-bit register keeps track of the address for atomic Load Linked / Store Conditional
operations. This register can be updated during stalls since it is not visible to
forward stages. It does not need to be flushed during exceptions, since ERET destroys
the atomicity condition and there are no detrimental effects in an exception handler.
The atomic condition is set with a Load Linked instruction, and cleared on an ERET
instruction or when any store instruction writes to one or more bytes covered by
the word address register. It does not update on a stall condition.
The MIPS32 spec states that an ERET instruction between LL and SC will cause the
atomicity condition to fail. This implementation uses the ERET signal from the ID
stage, which means instruction sequences such as "LL SC" could appear to have an
ERET instruction between them even though they don't. One way to fix this is to pass
the ERET signal through the pipeline to the MEM stage. However, because of the nature
of LL/SC operations (they occur in a loop which checks the result at each iteration),
an ERET will normally never be inserted into the pipeline programmatically until the
LL/SC sequence has completed (exceptions such as interrupts can still cause ERET, but
they can still cause them in the LL SC sequence as well). In other words, by not passing
ERET through the pipeline, the only possible effect is a performance penalty. Also this
may be irrelevant since currently ERET stalls for forward stages which can cause exceptions,
which includes LL and SC.
*/
wire LLSC_MemWrite_Mask;
always @(posedge clock) begin
vote_LLSC_Address <= (reset) ? 30'b0 : (MemRead & LLSC) ? Address[31:2] : LLSC_Address;
end
always @(posedge clock) begin
if (reset) begin
vote_LLSC_Atomic <= 1'b0;
end
else if (MemRead) begin
vote_LLSC_Atomic <= (LLSC) ? 1'b1 : LLSC_Atomic;
end
else if (ERET | (~M_Stall & ~IF_Stall & MemWrite & (Address[31:2] == LLSC_Address))) begin
vote_LLSC_Atomic <= 1'b0;
end
else begin
vote_LLSC_Atomic <= LLSC_Atomic;
end
end
assign LLSC_MemWrite_Mask = (LLSC & MemWrite & (~LLSC_Atomic | (Address[31:2] != LLSC_Address)));
wire WriteCondition = MemWrite & ~(EXC_KernelMem | EXC_Word | EXC_Half) & ~LLSC_MemWrite_Mask;
wire ReadCondition = MemRead & ~(EXC_KernelMem | EXC_Word | EXC_Half);
/* always @(posedge clock) begin
vote_RW_Mask <= (reset) ? 1'b0 : (((MemWrite | MemRead) & DataMem_Ready) ? 1'b1 : ((~M_Stall & ~IF_Stall) ? 1'b0 : RW_Mask));
end*/
assign M_Stall = ((ReadEnable | (WriteEnable != 4'b0000)) && ~DataMem_Ready) | M_Exception_Stall;
assign ReadEnable = ReadCondition /*& ~RW_Mask*/;
wire Half_Access_L = (Address[1] ^ BE);
wire Half_Access_R = (Address[1] ~^ BE);
wire Byte_Access_LL = Half_Access_L & (Address[1] ~^ Address[0]);
wire Byte_Access_LM = Half_Access_L & (Address[0] ~^ BE);
wire Byte_Access_RM = Half_Access_R & (Address[0] ^ BE);
wire Byte_Access_RR = Half_Access_R & (Address[1] ~^ Address[0]);
// Write-Enable Signals to Memory
always @(*) begin
if (WriteCondition /*& ~RW_Mask*/) begin
if (Byte) begin
WriteEnable[3] <= Byte_Access_LL;
WriteEnable[2] <= Byte_Access_LM;
WriteEnable[1] <= Byte_Access_RM;
WriteEnable[0] <= Byte_Access_RR;
end
else if (Half) begin
WriteEnable[3] <= Half_Access_L;
WriteEnable[2] <= Half_Access_L;
WriteEnable[1] <= Half_Access_R;
WriteEnable[0] <= Half_Access_R;
end
else if (Left) begin
case (Address[1:0])
2'b00 : WriteEnable <= (BE) ? 4'b1111 : 4'b0001;
2'b01 : WriteEnable <= (BE) ? 4'b0111 : 4'b0011;
2'b10 : WriteEnable <= (BE) ? 4'b0011 : 4'b0111;
2'b11 : WriteEnable <= (BE) ? 4'b0001 : 4'b1111;
endcase
end
else if (Right) begin
case (Address[1:0])
2'b00 : WriteEnable <= (BE) ? 4'b1000 : 4'b1111;
2'b01 : WriteEnable <= (BE) ? 4'b1100 : 4'b1110;
2'b10 : WriteEnable <= (BE) ? 4'b1110 : 4'b1100;
2'b11 : WriteEnable <= (BE) ? 4'b1111 : 4'b1000;
endcase
end
else begin
WriteEnable <= 4'b1111;
end
end
else begin
WriteEnable <= 4'b0000;
end
end
// Data Going to Memory
assign MWriteData[31:24] = (Byte) ? DataIn[7:0] : ((Half) ? DataIn[15:8] : DataIn[31:24]);
assign MWriteData[23:16] = (Byte | Half) ? DataIn[7:0] : DataIn[23:16];
assign MWriteData[15:8] = (Byte) ? DataIn[7:0] : DataIn[15:8];
assign MWriteData[7:0] = DataIn[7:0];
// Data Read from Memory
always @(*) begin
if (Byte) begin
if (Byte_Access_LL) begin
DataOut <= (SignExtend & MReadData[31]) ? {24'hFFFFFF, MReadData[31:24]} : {24'h000000, MReadData[31:24]};
end
else if (Byte_Access_LM) begin
DataOut <= (SignExtend & MReadData[23]) ? {24'hFFFFFF, MReadData[23:16]} : {24'h000000, MReadData[23:16]};
end
else if (Byte_Access_RM) begin
DataOut <= (SignExtend & MReadData[15]) ? {24'hFFFFFF, MReadData[15:8]} : {24'h000000, MReadData[15:8]};
end
else begin
DataOut <= (SignExtend & MReadData[7]) ? {24'hFFFFFF, MReadData[7:0]} : {24'h000000, MReadData[7:0]};
end
end
else if (Half) begin
if (Half_Access_L) begin
DataOut <= (SignExtend & MReadData[31]) ? {16'hFFFF, MReadData[31:16]} : {16'h0000, MReadData[31:16]};
end
else begin
DataOut <= (SignExtend & MReadData[15]) ? {16'hFFFF, MReadData[15:0]} : {16'h0000, MReadData[15:0]};
end
end
else if (LLSC & MemWrite) begin
DataOut <= (LLSC_Atomic & (Address[31:2] == LLSC_Address)) ? 32'h0000_0001 : 32'h0000_0000;
end
else if (Left) begin
case (Address[1:0])
2'b00 : DataOut <= (BE) ? MReadData : {MReadData[7:0], DataIn[23:0]};
2'b01 : DataOut <= (BE) ? {MReadData[23:0], DataIn[7:0]} : {MReadData[15:0], DataIn[15:0]};
2'b10 : DataOut <= (BE) ? {MReadData[15:0], DataIn[15:0]} : {MReadData[23:0], DataIn[7:0]};
2'b11 : DataOut <= (BE) ? {MReadData[7:0], DataIn[23:0]} : MReadData;
endcase
end
else if (Right) begin
case (Address[1:0])
2'b00 : DataOut <= (BE) ? {DataIn[31:8], MReadData[31:24]} : MReadData;
2'b01 : DataOut <= (BE) ? {DataIn[31:16], MReadData[31:16]} : {DataIn[31:24], MReadData[31:8]};
2'b10 : DataOut <= (BE) ? {DataIn[31:24], MReadData[31:8]} : {DataIn[31:16], MReadData[31:16]};
2'b11 : DataOut <= (BE) ? MReadData : {DataIn[31:8], MReadData[31:24]};
endcase
end
else begin
DataOut <= MReadData;
end
end
endmodule |
module dff (CK,Q,D);
input CK,D;
output Q;
wire NM,NCK;
trireg NQ,M;
nmos N7 (M,D,NCK);
not P3 (NM,M);
nmos N9 (NQ,NM,CK);
not P5 (Q,NQ);
not P1 (NCK,CK);
endmodule |
module s344(GND,VDD,CK,A0,A1,A2,A3,B0,B1,B2,B3,CNTVCO2,CNTVCON2,P0,P1,P2,P3,P4,
P5,P6,P7,READY,START);
input GND,VDD,CK,START,B0,B1,B2,B3,A0,A1,A2,A3;
output P4,P5,P6,P7,P0,P1,P2,P3,CNTVCON2,CNTVCO2,READY;
wire CT2,CNTVG3VD,CT1,CNTVG2VD,CT0,CNTVG1VD,ACVQN3,ACVG4VD1,ACVQN2,ACVG3VD1,
ACVQN1,ACVG2VD1,ACVQN0,ACVG1VD1,MRVQN3,MRVG4VD,MRVQN2,MRVG3VD,MRVQN1,
MRVG2VD,MRVQN0,MRVG1VD,AX3,AM3,AX2,AM2,AX1,AM1,AX0,AM0,CNTVG3VQN,CNTVG2VQN,
CNTVG1VQN,CNTVCON0,CT1N,ACVPCN,CNTVCO0,AMVS0N,IINIIT,READYN,BMVS0N,
AMVG5VS0P,AMVG4VS0P,AMVG3VS0P,AMVG2VS0P,AD0,AD0N,AD1,AD1N,AD2,AD2N,AD3,
AD3N,CNTVG3VD1,CNTVCON1,CNTVG1VD1,BMVG5VS0P,BMVG4VS0P,BMVG3VS0P,BMVG2VS0P,
SMVS0N,ADSH,MRVSHLDN,ADDVC1,ADDVG1VCN,SMVG5VS0P,SMVG4VS0P,SMVG3VS0P,
SMVG2VS0P,CNTVG1VZ,CNTVG1VZ1,AMVG5VX,AMVG4VX,AMVG3VX,AMVG2VX,S0,ADDVG1VP,
BM3,BMVG5VX,BM2,BMVG4VX,BM1,BMVG3VX,BM0,BMVG2VX,ADDVC2,ADDVG2VCN,S1,
ADDVG2VSN,ADDVC3,ADDVG3VCN,S2,ADDVG3VSN,SM0,SMVG2VX,CO,ADDVG4VCN,S3,
ADDVG4VSN,SM1,SMVG3VX,SM3,SMVG5VX,SM2,SMVG4VX,AMVG5VG1VAD1NF,
AMVG4VG1VAD1NF,AMVG3VG1VAD1NF,AMVG2VG1VAD1NF,BMVG5VG1VAD1NF,BMVG4VG1VAD1NF,
BMVG3VG1VAD1NF,BMVG2VG1VAD1NF,AMVG5VG1VAD2NF,AMVG4VG1VAD2NF,AMVG3VG1VAD2NF,
AMVG2VG1VAD2NF,ADDVG2VCNVAD1NF,ADDVG3VCNVAD1NF,ADDVG4VCNVAD1NF,
MRVG3VDVAD1NF,MRVG2VDVAD1NF,MRVG1VDVAD1NF,BMVG5VG1VAD2NF,BMVG4VG1VAD2NF,
BMVG3VG1VAD2NF,BMVG2VG1VAD2NF,SMVG5VG1VAD1NF,SMVG4VG1VAD1NF,SMVG3VG1VAD1NF,
SMVG2VG1VAD1NF,ADDVG2VCNVAD4NF,ADDVG2VCNVAD2NF,ADDVG2VCNVOR1NF,
MRVG4VDVAD1NF,MRVG4VDVAD2NF,MRVG3VDVAD2NF,MRVG2VDVAD2NF,MRVG1VDVAD2NF,
ADDVG2VCNVAD3NF,ADDVG2VCNVOR2NF,ADDVG3VCNVAD4NF,ADDVG3VCNVAD2NF,
ADDVG3VCNVOR1NF,ADDVG3VCNVAD3NF,ADDVG3VCNVOR2NF,SMVG2VG1VAD2NF,
ADDVG4VCNVAD4NF,ADDVG4VCNVAD2NF,ADDVG4VCNVOR1NF,ADDVG4VCNVAD3NF,
ADDVG4VCNVOR2NF,SMVG3VG1VAD2NF,SMVG5VG1VAD2NF,SMVG4VG1VAD2NF,
ADDVG1VPVOR1NF,CNTVG3VG2VOR1NF,CNTVG2VG2VOR1NF,CNTVG2VD1,CNTVCO1,CNTVG3VZ1,
CNTVG2VZ1,CNTVG3VZ,CNTVG2VZ;
dff DFF_0(CK,CT2,CNTVG3VD);
dff DFF_1(CK,CT1,CNTVG2VD);
dff DFF_2(CK,CT0,CNTVG1VD);
dff DFF_3(CK,ACVQN3,ACVG4VD1);
dff DFF_4(CK,ACVQN2,ACVG3VD1);
dff DFF_5(CK,ACVQN1,ACVG2VD1);
dff DFF_6(CK,ACVQN0,ACVG1VD1);
dff DFF_7(CK,MRVQN3,MRVG4VD);
dff DFF_8(CK,MRVQN2,MRVG3VD);
dff DFF_9(CK,MRVQN1,MRVG2VD);
dff DFF_10(CK,MRVQN0,MRVG1VD);
dff DFF_11(CK,AX3,AM3);
dff DFF_12(CK,AX2,AM2);
dff DFF_13(CK,AX1,AM1);
dff DFF_14(CK,AX0,AM0);
not NOT_0(CNTVG3VQN,CT2);
not NOT_1(CNTVG2VQN,CT1);
not NOT_2(CNTVG1VQN,CT0);
not NOT_3(P7,ACVQN3);
not NOT_4(P6,ACVQN2);
not NOT_5(P5,ACVQN1);
not NOT_6(P4,ACVQN0);
not NOT_7(P3,MRVQN3);
not NOT_8(P2,MRVQN2);
not NOT_9(P1,MRVQN1);
not NOT_10(P0,MRVQN0);
not NOT_11(CNTVCON0,CT0);
not NOT_12(CT1N,CT1);
not NOT_13(ACVPCN,START);
not NOT_14(CNTVCO0,CNTVG1VQN);
not NOT_15(AMVS0N,IINIIT);
not NOT_16(READY,READYN);
not NOT_17(BMVS0N,READYN);
not NOT_18(AMVG5VS0P,AMVS0N);
not NOT_19(AMVG4VS0P,AMVS0N);
not NOT_20(AMVG3VS0P,AMVS0N);
not NOT_21(AMVG2VS0P,AMVS0N);
not NOT_22(AD0,AD0N);
not NOT_23(AD1,AD1N);
not NOT_24(AD2,AD2N);
not NOT_25(AD3,AD3N);
not NOT_26(CNTVG3VD1,CNTVCON1);
not NOT_27(CNTVG1VD1,READY);
not NOT_28(BMVG5VS0P,BMVS0N);
not NOT_29(BMVG4VS0P,BMVS0N);
not NOT_30(BMVG3VS0P,BMVS0N);
not NOT_31(BMVG2VS0P,BMVS0N);
not NOT_32(SMVS0N,ADSH);
not NOT_33(MRVSHLDN,ADSH);
not NOT_34(ADDVC1,ADDVG1VCN);
not NOT_35(SMVG5VS0P,SMVS0N);
not NOT_36(SMVG4VS0P,SMVS0N);
not NOT_37(SMVG3VS0P,SMVS0N);
not NOT_38(SMVG2VS0P,SMVS0N);
not NOT_39(CNTVG1VZ,CNTVG1VZ1);
not NOT_40(AM3,AMVG5VX);
not NOT_41(AM2,AMVG4VX);
not NOT_42(AM1,AMVG3VX);
not NOT_43(AM0,AMVG2VX);
not NOT_44(S0,ADDVG1VP);
not NOT_45(BM3,BMVG5VX);
not NOT_46(BM2,BMVG4VX);
not NOT_47(BM1,BMVG3VX);
not NOT_48(BM0,BMVG2VX);
not NOT_49(ADDVC2,ADDVG2VCN);
not NOT_50(S1,ADDVG2VSN);
not NOT_51(ADDVC3,ADDVG3VCN);
not NOT_52(S2,ADDVG3VSN);
not NOT_53(SM0,SMVG2VX);
not NOT_54(CO,ADDVG4VCN);
not NOT_55(S3,ADDVG4VSN);
not NOT_56(SM1,SMVG3VX);
not NOT_57(SM3,SMVG5VX);
not NOT_58(SM2,SMVG4VX);
and AND2_0(AMVG5VG1VAD1NF,AMVS0N,AX3);
and AND2_1(AMVG4VG1VAD1NF,AMVS0N,AX2);
and AND2_2(AMVG3VG1VAD1NF,AMVS0N,AX1);
and AND2_3(AMVG2VG1VAD1NF,AMVS0N,AX0);
and AND2_4(BMVG5VG1VAD1NF,BMVS0N,P3);
and AND2_5(BMVG4VG1VAD1NF,BMVS0N,P2);
and AND2_6(BMVG3VG1VAD1NF,BMVS0N,P1);
and AND2_7(BMVG2VG1VAD1NF,BMVS0N,P0);
and AND2_8(AMVG5VG1VAD2NF,AMVG5VS0P,A3);
and AND2_9(AMVG4VG1VAD2NF,AMVG4VS0P,A2);
and AND2_10(AMVG3VG1VAD2NF,AMVG3VS0P,A1);
and AND2_11(AMVG2VG1VAD2NF,AMVG2VS0P,A0);
and AND2_12(ADDVG2VCNVAD1NF,AD1,P5);
and AND2_13(ADDVG3VCNVAD1NF,AD2,P6);
and AND2_14(ADDVG4VCNVAD1NF,AD3,P7);
and AND2_15(MRVG3VDVAD1NF,ADSH,P3);
and AND2_16(MRVG2VDVAD1NF,ADSH,P2);
and AND2_17(MRVG1VDVAD1NF,ADSH,P1);
and AND2_18(BMVG5VG1VAD2NF,BMVG5VS0P,B3);
and AND2_19(BMVG4VG1VAD2NF,BMVG4VS0P,B2);
and AND2_20(BMVG3VG1VAD2NF,BMVG3VS0P,B1);
and AND2_21(BMVG2VG1VAD2NF,BMVG2VS0P,B0);
and AND2_22(SMVG5VG1VAD1NF,SMVS0N,P7);
and AND2_23(SMVG4VG1VAD1NF,SMVS0N,P6);
and AND2_24(SMVG3VG1VAD1NF,SMVS0N,P5);
and AND2_25(SMVG2VG1VAD1NF,SMVS0N,P4);
and AND3_0(ADDVG2VCNVAD4NF,ADDVC1,AD1,P5);
and AND2_26(ADDVG2VCNVAD2NF,ADDVC1,ADDVG2VCNVOR1NF);
and AND2_27(MRVG4VDVAD1NF,ADSH,S0);
and AND2_28(MRVG4VDVAD2NF,MRVSHLDN,BM3);
and AND2_29(MRVG3VDVAD2NF,MRVSHLDN,BM2);
and AND2_30(MRVG2VDVAD2NF,MRVSHLDN,BM1);
and AND2_31(MRVG1VDVAD2NF,MRVSHLDN,BM0);
and AND2_32(ADDVG2VCNVAD3NF,ADDVG2VCNVOR2NF,ADDVG2VCN);
and AND3_1(ADDVG3VCNVAD4NF,ADDVC2,AD2,P6);
and AND2_33(ADDVG3VCNVAD2NF,ADDVC2,ADDVG3VCNVOR1NF);
and AND2_34(ADDVG3VCNVAD3NF,ADDVG3VCNVOR2NF,ADDVG3VCN);
and AND2_35(SMVG2VG1VAD2NF,SMVG2VS0P,S1);
and AND3_2(ADDVG4VCNVAD4NF,ADDVC3,AD3,P7);
and AND2_36(ADDVG4VCNVAD2NF,ADDVC3,ADDVG4VCNVOR1NF);
and AND2_37(ADDVG4VCNVAD3NF,ADDVG4VCNVOR2NF,ADDVG4VCN);
and AND2_38(SMVG3VG1VAD2NF,SMVG3VS0P,S2);
and AND2_39(SMVG5VG1VAD2NF,SMVG5VS0P,CO);
and AND2_40(SMVG4VG1VAD2NF,SMVG4VS0P,S3);
or OR2_0(ADDVG1VPVOR1NF,AD0,P4);
or OR2_1(ADDVG2VCNVOR1NF,AD1,P5);
or OR2_2(ADDVG3VCNVOR1NF,AD2,P6);
or OR2_3(ADDVG4VCNVOR1NF,AD3,P7);
or OR2_4(CNTVG3VG2VOR1NF,CT2,CNTVG3VD1);
or OR2_5(CNTVG2VG2VOR1NF,CT1,CNTVG2VD1);
or OR3_0(ADDVG2VCNVOR2NF,ADDVC1,AD1,P5);
or OR3_1(ADDVG3VCNVOR2NF,ADDVC2,AD2,P6);
or OR3_2(ADDVG4VCNVOR2NF,ADDVC3,AD3,P7);
nand NAND3_0(READYN,CT0,CT1N,CT2);
nand NAND2_0(AD0N,P0,AX0);
nand NAND2_1(AD1N,P0,AX1);
nand NAND2_2(AD2N,P0,AX2);
nand NAND2_3(AD3N,P0,AX3);
nand NAND2_4(CNTVCON1,CT1,CNTVCO0);
nand NAND2_5(CNTVCON2,CT2,CNTVCO1);
nand NAND2_6(ADDVG1VCN,AD0,P4);
nand NAND2_7(CNTVG3VZ1,CT2,CNTVG3VD1);
nand NAND2_8(CNTVG2VZ1,CT1,CNTVG2VD1);
nand NAND2_9(CNTVG1VZ1,CT0,CNTVG1VD1);
nand NAND2_10(ADDVG1VP,ADDVG1VPVOR1NF,ADDVG1VCN);
nand NAND2_11(CNTVG3VZ,CNTVG3VG2VOR1NF,CNTVG3VZ1);
nand NAND2_12(CNTVG2VZ,CNTVG2VG2VOR1NF,CNTVG2VZ1);
nand NAND2_13(ACVG1VD1,ACVPCN,SM0);
nand NAND2_14(ACVG2VD1,ACVPCN,SM1);
nand NAND2_15(ACVG4VD1,ACVPCN,SM3);
nand NAND2_16(ACVG3VD1,ACVPCN,SM2);
nor NOR3_0(IINIIT,CT0,CT1,CT2);
nor NOR2_0(CNTVCO1,CNTVG2VQN,CNTVCON0);
nor NOR2_1(CNTVCO2,CNTVG3VQN,CNTVCON1);
nor NOR2_2(ADSH,READY,IINIIT);
nor NOR2_3(CNTVG2VD1,READY,CNTVCON0);
nor NOR2_4(AMVG5VX,AMVG5VG1VAD2NF,AMVG5VG1VAD1NF);
nor NOR2_5(AMVG4VX,AMVG4VG1VAD2NF,AMVG4VG1VAD1NF);
nor NOR2_6(AMVG3VX,AMVG3VG1VAD2NF,AMVG3VG1VAD1NF);
nor NOR2_7(AMVG2VX,AMVG2VG1VAD2NF,AMVG2VG1VAD1NF);
nor NOR2_8(BMVG5VX,BMVG5VG1VAD2NF,BMVG5VG1VAD1NF);
nor NOR2_9(BMVG4VX,BMVG4VG1VAD2NF,BMVG4VG1VAD1NF);
nor NOR2_10(BMVG3VX,BMVG3VG1VAD2NF,BMVG3VG1VAD1NF);
nor NOR2_11(BMVG2VX,BMVG2VG1VAD2NF,BMVG2VG1VAD1NF);
nor NOR2_12(CNTVG3VD,CNTVG3VZ,START);
nor NOR2_13(CNTVG2VD,CNTVG2VZ,START);
nor NOR2_14(CNTVG1VD,CNTVG1VZ,START);
nor NOR2_15(ADDVG2VCN,ADDVG2VCNVAD2NF,ADDVG2VCNVAD1NF);
nor NOR2_16(MRVG4VD,MRVG4VDVAD2NF,MRVG4VDVAD1NF);
nor NOR2_17(MRVG3VD,MRVG3VDVAD2NF,MRVG3VDVAD1NF);
nor NOR2_18(MRVG2VD,MRVG2VDVAD2NF,MRVG2VDVAD1NF);
nor NOR2_19(MRVG1VD,MRVG1VDVAD2NF,MRVG1VDVAD1NF);
nor NOR2_20(ADDVG2VSN,ADDVG2VCNVAD4NF,ADDVG2VCNVAD3NF);
nor NOR2_21(ADDVG3VCN,ADDVG3VCNVAD2NF,ADDVG3VCNVAD1NF);
nor NOR2_22(ADDVG3VSN,ADDVG3VCNVAD4NF,ADDVG3VCNVAD3NF);
nor NOR2_23(SMVG2VX,SMVG2VG1VAD2NF,SMVG2VG1VAD1NF);
nor NOR2_24(ADDVG4VCN,ADDVG4VCNVAD2NF,ADDVG4VCNVAD1NF);
nor NOR2_25(ADDVG4VSN,ADDVG4VCNVAD4NF,ADDVG4VCNVAD3NF);
nor NOR2_26(SMVG3VX,SMVG3VG1VAD2NF,SMVG3VG1VAD1NF);
nor NOR2_27(SMVG5VX,SMVG5VG1VAD2NF,SMVG5VG1VAD1NF);
nor NOR2_28(SMVG4VX,SMVG4VG1VAD2NF,SMVG4VG1VAD1NF);
endmodule |
module tld_zxuno (
input wire clk50mhz,
output wire [2:0] r,
output wire [2:0] g,
output wire [2:0] b,
output wire csync,
output wire stdn,
output wire stdnb,
output wire [20:0] sram_addr,
inout wire [7:0] sram_data,
output wire sram_we_n
);
assign stdn = 1'b0; // PAL
assign stdnb = 1'b1;
// Generación de relojes
reg [1:0] divs = 2'b00;
wire wssclk,sysclk;
wire clk14 = divs[0];
wire clk7 = divs[1];
always @(posedge sysclk)
divs <= divs + 1;
relojes los_relojes_del_sistema (
.CLKIN_IN(clk50mhz),
.CLKDV_OUT(wssclk),
.CLKFX_OUT(sysclk),
.CLKIN_IBUFG_OUT(),
.CLK0_OUT(),
.LOCKED_OUT()
);
// Instanciación del sistema
zxuno la_maquina (
.clk(clk7),
.sramclk(sysclk),
.wssclk(wssclk),
.r(r),
.g(g),
.b(b),
.csync(csync),
.sram_addr(sram_addr),
.sram_data(sram_data),
.sram_we_n(sram_we_n)
);
endmodule |
module test_xfcp_mod_i2c_master;
// Parameters
parameter XFCP_ID_TYPE = 16'h2C00;
parameter XFCP_ID_STR = "I2C Master";
parameter XFCP_EXT_ID = 0;
parameter XFCP_EXT_ID_STR = "";
parameter DEFAULT_PRESCALE = 1;
// Inputs
reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [7:0] up_xfcp_in_tdata = 0;
reg up_xfcp_in_tvalid = 0;
reg up_xfcp_in_tlast = 0;
reg up_xfcp_in_tuser = 0;
reg up_xfcp_out_tready = 0;
reg i2c_scl_i = 1;
reg i2c_sda_i = 1;
// Outputs
wire up_xfcp_in_tready;
wire [7:0] up_xfcp_out_tdata;
wire up_xfcp_out_tvalid;
wire up_xfcp_out_tlast;
wire up_xfcp_out_tuser;
wire i2c_scl_o;
wire i2c_scl_t;
wire i2c_sda_o;
wire i2c_sda_t;
initial begin
// myhdl integration
$from_myhdl(
clk,
rst,
current_test,
up_xfcp_in_tdata,
up_xfcp_in_tvalid,
up_xfcp_in_tlast,
up_xfcp_in_tuser,
up_xfcp_out_tready,
i2c_scl_i,
i2c_sda_i
);
$to_myhdl(
up_xfcp_in_tready,
up_xfcp_out_tdata,
up_xfcp_out_tvalid,
up_xfcp_out_tlast,
up_xfcp_out_tuser,
i2c_scl_o,
i2c_scl_t,
i2c_sda_o,
i2c_sda_t
);
// dump file
$dumpfile("test_xfcp_mod_i2c_master.lxt");
$dumpvars(0, test_xfcp_mod_i2c_master);
end
xfcp_mod_i2c_master #(
.XFCP_ID_TYPE(XFCP_ID_TYPE),
.XFCP_ID_STR(XFCP_ID_STR),
.XFCP_EXT_ID(XFCP_EXT_ID),
.XFCP_EXT_ID_STR(XFCP_EXT_ID_STR),
.DEFAULT_PRESCALE(DEFAULT_PRESCALE)
)
UUT (
.clk(clk),
.rst(rst),
.up_xfcp_in_tdata(up_xfcp_in_tdata),
.up_xfcp_in_tvalid(up_xfcp_in_tvalid),
.up_xfcp_in_tready(up_xfcp_in_tready),
.up_xfcp_in_tlast(up_xfcp_in_tlast),
.up_xfcp_in_tuser(up_xfcp_in_tuser),
.up_xfcp_out_tdata(up_xfcp_out_tdata),
.up_xfcp_out_tvalid(up_xfcp_out_tvalid),
.up_xfcp_out_tready(up_xfcp_out_tready),
.up_xfcp_out_tlast(up_xfcp_out_tlast),
.up_xfcp_out_tuser(up_xfcp_out_tuser),
.i2c_scl_i(i2c_scl_i),
.i2c_scl_o(i2c_scl_o),
.i2c_scl_t(i2c_scl_t),
.i2c_sda_i(i2c_sda_i),
.i2c_sda_o(i2c_sda_o),
.i2c_sda_t(i2c_sda_t)
);
endmodule |
module phy_dqs_found_cal #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter NUM_DQSFOUND_CAL = 3 // Number of times to iterate
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
// From the selected byte lane Phaser_IN
input pi_found_dqs,
input pi_dqs_found_all,
// Byte lane selection counter
// output [DQS_CNT_WIDTH:0] pi_stg1_dqs_found_cnt,
// To All byte lane Phaser_INs simulataneously
output reg pi_rst_stg1_cal,
// To hard PHY
// output stg2_done_r,
// To phy_init
output [5:0] rd_data_offset,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks,
output reg dqsfound_retry_done,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
integer l;
reg dqs_found_start_r;
reg [5:0] rd_byte_data_offset[0:RANKS-1];
// reg [DQS_CNT_WIDTH:0] dqs_cnt_r;
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg [1:0] rnk_cnt_r;
// reg [5:0] smallest_data_offset[0:RANKS-1];
reg [5:0] final_data_offset[0:RANKS-1];
reg [5:0] final_data_offset_mc[0:RANKS-1];
reg reg_pi_found_dqs;
reg reg_pi_found_dqs_all;
reg reg_pi_found_dqs_all_r1;
reg pi_rst_stg1_cal_r;
reg [2:0] calib_cnt;
reg dqsfound_retry_r1;
// assign stg2_done_r = init_dqsfound_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks[6*rnk_cnt+:6] = final_data_offset[rnk_cnt];
assign rd_data_offset_ranks_mc[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt];
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
assign rd_data_offset = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r] :
final_data_offset[rnk_cnt_r];
//**************************************************************************
// DQS count to hard PHY during read data offset calibration using
// Phaser_IN Stage1
//**************************************************************************
// assign pi_stg1_dqs_found_cnt = dqs_cnt_r;
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r) begin
reg_pi_found_dqs <= #TCQ 'b0;
reg_pi_found_dqs_all <= #TCQ 1'b0;
end else if (pi_dqs_found_start) begin
reg_pi_found_dqs <= #TCQ pi_found_dqs;
reg_pi_found_dqs_all <= #TCQ pi_dqs_found_all;
end
end
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst || rank_done_r)
calib_cnt <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL -1)) &&
(calib_cnt < NUM_DQSFOUND_CAL))
calib_cnt <= #TCQ calib_cnt + 1;
else
calib_cnt <= #TCQ calib_cnt;
end
// Read data offset value calib all DQSs simulataneously
always @(posedge clk) begin
if (rst || dqsfound_retry) begin
for (l = 0; l < RANKS; l = l + 1) begin: rst_rd_data_offset_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL + 13;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL -1))) begin
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL + 13;
end else if (dqs_found_start_r && ~reg_pi_found_dqs_all &&
detect_pi_found_dqs && ~init_dqsfound_done_r)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] - 1;
end
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r)
init_dqsfound_done_r <= #TCQ 1'b0;
else if (reg_pi_found_dqs_all && ~reg_pi_found_dqs_all_r1) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (reg_pi_found_dqs_all && ~reg_pi_found_dqs_all_r1)
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
reg_pi_found_dqs_all_r1 <= #TCQ reg_pi_found_dqs_all;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst || dqsfound_retry || dqsfound_retry_r1 || pi_rst_stg1_cal_r)
dqsfound_retry_done <= #TCQ 1'b0;
else if (init_dqsfound_done_r)
dqsfound_retry_done <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (reg_pi_found_dqs_all && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1)
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
// Reset read data offset calibration in all DQS Phaser_INs
// after the read data offset value for a rank is determined
// or if within a rank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r)
pi_rst_stg1_cal <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
(dqsfound_retry) ||
(reg_pi_found_dqs && ~pi_dqs_found_all) ||
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL -1)))
pi_rst_stg1_cal <= #TCQ 1'b1;
// else
// pi_rst_stg1_cal <= #TCQ 1'b0;
end
always @(posedge clk)
pi_rst_stg1_cal_r <= #TCQ pi_rst_stg1_cal;
// Determine smallest rd_data_offset value per rank and assign it as the
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
for (i = 0; i < RANKS; i = i + 1) begin: smallest_final_loop
always @(posedge clk) begin
if (rst)
final_data_offset[i] <= #TCQ 'b0;
else if (dqsfound_retry)
final_data_offset[i] <= #TCQ rd_byte_data_offset[i];
else if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
final_data_offset[i] <= #TCQ rd_byte_data_offset[i];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i] <= #TCQ rd_byte_data_offset[i] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i] <= #TCQ rd_byte_data_offset[i];
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
if (rst)
pi_dqs_found_err <= #TCQ 1'b0;
else if (!reg_pi_found_dqs_all && (calib_cnt == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL -1)))
pi_dqs_found_err <= #TCQ 1'b1;
end
endmodule |
module ram_2clk_1w_1r
#(
parameter C_RAM_WIDTH = 32,
parameter C_RAM_DEPTH = 1024
)
(
input CLKA,
input CLKB,
input WEA,
input [clog2s(C_RAM_DEPTH)-1:0] ADDRA,
input [clog2s(C_RAM_DEPTH)-1:0] ADDRB,
input [C_RAM_WIDTH-1:0] DINA,
output [C_RAM_WIDTH-1:0] DOUTB
);
//Local parameters
localparam C_RAM_ADDR_BITS = clog2s(C_RAM_DEPTH);
reg [C_RAM_WIDTH-1:0] rRAM [C_RAM_DEPTH-1:0];
reg [C_RAM_WIDTH-1:0] rDout;
assign DOUTB = rDout;
always @(posedge CLKA) begin
if (WEA)
rRAM[ADDRA] <= #1 DINA;
end
always @(posedge CLKB) begin
rDout <= #1 rRAM[ADDRB];
end
endmodule |
module sky130_fd_sc_hs__ha_1 (
COUT,
SUM ,
A ,
B ,
VPWR,
VGND
);
output COUT;
output SUM ;
input A ;
input B ;
input VPWR;
input VGND;
sky130_fd_sc_hs__ha base (
.COUT(COUT),
.SUM(SUM),
.A(A),
.B(B),
.VPWR(VPWR),
.VGND(VGND)
);
endmodule |
module sky130_fd_sc_hs__ha_1 (
COUT,
SUM ,
A ,
B
);
output COUT;
output SUM ;
input A ;
input B ;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
sky130_fd_sc_hs__ha base (
.COUT(COUT),
.SUM(SUM),
.A(A),
.B(B)
);
endmodule |
module sm (/*AUTOARG*/);
//==================== Constant declarations ==============
`include "autoasciienum_param.v"
//==================== Intermediate Variables =============
reg [3:0] /* synopsys enum En_C14ChipNum */ chip_r;
//==================== DEBUG ASCII CODE =========================
/*AUTOASCIIENUM("chip_r", "chip_r__ascii","Ep_C14ChipNum_")*/
// Beginning of automatic ASCII enum decoding
reg [31:0] chip_r__ascii; // Decode of chip_r
always @(chip_r) begin
case ({chip_r})
EP_C14ChipNum_RNP: chip_r__ascii = "rnp ";
EP_C14ChipNum_SPP: chip_r__ascii = "spp ";
EP_C14ChipNum_SRP: chip_r__ascii = "srp ";
EP_C14ChipNum_SMM2: chip_r__ascii = "smm2";
EP_C14ChipNum_SMM: chip_r__ascii = "smm ";
EP_C14ChipNum_TTE: chip_r__ascii = "tte ";
EP_C14ChipNum_DLE: chip_r__ascii = "dle ";
EP_C14ChipNum_OASP: chip_r__ascii = "oasp";
default: chip_r__ascii = "%Err";
endcase
end
// End of automatics
endmodule |
module controller(clk,clr,in_op,c0,c1,c2,c3,c4,en0,en1,en2,en3,en4,en5,en6,en7,s1,s2);
//Inputs
input clk,clr;
input [3:0]in_op; //OPCODE from IR
//Controls
output reg c1,c2,c3;
output reg [1:0] c0,c4;
//Enables
output en0,en1,en2,en3,en4,en5,en6,en7;
reg en0,en1,en2,en3,en4,en5,en6,en7;
//Select Lines
output reg s2;
output reg [2:0]s1;
//Internals
reg [3:0]opcode;
reg [5:0]curr_state;
reg [5:0]next_state;
//Definitions
`define SIGNALS {c0,c1,c2,c3,c4,en0,en1,en2,en3,en4,en5,en6,en7,s1,s2}
`define ENABLES {en0,en1,en2,en3,en4,en5,en6,en7}
initial begin
curr_state = 6'd0;
next_state = 6'd0;
opcode = 4'bZZZZ;
`SIGNALS = 0;
end
always @(posedge clk) begin
//Update state to the next state
curr_state = next_state;
end
always @(posedge clk) begin
if(clr) begin
//Clear Singals, OPCODE and state
`SIGNALS = 0;
next_state = 6'b0;
opcode = 4'bZZZZ;
end
else begin
opcode = in_op;
//Begin Cycles
case(curr_state)
/////////Fetch Cycle////////////////////////////////////////
6'd0 : begin next_state = 6'd1;
en3 = 1; c3 = 1; // IR <- PM[PC]
end
6'd1 : begin next_state = 6'd2;
en3 = 0;
c0 = 1; //Increment PC
end
6'd2 : begin
c3 = 0;
c0 = 0; //Stop PC incr
next_state = 6'd3;
end
/////////Decode Cycle////////////////////////////////////////
6'd3 : begin
case(opcode)
4'b0000 : begin //HALT
end
4'b0001 : begin //ADD
next_state = 6'd4;
en3 = 0; c3 = 0; //Stop IR Load
en5 = 1; c2 = 1; s2 = 0;//MAR <- IR[5:0];
s1 = 3'b000; //ALU Addition
end
4'b0010 : begin //SUB
next_state = 6'd4;
en3 = 0; c3 = 0; //Stop IR Load
en5 = 1; c2 = 1; s2 = 0;//MAR <- IR[5:0];
s1 = 3'b001; //ALU Subtract
end
4'b0011 : begin //JUMP
en3 = 0; c3 = 0; //Stop IR Load
en5 = 1;c0 = 2'b10; //PC <- IR;
next_state = 6'd7;
end
4'b0100 : begin //LOAD
next_state = 6'd15;
en5 = 1; c2 = 1; s2 = 0;// MAR <- IR[5:0];
end
4'b0101 : begin //Fetch
end
4'bZZZZ : begin
//Keep waiting
end
default : begin
//Invalid OPCODE
end
endcase
end
/////////Execution Cycle////////////////////////////////////////
///////ADD/SUB Instruction//////
6'd4 : begin
c2 = 0;
c0 = 2'b00; //Kill incr signal
en5 = 0; //Disable IR output
en7 = 1; c4 = 1; en6 = 1; c0 = 0; //MDR <- RAM[MAR_out]
next_state = 6'd5;
end
6'd5 : begin
en7 = 0; //Disable RAM
en4 = 1; c4 = 2; //ALU_a <- MDR
next_state = (next_state) + 1;
end
6'd6 : begin
en4 = 0; //Stop ALU
next_state = 6'd63;
end
///////JMP Instruction//////
6'd7 : begin
//Operations Finished in Decode cycle
next_state = 6'd63;
end
///////LOAD Instruction//////
6'd15 : begin
next_state = 6'd16;
en5 = 0; //Disable IR output
c2 = 0;
en3 = 1; // MDR <- PM[PC]
end
6'd16 : begin
//Add Stage RegisterLATER
en3 = 0; //
c4 = 0; en6 = 1; //Load into MDR
next_state = 6'd17;
end
6'd17 : begin next_state = 6'd63;
c0 = 1; //Increment PC
c4 = 3; en7 = 1; c1 = 1; //RAM WRITE
end
///////Reset Cycles/////////
6'd63 : begin next_state = 6'd0;
`SIGNALS = 0;
end
default: begin
//Invalid state
end
endcase
end
end
endmodule |
module read_posted_fifo #
(
parameter TCQ = 100,
parameter FAMILY = "SPARTAN6",
parameter MEM_BURST_LEN = 4,
parameter ADDR_WIDTH = 32,
parameter BL_WIDTH = 6
)
(
input clk_i,
input rst_i,
output reg cmd_rdy_o,
input memc_cmd_full_i,
input cmd_valid_i,
input data_valid_i,
input cmd_start_i,
input [ADDR_WIDTH-1:0] addr_i,
input [BL_WIDTH-1:0] bl_i,
input [2:0] cmd_sent,
input [5:0] bl_sent ,
input cmd_en_i ,
output gen_valid_o,
output [ADDR_WIDTH-1:0] gen_addr_o,
output [BL_WIDTH-1:0] gen_bl_o,
output rd_mdata_en
);
//reg empty_r;
//reg rd_first_data;
reg [10:0] INC_COUNTS;
reg rd_en_r;
wire full;
wire empty;
wire wr_en;
reg mcb_rd_fifo_port_almost_full;
reg [6:0] buf_avail_r;
reg [6:0] rd_data_received_counts;
reg [6:0] rd_data_counts_asked;
reg dfifo_has_enough_room;
reg [1:0] wait_cnt;
reg wait_done;
assign rd_mdata_en = rd_en_r;
generate
if (FAMILY == "SPARTAN6") begin: gen_sp6_cmd_rdy
always @ (posedge clk_i)
cmd_rdy_o <= #TCQ !full & dfifo_has_enough_room ;//& wait_done;
end
endgenerate
generate
if (FAMILY == "VIRTEX6") begin: gen_v6_cmd_rdy
always @ (posedge clk_i)
cmd_rdy_o <= #TCQ !full & wait_done;
end
endgenerate
always @ (posedge clk_i)
begin
if (rst_i)
wait_cnt <= #TCQ 'b0;
else if (cmd_rdy_o && cmd_valid_i)
wait_cnt <= #TCQ 2'b10;
else if (wait_cnt > 0)
wait_cnt <= #TCQ wait_cnt - 1'b1;
end
always @(posedge clk_i)
begin
if (rst_i)
wait_done <= #TCQ 1'b1;
else if (cmd_rdy_o && cmd_valid_i)
wait_done <= #TCQ 1'b0;
else if (wait_cnt == 0)
wait_done <= #TCQ 1'b1;
else
wait_done <= #TCQ 1'b0;
end
reg dfifo_has_enough_room_d1;
always @ (posedge clk_i)
begin
// dfifo_has_enough_room <= 1'b1;// #TCQ (buf_avail_r >= 32 ) ? 1'b1: 1'b0;
dfifo_has_enough_room <= #TCQ (buf_avail_r >= 32 ) ? 1'b1: 1'b0;
dfifo_has_enough_room_d1 <= #TCQ dfifo_has_enough_room ;
end
assign wr_en = cmd_valid_i & !full & dfifo_has_enough_room_d1 & wait_done;
/*localparam MEM_BURST_INT = MEM_BURST_LEN ;
generate
if (FAMILY == "VIRTEX6" ) begin : INC_COUNTS_V
always @ (posedge clk_i) begin
if ( (NUM_DQ_PINS >= 128 && NUM_DQ_PINS <= 144)) //256
INC_COUNTS <= #TCQ 64 * (MEM_BURST_INT/4);
else if ( (NUM_DQ_PINS >= 64 && NUM_DQ_PINS < 128)) //256
INC_COUNTS <= #TCQ 32 * (MEM_BURST_INT/4);
else if ((NUM_DQ_PINS >= 32) && (NUM_DQ_PINS < 64)) //128
INC_COUNTS <= #TCQ 16 * (MEM_BURST_INT/4) ;
else if ((NUM_DQ_PINS == 16) || (NUM_DQ_PINS == 24)) //64
INC_COUNTS <= #TCQ 8 * (MEM_BURST_INT/4);
else if ((NUM_DQ_PINS == 8) )
INC_COUNTS <= #TCQ 4 * (MEM_BURST_INT/4);
end
end
endgenerate
*/
always @ (posedge clk_i)
begin
if (rst_i) begin
rd_data_counts_asked <= #TCQ 'b0;
end
else if (cmd_en_i && cmd_sent[0] == 1 && ~memc_cmd_full_i) begin
// if (FAMILY == "SPARTAN6)
// rd_data_counts_asked <= #TCQ rd_data_counts_asked + (bl_sent + 7'b0000001) ;
// else
// begin
// if (MEM_BURST_LEN == 8)
rd_data_counts_asked <= #TCQ rd_data_counts_asked + 1'b1 ;
end
end
always @ (posedge clk_i)
begin
if (rst_i) begin
rd_data_received_counts <= #TCQ 'b0;
end
else if (data_valid_i) begin
rd_data_received_counts <= #TCQ rd_data_received_counts + 1'b1;
end
end
// calculate how many buf still available
always @ (posedge clk_i)
buf_avail_r <= #TCQ (rd_data_received_counts + 7'd64) - rd_data_counts_asked;
always @ (posedge clk_i) begin
rd_en_r <= #TCQ cmd_start_i;
// empty_r <= #TCQ empty;
end
// always @ (posedge clk_i)
// begin
// if (rst_i)
// rd_first_data <= #TCQ 1'b0;
// else if (~empty && empty_r)
// rd_first_data <= #TCQ 1'b1;
// end
assign gen_valid_o = !empty;
afifo #
(
.TCQ (TCQ),
.DSIZE (BL_WIDTH+ADDR_WIDTH),
.FIFO_DEPTH (16),
.ASIZE (4),
.SYNC (1) // set the SYNC to 1 because rd_clk = wr_clk to reduce latency
)
rd_fifo
(
.wr_clk (clk_i),
.rst (rst_i),
.wr_en (wr_en),
.wr_data ({bl_i,addr_i}),
.rd_en (rd_en_r),
.rd_clk (clk_i),
.rd_data ({gen_bl_o,gen_addr_o}),
.full (full),
.empty (empty),
.almost_full ()
);
endmodule |
module sky130_fd_sc_hdll__and4bb (
X ,
A_N,
B_N,
C ,
D
);
// Module ports
output X ;
input A_N;
input B_N;
input C ;
input D ;
// Module supplies
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
// Local signals
wire nor0_out ;
wire and0_out_X;
// Name Output Other arguments
nor nor0 (nor0_out , A_N, B_N );
and and0 (and0_out_X, nor0_out, C, D );
buf buf0 (X , and0_out_X );
endmodule |
module mult_unit (
dataa,
datab,
result);
input [35:0] dataa;
input [35:0] datab;
output [71:0] result;
endmodule |
module sky130_fd_sc_hdll__a2bb2oi (
Y ,
A1_N,
A2_N,
B1 ,
B2
);
output Y ;
input A1_N;
input A2_N;
input B1 ;
input B2 ;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
endmodule |
module control(
input wire clk,
input wire en,
input wire rst,
input wire en_mem,
input wire mem_wait,
input wire should_branch,
input wire imm,
output reg [`CONTROL_BIT_MAX:0] control_o,
output reg [1:0] pc_op
);
localparam // auto enum state_info
RST = 0,
FETCH = 4'h1,
DECODE = 4'h2,
REG_READ = 4'h3,
ALU = 4'h4,
MEM = 4'h5,
REG_WR = 4'h6,
PC_DELAY = 4'h7,
MEM_DELAY = 4'h8;
reg [3:0] // auto enum state_info
state, next_state;
always @(posedge clk) begin
if(rst)
state <= 0;
else if(en)
state <= next_state;
end // always @ (posedge clk)
always @(/*AUTOSENSE*/should_branch or state) begin
control_o <= 0;
case(state)
FETCH:
control_o[`BIT_FETCH] <= 1;
DECODE:
control_o[`BIT_DECODE] <= 1;
REG_READ:
control_o[`BIT_REG_READ] <= 1;
ALU:
control_o[`BIT_ALU] <= 1;
REG_WR:begin
if(!should_branch)
control_o[`BIT_FETCH] <= 1;
control_o[`BIT_REG_WR] <= 1;
end
MEM:
control_o[`BIT_MEM] <= 1;
PC_DELAY:
control_o[`BIT_PC_DELAY] <= 1;
default:
control_o <= 0;
endcase // case (state)
end
always @(/*AS*/imm or should_branch or state) begin
pc_op <= `PC_NOP;
case(state)
RST:
pc_op <= `PC_RESET;
REG_READ:
if(imm)
pc_op <= `PC_INC;
FETCH:
pc_op <= `PC_INC;
REG_WR:
if(!should_branch)
pc_op <= `PC_INC;
else
pc_op <= `PC_SET;
endcase // case (state)
end
always @(/*AS*/en_mem or mem_wait or should_branch or state) begin
case(state)
FETCH:
next_state <= DECODE;
DECODE:
next_state <= REG_READ;
REG_READ:
next_state <= ALU;
ALU:
if(en_mem)
next_state <= MEM;
else
next_state <= REG_WR;
MEM:
if(mem_wait)
next_state <= MEM;
else
next_state <= MEM_DELAY;
REG_WR:
if(should_branch)
next_state <= PC_DELAY;
else
next_state <= DECODE;
PC_DELAY:
next_state <= FETCH;
MEM_DELAY:
next_state <= REG_WR;
default:
next_state <= FETCH;
endcase // case (state)
end
/*AUTOASCIIENUM("state", "state_ascii")*/
// Beginning of automatic ASCII enum decoding
reg [71:0] state_ascii; // Decode of state
always @(state) begin
case ({state})
RST: state_ascii = "rst ";
FETCH: state_ascii = "fetch ";
DECODE: state_ascii = "decode ";
REG_READ: state_ascii = "reg_read ";
ALU: state_ascii = "alu ";
MEM: state_ascii = "mem ";
REG_WR: state_ascii = "reg_wr ";
PC_DELAY: state_ascii = "pc_delay ";
MEM_DELAY: state_ascii = "mem_delay";
default: state_ascii = "%Error ";
endcase
end
// End of automatics
endmodule |
module sky130_fd_sc_ls__o311ai (
//# {{data|Data Signals}}
input A1,
input A2,
input A3,
input B1,
input C1,
output Y
);
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
endmodule |
module hpdmc_obuft4(
input [1:0] T,
input [1:0] I,
output [1:0] O
);
OBUFT obuft0(
.T(T[0]),
.I(I[0]),
.O(O[0])
);
OBUFT obuft1(
.T(T[1]),
.I(I[1]),
.O(O[1])
);
endmodule |
module convolve_kernel_fcud
#(parameter
ID = 8,
NUM_STAGE = 5,
din0_WIDTH = 32,
din1_WIDTH = 32,
dout_WIDTH = 32
)(
input wire clk,
input wire reset,
input wire ce,
input wire [din0_WIDTH-1:0] din0,
input wire [din1_WIDTH-1:0] din1,
output wire [dout_WIDTH-1:0] dout
);
//------------------------Local signal-------------------
wire aclk;
wire aclken;
wire a_tvalid;
wire [31:0] a_tdata;
wire b_tvalid;
wire [31:0] b_tdata;
wire r_tvalid;
wire [31:0] r_tdata;
reg [din0_WIDTH-1:0] din0_buf1;
reg [din1_WIDTH-1:0] din1_buf1;
//------------------------Instantiation------------------
convolve_kernel_ap_fmul_3_max_dsp_32 convolve_kernel_ap_fmul_3_max_dsp_32_u (
.aclk ( aclk ),
.aclken ( aclken ),
.s_axis_a_tvalid ( a_tvalid ),
.s_axis_a_tdata ( a_tdata ),
.s_axis_b_tvalid ( b_tvalid ),
.s_axis_b_tdata ( b_tdata ),
.m_axis_result_tvalid ( r_tvalid ),
.m_axis_result_tdata ( r_tdata )
);
//------------------------Body---------------------------
assign aclk = clk;
assign aclken = ce;
assign a_tvalid = 1'b1;
assign a_tdata = din0_buf1;
assign b_tvalid = 1'b1;
assign b_tdata = din1_buf1;
assign dout = r_tdata;
always @(posedge clk) begin
if (ce) begin
din0_buf1 <= din0;
din1_buf1 <= din1;
end
end
endmodule |
module sky130_fd_sc_hdll__o221a (
X ,
A1 ,
A2 ,
B1 ,
B2 ,
C1 ,
VPWR,
VGND,
VPB ,
VNB
);
output X ;
input A1 ;
input A2 ;
input B1 ;
input B2 ;
input C1 ;
input VPWR;
input VGND;
input VPB ;
input VNB ;
endmodule |
module sky130_fd_sc_hs__o22ai (
VPWR,
VGND,
Y ,
A1 ,
A2 ,
B1 ,
B2
);
// Module ports
input VPWR;
input VGND;
output Y ;
input A1 ;
input A2 ;
input B1 ;
input B2 ;
// Local signals
wire B2 nor0_out ;
wire B2 nor1_out ;
wire or0_out_Y ;
wire u_vpwr_vgnd0_out_Y;
// Name Output Other arguments
nor nor0 (nor0_out , B1, B2 );
nor nor1 (nor1_out , A1, A2 );
or or0 (or0_out_Y , nor1_out, nor0_out );
sky130_fd_sc_hs__u_vpwr_vgnd u_vpwr_vgnd0 (u_vpwr_vgnd0_out_Y, or0_out_Y, VPWR, VGND);
buf buf0 (Y , u_vpwr_vgnd0_out_Y );
endmodule |
module decalper_eb_ot_sdeen_pot_pi_dehcac_xnilix(slowest_sync_clk, ext_reset_in, aux_reset_in,
mb_debug_sys_rst, dcm_locked, mb_reset, bus_struct_reset, peripheral_reset,
interconnect_aresetn, peripheral_aresetn)
/* synthesis syn_black_box black_box_pad_pin="slowest_sync_clk,ext_reset_in,aux_reset_in,mb_debug_sys_rst,dcm_locked,mb_reset,bus_struct_reset[0:0],peripheral_reset[0:0],interconnect_aresetn[0:0],peripheral_aresetn[0:0]" */;
input slowest_sync_clk;
input ext_reset_in;
input aux_reset_in;
input mb_debug_sys_rst;
input dcm_locked;
output mb_reset;
output [0:0]bus_struct_reset;
output [0:0]peripheral_reset;
output [0:0]interconnect_aresetn;
output [0:0]peripheral_aresetn;
endmodule |
module LFSR (
clock, reset, enable,
out_data
);
// ### Parameters
parameter
WIDTH = 32,
POLYNOMIAL = 32'h04C11DB7, // Standard 802.3 CRC32 polynomial
INITIAL_VALUE = {32{1'b1}}, // `INITIAL_VALUE` must be `LENGTH * `WIDTH` bits wide.
RESET_VALUE = {32{1'b1}}; // `RESET_VALUE` must be `LENGTH * `WIDTH` bits wide.
// ### I/O ports
input clock;
input reset;
input enable;
output [WIDTH-1:0] out_data;
// ### Internal wires
wire [WIDTH-1:0] polynomial_xor;
wire [WIDTH-1:0] next_data;
// ### Combinational logic
//genvar i;
//generate
// for (i = 0; i < WIDTH; i = i+1) begin: polynomial
// assign polynomial_xor[i] = out_data ^ POLYNOMIAL[i];
// end
//endgenerate
assign polynomial_xor = {WIDTH{out_data[0]}} & POLYNOMIAL;
assign next_data = ( {1'b1, {out_data[WIDTH-1:1]}} ^ polynomial_xor);
// ### Module instantiations
Register #(
.WIDTH( WIDTH),
.INITIAL_VALUE( INITIAL_VALUE),
.RESET_VALUE( RESET_VALUE)
) register (
.clock( clock),
.reset( reset),
.enable( enable),
.in_data( next_data),
.out_data( out_data) );
endmodule |
module ovl_even_parity (clock, reset, enable, test_expr, fire);
parameter severity_level = `OVL_SEVERITY_DEFAULT;
parameter width = 1;
parameter property_type = `OVL_PROPERTY_DEFAULT;
parameter msg = `OVL_MSG_DEFAULT;
parameter coverage_level = `OVL_COVER_DEFAULT;
parameter clock_edge = `OVL_CLOCK_EDGE_DEFAULT;
parameter reset_polarity = `OVL_RESET_POLARITY_DEFAULT;
parameter gating_type = `OVL_GATING_TYPE_DEFAULT;
input clock, reset, enable;
input [width-1:0] test_expr;
output [`OVL_FIRE_WIDTH-1:0] fire;
// Parameters that should not be edited
parameter assert_name = "OVL_EVEN_PARITY";
`include "std_ovl_reset.h"
`include "std_ovl_clock.h"
`include "std_ovl_cover.h"
`include "std_ovl_task.h"
`include "std_ovl_init.h"
`ifdef OVL_VERILOG
`include "./vlog95/assert_even_parity_logic.v"
assign fire = {`OVL_FIRE_WIDTH{1'b0}}; // Tied low in V2.3
`endif
`ifdef OVL_SVA
`include "./sva05/assert_even_parity_logic.sv"
assign fire = {`OVL_FIRE_WIDTH{1'b0}}; // Tied low in V2.3
`endif
`ifdef OVL_PSL
assign fire = {`OVL_FIRE_WIDTH{1'b0}}; // Tied low in V2.3
`include "./psl05/assert_even_parity_psl_logic.v"
`else
`endmodule |
module {name} (
input [11:0] address,
output [17:0] instruction,
input enable,
input clk);
//
//
wire [13:0] address_a;
wire [35:0] data_in_a;
wire [35:0] data_out_a_l;
wire [35:0] data_out_a_h;
wire [13:0] address_b;
wire [35:0] data_in_b_l;
wire [35:0] data_out_b_l;
wire [35:0] data_in_b_h;
wire [35:0] data_out_b_h;
wire enable_b;
wire clk_b;
wire [3:0] we_b;
//
//
assign address_a = {address[10:0], 3'b000};
assign instruction = {data_out_a_h[32], data_out_a_h[7:0], data_out_a_l[32], data_out_a_l[7:0]};
assign data_in_a = {35'b00000000000000000000000000000000000, address[11]};
//
assign address_b = 14'b00000000000000;
assign data_in_b_l = {3'h0, data_out_b_l[32], 24'b000000000000000000000000, data_out_b_l[7:0]};
assign data_in_b_h = {3'h0, data_out_b_h[32], 24'b000000000000000000000000, data_out_b_h[7:0]};
assign enable_b = 1'b0;
assign we_b = 4'h0;
assign clk_b = 1'b0;
//
//
//
RAMB16BWER # ( .DATA_WIDTH_A (9),
.DOA_REG (0),
.EN_RSTRAM_A ("FALSE"),
.INIT_A (32'h000000000),
.RST_PRIORITY_A ("CE"),
.SRVAL_A (32'h000000000),
.WRITE_MODE_A ("WRITE_FIRST"),
.DATA_WIDTH_B (9),
.DOB_REG (0),
.EN_RSTRAM_B ("FALSE"),
.INIT_B (32'h000000000),
.RST_PRIORITY_B ("CE"),
.SRVAL_B (32'h000000000),
.WRITE_MODE_B ("WRITE_FIRST"),
.RSTTYPE ("SYNC"),
.INIT_FILE ("NONE"),
.SIM_COLLISION_CHECK ("ALL"),
.SIM_DEVICE ("SPARTAN6"),
.INIT_00 (256'h{[8:0]_INIT_00}),
.INIT_01 (256'h{[8:0]_INIT_01}),
.INIT_02 (256'h{[8:0]_INIT_02}),
.INIT_03 (256'h{[8:0]_INIT_03}),
.INIT_04 (256'h{[8:0]_INIT_04}),
.INIT_05 (256'h{[8:0]_INIT_05}),
.INIT_06 (256'h{[8:0]_INIT_06}),
.INIT_07 (256'h{[8:0]_INIT_07}),
.INIT_08 (256'h{[8:0]_INIT_08}),
.INIT_09 (256'h{[8:0]_INIT_09}),
.INIT_0A (256'h{[8:0]_INIT_0A}),
.INIT_0B (256'h{[8:0]_INIT_0B}),
.INIT_0C (256'h{[8:0]_INIT_0C}),
.INIT_0D (256'h{[8:0]_INIT_0D}),
.INIT_0E (256'h{[8:0]_INIT_0E}),
.INIT_0F (256'h{[8:0]_INIT_0F}),
.INIT_10 (256'h{[8:0]_INIT_10}),
.INIT_11 (256'h{[8:0]_INIT_11}),
.INIT_12 (256'h{[8:0]_INIT_12}),
.INIT_13 (256'h{[8:0]_INIT_13}),
.INIT_14 (256'h{[8:0]_INIT_14}),
.INIT_15 (256'h{[8:0]_INIT_15}),
.INIT_16 (256'h{[8:0]_INIT_16}),
.INIT_17 (256'h{[8:0]_INIT_17}),
.INIT_18 (256'h{[8:0]_INIT_18}),
.INIT_19 (256'h{[8:0]_INIT_19}),
.INIT_1A (256'h{[8:0]_INIT_1A}),
.INIT_1B (256'h{[8:0]_INIT_1B}),
.INIT_1C (256'h{[8:0]_INIT_1C}),
.INIT_1D (256'h{[8:0]_INIT_1D}),
.INIT_1E (256'h{[8:0]_INIT_1E}),
.INIT_1F (256'h{[8:0]_INIT_1F}),
.INIT_20 (256'h{[8:0]_INIT_20}),
.INIT_21 (256'h{[8:0]_INIT_21}),
.INIT_22 (256'h{[8:0]_INIT_22}),
.INIT_23 (256'h{[8:0]_INIT_23}),
.INIT_24 (256'h{[8:0]_INIT_24}),
.INIT_25 (256'h{[8:0]_INIT_25}),
.INIT_26 (256'h{[8:0]_INIT_26}),
.INIT_27 (256'h{[8:0]_INIT_27}),
.INIT_28 (256'h{[8:0]_INIT_28}),
.INIT_29 (256'h{[8:0]_INIT_29}),
.INIT_2A (256'h{[8:0]_INIT_2A}),
.INIT_2B (256'h{[8:0]_INIT_2B}),
.INIT_2C (256'h{[8:0]_INIT_2C}),
.INIT_2D (256'h{[8:0]_INIT_2D}),
.INIT_2E (256'h{[8:0]_INIT_2E}),
.INIT_2F (256'h{[8:0]_INIT_2F}),
.INIT_30 (256'h{[8:0]_INIT_30}),
.INIT_31 (256'h{[8:0]_INIT_31}),
.INIT_32 (256'h{[8:0]_INIT_32}),
.INIT_33 (256'h{[8:0]_INIT_33}),
.INIT_34 (256'h{[8:0]_INIT_34}),
.INIT_35 (256'h{[8:0]_INIT_35}),
.INIT_36 (256'h{[8:0]_INIT_36}),
.INIT_37 (256'h{[8:0]_INIT_37}),
.INIT_38 (256'h{[8:0]_INIT_38}),
.INIT_39 (256'h{[8:0]_INIT_39}),
.INIT_3A (256'h{[8:0]_INIT_3A}),
.INIT_3B (256'h{[8:0]_INIT_3B}),
.INIT_3C (256'h{[8:0]_INIT_3C}),
.INIT_3D (256'h{[8:0]_INIT_3D}),
.INIT_3E (256'h{[8:0]_INIT_3E}),
.INIT_3F (256'h{[8:0]_INIT_3F}),
.INITP_00 (256'h{[8:0]_INITP_00}),
.INITP_01 (256'h{[8:0]_INITP_01}),
.INITP_02 (256'h{[8:0]_INITP_02}),
.INITP_03 (256'h{[8:0]_INITP_03}),
.INITP_04 (256'h{[8:0]_INITP_04}),
.INITP_05 (256'h{[8:0]_INITP_05}),
.INITP_06 (256'h{[8:0]_INITP_06}),
.INITP_07 (256'h{[8:0]_INITP_07}))
kcpsm6_rom_l( .ADDRA (address_a),
.ENA (enable),
.CLKA (clk),
.DOA (data_out_a_l[31:0]),
.DOPA (data_out_a_l[35:32]),
.DIA (data_in_a[31:0]),
.DIPA (data_in_a[35:32]),
.WEA (4'h0),
.REGCEA (1'b0),
.RSTA (1'b0),
.ADDRB (address_b),
.ENB (enable_b),
.CLKB (clk_b),
.DOB (data_out_b_l[31:0]),
.DOPB (data_out_b_l[35:32]),
.DIB (data_in_b_l[31:0]),
.DIPB (data_in_b_l[35:32]),
.WEB (we_b),
.REGCEB (1'b0),
.RSTB (1'b0));
//
//
//
RAMB16BWER # ( .DATA_WIDTH_A (9),
.DOA_REG (0),
.EN_RSTRAM_A ("FALSE"),
.INIT_A (32'h000000000),
.RST_PRIORITY_A ("CE"),
.SRVAL_A (32'h000000000),
.WRITE_MODE_A ("WRITE_FIRST"),
.DATA_WIDTH_B (9),
.DOB_REG (0),
.EN_RSTRAM_B ("FALSE"),
.INIT_B (32'h000000000),
.RST_PRIORITY_B ("CE"),
.SRVAL_B (32'h000000000),
.WRITE_MODE_B ("WRITE_FIRST"),
.RSTTYPE ("SYNC"),
.INIT_FILE ("NONE"),
.SIM_COLLISION_CHECK ("ALL"),
.SIM_DEVICE ("SPARTAN6"),
.INIT_00 (256'h{[17:9]_INIT_00}),
.INIT_01 (256'h{[17:9]_INIT_01}),
.INIT_02 (256'h{[17:9]_INIT_02}),
.INIT_03 (256'h{[17:9]_INIT_03}),
.INIT_04 (256'h{[17:9]_INIT_04}),
.INIT_05 (256'h{[17:9]_INIT_05}),
.INIT_06 (256'h{[17:9]_INIT_06}),
.INIT_07 (256'h{[17:9]_INIT_07}),
.INIT_08 (256'h{[17:9]_INIT_08}),
.INIT_09 (256'h{[17:9]_INIT_09}),
.INIT_0A (256'h{[17:9]_INIT_0A}),
.INIT_0B (256'h{[17:9]_INIT_0B}),
.INIT_0C (256'h{[17:9]_INIT_0C}),
.INIT_0D (256'h{[17:9]_INIT_0D}),
.INIT_0E (256'h{[17:9]_INIT_0E}),
.INIT_0F (256'h{[17:9]_INIT_0F}),
.INIT_10 (256'h{[17:9]_INIT_10}),
.INIT_11 (256'h{[17:9]_INIT_11}),
.INIT_12 (256'h{[17:9]_INIT_12}),
.INIT_13 (256'h{[17:9]_INIT_13}),
.INIT_14 (256'h{[17:9]_INIT_14}),
.INIT_15 (256'h{[17:9]_INIT_15}),
.INIT_16 (256'h{[17:9]_INIT_16}),
.INIT_17 (256'h{[17:9]_INIT_17}),
.INIT_18 (256'h{[17:9]_INIT_18}),
.INIT_19 (256'h{[17:9]_INIT_19}),
.INIT_1A (256'h{[17:9]_INIT_1A}),
.INIT_1B (256'h{[17:9]_INIT_1B}),
.INIT_1C (256'h{[17:9]_INIT_1C}),
.INIT_1D (256'h{[17:9]_INIT_1D}),
.INIT_1E (256'h{[17:9]_INIT_1E}),
.INIT_1F (256'h{[17:9]_INIT_1F}),
.INIT_20 (256'h{[17:9]_INIT_20}),
.INIT_21 (256'h{[17:9]_INIT_21}),
.INIT_22 (256'h{[17:9]_INIT_22}),
.INIT_23 (256'h{[17:9]_INIT_23}),
.INIT_24 (256'h{[17:9]_INIT_24}),
.INIT_25 (256'h{[17:9]_INIT_25}),
.INIT_26 (256'h{[17:9]_INIT_26}),
.INIT_27 (256'h{[17:9]_INIT_27}),
.INIT_28 (256'h{[17:9]_INIT_28}),
.INIT_29 (256'h{[17:9]_INIT_29}),
.INIT_2A (256'h{[17:9]_INIT_2A}),
.INIT_2B (256'h{[17:9]_INIT_2B}),
.INIT_2C (256'h{[17:9]_INIT_2C}),
.INIT_2D (256'h{[17:9]_INIT_2D}),
.INIT_2E (256'h{[17:9]_INIT_2E}),
.INIT_2F (256'h{[17:9]_INIT_2F}),
.INIT_30 (256'h{[17:9]_INIT_30}),
.INIT_31 (256'h{[17:9]_INIT_31}),
.INIT_32 (256'h{[17:9]_INIT_32}),
.INIT_33 (256'h{[17:9]_INIT_33}),
.INIT_34 (256'h{[17:9]_INIT_34}),
.INIT_35 (256'h{[17:9]_INIT_35}),
.INIT_36 (256'h{[17:9]_INIT_36}),
.INIT_37 (256'h{[17:9]_INIT_37}),
.INIT_38 (256'h{[17:9]_INIT_38}),
.INIT_39 (256'h{[17:9]_INIT_39}),
.INIT_3A (256'h{[17:9]_INIT_3A}),
.INIT_3B (256'h{[17:9]_INIT_3B}),
.INIT_3C (256'h{[17:9]_INIT_3C}),
.INIT_3D (256'h{[17:9]_INIT_3D}),
.INIT_3E (256'h{[17:9]_INIT_3E}),
.INIT_3F (256'h{[17:9]_INIT_3F}),
.INITP_00 (256'h{[17:9]_INITP_00}),
.INITP_01 (256'h{[17:9]_INITP_01}),
.INITP_02 (256'h{[17:9]_INITP_02}),
.INITP_03 (256'h{[17:9]_INITP_03}),
.INITP_04 (256'h{[17:9]_INITP_04}),
.INITP_05 (256'h{[17:9]_INITP_05}),
.INITP_06 (256'h{[17:9]_INITP_06}),
.INITP_07 (256'h{[17:9]_INITP_07}))
kcpsm6_rom_h( .ADDRA (address_a),
.ENA (enable),
.CLKA (clk),
.DOA (data_out_a_h[31:0]),
.DOPA (data_out_a_h[35:32]),
.DIA (data_in_a[31:0]),
.DIPA (data_in_a[35:32]),
.WEA (4'h0),
.REGCEA (1'b0),
.RSTA (1'b0),
.ADDRB (address_b),
.ENB (enable_b),
.CLKB (clk_b),
.DOB (data_out_b_h[31:0]),
.DOPB (data_out_b_h[35:32]),
.DIB (data_in_b_h[31:0]),
.DIPB (data_in_b_h[35:32]),
.WEB (we_b),
.REGCEB (1'b0),
.RSTB (1'b0));
//
//
endmodule |
module templates(
);
endmodule |
module template_6x4_600x400(clk, hc, vc, matrix_x, matrix_y, lines);
input clk;
input [10:0] hc;
input [10:0] vc;
output reg[2:0]matrix_x = 3'd0;//desde 0 hasta 5
output reg[1:0]matrix_y = 2'd0;//desde 0 hasta 3
output reg lines;
parameter d_col=8'b1_1001; //25 ....agregar 2 ceros //25 * 6 = 150
parameter d_row=7'b1_1001; //25 ....agregar 2 ceros //25 * 4 = 100
parameter zeros_col=2'd0;
parameter zeros_row=2'd0;
reg [7:0]col=d_col;
reg [6:0]row=d_row;
reg [7:0]col_next;
reg [6:0]row_next;
reg [2:0]matrix_x_next;
reg [1:0]matrix_y_next;
wire [10:0]hc_template, vc_template;
parameter CUADRILLA_XI = 212;
parameter CUADRILLA_XF = 812;
parameter CUADRILLA_YI = 184;
parameter CUADRILLA_YF = 584;
assign hc_template = ( (hc > CUADRILLA_XI) && (hc <= CUADRILLA_XF) )?hc - CUADRILLA_XI: 11'd0;
assign vc_template = ( (vc > CUADRILLA_YI) && (vc <= CUADRILLA_YF) )?vc - CUADRILLA_YI: 11'd0;
always@(*)
if(hc_template == 'd0)//fuera del rango visible
{col_next, matrix_x_next} = {d_col, 3'd0};
else if(hc_template > {col, zeros_col})
{col_next, matrix_x_next} = {col + d_col, matrix_x + 3'd1};
else
{col_next,matrix_x_next} = {col, matrix_x};
always@(*)
if(vc_template == 'd0)
{row_next,matrix_y_next} = {d_row, 2'd0};
else if(vc_template > {row, zeros_row})
{row_next, matrix_y_next} = {row + d_row, matrix_y + 2'd1};
else
{row_next, matrix_y_next} = {row, matrix_y};
//para generar las líneas divisorias.
reg lin_v, lin_v_next;
reg lin_h, lin_h_next;
always@(*)
begin
if(hc_template > {col, zeros_col})
lin_v_next = 1'b1;
else
lin_v_next = 1'b0;
if(vc_template > {row, zeros_row})
lin_h_next = 1'b1;
else if(hc == CUADRILLA_XF)
lin_h_next = 1'b0;
else
lin_h_next = lin_h;
end
always@(posedge clk)
{col, row, matrix_x, matrix_y} <= {col_next, row_next, matrix_x_next, matrix_y_next};
always@(posedge clk)
{lin_v, lin_h} <= {lin_v_next, lin_h_next};
always@(*)
if( (hc == (CUADRILLA_XI + 11'd1)) || (hc == CUADRILLA_XF) ||
(vc == (CUADRILLA_YI + 11'd1)) || (vc == CUADRILLA_YF) )
lines = 1'b1;
else if( (lin_v == 1'b1) || (lin_h == 1'b1))
lines = 1'b1;
else
lines = 1'b0;
endmodule |
module top();
// Inputs are registered
reg D;
reg DE;
reg VPWR;
reg VGND;
reg VPB;
reg VNB;
// Outputs are wires
wire Q;
initial
begin
// Initial state is x for all inputs.
D = 1'bX;
DE = 1'bX;
VGND = 1'bX;
VNB = 1'bX;
VPB = 1'bX;
VPWR = 1'bX;
#20 D = 1'b0;
#40 DE = 1'b0;
#60 VGND = 1'b0;
#80 VNB = 1'b0;
#100 VPB = 1'b0;
#120 VPWR = 1'b0;
#140 D = 1'b1;
#160 DE = 1'b1;
#180 VGND = 1'b1;
#200 VNB = 1'b1;
#220 VPB = 1'b1;
#240 VPWR = 1'b1;
#260 D = 1'b0;
#280 DE = 1'b0;
#300 VGND = 1'b0;
#320 VNB = 1'b0;
#340 VPB = 1'b0;
#360 VPWR = 1'b0;
#380 VPWR = 1'b1;
#400 VPB = 1'b1;
#420 VNB = 1'b1;
#440 VGND = 1'b1;
#460 DE = 1'b1;
#480 D = 1'b1;
#500 VPWR = 1'bx;
#520 VPB = 1'bx;
#540 VNB = 1'bx;
#560 VGND = 1'bx;
#580 DE = 1'bx;
#600 D = 1'bx;
end
// Create a clock
reg CLK;
initial
begin
CLK = 1'b0;
end
always
begin
#5 CLK = ~CLK;
end
sky130_fd_sc_ms__edfxtp dut (.D(D), .DE(DE), .VPWR(VPWR), .VGND(VGND), .VPB(VPB), .VNB(VNB), .Q(Q), .CLK(CLK));
endmodule |
module cyclone4gx_pmem (
address,
byteena,
clken,
clock,
data,
wren,
q);
input [11:0] address;
input [1:0] byteena;
input clken;
input clock;
input [15:0] data;
input wren;
output [15:0] q;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
tri1 [1:0] byteena;
tri1 clken;
tri1 clock;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif
wire [15:0] sub_wire0;
wire [15:0] q = sub_wire0[15:0];
altsyncram altsyncram_component (
.clocken0 (clken),
.wren_a (wren),
.clock0 (clock),
.byteena_a (byteena),
.address_a (address),
.data_a (data),
.q_a (sub_wire0),
.aclr0 (1'b0),
.aclr1 (1'b0),
.address_b (1'b1),
.addressstall_a (1'b0),
.addressstall_b (1'b0),
.byteena_b (1'b1),
.clock1 (1'b1),
.clocken1 (1'b1),
.clocken2 (1'b1),
.clocken3 (1'b1),
.data_b (1'b1),
.eccstatus (),
.q_b (),
.rden_a (1'b1),
.rden_b (1'b1),
.wren_b (1'b0));
defparam
altsyncram_component.byte_size = 8,
altsyncram_component.clock_enable_input_a = "NORMAL",
altsyncram_component.clock_enable_output_a = "BYPASS",
altsyncram_component.intended_device_family = "Cyclone IV GX",
altsyncram_component.lpm_hint = "ENABLE_RUNTIME_MOD=NO",
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = 4096,
altsyncram_component.operation_mode = "SINGLE_PORT",
altsyncram_component.outdata_aclr_a = "NONE",
altsyncram_component.outdata_reg_a = "UNREGISTERED",
altsyncram_component.power_up_uninitialized = "FALSE",
altsyncram_component.read_during_write_mode_port_a = "NEW_DATA_NO_NBE_READ",
altsyncram_component.widthad_a = 12,
altsyncram_component.width_a = 16,
altsyncram_component.width_byteena_a = 2;
endmodule |
module JTAG_Source1 (
probe,
source);
input [0:0] probe;
output [0:0] source;
wire [0:0] sub_wire0;
wire [0:0] source = sub_wire0[0:0];
altsource_probe altsource_probe_component (
.probe (probe),
.source (sub_wire0)
// synopsys translate_off
,
.clrn (),
.ena (),
.ir_in (),
.ir_out (),
.jtag_state_cdr (),
.jtag_state_cir (),
.jtag_state_e1dr (),
.jtag_state_sdr (),
.jtag_state_tlr (),
.jtag_state_udr (),
.jtag_state_uir (),
.raw_tck (),
.source_clk (),
.source_ena (),
.tdi (),
.tdo (),
.usr1 ()
// synopsys translate_on
);
defparam
altsource_probe_component.enable_metastability = "NO",
altsource_probe_component.instance_id = "NONE",
altsource_probe_component.probe_width = 1,
altsource_probe_component.sld_auto_instance_index = "YES",
altsource_probe_component.sld_instance_index = 0,
altsource_probe_component.source_initial_value = " 0",
altsource_probe_component.source_width = 1;
endmodule |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.