module_content
stringlengths 18
1.05M
|
---|
module sky130_fd_sc_hs__clkinv_1 (
Y,
A
);
output Y;
input A;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
sky130_fd_sc_hs__clkinv base (
.Y(Y),
.A(A)
);
endmodule |
module sky130_fd_sc_ls__dlymetal6s2s (
X,
A
);
output X;
input A;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
endmodule |
module top
(
input wire clk,
input wire [7:0] sw,
output wire [7:0] led,
input wire jc1, // unused
output wire jc2,
input wire jc3, // unused
input wire jc4
);
// ============================================================================
// Reset generator
wire CLK;
BUFG bufgctrl(.I(clk), .O(CLK));
reg [3:0] rst_sr;
initial rst_sr <= 4'hF;
always @(posedge CLK)
if (sw[0])
rst_sr <= 4'hF;
else
rst_sr <= rst_sr >> 1;
wire RST = rst_sr[0];
// ============================================================================
// The tester
mmcme2_test #
(
.FEEDBACK ("INTERNAL"),
.CLKFBOUT_MULT_F (10.750),
.CLKOUT0_DIVIDE_F (10.250)
)
mmcme2_test
(
.CLK (clk),
.RST (RST),
.CLKFBOUT (),
.CLKFBIN (),
.I_PWRDWN (sw[1]),
.I_CLKINSEL (sw[2]),
.O_LOCKED (led[6]),
.O_CNT (led[5:0])
);
assign led [7] = |sw[7:3];
assign jc2 = jc4;
endmodule |
module top(
// clocks
input fclk,
output clkz_out,
input clkz_in,
// z80
input iorq_n,
input mreq_n,
input rd_n,
input wr_n,
input m1_n,
input rfsh_n,
output int_n,
output nmi_n,
output wait_n,
output res,
inout [7:0] d,
input [15:0] a,
// zxbus and related
output csrom,
output romoe_n,
output romwe_n,
output rompg0_n,
output dos_n, // aka rompg1
output rompg2,
output rompg3,
output rompg4,
input iorqge1,
input iorqge2,
output iorq1_n,
output iorq2_n,
// DRAM
inout [15:0] rd,
output [9:0] ra,
output rwe_n,
output rucas_n,
output rlcas_n,
output rras0_n,
output rras1_n,
// video
output [1:0] vred,
output [1:0] vgrn,
output [1:0] vblu,
output vhsync,
output vvsync,
output vcsync,
// AY control and audio/tape
output ay_clk,
output ay_bdir,
output ay_bc1,
output beep,
// IDE
output [2:0] ide_a,
inout [15:0] ide_d,
output ide_dir,
input ide_rdy,
output ide_cs0_n,
output ide_cs1_n,
output ide_rs_n,
output ide_rd_n,
output ide_wr_n,
// VG93 and diskdrive
output vg_clk,
output vg_cs_n,
output vg_res_n,
output vg_hrdy,
output vg_rclk,
output vg_rawr,
output [1:0] vg_a, // disk drive selection
output vg_wrd,
output vg_side,
input step,
input vg_sl,
input vg_sr,
input vg_tr43,
input rdat_b_n,
input vg_wf_de,
input vg_drq,
input vg_irq,
input vg_wd,
// serial links (atmega-fpga, sdcard)
output sdcs_n,
output sddo,
output sdclk,
input sddi,
input spics_n,
input spick,
input spido,
output spidi,
output spiint_n
);
wire dos;
wire zclk; // z80 clock for short
wire zpos,zneg;
wire rst_n; // global reset
wire rrdy;
wire [15:0] rddata;
wire [4:0] rompg;
wire [7:0] zports_dout;
wire zports_dataout;
wire porthit;
wire [39:0] kbd_data;
wire [ 7:0] mus_data;
wire kbd_stb,mus_xstb,mus_ystb,mus_btnstb,kj_stb;
wire [ 4:0] kbd_port_data;
wire [ 4:0] kj_port_data;
wire [ 7:0] mus_port_data;
wire [7:0] wait_read,wait_write;
wire wait_rnw;
wire wait_start_gluclock;
wire wait_start_comport;
wire wait_end;
wire [7:0] gluclock_addr;
wire [2:0] comport_addr;
wire [6:0] waits;
// config signals
wire [7:0] not_used;
wire cfg_vga_on;
// nmi signals
wire gen_nmi;
wire clr_nmi;
wire in_nmi;
wire [1:0] set_nmi;
wire imm_nmi;
// breakpoint signals
wire brk_ena;
wire [15:0] brk_addr;
wire tape_in;
wire [15:0] ideout;
wire [15:0] idein;
wire idedataout;
wire [7:0] zmem_dout;
wire zmem_dataout;
reg [3:0] ayclk_gen;
wire [7:0] received;
wire [7:0] tobesent;
wire intrq,drq;
wire vg_wrFF;
assign zclk = clkz_in;
// RESETTER
wire genrst;
resetter myrst( .clk(fclk),
.rst_in_n(~genrst),
.rst_out_n(rst_n) );
defparam myrst.RST_CNT_SIZE = 6;
assign nmi_n=gen_nmi ? 1'b0 : 1'bZ;
assign res= ~rst_n;
assign ide_rs_n = rst_n;
assign ide_d = idedataout ? ideout : 16'hZZZZ;
assign idein = ide_d;
assign ide_dir = ~idedataout;
wire [7:0] peff7;
wire [7:0] p7ffd;
wire romrw_en;
wire cpm_n;
wire fnt_wr;
wire cpu_req,cpu_rnw,cpu_wrbsel,cpu_strobe;
wire [20:0] cpu_addr;
wire [15:0] cpu_rddata;
wire [7:0] cpu_wrdata;
wire cbeg,post_cbeg,pre_cend,cend;
wire go;
// AVR SDcard control
wire avr_lock_claim,
avr_lock_grant,
avr_sdcs_n,
avr_sd_start;
wire [7:0] avr_sd_datain;
wire [7:0] avr_sd_dataout;
// ZX SDcard control
wire zx_sdcs_n_val,
zx_sdcs_n_stb,
zx_sd_start;
wire [7:0] zx_sd_datain;
wire [7:0] zx_sd_dataout;
wire tape_read; // data for tapein
wire beeper_mux; // what is mixed to FPGA beeper output - beeper (0) or tapeout (1)
wire [2:0] atm_scr_mode;
wire atm_turbo;
wire beeper_wr, covox_wr;
wire [5:0] palcolor; // palette readback
wire [1:0] int_turbo;
wire cpu_next;
wire cpu_stall;
wire external_port;
//AY control
always @(posedge fclk)
begin
ayclk_gen <= ayclk_gen + 4'd1;
end
assign ay_clk = ayclk_gen[3];
// fix ATM2-style ROM addressing for PENT-like ROM layout.
// this causes compications when writing to the flashROM from Z80
// and need to split and re-build old ATM romfiles before burning in
// flash
// wire [1:0] adr_fix;
// assign adr_fix = ~{ rompg[0], rompg[1] };
// assign rompg0_n = ~adr_fix[0];
// assign dos_n = adr_fix[1];
// assign rompg2 = 1'b0;//rompg[2];
// assign rompg3 = 1'b0;//rompg[3];
// assign rompg4 = 1'b0;//rompg[4];
assign rompg0_n = ~rompg[0];
assign dos_n = rompg[1];
assign rompg2 = rompg[2];
assign rompg3 = rompg[3];
assign rompg4 = rompg[4];
wire [3:0] zclk_stall;
zclock zclock
(
.fclk(fclk), .rst_n(rst_n), .zclk(zclk), .rfsh_n(rfsh_n), .zclk_out(clkz_out),
.zpos(zpos), .zneg(zneg),
.turbo( {atm_turbo,~(peff7[4])} ), .pre_cend(pre_cend), .cbeg(cbeg),
.zclk_stall( cpu_stall | (|zclk_stall) ), .int_turbo(int_turbo),
.external_port(external_port), .iorq_n(iorq_n), .m1_n(m1_n)
);
wire [7:0] dout_ram;
wire ena_ram;
wire [7:0] dout_ports;
wire ena_ports;
wire [3:0] border;
wire drive_ff;
wire atm_palwr;
wire [5:0] atm_paldata;
wire [7:0] fontrom_readback;
wire int_start;
// data bus out: either RAM data or internal ports data or 0xFF with unused ports
assign d = ena_ram ? dout_ram : ( ena_ports ? dout_ports : ( drive_ff ? 8'hFF : 8'bZZZZZZZZ ) );
zbus zxbus( .iorq_n(iorq_n), .rd_n(rd_n), .wr_n(wr_n), .m1_n(m1_n),
.iorq1_n(iorq1_n), .iorq2_n(iorq2_n), .iorqge1(iorqge1), .iorqge2(iorqge2),
.porthit(porthit), .drive_ff(drive_ff) );
/////////////////////////////////////
// ATM memory pagers instantiation //
/////////////////////////////////////
wire pager_off;
wire pent1m_ROM;
wire [ 5:0] pent1m_page;
wire pent1m_ram0_0;
wire pent1m_1m_on;
wire atmF7_wr_fclk;
wire [3:0] dos_turn_off,
dos_turn_on;
wire [ 7:0] page [0:3];
wire [ 3:0] romnram;
// for reading back data via xxBE port
wire [ 7:0] rd_pages [0:7];
wire [ 7:0] rd_ramnrom;
wire [ 7:0] rd_dos7ffd;
generate
genvar i;
for(i=0;i<4;i=i+1)
begin : instantiate_atm_pagers
atm_pager #( .ADDR(i) )
atm_pager( .rst_n(rst_n),
.fclk (fclk),
.zpos (zpos),
.zneg (zneg),
.za(a),
.zd(d),
.mreq_n(mreq_n),
.rd_n (rd_n),
.m1_n (m1_n),
.pager_off(pager_off),
.pent1m_ROM (pent1m_ROM),
.pent1m_page (pent1m_page),
.pent1m_ram0_0(pent1m_ram0_0),
.pent1m_1m_on (pent1m_1m_on),
.in_nmi(in_nmi),
.atmF7_wr(atmF7_wr_fclk),
.dos(dos),
.dos_turn_on (dos_turn_on[i]),
.dos_turn_off(dos_turn_off[i]),
.zclk_stall(zclk_stall[i]),
.page (page[i]),
.romnram(romnram[i]),
.rd_page0 (rd_pages[i ]),
.rd_page1 (rd_pages[i+4]),
.rd_ramnrom( {rd_ramnrom[i+4], rd_ramnrom[i]} ),
.rd_dos7ffd( {rd_dos7ffd[i+4], rd_dos7ffd[i]} )
);
end
endgenerate
///////////////////////////
// DOS signal controller //
///////////////////////////
zdos zdos( .rst_n(rst_n),
.fclk(fclk),
.dos_turn_on ( |dos_turn_on ),
.dos_turn_off( |dos_turn_off ),
.cpm_n(cpm_n),
.dos(dos)
);
///////////////////////////
// Z80 memory controller //
///////////////////////////
zmem z80mem
(
.fclk (fclk ),
.rst_n(rst_n),
.zpos(zpos),
.zneg(zneg),
.cbeg (cbeg ),
.post_cbeg(post_cbeg),
.pre_cend (pre_cend ),
.cend (cend ),
.za (a ),
.zd_in (d ),
.zd_out(dout_ram),
.zd_ena(ena_ram ),
.m1_n (m1_n ),
.rfsh_n(rfsh_n ),
.iorq_n(iorq_n ),
.mreq_n(mreq_n ),
.rd_n (rd_n ),
.wr_n (wr_n ),
.win0_romnram(romnram[0]),
.win1_romnram(romnram[1]),
.win2_romnram(romnram[2]),
.win3_romnram(romnram[3]),
.win0_page(page[0]),
.win1_page(page[1]),
.win2_page(page[2]),
.win3_page(page[3]),
.romrw_en(romrw_en),
.rompg (rompg ),
.romoe_n(romoe_n),
.romwe_n(romwe_n),
.csrom (csrom ),
.cpu_req (cpu_req ),
.cpu_rnw (cpu_rnw ),
.cpu_wrbsel(cpu_wrbsel),
.cpu_strobe(cpu_strobe),
.cpu_addr (cpu_addr ),
.cpu_wrdata(cpu_wrdata),
.cpu_rddata(cpu_rddata),
.cpu_stall (cpu_stall ),
.cpu_next (cpu_next ),
.int_turbo(int_turbo)
);
wire [20:0] daddr;
wire dreq;
wire drnw;
wire [15:0] drddata;
wire [15:0] dwrdata;
wire [1:0] dbsel;
dram dram( .clk(fclk),
.rst_n(rst_n),
.addr(daddr),
.req(dreq),
.rnw(drnw),
.cbeg(cbeg),
.rrdy(drrdy),
.rddata(drddata),
.wrdata(dwrdata),
.bsel(dbsel),
.ra(ra),
.rd(rd),
.rwe_n(rwe_n),
.rucas_n(rucas_n),
.rlcas_n(rlcas_n),
.rras0_n(rras0_n),
.rras1_n(rras1_n)
);
wire [1:0] bw;
wire [20:0] video_addr;
wire [15:0] video_data;
wire video_strobe;
wire video_next;
arbiter dramarb( .clk(fclk),
.rst_n(rst_n),
.dram_addr(daddr),
.dram_req(dreq),
.dram_rnw(drnw),
.dram_cbeg(cbeg),
.dram_rrdy(drrdy),
.dram_bsel(dbsel),
.dram_rddata(drddata),
.dram_wrdata(dwrdata),
.post_cbeg(post_cbeg),
.pre_cend (pre_cend ),
.cend (cend ),
.go(go),
.bw(bw),
.video_addr(video_addr),
.video_data(video_data),
.video_strobe(video_strobe),
.video_next(video_next),
//.cpu_waitcyc(cpu_waitcyc),
.cpu_next (cpu_next),
.cpu_req(cpu_req),
.cpu_rnw(cpu_rnw),
.cpu_addr(cpu_addr),
.cpu_wrbsel(cpu_wrbsel),
.cpu_wrdata(cpu_wrdata),
.cpu_rddata(cpu_rddata),
.cpu_strobe(cpu_strobe) );
video_top video_top(
.clk(fclk),
.vred(vred),
.vgrn(vgrn),
.vblu(vblu),
.vhsync(vhsync),
.vvsync(vvsync),
.vcsync(vcsync),
.zxborder(border),
.pent_vmode( {peff7[0],peff7[5]} ),
.atm_vmode (atm_scr_mode),
.scr_page(p7ffd[3]),
.vga_on(cfg_vga_on),
.cbeg (cbeg ),
.post_cbeg(post_cbeg),
.pre_cend (pre_cend ),
.cend (cend ),
.video_go (go ),
.video_bw (bw ),
.video_addr (video_addr ),
.video_data (video_data ),
.video_strobe(video_strobe),
.video_next (video_next ),
.atm_palwr (atm_palwr ),
.atm_paldata(atm_paldata),
.int_start(int_start),
.fnt_a (a[10:0]),
.fnt_d (d ),
.fnt_wr(fnt_wr ),
.palcolor(palcolor),
.fontrom_readback(fontrom_readback)
);
slavespi slavespi(
.fclk(fclk), .rst_n(rst_n),
.spics_n(spics_n), .spidi(spidi),
.spido(spido), .spick(spick),
.status_in({/* wait_rnw */ wr_n, waits[6:0]}), .genrst(genrst),
.kbd_out(kbd_data),
.kbd_stb(kbd_stb), .mus_out(mus_data),
.mus_xstb(mus_xstb), .mus_ystb(mus_ystb),
.mus_btnstb(mus_btnstb), .kj_stb(kj_stb),
.gluclock_addr(gluclock_addr),
.comport_addr (comport_addr),
.wait_write(wait_write),
.wait_read(wait_read),
.wait_rnw(wait_rnw),
.wait_end(wait_end),
.config0( { not_used[7:4], beeper_mux, tape_read, set_nmi[0], cfg_vga_on} ),
.sd_lock_out(avr_lock_claim),
.sd_lock_in (avr_lock_grant),
.sd_cs_n (avr_sdcs_n ),
.sd_start (avr_sd_start ),
.sd_datain (avr_sd_datain ),
.sd_dataout (avr_sd_dataout)
);
zkbdmus zkbdmus( .fclk(fclk), .rst_n(rst_n),
.kbd_in(kbd_data), .kbd_stb(kbd_stb),
.mus_in(mus_data), .mus_xstb(mus_xstb),
.mus_ystb(mus_ystb), .mus_btnstb(mus_btnstb),
.kj_stb(kj_stb), .kj_data(kj_port_data),
.zah(a[15:8]), .kbd_data(kbd_port_data),
.mus_data(mus_port_data)
);
zports zports( .zclk(zclk), .fclk(fclk), .rst_n(rst_n), .zpos(zpos), .zneg(zneg),
.din(d), .dout(dout_ports), .dataout(ena_ports),
.a(a), .iorq_n(iorq_n), .rd_n(rd_n), .wr_n(wr_n), .porthit(porthit),
.ay_bdir(ay_bdir), .ay_bc1(ay_bc1), .border(border),
.p7ffd(p7ffd), .peff7(peff7), .mreq_n(mreq_n), .m1_n(m1_n), .dos(dos),
.vg_intrq(intrq), .vg_drq(drq), .vg_wrFF(vg_wrFF), .vg_cs_n(vg_cs_n),
.idein(idein), .ideout(ideout), .idedataout(idedataout),
.ide_a(ide_a), .ide_cs0_n(ide_cs0_n), .ide_cs1_n(ide_cs1_n),
.ide_wr_n(ide_wr_n), .ide_rd_n(ide_rd_n),
.sd_cs_n_val(zx_sdcs_n_val),
.sd_cs_n_stb(zx_sdcs_n_stb),
.sd_start (zx_sd_start ),
.sd_datain (zx_sd_datain ),
.sd_dataout (zx_sd_dataout),
.keys_in(kbd_port_data),
.mus_in (mus_port_data),
.kj_in (kj_port_data ),
.tape_read(tape_read),
.gluclock_addr(gluclock_addr),
.comport_addr (comport_addr ),
.wait_start_gluclock(wait_start_gluclock),
.wait_start_comport (wait_start_comport ),
.wait_rnw (wait_rnw ),
.wait_write(wait_write),
`ifndef SIMULATE
.wait_read (wait_read ),
`else
.wait_read(8'hFF),
`endif
.atmF7_wr_fclk(atmF7_wr_fclk),
.atm_scr_mode(atm_scr_mode),
.atm_turbo (atm_turbo),
.atm_pen (pager_off),
.atm_cpm_n (cpm_n),
.atm_pen2 (atm_pen2),
.romrw_en(romrw_en),
.pent1m_ram0_0(pent1m_ram0_0),
.pent1m_1m_on (pent1m_1m_on),
.pent1m_page (pent1m_page),
.pent1m_ROM (pent1m_ROM),
.atm_palwr (atm_palwr ),
.atm_paldata(atm_paldata),
.beeper_wr(beeper_wr),
.covox_wr (covox_wr ),
.fnt_wr(fnt_wr),
.clr_nmi(clr_nmi),
.pages(~{ rd_pages[7], rd_pages[6],
rd_pages[5], rd_pages[4],
rd_pages[3], rd_pages[2],
rd_pages[1], rd_pages[0] }),
.ramnroms( rd_ramnrom ),
.dos7ffds( rd_dos7ffd ),
.palcolor(palcolor),
.fontrom_readback(fontrom_readback),
.external_port(external_port),
.set_nmi(set_nmi[1]),
.brk_ena (brk_ena ),
.brk_addr(brk_addr)
);
zint zint(
.fclk(fclk),
.zpos(zpos),
.zneg(zneg),
.int_start(int_start),
.iorq_n(iorq_n),
.m1_n (m1_n ),
.int_n(int_n)
);
znmi znmi
(
.rst_n(rst_n),
.fclk(fclk),
.zpos(zpos),
.zneg(zneg),
.rfsh_n(rfsh_n),
.m1_n (m1_n ),
.mreq_n(mreq_n),
.csrom (csrom ),
.a (a ),
.int_start(int_start),
.set_nmi(set_nmi),
.imm_nmi(imm_nmi),
.clr_nmi(clr_nmi),
.in_nmi (in_nmi ),
.gen_nmi(gen_nmi)
);
zbreak zbreak
(
.rst_n(rst_n),
.fclk(fclk),
.zpos(zpos),
.zneg(zneg),
.m1_n (m1_n ),
.mreq_n(mreq_n),
.a (a ),
.imm_nmi(imm_nmi),
.brk_ena (brk_ena ),
.brk_addr(brk_addr)
);
zwait zwait( .wait_start_gluclock(wait_start_gluclock),
.wait_start_comport (wait_start_comport),
.wait_end(wait_end),
.rst_n(rst_n),
.wait_n(wait_n),
.waits(waits),
.spiint_n(spiint_n) );
wire [1:0] vg_ddrv;
assign vg_a[0] = vg_ddrv[0] ? 1'b1 : 1'b0; // possibly open drain?
assign vg_a[1] = vg_ddrv[1] ? 1'b1 : 1'b0;
vg93 vgshka( .zclk(zclk), .rst_n(rst_n), .fclk(fclk), .vg_clk(vg_clk),
.vg_res_n(vg_res_n), .din(d), .intrq(intrq), .drq(drq), .vg_wrFF(vg_wrFF),
.vg_hrdy(vg_hrdy), .vg_rclk(vg_rclk), .vg_rawr(vg_rawr), .vg_a(vg_ddrv),
.vg_wrd(vg_wrd), .vg_side(vg_side), .step(step), .vg_sl(vg_sl), .vg_sr(vg_sr),
.vg_tr43(vg_tr43), .rdat_n(rdat_b_n), .vg_wf_de(vg_wf_de), .vg_drq(vg_drq),
.vg_irq(vg_irq), .vg_wd(vg_wd) );
// spi2 zspi( .clock(fclk), .sck(sdclk), .sdo(sddo), .sdi(sddi), .start(sd_start),
// .speed(2'b00), .din(sd_datain), .dout(sd_dataout) );
spihub spihub(
.fclk (fclk ),
.rst_n(rst_n),
.sdcs_n(sdcs_n),
.sdclk (sdclk ),
.sddo (sddo ),
.sddi (sddi ),
.zx_sdcs_n_val(zx_sdcs_n_val),
.zx_sdcs_n_stb(zx_sdcs_n_stb),
.zx_sd_start (zx_sd_start ),
.zx_sd_datain (zx_sd_datain ),
.zx_sd_dataout(zx_sd_dataout),
.avr_lock_in (avr_lock_claim),
.avr_lock_out (avr_lock_grant),
.avr_sdcs_n (avr_sdcs_n ),
.avr_sd_start (avr_sd_start ),
.avr_sd_datain (avr_sd_datain ),
.avr_sd_dataout(avr_sd_dataout)
);
//////////////////////////////////////
// sound: beeper, tapeout and covox //
//////////////////////////////////////
sound sound(
.clk(fclk),
.din(d),
.beeper_wr(beeper_wr),
.covox_wr (covox_wr ),
.beeper_mux(beeper_mux),
.sound_bit(beep)
);
endmodule |
module sky130_fd_sc_hs__sedfxbp (
Q ,
Q_N ,
CLK ,
D ,
DE ,
SCD ,
SCE ,
VPWR,
VGND
);
// Module ports
output Q ;
output Q_N ;
input CLK ;
input D ;
input DE ;
input SCD ;
input SCE ;
input VPWR;
input VGND;
// Local signals
wire buf_Q ;
wire mux_out;
wire de_d ;
// Delay Name Output Other arguments
sky130_fd_sc_hs__u_mux_2_1 u_mux_20 (mux_out, de_d, SCD, SCE );
sky130_fd_sc_hs__u_mux_2_1 u_mux_21 (de_d , buf_Q, D, DE );
sky130_fd_sc_hs__u_df_p_pg `UNIT_DELAY u_df_p_pg0 (buf_Q , mux_out, CLK, VPWR, VGND);
buf buf0 (Q , buf_Q );
not not0 (Q_N , buf_Q );
endmodule |
module ad_perfect_shuffle #(
parameter NUM_GROUPS = 2,
parameter WORDS_PER_GROUP = 2,
parameter WORD_WIDTH = 8
) (
input [NUM_GROUPS*WORDS_PER_GROUP*WORD_WIDTH-1:0] data_in,
output [NUM_GROUPS*WORDS_PER_GROUP*WORD_WIDTH-1:0] data_out
);
/*
* Performs the perfect shuffle operation.
*
* The perfect shuffle splits the input vector into NUM_GROUPS groups and then
* each group in WORDS_PER_GROUP. The output vector consists of WORDS_PER_GROUP
* groups and each group has NUM_GROUPS words. The data is remapped, so that
* the i-th word of the j-th word in the output vector is the j-th word of the
* i-th group of the input vector.
* The inverse operation of the perfect shuffle is the perfect shuffle with
* both parameters swapped.
* I.e. [perfect_suffle B A [perfect_shuffle A B data]] == data
*
* Examples:
* NUM_GROUPS = 2, WORDS_PER_GROUP = 4
* [A B C D a b c d] => [A a B b C c D d]
* NUM_GROUPS = 4, WORDS_PER_GROUP = 2
* [A a B b C c D d] => [A B C D a b c d]
* NUM_GROUPS = 3, WORDS_PER_GROUP = 2
* [A B a b 1 2] => [A a 1 B b 2]
*/
generate
genvar i;
genvar j;
for (i = 0; i < NUM_GROUPS; i = i + 1) begin: shuffle_outer
for (j = 0; j < WORDS_PER_GROUP; j = j + 1) begin: shuffle_inner
localparam src_lsb = (j + i * WORDS_PER_GROUP) * WORD_WIDTH;
localparam dst_lsb = (i + j * NUM_GROUPS) * WORD_WIDTH;
assign data_out[dst_lsb+:WORD_WIDTH] = data_in[src_lsb+:WORD_WIDTH];
end
end
endgenerate
endmodule |
module system_acl_iface (
input wire config_clk_clk, // config_clk.clk
input wire reset_n, // global_reset.reset_n
input wire kernel_pll_refclk_clk, // kernel_pll_refclk.clk
output wire kernel_clk_clk, // kernel_clk.clk
output wire kernel_reset_reset_n, // kernel_reset.reset_n
output wire kernel_clk2x_clk, // kernel_clk2x.clk
output wire kernel_mem0_waitrequest, // kernel_mem0.waitrequest
output wire [255:0] kernel_mem0_readdata, // .readdata
output wire kernel_mem0_readdatavalid, // .readdatavalid
input wire [4:0] kernel_mem0_burstcount, // .burstcount
input wire [255:0] kernel_mem0_writedata, // .writedata
input wire [29:0] kernel_mem0_address, // .address
input wire kernel_mem0_write, // .write
input wire kernel_mem0_read, // .read
input wire [31:0] kernel_mem0_byteenable, // .byteenable
input wire kernel_mem0_debugaccess, // .debugaccess
output wire acl_kernel_clk_kernel_pll_locked_export, // acl_kernel_clk_kernel_pll_locked.export
output wire kernel_clk_snoop_clk, // kernel_clk_snoop.clk
output wire [14:0] memory_mem_a, // memory.mem_a
output wire [2:0] memory_mem_ba, // .mem_ba
output wire memory_mem_ck, // .mem_ck
output wire memory_mem_ck_n, // .mem_ck_n
output wire memory_mem_cke, // .mem_cke
output wire memory_mem_cs_n, // .mem_cs_n
output wire memory_mem_ras_n, // .mem_ras_n
output wire memory_mem_cas_n, // .mem_cas_n
output wire memory_mem_we_n, // .mem_we_n
output wire memory_mem_reset_n, // .mem_reset_n
inout wire [31:0] memory_mem_dq, // .mem_dq
inout wire [3:0] memory_mem_dqs, // .mem_dqs
inout wire [3:0] memory_mem_dqs_n, // .mem_dqs_n
output wire memory_mem_odt, // .mem_odt
output wire [3:0] memory_mem_dm, // .mem_dm
input wire memory_oct_rzqin, // .oct_rzqin
output wire peripheral_hps_io_emac1_inst_TX_CLK, // peripheral.hps_io_emac1_inst_TX_CLK
output wire peripheral_hps_io_emac1_inst_TXD0, // .hps_io_emac1_inst_TXD0
output wire peripheral_hps_io_emac1_inst_TXD1, // .hps_io_emac1_inst_TXD1
output wire peripheral_hps_io_emac1_inst_TXD2, // .hps_io_emac1_inst_TXD2
output wire peripheral_hps_io_emac1_inst_TXD3, // .hps_io_emac1_inst_TXD3
input wire peripheral_hps_io_emac1_inst_RXD0, // .hps_io_emac1_inst_RXD0
inout wire peripheral_hps_io_emac1_inst_MDIO, // .hps_io_emac1_inst_MDIO
output wire peripheral_hps_io_emac1_inst_MDC, // .hps_io_emac1_inst_MDC
input wire peripheral_hps_io_emac1_inst_RX_CTL, // .hps_io_emac1_inst_RX_CTL
output wire peripheral_hps_io_emac1_inst_TX_CTL, // .hps_io_emac1_inst_TX_CTL
input wire peripheral_hps_io_emac1_inst_RX_CLK, // .hps_io_emac1_inst_RX_CLK
input wire peripheral_hps_io_emac1_inst_RXD1, // .hps_io_emac1_inst_RXD1
input wire peripheral_hps_io_emac1_inst_RXD2, // .hps_io_emac1_inst_RXD2
input wire peripheral_hps_io_emac1_inst_RXD3, // .hps_io_emac1_inst_RXD3
inout wire peripheral_hps_io_sdio_inst_CMD, // .hps_io_sdio_inst_CMD
inout wire peripheral_hps_io_sdio_inst_D0, // .hps_io_sdio_inst_D0
inout wire peripheral_hps_io_sdio_inst_D1, // .hps_io_sdio_inst_D1
output wire peripheral_hps_io_sdio_inst_CLK, // .hps_io_sdio_inst_CLK
inout wire peripheral_hps_io_sdio_inst_D2, // .hps_io_sdio_inst_D2
inout wire peripheral_hps_io_sdio_inst_D3, // .hps_io_sdio_inst_D3
input wire peripheral_hps_io_uart0_inst_RX, // .hps_io_uart0_inst_RX
output wire peripheral_hps_io_uart0_inst_TX, // .hps_io_uart0_inst_TX
inout wire peripheral_hps_io_i2c1_inst_SDA, // .hps_io_i2c1_inst_SDA
inout wire peripheral_hps_io_i2c1_inst_SCL, // .hps_io_i2c1_inst_SCL
inout wire peripheral_hps_io_gpio_inst_GPIO53, // .hps_io_gpio_inst_GPIO53
output wire [1:0] acl_internal_memorg_kernel_mode, // acl_internal_memorg_kernel.mode
input wire [0:0] kernel_irq_irq, // kernel_irq.irq
input wire kernel_cra_waitrequest, // kernel_cra.waitrequest
input wire [63:0] kernel_cra_readdata, // .readdata
input wire kernel_cra_readdatavalid, // .readdatavalid
output wire [0:0] kernel_cra_burstcount, // .burstcount
output wire [63:0] kernel_cra_writedata, // .writedata
output wire [29:0] kernel_cra_address, // .address
output wire kernel_cra_write, // .write
output wire kernel_cra_read, // .read
output wire [7:0] kernel_cra_byteenable, // .byteenable
output wire kernel_cra_debugaccess, // .debugaccess
output wire [1:0] kernel_interface_acl_bsp_memorg_host_mode // kernel_interface_acl_bsp_memorg_host.mode
);
wire pll_outclk0_clk; // pll:outclk_0 -> [address_span_extender_kernel:clk, clock_cross_kernel_mem1:m0_clk, hps:f2h_sdram0_clk, mm_interconnect_1:pll_outclk0_clk, mm_interconnect_2:pll_outclk0_clk, rst_controller_001:clk, rst_controller_003:clk]
wire [1:0] hps_h2f_lw_axi_master_awburst; // hps:h2f_lw_AWBURST -> mm_interconnect_0:hps_h2f_lw_axi_master_awburst
wire [3:0] hps_h2f_lw_axi_master_arlen; // hps:h2f_lw_ARLEN -> mm_interconnect_0:hps_h2f_lw_axi_master_arlen
wire [3:0] hps_h2f_lw_axi_master_wstrb; // hps:h2f_lw_WSTRB -> mm_interconnect_0:hps_h2f_lw_axi_master_wstrb
wire hps_h2f_lw_axi_master_wready; // mm_interconnect_0:hps_h2f_lw_axi_master_wready -> hps:h2f_lw_WREADY
wire [11:0] hps_h2f_lw_axi_master_rid; // mm_interconnect_0:hps_h2f_lw_axi_master_rid -> hps:h2f_lw_RID
wire hps_h2f_lw_axi_master_rready; // hps:h2f_lw_RREADY -> mm_interconnect_0:hps_h2f_lw_axi_master_rready
wire [3:0] hps_h2f_lw_axi_master_awlen; // hps:h2f_lw_AWLEN -> mm_interconnect_0:hps_h2f_lw_axi_master_awlen
wire [11:0] hps_h2f_lw_axi_master_wid; // hps:h2f_lw_WID -> mm_interconnect_0:hps_h2f_lw_axi_master_wid
wire [3:0] hps_h2f_lw_axi_master_arcache; // hps:h2f_lw_ARCACHE -> mm_interconnect_0:hps_h2f_lw_axi_master_arcache
wire hps_h2f_lw_axi_master_wvalid; // hps:h2f_lw_WVALID -> mm_interconnect_0:hps_h2f_lw_axi_master_wvalid
wire [20:0] hps_h2f_lw_axi_master_araddr; // hps:h2f_lw_ARADDR -> mm_interconnect_0:hps_h2f_lw_axi_master_araddr
wire [2:0] hps_h2f_lw_axi_master_arprot; // hps:h2f_lw_ARPROT -> mm_interconnect_0:hps_h2f_lw_axi_master_arprot
wire [2:0] hps_h2f_lw_axi_master_awprot; // hps:h2f_lw_AWPROT -> mm_interconnect_0:hps_h2f_lw_axi_master_awprot
wire [31:0] hps_h2f_lw_axi_master_wdata; // hps:h2f_lw_WDATA -> mm_interconnect_0:hps_h2f_lw_axi_master_wdata
wire hps_h2f_lw_axi_master_arvalid; // hps:h2f_lw_ARVALID -> mm_interconnect_0:hps_h2f_lw_axi_master_arvalid
wire [3:0] hps_h2f_lw_axi_master_awcache; // hps:h2f_lw_AWCACHE -> mm_interconnect_0:hps_h2f_lw_axi_master_awcache
wire [11:0] hps_h2f_lw_axi_master_arid; // hps:h2f_lw_ARID -> mm_interconnect_0:hps_h2f_lw_axi_master_arid
wire [1:0] hps_h2f_lw_axi_master_arlock; // hps:h2f_lw_ARLOCK -> mm_interconnect_0:hps_h2f_lw_axi_master_arlock
wire [1:0] hps_h2f_lw_axi_master_awlock; // hps:h2f_lw_AWLOCK -> mm_interconnect_0:hps_h2f_lw_axi_master_awlock
wire [20:0] hps_h2f_lw_axi_master_awaddr; // hps:h2f_lw_AWADDR -> mm_interconnect_0:hps_h2f_lw_axi_master_awaddr
wire [1:0] hps_h2f_lw_axi_master_bresp; // mm_interconnect_0:hps_h2f_lw_axi_master_bresp -> hps:h2f_lw_BRESP
wire hps_h2f_lw_axi_master_arready; // mm_interconnect_0:hps_h2f_lw_axi_master_arready -> hps:h2f_lw_ARREADY
wire [31:0] hps_h2f_lw_axi_master_rdata; // mm_interconnect_0:hps_h2f_lw_axi_master_rdata -> hps:h2f_lw_RDATA
wire hps_h2f_lw_axi_master_awready; // mm_interconnect_0:hps_h2f_lw_axi_master_awready -> hps:h2f_lw_AWREADY
wire [1:0] hps_h2f_lw_axi_master_arburst; // hps:h2f_lw_ARBURST -> mm_interconnect_0:hps_h2f_lw_axi_master_arburst
wire [2:0] hps_h2f_lw_axi_master_arsize; // hps:h2f_lw_ARSIZE -> mm_interconnect_0:hps_h2f_lw_axi_master_arsize
wire hps_h2f_lw_axi_master_bready; // hps:h2f_lw_BREADY -> mm_interconnect_0:hps_h2f_lw_axi_master_bready
wire hps_h2f_lw_axi_master_rlast; // mm_interconnect_0:hps_h2f_lw_axi_master_rlast -> hps:h2f_lw_RLAST
wire hps_h2f_lw_axi_master_wlast; // hps:h2f_lw_WLAST -> mm_interconnect_0:hps_h2f_lw_axi_master_wlast
wire [1:0] hps_h2f_lw_axi_master_rresp; // mm_interconnect_0:hps_h2f_lw_axi_master_rresp -> hps:h2f_lw_RRESP
wire [11:0] hps_h2f_lw_axi_master_awid; // hps:h2f_lw_AWID -> mm_interconnect_0:hps_h2f_lw_axi_master_awid
wire [11:0] hps_h2f_lw_axi_master_bid; // mm_interconnect_0:hps_h2f_lw_axi_master_bid -> hps:h2f_lw_BID
wire hps_h2f_lw_axi_master_bvalid; // mm_interconnect_0:hps_h2f_lw_axi_master_bvalid -> hps:h2f_lw_BVALID
wire [2:0] hps_h2f_lw_axi_master_awsize; // hps:h2f_lw_AWSIZE -> mm_interconnect_0:hps_h2f_lw_axi_master_awsize
wire hps_h2f_lw_axi_master_awvalid; // hps:h2f_lw_AWVALID -> mm_interconnect_0:hps_h2f_lw_axi_master_awvalid
wire hps_h2f_lw_axi_master_rvalid; // mm_interconnect_0:hps_h2f_lw_axi_master_rvalid -> hps:h2f_lw_RVALID
wire [31:0] mm_interconnect_0_version_id_s_readdata; // version_id:slave_readdata -> mm_interconnect_0:version_id_s_readdata
wire mm_interconnect_0_version_id_s_read; // mm_interconnect_0:version_id_s_read -> version_id:slave_read
wire [31:0] mm_interconnect_0_acl_kernel_interface_kernel_cntrl_readdata; // acl_kernel_interface:kernel_cntrl_readdata -> mm_interconnect_0:acl_kernel_interface_kernel_cntrl_readdata
wire mm_interconnect_0_acl_kernel_interface_kernel_cntrl_waitrequest; // acl_kernel_interface:kernel_cntrl_waitrequest -> mm_interconnect_0:acl_kernel_interface_kernel_cntrl_waitrequest
wire mm_interconnect_0_acl_kernel_interface_kernel_cntrl_debugaccess; // mm_interconnect_0:acl_kernel_interface_kernel_cntrl_debugaccess -> acl_kernel_interface:kernel_cntrl_debugaccess
wire [13:0] mm_interconnect_0_acl_kernel_interface_kernel_cntrl_address; // mm_interconnect_0:acl_kernel_interface_kernel_cntrl_address -> acl_kernel_interface:kernel_cntrl_address
wire mm_interconnect_0_acl_kernel_interface_kernel_cntrl_read; // mm_interconnect_0:acl_kernel_interface_kernel_cntrl_read -> acl_kernel_interface:kernel_cntrl_read
wire [3:0] mm_interconnect_0_acl_kernel_interface_kernel_cntrl_byteenable; // mm_interconnect_0:acl_kernel_interface_kernel_cntrl_byteenable -> acl_kernel_interface:kernel_cntrl_byteenable
wire mm_interconnect_0_acl_kernel_interface_kernel_cntrl_readdatavalid; // acl_kernel_interface:kernel_cntrl_readdatavalid -> mm_interconnect_0:acl_kernel_interface_kernel_cntrl_readdatavalid
wire mm_interconnect_0_acl_kernel_interface_kernel_cntrl_write; // mm_interconnect_0:acl_kernel_interface_kernel_cntrl_write -> acl_kernel_interface:kernel_cntrl_write
wire [31:0] mm_interconnect_0_acl_kernel_interface_kernel_cntrl_writedata; // mm_interconnect_0:acl_kernel_interface_kernel_cntrl_writedata -> acl_kernel_interface:kernel_cntrl_writedata
wire [0:0] mm_interconnect_0_acl_kernel_interface_kernel_cntrl_burstcount; // mm_interconnect_0:acl_kernel_interface_kernel_cntrl_burstcount -> acl_kernel_interface:kernel_cntrl_burstcount
wire [31:0] mm_interconnect_0_acl_kernel_clk_ctrl_readdata; // acl_kernel_clk:ctrl_readdata -> mm_interconnect_0:acl_kernel_clk_ctrl_readdata
wire mm_interconnect_0_acl_kernel_clk_ctrl_waitrequest; // acl_kernel_clk:ctrl_waitrequest -> mm_interconnect_0:acl_kernel_clk_ctrl_waitrequest
wire mm_interconnect_0_acl_kernel_clk_ctrl_debugaccess; // mm_interconnect_0:acl_kernel_clk_ctrl_debugaccess -> acl_kernel_clk:ctrl_debugaccess
wire [10:0] mm_interconnect_0_acl_kernel_clk_ctrl_address; // mm_interconnect_0:acl_kernel_clk_ctrl_address -> acl_kernel_clk:ctrl_address
wire mm_interconnect_0_acl_kernel_clk_ctrl_read; // mm_interconnect_0:acl_kernel_clk_ctrl_read -> acl_kernel_clk:ctrl_read
wire [3:0] mm_interconnect_0_acl_kernel_clk_ctrl_byteenable; // mm_interconnect_0:acl_kernel_clk_ctrl_byteenable -> acl_kernel_clk:ctrl_byteenable
wire mm_interconnect_0_acl_kernel_clk_ctrl_readdatavalid; // acl_kernel_clk:ctrl_readdatavalid -> mm_interconnect_0:acl_kernel_clk_ctrl_readdatavalid
wire mm_interconnect_0_acl_kernel_clk_ctrl_write; // mm_interconnect_0:acl_kernel_clk_ctrl_write -> acl_kernel_clk:ctrl_write
wire [31:0] mm_interconnect_0_acl_kernel_clk_ctrl_writedata; // mm_interconnect_0:acl_kernel_clk_ctrl_writedata -> acl_kernel_clk:ctrl_writedata
wire [0:0] mm_interconnect_0_acl_kernel_clk_ctrl_burstcount; // mm_interconnect_0:acl_kernel_clk_ctrl_burstcount -> acl_kernel_clk:ctrl_burstcount
wire clock_cross_kernel_mem1_m0_waitrequest; // mm_interconnect_1:clock_cross_kernel_mem1_m0_waitrequest -> clock_cross_kernel_mem1:m0_waitrequest
wire [255:0] clock_cross_kernel_mem1_m0_readdata; // mm_interconnect_1:clock_cross_kernel_mem1_m0_readdata -> clock_cross_kernel_mem1:m0_readdata
wire clock_cross_kernel_mem1_m0_debugaccess; // clock_cross_kernel_mem1:m0_debugaccess -> mm_interconnect_1:clock_cross_kernel_mem1_m0_debugaccess
wire [29:0] clock_cross_kernel_mem1_m0_address; // clock_cross_kernel_mem1:m0_address -> mm_interconnect_1:clock_cross_kernel_mem1_m0_address
wire clock_cross_kernel_mem1_m0_read; // clock_cross_kernel_mem1:m0_read -> mm_interconnect_1:clock_cross_kernel_mem1_m0_read
wire [31:0] clock_cross_kernel_mem1_m0_byteenable; // clock_cross_kernel_mem1:m0_byteenable -> mm_interconnect_1:clock_cross_kernel_mem1_m0_byteenable
wire clock_cross_kernel_mem1_m0_readdatavalid; // mm_interconnect_1:clock_cross_kernel_mem1_m0_readdatavalid -> clock_cross_kernel_mem1:m0_readdatavalid
wire [255:0] clock_cross_kernel_mem1_m0_writedata; // clock_cross_kernel_mem1:m0_writedata -> mm_interconnect_1:clock_cross_kernel_mem1_m0_writedata
wire clock_cross_kernel_mem1_m0_write; // clock_cross_kernel_mem1:m0_write -> mm_interconnect_1:clock_cross_kernel_mem1_m0_write
wire [4:0] clock_cross_kernel_mem1_m0_burstcount; // clock_cross_kernel_mem1:m0_burstcount -> mm_interconnect_1:clock_cross_kernel_mem1_m0_burstcount
wire [255:0] mm_interconnect_1_address_span_extender_kernel_windowed_slave_readdata; // address_span_extender_kernel:avs_s0_readdata -> mm_interconnect_1:address_span_extender_kernel_windowed_slave_readdata
wire mm_interconnect_1_address_span_extender_kernel_windowed_slave_waitrequest; // address_span_extender_kernel:avs_s0_waitrequest -> mm_interconnect_1:address_span_extender_kernel_windowed_slave_waitrequest
wire [24:0] mm_interconnect_1_address_span_extender_kernel_windowed_slave_address; // mm_interconnect_1:address_span_extender_kernel_windowed_slave_address -> address_span_extender_kernel:avs_s0_address
wire mm_interconnect_1_address_span_extender_kernel_windowed_slave_read; // mm_interconnect_1:address_span_extender_kernel_windowed_slave_read -> address_span_extender_kernel:avs_s0_read
wire [31:0] mm_interconnect_1_address_span_extender_kernel_windowed_slave_byteenable; // mm_interconnect_1:address_span_extender_kernel_windowed_slave_byteenable -> address_span_extender_kernel:avs_s0_byteenable
wire mm_interconnect_1_address_span_extender_kernel_windowed_slave_readdatavalid; // address_span_extender_kernel:avs_s0_readdatavalid -> mm_interconnect_1:address_span_extender_kernel_windowed_slave_readdatavalid
wire mm_interconnect_1_address_span_extender_kernel_windowed_slave_write; // mm_interconnect_1:address_span_extender_kernel_windowed_slave_write -> address_span_extender_kernel:avs_s0_write
wire [255:0] mm_interconnect_1_address_span_extender_kernel_windowed_slave_writedata; // mm_interconnect_1:address_span_extender_kernel_windowed_slave_writedata -> address_span_extender_kernel:avs_s0_writedata
wire [4:0] mm_interconnect_1_address_span_extender_kernel_windowed_slave_burstcount; // mm_interconnect_1:address_span_extender_kernel_windowed_slave_burstcount -> address_span_extender_kernel:avs_s0_burstcount
wire address_span_extender_kernel_expanded_master_waitrequest; // mm_interconnect_2:address_span_extender_kernel_expanded_master_waitrequest -> address_span_extender_kernel:avm_m0_waitrequest
wire [255:0] address_span_extender_kernel_expanded_master_readdata; // mm_interconnect_2:address_span_extender_kernel_expanded_master_readdata -> address_span_extender_kernel:avm_m0_readdata
wire [31:0] address_span_extender_kernel_expanded_master_address; // address_span_extender_kernel:avm_m0_address -> mm_interconnect_2:address_span_extender_kernel_expanded_master_address
wire address_span_extender_kernel_expanded_master_read; // address_span_extender_kernel:avm_m0_read -> mm_interconnect_2:address_span_extender_kernel_expanded_master_read
wire [31:0] address_span_extender_kernel_expanded_master_byteenable; // address_span_extender_kernel:avm_m0_byteenable -> mm_interconnect_2:address_span_extender_kernel_expanded_master_byteenable
wire address_span_extender_kernel_expanded_master_readdatavalid; // mm_interconnect_2:address_span_extender_kernel_expanded_master_readdatavalid -> address_span_extender_kernel:avm_m0_readdatavalid
wire address_span_extender_kernel_expanded_master_write; // address_span_extender_kernel:avm_m0_write -> mm_interconnect_2:address_span_extender_kernel_expanded_master_write
wire [255:0] address_span_extender_kernel_expanded_master_writedata; // address_span_extender_kernel:avm_m0_writedata -> mm_interconnect_2:address_span_extender_kernel_expanded_master_writedata
wire [4:0] address_span_extender_kernel_expanded_master_burstcount; // address_span_extender_kernel:avm_m0_burstcount -> mm_interconnect_2:address_span_extender_kernel_expanded_master_burstcount
wire [255:0] mm_interconnect_2_hps_f2h_sdram0_data_readdata; // hps:f2h_sdram0_READDATA -> mm_interconnect_2:hps_f2h_sdram0_data_readdata
wire mm_interconnect_2_hps_f2h_sdram0_data_waitrequest; // hps:f2h_sdram0_WAITREQUEST -> mm_interconnect_2:hps_f2h_sdram0_data_waitrequest
wire [26:0] mm_interconnect_2_hps_f2h_sdram0_data_address; // mm_interconnect_2:hps_f2h_sdram0_data_address -> hps:f2h_sdram0_ADDRESS
wire mm_interconnect_2_hps_f2h_sdram0_data_read; // mm_interconnect_2:hps_f2h_sdram0_data_read -> hps:f2h_sdram0_READ
wire [31:0] mm_interconnect_2_hps_f2h_sdram0_data_byteenable; // mm_interconnect_2:hps_f2h_sdram0_data_byteenable -> hps:f2h_sdram0_BYTEENABLE
wire mm_interconnect_2_hps_f2h_sdram0_data_readdatavalid; // hps:f2h_sdram0_READDATAVALID -> mm_interconnect_2:hps_f2h_sdram0_data_readdatavalid
wire mm_interconnect_2_hps_f2h_sdram0_data_write; // mm_interconnect_2:hps_f2h_sdram0_data_write -> hps:f2h_sdram0_WRITE
wire [255:0] mm_interconnect_2_hps_f2h_sdram0_data_writedata; // mm_interconnect_2:hps_f2h_sdram0_data_writedata -> hps:f2h_sdram0_WRITEDATA
wire [7:0] mm_interconnect_2_hps_f2h_sdram0_data_burstcount; // mm_interconnect_2:hps_f2h_sdram0_data_burstcount -> hps:f2h_sdram0_BURSTCOUNT
wire irq_mapper_receiver0_irq; // acl_kernel_interface:kernel_irq_to_host_irq -> irq_mapper:receiver0_irq
wire [31:0] hps_f2h_irq0_irq; // irq_mapper:sender_irq -> hps:f2h_irq_p0
wire [31:0] hps_f2h_irq1_irq; // irq_mapper_001:sender_irq -> hps:f2h_irq_p1
wire rst_controller_reset_out_reset; // rst_controller:reset_out -> [acl_kernel_clk:reset_reset_n, acl_kernel_interface:reset_reset_n, acl_kernel_interface:sw_reset_in_reset, mm_interconnect_0:version_id_clk_reset_reset_bridge_in_reset_reset, version_id:resetn]
wire rst_controller_001_reset_out_reset; // rst_controller_001:reset_out -> [address_span_extender_kernel:reset, clock_cross_kernel_mem1:m0_reset, mm_interconnect_1:clock_cross_kernel_mem1_m0_reset_reset_bridge_in_reset_reset, mm_interconnect_2:address_span_extender_kernel_reset_reset_bridge_in_reset_reset]
wire acl_kernel_interface_sw_reset_export_reset; // acl_kernel_interface:sw_reset_export_reset_n -> rst_controller_001:reset_in0
wire rst_controller_002_reset_out_reset; // rst_controller_002:reset_out -> mm_interconnect_0:hps_h2f_lw_axi_master_agent_clk_reset_reset_bridge_in_reset_reset
wire hps_h2f_reset_reset; // hps:h2f_rst_n -> [rst_controller_002:reset_in0, rst_controller_003:reset_in0]
wire rst_controller_003_reset_out_reset; // rst_controller_003:reset_out -> mm_interconnect_2:hps_f2h_sdram0_data_translator_reset_reset_bridge_in_reset_reset
system_acl_iface_acl_kernel_clk acl_kernel_clk (
.kernel_clk2x_clk (kernel_clk2x_clk), // kernel_clk2x.clk
.pll_refclk_clk (kernel_pll_refclk_clk), // pll_refclk.clk
.ctrl_waitrequest (mm_interconnect_0_acl_kernel_clk_ctrl_waitrequest), // ctrl.waitrequest
.ctrl_readdata (mm_interconnect_0_acl_kernel_clk_ctrl_readdata), // .readdata
.ctrl_readdatavalid (mm_interconnect_0_acl_kernel_clk_ctrl_readdatavalid), // .readdatavalid
.ctrl_burstcount (mm_interconnect_0_acl_kernel_clk_ctrl_burstcount), // .burstcount
.ctrl_writedata (mm_interconnect_0_acl_kernel_clk_ctrl_writedata), // .writedata
.ctrl_address (mm_interconnect_0_acl_kernel_clk_ctrl_address), // .address
.ctrl_write (mm_interconnect_0_acl_kernel_clk_ctrl_write), // .write
.ctrl_read (mm_interconnect_0_acl_kernel_clk_ctrl_read), // .read
.ctrl_byteenable (mm_interconnect_0_acl_kernel_clk_ctrl_byteenable), // .byteenable
.ctrl_debugaccess (mm_interconnect_0_acl_kernel_clk_ctrl_debugaccess), // .debugaccess
.kernel_clk_clk (kernel_clk_clk), // kernel_clk.clk
.kernel_pll_locked_export (acl_kernel_clk_kernel_pll_locked_export), // kernel_pll_locked.export
.clk_clk (config_clk_clk), // clk.clk
.reset_reset_n (~rst_controller_reset_out_reset) // reset.reset_n
);
altera_avalon_mm_clock_crossing_bridge #(
.DATA_WIDTH (256),
.SYMBOL_WIDTH (8),
.HDL_ADDR_WIDTH (30),
.BURSTCOUNT_WIDTH (5),
.COMMAND_FIFO_DEPTH (64),
.RESPONSE_FIFO_DEPTH (64),
.MASTER_SYNC_DEPTH (2),
.SLAVE_SYNC_DEPTH (2)
) clock_cross_kernel_mem1 (
.m0_clk (pll_outclk0_clk), // m0_clk.clk
.m0_reset (rst_controller_001_reset_out_reset), // m0_reset.reset
.s0_clk (kernel_clk_clk), // s0_clk.clk
.s0_reset (~kernel_reset_reset_n), // s0_reset.reset
.s0_waitrequest (kernel_mem0_waitrequest), // s0.waitrequest
.s0_readdata (kernel_mem0_readdata), // .readdata
.s0_readdatavalid (kernel_mem0_readdatavalid), // .readdatavalid
.s0_burstcount (kernel_mem0_burstcount), // .burstcount
.s0_writedata (kernel_mem0_writedata), // .writedata
.s0_address (kernel_mem0_address), // .address
.s0_write (kernel_mem0_write), // .write
.s0_read (kernel_mem0_read), // .read
.s0_byteenable (kernel_mem0_byteenable), // .byteenable
.s0_debugaccess (kernel_mem0_debugaccess), // .debugaccess
.m0_waitrequest (clock_cross_kernel_mem1_m0_waitrequest), // m0.waitrequest
.m0_readdata (clock_cross_kernel_mem1_m0_readdata), // .readdata
.m0_readdatavalid (clock_cross_kernel_mem1_m0_readdatavalid), // .readdatavalid
.m0_burstcount (clock_cross_kernel_mem1_m0_burstcount), // .burstcount
.m0_writedata (clock_cross_kernel_mem1_m0_writedata), // .writedata
.m0_address (clock_cross_kernel_mem1_m0_address), // .address
.m0_write (clock_cross_kernel_mem1_m0_write), // .write
.m0_read (clock_cross_kernel_mem1_m0_read), // .read
.m0_byteenable (clock_cross_kernel_mem1_m0_byteenable), // .byteenable
.m0_debugaccess (clock_cross_kernel_mem1_m0_debugaccess) // .debugaccess
);
version_id #(
.WIDTH (32),
.VERSION_ID (-1597521440)
) version_id (
.clk (config_clk_clk), // clk.clk
.resetn (~rst_controller_reset_out_reset), // clk_reset.reset_n
.slave_read (mm_interconnect_0_version_id_s_read), // s.read
.slave_readdata (mm_interconnect_0_version_id_s_readdata) // .readdata
);
system_acl_iface_hps #(
.F2S_Width (0),
.S2F_Width (0)
) hps (
.mem_a (memory_mem_a), // memory.mem_a
.mem_ba (memory_mem_ba), // .mem_ba
.mem_ck (memory_mem_ck), // .mem_ck
.mem_ck_n (memory_mem_ck_n), // .mem_ck_n
.mem_cke (memory_mem_cke), // .mem_cke
.mem_cs_n (memory_mem_cs_n), // .mem_cs_n
.mem_ras_n (memory_mem_ras_n), // .mem_ras_n
.mem_cas_n (memory_mem_cas_n), // .mem_cas_n
.mem_we_n (memory_mem_we_n), // .mem_we_n
.mem_reset_n (memory_mem_reset_n), // .mem_reset_n
.mem_dq (memory_mem_dq), // .mem_dq
.mem_dqs (memory_mem_dqs), // .mem_dqs
.mem_dqs_n (memory_mem_dqs_n), // .mem_dqs_n
.mem_odt (memory_mem_odt), // .mem_odt
.mem_dm (memory_mem_dm), // .mem_dm
.oct_rzqin (memory_oct_rzqin), // .oct_rzqin
.hps_io_emac1_inst_TX_CLK (peripheral_hps_io_emac1_inst_TX_CLK), // hps_io.hps_io_emac1_inst_TX_CLK
.hps_io_emac1_inst_TXD0 (peripheral_hps_io_emac1_inst_TXD0), // .hps_io_emac1_inst_TXD0
.hps_io_emac1_inst_TXD1 (peripheral_hps_io_emac1_inst_TXD1), // .hps_io_emac1_inst_TXD1
.hps_io_emac1_inst_TXD2 (peripheral_hps_io_emac1_inst_TXD2), // .hps_io_emac1_inst_TXD2
.hps_io_emac1_inst_TXD3 (peripheral_hps_io_emac1_inst_TXD3), // .hps_io_emac1_inst_TXD3
.hps_io_emac1_inst_RXD0 (peripheral_hps_io_emac1_inst_RXD0), // .hps_io_emac1_inst_RXD0
.hps_io_emac1_inst_MDIO (peripheral_hps_io_emac1_inst_MDIO), // .hps_io_emac1_inst_MDIO
.hps_io_emac1_inst_MDC (peripheral_hps_io_emac1_inst_MDC), // .hps_io_emac1_inst_MDC
.hps_io_emac1_inst_RX_CTL (peripheral_hps_io_emac1_inst_RX_CTL), // .hps_io_emac1_inst_RX_CTL
.hps_io_emac1_inst_TX_CTL (peripheral_hps_io_emac1_inst_TX_CTL), // .hps_io_emac1_inst_TX_CTL
.hps_io_emac1_inst_RX_CLK (peripheral_hps_io_emac1_inst_RX_CLK), // .hps_io_emac1_inst_RX_CLK
.hps_io_emac1_inst_RXD1 (peripheral_hps_io_emac1_inst_RXD1), // .hps_io_emac1_inst_RXD1
.hps_io_emac1_inst_RXD2 (peripheral_hps_io_emac1_inst_RXD2), // .hps_io_emac1_inst_RXD2
.hps_io_emac1_inst_RXD3 (peripheral_hps_io_emac1_inst_RXD3), // .hps_io_emac1_inst_RXD3
.hps_io_sdio_inst_CMD (peripheral_hps_io_sdio_inst_CMD), // .hps_io_sdio_inst_CMD
.hps_io_sdio_inst_D0 (peripheral_hps_io_sdio_inst_D0), // .hps_io_sdio_inst_D0
.hps_io_sdio_inst_D1 (peripheral_hps_io_sdio_inst_D1), // .hps_io_sdio_inst_D1
.hps_io_sdio_inst_CLK (peripheral_hps_io_sdio_inst_CLK), // .hps_io_sdio_inst_CLK
.hps_io_sdio_inst_D2 (peripheral_hps_io_sdio_inst_D2), // .hps_io_sdio_inst_D2
.hps_io_sdio_inst_D3 (peripheral_hps_io_sdio_inst_D3), // .hps_io_sdio_inst_D3
.hps_io_uart0_inst_RX (peripheral_hps_io_uart0_inst_RX), // .hps_io_uart0_inst_RX
.hps_io_uart0_inst_TX (peripheral_hps_io_uart0_inst_TX), // .hps_io_uart0_inst_TX
.hps_io_i2c1_inst_SDA (peripheral_hps_io_i2c1_inst_SDA), // .hps_io_i2c1_inst_SDA
.hps_io_i2c1_inst_SCL (peripheral_hps_io_i2c1_inst_SCL), // .hps_io_i2c1_inst_SCL
.hps_io_gpio_inst_GPIO53 (peripheral_hps_io_gpio_inst_GPIO53), // .hps_io_gpio_inst_GPIO53
.h2f_rst_n (hps_h2f_reset_reset), // h2f_reset.reset_n
.f2h_sdram0_clk (pll_outclk0_clk), // f2h_sdram0_clock.clk
.f2h_sdram0_ADDRESS (mm_interconnect_2_hps_f2h_sdram0_data_address), // f2h_sdram0_data.address
.f2h_sdram0_BURSTCOUNT (mm_interconnect_2_hps_f2h_sdram0_data_burstcount), // .burstcount
.f2h_sdram0_WAITREQUEST (mm_interconnect_2_hps_f2h_sdram0_data_waitrequest), // .waitrequest
.f2h_sdram0_READDATA (mm_interconnect_2_hps_f2h_sdram0_data_readdata), // .readdata
.f2h_sdram0_READDATAVALID (mm_interconnect_2_hps_f2h_sdram0_data_readdatavalid), // .readdatavalid
.f2h_sdram0_READ (mm_interconnect_2_hps_f2h_sdram0_data_read), // .read
.f2h_sdram0_WRITEDATA (mm_interconnect_2_hps_f2h_sdram0_data_writedata), // .writedata
.f2h_sdram0_BYTEENABLE (mm_interconnect_2_hps_f2h_sdram0_data_byteenable), // .byteenable
.f2h_sdram0_WRITE (mm_interconnect_2_hps_f2h_sdram0_data_write), // .write
.h2f_lw_axi_clk (config_clk_clk), // h2f_lw_axi_clock.clk
.h2f_lw_AWID (hps_h2f_lw_axi_master_awid), // h2f_lw_axi_master.awid
.h2f_lw_AWADDR (hps_h2f_lw_axi_master_awaddr), // .awaddr
.h2f_lw_AWLEN (hps_h2f_lw_axi_master_awlen), // .awlen
.h2f_lw_AWSIZE (hps_h2f_lw_axi_master_awsize), // .awsize
.h2f_lw_AWBURST (hps_h2f_lw_axi_master_awburst), // .awburst
.h2f_lw_AWLOCK (hps_h2f_lw_axi_master_awlock), // .awlock
.h2f_lw_AWCACHE (hps_h2f_lw_axi_master_awcache), // .awcache
.h2f_lw_AWPROT (hps_h2f_lw_axi_master_awprot), // .awprot
.h2f_lw_AWVALID (hps_h2f_lw_axi_master_awvalid), // .awvalid
.h2f_lw_AWREADY (hps_h2f_lw_axi_master_awready), // .awready
.h2f_lw_WID (hps_h2f_lw_axi_master_wid), // .wid
.h2f_lw_WDATA (hps_h2f_lw_axi_master_wdata), // .wdata
.h2f_lw_WSTRB (hps_h2f_lw_axi_master_wstrb), // .wstrb
.h2f_lw_WLAST (hps_h2f_lw_axi_master_wlast), // .wlast
.h2f_lw_WVALID (hps_h2f_lw_axi_master_wvalid), // .wvalid
.h2f_lw_WREADY (hps_h2f_lw_axi_master_wready), // .wready
.h2f_lw_BID (hps_h2f_lw_axi_master_bid), // .bid
.h2f_lw_BRESP (hps_h2f_lw_axi_master_bresp), // .bresp
.h2f_lw_BVALID (hps_h2f_lw_axi_master_bvalid), // .bvalid
.h2f_lw_BREADY (hps_h2f_lw_axi_master_bready), // .bready
.h2f_lw_ARID (hps_h2f_lw_axi_master_arid), // .arid
.h2f_lw_ARADDR (hps_h2f_lw_axi_master_araddr), // .araddr
.h2f_lw_ARLEN (hps_h2f_lw_axi_master_arlen), // .arlen
.h2f_lw_ARSIZE (hps_h2f_lw_axi_master_arsize), // .arsize
.h2f_lw_ARBURST (hps_h2f_lw_axi_master_arburst), // .arburst
.h2f_lw_ARLOCK (hps_h2f_lw_axi_master_arlock), // .arlock
.h2f_lw_ARCACHE (hps_h2f_lw_axi_master_arcache), // .arcache
.h2f_lw_ARPROT (hps_h2f_lw_axi_master_arprot), // .arprot
.h2f_lw_ARVALID (hps_h2f_lw_axi_master_arvalid), // .arvalid
.h2f_lw_ARREADY (hps_h2f_lw_axi_master_arready), // .arready
.h2f_lw_RID (hps_h2f_lw_axi_master_rid), // .rid
.h2f_lw_RDATA (hps_h2f_lw_axi_master_rdata), // .rdata
.h2f_lw_RRESP (hps_h2f_lw_axi_master_rresp), // .rresp
.h2f_lw_RLAST (hps_h2f_lw_axi_master_rlast), // .rlast
.h2f_lw_RVALID (hps_h2f_lw_axi_master_rvalid), // .rvalid
.h2f_lw_RREADY (hps_h2f_lw_axi_master_rready), // .rready
.f2h_irq_p0 (hps_f2h_irq0_irq), // f2h_irq0.irq
.f2h_irq_p1 (hps_f2h_irq1_irq) // f2h_irq1.irq
);
system_acl_iface_acl_kernel_interface acl_kernel_interface (
.clk_clk (config_clk_clk), // clk.clk
.reset_reset_n (~rst_controller_reset_out_reset), // reset.reset_n
.kernel_cntrl_waitrequest (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_waitrequest), // kernel_cntrl.waitrequest
.kernel_cntrl_readdata (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_readdata), // .readdata
.kernel_cntrl_readdatavalid (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_readdatavalid), // .readdatavalid
.kernel_cntrl_burstcount (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_burstcount), // .burstcount
.kernel_cntrl_writedata (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_writedata), // .writedata
.kernel_cntrl_address (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_address), // .address
.kernel_cntrl_write (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_write), // .write
.kernel_cntrl_read (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_read), // .read
.kernel_cntrl_byteenable (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_byteenable), // .byteenable
.kernel_cntrl_debugaccess (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_debugaccess), // .debugaccess
.kernel_cra_waitrequest (kernel_cra_waitrequest), // kernel_cra.waitrequest
.kernel_cra_readdata (kernel_cra_readdata), // .readdata
.kernel_cra_readdatavalid (kernel_cra_readdatavalid), // .readdatavalid
.kernel_cra_burstcount (kernel_cra_burstcount), // .burstcount
.kernel_cra_writedata (kernel_cra_writedata), // .writedata
.kernel_cra_address (kernel_cra_address), // .address
.kernel_cra_write (kernel_cra_write), // .write
.kernel_cra_read (kernel_cra_read), // .read
.kernel_cra_byteenable (kernel_cra_byteenable), // .byteenable
.kernel_cra_debugaccess (kernel_cra_debugaccess), // .debugaccess
.kernel_irq_from_kernel_irq (kernel_irq_irq), // kernel_irq_from_kernel.irq
.acl_bsp_memorg_kernel_mode (acl_internal_memorg_kernel_mode), // acl_bsp_memorg_kernel.mode
.acl_bsp_memorg_host_mode (kernel_interface_acl_bsp_memorg_host_mode), // acl_bsp_memorg_host.mode
.sw_reset_in_reset (rst_controller_reset_out_reset), // sw_reset_in.reset
.kernel_clk_clk (kernel_clk_clk), // kernel_clk.clk
.sw_reset_export_reset_n (acl_kernel_interface_sw_reset_export_reset), // sw_reset_export.reset_n
.kernel_reset_reset_n (kernel_reset_reset_n), // kernel_reset.reset_n
.kernel_irq_to_host_irq (irq_mapper_receiver0_irq) // kernel_irq_to_host.irq
);
system_acl_iface_pll pll (
.refclk (config_clk_clk), // refclk.clk
.rst (~reset_n), // reset.reset
.outclk_0 (pll_outclk0_clk), // outclk0.clk
.locked () // (terminated)
);
altera_address_span_extender #(
.DATA_WIDTH (256),
.BYTEENABLE_WIDTH (32),
.MASTER_ADDRESS_WIDTH (32),
.SLAVE_ADDRESS_WIDTH (25),
.SLAVE_ADDRESS_SHIFT (5),
.BURSTCOUNT_WIDTH (5),
.CNTL_ADDRESS_WIDTH (1),
.SUB_WINDOW_COUNT (1),
.MASTER_ADDRESS_DEF (64'b0000000000000000000000000000000000000000000000000000000000000000)
) address_span_extender_kernel (
.clk (pll_outclk0_clk), // clock.clk
.reset (rst_controller_001_reset_out_reset), // reset.reset
.avs_s0_address (mm_interconnect_1_address_span_extender_kernel_windowed_slave_address), // windowed_slave.address
.avs_s0_read (mm_interconnect_1_address_span_extender_kernel_windowed_slave_read), // .read
.avs_s0_readdata (mm_interconnect_1_address_span_extender_kernel_windowed_slave_readdata), // .readdata
.avs_s0_write (mm_interconnect_1_address_span_extender_kernel_windowed_slave_write), // .write
.avs_s0_writedata (mm_interconnect_1_address_span_extender_kernel_windowed_slave_writedata), // .writedata
.avs_s0_readdatavalid (mm_interconnect_1_address_span_extender_kernel_windowed_slave_readdatavalid), // .readdatavalid
.avs_s0_waitrequest (mm_interconnect_1_address_span_extender_kernel_windowed_slave_waitrequest), // .waitrequest
.avs_s0_byteenable (mm_interconnect_1_address_span_extender_kernel_windowed_slave_byteenable), // .byteenable
.avs_s0_burstcount (mm_interconnect_1_address_span_extender_kernel_windowed_slave_burstcount), // .burstcount
.avm_m0_address (address_span_extender_kernel_expanded_master_address), // expanded_master.address
.avm_m0_read (address_span_extender_kernel_expanded_master_read), // .read
.avm_m0_waitrequest (address_span_extender_kernel_expanded_master_waitrequest), // .waitrequest
.avm_m0_readdata (address_span_extender_kernel_expanded_master_readdata), // .readdata
.avm_m0_write (address_span_extender_kernel_expanded_master_write), // .write
.avm_m0_writedata (address_span_extender_kernel_expanded_master_writedata), // .writedata
.avm_m0_readdatavalid (address_span_extender_kernel_expanded_master_readdatavalid), // .readdatavalid
.avm_m0_byteenable (address_span_extender_kernel_expanded_master_byteenable), // .byteenable
.avm_m0_burstcount (address_span_extender_kernel_expanded_master_burstcount), // .burstcount
.avs_cntl_address (1'b0), // (terminated)
.avs_cntl_read (1'b0), // (terminated)
.avs_cntl_readdata (), // (terminated)
.avs_cntl_write (1'b0), // (terminated)
.avs_cntl_writedata (64'b0000000000000000000000000000000000000000000000000000000000000000), // (terminated)
.avs_cntl_byteenable (8'b00000000) // (terminated)
);
system_acl_iface_mm_interconnect_0 mm_interconnect_0 (
.hps_h2f_lw_axi_master_awid (hps_h2f_lw_axi_master_awid), // hps_h2f_lw_axi_master.awid
.hps_h2f_lw_axi_master_awaddr (hps_h2f_lw_axi_master_awaddr), // .awaddr
.hps_h2f_lw_axi_master_awlen (hps_h2f_lw_axi_master_awlen), // .awlen
.hps_h2f_lw_axi_master_awsize (hps_h2f_lw_axi_master_awsize), // .awsize
.hps_h2f_lw_axi_master_awburst (hps_h2f_lw_axi_master_awburst), // .awburst
.hps_h2f_lw_axi_master_awlock (hps_h2f_lw_axi_master_awlock), // .awlock
.hps_h2f_lw_axi_master_awcache (hps_h2f_lw_axi_master_awcache), // .awcache
.hps_h2f_lw_axi_master_awprot (hps_h2f_lw_axi_master_awprot), // .awprot
.hps_h2f_lw_axi_master_awvalid (hps_h2f_lw_axi_master_awvalid), // .awvalid
.hps_h2f_lw_axi_master_awready (hps_h2f_lw_axi_master_awready), // .awready
.hps_h2f_lw_axi_master_wid (hps_h2f_lw_axi_master_wid), // .wid
.hps_h2f_lw_axi_master_wdata (hps_h2f_lw_axi_master_wdata), // .wdata
.hps_h2f_lw_axi_master_wstrb (hps_h2f_lw_axi_master_wstrb), // .wstrb
.hps_h2f_lw_axi_master_wlast (hps_h2f_lw_axi_master_wlast), // .wlast
.hps_h2f_lw_axi_master_wvalid (hps_h2f_lw_axi_master_wvalid), // .wvalid
.hps_h2f_lw_axi_master_wready (hps_h2f_lw_axi_master_wready), // .wready
.hps_h2f_lw_axi_master_bid (hps_h2f_lw_axi_master_bid), // .bid
.hps_h2f_lw_axi_master_bresp (hps_h2f_lw_axi_master_bresp), // .bresp
.hps_h2f_lw_axi_master_bvalid (hps_h2f_lw_axi_master_bvalid), // .bvalid
.hps_h2f_lw_axi_master_bready (hps_h2f_lw_axi_master_bready), // .bready
.hps_h2f_lw_axi_master_arid (hps_h2f_lw_axi_master_arid), // .arid
.hps_h2f_lw_axi_master_araddr (hps_h2f_lw_axi_master_araddr), // .araddr
.hps_h2f_lw_axi_master_arlen (hps_h2f_lw_axi_master_arlen), // .arlen
.hps_h2f_lw_axi_master_arsize (hps_h2f_lw_axi_master_arsize), // .arsize
.hps_h2f_lw_axi_master_arburst (hps_h2f_lw_axi_master_arburst), // .arburst
.hps_h2f_lw_axi_master_arlock (hps_h2f_lw_axi_master_arlock), // .arlock
.hps_h2f_lw_axi_master_arcache (hps_h2f_lw_axi_master_arcache), // .arcache
.hps_h2f_lw_axi_master_arprot (hps_h2f_lw_axi_master_arprot), // .arprot
.hps_h2f_lw_axi_master_arvalid (hps_h2f_lw_axi_master_arvalid), // .arvalid
.hps_h2f_lw_axi_master_arready (hps_h2f_lw_axi_master_arready), // .arready
.hps_h2f_lw_axi_master_rid (hps_h2f_lw_axi_master_rid), // .rid
.hps_h2f_lw_axi_master_rdata (hps_h2f_lw_axi_master_rdata), // .rdata
.hps_h2f_lw_axi_master_rresp (hps_h2f_lw_axi_master_rresp), // .rresp
.hps_h2f_lw_axi_master_rlast (hps_h2f_lw_axi_master_rlast), // .rlast
.hps_h2f_lw_axi_master_rvalid (hps_h2f_lw_axi_master_rvalid), // .rvalid
.hps_h2f_lw_axi_master_rready (hps_h2f_lw_axi_master_rready), // .rready
.config_clk_out_clk_clk (config_clk_clk), // config_clk_out_clk.clk
.hps_h2f_lw_axi_master_agent_clk_reset_reset_bridge_in_reset_reset (rst_controller_002_reset_out_reset), // hps_h2f_lw_axi_master_agent_clk_reset_reset_bridge_in_reset.reset
.version_id_clk_reset_reset_bridge_in_reset_reset (rst_controller_reset_out_reset), // version_id_clk_reset_reset_bridge_in_reset.reset
.acl_kernel_clk_ctrl_address (mm_interconnect_0_acl_kernel_clk_ctrl_address), // acl_kernel_clk_ctrl.address
.acl_kernel_clk_ctrl_write (mm_interconnect_0_acl_kernel_clk_ctrl_write), // .write
.acl_kernel_clk_ctrl_read (mm_interconnect_0_acl_kernel_clk_ctrl_read), // .read
.acl_kernel_clk_ctrl_readdata (mm_interconnect_0_acl_kernel_clk_ctrl_readdata), // .readdata
.acl_kernel_clk_ctrl_writedata (mm_interconnect_0_acl_kernel_clk_ctrl_writedata), // .writedata
.acl_kernel_clk_ctrl_burstcount (mm_interconnect_0_acl_kernel_clk_ctrl_burstcount), // .burstcount
.acl_kernel_clk_ctrl_byteenable (mm_interconnect_0_acl_kernel_clk_ctrl_byteenable), // .byteenable
.acl_kernel_clk_ctrl_readdatavalid (mm_interconnect_0_acl_kernel_clk_ctrl_readdatavalid), // .readdatavalid
.acl_kernel_clk_ctrl_waitrequest (mm_interconnect_0_acl_kernel_clk_ctrl_waitrequest), // .waitrequest
.acl_kernel_clk_ctrl_debugaccess (mm_interconnect_0_acl_kernel_clk_ctrl_debugaccess), // .debugaccess
.acl_kernel_interface_kernel_cntrl_address (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_address), // acl_kernel_interface_kernel_cntrl.address
.acl_kernel_interface_kernel_cntrl_write (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_write), // .write
.acl_kernel_interface_kernel_cntrl_read (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_read), // .read
.acl_kernel_interface_kernel_cntrl_readdata (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_readdata), // .readdata
.acl_kernel_interface_kernel_cntrl_writedata (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_writedata), // .writedata
.acl_kernel_interface_kernel_cntrl_burstcount (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_burstcount), // .burstcount
.acl_kernel_interface_kernel_cntrl_byteenable (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_byteenable), // .byteenable
.acl_kernel_interface_kernel_cntrl_readdatavalid (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_readdatavalid), // .readdatavalid
.acl_kernel_interface_kernel_cntrl_waitrequest (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_waitrequest), // .waitrequest
.acl_kernel_interface_kernel_cntrl_debugaccess (mm_interconnect_0_acl_kernel_interface_kernel_cntrl_debugaccess), // .debugaccess
.version_id_s_read (mm_interconnect_0_version_id_s_read), // version_id_s.read
.version_id_s_readdata (mm_interconnect_0_version_id_s_readdata) // .readdata
);
system_acl_iface_mm_interconnect_1 mm_interconnect_1 (
.pll_outclk0_clk (pll_outclk0_clk), // pll_outclk0.clk
.clock_cross_kernel_mem1_m0_reset_reset_bridge_in_reset_reset (rst_controller_001_reset_out_reset), // clock_cross_kernel_mem1_m0_reset_reset_bridge_in_reset.reset
.clock_cross_kernel_mem1_m0_address (clock_cross_kernel_mem1_m0_address), // clock_cross_kernel_mem1_m0.address
.clock_cross_kernel_mem1_m0_waitrequest (clock_cross_kernel_mem1_m0_waitrequest), // .waitrequest
.clock_cross_kernel_mem1_m0_burstcount (clock_cross_kernel_mem1_m0_burstcount), // .burstcount
.clock_cross_kernel_mem1_m0_byteenable (clock_cross_kernel_mem1_m0_byteenable), // .byteenable
.clock_cross_kernel_mem1_m0_read (clock_cross_kernel_mem1_m0_read), // .read
.clock_cross_kernel_mem1_m0_readdata (clock_cross_kernel_mem1_m0_readdata), // .readdata
.clock_cross_kernel_mem1_m0_readdatavalid (clock_cross_kernel_mem1_m0_readdatavalid), // .readdatavalid
.clock_cross_kernel_mem1_m0_write (clock_cross_kernel_mem1_m0_write), // .write
.clock_cross_kernel_mem1_m0_writedata (clock_cross_kernel_mem1_m0_writedata), // .writedata
.clock_cross_kernel_mem1_m0_debugaccess (clock_cross_kernel_mem1_m0_debugaccess), // .debugaccess
.address_span_extender_kernel_windowed_slave_address (mm_interconnect_1_address_span_extender_kernel_windowed_slave_address), // address_span_extender_kernel_windowed_slave.address
.address_span_extender_kernel_windowed_slave_write (mm_interconnect_1_address_span_extender_kernel_windowed_slave_write), // .write
.address_span_extender_kernel_windowed_slave_read (mm_interconnect_1_address_span_extender_kernel_windowed_slave_read), // .read
.address_span_extender_kernel_windowed_slave_readdata (mm_interconnect_1_address_span_extender_kernel_windowed_slave_readdata), // .readdata
.address_span_extender_kernel_windowed_slave_writedata (mm_interconnect_1_address_span_extender_kernel_windowed_slave_writedata), // .writedata
.address_span_extender_kernel_windowed_slave_burstcount (mm_interconnect_1_address_span_extender_kernel_windowed_slave_burstcount), // .burstcount
.address_span_extender_kernel_windowed_slave_byteenable (mm_interconnect_1_address_span_extender_kernel_windowed_slave_byteenable), // .byteenable
.address_span_extender_kernel_windowed_slave_readdatavalid (mm_interconnect_1_address_span_extender_kernel_windowed_slave_readdatavalid), // .readdatavalid
.address_span_extender_kernel_windowed_slave_waitrequest (mm_interconnect_1_address_span_extender_kernel_windowed_slave_waitrequest) // .waitrequest
);
system_acl_iface_mm_interconnect_2 mm_interconnect_2 (
.pll_outclk0_clk (pll_outclk0_clk), // pll_outclk0.clk
.address_span_extender_kernel_reset_reset_bridge_in_reset_reset (rst_controller_001_reset_out_reset), // address_span_extender_kernel_reset_reset_bridge_in_reset.reset
.hps_f2h_sdram0_data_translator_reset_reset_bridge_in_reset_reset (rst_controller_003_reset_out_reset), // hps_f2h_sdram0_data_translator_reset_reset_bridge_in_reset.reset
.address_span_extender_kernel_expanded_master_address (address_span_extender_kernel_expanded_master_address), // address_span_extender_kernel_expanded_master.address
.address_span_extender_kernel_expanded_master_waitrequest (address_span_extender_kernel_expanded_master_waitrequest), // .waitrequest
.address_span_extender_kernel_expanded_master_burstcount (address_span_extender_kernel_expanded_master_burstcount), // .burstcount
.address_span_extender_kernel_expanded_master_byteenable (address_span_extender_kernel_expanded_master_byteenable), // .byteenable
.address_span_extender_kernel_expanded_master_read (address_span_extender_kernel_expanded_master_read), // .read
.address_span_extender_kernel_expanded_master_readdata (address_span_extender_kernel_expanded_master_readdata), // .readdata
.address_span_extender_kernel_expanded_master_readdatavalid (address_span_extender_kernel_expanded_master_readdatavalid), // .readdatavalid
.address_span_extender_kernel_expanded_master_write (address_span_extender_kernel_expanded_master_write), // .write
.address_span_extender_kernel_expanded_master_writedata (address_span_extender_kernel_expanded_master_writedata), // .writedata
.hps_f2h_sdram0_data_address (mm_interconnect_2_hps_f2h_sdram0_data_address), // hps_f2h_sdram0_data.address
.hps_f2h_sdram0_data_write (mm_interconnect_2_hps_f2h_sdram0_data_write), // .write
.hps_f2h_sdram0_data_read (mm_interconnect_2_hps_f2h_sdram0_data_read), // .read
.hps_f2h_sdram0_data_readdata (mm_interconnect_2_hps_f2h_sdram0_data_readdata), // .readdata
.hps_f2h_sdram0_data_writedata (mm_interconnect_2_hps_f2h_sdram0_data_writedata), // .writedata
.hps_f2h_sdram0_data_burstcount (mm_interconnect_2_hps_f2h_sdram0_data_burstcount), // .burstcount
.hps_f2h_sdram0_data_byteenable (mm_interconnect_2_hps_f2h_sdram0_data_byteenable), // .byteenable
.hps_f2h_sdram0_data_readdatavalid (mm_interconnect_2_hps_f2h_sdram0_data_readdatavalid), // .readdatavalid
.hps_f2h_sdram0_data_waitrequest (mm_interconnect_2_hps_f2h_sdram0_data_waitrequest) // .waitrequest
);
system_acl_iface_irq_mapper irq_mapper (
.clk (), // clk.clk
.reset (), // clk_reset.reset
.receiver0_irq (irq_mapper_receiver0_irq), // receiver0.irq
.sender_irq (hps_f2h_irq0_irq) // sender.irq
);
system_acl_iface_irq_mapper_001 irq_mapper_001 (
.clk (), // clk.clk
.reset (), // clk_reset.reset
.sender_irq (hps_f2h_irq1_irq) // sender.irq
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller (
.reset_in0 (~reset_n), // reset_in0.reset
.clk (config_clk_clk), // clk.clk
.reset_out (rst_controller_reset_out_reset), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller_001 (
.reset_in0 (~acl_kernel_interface_sw_reset_export_reset), // reset_in0.reset
.clk (pll_outclk0_clk), // clk.clk
.reset_out (rst_controller_001_reset_out_reset), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller_002 (
.reset_in0 (~hps_h2f_reset_reset), // reset_in0.reset
.clk (config_clk_clk), // clk.clk
.reset_out (rst_controller_002_reset_out_reset), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller_003 (
.reset_in0 (~hps_h2f_reset_reset), // reset_in0.reset
.clk (pll_outclk0_clk), // clk.clk
.reset_out (rst_controller_003_reset_out_reset), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
assign kernel_clk_snoop_clk = kernel_clk_clk;
endmodule |
module counter
#(parameter C_MAX_VALUE = 10,
parameter C_SAT_VALUE = 10,
parameter C_RST_VALUE = 0)
(
input CLK,
input RST_IN,
input ENABLE,
output [clog2s(C_MAX_VALUE+1)-1:0] VALUE
);
`include "functions.vh"
wire wEnable;
reg [clog2s(C_MAX_VALUE+1)-1:0] wCtrValue;
reg [clog2s(C_MAX_VALUE+1)-1:0] rCtrValue;
/* verilator lint_off WIDTH */
assign wEnable = ENABLE & (C_SAT_VALUE > rCtrValue);
/* verilator lint_on WIDTH */
assign VALUE = rCtrValue;
always @(posedge CLK) begin
if(RST_IN) begin
rCtrValue <= C_RST_VALUE;
end else if(wEnable) begin
rCtrValue <= rCtrValue + 1;
end
end
endmodule |
module
.idelayctrl_refclk (),
.phy_dout (phy_dout),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phy_ctl_wd (phy_ctl_wd_temp),
.phy_ctl_wr (phy_ctl_wr_temp),
.if_empty_def (phy_if_empty_def),
.if_rst (phy_if_reset),
.phyGo ('b1),
.aux_in_1 (aux_in_1),
.aux_in_2 (aux_in_2),
// No support yet for different data offsets for different I/O banks
// (possible use in supporting wider range of skew among bytes)
.data_offset_1 (data_offset_1_temp),
.data_offset_2 (data_offset_2_temp),
.cke_in (),
.if_a_empty (),
.if_empty (if_empty),
.if_empty_or (),
.if_empty_and (),
.of_ctl_a_full (),
// .of_data_a_full (phy_data_full),
.of_ctl_full (phy_cmd_full),
.of_data_full (),
.pre_data_a_full (phy_pre_data_a_full),
.idelay_ld (idelay_ld),
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.input_sink (),
.phy_din (phy_din),
.phy_ctl_a_full (),
.phy_ctl_full (phy_ctl_full_temp),
.mem_dq_out (mem_dq_out),
.mem_dq_ts (mem_dq_ts),
.mem_dq_in (mem_dq_in),
.mem_dqs_out (mem_dqs_out),
.mem_dqs_ts (mem_dqs_ts),
.mem_dqs_in (mem_dqs_in),
.aux_out (aux_out),
.phy_ctl_ready (),
.rst_out (),
.ddr_clk (ddr_clk),
//.rclk (),
.mcGo (phy_mc_go),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.calib_zero_lanes ('b0),
.po_fine_enable (po_fine_enable),
.po_coarse_enable (po_coarse_enable),
.po_fine_inc (po_fine_inc),
.po_coarse_inc (po_coarse_inc),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (),
.po_fine_overflow (),
.po_counter_read_val (po_counter_read_val),
.pi_rst_dqs_find (pi_rst_dqs_find),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (dbg_pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (),
.pi_counter_read_val (pi_counter_read_val),
.pi_phase_locked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_dqs_found (),
.pi_dqs_found_any (pi_dqs_found),
.pi_dqs_found_all (pi_dqs_found_all),
.pi_dqs_found_lanes (dbg_pi_dqs_found_lanes_phy4lanes),
// Currently not being used. May be used in future if periodic
// reads become a requirement. This output could be used to signal
// a catastrophic failure in read capture and the need for
// re-calibration.
.pi_dqs_out_of_range (pi_dqs_out_of_range)
,.ref_dll_lock (ref_dll_lock)
,.pi_phase_locked_lanes (dbg_pi_phase_locked_phy4lanes)
// ,.rst_phaser_ref (rst_phaser_ref)
);
endmodule |
module TRELLIS_SLICE(
input A0, B0, C0, D0,
input A1, B1, C1, D1,
input M0, M1,
input FCI, FXA, FXB,
input CLK, LSR, CE,
input DI0, DI1,
input WD0, WD1,
input WAD0, WAD1, WAD2, WAD3,
input WRE, WCK,
output F0, Q0,
output F1, Q1,
output FCO, OFX0, OFX1,
output WDO0, WDO1, WDO2, WDO3,
output WADO0, WADO1, WADO2, WADO3
);
parameter MODE = "LOGIC";
parameter GSR = "ENABLED";
parameter SRMODE = "LSR_OVER_CE";
parameter [127:0] CEMUX = "1";
parameter CLKMUX = "CLK";
parameter LSRMUX = "LSR";
parameter LUT0_INITVAL = 16'h0000;
parameter LUT1_INITVAL = 16'h0000;
parameter REG0_SD = "0";
parameter REG1_SD = "0";
parameter REG0_REGSET = "RESET";
parameter REG1_REGSET = "RESET";
parameter [127:0] CCU2_INJECT1_0 = "NO";
parameter [127:0] CCU2_INJECT1_1 = "NO";
parameter WREMUX = "WRE";
function [15:0] permute_initval;
input [15:0] initval;
integer i;
begin
for (i = 0; i < 16; i = i + 1) begin
permute_initval[{i[0], i[2], i[1], i[3]}] = initval[i];
end
end
endfunction
generate
if (MODE == "LOGIC") begin
// LUTs
LUT4 #(
.INIT(LUT0_INITVAL)
) lut4_0 (
.A(A0), .B(B0), .C(C0), .D(D0),
.Z(F0)
);
LUT4 #(
.INIT(LUT1_INITVAL)
) lut4_1 (
.A(A1), .B(B1), .C(C1), .D(D1),
.Z(F1)
);
// LUT expansion muxes
PFUMX lut5_mux (.ALUT(F1), .BLUT(F0), .C0(M0), .Z(OFX0));
L6MUX21 lutx_mux (.D0(FXA), .D1(FXB), .SD(M1), .Z(OFX1));
end else if (MODE == "CCU2") begin
CCU2C #(
.INIT0(LUT0_INITVAL),
.INIT1(LUT1_INITVAL),
.INJECT1_0(CCU2_INJECT1_0),
.INJECT1_1(CCU2_INJECT1_1)
) ccu2c_i (
.CIN(FCI),
.A0(A0), .B0(B0), .C0(C0), .D0(D0),
.A1(A1), .B1(B1), .C1(C1), .D1(D1),
.S0(F0), .S1(F1),
.COUT(FCO)
);
end else if (MODE == "RAMW") begin
assign WDO0 = C1;
assign WDO1 = A1;
assign WDO2 = D1;
assign WDO3 = B1;
assign WADO0 = D0;
assign WADO1 = B0;
assign WADO2 = C0;
assign WADO3 = A0;
end else if (MODE == "DPRAM") begin
TRELLIS_RAM16X2 #(
.INITVAL_0(permute_initval(LUT0_INITVAL)),
.INITVAL_1(permute_initval(LUT1_INITVAL)),
.WREMUX(WREMUX)
) ram_i (
.DI0(WD0), .DI1(WD1),
.WAD0(WAD0), .WAD1(WAD1), .WAD2(WAD2), .WAD3(WAD3),
.WRE(WRE), .WCK(WCK),
.RAD0(D0), .RAD1(B0), .RAD2(C0), .RAD3(A0),
.DO0(F0), .DO1(F1)
);
// TODO: confirm RAD and INITVAL ordering
// DPRAM mode contract?
always @(*) begin
assert(A0==A1);
assert(B0==B1);
assert(C0==C1);
assert(D0==D1);
end
end else begin
ERROR_UNKNOWN_SLICE_MODE error();
end
endgenerate
// FF input selection muxes
wire muxdi0 = (REG0_SD == "1") ? DI0 : M0;
wire muxdi1 = (REG1_SD == "1") ? DI1 : M1;
// Flipflops
TRELLIS_FF #(
.GSR(GSR),
.CEMUX(CEMUX),
.CLKMUX(CLKMUX),
.LSRMUX(LSRMUX),
.SRMODE(SRMODE),
.REGSET(REG0_REGSET)
) ff_0 (
.CLK(CLK), .LSR(LSR), .CE(CE),
.DI(muxdi0),
.Q(Q0)
);
TRELLIS_FF #(
.GSR(GSR),
.CEMUX(CEMUX),
.CLKMUX(CLKMUX),
.LSRMUX(LSRMUX),
.SRMODE(SRMODE),
.REGSET(REG1_REGSET)
) ff_1 (
.CLK(CLK), .LSR(LSR), .CE(CE),
.DI(muxdi1),
.Q(Q1)
);
endmodule |
module sky130_fd_sc_hd__clkdlybuf4s50 (
X,
A
);
// Module ports
output X;
input A;
// Local signals
wire buf0_out_X;
// Name Output Other arguments
buf buf0 (buf0_out_X, A );
buf buf1 (X , buf0_out_X );
endmodule |
module receiver_logic #(
parameter DSIZE = 10
) (
input wire RESET,
input wire WCLK,
input wire FCLK,
input wire FCLK2X,
input wire BUS_CLK,
input wire RX_DATA,
input wire read,
output wire [23:0] data,
output wire empty,
output reg rx_fifo_full,
output wire rec_sync_ready,
output reg [7:0] lost_data_cnt,
output reg [7:0] decoder_err_cnt,
output reg [15:0] fifo_size,
input wire invert_rx_data,
input wire enable_rx,
input wire FIFO_CLK
);
wire RESET_WCLK;
flag_domain_crossing reset_domain_crossing_wclk_inst (
.CLK_A(BUS_CLK),
.CLK_B(WCLK),
.FLAG_IN_CLK_A(RESET),
.FLAG_OUT_CLK_B(RESET_WCLK)
);
wire RESET_FCLK;
flag_domain_crossing reset_domain_crossing_fclk_inst (
.CLK_A(BUS_CLK),
.CLK_B(FCLK),
.FLAG_IN_CLK_A(RESET),
.FLAG_OUT_CLK_B(RESET_FCLK)
);
wire RESET_FIFO_CLK;
flag_domain_crossing reset_domain_crossing_fifo_clk_inst (
.CLK_A(BUS_CLK),
.CLK_B(FIFO_CLK),
.FLAG_IN_CLK_A(RESET),
.FLAG_OUT_CLK_B(RESET_FIFO_CLK)
);
// data to clock phase alignment
wire RX_DATA_SYNC; //, USEAOUT, USEBOUT, USECOUT, USEDOUT;
sync_master sync_master_inst(
.clk(FCLK), // clock input
.clk_2x(FCLK2X), // clock 90 input
.datain(RX_DATA), // data inputs
.rst(RESET_FCLK), // reset input
.useaout(), // useA output for cascade
.usebout(), // useB output for cascade
.usecout(), // useC output for cascade
.usedout(), // useD output for cascade
.ctrlout(), // ctrl outputs for cascade
.sdataout(RX_DATA_SYNC)
);
reg RX_DATA_SYNC_BUF, RX_DATA_SYNC_BUF2;
always @(posedge FCLK) begin
RX_DATA_SYNC_BUF <= RX_DATA_SYNC;
RX_DATA_SYNC_BUF2 <= RX_DATA_SYNC_BUF;
end
// 8b/10b record sync
wire [9:0] data_8b10b;
reg decoder_err;
rec_sync #(
.DSIZE(DSIZE)
) rec_sync_inst (
.reset(RESET_WCLK),
.datain(invert_rx_data ? ~RX_DATA_SYNC_BUF2 : RX_DATA_SYNC_BUF2),
.data(data_8b10b),
.WCLK(WCLK),
.FCLK(FCLK),
.rec_sync_ready(rec_sync_ready),
.decoder_err(decoder_err)
);
wire write_8b10b;
assign write_8b10b = rec_sync_ready & enable_rx;
reg [9:0] data_to_dec;
integer i;
always @(*) begin
for (i=0; i<10; i=i+1)
data_to_dec[(10-1)-i] = data_8b10b[i];
end
reg dispin;
wire dispout;
always @(posedge WCLK) begin
if(RESET_WCLK)
dispin <= 1'b0;
else// if(write_8b10b)
dispin <= dispout;
// if(RESET_WCLK)
// dispin <= 1'b0;
// else
// if(write_8b10b)
// dispin <= ~dispout;
// else
// dispin <= dispin;
end
wire dec_k;
wire [7:0] dec_data;
wire code_err, disp_err;
decode_8b10b decode_8b10b_inst (
.datain(data_to_dec),
.dispin(dispin),
.dataout({dec_k,dec_data}), // control character, data out
.dispout(dispout),
.code_err(code_err),
.disp_err(disp_err)
);
always @(posedge WCLK) begin
if(RESET_WCLK)
decoder_err <= 1'b0;
else
decoder_err <= code_err | disp_err;
end
// Invalid symbols may or may not cause
// disparity errors depending on the symbol
// itself and the disparities of the previous and
// subsequent symbols. For this reason,
// DISP_ERR should always be combined
// with CODE_ERR to detect all errors.
always @(posedge WCLK) begin
if(RESET_WCLK)
decoder_err_cnt <= 0;
else
if(decoder_err && write_8b10b && decoder_err_cnt != 8'hff)
decoder_err_cnt <= decoder_err_cnt + 1;
end
reg [2:0] byte_sel;
always @(posedge WCLK) begin
if(RESET_WCLK || (write_8b10b && dec_k) || (write_8b10b && dec_k==0 && byte_sel==2))
byte_sel <= 0;
else if(write_8b10b)
byte_sel <= byte_sel + 1;
// if(RESET_WCLK || (write_8b10b && dec_k) || (write_8b10b && dec_k==0 && byte_sel==2))
// byte_sel <= 0;
// else
// if(write_8b10b)
// byte_sel <= byte_sel + 1;
// else
// byte_sel <= byte_sel;
end
reg [7:0] data_dec_in [2:0];
always @(posedge WCLK) begin
for (i=0; i<3; i=i+1)
data_dec_in[i] <= data_dec_in[i];
if(RESET_WCLK)
for (i=0; i<3; i=i+1)
data_dec_in[i] <= 8'b0;
else
if(write_8b10b && dec_k==0)
data_dec_in[byte_sel] <= dec_data;
end
reg cdc_fifo_write;
always @(posedge WCLK) begin
if(RESET_WCLK)
cdc_fifo_write <= 0;
else
if(write_8b10b && dec_k==0 && byte_sel==2)
cdc_fifo_write <= 1;
else
cdc_fifo_write <= 0;
end
wire [23:0] cdc_data_out;
wire [23:0] wdata;
assign wdata = {data_dec_in[0], data_dec_in[1], data_dec_in[2]};
// generate long reset
reg [3:0] rst_cnt_wclk;
reg RST_LONG_WCLK;
always @(posedge WCLK) begin
if (RESET_WCLK)
rst_cnt_wclk <= 4'b1111; // start value
else if (rst_cnt_wclk != 0)
rst_cnt_wclk <= rst_cnt_wclk - 1;
RST_LONG_WCLK <= |rst_cnt_wclk;
end
reg [3:0] rst_cnt_fifo_clk;
reg RST_LONG_FIFO_CLK;
always @(posedge FIFO_CLK) begin
if (RESET_FIFO_CLK)
rst_cnt_fifo_clk <= 4'b1111; // start value
else if (rst_cnt_fifo_clk != 0)
rst_cnt_fifo_clk <= rst_cnt_fifo_clk - 1;
RST_LONG_FIFO_CLK <= |rst_cnt_fifo_clk;
end
wire wfull;
wire fifo_full, cdc_fifo_empty;
cdc_syncfifo #(
.DSIZE(24),
.ASIZE(2)
) cdc_syncfifo_i (
.rdata(cdc_data_out),
.wfull(wfull),
.rempty(cdc_fifo_empty),
.wdata(wdata),
.winc(cdc_fifo_write),
.wclk(WCLK),
.wrst(RST_LONG_WCLK),
.rinc(!fifo_full),
.rclk(FIFO_CLK),
.rrst(RST_LONG_FIFO_CLK)
);
wire [10:0] fifo_size_int;
gerneric_fifo #(
.DATA_SIZE(24),
.DEPTH(2048)
) fifo_i (
.clk(FIFO_CLK),
.reset(RST_LONG_FIFO_CLK),
.write(!cdc_fifo_empty),
.read(read),
.data_in(cdc_data_out),
.full(fifo_full),
.empty(empty),
.data_out(data),
.size(fifo_size_int)
);
always @(posedge WCLK) begin
if (wfull && cdc_fifo_write) begin // write when FIFO full
rx_fifo_full <= 1'b1;
end else if (!wfull && cdc_fifo_write) begin // write when FIFO not full
rx_fifo_full <= 1'b0;
end
end
always @(posedge WCLK) begin
if (RESET_WCLK)
lost_data_cnt <= 0;
else
if (wfull && cdc_fifo_write && lost_data_cnt != 8'b1111_1111)
lost_data_cnt <= lost_data_cnt + 1;
end
always @(posedge FIFO_CLK) begin
fifo_size <= {5'b0, fifo_size_int};
end
`ifdef SYNTHESIS_NOT
wire [35:0] control_bus;
chipscope_icon ichipscope_icon
(
.CONTROL0(control_bus)
);
chipscope_ila ichipscope_ila
(
.CONTROL(control_bus),
.CLK(FCLK),
.TRIG0({dec_k, dec_data, data_to_dec, rec_sync_ready, 1'b0, USEAOUT, USEBOUT, USECOUT, USEDOUT, RX_DATA_SYNC, RX_DATA})
);
`endif
endmodule |
module clk_200_400_exdes
#(
parameter TCQ = 100
)
(// Clock in ports
input CLK_IN1,
// Reset that only drives logic in example design
input COUNTER_RESET,
// High bits of counters driven by clocks
output COUNT,
// Status and control signals
input RESET,
output LOCKED
);
// Parameters for the counters
//-------------------------------
// Counter width
localparam C_W = 16;
// When the clock goes out of lock, reset the counters
wire reset_int = !LOCKED || RESET || COUNTER_RESET;
reg rst_sync;
reg rst_sync_int;
reg rst_sync_int1;
reg rst_sync_int2;
// Declare the clocks and counter
wire clk_int;
wire clk;
reg [C_W-1:0] counter;
// Insert BUFGs on all input clocks that don't already have them
//--------------------------------------------------------------
BUFG clkin1_buf
(.O (clk_in1_buf),
.I (CLK_IN1));
// Instantiation of the clocking network
//--------------------------------------
clk_200_400 clknetwork
(// Clock in ports
.CLK_IN1 (clk_in1_buf),
// Clock out ports
.CLK_OUT1 (clk_int),
// Status and control signals
.RESET (RESET),
.LOCKED (LOCKED));
// Connect the output clocks to the design
//-----------------------------------------
assign clk = clk_int;
// Reset synchronizer
//-----------------------------------
always @(posedge reset_int or posedge clk) begin
if (reset_int) begin
rst_sync <= 1'b1;
rst_sync_int <= 1'b1;
rst_sync_int1 <= 1'b1;
rst_sync_int2 <= 1'b1;
end
else begin
rst_sync <= 1'b0;
rst_sync_int <= rst_sync;
rst_sync_int1 <= rst_sync_int;
rst_sync_int2 <= rst_sync_int1;
end
end
// Output clock sampling
//-----------------------------------
always @(posedge clk or posedge rst_sync_int2) begin
if (rst_sync_int2) begin
counter <= #TCQ { C_W { 1'b 0 } };
end else begin
counter <= #TCQ counter + 1'b 1;
end
end
// alias the high bit to the output
assign COUNT = counter[C_W-1];
endmodule |
module th33 ( y, a, b, c );
output y;
input a, b, c;
specify
specparam CDS_LIBNAME = "static";
specparam CDS_CELLNAME = "th33";
specparam CDS_VIEWNAME = "schematic";
endspecify
nfet_b N6 ( .d(net44), .g(y), .s(cds_globals.gnd_),
.b(cds_globals.gnd_));
nfet_b N5 ( .d(net32), .g(b), .s(net44), .b(cds_globals.gnd_));
nfet_b N4 ( .d(net035), .g(c), .s(cds_globals.gnd_),
.b(cds_globals.gnd_));
nfet_b N15 ( .d(net32), .g(c), .s(net44), .b(cds_globals.gnd_));
nfet_b N10 ( .d(net32), .g(a), .s(net44), .b(cds_globals.gnd_));
nfet_b N2 ( .d(net038), .g(b), .s(net035), .b(cds_globals.gnd_));
nfet_b N1 ( .d(net32), .g(a), .s(net038), .b(cds_globals.gnd_));
pfet_b P12 ( .b(cds_globals.vdd_), .g(c), .s(cds_globals.vdd_),
.d(net036));
pfet_b P5 ( .b(cds_globals.vdd_), .g(b), .s(cds_globals.vdd_),
.d(net036));
pfet_b P4 ( .b(cds_globals.vdd_), .g(a), .s(cds_globals.vdd_),
.d(net036));
pfet_b P3 ( .b(cds_globals.vdd_), .g(y), .s(net036), .d(net32));
pfet_b P2 ( .b(cds_globals.vdd_), .g(c), .s(net34), .d(net32));
pfet_b P1 ( .b(cds_globals.vdd_), .g(b), .s(net49), .d(net34));
pfet_b P0 ( .b(cds_globals.vdd_), .g(a), .s(cds_globals.vdd_),
.d(net49));
inv I2 ( y, net32);
endmodule |
module avlst_n_to_1 #(
parameter N = 8,
parameter DATA_W = 16,
)(
input csi_clk,
input rsi_reset,
output asi_ready,
input asi_valid,
input [N*DATA_W-1:0] asi_data,
input aso_ready,
output aso_valid,
output [DATA_W-1:0] aso_data
);
reg ready;
reg valid;
reg [DATA_W-1:0] data;
reg [DATA_W-1:0] buffer [0:N-1];
assign asi_ready = read;
assign aso_valid = valid;
assign aso_data = data;
reg fval;
always@(posedge csi_clk, posedge rsi_reset) begin
if(rsi_reset == 1'b1)
fval <= 1'b0;
else
if(asi_valid == 1'b1)
fval <= 1'b1;
if(cnt == 3'h7)
end
genvar i;
generate
for(i=0; i<N; i++) begin : main
always@(posedge csi_clk, posedge rsi_reset) begin
if(rsi_reset == 1'b1)
buffer[i] <= {DATA_W{1'b0}};
else begin
if(asi_valid == 1'b1)
buffer[i] <= asi_data[(i+1)*DATA_W-1:i*DATA_W];
end
end
end
endgenerate
always@(posedge csi_clk, posedge rsi_reset) begin
if(rsi_reset == 1'b1) begin
valid <= 1'b0;
end
valid <= fval &
end
always@(posedge csi_clk, posedge rsi_reset) begin
if(rsi_reset == 1'b1) begin
data <= {DATA_W{1'b0}};
end
data <= buffer[cnt];
end
reg [2:0] cnt;
always@(posedge csi_clk, posedge rsi_reset) begin
if(rsi_reset == 1'b1)
cnt <= 3'h0;
else begin
if(aso_ready == 1'b1 && src_valid == 1'b1)
cnt <= cnt+3'h1;
end
end
endmodule |
module sky130_fd_sc_ms__ebufn (
//# {{data|Data Signals}}
input A ,
output Z ,
//# {{control|Control Signals}}
input TE_B
);
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
endmodule |
module sky130_fd_sc_ls__einvn_8 (
Z ,
A ,
TE_B,
VPWR,
VGND,
VPB ,
VNB
);
output Z ;
input A ;
input TE_B;
input VPWR;
input VGND;
input VPB ;
input VNB ;
sky130_fd_sc_ls__einvn base (
.Z(Z),
.A(A),
.TE_B(TE_B),
.VPWR(VPWR),
.VGND(VGND),
.VPB(VPB),
.VNB(VNB)
);
endmodule |
module sky130_fd_sc_ls__einvn_8 (
Z ,
A ,
TE_B
);
output Z ;
input A ;
input TE_B;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
sky130_fd_sc_ls__einvn base (
.Z(Z),
.A(A),
.TE_B(TE_B)
);
endmodule |
module Dlatch (q,qbar,clock,data);
output q, qbar;
input clock, data;
wire nand1, nand2;
wire databar;
not #1 (databar,data);
nand #1 (nand1,clock, data);
nand #1 (nand2,clock, databar);
nand #1 (qbar,nand2,q);
nand #1 (q,nand1,qbar);
endmodule |
module m555(clock);
parameter InitDelay = 10, Ton = 50, Toff = 50;
output clock;
reg clock;
initial begin
#InitDelay clock = 1;
end
always begin
#Ton clock = ~clock;
#Toff clock = ~clock;
end
endmodule |
module testD(q, qbar, clock, data);
input q, qbar, clock;
output data;
reg data;
initial begin
$monitor ($time, " q = %d, qbar = %d, clock = %d, data = %d", q, qbar, clock, data);
data = 0;
#25
data = 1;
#100
data = 0;
#50
data = 1;
#50
data = 0;
#100
data = 1;
#50
data = 0;
#50
data = 1;
#100
$finish; /* $finish simulation after 100 time simulation units */
end
endmodule |
module testBenchD;
wire clock, q, qbar, data;
m555 clk(clock);
Dlatch dl(q, qbar, clock, data);
testD td(q, qbar, clock, data);
endmodule |
module hps_design (
input wire clk_clk, // clk.clk
output wire [14:0] hps_ddr_mem_a, // hps_ddr.mem_a
output wire [2:0] hps_ddr_mem_ba, // .mem_ba
output wire hps_ddr_mem_ck, // .mem_ck
output wire hps_ddr_mem_ck_n, // .mem_ck_n
output wire hps_ddr_mem_cke, // .mem_cke
output wire hps_ddr_mem_cs_n, // .mem_cs_n
output wire hps_ddr_mem_ras_n, // .mem_ras_n
output wire hps_ddr_mem_cas_n, // .mem_cas_n
output wire hps_ddr_mem_we_n, // .mem_we_n
output wire hps_ddr_mem_reset_n, // .mem_reset_n
inout wire [31:0] hps_ddr_mem_dq, // .mem_dq
inout wire [3:0] hps_ddr_mem_dqs, // .mem_dqs
inout wire [3:0] hps_ddr_mem_dqs_n, // .mem_dqs_n
output wire hps_ddr_mem_odt, // .mem_odt
output wire [3:0] hps_ddr_mem_dm, // .mem_dm
input wire hps_ddr_oct_rzqin, // .oct_rzqin
output wire ledr_export, // ledr.export
output wire pll_0_sdram_clk // pll_0_sdram.clk
);
wire pll_0_outclk0_clk; // pll_0:outclk_0 -> [SMP_HPS:h2f_lw_axi_clk, mm_interconnect_0:pll_0_outclk0_clk, pio_0:clk, rst_controller:clk, rst_controller_001:clk]
wire smp_hps_h2f_reset_reset; // SMP_HPS:h2f_rst_n -> [pll_0:rst, rst_controller:reset_in0, rst_controller_001:reset_in0]
wire [1:0] smp_hps_h2f_lw_axi_master_awburst; // SMP_HPS:h2f_lw_AWBURST -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awburst
wire [3:0] smp_hps_h2f_lw_axi_master_arlen; // SMP_HPS:h2f_lw_ARLEN -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arlen
wire [3:0] smp_hps_h2f_lw_axi_master_wstrb; // SMP_HPS:h2f_lw_WSTRB -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_wstrb
wire smp_hps_h2f_lw_axi_master_wready; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_wready -> SMP_HPS:h2f_lw_WREADY
wire [11:0] smp_hps_h2f_lw_axi_master_rid; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_rid -> SMP_HPS:h2f_lw_RID
wire smp_hps_h2f_lw_axi_master_rready; // SMP_HPS:h2f_lw_RREADY -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_rready
wire [3:0] smp_hps_h2f_lw_axi_master_awlen; // SMP_HPS:h2f_lw_AWLEN -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awlen
wire [11:0] smp_hps_h2f_lw_axi_master_wid; // SMP_HPS:h2f_lw_WID -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_wid
wire [3:0] smp_hps_h2f_lw_axi_master_arcache; // SMP_HPS:h2f_lw_ARCACHE -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arcache
wire smp_hps_h2f_lw_axi_master_wvalid; // SMP_HPS:h2f_lw_WVALID -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_wvalid
wire [20:0] smp_hps_h2f_lw_axi_master_araddr; // SMP_HPS:h2f_lw_ARADDR -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_araddr
wire [2:0] smp_hps_h2f_lw_axi_master_arprot; // SMP_HPS:h2f_lw_ARPROT -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arprot
wire [2:0] smp_hps_h2f_lw_axi_master_awprot; // SMP_HPS:h2f_lw_AWPROT -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awprot
wire [31:0] smp_hps_h2f_lw_axi_master_wdata; // SMP_HPS:h2f_lw_WDATA -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_wdata
wire smp_hps_h2f_lw_axi_master_arvalid; // SMP_HPS:h2f_lw_ARVALID -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arvalid
wire [3:0] smp_hps_h2f_lw_axi_master_awcache; // SMP_HPS:h2f_lw_AWCACHE -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awcache
wire [11:0] smp_hps_h2f_lw_axi_master_arid; // SMP_HPS:h2f_lw_ARID -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arid
wire [1:0] smp_hps_h2f_lw_axi_master_arlock; // SMP_HPS:h2f_lw_ARLOCK -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arlock
wire [1:0] smp_hps_h2f_lw_axi_master_awlock; // SMP_HPS:h2f_lw_AWLOCK -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awlock
wire [20:0] smp_hps_h2f_lw_axi_master_awaddr; // SMP_HPS:h2f_lw_AWADDR -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awaddr
wire [1:0] smp_hps_h2f_lw_axi_master_bresp; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_bresp -> SMP_HPS:h2f_lw_BRESP
wire smp_hps_h2f_lw_axi_master_arready; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arready -> SMP_HPS:h2f_lw_ARREADY
wire [31:0] smp_hps_h2f_lw_axi_master_rdata; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_rdata -> SMP_HPS:h2f_lw_RDATA
wire smp_hps_h2f_lw_axi_master_awready; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awready -> SMP_HPS:h2f_lw_AWREADY
wire [1:0] smp_hps_h2f_lw_axi_master_arburst; // SMP_HPS:h2f_lw_ARBURST -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arburst
wire [2:0] smp_hps_h2f_lw_axi_master_arsize; // SMP_HPS:h2f_lw_ARSIZE -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_arsize
wire smp_hps_h2f_lw_axi_master_bready; // SMP_HPS:h2f_lw_BREADY -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_bready
wire smp_hps_h2f_lw_axi_master_rlast; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_rlast -> SMP_HPS:h2f_lw_RLAST
wire smp_hps_h2f_lw_axi_master_wlast; // SMP_HPS:h2f_lw_WLAST -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_wlast
wire [1:0] smp_hps_h2f_lw_axi_master_rresp; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_rresp -> SMP_HPS:h2f_lw_RRESP
wire [11:0] smp_hps_h2f_lw_axi_master_awid; // SMP_HPS:h2f_lw_AWID -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awid
wire [11:0] smp_hps_h2f_lw_axi_master_bid; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_bid -> SMP_HPS:h2f_lw_BID
wire smp_hps_h2f_lw_axi_master_bvalid; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_bvalid -> SMP_HPS:h2f_lw_BVALID
wire [2:0] smp_hps_h2f_lw_axi_master_awsize; // SMP_HPS:h2f_lw_AWSIZE -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awsize
wire smp_hps_h2f_lw_axi_master_awvalid; // SMP_HPS:h2f_lw_AWVALID -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_awvalid
wire smp_hps_h2f_lw_axi_master_rvalid; // mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_rvalid -> SMP_HPS:h2f_lw_RVALID
wire mm_interconnect_0_pio_0_s1_chipselect; // mm_interconnect_0:pio_0_s1_chipselect -> pio_0:chipselect
wire [31:0] mm_interconnect_0_pio_0_s1_readdata; // pio_0:readdata -> mm_interconnect_0:pio_0_s1_readdata
wire [1:0] mm_interconnect_0_pio_0_s1_address; // mm_interconnect_0:pio_0_s1_address -> pio_0:address
wire mm_interconnect_0_pio_0_s1_write; // mm_interconnect_0:pio_0_s1_write -> pio_0:write_n
wire [31:0] mm_interconnect_0_pio_0_s1_writedata; // mm_interconnect_0:pio_0_s1_writedata -> pio_0:writedata
wire rst_controller_reset_out_reset; // rst_controller:reset_out -> [mm_interconnect_0:pio_0_reset_reset_bridge_in_reset_reset, pio_0:reset_n]
wire rst_controller_001_reset_out_reset; // rst_controller_001:reset_out -> mm_interconnect_0:SMP_HPS_h2f_lw_axi_master_agent_clk_reset_reset_bridge_in_reset_reset
hps_design_SMP_HPS #(
.F2S_Width (0),
.S2F_Width (0)
) smp_hps (
.mem_a (hps_ddr_mem_a), // memory.mem_a
.mem_ba (hps_ddr_mem_ba), // .mem_ba
.mem_ck (hps_ddr_mem_ck), // .mem_ck
.mem_ck_n (hps_ddr_mem_ck_n), // .mem_ck_n
.mem_cke (hps_ddr_mem_cke), // .mem_cke
.mem_cs_n (hps_ddr_mem_cs_n), // .mem_cs_n
.mem_ras_n (hps_ddr_mem_ras_n), // .mem_ras_n
.mem_cas_n (hps_ddr_mem_cas_n), // .mem_cas_n
.mem_we_n (hps_ddr_mem_we_n), // .mem_we_n
.mem_reset_n (hps_ddr_mem_reset_n), // .mem_reset_n
.mem_dq (hps_ddr_mem_dq), // .mem_dq
.mem_dqs (hps_ddr_mem_dqs), // .mem_dqs
.mem_dqs_n (hps_ddr_mem_dqs_n), // .mem_dqs_n
.mem_odt (hps_ddr_mem_odt), // .mem_odt
.mem_dm (hps_ddr_mem_dm), // .mem_dm
.oct_rzqin (hps_ddr_oct_rzqin), // .oct_rzqin
.h2f_rst_n (smp_hps_h2f_reset_reset), // h2f_reset.reset_n
.h2f_lw_axi_clk (pll_0_outclk0_clk), // h2f_lw_axi_clock.clk
.h2f_lw_AWID (smp_hps_h2f_lw_axi_master_awid), // h2f_lw_axi_master.awid
.h2f_lw_AWADDR (smp_hps_h2f_lw_axi_master_awaddr), // .awaddr
.h2f_lw_AWLEN (smp_hps_h2f_lw_axi_master_awlen), // .awlen
.h2f_lw_AWSIZE (smp_hps_h2f_lw_axi_master_awsize), // .awsize
.h2f_lw_AWBURST (smp_hps_h2f_lw_axi_master_awburst), // .awburst
.h2f_lw_AWLOCK (smp_hps_h2f_lw_axi_master_awlock), // .awlock
.h2f_lw_AWCACHE (smp_hps_h2f_lw_axi_master_awcache), // .awcache
.h2f_lw_AWPROT (smp_hps_h2f_lw_axi_master_awprot), // .awprot
.h2f_lw_AWVALID (smp_hps_h2f_lw_axi_master_awvalid), // .awvalid
.h2f_lw_AWREADY (smp_hps_h2f_lw_axi_master_awready), // .awready
.h2f_lw_WID (smp_hps_h2f_lw_axi_master_wid), // .wid
.h2f_lw_WDATA (smp_hps_h2f_lw_axi_master_wdata), // .wdata
.h2f_lw_WSTRB (smp_hps_h2f_lw_axi_master_wstrb), // .wstrb
.h2f_lw_WLAST (smp_hps_h2f_lw_axi_master_wlast), // .wlast
.h2f_lw_WVALID (smp_hps_h2f_lw_axi_master_wvalid), // .wvalid
.h2f_lw_WREADY (smp_hps_h2f_lw_axi_master_wready), // .wready
.h2f_lw_BID (smp_hps_h2f_lw_axi_master_bid), // .bid
.h2f_lw_BRESP (smp_hps_h2f_lw_axi_master_bresp), // .bresp
.h2f_lw_BVALID (smp_hps_h2f_lw_axi_master_bvalid), // .bvalid
.h2f_lw_BREADY (smp_hps_h2f_lw_axi_master_bready), // .bready
.h2f_lw_ARID (smp_hps_h2f_lw_axi_master_arid), // .arid
.h2f_lw_ARADDR (smp_hps_h2f_lw_axi_master_araddr), // .araddr
.h2f_lw_ARLEN (smp_hps_h2f_lw_axi_master_arlen), // .arlen
.h2f_lw_ARSIZE (smp_hps_h2f_lw_axi_master_arsize), // .arsize
.h2f_lw_ARBURST (smp_hps_h2f_lw_axi_master_arburst), // .arburst
.h2f_lw_ARLOCK (smp_hps_h2f_lw_axi_master_arlock), // .arlock
.h2f_lw_ARCACHE (smp_hps_h2f_lw_axi_master_arcache), // .arcache
.h2f_lw_ARPROT (smp_hps_h2f_lw_axi_master_arprot), // .arprot
.h2f_lw_ARVALID (smp_hps_h2f_lw_axi_master_arvalid), // .arvalid
.h2f_lw_ARREADY (smp_hps_h2f_lw_axi_master_arready), // .arready
.h2f_lw_RID (smp_hps_h2f_lw_axi_master_rid), // .rid
.h2f_lw_RDATA (smp_hps_h2f_lw_axi_master_rdata), // .rdata
.h2f_lw_RRESP (smp_hps_h2f_lw_axi_master_rresp), // .rresp
.h2f_lw_RLAST (smp_hps_h2f_lw_axi_master_rlast), // .rlast
.h2f_lw_RVALID (smp_hps_h2f_lw_axi_master_rvalid), // .rvalid
.h2f_lw_RREADY (smp_hps_h2f_lw_axi_master_rready) // .rready
);
hps_design_pio_0 pio_0 (
.clk (pll_0_outclk0_clk), // clk.clk
.reset_n (~rst_controller_reset_out_reset), // reset.reset_n
.address (mm_interconnect_0_pio_0_s1_address), // s1.address
.write_n (~mm_interconnect_0_pio_0_s1_write), // .write_n
.writedata (mm_interconnect_0_pio_0_s1_writedata), // .writedata
.chipselect (mm_interconnect_0_pio_0_s1_chipselect), // .chipselect
.readdata (mm_interconnect_0_pio_0_s1_readdata), // .readdata
.out_port (ledr_export) // external_connection.export
);
hps_design_pll_0 pll_0 (
.refclk (clk_clk), // refclk.clk
.rst (~smp_hps_h2f_reset_reset), // reset.reset
.outclk_0 (pll_0_outclk0_clk), // outclk0.clk
.outclk_1 (), // outclk1.clk
.outclk_2 (pll_0_sdram_clk), // outclk2.clk
.locked () // (terminated)
);
hps_design_mm_interconnect_0 mm_interconnect_0 (
.SMP_HPS_h2f_lw_axi_master_awid (smp_hps_h2f_lw_axi_master_awid), // SMP_HPS_h2f_lw_axi_master.awid
.SMP_HPS_h2f_lw_axi_master_awaddr (smp_hps_h2f_lw_axi_master_awaddr), // .awaddr
.SMP_HPS_h2f_lw_axi_master_awlen (smp_hps_h2f_lw_axi_master_awlen), // .awlen
.SMP_HPS_h2f_lw_axi_master_awsize (smp_hps_h2f_lw_axi_master_awsize), // .awsize
.SMP_HPS_h2f_lw_axi_master_awburst (smp_hps_h2f_lw_axi_master_awburst), // .awburst
.SMP_HPS_h2f_lw_axi_master_awlock (smp_hps_h2f_lw_axi_master_awlock), // .awlock
.SMP_HPS_h2f_lw_axi_master_awcache (smp_hps_h2f_lw_axi_master_awcache), // .awcache
.SMP_HPS_h2f_lw_axi_master_awprot (smp_hps_h2f_lw_axi_master_awprot), // .awprot
.SMP_HPS_h2f_lw_axi_master_awvalid (smp_hps_h2f_lw_axi_master_awvalid), // .awvalid
.SMP_HPS_h2f_lw_axi_master_awready (smp_hps_h2f_lw_axi_master_awready), // .awready
.SMP_HPS_h2f_lw_axi_master_wid (smp_hps_h2f_lw_axi_master_wid), // .wid
.SMP_HPS_h2f_lw_axi_master_wdata (smp_hps_h2f_lw_axi_master_wdata), // .wdata
.SMP_HPS_h2f_lw_axi_master_wstrb (smp_hps_h2f_lw_axi_master_wstrb), // .wstrb
.SMP_HPS_h2f_lw_axi_master_wlast (smp_hps_h2f_lw_axi_master_wlast), // .wlast
.SMP_HPS_h2f_lw_axi_master_wvalid (smp_hps_h2f_lw_axi_master_wvalid), // .wvalid
.SMP_HPS_h2f_lw_axi_master_wready (smp_hps_h2f_lw_axi_master_wready), // .wready
.SMP_HPS_h2f_lw_axi_master_bid (smp_hps_h2f_lw_axi_master_bid), // .bid
.SMP_HPS_h2f_lw_axi_master_bresp (smp_hps_h2f_lw_axi_master_bresp), // .bresp
.SMP_HPS_h2f_lw_axi_master_bvalid (smp_hps_h2f_lw_axi_master_bvalid), // .bvalid
.SMP_HPS_h2f_lw_axi_master_bready (smp_hps_h2f_lw_axi_master_bready), // .bready
.SMP_HPS_h2f_lw_axi_master_arid (smp_hps_h2f_lw_axi_master_arid), // .arid
.SMP_HPS_h2f_lw_axi_master_araddr (smp_hps_h2f_lw_axi_master_araddr), // .araddr
.SMP_HPS_h2f_lw_axi_master_arlen (smp_hps_h2f_lw_axi_master_arlen), // .arlen
.SMP_HPS_h2f_lw_axi_master_arsize (smp_hps_h2f_lw_axi_master_arsize), // .arsize
.SMP_HPS_h2f_lw_axi_master_arburst (smp_hps_h2f_lw_axi_master_arburst), // .arburst
.SMP_HPS_h2f_lw_axi_master_arlock (smp_hps_h2f_lw_axi_master_arlock), // .arlock
.SMP_HPS_h2f_lw_axi_master_arcache (smp_hps_h2f_lw_axi_master_arcache), // .arcache
.SMP_HPS_h2f_lw_axi_master_arprot (smp_hps_h2f_lw_axi_master_arprot), // .arprot
.SMP_HPS_h2f_lw_axi_master_arvalid (smp_hps_h2f_lw_axi_master_arvalid), // .arvalid
.SMP_HPS_h2f_lw_axi_master_arready (smp_hps_h2f_lw_axi_master_arready), // .arready
.SMP_HPS_h2f_lw_axi_master_rid (smp_hps_h2f_lw_axi_master_rid), // .rid
.SMP_HPS_h2f_lw_axi_master_rdata (smp_hps_h2f_lw_axi_master_rdata), // .rdata
.SMP_HPS_h2f_lw_axi_master_rresp (smp_hps_h2f_lw_axi_master_rresp), // .rresp
.SMP_HPS_h2f_lw_axi_master_rlast (smp_hps_h2f_lw_axi_master_rlast), // .rlast
.SMP_HPS_h2f_lw_axi_master_rvalid (smp_hps_h2f_lw_axi_master_rvalid), // .rvalid
.SMP_HPS_h2f_lw_axi_master_rready (smp_hps_h2f_lw_axi_master_rready), // .rready
.pll_0_outclk0_clk (pll_0_outclk0_clk), // pll_0_outclk0.clk
.pio_0_reset_reset_bridge_in_reset_reset (rst_controller_reset_out_reset), // pio_0_reset_reset_bridge_in_reset.reset
.SMP_HPS_h2f_lw_axi_master_agent_clk_reset_reset_bridge_in_reset_reset (rst_controller_001_reset_out_reset), // SMP_HPS_h2f_lw_axi_master_agent_clk_reset_reset_bridge_in_reset.reset
.pio_0_s1_address (mm_interconnect_0_pio_0_s1_address), // pio_0_s1.address
.pio_0_s1_write (mm_interconnect_0_pio_0_s1_write), // .write
.pio_0_s1_readdata (mm_interconnect_0_pio_0_s1_readdata), // .readdata
.pio_0_s1_writedata (mm_interconnect_0_pio_0_s1_writedata), // .writedata
.pio_0_s1_chipselect (mm_interconnect_0_pio_0_s1_chipselect) // .chipselect
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller (
.reset_in0 (~smp_hps_h2f_reset_reset), // reset_in0.reset
.clk (pll_0_outclk0_clk), // clk.clk
.reset_out (rst_controller_reset_out_reset), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller_001 (
.reset_in0 (~smp_hps_h2f_reset_reset), // reset_in0.reset
.clk (pll_0_outclk0_clk), // clk.clk
.reset_out (rst_controller_001_reset_out_reset), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
endmodule |
module true_dual_port_ram_single_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
input [(DATA_WIDTH-1):0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_b, clk,
output reg [(DATA_WIDTH-1):0] q_a, q_b
);
// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];
// Port A
always @ (posedge clk)
begin
if (we_a)
begin
ram[addr_a] <= data_a;
q_a <= data_a;
end
else
begin
q_a <= ram[addr_a];
end
end
// Port B
always @ (posedge clk)
begin
if (we_b)
begin
ram[addr_b] <= data_b;
q_b <= data_b;
end
else
begin
q_b <= ram[addr_b];
end
end
endmodule |
module ram_2port (
address_a,
address_b,
clock,
data_a,
data_b,
wren_a,
wren_b,
q_a,
q_b);
input [4:0] address_a;
input [4:0] address_b;
input clock;
input [31:0] data_a;
input [31:0] data_b;
input wren_a;
input wren_b;
output [31:0] q_a;
output [31:0] q_b;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
tri1 clock;
tri0 wren_a;
tri0 wren_b;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif
wire [31:0] sub_wire0;
wire [31:0] sub_wire1;
wire [31:0] q_a = sub_wire0[31:0];
wire [31:0] q_b = sub_wire1[31:0];
altsyncram altsyncram_component (
.address_a (address_a),
.address_b (address_b),
.clock0 (clock),
.data_a (data_a),
.data_b (data_b),
.wren_a (wren_a),
.wren_b (wren_b),
.q_a (sub_wire0),
.q_b (sub_wire1),
.aclr0 (1'b0),
.aclr1 (1'b0),
.addressstall_a (1'b0),
.addressstall_b (1'b0),
.byteena_a (1'b1),
.byteena_b (1'b1),
.clock1 (1'b1),
.clocken0 (1'b1),
.clocken1 (1'b1),
.clocken2 (1'b1),
.clocken3 (1'b1),
.eccstatus (),
.rden_a (1'b1),
.rden_b (1'b1));
defparam
altsyncram_component.address_reg_b = "CLOCK0",
altsyncram_component.clock_enable_input_a = "BYPASS",
altsyncram_component.clock_enable_input_b = "BYPASS",
altsyncram_component.clock_enable_output_a = "BYPASS",
altsyncram_component.clock_enable_output_b = "BYPASS",
altsyncram_component.indata_reg_b = "CLOCK0",
`ifdef NO_PLI
altsyncram_component.init_file = "../../program/program.rif"
`else
altsyncram_component.init_file = "../../program/program.hex"
`endif
,
altsyncram_component.intended_device_family = "MAX 10",
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = 32,
altsyncram_component.numwords_b = 32,
altsyncram_component.operation_mode = "BIDIR_DUAL_PORT",
altsyncram_component.outdata_aclr_a = "NONE",
altsyncram_component.outdata_aclr_b = "NONE",
altsyncram_component.outdata_reg_a = "UNREGISTERED",
altsyncram_component.outdata_reg_b = "UNREGISTERED",
altsyncram_component.power_up_uninitialized = "FALSE",
altsyncram_component.ram_block_type = "M9K",
altsyncram_component.read_during_write_mode_mixed_ports = "DONT_CARE",
altsyncram_component.read_during_write_mode_port_a = "NEW_DATA_WITH_NBE_READ",
altsyncram_component.read_during_write_mode_port_b = "NEW_DATA_WITH_NBE_READ",
altsyncram_component.widthad_a = 5,
altsyncram_component.widthad_b = 5,
altsyncram_component.width_a = 32,
altsyncram_component.width_b = 32,
altsyncram_component.width_byteena_a = 1,
altsyncram_component.width_byteena_b = 1,
altsyncram_component.wrcontrol_wraddress_reg_b = "CLOCK0";
endmodule |
module TB_MDF;
// Inputs
reg clk;
reg rst;
reg [3:0] entrada;
// Outputs
wire salida;
wire [15:0]q;
// Instantiate the Unit Under Test (UUT)
MDF uut (
.clk(clk),
.rst(rst),
.entrada(entrada),
.salida(salida),
.q(q)
);
initial begin
// Initialize Inputs
clk = 0;
rst = 0;
entrada = 0;
// Wait 100 ns for global reset to finish
#10;
entrada = 4'b1111;
#10000;
entrada = 4'b1010;
end
always #1000 clk = ~clk;
/* initial
begin
$monitor("%d,\t%b,\t%b,\t%b,\t%d",$time, clk,rst,div,clkd);
end
initial
#500 $finish;
*/
endmodule |
module layer_wrapper(
// layer controller
CLK,
RESETn,
INT_VECTOR,
CLR_INT_EXTERNAL,
// mbus
CLKIN,
CLKOUT,
DIN,
DOUT
);
parameter RF_DEPTH = 64; // this number is intend to be less than LC_RF_DEPTH
parameter ROM_DEPTH = 64;
parameter ADDRESS = 20'hccccc;
parameter LC_RF_DATA_WIDTH =24;
parameter LC_RF_DEPTH = 128; // 1 ~ 2^8
parameter LC_MEM_DATA_WIDTH = 32; // should ALWAYS less than DATA_WIDTH
parameter LC_MEM_ADDR_WIDTH = 32; // should ALWAYS less than DATA_WIDTH
parameter LC_MEM_DEPTH = 65536; // 1 ~ 2^30
parameter LC_INT_DEPTH = 8;
input CLK;
input RESETn;
input [LC_INT_DEPTH-1:0] INT_VECTOR;
output [LC_INT_DEPTH-1:0] CLR_INT_EXTERNAL;
input CLKIN;
output CLKOUT;
input DIN;
output DOUT;
// from layer controller, need isolation
// Mem
wire mem_req_out, mem_write;
wire [LC_MEM_DATA_WIDTH-1:0] mem_dout;
wire [LC_MEM_ADDR_WIDTH-3:0] mem_aout;
// RF
wire [LC_RF_DATA_WIDTH-1:0] rf_dout;
wire [LC_RF_DEPTH-1:0] rf_load;
// Mbus
wire [`ADDR_WIDTH-1:0] tx_addr;
wire [`DATA_WIDTH-1:0] tx_data;
wire tx_req, tx_priority, tx_pend, tx_resp_ack;
wire tx_ack, tx_succ, tx_fail;
// Interrupt
wire [LC_INT_DEPTH-1:0] clr_int;
// unknown state when power if off
// Mem
reg mem_req_out_f_lc, mem_write_f_lc;
reg [LC_MEM_DATA_WIDTH-1:0] mem_dout_f_lc;
reg [LC_MEM_ADDR_WIDTH-3:0] mem_aout_f_lc;
// RF
reg [LC_RF_DATA_WIDTH-1:0] rf_dout_f_lc;
reg [LC_RF_DEPTH-1:0] rf_load_f_lc;
// Mbus
reg [`ADDR_WIDTH-1:0] tx_addr_f_lc;
reg [`DATA_WIDTH-1:0] tx_data_f_lc;
reg tx_req_f_lc, priority_f_lc, tx_pend_f_lc, tx_resp_ack_f_lc;
reg rx_ack_f_lc;
// Interrupt
reg [LC_INT_DEPTH-1:0] clr_int_f_lc;
// output from isolation
// Mem
wire mem_req_out_t_mem, mem_write_t_mem;
wire [LC_MEM_DATA_WIDTH-1:0] mem_dout_t_mem;
wire [LC_MEM_ADDR_WIDTH-3:0] mem_aout_t_mem;
// RF
wire [LC_RF_DATA_WIDTH-1:0] rf_dout_t_rf;
wire [LC_RF_DEPTH-1:0] rf_load_t_rf;
// Mbus
wire [`ADDR_WIDTH-1:0] tx_addr_t_mbus;
wire [`DATA_WIDTH-1:0] tx_data_t_mbus;
wire tx_req_t_mbus, priority_t_mbus, tx_pend_t_mbus, tx_resp_ack_t_mbus;
wire rx_ack_t_mbus;
// To layer controller, doesn't need isolation
// MEM
wire mem_ack_f_mem;
wire [LC_MEM_DATA_WIDTH-1:0] mem_data_f_mem;
// RF
wire [LC_RF_DATA_WIDTH*RF_DEPTH-1:0] rf_dout_f_rf;
// ROM
wire [LC_RF_DATA_WIDTH*ROM_DEPTH-1:0] sensor_dat_f_rom;
wire [`FUNC_WIDTH*LC_INT_DEPTH-1:0] int_func_id_f_rom;
wire [(`DATA_WIDTH<<1)*LC_INT_DEPTH-1:0] int_payload_f_rom;
// Mbus
wire [`ADDR_WIDTH-1:0] rx_addr;
wire [`DATA_WIDTH-1:0] rx_data;
wire rx_req, rx_fail, rx_pend, rx_broadcast;
wire rx_ack;
// Power signals
wire lc_pwr_on, lc_release_clk, lc_release_rst, lc_release_iso;
// interrupt, clock
wire req_int = (INT_VECTOR>0)? 1'b1 : 1'b0;
wire CLK_LC = (CLK&(~lc_release_clk));
// always on isolation
layer_ctrl_isolation #(
.LC_RF_DATA_WIDTH(LC_RF_DATA_WIDTH), .LC_RF_DEPTH(LC_RF_DEPTH),
.LC_MEM_DATA_WIDTH(LC_MEM_DATA_WIDTH), .LC_MEM_ADDR_WIDTH(LC_MEM_ADDR_WIDTH),
.LC_INT_DEPTH(LC_INT_DEPTH)) lc_iso0(
.LC_ISOLATION(lc_release_iso),
// Interface with MBus
.TX_ADDR_FROM_LC(tx_addr_f_lc), .TX_DATA_FROM_LC(tx_data_f_lc), .TX_PEND_FROM_LC(tx_pend_f_lc), .TX_REQ_FROM_LC(tx_req_f_lc),
.PRIORITY_FROM_LC(priority_f_lc), .RX_ACK_FROM_LC(rx_ack_f_lc), .TX_RESP_ACK_FROM_LC(tx_resp_ack_f_lc),
// Interface with Registers
.RF_DATA_FROM_LC(rf_dout_f_lc), .RF_LOAD_FROM_LC(rf_load_f_lc),
// Interface with MEM
.MEM_REQ_OUT_FROM_LC(mem_req_out_f_lc), .MEM_WRITE_FROM_LC(mem_write_f_lc), .MEM_DOUT_FROM_LC(mem_dout_f_lc), .MEM_AOUT_FROM_LC(mem_aout_f_lc),
// Interrupt
.CLR_INT_FROM_LC(clr_int_f_lc),
// Interface with MBus
.TX_ADDR_TO_MBUS(tx_addr_t_mbus), .TX_DATA_TO_MBUS(tx_data_t_mbus), .TX_PEND_TO_MBUS(tx_pend_t_mbus), .TX_REQ_TO_MBUS(tx_req_t_mbus),
.PRIORITY_TO_MBUS(priority_t_mbus), .RX_ACK_TO_MBUS(rx_ack_t_mbus), .TX_RESP_ACK_TO_MBUS(tx_resp_ack_t_mbus),
// Interface with Registers
.RF_DATA_TO_RF(rf_dout_t_rf), .RF_LOAD_TO_RF(rf_load_t_rf),
// Interface with MEM
.MEM_REQ_OUT_TO_MEM(mem_req_out_t_mem), .MEM_WRITE_TO_MEM(mem_write_t_mem), .MEM_DOUT_TO_MEM(mem_dout_t_mem), .MEM_AOUT_TO_MEM(mem_aout_t_mem),
// Interrupt
.CLR_INT_EXTERNAL(CLR_INT_EXTERNAL)
);
layer_ctrl
#(.LC_RF_DATA_WIDTH(LC_RF_DATA_WIDTH), .LC_RF_DEPTH(LC_RF_DEPTH),
.LC_MEM_DATA_WIDTH(LC_MEM_DATA_WIDTH), .LC_MEM_ADDR_WIDTH(LC_MEM_ADDR_WIDTH), .LC_MEM_DEPTH(LC_MEM_DEPTH),
.LC_INT_DEPTH(LC_INT_DEPTH)) lc0(
.CLK(CLK_LC),
.RESETn(RESETn),
// Interface with MBus
.TX_ADDR(tx_addr),
.TX_DATA(tx_data),
.TX_PEND(tx_pend),
.TX_REQ(tx_req),
.TX_ACK(tx_ack),
.TX_PRIORITY(tx_priority),
.RX_ADDR(rx_addr),
.RX_DATA(rx_data),
.RX_PEND(rx_pend),
.RX_REQ(rx_req),
.RX_ACK(rx_ack),
.RX_BROADCAST(rx_broadcast),
.RX_FAIL(rx_fail),
.TX_FAIL(tx_fail),
.TX_SUCC(tx_succ),
.TX_RESP_ACK(tx_resp_ack),
.RELEASE_RST_FROM_MBUS(lc_release_rst),
// Interface with Registers
.REG_RD_DATA({sensor_dat_f_rom, rf_dout_f_rf}),
.REG_WR_DATA(rf_dout),
.REG_WR_EN(rf_load),
// Interface with MEM
.MEM_REQ_OUT(mem_req_out),
.MEM_WRITE(mem_write),
.MEM_ACK_IN(mem_ack_f_mem),
.MEM_WR_DATA(mem_dout),
.MEM_RD_DATA(mem_data_f_mem),
.MEM_ADDR(mem_aout),
// Interrupt
.INT_VECTOR(INT_VECTOR),
.CLR_INT(clr_int),
.INT_FU_ID(int_func_id_f_rom),
.INT_CMD(int_payload_f_rom)
);
mbus_layer_wrapper #(.ADDRESS(ADDRESS)) mbus_node0
(.CLKIN(CLKIN), .CLKOUT(CLKOUT), .RESETn(RESETn), .DIN(DIN), .DOUT(DOUT),
.TX_ADDR(tx_addr_t_mbus), .TX_DATA(tx_data_t_mbus), .TX_REQ(tx_req_t_mbus), .TX_ACK(tx_ack), .TX_PEND(tx_pend_t_mbus), .TX_PRIORITY(priority_t_mbus),
.RX_ADDR(rx_addr), .RX_DATA(rx_data), .RX_REQ(rx_req), .RX_ACK(rx_ack_t_mbus), .RX_FAIL(rx_fail), .RX_PEND(rx_pend),
.TX_SUCC(tx_succ), .TX_FAIL(tx_fail), .TX_RESP_ACK(tx_resp_ack_t_mbus), .RX_BROADCAST(rx_broadcast),
.LC_POWER_ON(lc_pwr_on), .LC_RELEASE_CLK(lc_release_clk), .LC_RELEASE_RST(lc_release_rst), .LC_RELEASE_ISO(lc_release_iso),
.REQ_INT(req_int));
always @ *
begin
// LC is power off, output from LC should be XXXX
if (lc_pwr_on)
begin
tx_addr_f_lc = {(`ADDR_WIDTH){1'bx}};
tx_data_f_lc = {(`DATA_WIDTH){1'bx}};
tx_pend_f_lc = 1'bx;
tx_req_f_lc = 1'bx;
priority_f_lc = 1'bx;
rx_ack_f_lc = 1'bx;
tx_resp_ack_f_lc = 1'bx;
end
else
begin
tx_addr_f_lc = tx_addr;
tx_data_f_lc = tx_data;
tx_pend_f_lc = tx_pend;
tx_req_f_lc = tx_req;
priority_f_lc = tx_priority;
rx_ack_f_lc = rx_ack;
tx_resp_ack_f_lc = tx_resp_ack;
end
end
always @ *
begin
if (lc_pwr_on)
begin
rf_dout_f_lc= {(LC_RF_DATA_WIDTH){1'bx}};
rf_load_f_lc = {(LC_RF_DEPTH){1'bx}};
end
else
begin
rf_dout_f_lc = rf_dout;
rf_load_f_lc = rf_load;
end
end
always @ *
begin
if (lc_pwr_on)
begin
mem_req_out_f_lc = 1'bx;
mem_write_f_lc = 1'bx;
mem_dout_f_lc = {(LC_MEM_DATA_WIDTH){1'bx}};
mem_aout_f_lc = {(LC_MEM_ADDR_WIDTH-2){1'bx}};
end
else
begin
mem_req_out_f_lc = mem_req_out;
mem_write_f_lc = mem_write;
mem_dout_f_lc = mem_dout;
mem_aout_f_lc = mem_aout;
end
end
always @ *
begin
if (lc_pwr_on)
begin
clr_int_f_lc = 1'bx;
end
else
begin
clr_int_f_lc = clr_int;
end
end
// always on MEM
mem_ctrl #(.MEM_DEPTH(LC_MEM_DEPTH), .LC_MEM_DATA_WIDTH(LC_MEM_DATA_WIDTH), .LC_MEM_ADDR_WIDTH(LC_MEM_ADDR_WIDTH)) mem0(
.CLK(CLK),
.RESETn(RESETn),
.ADDR(mem_aout_t_mem),
.DATA_IN(mem_dout_t_mem),
.MEM_REQ(mem_req_out_t_mem),
.MEM_WRITE(mem_write_t_mem),
.DATA_OUT(mem_data_f_mem),
.MEM_ACK_OUT(mem_ack_f_mem)
);
// always on RF
rf_ctrl #(.RF_DEPTH(RF_DEPTH)) rf0(
.RESETn(RESETn),
.DIN(rf_dout_t_rf),
.LOAD(rf_load_t_rf[RF_DEPTH-1:0]),
.DOUT(rf_dout_f_rf)
);
// always on sensor roms
sensor_rom #(.ROM_DEPTH(ROM_DEPTH)) r0(
.DOUT(sensor_dat_f_rom)
);
// always on interrupt command roms
int_action_rom #(.LC_INT_DEPTH(LC_INT_DEPTH), .LC_RF_DEPTH(LC_RF_DEPTH), .LC_MEM_DEPTH(LC_MEM_DEPTH)) ir0(
.int_func_id(int_func_id_f_rom),
.int_payload(int_payload_f_rom)
);
endmodule |
module obc_lower(
clka,
wea,
addra,
dina,
douta
);
input clka;
input [0 : 0] wea;
input [9 : 0] addra;
input [7 : 0] dina;
output [7 : 0] douta;
// synthesis translate_off
BLK_MEM_GEN_V7_3 #(
.C_ADDRA_WIDTH(10),
.C_ADDRB_WIDTH(10),
.C_ALGORITHM(1),
.C_AXI_ID_WIDTH(4),
.C_AXI_SLAVE_TYPE(0),
.C_AXI_TYPE(1),
.C_BYTE_SIZE(9),
.C_COMMON_CLK(0),
.C_DEFAULT_DATA("0"),
.C_DISABLE_WARN_BHV_COLL(0),
.C_DISABLE_WARN_BHV_RANGE(0),
.C_ENABLE_32BIT_ADDRESS(0),
.C_FAMILY("spartan3"),
.C_HAS_AXI_ID(0),
.C_HAS_ENA(0),
.C_HAS_ENB(0),
.C_HAS_INJECTERR(0),
.C_HAS_MEM_OUTPUT_REGS_A(0),
.C_HAS_MEM_OUTPUT_REGS_B(0),
.C_HAS_MUX_OUTPUT_REGS_A(0),
.C_HAS_MUX_OUTPUT_REGS_B(0),
.C_HAS_REGCEA(0),
.C_HAS_REGCEB(0),
.C_HAS_RSTA(0),
.C_HAS_RSTB(0),
.C_HAS_SOFTECC_INPUT_REGS_A(0),
.C_HAS_SOFTECC_OUTPUT_REGS_B(0),
.C_INIT_FILE("BlankString"),
.C_INIT_FILE_NAME("no_coe_file_loaded"),
.C_INITA_VAL("0"),
.C_INITB_VAL("0"),
.C_INTERFACE_TYPE(0),
.C_LOAD_INIT_FILE(0),
.C_MEM_TYPE(0),
.C_MUX_PIPELINE_STAGES(0),
.C_PRIM_TYPE(1),
.C_READ_DEPTH_A(1024),
.C_READ_DEPTH_B(1024),
.C_READ_WIDTH_A(8),
.C_READ_WIDTH_B(8),
.C_RST_PRIORITY_A("CE"),
.C_RST_PRIORITY_B("CE"),
.C_RST_TYPE("SYNC"),
.C_RSTRAM_A(0),
.C_RSTRAM_B(0),
.C_SIM_COLLISION_CHECK("ALL"),
.C_USE_BRAM_BLOCK(0),
.C_USE_BYTE_WEA(0),
.C_USE_BYTE_WEB(0),
.C_USE_DEFAULT_DATA(0),
.C_USE_ECC(0),
.C_USE_SOFTECC(0),
.C_WEA_WIDTH(1),
.C_WEB_WIDTH(1),
.C_WRITE_DEPTH_A(1024),
.C_WRITE_DEPTH_B(1024),
.C_WRITE_MODE_A("WRITE_FIRST"),
.C_WRITE_MODE_B("WRITE_FIRST"),
.C_WRITE_WIDTH_A(8),
.C_WRITE_WIDTH_B(8),
.C_XDEVICEFAMILY("spartan3")
)
inst (
.CLKA(clka),
.WEA(wea),
.ADDRA(addra),
.DINA(dina),
.DOUTA(douta),
.RSTA(),
.ENA(),
.REGCEA(),
.CLKB(),
.RSTB(),
.ENB(),
.REGCEB(),
.WEB(),
.ADDRB(),
.DINB(),
.DOUTB(),
.INJECTSBITERR(),
.INJECTDBITERR(),
.SBITERR(),
.DBITERR(),
.RDADDRECC(),
.S_ACLK(),
.S_ARESETN(),
.S_AXI_AWID(),
.S_AXI_AWADDR(),
.S_AXI_AWLEN(),
.S_AXI_AWSIZE(),
.S_AXI_AWBURST(),
.S_AXI_AWVALID(),
.S_AXI_AWREADY(),
.S_AXI_WDATA(),
.S_AXI_WSTRB(),
.S_AXI_WLAST(),
.S_AXI_WVALID(),
.S_AXI_WREADY(),
.S_AXI_BID(),
.S_AXI_BRESP(),
.S_AXI_BVALID(),
.S_AXI_BREADY(),
.S_AXI_ARID(),
.S_AXI_ARADDR(),
.S_AXI_ARLEN(),
.S_AXI_ARSIZE(),
.S_AXI_ARBURST(),
.S_AXI_ARVALID(),
.S_AXI_ARREADY(),
.S_AXI_RID(),
.S_AXI_RDATA(),
.S_AXI_RRESP(),
.S_AXI_RLAST(),
.S_AXI_RVALID(),
.S_AXI_RREADY(),
.S_AXI_INJECTSBITERR(),
.S_AXI_INJECTDBITERR(),
.S_AXI_SBITERR(),
.S_AXI_DBITERR(),
.S_AXI_RDADDRECC()
);
// synthesis translate_on
endmodule |
module sky130_fd_sc_hdll__udp_mux_2to1 (
//# {{data|Data Signals}}
input A0,
input A1,
output X ,
//# {{control|Control Signals}}
input S
);
endmodule |
module wb_intercon
(input wb_clk_i,
input wb_rst_i,
input [31:0] wb_dbg_adr_i,
input [31:0] wb_dbg_dat_i,
input [3:0] wb_dbg_sel_i,
input wb_dbg_we_i,
input wb_dbg_cyc_i,
input wb_dbg_stb_i,
input [2:0] wb_dbg_cti_i,
input [1:0] wb_dbg_bte_i,
output [31:0] wb_dbg_dat_o,
output wb_dbg_ack_o,
output wb_dbg_err_o,
output wb_dbg_rty_o,
input [31:0] wb_or1k_i_adr_i,
input [31:0] wb_or1k_i_dat_i,
input [3:0] wb_or1k_i_sel_i,
input wb_or1k_i_we_i,
input wb_or1k_i_cyc_i,
input wb_or1k_i_stb_i,
input [2:0] wb_or1k_i_cti_i,
input [1:0] wb_or1k_i_bte_i,
output [31:0] wb_or1k_i_dat_o,
output wb_or1k_i_ack_o,
output wb_or1k_i_err_o,
output wb_or1k_i_rty_o,
input [31:0] wb_or1k_d_adr_i,
input [31:0] wb_or1k_d_dat_i,
input [3:0] wb_or1k_d_sel_i,
input wb_or1k_d_we_i,
input wb_or1k_d_cyc_i,
input wb_or1k_d_stb_i,
input [2:0] wb_or1k_d_cti_i,
input [1:0] wb_or1k_d_bte_i,
output [31:0] wb_or1k_d_dat_o,
output wb_or1k_d_ack_o,
output wb_or1k_d_err_o,
output wb_or1k_d_rty_o,
output [31:0] wb_uart0_adr_o,
output [7:0] wb_uart0_dat_o,
output [3:0] wb_uart0_sel_o,
output wb_uart0_we_o,
output wb_uart0_cyc_o,
output wb_uart0_stb_o,
output [2:0] wb_uart0_cti_o,
output [1:0] wb_uart0_bte_o,
input [7:0] wb_uart0_dat_i,
input wb_uart0_ack_i,
input wb_uart0_err_i,
input wb_uart0_rty_i,
output [31:0] wb_sdram_dbus_adr_o,
output [31:0] wb_sdram_dbus_dat_o,
output [3:0] wb_sdram_dbus_sel_o,
output wb_sdram_dbus_we_o,
output wb_sdram_dbus_cyc_o,
output wb_sdram_dbus_stb_o,
output [2:0] wb_sdram_dbus_cti_o,
output [1:0] wb_sdram_dbus_bte_o,
input [31:0] wb_sdram_dbus_dat_i,
input wb_sdram_dbus_ack_i,
input wb_sdram_dbus_err_i,
input wb_sdram_dbus_rty_i,
output [31:0] wb_gpio0_adr_o,
output [7:0] wb_gpio0_dat_o,
output [3:0] wb_gpio0_sel_o,
output wb_gpio0_we_o,
output wb_gpio0_cyc_o,
output wb_gpio0_stb_o,
output [2:0] wb_gpio0_cti_o,
output [1:0] wb_gpio0_bte_o,
input [7:0] wb_gpio0_dat_i,
input wb_gpio0_ack_i,
input wb_gpio0_err_i,
input wb_gpio0_rty_i,
output [31:0] wb_rom0_adr_o,
output [31:0] wb_rom0_dat_o,
output [3:0] wb_rom0_sel_o,
output wb_rom0_we_o,
output wb_rom0_cyc_o,
output wb_rom0_stb_o,
output [2:0] wb_rom0_cti_o,
output [1:0] wb_rom0_bte_o,
input [31:0] wb_rom0_dat_i,
input wb_rom0_ack_i,
input wb_rom0_err_i,
input wb_rom0_rty_i,
output [31:0] wb_sdram_ibus_adr_o,
output [31:0] wb_sdram_ibus_dat_o,
output [3:0] wb_sdram_ibus_sel_o,
output wb_sdram_ibus_we_o,
output wb_sdram_ibus_cyc_o,
output wb_sdram_ibus_stb_o,
output [2:0] wb_sdram_ibus_cti_o,
output [1:0] wb_sdram_ibus_bte_o,
input [31:0] wb_sdram_ibus_dat_i,
input wb_sdram_ibus_ack_i,
input wb_sdram_ibus_err_i,
input wb_sdram_ibus_rty_i);
wire [31:0] wb_m2s_dbg_sdram_dbus_adr;
wire [31:0] wb_m2s_dbg_sdram_dbus_dat;
wire [3:0] wb_m2s_dbg_sdram_dbus_sel;
wire wb_m2s_dbg_sdram_dbus_we;
wire wb_m2s_dbg_sdram_dbus_cyc;
wire wb_m2s_dbg_sdram_dbus_stb;
wire [2:0] wb_m2s_dbg_sdram_dbus_cti;
wire [1:0] wb_m2s_dbg_sdram_dbus_bte;
wire [31:0] wb_s2m_dbg_sdram_dbus_dat;
wire wb_s2m_dbg_sdram_dbus_ack;
wire wb_s2m_dbg_sdram_dbus_err;
wire wb_s2m_dbg_sdram_dbus_rty;
wire [31:0] wb_m2s_dbg_uart0_adr;
wire [31:0] wb_m2s_dbg_uart0_dat;
wire [3:0] wb_m2s_dbg_uart0_sel;
wire wb_m2s_dbg_uart0_we;
wire wb_m2s_dbg_uart0_cyc;
wire wb_m2s_dbg_uart0_stb;
wire [2:0] wb_m2s_dbg_uart0_cti;
wire [1:0] wb_m2s_dbg_uart0_bte;
wire [31:0] wb_s2m_dbg_uart0_dat;
wire wb_s2m_dbg_uart0_ack;
wire wb_s2m_dbg_uart0_err;
wire wb_s2m_dbg_uart0_rty;
wire [31:0] wb_m2s_dbg_gpio0_adr;
wire [31:0] wb_m2s_dbg_gpio0_dat;
wire [3:0] wb_m2s_dbg_gpio0_sel;
wire wb_m2s_dbg_gpio0_we;
wire wb_m2s_dbg_gpio0_cyc;
wire wb_m2s_dbg_gpio0_stb;
wire [2:0] wb_m2s_dbg_gpio0_cti;
wire [1:0] wb_m2s_dbg_gpio0_bte;
wire [31:0] wb_s2m_dbg_gpio0_dat;
wire wb_s2m_dbg_gpio0_ack;
wire wb_s2m_dbg_gpio0_err;
wire wb_s2m_dbg_gpio0_rty;
wire [31:0] wb_m2s_or1k_d_sdram_dbus_adr;
wire [31:0] wb_m2s_or1k_d_sdram_dbus_dat;
wire [3:0] wb_m2s_or1k_d_sdram_dbus_sel;
wire wb_m2s_or1k_d_sdram_dbus_we;
wire wb_m2s_or1k_d_sdram_dbus_cyc;
wire wb_m2s_or1k_d_sdram_dbus_stb;
wire [2:0] wb_m2s_or1k_d_sdram_dbus_cti;
wire [1:0] wb_m2s_or1k_d_sdram_dbus_bte;
wire [31:0] wb_s2m_or1k_d_sdram_dbus_dat;
wire wb_s2m_or1k_d_sdram_dbus_ack;
wire wb_s2m_or1k_d_sdram_dbus_err;
wire wb_s2m_or1k_d_sdram_dbus_rty;
wire [31:0] wb_m2s_or1k_d_uart0_adr;
wire [31:0] wb_m2s_or1k_d_uart0_dat;
wire [3:0] wb_m2s_or1k_d_uart0_sel;
wire wb_m2s_or1k_d_uart0_we;
wire wb_m2s_or1k_d_uart0_cyc;
wire wb_m2s_or1k_d_uart0_stb;
wire [2:0] wb_m2s_or1k_d_uart0_cti;
wire [1:0] wb_m2s_or1k_d_uart0_bte;
wire [31:0] wb_s2m_or1k_d_uart0_dat;
wire wb_s2m_or1k_d_uart0_ack;
wire wb_s2m_or1k_d_uart0_err;
wire wb_s2m_or1k_d_uart0_rty;
wire [31:0] wb_m2s_or1k_d_gpio0_adr;
wire [31:0] wb_m2s_or1k_d_gpio0_dat;
wire [3:0] wb_m2s_or1k_d_gpio0_sel;
wire wb_m2s_or1k_d_gpio0_we;
wire wb_m2s_or1k_d_gpio0_cyc;
wire wb_m2s_or1k_d_gpio0_stb;
wire [2:0] wb_m2s_or1k_d_gpio0_cti;
wire [1:0] wb_m2s_or1k_d_gpio0_bte;
wire [31:0] wb_s2m_or1k_d_gpio0_dat;
wire wb_s2m_or1k_d_gpio0_ack;
wire wb_s2m_or1k_d_gpio0_err;
wire wb_s2m_or1k_d_gpio0_rty;
wire [31:0] wb_m2s_resize_uart0_adr;
wire [31:0] wb_m2s_resize_uart0_dat;
wire [3:0] wb_m2s_resize_uart0_sel;
wire wb_m2s_resize_uart0_we;
wire wb_m2s_resize_uart0_cyc;
wire wb_m2s_resize_uart0_stb;
wire [2:0] wb_m2s_resize_uart0_cti;
wire [1:0] wb_m2s_resize_uart0_bte;
wire [31:0] wb_s2m_resize_uart0_dat;
wire wb_s2m_resize_uart0_ack;
wire wb_s2m_resize_uart0_err;
wire wb_s2m_resize_uart0_rty;
wire [31:0] wb_m2s_resize_gpio0_adr;
wire [31:0] wb_m2s_resize_gpio0_dat;
wire [3:0] wb_m2s_resize_gpio0_sel;
wire wb_m2s_resize_gpio0_we;
wire wb_m2s_resize_gpio0_cyc;
wire wb_m2s_resize_gpio0_stb;
wire [2:0] wb_m2s_resize_gpio0_cti;
wire [1:0] wb_m2s_resize_gpio0_bte;
wire [31:0] wb_s2m_resize_gpio0_dat;
wire wb_s2m_resize_gpio0_ack;
wire wb_s2m_resize_gpio0_err;
wire wb_s2m_resize_gpio0_rty;
wb_mux
#(.num_slaves (3),
.MATCH_ADDR ({32'h00000000, 32'h90000000, 32'h91000000}),
.MATCH_MASK ({32'hfe000000, 32'hffffffe0, 32'hfffffffe}))
wb_mux_dbg
(.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbm_adr_i (wb_dbg_adr_i),
.wbm_dat_i (wb_dbg_dat_i),
.wbm_sel_i (wb_dbg_sel_i),
.wbm_we_i (wb_dbg_we_i),
.wbm_cyc_i (wb_dbg_cyc_i),
.wbm_stb_i (wb_dbg_stb_i),
.wbm_cti_i (wb_dbg_cti_i),
.wbm_bte_i (wb_dbg_bte_i),
.wbm_dat_o (wb_dbg_dat_o),
.wbm_ack_o (wb_dbg_ack_o),
.wbm_err_o (wb_dbg_err_o),
.wbm_rty_o (wb_dbg_rty_o),
.wbs_adr_o ({wb_m2s_dbg_sdram_dbus_adr, wb_m2s_dbg_uart0_adr, wb_m2s_dbg_gpio0_adr}),
.wbs_dat_o ({wb_m2s_dbg_sdram_dbus_dat, wb_m2s_dbg_uart0_dat, wb_m2s_dbg_gpio0_dat}),
.wbs_sel_o ({wb_m2s_dbg_sdram_dbus_sel, wb_m2s_dbg_uart0_sel, wb_m2s_dbg_gpio0_sel}),
.wbs_we_o ({wb_m2s_dbg_sdram_dbus_we, wb_m2s_dbg_uart0_we, wb_m2s_dbg_gpio0_we}),
.wbs_cyc_o ({wb_m2s_dbg_sdram_dbus_cyc, wb_m2s_dbg_uart0_cyc, wb_m2s_dbg_gpio0_cyc}),
.wbs_stb_o ({wb_m2s_dbg_sdram_dbus_stb, wb_m2s_dbg_uart0_stb, wb_m2s_dbg_gpio0_stb}),
.wbs_cti_o ({wb_m2s_dbg_sdram_dbus_cti, wb_m2s_dbg_uart0_cti, wb_m2s_dbg_gpio0_cti}),
.wbs_bte_o ({wb_m2s_dbg_sdram_dbus_bte, wb_m2s_dbg_uart0_bte, wb_m2s_dbg_gpio0_bte}),
.wbs_dat_i ({wb_s2m_dbg_sdram_dbus_dat, wb_s2m_dbg_uart0_dat, wb_s2m_dbg_gpio0_dat}),
.wbs_ack_i ({wb_s2m_dbg_sdram_dbus_ack, wb_s2m_dbg_uart0_ack, wb_s2m_dbg_gpio0_ack}),
.wbs_err_i ({wb_s2m_dbg_sdram_dbus_err, wb_s2m_dbg_uart0_err, wb_s2m_dbg_gpio0_err}),
.wbs_rty_i ({wb_s2m_dbg_sdram_dbus_rty, wb_s2m_dbg_uart0_rty, wb_s2m_dbg_gpio0_rty}));
wb_mux
#(.num_slaves (2),
.MATCH_ADDR ({32'h00000000, 32'hf0000100}),
.MATCH_MASK ({32'hfe000000, 32'hffffffc0}))
wb_mux_or1k_i
(.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbm_adr_i (wb_or1k_i_adr_i),
.wbm_dat_i (wb_or1k_i_dat_i),
.wbm_sel_i (wb_or1k_i_sel_i),
.wbm_we_i (wb_or1k_i_we_i),
.wbm_cyc_i (wb_or1k_i_cyc_i),
.wbm_stb_i (wb_or1k_i_stb_i),
.wbm_cti_i (wb_or1k_i_cti_i),
.wbm_bte_i (wb_or1k_i_bte_i),
.wbm_dat_o (wb_or1k_i_dat_o),
.wbm_ack_o (wb_or1k_i_ack_o),
.wbm_err_o (wb_or1k_i_err_o),
.wbm_rty_o (wb_or1k_i_rty_o),
.wbs_adr_o ({wb_sdram_ibus_adr_o, wb_rom0_adr_o}),
.wbs_dat_o ({wb_sdram_ibus_dat_o, wb_rom0_dat_o}),
.wbs_sel_o ({wb_sdram_ibus_sel_o, wb_rom0_sel_o}),
.wbs_we_o ({wb_sdram_ibus_we_o, wb_rom0_we_o}),
.wbs_cyc_o ({wb_sdram_ibus_cyc_o, wb_rom0_cyc_o}),
.wbs_stb_o ({wb_sdram_ibus_stb_o, wb_rom0_stb_o}),
.wbs_cti_o ({wb_sdram_ibus_cti_o, wb_rom0_cti_o}),
.wbs_bte_o ({wb_sdram_ibus_bte_o, wb_rom0_bte_o}),
.wbs_dat_i ({wb_sdram_ibus_dat_i, wb_rom0_dat_i}),
.wbs_ack_i ({wb_sdram_ibus_ack_i, wb_rom0_ack_i}),
.wbs_err_i ({wb_sdram_ibus_err_i, wb_rom0_err_i}),
.wbs_rty_i ({wb_sdram_ibus_rty_i, wb_rom0_rty_i}));
wb_mux
#(.num_slaves (3),
.MATCH_ADDR ({32'h00000000, 32'h90000000, 32'h91000000}),
.MATCH_MASK ({32'hfe000000, 32'hffffffe0, 32'hfffffffe}))
wb_mux_or1k_d
(.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbm_adr_i (wb_or1k_d_adr_i),
.wbm_dat_i (wb_or1k_d_dat_i),
.wbm_sel_i (wb_or1k_d_sel_i),
.wbm_we_i (wb_or1k_d_we_i),
.wbm_cyc_i (wb_or1k_d_cyc_i),
.wbm_stb_i (wb_or1k_d_stb_i),
.wbm_cti_i (wb_or1k_d_cti_i),
.wbm_bte_i (wb_or1k_d_bte_i),
.wbm_dat_o (wb_or1k_d_dat_o),
.wbm_ack_o (wb_or1k_d_ack_o),
.wbm_err_o (wb_or1k_d_err_o),
.wbm_rty_o (wb_or1k_d_rty_o),
.wbs_adr_o ({wb_m2s_or1k_d_sdram_dbus_adr, wb_m2s_or1k_d_uart0_adr, wb_m2s_or1k_d_gpio0_adr}),
.wbs_dat_o ({wb_m2s_or1k_d_sdram_dbus_dat, wb_m2s_or1k_d_uart0_dat, wb_m2s_or1k_d_gpio0_dat}),
.wbs_sel_o ({wb_m2s_or1k_d_sdram_dbus_sel, wb_m2s_or1k_d_uart0_sel, wb_m2s_or1k_d_gpio0_sel}),
.wbs_we_o ({wb_m2s_or1k_d_sdram_dbus_we, wb_m2s_or1k_d_uart0_we, wb_m2s_or1k_d_gpio0_we}),
.wbs_cyc_o ({wb_m2s_or1k_d_sdram_dbus_cyc, wb_m2s_or1k_d_uart0_cyc, wb_m2s_or1k_d_gpio0_cyc}),
.wbs_stb_o ({wb_m2s_or1k_d_sdram_dbus_stb, wb_m2s_or1k_d_uart0_stb, wb_m2s_or1k_d_gpio0_stb}),
.wbs_cti_o ({wb_m2s_or1k_d_sdram_dbus_cti, wb_m2s_or1k_d_uart0_cti, wb_m2s_or1k_d_gpio0_cti}),
.wbs_bte_o ({wb_m2s_or1k_d_sdram_dbus_bte, wb_m2s_or1k_d_uart0_bte, wb_m2s_or1k_d_gpio0_bte}),
.wbs_dat_i ({wb_s2m_or1k_d_sdram_dbus_dat, wb_s2m_or1k_d_uart0_dat, wb_s2m_or1k_d_gpio0_dat}),
.wbs_ack_i ({wb_s2m_or1k_d_sdram_dbus_ack, wb_s2m_or1k_d_uart0_ack, wb_s2m_or1k_d_gpio0_ack}),
.wbs_err_i ({wb_s2m_or1k_d_sdram_dbus_err, wb_s2m_or1k_d_uart0_err, wb_s2m_or1k_d_gpio0_err}),
.wbs_rty_i ({wb_s2m_or1k_d_sdram_dbus_rty, wb_s2m_or1k_d_uart0_rty, wb_s2m_or1k_d_gpio0_rty}));
wb_arbiter
#(.num_masters (2))
wb_arbiter_uart0
(.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbm_adr_i ({wb_m2s_or1k_d_uart0_adr, wb_m2s_dbg_uart0_adr}),
.wbm_dat_i ({wb_m2s_or1k_d_uart0_dat, wb_m2s_dbg_uart0_dat}),
.wbm_sel_i ({wb_m2s_or1k_d_uart0_sel, wb_m2s_dbg_uart0_sel}),
.wbm_we_i ({wb_m2s_or1k_d_uart0_we, wb_m2s_dbg_uart0_we}),
.wbm_cyc_i ({wb_m2s_or1k_d_uart0_cyc, wb_m2s_dbg_uart0_cyc}),
.wbm_stb_i ({wb_m2s_or1k_d_uart0_stb, wb_m2s_dbg_uart0_stb}),
.wbm_cti_i ({wb_m2s_or1k_d_uart0_cti, wb_m2s_dbg_uart0_cti}),
.wbm_bte_i ({wb_m2s_or1k_d_uart0_bte, wb_m2s_dbg_uart0_bte}),
.wbm_dat_o ({wb_s2m_or1k_d_uart0_dat, wb_s2m_dbg_uart0_dat}),
.wbm_ack_o ({wb_s2m_or1k_d_uart0_ack, wb_s2m_dbg_uart0_ack}),
.wbm_err_o ({wb_s2m_or1k_d_uart0_err, wb_s2m_dbg_uart0_err}),
.wbm_rty_o ({wb_s2m_or1k_d_uart0_rty, wb_s2m_dbg_uart0_rty}),
.wbs_adr_o (wb_m2s_resize_uart0_adr),
.wbs_dat_o (wb_m2s_resize_uart0_dat),
.wbs_sel_o (wb_m2s_resize_uart0_sel),
.wbs_we_o (wb_m2s_resize_uart0_we),
.wbs_cyc_o (wb_m2s_resize_uart0_cyc),
.wbs_stb_o (wb_m2s_resize_uart0_stb),
.wbs_cti_o (wb_m2s_resize_uart0_cti),
.wbs_bte_o (wb_m2s_resize_uart0_bte),
.wbs_dat_i (wb_s2m_resize_uart0_dat),
.wbs_ack_i (wb_s2m_resize_uart0_ack),
.wbs_err_i (wb_s2m_resize_uart0_err),
.wbs_rty_i (wb_s2m_resize_uart0_rty));
wb_data_resize
#(.aw (32),
.mdw (32),
.sdw (8))
wb_data_resize_uart0
(.wbm_adr_i (wb_m2s_resize_uart0_adr),
.wbm_dat_i (wb_m2s_resize_uart0_dat),
.wbm_sel_i (wb_m2s_resize_uart0_sel),
.wbm_we_i (wb_m2s_resize_uart0_we),
.wbm_cyc_i (wb_m2s_resize_uart0_cyc),
.wbm_stb_i (wb_m2s_resize_uart0_stb),
.wbm_cti_i (wb_m2s_resize_uart0_cti),
.wbm_bte_i (wb_m2s_resize_uart0_bte),
.wbm_dat_o (wb_s2m_resize_uart0_dat),
.wbm_ack_o (wb_s2m_resize_uart0_ack),
.wbm_err_o (wb_s2m_resize_uart0_err),
.wbm_rty_o (wb_s2m_resize_uart0_rty),
.wbs_adr_o (wb_uart0_adr_o),
.wbs_dat_o (wb_uart0_dat_o),
.wbs_we_o (wb_uart0_we_o),
.wbs_cyc_o (wb_uart0_cyc_o),
.wbs_stb_o (wb_uart0_stb_o),
.wbs_cti_o (wb_uart0_cti_o),
.wbs_bte_o (wb_uart0_bte_o),
.wbs_dat_i (wb_uart0_dat_i),
.wbs_ack_i (wb_uart0_ack_i),
.wbs_err_i (wb_uart0_err_i),
.wbs_rty_i (wb_uart0_rty_i));
wb_arbiter
#(.num_masters (2))
wb_arbiter_sdram_dbus
(.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbm_adr_i ({wb_m2s_or1k_d_sdram_dbus_adr, wb_m2s_dbg_sdram_dbus_adr}),
.wbm_dat_i ({wb_m2s_or1k_d_sdram_dbus_dat, wb_m2s_dbg_sdram_dbus_dat}),
.wbm_sel_i ({wb_m2s_or1k_d_sdram_dbus_sel, wb_m2s_dbg_sdram_dbus_sel}),
.wbm_we_i ({wb_m2s_or1k_d_sdram_dbus_we, wb_m2s_dbg_sdram_dbus_we}),
.wbm_cyc_i ({wb_m2s_or1k_d_sdram_dbus_cyc, wb_m2s_dbg_sdram_dbus_cyc}),
.wbm_stb_i ({wb_m2s_or1k_d_sdram_dbus_stb, wb_m2s_dbg_sdram_dbus_stb}),
.wbm_cti_i ({wb_m2s_or1k_d_sdram_dbus_cti, wb_m2s_dbg_sdram_dbus_cti}),
.wbm_bte_i ({wb_m2s_or1k_d_sdram_dbus_bte, wb_m2s_dbg_sdram_dbus_bte}),
.wbm_dat_o ({wb_s2m_or1k_d_sdram_dbus_dat, wb_s2m_dbg_sdram_dbus_dat}),
.wbm_ack_o ({wb_s2m_or1k_d_sdram_dbus_ack, wb_s2m_dbg_sdram_dbus_ack}),
.wbm_err_o ({wb_s2m_or1k_d_sdram_dbus_err, wb_s2m_dbg_sdram_dbus_err}),
.wbm_rty_o ({wb_s2m_or1k_d_sdram_dbus_rty, wb_s2m_dbg_sdram_dbus_rty}),
.wbs_adr_o (wb_sdram_dbus_adr_o),
.wbs_dat_o (wb_sdram_dbus_dat_o),
.wbs_sel_o (wb_sdram_dbus_sel_o),
.wbs_we_o (wb_sdram_dbus_we_o),
.wbs_cyc_o (wb_sdram_dbus_cyc_o),
.wbs_stb_o (wb_sdram_dbus_stb_o),
.wbs_cti_o (wb_sdram_dbus_cti_o),
.wbs_bte_o (wb_sdram_dbus_bte_o),
.wbs_dat_i (wb_sdram_dbus_dat_i),
.wbs_ack_i (wb_sdram_dbus_ack_i),
.wbs_err_i (wb_sdram_dbus_err_i),
.wbs_rty_i (wb_sdram_dbus_rty_i));
wb_arbiter
#(.num_masters (2))
wb_arbiter_gpio0
(.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbm_adr_i ({wb_m2s_or1k_d_gpio0_adr, wb_m2s_dbg_gpio0_adr}),
.wbm_dat_i ({wb_m2s_or1k_d_gpio0_dat, wb_m2s_dbg_gpio0_dat}),
.wbm_sel_i ({wb_m2s_or1k_d_gpio0_sel, wb_m2s_dbg_gpio0_sel}),
.wbm_we_i ({wb_m2s_or1k_d_gpio0_we, wb_m2s_dbg_gpio0_we}),
.wbm_cyc_i ({wb_m2s_or1k_d_gpio0_cyc, wb_m2s_dbg_gpio0_cyc}),
.wbm_stb_i ({wb_m2s_or1k_d_gpio0_stb, wb_m2s_dbg_gpio0_stb}),
.wbm_cti_i ({wb_m2s_or1k_d_gpio0_cti, wb_m2s_dbg_gpio0_cti}),
.wbm_bte_i ({wb_m2s_or1k_d_gpio0_bte, wb_m2s_dbg_gpio0_bte}),
.wbm_dat_o ({wb_s2m_or1k_d_gpio0_dat, wb_s2m_dbg_gpio0_dat}),
.wbm_ack_o ({wb_s2m_or1k_d_gpio0_ack, wb_s2m_dbg_gpio0_ack}),
.wbm_err_o ({wb_s2m_or1k_d_gpio0_err, wb_s2m_dbg_gpio0_err}),
.wbm_rty_o ({wb_s2m_or1k_d_gpio0_rty, wb_s2m_dbg_gpio0_rty}),
.wbs_adr_o (wb_m2s_resize_gpio0_adr),
.wbs_dat_o (wb_m2s_resize_gpio0_dat),
.wbs_sel_o (wb_m2s_resize_gpio0_sel),
.wbs_we_o (wb_m2s_resize_gpio0_we),
.wbs_cyc_o (wb_m2s_resize_gpio0_cyc),
.wbs_stb_o (wb_m2s_resize_gpio0_stb),
.wbs_cti_o (wb_m2s_resize_gpio0_cti),
.wbs_bte_o (wb_m2s_resize_gpio0_bte),
.wbs_dat_i (wb_s2m_resize_gpio0_dat),
.wbs_ack_i (wb_s2m_resize_gpio0_ack),
.wbs_err_i (wb_s2m_resize_gpio0_err),
.wbs_rty_i (wb_s2m_resize_gpio0_rty));
wb_data_resize
#(.aw (32),
.mdw (32),
.sdw (8))
wb_data_resize_gpio0
(.wbm_adr_i (wb_m2s_resize_gpio0_adr),
.wbm_dat_i (wb_m2s_resize_gpio0_dat),
.wbm_sel_i (wb_m2s_resize_gpio0_sel),
.wbm_we_i (wb_m2s_resize_gpio0_we),
.wbm_cyc_i (wb_m2s_resize_gpio0_cyc),
.wbm_stb_i (wb_m2s_resize_gpio0_stb),
.wbm_cti_i (wb_m2s_resize_gpio0_cti),
.wbm_bte_i (wb_m2s_resize_gpio0_bte),
.wbm_dat_o (wb_s2m_resize_gpio0_dat),
.wbm_ack_o (wb_s2m_resize_gpio0_ack),
.wbm_err_o (wb_s2m_resize_gpio0_err),
.wbm_rty_o (wb_s2m_resize_gpio0_rty),
.wbs_adr_o (wb_gpio0_adr_o),
.wbs_dat_o (wb_gpio0_dat_o),
.wbs_we_o (wb_gpio0_we_o),
.wbs_cyc_o (wb_gpio0_cyc_o),
.wbs_stb_o (wb_gpio0_stb_o),
.wbs_cti_o (wb_gpio0_cti_o),
.wbs_bte_o (wb_gpio0_bte_o),
.wbs_dat_i (wb_gpio0_dat_i),
.wbs_ack_i (wb_gpio0_ack_i),
.wbs_err_i (wb_gpio0_err_i),
.wbs_rty_i (wb_gpio0_rty_i));
endmodule |
module jt51_pm(
input [6:0] kc_I,
input [5:0] kf_I,
input [8:0] mod_I,
input add,
output reg [12:0] kcex
);
reg [9:0] lim;
reg [13:0] kcex0, kcex1;
reg [1:0] extra;
reg [6:0] kcin;
reg carry;
always @(*) begin: kc_input_cleaner
{ carry, kcin } = kc_I[1:0]==2'd3 ? { 1'b0, kc_I } + 8'd1 : {1'b0,kc_I};
end
always @(*) begin : addition
lim = { 1'd0, mod_I } + { 4'd0, kf_I };
case( kcin[3:0] )
default:
if( lim>=10'd448 ) extra = 2'd2;
else if( lim>=10'd256 ) extra = 2'd1;
else extra = 2'd0;
4'd1,4'd5,4'd9,4'd13:
if( lim>=10'd384 ) extra = 2'd2;
else if( lim>=10'd192 ) extra = 2'd1;
else extra = 2'd0;
4'd2,4'd6,4'd10,4'd14:
if( lim>=10'd512 ) extra = 2'd3;
else if( lim>=10'd320 ) extra = 2'd2;
else if( lim>=10'd128 ) extra = 2'd1;
else extra = 2'd0;
endcase
kcex0 = {1'b0,kcin,kf_I} + { 4'd0, extra, 6'd0 } + { 1'd0, mod_I };
kcex1 = kcex0[7:6]==2'd3 ? kcex0 + 14'd64 : kcex0;
end
reg signed [9:0] slim;
reg [1:0] sextra;
reg [13:0] skcex0, skcex1;
always @(*) begin : subtraction
slim = { 1'd0, mod_I } - { 4'd0, kf_I };
case( kcin[3:0] )
default:
if( slim>=10'sd449 ) sextra = 2'd3;
else if( slim>=10'sd257 ) sextra = 2'd2;
else if( slim>=10'sd65 ) sextra = 2'd1;
else sextra = 2'd0;
4'd1,4'd5,4'd9,4'd13:
if( slim>=10'sd321 ) sextra = 2'd2;
else if( slim>=10'sd129 ) sextra = 2'd1;
else sextra = 2'd0;
4'd2,4'd6,4'd10,4'd14:
if( slim>=10'sd385 ) sextra = 2'd2;
else if( slim>=10'sd193 ) sextra = 2'd1;
else sextra = 2'd0;
endcase
skcex0 = {1'b0,kcin,kf_I} - { 4'd0, sextra, 6'd0 } - { 1'd0, mod_I };
skcex1 = skcex0[7:6]==2'd3 ? skcex0 - 14'd64 : skcex0;
end
always @(*) begin : mux
if ( add )
kcex = kcex1[13] | carry ? {3'd7, 4'd14, 6'd63} : kcex1[12:0];
else
kcex = carry ? {3'd7, 4'd14, 6'd63} : (skcex1[13] ? 13'd0 : skcex1[12:0]);
end
endmodule |
module bsg_nor3 #(parameter `BSG_INV_PARAM(width_p)
, parameter harden_p=0
)
(input [width_p-1:0] a_i
, input [width_p-1:0] b_i
, input [width_p-1:0] c_i
, output [width_p-1:0] o
);
`bsg_nor3_macro(34) else
`bsg_nor3_macro(33) else
`bsg_nor3_macro(32) else
`bsg_nor3_macro(31) else
`bsg_nor3_macro(30) else
`bsg_nor3_macro(29) else
`bsg_nor3_macro(28) else
`bsg_nor3_macro(27) else
`bsg_nor3_macro(26) else
`bsg_nor3_macro(25) else
`bsg_nor3_macro(24) else
`bsg_nor3_macro(23) else
`bsg_nor3_macro(22) else
`bsg_nor3_macro(21) else
`bsg_nor3_macro(20) else
`bsg_nor3_macro(19) else
`bsg_nor3_macro(18) else
`bsg_nor3_macro(17) else
`bsg_nor3_macro(16) else
`bsg_nor3_macro(15) else
`bsg_nor3_macro(14) else
`bsg_nor3_macro(13) else
`bsg_nor3_macro(12) else
`bsg_nor3_macro(11) else
`bsg_nor3_macro(10) else
`bsg_nor3_macro(9) else
`bsg_nor3_macro(8) else
`bsg_nor3_macro(7) else
`bsg_nor3_macro(6) else
`bsg_nor3_macro(5) else
`bsg_nor3_macro(4) else
`bsg_nor3_macro(3) else
`bsg_nor3_macro(2) else
`bsg_nor3_macro(1) else
begin :notmacro
initial assert(harden_p==0) else $error("## %m wanted to harden but no macro");
assign o = ~(a_i | b_i | c_i);
end
endmodule |
module FIFO (
reserve, // reserve space constant
wr_sync_cntrl, // Config input for wr side synchronizer
clk_wr, // clock coming from write side of FIFO -- write signals
data_in, // data to be written
wr_valid, // write side data is valid for writing to FIFO
delay_sel, // choose one/two delay cell for input data
wr_request, // low= Full or utilizing reserve space, else NOT FULL
async_empty, // true if empty, but referenced to write side
reset, // synchronous to read clock --------------------------
clk_rd, // clock coming from read side of FIFO -- read signals
data_out, // data to be read
empty, // FIFO is EMPTY (combinational in from 1st stage of FIFO)
rd_request, // asks the FIFO for data
async_full, // true if FIFO is in reserve, but referenced to read side
rd_sync_cntrl, // Config input for rd side synchronizer
nap, // no increment read pointer signal
fifo_util // FIFO utilization, used for DVFS
);
// I/O %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
input [1:0] delay_sel;
input [`DATA_WIDTH_M1:0] data_in;
input [`ADDR_WIDTH_M1:0] reserve;
input [2:0] wr_sync_cntrl;
input [2:0] rd_sync_cntrl;
input clk_wr,
clk_rd,
reset,
wr_valid,
rd_request,
nap;
output [`DATA_WIDTH_M1:0] data_out;
output [1:0] fifo_util;
output empty,
wr_request,
async_full,
async_empty;
// Internal Wires %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wire [`ADDR_WIDTH_M1:0] temp_adder_out, // temporary address out
rd_ptr_on_wr,
wr_ptr_gray; // write pointer in gray code
wire [`DATA_WIDTH_M1:0] data_out_c; // data out from memory
wire wr_conv_temp1, // temporary wires used in gray
wr_conv_temp2, //to binary conversions
rd_conv_temp1,
rd_conv_temp2,
rd_en, // read inable flag
rd_inc; // read increment flag
// Internal Registers %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
reg [`ADDR_WIDTH_M1:0] wr_ptr, // write pointer
rd_ptr, // read pointer
rd_ptr_gray, // read pointer in gray code
wr_ptr_gray_d1, // delayed write ptr in gray code
wr_ptr_gray_d2,
rd_ptr_gray_d1, // delayed read ptr in gray code
rd_ptr_gray_d2,
rd_ptr_gray_on_wr,
wr_ptr_gray_on_rd,
wr_ptr_on_rd,
wr_Reg1, // registered pointers
wr_Reg2,
wr_Reg3,
wr_Reg4,
wr_RegS,
rd_Reg1,
rd_Reg2,
rd_Reg3,
rd_Reg4,
rd_RegS;
reg [`DATA_WIDTH_M1:0] data_out, // data output
data_in_d,
data_inREG1, // registered data in values
data_inREG2,
data_inREG3;
reg wr_hold_r, // delayed write hold value
wr_valid_d,
validREG1, // registered valid values
validREG2,
validREG3;
// Main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Write Logic %%%
// Temporary wires used in the Gray Code to Binary Converter
assign wr_conv_temp1 = (rd_ptr_gray_on_wr[1]^rd_ptr_gray_on_wr[2]);
assign wr_conv_temp2 = (rd_ptr_gray_on_wr[1]^(~rd_ptr_gray_on_wr[2]));
// Reserve Logic Calculation, if the MSB is 1, hold.
//Accordingly assign the wr request output and async full
assign temp_adder_out = wr_ptr_on_rd - rd_ptr + {1'b0, reserve};
assign async_full = temp_adder_out[`ADDR_WIDTH_M1];
assign wr_request = ~wr_hold_r;
// Asynchronous Communication of RD address pointer from RD side to WR side
always @(wr_sync_cntrl or rd_ptr_gray_d2 or wr_Reg1 or wr_Reg2 or wr_Reg3 or
wr_Reg4) begin
case(wr_sync_cntrl)
3'b000: wr_RegS = rd_ptr_gray_d2;
3'b100: wr_RegS = wr_Reg1;
3'b101: wr_RegS = wr_Reg2;
3'b110: wr_RegS = wr_Reg3;
3'b111: wr_RegS = wr_Reg4;
default: wr_RegS = 7'bxxxxxxx;
endcase
end
always @(posedge clk_wr or posedge reset) begin
// Binary Incrementer %%
// Asynchronous Communication of RD address pointer from RD side to
//WR side %%
if (reset) begin //reset address FFs
wr_ptr <= 7'b0000000;
wr_ptr_gray_d1 <= #1 7'b0000000;
wr_ptr_gray_d2 <= #1 7'b0000000;
wr_hold_r <= #1 1'b0;
wr_Reg1 <= 7'b0000000;
wr_Reg2 <= 7'b0000000;
wr_Reg3 <= 7'b0000000;
wr_Reg4 <= 7'b0000000;
rd_ptr_gray_on_wr <= 7'b0000000;
// Insert delay to avoid the holdtime violation
case (delay_sel)
0: begin
wr_valid_d <= wr_valid;
data_in_d <= data_in;
end
1: begin
wr_valid_d <= validREG1;
data_in_d <= data_inREG1;
end
2: begin
wr_valid_d <= validREG2;
data_in_d <= data_inREG2;
end
3: begin
wr_valid_d <= validREG3;
data_in_d <= data_inREG3;
end
default: begin
wr_valid_d <= wr_valid;
data_in_d <= data_in;
end
endcase
end
else begin
wr_ptr <= #1 wr_ptr + wr_valid_d;
wr_ptr_gray_d1 <= #1 wr_ptr_gray;
wr_ptr_gray_d2 <= #1 wr_ptr_gray_d1;
wr_hold_r <= #1 async_full;
wr_Reg1 <= #1 rd_ptr_gray_d2;
wr_Reg2 <= #1 wr_Reg1;
wr_Reg3 <= #1 wr_Reg2;
wr_Reg4 <= #1 wr_Reg3;
validREG1 <= #1 wr_valid;
validREG2 <= #1 validREG1;
validREG3 <= #1 validREG2;
data_inREG1 <= #1 data_in;
data_inREG2 <= #1 data_inREG1;
data_inREG3 <= #1 data_inREG2;
rd_ptr_gray_on_wr <= wr_RegS;
// Insert delay to avoid the holdtime violation
case (delay_sel)
0: begin
wr_valid_d <= wr_valid;
data_in_d <= data_in;
end
1: begin
wr_valid_d <= validREG1;
data_in_d <= data_inREG1;
end
2: begin
wr_valid_d <= validREG2;
data_in_d <= data_inREG2;
end
3: begin
wr_valid_d <= validREG3;
data_in_d <= data_inREG3;
end
default: begin
wr_valid_d <= wr_valid;
data_in_d <= data_in;
end
endcase
end
end
// Binary to Gray Code Converter %%
assign wr_ptr_gray[0] = wr_ptr[0]^wr_ptr[1];
assign wr_ptr_gray[1] = wr_ptr[1]^wr_ptr[2];
assign wr_ptr_gray[2] = wr_ptr[2]^wr_ptr[3];
assign wr_ptr_gray[3] = wr_ptr[3]^wr_ptr[4];
assign wr_ptr_gray[4] = wr_ptr[4]^wr_ptr[5];
assign wr_ptr_gray[5] = wr_ptr[5]^wr_ptr[6];
assign wr_ptr_gray[6] = wr_ptr[6];
// Gray Code to Binary Converter %%
assign rd_ptr_on_wr[6] = rd_ptr_gray_on_wr[6];
assign rd_ptr_on_wr[5] = rd_ptr_gray_on_wr[5]^rd_ptr_gray_on_wr[6];
assign rd_ptr_on_wr[4] = rd_ptr_gray_on_wr[4]^rd_ptr_on_wr[5];
assign rd_ptr_on_wr[3] = rd_ptr_gray_on_wr[3]^rd_ptr_on_wr[4];
assign rd_ptr_on_wr[2] = rd_ptr_on_wr[3] ? ~rd_ptr_gray_on_wr[2] :
rd_ptr_gray_on_wr[2];
assign rd_ptr_on_wr[1] = rd_ptr_on_wr[3] ? wr_conv_temp2 : wr_conv_temp1;
assign rd_ptr_on_wr[0] = rd_ptr_on_wr[3] ? wr_conv_temp2^rd_ptr_gray_on_wr[0]
: wr_conv_temp1^rd_ptr_gray_on_wr[0];
// Read Logic %%%
// Temporary wires used in the Gray Code to Binary Converter
assign rd_conv_temp1 = (wr_ptr_gray_on_rd[1]^wr_ptr_gray_on_rd[2]);
assign rd_conv_temp2 = (wr_ptr_gray_on_rd[1]^(~wr_ptr_gray_on_rd[2]));
// Read Enable Logic
assign rd_en = ~empty & rd_request;
// Increment Enable Logic
assign rd_inc = rd_en & ~nap;
// Empty Logic, see if the next value for the read pointer would be empty
assign empty = (rd_ptr + 1 == wr_ptr_on_rd) & ~nap;
// Asynchronous Communication of WR address pointer from WR side to RD side
always @(rd_sync_cntrl or wr_ptr_gray_d2 or rd_Reg1 or rd_Reg2 or rd_Reg3 or
rd_Reg4) begin
case(rd_sync_cntrl)
3'b000: rd_RegS = wr_ptr_gray_d2;
3'b100: rd_RegS = rd_Reg1;
3'b101: rd_RegS = rd_Reg2;
3'b110: rd_RegS = rd_Reg3;
3'b111: rd_RegS = rd_Reg4;
default: rd_RegS = 7'bxxxxxxx;
endcase
end
always @(posedge clk_rd) begin
// Binary Incrementers %%
if (reset) begin
rd_ptr <= #1 7'b1111111;
wr_ptr_on_rd = 7'b0000000;
rd_ptr_gray <= #1 7'b0000000;
rd_ptr_gray_d1 <= #1 7'b0000000;
rd_ptr_gray_d2 <= #1 7'b0000000;
end else begin
rd_ptr <= #1 rd_ptr + rd_inc;
rd_ptr_gray_d1 <= #1 rd_ptr_gray;
rd_ptr_gray_d2 <= #1 rd_ptr_gray_d1;
end
// Binary to Gray Code Converter %%
rd_ptr_gray[0] <= rd_ptr[0]^rd_ptr[1];
rd_ptr_gray[1] <= rd_ptr[1]^rd_ptr[2];
rd_ptr_gray[2] <= rd_ptr[2]^rd_ptr[3];
rd_ptr_gray[3] <= rd_ptr[3]^rd_ptr[4];
rd_ptr_gray[4] <= rd_ptr[4]^rd_ptr[5];
rd_ptr_gray[5] <= rd_ptr[5]^rd_ptr[6];
rd_ptr_gray[6] <= rd_ptr[6];
// Asynchronous Communication of WR address ptr from WR side to RD side %%
if (reset) begin
rd_Reg1 <= 7'b0000000;
rd_Reg2 <= 7'b0000000;
rd_Reg3 <= 7'b0000000;
rd_Reg4 <= 7'b0000000;
wr_ptr_gray_on_rd <= 7'b0000000;
end else begin
rd_Reg1 <= #1 wr_ptr_gray_d2;
rd_Reg2 <= #1 rd_Reg1;
rd_Reg3 <= #1 rd_Reg2;
rd_Reg4 <= #1 rd_Reg3;
wr_ptr_gray_on_rd <= rd_RegS;
end
// Gray Code to Binary Converter %%
wr_ptr_on_rd[6] = wr_ptr_gray_on_rd[6];
wr_ptr_on_rd[5] = wr_ptr_gray_on_rd[5]^wr_ptr_gray_on_rd[6];
wr_ptr_on_rd[4] = wr_ptr_gray_on_rd[4]^wr_ptr_on_rd[5];
wr_ptr_on_rd[3] = wr_ptr_gray_on_rd[3]^wr_ptr_on_rd[4];
wr_ptr_on_rd[2] = wr_ptr_on_rd[3] ? ~wr_ptr_gray_on_rd[2] :
wr_ptr_gray_on_rd[2];
wr_ptr_on_rd[1] = wr_ptr_on_rd[3] ? rd_conv_temp2 : rd_conv_temp1;
wr_ptr_on_rd[0] = wr_ptr_on_rd[3] ? rd_conv_temp2^wr_ptr_gray_on_rd[0] :
rd_conv_temp1^wr_ptr_gray_on_rd[0];
// Register the SRAM output
data_out <= #1 data_out_c;
end
// Asychronous Empty Logic, used for asynchrnous wake
assign async_empty = (wr_ptr == rd_ptr_on_wr);
// FIFO utilization used by Dynamic Voltage and Frequency Scaling logic %%%
wire [6:0] fifo_util_temp;
assign fifo_util_temp = wr_ptr - rd_ptr - 1;
reg [1:0] fifo_util;
always @ ( fifo_util_temp )
begin
if( fifo_util_temp[6] == 1'b1 ) begin // util = 64
fifo_util = 2'b11;
end
else begin
fifo_util = fifo_util_temp[5:4]; // util = 0 to 63
end
end
//SRAM Memory Definition
SRAM SRAM (
.wr_en(wr_valid_d), // write enable
.clk_wr(clk_wr), // clock coming from write side of FIFO
.wr_ptr(wr_ptr), // write pointer
.data_in(data_in_d), // data to be written into the SRAM
.rd_en(rd_en), // read enable
.clk_rd(clk_rd), // clock coming from read side of FIFO
.rd_ptr(rd_ptr), // read pointer
.data_out(data_out_c) // data to be read from the SRAM
);
endmodule |
module lights_switches (
// inputs:
address,
clk,
in_port,
reset_n,
// outputs:
readdata
)
;
output [ 31: 0] readdata;
input [ 1: 0] address;
input clk;
input [ 7: 0] in_port;
input reset_n;
wire clk_en;
wire [ 7: 0] data_in;
wire [ 7: 0] read_mux_out;
reg [ 31: 0] readdata;
assign clk_en = 1;
//s1, which is an e_avalon_slave
assign read_mux_out = {8 {(address == 0)}} & data_in;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
readdata <= 0;
else if (clk_en)
readdata <= {32'b0 | read_mux_out};
end
assign data_in = in_port;
endmodule |
module sv_mult27_mult_add_cfq3
(
clock0,
ena0,
dataa,
datab,
result) ;
parameter REPRESENTATION = "UNSIGNED";
input clock0;
input ena0;
input [26:0] dataa;
input [26:0] datab;
output [53:0] result;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
tri1 clock0;
tri0 [26:0] dataa;
tri0 [26:0] datab;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif
wire [53:0] wire_altera_mult_add1_result;
wire ena1;
wire ena2;
wire ena3;
altera_mult_add altera_mult_add1
(
.chainout_sat_overflow(),
.clock0(clock0),
.dataa(dataa),
.datab(datab),
.ena0(ena0),
.ena1(ena1),
.ena2(ena2),
.ena3(ena3),
.mult0_is_saturated(),
.mult1_is_saturated(),
.mult2_is_saturated(),
.mult3_is_saturated(),
.overflow(),
.result(wire_altera_mult_add1_result),
.scanouta(),
.scanoutb(),
.accum_sload(1'b0),
.aclr0(1'b0),
.aclr1(1'b0),
.aclr2(1'b0),
.aclr3(1'b0),
.addnsub1(1'b1),
.addnsub1_round(1'b0),
.addnsub3(1'b1),
.addnsub3_round(1'b0),
.chainin({1{1'b0}}),
.chainout_round(1'b0),
.chainout_saturate(1'b0),
.clock1(1'b1),
.clock2(1'b1),
.clock3(1'b1),
.coefsel0({3{1'b0}}),
.coefsel1({3{1'b0}}),
.coefsel2({3{1'b0}}),
.coefsel3({3{1'b0}}),
.datac({22{1'b0}}),
.mult01_round(1'b0),
.mult01_saturation(1'b0),
.mult23_round(1'b0),
.mult23_saturation(1'b0),
.output_round(1'b0),
.output_saturate(1'b0),
.rotate(1'b0),
.scanina({27{1'b0}}),
.scaninb({27{1'b0}}),
.shift_right(1'b0),
.signa(1'b0),
.signb(1'b0),
.sourcea({1{1'b0}}),
.sourceb({1{1'b0}}),
.zero_chainout(1'b0),
.zero_loopback(1'b0)
);
defparam
altera_mult_add1.accum_direction = "ADD",
altera_mult_add1.accum_sload_aclr = "ACLR0",
altera_mult_add1.accum_sload_pipeline_aclr = "ACLR0",
altera_mult_add1.accum_sload_pipeline_register = "CLOCK0",
altera_mult_add1.accum_sload_register = "UNREGISTERED",
altera_mult_add1.accumulator = "NO",
altera_mult_add1.adder1_rounding = "NO",
altera_mult_add1.adder3_rounding = "NO",
altera_mult_add1.addnsub1_round_aclr = "ACLR0",
altera_mult_add1.addnsub1_round_pipeline_aclr = "ACLR0",
altera_mult_add1.addnsub1_round_pipeline_register = "CLOCK0",
altera_mult_add1.addnsub1_round_register = "CLOCK0",
altera_mult_add1.addnsub3_round_aclr = "ACLR0",
altera_mult_add1.addnsub3_round_pipeline_aclr = "ACLR0",
altera_mult_add1.addnsub3_round_pipeline_register = "CLOCK0",
altera_mult_add1.addnsub3_round_register = "CLOCK0",
altera_mult_add1.addnsub_multiplier_aclr1 = "ACLR0",
altera_mult_add1.addnsub_multiplier_aclr3 = "ACLR0",
altera_mult_add1.addnsub_multiplier_pipeline_aclr1 = "ACLR0",
altera_mult_add1.addnsub_multiplier_pipeline_aclr3 = "ACLR0",
altera_mult_add1.addnsub_multiplier_pipeline_register1 = "UNREGISTERED",
altera_mult_add1.addnsub_multiplier_pipeline_register3 = "CLOCK0",
altera_mult_add1.addnsub_multiplier_register1 = "CLOCK0",
altera_mult_add1.addnsub_multiplier_register3 = "CLOCK0",
altera_mult_add1.chainout_aclr = "ACLR0",
altera_mult_add1.chainout_adder = "NO",
altera_mult_add1.chainout_register = "CLOCK0",
altera_mult_add1.chainout_round_aclr = "ACLR0",
altera_mult_add1.chainout_round_output_aclr = "ACLR0",
altera_mult_add1.chainout_round_output_register = "CLOCK0",
altera_mult_add1.chainout_round_pipeline_aclr = "ACLR0",
altera_mult_add1.chainout_round_pipeline_register = "CLOCK0",
altera_mult_add1.chainout_round_register = "CLOCK0",
altera_mult_add1.chainout_rounding = "NO",
altera_mult_add1.chainout_saturate_aclr = "ACLR0",
altera_mult_add1.chainout_saturate_output_aclr = "ACLR0",
altera_mult_add1.chainout_saturate_output_register = "CLOCK0",
altera_mult_add1.chainout_saturate_pipeline_aclr = "ACLR0",
altera_mult_add1.chainout_saturate_pipeline_register = "CLOCK0",
altera_mult_add1.chainout_saturate_register = "CLOCK0",
altera_mult_add1.chainout_saturation = "NO",
altera_mult_add1.coef0_0 = 0,
altera_mult_add1.coef0_1 = 0,
altera_mult_add1.coef0_2 = 0,
altera_mult_add1.coef0_3 = 0,
altera_mult_add1.coef0_4 = 0,
altera_mult_add1.coef0_5 = 0,
altera_mult_add1.coef0_6 = 0,
altera_mult_add1.coef0_7 = 0,
altera_mult_add1.coef1_0 = 0,
altera_mult_add1.coef1_1 = 0,
altera_mult_add1.coef1_2 = 0,
altera_mult_add1.coef1_3 = 0,
altera_mult_add1.coef1_4 = 0,
altera_mult_add1.coef1_5 = 0,
altera_mult_add1.coef1_6 = 0,
altera_mult_add1.coef1_7 = 0,
altera_mult_add1.coef2_0 = 0,
altera_mult_add1.coef2_1 = 0,
altera_mult_add1.coef2_2 = 0,
altera_mult_add1.coef2_3 = 0,
altera_mult_add1.coef2_4 = 0,
altera_mult_add1.coef2_5 = 0,
altera_mult_add1.coef2_6 = 0,
altera_mult_add1.coef2_7 = 0,
altera_mult_add1.coef3_0 = 0,
altera_mult_add1.coef3_1 = 0,
altera_mult_add1.coef3_2 = 0,
altera_mult_add1.coef3_3 = 0,
altera_mult_add1.coef3_4 = 0,
altera_mult_add1.coef3_5 = 0,
altera_mult_add1.coef3_6 = 0,
altera_mult_add1.coef3_7 = 0,
altera_mult_add1.coefsel0_aclr = "ACLR0",
altera_mult_add1.coefsel0_register = "UNREGISTERED",
altera_mult_add1.coefsel1_aclr = "ACLR0",
altera_mult_add1.coefsel1_register = "CLOCK0",
altera_mult_add1.coefsel2_aclr = "ACLR0",
altera_mult_add1.coefsel2_register = "CLOCK0",
altera_mult_add1.coefsel3_aclr = "ACLR0",
altera_mult_add1.coefsel3_register = "CLOCK0",
altera_mult_add1.dedicated_multiplier_circuitry = "AUTO",
altera_mult_add1.double_accum = "NO",
altera_mult_add1.dsp_block_balancing = "Auto",
altera_mult_add1.extra_latency = 0,
altera_mult_add1.input_aclr_a0 = "ACLR0",
altera_mult_add1.input_aclr_a1 = "ACLR0",
altera_mult_add1.input_aclr_a2 = "ACLR0",
altera_mult_add1.input_aclr_a3 = "ACLR0",
altera_mult_add1.input_aclr_b0 = "ACLR0",
altera_mult_add1.input_aclr_b1 = "ACLR0",
altera_mult_add1.input_aclr_b2 = "ACLR0",
altera_mult_add1.input_aclr_b3 = "ACLR0",
altera_mult_add1.input_aclr_c0 = "ACLR0",
altera_mult_add1.input_aclr_c1 = "ACLR0",
altera_mult_add1.input_aclr_c2 = "ACLR0",
altera_mult_add1.input_aclr_c3 = "ACLR0",
altera_mult_add1.input_register_a0 = "CLOCK0",
altera_mult_add1.input_register_a1 = "CLOCK0",
altera_mult_add1.input_register_a2 = "CLOCK0",
altera_mult_add1.input_register_a3 = "CLOCK0",
altera_mult_add1.input_register_b0 = "CLOCK0",
altera_mult_add1.input_register_b1 = "CLOCK0",
altera_mult_add1.input_register_b2 = "CLOCK0",
altera_mult_add1.input_register_b3 = "CLOCK0",
altera_mult_add1.input_register_c0 = "UNREGISTERED",
altera_mult_add1.input_register_c1 = "CLOCK0",
altera_mult_add1.input_register_c2 = "CLOCK0",
altera_mult_add1.input_register_c3 = "CLOCK0",
altera_mult_add1.input_source_a0 = "DATAA",
altera_mult_add1.input_source_a1 = "DATAA",
altera_mult_add1.input_source_a2 = "DATAA",
altera_mult_add1.input_source_a3 = "DATAA",
altera_mult_add1.input_source_b0 = "DATAB",
altera_mult_add1.input_source_b1 = "DATAB",
altera_mult_add1.input_source_b2 = "DATAB",
altera_mult_add1.input_source_b3 = "DATAB",
altera_mult_add1.loadconst_control_aclr = "ACLR0",
altera_mult_add1.loadconst_control_register = "CLOCK0",
altera_mult_add1.loadconst_value = 64,
altera_mult_add1.mult01_round_aclr = "ACLR0",
altera_mult_add1.mult01_round_register = "CLOCK0",
altera_mult_add1.mult01_saturation_aclr = "ACLR1",
altera_mult_add1.mult01_saturation_register = "CLOCK0",
altera_mult_add1.mult23_round_aclr = "ACLR0",
altera_mult_add1.mult23_round_register = "CLOCK0",
altera_mult_add1.mult23_saturation_aclr = "ACLR0",
altera_mult_add1.mult23_saturation_register = "CLOCK0",
altera_mult_add1.multiplier01_rounding = "NO",
altera_mult_add1.multiplier01_saturation = "NO",
altera_mult_add1.multiplier1_direction = "ADD",
altera_mult_add1.multiplier23_rounding = "NO",
altera_mult_add1.multiplier23_saturation = "NO",
altera_mult_add1.multiplier3_direction = "ADD",
altera_mult_add1.multiplier_aclr0 = "ACLR0",
altera_mult_add1.multiplier_aclr1 = "ACLR0",
altera_mult_add1.multiplier_aclr2 = "ACLR0",
altera_mult_add1.multiplier_aclr3 = "ACLR0",
altera_mult_add1.multiplier_register0 = "UNREGISTERED",
altera_mult_add1.multiplier_register1 = "CLOCK0",
altera_mult_add1.multiplier_register2 = "CLOCK0",
altera_mult_add1.multiplier_register3 = "CLOCK0",
altera_mult_add1.number_of_multipliers = 1,
altera_mult_add1.output_aclr = "ACLR0",
altera_mult_add1.output_register = "CLOCK0",
altera_mult_add1.output_round_aclr = "ACLR0",
altera_mult_add1.output_round_pipeline_aclr = "ACLR0",
altera_mult_add1.output_round_pipeline_register = "CLOCK0",
altera_mult_add1.output_round_register = "CLOCK0",
altera_mult_add1.output_round_type = "NEAREST_INTEGER",
altera_mult_add1.output_rounding = "NO",
altera_mult_add1.output_saturate_aclr = "ACLR0",
altera_mult_add1.output_saturate_pipeline_aclr = "ACLR0",
altera_mult_add1.output_saturate_pipeline_register = "CLOCK0",
altera_mult_add1.output_saturate_register = "CLOCK0",
altera_mult_add1.output_saturate_type = "ASYMMETRIC",
altera_mult_add1.output_saturation = "NO",
altera_mult_add1.port_addnsub1 = "PORT_UNUSED",
altera_mult_add1.port_addnsub3 = "PORT_UNUSED",
altera_mult_add1.port_chainout_sat_is_overflow = "PORT_UNUSED",
altera_mult_add1.port_output_is_overflow = "PORT_UNUSED",
altera_mult_add1.port_signa = "PORT_UNUSED",
altera_mult_add1.port_signb = "PORT_UNUSED",
altera_mult_add1.preadder_direction_0 = "ADD",
altera_mult_add1.preadder_direction_1 = "ADD",
altera_mult_add1.preadder_direction_2 = "ADD",
altera_mult_add1.preadder_direction_3 = "ADD",
altera_mult_add1.preadder_mode = "SIMPLE",
altera_mult_add1.representation_a = REPRESENTATION,
altera_mult_add1.representation_b = REPRESENTATION,
altera_mult_add1.rotate_aclr = "ACLR0",
altera_mult_add1.rotate_output_aclr = "ACLR0",
altera_mult_add1.rotate_output_register = "CLOCK0",
altera_mult_add1.rotate_pipeline_aclr = "ACLR0",
altera_mult_add1.rotate_pipeline_register = "CLOCK0",
altera_mult_add1.rotate_register = "CLOCK0",
altera_mult_add1.scanouta_aclr = "ACLR0",
altera_mult_add1.scanouta_register = "UNREGISTERED",
altera_mult_add1.selected_device_family = "Stratix V",
altera_mult_add1.shift_mode = "NO",
altera_mult_add1.shift_right_aclr = "ACLR0",
altera_mult_add1.shift_right_output_aclr = "ACLR0",
altera_mult_add1.shift_right_output_register = "CLOCK0",
altera_mult_add1.shift_right_pipeline_aclr = "ACLR0",
altera_mult_add1.shift_right_pipeline_register = "CLOCK0",
altera_mult_add1.shift_right_register = "CLOCK0",
altera_mult_add1.signed_aclr_a = "ACLR0",
altera_mult_add1.signed_aclr_b = "ACLR0",
altera_mult_add1.signed_pipeline_aclr_a = "ACLR0",
altera_mult_add1.signed_pipeline_aclr_b = "ACLR0",
altera_mult_add1.signed_pipeline_register_a = "UNREGISTERED",
altera_mult_add1.signed_pipeline_register_b = "UNREGISTERED",
altera_mult_add1.signed_register_a = "CLOCK0",
altera_mult_add1.signed_register_b = "CLOCK0",
altera_mult_add1.systolic_aclr1 = "ACLR0",
altera_mult_add1.systolic_aclr3 = "ACLR0",
altera_mult_add1.systolic_delay1 = "UNREGISTERED",
altera_mult_add1.systolic_delay3 = "UNREGISTERED",
altera_mult_add1.width_a = 27,
altera_mult_add1.width_b = 27,
altera_mult_add1.width_c = 22,
altera_mult_add1.width_chainin = 1,
altera_mult_add1.width_coef = 18,
altera_mult_add1.width_msb = 17,
altera_mult_add1.width_result = 54,
altera_mult_add1.width_saturate_sign = 1,
altera_mult_add1.zero_chainout_output_aclr = "ACLR0",
altera_mult_add1.zero_chainout_output_register = "CLOCK0",
altera_mult_add1.zero_loopback_aclr = "ACLR0",
altera_mult_add1.zero_loopback_output_aclr = "ACLR0",
altera_mult_add1.zero_loopback_output_register = "CLOCK0",
altera_mult_add1.zero_loopback_pipeline_aclr = "ACLR0",
altera_mult_add1.zero_loopback_pipeline_register = "CLOCK0",
altera_mult_add1.zero_loopback_register = "CLOCK0",
altera_mult_add1.lpm_type = "altera_mult_add";
assign
ena1 = 1'b1,
ena2 = 1'b1,
ena3 = 1'b1,
result = wire_altera_mult_add1_result;
endmodule |
module sv_mult27 (
clock0,
ena0,
dataa_0,
datab_0,
result);
parameter REPRESENTATION = "UNSIGNED";
input clock0;
input ena0;
input [26:0] dataa_0;
input [26:0] datab_0;
output [53:0] result;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
tri1 clock0;
tri0 [26:0] dataa_0;
tri0 [26:0] datab_0;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif
wire [53:0] sub_wire0;
wire [53:0] result = sub_wire0[53:0];
sv_mult27_mult_add_cfq3 sv_mult27_mult_add_cfq3_component (
.clock0 (clock0),
.ena0(ena0),
.dataa (dataa_0),
.datab (datab_0),
.result (sub_wire0));
defparam sv_mult27_mult_add_cfq3_component.REPRESENTATION = REPRESENTATION;
endmodule |
module main(
`ifdef MK2
/* Bus 1: PSRAM, 128Mbit, 16bit, 70ns */
output [22:0] ROM_ADDR,
output ROM_CE,
input MCU_OVR,
/* debug */
output p113_out,
`endif
`ifdef MK3
input SNES_CIC_CLK,
/* Bus 1: 2x PSRAM, 64Mbit, 16bit, 70ns */
output [21:0] ROM_ADDR,
output ROM_1CE,
output ROM_2CE,
output ROM_ZZ,
/* debug */
output PM6_out,
output PN6_out,
input PT5_in,
`endif
/* input clock */
input CLKIN,
/* SNES signals */
input [23:0] SNES_ADDR_IN,
input SNES_READ_IN,
input SNES_WRITE_IN,
input SNES_ROMSEL_IN,
inout [7:0] SNES_DATA,
input SNES_CPU_CLK_IN,
input SNES_REFRESH,
output SNES_IRQ,
output SNES_DATABUS_OE,
output SNES_DATABUS_DIR,
input SNES_SYSCLK,
input [7:0] SNES_PA_IN,
input SNES_PARD_IN,
input SNES_PAWR_IN,
/* SRAM signals */
inout [15:0] ROM_DATA,
output ROM_OE,
output ROM_WE,
output ROM_BHE,
output ROM_BLE,
/* Bus 2: SRAM, 4Mbit, 8bit, 45ns */
inout [7:0] RAM_DATA,
output [18:0] RAM_ADDR,
output RAM_OE,
output RAM_WE,
/* MCU signals */
input SPI_MOSI,
inout SPI_MISO,
input SPI_SS,
input SPI_SCK,
output MCU_RDY,
output DAC_MCLK,
output DAC_LRCK,
output DAC_SDOUT,
/* SD signals */
input [3:0] SD_DAT,
inout SD_CMD,
inout SD_CLK
);
wire CLK2;
wire [7:0] CX4_SNES_DATA_IN;
wire [7:0] CX4_SNES_DATA_OUT;
wire [7:0] spi_cmd_data;
wire [7:0] spi_param_data;
wire [7:0] spi_input_data;
wire [31:0] spi_byte_cnt;
wire [2:0] spi_bit_cnt;
wire [23:0] MCU_ADDR;
wire [2:0] MAPPER;
wire [23:0] SAVERAM_MASK;
wire [23:0] ROM_MASK;
wire [7:0] SD_DMA_SRAM_DATA;
wire [1:0] SD_DMA_TGT;
wire [10:0] SD_DMA_PARTIAL_START;
wire [10:0] SD_DMA_PARTIAL_END;
wire [10:0] dac_addr;
wire [2:0] dac_vol_select_out;
wire [8:0] dac_ptr_addr;
wire [7:0] msu_volumerq_out;
wire [7:0] msu_status_out;
wire [31:0] msu_addressrq_out;
wire [15:0] msu_trackrq_out;
wire [13:0] msu_write_addr;
wire [13:0] msu_ptr_addr;
wire [7:0] MSU_SNES_DATA_IN;
wire [7:0] MSU_SNES_DATA_OUT;
wire [5:0] msu_status_reset_bits;
wire [5:0] msu_status_set_bits;
wire [23:0] MAPPED_SNES_ADDR;
wire ROM_ADDR0;
wire [23:0] cx4_datrom_data;
wire [9:0] cx4_datrom_addr;
wire cx4_datrom_we;
wire [8:0] snescmd_addr_mcu;
wire [7:0] snescmd_data_out_mcu;
wire [7:0] snescmd_data_in_mcu;
reg [7:0] SNES_PARDr = 8'b11111111;
reg [7:0] SNES_PAWRr = 8'b11111111;
reg [7:0] SNES_READr = 8'b11111111;
reg [7:0] SNES_WRITEr = 8'b11111111;
reg [7:0] SNES_CPU_CLKr = 8'b00000000;
reg [7:0] SNES_ROMSELr = 8'b11111111;
reg [23:0] SNES_ADDRr [6:0];
reg [7:0] SNES_PAr [6:0];
reg [7:0] SNES_DATAr [4:0];
reg[17:0] SNES_DEAD_CNTr = 18'h00000;
reg SNES_DEADr = 1;
reg SNES_reset_strobe = 0;
reg free_strobe = 0;
wire [23:0] SNES_ADDR = (SNES_ADDRr[5] & SNES_ADDRr[4]);
wire [7:0] SNES_PA = (SNES_PAr[5] & SNES_PAr[4]);
wire [7:0] SNES_DATA_IN = (SNES_DATAr[3] & SNES_DATAr[2]);
wire SNES_PARD_start = (SNES_PARDr[6:1] == 6'b111110);
// Sample PAWR data earlier on CPU accesses, later on DMA accesses...
wire SNES_PAWR_start = (SNES_PAWRr[7:1] == (({SNES_ADDR[22], SNES_ADDR[15:0]} == 17'h02100) ? 7'b1110000 : 7'b1000000));
wire SNES_PAWR_end = (SNES_PAWRr[6:1] == 6'b000001);
wire SNES_RD_start = (SNES_READr[6:1] == 6'b111110);
wire SNES_RD_end = (SNES_READr[6:1] == 6'b000001);
wire SNES_WR_end = (SNES_WRITEr[6:1] == 6'b000001);
wire SNES_cycle_start = (SNES_CPU_CLKr[6:1] == 6'b000001);
wire SNES_cycle_end = (SNES_CPU_CLKr[6:1] == 6'b111110);
wire SNES_WRITE = SNES_WRITEr[2] & SNES_WRITEr[1];
wire SNES_READ = SNES_READr[2] & SNES_READr[1];
wire SNES_CPU_CLK = SNES_CPU_CLKr[2] & SNES_CPU_CLKr[1];
wire SNES_PARD = SNES_PARDr[2] & SNES_PARDr[1];
wire SNES_PAWR = SNES_PAWRr[2] & SNES_PAWRr[1];
wire SNES_ROMSEL = (SNES_ROMSELr[5] & SNES_ROMSELr[4]);
reg [7:0] BUS_DATA;
always @(posedge CLK2) begin
if(~SNES_READ) BUS_DATA <= SNES_DATA;
else if(~SNES_WRITE) BUS_DATA <= SNES_DATA_IN;
end
wire free_slot = SNES_cycle_end | free_strobe;
wire ROM_HIT;
assign DCM_RST=0;
always @(posedge CLK2) begin
free_strobe <= 1'b0;
if(SNES_cycle_start) free_strobe <= ~ROM_HIT;
end
always @(posedge CLK2) begin
SNES_PARDr <= {SNES_PARDr[6:0], SNES_PARD_IN};
SNES_PAWRr <= {SNES_PAWRr[6:0], SNES_PAWR_IN};
SNES_READr <= {SNES_READr[6:0], SNES_READ_IN};
SNES_WRITEr <= {SNES_WRITEr[6:0], SNES_WRITE_IN};
SNES_CPU_CLKr <= {SNES_CPU_CLKr[6:0], SNES_CPU_CLK_IN};
SNES_ROMSELr <= {SNES_ROMSELr[6:0], SNES_ROMSEL_IN};
SNES_ADDRr[6] <= SNES_ADDRr[5];
SNES_ADDRr[5] <= SNES_ADDRr[4];
SNES_ADDRr[4] <= SNES_ADDRr[3];
SNES_ADDRr[3] <= SNES_ADDRr[2];
SNES_ADDRr[2] <= SNES_ADDRr[1];
SNES_ADDRr[1] <= SNES_ADDRr[0];
SNES_ADDRr[0] <= SNES_ADDR_IN;
SNES_PAr[6] <= SNES_PAr[5];
SNES_PAr[5] <= SNES_PAr[4];
SNES_PAr[4] <= SNES_PAr[3];
SNES_PAr[3] <= SNES_PAr[2];
SNES_PAr[2] <= SNES_PAr[1];
SNES_PAr[1] <= SNES_PAr[0];
SNES_PAr[0] <= SNES_PA_IN;
SNES_DATAr[4] <= SNES_DATAr[3];
SNES_DATAr[3] <= SNES_DATAr[2];
SNES_DATAr[2] <= SNES_DATAr[1];
SNES_DATAr[1] <= SNES_DATAr[0];
SNES_DATAr[0] <= SNES_DATA;
end
parameter ST_IDLE = 7'b0000001;
parameter ST_MCU_RD_ADDR = 7'b0000010;
parameter ST_MCU_RD_END = 7'b0000100;
parameter ST_MCU_WR_ADDR = 7'b0001000;
parameter ST_MCU_WR_END = 7'b0010000;
parameter ST_CX4_RD_ADDR = 7'b0100000;
parameter ST_CX4_RD_END = 7'b1000000;
parameter ROM_CYCLE_LEN = 4'd6;
parameter SNES_DEAD_TIMEOUT = 17'd80000; // 1ms
reg [6:0] STATE;
initial STATE = ST_IDLE;
assign MSU_SNES_DATA_IN = BUS_DATA;
assign CX4_SNES_DATA_IN = BUS_DATA;
sd_dma snes_sd_dma(
.CLK(CLK2),
.SD_DAT(SD_DAT),
.SD_CLK(SD_CLK),
.SD_DMA_EN(SD_DMA_EN),
.SD_DMA_STATUS(SD_DMA_STATUS),
.SD_DMA_SRAM_WE(SD_DMA_SRAM_WE),
.SD_DMA_SRAM_DATA(SD_DMA_SRAM_DATA),
.SD_DMA_NEXTADDR(SD_DMA_NEXTADDR),
.SD_DMA_PARTIAL(SD_DMA_PARTIAL),
.SD_DMA_PARTIAL_START(SD_DMA_PARTIAL_START),
.SD_DMA_PARTIAL_END(SD_DMA_PARTIAL_END),
.SD_DMA_START_MID_BLOCK(SD_DMA_START_MID_BLOCK),
.SD_DMA_END_MID_BLOCK(SD_DMA_END_MID_BLOCK)
);
wire SD_DMA_TO_ROM = (SD_DMA_STATUS && (SD_DMA_TGT == 2'b00));
dac snes_dac(
.clkin(CLK2),
.sysclk(SNES_SYSCLK),
.mclk_out(DAC_MCLK),
.lrck_out(DAC_LRCK),
.sdout(DAC_SDOUT),
.we(SD_DMA_TGT==2'b01 ? SD_DMA_SRAM_WE : 1'b1),
.pgm_address(dac_addr),
.pgm_data(SD_DMA_SRAM_DATA),
.DAC_STATUS(DAC_STATUS),
.volume(msu_volumerq_out),
.vol_latch(msu_volume_latch_out),
.vol_select(dac_vol_select_out),
.palmode(dac_palmode_out),
.play(dac_play),
.reset(dac_reset),
.dac_address_ext(dac_ptr_addr)
);
msu snes_msu (
.clkin(CLK2),
.enable(msu_enable),
.pgm_address(msu_write_addr),
.pgm_data(SD_DMA_SRAM_DATA),
.pgm_we(SD_DMA_TGT==2'b10 ? SD_DMA_SRAM_WE : 1'b1),
.reg_addr(SNES_ADDR[2:0]),
.reg_data_in(MSU_SNES_DATA_IN),
.reg_data_out(MSU_SNES_DATA_OUT),
.reg_oe_falling(SNES_RD_start),
.reg_oe_rising(SNES_RD_end),
.reg_we_rising(SNES_WR_end),
.status_out(msu_status_out),
.volume_out(msu_volumerq_out),
.volume_latch_out(msu_volume_latch_out),
.addr_out(msu_addressrq_out),
.track_out(msu_trackrq_out),
.status_reset_bits(msu_status_reset_bits),
.status_set_bits(msu_status_set_bits),
.status_reset_we(msu_status_reset_we),
.msu_address_ext(msu_ptr_addr),
.msu_address_ext_write(msu_addr_reset)
);
spi snes_spi(
.clk(CLK2),
.MOSI(SPI_MOSI),
.MISO(SPI_MISO),
.SSEL(SPI_SS),
.SCK(SPI_SCK),
.cmd_ready(spi_cmd_ready),
.param_ready(spi_param_ready),
.cmd_data(spi_cmd_data),
.param_data(spi_param_data),
.endmessage(spi_endmessage),
.startmessage(spi_startmessage),
.input_data(spi_input_data),
.byte_cnt(spi_byte_cnt),
.bit_cnt(spi_bit_cnt)
);
reg [7:0] MCU_DINr;
wire [7:0] MCU_DOUT;
wire [15:0] featurebits;
wire [31:0] cheat_pgm_data;
wire [7:0] cheat_data_out;
wire [2:0] cheat_pgm_idx;
wire [15:0] dsp_feat;
wire [7:0] snescmd_data_in_mcu_dbg;
wire feat_cmd_unlock = featurebits[5];
mcu_cmd snes_mcu_cmd(
.clk(CLK2),
.snes_sysclk(SNES_SYSCLK),
.cmd_ready(spi_cmd_ready),
.param_ready(spi_param_ready),
.cmd_data(spi_cmd_data),
.param_data(spi_param_data),
.mcu_mapper(MAPPER),
.mcu_write(MCU_WRITE),
.mcu_data_in(MCU_DINr),
.mcu_data_out(MCU_DOUT),
.spi_byte_cnt(spi_byte_cnt),
.spi_bit_cnt(spi_bit_cnt),
.spi_data_out(spi_input_data),
.addr_out(MCU_ADDR),
.saveram_mask_out(SAVERAM_MASK),
.rom_mask_out(ROM_MASK),
.SD_DMA_EN(SD_DMA_EN),
.SD_DMA_STATUS(SD_DMA_STATUS),
.SD_DMA_NEXTADDR(SD_DMA_NEXTADDR),
.SD_DMA_SRAM_DATA(SD_DMA_SRAM_DATA),
.SD_DMA_SRAM_WE(SD_DMA_SRAM_WE),
.SD_DMA_TGT(SD_DMA_TGT),
.SD_DMA_PARTIAL(SD_DMA_PARTIAL),
.SD_DMA_PARTIAL_START(SD_DMA_PARTIAL_START),
.SD_DMA_PARTIAL_END(SD_DMA_PARTIAL_END),
.SD_DMA_START_MID_BLOCK(SD_DMA_START_MID_BLOCK),
.SD_DMA_END_MID_BLOCK(SD_DMA_END_MID_BLOCK),
.dac_addr_out(dac_addr),
.DAC_STATUS(DAC_STATUS),
// .dac_volume_out(dac_volume),
// .dac_volume_latch_out(dac_vol_latch),
.dac_play_out(dac_play),
.dac_reset_out(dac_reset),
.dac_vol_select_out(dac_vol_select_out),
.dac_palmode_out(dac_palmode_out),
.dac_ptr_out(dac_ptr_addr),
.msu_addr_out(msu_write_addr),
.MSU_STATUS(msu_status_out),
.msu_status_reset_out(msu_status_reset_bits),
.msu_status_set_out(msu_status_set_bits),
.msu_status_reset_we(msu_status_reset_we),
.msu_volumerq(msu_volumerq_out),
.msu_addressrq(msu_addressrq_out),
.msu_trackrq(msu_trackrq_out),
.msu_ptr_out(msu_ptr_addr),
.msu_reset_out(msu_addr_reset),
.mcu_rrq(MCU_RRQ),
.mcu_wrq(MCU_WRQ),
.mcu_rq_rdy(MCU_RDY),
.featurebits_out(featurebits),
.cx4_reset_out(cx4_reset),
.region_out(mcu_region),
.snescmd_addr_out(snescmd_addr_mcu),
.snescmd_we_out(snescmd_we_mcu),
.snescmd_data_out(snescmd_data_out_mcu),
.snescmd_data_in(snescmd_data_in_mcu),
.cheat_pgm_idx_out(cheat_pgm_idx),
.cheat_pgm_data_out(cheat_pgm_data),
.cheat_pgm_we_out(cheat_pgm_we),
.dsp_feat_out(dsp_feat)
);
address snes_addr(
.CLK(CLK2),
.MAPPER(MAPPER),
.SNES_ADDR(SNES_ADDR), // requested address from SNES
.SNES_PA(SNES_PA),
.ROM_ADDR(MAPPED_SNES_ADDR), // Address to request from SRAM (active low)
.ROM_HIT(ROM_HIT),
.IS_SAVERAM(IS_SAVERAM),
.IS_ROM(IS_ROM),
.IS_WRITABLE(IS_WRITABLE),
.SAVERAM_MASK(SAVERAM_MASK),
.ROM_MASK(ROM_MASK),
.featurebits(featurebits),
//MSU-1
.msu_enable(msu_enable),
//CX4
.cx4_enable(cx4_enable),
.cx4_vect_enable(cx4_vect_enable),
//region
.r213f_enable(r213f_enable),
//brightness fix
.r2100_hit(r2100_hit),
//CMD Interface
.snescmd_enable(snescmd_enable),
.nmicmd_enable(nmicmd_enable),
.return_vector_enable(return_vector_enable),
.branch1_enable(branch1_enable),
.branch2_enable(branch2_enable)
);
//always @(posedge CLK2) begin
// non_hit_cycle <= 1'b0;
// if(SNES_cycle_start) non_hit_cycle <= ~ROM_HIT;
//end
reg [7:0] CX4_DINr;
wire [23:0] CX4_ADDR;
wire [2:0] cx4_busy;
cx4 snes_cx4 (
.DI(CX4_SNES_DATA_IN),
.DO(CX4_SNES_DATA_OUT),
.ADDR(SNES_ADDR[12:0]),
.CS(cx4_enable),
.SNES_VECT_EN(cx4_vect_enable),
.reg_we_rising(SNES_WR_end),
.CLK(CLK2),
.BUS_DI(CX4_DINr),
.BUS_ADDR(CX4_ADDR),
.BUS_RRQ(CX4_RRQ),
.BUS_RDY(CX4_RDY),
.cx4_active(cx4_active),
.cx4_busy_out(cx4_busy),
.speed(dsp_feat[0])
);
reg pad_latch = 0;
reg [4:0] pad_cnt = 0;
reg snes_ajr = 0;
cheat snes_cheat(
.clk(CLK2),
.SNES_ADDR(SNES_ADDR),
.SNES_PA(SNES_PA),
.SNES_DATA(SNES_DATA),
.SNES_reset_strobe(SNES_reset_strobe),
.SNES_cycle_start(SNES_cycle_start),
.SNES_wr_strobe(SNES_WR_end),
.SNES_rd_strobe(SNES_RD_start),
.snescmd_enable(snescmd_enable),
.nmicmd_enable(nmicmd_enable),
.return_vector_enable(return_vector_enable),
.branch1_enable(branch1_enable),
.branch2_enable(branch2_enable),
.pad_latch(pad_latch),
.snes_ajr(snes_ajr),
.pgm_idx(cheat_pgm_idx),
.pgm_we(cheat_pgm_we),
.pgm_in(cheat_pgm_data),
.data_out(cheat_data_out),
.cheat_hit(cheat_hit),
.snescmd_unlock(snescmd_unlock)
);
wire [7:0] snescmd_dout;
reg [7:0] r213fr;
reg r213f_forceread;
reg [2:0] r213f_delay;
reg [1:0] r213f_state;
initial r213fr = 8'h55;
initial r213f_forceread = 0;
initial r213f_state = 2'b01;
initial r213f_delay = 3'b000;
reg [7:0] r2100r = 0;
reg r2100_forcewrite = 0;
reg r2100_forcewrite_pre = 0;
wire [3:0] r2100_limit = featurebits[10:7];
wire [3:0] r2100_limited = (SNES_DATA[3:0] > r2100_limit) ? r2100_limit : SNES_DATA[3:0];
wire r2100_patch = featurebits[6];
wire r2100_enable = r2100_hit & (r2100_patch | ~(&r2100_limit));
wire snoop_4200_enable = {SNES_ADDR[22], SNES_ADDR[15:0]} == 17'h04200;
wire r4016_enable = {SNES_ADDR[22], SNES_ADDR[15:0]} == 17'h04016;
always @(posedge CLK2) begin
r2100_forcewrite <= r2100_forcewrite_pre;
end
always @(posedge CLK2) begin
if(SNES_WR_end & snoop_4200_enable) begin
snes_ajr <= SNES_DATA[0];
end
end
always @(posedge CLK2) begin
if(SNES_WR_end & r4016_enable) begin
pad_latch <= 1'b1;
pad_cnt <= 5'h0;
end
if(SNES_RD_start & r4016_enable) begin
pad_cnt <= pad_cnt + 1;
if(&pad_cnt[3:0]) begin
pad_latch <= 1'b0;
end
end
end
assign SNES_DATA = (r213f_enable & ~SNES_PARD & ~r213f_forceread) ? r213fr
:(r2100_enable & ~SNES_PAWR & r2100_forcewrite) ? r2100r
:((~SNES_READ ^ (r213f_forceread & r213f_enable & ~SNES_PARD))
& ~(r2100_enable & ~SNES_PAWR & ~r2100_forcewrite & ~IS_ROM & ~IS_WRITABLE))
? (msu_enable ? MSU_SNES_DATA_OUT
:cx4_enable ? CX4_SNES_DATA_OUT
:(cx4_active & cx4_vect_enable) ? CX4_SNES_DATA_OUT
:(cheat_hit & ~feat_cmd_unlock) ? cheat_data_out
:(snescmd_unlock | feat_cmd_unlock) & snescmd_enable ? snescmd_dout
:(ROM_ADDR0 ? ROM_DATA[7:0] : ROM_DATA[15:8])
): 8'bZ;
reg [4:0] ST_MEM_DELAYr;
reg MCU_RD_PENDr = 0;
reg MCU_WR_PENDr = 0;
reg CX4_RD_PENDr = 0;
reg [23:0] ROM_ADDRr;
reg [23:0] CX4_ADDRr;
reg RQ_MCU_RDYr;
initial RQ_MCU_RDYr = 1'b1;
assign MCU_RDY = RQ_MCU_RDYr;
reg RQ_CX4_RDYr;
initial RQ_CX4_RDYr = 1'b1;
assign CX4_RDY = RQ_CX4_RDYr;
wire MCU_WE_HIT = |(STATE & ST_MCU_WR_ADDR);
wire MCU_WR_HIT = |(STATE & (ST_MCU_WR_ADDR | ST_MCU_WR_END));
wire MCU_RD_HIT = |(STATE & (ST_MCU_RD_ADDR | ST_MCU_RD_END));
wire MCU_HIT = MCU_WR_HIT | MCU_RD_HIT;
wire CX4_HIT = |(STATE & ST_CX4_RD_ADDR);
`ifdef MK2
my_dcm snes_dcm(
.CLKIN(CLKIN),
.CLKFX(CLK2),
.LOCKED(DCM_LOCKED),
.RST(DCM_RST)
);
assign ROM_ADDR = (SD_DMA_TO_ROM) ? MCU_ADDR[23:1] : MCU_HIT ? ROM_ADDRr[23:1] : CX4_HIT ? CX4_ADDRr[23:1] : MAPPED_SNES_ADDR[23:1];
assign ROM_ADDR0 = (SD_DMA_TO_ROM) ? MCU_ADDR[0] : MCU_HIT ? ROM_ADDRr[0] : CX4_HIT ? CX4_ADDRr[0] : MAPPED_SNES_ADDR[0];
assign ROM_CE = 1'b0;
assign p113_out = 1'b0;
snescmd_buf snescmd (
.clka(CLK2), // input clka
.wea(SNES_WR_end & ((snescmd_unlock | feat_cmd_unlock) & snescmd_enable)), // input [0 : 0] wea
.addra(SNES_ADDR[8:0]), // input [8 : 0] addra
.dina(SNES_DATA), // input [7 : 0] dina
.douta(snescmd_dout), // output [7 : 0] douta
.clkb(CLK2), // input clkb
.web(snescmd_we_mcu), // input [0 : 0] web
.addrb(snescmd_addr_mcu), // input [8 : 0] addrb
.dinb(snescmd_data_out_mcu), // input [7 : 0] dinb
.doutb(snescmd_data_in_mcu) // output [7 : 0] doutb
);
`endif
`ifdef MK3
pll snes_pll(
.inclk0(CLKIN),
.c0(CLK2),
.locked(DCM_LOCKED),
.areset(DCM_RST)
);
wire ROM_ADDR22;
assign ROM_ADDR22 = (SD_DMA_TO_ROM) ? MCU_ADDR[1] : MCU_HIT ? ROM_ADDRr[1] : CX4_HIT ? CX4_ADDRr[1] : MAPPED_SNES_ADDR[1];
assign ROM_ADDR = (SD_DMA_TO_ROM) ? MCU_ADDR[23:2] : MCU_HIT ? ROM_ADDRr[23:2] : CX4_HIT ? CX4_ADDRr[23:2] : MAPPED_SNES_ADDR[23:2];
assign ROM_ADDR0 = (SD_DMA_TO_ROM) ? MCU_ADDR[0] : MCU_HIT ? ROM_ADDRr[0] : CX4_HIT ? CX4_ADDRr[0] : MAPPED_SNES_ADDR[0];
assign ROM_ZZ = 1'b1;
assign ROM_1CE = ROM_ADDR22;
assign ROM_2CE = ~ROM_ADDR22;
snescmd_buf snescmd (
.clock(CLK2), // input clka
.wren_a(SNES_WR_end & ((snescmd_unlock | feat_cmd_unlock) & snescmd_enable)), // input [0 : 0] wea
.address_a(SNES_ADDR[8:0]), // input [8 : 0] addra
.data_a(SNES_DATA), // input [7 : 0] dina
.q_a(snescmd_dout), // output [7 : 0] douta
.wren_b(snescmd_we_mcu), // input [0 : 0] web
.address_b(snescmd_addr_mcu), // input [8 : 0] addrb
.data_b(snescmd_data_out_mcu), // input [7 : 0] dinb
.q_b(snescmd_data_in_mcu) // output [7 : 0] doutb
);
`endif
always @(posedge CLK2) begin
if(cx4_active) begin
if(CX4_RRQ) begin
CX4_RD_PENDr <= 1'b1;
RQ_CX4_RDYr <= 1'b0;
CX4_ADDRr <= CX4_ADDR;
end else if(STATE == ST_CX4_RD_END) begin
CX4_RD_PENDr <= 1'b0;
RQ_CX4_RDYr <= 1'b1;
end
end
end
always @(posedge CLK2) begin
if(MCU_RRQ) begin
MCU_RD_PENDr <= 1'b1;
RQ_MCU_RDYr <= 1'b0;
ROM_ADDRr <= MCU_ADDR;
end else if(MCU_WRQ) begin
MCU_WR_PENDr <= 1'b1;
RQ_MCU_RDYr <= 1'b0;
ROM_ADDRr <= MCU_ADDR;
end else if(STATE & (ST_MCU_RD_END | ST_MCU_WR_END)) begin
MCU_RD_PENDr <= 1'b0;
MCU_WR_PENDr <= 1'b0;
RQ_MCU_RDYr <= 1'b1;
end
end
always @(posedge CLK2) begin
if(~SNES_CPU_CLKr[1]) SNES_DEAD_CNTr <= SNES_DEAD_CNTr + 1;
else SNES_DEAD_CNTr <= 17'h0;
end
always @(posedge CLK2) begin
SNES_reset_strobe <= 1'b0;
if(SNES_CPU_CLKr[1]) begin
SNES_DEADr <= 1'b0;
if(SNES_DEADr) SNES_reset_strobe <= 1'b1;
end
else if(SNES_DEAD_CNTr > SNES_DEAD_TIMEOUT) SNES_DEADr <= 1'b1;
end
always @(posedge CLK2) begin
if(SNES_DEADr & SNES_CPU_CLKr[1]) STATE <= ST_IDLE; // interrupt+restart an ongoing MCU access when the SNES comes alive
else
case(STATE)
ST_IDLE: begin
STATE <= ST_IDLE;
if(cx4_active) begin
if (CX4_RD_PENDr) begin
STATE <= ST_CX4_RD_ADDR;
ST_MEM_DELAYr <= 16;
end
end else if(free_slot | SNES_DEADr) begin
if(MCU_RD_PENDr) begin
STATE <= ST_MCU_RD_ADDR;
ST_MEM_DELAYr <= ROM_CYCLE_LEN;
end else if(MCU_WR_PENDr) begin
STATE <= ST_MCU_WR_ADDR;
ST_MEM_DELAYr <= ROM_CYCLE_LEN;
end
end
end
ST_MCU_RD_ADDR: begin
STATE <= ST_MCU_RD_ADDR;
ST_MEM_DELAYr <= ST_MEM_DELAYr - 1;
if(ST_MEM_DELAYr == 0) STATE <= ST_MCU_RD_END;
MCU_DINr <= (ROM_ADDR0 ? ROM_DATA[7:0] : ROM_DATA[15:8]);
end
ST_MCU_WR_ADDR: begin
STATE <= ST_MCU_WR_ADDR;
ST_MEM_DELAYr <= ST_MEM_DELAYr - 1;
if(ST_MEM_DELAYr == 0) STATE <= ST_MCU_WR_END;
end
ST_MCU_RD_END, ST_MCU_WR_END: begin
STATE <= ST_IDLE;
end
ST_CX4_RD_ADDR: begin
STATE <= ST_CX4_RD_ADDR;
ST_MEM_DELAYr <= ST_MEM_DELAYr - 1;
if(ST_MEM_DELAYr == 0) STATE <= ST_CX4_RD_END;
CX4_DINr <= (ROM_ADDR0 ? ROM_DATA[7:0] : ROM_DATA[15:8]);
end
ST_CX4_RD_END: begin
STATE <= ST_IDLE;
end
endcase
end
always @(posedge CLK2) begin
if(SNES_cycle_end) r213f_forceread <= 1'b1;
else if(SNES_PARD_start & r213f_enable) begin
r213f_delay <= 3'b001;
r213f_state <= 2'b10;
end else if(r213f_state == 2'b10) begin
r213f_delay <= r213f_delay - 1;
if(r213f_delay == 3'b000) begin
r213f_forceread <= 1'b0;
r213f_state <= 2'b01;
r213fr <= {SNES_DATA[7:5], mcu_region, SNES_DATA[3:0]};
end
end
end
/*********************************
* R2100 patching (experimental) *
*********************************/
reg [3:0] r2100_bright = 0;
reg [3:0] r2100_bright_orig = 0;
always @(posedge CLK2) begin
if(SNES_cycle_end) r2100_forcewrite_pre <= 1'b0;
else if(SNES_PAWR_start & r2100_hit) begin
if(r2100_patch & SNES_DATA[7]) begin
// keep previous brightness during forced blanking so there is no DAC step
r2100_forcewrite_pre <= 1'b1;
r2100r <= {SNES_DATA[7], 3'b010, r2100_bright}; // 0xAx
end else if (r2100_patch && SNES_DATA == 8'h00 && r2100r[7]) begin
// extend forced blanking when game goes from blanking to brightness 0 (Star Fox top of screen)
r2100_forcewrite_pre <= 1'b1;
r2100r <= {1'b1, 3'b111, r2100_bright}; // 0xFx
end else if (r2100_patch && SNES_DATA[3:0] < 4'h8 && r2100_bright_orig > 4'hd) begin
// substitute big brightness changes with brightness 0 (so it is visible on 1CHIP)
r2100_forcewrite_pre <= 1'b1;
r2100r <= {SNES_DATA[7], 3'b011, 4'h0}; // 0x3x / 0xBx(!)
end else if (r2100_patch | ~(&r2100_limit)) begin
// save brightness, limit brightness
r2100_bright <= r2100_limited;
r2100_bright_orig <= SNES_DATA[3:0];
if (~(&r2100_limit) && SNES_DATA[3:0] > r2100_limit) begin
r2100_forcewrite_pre <= 1'b1;
r2100r <= {SNES_DATA[7], 3'b100, r2100_limited}; // 0x4x / 0xCx
end
end
end
end
reg MCU_WRITE_1;
always @(posedge CLK2) MCU_WRITE_1<= MCU_WRITE;
assign ROM_DATA[7:0] = ROM_ADDR0
?(SD_DMA_TO_ROM ? (!MCU_WRITE_1 ? MCU_DOUT : 8'bZ)
: (ROM_HIT & ~SNES_WRITE) ? SNES_DATA
: MCU_WR_HIT ? MCU_DOUT : 8'bZ
)
:8'bZ;
assign ROM_DATA[15:8] = ROM_ADDR0 ? 8'bZ
:(SD_DMA_TO_ROM ? (!MCU_WRITE_1 ? MCU_DOUT : 8'bZ)
: (ROM_HIT & ~SNES_WRITE) ? SNES_DATA
: MCU_WR_HIT ? MCU_DOUT
: 8'bZ
);
assign ROM_WE = SD_DMA_TO_ROM
?MCU_WRITE
: (ROM_HIT & IS_WRITABLE & SNES_CPU_CLK) ? SNES_WRITE
: MCU_WE_HIT ? 1'b0
: 1'b1;
// OE always active. Overridden by WE when needed.
assign ROM_OE = 1'b0;
assign ROM_BHE = ROM_ADDR0;
assign ROM_BLE = ~ROM_ADDR0;
assign SNES_DATABUS_OE = msu_enable ? 1'b0 :
cx4_enable ? 1'b0 :
(cx4_active & cx4_vect_enable) ? 1'b0 :
(r213f_enable & ~SNES_PARD) ? 1'b0 :
(r2100_enable & ~SNES_PAWR) ? 1'b0 :
snoop_4200_enable ? SNES_WRITE :
snescmd_enable ? (~(snescmd_unlock | feat_cmd_unlock) | (SNES_READ & SNES_WRITE)) :
((IS_ROM & SNES_ROMSEL)
|(!IS_ROM & !IS_SAVERAM & !IS_WRITABLE)
|(SNES_READ & SNES_WRITE)
);
/* data bus direction: 0 = SNES -> FPGA; 1 = FPGA -> SNES
* data bus is always SNES -> FPGA to avoid fighting except when:
* a) the SNES wants to read
* b) we want to force a value on the bus
*/
assign SNES_DATABUS_DIR = (~SNES_READ | (~SNES_PARD & (r213f_enable)))
? (1'b1 ^ (r213f_forceread & r213f_enable & ~SNES_PARD)
^ (r2100_enable & ~SNES_PAWR & ~r2100_forcewrite & ~IS_ROM & ~IS_WRITABLE))
: ((~SNES_PAWR & r2100_enable) ? r2100_forcewrite
: 1'b0);
assign SNES_IRQ = 1'b0;
endmodule |
module PmodJSTK_pmod_bridge_0_0 (
in0_I,
in1_I,
in2_I,
in3_I,
in0_O,
in1_O,
in2_O,
in3_O,
in0_T,
in1_T,
in2_T,
in3_T,
out0_I,
out1_I,
out2_I,
out3_I,
out4_I,
out5_I,
out6_I,
out7_I,
out0_O,
out1_O,
out2_O,
out3_O,
out4_O,
out5_O,
out6_O,
out7_O,
out0_T,
out1_T,
out2_T,
out3_T,
out4_T,
out5_T,
out6_T,
out7_T
);
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row SS_I" *)
output wire in0_I;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row IO0_I" *)
output wire in1_I;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row IO1_I" *)
output wire in2_I;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row SCK_I" *)
output wire in3_I;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row SS_O" *)
input wire in0_O;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row IO0_O" *)
input wire in1_O;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row IO1_O" *)
input wire in2_O;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row SCK_O" *)
input wire in3_O;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row SS_T" *)
input wire in0_T;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row IO0_T" *)
input wire in1_T;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row IO1_T" *)
input wire in2_T;
(* X_INTERFACE_INFO = "xilinx.com:interface:spi:1.0 SPI_Top_Row SCK_T" *)
input wire in3_T;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN1_I" *)
input wire out0_I;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN2_I" *)
input wire out1_I;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN3_I" *)
input wire out2_I;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN4_I" *)
input wire out3_I;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN7_I" *)
input wire out4_I;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN8_I" *)
input wire out5_I;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN9_I" *)
input wire out6_I;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN10_I" *)
input wire out7_I;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN1_O" *)
output wire out0_O;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN2_O" *)
output wire out1_O;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN3_O" *)
output wire out2_O;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN4_O" *)
output wire out3_O;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN7_O" *)
output wire out4_O;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN8_O" *)
output wire out5_O;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN9_O" *)
output wire out6_O;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN10_O" *)
output wire out7_O;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN1_T" *)
output wire out0_T;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN2_T" *)
output wire out1_T;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN3_T" *)
output wire out2_T;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN4_T" *)
output wire out3_T;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN7_T" *)
output wire out4_T;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN8_T" *)
output wire out5_T;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN9_T" *)
output wire out6_T;
(* X_INTERFACE_INFO = "digilentinc.com:interface:pmod:1.0 Pmod_out PIN10_T" *)
output wire out7_T;
pmod_concat #(
.Top_Row_Interface("SPI"),
.Bottom_Row_Interface("Disabled")
) inst (
.in_top_bus_I(),
.in_top_bus_O(4'B0),
.in_top_bus_T(4'B0),
.in_top_uart_gpio_bus_I(),
.in_top_uart_gpio_bus_O(2'B1),
.in_top_uart_gpio_bus_T(2'B1),
.in_top_i2c_gpio_bus_I(),
.in_top_i2c_gpio_bus_O(2'B1),
.in_top_i2c_gpio_bus_T(2'B1),
.in_bottom_bus_I(),
.in_bottom_bus_O(4'B1),
.in_bottom_bus_T(4'B1),
.in_bottom_uart_gpio_bus_I(),
.in_bottom_uart_gpio_bus_O(2'B1),
.in_bottom_uart_gpio_bus_T(2'B1),
.in_bottom_i2c_gpio_bus_I(),
.in_bottom_i2c_gpio_bus_O(2'B1),
.in_bottom_i2c_gpio_bus_T(2'B1),
.in0_I(in0_I),
.in1_I(in1_I),
.in2_I(in2_I),
.in3_I(in3_I),
.in4_I(),
.in5_I(),
.in6_I(),
.in7_I(),
.in0_O(in0_O),
.in1_O(in1_O),
.in2_O(in2_O),
.in3_O(in3_O),
.in4_O(1'B1),
.in5_O(1'B1),
.in6_O(1'B1),
.in7_O(1'B1),
.in0_T(in0_T),
.in1_T(in1_T),
.in2_T(in2_T),
.in3_T(in3_T),
.in4_T(1'B1),
.in5_T(1'B1),
.in6_T(1'B1),
.in7_T(1'B1),
.out0_I(out0_I),
.out1_I(out1_I),
.out2_I(out2_I),
.out3_I(out3_I),
.out4_I(out4_I),
.out5_I(out5_I),
.out6_I(out6_I),
.out7_I(out7_I),
.out0_O(out0_O),
.out1_O(out1_O),
.out2_O(out2_O),
.out3_O(out3_O),
.out4_O(out4_O),
.out5_O(out5_O),
.out6_O(out6_O),
.out7_O(out7_O),
.out0_T(out0_T),
.out1_T(out1_T),
.out2_T(out2_T),
.out3_T(out3_T),
.out4_T(out4_T),
.out5_T(out5_T),
.out6_T(out6_T),
.out7_T(out7_T)
);
endmodule |
module sky130_fd_sc_ms__udp_dff$PR (
//# {{data|Data Signals}}
input D ,
output Q ,
//# {{control|Control Signals}}
input RESET,
//# {{clocks|Clocking}}
input CLK
);
endmodule |
module sky130_fd_sc_hd__xor3 (
X ,
A ,
B ,
C ,
VPWR,
VGND,
VPB ,
VNB
);
// Module ports
output X ;
input A ;
input B ;
input C ;
input VPWR;
input VGND;
input VPB ;
input VNB ;
// Local signals
wire xor0_out_X ;
wire pwrgood_pp0_out_X;
// Name Output Other arguments
xor xor0 (xor0_out_X , A, B, C );
sky130_fd_sc_hd__udp_pwrgood_pp$PG pwrgood_pp0 (pwrgood_pp0_out_X, xor0_out_X, VPWR, VGND);
buf buf0 (X , pwrgood_pp0_out_X );
endmodule |
module sky130_fd_sc_hvl__lsbuflv2hv_symmetric (
X ,
A ,
VPWR ,
VGND ,
LVPWR,
VPB ,
VNB
);
// Module ports
output X ;
input A ;
input VPWR ;
input VGND ;
input LVPWR;
input VPB ;
input VNB ;
// Local signals
wire pwrgood_pp0_out_A;
wire buf0_out_X ;
// Name Output Other arguments
sky130_fd_sc_hvl__udp_pwrgood_pp$PG pwrgood_pp0 (pwrgood_pp0_out_A, A, LVPWR, VGND );
buf buf0 (buf0_out_X , pwrgood_pp0_out_A );
sky130_fd_sc_hvl__udp_pwrgood_pp$PG pwrgood_pp1 (X , buf0_out_X, VPWR, VGND);
endmodule |
module sky130_fd_sc_lp__or4_m (
X ,
A ,
B ,
C ,
D ,
VPWR,
VGND,
VPB ,
VNB
);
output X ;
input A ;
input B ;
input C ;
input D ;
input VPWR;
input VGND;
input VPB ;
input VNB ;
sky130_fd_sc_lp__or4 base (
.X(X),
.A(A),
.B(B),
.C(C),
.D(D),
.VPWR(VPWR),
.VGND(VGND),
.VPB(VPB),
.VNB(VNB)
);
endmodule |
module sky130_fd_sc_lp__or4_m (
X,
A,
B,
C,
D
);
output X;
input A;
input B;
input C;
input D;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
sky130_fd_sc_lp__or4 base (
.X(X),
.A(A),
.B(B),
.C(C),
.D(D)
);
endmodule |
module SPIBusTest;
// Main SPI interface.
reg main_nss, main_sck, main_mosi;
wire main_miso;
// Secondary SPI interface.
reg alt_nss, alt_sck, alt_mosi;
wire alt_miso;
// SPI memory bus interface.
wire mem_nss, mem_sck, mem_mosi;
reg mem_miso;
// Instantiate the Unit Under Test (UUT).
SPIBus spi_bus(main_nss, main_sck, main_mosi, main_miso,
alt_nss, alt_sck, alt_mosi, alt_miso,
mem_nss, mem_sck, mem_mosi, mem_miso);
integer stage; // Keeps track of test progress.
// Generate contents of |mem_miso| as the inverse of |mem_mosi|.
always @ (*)
mem_miso <= ~mem_mosi;
initial begin
main_nss = 0;
main_sck = 0;
main_mosi = 0;
alt_nss = 1;
alt_sck = 0;
alt_mosi = 0;
stage = 0;
#1 main_nss = 1;
#10
stage = 1;
// Perform some memory bus accesses.
#10
main_nss = 0;
main_spi_transmit(8'h01);
main_spi_transmit(8'h02);
main_spi_transmit(8'h04);
main_spi_transmit(8'h08);
main_nss = 1;
// Attempt a secondary SPI access, should go through.
#10
alt_nss = 0;
alt_spi_transmit(8'h11);
alt_spi_transmit(8'h22);
alt_spi_transmit(8'h44);
alt_spi_transmit(8'h88);
alt_nss = 1;
#10
stage = 2;
// Assert the main bus and the secondary bus at the same time. Neither
// should have nSS access, but the main bus should have SCK and MISO access.
#10
main_nss = 0;
alt_nss = 0;
main_spi_transmit(8'h01);
main_spi_transmit(8'h02);
main_spi_transmit(8'h04);
main_spi_transmit(8'h08);
alt_spi_transmit(8'h11);
alt_spi_transmit(8'h22);
alt_spi_transmit(8'h44);
alt_spi_transmit(8'h88);
main_nss = 1;
alt_nss = 1;
#10
stage = 3;
end
// Task to send a byte over primary SPI bus.
task main_spi_transmit;
input [`BYTE_WIDTH-1:0] data;
integer i;
begin
main_sck = 0;
#2
main_sck = 0;
for (i = 0; i < `BYTE_WIDTH; i = i + 1) begin
main_mosi = data[`BYTE_WIDTH - 1 - i];
#1
main_sck = 1;
#1
main_sck = 0;
end
#2
main_sck = 0;
main_mosi = 0;
end
endtask
// Task to send a byte over secondary SPI bus.
task alt_spi_transmit;
input [`BYTE_WIDTH-1:0] data;
integer i;
begin
alt_sck = 0;
#2
alt_sck = 0;
for (i = 0; i < `BYTE_WIDTH; i = i + 1) begin
alt_mosi = data[`BYTE_WIDTH - 1 - i];
#1
alt_sck = 1;
#1
alt_sck = 0;
end
#2
alt_sck = 0;
alt_mosi = 0;
end
endtask
endmodule |
module fifo_test();
parameter WIDTH = 8;
parameter DEPTH = 12;
`include "dut.v"
integer i;
reg [WIDTH-1:0] tempdata;
reg tempstart;
reg tempend;
initial
begin
#15 reset = 0;
fork
data_in.sync_write(8'hAA);
data_in_start.sync_write(1);
join
for ( i = 1; i < 100; i = i + 1)
begin
data_in.sync_write(i);
end
fork
data_in.sync_write(8'hAB);
data_in_end.sync_write(1);
join
fork
data_out.sync_read(tempdata);
data_out_start.sync_read(tempstart);
data_out_end.sync_read(tempend);
join
util.assert(tempdata == 8'hAA, "Reading FIFO Data");
util.assert(tempstart == 1, "Reading FIFO Start");
util.assert(tempend == 0, "Reading FIFO End");
for ( i = 1; i < 100; i = i + 1)
begin
fork
data_out.sync_read(tempdata);
data_out_start.sync_read(tempstart);
data_out_end.sync_read(tempend);
join
util.assert(tempdata == i, "Reading FIFO Data");
util.assert(tempstart == 0, "Reading FIFO Start");
util.assert(tempend == 0, "Reading FIFO End");
end
fork
data_out.sync_read(tempdata);
data_out_start.sync_read(tempstart);
data_out_end.sync_read(tempend);
join
util.assert(tempdata == 8'hAB, "Reading FIFO Data");
util.assert(tempstart == 0, "Reading FIFO Start");
util.assert(tempend == 1, "Reading FIFO End");
$finish;
end
endmodule |
module n64_readcmd_rx(input wire clk_4M,
input wire din,
input wire enable,
output reg [31:0] ctrl_state,
output wire ctrl_clk);
// In sample window, we can read the value of the
// last 8 samples of the input signal.
// Sampling frequency is 4 MHz
wire [6:0] sampling_window;
shiftM #(.M(7), .INI(7'b1111111))
shift_sampling_reg (
.clk(clk_4M),
.enable(enable),
.serin(din),
.data(sampling_window)
);
// When we detect a falling edge at the oldest bit of
// the sampling window, we already have our desired
// bit at the newest position
wire [32:0] ctrl_state_dirty;
shiftM #(.M(33), .INI(33'b0))
shift_controller_state_reg (
.clk(~sampling_window[6]),
.enable(enable),
.serin(sampling_window[0]),
.data(ctrl_state_dirty)
);
// We need to update our 'ctrl_state' from 'ctrl_state_dirty'
// at the right time, that is, when we finish reading
// all of the 32 bits.
wire output_en;
counterM #(.M(32))
counter_signal_complete (
.clk(~sampling_window[6]),
.reset(ctrl_clk),
.empty(ctrl_clk)
);
initial ctrl_state = 32'b0;
always @(posedge ctrl_clk)
ctrl_state <= ctrl_state_dirty[32:1];
endmodule |
module sky130_fd_sc_lp__nor3_4 (
Y ,
A ,
B ,
C ,
VPWR,
VGND,
VPB ,
VNB
);
output Y ;
input A ;
input B ;
input C ;
input VPWR;
input VGND;
input VPB ;
input VNB ;
sky130_fd_sc_lp__nor3 base (
.Y(Y),
.A(A),
.B(B),
.C(C),
.VPWR(VPWR),
.VGND(VGND),
.VPB(VPB),
.VNB(VNB)
);
endmodule |
module sky130_fd_sc_lp__nor3_4 (
Y,
A,
B,
C
);
output Y;
input A;
input B;
input C;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
sky130_fd_sc_lp__nor3 base (
.Y(Y),
.A(A),
.B(B),
.C(C)
);
endmodule |
module sky130_fd_sc_ms__sdfrtn (
Q ,
CLK_N ,
D ,
SCD ,
SCE ,
RESET_B
);
output Q ;
input CLK_N ;
input D ;
input SCD ;
input SCE ;
input RESET_B;
// Voltage supply signals
supply1 VPWR;
supply0 VGND;
supply1 VPB ;
supply0 VNB ;
endmodule |
module seven_seg_decoder(led_out,bin_in);
output [6:0] led_out;
input [3:0] bin_in;
wire [3:0] bin_in_inv;
assign bin_in_inv = ~bin_in;
/* A => bin_in[3]
* B => bin_in[2]
* C => bin_in[1]
* D => bin_in[0]
*/
// note: tmp variables use implicit nets
//led_out[6] = A’B’C’ + A’BCD + ABC’D’
assign led_out[6] = (bin_in_inv[3] & bin_in_inv[2] & bin_in_inv[1]) |
(bin_in_inv[3] & bin_in[2] & bin_in[1] & bin_in[0]) |
(bin_in[3] & bin_in[2] & bin_in_inv[1] & bin_in_inv[0]);
//led_out[5] = A’B’D + A’B’C + A’CD +ABC’D
assign led_out[5] = (bin_in_inv[3] & bin_in_inv[2] & bin_in[0]) |
(bin_in_inv[3] & bin_in_inv[2] & bin_in[1]) |
(bin_in_inv[3] & bin_in[1] & bin_in[0]) |
(bin_in[3] & bin_in[2] & bin_in_inv[1] & bin_in[0]);
//led_out[4] = A’D + B’C’D + A’BC’
assign led_out[4] = (bin_in_inv[3] & bin_in[0]) |
(bin_in_inv[2] & bin_in_inv[1] & bin_in[0]) |
(bin_in_inv[3] & bin_in[2] & bin_in_inv[1]);
//led_out[3] = B’C’D + BCD + A’BC’D’ + AB’CD’
assign led_out[3] = (bin_in_inv[2] & bin_in_inv[1] & bin_in[0]) |
(bin_in[2] & bin_in[1] & bin_in[0]) |
(bin_in_inv[3] & bin_in[2] & bin_in_inv[1] & bin_in_inv[0]) |
(bin_in[3] & bin_in_inv[2] & bin_in[1] & bin_in_inv[0]);
//led_out[2] = ABD’ + ABC + A’B’CD’
assign led_out[2] = (bin_in[3] & bin_in[2] & bin_in_inv[0]) |
(bin_in[3] & bin_in[2] & bin_in[1]) |
(bin_in_inv[3] & bin_in_inv[2] & bin_in[1] & bin_in_inv[0]);
//led_out[1] = BCD’ + ACD + ABD’ + A’BC’D
assign led_out[1] = (bin_in[2] & bin_in[1] & bin_in_inv[0]) |
(bin_in[3] & bin_in[1] & bin_in[0]) |
(bin_in[3] & bin_in[2] & bin_in_inv[0]) |
(bin_in_inv[3] & bin_in[2] & bin_in_inv[1] & bin_in[0]);
//led_out[0] = A’B’C’D + A’BC’D’ + AB’CD + ABC’D
assign led_out[0] = (bin_in_inv[3] & bin_in_inv[2] & bin_in_inv[1] & bin_in[0]) |
(bin_in_inv[3] & bin_in[2] & bin_in_inv[1] & bin_in_inv[0]) |
(bin_in[3] & bin_in_inv[2] & bin_in[1] & bin_in[0]) |
(bin_in[3] & bin_in[2] & bin_in_inv[1] & bin_in[0]);
endmodule |
module stimulus_seven_seg;
reg [3:0] bin_in = 0000;
wire [6:0] led_out;
reg clk;
// instantiate the seven segment decoder
seven_seg_decoder s1(led_out,bin_in);
// We'll make a counter that counts from 00 to 1111
// In order to do that, we'll need a clock
initial
clk = 1'b0;
always
#5 clk = ~clk; //toggle clock every 5 time units
always @(posedge clk)
bin_in = bin_in + 1;
initial
begin
$monitor("At time",$time,"binary input=%b and hex output=%h\n",bin_in,led_out);
#160 $stop;
end
endmodule |
module altera_mult_add_opt2
(
aclr0,
clock0,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr0;
input clock0;
input [15:0] dataa;
input [15:0] datab;
output [15:0] result;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
tri0 aclr0;
tri1 clock0;
tri0 [15:0] dataa;
tri0 [15:0] datab;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif
wire [15:0] wire_altera_mult_add_rtl1_result;
altera_mult_add_rtl altera_mult_add_rtl1
(
.aclr0(aclr0),
.chainout_sat_overflow(),
.clock0(clock0),
.dataa(dataa),
.datab(datab),
.mult0_is_saturated(),
.mult1_is_saturated(),
.mult2_is_saturated(),
.mult3_is_saturated(),
.overflow(),
.result(wire_altera_mult_add_rtl1_result),
.scanouta(),
.scanoutb(),
.accum_sload(1'b0),
.aclr1(1'b0),
.aclr2(1'b0),
.aclr3(1'b0),
.addnsub1(1'b1),
.addnsub1_round(1'b0),
.addnsub3(1'b1),
.addnsub3_round(1'b0),
.chainin({1{1'b0}}),
.chainout_round(1'b0),
.chainout_saturate(1'b0),
.clock1(1'b1),
.clock2(1'b1),
.clock3(1'b1),
.coefsel0({3{1'b0}}),
.coefsel1({3{1'b0}}),
.coefsel2({3{1'b0}}),
.coefsel3({3{1'b0}}),
.datac({22{1'b0}}),
.ena0(1'b1),
.ena1(1'b1),
.ena2(1'b1),
.ena3(1'b1),
.mult01_round(1'b0),
.mult01_saturation(1'b0),
.mult23_round(1'b0),
.mult23_saturation(1'b0),
.output_round(1'b0),
.output_saturate(1'b0),
.rotate(1'b0),
.scanina({16{1'b0}}),
.scaninb({16{1'b0}}),
.shift_right(1'b0),
.signa(1'b0),
.signb(1'b0),
.sload_accum(1'b0),
.sourcea({1{1'b0}}),
.sourceb({1{1'b0}}),
.zero_chainout(1'b0),
.zero_loopback(1'b0)
);
defparam
altera_mult_add_rtl1.accum_direction = "ADD",
altera_mult_add_rtl1.accum_sload_aclr = "NONE",
altera_mult_add_rtl1.accum_sload_pipeline_aclr = "NONE",
altera_mult_add_rtl1.accum_sload_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.accum_sload_register = "UNREGISTERED",
altera_mult_add_rtl1.accumulator = "NO",
altera_mult_add_rtl1.adder1_rounding = "NO",
altera_mult_add_rtl1.adder3_rounding = "NO",
altera_mult_add_rtl1.addnsub1_round_aclr = "NONE",
altera_mult_add_rtl1.addnsub1_round_pipeline_aclr = "NONE",
altera_mult_add_rtl1.addnsub1_round_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.addnsub1_round_register = "UNREGISTERED",
altera_mult_add_rtl1.addnsub3_round_aclr = "NONE",
altera_mult_add_rtl1.addnsub3_round_pipeline_aclr = "NONE",
altera_mult_add_rtl1.addnsub3_round_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.addnsub3_round_register = "UNREGISTERED",
altera_mult_add_rtl1.addnsub_multiplier_aclr1 = "NONE",
altera_mult_add_rtl1.addnsub_multiplier_aclr3 = "NONE",
altera_mult_add_rtl1.addnsub_multiplier_pipeline_aclr1 = "ACLR0",
altera_mult_add_rtl1.addnsub_multiplier_pipeline_aclr3 = "NONE",
altera_mult_add_rtl1.addnsub_multiplier_pipeline_register1 = "CLOCK0",
altera_mult_add_rtl1.addnsub_multiplier_pipeline_register3 = "UNREGISTERED",
altera_mult_add_rtl1.addnsub_multiplier_register1 = "UNREGISTERED",
altera_mult_add_rtl1.addnsub_multiplier_register3 = "UNREGISTERED",
altera_mult_add_rtl1.chainout_aclr = "NONE",
altera_mult_add_rtl1.chainout_adder = "NO",
altera_mult_add_rtl1.chainout_register = "UNREGISTERED",
altera_mult_add_rtl1.chainout_round_aclr = "NONE",
altera_mult_add_rtl1.chainout_round_output_aclr = "NONE",
altera_mult_add_rtl1.chainout_round_output_register = "UNREGISTERED",
altera_mult_add_rtl1.chainout_round_pipeline_aclr = "NONE",
altera_mult_add_rtl1.chainout_round_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.chainout_round_register = "UNREGISTERED",
altera_mult_add_rtl1.chainout_rounding = "NO",
altera_mult_add_rtl1.chainout_saturate_aclr = "NONE",
altera_mult_add_rtl1.chainout_saturate_output_aclr = "NONE",
altera_mult_add_rtl1.chainout_saturate_output_register = "UNREGISTERED",
altera_mult_add_rtl1.chainout_saturate_pipeline_aclr = "NONE",
altera_mult_add_rtl1.chainout_saturate_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.chainout_saturate_register = "UNREGISTERED",
altera_mult_add_rtl1.chainout_saturation = "NO",
altera_mult_add_rtl1.coef0_0 = 0,
altera_mult_add_rtl1.coef0_1 = 0,
altera_mult_add_rtl1.coef0_2 = 0,
altera_mult_add_rtl1.coef0_3 = 0,
altera_mult_add_rtl1.coef0_4 = 0,
altera_mult_add_rtl1.coef0_5 = 0,
altera_mult_add_rtl1.coef0_6 = 0,
altera_mult_add_rtl1.coef0_7 = 0,
altera_mult_add_rtl1.coef1_0 = 0,
altera_mult_add_rtl1.coef1_1 = 0,
altera_mult_add_rtl1.coef1_2 = 0,
altera_mult_add_rtl1.coef1_3 = 0,
altera_mult_add_rtl1.coef1_4 = 0,
altera_mult_add_rtl1.coef1_5 = 0,
altera_mult_add_rtl1.coef1_6 = 0,
altera_mult_add_rtl1.coef1_7 = 0,
altera_mult_add_rtl1.coef2_0 = 0,
altera_mult_add_rtl1.coef2_1 = 0,
altera_mult_add_rtl1.coef2_2 = 0,
altera_mult_add_rtl1.coef2_3 = 0,
altera_mult_add_rtl1.coef2_4 = 0,
altera_mult_add_rtl1.coef2_5 = 0,
altera_mult_add_rtl1.coef2_6 = 0,
altera_mult_add_rtl1.coef2_7 = 0,
altera_mult_add_rtl1.coef3_0 = 0,
altera_mult_add_rtl1.coef3_1 = 0,
altera_mult_add_rtl1.coef3_2 = 0,
altera_mult_add_rtl1.coef3_3 = 0,
altera_mult_add_rtl1.coef3_4 = 0,
altera_mult_add_rtl1.coef3_5 = 0,
altera_mult_add_rtl1.coef3_6 = 0,
altera_mult_add_rtl1.coef3_7 = 0,
altera_mult_add_rtl1.coefsel0_aclr = "NONE",
altera_mult_add_rtl1.coefsel0_register = "UNREGISTERED",
altera_mult_add_rtl1.coefsel1_aclr = "NONE",
altera_mult_add_rtl1.coefsel1_register = "UNREGISTERED",
altera_mult_add_rtl1.coefsel2_aclr = "NONE",
altera_mult_add_rtl1.coefsel2_register = "UNREGISTERED",
altera_mult_add_rtl1.coefsel3_aclr = "NONE",
altera_mult_add_rtl1.coefsel3_register = "UNREGISTERED",
altera_mult_add_rtl1.dedicated_multiplier_circuitry = "YES",
altera_mult_add_rtl1.double_accum = "NO",
altera_mult_add_rtl1.dsp_block_balancing = "Auto",
altera_mult_add_rtl1.extra_latency = 0,
altera_mult_add_rtl1.input_aclr_a0 = "NONE",
altera_mult_add_rtl1.input_aclr_a1 = "NONE",
altera_mult_add_rtl1.input_aclr_a2 = "NONE",
altera_mult_add_rtl1.input_aclr_a3 = "NONE",
altera_mult_add_rtl1.input_aclr_b0 = "NONE",
altera_mult_add_rtl1.input_aclr_b1 = "NONE",
altera_mult_add_rtl1.input_aclr_b2 = "NONE",
altera_mult_add_rtl1.input_aclr_b3 = "NONE",
altera_mult_add_rtl1.input_aclr_c0 = "NONE",
altera_mult_add_rtl1.input_aclr_c1 = "NONE",
altera_mult_add_rtl1.input_aclr_c2 = "NONE",
altera_mult_add_rtl1.input_aclr_c3 = "NONE",
altera_mult_add_rtl1.input_register_a0 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_a1 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_a2 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_a3 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_b0 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_b1 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_b2 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_b3 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_c0 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_c1 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_c2 = "UNREGISTERED",
altera_mult_add_rtl1.input_register_c3 = "UNREGISTERED",
altera_mult_add_rtl1.input_source_a0 = "DATAA",
altera_mult_add_rtl1.input_source_a1 = "DATAA",
altera_mult_add_rtl1.input_source_a2 = "DATAA",
altera_mult_add_rtl1.input_source_a3 = "DATAA",
altera_mult_add_rtl1.input_source_b0 = "DATAB",
altera_mult_add_rtl1.input_source_b1 = "DATAB",
altera_mult_add_rtl1.input_source_b2 = "DATAB",
altera_mult_add_rtl1.input_source_b3 = "DATAB",
altera_mult_add_rtl1.loadconst_control_aclr = "NONE",
altera_mult_add_rtl1.loadconst_control_register = "UNREGISTERED",
altera_mult_add_rtl1.loadconst_value = 64,
altera_mult_add_rtl1.mult01_round_aclr = "NONE",
altera_mult_add_rtl1.mult01_round_register = "UNREGISTERED",
altera_mult_add_rtl1.mult01_saturation_aclr = "ACLR0",
altera_mult_add_rtl1.mult01_saturation_register = "UNREGISTERED",
altera_mult_add_rtl1.mult23_round_aclr = "NONE",
altera_mult_add_rtl1.mult23_round_register = "UNREGISTERED",
altera_mult_add_rtl1.mult23_saturation_aclr = "NONE",
altera_mult_add_rtl1.mult23_saturation_register = "UNREGISTERED",
altera_mult_add_rtl1.multiplier01_rounding = "NO",
altera_mult_add_rtl1.multiplier01_saturation = "NO",
altera_mult_add_rtl1.multiplier1_direction = "ADD",
altera_mult_add_rtl1.multiplier23_rounding = "NO",
altera_mult_add_rtl1.multiplier23_saturation = "NO",
altera_mult_add_rtl1.multiplier3_direction = "ADD",
altera_mult_add_rtl1.multiplier_aclr0 = "ACLR0",
altera_mult_add_rtl1.multiplier_aclr1 = "NONE",
altera_mult_add_rtl1.multiplier_aclr2 = "NONE",
altera_mult_add_rtl1.multiplier_aclr3 = "NONE",
altera_mult_add_rtl1.multiplier_register0 = "CLOCK0",
altera_mult_add_rtl1.multiplier_register1 = "UNREGISTERED",
altera_mult_add_rtl1.multiplier_register2 = "UNREGISTERED",
altera_mult_add_rtl1.multiplier_register3 = "UNREGISTERED",
altera_mult_add_rtl1.number_of_multipliers = 1,
altera_mult_add_rtl1.output_aclr = "NONE",
altera_mult_add_rtl1.output_register = "UNREGISTERED",
altera_mult_add_rtl1.output_round_aclr = "NONE",
altera_mult_add_rtl1.output_round_pipeline_aclr = "NONE",
altera_mult_add_rtl1.output_round_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.output_round_register = "UNREGISTERED",
altera_mult_add_rtl1.output_round_type = "NEAREST_INTEGER",
altera_mult_add_rtl1.output_rounding = "NO",
altera_mult_add_rtl1.output_saturate_aclr = "NONE",
altera_mult_add_rtl1.output_saturate_pipeline_aclr = "NONE",
altera_mult_add_rtl1.output_saturate_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.output_saturate_register = "UNREGISTERED",
altera_mult_add_rtl1.output_saturate_type = "ASYMMETRIC",
altera_mult_add_rtl1.output_saturation = "NO",
altera_mult_add_rtl1.port_addnsub1 = "PORT_UNUSED",
altera_mult_add_rtl1.port_addnsub3 = "PORT_UNUSED",
altera_mult_add_rtl1.port_chainout_sat_is_overflow = "PORT_UNUSED",
altera_mult_add_rtl1.port_output_is_overflow = "PORT_UNUSED",
altera_mult_add_rtl1.port_signa = "PORT_UNUSED",
altera_mult_add_rtl1.port_signb = "PORT_UNUSED",
altera_mult_add_rtl1.preadder_direction_0 = "ADD",
altera_mult_add_rtl1.preadder_direction_1 = "ADD",
altera_mult_add_rtl1.preadder_direction_2 = "ADD",
altera_mult_add_rtl1.preadder_direction_3 = "ADD",
altera_mult_add_rtl1.preadder_mode = "SIMPLE",
altera_mult_add_rtl1.representation_a = "UNSIGNED",
altera_mult_add_rtl1.representation_b = "UNSIGNED",
altera_mult_add_rtl1.rotate_aclr = "NONE",
altera_mult_add_rtl1.rotate_output_aclr = "NONE",
altera_mult_add_rtl1.rotate_output_register = "UNREGISTERED",
altera_mult_add_rtl1.rotate_pipeline_aclr = "NONE",
altera_mult_add_rtl1.rotate_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.rotate_register = "UNREGISTERED",
altera_mult_add_rtl1.scanouta_aclr = "NONE",
altera_mult_add_rtl1.scanouta_register = "UNREGISTERED",
altera_mult_add_rtl1.selected_device_family = "Cyclone II",
altera_mult_add_rtl1.shift_mode = "NO",
altera_mult_add_rtl1.shift_right_aclr = "NONE",
altera_mult_add_rtl1.shift_right_output_aclr = "NONE",
altera_mult_add_rtl1.shift_right_output_register = "UNREGISTERED",
altera_mult_add_rtl1.shift_right_pipeline_aclr = "NONE",
altera_mult_add_rtl1.shift_right_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.shift_right_register = "UNREGISTERED",
altera_mult_add_rtl1.signed_aclr_a = "NONE",
altera_mult_add_rtl1.signed_aclr_b = "NONE",
altera_mult_add_rtl1.signed_pipeline_aclr_a = "ACLR0",
altera_mult_add_rtl1.signed_pipeline_aclr_b = "ACLR0",
altera_mult_add_rtl1.signed_pipeline_register_a = "CLOCK0",
altera_mult_add_rtl1.signed_pipeline_register_b = "CLOCK0",
altera_mult_add_rtl1.signed_register_a = "UNREGISTERED",
altera_mult_add_rtl1.signed_register_b = "UNREGISTERED",
altera_mult_add_rtl1.systolic_aclr1 = "NONE",
altera_mult_add_rtl1.systolic_aclr3 = "NONE",
altera_mult_add_rtl1.systolic_delay1 = "UNREGISTERED",
altera_mult_add_rtl1.systolic_delay3 = "UNREGISTERED",
altera_mult_add_rtl1.use_sload_accum_port = "NO",
altera_mult_add_rtl1.width_a = 16,
altera_mult_add_rtl1.width_b = 16,
altera_mult_add_rtl1.width_c = 22,
altera_mult_add_rtl1.width_chainin = 1,
altera_mult_add_rtl1.width_coef = 18,
altera_mult_add_rtl1.width_msb = 17,
altera_mult_add_rtl1.width_result = 16,
altera_mult_add_rtl1.width_saturate_sign = 1,
altera_mult_add_rtl1.zero_chainout_output_aclr = "NONE",
altera_mult_add_rtl1.zero_chainout_output_register = "UNREGISTERED",
altera_mult_add_rtl1.zero_loopback_aclr = "NONE",
altera_mult_add_rtl1.zero_loopback_output_aclr = "NONE",
altera_mult_add_rtl1.zero_loopback_output_register = "UNREGISTERED",
altera_mult_add_rtl1.zero_loopback_pipeline_aclr = "NONE",
altera_mult_add_rtl1.zero_loopback_pipeline_register = "UNREGISTERED",
altera_mult_add_rtl1.zero_loopback_register = "UNREGISTERED",
altera_mult_add_rtl1.lpm_type = "altera_mult_add_rtl";
assign
result = wire_altera_mult_add_rtl1_result;
endmodule |
module sky130_fd_sc_hs__dlymetal6s4s (
//# {{data|Data Signals}}
input A ,
output X ,
//# {{power|Power}}
input VPWR,
input VGND
);
endmodule |
module mmu_table_load(
input wire iCLOCK,
input wire inRESET,
input wire iRESET_SYNC,
//Load Req
input wire iLD_REQ,
input wire [31:0] iLD_ADDR,
output wire oLD_BUSY,
//Memory Pipe - REQ
output wire oMEM_REQ,
input wire iMEM_LOCK,
output wire [31:0] oMEM_ADDR,
//Memory Pipe - ACK
input wire iMEM_VALID,
input wire [63:0] iMEM_DATA,
//DONE
output wire oDONE_VALID,
output wire [31:0] oDONE_DATA,
output wire [11:0] oDONE_FLAG0,
output wire [11:0] oDONE_FLAG1
);
reg [1:0] b_main_state;
reg [31:0] b_req_addr;
localparam PL_MAIN_STT_IDLE = 2'h0;
localparam PL_MAIN_STT_REQ = 2'h1;
localparam PL_MAIN_STT_WAITING = 2'h2;
wire latch_condition = iLD_REQ && (b_main_state == PL_MAIN_STT_IDLE);
always@(posedge iCLOCK or negedge inRESET)begin
if(!inRESET)begin
b_req_addr <= 32'h0;
end
else if(iRESET_SYNC)begin
b_req_addr <= 32'h0;
end
else begin
if(latch_condition)begin
b_req_addr <= iLD_ADDR;
end
end
end
always@(posedge iCLOCK or negedge inRESET)begin
if(!inRESET)begin
b_main_state <= PL_MAIN_STT_IDLE;
end
else if(iRESET_SYNC)begin
b_main_state <= PL_MAIN_STT_IDLE;
end
else begin
case(b_main_state)
PL_MAIN_STT_IDLE:
begin
if(latch_condition)begin
if(iMEM_LOCK)begin
b_main_state <= PL_MAIN_STT_REQ;
end
else begin
b_main_state <= PL_MAIN_STT_WAITING;
end
end
end
PL_MAIN_STT_REQ:
begin
if(!iMEM_LOCK)begin
b_main_state <= PL_MAIN_STT_WAITING;
end
end
PL_MAIN_STT_WAITING:
begin
if(iMEM_VALID)begin
b_main_state <= PL_MAIN_STT_IDLE;
end
end
default:
begin
b_main_state <= PL_MAIN_STT_IDLE;
end
endcase
end
end
/*
reg b_buff_valid;
reg [31:0] b_buff_data;
reg [11:0] b_buff_flag0;
reg [11:0] b_buff_flag1;
always@(posedge iCLOCK or negedge inRESET)begin
b_buff_valid <= (b_main_state == PL_MAIN_STT_WAITING) && iMEM_VALID;
end
always@(posedge iCLOCK or negedge inRESET)begin
b_buff_data <= (b_req_addr[2])? iMEM_DATA[63:32] : iMEM_DATA[31:0];
b_buff_flag0 <= iMEM_DATA[11:0];
b_buff_flag1 <= iMEM_DATA[43:32];
end
*/
assign oLD_BUSY = (b_main_state != PL_MAIN_STT_IDLE);
//Memory Pipe - REQ
assign oMEM_REQ = (b_main_state == PL_MAIN_STT_REQ) || latch_condition;
assign oMEM_ADDR = (b_main_state == PL_MAIN_STT_REQ)? b_req_addr : iLD_ADDR;
//DONE
assign oDONE_VALID = (b_main_state == PL_MAIN_STT_WAITING) && iMEM_VALID;
assign oDONE_DATA = (b_req_addr[2])? iMEM_DATA[63:32] : iMEM_DATA[31:0];
assign oDONE_FLAG0 = iMEM_DATA[11:0];
assign oDONE_FLAG1 = iMEM_DATA[43:32];
/*
assign oDONE_VALID = b_buff_valid;
assign oDONE_DATA = b_buff_data;
assign oDONE_FLAG0 = b_buff_flag0;
assign oDONE_FLAG1 = b_buff_flag1;
*/
endmodule |
module sky130_fd_sc_ls__o21a (
X ,
A1 ,
A2 ,
B1 ,
VPWR,
VGND,
VPB ,
VNB
);
output X ;
input A1 ;
input A2 ;
input B1 ;
input VPWR;
input VGND;
input VPB ;
input VNB ;
endmodule |
module register_ctrl_top(
input I_sys_clk ,
input I_sys_rst ,
//=====================System usb_uart_if===========================
output O_usb_uart_tx_req ,
output [7 : 0] O_usb_uart_tx_data ,
input I_usb_uart_tx_full ,
output O_usb_uart_rx_req ,
input [7 : 0] I_usb_uart_rx_data ,
input I_usb_uart_rx_empty ,
//==================================================================
output O_usb_dir ,
output O_motor_start ,
output tp ,
input I_key_start
);
//=======================================================================
reg R_usb_uart_rx_req ;
reg R_usb_uart_rx_req_d1 ;
reg R_tx_en ;
reg [7 : 0] R_tx_data ;
reg R_rx_en ;
reg [7 : 0] R_rx_data ;
reg R_usb_dir ;
reg R_motor_start ;
//=======================================================================
always@(posedge I_sys_clk)
begin
if(I_sys_rst)
begin
R_usb_uart_rx_req <= 1'd0 ;
end
else if(I_usb_uart_rx_empty == 1'b0) // if has data .then read
begin
R_usb_uart_rx_req <= 1'd1 ;
end
else
begin
R_usb_uart_rx_req <= 1'd0 ;
end
//
R_usb_uart_rx_req_d1 <= R_usb_uart_rx_req;
end
always@(posedge I_sys_clk)
begin
if(I_sys_rst)
begin
R_rx_en <= 1'd0 ;
R_rx_data <= 8'd0 ;
end
else if(R_usb_uart_rx_req_d1 == 1'b1)
begin
R_rx_en <= 1'd1 ;
R_rx_data <= I_usb_uart_rx_data ;
end
else
begin
R_rx_en <= 1'd0 ;
end
end
always@(posedge I_sys_clk)
begin
if(I_sys_rst)
begin
R_tx_en <= 1'd0 ;
R_tx_data <= 8'd0 ;
end
else if(I_usb_uart_tx_full==1'b0) // not full
begin
if(I_key_start==1'b1)
begin
R_tx_en <= 1'b1 ;//R_rx_en;
R_tx_data <= 8'h55 ;//R_rx_data;
end
else
begin
R_tx_en <= 1'b0 ;//R_rx_en;
end
end
else
begin
R_tx_en <= 1'b0 ;
end
end
always@(posedge I_sys_clk)
begin
if(I_sys_rst)
begin
R_usb_dir <= 1'd0; //目前采用了默认值
R_motor_start <= 1'b0;
end
else if(R_rx_en)
begin
case(R_rx_data)
8'h00:
begin
R_usb_dir <= 1'b0; //wr TO USB
end
8'hff:
begin
R_usb_dir <= 1'b1; // rd FROM USB
end
8'h02:
begin
R_motor_start <= 1'b1; // motor
end
endcase
end
else
begin
R_motor_start <= 1'b0;
end
end
assign O_usb_uart_rx_req = R_usb_uart_rx_req;
assign O_usb_uart_tx_req = R_tx_en ;
assign O_usb_uart_tx_data = R_tx_data;
assign O_usb_dir = R_usb_dir ;
assign O_motor_start = R_motor_start;
assign tp = R_rx_en & (&R_rx_data) & O_motor_start & O_usb_dir;
endmodule |
module sky130_fd_sc_hs__decap (
//# {{power|Power}}
input VPWR,
input VGND
);
endmodule |
module PIO #(
parameter C_DATA_WIDTH = 64, // RX/TX interface data width
// Do not override parameters below this line
parameter KEEP_WIDTH = C_DATA_WIDTH / 8, // TSTRB width
parameter TCQ = 1
)(
input user_clk,
input user_reset,
input user_lnk_up,
// AXIS
input s_axis_tx_tready,
output [C_DATA_WIDTH-1:0] s_axis_tx_tdata,
output [KEEP_WIDTH-1:0] s_axis_tx_tkeep,
output s_axis_tx_tlast,
output s_axis_tx_tvalid,
output tx_src_dsc,
input [C_DATA_WIDTH-1:0] m_axis_rx_tdata,
input [KEEP_WIDTH-1:0] m_axis_rx_tkeep,
input m_axis_rx_tlast,
input m_axis_rx_tvalid,
output m_axis_rx_tready,
input [21:0] m_axis_rx_tuser,
input cfg_to_turnoff,
output cfg_turnoff_ok,
input [15:0] cfg_completer_id
); // synthesis syn_hier = "hard"
// Local wires
wire req_compl;
wire compl_done;
reg pio_reset_n;
always @(posedge user_clk) begin
if (user_reset)
pio_reset_n <= #TCQ 1'b0;
else
pio_reset_n <= #TCQ user_lnk_up;
end
//
// PIO instance
//
PIO_EP #(
.C_DATA_WIDTH( C_DATA_WIDTH ),
.KEEP_WIDTH( KEEP_WIDTH ),
.TCQ( TCQ )
) PIO_EP_inst (
.clk( user_clk ), // I
.rst_n( pio_reset_n ), // I
.s_axis_tx_tready( s_axis_tx_tready ), // I
.s_axis_tx_tdata( s_axis_tx_tdata ), // O
.s_axis_tx_tkeep( s_axis_tx_tkeep ), // O
.s_axis_tx_tlast( s_axis_tx_tlast ), // O
.s_axis_tx_tvalid( s_axis_tx_tvalid ), // O
.tx_src_dsc( tx_src_dsc ), // O
.m_axis_rx_tdata( m_axis_rx_tdata ), // I
.m_axis_rx_tkeep( m_axis_rx_tkeep ), // I
.m_axis_rx_tlast( m_axis_rx_tlast ), // I
.m_axis_rx_tvalid( m_axis_rx_tvalid ), // I
.m_axis_rx_tready( m_axis_rx_tready ), // O
.m_axis_rx_tuser ( m_axis_rx_tuser ), // I
.req_compl(req_compl), // O
.compl_done(compl_done), // O
.cfg_completer_id ( cfg_completer_id ) // I [15:0]
);
//
// Turn-Off controller
//
PIO_TO_CTRL #(
.TCQ( TCQ )
) PIO_TO_inst (
.clk( user_clk ), // I
.rst_n( pio_reset_n ), // I
.req_compl( req_compl ), // I
.compl_done( compl_done ), // I
.cfg_to_turnoff( cfg_to_turnoff ), // I
.cfg_turnoff_ok( cfg_turnoff_ok ) // O
);
endmodule |
module dispatch_general_register(
//System
input wire iCLOCK,
input wire inRESET,
input wire iRESET_SYNC,
//Write Port
input wire iWR_VALID,
input wire [4:0] iWR_ADDR,
input wire [31:0] iWR_DATA,
//Read Port0
input wire [4:0] iRD0_ADDR,
output wire [31:0] oRD0_DATA,
//Read Port1
input wire [4:0] iRD1_ADDR,
output wire [31:0] oRD1_DATA,
//Debug Module
output wire [31:0] oDEBUG_REG_OUT_GR0,
output wire [31:0] oDEBUG_REG_OUT_GR1,
output wire [31:0] oDEBUG_REG_OUT_GR2,
output wire [31:0] oDEBUG_REG_OUT_GR3,
output wire [31:0] oDEBUG_REG_OUT_GR4,
output wire [31:0] oDEBUG_REG_OUT_GR5,
output wire [31:0] oDEBUG_REG_OUT_GR6,
output wire [31:0] oDEBUG_REG_OUT_GR7,
output wire [31:0] oDEBUG_REG_OUT_GR8,
output wire [31:0] oDEBUG_REG_OUT_GR9,
output wire [31:0] oDEBUG_REG_OUT_GR10,
output wire [31:0] oDEBUG_REG_OUT_GR11,
output wire [31:0] oDEBUG_REG_OUT_GR12,
output wire [31:0] oDEBUG_REG_OUT_GR13,
output wire [31:0] oDEBUG_REG_OUT_GR14,
output wire [31:0] oDEBUG_REG_OUT_GR15,
output wire [31:0] oDEBUG_REG_OUT_GR16,
output wire [31:0] oDEBUG_REG_OUT_GR17,
output wire [31:0] oDEBUG_REG_OUT_GR18,
output wire [31:0] oDEBUG_REG_OUT_GR19,
output wire [31:0] oDEBUG_REG_OUT_GR20,
output wire [31:0] oDEBUG_REG_OUT_GR21,
output wire [31:0] oDEBUG_REG_OUT_GR22,
output wire [31:0] oDEBUG_REG_OUT_GR23,
output wire [31:0] oDEBUG_REG_OUT_GR24,
output wire [31:0] oDEBUG_REG_OUT_GR25,
output wire [31:0] oDEBUG_REG_OUT_GR26,
output wire [31:0] oDEBUG_REG_OUT_GR27,
output wire [31:0] oDEBUG_REG_OUT_GR28,
output wire [31:0] oDEBUG_REG_OUT_GR29,
output wire [31:0] oDEBUG_REG_OUT_GR30,
output wire [31:0] oDEBUG_REG_OUT_GR31
);
integer i;
reg [31:0] b_ram0[0:31];
reg [31:0] b_ram1[0:31];
//RAM0
always@(posedge iCLOCK or negedge inRESET)begin
if(!inRESET)begin
for(i = 0; i < 32; i = i + 1)begin
b_ram0[i] <= 32'h0;
end
end
else if(iRESET_SYNC)begin
for(i = 0; i < 32; i = i + 1)begin
b_ram0[i] <= 32'h0;
end
end
else begin
if(iWR_VALID)begin
b_ram0[iWR_ADDR] <= iWR_DATA;
end
end
end//General Register Write Back
//RAM1
always@(posedge iCLOCK or negedge inRESET)begin
if(!inRESET)begin
for(i = 0; i < 32; i = i + 1)begin
b_ram1[i] <= 32'h0;
end
end
else if(iRESET_SYNC)begin
for(i = 0; i < 32; i = i + 1)begin
b_ram1[i] <= 32'h0;
end
end
else begin
if(iWR_VALID)begin
b_ram1[iWR_ADDR] <= iWR_DATA;
end
end
end//General Register Write Back
assign oRD0_DATA = b_ram0[iRD0_ADDR];
assign oRD1_DATA = b_ram1[iRD1_ADDR];
//Debug Module Enable
`ifdef MIST1032ISA_STANDARD_DEBUGGER
assign oDEBUG_REG_OUT_GR0 = b_ram0[0];
assign oDEBUG_REG_OUT_GR1 = b_ram0[1];
assign oDEBUG_REG_OUT_GR2 = b_ram0[2];
assign oDEBUG_REG_OUT_GR3 = b_ram0[3];
assign oDEBUG_REG_OUT_GR4 = b_ram0[4];
assign oDEBUG_REG_OUT_GR5 = b_ram0[5];
assign oDEBUG_REG_OUT_GR6 = b_ram0[6];
assign oDEBUG_REG_OUT_GR7 = b_ram0[7];
assign oDEBUG_REG_OUT_GR8 = b_ram0[8];
assign oDEBUG_REG_OUT_GR9 = b_ram0[9];
assign oDEBUG_REG_OUT_GR10 = b_ram0[10];
assign oDEBUG_REG_OUT_GR11 = b_ram0[11];
assign oDEBUG_REG_OUT_GR12 = b_ram0[12];
assign oDEBUG_REG_OUT_GR13 = b_ram0[13];
assign oDEBUG_REG_OUT_GR14 = b_ram0[14];
assign oDEBUG_REG_OUT_GR15 = b_ram0[15];
assign oDEBUG_REG_OUT_GR16 = b_ram0[16];
assign oDEBUG_REG_OUT_GR17 = b_ram0[17];
assign oDEBUG_REG_OUT_GR18 = b_ram0[18];
assign oDEBUG_REG_OUT_GR19 = b_ram0[19];
assign oDEBUG_REG_OUT_GR20 = b_ram0[20];
assign oDEBUG_REG_OUT_GR21 = b_ram0[21];
assign oDEBUG_REG_OUT_GR22 = b_ram0[22];
assign oDEBUG_REG_OUT_GR23 = b_ram0[23];
assign oDEBUG_REG_OUT_GR24 = b_ram0[24];
assign oDEBUG_REG_OUT_GR25 = b_ram0[25];
assign oDEBUG_REG_OUT_GR26 = b_ram0[26];
assign oDEBUG_REG_OUT_GR27 = b_ram0[27];
assign oDEBUG_REG_OUT_GR28 = b_ram0[28];
assign oDEBUG_REG_OUT_GR29 = b_ram0[29];
assign oDEBUG_REG_OUT_GR30 = b_ram0[30];
assign oDEBUG_REG_OUT_GR31 = b_ram0[31];
`else
//Disable
assign oDEBUG_REG_OUT_GR0 = 32'h0;
assign oDEBUG_REG_OUT_GR1 = 32'h0;
assign oDEBUG_REG_OUT_GR2 = 32'h0;
assign oDEBUG_REG_OUT_GR3 = 32'h0;
assign oDEBUG_REG_OUT_GR4 = 32'h0;
assign oDEBUG_REG_OUT_GR5 = 32'h0;
assign oDEBUG_REG_OUT_GR6 = 32'h0;
assign oDEBUG_REG_OUT_GR7 = 32'h0;
assign oDEBUG_REG_OUT_GR8 = 32'h0;
assign oDEBUG_REG_OUT_GR9 = 32'h0;
assign oDEBUG_REG_OUT_GR10 = 32'h0;
assign oDEBUG_REG_OUT_GR11 = 32'h0;
assign oDEBUG_REG_OUT_GR12 = 32'h0;
assign oDEBUG_REG_OUT_GR13 = 32'h0;
assign oDEBUG_REG_OUT_GR14 = 32'h0;
assign oDEBUG_REG_OUT_GR15 = 32'h0;
assign oDEBUG_REG_OUT_GR16 = 32'h0;
assign oDEBUG_REG_OUT_GR17 = 32'h0;
assign oDEBUG_REG_OUT_GR18 = 32'h0;
assign oDEBUG_REG_OUT_GR19 = 32'h0;
assign oDEBUG_REG_OUT_GR20 = 32'h0;
assign oDEBUG_REG_OUT_GR21 = 32'h0;
assign oDEBUG_REG_OUT_GR22 = 32'h0;
assign oDEBUG_REG_OUT_GR23 = 32'h0;
assign oDEBUG_REG_OUT_GR24 = 32'h0;
assign oDEBUG_REG_OUT_GR25 = 32'h0;
assign oDEBUG_REG_OUT_GR26 = 32'h0;
assign oDEBUG_REG_OUT_GR27 = 32'h0;
assign oDEBUG_REG_OUT_GR28 = 32'h0;
assign oDEBUG_REG_OUT_GR29 = 32'h0;
assign oDEBUG_REG_OUT_GR30 = 32'h0;
assign oDEBUG_REG_OUT_GR31 = 32'h0;
`endif
endmodule |
module wasca (
input wire [9:0] abus_avalon_sdram_bridge_0_abus_address, // abus_avalon_sdram_bridge_0_abus.address
input wire abus_avalon_sdram_bridge_0_abus_read, // .read
output wire abus_avalon_sdram_bridge_0_abus_waitrequest, // .waitrequest
inout wire [15:0] abus_avalon_sdram_bridge_0_abus_addressdata, // .addressdata
input wire [2:0] abus_avalon_sdram_bridge_0_abus_chipselect, // .chipselect
output wire abus_avalon_sdram_bridge_0_abus_direction, // .direction
output wire abus_avalon_sdram_bridge_0_abus_disable_out, // .disable_out
output wire abus_avalon_sdram_bridge_0_abus_interrupt, // .interrupt
output wire [1:0] abus_avalon_sdram_bridge_0_abus_muxing, // .muxing
input wire [1:0] abus_avalon_sdram_bridge_0_abus_writebyteenable_n, // .writebyteenable_n
input wire abus_avalon_sdram_bridge_0_abus_reset, // .reset
output wire [12:0] abus_avalon_sdram_bridge_0_sdram_addr, // abus_avalon_sdram_bridge_0_sdram.addr
output wire [1:0] abus_avalon_sdram_bridge_0_sdram_ba, // .ba
output wire abus_avalon_sdram_bridge_0_sdram_cas_n, // .cas_n
output wire abus_avalon_sdram_bridge_0_sdram_cke, // .cke
output wire abus_avalon_sdram_bridge_0_sdram_cs_n, // .cs_n
inout wire [15:0] abus_avalon_sdram_bridge_0_sdram_dq, // .dq
output wire [1:0] abus_avalon_sdram_bridge_0_sdram_dqm, // .dqm
output wire abus_avalon_sdram_bridge_0_sdram_ras_n, // .ras_n
output wire abus_avalon_sdram_bridge_0_sdram_we_n, // .we_n
output wire abus_avalon_sdram_bridge_0_sdram_clk, // .clk
inout wire altera_up_sd_card_avalon_interface_0_conduit_end_b_SD_cmd, // altera_up_sd_card_avalon_interface_0_conduit_end.b_SD_cmd
inout wire altera_up_sd_card_avalon_interface_0_conduit_end_b_SD_dat, // .b_SD_dat
inout wire altera_up_sd_card_avalon_interface_0_conduit_end_b_SD_dat3, // .b_SD_dat3
output wire altera_up_sd_card_avalon_interface_0_conduit_end_o_SD_clock, // .o_SD_clock
input wire altpll_1_areset_conduit_export, // altpll_1_areset_conduit.export
output wire altpll_1_locked_conduit_export, // altpll_1_locked_conduit.export
output wire altpll_1_phasedone_conduit_export, // altpll_1_phasedone_conduit.export
input wire audio_out_BCLK, // audio_out.BCLK
output wire audio_out_DACDAT, // .DACDAT
input wire audio_out_DACLRCK, // .DACLRCK
output wire buffered_spi_mosi, // buffered_spi.mosi
output wire buffered_spi_clk, // .clk
input wire buffered_spi_miso, // .miso
output wire buffered_spi_cs, // .cs
input wire clk_clk, // clk.clk
output wire clock_116_mhz_clk, // clock_116_mhz.clk
input wire reset_reset_n, // reset.reset_n
input wire reset_controller_0_reset_in1_reset, // reset_controller_0_reset_in1.reset
input wire uart_0_external_connection_rxd, // uart_0_external_connection.rxd
output wire uart_0_external_connection_txd // .txd
);
wire nios2_gen2_0_debug_reset_request_reset; // nios2_gen2_0:debug_reset_request -> [buffered_spi_0:reset, mm_interconnect_0:buffered_spi_0_reset_reset_bridge_in_reset_reset, reset_controller_0:reset_in0]
wire [31:0] nios2_gen2_0_data_master_readdata; // mm_interconnect_0:nios2_gen2_0_data_master_readdata -> nios2_gen2_0:d_readdata
wire nios2_gen2_0_data_master_waitrequest; // mm_interconnect_0:nios2_gen2_0_data_master_waitrequest -> nios2_gen2_0:d_waitrequest
wire nios2_gen2_0_data_master_debugaccess; // nios2_gen2_0:debug_mem_slave_debugaccess_to_roms -> mm_interconnect_0:nios2_gen2_0_data_master_debugaccess
wire [26:0] nios2_gen2_0_data_master_address; // nios2_gen2_0:d_address -> mm_interconnect_0:nios2_gen2_0_data_master_address
wire [3:0] nios2_gen2_0_data_master_byteenable; // nios2_gen2_0:d_byteenable -> mm_interconnect_0:nios2_gen2_0_data_master_byteenable
wire nios2_gen2_0_data_master_read; // nios2_gen2_0:d_read -> mm_interconnect_0:nios2_gen2_0_data_master_read
wire nios2_gen2_0_data_master_write; // nios2_gen2_0:d_write -> mm_interconnect_0:nios2_gen2_0_data_master_write
wire [31:0] nios2_gen2_0_data_master_writedata; // nios2_gen2_0:d_writedata -> mm_interconnect_0:nios2_gen2_0_data_master_writedata
wire [31:0] nios2_gen2_0_instruction_master_readdata; // mm_interconnect_0:nios2_gen2_0_instruction_master_readdata -> nios2_gen2_0:i_readdata
wire nios2_gen2_0_instruction_master_waitrequest; // mm_interconnect_0:nios2_gen2_0_instruction_master_waitrequest -> nios2_gen2_0:i_waitrequest
wire [19:0] nios2_gen2_0_instruction_master_address; // nios2_gen2_0:i_address -> mm_interconnect_0:nios2_gen2_0_instruction_master_address
wire nios2_gen2_0_instruction_master_read; // nios2_gen2_0:i_read -> mm_interconnect_0:nios2_gen2_0_instruction_master_read
wire [15:0] mm_interconnect_0_buffered_spi_0_avalon_readdata; // buffered_spi_0:avalon_readdata -> mm_interconnect_0:buffered_spi_0_avalon_readdata
wire mm_interconnect_0_buffered_spi_0_avalon_waitrequest; // buffered_spi_0:avalon_waitrequest -> mm_interconnect_0:buffered_spi_0_avalon_waitrequest
wire [13:0] mm_interconnect_0_buffered_spi_0_avalon_address; // mm_interconnect_0:buffered_spi_0_avalon_address -> buffered_spi_0:avalon_address
wire mm_interconnect_0_buffered_spi_0_avalon_read; // mm_interconnect_0:buffered_spi_0_avalon_read -> buffered_spi_0:avalon_read
wire mm_interconnect_0_buffered_spi_0_avalon_readdatavalid; // buffered_spi_0:avalon_readdatavalid -> mm_interconnect_0:buffered_spi_0_avalon_readdatavalid
wire mm_interconnect_0_buffered_spi_0_avalon_write; // mm_interconnect_0:buffered_spi_0_avalon_write -> buffered_spi_0:avalon_write
wire [15:0] mm_interconnect_0_buffered_spi_0_avalon_writedata; // mm_interconnect_0:buffered_spi_0_avalon_writedata -> buffered_spi_0:avalon_writedata
wire mm_interconnect_0_audio_0_avalon_audio_slave_chipselect; // mm_interconnect_0:audio_0_avalon_audio_slave_chipselect -> audio_0:chipselect
wire [31:0] mm_interconnect_0_audio_0_avalon_audio_slave_readdata; // audio_0:readdata -> mm_interconnect_0:audio_0_avalon_audio_slave_readdata
wire [1:0] mm_interconnect_0_audio_0_avalon_audio_slave_address; // mm_interconnect_0:audio_0_avalon_audio_slave_address -> audio_0:address
wire mm_interconnect_0_audio_0_avalon_audio_slave_read; // mm_interconnect_0:audio_0_avalon_audio_slave_read -> audio_0:read
wire mm_interconnect_0_audio_0_avalon_audio_slave_write; // mm_interconnect_0:audio_0_avalon_audio_slave_write -> audio_0:write
wire [31:0] mm_interconnect_0_audio_0_avalon_audio_slave_writedata; // mm_interconnect_0:audio_0_avalon_audio_slave_writedata -> audio_0:writedata
wire [15:0] mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_readdata; // abus_avalon_sdram_bridge_0:avalon_regs_readdata -> mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_regs_readdata
wire mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_waitrequest; // abus_avalon_sdram_bridge_0:avalon_regs_waitrequest -> mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_regs_waitrequest
wire [7:0] mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_address; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_regs_address -> abus_avalon_sdram_bridge_0:avalon_regs_address
wire mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_read; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_regs_read -> abus_avalon_sdram_bridge_0:avalon_regs_read
wire mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_readdatavalid; // abus_avalon_sdram_bridge_0:avalon_regs_readdatavalid -> mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_regs_readdatavalid
wire mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_write; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_regs_write -> abus_avalon_sdram_bridge_0:avalon_regs_write
wire [15:0] mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_writedata; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_regs_writedata -> abus_avalon_sdram_bridge_0:avalon_regs_writedata
wire mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_chipselect; // mm_interconnect_0:Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_chipselect -> Altera_UP_SD_Card_Avalon_Interface_0:i_avalon_chip_select
wire [31:0] mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_readdata; // Altera_UP_SD_Card_Avalon_Interface_0:o_avalon_readdata -> mm_interconnect_0:Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_readdata
wire mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_waitrequest; // Altera_UP_SD_Card_Avalon_Interface_0:o_avalon_waitrequest -> mm_interconnect_0:Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_waitrequest
wire [7:0] mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_address; // mm_interconnect_0:Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_address -> Altera_UP_SD_Card_Avalon_Interface_0:i_avalon_address
wire mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_read; // mm_interconnect_0:Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_read -> Altera_UP_SD_Card_Avalon_Interface_0:i_avalon_read
wire [3:0] mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_byteenable; // mm_interconnect_0:Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_byteenable -> Altera_UP_SD_Card_Avalon_Interface_0:i_avalon_byteenable
wire mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_write; // mm_interconnect_0:Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_write -> Altera_UP_SD_Card_Avalon_Interface_0:i_avalon_write
wire [31:0] mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_writedata; // mm_interconnect_0:Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_writedata -> Altera_UP_SD_Card_Avalon_Interface_0:i_avalon_writedata
wire [15:0] mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_readdata; // abus_avalon_sdram_bridge_0:avalon_sdram_readdata -> mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_sdram_readdata
wire mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_waitrequest; // abus_avalon_sdram_bridge_0:avalon_sdram_waitrequest -> mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_sdram_waitrequest
wire [25:0] mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_address; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_sdram_address -> abus_avalon_sdram_bridge_0:avalon_sdram_address
wire mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_read; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_sdram_read -> abus_avalon_sdram_bridge_0:avalon_sdram_read
wire [1:0] mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_byteenable; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_sdram_byteenable -> abus_avalon_sdram_bridge_0:avalon_sdram_byteenable
wire mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_readdatavalid; // abus_avalon_sdram_bridge_0:avalon_sdram_readdatavalid -> mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_sdram_readdatavalid
wire mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_write; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_sdram_write -> abus_avalon_sdram_bridge_0:avalon_sdram_write
wire [15:0] mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_writedata; // mm_interconnect_0:abus_avalon_sdram_bridge_0_avalon_sdram_writedata -> abus_avalon_sdram_bridge_0:avalon_sdram_writedata
wire [31:0] mm_interconnect_0_onchip_flash_0_data_readdata; // onchip_flash_0:avmm_data_readdata -> mm_interconnect_0:onchip_flash_0_data_readdata
wire mm_interconnect_0_onchip_flash_0_data_waitrequest; // onchip_flash_0:avmm_data_waitrequest -> mm_interconnect_0:onchip_flash_0_data_waitrequest
wire [15:0] mm_interconnect_0_onchip_flash_0_data_address; // mm_interconnect_0:onchip_flash_0_data_address -> onchip_flash_0:avmm_data_addr
wire mm_interconnect_0_onchip_flash_0_data_read; // mm_interconnect_0:onchip_flash_0_data_read -> onchip_flash_0:avmm_data_read
wire mm_interconnect_0_onchip_flash_0_data_readdatavalid; // onchip_flash_0:avmm_data_readdatavalid -> mm_interconnect_0:onchip_flash_0_data_readdatavalid
wire [3:0] mm_interconnect_0_onchip_flash_0_data_burstcount; // mm_interconnect_0:onchip_flash_0_data_burstcount -> onchip_flash_0:avmm_data_burstcount
wire [31:0] mm_interconnect_0_altpll_1_pll_slave_readdata; // altpll_1:readdata -> mm_interconnect_0:altpll_1_pll_slave_readdata
wire [1:0] mm_interconnect_0_altpll_1_pll_slave_address; // mm_interconnect_0:altpll_1_pll_slave_address -> altpll_1:address
wire mm_interconnect_0_altpll_1_pll_slave_read; // mm_interconnect_0:altpll_1_pll_slave_read -> altpll_1:read
wire mm_interconnect_0_altpll_1_pll_slave_write; // mm_interconnect_0:altpll_1_pll_slave_write -> altpll_1:write
wire [31:0] mm_interconnect_0_altpll_1_pll_slave_writedata; // mm_interconnect_0:altpll_1_pll_slave_writedata -> altpll_1:writedata
wire mm_interconnect_0_onchip_memory2_0_s1_chipselect; // mm_interconnect_0:onchip_memory2_0_s1_chipselect -> onchip_memory2_0:chipselect
wire [31:0] mm_interconnect_0_onchip_memory2_0_s1_readdata; // onchip_memory2_0:readdata -> mm_interconnect_0:onchip_memory2_0_s1_readdata
wire [11:0] mm_interconnect_0_onchip_memory2_0_s1_address; // mm_interconnect_0:onchip_memory2_0_s1_address -> onchip_memory2_0:address
wire [3:0] mm_interconnect_0_onchip_memory2_0_s1_byteenable; // mm_interconnect_0:onchip_memory2_0_s1_byteenable -> onchip_memory2_0:byteenable
wire mm_interconnect_0_onchip_memory2_0_s1_write; // mm_interconnect_0:onchip_memory2_0_s1_write -> onchip_memory2_0:write
wire [31:0] mm_interconnect_0_onchip_memory2_0_s1_writedata; // mm_interconnect_0:onchip_memory2_0_s1_writedata -> onchip_memory2_0:writedata
wire mm_interconnect_0_onchip_memory2_0_s1_clken; // mm_interconnect_0:onchip_memory2_0_s1_clken -> onchip_memory2_0:clken
wire mm_interconnect_0_uart_0_s1_chipselect; // mm_interconnect_0:uart_0_s1_chipselect -> uart_0:chipselect
wire [15:0] mm_interconnect_0_uart_0_s1_readdata; // uart_0:readdata -> mm_interconnect_0:uart_0_s1_readdata
wire [2:0] mm_interconnect_0_uart_0_s1_address; // mm_interconnect_0:uart_0_s1_address -> uart_0:address
wire mm_interconnect_0_uart_0_s1_read; // mm_interconnect_0:uart_0_s1_read -> uart_0:read_n
wire mm_interconnect_0_uart_0_s1_begintransfer; // mm_interconnect_0:uart_0_s1_begintransfer -> uart_0:begintransfer
wire mm_interconnect_0_uart_0_s1_write; // mm_interconnect_0:uart_0_s1_write -> uart_0:write_n
wire [15:0] mm_interconnect_0_uart_0_s1_writedata; // mm_interconnect_0:uart_0_s1_writedata -> uart_0:writedata
wire [31:0] mm_interconnect_0_nios2_gen2_0_debug_mem_slave_readdata; // nios2_gen2_0:debug_mem_slave_readdata -> mm_interconnect_0:nios2_gen2_0_debug_mem_slave_readdata
wire mm_interconnect_0_nios2_gen2_0_debug_mem_slave_waitrequest; // nios2_gen2_0:debug_mem_slave_waitrequest -> mm_interconnect_0:nios2_gen2_0_debug_mem_slave_waitrequest
wire mm_interconnect_0_nios2_gen2_0_debug_mem_slave_debugaccess; // mm_interconnect_0:nios2_gen2_0_debug_mem_slave_debugaccess -> nios2_gen2_0:debug_mem_slave_debugaccess
wire [8:0] mm_interconnect_0_nios2_gen2_0_debug_mem_slave_address; // mm_interconnect_0:nios2_gen2_0_debug_mem_slave_address -> nios2_gen2_0:debug_mem_slave_address
wire mm_interconnect_0_nios2_gen2_0_debug_mem_slave_read; // mm_interconnect_0:nios2_gen2_0_debug_mem_slave_read -> nios2_gen2_0:debug_mem_slave_read
wire [3:0] mm_interconnect_0_nios2_gen2_0_debug_mem_slave_byteenable; // mm_interconnect_0:nios2_gen2_0_debug_mem_slave_byteenable -> nios2_gen2_0:debug_mem_slave_byteenable
wire mm_interconnect_0_nios2_gen2_0_debug_mem_slave_write; // mm_interconnect_0:nios2_gen2_0_debug_mem_slave_write -> nios2_gen2_0:debug_mem_slave_write
wire [31:0] mm_interconnect_0_nios2_gen2_0_debug_mem_slave_writedata; // mm_interconnect_0:nios2_gen2_0_debug_mem_slave_writedata -> nios2_gen2_0:debug_mem_slave_writedata
wire irq_mapper_receiver0_irq; // audio_0:irq -> irq_mapper:receiver0_irq
wire irq_mapper_receiver1_irq; // uart_0:irq -> irq_mapper:receiver1_irq
wire [31:0] nios2_gen2_0_irq_irq; // irq_mapper:sender_irq -> nios2_gen2_0:irq
wire rst_controller_reset_out_reset; // rst_controller:reset_out -> [Altera_UP_SD_Card_Avalon_Interface_0:i_reset_n, abus_avalon_sdram_bridge_0:reset, audio_0:reset, irq_mapper:reset, mm_interconnect_0:nios2_gen2_0_reset_reset_bridge_in_reset_reset, nios2_gen2_0:reset_n, onchip_flash_0:reset_n, onchip_memory2_0:reset, rst_translator:in_reset, uart_0:reset_n]
wire rst_controller_reset_out_reset_req; // rst_controller:reset_req -> [onchip_memory2_0:reset_req, rst_translator:reset_req_in]
wire reset_controller_0_reset_out_reset; // reset_controller_0:reset_out -> [rst_controller:reset_in0, rst_controller_002:reset_in0]
wire rst_controller_001_reset_out_reset; // rst_controller_001:reset_out -> [altpll_1:reset, mm_interconnect_0:altpll_1_inclk_interface_reset_reset_bridge_in_reset_reset]
Altera_UP_SD_Card_Avalon_Interface altera_up_sd_card_avalon_interface_0 (
.i_avalon_chip_select (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_chipselect), // avalon_sdcard_slave.chipselect
.i_avalon_address (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_address), // .address
.i_avalon_read (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_read), // .read
.i_avalon_write (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_write), // .write
.i_avalon_byteenable (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_byteenable), // .byteenable
.i_avalon_writedata (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_writedata), // .writedata
.o_avalon_readdata (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_readdata), // .readdata
.o_avalon_waitrequest (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_waitrequest), // .waitrequest
.i_clock (clock_116_mhz_clk), // clk.clk
.i_reset_n (~rst_controller_reset_out_reset), // reset.reset_n
.b_SD_cmd (altera_up_sd_card_avalon_interface_0_conduit_end_b_SD_cmd), // conduit_end.export
.b_SD_dat (altera_up_sd_card_avalon_interface_0_conduit_end_b_SD_dat), // .export
.b_SD_dat3 (altera_up_sd_card_avalon_interface_0_conduit_end_b_SD_dat3), // .export
.o_SD_clock (altera_up_sd_card_avalon_interface_0_conduit_end_o_SD_clock) // .export
);
abus_avalon_sdram_bridge abus_avalon_sdram_bridge_0 (
.abus_address (abus_avalon_sdram_bridge_0_abus_address), // abus.address
.abus_read (abus_avalon_sdram_bridge_0_abus_read), // .read
.abus_waitrequest (abus_avalon_sdram_bridge_0_abus_waitrequest), // .waitrequest
.abus_addressdata (abus_avalon_sdram_bridge_0_abus_addressdata), // .addressdata
.abus_chipselect (abus_avalon_sdram_bridge_0_abus_chipselect), // .chipselect
.abus_direction (abus_avalon_sdram_bridge_0_abus_direction), // .direction
.abus_disable_out (abus_avalon_sdram_bridge_0_abus_disable_out), // .disable_out
.abus_interrupt (abus_avalon_sdram_bridge_0_abus_interrupt), // .interrupt
.abus_muxing (abus_avalon_sdram_bridge_0_abus_muxing), // .muxing
.abus_write (abus_avalon_sdram_bridge_0_abus_writebyteenable_n), // .writebyteenable_n
.saturn_reset (abus_avalon_sdram_bridge_0_abus_reset), // .reset
.avalon_sdram_read (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_read), // avalon_sdram.read
.avalon_sdram_write (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_write), // .write
.avalon_sdram_waitrequest (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_waitrequest), // .waitrequest
.avalon_sdram_address (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_address), // .address
.avalon_sdram_writedata (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_writedata), // .writedata
.avalon_sdram_readdata (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_readdata), // .readdata
.avalon_sdram_readdatavalid (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_readdatavalid), // .readdatavalid
.avalon_sdram_byteenable (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_byteenable), // .byteenable
.avalon_regs_read (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_read), // avalon_regs.read
.avalon_regs_write (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_write), // .write
.avalon_regs_waitrequest (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_waitrequest), // .waitrequest
.avalon_regs_address (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_address), // .address
.avalon_regs_writedata (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_writedata), // .writedata
.avalon_regs_readdata (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_readdata), // .readdata
.avalon_regs_readdatavalid (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_readdatavalid), // .readdatavalid
.reset (rst_controller_reset_out_reset), // reset.reset
.clock (clock_116_mhz_clk), // clock.clk
.sdram_addr (abus_avalon_sdram_bridge_0_sdram_addr), // sdram.addr
.sdram_ba (abus_avalon_sdram_bridge_0_sdram_ba), // .ba
.sdram_cas_n (abus_avalon_sdram_bridge_0_sdram_cas_n), // .cas_n
.sdram_cke (abus_avalon_sdram_bridge_0_sdram_cke), // .cke
.sdram_cs_n (abus_avalon_sdram_bridge_0_sdram_cs_n), // .cs_n
.sdram_dq (abus_avalon_sdram_bridge_0_sdram_dq), // .dq
.sdram_dqm (abus_avalon_sdram_bridge_0_sdram_dqm), // .dqm
.sdram_ras_n (abus_avalon_sdram_bridge_0_sdram_ras_n), // .ras_n
.sdram_we_n (abus_avalon_sdram_bridge_0_sdram_we_n), // .we_n
.sdram_clk (abus_avalon_sdram_bridge_0_sdram_clk) // .clk
);
wasca_altpll_1 altpll_1 (
.clk (clk_clk), // inclk_interface.clk
.reset (rst_controller_001_reset_out_reset), // inclk_interface_reset.reset
.read (mm_interconnect_0_altpll_1_pll_slave_read), // pll_slave.read
.write (mm_interconnect_0_altpll_1_pll_slave_write), // .write
.address (mm_interconnect_0_altpll_1_pll_slave_address), // .address
.readdata (mm_interconnect_0_altpll_1_pll_slave_readdata), // .readdata
.writedata (mm_interconnect_0_altpll_1_pll_slave_writedata), // .writedata
.c0 (clock_116_mhz_clk), // c0.clk
.areset (altpll_1_areset_conduit_export), // areset_conduit.export
.locked (altpll_1_locked_conduit_export), // locked_conduit.export
.phasedone (altpll_1_phasedone_conduit_export) // phasedone_conduit.export
);
wasca_audio_0 audio_0 (
.clk (clock_116_mhz_clk), // clk.clk
.reset (rst_controller_reset_out_reset), // reset.reset
.address (mm_interconnect_0_audio_0_avalon_audio_slave_address), // avalon_audio_slave.address
.chipselect (mm_interconnect_0_audio_0_avalon_audio_slave_chipselect), // .chipselect
.read (mm_interconnect_0_audio_0_avalon_audio_slave_read), // .read
.write (mm_interconnect_0_audio_0_avalon_audio_slave_write), // .write
.writedata (mm_interconnect_0_audio_0_avalon_audio_slave_writedata), // .writedata
.readdata (mm_interconnect_0_audio_0_avalon_audio_slave_readdata), // .readdata
.irq (irq_mapper_receiver0_irq), // interrupt.irq
.AUD_BCLK (audio_out_BCLK), // external_interface.export
.AUD_DACDAT (audio_out_DACDAT), // .export
.AUD_DACLRCK (audio_out_DACLRCK) // .export
);
buffered_spi buffered_spi_0 (
.reset (nios2_gen2_0_debug_reset_request_reset), // reset.reset
.avalon_read (mm_interconnect_0_buffered_spi_0_avalon_read), // avalon.read
.avalon_write (mm_interconnect_0_buffered_spi_0_avalon_write), // .write
.avalon_address (mm_interconnect_0_buffered_spi_0_avalon_address), // .address
.avalon_waitrequest (mm_interconnect_0_buffered_spi_0_avalon_waitrequest), // .waitrequest
.avalon_writedata (mm_interconnect_0_buffered_spi_0_avalon_writedata), // .writedata
.avalon_readdata (mm_interconnect_0_buffered_spi_0_avalon_readdata), // .readdata
.avalon_readdatavalid (mm_interconnect_0_buffered_spi_0_avalon_readdatavalid), // .readdatavalid
.spi_mosi (buffered_spi_mosi), // conduit_end.mosi
.spi_clk (buffered_spi_clk), // .clk
.spi_miso (buffered_spi_miso), // .miso
.spi_cs (buffered_spi_cs), // .cs
.clock (clock_116_mhz_clk) // clock.clk
);
wasca_nios2_gen2_0 nios2_gen2_0 (
.clk (clock_116_mhz_clk), // clk.clk
.reset_n (~rst_controller_reset_out_reset), // reset.reset_n
.d_address (nios2_gen2_0_data_master_address), // data_master.address
.d_byteenable (nios2_gen2_0_data_master_byteenable), // .byteenable
.d_read (nios2_gen2_0_data_master_read), // .read
.d_readdata (nios2_gen2_0_data_master_readdata), // .readdata
.d_waitrequest (nios2_gen2_0_data_master_waitrequest), // .waitrequest
.d_write (nios2_gen2_0_data_master_write), // .write
.d_writedata (nios2_gen2_0_data_master_writedata), // .writedata
.debug_mem_slave_debugaccess_to_roms (nios2_gen2_0_data_master_debugaccess), // .debugaccess
.i_address (nios2_gen2_0_instruction_master_address), // instruction_master.address
.i_read (nios2_gen2_0_instruction_master_read), // .read
.i_readdata (nios2_gen2_0_instruction_master_readdata), // .readdata
.i_waitrequest (nios2_gen2_0_instruction_master_waitrequest), // .waitrequest
.irq (nios2_gen2_0_irq_irq), // irq.irq
.debug_reset_request (nios2_gen2_0_debug_reset_request_reset), // debug_reset_request.reset
.debug_mem_slave_address (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_address), // debug_mem_slave.address
.debug_mem_slave_byteenable (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_byteenable), // .byteenable
.debug_mem_slave_debugaccess (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_debugaccess), // .debugaccess
.debug_mem_slave_read (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_read), // .read
.debug_mem_slave_readdata (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_readdata), // .readdata
.debug_mem_slave_waitrequest (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_waitrequest), // .waitrequest
.debug_mem_slave_write (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_write), // .write
.debug_mem_slave_writedata (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_writedata), // .writedata
.dummy_ci_port () // custom_instruction_master.readra
);
altera_onchip_flash #(
.INIT_FILENAME ("wasca_onchip_flash_0.hex"),
.INIT_FILENAME_SIM ("wasca_onchip_flash_0.dat"),
.DEVICE_FAMILY ("MAX 10"),
.PART_NAME ("10M08SAE144C8GES"),
.DEVICE_ID ("08"),
.SECTOR1_START_ADDR (0),
.SECTOR1_END_ADDR (4095),
.SECTOR2_START_ADDR (4096),
.SECTOR2_END_ADDR (8191),
.SECTOR3_START_ADDR (8192),
.SECTOR3_END_ADDR (29183),
.SECTOR4_START_ADDR (29184),
.SECTOR4_END_ADDR (44031),
.SECTOR5_START_ADDR (0),
.SECTOR5_END_ADDR (0),
.MIN_VALID_ADDR (0),
.MAX_VALID_ADDR (44031),
.MIN_UFM_VALID_ADDR (0),
.MAX_UFM_VALID_ADDR (44031),
.SECTOR1_MAP (1),
.SECTOR2_MAP (2),
.SECTOR3_MAP (3),
.SECTOR4_MAP (4),
.SECTOR5_MAP (0),
.ADDR_RANGE1_END_ADDR (44031),
.ADDR_RANGE1_OFFSET (512),
.ADDR_RANGE2_OFFSET (0),
.AVMM_DATA_ADDR_WIDTH (16),
.AVMM_DATA_DATA_WIDTH (32),
.AVMM_DATA_BURSTCOUNT_WIDTH (4),
.SECTOR_READ_PROTECTION_MODE (31),
.FLASH_SEQ_READ_DATA_COUNT (2),
.FLASH_ADDR_ALIGNMENT_BITS (1),
.FLASH_READ_CYCLE_MAX_INDEX (3),
.FLASH_RESET_CYCLE_MAX_INDEX (29),
.FLASH_BUSY_TIMEOUT_CYCLE_MAX_INDEX (111),
.FLASH_ERASE_TIMEOUT_CYCLE_MAX_INDEX (40603248),
.FLASH_WRITE_TIMEOUT_CYCLE_MAX_INDEX (35382),
.PARALLEL_MODE (1),
.READ_AND_WRITE_MODE (0),
.WRAPPING_BURST_MODE (0),
.IS_DUAL_BOOT ("False"),
.IS_ERAM_SKIP ("True"),
.IS_COMPRESSED_IMAGE ("True")
) onchip_flash_0 (
.clock (clock_116_mhz_clk), // clk.clk
.reset_n (~rst_controller_reset_out_reset), // nreset.reset_n
.avmm_data_addr (mm_interconnect_0_onchip_flash_0_data_address), // data.address
.avmm_data_read (mm_interconnect_0_onchip_flash_0_data_read), // .read
.avmm_data_readdata (mm_interconnect_0_onchip_flash_0_data_readdata), // .readdata
.avmm_data_waitrequest (mm_interconnect_0_onchip_flash_0_data_waitrequest), // .waitrequest
.avmm_data_readdatavalid (mm_interconnect_0_onchip_flash_0_data_readdatavalid), // .readdatavalid
.avmm_data_burstcount (mm_interconnect_0_onchip_flash_0_data_burstcount), // .burstcount
.avmm_data_writedata (32'b00000000000000000000000000000000), // (terminated)
.avmm_data_write (1'b0), // (terminated)
.avmm_csr_addr (1'b0), // (terminated)
.avmm_csr_read (1'b0), // (terminated)
.avmm_csr_writedata (32'b00000000000000000000000000000000), // (terminated)
.avmm_csr_write (1'b0), // (terminated)
.avmm_csr_readdata () // (terminated)
);
wasca_onchip_memory2_0 onchip_memory2_0 (
.clk (clock_116_mhz_clk), // clk1.clk
.address (mm_interconnect_0_onchip_memory2_0_s1_address), // s1.address
.clken (mm_interconnect_0_onchip_memory2_0_s1_clken), // .clken
.chipselect (mm_interconnect_0_onchip_memory2_0_s1_chipselect), // .chipselect
.write (mm_interconnect_0_onchip_memory2_0_s1_write), // .write
.readdata (mm_interconnect_0_onchip_memory2_0_s1_readdata), // .readdata
.writedata (mm_interconnect_0_onchip_memory2_0_s1_writedata), // .writedata
.byteenable (mm_interconnect_0_onchip_memory2_0_s1_byteenable), // .byteenable
.reset (rst_controller_reset_out_reset), // reset1.reset
.reset_req (rst_controller_reset_out_reset_req) // .reset_req
);
altera_reset_controller #(
.NUM_RESET_INPUTS (2),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) reset_controller_0 (
.reset_in0 (nios2_gen2_0_debug_reset_request_reset), // reset_in0.reset
.reset_in1 (reset_controller_0_reset_in1_reset), // reset_in1.reset
.clk (clock_116_mhz_clk), // clk.clk
.reset_out (reset_controller_0_reset_out_reset), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
wasca_uart_0 uart_0 (
.clk (clock_116_mhz_clk), // clk.clk
.reset_n (~rst_controller_reset_out_reset), // reset.reset_n
.address (mm_interconnect_0_uart_0_s1_address), // s1.address
.begintransfer (mm_interconnect_0_uart_0_s1_begintransfer), // .begintransfer
.chipselect (mm_interconnect_0_uart_0_s1_chipselect), // .chipselect
.read_n (~mm_interconnect_0_uart_0_s1_read), // .read_n
.write_n (~mm_interconnect_0_uart_0_s1_write), // .write_n
.writedata (mm_interconnect_0_uart_0_s1_writedata), // .writedata
.readdata (mm_interconnect_0_uart_0_s1_readdata), // .readdata
.dataavailable (), // .dataavailable
.readyfordata (), // .readyfordata
.rxd (uart_0_external_connection_rxd), // external_connection.export
.txd (uart_0_external_connection_txd), // .export
.irq (irq_mapper_receiver1_irq) // irq.irq
);
wasca_mm_interconnect_0 mm_interconnect_0 (
.altpll_1_c0_clk (clock_116_mhz_clk), // altpll_1_c0.clk
.clk_0_clk_clk (clk_clk), // clk_0_clk.clk
.altpll_1_inclk_interface_reset_reset_bridge_in_reset_reset (rst_controller_001_reset_out_reset), // altpll_1_inclk_interface_reset_reset_bridge_in_reset.reset
.buffered_spi_0_reset_reset_bridge_in_reset_reset (nios2_gen2_0_debug_reset_request_reset), // buffered_spi_0_reset_reset_bridge_in_reset.reset
.nios2_gen2_0_reset_reset_bridge_in_reset_reset (rst_controller_reset_out_reset), // nios2_gen2_0_reset_reset_bridge_in_reset.reset
.nios2_gen2_0_data_master_address (nios2_gen2_0_data_master_address), // nios2_gen2_0_data_master.address
.nios2_gen2_0_data_master_waitrequest (nios2_gen2_0_data_master_waitrequest), // .waitrequest
.nios2_gen2_0_data_master_byteenable (nios2_gen2_0_data_master_byteenable), // .byteenable
.nios2_gen2_0_data_master_read (nios2_gen2_0_data_master_read), // .read
.nios2_gen2_0_data_master_readdata (nios2_gen2_0_data_master_readdata), // .readdata
.nios2_gen2_0_data_master_write (nios2_gen2_0_data_master_write), // .write
.nios2_gen2_0_data_master_writedata (nios2_gen2_0_data_master_writedata), // .writedata
.nios2_gen2_0_data_master_debugaccess (nios2_gen2_0_data_master_debugaccess), // .debugaccess
.nios2_gen2_0_instruction_master_address (nios2_gen2_0_instruction_master_address), // nios2_gen2_0_instruction_master.address
.nios2_gen2_0_instruction_master_waitrequest (nios2_gen2_0_instruction_master_waitrequest), // .waitrequest
.nios2_gen2_0_instruction_master_read (nios2_gen2_0_instruction_master_read), // .read
.nios2_gen2_0_instruction_master_readdata (nios2_gen2_0_instruction_master_readdata), // .readdata
.abus_avalon_sdram_bridge_0_avalon_regs_address (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_address), // abus_avalon_sdram_bridge_0_avalon_regs.address
.abus_avalon_sdram_bridge_0_avalon_regs_write (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_write), // .write
.abus_avalon_sdram_bridge_0_avalon_regs_read (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_read), // .read
.abus_avalon_sdram_bridge_0_avalon_regs_readdata (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_readdata), // .readdata
.abus_avalon_sdram_bridge_0_avalon_regs_writedata (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_writedata), // .writedata
.abus_avalon_sdram_bridge_0_avalon_regs_readdatavalid (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_readdatavalid), // .readdatavalid
.abus_avalon_sdram_bridge_0_avalon_regs_waitrequest (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_regs_waitrequest), // .waitrequest
.abus_avalon_sdram_bridge_0_avalon_sdram_address (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_address), // abus_avalon_sdram_bridge_0_avalon_sdram.address
.abus_avalon_sdram_bridge_0_avalon_sdram_write (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_write), // .write
.abus_avalon_sdram_bridge_0_avalon_sdram_read (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_read), // .read
.abus_avalon_sdram_bridge_0_avalon_sdram_readdata (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_readdata), // .readdata
.abus_avalon_sdram_bridge_0_avalon_sdram_writedata (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_writedata), // .writedata
.abus_avalon_sdram_bridge_0_avalon_sdram_byteenable (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_byteenable), // .byteenable
.abus_avalon_sdram_bridge_0_avalon_sdram_readdatavalid (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_readdatavalid), // .readdatavalid
.abus_avalon_sdram_bridge_0_avalon_sdram_waitrequest (mm_interconnect_0_abus_avalon_sdram_bridge_0_avalon_sdram_waitrequest), // .waitrequest
.Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_address (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_address), // Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave.address
.Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_write (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_write), // .write
.Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_read (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_read), // .read
.Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_readdata (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_readdata), // .readdata
.Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_writedata (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_writedata), // .writedata
.Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_byteenable (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_byteenable), // .byteenable
.Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_waitrequest (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_waitrequest), // .waitrequest
.Altera_UP_SD_Card_Avalon_Interface_0_avalon_sdcard_slave_chipselect (mm_interconnect_0_altera_up_sd_card_avalon_interface_0_avalon_sdcard_slave_chipselect), // .chipselect
.altpll_1_pll_slave_address (mm_interconnect_0_altpll_1_pll_slave_address), // altpll_1_pll_slave.address
.altpll_1_pll_slave_write (mm_interconnect_0_altpll_1_pll_slave_write), // .write
.altpll_1_pll_slave_read (mm_interconnect_0_altpll_1_pll_slave_read), // .read
.altpll_1_pll_slave_readdata (mm_interconnect_0_altpll_1_pll_slave_readdata), // .readdata
.altpll_1_pll_slave_writedata (mm_interconnect_0_altpll_1_pll_slave_writedata), // .writedata
.audio_0_avalon_audio_slave_address (mm_interconnect_0_audio_0_avalon_audio_slave_address), // audio_0_avalon_audio_slave.address
.audio_0_avalon_audio_slave_write (mm_interconnect_0_audio_0_avalon_audio_slave_write), // .write
.audio_0_avalon_audio_slave_read (mm_interconnect_0_audio_0_avalon_audio_slave_read), // .read
.audio_0_avalon_audio_slave_readdata (mm_interconnect_0_audio_0_avalon_audio_slave_readdata), // .readdata
.audio_0_avalon_audio_slave_writedata (mm_interconnect_0_audio_0_avalon_audio_slave_writedata), // .writedata
.audio_0_avalon_audio_slave_chipselect (mm_interconnect_0_audio_0_avalon_audio_slave_chipselect), // .chipselect
.buffered_spi_0_avalon_address (mm_interconnect_0_buffered_spi_0_avalon_address), // buffered_spi_0_avalon.address
.buffered_spi_0_avalon_write (mm_interconnect_0_buffered_spi_0_avalon_write), // .write
.buffered_spi_0_avalon_read (mm_interconnect_0_buffered_spi_0_avalon_read), // .read
.buffered_spi_0_avalon_readdata (mm_interconnect_0_buffered_spi_0_avalon_readdata), // .readdata
.buffered_spi_0_avalon_writedata (mm_interconnect_0_buffered_spi_0_avalon_writedata), // .writedata
.buffered_spi_0_avalon_readdatavalid (mm_interconnect_0_buffered_spi_0_avalon_readdatavalid), // .readdatavalid
.buffered_spi_0_avalon_waitrequest (mm_interconnect_0_buffered_spi_0_avalon_waitrequest), // .waitrequest
.nios2_gen2_0_debug_mem_slave_address (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_address), // nios2_gen2_0_debug_mem_slave.address
.nios2_gen2_0_debug_mem_slave_write (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_write), // .write
.nios2_gen2_0_debug_mem_slave_read (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_read), // .read
.nios2_gen2_0_debug_mem_slave_readdata (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_readdata), // .readdata
.nios2_gen2_0_debug_mem_slave_writedata (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_writedata), // .writedata
.nios2_gen2_0_debug_mem_slave_byteenable (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_byteenable), // .byteenable
.nios2_gen2_0_debug_mem_slave_waitrequest (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_waitrequest), // .waitrequest
.nios2_gen2_0_debug_mem_slave_debugaccess (mm_interconnect_0_nios2_gen2_0_debug_mem_slave_debugaccess), // .debugaccess
.onchip_flash_0_data_address (mm_interconnect_0_onchip_flash_0_data_address), // onchip_flash_0_data.address
.onchip_flash_0_data_read (mm_interconnect_0_onchip_flash_0_data_read), // .read
.onchip_flash_0_data_readdata (mm_interconnect_0_onchip_flash_0_data_readdata), // .readdata
.onchip_flash_0_data_burstcount (mm_interconnect_0_onchip_flash_0_data_burstcount), // .burstcount
.onchip_flash_0_data_readdatavalid (mm_interconnect_0_onchip_flash_0_data_readdatavalid), // .readdatavalid
.onchip_flash_0_data_waitrequest (mm_interconnect_0_onchip_flash_0_data_waitrequest), // .waitrequest
.onchip_memory2_0_s1_address (mm_interconnect_0_onchip_memory2_0_s1_address), // onchip_memory2_0_s1.address
.onchip_memory2_0_s1_write (mm_interconnect_0_onchip_memory2_0_s1_write), // .write
.onchip_memory2_0_s1_readdata (mm_interconnect_0_onchip_memory2_0_s1_readdata), // .readdata
.onchip_memory2_0_s1_writedata (mm_interconnect_0_onchip_memory2_0_s1_writedata), // .writedata
.onchip_memory2_0_s1_byteenable (mm_interconnect_0_onchip_memory2_0_s1_byteenable), // .byteenable
.onchip_memory2_0_s1_chipselect (mm_interconnect_0_onchip_memory2_0_s1_chipselect), // .chipselect
.onchip_memory2_0_s1_clken (mm_interconnect_0_onchip_memory2_0_s1_clken), // .clken
.uart_0_s1_address (mm_interconnect_0_uart_0_s1_address), // uart_0_s1.address
.uart_0_s1_write (mm_interconnect_0_uart_0_s1_write), // .write
.uart_0_s1_read (mm_interconnect_0_uart_0_s1_read), // .read
.uart_0_s1_readdata (mm_interconnect_0_uart_0_s1_readdata), // .readdata
.uart_0_s1_writedata (mm_interconnect_0_uart_0_s1_writedata), // .writedata
.uart_0_s1_begintransfer (mm_interconnect_0_uart_0_s1_begintransfer), // .begintransfer
.uart_0_s1_chipselect (mm_interconnect_0_uart_0_s1_chipselect) // .chipselect
);
wasca_irq_mapper irq_mapper (
.clk (clock_116_mhz_clk), // clk.clk
.reset (rst_controller_reset_out_reset), // clk_reset.reset
.receiver0_irq (irq_mapper_receiver0_irq), // receiver0.irq
.receiver1_irq (irq_mapper_receiver1_irq), // receiver1.irq
.sender_irq (nios2_gen2_0_irq_irq) // sender.irq
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (1),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller (
.reset_in0 (reset_controller_0_reset_out_reset), // reset_in0.reset
.clk (clock_116_mhz_clk), // clk.clk
.reset_out (rst_controller_reset_out_reset), // reset_out.reset
.reset_req (rst_controller_reset_out_reset_req), // .reset_req
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("deassert"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller_001 (
.reset_in0 (~reset_reset_n), // reset_in0.reset
.clk (clk_clk), // clk.clk
.reset_out (rst_controller_001_reset_out_reset), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
altera_reset_controller #(
.NUM_RESET_INPUTS (1),
.OUTPUT_RESET_SYNC_EDGES ("both"),
.SYNC_DEPTH (2),
.RESET_REQUEST_PRESENT (0),
.RESET_REQ_WAIT_TIME (1),
.MIN_RST_ASSERTION_TIME (3),
.RESET_REQ_EARLY_DSRT_TIME (1),
.USE_RESET_REQUEST_IN0 (0),
.USE_RESET_REQUEST_IN1 (0),
.USE_RESET_REQUEST_IN2 (0),
.USE_RESET_REQUEST_IN3 (0),
.USE_RESET_REQUEST_IN4 (0),
.USE_RESET_REQUEST_IN5 (0),
.USE_RESET_REQUEST_IN6 (0),
.USE_RESET_REQUEST_IN7 (0),
.USE_RESET_REQUEST_IN8 (0),
.USE_RESET_REQUEST_IN9 (0),
.USE_RESET_REQUEST_IN10 (0),
.USE_RESET_REQUEST_IN11 (0),
.USE_RESET_REQUEST_IN12 (0),
.USE_RESET_REQUEST_IN13 (0),
.USE_RESET_REQUEST_IN14 (0),
.USE_RESET_REQUEST_IN15 (0),
.ADAPT_RESET_REQUEST (0)
) rst_controller_002 (
.reset_in0 (reset_controller_0_reset_out_reset), // reset_in0.reset
.clk (clock_116_mhz_clk), // clk.clk
.reset_out (), // reset_out.reset
.reset_req (), // (terminated)
.reset_req_in0 (1'b0), // (terminated)
.reset_in1 (1'b0), // (terminated)
.reset_req_in1 (1'b0), // (terminated)
.reset_in2 (1'b0), // (terminated)
.reset_req_in2 (1'b0), // (terminated)
.reset_in3 (1'b0), // (terminated)
.reset_req_in3 (1'b0), // (terminated)
.reset_in4 (1'b0), // (terminated)
.reset_req_in4 (1'b0), // (terminated)
.reset_in5 (1'b0), // (terminated)
.reset_req_in5 (1'b0), // (terminated)
.reset_in6 (1'b0), // (terminated)
.reset_req_in6 (1'b0), // (terminated)
.reset_in7 (1'b0), // (terminated)
.reset_req_in7 (1'b0), // (terminated)
.reset_in8 (1'b0), // (terminated)
.reset_req_in8 (1'b0), // (terminated)
.reset_in9 (1'b0), // (terminated)
.reset_req_in9 (1'b0), // (terminated)
.reset_in10 (1'b0), // (terminated)
.reset_req_in10 (1'b0), // (terminated)
.reset_in11 (1'b0), // (terminated)
.reset_req_in11 (1'b0), // (terminated)
.reset_in12 (1'b0), // (terminated)
.reset_req_in12 (1'b0), // (terminated)
.reset_in13 (1'b0), // (terminated)
.reset_req_in13 (1'b0), // (terminated)
.reset_in14 (1'b0), // (terminated)
.reset_req_in14 (1'b0), // (terminated)
.reset_in15 (1'b0), // (terminated)
.reset_req_in15 (1'b0) // (terminated)
);
endmodule |
module sha256_transform #(
parameter LOOP = 7'd64 // For ltcminer
) (
input clk,
input feedback,
input [5:0] cnt,
input [255:0] rx_state,
input [511:0] rx_input,
output reg [255:0] tx_hash
);
// Constants defined by the SHA-2 standard.
localparam Ks = {
32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5,
32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5,
32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3,
32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174,
32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc,
32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da,
32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7,
32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967,
32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13,
32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85,
32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3,
32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070,
32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5,
32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3,
32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208,
32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2};
genvar i;
generate
for (i = 0; i < 64/LOOP; i = i + 1) begin : HASHERS
// These are declared as registers in sha256_digester
wire [511:0] W; // reg tx_w
wire [255:0] state; // reg tx_state
if(i == 0)
sha256_digester U (
.clk(clk),
.k(Ks[32*(63-cnt) +: 32]),
.rx_w(feedback ? W : rx_input),
.rx_state(feedback ? state : rx_state),
.tx_w(W),
.tx_state(state)
);
else
sha256_digester U (
.clk(clk),
.k(Ks[32*(63-LOOP*i-cnt) +: 32]),
.rx_w(feedback ? W : HASHERS[i-1].W),
.rx_state(feedback ? state : HASHERS[i-1].state),
.tx_w(W),
.tx_state(state)
);
end
endgenerate
always @ (posedge clk)
begin
if (!feedback)
begin
tx_hash[`IDX(0)] <= rx_state[`IDX(0)] + HASHERS[64/LOOP-6'd1].state[`IDX(0)];
tx_hash[`IDX(1)] <= rx_state[`IDX(1)] + HASHERS[64/LOOP-6'd1].state[`IDX(1)];
tx_hash[`IDX(2)] <= rx_state[`IDX(2)] + HASHERS[64/LOOP-6'd1].state[`IDX(2)];
tx_hash[`IDX(3)] <= rx_state[`IDX(3)] + HASHERS[64/LOOP-6'd1].state[`IDX(3)];
tx_hash[`IDX(4)] <= rx_state[`IDX(4)] + HASHERS[64/LOOP-6'd1].state[`IDX(4)];
tx_hash[`IDX(5)] <= rx_state[`IDX(5)] + HASHERS[64/LOOP-6'd1].state[`IDX(5)];
tx_hash[`IDX(6)] <= rx_state[`IDX(6)] + HASHERS[64/LOOP-6'd1].state[`IDX(6)];
tx_hash[`IDX(7)] <= rx_state[`IDX(7)] + HASHERS[64/LOOP-6'd1].state[`IDX(7)];
end
end
endmodule |
module sha256_digester (clk, k, rx_w, rx_state, tx_w, tx_state);
input clk;
input [31:0] k;
input [511:0] rx_w;
input [255:0] rx_state;
output reg [511:0] tx_w;
output reg [255:0] tx_state;
wire [31:0] e0_w, e1_w, ch_w, maj_w, s0_w, s1_w;
e0 e0_blk (rx_state[`IDX(0)], e0_w);
e1 e1_blk (rx_state[`IDX(4)], e1_w);
ch ch_blk (rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w);
maj maj_blk (rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w);
s0 s0_blk (rx_w[63:32], s0_w);
s1 s1_blk (rx_w[479:448], s1_w);
wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k;
wire [31:0] t2 = e0_w + maj_w;
wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0];
always @ (posedge clk)
begin
tx_w[511:480] <= new_w;
tx_w[479:0] <= rx_w[511:32];
tx_state[`IDX(7)] <= rx_state[`IDX(6)];
tx_state[`IDX(6)] <= rx_state[`IDX(5)];
tx_state[`IDX(5)] <= rx_state[`IDX(4)];
tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1;
tx_state[`IDX(3)] <= rx_state[`IDX(2)];
tx_state[`IDX(2)] <= rx_state[`IDX(1)];
tx_state[`IDX(1)] <= rx_state[`IDX(0)];
tx_state[`IDX(0)] <= t1 + t2;
end
endmodule |
module sha256_transform #(
parameter LOOP = 7'd64 // For ltcminer
) (
input clk,
input feedback,
input [5:0] cnt,
input [255:0] rx_state,
input [511:0] rx_input,
output reg [255:0] tx_hash
);
// Constants defined by the SHA-2 standard.
localparam Ks = {
32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5,
32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5,
32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3,
32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174,
32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc,
32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da,
32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7,
32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967,
32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13,
32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85,
32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3,
32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070,
32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5,
32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3,
32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208,
32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2};
genvar i;
generate
for (i = 0; i < 64/LOOP; i = i + 1) begin : HASHERS
// These are declared as registers in sha256_digester
wire [511:0] W; // reg tx_w
wire [255:0] state; // reg tx_state
if(i == 0)
sha256_digester U (
.clk(clk),
.k(Ks[32*(63-cnt) +: 32]),
.rx_w(feedback ? W : rx_input),
.rx_state(feedback ? state : rx_state),
.tx_w(W),
.tx_state(state)
);
else
sha256_digester U (
.clk(clk),
.k(Ks[32*(63-LOOP*i-cnt) +: 32]),
.rx_w(feedback ? W : HASHERS[i-1].W),
.rx_state(feedback ? state : HASHERS[i-1].state),
.tx_w(W),
.tx_state(state)
);
end
endgenerate
always @ (posedge clk)
begin
if (!feedback)
begin
tx_hash[`IDX(0)] <= rx_state[`IDX(0)] + HASHERS[64/LOOP-6'd1].state[`IDX(0)];
tx_hash[`IDX(1)] <= rx_state[`IDX(1)] + HASHERS[64/LOOP-6'd1].state[`IDX(1)];
tx_hash[`IDX(2)] <= rx_state[`IDX(2)] + HASHERS[64/LOOP-6'd1].state[`IDX(2)];
tx_hash[`IDX(3)] <= rx_state[`IDX(3)] + HASHERS[64/LOOP-6'd1].state[`IDX(3)];
tx_hash[`IDX(4)] <= rx_state[`IDX(4)] + HASHERS[64/LOOP-6'd1].state[`IDX(4)];
tx_hash[`IDX(5)] <= rx_state[`IDX(5)] + HASHERS[64/LOOP-6'd1].state[`IDX(5)];
tx_hash[`IDX(6)] <= rx_state[`IDX(6)] + HASHERS[64/LOOP-6'd1].state[`IDX(6)];
tx_hash[`IDX(7)] <= rx_state[`IDX(7)] + HASHERS[64/LOOP-6'd1].state[`IDX(7)];
end
end
endmodule |
module sha256_digester (clk, k, rx_w, rx_state, tx_w, tx_state);
input clk;
input [31:0] k;
input [511:0] rx_w;
input [255:0] rx_state;
output reg [511:0] tx_w;
output reg [255:0] tx_state;
wire [31:0] e0_w, e1_w, ch_w, maj_w, s0_w, s1_w;
e0 e0_blk (rx_state[`IDX(0)], e0_w);
e1 e1_blk (rx_state[`IDX(4)], e1_w);
ch ch_blk (rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w);
maj maj_blk (rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w);
s0 s0_blk (rx_w[63:32], s0_w);
s1 s1_blk (rx_w[479:448], s1_w);
wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k;
wire [31:0] t2 = e0_w + maj_w;
wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0];
always @ (posedge clk)
begin
tx_w[511:480] <= new_w;
tx_w[479:0] <= rx_w[511:32];
tx_state[`IDX(7)] <= rx_state[`IDX(6)];
tx_state[`IDX(6)] <= rx_state[`IDX(5)];
tx_state[`IDX(5)] <= rx_state[`IDX(4)];
tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1;
tx_state[`IDX(3)] <= rx_state[`IDX(2)];
tx_state[`IDX(2)] <= rx_state[`IDX(1)];
tx_state[`IDX(1)] <= rx_state[`IDX(0)];
tx_state[`IDX(0)] <= t1 + t2;
end
endmodule |
module sha256_transform #(
parameter LOOP = 7'd64 // For ltcminer
) (
input clk,
input feedback,
input [5:0] cnt,
input [255:0] rx_state,
input [511:0] rx_input,
output reg [255:0] tx_hash
);
// Constants defined by the SHA-2 standard.
localparam Ks = {
32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5,
32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5,
32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3,
32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174,
32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc,
32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da,
32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7,
32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967,
32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13,
32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85,
32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3,
32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070,
32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5,
32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3,
32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208,
32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2};
genvar i;
generate
for (i = 0; i < 64/LOOP; i = i + 1) begin : HASHERS
// These are declared as registers in sha256_digester
wire [511:0] W; // reg tx_w
wire [255:0] state; // reg tx_state
if(i == 0)
sha256_digester U (
.clk(clk),
.k(Ks[32*(63-cnt) +: 32]),
.rx_w(feedback ? W : rx_input),
.rx_state(feedback ? state : rx_state),
.tx_w(W),
.tx_state(state)
);
else
sha256_digester U (
.clk(clk),
.k(Ks[32*(63-LOOP*i-cnt) +: 32]),
.rx_w(feedback ? W : HASHERS[i-1].W),
.rx_state(feedback ? state : HASHERS[i-1].state),
.tx_w(W),
.tx_state(state)
);
end
endgenerate
always @ (posedge clk)
begin
if (!feedback)
begin
tx_hash[`IDX(0)] <= rx_state[`IDX(0)] + HASHERS[64/LOOP-6'd1].state[`IDX(0)];
tx_hash[`IDX(1)] <= rx_state[`IDX(1)] + HASHERS[64/LOOP-6'd1].state[`IDX(1)];
tx_hash[`IDX(2)] <= rx_state[`IDX(2)] + HASHERS[64/LOOP-6'd1].state[`IDX(2)];
tx_hash[`IDX(3)] <= rx_state[`IDX(3)] + HASHERS[64/LOOP-6'd1].state[`IDX(3)];
tx_hash[`IDX(4)] <= rx_state[`IDX(4)] + HASHERS[64/LOOP-6'd1].state[`IDX(4)];
tx_hash[`IDX(5)] <= rx_state[`IDX(5)] + HASHERS[64/LOOP-6'd1].state[`IDX(5)];
tx_hash[`IDX(6)] <= rx_state[`IDX(6)] + HASHERS[64/LOOP-6'd1].state[`IDX(6)];
tx_hash[`IDX(7)] <= rx_state[`IDX(7)] + HASHERS[64/LOOP-6'd1].state[`IDX(7)];
end
end
endmodule |
module sha256_digester (clk, k, rx_w, rx_state, tx_w, tx_state);
input clk;
input [31:0] k;
input [511:0] rx_w;
input [255:0] rx_state;
output reg [511:0] tx_w;
output reg [255:0] tx_state;
wire [31:0] e0_w, e1_w, ch_w, maj_w, s0_w, s1_w;
e0 e0_blk (rx_state[`IDX(0)], e0_w);
e1 e1_blk (rx_state[`IDX(4)], e1_w);
ch ch_blk (rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w);
maj maj_blk (rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w);
s0 s0_blk (rx_w[63:32], s0_w);
s1 s1_blk (rx_w[479:448], s1_w);
wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k;
wire [31:0] t2 = e0_w + maj_w;
wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0];
always @ (posedge clk)
begin
tx_w[511:480] <= new_w;
tx_w[479:0] <= rx_w[511:32];
tx_state[`IDX(7)] <= rx_state[`IDX(6)];
tx_state[`IDX(6)] <= rx_state[`IDX(5)];
tx_state[`IDX(5)] <= rx_state[`IDX(4)];
tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1;
tx_state[`IDX(3)] <= rx_state[`IDX(2)];
tx_state[`IDX(2)] <= rx_state[`IDX(1)];
tx_state[`IDX(1)] <= rx_state[`IDX(0)];
tx_state[`IDX(0)] <= t1 + t2;
end
endmodule |
module testbed_hi_simulate;
reg pck0;
reg [7:0] adc_d;
reg mod_type;
wire pwr_lo;
wire adc_clk;
reg ck_1356meg;
reg ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
hi_simulate #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.mod_type(mod_type)
);
integer idx, i;
// main clock
always #5 begin
ck_1356megb = !ck_1356megb;
ck_1356meg = ck_1356megb;
end
always begin
@(negedge adc_clk) ;
adc_d = $random;
end
//crank DUT
task crank_dut;
begin
@(negedge ssp_clk) ;
ssp_dout = $random;
end
endtask
initial begin
// init inputs
ck_1356megb = 0;
// random values
adc_d = 0;
ssp_dout=1;
// shallow modulation off
mod_type=0;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
// shallow modulation on
mod_type=1;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule |
module testbed_hi_simulate;
reg pck0;
reg [7:0] adc_d;
reg mod_type;
wire pwr_lo;
wire adc_clk;
reg ck_1356meg;
reg ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
hi_simulate #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.mod_type(mod_type)
);
integer idx, i;
// main clock
always #5 begin
ck_1356megb = !ck_1356megb;
ck_1356meg = ck_1356megb;
end
always begin
@(negedge adc_clk) ;
adc_d = $random;
end
//crank DUT
task crank_dut;
begin
@(negedge ssp_clk) ;
ssp_dout = $random;
end
endtask
initial begin
// init inputs
ck_1356megb = 0;
// random values
adc_d = 0;
ssp_dout=1;
// shallow modulation off
mod_type=0;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
// shallow modulation on
mod_type=1;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule |
module testbed_hi_simulate;
reg pck0;
reg [7:0] adc_d;
reg mod_type;
wire pwr_lo;
wire adc_clk;
reg ck_1356meg;
reg ck_1356megb;
wire ssp_frame;
wire ssp_din;
wire ssp_clk;
reg ssp_dout;
wire pwr_hi;
wire pwr_oe1;
wire pwr_oe2;
wire pwr_oe3;
wire pwr_oe4;
wire cross_lo;
wire cross_hi;
wire dbg;
hi_simulate #(5,200) dut(
.pck0(pck0),
.ck_1356meg(ck_1356meg),
.ck_1356megb(ck_1356megb),
.pwr_lo(pwr_lo),
.pwr_hi(pwr_hi),
.pwr_oe1(pwr_oe1),
.pwr_oe2(pwr_oe2),
.pwr_oe3(pwr_oe3),
.pwr_oe4(pwr_oe4),
.adc_d(adc_d),
.adc_clk(adc_clk),
.ssp_frame(ssp_frame),
.ssp_din(ssp_din),
.ssp_dout(ssp_dout),
.ssp_clk(ssp_clk),
.cross_hi(cross_hi),
.cross_lo(cross_lo),
.dbg(dbg),
.mod_type(mod_type)
);
integer idx, i;
// main clock
always #5 begin
ck_1356megb = !ck_1356megb;
ck_1356meg = ck_1356megb;
end
always begin
@(negedge adc_clk) ;
adc_d = $random;
end
//crank DUT
task crank_dut;
begin
@(negedge ssp_clk) ;
ssp_dout = $random;
end
endtask
initial begin
// init inputs
ck_1356megb = 0;
// random values
adc_d = 0;
ssp_dout=1;
// shallow modulation off
mod_type=0;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
// shallow modulation on
mod_type=1;
for (i = 0 ; i < 16 ; i = i + 1) begin
crank_dut;
end
$finish;
end
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module processing_system7_v5_5_atc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6, spartan6 or later.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of checker.
// Range: >= 1.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of all ADDR signals on SI and MI side of checker.
// Range: 32.
parameter integer C_AXI_DATA_WIDTH = 64,
// Width of all DATA signals on SI and MI side of checker.
// Range: 64.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals.
// Range: >= 1.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals.
// Range: >= 1.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals.
// Range: >= 1.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals.
// Range: >= 1.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [4-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [2-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [4-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [2-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
output wire ERROR_TRIGGER,
output wire [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
localparam C_FIFO_DEPTH_LOG = 4;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Internal reset.
reg ARESET;
// AW->W command queue signals.
wire cmd_w_valid;
wire cmd_w_check;
wire [C_AXI_ID_WIDTH-1:0] cmd_w_id;
wire cmd_w_ready;
// W->B command queue signals.
wire cmd_b_push;
wire cmd_b_error;
wire [C_AXI_ID_WIDTH-1:0] cmd_b_id;
wire cmd_b_full;
wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr;
wire cmd_b_ready;
/////////////////////////////////////////////////////////////////////////////
// Handle Internal Reset
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
ARESET <= !ARESETN;
end
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
// Write Address Channel.
processing_system7_v5_5_aw_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_addr_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (Out)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AWID (S_AXI_AWID),
.S_AXI_AWADDR (S_AXI_AWADDR),
.S_AXI_AWLEN (S_AXI_AWLEN),
.S_AXI_AWSIZE (S_AXI_AWSIZE),
.S_AXI_AWBURST (S_AXI_AWBURST),
.S_AXI_AWLOCK (S_AXI_AWLOCK),
.S_AXI_AWCACHE (S_AXI_AWCACHE),
.S_AXI_AWPROT (S_AXI_AWPROT),
.S_AXI_AWUSER (S_AXI_AWUSER),
.S_AXI_AWVALID (S_AXI_AWVALID),
.S_AXI_AWREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AWID (M_AXI_AWID),
.M_AXI_AWADDR (M_AXI_AWADDR),
.M_AXI_AWLEN (M_AXI_AWLEN),
.M_AXI_AWSIZE (M_AXI_AWSIZE),
.M_AXI_AWBURST (M_AXI_AWBURST),
.M_AXI_AWLOCK (M_AXI_AWLOCK),
.M_AXI_AWCACHE (M_AXI_AWCACHE),
.M_AXI_AWPROT (M_AXI_AWPROT),
.M_AXI_AWUSER (M_AXI_AWUSER),
.M_AXI_AWVALID (M_AXI_AWVALID),
.M_AXI_AWREADY (M_AXI_AWREADY)
);
// Write Data channel.
processing_system7_v5_5_w_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH)
) write_data_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_w_valid (cmd_w_valid),
.cmd_w_check (cmd_w_check),
.cmd_w_id (cmd_w_id),
.cmd_w_ready (cmd_w_ready),
// Command Interface (Out)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
// Slave Interface Write Data Ports
.S_AXI_WID (S_AXI_WID),
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
// Write Response channel.
processing_system7_v5_5_b_atc #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_FIFO_DEPTH_LOG (C_FIFO_DEPTH_LOG)
) write_response_inst
(
// Global Signals
.ARESET (ARESET),
.ACLK (ACLK),
// Command Interface (In)
.cmd_b_push (cmd_b_push),
.cmd_b_error (cmd_b_error),
.cmd_b_id (cmd_b_id),
.cmd_b_full (cmd_b_full),
.cmd_b_addr (cmd_b_addr),
.cmd_b_ready (cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY),
// Trigger detection
.ERROR_TRIGGER (ERROR_TRIGGER),
.ERROR_TRANSACTION_ID (ERROR_TRANSACTION_ID)
);
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
// Read Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// Read Data Port
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
endmodule |
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule |
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule |
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule |
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule |
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule |
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule |
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule |
module altera_avalon_sc_fifo
#(
// --------------------------------------------------
// Parameters
// --------------------------------------------------
parameter SYMBOLS_PER_BEAT = 1,
parameter BITS_PER_SYMBOL = 8,
parameter FIFO_DEPTH = 16,
parameter CHANNEL_WIDTH = 0,
parameter ERROR_WIDTH = 0,
parameter USE_PACKETS = 0,
parameter USE_FILL_LEVEL = 0,
parameter USE_STORE_FORWARD = 0,
parameter USE_ALMOST_FULL_IF = 0,
parameter USE_ALMOST_EMPTY_IF = 0,
// --------------------------------------------------
// Empty latency is defined as the number of cycles
// required for a write to deassert the empty flag.
// For example, a latency of 1 means that the empty
// flag is deasserted on the cycle after a write.
//
// Another way to think of it is the latency for a
// write to propagate to the output.
//
// An empty latency of 0 implies lookahead, which is
// only implemented for the register-based FIFO.
// --------------------------------------------------
parameter EMPTY_LATENCY = 3,
parameter USE_MEMORY_BLOCKS = 1,
// --------------------------------------------------
// Internal Parameters
// --------------------------------------------------
parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
// --------------------------------------------------
// Ports
// --------------------------------------------------
input clk,
input reset,
input [DATA_WIDTH-1: 0] in_data,
input in_valid,
input in_startofpacket,
input in_endofpacket,
input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty,
input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error,
input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel,
output in_ready,
output [DATA_WIDTH-1 : 0] out_data,
output reg out_valid,
output out_startofpacket,
output out_endofpacket,
output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty,
output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error,
output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
input out_ready,
input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address,
input csr_write,
input csr_read,
input [31 : 0] csr_writedata,
output reg [31 : 0] csr_readdata,
output wire almost_full_data,
output wire almost_empty_data
);
// --------------------------------------------------
// Local Parameters
// --------------------------------------------------
localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH);
localparam DEPTH = FIFO_DEPTH;
localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ?
2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
// --------------------------------------------------
// Internal Signals
// --------------------------------------------------
genvar i;
reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
reg [ADDR_WIDTH-1 : 0] wr_ptr;
reg [ADDR_WIDTH-1 : 0] rd_ptr;
reg [DEPTH-1 : 0] mem_used;
wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
wire read;
wire write;
reg empty;
reg next_empty;
reg full;
reg next_full;
wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
wire [PAYLOAD_WIDTH-1 : 0] in_payload;
reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
reg [PAYLOAD_WIDTH-1 : 0] out_payload;
reg internal_out_valid;
wire internal_out_ready;
reg [ADDR_WIDTH : 0] fifo_fill_level;
reg [ADDR_WIDTH : 0] fill_level;
reg [ADDR_WIDTH-1 : 0] sop_ptr = 0;
wire [ADDR_WIDTH-1 : 0] curr_sop_ptr;
reg [23:0] almost_full_threshold;
reg [23:0] almost_empty_threshold;
reg [23:0] cut_through_threshold;
reg [15:0] pkt_cnt;
reg drop_on_error_en;
reg error_in_pkt;
reg pkt_has_started;
reg sop_has_left_fifo;
reg fifo_too_small_r;
reg pkt_cnt_eq_zero;
reg pkt_cnt_eq_one;
wire wait_for_threshold;
reg pkt_mode;
wire wait_for_pkt;
wire ok_to_forward;
wire in_pkt_eop_arrive;
wire out_pkt_leave;
wire in_pkt_start;
wire in_pkt_error;
wire drop_on_error;
wire fifo_too_small;
wire out_pkt_sop_leave;
wire [31:0] max_fifo_size;
reg fifo_fill_level_lt_cut_through_threshold;
// --------------------------------------------------
// Define Payload
//
// Icky part where we decide which signals form the
// payload to the FIFO with generate blocks.
// --------------------------------------------------
generate
if (EMPTY_WIDTH > 0) begin : gen_blk1
assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
end
else begin : gen_blk1_else
assign out_empty = in_error;
assign in_packet_signals = {in_startofpacket, in_endofpacket};
assign {out_startofpacket, out_endofpacket} = out_packet_signals;
end
endgenerate
generate
if (USE_PACKETS) begin : gen_blk2
if (ERROR_WIDTH > 0) begin : gen_blk3
if (CHANNEL_WIDTH > 0) begin : gen_blk4
assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk4_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data, in_error};
assign {out_packet_signals, out_data, out_error} = out_payload;
end
end
else begin : gen_blk3_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk5
assign in_payload = {in_packet_signals, in_data, in_channel};
assign {out_packet_signals, out_data, out_channel} = out_payload;
end
else begin : gen_blk5_else
assign out_channel = in_channel;
assign in_payload = {in_packet_signals, in_data};
assign {out_packet_signals, out_data} = out_payload;
end
end
end
else begin : gen_blk2_else
assign out_packet_signals = 0;
if (ERROR_WIDTH > 0) begin : gen_blk6
if (CHANNEL_WIDTH > 0) begin : gen_blk7
assign in_payload = {in_data, in_error, in_channel};
assign {out_data, out_error, out_channel} = out_payload;
end
else begin : gen_blk7_else
assign out_channel = in_channel;
assign in_payload = {in_data, in_error};
assign {out_data, out_error} = out_payload;
end
end
else begin : gen_blk6_else
assign out_error = in_error;
if (CHANNEL_WIDTH > 0) begin : gen_blk8
assign in_payload = {in_data, in_channel};
assign {out_data, out_channel} = out_payload;
end
else begin : gen_blk8_else
assign out_channel = in_channel;
assign in_payload = in_data;
assign out_data = out_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Memory-based FIFO storage
//
// To allow a ready latency of 0, the read index is
// obtained from the next read pointer and memory
// outputs are unregistered.
//
// If the empty latency is 1, we infer bypass logic
// around the memory so writes propagate to the
// outputs on the next cycle.
//
// Do not change the way this is coded: Quartus needs
// a perfect match to the template, and any attempt to
// refactor the two always blocks into one will break
// memory inference.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9
if (EMPTY_LATENCY == 1) begin : gen_blk10
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] = in_payload;
internal_out_payload = mem[mem_rd_ptr];
end
end else begin : gen_blk10_else
always @(posedge clk) begin
if (in_valid && in_ready)
mem[wr_ptr] <= in_payload;
internal_out_payload <= mem[mem_rd_ptr];
end
end
assign mem_rd_ptr = next_rd_ptr;
end else begin : gen_blk9_else
// --------------------------------------------------
// Register-based FIFO storage
//
// Uses a shift register as the storage element. Each
// shift register slot has a bit which indicates if
// the slot is occupied (credit to Sam H for the idea).
// The occupancy bits are contiguous and start from the
// lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
// FIFO.
//
// Each slot is enabled during a read or when it
// is unoccupied. New data is always written to every
// going-to-be-empty slot (we keep track of which ones
// are actually useful with the occupancy bits). On a
// read we shift occupied slots.
//
// The exception is the last slot, which always gets
// new data when it is unoccupied.
// --------------------------------------------------
for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
always @(posedge clk or posedge reset) begin
if (reset) begin
mem[i] <= 0;
end
else if (read || !mem_used[i]) begin
if (!mem_used[i+1])
mem[i] <= in_payload;
else
mem[i] <= mem[i+1];
end
end
end
always @(posedge clk, posedge reset) begin
if (reset) begin
mem[DEPTH-1] <= 0;
end
else begin
if (DEPTH == 1) begin
if (write)
mem[DEPTH-1] <= in_payload;
end
else if (!mem_used[DEPTH-1])
mem[DEPTH-1] <= in_payload;
end
end
end
endgenerate
assign read = internal_out_ready && internal_out_valid && ok_to_forward;
assign write = in_ready && in_valid;
// --------------------------------------------------
// Pointer Management
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
assign incremented_wr_ptr = wr_ptr + 1'b1;
assign incremented_rd_ptr = rd_ptr + 1'b1;
assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr;
assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
always @(posedge clk or posedge reset) begin
if (reset) begin
wr_ptr <= 0;
rd_ptr <= 0;
end
else begin
wr_ptr <= next_wr_ptr;
rd_ptr <= next_rd_ptr;
end
end
end else begin : gen_blk11_else
// --------------------------------------------------
// Shift Register Occupancy Bits
//
// Consider a 4-deep FIFO with 2 entries: 0011
// On a read and write, do not modify the bits.
// On a write, left-shift the bits to get 0111.
// On a read, right-shift the bits to get 0001.
//
// Also, on a write we set bit0 (the head), while
// clearing the tail on a read.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[0] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[0] <= 1;
else if (read) begin
if (DEPTH > 1)
mem_used[0] <= mem_used[1];
else
mem_used[0] <= 0;
end
end
end
end
if (DEPTH > 1) begin : gen_blk12
always @(posedge clk or posedge reset) begin
if (reset) begin
mem_used[DEPTH-1] <= 0;
end
else begin
if (write ^ read) begin
mem_used[DEPTH-1] <= 0;
if (write)
mem_used[DEPTH-1] <= mem_used[DEPTH-2];
end
end
end
end
for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
always @(posedge clk, posedge reset) begin
if (reset) begin
mem_used[i] <= 0;
end
else begin
if (write ^ read) begin
if (write)
mem_used[i] <= mem_used[i-1];
else if (read)
mem_used[i] <= mem_used[i+1];
end
end
end
end
end
endgenerate
// --------------------------------------------------
// Memory FIFO Status Management
//
// Generates the full and empty signals from the
// pointers. The FIFO is full when the next write
// pointer will be equal to the read pointer after
// a write. Reading from a FIFO clears full.
//
// The FIFO is empty when the next read pointer will
// be equal to the write pointer after a read. Writing
// to a FIFO clears empty.
//
// A simultaneous read and write must not change any of
// the empty or full flags unless there is a drop on error event.
// --------------------------------------------------
generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
always @* begin
next_full = full;
next_empty = empty;
if (read && !write) begin
next_full = 1'b0;
if (incremented_rd_ptr == wr_ptr)
next_empty = 1'b1;
end
if (write && !read) begin
if (!drop_on_error)
next_empty = 1'b0;
else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo
next_empty = 1'b1;
if (incremented_wr_ptr == rd_ptr && !drop_on_error)
next_full = 1'b1;
end
if (write && read && drop_on_error) begin
if (curr_sop_ptr == next_rd_ptr)
next_empty = 1'b1;
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
empty <= 1;
full <= 0;
end
else begin
empty <= next_empty;
full <= next_full;
end
end
end else begin : gen_blk13_else
// --------------------------------------------------
// Register FIFO Status Management
//
// Full when the tail occupancy bit is 1. Empty when
// the head occupancy bit is 0.
// --------------------------------------------------
always @* begin
full = mem_used[DEPTH-1];
empty = !mem_used[0];
// ------------------------------------------
// For a single slot FIFO, reading clears the
// full status immediately.
// ------------------------------------------
if (DEPTH == 1)
full = mem_used[0] && !read;
internal_out_payload = mem[0];
// ------------------------------------------
// Writes clear empty immediately for lookahead modes.
// Note that we use in_valid instead of write to avoid
// combinational loops (in lookahead mode, qualifying
// with in_ready is meaningless).
//
// In a 1-deep FIFO, a possible combinational loop runs
// from write -> out_valid -> out_ready -> write
// ------------------------------------------
if (EMPTY_LATENCY == 0) begin
empty = !mem_used[0] && !in_valid;
if (!mem_used[0] && in_valid)
internal_out_payload = in_payload;
end
end
end
endgenerate
// --------------------------------------------------
// Avalon-ST Signals
//
// The in_ready signal is straightforward.
//
// To match memory latency when empty latency > 1,
// out_valid assertions must be delayed by one clock
// cycle.
//
// Note: out_valid deassertions must not be delayed or
// the FIFO will underflow.
// --------------------------------------------------
assign in_ready = !full;
assign internal_out_ready = out_ready || !out_valid;
generate if (EMPTY_LATENCY > 1) begin : gen_blk14
always @(posedge clk or posedge reset) begin
if (reset)
internal_out_valid <= 0;
else begin
internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
if (read) begin
if (incremented_rd_ptr == wr_ptr)
internal_out_valid <= 1'b0;
end
end
end
end else begin : gen_blk14_else
always @* begin
internal_out_valid = !empty & ok_to_forward;
end
end
endgenerate
// --------------------------------------------------
// Single Output Pipeline Stage
//
// This output pipeline stage is enabled if the FIFO's
// empty latency is set to 3 (default). It is disabled
// for all other allowed latencies.
//
// Reason: The memory outputs are unregistered, so we have to
// register the output or fmax will drop if combinatorial
// logic is present on the output datapath.
//
// Q: The Avalon-ST spec says that I have to register my outputs
// But isn't the memory counted as a register?
// A: The path from the address lookup to the memory output is
// slow. Registering the memory outputs is a good idea.
//
// The registers get packed into the memory by the fitter
// which means minimal resources are consumed (the result
// is a altsyncram with registered outputs, available on
// all modern Altera devices).
//
// This output stage acts as an extra slot in the FIFO,
// and complicates the fill level.
// --------------------------------------------------
generate if (EMPTY_LATENCY == 3) begin : gen_blk15
always @(posedge clk or posedge reset) begin
if (reset) begin
out_valid <= 0;
out_payload <= 0;
end
else begin
if (internal_out_ready) begin
out_valid <= internal_out_valid & ok_to_forward;
out_payload <= internal_out_payload;
end
end
end
end
else begin : gen_blk15_else
always @* begin
out_valid = internal_out_valid;
out_payload = internal_out_payload;
end
end
endgenerate
// --------------------------------------------------
// Fill Level
//
// The fill level is calculated from the next write
// and read pointers to avoid unnecessary latency
// and logic.
//
// However, if the store-and-forward mode of the FIFO
// is enabled, the fill level is an up-down counter
// for fmax optimization reasons.
//
// If the output pipeline is enabled, the fill level
// must account for it, or we'll always be off by one.
// This may, or may not be important depending on the
// application.
//
// For now, we'll always calculate the exact fill level
// at the cost of an extra adder when the output stage
// is enabled.
// --------------------------------------------------
generate if (USE_FILL_LEVEL) begin : gen_blk16
wire [31:0] depth32;
assign depth32 = DEPTH;
if (USE_STORE_FORWARD) begin
reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
// --------------------------------------------------
// We only drop on endofpacket. As long as we don't add to the fill
// level on the dropped endofpacket cycle, we can simply subtract
// (packet length - 1) from the fill level for dropped packets.
// --------------------------------------------------
always @(posedge clk or posedge reset) begin
if (reset) begin
curr_packet_len_less_one <= 0;
end else begin
if (write) begin
curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
if (in_endofpacket)
curr_packet_len_less_one <= 0;
end
end
end
always @(posedge clk or posedge reset) begin
if (reset) begin
fifo_fill_level <= 0;
end else if (drop_on_error) begin
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
if (read)
fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
end else if (write && !read) begin
fifo_fill_level <= fifo_fill_level + 1'b1;
end else if (read && !write) begin
fifo_fill_level <= fifo_fill_level - 1'b1;
end
end
end else begin
always @(posedge clk or posedge reset) begin
if (reset)
fifo_fill_level <= 0;
else if (next_full & !drop_on_error)
fifo_fill_level <= depth32[ADDR_WIDTH:0];
else begin
fifo_fill_level[ADDR_WIDTH] <= 1'b0;
fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
end
end
end
always @* begin
fill_level = fifo_fill_level;
if (EMPTY_LATENCY == 3)
fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
end
end
else begin : gen_blk16_else
always @* begin
fill_level = 0;
end
end
endgenerate
generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
assign almost_full_data = (fill_level >= almost_full_threshold);
end
else
assign almost_full_data = 0;
endgenerate
generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
assign almost_empty_data = (fill_level <= almost_empty_threshold);
end
else
assign almost_empty_data = 0;
endgenerate
// --------------------------------------------------
// Avalon-MM Status & Control Connection Point
//
// Register map:
//
// | Addr | RW | 31 - 0 |
// | 0 | R | Fill level |
//
// The registering of this connection point means
// that there is a cycle of latency between
// reads/writes and the updating of the fill level.
// --------------------------------------------------
generate if (USE_STORE_FORWARD) begin : gen_blk19
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
cut_through_threshold <= 0;
drop_on_error_en <= 0;
csr_readdata <= 0;
pkt_mode <= 1'b1;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 5)
csr_readdata <= {31'b0, drop_on_error_en};
else if (csr_address == 4)
csr_readdata <= {8'b0, cut_through_threshold};
else if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b101)
drop_on_error_en <= csr_writedata[0];
else if(csr_address == 3'b100) begin
cut_through_threshold <= csr_writedata[23:0];
pkt_mode <= (csr_writedata[23:0] == 0);
end
else if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
assign max_fifo_size = FIFO_DEPTH - 1;
always @(posedge clk or posedge reset) begin
if (reset) begin
almost_full_threshold <= max_fifo_size[23 : 0];
almost_empty_threshold <= 0;
csr_readdata <= 0;
end
else begin
if (csr_read) begin
csr_readdata <= 32'b0;
if (csr_address == 3)
csr_readdata <= {8'b0, almost_empty_threshold};
else if (csr_address == 2)
csr_readdata <= {8'b0, almost_full_threshold};
else if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
else if (csr_write) begin
if(csr_address == 3'b011)
almost_empty_threshold <= csr_writedata[23:0];
else if(csr_address == 3'b010)
almost_full_threshold <= csr_writedata[23:0];
end
end
end
end
else begin : gen_blk19_else2
always @(posedge clk or posedge reset) begin
if (reset) begin
csr_readdata <= 0;
end
else if (csr_read) begin
csr_readdata <= 0;
if (csr_address == 0)
csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
end
end
end
endgenerate
// --------------------------------------------------
// Store and forward logic
// --------------------------------------------------
// if the fifo gets full before the entire packet or the
// cut-threshold condition is met then start sending out
// data in order to avoid dead-lock situation
generate if (USE_STORE_FORWARD) begin : gen_blk20
assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave);
assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) :
~wait_for_threshold) | fifo_too_small_r;
assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket;
assign in_pkt_start = in_valid & in_ready & in_startofpacket;
assign in_pkt_error = in_valid & in_ready & |in_error;
assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket;
assign out_pkt_leave = out_valid & out_ready & out_endofpacket;
assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
// count packets coming and going into the fifo
always @(posedge clk or posedge reset) begin
if (reset) begin
pkt_cnt <= 0;
pkt_has_started <= 0;
sop_has_left_fifo <= 0;
fifo_too_small_r <= 0;
pkt_cnt_eq_zero <= 1'b1;
pkt_cnt_eq_one <= 1'b0;
fifo_fill_level_lt_cut_through_threshold <= 1'b1;
end
else begin
fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
fifo_too_small_r <= fifo_too_small;
if( in_pkt_eop_arrive )
sop_has_left_fifo <= 1'b0;
else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
sop_has_left_fifo <= 1'b1;
if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
pkt_cnt <= pkt_cnt + 1'b1;
pkt_cnt_eq_zero <= 0;
if (pkt_cnt == 0)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
pkt_cnt <= pkt_cnt - 1'b1;
if (pkt_cnt == 1)
pkt_cnt_eq_zero <= 1'b1;
else
pkt_cnt_eq_zero <= 1'b0;
if (pkt_cnt == 2)
pkt_cnt_eq_one <= 1'b1;
else
pkt_cnt_eq_one <= 1'b0;
end
if (in_pkt_start)
pkt_has_started <= 1'b1;
else if (in_pkt_eop_arrive)
pkt_has_started <= 1'b0;
end
end
// drop on error logic
always @(posedge clk or posedge reset) begin
if (reset) begin
sop_ptr <= 0;
error_in_pkt <= 0;
end
else begin
// save the location of the SOP
if ( in_pkt_start )
sop_ptr <= wr_ptr;
// remember if error in pkt
// log error only if packet has already started
if (in_pkt_eop_arrive)
error_in_pkt <= 1'b0;
else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
error_in_pkt <= 1'b1;
end
end
assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive &
~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
end
else begin : gen_blk20_else
assign ok_to_forward = 1'b1;
assign drop_on_error = 1'b0;
if (ADDR_WIDTH <= 1)
assign curr_sop_ptr = 1'b0;
else
assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
end
endgenerate
// --------------------------------------------------
// Calculates the log2ceil of the input value
// --------------------------------------------------
function integer log2ceil;
input integer val;
reg[31:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i[30:0] << 1;
end
end
endfunction
endmodule |
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule |
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule |
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule |
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule |
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule |
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule |
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule |
module e1 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule |
module ch (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = z ^ (x & (y ^ z));
endmodule |
module maj (x, y, z, o);
input [31:0] x, y, z;
output [31:0] o;
assign o = (x & y) | (z & (x | y));
endmodule |
module s0 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:29] = x[6:4] ^ x[17:15];
assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule |
module s1 (x, y);
input [31:0] x;
output [31:0] y;
assign y[31:22] = x[16:7] ^ x[18:9];
assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule |
module e0 (x, y);
input [31:0] x;
output [31:0] y;
assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.