module_content
stringlengths
18
1.05M
module altera_reset_controller #( parameter NUM_RESET_INPUTS = 6, parameter USE_RESET_REQUEST_IN0 = 0, parameter USE_RESET_REQUEST_IN1 = 0, parameter USE_RESET_REQUEST_IN2 = 0, parameter USE_RESET_REQUEST_IN3 = 0, parameter USE_RESET_REQUEST_IN4 = 0, parameter USE_RESET_REQUEST_IN5 = 0, parameter USE_RESET_REQUEST_IN6 = 0, parameter USE_RESET_REQUEST_IN7 = 0, parameter USE_RESET_REQUEST_IN8 = 0, parameter USE_RESET_REQUEST_IN9 = 0, parameter USE_RESET_REQUEST_IN10 = 0, parameter USE_RESET_REQUEST_IN11 = 0, parameter USE_RESET_REQUEST_IN12 = 0, parameter USE_RESET_REQUEST_IN13 = 0, parameter USE_RESET_REQUEST_IN14 = 0, parameter USE_RESET_REQUEST_IN15 = 0, parameter OUTPUT_RESET_SYNC_EDGES = "deassert", parameter SYNC_DEPTH = 2, parameter RESET_REQUEST_PRESENT = 0, parameter RESET_REQ_WAIT_TIME = 3, parameter MIN_RST_ASSERTION_TIME = 11, parameter RESET_REQ_EARLY_DSRT_TIME = 4, parameter ADAPT_RESET_REQUEST = 0 ) ( // -------------------------------------- // We support up to 16 reset inputs, for now // -------------------------------------- input reset_in0, input reset_in1, input reset_in2, input reset_in3, input reset_in4, input reset_in5, input reset_in6, input reset_in7, input reset_in8, input reset_in9, input reset_in10, input reset_in11, input reset_in12, input reset_in13, input reset_in14, input reset_in15, input reset_req_in0, input reset_req_in1, input reset_req_in2, input reset_req_in3, input reset_req_in4, input reset_req_in5, input reset_req_in6, input reset_req_in7, input reset_req_in8, input reset_req_in9, input reset_req_in10, input reset_req_in11, input reset_req_in12, input reset_req_in13, input reset_req_in14, input reset_req_in15, input clk, output reg reset_out, output reg reset_req ); // Always use async reset synchronizer if reset_req is used localparam ASYNC_RESET = (OUTPUT_RESET_SYNC_EDGES == "deassert"); // -------------------------------------- // Local parameter to control the reset_req and reset_out timing when RESET_REQUEST_PRESENT==1 // -------------------------------------- localparam MIN_METASTABLE = 3; localparam RSTREQ_ASRT_SYNC_TAP = MIN_METASTABLE + RESET_REQ_WAIT_TIME; localparam LARGER = RESET_REQ_WAIT_TIME > RESET_REQ_EARLY_DSRT_TIME ? RESET_REQ_WAIT_TIME : RESET_REQ_EARLY_DSRT_TIME; localparam ASSERTION_CHAIN_LENGTH = (MIN_METASTABLE > LARGER) ? MIN_RST_ASSERTION_TIME + 1 : ( (MIN_RST_ASSERTION_TIME > LARGER)? MIN_RST_ASSERTION_TIME + (LARGER - MIN_METASTABLE + 1) + 1 : MIN_RST_ASSERTION_TIME + RESET_REQ_EARLY_DSRT_TIME + RESET_REQ_WAIT_TIME - MIN_METASTABLE + 2 ); localparam RESET_REQ_DRST_TAP = RESET_REQ_EARLY_DSRT_TIME + 1; // -------------------------------------- wire merged_reset; wire merged_reset_req_in; wire reset_out_pre; wire reset_req_pre; // Registers and Interconnect (*preserve*) reg [RSTREQ_ASRT_SYNC_TAP: 0] altera_reset_synchronizer_int_chain; reg [ASSERTION_CHAIN_LENGTH-1: 0] r_sync_rst_chain; reg r_sync_rst; reg r_early_rst; // -------------------------------------- // "Or" all the input resets together // -------------------------------------- assign merged_reset = ( reset_in0 | reset_in1 | reset_in2 | reset_in3 | reset_in4 | reset_in5 | reset_in6 | reset_in7 | reset_in8 | reset_in9 | reset_in10 | reset_in11 | reset_in12 | reset_in13 | reset_in14 | reset_in15 ); assign merged_reset_req_in = ( ( (USE_RESET_REQUEST_IN0 == 1) ? reset_req_in0 : 1'b0) | ( (USE_RESET_REQUEST_IN1 == 1) ? reset_req_in1 : 1'b0) | ( (USE_RESET_REQUEST_IN2 == 1) ? reset_req_in2 : 1'b0) | ( (USE_RESET_REQUEST_IN3 == 1) ? reset_req_in3 : 1'b0) | ( (USE_RESET_REQUEST_IN4 == 1) ? reset_req_in4 : 1'b0) | ( (USE_RESET_REQUEST_IN5 == 1) ? reset_req_in5 : 1'b0) | ( (USE_RESET_REQUEST_IN6 == 1) ? reset_req_in6 : 1'b0) | ( (USE_RESET_REQUEST_IN7 == 1) ? reset_req_in7 : 1'b0) | ( (USE_RESET_REQUEST_IN8 == 1) ? reset_req_in8 : 1'b0) | ( (USE_RESET_REQUEST_IN9 == 1) ? reset_req_in9 : 1'b0) | ( (USE_RESET_REQUEST_IN10 == 1) ? reset_req_in10 : 1'b0) | ( (USE_RESET_REQUEST_IN11 == 1) ? reset_req_in11 : 1'b0) | ( (USE_RESET_REQUEST_IN12 == 1) ? reset_req_in12 : 1'b0) | ( (USE_RESET_REQUEST_IN13 == 1) ? reset_req_in13 : 1'b0) | ( (USE_RESET_REQUEST_IN14 == 1) ? reset_req_in14 : 1'b0) | ( (USE_RESET_REQUEST_IN15 == 1) ? reset_req_in15 : 1'b0) ); // -------------------------------------- // And if required, synchronize it to the required clock domain, // with the correct synchronization type // -------------------------------------- generate if (OUTPUT_RESET_SYNC_EDGES == "none" && (RESET_REQUEST_PRESENT==0)) begin assign reset_out_pre = merged_reset; assign reset_req_pre = merged_reset_req_in; end else begin altera_reset_synchronizer #( .DEPTH (SYNC_DEPTH), .ASYNC_RESET(RESET_REQUEST_PRESENT? 1'b1 : ASYNC_RESET) ) alt_rst_sync_uq1 ( .clk (clk), .reset_in (merged_reset), .reset_out (reset_out_pre) ); altera_reset_synchronizer #( .DEPTH (SYNC_DEPTH), .ASYNC_RESET(0) ) alt_rst_req_sync_uq1 ( .clk (clk), .reset_in (merged_reset_req_in), .reset_out (reset_req_pre) ); end endgenerate generate if ( ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==0) )| ( (ADAPT_RESET_REQUEST == 1) && (OUTPUT_RESET_SYNC_EDGES != "deassert") ) ) begin always @* begin reset_out = reset_out_pre; reset_req = reset_req_pre; end end else if ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==1) ) begin wire reset_out_pre2; altera_reset_synchronizer #( .DEPTH (SYNC_DEPTH+1), .ASYNC_RESET(0) ) alt_rst_sync_uq2 ( .clk (clk), .reset_in (reset_out_pre), .reset_out (reset_out_pre2) ); always @* begin reset_out = reset_out_pre2; reset_req = reset_req_pre; end end else begin // 3-FF Metastability Synchronizer initial begin altera_reset_synchronizer_int_chain <= {RSTREQ_ASRT_SYNC_TAP{1'b1}}; end always @(posedge clk) begin altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP:0] <= {altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP-1:0], reset_out_pre}; end // Synchronous reset pipe initial begin r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}}; end always @(posedge clk) begin if (altera_reset_synchronizer_int_chain[MIN_METASTABLE-1] == 1'b1) begin r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}}; end else begin r_sync_rst_chain <= {1'b0, r_sync_rst_chain[ASSERTION_CHAIN_LENGTH-1:1]}; end end // Standard synchronous reset output. From 0-1, the transition lags the early output. For 1->0, the transition // matches the early input. always @(posedge clk) begin case ({altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP], r_sync_rst_chain[1], r_sync_rst}) 3'b000: r_sync_rst <= 1'b0; // Not reset 3'b001: r_sync_rst <= 1'b0; 3'b010: r_sync_rst <= 1'b0; 3'b011: r_sync_rst <= 1'b1; 3'b100: r_sync_rst <= 1'b1; 3'b101: r_sync_rst <= 1'b1; 3'b110: r_sync_rst <= 1'b1; 3'b111: r_sync_rst <= 1'b1; // In Reset default: r_sync_rst <= 1'b1; endcase case ({r_sync_rst_chain[1], r_sync_rst_chain[RESET_REQ_DRST_TAP] | reset_req_pre}) 2'b00: r_early_rst <= 1'b0; // Not reset 2'b01: r_early_rst <= 1'b1; // Coming out of reset 2'b10: r_early_rst <= 1'b0; // Spurious reset - should not be possible via synchronous design. 2'b11: r_early_rst <= 1'b1; // Held in reset default: r_early_rst <= 1'b1; endcase end always @* begin reset_out = r_sync_rst; reset_req = r_early_rst; end end endgenerate endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module dyn_pll # (parameter SPEED_MHZ = 25 ) (CLKIN_IN, CLKFX1_OUT, CLKFX2_OUT, CLKDV_OUT, DCM_SP_LOCKED_OUT, dcm_progclk, dcm_progdata, dcm_progen, dcm_reset, dcm_progdone, dcm_locked, dcm_status); input CLKIN_IN; wire CLKIN_IBUFG_OUT; wire CLK0_OUT; output CLKFX1_OUT; output CLKFX2_OUT; output CLKDV_OUT; output DCM_SP_LOCKED_OUT; input dcm_progclk; input dcm_progdata; input dcm_progen; input dcm_reset; output dcm_progdone; output dcm_locked; output [2:1] dcm_status; wire CLKFB_IN; wire CLKIN_IBUFG; wire CLK0_BUF; wire CLKFX1_BUF; wire CLKFX2_BUF; wire CLKDV_BUF; wire GND_BIT; wire dcm_progclk_buf; assign GND_BIT = 0; assign CLKIN_IBUFG_OUT = CLKIN_IBUFG; assign CLK0_OUT = CLKFB_IN; IBUFG CLKIN_IBUFG_INST (.I(CLKIN_IN), .O(CLKIN_IBUFG)); BUFG CLK0_BUFG_INST (.I(CLK0_BUF), .O(CLKFB_IN)); BUFG CLKFX1_BUFG_INST (.I(CLKFX1_BUF), .O(CLKFX1_OUT)); BUFG CLKFX2_BUFG_INST (.I(CLKFX2_BUF), .O(CLKFX2_OUT)); BUFG CLKDV_BUFG_INST (.I(CLKDV_BUF), .O(CLKDV_OUT)); BUFG DCMPROGCLK_BUFG_INST (.I(dcm_progclk), .O(dcm_progclk_buf)); // 100 MHZ osc gives fixed 50MHz CLKFX1, 12.5MHZ CLKDV DCM_SP #( .CLK_FEEDBACK("1X"), .CLKDV_DIVIDE(8.0), .CLKFX_DIVIDE(8), .CLKFX_MULTIPLY(4), .CLKIN_DIVIDE_BY_2("FALSE"), .CLKIN_PERIOD(10.000), .CLKOUT_PHASE_SHIFT("NONE"), .DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), .DFS_FREQUENCY_MODE("LOW"), .DLL_FREQUENCY_MODE("LOW"), .DUTY_CYCLE_CORRECTION("TRUE"), .FACTORY_JF(16'hC080), .PHASE_SHIFT(0), .STARTUP_WAIT("FALSE") ) DCM_SP_INST (.CLKFB(CLKFB_IN), .CLKIN(CLKIN_IBUFG), .DSSEN(GND_BIT), .PSCLK(GND_BIT), .PSEN(GND_BIT), .PSINCDEC(GND_BIT), .RST(GND_BIT), .CLKDV(CLKDV_BUF), .CLKFX(CLKFX1_BUF), .CLKFX180(), .CLK0(CLK0_BUF), .CLK2X(), .CLK2X180(), .CLK90(), .CLK180(), .CLK270(), .LOCKED(DCM_SP_LOCKED_OUT), .PSDONE(), .STATUS()); DCM_CLKGEN #( .CLKFX_DIVIDE(100), // 100Mhz osc so gives steps of 1MHz .CLKFX_MULTIPLY(SPEED_MHZ), .CLKFXDV_DIVIDE(2), // Unused .CLKIN_PERIOD(10.0), .CLKFX_MD_MAX(0.000), .SPREAD_SPECTRUM("NONE"), .STARTUP_WAIT("FALSE") ) DCM_CLKGEN_INST ( .CLKIN(CLKIN_IBUFG), .CLKFX(CLKFX2_BUF), .FREEZEDCM(1'b0), .PROGCLK(dcm_progclk_buf), .PROGDATA(dcm_progdata), .PROGEN(dcm_progen), .PROGDONE(dcm_progdone), .LOCKED(dcm_locked), .STATUS(dcm_status), .RST(dcm_reset) ); endmodule
module dyn_pll # (parameter SPEED_MHZ = 25 ) (CLKIN_IN, CLKFX1_OUT, CLKFX2_OUT, CLKDV_OUT, DCM_SP_LOCKED_OUT, dcm_progclk, dcm_progdata, dcm_progen, dcm_reset, dcm_progdone, dcm_locked, dcm_status); input CLKIN_IN; wire CLKIN_IBUFG_OUT; wire CLK0_OUT; output CLKFX1_OUT; output CLKFX2_OUT; output CLKDV_OUT; output DCM_SP_LOCKED_OUT; input dcm_progclk; input dcm_progdata; input dcm_progen; input dcm_reset; output dcm_progdone; output dcm_locked; output [2:1] dcm_status; wire CLKFB_IN; wire CLKIN_IBUFG; wire CLK0_BUF; wire CLKFX1_BUF; wire CLKFX2_BUF; wire CLKDV_BUF; wire GND_BIT; wire dcm_progclk_buf; assign GND_BIT = 0; assign CLKIN_IBUFG_OUT = CLKIN_IBUFG; assign CLK0_OUT = CLKFB_IN; IBUFG CLKIN_IBUFG_INST (.I(CLKIN_IN), .O(CLKIN_IBUFG)); BUFG CLK0_BUFG_INST (.I(CLK0_BUF), .O(CLKFB_IN)); BUFG CLKFX1_BUFG_INST (.I(CLKFX1_BUF), .O(CLKFX1_OUT)); BUFG CLKFX2_BUFG_INST (.I(CLKFX2_BUF), .O(CLKFX2_OUT)); BUFG CLKDV_BUFG_INST (.I(CLKDV_BUF), .O(CLKDV_OUT)); BUFG DCMPROGCLK_BUFG_INST (.I(dcm_progclk), .O(dcm_progclk_buf)); // 100 MHZ osc gives fixed 50MHz CLKFX1, 12.5MHZ CLKDV DCM_SP #( .CLK_FEEDBACK("1X"), .CLKDV_DIVIDE(8.0), .CLKFX_DIVIDE(8), .CLKFX_MULTIPLY(4), .CLKIN_DIVIDE_BY_2("FALSE"), .CLKIN_PERIOD(10.000), .CLKOUT_PHASE_SHIFT("NONE"), .DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), .DFS_FREQUENCY_MODE("LOW"), .DLL_FREQUENCY_MODE("LOW"), .DUTY_CYCLE_CORRECTION("TRUE"), .FACTORY_JF(16'hC080), .PHASE_SHIFT(0), .STARTUP_WAIT("FALSE") ) DCM_SP_INST (.CLKFB(CLKFB_IN), .CLKIN(CLKIN_IBUFG), .DSSEN(GND_BIT), .PSCLK(GND_BIT), .PSEN(GND_BIT), .PSINCDEC(GND_BIT), .RST(GND_BIT), .CLKDV(CLKDV_BUF), .CLKFX(CLKFX1_BUF), .CLKFX180(), .CLK0(CLK0_BUF), .CLK2X(), .CLK2X180(), .CLK90(), .CLK180(), .CLK270(), .LOCKED(DCM_SP_LOCKED_OUT), .PSDONE(), .STATUS()); DCM_CLKGEN #( .CLKFX_DIVIDE(100), // 100Mhz osc so gives steps of 1MHz .CLKFX_MULTIPLY(SPEED_MHZ), .CLKFXDV_DIVIDE(2), // Unused .CLKIN_PERIOD(10.0), .CLKFX_MD_MAX(0.000), .SPREAD_SPECTRUM("NONE"), .STARTUP_WAIT("FALSE") ) DCM_CLKGEN_INST ( .CLKIN(CLKIN_IBUFG), .CLKFX(CLKFX2_BUF), .FREEZEDCM(1'b0), .PROGCLK(dcm_progclk_buf), .PROGDATA(dcm_progdata), .PROGEN(dcm_progen), .PROGDONE(dcm_progdone), .LOCKED(dcm_locked), .STATUS(dcm_status), .RST(dcm_reset) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module LZD#(parameter SWR=26, parameter EWR=5)( //#(parameter SWR=55, parameter EWR=6)( input wire clk, input wire rst, input wire load_i, input wire [SWR-1:0] Add_subt_result_i, /////////////////////////////////////////////7 output wire [EWR-1:0] Shift_Value_o ); wire [EWR-1:0] Codec_to_Reg; generate case (SWR) 26:begin Priority_Codec_32 Codec_32( .Data_Dec_i(Add_subt_result_i), .Data_Bin_o(Codec_to_Reg) ); end 55:begin Priority_Codec_64 Codec_64( .Data_Dec_i(Add_subt_result_i), .Data_Bin_o(Codec_to_Reg) ); end endcase endgenerate RegisterAdd #(.W(EWR)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Codec_to_Reg), .Q(Shift_Value_o) ); endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module wdt(clk, ena, cnt, out); input clk, ena, cnt; output out; reg [6:0] timer; wire timer_top = (timer == 7'd127); reg internal_enable; wire out = internal_enable && timer_top; always @(posedge clk) begin if(ena) begin internal_enable <= 1; timer <= 0; end else if(cnt && !timer_top) timer <= timer + 7'd1; end endmodule
module wire [W-1:0] intDX; //Output of register DATA_X wire [W-1:0] intDY; //Output of register DATA_Y wire intAS; //Output of register add_subt wire gtXY; //Output for magntiude_comparator (X>Y) wire eqXY; //Output for magntiude_comparator (X=Y) wire [W-2:0] intM; //Output of MuxXY for bigger value wire [W-2:0] intm; //Output of MuxXY for small value /////////////////////////////////////////////////////////////////// RegisterAdd #(.W(W)) XRegister ( //Data X input register .clk(clk), .rst(rst), .load(load_a_i), .D(Data_X_i), .Q(intDX) ); RegisterAdd #(.W(W)) YRegister ( //Data Y input register .clk(clk), .rst(rst), .load(load_a_i), .D(Data_Y_i), .Q(intDY) ); RegisterAdd #(.W(1)) ASRegister ( //Data Add_Subtract input register .clk(clk), .rst(rst), .load(load_a_i), .D(add_subt_i), .Q(intAS) ); Comparator #(.W(W-1)) Magnitude_Comparator ( //Compare between magnitude for DATA_X and DATA_Y and select whos bigger and if there's a equality .Data_X_i(intDX[W-2:0]), .Data_Y_i(intDY[W-2:0]), .gtXY_o(gtXY), .eqXY_o(eqXY) ); xor_tri #(.W(W)) Op_verification ( //Operation between the DATA_X & Y's sign bit and the operation bit to find the real operation for ADDER/SUBTRACT .A_i(intDX[W-1]), .B_i(intDY[W-1]), .C_i(intAS), .Z_o(real_op_o) ); sgn_result result_sign_bit (//Calculate the sign bit for the final result .Add_Subt_i(intAS), .sgn_X_i(intDX[W-1]), .sgn_Y_i(intDY[W-1]), .gtXY_i(gtXY), .eqXY_i(eqXY), .sgn_result_o(sign_result) ); MultiplexTxT #(.W(W-1)) MuxXY (//Classify in the registers the bigger value (M) and the smaller value (m) .select(gtXY), .D0_i(intDX[W-2:0]), .D1_i(intDY[W-2:0]), .S0_o(intM), .S1_o(intm) ); RegisterAdd #(.W(W-1)) MRegister ( //Data_M register .clk(clk), .rst(rst), .load(load_b_i), .D(intM), .Q(DMP_o) ); RegisterAdd #(.W(W-1)) mRegister ( //Data_m register .clk(clk), .rst(rst), .load(load_b_i), .D(intm), .Q(DmP_o) ); RegisterAdd #(.W(1)) SignRegister ( .clk(clk), .rst(rst), .load(load_b_i), .D(sign_result), .Q(sign_final_result_o) ); assign zero_flag_o = real_op_o & eqXY; endmodule
module wire [W-1:0] intDX; //Output of register DATA_X wire [W-1:0] intDY; //Output of register DATA_Y wire intAS; //Output of register add_subt wire gtXY; //Output for magntiude_comparator (X>Y) wire eqXY; //Output for magntiude_comparator (X=Y) wire [W-2:0] intM; //Output of MuxXY for bigger value wire [W-2:0] intm; //Output of MuxXY for small value /////////////////////////////////////////////////////////////////// RegisterAdd #(.W(W)) XRegister ( //Data X input register .clk(clk), .rst(rst), .load(load_a_i), .D(Data_X_i), .Q(intDX) ); RegisterAdd #(.W(W)) YRegister ( //Data Y input register .clk(clk), .rst(rst), .load(load_a_i), .D(Data_Y_i), .Q(intDY) ); RegisterAdd #(.W(1)) ASRegister ( //Data Add_Subtract input register .clk(clk), .rst(rst), .load(load_a_i), .D(add_subt_i), .Q(intAS) ); Comparator #(.W(W-1)) Magnitude_Comparator ( //Compare between magnitude for DATA_X and DATA_Y and select whos bigger and if there's a equality .Data_X_i(intDX[W-2:0]), .Data_Y_i(intDY[W-2:0]), .gtXY_o(gtXY), .eqXY_o(eqXY) ); xor_tri #(.W(W)) Op_verification ( //Operation between the DATA_X & Y's sign bit and the operation bit to find the real operation for ADDER/SUBTRACT .A_i(intDX[W-1]), .B_i(intDY[W-1]), .C_i(intAS), .Z_o(real_op_o) ); sgn_result result_sign_bit (//Calculate the sign bit for the final result .Add_Subt_i(intAS), .sgn_X_i(intDX[W-1]), .sgn_Y_i(intDY[W-1]), .gtXY_i(gtXY), .eqXY_i(eqXY), .sgn_result_o(sign_result) ); MultiplexTxT #(.W(W-1)) MuxXY (//Classify in the registers the bigger value (M) and the smaller value (m) .select(gtXY), .D0_i(intDX[W-2:0]), .D1_i(intDY[W-2:0]), .S0_o(intM), .S1_o(intm) ); RegisterAdd #(.W(W-1)) MRegister ( //Data_M register .clk(clk), .rst(rst), .load(load_b_i), .D(intM), .Q(DMP_o) ); RegisterAdd #(.W(W-1)) mRegister ( //Data_m register .clk(clk), .rst(rst), .load(load_b_i), .D(intm), .Q(DmP_o) ); RegisterAdd #(.W(1)) SignRegister ( .clk(clk), .rst(rst), .load(load_b_i), .D(sign_result), .Q(sign_final_result_o) ); assign zero_flag_o = real_op_o & eqXY; endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module soc_design_niosII_core_cpu_debug_slave_wrapper ( // inputs: MonDReg, break_readreg, clk, dbrk_hit0_latch, dbrk_hit1_latch, dbrk_hit2_latch, dbrk_hit3_latch, debugack, monitor_error, monitor_ready, reset_n, resetlatch, tracemem_on, tracemem_trcdata, tracemem_tw, trc_im_addr, trc_on, trc_wrap, trigbrktype, trigger_state_1, // outputs: jdo, jrst_n, st_ready_test_idle, take_action_break_a, take_action_break_b, take_action_break_c, take_action_ocimem_a, take_action_ocimem_b, take_action_tracectrl, take_no_action_break_a, take_no_action_break_b, take_no_action_break_c, take_no_action_ocimem_a ) ; output [ 37: 0] jdo; output jrst_n; output st_ready_test_idle; output take_action_break_a; output take_action_break_b; output take_action_break_c; output take_action_ocimem_a; output take_action_ocimem_b; output take_action_tracectrl; output take_no_action_break_a; output take_no_action_break_b; output take_no_action_break_c; output take_no_action_ocimem_a; input [ 31: 0] MonDReg; input [ 31: 0] break_readreg; input clk; input dbrk_hit0_latch; input dbrk_hit1_latch; input dbrk_hit2_latch; input dbrk_hit3_latch; input debugack; input monitor_error; input monitor_ready; input reset_n; input resetlatch; input tracemem_on; input [ 35: 0] tracemem_trcdata; input tracemem_tw; input [ 6: 0] trc_im_addr; input trc_on; input trc_wrap; input trigbrktype; input trigger_state_1; wire [ 37: 0] jdo; wire jrst_n; wire [ 37: 0] sr; wire st_ready_test_idle; wire take_action_break_a; wire take_action_break_b; wire take_action_break_c; wire take_action_ocimem_a; wire take_action_ocimem_b; wire take_action_tracectrl; wire take_no_action_break_a; wire take_no_action_break_b; wire take_no_action_break_c; wire take_no_action_ocimem_a; wire vji_cdr; wire [ 1: 0] vji_ir_in; wire [ 1: 0] vji_ir_out; wire vji_rti; wire vji_sdr; wire vji_tck; wire vji_tdi; wire vji_tdo; wire vji_udr; wire vji_uir; //Change the sld_virtual_jtag_basic's defparams to //switch between a regular Nios II or an internally embedded Nios II. //For a regular Nios II, sld_mfg_id = 70, sld_type_id = 34. //For an internally embedded Nios II, slf_mfg_id = 110, sld_type_id = 135. soc_design_niosII_core_cpu_debug_slave_tck the_soc_design_niosII_core_cpu_debug_slave_tck ( .MonDReg (MonDReg), .break_readreg (break_readreg), .dbrk_hit0_latch (dbrk_hit0_latch), .dbrk_hit1_latch (dbrk_hit1_latch), .dbrk_hit2_latch (dbrk_hit2_latch), .dbrk_hit3_latch (dbrk_hit3_latch), .debugack (debugack), .ir_in (vji_ir_in), .ir_out (vji_ir_out), .jrst_n (jrst_n), .jtag_state_rti (vji_rti), .monitor_error (monitor_error), .monitor_ready (monitor_ready), .reset_n (reset_n), .resetlatch (resetlatch), .sr (sr), .st_ready_test_idle (st_ready_test_idle), .tck (vji_tck), .tdi (vji_tdi), .tdo (vji_tdo), .tracemem_on (tracemem_on), .tracemem_trcdata (tracemem_trcdata), .tracemem_tw (tracemem_tw), .trc_im_addr (trc_im_addr), .trc_on (trc_on), .trc_wrap (trc_wrap), .trigbrktype (trigbrktype), .trigger_state_1 (trigger_state_1), .vs_cdr (vji_cdr), .vs_sdr (vji_sdr), .vs_uir (vji_uir) ); soc_design_niosII_core_cpu_debug_slave_sysclk the_soc_design_niosII_core_cpu_debug_slave_sysclk ( .clk (clk), .ir_in (vji_ir_in), .jdo (jdo), .sr (sr), .take_action_break_a (take_action_break_a), .take_action_break_b (take_action_break_b), .take_action_break_c (take_action_break_c), .take_action_ocimem_a (take_action_ocimem_a), .take_action_ocimem_b (take_action_ocimem_b), .take_action_tracectrl (take_action_tracectrl), .take_no_action_break_a (take_no_action_break_a), .take_no_action_break_b (take_no_action_break_b), .take_no_action_break_c (take_no_action_break_c), .take_no_action_ocimem_a (take_no_action_ocimem_a), .vs_udr (vji_udr), .vs_uir (vji_uir) ); //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS assign vji_tck = 1'b0; assign vji_tdi = 1'b0; assign vji_sdr = 1'b0; assign vji_cdr = 1'b0; assign vji_rti = 1'b0; assign vji_uir = 1'b0; assign vji_udr = 1'b0; assign vji_ir_in = 2'b0; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // sld_virtual_jtag_basic soc_design_niosII_core_cpu_debug_slave_phy // ( // .ir_in (vji_ir_in), // .ir_out (vji_ir_out), // .jtag_state_rti (vji_rti), // .tck (vji_tck), // .tdi (vji_tdi), // .tdo (vji_tdo), // .virtual_state_cdr (vji_cdr), // .virtual_state_sdr (vji_sdr), // .virtual_state_udr (vji_udr), // .virtual_state_uir (vji_uir) // ); // // defparam soc_design_niosII_core_cpu_debug_slave_phy.sld_auto_instance_index = "YES", // soc_design_niosII_core_cpu_debug_slave_phy.sld_instance_index = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_ir_width = 2, // soc_design_niosII_core_cpu_debug_slave_phy.sld_mfg_id = 70, // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_action = "", // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_n_scan = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_total_length = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_type_id = 34, // soc_design_niosII_core_cpu_debug_slave_phy.sld_version = 3; // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG_sim_scfifo_w ( // inputs: clk, fifo_wdata, fifo_wr, // outputs: fifo_FF, r_dat, wfifo_empty, wfifo_used ) ; output fifo_FF; output [ 7: 0] r_dat; output wfifo_empty; output [ 5: 0] wfifo_used; input clk; input [ 7: 0] fifo_wdata; input fifo_wr; wire fifo_FF; wire [ 7: 0] r_dat; wire wfifo_empty; wire [ 5: 0] wfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS always @(posedge clk) begin if (fifo_wr) $write("%c", fifo_wdata); end assign wfifo_used = {6{1'b0}}; assign r_dat = {8{1'b0}}; assign fifo_FF = 1'b0; assign wfifo_empty = 1'b1; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on endmodule
module soc_design_JTAG_scfifo_w ( // inputs: clk, fifo_clear, fifo_wdata, fifo_wr, rd_wfifo, // outputs: fifo_FF, r_dat, wfifo_empty, wfifo_used ) ; output fifo_FF; output [ 7: 0] r_dat; output wfifo_empty; output [ 5: 0] wfifo_used; input clk; input fifo_clear; input [ 7: 0] fifo_wdata; input fifo_wr; input rd_wfifo; wire fifo_FF; wire [ 7: 0] r_dat; wire wfifo_empty; wire [ 5: 0] wfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS soc_design_JTAG_sim_scfifo_w the_soc_design_JTAG_sim_scfifo_w ( .clk (clk), .fifo_FF (fifo_FF), .fifo_wdata (fifo_wdata), .fifo_wr (fifo_wr), .r_dat (r_dat), .wfifo_empty (wfifo_empty), .wfifo_used (wfifo_used) ); //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // scfifo wfifo // ( // .aclr (fifo_clear), // .clock (clk), // .data (fifo_wdata), // .empty (wfifo_empty), // .full (fifo_FF), // .q (r_dat), // .rdreq (rd_wfifo), // .usedw (wfifo_used), // .wrreq (fifo_wr) // ); // // defparam wfifo.lpm_hint = "RAM_BLOCK_TYPE=AUTO", // wfifo.lpm_numwords = 64, // wfifo.lpm_showahead = "OFF", // wfifo.lpm_type = "scfifo", // wfifo.lpm_width = 8, // wfifo.lpm_widthu = 6, // wfifo.overflow_checking = "OFF", // wfifo.underflow_checking = "OFF", // wfifo.use_eab = "ON"; // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG_sim_scfifo_r ( // inputs: clk, fifo_rd, rst_n, // outputs: fifo_EF, fifo_rdata, rfifo_full, rfifo_used ) ; output fifo_EF; output [ 7: 0] fifo_rdata; output rfifo_full; output [ 5: 0] rfifo_used; input clk; input fifo_rd; input rst_n; reg [ 31: 0] bytes_left; wire fifo_EF; reg fifo_rd_d; wire [ 7: 0] fifo_rdata; wire new_rom; wire [ 31: 0] num_bytes; wire [ 6: 0] rfifo_entries; wire rfifo_full; wire [ 5: 0] rfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS // Generate rfifo_entries for simulation always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin bytes_left <= 32'h0; fifo_rd_d <= 1'b0; end else begin fifo_rd_d <= fifo_rd; // decrement on read if (fifo_rd_d) bytes_left <= bytes_left - 1'b1; // catch new contents if (new_rom) bytes_left <= num_bytes; end end assign fifo_EF = bytes_left == 32'b0; assign rfifo_full = bytes_left > 7'h40; assign rfifo_entries = (rfifo_full) ? 7'h40 : bytes_left; assign rfifo_used = rfifo_entries[5 : 0]; assign new_rom = 1'b0; assign num_bytes = 32'b0; assign fifo_rdata = 8'b0; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on endmodule
module soc_design_JTAG_scfifo_r ( // inputs: clk, fifo_clear, fifo_rd, rst_n, t_dat, wr_rfifo, // outputs: fifo_EF, fifo_rdata, rfifo_full, rfifo_used ) ; output fifo_EF; output [ 7: 0] fifo_rdata; output rfifo_full; output [ 5: 0] rfifo_used; input clk; input fifo_clear; input fifo_rd; input rst_n; input [ 7: 0] t_dat; input wr_rfifo; wire fifo_EF; wire [ 7: 0] fifo_rdata; wire rfifo_full; wire [ 5: 0] rfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS soc_design_JTAG_sim_scfifo_r the_soc_design_JTAG_sim_scfifo_r ( .clk (clk), .fifo_EF (fifo_EF), .fifo_rd (fifo_rd), .fifo_rdata (fifo_rdata), .rfifo_full (rfifo_full), .rfifo_used (rfifo_used), .rst_n (rst_n) ); //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // scfifo rfifo // ( // .aclr (fifo_clear), // .clock (clk), // .data (t_dat), // .empty (fifo_EF), // .full (rfifo_full), // .q (fifo_rdata), // .rdreq (fifo_rd), // .usedw (rfifo_used), // .wrreq (wr_rfifo) // ); // // defparam rfifo.lpm_hint = "RAM_BLOCK_TYPE=AUTO", // rfifo.lpm_numwords = 64, // rfifo.lpm_showahead = "OFF", // rfifo.lpm_type = "scfifo", // rfifo.lpm_width = 8, // rfifo.lpm_widthu = 6, // rfifo.overflow_checking = "OFF", // rfifo.underflow_checking = "OFF", // rfifo.use_eab = "ON"; // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG ( // inputs: av_address, av_chipselect, av_read_n, av_write_n, av_writedata, clk, rst_n, // outputs: av_irq, av_readdata, av_waitrequest, dataavailable, readyfordata ) /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"R101,C106,D101,D103\"" */ ; output av_irq; output [ 31: 0] av_readdata; output av_waitrequest; output dataavailable; output readyfordata; input av_address; input av_chipselect; input av_read_n; input av_write_n; input [ 31: 0] av_writedata; input clk; input rst_n; reg ac; wire activity; wire av_irq; wire [ 31: 0] av_readdata; reg av_waitrequest; reg dataavailable; reg fifo_AE; reg fifo_AF; wire fifo_EF; wire fifo_FF; wire fifo_clear; wire fifo_rd; wire [ 7: 0] fifo_rdata; wire [ 7: 0] fifo_wdata; reg fifo_wr; reg ien_AE; reg ien_AF; wire ipen_AE; wire ipen_AF; reg pause_irq; wire [ 7: 0] r_dat; wire r_ena; reg r_val; wire rd_wfifo; reg read_0; reg readyfordata; wire rfifo_full; wire [ 5: 0] rfifo_used; reg rvalid; reg sim_r_ena; reg sim_t_dat; reg sim_t_ena; reg sim_t_pause; wire [ 7: 0] t_dat; reg t_dav; wire t_ena; wire t_pause; wire wfifo_empty; wire [ 5: 0] wfifo_used; reg woverflow; wire wr_rfifo; //avalon_jtag_slave, which is an e_avalon_slave assign rd_wfifo = r_ena & ~wfifo_empty; assign wr_rfifo = t_ena & ~rfifo_full; assign fifo_clear = ~rst_n; soc_design_JTAG_scfifo_w the_soc_design_JTAG_scfifo_w ( .clk (clk), .fifo_FF (fifo_FF), .fifo_clear (fifo_clear), .fifo_wdata (fifo_wdata), .fifo_wr (fifo_wr), .r_dat (r_dat), .rd_wfifo (rd_wfifo), .wfifo_empty (wfifo_empty), .wfifo_used (wfifo_used) ); soc_design_JTAG_scfifo_r the_soc_design_JTAG_scfifo_r ( .clk (clk), .fifo_EF (fifo_EF), .fifo_clear (fifo_clear), .fifo_rd (fifo_rd), .fifo_rdata (fifo_rdata), .rfifo_full (rfifo_full), .rfifo_used (rfifo_used), .rst_n (rst_n), .t_dat (t_dat), .wr_rfifo (wr_rfifo) ); assign ipen_AE = ien_AE & fifo_AE; assign ipen_AF = ien_AF & (pause_irq | fifo_AF); assign av_irq = ipen_AE | ipen_AF; assign activity = t_pause | t_ena; always @(posedge clk or negedge rst_n) begin if (rst_n == 0) pause_irq <= 1'b0; else // only if fifo is not empty... if (t_pause & ~fifo_EF) pause_irq <= 1'b1; else if (read_0) pause_irq <= 1'b0; end always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin r_val <= 1'b0; t_dav <= 1'b1; end else begin r_val <= r_ena & ~wfifo_empty; t_dav <= ~rfifo_full; end end always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin fifo_AE <= 1'b0; fifo_AF <= 1'b0; fifo_wr <= 1'b0; rvalid <= 1'b0; read_0 <= 1'b0; ien_AE <= 1'b0; ien_AF <= 1'b0; ac <= 1'b0; woverflow <= 1'b0; av_waitrequest <= 1'b1; end else begin fifo_AE <= {fifo_FF,wfifo_used} <= 8; fifo_AF <= (7'h40 - {rfifo_full,rfifo_used}) <= 8; fifo_wr <= 1'b0; read_0 <= 1'b0; av_waitrequest <= ~(av_chipselect & (~av_write_n | ~av_read_n) & av_waitrequest); if (activity) ac <= 1'b1; // write if (av_chipselect & ~av_write_n & av_waitrequest) // addr 1 is control; addr 0 is data if (av_address) begin ien_AF <= av_writedata[0]; ien_AE <= av_writedata[1]; if (av_writedata[10] & ~activity) ac <= 1'b0; end else begin fifo_wr <= ~fifo_FF; woverflow <= fifo_FF; end // read if (av_chipselect & ~av_read_n & av_waitrequest) begin // addr 1 is interrupt; addr 0 is data if (~av_address) rvalid <= ~fifo_EF; read_0 <= ~av_address; end end end assign fifo_wdata = av_writedata[7 : 0]; assign fifo_rd = (av_chipselect & ~av_read_n & av_waitrequest & ~av_address) ? ~fifo_EF : 1'b0; assign av_readdata = read_0 ? { {9{1'b0}},rfifo_full,rfifo_used,rvalid,woverflow,~fifo_FF,~fifo_EF,1'b0,ac,ipen_AE,ipen_AF,fifo_rdata } : { {9{1'b0}},(7'h40 - {fifo_FF,wfifo_used}),rvalid,woverflow,~fifo_FF,~fifo_EF,1'b0,ac,ipen_AE,ipen_AF,{6{1'b0}},ien_AE,ien_AF }; always @(posedge clk or negedge rst_n) begin if (rst_n == 0) readyfordata <= 0; else readyfordata <= ~fifo_FF; end //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS // Tie off Atlantic Interface signals not used for simulation always @(posedge clk) begin sim_t_pause <= 1'b0; sim_t_ena <= 1'b0; sim_t_dat <= t_dav ? r_dat : {8{r_val}}; sim_r_ena <= 1'b0; end assign r_ena = sim_r_ena; assign t_ena = sim_t_ena; assign t_dat = sim_t_dat; assign t_pause = sim_t_pause; always @(fifo_EF) begin dataavailable = ~fifo_EF; end //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // alt_jtag_atlantic soc_design_JTAG_alt_jtag_atlantic // ( // .clk (clk), // .r_dat (r_dat), // .r_ena (r_ena), // .r_val (r_val), // .rst_n (rst_n), // .t_dat (t_dat), // .t_dav (t_dav), // .t_ena (t_ena), // .t_pause (t_pause) // ); // // defparam soc_design_JTAG_alt_jtag_atlantic.INSTANCE_ID = 0, // soc_design_JTAG_alt_jtag_atlantic.LOG2_RXFIFO_DEPTH = 6, // soc_design_JTAG_alt_jtag_atlantic.LOG2_TXFIFO_DEPTH = 6, // soc_design_JTAG_alt_jtag_atlantic.SLD_AUTO_INSTANCE_INDEX = "YES"; // // always @(posedge clk or negedge rst_n) // begin // if (rst_n == 0) // dataavailable <= 0; // else // dataavailable <= ~fifo_EF; // end // // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG_sim_scfifo_w ( // inputs: clk, fifo_wdata, fifo_wr, // outputs: fifo_FF, r_dat, wfifo_empty, wfifo_used ) ; output fifo_FF; output [ 7: 0] r_dat; output wfifo_empty; output [ 5: 0] wfifo_used; input clk; input [ 7: 0] fifo_wdata; input fifo_wr; wire fifo_FF; wire [ 7: 0] r_dat; wire wfifo_empty; wire [ 5: 0] wfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS always @(posedge clk) begin if (fifo_wr) $write("%c", fifo_wdata); end assign wfifo_used = {6{1'b0}}; assign r_dat = {8{1'b0}}; assign fifo_FF = 1'b0; assign wfifo_empty = 1'b1; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on endmodule
module soc_design_JTAG_scfifo_w ( // inputs: clk, fifo_clear, fifo_wdata, fifo_wr, rd_wfifo, // outputs: fifo_FF, r_dat, wfifo_empty, wfifo_used ) ; output fifo_FF; output [ 7: 0] r_dat; output wfifo_empty; output [ 5: 0] wfifo_used; input clk; input fifo_clear; input [ 7: 0] fifo_wdata; input fifo_wr; input rd_wfifo; wire fifo_FF; wire [ 7: 0] r_dat; wire wfifo_empty; wire [ 5: 0] wfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS soc_design_JTAG_sim_scfifo_w the_soc_design_JTAG_sim_scfifo_w ( .clk (clk), .fifo_FF (fifo_FF), .fifo_wdata (fifo_wdata), .fifo_wr (fifo_wr), .r_dat (r_dat), .wfifo_empty (wfifo_empty), .wfifo_used (wfifo_used) ); //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // scfifo wfifo // ( // .aclr (fifo_clear), // .clock (clk), // .data (fifo_wdata), // .empty (wfifo_empty), // .full (fifo_FF), // .q (r_dat), // .rdreq (rd_wfifo), // .usedw (wfifo_used), // .wrreq (fifo_wr) // ); // // defparam wfifo.lpm_hint = "RAM_BLOCK_TYPE=AUTO", // wfifo.lpm_numwords = 64, // wfifo.lpm_showahead = "OFF", // wfifo.lpm_type = "scfifo", // wfifo.lpm_width = 8, // wfifo.lpm_widthu = 6, // wfifo.overflow_checking = "OFF", // wfifo.underflow_checking = "OFF", // wfifo.use_eab = "ON"; // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG_sim_scfifo_r ( // inputs: clk, fifo_rd, rst_n, // outputs: fifo_EF, fifo_rdata, rfifo_full, rfifo_used ) ; output fifo_EF; output [ 7: 0] fifo_rdata; output rfifo_full; output [ 5: 0] rfifo_used; input clk; input fifo_rd; input rst_n; reg [ 31: 0] bytes_left; wire fifo_EF; reg fifo_rd_d; wire [ 7: 0] fifo_rdata; wire new_rom; wire [ 31: 0] num_bytes; wire [ 6: 0] rfifo_entries; wire rfifo_full; wire [ 5: 0] rfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS // Generate rfifo_entries for simulation always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin bytes_left <= 32'h0; fifo_rd_d <= 1'b0; end else begin fifo_rd_d <= fifo_rd; // decrement on read if (fifo_rd_d) bytes_left <= bytes_left - 1'b1; // catch new contents if (new_rom) bytes_left <= num_bytes; end end assign fifo_EF = bytes_left == 32'b0; assign rfifo_full = bytes_left > 7'h40; assign rfifo_entries = (rfifo_full) ? 7'h40 : bytes_left; assign rfifo_used = rfifo_entries[5 : 0]; assign new_rom = 1'b0; assign num_bytes = 32'b0; assign fifo_rdata = 8'b0; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on endmodule
module soc_design_JTAG_scfifo_r ( // inputs: clk, fifo_clear, fifo_rd, rst_n, t_dat, wr_rfifo, // outputs: fifo_EF, fifo_rdata, rfifo_full, rfifo_used ) ; output fifo_EF; output [ 7: 0] fifo_rdata; output rfifo_full; output [ 5: 0] rfifo_used; input clk; input fifo_clear; input fifo_rd; input rst_n; input [ 7: 0] t_dat; input wr_rfifo; wire fifo_EF; wire [ 7: 0] fifo_rdata; wire rfifo_full; wire [ 5: 0] rfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS soc_design_JTAG_sim_scfifo_r the_soc_design_JTAG_sim_scfifo_r ( .clk (clk), .fifo_EF (fifo_EF), .fifo_rd (fifo_rd), .fifo_rdata (fifo_rdata), .rfifo_full (rfifo_full), .rfifo_used (rfifo_used), .rst_n (rst_n) ); //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // scfifo rfifo // ( // .aclr (fifo_clear), // .clock (clk), // .data (t_dat), // .empty (fifo_EF), // .full (rfifo_full), // .q (fifo_rdata), // .rdreq (fifo_rd), // .usedw (rfifo_used), // .wrreq (wr_rfifo) // ); // // defparam rfifo.lpm_hint = "RAM_BLOCK_TYPE=AUTO", // rfifo.lpm_numwords = 64, // rfifo.lpm_showahead = "OFF", // rfifo.lpm_type = "scfifo", // rfifo.lpm_width = 8, // rfifo.lpm_widthu = 6, // rfifo.overflow_checking = "OFF", // rfifo.underflow_checking = "OFF", // rfifo.use_eab = "ON"; // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG ( // inputs: av_address, av_chipselect, av_read_n, av_write_n, av_writedata, clk, rst_n, // outputs: av_irq, av_readdata, av_waitrequest, dataavailable, readyfordata ) /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"R101,C106,D101,D103\"" */ ; output av_irq; output [ 31: 0] av_readdata; output av_waitrequest; output dataavailable; output readyfordata; input av_address; input av_chipselect; input av_read_n; input av_write_n; input [ 31: 0] av_writedata; input clk; input rst_n; reg ac; wire activity; wire av_irq; wire [ 31: 0] av_readdata; reg av_waitrequest; reg dataavailable; reg fifo_AE; reg fifo_AF; wire fifo_EF; wire fifo_FF; wire fifo_clear; wire fifo_rd; wire [ 7: 0] fifo_rdata; wire [ 7: 0] fifo_wdata; reg fifo_wr; reg ien_AE; reg ien_AF; wire ipen_AE; wire ipen_AF; reg pause_irq; wire [ 7: 0] r_dat; wire r_ena; reg r_val; wire rd_wfifo; reg read_0; reg readyfordata; wire rfifo_full; wire [ 5: 0] rfifo_used; reg rvalid; reg sim_r_ena; reg sim_t_dat; reg sim_t_ena; reg sim_t_pause; wire [ 7: 0] t_dat; reg t_dav; wire t_ena; wire t_pause; wire wfifo_empty; wire [ 5: 0] wfifo_used; reg woverflow; wire wr_rfifo; //avalon_jtag_slave, which is an e_avalon_slave assign rd_wfifo = r_ena & ~wfifo_empty; assign wr_rfifo = t_ena & ~rfifo_full; assign fifo_clear = ~rst_n; soc_design_JTAG_scfifo_w the_soc_design_JTAG_scfifo_w ( .clk (clk), .fifo_FF (fifo_FF), .fifo_clear (fifo_clear), .fifo_wdata (fifo_wdata), .fifo_wr (fifo_wr), .r_dat (r_dat), .rd_wfifo (rd_wfifo), .wfifo_empty (wfifo_empty), .wfifo_used (wfifo_used) ); soc_design_JTAG_scfifo_r the_soc_design_JTAG_scfifo_r ( .clk (clk), .fifo_EF (fifo_EF), .fifo_clear (fifo_clear), .fifo_rd (fifo_rd), .fifo_rdata (fifo_rdata), .rfifo_full (rfifo_full), .rfifo_used (rfifo_used), .rst_n (rst_n), .t_dat (t_dat), .wr_rfifo (wr_rfifo) ); assign ipen_AE = ien_AE & fifo_AE; assign ipen_AF = ien_AF & (pause_irq | fifo_AF); assign av_irq = ipen_AE | ipen_AF; assign activity = t_pause | t_ena; always @(posedge clk or negedge rst_n) begin if (rst_n == 0) pause_irq <= 1'b0; else // only if fifo is not empty... if (t_pause & ~fifo_EF) pause_irq <= 1'b1; else if (read_0) pause_irq <= 1'b0; end always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin r_val <= 1'b0; t_dav <= 1'b1; end else begin r_val <= r_ena & ~wfifo_empty; t_dav <= ~rfifo_full; end end always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin fifo_AE <= 1'b0; fifo_AF <= 1'b0; fifo_wr <= 1'b0; rvalid <= 1'b0; read_0 <= 1'b0; ien_AE <= 1'b0; ien_AF <= 1'b0; ac <= 1'b0; woverflow <= 1'b0; av_waitrequest <= 1'b1; end else begin fifo_AE <= {fifo_FF,wfifo_used} <= 8; fifo_AF <= (7'h40 - {rfifo_full,rfifo_used}) <= 8; fifo_wr <= 1'b0; read_0 <= 1'b0; av_waitrequest <= ~(av_chipselect & (~av_write_n | ~av_read_n) & av_waitrequest); if (activity) ac <= 1'b1; // write if (av_chipselect & ~av_write_n & av_waitrequest) // addr 1 is control; addr 0 is data if (av_address) begin ien_AF <= av_writedata[0]; ien_AE <= av_writedata[1]; if (av_writedata[10] & ~activity) ac <= 1'b0; end else begin fifo_wr <= ~fifo_FF; woverflow <= fifo_FF; end // read if (av_chipselect & ~av_read_n & av_waitrequest) begin // addr 1 is interrupt; addr 0 is data if (~av_address) rvalid <= ~fifo_EF; read_0 <= ~av_address; end end end assign fifo_wdata = av_writedata[7 : 0]; assign fifo_rd = (av_chipselect & ~av_read_n & av_waitrequest & ~av_address) ? ~fifo_EF : 1'b0; assign av_readdata = read_0 ? { {9{1'b0}},rfifo_full,rfifo_used,rvalid,woverflow,~fifo_FF,~fifo_EF,1'b0,ac,ipen_AE,ipen_AF,fifo_rdata } : { {9{1'b0}},(7'h40 - {fifo_FF,wfifo_used}),rvalid,woverflow,~fifo_FF,~fifo_EF,1'b0,ac,ipen_AE,ipen_AF,{6{1'b0}},ien_AE,ien_AF }; always @(posedge clk or negedge rst_n) begin if (rst_n == 0) readyfordata <= 0; else readyfordata <= ~fifo_FF; end //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS // Tie off Atlantic Interface signals not used for simulation always @(posedge clk) begin sim_t_pause <= 1'b0; sim_t_ena <= 1'b0; sim_t_dat <= t_dav ? r_dat : {8{r_val}}; sim_r_ena <= 1'b0; end assign r_ena = sim_r_ena; assign t_ena = sim_t_ena; assign t_dat = sim_t_dat; assign t_pause = sim_t_pause; always @(fifo_EF) begin dataavailable = ~fifo_EF; end //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // alt_jtag_atlantic soc_design_JTAG_alt_jtag_atlantic // ( // .clk (clk), // .r_dat (r_dat), // .r_ena (r_ena), // .r_val (r_val), // .rst_n (rst_n), // .t_dat (t_dat), // .t_dav (t_dav), // .t_ena (t_ena), // .t_pause (t_pause) // ); // // defparam soc_design_JTAG_alt_jtag_atlantic.INSTANCE_ID = 0, // soc_design_JTAG_alt_jtag_atlantic.LOG2_RXFIFO_DEPTH = 6, // soc_design_JTAG_alt_jtag_atlantic.LOG2_TXFIFO_DEPTH = 6, // soc_design_JTAG_alt_jtag_atlantic.SLD_AUTO_INSTANCE_INDEX = "YES"; // // always @(posedge clk or negedge rst_n) // begin // if (rst_n == 0) // dataavailable <= 0; // else // dataavailable <= ~fifo_EF; // end // // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG_sim_scfifo_w ( // inputs: clk, fifo_wdata, fifo_wr, // outputs: fifo_FF, r_dat, wfifo_empty, wfifo_used ) ; output fifo_FF; output [ 7: 0] r_dat; output wfifo_empty; output [ 5: 0] wfifo_used; input clk; input [ 7: 0] fifo_wdata; input fifo_wr; wire fifo_FF; wire [ 7: 0] r_dat; wire wfifo_empty; wire [ 5: 0] wfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS always @(posedge clk) begin if (fifo_wr) $write("%c", fifo_wdata); end assign wfifo_used = {6{1'b0}}; assign r_dat = {8{1'b0}}; assign fifo_FF = 1'b0; assign wfifo_empty = 1'b1; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on endmodule
module soc_design_JTAG_scfifo_w ( // inputs: clk, fifo_clear, fifo_wdata, fifo_wr, rd_wfifo, // outputs: fifo_FF, r_dat, wfifo_empty, wfifo_used ) ; output fifo_FF; output [ 7: 0] r_dat; output wfifo_empty; output [ 5: 0] wfifo_used; input clk; input fifo_clear; input [ 7: 0] fifo_wdata; input fifo_wr; input rd_wfifo; wire fifo_FF; wire [ 7: 0] r_dat; wire wfifo_empty; wire [ 5: 0] wfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS soc_design_JTAG_sim_scfifo_w the_soc_design_JTAG_sim_scfifo_w ( .clk (clk), .fifo_FF (fifo_FF), .fifo_wdata (fifo_wdata), .fifo_wr (fifo_wr), .r_dat (r_dat), .wfifo_empty (wfifo_empty), .wfifo_used (wfifo_used) ); //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // scfifo wfifo // ( // .aclr (fifo_clear), // .clock (clk), // .data (fifo_wdata), // .empty (wfifo_empty), // .full (fifo_FF), // .q (r_dat), // .rdreq (rd_wfifo), // .usedw (wfifo_used), // .wrreq (fifo_wr) // ); // // defparam wfifo.lpm_hint = "RAM_BLOCK_TYPE=AUTO", // wfifo.lpm_numwords = 64, // wfifo.lpm_showahead = "OFF", // wfifo.lpm_type = "scfifo", // wfifo.lpm_width = 8, // wfifo.lpm_widthu = 6, // wfifo.overflow_checking = "OFF", // wfifo.underflow_checking = "OFF", // wfifo.use_eab = "ON"; // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG_sim_scfifo_r ( // inputs: clk, fifo_rd, rst_n, // outputs: fifo_EF, fifo_rdata, rfifo_full, rfifo_used ) ; output fifo_EF; output [ 7: 0] fifo_rdata; output rfifo_full; output [ 5: 0] rfifo_used; input clk; input fifo_rd; input rst_n; reg [ 31: 0] bytes_left; wire fifo_EF; reg fifo_rd_d; wire [ 7: 0] fifo_rdata; wire new_rom; wire [ 31: 0] num_bytes; wire [ 6: 0] rfifo_entries; wire rfifo_full; wire [ 5: 0] rfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS // Generate rfifo_entries for simulation always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin bytes_left <= 32'h0; fifo_rd_d <= 1'b0; end else begin fifo_rd_d <= fifo_rd; // decrement on read if (fifo_rd_d) bytes_left <= bytes_left - 1'b1; // catch new contents if (new_rom) bytes_left <= num_bytes; end end assign fifo_EF = bytes_left == 32'b0; assign rfifo_full = bytes_left > 7'h40; assign rfifo_entries = (rfifo_full) ? 7'h40 : bytes_left; assign rfifo_used = rfifo_entries[5 : 0]; assign new_rom = 1'b0; assign num_bytes = 32'b0; assign fifo_rdata = 8'b0; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on endmodule
module soc_design_JTAG_scfifo_r ( // inputs: clk, fifo_clear, fifo_rd, rst_n, t_dat, wr_rfifo, // outputs: fifo_EF, fifo_rdata, rfifo_full, rfifo_used ) ; output fifo_EF; output [ 7: 0] fifo_rdata; output rfifo_full; output [ 5: 0] rfifo_used; input clk; input fifo_clear; input fifo_rd; input rst_n; input [ 7: 0] t_dat; input wr_rfifo; wire fifo_EF; wire [ 7: 0] fifo_rdata; wire rfifo_full; wire [ 5: 0] rfifo_used; //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS soc_design_JTAG_sim_scfifo_r the_soc_design_JTAG_sim_scfifo_r ( .clk (clk), .fifo_EF (fifo_EF), .fifo_rd (fifo_rd), .fifo_rdata (fifo_rdata), .rfifo_full (rfifo_full), .rfifo_used (rfifo_used), .rst_n (rst_n) ); //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // scfifo rfifo // ( // .aclr (fifo_clear), // .clock (clk), // .data (t_dat), // .empty (fifo_EF), // .full (rfifo_full), // .q (fifo_rdata), // .rdreq (fifo_rd), // .usedw (rfifo_used), // .wrreq (wr_rfifo) // ); // // defparam rfifo.lpm_hint = "RAM_BLOCK_TYPE=AUTO", // rfifo.lpm_numwords = 64, // rfifo.lpm_showahead = "OFF", // rfifo.lpm_type = "scfifo", // rfifo.lpm_width = 8, // rfifo.lpm_widthu = 6, // rfifo.overflow_checking = "OFF", // rfifo.underflow_checking = "OFF", // rfifo.use_eab = "ON"; // //synthesis read_comments_as_HDL off endmodule
module soc_design_JTAG ( // inputs: av_address, av_chipselect, av_read_n, av_write_n, av_writedata, clk, rst_n, // outputs: av_irq, av_readdata, av_waitrequest, dataavailable, readyfordata ) /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"R101,C106,D101,D103\"" */ ; output av_irq; output [ 31: 0] av_readdata; output av_waitrequest; output dataavailable; output readyfordata; input av_address; input av_chipselect; input av_read_n; input av_write_n; input [ 31: 0] av_writedata; input clk; input rst_n; reg ac; wire activity; wire av_irq; wire [ 31: 0] av_readdata; reg av_waitrequest; reg dataavailable; reg fifo_AE; reg fifo_AF; wire fifo_EF; wire fifo_FF; wire fifo_clear; wire fifo_rd; wire [ 7: 0] fifo_rdata; wire [ 7: 0] fifo_wdata; reg fifo_wr; reg ien_AE; reg ien_AF; wire ipen_AE; wire ipen_AF; reg pause_irq; wire [ 7: 0] r_dat; wire r_ena; reg r_val; wire rd_wfifo; reg read_0; reg readyfordata; wire rfifo_full; wire [ 5: 0] rfifo_used; reg rvalid; reg sim_r_ena; reg sim_t_dat; reg sim_t_ena; reg sim_t_pause; wire [ 7: 0] t_dat; reg t_dav; wire t_ena; wire t_pause; wire wfifo_empty; wire [ 5: 0] wfifo_used; reg woverflow; wire wr_rfifo; //avalon_jtag_slave, which is an e_avalon_slave assign rd_wfifo = r_ena & ~wfifo_empty; assign wr_rfifo = t_ena & ~rfifo_full; assign fifo_clear = ~rst_n; soc_design_JTAG_scfifo_w the_soc_design_JTAG_scfifo_w ( .clk (clk), .fifo_FF (fifo_FF), .fifo_clear (fifo_clear), .fifo_wdata (fifo_wdata), .fifo_wr (fifo_wr), .r_dat (r_dat), .rd_wfifo (rd_wfifo), .wfifo_empty (wfifo_empty), .wfifo_used (wfifo_used) ); soc_design_JTAG_scfifo_r the_soc_design_JTAG_scfifo_r ( .clk (clk), .fifo_EF (fifo_EF), .fifo_clear (fifo_clear), .fifo_rd (fifo_rd), .fifo_rdata (fifo_rdata), .rfifo_full (rfifo_full), .rfifo_used (rfifo_used), .rst_n (rst_n), .t_dat (t_dat), .wr_rfifo (wr_rfifo) ); assign ipen_AE = ien_AE & fifo_AE; assign ipen_AF = ien_AF & (pause_irq | fifo_AF); assign av_irq = ipen_AE | ipen_AF; assign activity = t_pause | t_ena; always @(posedge clk or negedge rst_n) begin if (rst_n == 0) pause_irq <= 1'b0; else // only if fifo is not empty... if (t_pause & ~fifo_EF) pause_irq <= 1'b1; else if (read_0) pause_irq <= 1'b0; end always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin r_val <= 1'b0; t_dav <= 1'b1; end else begin r_val <= r_ena & ~wfifo_empty; t_dav <= ~rfifo_full; end end always @(posedge clk or negedge rst_n) begin if (rst_n == 0) begin fifo_AE <= 1'b0; fifo_AF <= 1'b0; fifo_wr <= 1'b0; rvalid <= 1'b0; read_0 <= 1'b0; ien_AE <= 1'b0; ien_AF <= 1'b0; ac <= 1'b0; woverflow <= 1'b0; av_waitrequest <= 1'b1; end else begin fifo_AE <= {fifo_FF,wfifo_used} <= 8; fifo_AF <= (7'h40 - {rfifo_full,rfifo_used}) <= 8; fifo_wr <= 1'b0; read_0 <= 1'b0; av_waitrequest <= ~(av_chipselect & (~av_write_n | ~av_read_n) & av_waitrequest); if (activity) ac <= 1'b1; // write if (av_chipselect & ~av_write_n & av_waitrequest) // addr 1 is control; addr 0 is data if (av_address) begin ien_AF <= av_writedata[0]; ien_AE <= av_writedata[1]; if (av_writedata[10] & ~activity) ac <= 1'b0; end else begin fifo_wr <= ~fifo_FF; woverflow <= fifo_FF; end // read if (av_chipselect & ~av_read_n & av_waitrequest) begin // addr 1 is interrupt; addr 0 is data if (~av_address) rvalid <= ~fifo_EF; read_0 <= ~av_address; end end end assign fifo_wdata = av_writedata[7 : 0]; assign fifo_rd = (av_chipselect & ~av_read_n & av_waitrequest & ~av_address) ? ~fifo_EF : 1'b0; assign av_readdata = read_0 ? { {9{1'b0}},rfifo_full,rfifo_used,rvalid,woverflow,~fifo_FF,~fifo_EF,1'b0,ac,ipen_AE,ipen_AF,fifo_rdata } : { {9{1'b0}},(7'h40 - {fifo_FF,wfifo_used}),rvalid,woverflow,~fifo_FF,~fifo_EF,1'b0,ac,ipen_AE,ipen_AF,{6{1'b0}},ien_AE,ien_AF }; always @(posedge clk or negedge rst_n) begin if (rst_n == 0) readyfordata <= 0; else readyfordata <= ~fifo_FF; end //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS // Tie off Atlantic Interface signals not used for simulation always @(posedge clk) begin sim_t_pause <= 1'b0; sim_t_ena <= 1'b0; sim_t_dat <= t_dav ? r_dat : {8{r_val}}; sim_r_ena <= 1'b0; end assign r_ena = sim_r_ena; assign t_ena = sim_t_ena; assign t_dat = sim_t_dat; assign t_pause = sim_t_pause; always @(fifo_EF) begin dataavailable = ~fifo_EF; end //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // alt_jtag_atlantic soc_design_JTAG_alt_jtag_atlantic // ( // .clk (clk), // .r_dat (r_dat), // .r_ena (r_ena), // .r_val (r_val), // .rst_n (rst_n), // .t_dat (t_dat), // .t_dav (t_dav), // .t_ena (t_ena), // .t_pause (t_pause) // ); // // defparam soc_design_JTAG_alt_jtag_atlantic.INSTANCE_ID = 0, // soc_design_JTAG_alt_jtag_atlantic.LOG2_RXFIFO_DEPTH = 6, // soc_design_JTAG_alt_jtag_atlantic.LOG2_TXFIFO_DEPTH = 6, // soc_design_JTAG_alt_jtag_atlantic.SLD_AUTO_INSTANCE_INDEX = "YES"; // // always @(posedge clk or negedge rst_n) // begin // if (rst_n == 0) // dataavailable <= 0; // else // dataavailable <= ~fifo_EF; // end // // //synthesis read_comments_as_HDL off endmodule
module salsa (clk, B, Bx, Bo, X0out, Xaddr); // Latency 16 clock cycles, approx 20nS propagation delay (SLOW!) input clk; // input feedback; input [511:0]B; input [511:0]Bx; // output reg [511:0]Bo; // Output is registered output [511:0]Bo; // Output is async output [511:0]X0out; // Becomes new X0 output [9:0] Xaddr; wire [9:0] xa1, xa2, xa3, xa4, ya1, ya2, ya3, ya4; reg [511:0]x1d1, x1d1a; reg [511:0]x1d2, x1d2a; reg [511:0]x1d3, x1d3a; reg [511:0]x1d4, x1d4a; reg [511:0]Xod1, Xod1a; reg [511:0]Xod2, Xod2a; reg [511:0]Xod3, Xod3a; reg [511:0]Xod4, X0out; reg [511:0]xxd1, xxd1a; reg [511:0]xxd2, xxd2a; reg [511:0]xxd3, xxd3a; reg [511:0]xxd4, xxd4a; reg [511:0]yyd1, yyd1a; reg [511:0]yyd2, yyd2a; reg [511:0]yyd3, yyd3a; reg [511:0]yyd4, yyd4a; wire [511:0]xx; // Initial xor wire [511:0]x1; // Salasa core outputs wire [511:0]x2; wire [511:0]x3; wire [511:0]xr; wire [511:0]Xo; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsax1 (clk, xx, x1, xa1); salsa_core salsax2 (clk, x1, x2, xa2); salsa_core salsax3 (clk, x2, x3, xa3); salsa_core salsax4 (clk, x3, xr, xa4); wire [511:0]yy; // Initial xor wire [511:0]y1; // Salasa core outputs wire [511:0]y2; wire [511:0]y3; wire [511:0]yr; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsay1 (clk, yy, y1, ya1); salsa_core salsay2 (clk, y1, y2, ya2); salsa_core salsay3 (clk, y2, y3, ya3); salsa_core salsay4 (clk, y3, yr, ya4); assign Xaddr = yyd4[9:0] + ya4; genvar i; generate for (i = 0; i < 16; i = i + 1) begin : XX // Initial XOR. NB this adds to the propagation delay of the first salsa, may want register it. assign xx[`IDX(i)] = B[`IDX(i)] ^ Bx[`IDX(i)]; assign Xo[`IDX(i)] = xxd4a[`IDX(i)] + xr[`IDX(i)]; assign yy[`IDX(i)] = x1d4a[`IDX(i)] ^ Xo[`IDX(i)]; assign Bo[`IDX(i)] = yyd4a[`IDX(i)] + yr[`IDX(i)]; // Async output end endgenerate always @ (posedge clk) begin x1d1 <= Bx; x1d1a <= x1d1; x1d2 <= x1d1a; x1d2a <= x1d2; x1d3 <= x1d2a; x1d3a <= x1d3; x1d4 <= x1d3a; x1d4a <= x1d4; Xod1 <= Xo; Xod1a <= Xod1; Xod2 <= Xod1a; Xod2a <= Xod2; Xod3 <= Xod2a; Xod3a <= Xod3; Xod4 <= Xod3a; X0out <= Xod4; // We output this to become new X0 xxd1 <= xx; xxd1a <= xxd1; xxd2 <= xxd1a; xxd2a <= xxd2; xxd3 <= xxd2a; xxd3a <= xxd3; xxd4 <= xxd3a; xxd4a <= xxd4; yyd1 <= yy; yyd1a <= yyd1; yyd2 <= yyd1a; yyd2a <= yyd2; yyd3 <= yyd2a; yyd3a <= yyd3; yyd4 <= yyd3a; yyd4a <= yyd4; end endmodule
module salsa_core (clk, xx, out, Xaddr); input clk; input [511:0]xx; output reg [511:0]out; // Output is registered output [9:0] Xaddr; // Address output unregistered // This is clunky due to my lack of verilog skills but it works so elegance can come later wire [31:0]c00; // Column results wire [31:0]c01; wire [31:0]c02; wire [31:0]c03; wire [31:0]c04; wire [31:0]c05; wire [31:0]c06; wire [31:0]c07; wire [31:0]c08; wire [31:0]c09; wire [31:0]c10; wire [31:0]c11; wire [31:0]c12; wire [31:0]c13; wire [31:0]c14; wire [31:0]c15; wire [31:0]r00; // Row results wire [31:0]r01; wire [31:0]r02; wire [31:0]r03; wire [31:0]r04; wire [31:0]r05; wire [31:0]r06; wire [31:0]r07; wire [31:0]r08; wire [31:0]r09; wire [31:0]r10; wire [31:0]r11; wire [31:0]r12; wire [31:0]r13; wire [31:0]r14; wire [31:0]r15; wire [31:0]c00s; // Column sums wire [31:0]c01s; wire [31:0]c02s; wire [31:0]c03s; wire [31:0]c04s; wire [31:0]c05s; wire [31:0]c06s; wire [31:0]c07s; wire [31:0]c08s; wire [31:0]c09s; wire [31:0]c10s; wire [31:0]c11s; wire [31:0]c12s; wire [31:0]c13s; wire [31:0]c14s; wire [31:0]c15s; wire [31:0]r00s; // Row sums wire [31:0]r01s; wire [31:0]r02s; wire [31:0]r03s; wire [31:0]r04s; wire [31:0]r05s; wire [31:0]r06s; wire [31:0]r07s; wire [31:0]r08s; wire [31:0]r09s; wire [31:0]r10s; wire [31:0]r11s; wire [31:0]r12s; wire [31:0]r13s; wire [31:0]r14s; wire [31:0]r15s; reg [31:0]c00d; // Column results registered reg [31:0]c01d; reg [31:0]c02d; reg [31:0]c03d; reg [31:0]c04d; reg [31:0]c05d; reg [31:0]c06d; reg [31:0]c07d; reg [31:0]c08d; reg [31:0]c09d; reg [31:0]c10d; reg [31:0]c11d; reg [31:0]c12d; reg [31:0]c13d; reg [31:0]c14d; reg [31:0]c15d; /* From scrypt.c #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) for (i = 0; i < 8; i += 2) { // Operate on columns x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); // Operate on rows x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); } */ // cols assign c04s = xx[`IDX(0)] + xx[`IDX(12)]; assign c04 = xx[`IDX(4)] ^ { c04s[24:0], c04s[31:25] }; assign c09s = xx[`IDX(5)] + xx[`IDX(1)]; assign c09 = xx[`IDX(9)] ^ { c09s[24:0], c09s[31:25] }; assign c14s = xx[`IDX(10)] + xx[`IDX(6)]; assign c14 = xx[`IDX(14)] ^ { c14s[24:0], c14s[31:25] }; assign c03s = xx[`IDX(15)] + xx[`IDX(11)]; assign c03 = xx[`IDX(03)] ^ { c03s[24:0], c03s[31:25] }; assign c08s = c04 + xx[`IDX(0)]; assign c08 = xx[`IDX(8)] ^ { c08s[22:0], c08s[31:23] }; assign c13s = c09 + xx[`IDX(5)]; assign c13 = xx[`IDX(13)] ^ { c13s[22:0], c13s[31:23] }; assign c02s = c14 + xx[`IDX(10)]; assign c02 = xx[`IDX(2)] ^ { c02s[22:0], c02s[31:23] }; assign c07s = c03 + xx[`IDX(15)]; assign c07 = xx[`IDX(7)] ^ { c07s[22:0], c07s[31:23] }; assign c12s = c08 + c04; assign c12 = xx[`IDX(12)] ^ { c12s[18:0], c12s[31:19] }; assign c01s = c13 + c09; assign c01 = xx[`IDX(1)] ^ { c01s[18:0], c01s[31:19] }; assign c06s = c02 + c14; assign c06 = xx[`IDX(6)] ^ { c06s[18:0], c06s[31:19] }; assign c11s = c07 + c03; assign c11 = xx[`IDX(11)] ^ { c11s[18:0], c11s[31:19] }; assign c00s = c12 + c08; assign c00 = xx[`IDX(0)] ^ { c00s[13:0], c00s[31:14] }; assign c05s = c01 + c13; assign c05 = xx[`IDX(5)] ^ { c05s[13:0], c05s[31:14] }; assign c10s = c06 + c02; assign c10 = xx[`IDX(10)] ^ { c10s[13:0], c10s[31:14] }; assign c15s = c11 + c07; assign c15 = xx[`IDX(15)] ^ { c15s[13:0], c15s[31:14] }; // rows assign r01s = c00d + c03d; assign r01 = c01d ^ { r01s[24:0], r01s[31:25] }; assign r06s = c05d + c04d; assign r06 = c06d ^ { r06s[24:0], r06s[31:25] }; assign r11s = c10d + c09d; assign r11 = c11d ^ { r11s[24:0], r11s[31:25] }; assign r12s = c15d + c14d; assign r12 = c12d ^ { r12s[24:0], r12s[31:25] }; assign r02s = r01 + c00d; assign r02 = c02d ^ { r02s[22:0], r02s[31:23] }; assign r07s = r06 + c05d; assign r07 = c07d ^ { r07s[22:0], r07s[31:23] }; assign r08s = r11 + c10d; assign r08 = c08d ^ { r08s[22:0], r08s[31:23] }; assign r13s = r12 + c15d; assign r13 = c13d ^ { r13s[22:0], r13s[31:23] }; assign r03s = r02 + r01; assign r03 = c03d ^ { r03s[18:0], r03s[31:19] }; assign r04s = r07 + r06; assign r04 = c04d ^ { r04s[18:0], r04s[31:19] }; assign r09s = r08 + r11; assign r09 = c09d ^ { r09s[18:0], r09s[31:19] }; assign r14s = r13 + r12; assign r14 = c14d ^ { r14s[18:0], r14s[31:19] }; assign r00s = r03 + r02; assign r00 = c00d ^ { r00s[13:0], r00s[31:14] }; assign r05s = r04 + r07; assign r05 = c05d ^ { r05s[13:0], r05s[31:14] }; assign r10s = r09 + r08; assign r10 = c10d ^ { r10s[13:0], r10s[31:14] }; assign r15s = r14 + r13; assign r15 = c15d ^ { r15s[13:0], r15s[31:14] }; wire [511:0]xo; // Rename row results assign xo = { r15, r14, r13, r12, r11, r10, r09, r08, r07, r06, r05, r04, r03, r02, r01, r00 }; assign Xaddr = xo[9:0]; // Unregistered output always @ (posedge clk) begin c00d <= c00; c01d <= c01; c02d <= c02; c03d <= c03; c04d <= c04; c05d <= c05; c06d <= c06; c07d <= c07; c08d <= c08; c09d <= c09; c10d <= c10; c11d <= c11; c12d <= c12; c13d <= c13; c14d <= c14; c15d <= c15; out <= xo; // Registered output end endmodule
module Barrel_Shifter #(parameter SWR=26, parameter EWR=5) //Implicit bit + Significand Width (23 bits for simple format, 52 bits for Double format) //+ guard Bit + round bit /*#(parameter SWR=55, parameter EWR=6)*/ ( input wire clk, input wire rst, input wire load_i, input wire [EWR-1:0] Shift_Value_i, input wire [SWR-1:0] Shift_Data_i, input wire Left_Right_i, input wire Bit_Shift_i, /////////////////////////////////////////////7 output wire [SWR-1:0] N_mant_o ); wire [SWR-1:0] Data_Reg; ////////////////////////////////////////////////////7 Mux_Array #(.SWR(SWR),.EWR(EWR)) Mux_Array( .clk(clk), .rst(rst), .load_i(load_i), .Data_i(Shift_Data_i), .FSM_left_right_i(Left_Right_i), .Shift_Value_i(Shift_Value_i), .bit_shift_i(Bit_Shift_i), .Data_o(Data_Reg) ); RegisterAdd #(.W(SWR)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Data_Reg), .Q(N_mant_o) ); endmodule
module Barrel_Shifter #(parameter SWR=26, parameter EWR=5) //Implicit bit + Significand Width (23 bits for simple format, 52 bits for Double format) //+ guard Bit + round bit /*#(parameter SWR=55, parameter EWR=6)*/ ( input wire clk, input wire rst, input wire load_i, input wire [EWR-1:0] Shift_Value_i, input wire [SWR-1:0] Shift_Data_i, input wire Left_Right_i, input wire Bit_Shift_i, /////////////////////////////////////////////7 output wire [SWR-1:0] N_mant_o ); wire [SWR-1:0] Data_Reg; ////////////////////////////////////////////////////7 Mux_Array #(.SWR(SWR),.EWR(EWR)) Mux_Array( .clk(clk), .rst(rst), .load_i(load_i), .Data_i(Shift_Data_i), .FSM_left_right_i(Left_Right_i), .Shift_Value_i(Shift_Value_i), .bit_shift_i(Bit_Shift_i), .Data_o(Data_Reg) ); RegisterAdd #(.W(SWR)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Data_Reg), .Q(N_mant_o) ); endmodule
module Barrel_Shifter #(parameter SWR=26, parameter EWR=5) //Implicit bit + Significand Width (23 bits for simple format, 52 bits for Double format) //+ guard Bit + round bit /*#(parameter SWR=55, parameter EWR=6)*/ ( input wire clk, input wire rst, input wire load_i, input wire [EWR-1:0] Shift_Value_i, input wire [SWR-1:0] Shift_Data_i, input wire Left_Right_i, input wire Bit_Shift_i, /////////////////////////////////////////////7 output wire [SWR-1:0] N_mant_o ); wire [SWR-1:0] Data_Reg; ////////////////////////////////////////////////////7 Mux_Array #(.SWR(SWR),.EWR(EWR)) Mux_Array( .clk(clk), .rst(rst), .load_i(load_i), .Data_i(Shift_Data_i), .FSM_left_right_i(Left_Right_i), .Shift_Value_i(Shift_Value_i), .bit_shift_i(Bit_Shift_i), .Data_o(Data_Reg) ); RegisterAdd #(.W(SWR)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Data_Reg), .Q(N_mant_o) ); endmodule
module Barrel_Shifter #(parameter SWR=26, parameter EWR=5) //Implicit bit + Significand Width (23 bits for simple format, 52 bits for Double format) //+ guard Bit + round bit /*#(parameter SWR=55, parameter EWR=6)*/ ( input wire clk, input wire rst, input wire load_i, input wire [EWR-1:0] Shift_Value_i, input wire [SWR-1:0] Shift_Data_i, input wire Left_Right_i, input wire Bit_Shift_i, /////////////////////////////////////////////7 output wire [SWR-1:0] N_mant_o ); wire [SWR-1:0] Data_Reg; ////////////////////////////////////////////////////7 Mux_Array #(.SWR(SWR),.EWR(EWR)) Mux_Array( .clk(clk), .rst(rst), .load_i(load_i), .Data_i(Shift_Data_i), .FSM_left_right_i(Left_Right_i), .Shift_Value_i(Shift_Value_i), .bit_shift_i(Bit_Shift_i), .Data_o(Data_Reg) ); RegisterAdd #(.W(SWR)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Data_Reg), .Q(N_mant_o) ); endmodule
module altera_reset_synchronizer #( parameter ASYNC_RESET = 1, parameter DEPTH = 2 ) ( input reset_in /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=R101" */, input clk, output reset_out ); // ----------------------------------------------- // Synchronizer register chain. We cannot reuse the // standard synchronizer in this implementation // because our timing constraints are different. // // Instead of cutting the timing path to the d-input // on the first flop we need to cut the aclr input. // // We omit the "preserve" attribute on the final // output register, so that the synthesis tool can // duplicate it where needed. // ----------------------------------------------- (*preserve*) reg [DEPTH-1:0] altera_reset_synchronizer_int_chain; reg altera_reset_synchronizer_int_chain_out; generate if (ASYNC_RESET) begin // ----------------------------------------------- // Assert asynchronously, deassert synchronously. // ----------------------------------------------- always @(posedge clk or posedge reset_in) begin if (reset_in) begin altera_reset_synchronizer_int_chain <= {DEPTH{1'b1}}; altera_reset_synchronizer_int_chain_out <= 1'b1; end else begin altera_reset_synchronizer_int_chain[DEPTH-2:0] <= altera_reset_synchronizer_int_chain[DEPTH-1:1]; altera_reset_synchronizer_int_chain[DEPTH-1] <= 0; altera_reset_synchronizer_int_chain_out <= altera_reset_synchronizer_int_chain[0]; end end assign reset_out = altera_reset_synchronizer_int_chain_out; end else begin // ----------------------------------------------- // Assert synchronously, deassert synchronously. // ----------------------------------------------- always @(posedge clk) begin altera_reset_synchronizer_int_chain[DEPTH-2:0] <= altera_reset_synchronizer_int_chain[DEPTH-1:1]; altera_reset_synchronizer_int_chain[DEPTH-1] <= reset_in; altera_reset_synchronizer_int_chain_out <= altera_reset_synchronizer_int_chain[0]; end assign reset_out = altera_reset_synchronizer_int_chain_out; end endgenerate endmodule
module altera_reset_synchronizer #( parameter ASYNC_RESET = 1, parameter DEPTH = 2 ) ( input reset_in /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=R101" */, input clk, output reset_out ); // ----------------------------------------------- // Synchronizer register chain. We cannot reuse the // standard synchronizer in this implementation // because our timing constraints are different. // // Instead of cutting the timing path to the d-input // on the first flop we need to cut the aclr input. // // We omit the "preserve" attribute on the final // output register, so that the synthesis tool can // duplicate it where needed. // ----------------------------------------------- (*preserve*) reg [DEPTH-1:0] altera_reset_synchronizer_int_chain; reg altera_reset_synchronizer_int_chain_out; generate if (ASYNC_RESET) begin // ----------------------------------------------- // Assert asynchronously, deassert synchronously. // ----------------------------------------------- always @(posedge clk or posedge reset_in) begin if (reset_in) begin altera_reset_synchronizer_int_chain <= {DEPTH{1'b1}}; altera_reset_synchronizer_int_chain_out <= 1'b1; end else begin altera_reset_synchronizer_int_chain[DEPTH-2:0] <= altera_reset_synchronizer_int_chain[DEPTH-1:1]; altera_reset_synchronizer_int_chain[DEPTH-1] <= 0; altera_reset_synchronizer_int_chain_out <= altera_reset_synchronizer_int_chain[0]; end end assign reset_out = altera_reset_synchronizer_int_chain_out; end else begin // ----------------------------------------------- // Assert synchronously, deassert synchronously. // ----------------------------------------------- always @(posedge clk) begin altera_reset_synchronizer_int_chain[DEPTH-2:0] <= altera_reset_synchronizer_int_chain[DEPTH-1:1]; altera_reset_synchronizer_int_chain[DEPTH-1] <= reset_in; altera_reset_synchronizer_int_chain_out <= altera_reset_synchronizer_int_chain[0]; end assign reset_out = altera_reset_synchronizer_int_chain_out; end endgenerate endmodule
module altera_reset_synchronizer #( parameter ASYNC_RESET = 1, parameter DEPTH = 2 ) ( input reset_in /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=R101" */, input clk, output reset_out ); // ----------------------------------------------- // Synchronizer register chain. We cannot reuse the // standard synchronizer in this implementation // because our timing constraints are different. // // Instead of cutting the timing path to the d-input // on the first flop we need to cut the aclr input. // // We omit the "preserve" attribute on the final // output register, so that the synthesis tool can // duplicate it where needed. // ----------------------------------------------- (*preserve*) reg [DEPTH-1:0] altera_reset_synchronizer_int_chain; reg altera_reset_synchronizer_int_chain_out; generate if (ASYNC_RESET) begin // ----------------------------------------------- // Assert asynchronously, deassert synchronously. // ----------------------------------------------- always @(posedge clk or posedge reset_in) begin if (reset_in) begin altera_reset_synchronizer_int_chain <= {DEPTH{1'b1}}; altera_reset_synchronizer_int_chain_out <= 1'b1; end else begin altera_reset_synchronizer_int_chain[DEPTH-2:0] <= altera_reset_synchronizer_int_chain[DEPTH-1:1]; altera_reset_synchronizer_int_chain[DEPTH-1] <= 0; altera_reset_synchronizer_int_chain_out <= altera_reset_synchronizer_int_chain[0]; end end assign reset_out = altera_reset_synchronizer_int_chain_out; end else begin // ----------------------------------------------- // Assert synchronously, deassert synchronously. // ----------------------------------------------- always @(posedge clk) begin altera_reset_synchronizer_int_chain[DEPTH-2:0] <= altera_reset_synchronizer_int_chain[DEPTH-1:1]; altera_reset_synchronizer_int_chain[DEPTH-1] <= reset_in; altera_reset_synchronizer_int_chain_out <= altera_reset_synchronizer_int_chain[0]; end assign reset_out = altera_reset_synchronizer_int_chain_out; end endgenerate endmodule
module altera_avalon_st_pipeline_base ( clk, reset, in_ready, in_valid, in_data, out_ready, out_valid, out_data ); parameter SYMBOLS_PER_BEAT = 1; parameter BITS_PER_SYMBOL = 8; parameter PIPELINE_READY = 1; localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL; input clk; input reset; output in_ready; input in_valid; input [DATA_WIDTH-1:0] in_data; input out_ready; output out_valid; output [DATA_WIDTH-1:0] out_data; reg full0; reg full1; reg [DATA_WIDTH-1:0] data0; reg [DATA_WIDTH-1:0] data1; assign out_valid = full1; assign out_data = data1; generate if (PIPELINE_READY == 1) begin : REGISTERED_READY_PLINE assign in_ready = !full0; always @(posedge clk, posedge reset) begin if (reset) begin data0 <= {DATA_WIDTH{1'b0}}; data1 <= {DATA_WIDTH{1'b0}}; end else begin // ---------------------------- // always load the second slot if we can // ---------------------------- if (~full0) data0 <= in_data; // ---------------------------- // first slot is loaded either from the second, // or with new data // ---------------------------- if (~full1 || (out_ready && out_valid)) begin if (full0) data1 <= data0; else data1 <= in_data; end end end always @(posedge clk or posedge reset) begin if (reset) begin full0 <= 1'b0; full1 <= 1'b0; end else begin // no data in pipeline if (~full0 & ~full1) begin if (in_valid) begin full1 <= 1'b1; end end // ~f1 & ~f0 // one datum in pipeline if (full1 & ~full0) begin if (in_valid & ~out_ready) begin full0 <= 1'b1; end // back to empty if (~in_valid & out_ready) begin full1 <= 1'b0; end end // f1 & ~f0 // two data in pipeline if (full1 & full0) begin // go back to one datum state if (out_ready) begin full0 <= 1'b0; end end // end go back to one datum stage end end end else begin : UNREGISTERED_READY_PLINE // in_ready will be a pass through of the out_ready signal as it is not registered assign in_ready = (~full1) | out_ready; always @(posedge clk or posedge reset) begin if (reset) begin data1 <= 'b0; full1 <= 1'b0; end else begin if (in_ready) begin data1 <= in_data; full1 <= in_valid; end end end end endgenerate endmodule
module altera_avalon_st_pipeline_base ( clk, reset, in_ready, in_valid, in_data, out_ready, out_valid, out_data ); parameter SYMBOLS_PER_BEAT = 1; parameter BITS_PER_SYMBOL = 8; parameter PIPELINE_READY = 1; localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL; input clk; input reset; output in_ready; input in_valid; input [DATA_WIDTH-1:0] in_data; input out_ready; output out_valid; output [DATA_WIDTH-1:0] out_data; reg full0; reg full1; reg [DATA_WIDTH-1:0] data0; reg [DATA_WIDTH-1:0] data1; assign out_valid = full1; assign out_data = data1; generate if (PIPELINE_READY == 1) begin : REGISTERED_READY_PLINE assign in_ready = !full0; always @(posedge clk, posedge reset) begin if (reset) begin data0 <= {DATA_WIDTH{1'b0}}; data1 <= {DATA_WIDTH{1'b0}}; end else begin // ---------------------------- // always load the second slot if we can // ---------------------------- if (~full0) data0 <= in_data; // ---------------------------- // first slot is loaded either from the second, // or with new data // ---------------------------- if (~full1 || (out_ready && out_valid)) begin if (full0) data1 <= data0; else data1 <= in_data; end end end always @(posedge clk or posedge reset) begin if (reset) begin full0 <= 1'b0; full1 <= 1'b0; end else begin // no data in pipeline if (~full0 & ~full1) begin if (in_valid) begin full1 <= 1'b1; end end // ~f1 & ~f0 // one datum in pipeline if (full1 & ~full0) begin if (in_valid & ~out_ready) begin full0 <= 1'b1; end // back to empty if (~in_valid & out_ready) begin full1 <= 1'b0; end end // f1 & ~f0 // two data in pipeline if (full1 & full0) begin // go back to one datum state if (out_ready) begin full0 <= 1'b0; end end // end go back to one datum stage end end end else begin : UNREGISTERED_READY_PLINE // in_ready will be a pass through of the out_ready signal as it is not registered assign in_ready = (~full1) | out_ready; always @(posedge clk or posedge reset) begin if (reset) begin data1 <= 'b0; full1 <= 1'b0; end else begin if (in_ready) begin data1 <= in_data; full1 <= in_valid; end end end end endgenerate endmodule
module altera_avalon_st_pipeline_base ( clk, reset, in_ready, in_valid, in_data, out_ready, out_valid, out_data ); parameter SYMBOLS_PER_BEAT = 1; parameter BITS_PER_SYMBOL = 8; parameter PIPELINE_READY = 1; localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL; input clk; input reset; output in_ready; input in_valid; input [DATA_WIDTH-1:0] in_data; input out_ready; output out_valid; output [DATA_WIDTH-1:0] out_data; reg full0; reg full1; reg [DATA_WIDTH-1:0] data0; reg [DATA_WIDTH-1:0] data1; assign out_valid = full1; assign out_data = data1; generate if (PIPELINE_READY == 1) begin : REGISTERED_READY_PLINE assign in_ready = !full0; always @(posedge clk, posedge reset) begin if (reset) begin data0 <= {DATA_WIDTH{1'b0}}; data1 <= {DATA_WIDTH{1'b0}}; end else begin // ---------------------------- // always load the second slot if we can // ---------------------------- if (~full0) data0 <= in_data; // ---------------------------- // first slot is loaded either from the second, // or with new data // ---------------------------- if (~full1 || (out_ready && out_valid)) begin if (full0) data1 <= data0; else data1 <= in_data; end end end always @(posedge clk or posedge reset) begin if (reset) begin full0 <= 1'b0; full1 <= 1'b0; end else begin // no data in pipeline if (~full0 & ~full1) begin if (in_valid) begin full1 <= 1'b1; end end // ~f1 & ~f0 // one datum in pipeline if (full1 & ~full0) begin if (in_valid & ~out_ready) begin full0 <= 1'b1; end // back to empty if (~in_valid & out_ready) begin full1 <= 1'b0; end end // f1 & ~f0 // two data in pipeline if (full1 & full0) begin // go back to one datum state if (out_ready) begin full0 <= 1'b0; end end // end go back to one datum stage end end end else begin : UNREGISTERED_READY_PLINE // in_ready will be a pass through of the out_ready signal as it is not registered assign in_ready = (~full1) | out_ready; always @(posedge clk or posedge reset) begin if (reset) begin data1 <= 'b0; full1 <= 1'b0; end else begin if (in_ready) begin data1 <= in_data; full1 <= in_valid; end end end end endgenerate endmodule
module altera_avalon_st_pipeline_base ( clk, reset, in_ready, in_valid, in_data, out_ready, out_valid, out_data ); parameter SYMBOLS_PER_BEAT = 1; parameter BITS_PER_SYMBOL = 8; parameter PIPELINE_READY = 1; localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL; input clk; input reset; output in_ready; input in_valid; input [DATA_WIDTH-1:0] in_data; input out_ready; output out_valid; output [DATA_WIDTH-1:0] out_data; reg full0; reg full1; reg [DATA_WIDTH-1:0] data0; reg [DATA_WIDTH-1:0] data1; assign out_valid = full1; assign out_data = data1; generate if (PIPELINE_READY == 1) begin : REGISTERED_READY_PLINE assign in_ready = !full0; always @(posedge clk, posedge reset) begin if (reset) begin data0 <= {DATA_WIDTH{1'b0}}; data1 <= {DATA_WIDTH{1'b0}}; end else begin // ---------------------------- // always load the second slot if we can // ---------------------------- if (~full0) data0 <= in_data; // ---------------------------- // first slot is loaded either from the second, // or with new data // ---------------------------- if (~full1 || (out_ready && out_valid)) begin if (full0) data1 <= data0; else data1 <= in_data; end end end always @(posedge clk or posedge reset) begin if (reset) begin full0 <= 1'b0; full1 <= 1'b0; end else begin // no data in pipeline if (~full0 & ~full1) begin if (in_valid) begin full1 <= 1'b1; end end // ~f1 & ~f0 // one datum in pipeline if (full1 & ~full0) begin if (in_valid & ~out_ready) begin full0 <= 1'b1; end // back to empty if (~in_valid & out_ready) begin full1 <= 1'b0; end end // f1 & ~f0 // two data in pipeline if (full1 & full0) begin // go back to one datum state if (out_ready) begin full0 <= 1'b0; end end // end go back to one datum stage end end end else begin : UNREGISTERED_READY_PLINE // in_ready will be a pass through of the out_ready signal as it is not registered assign in_ready = (~full1) | out_ready; always @(posedge clk or posedge reset) begin if (reset) begin data1 <= 'b0; full1 <= 1'b0; end else begin if (in_ready) begin data1 <= in_data; full1 <= in_valid; end end end end endgenerate endmodule
module altera_avalon_st_pipeline_base ( clk, reset, in_ready, in_valid, in_data, out_ready, out_valid, out_data ); parameter SYMBOLS_PER_BEAT = 1; parameter BITS_PER_SYMBOL = 8; parameter PIPELINE_READY = 1; localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL; input clk; input reset; output in_ready; input in_valid; input [DATA_WIDTH-1:0] in_data; input out_ready; output out_valid; output [DATA_WIDTH-1:0] out_data; reg full0; reg full1; reg [DATA_WIDTH-1:0] data0; reg [DATA_WIDTH-1:0] data1; assign out_valid = full1; assign out_data = data1; generate if (PIPELINE_READY == 1) begin : REGISTERED_READY_PLINE assign in_ready = !full0; always @(posedge clk, posedge reset) begin if (reset) begin data0 <= {DATA_WIDTH{1'b0}}; data1 <= {DATA_WIDTH{1'b0}}; end else begin // ---------------------------- // always load the second slot if we can // ---------------------------- if (~full0) data0 <= in_data; // ---------------------------- // first slot is loaded either from the second, // or with new data // ---------------------------- if (~full1 || (out_ready && out_valid)) begin if (full0) data1 <= data0; else data1 <= in_data; end end end always @(posedge clk or posedge reset) begin if (reset) begin full0 <= 1'b0; full1 <= 1'b0; end else begin // no data in pipeline if (~full0 & ~full1) begin if (in_valid) begin full1 <= 1'b1; end end // ~f1 & ~f0 // one datum in pipeline if (full1 & ~full0) begin if (in_valid & ~out_ready) begin full0 <= 1'b1; end // back to empty if (~in_valid & out_ready) begin full1 <= 1'b0; end end // f1 & ~f0 // two data in pipeline if (full1 & full0) begin // go back to one datum state if (out_ready) begin full0 <= 1'b0; end end // end go back to one datum stage end end end else begin : UNREGISTERED_READY_PLINE // in_ready will be a pass through of the out_ready signal as it is not registered assign in_ready = (~full1) | out_ready; always @(posedge clk or posedge reset) begin if (reset) begin data1 <= 'b0; full1 <= 1'b0; end else begin if (in_ready) begin data1 <= in_data; full1 <= in_valid; end end end end endgenerate endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module adc_interface (input clock, input reset, input enable, input wire [6:0] serial_addr, input wire [31:0] serial_data, input serial_strobe, input wire [11:0] rx_a_a, input wire [11:0] rx_b_a, input wire [11:0] rx_a_b, input wire [11:0] rx_b_b, output wire [31:0] rssi_0, output wire [31:0] rssi_1, output wire [31:0] rssi_2, output wire [31:0] rssi_3, output reg [15:0] ddc0_in_i, output reg [15:0] ddc0_in_q, output reg [15:0] ddc1_in_i, output reg [15:0] ddc1_in_q, output reg [15:0] ddc2_in_i, output reg [15:0] ddc2_in_q, output reg [15:0] ddc3_in_i, output reg [15:0] ddc3_in_q, output wire [3:0] rx_numchan); // Buffer at input to chip reg [11:0] adc0,adc1,adc2,adc3; always @(posedge clock) begin adc0 <= #1 rx_a_a; adc1 <= #1 rx_b_a; adc2 <= #1 rx_a_b; adc3 <= #1 rx_b_b; end // then scale and subtract dc offset wire [3:0] dco_en; wire [15:0] adc0_corr,adc1_corr,adc2_corr,adc3_corr; setting_reg #(`FR_DC_OFFSET_CL_EN) sr_dco_en(.clock(clock),.reset(reset),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data), .out(dco_en)); rx_dcoffset #(`FR_ADC_OFFSET_0) rx_dcoffset0(.clock(clock),.enable(dco_en[0]),.reset(reset),.adc_in({adc0[11],adc0,3'b0}),.adc_out(adc0_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_1) rx_dcoffset1(.clock(clock),.enable(dco_en[1]),.reset(reset),.adc_in({adc1[11],adc1,3'b0}),.adc_out(adc1_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_2) rx_dcoffset2(.clock(clock),.enable(dco_en[2]),.reset(reset),.adc_in({adc2[11],adc2,3'b0}),.adc_out(adc2_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_3) rx_dcoffset3(.clock(clock),.enable(dco_en[3]),.reset(reset),.adc_in({adc3[11],adc3,3'b0}),.adc_out(adc3_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); // Level sensing for AGC rssi rssi_block_0 (.clock(clock),.reset(reset),.enable(enable),.adc(adc0),.rssi(rssi_0[15:0]),.over_count(rssi_0[31:16])); rssi rssi_block_1 (.clock(clock),.reset(reset),.enable(enable),.adc(adc1),.rssi(rssi_1[15:0]),.over_count(rssi_1[31:16])); rssi rssi_block_2 (.clock(clock),.reset(reset),.enable(enable),.adc(adc2),.rssi(rssi_2[15:0]),.over_count(rssi_2[31:16])); rssi rssi_block_3 (.clock(clock),.reset(reset),.enable(enable),.adc(adc3),.rssi(rssi_3[15:0]),.over_count(rssi_3[31:16])); // And mux to the appropriate outputs wire [3:0] ddc3mux,ddc2mux,ddc1mux,ddc0mux; wire rx_realsignals; setting_reg #(`FR_RX_MUX) sr_rxmux(.clock(clock),.reset(reset),.strobe(serial_strobe),.addr(serial_addr), .in(serial_data),.out({ddc3mux,ddc2mux,ddc1mux,ddc0mux,rx_realsignals,rx_numchan[3:1]})); assign rx_numchan[0] = 1'b0; always @(posedge clock) begin ddc0_in_i <= #1 ddc0mux[1] ? (ddc0mux[0] ? adc3_corr : adc2_corr) : (ddc0mux[0] ? adc1_corr : adc0_corr); ddc0_in_q <= #1 rx_realsignals ? 16'd0 : ddc0mux[3] ? (ddc0mux[2] ? adc3_corr : adc2_corr) : (ddc0mux[2] ? adc1_corr : adc0_corr); ddc1_in_i <= #1 ddc1mux[1] ? (ddc1mux[0] ? adc3_corr : adc2_corr) : (ddc1mux[0] ? adc1_corr : adc0_corr); ddc1_in_q <= #1 rx_realsignals ? 16'd0 : ddc1mux[3] ? (ddc1mux[2] ? adc3_corr : adc2_corr) : (ddc1mux[2] ? adc1_corr : adc0_corr); ddc2_in_i <= #1 ddc2mux[1] ? (ddc2mux[0] ? adc3_corr : adc2_corr) : (ddc2mux[0] ? adc1_corr : adc0_corr); ddc2_in_q <= #1 rx_realsignals ? 16'd0 : ddc2mux[3] ? (ddc2mux[2] ? adc3_corr : adc2_corr) : (ddc2mux[2] ? adc1_corr : adc0_corr); ddc3_in_i <= #1 ddc3mux[1] ? (ddc3mux[0] ? adc3_corr : adc2_corr) : (ddc3mux[0] ? adc1_corr : adc0_corr); ddc3_in_q <= #1 rx_realsignals ? 16'd0 : ddc3mux[3] ? (ddc3mux[2] ? adc3_corr : adc2_corr) : (ddc3mux[2] ? adc1_corr : adc0_corr); end endmodule
module adc_interface (input clock, input reset, input enable, input wire [6:0] serial_addr, input wire [31:0] serial_data, input serial_strobe, input wire [11:0] rx_a_a, input wire [11:0] rx_b_a, input wire [11:0] rx_a_b, input wire [11:0] rx_b_b, output wire [31:0] rssi_0, output wire [31:0] rssi_1, output wire [31:0] rssi_2, output wire [31:0] rssi_3, output reg [15:0] ddc0_in_i, output reg [15:0] ddc0_in_q, output reg [15:0] ddc1_in_i, output reg [15:0] ddc1_in_q, output reg [15:0] ddc2_in_i, output reg [15:0] ddc2_in_q, output reg [15:0] ddc3_in_i, output reg [15:0] ddc3_in_q, output wire [3:0] rx_numchan); // Buffer at input to chip reg [11:0] adc0,adc1,adc2,adc3; always @(posedge clock) begin adc0 <= #1 rx_a_a; adc1 <= #1 rx_b_a; adc2 <= #1 rx_a_b; adc3 <= #1 rx_b_b; end // then scale and subtract dc offset wire [3:0] dco_en; wire [15:0] adc0_corr,adc1_corr,adc2_corr,adc3_corr; setting_reg #(`FR_DC_OFFSET_CL_EN) sr_dco_en(.clock(clock),.reset(reset),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data), .out(dco_en)); rx_dcoffset #(`FR_ADC_OFFSET_0) rx_dcoffset0(.clock(clock),.enable(dco_en[0]),.reset(reset),.adc_in({adc0[11],adc0,3'b0}),.adc_out(adc0_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_1) rx_dcoffset1(.clock(clock),.enable(dco_en[1]),.reset(reset),.adc_in({adc1[11],adc1,3'b0}),.adc_out(adc1_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_2) rx_dcoffset2(.clock(clock),.enable(dco_en[2]),.reset(reset),.adc_in({adc2[11],adc2,3'b0}),.adc_out(adc2_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_3) rx_dcoffset3(.clock(clock),.enable(dco_en[3]),.reset(reset),.adc_in({adc3[11],adc3,3'b0}),.adc_out(adc3_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); // Level sensing for AGC rssi rssi_block_0 (.clock(clock),.reset(reset),.enable(enable),.adc(adc0),.rssi(rssi_0[15:0]),.over_count(rssi_0[31:16])); rssi rssi_block_1 (.clock(clock),.reset(reset),.enable(enable),.adc(adc1),.rssi(rssi_1[15:0]),.over_count(rssi_1[31:16])); rssi rssi_block_2 (.clock(clock),.reset(reset),.enable(enable),.adc(adc2),.rssi(rssi_2[15:0]),.over_count(rssi_2[31:16])); rssi rssi_block_3 (.clock(clock),.reset(reset),.enable(enable),.adc(adc3),.rssi(rssi_3[15:0]),.over_count(rssi_3[31:16])); // And mux to the appropriate outputs wire [3:0] ddc3mux,ddc2mux,ddc1mux,ddc0mux; wire rx_realsignals; setting_reg #(`FR_RX_MUX) sr_rxmux(.clock(clock),.reset(reset),.strobe(serial_strobe),.addr(serial_addr), .in(serial_data),.out({ddc3mux,ddc2mux,ddc1mux,ddc0mux,rx_realsignals,rx_numchan[3:1]})); assign rx_numchan[0] = 1'b0; always @(posedge clock) begin ddc0_in_i <= #1 ddc0mux[1] ? (ddc0mux[0] ? adc3_corr : adc2_corr) : (ddc0mux[0] ? adc1_corr : adc0_corr); ddc0_in_q <= #1 rx_realsignals ? 16'd0 : ddc0mux[3] ? (ddc0mux[2] ? adc3_corr : adc2_corr) : (ddc0mux[2] ? adc1_corr : adc0_corr); ddc1_in_i <= #1 ddc1mux[1] ? (ddc1mux[0] ? adc3_corr : adc2_corr) : (ddc1mux[0] ? adc1_corr : adc0_corr); ddc1_in_q <= #1 rx_realsignals ? 16'd0 : ddc1mux[3] ? (ddc1mux[2] ? adc3_corr : adc2_corr) : (ddc1mux[2] ? adc1_corr : adc0_corr); ddc2_in_i <= #1 ddc2mux[1] ? (ddc2mux[0] ? adc3_corr : adc2_corr) : (ddc2mux[0] ? adc1_corr : adc0_corr); ddc2_in_q <= #1 rx_realsignals ? 16'd0 : ddc2mux[3] ? (ddc2mux[2] ? adc3_corr : adc2_corr) : (ddc2mux[2] ? adc1_corr : adc0_corr); ddc3_in_i <= #1 ddc3mux[1] ? (ddc3mux[0] ? adc3_corr : adc2_corr) : (ddc3mux[0] ? adc1_corr : adc0_corr); ddc3_in_q <= #1 rx_realsignals ? 16'd0 : ddc3mux[3] ? (ddc3mux[2] ? adc3_corr : adc2_corr) : (ddc3mux[2] ? adc1_corr : adc0_corr); end endmodule
module adc_interface (input clock, input reset, input enable, input wire [6:0] serial_addr, input wire [31:0] serial_data, input serial_strobe, input wire [11:0] rx_a_a, input wire [11:0] rx_b_a, input wire [11:0] rx_a_b, input wire [11:0] rx_b_b, output wire [31:0] rssi_0, output wire [31:0] rssi_1, output wire [31:0] rssi_2, output wire [31:0] rssi_3, output reg [15:0] ddc0_in_i, output reg [15:0] ddc0_in_q, output reg [15:0] ddc1_in_i, output reg [15:0] ddc1_in_q, output reg [15:0] ddc2_in_i, output reg [15:0] ddc2_in_q, output reg [15:0] ddc3_in_i, output reg [15:0] ddc3_in_q, output wire [3:0] rx_numchan); // Buffer at input to chip reg [11:0] adc0,adc1,adc2,adc3; always @(posedge clock) begin adc0 <= #1 rx_a_a; adc1 <= #1 rx_b_a; adc2 <= #1 rx_a_b; adc3 <= #1 rx_b_b; end // then scale and subtract dc offset wire [3:0] dco_en; wire [15:0] adc0_corr,adc1_corr,adc2_corr,adc3_corr; setting_reg #(`FR_DC_OFFSET_CL_EN) sr_dco_en(.clock(clock),.reset(reset),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data), .out(dco_en)); rx_dcoffset #(`FR_ADC_OFFSET_0) rx_dcoffset0(.clock(clock),.enable(dco_en[0]),.reset(reset),.adc_in({adc0[11],adc0,3'b0}),.adc_out(adc0_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_1) rx_dcoffset1(.clock(clock),.enable(dco_en[1]),.reset(reset),.adc_in({adc1[11],adc1,3'b0}),.adc_out(adc1_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_2) rx_dcoffset2(.clock(clock),.enable(dco_en[2]),.reset(reset),.adc_in({adc2[11],adc2,3'b0}),.adc_out(adc2_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_3) rx_dcoffset3(.clock(clock),.enable(dco_en[3]),.reset(reset),.adc_in({adc3[11],adc3,3'b0}),.adc_out(adc3_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); // Level sensing for AGC rssi rssi_block_0 (.clock(clock),.reset(reset),.enable(enable),.adc(adc0),.rssi(rssi_0[15:0]),.over_count(rssi_0[31:16])); rssi rssi_block_1 (.clock(clock),.reset(reset),.enable(enable),.adc(adc1),.rssi(rssi_1[15:0]),.over_count(rssi_1[31:16])); rssi rssi_block_2 (.clock(clock),.reset(reset),.enable(enable),.adc(adc2),.rssi(rssi_2[15:0]),.over_count(rssi_2[31:16])); rssi rssi_block_3 (.clock(clock),.reset(reset),.enable(enable),.adc(adc3),.rssi(rssi_3[15:0]),.over_count(rssi_3[31:16])); // And mux to the appropriate outputs wire [3:0] ddc3mux,ddc2mux,ddc1mux,ddc0mux; wire rx_realsignals; setting_reg #(`FR_RX_MUX) sr_rxmux(.clock(clock),.reset(reset),.strobe(serial_strobe),.addr(serial_addr), .in(serial_data),.out({ddc3mux,ddc2mux,ddc1mux,ddc0mux,rx_realsignals,rx_numchan[3:1]})); assign rx_numchan[0] = 1'b0; always @(posedge clock) begin ddc0_in_i <= #1 ddc0mux[1] ? (ddc0mux[0] ? adc3_corr : adc2_corr) : (ddc0mux[0] ? adc1_corr : adc0_corr); ddc0_in_q <= #1 rx_realsignals ? 16'd0 : ddc0mux[3] ? (ddc0mux[2] ? adc3_corr : adc2_corr) : (ddc0mux[2] ? adc1_corr : adc0_corr); ddc1_in_i <= #1 ddc1mux[1] ? (ddc1mux[0] ? adc3_corr : adc2_corr) : (ddc1mux[0] ? adc1_corr : adc0_corr); ddc1_in_q <= #1 rx_realsignals ? 16'd0 : ddc1mux[3] ? (ddc1mux[2] ? adc3_corr : adc2_corr) : (ddc1mux[2] ? adc1_corr : adc0_corr); ddc2_in_i <= #1 ddc2mux[1] ? (ddc2mux[0] ? adc3_corr : adc2_corr) : (ddc2mux[0] ? adc1_corr : adc0_corr); ddc2_in_q <= #1 rx_realsignals ? 16'd0 : ddc2mux[3] ? (ddc2mux[2] ? adc3_corr : adc2_corr) : (ddc2mux[2] ? adc1_corr : adc0_corr); ddc3_in_i <= #1 ddc3mux[1] ? (ddc3mux[0] ? adc3_corr : adc2_corr) : (ddc3mux[0] ? adc1_corr : adc0_corr); ddc3_in_q <= #1 rx_realsignals ? 16'd0 : ddc3mux[3] ? (ddc3mux[2] ? adc3_corr : adc2_corr) : (ddc3mux[2] ? adc1_corr : adc0_corr); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule
module debounce_switch #( parameter WIDTH=1, // width of the input and output signals parameter N=3, // length of shift register parameter RATE=125000 // clock division factor )( input wire clk, input wire rst, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [23:0] cnt_reg = 24'd0; reg [N-1:0] debounce_reg[WIDTH-1:0]; reg [WIDTH-1:0] state; /* * The synchronized output is the state register */ assign out = state; integer k; always @(posedge clk or posedge rst) begin if (rst) begin cnt_reg <= 0; state <= 0; for (k = 0; k < WIDTH; k = k + 1) begin debounce_reg[k] <= 0; end end else begin if (cnt_reg < RATE) begin cnt_reg <= cnt_reg + 24'd1; end else begin cnt_reg <= 24'd0; end if (cnt_reg == 24'd0) begin for (k = 0; k < WIDTH; k = k + 1) begin debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]}; end end for (k = 0; k < WIDTH; k = k + 1) begin if (|debounce_reg[k] == 0) begin state[k] <= 0; end else if (&debounce_reg[k] == 1) begin state[k] <= 1; end else begin state[k] <= state[k]; end end end end endmodule
module debounce_switch #( parameter WIDTH=1, // width of the input and output signals parameter N=3, // length of shift register parameter RATE=125000 // clock division factor )( input wire clk, input wire rst, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [23:0] cnt_reg = 24'd0; reg [N-1:0] debounce_reg[WIDTH-1:0]; reg [WIDTH-1:0] state; /* * The synchronized output is the state register */ assign out = state; integer k; always @(posedge clk or posedge rst) begin if (rst) begin cnt_reg <= 0; state <= 0; for (k = 0; k < WIDTH; k = k + 1) begin debounce_reg[k] <= 0; end end else begin if (cnt_reg < RATE) begin cnt_reg <= cnt_reg + 24'd1; end else begin cnt_reg <= 24'd0; end if (cnt_reg == 24'd0) begin for (k = 0; k < WIDTH; k = k + 1) begin debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]}; end end for (k = 0; k < WIDTH; k = k + 1) begin if (|debounce_reg[k] == 0) begin state[k] <= 0; end else if (&debounce_reg[k] == 1) begin state[k] <= 1; end else begin state[k] <= state[k]; end end end end endmodule
module debounce_switch #( parameter WIDTH=1, // width of the input and output signals parameter N=3, // length of shift register parameter RATE=125000 // clock division factor )( input wire clk, input wire rst, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [23:0] cnt_reg = 24'd0; reg [N-1:0] debounce_reg[WIDTH-1:0]; reg [WIDTH-1:0] state; /* * The synchronized output is the state register */ assign out = state; integer k; always @(posedge clk or posedge rst) begin if (rst) begin cnt_reg <= 0; state <= 0; for (k = 0; k < WIDTH; k = k + 1) begin debounce_reg[k] <= 0; end end else begin if (cnt_reg < RATE) begin cnt_reg <= cnt_reg + 24'd1; end else begin cnt_reg <= 24'd0; end if (cnt_reg == 24'd0) begin for (k = 0; k < WIDTH; k = k + 1) begin debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]}; end end for (k = 0; k < WIDTH; k = k + 1) begin if (|debounce_reg[k] == 0) begin state[k] <= 0; end else if (&debounce_reg[k] == 1) begin state[k] <= 1; end else begin state[k] <= state[k]; end end end end endmodule
module debounce_switch #( parameter WIDTH=1, // width of the input and output signals parameter N=3, // length of shift register parameter RATE=125000 // clock division factor )( input wire clk, input wire rst, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [23:0] cnt_reg = 24'd0; reg [N-1:0] debounce_reg[WIDTH-1:0]; reg [WIDTH-1:0] state; /* * The synchronized output is the state register */ assign out = state; integer k; always @(posedge clk or posedge rst) begin if (rst) begin cnt_reg <= 0; state <= 0; for (k = 0; k < WIDTH; k = k + 1) begin debounce_reg[k] <= 0; end end else begin if (cnt_reg < RATE) begin cnt_reg <= cnt_reg + 24'd1; end else begin cnt_reg <= 24'd0; end if (cnt_reg == 24'd0) begin for (k = 0; k < WIDTH; k = k + 1) begin debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]}; end end for (k = 0; k < WIDTH; k = k + 1) begin if (|debounce_reg[k] == 0) begin state[k] <= 0; end else if (&debounce_reg[k] == 1) begin state[k] <= 1; end else begin state[k] <= state[k]; end end end end endmodule
module shift_mux_array #(parameter SWR=26, parameter LEVEL=5) ( input wire [SWR-1:0] Data_i, input wire select_i, input wire bit_shift_i, output wire [SWR-1:0] Data_o ); genvar j; generate for (j=0; j<=SWR-1 ; j=j+1) begin localparam sh=(2**LEVEL)+j; //value for second mux input. It changes in exponentation by 2 for each level case (sh>SWR-1) 1'b1:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (bit_shift_i), .S (Data_o[j]) ); end 1'b0:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (Data_i[sh]), .S (Data_o[j]) ); end endcase end endgenerate endmodule
module shift_mux_array #(parameter SWR=26, parameter LEVEL=5) ( input wire [SWR-1:0] Data_i, input wire select_i, input wire bit_shift_i, output wire [SWR-1:0] Data_o ); genvar j; generate for (j=0; j<=SWR-1 ; j=j+1) begin localparam sh=(2**LEVEL)+j; //value for second mux input. It changes in exponentation by 2 for each level case (sh>SWR-1) 1'b1:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (bit_shift_i), .S (Data_o[j]) ); end 1'b0:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (Data_i[sh]), .S (Data_o[j]) ); end endcase end endgenerate endmodule
module shift_mux_array #(parameter SWR=26, parameter LEVEL=5) ( input wire [SWR-1:0] Data_i, input wire select_i, input wire bit_shift_i, output wire [SWR-1:0] Data_o ); genvar j; generate for (j=0; j<=SWR-1 ; j=j+1) begin localparam sh=(2**LEVEL)+j; //value for second mux input. It changes in exponentation by 2 for each level case (sh>SWR-1) 1'b1:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (bit_shift_i), .S (Data_o[j]) ); end 1'b0:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (Data_i[sh]), .S (Data_o[j]) ); end endcase end endgenerate endmodule
module shift_mux_array #(parameter SWR=26, parameter LEVEL=5) ( input wire [SWR-1:0] Data_i, input wire select_i, input wire bit_shift_i, output wire [SWR-1:0] Data_o ); genvar j; generate for (j=0; j<=SWR-1 ; j=j+1) begin localparam sh=(2**LEVEL)+j; //value for second mux input. It changes in exponentation by 2 for each level case (sh>SWR-1) 1'b1:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (bit_shift_i), .S (Data_o[j]) ); end 1'b0:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (Data_i[sh]), .S (Data_o[j]) ); end endcase end endgenerate endmodule
module pluto_servo(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, quadA, quadB, quadZ, up, down); parameter QW=14; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; wire do_tristate; reg[9:0] real_dout; output [9:0] dout = do_tristate ? 10'bZZZZZZZZZZ : real_dout; input [7:0] din; input [3:0] quadA; input [3:0] quadB; input [3:0] quadZ; wire[3:0] real_up; output [3:0] up = do_tristate ? 4'bZZZZ : real_up; wire[3:0] real_down; output [3:0] down = do_tristate ? 4'bZZZZ : real_down; reg Zpolarity; wire [2*QW:0] quad0, quad1, quad2, quad3; wire do_enable_wdt; wire pwm_at_top; wdt w(clk, do_enable_wdt, pwm_at_top, do_tristate); // PWM stuff // PWM clock is about 20kHz for clk @ 40MHz, 11-bit cnt reg [10:0] pwmcnt; wire [10:0] top = 11'd2046; assign pwm_at_top = (pwmcnt == top); reg [15:0] pwm0, pwm1, pwm2, pwm3; always @(posedge clk) begin if(pwm_at_top) pwmcnt <= 0; else pwmcnt <= pwmcnt + 11'd1; end wire [10:0] pwmrev = { pwmcnt[4], pwmcnt[5], pwmcnt[6], pwmcnt[7], pwmcnt[8], pwmcnt[9], pwmcnt[10], pwmcnt[3:0]}; wire [10:0] pwmcmp0 = pwm0[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp1 = pwm1[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp2 = pwm2[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp3 = pwm3[14] ? pwmrev : pwmcnt; wire pwmact0 = pwm0[10:0] > pwmcmp0; wire pwmact1 = pwm1[10:0] > pwmcmp0; wire pwmact2 = pwm2[10:0] > pwmcmp0; wire pwmact3 = pwm3[10:0] > pwmcmp0; assign real_up[0] = pwm0[12] ^ (pwm0[15] ? 1'd0 : pwmact0); assign real_up[1] = pwm1[12] ^ (pwm1[15] ? 1'd0 : pwmact1); assign real_up[2] = pwm2[12] ^ (pwm2[15] ? 1'd0 : pwmact2); assign real_up[3] = pwm3[12] ^ (pwm3[15] ? 1'd0 : pwmact3); assign real_down[0] = pwm0[13] ^ (~pwm0[15] ? 1'd0 : pwmact0); assign real_down[1] = pwm1[13] ^ (~pwm1[15] ? 1'd0 : pwmact1); assign real_down[2] = pwm2[13] ^ (~pwm2[15] ? 1'd0 : pwmact2); assign real_down[3] = pwm3[13] ^ (~pwm3[15] ? 1'd0 : pwmact3); // Quadrature stuff // Quadrature is digitized at 40MHz into 14-bit counters // Read up to 2^13 pulses / polling period = 8MHz for 1kHz servo period reg qtest; wire qr0, qr1, qr2, qr3; quad q0(clk, qtest ? real_dout[0] : quadA[0], qtest ? real_dout[1] : quadB[0], qtest ? real_dout[2] : quadZ[0]^Zpolarity, qr0, quad0); quad q1(clk, quadA[1], quadB[1], quadZ[1]^Zpolarity, qr1, quad1); quad q2(clk, quadA[2], quadB[2], quadZ[2]^Zpolarity, qr2, quad2); quad q3(clk, quadA[3], quadB[3], quadZ[3]^Zpolarity, qr3, quad3); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) pwm0 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd3) pwm1 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd5) pwm2 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd7) pwm3 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[1:0], lowbyte }; Zpolarity <= EPP_datain[7]; qtest <= EPP_datain[5]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= quad0; else if(addr_reg[4:2] == 3'd1) data_buf <= quad1; else if(addr_reg[4:2] == 3'd2) data_buf <= quad2; else if(addr_reg[4:2] == 3'd3) data_buf <= quad3; else if(addr_reg[4:2] == 3'd4) data_buf <= {quadA, quadB, quadZ, din}; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; assign qr0 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd0); assign qr1 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd1); assign qr2 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd2); assign qr3 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd3); assign led = do_tristate ? 1'BZ : (real_up[0] ^ real_down[0]); assign nConfig = epp_nReset; // 1'b1; endmodule
module pluto_servo(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, quadA, quadB, quadZ, up, down); parameter QW=14; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; wire do_tristate; reg[9:0] real_dout; output [9:0] dout = do_tristate ? 10'bZZZZZZZZZZ : real_dout; input [7:0] din; input [3:0] quadA; input [3:0] quadB; input [3:0] quadZ; wire[3:0] real_up; output [3:0] up = do_tristate ? 4'bZZZZ : real_up; wire[3:0] real_down; output [3:0] down = do_tristate ? 4'bZZZZ : real_down; reg Zpolarity; wire [2*QW:0] quad0, quad1, quad2, quad3; wire do_enable_wdt; wire pwm_at_top; wdt w(clk, do_enable_wdt, pwm_at_top, do_tristate); // PWM stuff // PWM clock is about 20kHz for clk @ 40MHz, 11-bit cnt reg [10:0] pwmcnt; wire [10:0] top = 11'd2046; assign pwm_at_top = (pwmcnt == top); reg [15:0] pwm0, pwm1, pwm2, pwm3; always @(posedge clk) begin if(pwm_at_top) pwmcnt <= 0; else pwmcnt <= pwmcnt + 11'd1; end wire [10:0] pwmrev = { pwmcnt[4], pwmcnt[5], pwmcnt[6], pwmcnt[7], pwmcnt[8], pwmcnt[9], pwmcnt[10], pwmcnt[3:0]}; wire [10:0] pwmcmp0 = pwm0[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp1 = pwm1[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp2 = pwm2[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp3 = pwm3[14] ? pwmrev : pwmcnt; wire pwmact0 = pwm0[10:0] > pwmcmp0; wire pwmact1 = pwm1[10:0] > pwmcmp0; wire pwmact2 = pwm2[10:0] > pwmcmp0; wire pwmact3 = pwm3[10:0] > pwmcmp0; assign real_up[0] = pwm0[12] ^ (pwm0[15] ? 1'd0 : pwmact0); assign real_up[1] = pwm1[12] ^ (pwm1[15] ? 1'd0 : pwmact1); assign real_up[2] = pwm2[12] ^ (pwm2[15] ? 1'd0 : pwmact2); assign real_up[3] = pwm3[12] ^ (pwm3[15] ? 1'd0 : pwmact3); assign real_down[0] = pwm0[13] ^ (~pwm0[15] ? 1'd0 : pwmact0); assign real_down[1] = pwm1[13] ^ (~pwm1[15] ? 1'd0 : pwmact1); assign real_down[2] = pwm2[13] ^ (~pwm2[15] ? 1'd0 : pwmact2); assign real_down[3] = pwm3[13] ^ (~pwm3[15] ? 1'd0 : pwmact3); // Quadrature stuff // Quadrature is digitized at 40MHz into 14-bit counters // Read up to 2^13 pulses / polling period = 8MHz for 1kHz servo period reg qtest; wire qr0, qr1, qr2, qr3; quad q0(clk, qtest ? real_dout[0] : quadA[0], qtest ? real_dout[1] : quadB[0], qtest ? real_dout[2] : quadZ[0]^Zpolarity, qr0, quad0); quad q1(clk, quadA[1], quadB[1], quadZ[1]^Zpolarity, qr1, quad1); quad q2(clk, quadA[2], quadB[2], quadZ[2]^Zpolarity, qr2, quad2); quad q3(clk, quadA[3], quadB[3], quadZ[3]^Zpolarity, qr3, quad3); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) pwm0 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd3) pwm1 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd5) pwm2 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd7) pwm3 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[1:0], lowbyte }; Zpolarity <= EPP_datain[7]; qtest <= EPP_datain[5]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= quad0; else if(addr_reg[4:2] == 3'd1) data_buf <= quad1; else if(addr_reg[4:2] == 3'd2) data_buf <= quad2; else if(addr_reg[4:2] == 3'd3) data_buf <= quad3; else if(addr_reg[4:2] == 3'd4) data_buf <= {quadA, quadB, quadZ, din}; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; assign qr0 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd0); assign qr1 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd1); assign qr2 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd2); assign qr3 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd3); assign led = do_tristate ? 1'BZ : (real_up[0] ^ real_down[0]); assign nConfig = epp_nReset; // 1'b1; endmodule
module pluto_servo(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, quadA, quadB, quadZ, up, down); parameter QW=14; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; wire do_tristate; reg[9:0] real_dout; output [9:0] dout = do_tristate ? 10'bZZZZZZZZZZ : real_dout; input [7:0] din; input [3:0] quadA; input [3:0] quadB; input [3:0] quadZ; wire[3:0] real_up; output [3:0] up = do_tristate ? 4'bZZZZ : real_up; wire[3:0] real_down; output [3:0] down = do_tristate ? 4'bZZZZ : real_down; reg Zpolarity; wire [2*QW:0] quad0, quad1, quad2, quad3; wire do_enable_wdt; wire pwm_at_top; wdt w(clk, do_enable_wdt, pwm_at_top, do_tristate); // PWM stuff // PWM clock is about 20kHz for clk @ 40MHz, 11-bit cnt reg [10:0] pwmcnt; wire [10:0] top = 11'd2046; assign pwm_at_top = (pwmcnt == top); reg [15:0] pwm0, pwm1, pwm2, pwm3; always @(posedge clk) begin if(pwm_at_top) pwmcnt <= 0; else pwmcnt <= pwmcnt + 11'd1; end wire [10:0] pwmrev = { pwmcnt[4], pwmcnt[5], pwmcnt[6], pwmcnt[7], pwmcnt[8], pwmcnt[9], pwmcnt[10], pwmcnt[3:0]}; wire [10:0] pwmcmp0 = pwm0[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp1 = pwm1[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp2 = pwm2[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp3 = pwm3[14] ? pwmrev : pwmcnt; wire pwmact0 = pwm0[10:0] > pwmcmp0; wire pwmact1 = pwm1[10:0] > pwmcmp0; wire pwmact2 = pwm2[10:0] > pwmcmp0; wire pwmact3 = pwm3[10:0] > pwmcmp0; assign real_up[0] = pwm0[12] ^ (pwm0[15] ? 1'd0 : pwmact0); assign real_up[1] = pwm1[12] ^ (pwm1[15] ? 1'd0 : pwmact1); assign real_up[2] = pwm2[12] ^ (pwm2[15] ? 1'd0 : pwmact2); assign real_up[3] = pwm3[12] ^ (pwm3[15] ? 1'd0 : pwmact3); assign real_down[0] = pwm0[13] ^ (~pwm0[15] ? 1'd0 : pwmact0); assign real_down[1] = pwm1[13] ^ (~pwm1[15] ? 1'd0 : pwmact1); assign real_down[2] = pwm2[13] ^ (~pwm2[15] ? 1'd0 : pwmact2); assign real_down[3] = pwm3[13] ^ (~pwm3[15] ? 1'd0 : pwmact3); // Quadrature stuff // Quadrature is digitized at 40MHz into 14-bit counters // Read up to 2^13 pulses / polling period = 8MHz for 1kHz servo period reg qtest; wire qr0, qr1, qr2, qr3; quad q0(clk, qtest ? real_dout[0] : quadA[0], qtest ? real_dout[1] : quadB[0], qtest ? real_dout[2] : quadZ[0]^Zpolarity, qr0, quad0); quad q1(clk, quadA[1], quadB[1], quadZ[1]^Zpolarity, qr1, quad1); quad q2(clk, quadA[2], quadB[2], quadZ[2]^Zpolarity, qr2, quad2); quad q3(clk, quadA[3], quadB[3], quadZ[3]^Zpolarity, qr3, quad3); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) pwm0 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd3) pwm1 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd5) pwm2 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd7) pwm3 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[1:0], lowbyte }; Zpolarity <= EPP_datain[7]; qtest <= EPP_datain[5]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= quad0; else if(addr_reg[4:2] == 3'd1) data_buf <= quad1; else if(addr_reg[4:2] == 3'd2) data_buf <= quad2; else if(addr_reg[4:2] == 3'd3) data_buf <= quad3; else if(addr_reg[4:2] == 3'd4) data_buf <= {quadA, quadB, quadZ, din}; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; assign qr0 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd0); assign qr1 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd1); assign qr2 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd2); assign qr3 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd3); assign led = do_tristate ? 1'BZ : (real_up[0] ^ real_down[0]); assign nConfig = epp_nReset; // 1'b1; endmodule
module pluto_servo(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, quadA, quadB, quadZ, up, down); parameter QW=14; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; wire do_tristate; reg[9:0] real_dout; output [9:0] dout = do_tristate ? 10'bZZZZZZZZZZ : real_dout; input [7:0] din; input [3:0] quadA; input [3:0] quadB; input [3:0] quadZ; wire[3:0] real_up; output [3:0] up = do_tristate ? 4'bZZZZ : real_up; wire[3:0] real_down; output [3:0] down = do_tristate ? 4'bZZZZ : real_down; reg Zpolarity; wire [2*QW:0] quad0, quad1, quad2, quad3; wire do_enable_wdt; wire pwm_at_top; wdt w(clk, do_enable_wdt, pwm_at_top, do_tristate); // PWM stuff // PWM clock is about 20kHz for clk @ 40MHz, 11-bit cnt reg [10:0] pwmcnt; wire [10:0] top = 11'd2046; assign pwm_at_top = (pwmcnt == top); reg [15:0] pwm0, pwm1, pwm2, pwm3; always @(posedge clk) begin if(pwm_at_top) pwmcnt <= 0; else pwmcnt <= pwmcnt + 11'd1; end wire [10:0] pwmrev = { pwmcnt[4], pwmcnt[5], pwmcnt[6], pwmcnt[7], pwmcnt[8], pwmcnt[9], pwmcnt[10], pwmcnt[3:0]}; wire [10:0] pwmcmp0 = pwm0[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp1 = pwm1[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp2 = pwm2[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp3 = pwm3[14] ? pwmrev : pwmcnt; wire pwmact0 = pwm0[10:0] > pwmcmp0; wire pwmact1 = pwm1[10:0] > pwmcmp0; wire pwmact2 = pwm2[10:0] > pwmcmp0; wire pwmact3 = pwm3[10:0] > pwmcmp0; assign real_up[0] = pwm0[12] ^ (pwm0[15] ? 1'd0 : pwmact0); assign real_up[1] = pwm1[12] ^ (pwm1[15] ? 1'd0 : pwmact1); assign real_up[2] = pwm2[12] ^ (pwm2[15] ? 1'd0 : pwmact2); assign real_up[3] = pwm3[12] ^ (pwm3[15] ? 1'd0 : pwmact3); assign real_down[0] = pwm0[13] ^ (~pwm0[15] ? 1'd0 : pwmact0); assign real_down[1] = pwm1[13] ^ (~pwm1[15] ? 1'd0 : pwmact1); assign real_down[2] = pwm2[13] ^ (~pwm2[15] ? 1'd0 : pwmact2); assign real_down[3] = pwm3[13] ^ (~pwm3[15] ? 1'd0 : pwmact3); // Quadrature stuff // Quadrature is digitized at 40MHz into 14-bit counters // Read up to 2^13 pulses / polling period = 8MHz for 1kHz servo period reg qtest; wire qr0, qr1, qr2, qr3; quad q0(clk, qtest ? real_dout[0] : quadA[0], qtest ? real_dout[1] : quadB[0], qtest ? real_dout[2] : quadZ[0]^Zpolarity, qr0, quad0); quad q1(clk, quadA[1], quadB[1], quadZ[1]^Zpolarity, qr1, quad1); quad q2(clk, quadA[2], quadB[2], quadZ[2]^Zpolarity, qr2, quad2); quad q3(clk, quadA[3], quadB[3], quadZ[3]^Zpolarity, qr3, quad3); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) pwm0 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd3) pwm1 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd5) pwm2 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd7) pwm3 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[1:0], lowbyte }; Zpolarity <= EPP_datain[7]; qtest <= EPP_datain[5]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= quad0; else if(addr_reg[4:2] == 3'd1) data_buf <= quad1; else if(addr_reg[4:2] == 3'd2) data_buf <= quad2; else if(addr_reg[4:2] == 3'd3) data_buf <= quad3; else if(addr_reg[4:2] == 3'd4) data_buf <= {quadA, quadB, quadZ, din}; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; assign qr0 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd0); assign qr1 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd1); assign qr2 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd2); assign qr3 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd3); assign led = do_tristate ? 1'BZ : (real_up[0] ^ real_down[0]); assign nConfig = epp_nReset; // 1'b1; endmodule
module pluto_servo(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, quadA, quadB, quadZ, up, down); parameter QW=14; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; wire do_tristate; reg[9:0] real_dout; output [9:0] dout = do_tristate ? 10'bZZZZZZZZZZ : real_dout; input [7:0] din; input [3:0] quadA; input [3:0] quadB; input [3:0] quadZ; wire[3:0] real_up; output [3:0] up = do_tristate ? 4'bZZZZ : real_up; wire[3:0] real_down; output [3:0] down = do_tristate ? 4'bZZZZ : real_down; reg Zpolarity; wire [2*QW:0] quad0, quad1, quad2, quad3; wire do_enable_wdt; wire pwm_at_top; wdt w(clk, do_enable_wdt, pwm_at_top, do_tristate); // PWM stuff // PWM clock is about 20kHz for clk @ 40MHz, 11-bit cnt reg [10:0] pwmcnt; wire [10:0] top = 11'd2046; assign pwm_at_top = (pwmcnt == top); reg [15:0] pwm0, pwm1, pwm2, pwm3; always @(posedge clk) begin if(pwm_at_top) pwmcnt <= 0; else pwmcnt <= pwmcnt + 11'd1; end wire [10:0] pwmrev = { pwmcnt[4], pwmcnt[5], pwmcnt[6], pwmcnt[7], pwmcnt[8], pwmcnt[9], pwmcnt[10], pwmcnt[3:0]}; wire [10:0] pwmcmp0 = pwm0[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp1 = pwm1[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp2 = pwm2[14] ? pwmrev : pwmcnt; // wire [10:0] pwmcmp3 = pwm3[14] ? pwmrev : pwmcnt; wire pwmact0 = pwm0[10:0] > pwmcmp0; wire pwmact1 = pwm1[10:0] > pwmcmp0; wire pwmact2 = pwm2[10:0] > pwmcmp0; wire pwmact3 = pwm3[10:0] > pwmcmp0; assign real_up[0] = pwm0[12] ^ (pwm0[15] ? 1'd0 : pwmact0); assign real_up[1] = pwm1[12] ^ (pwm1[15] ? 1'd0 : pwmact1); assign real_up[2] = pwm2[12] ^ (pwm2[15] ? 1'd0 : pwmact2); assign real_up[3] = pwm3[12] ^ (pwm3[15] ? 1'd0 : pwmact3); assign real_down[0] = pwm0[13] ^ (~pwm0[15] ? 1'd0 : pwmact0); assign real_down[1] = pwm1[13] ^ (~pwm1[15] ? 1'd0 : pwmact1); assign real_down[2] = pwm2[13] ^ (~pwm2[15] ? 1'd0 : pwmact2); assign real_down[3] = pwm3[13] ^ (~pwm3[15] ? 1'd0 : pwmact3); // Quadrature stuff // Quadrature is digitized at 40MHz into 14-bit counters // Read up to 2^13 pulses / polling period = 8MHz for 1kHz servo period reg qtest; wire qr0, qr1, qr2, qr3; quad q0(clk, qtest ? real_dout[0] : quadA[0], qtest ? real_dout[1] : quadB[0], qtest ? real_dout[2] : quadZ[0]^Zpolarity, qr0, quad0); quad q1(clk, quadA[1], quadB[1], quadZ[1]^Zpolarity, qr1, quad1); quad q2(clk, quadA[2], quadB[2], quadZ[2]^Zpolarity, qr2, quad2); quad q3(clk, quadA[3], quadB[3], quadZ[3]^Zpolarity, qr3, quad3); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) pwm0 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd3) pwm1 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd5) pwm2 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd7) pwm3 <= { EPP_datain, lowbyte }; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[1:0], lowbyte }; Zpolarity <= EPP_datain[7]; qtest <= EPP_datain[5]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= quad0; else if(addr_reg[4:2] == 3'd1) data_buf <= quad1; else if(addr_reg[4:2] == 3'd2) data_buf <= quad2; else if(addr_reg[4:2] == 3'd3) data_buf <= quad3; else if(addr_reg[4:2] == 3'd4) data_buf <= {quadA, quadB, quadZ, din}; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; assign qr0 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd0); assign qr1 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd1); assign qr2 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd2); assign qr3 = EPP_strobe_edge1 & EPP_read & EPP_data_strobe & (addr_reg[4:2] == 3'd3); assign led = do_tristate ? 1'BZ : (real_up[0] ^ real_down[0]); assign nConfig = epp_nReset; // 1'b1; endmodule
module test_stepgen(); reg clk; reg [4:0] vel; wire [19:0] pos; wire step, dir; stepgen #(16,4,16) s(clk, 1, pos, vel, 1, 0, step, dir, 3); integer q; reg ost; initial begin vel = 5'h8; // two useful test cases: // vel=5'h8 (max step speed) // vel=5'h2 (~1 step per repeat) q = 0; repeat(50) begin repeat(50) begin #20 clk<=1; #20 clk<=0; if(step && !ost) begin if(dir) q = q+1; else q = q - 1; end ost <= step; $display("%d %d %x %x %d %d %d %d %d", step, dir, vel, pos, s.state, s.ones, s.pbit, s.timer, q); end vel = 6'h20 - vel; end end endmodule
module test_stepgen(); reg clk; reg [4:0] vel; wire [19:0] pos; wire step, dir; stepgen #(16,4,16) s(clk, 1, pos, vel, 1, 0, step, dir, 3); integer q; reg ost; initial begin vel = 5'h8; // two useful test cases: // vel=5'h8 (max step speed) // vel=5'h2 (~1 step per repeat) q = 0; repeat(50) begin repeat(50) begin #20 clk<=1; #20 clk<=0; if(step && !ost) begin if(dir) q = q+1; else q = q - 1; end ost <= step; $display("%d %d %x %x %d %d %d %d %d", step, dir, vel, pos, s.state, s.ones, s.pbit, s.timer, q); end vel = 6'h20 - vel; end end endmodule
module test_stepgen(); reg clk; reg [4:0] vel; wire [19:0] pos; wire step, dir; stepgen #(16,4,16) s(clk, 1, pos, vel, 1, 0, step, dir, 3); integer q; reg ost; initial begin vel = 5'h8; // two useful test cases: // vel=5'h8 (max step speed) // vel=5'h2 (~1 step per repeat) q = 0; repeat(50) begin repeat(50) begin #20 clk<=1; #20 clk<=0; if(step && !ost) begin if(dir) q = q+1; else q = q - 1; end ost <= step; $display("%d %d %x %x %d %d %d %d %d", step, dir, vel, pos, s.state, s.ones, s.pbit, s.timer, q); end vel = 6'h20 - vel; end end endmodule
module fifo_generator_vlog_beh #( //----------------------------------------------------------------------- // Generic Declarations //----------------------------------------------------------------------- parameter C_COMMON_CLOCK = 0, parameter C_COUNT_TYPE = 0, parameter C_DATA_COUNT_WIDTH = 2, parameter C_DEFAULT_VALUE = "", parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_ENABLE_RLOCS = 0, parameter C_FAMILY = "", parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_ALMOST_EMPTY = 0, parameter C_HAS_ALMOST_FULL = 0, parameter C_HAS_BACKUP = 0, parameter C_HAS_DATA_COUNT = 0, parameter C_HAS_INT_CLK = 0, parameter C_HAS_MEMINIT_FILE = 0, parameter C_HAS_OVERFLOW = 0, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_RD_RST = 0, parameter C_HAS_RST = 1, parameter C_HAS_SRST = 0, parameter C_HAS_UNDERFLOW = 0, parameter C_HAS_VALID = 0, parameter C_HAS_WR_ACK = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_HAS_WR_RST = 0, parameter C_IMPLEMENTATION_TYPE = 0, parameter C_INIT_WR_PNTR_VAL = 0, parameter C_MEMORY_TYPE = 1, parameter C_MIF_FILE_NAME = "", parameter C_OPTIMIZATION_MODE = 0, parameter C_OVERFLOW_LOW = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_PRELOAD_LATENCY = 1, parameter C_PRELOAD_REGS = 0, parameter C_PRIM_FIFO_TYPE = "4kx4", parameter C_PROG_EMPTY_THRESH_ASSERT_VAL = 0, parameter C_PROG_EMPTY_THRESH_NEGATE_VAL = 0, parameter C_PROG_EMPTY_TYPE = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL = 0, parameter C_PROG_FULL_THRESH_NEGATE_VAL = 0, parameter C_PROG_FULL_TYPE = 0, parameter C_RD_DATA_COUNT_WIDTH = 2, parameter C_RD_DEPTH = 256, parameter C_RD_FREQ = 1, parameter C_RD_PNTR_WIDTH = 8, parameter C_UNDERFLOW_LOW = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_USE_PIPELINE_REG = 0, parameter C_POWER_SAVING_MODE = 0, parameter C_USE_FIFO16_FLAGS = 0, parameter C_USE_FWFT_DATA_COUNT = 0, parameter C_VALID_LOW = 0, parameter C_WR_ACK_LOW = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_FREQ = 1, parameter C_WR_PNTR_WIDTH = 8, parameter C_WR_RESPONSE_LATENCY = 1, parameter C_MSGON_VAL = 1, parameter C_ENABLE_RST_SYNC = 1, parameter C_ERROR_INJECTION_TYPE = 0, parameter C_SYNCHRONIZER_STAGE = 2, // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface, 1: AXI4 Stream, 2: AXI4/AXI3 parameter C_AXI_TYPE = 0, // 1: AXI4, 2: AXI4 Lite, 3: AXI3 parameter C_HAS_AXI_WR_CHANNEL = 0, parameter C_HAS_AXI_RD_CHANNEL = 0, parameter C_HAS_SLAVE_CE = 0, parameter C_HAS_MASTER_CE = 0, parameter C_ADD_NGC_CONSTRAINT = 0, parameter C_USE_COMMON_UNDERFLOW = 0, parameter C_USE_COMMON_OVERFLOW = 0, parameter C_USE_DEFAULT_SETTINGS = 0, // AXI Full/Lite parameter C_AXI_ID_WIDTH = 0, parameter C_AXI_ADDR_WIDTH = 0, parameter C_AXI_DATA_WIDTH = 0, parameter C_AXI_LEN_WIDTH = 8, parameter C_AXI_LOCK_WIDTH = 2, parameter C_HAS_AXI_ID = 0, parameter C_HAS_AXI_AWUSER = 0, parameter C_HAS_AXI_WUSER = 0, parameter C_HAS_AXI_BUSER = 0, parameter C_HAS_AXI_ARUSER = 0, parameter C_HAS_AXI_RUSER = 0, parameter C_AXI_ARUSER_WIDTH = 0, parameter C_AXI_AWUSER_WIDTH = 0, parameter C_AXI_WUSER_WIDTH = 0, parameter C_AXI_BUSER_WIDTH = 0, parameter C_AXI_RUSER_WIDTH = 0, // AXI Streaming parameter C_HAS_AXIS_TDATA = 0, parameter C_HAS_AXIS_TID = 0, parameter C_HAS_AXIS_TDEST = 0, parameter C_HAS_AXIS_TUSER = 0, parameter C_HAS_AXIS_TREADY = 0, parameter C_HAS_AXIS_TLAST = 0, parameter C_HAS_AXIS_TSTRB = 0, parameter C_HAS_AXIS_TKEEP = 0, parameter C_AXIS_TDATA_WIDTH = 1, parameter C_AXIS_TID_WIDTH = 1, parameter C_AXIS_TDEST_WIDTH = 1, parameter C_AXIS_TUSER_WIDTH = 1, parameter C_AXIS_TSTRB_WIDTH = 1, parameter C_AXIS_TKEEP_WIDTH = 1, // AXI Channel Type // WACH --> Write Address Channel // WDCH --> Write Data Channel // WRCH --> Write Response Channel // RACH --> Read Address Channel // RDCH --> Read Data Channel // AXIS --> AXI Streaming parameter C_WACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logic parameter C_WDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_WRCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_RACH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_RDCH_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie parameter C_AXIS_TYPE = 0, // 0 = FIFO, 1 = Register Slice, 2 = Pass Through Logie // AXI Implementation Type // 1 = Common Clock Block RAM FIFO // 2 = Common Clock Distributed RAM FIFO // 11 = Independent Clock Block RAM FIFO // 12 = Independent Clock Distributed RAM FIFO parameter C_IMPLEMENTATION_TYPE_WACH = 0, parameter C_IMPLEMENTATION_TYPE_WDCH = 0, parameter C_IMPLEMENTATION_TYPE_WRCH = 0, parameter C_IMPLEMENTATION_TYPE_RACH = 0, parameter C_IMPLEMENTATION_TYPE_RDCH = 0, parameter C_IMPLEMENTATION_TYPE_AXIS = 0, // AXI FIFO Type // 0 = Data FIFO // 1 = Packet FIFO // 2 = Low Latency Sync FIFO // 3 = Low Latency Async FIFO parameter C_APPLICATION_TYPE_WACH = 0, parameter C_APPLICATION_TYPE_WDCH = 0, parameter C_APPLICATION_TYPE_WRCH = 0, parameter C_APPLICATION_TYPE_RACH = 0, parameter C_APPLICATION_TYPE_RDCH = 0, parameter C_APPLICATION_TYPE_AXIS = 0, // AXI Built-in FIFO Primitive Type // 512x36, 1kx18, 2kx9, 4kx4, etc parameter C_PRIM_FIFO_TYPE_WACH = "512x36", parameter C_PRIM_FIFO_TYPE_WDCH = "512x36", parameter C_PRIM_FIFO_TYPE_WRCH = "512x36", parameter C_PRIM_FIFO_TYPE_RACH = "512x36", parameter C_PRIM_FIFO_TYPE_RDCH = "512x36", parameter C_PRIM_FIFO_TYPE_AXIS = "512x36", // Enable ECC // 0 = ECC disabled // 1 = ECC enabled parameter C_USE_ECC_WACH = 0, parameter C_USE_ECC_WDCH = 0, parameter C_USE_ECC_WRCH = 0, parameter C_USE_ECC_RACH = 0, parameter C_USE_ECC_RDCH = 0, parameter C_USE_ECC_AXIS = 0, // ECC Error Injection Type // 0 = No Error Injection // 1 = Single Bit Error Injection // 2 = Double Bit Error Injection // 3 = Single Bit and Double Bit Error Injection parameter C_ERROR_INJECTION_TYPE_WACH = 0, parameter C_ERROR_INJECTION_TYPE_WDCH = 0, parameter C_ERROR_INJECTION_TYPE_WRCH = 0, parameter C_ERROR_INJECTION_TYPE_RACH = 0, parameter C_ERROR_INJECTION_TYPE_RDCH = 0, parameter C_ERROR_INJECTION_TYPE_AXIS = 0, // Input Data Width // Accumulation of all AXI input signal's width parameter C_DIN_WIDTH_WACH = 1, parameter C_DIN_WIDTH_WDCH = 1, parameter C_DIN_WIDTH_WRCH = 1, parameter C_DIN_WIDTH_RACH = 1, parameter C_DIN_WIDTH_RDCH = 1, parameter C_DIN_WIDTH_AXIS = 1, parameter C_WR_DEPTH_WACH = 16, parameter C_WR_DEPTH_WDCH = 16, parameter C_WR_DEPTH_WRCH = 16, parameter C_WR_DEPTH_RACH = 16, parameter C_WR_DEPTH_RDCH = 16, parameter C_WR_DEPTH_AXIS = 16, parameter C_WR_PNTR_WIDTH_WACH = 4, parameter C_WR_PNTR_WIDTH_WDCH = 4, parameter C_WR_PNTR_WIDTH_WRCH = 4, parameter C_WR_PNTR_WIDTH_RACH = 4, parameter C_WR_PNTR_WIDTH_RDCH = 4, parameter C_WR_PNTR_WIDTH_AXIS = 4, parameter C_HAS_DATA_COUNTS_WACH = 0, parameter C_HAS_DATA_COUNTS_WDCH = 0, parameter C_HAS_DATA_COUNTS_WRCH = 0, parameter C_HAS_DATA_COUNTS_RACH = 0, parameter C_HAS_DATA_COUNTS_RDCH = 0, parameter C_HAS_DATA_COUNTS_AXIS = 0, parameter C_HAS_PROG_FLAGS_WACH = 0, parameter C_HAS_PROG_FLAGS_WDCH = 0, parameter C_HAS_PROG_FLAGS_WRCH = 0, parameter C_HAS_PROG_FLAGS_RACH = 0, parameter C_HAS_PROG_FLAGS_RDCH = 0, parameter C_HAS_PROG_FLAGS_AXIS = 0, parameter C_PROG_FULL_TYPE_WACH = 0, parameter C_PROG_FULL_TYPE_WDCH = 0, parameter C_PROG_FULL_TYPE_WRCH = 0, parameter C_PROG_FULL_TYPE_RACH = 0, parameter C_PROG_FULL_TYPE_RDCH = 0, parameter C_PROG_FULL_TYPE_AXIS = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WACH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WDCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_WRCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_RACH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_RDCH = 0, parameter C_PROG_FULL_THRESH_ASSERT_VAL_AXIS = 0, parameter C_PROG_EMPTY_TYPE_WACH = 0, parameter C_PROG_EMPTY_TYPE_WDCH = 0, parameter C_PROG_EMPTY_TYPE_WRCH = 0, parameter C_PROG_EMPTY_TYPE_RACH = 0, parameter C_PROG_EMPTY_TYPE_RDCH = 0, parameter C_PROG_EMPTY_TYPE_AXIS = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH = 0, parameter C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS = 0, parameter C_REG_SLICE_MODE_WACH = 0, parameter C_REG_SLICE_MODE_WDCH = 0, parameter C_REG_SLICE_MODE_WRCH = 0, parameter C_REG_SLICE_MODE_RACH = 0, parameter C_REG_SLICE_MODE_RDCH = 0, parameter C_REG_SLICE_MODE_AXIS = 0 ) ( //------------------------------------------------------------------------------ // Input and Output Declarations //------------------------------------------------------------------------------ // Conventional FIFO Interface Signals input backup, input backup_marker, input clk, input rst, input srst, input wr_clk, input wr_rst, input rd_clk, input rd_rst, input [C_DIN_WIDTH-1:0] din, input wr_en, input rd_en, // Optional inputs input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh, input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_assert, input [C_RD_PNTR_WIDTH-1:0] prog_empty_thresh_negate, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_assert, input [C_WR_PNTR_WIDTH-1:0] prog_full_thresh_negate, input int_clk, input injectdbiterr, input injectsbiterr, input sleep, output [C_DOUT_WIDTH-1:0] dout, output full, output almost_full, output wr_ack, output overflow, output empty, output almost_empty, output valid, output underflow, output [C_DATA_COUNT_WIDTH-1:0] data_count, output [C_RD_DATA_COUNT_WIDTH-1:0] rd_data_count, output [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count, output prog_full, output prog_empty, output sbiterr, output dbiterr, output wr_rst_busy, output rd_rst_busy, // AXI Global Signal input m_aclk, input s_aclk, input s_aresetn, input s_aclk_en, input m_aclk_en, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input [C_AXI_LEN_WIDTH-1:0] s_axi_awlen, input [3-1:0] s_axi_awsize, input [2-1:0] s_axi_awburst, input [C_AXI_LOCK_WIDTH-1:0] s_axi_awlock, input [4-1:0] s_axi_awcache, input [3-1:0] s_axi_awprot, input [4-1:0] s_axi_awqos, input [4-1:0] s_axi_awregion, input [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input s_axi_awvalid, output s_axi_awready, input [C_AXI_ID_WIDTH-1:0] s_axi_wid, input [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input s_axi_wlast, input [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [2-1:0] s_axi_bresp, output [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output s_axi_bvalid, input s_axi_bready, // AXI Full/Lite Master Write Channel (read side) output [C_AXI_ID_WIDTH-1:0] m_axi_awid, output [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output [C_AXI_LEN_WIDTH-1:0] m_axi_awlen, output [3-1:0] m_axi_awsize, output [2-1:0] m_axi_awburst, output [C_AXI_LOCK_WIDTH-1:0] m_axi_awlock, output [4-1:0] m_axi_awcache, output [3-1:0] m_axi_awprot, output [4-1:0] m_axi_awqos, output [4-1:0] m_axi_awregion, output [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output m_axi_awvalid, input m_axi_awready, output [C_AXI_ID_WIDTH-1:0] m_axi_wid, output [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output m_axi_wlast, output [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output m_axi_wvalid, input m_axi_wready, input [C_AXI_ID_WIDTH-1:0] m_axi_bid, input [2-1:0] m_axi_bresp, input [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input m_axi_bvalid, output m_axi_bready, // AXI Full/Lite Slave Read Channel (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input [C_AXI_LEN_WIDTH-1:0] s_axi_arlen, input [3-1:0] s_axi_arsize, input [2-1:0] s_axi_arburst, input [C_AXI_LOCK_WIDTH-1:0] s_axi_arlock, input [4-1:0] s_axi_arcache, input [3-1:0] s_axi_arprot, input [4-1:0] s_axi_arqos, input [4-1:0] s_axi_arregion, input [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output [2-1:0] s_axi_rresp, output s_axi_rlast, output [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output s_axi_rvalid, input s_axi_rready, // AXI Full/Lite Master Read Channel (read side) output [C_AXI_ID_WIDTH-1:0] m_axi_arid, output [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output [C_AXI_LEN_WIDTH-1:0] m_axi_arlen, output [3-1:0] m_axi_arsize, output [2-1:0] m_axi_arburst, output [C_AXI_LOCK_WIDTH-1:0] m_axi_arlock, output [4-1:0] m_axi_arcache, output [3-1:0] m_axi_arprot, output [4-1:0] m_axi_arqos, output [4-1:0] m_axi_arregion, output [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output m_axi_arvalid, input m_axi_arready, input [C_AXI_ID_WIDTH-1:0] m_axi_rid, input [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input [2-1:0] m_axi_rresp, input m_axi_rlast, input [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input m_axi_rvalid, output m_axi_rready, // AXI Streaming Slave Signals (Write side) input s_axis_tvalid, output s_axis_tready, input [C_AXIS_TDATA_WIDTH-1:0] s_axis_tdata, input [C_AXIS_TSTRB_WIDTH-1:0] s_axis_tstrb, input [C_AXIS_TKEEP_WIDTH-1:0] s_axis_tkeep, input s_axis_tlast, input [C_AXIS_TID_WIDTH-1:0] s_axis_tid, input [C_AXIS_TDEST_WIDTH-1:0] s_axis_tdest, input [C_AXIS_TUSER_WIDTH-1:0] s_axis_tuser, // AXI Streaming Master Signals (Read side) output m_axis_tvalid, input m_axis_tready, output [C_AXIS_TDATA_WIDTH-1:0] m_axis_tdata, output [C_AXIS_TSTRB_WIDTH-1:0] m_axis_tstrb, output [C_AXIS_TKEEP_WIDTH-1:0] m_axis_tkeep, output m_axis_tlast, output [C_AXIS_TID_WIDTH-1:0] m_axis_tid, output [C_AXIS_TDEST_WIDTH-1:0] m_axis_tdest, output [C_AXIS_TUSER_WIDTH-1:0] m_axis_tuser, // AXI Full/Lite Write Address Channel signals input axi_aw_injectsbiterr, input axi_aw_injectdbiterr, input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_full_thresh, input [C_WR_PNTR_WIDTH_WACH-1:0] axi_aw_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_data_count, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_wr_data_count, output [C_WR_PNTR_WIDTH_WACH:0] axi_aw_rd_data_count, output axi_aw_sbiterr, output axi_aw_dbiterr, output axi_aw_overflow, output axi_aw_underflow, output axi_aw_prog_full, output axi_aw_prog_empty, // AXI Full/Lite Write Data Channel signals input axi_w_injectsbiterr, input axi_w_injectdbiterr, input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_full_thresh, input [C_WR_PNTR_WIDTH_WDCH-1:0] axi_w_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_data_count, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_wr_data_count, output [C_WR_PNTR_WIDTH_WDCH:0] axi_w_rd_data_count, output axi_w_sbiterr, output axi_w_dbiterr, output axi_w_overflow, output axi_w_underflow, output axi_w_prog_full, output axi_w_prog_empty, // AXI Full/Lite Write Response Channel signals input axi_b_injectsbiterr, input axi_b_injectdbiterr, input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_full_thresh, input [C_WR_PNTR_WIDTH_WRCH-1:0] axi_b_prog_empty_thresh, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_data_count, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_wr_data_count, output [C_WR_PNTR_WIDTH_WRCH:0] axi_b_rd_data_count, output axi_b_sbiterr, output axi_b_dbiterr, output axi_b_overflow, output axi_b_underflow, output axi_b_prog_full, output axi_b_prog_empty, // AXI Full/Lite Read Address Channel signals input axi_ar_injectsbiterr, input axi_ar_injectdbiterr, input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_full_thresh, input [C_WR_PNTR_WIDTH_RACH-1:0] axi_ar_prog_empty_thresh, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_data_count, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_wr_data_count, output [C_WR_PNTR_WIDTH_RACH:0] axi_ar_rd_data_count, output axi_ar_sbiterr, output axi_ar_dbiterr, output axi_ar_overflow, output axi_ar_underflow, output axi_ar_prog_full, output axi_ar_prog_empty, // AXI Full/Lite Read Data Channel Signals input axi_r_injectsbiterr, input axi_r_injectdbiterr, input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_full_thresh, input [C_WR_PNTR_WIDTH_RDCH-1:0] axi_r_prog_empty_thresh, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_data_count, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_wr_data_count, output [C_WR_PNTR_WIDTH_RDCH:0] axi_r_rd_data_count, output axi_r_sbiterr, output axi_r_dbiterr, output axi_r_overflow, output axi_r_underflow, output axi_r_prog_full, output axi_r_prog_empty, // AXI Streaming FIFO Related Signals input axis_injectsbiterr, input axis_injectdbiterr, input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_full_thresh, input [C_WR_PNTR_WIDTH_AXIS-1:0] axis_prog_empty_thresh, output [C_WR_PNTR_WIDTH_AXIS:0] axis_data_count, output [C_WR_PNTR_WIDTH_AXIS:0] axis_wr_data_count, output [C_WR_PNTR_WIDTH_AXIS:0] axis_rd_data_count, output axis_sbiterr, output axis_dbiterr, output axis_overflow, output axis_underflow, output axis_prog_full, output axis_prog_empty ); wire BACKUP; wire BACKUP_MARKER; wire CLK; wire RST; wire SRST; wire WR_CLK; wire WR_RST; wire RD_CLK; wire RD_RST; wire [C_DIN_WIDTH-1:0] DIN; wire WR_EN; wire RD_EN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire INT_CLK; wire INJECTDBITERR; wire INJECTSBITERR; wire SLEEP; wire [C_DOUT_WIDTH-1:0] DOUT; wire FULL; wire ALMOST_FULL; wire WR_ACK; wire OVERFLOW; wire EMPTY; wire ALMOST_EMPTY; wire VALID; wire UNDERFLOW; wire [C_DATA_COUNT_WIDTH-1:0] DATA_COUNT; wire [C_RD_DATA_COUNT_WIDTH-1:0] RD_DATA_COUNT; wire [C_WR_DATA_COUNT_WIDTH-1:0] WR_DATA_COUNT; wire PROG_FULL; wire PROG_EMPTY; wire SBITERR; wire DBITERR; wire WR_RST_BUSY; wire RD_RST_BUSY; wire M_ACLK; wire S_ACLK; wire S_ARESETN; wire S_ACLK_EN; wire M_ACLK_EN; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID; wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR; wire [C_AXI_LEN_WIDTH-1:0] S_AXI_AWLEN; wire [3-1:0] S_AXI_AWSIZE; wire [2-1:0] S_AXI_AWBURST; wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_AWLOCK; wire [4-1:0] S_AXI_AWCACHE; wire [3-1:0] S_AXI_AWPROT; wire [4-1:0] S_AXI_AWQOS; wire [4-1:0] S_AXI_AWREGION; wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER; wire S_AXI_AWVALID; wire S_AXI_AWREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA; wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB; wire S_AXI_WLAST; wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER; wire S_AXI_WVALID; wire S_AXI_WREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [2-1:0] S_AXI_BRESP; wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER; wire S_AXI_BVALID; wire S_AXI_BREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID; wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR; wire [C_AXI_LEN_WIDTH-1:0] M_AXI_AWLEN; wire [3-1:0] M_AXI_AWSIZE; wire [2-1:0] M_AXI_AWBURST; wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_AWLOCK; wire [4-1:0] M_AXI_AWCACHE; wire [3-1:0] M_AXI_AWPROT; wire [4-1:0] M_AXI_AWQOS; wire [4-1:0] M_AXI_AWREGION; wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER; wire M_AXI_AWVALID; wire M_AXI_AWREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA; wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB; wire M_AXI_WLAST; wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER; wire M_AXI_WVALID; wire M_AXI_WREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID; wire [2-1:0] M_AXI_BRESP; wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER; wire M_AXI_BVALID; wire M_AXI_BREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID; wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR; wire [C_AXI_LEN_WIDTH-1:0] S_AXI_ARLEN; wire [3-1:0] S_AXI_ARSIZE; wire [2-1:0] S_AXI_ARBURST; wire [C_AXI_LOCK_WIDTH-1:0] S_AXI_ARLOCK; wire [4-1:0] S_AXI_ARCACHE; wire [3-1:0] S_AXI_ARPROT; wire [4-1:0] S_AXI_ARQOS; wire [4-1:0] S_AXI_ARREGION; wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER; wire S_AXI_ARVALID; wire S_AXI_ARREADY; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA; wire [2-1:0] S_AXI_RRESP; wire S_AXI_RLAST; wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER; wire S_AXI_RVALID; wire S_AXI_RREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID; wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR; wire [C_AXI_LEN_WIDTH-1:0] M_AXI_ARLEN; wire [3-1:0] M_AXI_ARSIZE; wire [2-1:0] M_AXI_ARBURST; wire [C_AXI_LOCK_WIDTH-1:0] M_AXI_ARLOCK; wire [4-1:0] M_AXI_ARCACHE; wire [3-1:0] M_AXI_ARPROT; wire [4-1:0] M_AXI_ARQOS; wire [4-1:0] M_AXI_ARREGION; wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER; wire M_AXI_ARVALID; wire M_AXI_ARREADY; wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA; wire [2-1:0] M_AXI_RRESP; wire M_AXI_RLAST; wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER; wire M_AXI_RVALID; wire M_AXI_RREADY; wire S_AXIS_TVALID; wire S_AXIS_TREADY; wire [C_AXIS_TDATA_WIDTH-1:0] S_AXIS_TDATA; wire [C_AXIS_TSTRB_WIDTH-1:0] S_AXIS_TSTRB; wire [C_AXIS_TKEEP_WIDTH-1:0] S_AXIS_TKEEP; wire S_AXIS_TLAST; wire [C_AXIS_TID_WIDTH-1:0] S_AXIS_TID; wire [C_AXIS_TDEST_WIDTH-1:0] S_AXIS_TDEST; wire [C_AXIS_TUSER_WIDTH-1:0] S_AXIS_TUSER; wire M_AXIS_TVALID; wire M_AXIS_TREADY; wire [C_AXIS_TDATA_WIDTH-1:0] M_AXIS_TDATA; wire [C_AXIS_TSTRB_WIDTH-1:0] M_AXIS_TSTRB; wire [C_AXIS_TKEEP_WIDTH-1:0] M_AXIS_TKEEP; wire M_AXIS_TLAST; wire [C_AXIS_TID_WIDTH-1:0] M_AXIS_TID; wire [C_AXIS_TDEST_WIDTH-1:0] M_AXIS_TDEST; wire [C_AXIS_TUSER_WIDTH-1:0] M_AXIS_TUSER; wire AXI_AW_INJECTSBITERR; wire AXI_AW_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WACH-1:0] AXI_AW_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WACH:0] AXI_AW_RD_DATA_COUNT; wire AXI_AW_SBITERR; wire AXI_AW_DBITERR; wire AXI_AW_OVERFLOW; wire AXI_AW_UNDERFLOW; wire AXI_AW_PROG_FULL; wire AXI_AW_PROG_EMPTY; wire AXI_W_INJECTSBITERR; wire AXI_W_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WDCH-1:0] AXI_W_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WDCH:0] AXI_W_RD_DATA_COUNT; wire AXI_W_SBITERR; wire AXI_W_DBITERR; wire AXI_W_OVERFLOW; wire AXI_W_UNDERFLOW; wire AXI_W_PROG_FULL; wire AXI_W_PROG_EMPTY; wire AXI_B_INJECTSBITERR; wire AXI_B_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_WRCH-1:0] AXI_B_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_WRCH:0] AXI_B_RD_DATA_COUNT; wire AXI_B_SBITERR; wire AXI_B_DBITERR; wire AXI_B_OVERFLOW; wire AXI_B_UNDERFLOW; wire AXI_B_PROG_FULL; wire AXI_B_PROG_EMPTY; wire AXI_AR_INJECTSBITERR; wire AXI_AR_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_RACH-1:0] AXI_AR_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RACH:0] AXI_AR_RD_DATA_COUNT; wire AXI_AR_SBITERR; wire AXI_AR_DBITERR; wire AXI_AR_OVERFLOW; wire AXI_AR_UNDERFLOW; wire AXI_AR_PROG_FULL; wire AXI_AR_PROG_EMPTY; wire AXI_R_INJECTSBITERR; wire AXI_R_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_RDCH-1:0] AXI_R_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_RDCH:0] AXI_R_RD_DATA_COUNT; wire AXI_R_SBITERR; wire AXI_R_DBITERR; wire AXI_R_OVERFLOW; wire AXI_R_UNDERFLOW; wire AXI_R_PROG_FULL; wire AXI_R_PROG_EMPTY; wire AXIS_INJECTSBITERR; wire AXIS_INJECTDBITERR; wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH_AXIS-1:0] AXIS_PROG_EMPTY_THRESH; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_DATA_COUNT; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_WR_DATA_COUNT; wire [C_WR_PNTR_WIDTH_AXIS:0] AXIS_RD_DATA_COUNT; wire AXIS_SBITERR; wire AXIS_DBITERR; wire AXIS_OVERFLOW; wire AXIS_UNDERFLOW; wire AXIS_PROG_FULL; wire AXIS_PROG_EMPTY; wire [C_WR_DATA_COUNT_WIDTH-1:0] wr_data_count_in; wire wr_rst_int; wire rd_rst_int; wire wr_rst_busy_o; wire wr_rst_busy_ntve; wire wr_rst_busy_axis; wire wr_rst_busy_wach; wire wr_rst_busy_wdch; wire wr_rst_busy_wrch; wire wr_rst_busy_rach; wire wr_rst_busy_rdch; function integer find_log2; input integer int_val; integer i,j; begin i = 1; j = 0; for (i = 1; i < int_val; i = i*2) begin j = j + 1; end find_log2 = j; end endfunction // Conventional FIFO Interface Signals assign BACKUP = backup; assign BACKUP_MARKER = backup_marker; assign CLK = clk; assign RST = rst; assign SRST = srst; assign WR_CLK = wr_clk; assign WR_RST = wr_rst; assign RD_CLK = rd_clk; assign RD_RST = rd_rst; assign WR_EN = wr_en; assign RD_EN = rd_en; assign INT_CLK = int_clk; assign INJECTDBITERR = injectdbiterr; assign INJECTSBITERR = injectsbiterr; assign SLEEP = sleep; assign full = FULL; assign almost_full = ALMOST_FULL; assign wr_ack = WR_ACK; assign overflow = OVERFLOW; assign empty = EMPTY; assign almost_empty = ALMOST_EMPTY; assign valid = VALID; assign underflow = UNDERFLOW; assign prog_full = PROG_FULL; assign prog_empty = PROG_EMPTY; assign sbiterr = SBITERR; assign dbiterr = DBITERR; // assign wr_rst_busy = WR_RST_BUSY | wr_rst_busy_o; assign wr_rst_busy = wr_rst_busy_o; assign rd_rst_busy = RD_RST_BUSY; assign M_ACLK = m_aclk; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_ACLK_EN = s_aclk_en; assign M_ACLK_EN = m_aclk_en; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign m_axi_awvalid = M_AXI_AWVALID; assign M_AXI_AWREADY = m_axi_awready; assign m_axi_wlast = M_AXI_WLAST; assign m_axi_wvalid = M_AXI_WVALID; assign M_AXI_WREADY = m_axi_wready; assign M_AXI_BVALID = m_axi_bvalid; assign m_axi_bready = M_AXI_BREADY; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign m_axi_arvalid = M_AXI_ARVALID; assign M_AXI_ARREADY = m_axi_arready; assign M_AXI_RLAST = m_axi_rlast; assign M_AXI_RVALID = m_axi_rvalid; assign m_axi_rready = M_AXI_RREADY; assign S_AXIS_TVALID = s_axis_tvalid; assign s_axis_tready = S_AXIS_TREADY; assign S_AXIS_TLAST = s_axis_tlast; assign m_axis_tvalid = M_AXIS_TVALID; assign M_AXIS_TREADY = m_axis_tready; assign m_axis_tlast = M_AXIS_TLAST; assign AXI_AW_INJECTSBITERR = axi_aw_injectsbiterr; assign AXI_AW_INJECTDBITERR = axi_aw_injectdbiterr; assign axi_aw_sbiterr = AXI_AW_SBITERR; assign axi_aw_dbiterr = AXI_AW_DBITERR; assign axi_aw_overflow = AXI_AW_OVERFLOW; assign axi_aw_underflow = AXI_AW_UNDERFLOW; assign axi_aw_prog_full = AXI_AW_PROG_FULL; assign axi_aw_prog_empty = AXI_AW_PROG_EMPTY; assign AXI_W_INJECTSBITERR = axi_w_injectsbiterr; assign AXI_W_INJECTDBITERR = axi_w_injectdbiterr; assign axi_w_sbiterr = AXI_W_SBITERR; assign axi_w_dbiterr = AXI_W_DBITERR; assign axi_w_overflow = AXI_W_OVERFLOW; assign axi_w_underflow = AXI_W_UNDERFLOW; assign axi_w_prog_full = AXI_W_PROG_FULL; assign axi_w_prog_empty = AXI_W_PROG_EMPTY; assign AXI_B_INJECTSBITERR = axi_b_injectsbiterr; assign AXI_B_INJECTDBITERR = axi_b_injectdbiterr; assign axi_b_sbiterr = AXI_B_SBITERR; assign axi_b_dbiterr = AXI_B_DBITERR; assign axi_b_overflow = AXI_B_OVERFLOW; assign axi_b_underflow = AXI_B_UNDERFLOW; assign axi_b_prog_full = AXI_B_PROG_FULL; assign axi_b_prog_empty = AXI_B_PROG_EMPTY; assign AXI_AR_INJECTSBITERR = axi_ar_injectsbiterr; assign AXI_AR_INJECTDBITERR = axi_ar_injectdbiterr; assign axi_ar_sbiterr = AXI_AR_SBITERR; assign axi_ar_dbiterr = AXI_AR_DBITERR; assign axi_ar_overflow = AXI_AR_OVERFLOW; assign axi_ar_underflow = AXI_AR_UNDERFLOW; assign axi_ar_prog_full = AXI_AR_PROG_FULL; assign axi_ar_prog_empty = AXI_AR_PROG_EMPTY; assign AXI_R_INJECTSBITERR = axi_r_injectsbiterr; assign AXI_R_INJECTDBITERR = axi_r_injectdbiterr; assign axi_r_sbiterr = AXI_R_SBITERR; assign axi_r_dbiterr = AXI_R_DBITERR; assign axi_r_overflow = AXI_R_OVERFLOW; assign axi_r_underflow = AXI_R_UNDERFLOW; assign axi_r_prog_full = AXI_R_PROG_FULL; assign axi_r_prog_empty = AXI_R_PROG_EMPTY; assign AXIS_INJECTSBITERR = axis_injectsbiterr; assign AXIS_INJECTDBITERR = axis_injectdbiterr; assign axis_sbiterr = AXIS_SBITERR; assign axis_dbiterr = AXIS_DBITERR; assign axis_overflow = AXIS_OVERFLOW; assign axis_underflow = AXIS_UNDERFLOW; assign axis_prog_full = AXIS_PROG_FULL; assign axis_prog_empty = AXIS_PROG_EMPTY; assign DIN = din; assign PROG_EMPTY_THRESH = prog_empty_thresh; assign PROG_EMPTY_THRESH_ASSERT = prog_empty_thresh_assert; assign PROG_EMPTY_THRESH_NEGATE = prog_empty_thresh_negate; assign PROG_FULL_THRESH = prog_full_thresh; assign PROG_FULL_THRESH_ASSERT = prog_full_thresh_assert; assign PROG_FULL_THRESH_NEGATE = prog_full_thresh_negate; assign dout = DOUT; assign data_count = DATA_COUNT; assign rd_data_count = RD_DATA_COUNT; assign wr_data_count = WR_DATA_COUNT; assign S_AXI_AWID = s_axi_awid; assign S_AXI_AWADDR = s_axi_awaddr; assign S_AXI_AWLEN = s_axi_awlen; assign S_AXI_AWSIZE = s_axi_awsize; assign S_AXI_AWBURST = s_axi_awburst; assign S_AXI_AWLOCK = s_axi_awlock; assign S_AXI_AWCACHE = s_axi_awcache; assign S_AXI_AWPROT = s_axi_awprot; assign S_AXI_AWQOS = s_axi_awqos; assign S_AXI_AWREGION = s_axi_awregion; assign S_AXI_AWUSER = s_axi_awuser; assign S_AXI_WID = s_axi_wid; assign S_AXI_WDATA = s_axi_wdata; assign S_AXI_WSTRB = s_axi_wstrb; assign S_AXI_WUSER = s_axi_wuser; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_buser = S_AXI_BUSER; assign m_axi_awid = M_AXI_AWID; assign m_axi_awaddr = M_AXI_AWADDR; assign m_axi_awlen = M_AXI_AWLEN; assign m_axi_awsize = M_AXI_AWSIZE; assign m_axi_awburst = M_AXI_AWBURST; assign m_axi_awlock = M_AXI_AWLOCK; assign m_axi_awcache = M_AXI_AWCACHE; assign m_axi_awprot = M_AXI_AWPROT; assign m_axi_awqos = M_AXI_AWQOS; assign m_axi_awregion = M_AXI_AWREGION; assign m_axi_awuser = M_AXI_AWUSER; assign m_axi_wid = M_AXI_WID; assign m_axi_wdata = M_AXI_WDATA; assign m_axi_wstrb = M_AXI_WSTRB; assign m_axi_wuser = M_AXI_WUSER; assign M_AXI_BID = m_axi_bid; assign M_AXI_BRESP = m_axi_bresp; assign M_AXI_BUSER = m_axi_buser; assign S_AXI_ARID = s_axi_arid; assign S_AXI_ARADDR = s_axi_araddr; assign S_AXI_ARLEN = s_axi_arlen; assign S_AXI_ARSIZE = s_axi_arsize; assign S_AXI_ARBURST = s_axi_arburst; assign S_AXI_ARLOCK = s_axi_arlock; assign S_AXI_ARCACHE = s_axi_arcache; assign S_AXI_ARPROT = s_axi_arprot; assign S_AXI_ARQOS = s_axi_arqos; assign S_AXI_ARREGION = s_axi_arregion; assign S_AXI_ARUSER = s_axi_aruser; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_ruser = S_AXI_RUSER; assign m_axi_arid = M_AXI_ARID; assign m_axi_araddr = M_AXI_ARADDR; assign m_axi_arlen = M_AXI_ARLEN; assign m_axi_arsize = M_AXI_ARSIZE; assign m_axi_arburst = M_AXI_ARBURST; assign m_axi_arlock = M_AXI_ARLOCK; assign m_axi_arcache = M_AXI_ARCACHE; assign m_axi_arprot = M_AXI_ARPROT; assign m_axi_arqos = M_AXI_ARQOS; assign m_axi_arregion = M_AXI_ARREGION; assign m_axi_aruser = M_AXI_ARUSER; assign M_AXI_RID = m_axi_rid; assign M_AXI_RDATA = m_axi_rdata; assign M_AXI_RRESP = m_axi_rresp; assign M_AXI_RUSER = m_axi_ruser; assign S_AXIS_TDATA = s_axis_tdata; assign S_AXIS_TSTRB = s_axis_tstrb; assign S_AXIS_TKEEP = s_axis_tkeep; assign S_AXIS_TID = s_axis_tid; assign S_AXIS_TDEST = s_axis_tdest; assign S_AXIS_TUSER = s_axis_tuser; assign m_axis_tdata = M_AXIS_TDATA; assign m_axis_tstrb = M_AXIS_TSTRB; assign m_axis_tkeep = M_AXIS_TKEEP; assign m_axis_tid = M_AXIS_TID; assign m_axis_tdest = M_AXIS_TDEST; assign m_axis_tuser = M_AXIS_TUSER; assign AXI_AW_PROG_FULL_THRESH = axi_aw_prog_full_thresh; assign AXI_AW_PROG_EMPTY_THRESH = axi_aw_prog_empty_thresh; assign axi_aw_data_count = AXI_AW_DATA_COUNT; assign axi_aw_wr_data_count = AXI_AW_WR_DATA_COUNT; assign axi_aw_rd_data_count = AXI_AW_RD_DATA_COUNT; assign AXI_W_PROG_FULL_THRESH = axi_w_prog_full_thresh; assign AXI_W_PROG_EMPTY_THRESH = axi_w_prog_empty_thresh; assign axi_w_data_count = AXI_W_DATA_COUNT; assign axi_w_wr_data_count = AXI_W_WR_DATA_COUNT; assign axi_w_rd_data_count = AXI_W_RD_DATA_COUNT; assign AXI_B_PROG_FULL_THRESH = axi_b_prog_full_thresh; assign AXI_B_PROG_EMPTY_THRESH = axi_b_prog_empty_thresh; assign axi_b_data_count = AXI_B_DATA_COUNT; assign axi_b_wr_data_count = AXI_B_WR_DATA_COUNT; assign axi_b_rd_data_count = AXI_B_RD_DATA_COUNT; assign AXI_AR_PROG_FULL_THRESH = axi_ar_prog_full_thresh; assign AXI_AR_PROG_EMPTY_THRESH = axi_ar_prog_empty_thresh; assign axi_ar_data_count = AXI_AR_DATA_COUNT; assign axi_ar_wr_data_count = AXI_AR_WR_DATA_COUNT; assign axi_ar_rd_data_count = AXI_AR_RD_DATA_COUNT; assign AXI_R_PROG_FULL_THRESH = axi_r_prog_full_thresh; assign AXI_R_PROG_EMPTY_THRESH = axi_r_prog_empty_thresh; assign axi_r_data_count = AXI_R_DATA_COUNT; assign axi_r_wr_data_count = AXI_R_WR_DATA_COUNT; assign axi_r_rd_data_count = AXI_R_RD_DATA_COUNT; assign AXIS_PROG_FULL_THRESH = axis_prog_full_thresh; assign AXIS_PROG_EMPTY_THRESH = axis_prog_empty_thresh; assign axis_data_count = AXIS_DATA_COUNT; assign axis_wr_data_count = AXIS_WR_DATA_COUNT; assign axis_rd_data_count = AXIS_RD_DATA_COUNT; generate if (C_INTERFACE_TYPE == 0) begin : conv_fifo fifo_generator_v13_1_3_CONV_VER #( .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DATA_COUNT_WIDTH (C_DATA_COUNT_WIDTH), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_DIN_WIDTH (C_DIN_WIDTH), .C_DOUT_RST_VAL (C_USE_DOUT_RST == 1 ? C_DOUT_RST_VAL : 0), .C_DOUT_WIDTH (C_DOUT_WIDTH), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_FAMILY (C_FAMILY), .C_FULL_FLAGS_RST_VAL (C_FULL_FLAGS_RST_VAL), .C_HAS_ALMOST_EMPTY (C_HAS_ALMOST_EMPTY), .C_HAS_ALMOST_FULL (C_HAS_ALMOST_FULL), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_DATA_COUNT (C_HAS_DATA_COUNT), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_HAS_RD_DATA_COUNT (C_HAS_RD_DATA_COUNT), .C_HAS_RD_RST (C_HAS_RD_RST), .C_HAS_RST (C_HAS_RST), .C_HAS_SRST (C_HAS_SRST), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_HAS_VALID (C_HAS_VALID), .C_HAS_WR_ACK (C_HAS_WR_ACK), .C_HAS_WR_DATA_COUNT (C_HAS_WR_DATA_COUNT), .C_HAS_WR_RST (C_HAS_WR_RST), .C_IMPLEMENTATION_TYPE (C_IMPLEMENTATION_TYPE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_MEMORY_TYPE (C_MEMORY_TYPE), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_PRELOAD_LATENCY (C_PRELOAD_LATENCY), .C_PRELOAD_REGS (C_PRELOAD_REGS), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL), .C_PROG_EMPTY_THRESH_NEGATE_VAL (C_PROG_EMPTY_THRESH_NEGATE_VAL), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL), .C_PROG_FULL_THRESH_NEGATE_VAL (C_PROG_FULL_THRESH_NEGATE_VAL), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE), .C_RD_DATA_COUNT_WIDTH (C_RD_DATA_COUNT_WIDTH), .C_RD_DEPTH (C_RD_DEPTH), .C_RD_FREQ (C_RD_FREQ), .C_RD_PNTR_WIDTH (C_RD_PNTR_WIDTH), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_USE_DOUT_RST (C_USE_DOUT_RST), .C_USE_ECC (C_USE_ECC), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_EN_SAFETY_CKT (C_EN_SAFETY_CKT), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_USE_FWFT_DATA_COUNT (C_USE_FWFT_DATA_COUNT), .C_VALID_LOW (C_VALID_LOW), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_WR_DATA_COUNT_WIDTH (C_WR_DATA_COUNT_WIDTH), .C_WR_DEPTH (C_WR_DEPTH), .C_WR_FREQ (C_WR_FREQ), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (C_ENABLE_RST_SYNC), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE) ) fifo_generator_v13_1_3_conv_dut ( .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .CLK (CLK), .RST (RST), .SRST (SRST), .WR_CLK (WR_CLK), .WR_RST (WR_RST), .RD_CLK (RD_CLK), .RD_RST (RD_RST), .DIN (DIN), .WR_EN (WR_EN), .RD_EN (RD_EN), .PROG_EMPTY_THRESH (PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT (PROG_EMPTY_THRESH_ASSERT), .PROG_EMPTY_THRESH_NEGATE (PROG_EMPTY_THRESH_NEGATE), .PROG_FULL_THRESH (PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT (PROG_FULL_THRESH_ASSERT), .PROG_FULL_THRESH_NEGATE (PROG_FULL_THRESH_NEGATE), .INT_CLK (INT_CLK), .INJECTDBITERR (INJECTDBITERR), .INJECTSBITERR (INJECTSBITERR), .DOUT (DOUT), .FULL (FULL), .ALMOST_FULL (ALMOST_FULL), .WR_ACK (WR_ACK), .OVERFLOW (OVERFLOW), .EMPTY (EMPTY), .ALMOST_EMPTY (ALMOST_EMPTY), .VALID (VALID), .UNDERFLOW (UNDERFLOW), .DATA_COUNT (DATA_COUNT), .RD_DATA_COUNT (RD_DATA_COUNT), .WR_DATA_COUNT (wr_data_count_in), .PROG_FULL (PROG_FULL), .PROG_EMPTY (PROG_EMPTY), .SBITERR (SBITERR), .DBITERR (DBITERR), .wr_rst_busy_o (wr_rst_busy_o), .wr_rst_busy (wr_rst_busy_i), .rd_rst_busy (rd_rst_busy), .wr_rst_i_out (wr_rst_int), .rd_rst_i_out (rd_rst_int) ); end endgenerate localparam IS_8SERIES = (C_FAMILY == "virtexu" || C_FAMILY == "kintexu" || C_FAMILY == "artixu" || C_FAMILY == "virtexuplus" || C_FAMILY == "zynquplus" || C_FAMILY == "kintexuplus") ? 1 : 0; localparam C_AXI_SIZE_WIDTH = 3; localparam C_AXI_BURST_WIDTH = 2; localparam C_AXI_CACHE_WIDTH = 4; localparam C_AXI_PROT_WIDTH = 3; localparam C_AXI_QOS_WIDTH = 4; localparam C_AXI_REGION_WIDTH = 4; localparam C_AXI_BRESP_WIDTH = 2; localparam C_AXI_RRESP_WIDTH = 2; localparam IS_AXI_STREAMING = C_INTERFACE_TYPE == 1 ? 1 : 0; localparam TDATA_OFFSET = C_HAS_AXIS_TDATA == 1 ? C_DIN_WIDTH_AXIS-C_AXIS_TDATA_WIDTH : C_DIN_WIDTH_AXIS; localparam TSTRB_OFFSET = C_HAS_AXIS_TSTRB == 1 ? TDATA_OFFSET-C_AXIS_TSTRB_WIDTH : TDATA_OFFSET; localparam TKEEP_OFFSET = C_HAS_AXIS_TKEEP == 1 ? TSTRB_OFFSET-C_AXIS_TKEEP_WIDTH : TSTRB_OFFSET; localparam TID_OFFSET = C_HAS_AXIS_TID == 1 ? TKEEP_OFFSET-C_AXIS_TID_WIDTH : TKEEP_OFFSET; localparam TDEST_OFFSET = C_HAS_AXIS_TDEST == 1 ? TID_OFFSET-C_AXIS_TDEST_WIDTH : TID_OFFSET; localparam TUSER_OFFSET = C_HAS_AXIS_TUSER == 1 ? TDEST_OFFSET-C_AXIS_TUSER_WIDTH : TDEST_OFFSET; localparam LOG_DEPTH_AXIS = find_log2(C_WR_DEPTH_AXIS); localparam LOG_WR_DEPTH = find_log2(C_WR_DEPTH); function [LOG_DEPTH_AXIS-1:0] bin2gray; input [LOG_DEPTH_AXIS-1:0] x; begin bin2gray = x ^ (x>>1); end endfunction function [LOG_DEPTH_AXIS-1:0] gray2bin; input [LOG_DEPTH_AXIS-1:0] x; integer i; begin gray2bin[LOG_DEPTH_AXIS-1] = x[LOG_DEPTH_AXIS-1]; for(i=LOG_DEPTH_AXIS-2; i>=0; i=i-1) begin gray2bin[i] = gray2bin[i+1] ^ x[i]; end end endfunction wire [(LOG_WR_DEPTH)-1 : 0] w_cnt_gc_asreg_last; wire [LOG_WR_DEPTH-1 : 0] w_q [0:C_SYNCHRONIZER_STAGE] ; wire [LOG_WR_DEPTH-1 : 0] w_q_temp [1:C_SYNCHRONIZER_STAGE] ; reg [LOG_WR_DEPTH-1 : 0] w_cnt_rd = 0; reg [LOG_WR_DEPTH-1 : 0] w_cnt = 0; reg [LOG_WR_DEPTH-1 : 0] w_cnt_gc = 0; reg [LOG_WR_DEPTH-1 : 0] r_cnt = 0; wire [LOG_WR_DEPTH : 0] adj_w_cnt_rd_pad; wire [LOG_WR_DEPTH : 0] r_inv_pad; wire [LOG_WR_DEPTH-1 : 0] d_cnt; reg [LOG_WR_DEPTH : 0] d_cnt_pad = 0; reg adj_w_cnt_rd_pad_0 = 0; reg r_inv_pad_0 = 0; genvar l; generate for (l = 1; ((l <= C_SYNCHRONIZER_STAGE) && (C_HAS_DATA_COUNTS_AXIS == 3 && C_INTERFACE_TYPE == 0) ); l = l + 1) begin : g_cnt_sync_stage fifo_generator_v13_1_3_sync_stage #( .C_WIDTH (LOG_WR_DEPTH) ) rd_stg_inst ( .RST (rd_rst_int), .CLK (RD_CLK), .DIN (w_q[l-1]), .DOUT (w_q[l]) ); end endgenerate // gpkt_cnt_sync_stage generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS == 3) begin : fifo_ic_adapter assign wr_eop_ad = WR_EN & !(FULL); assign rd_eop_ad = RD_EN & !(EMPTY); always @ (posedge wr_rst_int or posedge WR_CLK) begin if (wr_rst_int) w_cnt <= 1'b0; else if (wr_eop_ad) w_cnt <= w_cnt + 1; end always @ (posedge wr_rst_int or posedge WR_CLK) begin if (wr_rst_int) w_cnt_gc <= 1'b0; else w_cnt_gc <= bin2gray(w_cnt); end assign w_q[0] = w_cnt_gc; assign w_cnt_gc_asreg_last = w_q[C_SYNCHRONIZER_STAGE]; always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) w_cnt_rd <= 1'b0; else w_cnt_rd <= gray2bin(w_cnt_gc_asreg_last); end always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) r_cnt <= 1'b0; else if (rd_eop_ad) r_cnt <= r_cnt + 1; end // Take the difference of write and read packet count // Logic is similar to rd_pe_as assign adj_w_cnt_rd_pad[LOG_WR_DEPTH : 1] = w_cnt_rd; assign r_inv_pad[LOG_WR_DEPTH : 1] = ~r_cnt; assign adj_w_cnt_rd_pad[0] = adj_w_cnt_rd_pad_0; assign r_inv_pad[0] = r_inv_pad_0; always @ ( rd_eop_ad ) begin if (!rd_eop_ad) begin adj_w_cnt_rd_pad_0 <= 1'b1; r_inv_pad_0 <= 1'b1; end else begin adj_w_cnt_rd_pad_0 <= 1'b0; r_inv_pad_0 <= 1'b0; end end always @ (posedge rd_rst_int or posedge RD_CLK) begin if (rd_rst_int) d_cnt_pad <= 1'b0; else d_cnt_pad <= adj_w_cnt_rd_pad + r_inv_pad ; end assign d_cnt = d_cnt_pad [LOG_WR_DEPTH : 1] ; assign WR_DATA_COUNT = d_cnt; end endgenerate // fifo_ic_adapter generate if (C_INTERFACE_TYPE == 0 && C_HAS_DATA_COUNTS_AXIS != 3) begin : fifo_icn_adapter assign WR_DATA_COUNT = wr_data_count_in; end endgenerate // fifo_icn_adapter wire inverted_reset = ~S_ARESETN; wire axi_rs_rst; wire [C_DIN_WIDTH_AXIS-1:0] axis_din ; wire [C_DIN_WIDTH_AXIS-1:0] axis_dout ; wire axis_full ; wire axis_almost_full ; wire axis_empty ; wire axis_s_axis_tready; wire axis_m_axis_tvalid; wire axis_wr_en ; wire axis_rd_en ; wire axis_we ; wire axis_re ; wire [C_WR_PNTR_WIDTH_AXIS:0] axis_dc; reg axis_pkt_read = 1'b0; wire axis_rd_rst; wire axis_wr_rst; generate if (C_INTERFACE_TYPE > 0 && (C_AXIS_TYPE == 1 || C_WACH_TYPE == 1 || C_WDCH_TYPE == 1 || C_WRCH_TYPE == 1 || C_RACH_TYPE == 1 || C_RDCH_TYPE == 1)) begin : gaxi_rs_rst reg rst_d1 = 0 ; reg rst_d2 = 0 ; reg [3:0] axi_rst = 4'h0 ; always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) begin rst_d1 <= 1'b1; rst_d2 <= 1'b1; axi_rst <= 4'hf; end else begin rst_d1 <= #`TCQ 1'b0; rst_d2 <= #`TCQ rst_d1; axi_rst <= #`TCQ {axi_rst[2:0],1'b0}; end end assign axi_rs_rst = axi_rst[3];//rst_d2; end endgenerate // gaxi_rs_rst generate if (IS_AXI_STREAMING == 1 && C_AXIS_TYPE == 0) begin : axi_streaming // Write protection when almost full or prog_full is high assign axis_we = (C_PROG_FULL_TYPE_AXIS != 0) ? axis_s_axis_tready & S_AXIS_TVALID : (C_APPLICATION_TYPE_AXIS == 1) ? axis_s_axis_tready & S_AXIS_TVALID : S_AXIS_TVALID; // Read protection when almost empty or prog_empty is high assign axis_re = (C_PROG_EMPTY_TYPE_AXIS != 0) ? axis_m_axis_tvalid & M_AXIS_TREADY : (C_APPLICATION_TYPE_AXIS == 1) ? axis_m_axis_tvalid & M_AXIS_TREADY : M_AXIS_TREADY; assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? axis_we & S_ACLK_EN : axis_we; assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? axis_re & M_ACLK_EN : axis_re; fifo_generator_v13_1_3_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 : (C_IMPLEMENTATION_TYPE_AXIS == 2 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 2) ? 0 : (C_IMPLEMENTATION_TYPE_AXIS == 11 || C_IMPLEMENTATION_TYPE_AXIS == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_AXIS), .C_WR_DEPTH (C_WR_DEPTH_AXIS), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS), .C_DOUT_WIDTH (C_DIN_WIDTH_AXIS), .C_RD_DEPTH (C_WR_DEPTH_AXIS), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_AXIS), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_AXIS), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_AXIS), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_AXIS), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS), .C_USE_ECC (C_USE_ECC_AXIS), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_AXIS), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (C_APPLICATION_TYPE_AXIS == 1 ? 1: 0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_USE_EMBEDDED_REG (C_USE_EMBEDDED_REG), .C_FIFO_TYPE (C_APPLICATION_TYPE_AXIS == 1 ? 0: C_APPLICATION_TYPE_AXIS), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_AXIS == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_AXIS + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_AXIS == 1 || C_IMPLEMENTATION_TYPE_AXIS == 11) ? 1 : 0), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v13_1_3_axis_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (axis_wr_en), .RD_EN (axis_rd_en), .PROG_FULL_THRESH (AXIS_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_EMPTY_THRESH (AXIS_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_AXIS{1'b0}}), .INJECTDBITERR (AXIS_INJECTDBITERR), .INJECTSBITERR (AXIS_INJECTSBITERR), .DIN (axis_din), .DOUT (axis_dout), .FULL (axis_full), .EMPTY (axis_empty), .ALMOST_FULL (axis_almost_full), .PROG_FULL (AXIS_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXIS_PROG_EMPTY), .WR_ACK (), .OVERFLOW (AXIS_OVERFLOW), .VALID (), .UNDERFLOW (AXIS_UNDERFLOW), .DATA_COUNT (axis_dc), .RD_DATA_COUNT (AXIS_RD_DATA_COUNT), .WR_DATA_COUNT (AXIS_WR_DATA_COUNT), .SBITERR (AXIS_SBITERR), .DBITERR (AXIS_DBITERR), .wr_rst_busy (wr_rst_busy_axis), .rd_rst_busy (rd_rst_busy_axis), .wr_rst_i_out (axis_wr_rst), .rd_rst_i_out (axis_rd_rst), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign axis_s_axis_tready = (IS_8SERIES == 0) ? ~axis_full : (C_IMPLEMENTATION_TYPE_AXIS == 5 || C_IMPLEMENTATION_TYPE_AXIS == 13) ? ~(axis_full | wr_rst_busy_axis) : ~axis_full; assign axis_m_axis_tvalid = (C_APPLICATION_TYPE_AXIS != 1) ? ~axis_empty : ~axis_empty & axis_pkt_read; assign S_AXIS_TREADY = axis_s_axis_tready; assign M_AXIS_TVALID = axis_m_axis_tvalid; end endgenerate // axi_streaming wire axis_wr_eop; reg axis_wr_eop_d1 = 1'b0; wire axis_rd_eop; integer axis_pkt_cnt; generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 1) begin : gaxis_pkt_fifo_cc assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST; assign axis_rd_eop = axis_rd_en & axis_dout[0]; always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_pkt_read <= 1'b0; else if (axis_rd_eop && (axis_pkt_cnt == 1) && ~axis_wr_eop_d1) axis_pkt_read <= 1'b0; else if ((axis_pkt_cnt > 0) || (axis_almost_full && ~axis_empty)) axis_pkt_read <= 1'b1; end always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_wr_eop_d1 <= 1'b0; else axis_wr_eop_d1 <= axis_wr_eop; end always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_pkt_cnt <= 0; else if (axis_wr_eop_d1 && ~axis_rd_eop) axis_pkt_cnt <= axis_pkt_cnt + 1; else if (axis_rd_eop && ~axis_wr_eop_d1) axis_pkt_cnt <= axis_pkt_cnt - 1; end end endgenerate // gaxis_pkt_fifo_cc reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_gc = 0; wire [(LOG_DEPTH_AXIS)-1 : 0] axis_wpkt_cnt_gc_asreg_last; wire axis_rd_has_rst; wire [0:C_SYNCHRONIZER_STAGE] axis_af_q ; wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q [0:C_SYNCHRONIZER_STAGE] ; wire [1:C_SYNCHRONIZER_STAGE] axis_af_q_temp = 0; wire [LOG_DEPTH_AXIS-1 : 0] wpkt_q_temp [1:C_SYNCHRONIZER_STAGE] ; reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt_rd = 0; reg [LOG_DEPTH_AXIS-1 : 0] axis_wpkt_cnt = 0; reg [LOG_DEPTH_AXIS-1 : 0] axis_rpkt_cnt = 0; wire [LOG_DEPTH_AXIS : 0] adj_axis_wpkt_cnt_rd_pad; wire [LOG_DEPTH_AXIS : 0] rpkt_inv_pad; wire [LOG_DEPTH_AXIS-1 : 0] diff_pkt_cnt; reg [LOG_DEPTH_AXIS : 0] diff_pkt_cnt_pad = 0; reg adj_axis_wpkt_cnt_rd_pad_0 = 0; reg rpkt_inv_pad_0 = 0; wire axis_af_rd ; generate if (C_HAS_RST == 1) begin : rst_blk_has assign axis_rd_has_rst = axis_rd_rst; end endgenerate //rst_blk_has generate if (C_HAS_RST == 0) begin :rst_blk_no assign axis_rd_has_rst = 1'b0; end endgenerate //rst_blk_no genvar i; generate for (i = 1; ((i <= C_SYNCHRONIZER_STAGE) && (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) ); i = i + 1) begin : gpkt_cnt_sync_stage fifo_generator_v13_1_3_sync_stage #( .C_WIDTH (LOG_DEPTH_AXIS) ) rd_stg_inst ( .RST (axis_rd_has_rst), .CLK (M_ACLK), .DIN (wpkt_q[i-1]), .DOUT (wpkt_q[i]) ); fifo_generator_v13_1_3_sync_stage #( .C_WIDTH (1) ) wr_stg_inst ( .RST (axis_rd_has_rst), .CLK (M_ACLK), .DIN (axis_af_q[i-1]), .DOUT (axis_af_q[i]) ); end endgenerate // gpkt_cnt_sync_stage generate if (C_APPLICATION_TYPE_AXIS == 1 && C_COMMON_CLOCK == 0) begin : gaxis_pkt_fifo_ic assign axis_wr_eop = axis_wr_en & S_AXIS_TLAST; assign axis_rd_eop = axis_rd_en & axis_dout[0]; always @ (posedge axis_rd_has_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_pkt_read <= 1'b0; else if (axis_rd_eop && (diff_pkt_cnt == 1)) axis_pkt_read <= 1'b0; else if ((diff_pkt_cnt > 0) || (axis_af_rd && ~axis_empty)) axis_pkt_read <= 1'b1; end always @ (posedge axis_wr_rst or posedge S_ACLK) begin if (axis_wr_rst) axis_wpkt_cnt <= 1'b0; else if (axis_wr_eop) axis_wpkt_cnt <= axis_wpkt_cnt + 1; end always @ (posedge axis_wr_rst or posedge S_ACLK) begin if (axis_wr_rst) axis_wpkt_cnt_gc <= 1'b0; else axis_wpkt_cnt_gc <= bin2gray(axis_wpkt_cnt); end assign wpkt_q[0] = axis_wpkt_cnt_gc; assign axis_wpkt_cnt_gc_asreg_last = wpkt_q[C_SYNCHRONIZER_STAGE]; assign axis_af_q[0] = axis_almost_full; //assign axis_af_q[1:C_SYNCHRONIZER_STAGE] = axis_af_q_temp[1:C_SYNCHRONIZER_STAGE]; assign axis_af_rd = axis_af_q[C_SYNCHRONIZER_STAGE]; always @ (posedge axis_rd_has_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_wpkt_cnt_rd <= 1'b0; else axis_wpkt_cnt_rd <= gray2bin(axis_wpkt_cnt_gc_asreg_last); end always @ (posedge axis_rd_rst or posedge M_ACLK) begin if (axis_rd_has_rst) axis_rpkt_cnt <= 1'b0; else if (axis_rd_eop) axis_rpkt_cnt <= axis_rpkt_cnt + 1; end // Take the difference of write and read packet count // Logic is similar to rd_pe_as assign adj_axis_wpkt_cnt_rd_pad[LOG_DEPTH_AXIS : 1] = axis_wpkt_cnt_rd; assign rpkt_inv_pad[LOG_DEPTH_AXIS : 1] = ~axis_rpkt_cnt; assign adj_axis_wpkt_cnt_rd_pad[0] = adj_axis_wpkt_cnt_rd_pad_0; assign rpkt_inv_pad[0] = rpkt_inv_pad_0; always @ ( axis_rd_eop ) begin if (!axis_rd_eop) begin adj_axis_wpkt_cnt_rd_pad_0 <= 1'b1; rpkt_inv_pad_0 <= 1'b1; end else begin adj_axis_wpkt_cnt_rd_pad_0 <= 1'b0; rpkt_inv_pad_0 <= 1'b0; end end always @ (posedge axis_rd_rst or posedge M_ACLK) begin if (axis_rd_has_rst) diff_pkt_cnt_pad <= 1'b0; else diff_pkt_cnt_pad <= adj_axis_wpkt_cnt_rd_pad + rpkt_inv_pad ; end assign diff_pkt_cnt = diff_pkt_cnt_pad [LOG_DEPTH_AXIS : 1] ; end endgenerate // gaxis_pkt_fifo_ic // Generate the accurate data count for axi stream packet fifo configuration reg [C_WR_PNTR_WIDTH_AXIS:0] axis_dc_pkt_fifo = 0; generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 1 && C_APPLICATION_TYPE_AXIS == 1) begin : gdc_pkt always @ (posedge inverted_reset or posedge S_ACLK) begin if (inverted_reset) axis_dc_pkt_fifo <= 0; else if (axis_wr_en && (~axis_rd_en)) axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo + 1; else if (~axis_wr_en && axis_rd_en) axis_dc_pkt_fifo <= #`TCQ axis_dc_pkt_fifo - 1; end assign AXIS_DATA_COUNT = axis_dc_pkt_fifo; end endgenerate // gdc_pkt generate if (IS_AXI_STREAMING == 1 && C_HAS_DATA_COUNTS_AXIS == 0 && C_APPLICATION_TYPE_AXIS == 1) begin : gndc_pkt assign AXIS_DATA_COUNT = 0; end endgenerate // gndc_pkt generate if (IS_AXI_STREAMING == 1 && C_APPLICATION_TYPE_AXIS != 1) begin : gdc assign AXIS_DATA_COUNT = axis_dc; end endgenerate // gdc // Register Slice for Write Address Channel generate if (C_AXIS_TYPE == 1) begin : gaxis_reg_slice assign axis_wr_en = (C_HAS_SLAVE_CE == 1) ? S_AXIS_TVALID & S_ACLK_EN : S_AXIS_TVALID; assign axis_rd_en = (C_HAS_MASTER_CE == 1) ? M_AXIS_TREADY & M_ACLK_EN : M_AXIS_TREADY; fifo_generator_v13_1_3_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_AXIS), .C_REG_CONFIG (C_REG_SLICE_MODE_AXIS) ) axis_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (axis_din), .S_VALID (axis_wr_en), .S_READY (S_AXIS_TREADY), // Master side .M_PAYLOAD_DATA (axis_dout), .M_VALID (M_AXIS_TVALID), .M_READY (axis_rd_en) ); end endgenerate // gaxis_reg_slice generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDATA == 1) begin : tdata assign axis_din[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET] = S_AXIS_TDATA; assign M_AXIS_TDATA = axis_dout[C_DIN_WIDTH_AXIS-1:TDATA_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TSTRB == 1) begin : tstrb assign axis_din[TDATA_OFFSET-1:TSTRB_OFFSET] = S_AXIS_TSTRB; assign M_AXIS_TSTRB = axis_dout[TDATA_OFFSET-1:TSTRB_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TKEEP == 1) begin : tkeep assign axis_din[TSTRB_OFFSET-1:TKEEP_OFFSET] = S_AXIS_TKEEP; assign M_AXIS_TKEEP = axis_dout[TSTRB_OFFSET-1:TKEEP_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TID == 1) begin : tid assign axis_din[TKEEP_OFFSET-1:TID_OFFSET] = S_AXIS_TID; assign M_AXIS_TID = axis_dout[TKEEP_OFFSET-1:TID_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TDEST == 1) begin : tdest assign axis_din[TID_OFFSET-1:TDEST_OFFSET] = S_AXIS_TDEST; assign M_AXIS_TDEST = axis_dout[TID_OFFSET-1:TDEST_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TUSER == 1) begin : tuser assign axis_din[TDEST_OFFSET-1:TUSER_OFFSET] = S_AXIS_TUSER; assign M_AXIS_TUSER = axis_dout[TDEST_OFFSET-1:TUSER_OFFSET]; end endgenerate generate if ((IS_AXI_STREAMING == 1 || C_AXIS_TYPE == 1) && C_HAS_AXIS_TLAST == 1) begin : tlast assign axis_din[0] = S_AXIS_TLAST; assign M_AXIS_TLAST = axis_dout[0]; end endgenerate //########################################################################### // AXI FULL Write Channel (axi_write_channel) //########################################################################### localparam IS_AXI_FULL = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE != 2)) ? 1 : 0; localparam IS_AXI_LITE = ((C_INTERFACE_TYPE == 2) && (C_AXI_TYPE == 2)) ? 1 : 0; localparam IS_AXI_FULL_WACH = ((IS_AXI_FULL == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_WDCH = ((IS_AXI_FULL == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_WRCH = ((IS_AXI_FULL == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_RACH = ((IS_AXI_FULL == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_FULL_RDCH = ((IS_AXI_FULL == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WACH = ((IS_AXI_LITE == 1) && (C_WACH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WDCH = ((IS_AXI_LITE == 1) && (C_WDCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_WRCH = ((IS_AXI_LITE == 1) && (C_WRCH_TYPE == 0) && C_HAS_AXI_WR_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_RACH = ((IS_AXI_LITE == 1) && (C_RACH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_AXI_LITE_RDCH = ((IS_AXI_LITE == 1) && (C_RDCH_TYPE == 0) && C_HAS_AXI_RD_CHANNEL == 1) ? 1 : 0; localparam IS_WR_ADDR_CH = ((IS_AXI_FULL_WACH == 1) || (IS_AXI_LITE_WACH == 1)) ? 1 : 0; localparam IS_WR_DATA_CH = ((IS_AXI_FULL_WDCH == 1) || (IS_AXI_LITE_WDCH == 1)) ? 1 : 0; localparam IS_WR_RESP_CH = ((IS_AXI_FULL_WRCH == 1) || (IS_AXI_LITE_WRCH == 1)) ? 1 : 0; localparam IS_RD_ADDR_CH = ((IS_AXI_FULL_RACH == 1) || (IS_AXI_LITE_RACH == 1)) ? 1 : 0; localparam IS_RD_DATA_CH = ((IS_AXI_FULL_RDCH == 1) || (IS_AXI_LITE_RDCH == 1)) ? 1 : 0; localparam AWID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WACH; localparam AWADDR_OFFSET = AWID_OFFSET - C_AXI_ADDR_WIDTH; localparam AWLEN_OFFSET = C_AXI_TYPE != 2 ? AWADDR_OFFSET - C_AXI_LEN_WIDTH : AWADDR_OFFSET; localparam AWSIZE_OFFSET = C_AXI_TYPE != 2 ? AWLEN_OFFSET - C_AXI_SIZE_WIDTH : AWLEN_OFFSET; localparam AWBURST_OFFSET = C_AXI_TYPE != 2 ? AWSIZE_OFFSET - C_AXI_BURST_WIDTH : AWSIZE_OFFSET; localparam AWLOCK_OFFSET = C_AXI_TYPE != 2 ? AWBURST_OFFSET - C_AXI_LOCK_WIDTH : AWBURST_OFFSET; localparam AWCACHE_OFFSET = C_AXI_TYPE != 2 ? AWLOCK_OFFSET - C_AXI_CACHE_WIDTH : AWLOCK_OFFSET; localparam AWPROT_OFFSET = AWCACHE_OFFSET - C_AXI_PROT_WIDTH; localparam AWQOS_OFFSET = AWPROT_OFFSET - C_AXI_QOS_WIDTH; localparam AWREGION_OFFSET = C_AXI_TYPE == 1 ? AWQOS_OFFSET - C_AXI_REGION_WIDTH : AWQOS_OFFSET; localparam AWUSER_OFFSET = C_HAS_AXI_AWUSER == 1 ? AWREGION_OFFSET-C_AXI_AWUSER_WIDTH : AWREGION_OFFSET; localparam WID_OFFSET = (C_AXI_TYPE == 3 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WDCH; localparam WDATA_OFFSET = WID_OFFSET - C_AXI_DATA_WIDTH; localparam WSTRB_OFFSET = WDATA_OFFSET - C_AXI_DATA_WIDTH/8; localparam WUSER_OFFSET = C_HAS_AXI_WUSER == 1 ? WSTRB_OFFSET-C_AXI_WUSER_WIDTH : WSTRB_OFFSET; localparam BID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_WRCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_WRCH; localparam BRESP_OFFSET = BID_OFFSET - C_AXI_BRESP_WIDTH; localparam BUSER_OFFSET = C_HAS_AXI_BUSER == 1 ? BRESP_OFFSET-C_AXI_BUSER_WIDTH : BRESP_OFFSET; wire [C_DIN_WIDTH_WACH-1:0] wach_din ; wire [C_DIN_WIDTH_WACH-1:0] wach_dout ; wire [C_DIN_WIDTH_WACH-1:0] wach_dout_pkt ; wire wach_full ; wire wach_almost_full ; wire wach_prog_full ; wire wach_empty ; wire wach_almost_empty ; wire wach_prog_empty ; wire [C_DIN_WIDTH_WDCH-1:0] wdch_din ; wire [C_DIN_WIDTH_WDCH-1:0] wdch_dout ; wire wdch_full ; wire wdch_almost_full ; wire wdch_prog_full ; wire wdch_empty ; wire wdch_almost_empty ; wire wdch_prog_empty ; wire [C_DIN_WIDTH_WRCH-1:0] wrch_din ; wire [C_DIN_WIDTH_WRCH-1:0] wrch_dout ; wire wrch_full ; wire wrch_almost_full ; wire wrch_prog_full ; wire wrch_empty ; wire wrch_almost_empty ; wire wrch_prog_empty ; wire axi_aw_underflow_i; wire axi_w_underflow_i ; wire axi_b_underflow_i ; wire axi_aw_overflow_i ; wire axi_w_overflow_i ; wire axi_b_overflow_i ; wire axi_wr_underflow_i; wire axi_wr_overflow_i ; wire wach_s_axi_awready; wire wach_m_axi_awvalid; wire wach_wr_en ; wire wach_rd_en ; wire wdch_s_axi_wready ; wire wdch_m_axi_wvalid ; wire wdch_wr_en ; wire wdch_rd_en ; wire wrch_s_axi_bvalid ; wire wrch_m_axi_bready ; wire wrch_wr_en ; wire wrch_rd_en ; wire txn_count_up ; wire txn_count_down ; wire awvalid_en ; wire awvalid_pkt ; wire awready_pkt ; integer wr_pkt_count ; wire wach_we ; wire wach_re ; wire wdch_we ; wire wdch_re ; wire wrch_we ; wire wrch_re ; generate if (IS_WR_ADDR_CH == 1) begin : axi_write_address_channel // Write protection when almost full or prog_full is high assign wach_we = (C_PROG_FULL_TYPE_WACH != 0) ? wach_s_axi_awready & S_AXI_AWVALID : S_AXI_AWVALID; // Read protection when almost empty or prog_empty is high assign wach_re = (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH == 1) ? wach_m_axi_awvalid & awready_pkt & awvalid_en : (C_PROG_EMPTY_TYPE_WACH != 0 && C_APPLICATION_TYPE_WACH != 1) ? M_AXI_AWREADY && wach_m_axi_awvalid : (C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH == 1) ? awready_pkt & awvalid_en : (C_PROG_EMPTY_TYPE_WACH == 0 && C_APPLICATION_TYPE_WACH != 1) ? M_AXI_AWREADY : 1'b0; assign wach_wr_en = (C_HAS_SLAVE_CE == 1) ? wach_we & S_ACLK_EN : wach_we; assign wach_rd_en = (C_HAS_MASTER_CE == 1) ? wach_re & M_ACLK_EN : wach_re; fifo_generator_v13_1_3_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WACH == 2 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WACH == 11 || C_IMPLEMENTATION_TYPE_WACH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WACH), .C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_WR_DEPTH (C_WR_DEPTH_WACH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH), .C_DOUT_WIDTH (C_DIN_WIDTH_WACH), .C_RD_DEPTH (C_WR_DEPTH_WACH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WACH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WACH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WACH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WACH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH), .C_USE_ECC (C_USE_ECC_WACH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WACH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE ((C_APPLICATION_TYPE_WACH == 1)?0:C_APPLICATION_TYPE_WACH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_WACH == 1 || C_IMPLEMENTATION_TYPE_WACH == 11) ? 1 : 0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WACH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WACH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v13_1_3_wach_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wach_wr_en), .RD_EN (wach_rd_en), .PROG_FULL_THRESH (AXI_AW_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_EMPTY_THRESH (AXI_AW_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WACH{1'b0}}), .INJECTDBITERR (AXI_AW_INJECTDBITERR), .INJECTSBITERR (AXI_AW_INJECTSBITERR), .DIN (wach_din), .DOUT (wach_dout_pkt), .FULL (wach_full), .EMPTY (wach_empty), .ALMOST_FULL (), .PROG_FULL (AXI_AW_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXI_AW_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_aw_overflow_i), .VALID (), .UNDERFLOW (axi_aw_underflow_i), .DATA_COUNT (AXI_AW_DATA_COUNT), .RD_DATA_COUNT (AXI_AW_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_AW_WR_DATA_COUNT), .SBITERR (AXI_AW_SBITERR), .DBITERR (AXI_AW_DBITERR), .wr_rst_busy (wr_rst_busy_wach), .rd_rst_busy (rd_rst_busy_wach), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wach_s_axi_awready = (IS_8SERIES == 0) ? ~wach_full : (C_IMPLEMENTATION_TYPE_WACH == 5 || C_IMPLEMENTATION_TYPE_WACH == 13) ? ~(wach_full | wr_rst_busy_wach) : ~wach_full; assign wach_m_axi_awvalid = ~wach_empty; assign S_AXI_AWREADY = wach_s_axi_awready; assign AXI_AW_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_aw_underflow_i : 0; assign AXI_AW_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_aw_overflow_i : 0; end endgenerate // axi_write_address_channel // Register Slice for Write Address Channel generate if (C_WACH_TYPE == 1) begin : gwach_reg_slice fifo_generator_v13_1_3_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WACH), .C_REG_CONFIG (C_REG_SLICE_MODE_WACH) ) wach_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wach_din), .S_VALID (S_AXI_AWVALID), .S_READY (S_AXI_AWREADY), // Master side .M_PAYLOAD_DATA (wach_dout), .M_VALID (M_AXI_AWVALID), .M_READY (M_AXI_AWREADY) ); end endgenerate // gwach_reg_slice generate if (C_APPLICATION_TYPE_WACH == 1 && C_HAS_AXI_WR_CHANNEL == 1) begin : axi_mm_pkt_fifo_wr fifo_generator_v13_1_3_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WACH), .C_REG_CONFIG (1) ) wach_pkt_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (inverted_reset), // Slave side .S_PAYLOAD_DATA (wach_dout_pkt), .S_VALID (awvalid_pkt), .S_READY (awready_pkt), // Master side .M_PAYLOAD_DATA (wach_dout), .M_VALID (M_AXI_AWVALID), .M_READY (M_AXI_AWREADY) ); assign awvalid_pkt = wach_m_axi_awvalid && awvalid_en; assign txn_count_up = wdch_s_axi_wready && wdch_wr_en && wdch_din[0]; assign txn_count_down = wach_m_axi_awvalid && awready_pkt && awvalid_en; always@(posedge S_ACLK or posedge inverted_reset) begin if(inverted_reset == 1) begin wr_pkt_count <= 0; end else begin if(txn_count_up == 1 && txn_count_down == 0) begin wr_pkt_count <= wr_pkt_count + 1; end else if(txn_count_up == 0 && txn_count_down == 1) begin wr_pkt_count <= wr_pkt_count - 1; end end end //Always end assign awvalid_en = (wr_pkt_count > 0)?1:0; end endgenerate generate if (C_APPLICATION_TYPE_WACH != 1) begin : axi_mm_fifo_wr assign awvalid_en = 1; assign wach_dout = wach_dout_pkt; assign M_AXI_AWVALID = wach_m_axi_awvalid; end endgenerate generate if (IS_WR_DATA_CH == 1) begin : axi_write_data_channel // Write protection when almost full or prog_full is high assign wdch_we = (C_PROG_FULL_TYPE_WDCH != 0) ? wdch_s_axi_wready & S_AXI_WVALID : S_AXI_WVALID; // Read protection when almost empty or prog_empty is high assign wdch_re = (C_PROG_EMPTY_TYPE_WDCH != 0) ? wdch_m_axi_wvalid & M_AXI_WREADY : M_AXI_WREADY; assign wdch_wr_en = (C_HAS_SLAVE_CE == 1) ? wdch_we & S_ACLK_EN : wdch_we; assign wdch_rd_en = (C_HAS_MASTER_CE == 1) ? wdch_re & M_ACLK_EN : wdch_re; fifo_generator_v13_1_3_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WDCH == 2 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WDCH == 11 || C_IMPLEMENTATION_TYPE_WDCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WDCH), .C_WR_DEPTH (C_WR_DEPTH_WDCH), .C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH), .C_DOUT_WIDTH (C_DIN_WIDTH_WDCH), .C_RD_DEPTH (C_WR_DEPTH_WDCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WDCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WDCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WDCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WDCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH), .C_USE_ECC (C_USE_ECC_WDCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WDCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_WDCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WDCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WDCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_WDCH == 1 || C_IMPLEMENTATION_TYPE_WDCH == 11) ? 1 : 0), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v13_1_3_wdch_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wdch_wr_en), .RD_EN (wdch_rd_en), .PROG_FULL_THRESH (AXI_W_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_W_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WDCH{1'b0}}), .INJECTDBITERR (AXI_W_INJECTDBITERR), .INJECTSBITERR (AXI_W_INJECTSBITERR), .DIN (wdch_din), .DOUT (wdch_dout), .FULL (wdch_full), .EMPTY (wdch_empty), .ALMOST_FULL (), .PROG_FULL (AXI_W_PROG_FULL), .ALMOST_EMPTY (), .PROG_EMPTY (AXI_W_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_w_overflow_i), .VALID (), .UNDERFLOW (axi_w_underflow_i), .DATA_COUNT (AXI_W_DATA_COUNT), .RD_DATA_COUNT (AXI_W_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_W_WR_DATA_COUNT), .SBITERR (AXI_W_SBITERR), .DBITERR (AXI_W_DBITERR), .wr_rst_busy (wr_rst_busy_wdch), .rd_rst_busy (rd_rst_busy_wdch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wdch_s_axi_wready = (IS_8SERIES == 0) ? ~wdch_full : (C_IMPLEMENTATION_TYPE_WDCH == 5 || C_IMPLEMENTATION_TYPE_WDCH == 13) ? ~(wdch_full | wr_rst_busy_wdch) : ~wdch_full; assign wdch_m_axi_wvalid = ~wdch_empty; assign S_AXI_WREADY = wdch_s_axi_wready; assign M_AXI_WVALID = wdch_m_axi_wvalid; assign AXI_W_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_w_underflow_i : 0; assign AXI_W_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_w_overflow_i : 0; end endgenerate // axi_write_data_channel // Register Slice for Write Data Channel generate if (C_WDCH_TYPE == 1) begin : gwdch_reg_slice fifo_generator_v13_1_3_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WDCH), .C_REG_CONFIG (C_REG_SLICE_MODE_WDCH) ) wdch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wdch_din), .S_VALID (S_AXI_WVALID), .S_READY (S_AXI_WREADY), // Master side .M_PAYLOAD_DATA (wdch_dout), .M_VALID (M_AXI_WVALID), .M_READY (M_AXI_WREADY) ); end endgenerate // gwdch_reg_slice generate if (IS_WR_RESP_CH == 1) begin : axi_write_resp_channel // Write protection when almost full or prog_full is high assign wrch_we = (C_PROG_FULL_TYPE_WRCH != 0) ? wrch_m_axi_bready & M_AXI_BVALID : M_AXI_BVALID; // Read protection when almost empty or prog_empty is high assign wrch_re = (C_PROG_EMPTY_TYPE_WRCH != 0) ? wrch_s_axi_bvalid & S_AXI_BREADY : S_AXI_BREADY; assign wrch_wr_en = (C_HAS_MASTER_CE == 1) ? wrch_we & M_ACLK_EN : wrch_we; assign wrch_rd_en = (C_HAS_SLAVE_CE == 1) ? wrch_re & S_ACLK_EN : wrch_re; fifo_generator_v13_1_3_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_WRCH == 2 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_WRCH == 11 || C_IMPLEMENTATION_TYPE_WRCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_WRCH), .C_WR_DEPTH (C_WR_DEPTH_WRCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH), .C_DOUT_WIDTH (C_DIN_WIDTH_WRCH), .C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_RD_DEPTH (C_WR_DEPTH_WRCH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_WRCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_WRCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_WRCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_WRCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH), .C_USE_ECC (C_USE_ECC_WRCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_WRCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_WRCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_WRCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_WRCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_WRCH == 1 || C_IMPLEMENTATION_TYPE_WRCH == 11) ? 1 : 0), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v13_1_3_wrch_dut ( .CLK (S_ACLK), .WR_CLK (M_ACLK), .RD_CLK (S_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (wrch_wr_en), .RD_EN (wrch_rd_en), .PROG_FULL_THRESH (AXI_B_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_B_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_WRCH{1'b0}}), .INJECTDBITERR (AXI_B_INJECTDBITERR), .INJECTSBITERR (AXI_B_INJECTSBITERR), .DIN (wrch_din), .DOUT (wrch_dout), .FULL (wrch_full), .EMPTY (wrch_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_B_PROG_FULL), .PROG_EMPTY (AXI_B_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_b_overflow_i), .VALID (), .UNDERFLOW (axi_b_underflow_i), .DATA_COUNT (AXI_B_DATA_COUNT), .RD_DATA_COUNT (AXI_B_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_B_WR_DATA_COUNT), .SBITERR (AXI_B_SBITERR), .DBITERR (AXI_B_DBITERR), .wr_rst_busy (wr_rst_busy_wrch), .rd_rst_busy (rd_rst_busy_wrch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign wrch_s_axi_bvalid = ~wrch_empty; assign wrch_m_axi_bready = (IS_8SERIES == 0) ? ~wrch_full : (C_IMPLEMENTATION_TYPE_WRCH == 5 || C_IMPLEMENTATION_TYPE_WRCH == 13) ? ~(wrch_full | wr_rst_busy_wrch) : ~wrch_full; assign S_AXI_BVALID = wrch_s_axi_bvalid; assign M_AXI_BREADY = wrch_m_axi_bready; assign AXI_B_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_b_underflow_i : 0; assign AXI_B_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_b_overflow_i : 0; end endgenerate // axi_write_resp_channel // Register Slice for Write Response Channel generate if (C_WRCH_TYPE == 1) begin : gwrch_reg_slice fifo_generator_v13_1_3_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_WRCH), .C_REG_CONFIG (C_REG_SLICE_MODE_WRCH) ) wrch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (wrch_din), .S_VALID (M_AXI_BVALID), .S_READY (M_AXI_BREADY), // Master side .M_PAYLOAD_DATA (wrch_dout), .M_VALID (S_AXI_BVALID), .M_READY (S_AXI_BREADY) ); end endgenerate // gwrch_reg_slice assign axi_wr_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_aw_underflow_i || axi_w_underflow_i || axi_b_underflow_i) : 0; assign axi_wr_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_aw_overflow_i || axi_w_overflow_i || axi_b_overflow_i) : 0; generate if (IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output assign M_AXI_AWADDR = wach_dout[AWID_OFFSET-1:AWADDR_OFFSET]; assign M_AXI_AWLEN = wach_dout[AWADDR_OFFSET-1:AWLEN_OFFSET]; assign M_AXI_AWSIZE = wach_dout[AWLEN_OFFSET-1:AWSIZE_OFFSET]; assign M_AXI_AWBURST = wach_dout[AWSIZE_OFFSET-1:AWBURST_OFFSET]; assign M_AXI_AWLOCK = wach_dout[AWBURST_OFFSET-1:AWLOCK_OFFSET]; assign M_AXI_AWCACHE = wach_dout[AWLOCK_OFFSET-1:AWCACHE_OFFSET]; assign M_AXI_AWPROT = wach_dout[AWCACHE_OFFSET-1:AWPROT_OFFSET]; assign M_AXI_AWQOS = wach_dout[AWPROT_OFFSET-1:AWQOS_OFFSET]; assign wach_din[AWID_OFFSET-1:AWADDR_OFFSET] = S_AXI_AWADDR; assign wach_din[AWADDR_OFFSET-1:AWLEN_OFFSET] = S_AXI_AWLEN; assign wach_din[AWLEN_OFFSET-1:AWSIZE_OFFSET] = S_AXI_AWSIZE; assign wach_din[AWSIZE_OFFSET-1:AWBURST_OFFSET] = S_AXI_AWBURST; assign wach_din[AWBURST_OFFSET-1:AWLOCK_OFFSET] = S_AXI_AWLOCK; assign wach_din[AWLOCK_OFFSET-1:AWCACHE_OFFSET] = S_AXI_AWCACHE; assign wach_din[AWCACHE_OFFSET-1:AWPROT_OFFSET] = S_AXI_AWPROT; assign wach_din[AWPROT_OFFSET-1:AWQOS_OFFSET] = S_AXI_AWQOS; end endgenerate // axi_wach_output generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_awregion assign M_AXI_AWREGION = wach_dout[AWQOS_OFFSET-1:AWREGION_OFFSET]; end endgenerate // axi_awregion generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_awregion assign M_AXI_AWREGION = 0; end endgenerate // naxi_awregion generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : axi_awuser assign M_AXI_AWUSER = wach_dout[AWREGION_OFFSET-1:AWUSER_OFFSET]; end endgenerate // axi_awuser generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 0) begin : naxi_awuser assign M_AXI_AWUSER = 0; end endgenerate // naxi_awuser generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_awid assign M_AXI_AWID = wach_dout[C_DIN_WIDTH_WACH-1:AWID_OFFSET]; end endgenerate //axi_awid generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_awid assign M_AXI_AWID = 0; end endgenerate //naxi_awid generate if (IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output assign M_AXI_WDATA = wdch_dout[WID_OFFSET-1:WDATA_OFFSET]; assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET]; assign M_AXI_WLAST = wdch_dout[0]; assign wdch_din[WID_OFFSET-1:WDATA_OFFSET] = S_AXI_WDATA; assign wdch_din[WDATA_OFFSET-1:WSTRB_OFFSET] = S_AXI_WSTRB; assign wdch_din[0] = S_AXI_WLAST; end endgenerate // axi_wdch_output generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin assign M_AXI_WID = wdch_dout[C_DIN_WIDTH_WDCH-1:WID_OFFSET]; end endgenerate generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && (C_HAS_AXI_ID == 0 || C_AXI_TYPE != 3)) begin assign M_AXI_WID = 0; end endgenerate generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1 ) begin assign M_AXI_WUSER = wdch_dout[WSTRB_OFFSET-1:WUSER_OFFSET]; end endgenerate generate if (C_HAS_AXI_WUSER == 0) begin assign M_AXI_WUSER = 0; end endgenerate generate if (IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output assign S_AXI_BRESP = wrch_dout[BID_OFFSET-1:BRESP_OFFSET]; assign wrch_din[BID_OFFSET-1:BRESP_OFFSET] = M_AXI_BRESP; end endgenerate // axi_wrch_output generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : axi_buser assign S_AXI_BUSER = wrch_dout[BRESP_OFFSET-1:BUSER_OFFSET]; end endgenerate // axi_buser generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 0) begin : naxi_buser assign S_AXI_BUSER = 0; end endgenerate // naxi_buser generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_bid assign S_AXI_BID = wrch_dout[C_DIN_WIDTH_WRCH-1:BID_OFFSET]; end endgenerate // axi_bid generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_bid assign S_AXI_BID = 0 ; end endgenerate // naxi_bid generate if (IS_AXI_LITE_WACH == 1 || (IS_AXI_LITE == 1 && C_WACH_TYPE == 1)) begin : axi_wach_output1 assign wach_din = {S_AXI_AWADDR, S_AXI_AWPROT}; assign M_AXI_AWADDR = wach_dout[C_DIN_WIDTH_WACH-1:AWADDR_OFFSET]; assign M_AXI_AWPROT = wach_dout[AWADDR_OFFSET-1:AWPROT_OFFSET]; end endgenerate // axi_wach_output1 generate if (IS_AXI_LITE_WDCH == 1 || (IS_AXI_LITE == 1 && C_WDCH_TYPE == 1)) begin : axi_wdch_output1 assign wdch_din = {S_AXI_WDATA, S_AXI_WSTRB}; assign M_AXI_WDATA = wdch_dout[C_DIN_WIDTH_WDCH-1:WDATA_OFFSET]; assign M_AXI_WSTRB = wdch_dout[WDATA_OFFSET-1:WSTRB_OFFSET]; end endgenerate // axi_wdch_output1 generate if (IS_AXI_LITE_WRCH == 1 || (IS_AXI_LITE == 1 && C_WRCH_TYPE == 1)) begin : axi_wrch_output1 assign wrch_din = M_AXI_BRESP; assign S_AXI_BRESP = wrch_dout[C_DIN_WIDTH_WRCH-1:BRESP_OFFSET]; end endgenerate // axi_wrch_output1 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_AWUSER == 1) begin : gwach_din1 assign wach_din[AWREGION_OFFSET-1:AWUSER_OFFSET] = S_AXI_AWUSER; end endgenerate // gwach_din1 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwach_din2 assign wach_din[C_DIN_WIDTH_WACH-1:AWID_OFFSET] = S_AXI_AWID; end endgenerate // gwach_din2 generate if ((IS_AXI_FULL_WACH == 1 || (IS_AXI_FULL == 1 && C_WACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : gwach_din3 assign wach_din[AWQOS_OFFSET-1:AWREGION_OFFSET] = S_AXI_AWREGION; end endgenerate // gwach_din3 generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_WUSER == 1) begin : gwdch_din1 assign wdch_din[WSTRB_OFFSET-1:WUSER_OFFSET] = S_AXI_WUSER; end endgenerate // gwdch_din1 generate if ((IS_AXI_FULL_WDCH == 1 || (IS_AXI_FULL == 1 && C_WDCH_TYPE == 1)) && C_HAS_AXI_ID == 1 && C_AXI_TYPE == 3) begin : gwdch_din2 assign wdch_din[C_DIN_WIDTH_WDCH-1:WID_OFFSET] = S_AXI_WID; end endgenerate // gwdch_din2 generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_BUSER == 1) begin : gwrch_din1 assign wrch_din[BRESP_OFFSET-1:BUSER_OFFSET] = M_AXI_BUSER; end endgenerate // gwrch_din1 generate if ((IS_AXI_FULL_WRCH == 1 || (IS_AXI_FULL == 1 && C_WRCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : gwrch_din2 assign wrch_din[C_DIN_WIDTH_WRCH-1:BID_OFFSET] = M_AXI_BID; end endgenerate // gwrch_din2 //end of axi_write_channel //########################################################################### // AXI FULL Read Channel (axi_read_channel) //########################################################################### wire [C_DIN_WIDTH_RACH-1:0] rach_din ; wire [C_DIN_WIDTH_RACH-1:0] rach_dout ; wire [C_DIN_WIDTH_RACH-1:0] rach_dout_pkt ; wire rach_full ; wire rach_almost_full ; wire rach_prog_full ; wire rach_empty ; wire rach_almost_empty ; wire rach_prog_empty ; wire [C_DIN_WIDTH_RDCH-1:0] rdch_din ; wire [C_DIN_WIDTH_RDCH-1:0] rdch_dout ; wire rdch_full ; wire rdch_almost_full ; wire rdch_prog_full ; wire rdch_empty ; wire rdch_almost_empty ; wire rdch_prog_empty ; wire axi_ar_underflow_i ; wire axi_r_underflow_i ; wire axi_ar_overflow_i ; wire axi_r_overflow_i ; wire axi_rd_underflow_i ; wire axi_rd_overflow_i ; wire rach_s_axi_arready ; wire rach_m_axi_arvalid ; wire rach_wr_en ; wire rach_rd_en ; wire rdch_m_axi_rready ; wire rdch_s_axi_rvalid ; wire rdch_wr_en ; wire rdch_rd_en ; wire arvalid_pkt ; wire arready_pkt ; wire arvalid_en ; wire rdch_rd_ok ; wire accept_next_pkt ; integer rdch_free_space ; integer rdch_commited_space ; wire rach_we ; wire rach_re ; wire rdch_we ; wire rdch_re ; localparam ARID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RACH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RACH; localparam ARADDR_OFFSET = ARID_OFFSET - C_AXI_ADDR_WIDTH; localparam ARLEN_OFFSET = C_AXI_TYPE != 2 ? ARADDR_OFFSET - C_AXI_LEN_WIDTH : ARADDR_OFFSET; localparam ARSIZE_OFFSET = C_AXI_TYPE != 2 ? ARLEN_OFFSET - C_AXI_SIZE_WIDTH : ARLEN_OFFSET; localparam ARBURST_OFFSET = C_AXI_TYPE != 2 ? ARSIZE_OFFSET - C_AXI_BURST_WIDTH : ARSIZE_OFFSET; localparam ARLOCK_OFFSET = C_AXI_TYPE != 2 ? ARBURST_OFFSET - C_AXI_LOCK_WIDTH : ARBURST_OFFSET; localparam ARCACHE_OFFSET = C_AXI_TYPE != 2 ? ARLOCK_OFFSET - C_AXI_CACHE_WIDTH : ARLOCK_OFFSET; localparam ARPROT_OFFSET = ARCACHE_OFFSET - C_AXI_PROT_WIDTH; localparam ARQOS_OFFSET = ARPROT_OFFSET - C_AXI_QOS_WIDTH; localparam ARREGION_OFFSET = C_AXI_TYPE == 1 ? ARQOS_OFFSET - C_AXI_REGION_WIDTH : ARQOS_OFFSET; localparam ARUSER_OFFSET = C_HAS_AXI_ARUSER == 1 ? ARREGION_OFFSET-C_AXI_ARUSER_WIDTH : ARREGION_OFFSET; localparam RID_OFFSET = (C_AXI_TYPE != 2 && C_HAS_AXI_ID == 1) ? C_DIN_WIDTH_RDCH - C_AXI_ID_WIDTH : C_DIN_WIDTH_RDCH; localparam RDATA_OFFSET = RID_OFFSET - C_AXI_DATA_WIDTH; localparam RRESP_OFFSET = RDATA_OFFSET - C_AXI_RRESP_WIDTH; localparam RUSER_OFFSET = C_HAS_AXI_RUSER == 1 ? RRESP_OFFSET-C_AXI_RUSER_WIDTH : RRESP_OFFSET; generate if (IS_RD_ADDR_CH == 1) begin : axi_read_addr_channel // Write protection when almost full or prog_full is high assign rach_we = (C_PROG_FULL_TYPE_RACH != 0) ? rach_s_axi_arready & S_AXI_ARVALID : S_AXI_ARVALID; // Read protection when almost empty or prog_empty is high // assign rach_rd_en = (C_PROG_EMPTY_TYPE_RACH != 5) ? rach_m_axi_arvalid & M_AXI_ARREADY : M_AXI_ARREADY && arvalid_en; assign rach_re = (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH == 1) ? rach_m_axi_arvalid & arready_pkt & arvalid_en : (C_PROG_EMPTY_TYPE_RACH != 0 && C_APPLICATION_TYPE_RACH != 1) ? M_AXI_ARREADY && rach_m_axi_arvalid : (C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH == 1) ? arready_pkt & arvalid_en : (C_PROG_EMPTY_TYPE_RACH == 0 && C_APPLICATION_TYPE_RACH != 1) ? M_AXI_ARREADY : 1'b0; assign rach_wr_en = (C_HAS_SLAVE_CE == 1) ? rach_we & S_ACLK_EN : rach_we; assign rach_rd_en = (C_HAS_MASTER_CE == 1) ? rach_re & M_ACLK_EN : rach_re; fifo_generator_v13_1_3_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_RACH == 2 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_RACH == 11 || C_IMPLEMENTATION_TYPE_RACH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_RACH), .C_WR_DEPTH (C_WR_DEPTH_RACH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH), .C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_DOUT_WIDTH (C_DIN_WIDTH_RACH), .C_RD_DEPTH (C_WR_DEPTH_RACH), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RACH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RACH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RACH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RACH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH), .C_USE_ECC (C_USE_ECC_RACH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RACH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE ((C_APPLICATION_TYPE_RACH == 1)?0:C_APPLICATION_TYPE_RACH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RACH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RACH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_RACH == 1 || C_IMPLEMENTATION_TYPE_RACH == 11) ? 1 : 0), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v13_1_3_rach_dut ( .CLK (S_ACLK), .WR_CLK (S_ACLK), .RD_CLK (M_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (rach_wr_en), .RD_EN (rach_rd_en), .PROG_FULL_THRESH (AXI_AR_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_EMPTY_THRESH (AXI_AR_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RACH{1'b0}}), .INJECTDBITERR (AXI_AR_INJECTDBITERR), .INJECTSBITERR (AXI_AR_INJECTSBITERR), .DIN (rach_din), .DOUT (rach_dout_pkt), .FULL (rach_full), .EMPTY (rach_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_AR_PROG_FULL), .PROG_EMPTY (AXI_AR_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_ar_overflow_i), .VALID (), .UNDERFLOW (axi_ar_underflow_i), .DATA_COUNT (AXI_AR_DATA_COUNT), .RD_DATA_COUNT (AXI_AR_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_AR_WR_DATA_COUNT), .SBITERR (AXI_AR_SBITERR), .DBITERR (AXI_AR_DBITERR), .wr_rst_busy (wr_rst_busy_rach), .rd_rst_busy (rd_rst_busy_rach), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign rach_s_axi_arready = (IS_8SERIES == 0) ? ~rach_full : (C_IMPLEMENTATION_TYPE_RACH == 5 || C_IMPLEMENTATION_TYPE_RACH == 13) ? ~(rach_full | wr_rst_busy_rach) : ~rach_full; assign rach_m_axi_arvalid = ~rach_empty; assign S_AXI_ARREADY = rach_s_axi_arready; assign AXI_AR_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_ar_underflow_i : 0; assign AXI_AR_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_ar_overflow_i : 0; end endgenerate // axi_read_addr_channel // Register Slice for Read Address Channel generate if (C_RACH_TYPE == 1) begin : grach_reg_slice fifo_generator_v13_1_3_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RACH), .C_REG_CONFIG (C_REG_SLICE_MODE_RACH) ) rach_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (rach_din), .S_VALID (S_AXI_ARVALID), .S_READY (S_AXI_ARREADY), // Master side .M_PAYLOAD_DATA (rach_dout), .M_VALID (M_AXI_ARVALID), .M_READY (M_AXI_ARREADY) ); end endgenerate // grach_reg_slice // Register Slice for Read Address Channel for MM Packet FIFO generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH == 1) begin : grach_reg_slice_mm_pkt_fifo fifo_generator_v13_1_3_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RACH), .C_REG_CONFIG (1) ) reg_slice_mm_pkt_fifo_inst ( // System Signals .ACLK (S_ACLK), .ARESET (inverted_reset), // Slave side .S_PAYLOAD_DATA (rach_dout_pkt), .S_VALID (arvalid_pkt), .S_READY (arready_pkt), // Master side .M_PAYLOAD_DATA (rach_dout), .M_VALID (M_AXI_ARVALID), .M_READY (M_AXI_ARREADY) ); end endgenerate // grach_reg_slice_mm_pkt_fifo generate if (C_RACH_TYPE == 0 && C_APPLICATION_TYPE_RACH != 1) begin : grach_m_axi_arvalid assign M_AXI_ARVALID = rach_m_axi_arvalid; assign rach_dout = rach_dout_pkt; end endgenerate // grach_m_axi_arvalid generate if (C_APPLICATION_TYPE_RACH == 1 && C_HAS_AXI_RD_CHANNEL == 1) begin : axi_mm_pkt_fifo_rd assign rdch_rd_ok = rdch_s_axi_rvalid && rdch_rd_en; assign arvalid_pkt = rach_m_axi_arvalid && arvalid_en; assign accept_next_pkt = rach_m_axi_arvalid && arready_pkt && arvalid_en; always@(posedge S_ACLK or posedge inverted_reset) begin if(inverted_reset) begin rdch_commited_space <= 0; end else begin if(rdch_rd_ok && !accept_next_pkt) begin rdch_commited_space <= rdch_commited_space-1; end else if(!rdch_rd_ok && accept_next_pkt) begin rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1); end else if(rdch_rd_ok && accept_next_pkt) begin rdch_commited_space <= rdch_commited_space+(rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]); end end end //Always end always@(*) begin rdch_free_space <= (C_WR_DEPTH_RDCH-(rdch_commited_space+rach_dout_pkt[ARADDR_OFFSET-1:ARLEN_OFFSET]+1)); end assign arvalid_en = (rdch_free_space >= 0)?1:0; end endgenerate generate if (C_APPLICATION_TYPE_RACH != 1) begin : axi_mm_fifo_rd assign arvalid_en = 1; end endgenerate generate if (IS_RD_DATA_CH == 1) begin : axi_read_data_channel // Write protection when almost full or prog_full is high assign rdch_we = (C_PROG_FULL_TYPE_RDCH != 0) ? rdch_m_axi_rready & M_AXI_RVALID : M_AXI_RVALID; // Read protection when almost empty or prog_empty is high assign rdch_re = (C_PROG_EMPTY_TYPE_RDCH != 0) ? rdch_s_axi_rvalid & S_AXI_RREADY : S_AXI_RREADY; assign rdch_wr_en = (C_HAS_MASTER_CE == 1) ? rdch_we & M_ACLK_EN : rdch_we; assign rdch_rd_en = (C_HAS_SLAVE_CE == 1) ? rdch_re & S_ACLK_EN : rdch_re; fifo_generator_v13_1_3_CONV_VER #( .C_FAMILY (C_FAMILY), .C_COMMON_CLOCK (C_COMMON_CLOCK), .C_MEMORY_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 : (C_IMPLEMENTATION_TYPE_RDCH == 2 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 4), .C_IMPLEMENTATION_TYPE ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 2) ? 0 : (C_IMPLEMENTATION_TYPE_RDCH == 11 || C_IMPLEMENTATION_TYPE_RDCH == 12) ? 2 : 6), .C_PRELOAD_REGS (1), // always FWFT for AXI .C_PRELOAD_LATENCY (0), // always FWFT for AXI .C_DIN_WIDTH (C_DIN_WIDTH_RDCH), .C_WR_DEPTH (C_WR_DEPTH_RDCH), .C_WR_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH), .C_DOUT_WIDTH (C_DIN_WIDTH_RDCH), .C_RD_DEPTH (C_WR_DEPTH_RDCH), .C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_RD_PNTR_WIDTH (C_WR_PNTR_WIDTH_RDCH), .C_PROG_FULL_TYPE (C_PROG_FULL_TYPE_RDCH), .C_PROG_FULL_THRESH_ASSERT_VAL (C_PROG_FULL_THRESH_ASSERT_VAL_RDCH), .C_PROG_EMPTY_TYPE (C_PROG_EMPTY_TYPE_RDCH), .C_PROG_EMPTY_THRESH_ASSERT_VAL (C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH), .C_USE_ECC (C_USE_ECC_RDCH), .C_ERROR_INJECTION_TYPE (C_ERROR_INJECTION_TYPE_RDCH), .C_HAS_ALMOST_EMPTY (0), .C_HAS_ALMOST_FULL (0), .C_AXI_TYPE (C_INTERFACE_TYPE == 1 ? 0 : C_AXI_TYPE), .C_FIFO_TYPE (C_APPLICATION_TYPE_RDCH), .C_SYNCHRONIZER_STAGE (C_SYNCHRONIZER_STAGE), .C_HAS_WR_RST (0), .C_HAS_RD_RST (0), .C_HAS_RST (1), .C_HAS_SRST (0), .C_DOUT_RST_VAL (0), .C_HAS_VALID (0), .C_VALID_LOW (C_VALID_LOW), .C_HAS_UNDERFLOW (C_HAS_UNDERFLOW), .C_UNDERFLOW_LOW (C_UNDERFLOW_LOW), .C_HAS_WR_ACK (0), .C_WR_ACK_LOW (C_WR_ACK_LOW), .C_HAS_OVERFLOW (C_HAS_OVERFLOW), .C_OVERFLOW_LOW (C_OVERFLOW_LOW), .C_HAS_DATA_COUNT ((C_COMMON_CLOCK == 1 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_HAS_RD_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_RD_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_USE_FWFT_DATA_COUNT (1), // use extra logic is always true .C_HAS_WR_DATA_COUNT ((C_COMMON_CLOCK == 0 && C_HAS_DATA_COUNTS_RDCH == 1) ? 1 : 0), .C_WR_DATA_COUNT_WIDTH (C_WR_PNTR_WIDTH_RDCH + 1), .C_FULL_FLAGS_RST_VAL (1), .C_USE_EMBEDDED_REG (0), .C_USE_DOUT_RST (0), .C_MSGON_VAL (C_MSGON_VAL), .C_ENABLE_RST_SYNC (1), .C_EN_SAFETY_CKT ((C_IMPLEMENTATION_TYPE_RDCH == 1 || C_IMPLEMENTATION_TYPE_RDCH == 11) ? 1 : 0), .C_COUNT_TYPE (C_COUNT_TYPE), .C_DEFAULT_VALUE (C_DEFAULT_VALUE), .C_ENABLE_RLOCS (C_ENABLE_RLOCS), .C_HAS_BACKUP (C_HAS_BACKUP), .C_HAS_INT_CLK (C_HAS_INT_CLK), .C_MIF_FILE_NAME (C_MIF_FILE_NAME), .C_HAS_MEMINIT_FILE (C_HAS_MEMINIT_FILE), .C_INIT_WR_PNTR_VAL (C_INIT_WR_PNTR_VAL), .C_OPTIMIZATION_MODE (C_OPTIMIZATION_MODE), .C_PRIM_FIFO_TYPE (C_PRIM_FIFO_TYPE), .C_RD_FREQ (C_RD_FREQ), .C_USE_FIFO16_FLAGS (C_USE_FIFO16_FLAGS), .C_WR_FREQ (C_WR_FREQ), .C_WR_RESPONSE_LATENCY (C_WR_RESPONSE_LATENCY) ) fifo_generator_v13_1_3_rdch_dut ( .CLK (S_ACLK), .WR_CLK (M_ACLK), .RD_CLK (S_ACLK), .RST (inverted_reset), .SRST (1'b0), .WR_RST (inverted_reset), .RD_RST (inverted_reset), .WR_EN (rdch_wr_en), .RD_EN (rdch_rd_en), .PROG_FULL_THRESH (AXI_R_PROG_FULL_THRESH), .PROG_FULL_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_FULL_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_EMPTY_THRESH (AXI_R_PROG_EMPTY_THRESH), .PROG_EMPTY_THRESH_ASSERT ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .PROG_EMPTY_THRESH_NEGATE ({C_WR_PNTR_WIDTH_RDCH{1'b0}}), .INJECTDBITERR (AXI_R_INJECTDBITERR), .INJECTSBITERR (AXI_R_INJECTSBITERR), .DIN (rdch_din), .DOUT (rdch_dout), .FULL (rdch_full), .EMPTY (rdch_empty), .ALMOST_FULL (), .ALMOST_EMPTY (), .PROG_FULL (AXI_R_PROG_FULL), .PROG_EMPTY (AXI_R_PROG_EMPTY), .WR_ACK (), .OVERFLOW (axi_r_overflow_i), .VALID (), .UNDERFLOW (axi_r_underflow_i), .DATA_COUNT (AXI_R_DATA_COUNT), .RD_DATA_COUNT (AXI_R_RD_DATA_COUNT), .WR_DATA_COUNT (AXI_R_WR_DATA_COUNT), .SBITERR (AXI_R_SBITERR), .DBITERR (AXI_R_DBITERR), .wr_rst_busy (wr_rst_busy_rdch), .rd_rst_busy (rd_rst_busy_rdch), .wr_rst_i_out (), .rd_rst_i_out (), .BACKUP (BACKUP), .BACKUP_MARKER (BACKUP_MARKER), .INT_CLK (INT_CLK) ); assign rdch_s_axi_rvalid = ~rdch_empty; assign rdch_m_axi_rready = (IS_8SERIES == 0) ? ~rdch_full : (C_IMPLEMENTATION_TYPE_RDCH == 5 || C_IMPLEMENTATION_TYPE_RDCH == 13) ? ~(rdch_full | wr_rst_busy_rdch) : ~rdch_full; assign S_AXI_RVALID = rdch_s_axi_rvalid; assign M_AXI_RREADY = rdch_m_axi_rready; assign AXI_R_UNDERFLOW = C_USE_COMMON_UNDERFLOW == 0 ? axi_r_underflow_i : 0; assign AXI_R_OVERFLOW = C_USE_COMMON_OVERFLOW == 0 ? axi_r_overflow_i : 0; end endgenerate //axi_read_data_channel // Register Slice for read Data Channel generate if (C_RDCH_TYPE == 1) begin : grdch_reg_slice fifo_generator_v13_1_3_axic_reg_slice #( .C_FAMILY (C_FAMILY), .C_DATA_WIDTH (C_DIN_WIDTH_RDCH), .C_REG_CONFIG (C_REG_SLICE_MODE_RDCH) ) rdch_reg_slice_inst ( // System Signals .ACLK (S_ACLK), .ARESET (axi_rs_rst), // Slave side .S_PAYLOAD_DATA (rdch_din), .S_VALID (M_AXI_RVALID), .S_READY (M_AXI_RREADY), // Master side .M_PAYLOAD_DATA (rdch_dout), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY) ); end endgenerate // grdch_reg_slice assign axi_rd_underflow_i = C_USE_COMMON_UNDERFLOW == 1 ? (axi_ar_underflow_i || axi_r_underflow_i) : 0; assign axi_rd_overflow_i = C_USE_COMMON_OVERFLOW == 1 ? (axi_ar_overflow_i || axi_r_overflow_i) : 0; generate if (IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) begin : axi_full_rach_output assign M_AXI_ARADDR = rach_dout[ARID_OFFSET-1:ARADDR_OFFSET]; assign M_AXI_ARLEN = rach_dout[ARADDR_OFFSET-1:ARLEN_OFFSET]; assign M_AXI_ARSIZE = rach_dout[ARLEN_OFFSET-1:ARSIZE_OFFSET]; assign M_AXI_ARBURST = rach_dout[ARSIZE_OFFSET-1:ARBURST_OFFSET]; assign M_AXI_ARLOCK = rach_dout[ARBURST_OFFSET-1:ARLOCK_OFFSET]; assign M_AXI_ARCACHE = rach_dout[ARLOCK_OFFSET-1:ARCACHE_OFFSET]; assign M_AXI_ARPROT = rach_dout[ARCACHE_OFFSET-1:ARPROT_OFFSET]; assign M_AXI_ARQOS = rach_dout[ARPROT_OFFSET-1:ARQOS_OFFSET]; assign rach_din[ARID_OFFSET-1:ARADDR_OFFSET] = S_AXI_ARADDR; assign rach_din[ARADDR_OFFSET-1:ARLEN_OFFSET] = S_AXI_ARLEN; assign rach_din[ARLEN_OFFSET-1:ARSIZE_OFFSET] = S_AXI_ARSIZE; assign rach_din[ARSIZE_OFFSET-1:ARBURST_OFFSET] = S_AXI_ARBURST; assign rach_din[ARBURST_OFFSET-1:ARLOCK_OFFSET] = S_AXI_ARLOCK; assign rach_din[ARLOCK_OFFSET-1:ARCACHE_OFFSET] = S_AXI_ARCACHE; assign rach_din[ARCACHE_OFFSET-1:ARPROT_OFFSET] = S_AXI_ARPROT; assign rach_din[ARPROT_OFFSET-1:ARQOS_OFFSET] = S_AXI_ARQOS; end endgenerate // axi_full_rach_output generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin : axi_arregion assign M_AXI_ARREGION = rach_dout[ARQOS_OFFSET-1:ARREGION_OFFSET]; end endgenerate // axi_arregion generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE != 1) begin : naxi_arregion assign M_AXI_ARREGION = 0; end endgenerate // naxi_arregion generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : axi_aruser assign M_AXI_ARUSER = rach_dout[ARREGION_OFFSET-1:ARUSER_OFFSET]; end endgenerate // axi_aruser generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 0) begin : naxi_aruser assign M_AXI_ARUSER = 0; end endgenerate // naxi_aruser generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_arid assign M_AXI_ARID = rach_dout[C_DIN_WIDTH_RACH-1:ARID_OFFSET]; end endgenerate // axi_arid generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_arid assign M_AXI_ARID = 0; end endgenerate // naxi_arid generate if (IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) begin : axi_full_rdch_output assign S_AXI_RDATA = rdch_dout[RID_OFFSET-1:RDATA_OFFSET]; assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET]; assign S_AXI_RLAST = rdch_dout[0]; assign rdch_din[RID_OFFSET-1:RDATA_OFFSET] = M_AXI_RDATA; assign rdch_din[RDATA_OFFSET-1:RRESP_OFFSET] = M_AXI_RRESP; assign rdch_din[0] = M_AXI_RLAST; end endgenerate // axi_full_rdch_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : axi_full_ruser_output assign S_AXI_RUSER = rdch_dout[RRESP_OFFSET-1:RUSER_OFFSET]; end endgenerate // axi_full_ruser_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 0) begin : axi_full_nruser_output assign S_AXI_RUSER = 0; end endgenerate // axi_full_nruser_output generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : axi_rid assign S_AXI_RID = rdch_dout[C_DIN_WIDTH_RDCH-1:RID_OFFSET]; end endgenerate // axi_rid generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 0) begin : naxi_rid assign S_AXI_RID = 0; end endgenerate // naxi_rid generate if (IS_AXI_LITE_RACH == 1 || (IS_AXI_LITE == 1 && C_RACH_TYPE == 1)) begin : axi_lite_rach_output1 assign rach_din = {S_AXI_ARADDR, S_AXI_ARPROT}; assign M_AXI_ARADDR = rach_dout[C_DIN_WIDTH_RACH-1:ARADDR_OFFSET]; assign M_AXI_ARPROT = rach_dout[ARADDR_OFFSET-1:ARPROT_OFFSET]; end endgenerate // axi_lite_rach_output generate if (IS_AXI_LITE_RDCH == 1 || (IS_AXI_LITE == 1 && C_RDCH_TYPE == 1)) begin : axi_lite_rdch_output1 assign rdch_din = {M_AXI_RDATA, M_AXI_RRESP}; assign S_AXI_RDATA = rdch_dout[C_DIN_WIDTH_RDCH-1:RDATA_OFFSET]; assign S_AXI_RRESP = rdch_dout[RDATA_OFFSET-1:RRESP_OFFSET]; end endgenerate // axi_lite_rdch_output generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ARUSER == 1) begin : grach_din1 assign rach_din[ARREGION_OFFSET-1:ARUSER_OFFSET] = S_AXI_ARUSER; end endgenerate // grach_din1 generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grach_din2 assign rach_din[C_DIN_WIDTH_RACH-1:ARID_OFFSET] = S_AXI_ARID; end endgenerate // grach_din2 generate if ((IS_AXI_FULL_RACH == 1 || (IS_AXI_FULL == 1 && C_RACH_TYPE == 1)) && C_AXI_TYPE == 1) begin assign rach_din[ARQOS_OFFSET-1:ARREGION_OFFSET] = S_AXI_ARREGION; end endgenerate generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_RUSER == 1) begin : grdch_din1 assign rdch_din[RRESP_OFFSET-1:RUSER_OFFSET] = M_AXI_RUSER; end endgenerate // grdch_din1 generate if ((IS_AXI_FULL_RDCH == 1 || (IS_AXI_FULL == 1 && C_RDCH_TYPE == 1)) && C_HAS_AXI_ID == 1) begin : grdch_din2 assign rdch_din[C_DIN_WIDTH_RDCH-1:RID_OFFSET] = M_AXI_RID; end endgenerate // grdch_din2 //end of axi_read_channel generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_UNDERFLOW == 1) begin : gaxi_comm_uf assign UNDERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_underflow_i || axi_rd_underflow_i) : (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_underflow_i : (C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_underflow_i : 0; end endgenerate // gaxi_comm_uf generate if (C_INTERFACE_TYPE == 1 && C_USE_COMMON_OVERFLOW == 1) begin : gaxi_comm_of assign OVERFLOW = (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 1) ? (axi_wr_overflow_i || axi_rd_overflow_i) : (C_HAS_AXI_WR_CHANNEL == 1 && C_HAS_AXI_RD_CHANNEL == 0) ? axi_wr_overflow_i : (C_HAS_AXI_WR_CHANNEL == 0 && C_HAS_AXI_RD_CHANNEL == 1) ? axi_rd_overflow_i : 0; end endgenerate // gaxi_comm_of //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Pass Through Logic or Wiring Logic //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- //------------------------------------------------------------------------- // Pass Through Logic for Read Channel //------------------------------------------------------------------------- // Wiring logic for Write Address Channel generate if (C_WACH_TYPE == 2) begin : gwach_pass_through assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWQOS = S_AXI_AWQOS; assign M_AXI_AWREGION = S_AXI_AWREGION; assign M_AXI_AWUSER = S_AXI_AWUSER; assign S_AXI_AWREADY = M_AXI_AWREADY; assign M_AXI_AWVALID = S_AXI_AWVALID; end endgenerate // gwach_pass_through; // Wiring logic for Write Data Channel generate if (C_WDCH_TYPE == 2) begin : gwdch_pass_through assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; assign S_AXI_WREADY = M_AXI_WREADY; assign M_AXI_WVALID = S_AXI_WVALID; end endgenerate // gwdch_pass_through; // Wiring logic for Write Response Channel generate if (C_WRCH_TYPE == 2) begin : gwrch_pass_through assign S_AXI_BID = M_AXI_BID; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_BUSER = M_AXI_BUSER; assign M_AXI_BREADY = S_AXI_BREADY; assign S_AXI_BVALID = M_AXI_BVALID; end endgenerate // gwrch_pass_through; //------------------------------------------------------------------------- // Pass Through Logic for Read Channel //------------------------------------------------------------------------- // Wiring logic for Read Address Channel generate if (C_RACH_TYPE == 2) begin : grach_pass_through assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARQOS = S_AXI_ARQOS; assign M_AXI_ARREGION = S_AXI_ARREGION; assign M_AXI_ARUSER = S_AXI_ARUSER; assign S_AXI_ARREADY = M_AXI_ARREADY; assign M_AXI_ARVALID = S_AXI_ARVALID; end endgenerate // grach_pass_through; // Wiring logic for Read Data Channel generate if (C_RDCH_TYPE == 2) begin : grdch_pass_through assign S_AXI_RID = M_AXI_RID; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; end endgenerate // grdch_pass_through; // Wiring logic for AXI Streaming generate if (C_AXIS_TYPE == 2) begin : gaxis_pass_through assign M_AXIS_TDATA = S_AXIS_TDATA; assign M_AXIS_TSTRB = S_AXIS_TSTRB; assign M_AXIS_TKEEP = S_AXIS_TKEEP; assign M_AXIS_TID = S_AXIS_TID; assign M_AXIS_TDEST = S_AXIS_TDEST; assign M_AXIS_TUSER = S_AXIS_TUSER; assign M_AXIS_TLAST = S_AXIS_TLAST; assign S_AXIS_TREADY = M_AXIS_TREADY; assign M_AXIS_TVALID = S_AXIS_TVALID; end endgenerate // gaxis_pass_through; endmodule
module. //*********************************************** assign RD_CLK_P0_IN = 0; assign RST_P0_IN = 0; assign RD_EN_P0_IN = 0; assign RD_EN_FIFO_IN = rd_en_delayed; assign DOUT = DOUT_FIFO_OUT; assign DATA_P0_IN = 0; assign VALID = VALID_FIFO_OUT; assign EMPTY = EMPTY_FIFO_OUT; assign ALMOST_EMPTY = ALMOST_EMPTY_FIFO_OUT; assign EMPTY_P0_IN = 0; assign UNDERFLOW = UNDERFLOW_FIFO_OUT; assign DATA_COUNT = DATA_COUNT_FIFO_OUT; assign SBITERR = sbiterr_fifo_out; assign DBITERR = dbiterr_fifo_out; end endgenerate // STD_FIFO generate if (IS_FWFT == 1 && C_FIFO_TYPE != 1) begin : NO_PKT_FIFO assign empty_p0_out = empty_fwft; assign SBITERR = sbiterr_fwft; assign DBITERR = dbiterr_fwft; assign DOUT = dout_fwft; assign RD_EN_P0_IN = (C_FIFO_TYPE != 1) ? rd_en_delayed : rd_en_to_fwft_fifo; end endgenerate // NO_PKT_FIFO //*********************************************** // Connect user flags to internal signals //*********************************************** //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //RD_DATA_COUNT is 0 when EMPTY and 1 when ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block3 if (C_COMMON_CLOCK == 0) begin : block_ic assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : RD_DATA_COUNT_FIFO_OUT); end //block_ic else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block3 endgenerate //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG < 3) ) begin : block30 if (C_COMMON_CLOCK == 0) begin : block_ic assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : RD_DATA_COUNT_FIFO_OUT); end else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block30 endgenerate //If we are using extra logic for the FWFT data count, then override the //RD_DATA_COUNT output when we are EMPTY or ALMOST_EMPTY. //Due to asymmetric ports, RD_DATA_COUNT is 0 when EMPTY or ALMOST_EMPTY. generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH <=C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block30_both if (C_COMMON_CLOCK == 0) begin : block_ic_both assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 0 : (RD_DATA_COUNT_FIFO_OUT)); end else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block30_both endgenerate generate if (C_USE_FWFT_DATA_COUNT==1 && (C_RD_DATA_COUNT_WIDTH>C_RD_PNTR_WIDTH) && (C_USE_EMBEDDED_REG == 3) ) begin : block3_both if (C_COMMON_CLOCK == 0) begin : block_ic_both assign RD_DATA_COUNT = (EMPTY_P0_OUT_Q | RST_P0_IN) ? 0 : (ALMOSTEMPTY_P0_OUT_Q ? 1 : (RD_DATA_COUNT_FIFO_OUT)); end //block_ic_both else begin assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end end //block3_both endgenerate //If we are not using extra logic for the FWFT data count, //then connect RD_DATA_COUNT to the RD_DATA_COUNT from the //internal FIFO instance generate if (C_USE_FWFT_DATA_COUNT==0 ) begin : block31 assign RD_DATA_COUNT = RD_DATA_COUNT_FIFO_OUT; end endgenerate //Always connect WR_DATA_COUNT to the WR_DATA_COUNT from the internal //FIFO instance generate if (C_USE_FWFT_DATA_COUNT==1) begin : block4 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; end else begin : block4 assign WR_DATA_COUNT = WR_DATA_COUNT_FIFO_OUT; end endgenerate //Connect other flags to the internal FIFO instance assign FULL = FULL_FIFO_OUT; assign ALMOST_FULL = ALMOST_FULL_FIFO_OUT; assign WR_ACK = WR_ACK_FIFO_OUT; assign OVERFLOW = OVERFLOW_FIFO_OUT; assign PROG_FULL = PROG_FULL_FIFO_OUT; assign PROG_EMPTY = PROG_EMPTY_FIFO_OUT; /************************************************************************** * find_log2 * Returns the 'log2' value for the input value for the supported ratios ***************************************************************************/ function integer find_log2; input integer int_val; integer i,j; begin i = 1; j = 0; for (i = 1; i < int_val; i = i*2) begin j = j + 1; end find_log2 = j; end endfunction // if an asynchronous FIFO has been selected, display a message that the FIFO // will not be cycle-accurate in simulation initial begin if (C_IMPLEMENTATION_TYPE == 2) begin $display("WARNING: Behavioral models for independent clock FIFO configurations do not model synchronization delays. The behavioral models are functionally correct, and will represent the behavior of the configured FIFO. See the FIFO Generator User Guide for more information."); end else if (C_MEMORY_TYPE == 4) begin $display("FAILURE : Behavioral models do not support built-in FIFO configurations. Please use post-synthesis or post-implement simulation in Vivado."); $finish; end if (C_WR_PNTR_WIDTH != find_log2(C_WR_DEPTH)) begin $display("FAILURE : C_WR_PNTR_WIDTH is not log2 of C_WR_DEPTH."); $finish; end if (C_RD_PNTR_WIDTH != find_log2(C_RD_DEPTH)) begin $display("FAILURE : C_RD_PNTR_WIDTH is not log2 of C_RD_DEPTH."); $finish; end if (C_USE_ECC == 1) begin if (C_DIN_WIDTH != C_DOUT_WIDTH) begin $display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be equal for ECC configuration."); $finish; end if (C_DIN_WIDTH == 1 && C_ERROR_INJECTION_TYPE > 1) begin $display("FAILURE : C_DIN_WIDTH and C_DOUT_WIDTH must be > 1 for double bit error injection."); $finish; end end end //initial /************************************************************************** * Internal reset logic **************************************************************************/ assign wr_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? wr_rst_reg : 0; assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? rd_rst_reg : 0; assign rst_i = C_HAS_RST ? rst_reg : 0; wire rst_2_sync; wire rst_2_sync_safety = (C_ENABLE_RST_SYNC == 1) ? rst_delayed : RD_RST; wire clk_2_sync = (C_COMMON_CLOCK == 1) ? CLK : WR_CLK; wire clk_2_sync_safety = (C_COMMON_CLOCK == 1) ? CLK : RD_CLK; localparam RST_SYNC_STAGES = (C_EN_SAFETY_CKT == 0) ? C_SYNCHRONIZER_STAGE : (C_COMMON_CLOCK == 1) ? 3 : C_SYNCHRONIZER_STAGE+2; reg [RST_SYNC_STAGES-1:0] wrst_reg = {RST_SYNC_STAGES{1'b0}}; reg [RST_SYNC_STAGES-1:0] rrst_reg = {RST_SYNC_STAGES{1'b0}}; reg [RST_SYNC_STAGES-1:0] arst_sync_q = {RST_SYNC_STAGES{1'b0}}; reg [RST_SYNC_STAGES-1:0] wrst_q = {RST_SYNC_STAGES{1'b0}}; reg [RST_SYNC_STAGES-1:0] rrst_q = {RST_SYNC_STAGES{1'b0}}; reg [RST_SYNC_STAGES-1:0] rrst_wr = {RST_SYNC_STAGES{1'b0}}; reg [RST_SYNC_STAGES-1:0] wrst_ext = {RST_SYNC_STAGES{1'b0}}; reg [1:0] wrst_cc = {2{1'b0}}; reg [1:0] rrst_cc = {2{1'b0}}; generate if (C_EN_SAFETY_CKT == 1 && C_INTERFACE_TYPE == 0) begin : grst_safety_ckt reg[1:0] rst_d1_safety =1; reg[1:0] rst_d2_safety =1; reg[1:0] rst_d3_safety =1; reg[1:0] rst_d4_safety =1; reg[1:0] rst_d5_safety =1; reg[1:0] rst_d6_safety =1; reg[1:0] rst_d7_safety =1; always@(posedge rst_2_sync_safety or posedge clk_2_sync_safety) begin : prst if (rst_2_sync_safety == 1'b1) begin rst_d1_safety <= 1'b1; rst_d2_safety <= 1'b1; rst_d3_safety <= 1'b1; rst_d4_safety <= 1'b1; rst_d5_safety <= 1'b1; rst_d6_safety <= 1'b1; rst_d7_safety <= 1'b1; end else begin rst_d1_safety <= #`TCQ 1'b0; rst_d2_safety <= #`TCQ rst_d1_safety; rst_d3_safety <= #`TCQ rst_d2_safety; rst_d4_safety <= #`TCQ rst_d3_safety; rst_d5_safety <= #`TCQ rst_d4_safety; rst_d6_safety <= #`TCQ rst_d5_safety; rst_d7_safety <= #`TCQ rst_d6_safety; end //if end //prst always@(posedge rst_d7_safety or posedge WR_EN) begin : assert_safety if(rst_d7_safety == 1 && WR_EN == 1) begin $display("WARNING:A write attempt has been made within the 7 clock cycles of reset de-assertion. This can lead to data discrepancy when safety circuit is enabled."); end //if end //always end // grst_safety_ckt endgenerate // if (C_EN_SAFET_CKT == 1) // assertion:the reset shud be atleast 3 cycles wide. generate reg safety_ckt_wr_rst_i = 1'b0; if (C_ENABLE_RST_SYNC == 0) begin : gnrst_sync always @* begin wr_rst_reg <= wr_rst_delayed; rd_rst_reg <= rd_rst_delayed; rst_reg <= 1'b0; srst_reg <= 1'b0; end assign rst_2_sync = wr_rst_delayed; assign wr_rst_busy = C_EN_SAFETY_CKT ? wr_rst_delayed : 1'b0; assign rd_rst_busy = C_EN_SAFETY_CKT ? rd_rst_delayed : 1'b0; assign safety_ckt_wr_rst = C_EN_SAFETY_CKT ? wr_rst_delayed : 1'b0; assign safety_ckt_rd_rst = C_EN_SAFETY_CKT ? rd_rst_delayed : 1'b0; // end : gnrst_sync end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 0) begin : g7s_ic_rst reg fifo_wrst_done = 1'b0; reg fifo_rrst_done = 1'b0; reg sckt_wrst_i = 1'b0; reg sckt_wrst_i_q = 1'b0; reg rd_rst_active = 1'b0; reg rd_rst_middle = 1'b0; reg sckt_rd_rst_d1 = 1'b0; reg [1:0] rst_delayed_ic_w = 2'h0; wire rst_delayed_ic_w_i; reg [1:0] rst_delayed_ic_r = 2'h0; wire rst_delayed_ic_r_i; wire arst_sync_rst; wire fifo_rst_done; wire fifo_rst_active; assign wr_rst_comb = !wr_rst_asreg_d2 && wr_rst_asreg; assign rd_rst_comb = C_EN_SAFETY_CKT ? (!rd_rst_asreg_d2 && rd_rst_asreg) || rd_rst_active : !rd_rst_asreg_d2 && rd_rst_asreg; assign rst_2_sync = rst_delayed_ic_w_i; assign arst_sync_rst = arst_sync_q[RST_SYNC_STAGES-1]; assign wr_rst_busy = C_EN_SAFETY_CKT ? |arst_sync_q[RST_SYNC_STAGES-1:1] | fifo_rst_active : 1'b0; assign rd_rst_busy = C_EN_SAFETY_CKT ? safety_ckt_rd_rst : 1'b0; assign fifo_rst_done = fifo_wrst_done & fifo_rrst_done; assign fifo_rst_active = sckt_wrst_i | wrst_ext[RST_SYNC_STAGES-1] | rrst_wr[RST_SYNC_STAGES-1]; always @(posedge WR_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1 && C_HAS_RST) rst_delayed_ic_w <= 2'b11; else rst_delayed_ic_w <= #`TCQ {rst_delayed_ic_w[0],1'b0}; end assign rst_delayed_ic_w_i = rst_delayed_ic_w[1]; always @(posedge RD_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1 && C_HAS_RST) rst_delayed_ic_r <= 2'b11; else rst_delayed_ic_r <= #`TCQ {rst_delayed_ic_r[0],1'b0}; end assign rst_delayed_ic_r_i = rst_delayed_ic_r[1]; always @(posedge WR_CLK) begin sckt_wrst_i_q <= #`TCQ sckt_wrst_i; sckt_wr_rst_i_q <= #`TCQ wr_rst_busy; safety_ckt_wr_rst_i <= #`TCQ sckt_wrst_i | wr_rst_busy | sckt_wr_rst_i_q; if (arst_sync_rst && ~fifo_rst_active) sckt_wrst_i <= #`TCQ 1'b1; else if (sckt_wrst_i && fifo_rst_done) sckt_wrst_i <= #`TCQ 1'b0; else sckt_wrst_i <= #`TCQ sckt_wrst_i; if (rrst_wr[RST_SYNC_STAGES-2] & ~rrst_wr[RST_SYNC_STAGES-1]) fifo_rrst_done <= #`TCQ 1'b1; else if (fifo_rst_done) fifo_rrst_done <= #`TCQ 1'b0; else fifo_rrst_done <= #`TCQ fifo_rrst_done; if (wrst_ext[RST_SYNC_STAGES-2] & ~wrst_ext[RST_SYNC_STAGES-1]) fifo_wrst_done <= #`TCQ 1'b1; else if (fifo_rst_done) fifo_wrst_done <= #`TCQ 1'b0; else fifo_wrst_done <= #`TCQ fifo_wrst_done; end always @(posedge WR_CLK or posedge rst_delayed_ic_w_i) begin if (rst_delayed_ic_w_i == 1'b1) begin wr_rst_asreg <= 1'b1; end else begin if (wr_rst_asreg_d1 == 1'b1) begin wr_rst_asreg <= #`TCQ 1'b0; end else begin wr_rst_asreg <= #`TCQ wr_rst_asreg; end end end always @(posedge WR_CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) begin wr_rst_asreg <= 1'b1; end else begin if (wr_rst_asreg_d1 == 1'b1) begin wr_rst_asreg <= #`TCQ 1'b0; end else begin wr_rst_asreg <= #`TCQ wr_rst_asreg; end end end always @(posedge WR_CLK) begin wrst_reg <= #`TCQ {wrst_reg[RST_SYNC_STAGES-2:0],wr_rst_asreg}; wrst_ext <= #`TCQ {wrst_ext[RST_SYNC_STAGES-2:0],sckt_wrst_i}; rrst_wr <= #`TCQ {rrst_wr[RST_SYNC_STAGES-2:0],safety_ckt_rd_rst}; arst_sync_q <= #`TCQ {arst_sync_q[RST_SYNC_STAGES-2:0],rst_delayed_ic_w_i}; end assign wr_rst_asreg_d1 = wrst_reg[RST_SYNC_STAGES-2]; assign wr_rst_asreg_d2 = C_EN_SAFETY_CKT ? wrst_reg[RST_SYNC_STAGES-1] : wrst_reg[1]; assign safety_ckt_wr_rst = C_EN_SAFETY_CKT ? safety_ckt_wr_rst_i : 1'b0; always @(posedge WR_CLK or posedge wr_rst_comb) begin if (wr_rst_comb == 1'b1) begin wr_rst_reg <= 1'b1; end else begin wr_rst_reg <= #`TCQ 1'b0; end end always @(posedge RD_CLK or posedge rst_delayed_ic_r_i) begin if (rst_delayed_ic_r_i == 1'b1) begin rd_rst_asreg <= 1'b1; end else begin if (rd_rst_asreg_d1 == 1'b1) begin rd_rst_asreg <= #`TCQ 1'b0; end else begin rd_rst_asreg <= #`TCQ rd_rst_asreg; end end end always @(posedge RD_CLK) begin rrst_reg <= #`TCQ {rrst_reg[RST_SYNC_STAGES-2:0],rd_rst_asreg}; rrst_q <= #`TCQ {rrst_q[RST_SYNC_STAGES-2:0],sckt_wrst_i}; rrst_cc <= #`TCQ {rrst_cc[0],rd_rst_asreg_d2}; sckt_rd_rst_d1 <= #`TCQ safety_ckt_rd_rst; if (!rd_rst_middle && rrst_reg[1] && !rrst_reg[2]) begin rd_rst_active <= #`TCQ 1'b1; rd_rst_middle <= #`TCQ 1'b1; end else if (safety_ckt_rd_rst) rd_rst_active <= #`TCQ 1'b0; else if (sckt_rd_rst_d1 && !safety_ckt_rd_rst) rd_rst_middle <= #`TCQ 1'b0; end assign rd_rst_asreg_d1 = rrst_reg[RST_SYNC_STAGES-2]; assign rd_rst_asreg_d2 = C_EN_SAFETY_CKT ? rrst_reg[RST_SYNC_STAGES-1] : rrst_reg[1]; assign safety_ckt_rd_rst = C_EN_SAFETY_CKT ? rrst_q[2] : 1'b0; always @(posedge RD_CLK or posedge rd_rst_comb) begin if (rd_rst_comb == 1'b1) begin rd_rst_reg <= 1'b1; end else begin rd_rst_reg <= #`TCQ 1'b0; end end // end : g7s_ic_rst end else if (C_HAS_RST == 1 && C_COMMON_CLOCK == 1) begin : g7s_cc_rst reg [1:0] rst_delayed_cc = 2'h0; wire rst_delayed_cc_i; assign rst_comb = !rst_asreg_d2 && rst_asreg; assign rst_2_sync = rst_delayed_cc_i; assign wr_rst_busy = C_EN_SAFETY_CKT ? |arst_sync_q[RST_SYNC_STAGES-1:1] | wrst_cc[1] : 1'b0; assign rd_rst_busy = C_EN_SAFETY_CKT ? arst_sync_q[1] | arst_sync_q[RST_SYNC_STAGES-1] | wrst_cc[1] : 1'b0; always @(posedge CLK or posedge rst_delayed) begin if (rst_delayed == 1'b1) rst_delayed_cc <= 2'b11; else rst_delayed_cc <= #`TCQ {rst_delayed_cc,1'b0}; end assign rst_delayed_cc_i = rst_delayed_cc[1]; always @(posedge CLK or posedge rst_delayed_cc_i) begin if (rst_delayed_cc_i == 1'b1) begin rst_asreg <= 1'b1; end else begin if (rst_asreg_d1 == 1'b1) begin rst_asreg <= #`TCQ 1'b0; end else begin rst_asreg <= #`TCQ rst_asreg; end end end always @(posedge CLK) begin wrst_reg <= #`TCQ {wrst_reg[RST_SYNC_STAGES-2:0],rst_asreg}; wrst_cc <= #`TCQ {wrst_cc[0],arst_sync_q[RST_SYNC_STAGES-1]}; sckt_wr_rst_i_q <= #`TCQ wr_rst_busy; safety_ckt_wr_rst_i <= #`TCQ wrst_cc[1] | wr_rst_busy | sckt_wr_rst_i_q; arst_sync_q <= #`TCQ {arst_sync_q[RST_SYNC_STAGES-2:0],rst_delayed_cc_i}; end assign rst_asreg_d1 = wrst_reg[RST_SYNC_STAGES-2]; assign rst_asreg_d2 = C_EN_SAFETY_CKT ? wrst_reg[RST_SYNC_STAGES-1] : wrst_reg[1]; assign safety_ckt_wr_rst = C_EN_SAFETY_CKT ? safety_ckt_wr_rst_i : 1'b0; assign safety_ckt_rd_rst = C_EN_SAFETY_CKT ? safety_ckt_wr_rst_i : 1'b0; always @(posedge CLK or posedge rst_comb) begin if (rst_comb == 1'b1) begin rst_reg <= 1'b1; end else begin rst_reg <= #`TCQ 1'b0; end end // end : g7s_cc_rst end else if (IS_8SERIES == 1 && C_HAS_SRST == 1 && C_COMMON_CLOCK == 1) begin : g8s_cc_rst assign wr_rst_busy = (C_MEMORY_TYPE != 4) ? rst_reg : rst_active_i; assign rd_rst_busy = rst_reg; assign rst_2_sync = srst_delayed; always @* rst_full_ff_i <= rst_reg; always @* rst_full_gen_i <= C_FULL_FLAGS_RST_VAL == 1 ? rst_active_i : 0; assign safety_ckt_wr_rst = C_EN_SAFETY_CKT ? rst_reg | wr_rst_busy | sckt_wr_rst_i_q : 1'b0; assign safety_ckt_rd_rst = C_EN_SAFETY_CKT ? rst_reg | wr_rst_busy | sckt_wr_rst_i_q : 1'b0; always @(posedge CLK) begin rst_delayed_d1 <= #`TCQ srst_delayed; rst_delayed_d2 <= #`TCQ rst_delayed_d1; sckt_wr_rst_i_q <= #`TCQ wr_rst_busy; if (rst_reg || rst_delayed_d2) begin rst_active_i <= #`TCQ 1'b1; end else begin rst_active_i <= #`TCQ rst_reg; end end always @(posedge CLK) begin if (~rst_reg && srst_delayed) begin rst_reg <= #`TCQ 1'b1; end else if (rst_reg) begin rst_reg <= #`TCQ 1'b0; end else begin rst_reg <= #`TCQ rst_reg; end end // end : g8s_cc_rst end else begin assign wr_rst_busy = 1'b0; assign rd_rst_busy = 1'b0; assign safety_ckt_wr_rst = 1'b0; assign safety_ckt_rd_rst = 1'b0; end endgenerate generate if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 1) begin : grstd1 // RST_FULL_GEN replaces the reset falling edge detection used to de-assert // FULL, ALMOST_FULL & PROG_FULL flags if C_FULL_FLAGS_RST_VAL = 1. // RST_FULL_FF goes to the reset pin of the final flop of FULL, ALMOST_FULL & // PROG_FULL reg rst_d1 = 1'b0; reg rst_d2 = 1'b0; reg rst_d3 = 1'b0; reg rst_d4 = 1'b0; reg rst_d5 = 1'b0; always @ (posedge rst_2_sync or posedge clk_2_sync) begin if (rst_2_sync) begin rst_d1 <= 1'b1; rst_d2 <= 1'b1; rst_d3 <= 1'b1; rst_d4 <= 1'b1; end else begin if (srst_delayed) begin rst_d1 <= #`TCQ 1'b1; rst_d2 <= #`TCQ 1'b1; rst_d3 <= #`TCQ 1'b1; rst_d4 <= #`TCQ 1'b1; end else begin rst_d1 <= #`TCQ wr_rst_busy; rst_d2 <= #`TCQ rst_d1; rst_d3 <= #`TCQ rst_d2 | safety_ckt_wr_rst; rst_d4 <= #`TCQ rst_d3; end end end always @* rst_full_ff_i <= (C_HAS_SRST == 0) ? rst_d2 : 1'b0 ; always @* rst_full_gen_i <= rst_d3; end else if ((C_HAS_RST == 1 || C_HAS_SRST == 1 || C_ENABLE_RST_SYNC == 0) && C_FULL_FLAGS_RST_VAL == 0) begin : gnrst_full always @* rst_full_ff_i <= (C_COMMON_CLOCK == 0) ? wr_rst_i : rst_i; end endgenerate // grstd1 endmodule