module_content
stringlengths
18
1.05M
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module altera_avalon_sc_fifo #( // -------------------------------------------------- // Parameters // -------------------------------------------------- parameter SYMBOLS_PER_BEAT = 1, parameter BITS_PER_SYMBOL = 8, parameter FIFO_DEPTH = 16, parameter CHANNEL_WIDTH = 0, parameter ERROR_WIDTH = 0, parameter USE_PACKETS = 0, parameter USE_FILL_LEVEL = 0, parameter USE_STORE_FORWARD = 0, parameter USE_ALMOST_FULL_IF = 0, parameter USE_ALMOST_EMPTY_IF = 0, // -------------------------------------------------- // Empty latency is defined as the number of cycles // required for a write to deassert the empty flag. // For example, a latency of 1 means that the empty // flag is deasserted on the cycle after a write. // // Another way to think of it is the latency for a // write to propagate to the output. // // An empty latency of 0 implies lookahead, which is // only implemented for the register-based FIFO. // -------------------------------------------------- parameter EMPTY_LATENCY = 3, parameter USE_MEMORY_BLOCKS = 1, // -------------------------------------------------- // Internal Parameters // -------------------------------------------------- parameter DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL, parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT) ) ( // -------------------------------------------------- // Ports // -------------------------------------------------- input clk, input reset, input [DATA_WIDTH-1: 0] in_data, input in_valid, input in_startofpacket, input in_endofpacket, input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] in_empty, input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] in_error, input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] in_channel, output in_ready, output [DATA_WIDTH-1 : 0] out_data, output reg out_valid, output out_startofpacket, output out_endofpacket, output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0] out_empty, output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0] out_error, output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel, input out_ready, input [(USE_STORE_FORWARD ? 2 : 1) : 0] csr_address, input csr_write, input csr_read, input [31 : 0] csr_writedata, output reg [31 : 0] csr_readdata, output wire almost_full_data, output wire almost_empty_data ); // -------------------------------------------------- // Local Parameters // -------------------------------------------------- localparam ADDR_WIDTH = log2ceil(FIFO_DEPTH); localparam DEPTH = FIFO_DEPTH; localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH; localparam PAYLOAD_WIDTH = (USE_PACKETS == 1) ? 2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH: DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH; // -------------------------------------------------- // Internal Signals // -------------------------------------------------- genvar i; reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0]; reg [ADDR_WIDTH-1 : 0] wr_ptr; reg [ADDR_WIDTH-1 : 0] rd_ptr; reg [DEPTH-1 : 0] mem_used; wire [ADDR_WIDTH-1 : 0] next_wr_ptr; wire [ADDR_WIDTH-1 : 0] next_rd_ptr; wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr; wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr; wire [ADDR_WIDTH-1 : 0] mem_rd_ptr; wire read; wire write; reg empty; reg next_empty; reg full; reg next_full; wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals; wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals; wire [PAYLOAD_WIDTH-1 : 0] in_payload; reg [PAYLOAD_WIDTH-1 : 0] internal_out_payload; reg [PAYLOAD_WIDTH-1 : 0] out_payload; reg internal_out_valid; wire internal_out_ready; reg [ADDR_WIDTH : 0] fifo_fill_level; reg [ADDR_WIDTH : 0] fill_level; reg [ADDR_WIDTH-1 : 0] sop_ptr = 0; wire [ADDR_WIDTH-1 : 0] curr_sop_ptr; reg [23:0] almost_full_threshold; reg [23:0] almost_empty_threshold; reg [23:0] cut_through_threshold; reg [15:0] pkt_cnt; reg drop_on_error_en; reg error_in_pkt; reg pkt_has_started; reg sop_has_left_fifo; reg fifo_too_small_r; reg pkt_cnt_eq_zero; reg pkt_cnt_eq_one; wire wait_for_threshold; reg pkt_mode; wire wait_for_pkt; wire ok_to_forward; wire in_pkt_eop_arrive; wire out_pkt_leave; wire in_pkt_start; wire in_pkt_error; wire drop_on_error; wire fifo_too_small; wire out_pkt_sop_leave; wire [31:0] max_fifo_size; reg fifo_fill_level_lt_cut_through_threshold; // -------------------------------------------------- // Define Payload // // Icky part where we decide which signals form the // payload to the FIFO with generate blocks. // -------------------------------------------------- generate if (EMPTY_WIDTH > 0) begin : gen_blk1 assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty}; assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals; end else begin : gen_blk1_else assign out_empty = in_error; assign in_packet_signals = {in_startofpacket, in_endofpacket}; assign {out_startofpacket, out_endofpacket} = out_packet_signals; end endgenerate generate if (USE_PACKETS) begin : gen_blk2 if (ERROR_WIDTH > 0) begin : gen_blk3 if (CHANNEL_WIDTH > 0) begin : gen_blk4 assign in_payload = {in_packet_signals, in_data, in_error, in_channel}; assign {out_packet_signals, out_data, out_error, out_channel} = out_payload; end else begin : gen_blk4_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data, in_error}; assign {out_packet_signals, out_data, out_error} = out_payload; end end else begin : gen_blk3_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk5 assign in_payload = {in_packet_signals, in_data, in_channel}; assign {out_packet_signals, out_data, out_channel} = out_payload; end else begin : gen_blk5_else assign out_channel = in_channel; assign in_payload = {in_packet_signals, in_data}; assign {out_packet_signals, out_data} = out_payload; end end end else begin : gen_blk2_else assign out_packet_signals = 0; if (ERROR_WIDTH > 0) begin : gen_blk6 if (CHANNEL_WIDTH > 0) begin : gen_blk7 assign in_payload = {in_data, in_error, in_channel}; assign {out_data, out_error, out_channel} = out_payload; end else begin : gen_blk7_else assign out_channel = in_channel; assign in_payload = {in_data, in_error}; assign {out_data, out_error} = out_payload; end end else begin : gen_blk6_else assign out_error = in_error; if (CHANNEL_WIDTH > 0) begin : gen_blk8 assign in_payload = {in_data, in_channel}; assign {out_data, out_channel} = out_payload; end else begin : gen_blk8_else assign out_channel = in_channel; assign in_payload = in_data; assign out_data = out_payload; end end end endgenerate // -------------------------------------------------- // Memory-based FIFO storage // // To allow a ready latency of 0, the read index is // obtained from the next read pointer and memory // outputs are unregistered. // // If the empty latency is 1, we infer bypass logic // around the memory so writes propagate to the // outputs on the next cycle. // // Do not change the way this is coded: Quartus needs // a perfect match to the template, and any attempt to // refactor the two always blocks into one will break // memory inference. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk9 if (EMPTY_LATENCY == 1) begin : gen_blk10 always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] = in_payload; internal_out_payload = mem[mem_rd_ptr]; end end else begin : gen_blk10_else always @(posedge clk) begin if (in_valid && in_ready) mem[wr_ptr] <= in_payload; internal_out_payload <= mem[mem_rd_ptr]; end end assign mem_rd_ptr = next_rd_ptr; end else begin : gen_blk9_else // -------------------------------------------------- // Register-based FIFO storage // // Uses a shift register as the storage element. Each // shift register slot has a bit which indicates if // the slot is occupied (credit to Sam H for the idea). // The occupancy bits are contiguous and start from the // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep // FIFO. // // Each slot is enabled during a read or when it // is unoccupied. New data is always written to every // going-to-be-empty slot (we keep track of which ones // are actually useful with the occupancy bits). On a // read we shift occupied slots. // // The exception is the last slot, which always gets // new data when it is unoccupied. // -------------------------------------------------- for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg always @(posedge clk or posedge reset) begin if (reset) begin mem[i] <= 0; end else if (read || !mem_used[i]) begin if (!mem_used[i+1]) mem[i] <= in_payload; else mem[i] <= mem[i+1]; end end end always @(posedge clk, posedge reset) begin if (reset) begin mem[DEPTH-1] <= 0; end else begin if (DEPTH == 1) begin if (write) mem[DEPTH-1] <= in_payload; end else if (!mem_used[DEPTH-1]) mem[DEPTH-1] <= in_payload; end end end endgenerate assign read = internal_out_ready && internal_out_valid && ok_to_forward; assign write = in_ready && in_valid; // -------------------------------------------------- // Pointer Management // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11 assign incremented_wr_ptr = wr_ptr + 1'b1; assign incremented_rd_ptr = rd_ptr + 1'b1; assign next_wr_ptr = drop_on_error ? curr_sop_ptr : write ? incremented_wr_ptr : wr_ptr; assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr; always @(posedge clk or posedge reset) begin if (reset) begin wr_ptr <= 0; rd_ptr <= 0; end else begin wr_ptr <= next_wr_ptr; rd_ptr <= next_rd_ptr; end end end else begin : gen_blk11_else // -------------------------------------------------- // Shift Register Occupancy Bits // // Consider a 4-deep FIFO with 2 entries: 0011 // On a read and write, do not modify the bits. // On a write, left-shift the bits to get 0111. // On a read, right-shift the bits to get 0001. // // Also, on a write we set bit0 (the head), while // clearing the tail on a read. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin mem_used[0] <= 0; end else begin if (write ^ read) begin if (write) mem_used[0] <= 1; else if (read) begin if (DEPTH > 1) mem_used[0] <= mem_used[1]; else mem_used[0] <= 0; end end end end if (DEPTH > 1) begin : gen_blk12 always @(posedge clk or posedge reset) begin if (reset) begin mem_used[DEPTH-1] <= 0; end else begin if (write ^ read) begin mem_used[DEPTH-1] <= 0; if (write) mem_used[DEPTH-1] <= mem_used[DEPTH-2]; end end end end for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic always @(posedge clk, posedge reset) begin if (reset) begin mem_used[i] <= 0; end else begin if (write ^ read) begin if (write) mem_used[i] <= mem_used[i-1]; else if (read) mem_used[i] <= mem_used[i+1]; end end end end end endgenerate // -------------------------------------------------- // Memory FIFO Status Management // // Generates the full and empty signals from the // pointers. The FIFO is full when the next write // pointer will be equal to the read pointer after // a write. Reading from a FIFO clears full. // // The FIFO is empty when the next read pointer will // be equal to the write pointer after a read. Writing // to a FIFO clears empty. // // A simultaneous read and write must not change any of // the empty or full flags unless there is a drop on error event. // -------------------------------------------------- generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13 always @* begin next_full = full; next_empty = empty; if (read && !write) begin next_full = 1'b0; if (incremented_rd_ptr == wr_ptr) next_empty = 1'b1; end if (write && !read) begin if (!drop_on_error) next_empty = 1'b0; else if (curr_sop_ptr == rd_ptr) // drop on error and only 1 pkt in fifo next_empty = 1'b1; if (incremented_wr_ptr == rd_ptr && !drop_on_error) next_full = 1'b1; end if (write && read && drop_on_error) begin if (curr_sop_ptr == next_rd_ptr) next_empty = 1'b1; end end always @(posedge clk or posedge reset) begin if (reset) begin empty <= 1; full <= 0; end else begin empty <= next_empty; full <= next_full; end end end else begin : gen_blk13_else // -------------------------------------------------- // Register FIFO Status Management // // Full when the tail occupancy bit is 1. Empty when // the head occupancy bit is 0. // -------------------------------------------------- always @* begin full = mem_used[DEPTH-1]; empty = !mem_used[0]; // ------------------------------------------ // For a single slot FIFO, reading clears the // full status immediately. // ------------------------------------------ if (DEPTH == 1) full = mem_used[0] && !read; internal_out_payload = mem[0]; // ------------------------------------------ // Writes clear empty immediately for lookahead modes. // Note that we use in_valid instead of write to avoid // combinational loops (in lookahead mode, qualifying // with in_ready is meaningless). // // In a 1-deep FIFO, a possible combinational loop runs // from write -> out_valid -> out_ready -> write // ------------------------------------------ if (EMPTY_LATENCY == 0) begin empty = !mem_used[0] && !in_valid; if (!mem_used[0] && in_valid) internal_out_payload = in_payload; end end end endgenerate // -------------------------------------------------- // Avalon-ST Signals // // The in_ready signal is straightforward. // // To match memory latency when empty latency > 1, // out_valid assertions must be delayed by one clock // cycle. // // Note: out_valid deassertions must not be delayed or // the FIFO will underflow. // -------------------------------------------------- assign in_ready = !full; assign internal_out_ready = out_ready || !out_valid; generate if (EMPTY_LATENCY > 1) begin : gen_blk14 always @(posedge clk or posedge reset) begin if (reset) internal_out_valid <= 0; else begin internal_out_valid <= !empty & ok_to_forward & ~drop_on_error; if (read) begin if (incremented_rd_ptr == wr_ptr) internal_out_valid <= 1'b0; end end end end else begin : gen_blk14_else always @* begin internal_out_valid = !empty & ok_to_forward; end end endgenerate // -------------------------------------------------- // Single Output Pipeline Stage // // This output pipeline stage is enabled if the FIFO's // empty latency is set to 3 (default). It is disabled // for all other allowed latencies. // // Reason: The memory outputs are unregistered, so we have to // register the output or fmax will drop if combinatorial // logic is present on the output datapath. // // Q: The Avalon-ST spec says that I have to register my outputs // But isn't the memory counted as a register? // A: The path from the address lookup to the memory output is // slow. Registering the memory outputs is a good idea. // // The registers get packed into the memory by the fitter // which means minimal resources are consumed (the result // is a altsyncram with registered outputs, available on // all modern Altera devices). // // This output stage acts as an extra slot in the FIFO, // and complicates the fill level. // -------------------------------------------------- generate if (EMPTY_LATENCY == 3) begin : gen_blk15 always @(posedge clk or posedge reset) begin if (reset) begin out_valid <= 0; out_payload <= 0; end else begin if (internal_out_ready) begin out_valid <= internal_out_valid & ok_to_forward; out_payload <= internal_out_payload; end end end end else begin : gen_blk15_else always @* begin out_valid = internal_out_valid; out_payload = internal_out_payload; end end endgenerate // -------------------------------------------------- // Fill Level // // The fill level is calculated from the next write // and read pointers to avoid unnecessary latency // and logic. // // However, if the store-and-forward mode of the FIFO // is enabled, the fill level is an up-down counter // for fmax optimization reasons. // // If the output pipeline is enabled, the fill level // must account for it, or we'll always be off by one. // This may, or may not be important depending on the // application. // // For now, we'll always calculate the exact fill level // at the cost of an extra adder when the output stage // is enabled. // -------------------------------------------------- generate if (USE_FILL_LEVEL) begin : gen_blk16 wire [31:0] depth32; assign depth32 = DEPTH; if (USE_STORE_FORWARD) begin reg [ADDR_WIDTH : 0] curr_packet_len_less_one; // -------------------------------------------------- // We only drop on endofpacket. As long as we don't add to the fill // level on the dropped endofpacket cycle, we can simply subtract // (packet length - 1) from the fill level for dropped packets. // -------------------------------------------------- always @(posedge clk or posedge reset) begin if (reset) begin curr_packet_len_less_one <= 0; end else begin if (write) begin curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1; if (in_endofpacket) curr_packet_len_less_one <= 0; end end end always @(posedge clk or posedge reset) begin if (reset) begin fifo_fill_level <= 0; end else if (drop_on_error) begin fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one; if (read) fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1; end else if (write && !read) begin fifo_fill_level <= fifo_fill_level + 1'b1; end else if (read && !write) begin fifo_fill_level <= fifo_fill_level - 1'b1; end end end else begin always @(posedge clk or posedge reset) begin if (reset) fifo_fill_level <= 0; else if (next_full & !drop_on_error) fifo_fill_level <= depth32[ADDR_WIDTH:0]; else begin fifo_fill_level[ADDR_WIDTH] <= 1'b0; fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr; end end end always @* begin fill_level = fifo_fill_level; if (EMPTY_LATENCY == 3) fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid}; end end else begin : gen_blk16_else always @* begin fill_level = 0; end end endgenerate generate if (USE_ALMOST_FULL_IF) begin : gen_blk17 assign almost_full_data = (fill_level >= almost_full_threshold); end else assign almost_full_data = 0; endgenerate generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18 assign almost_empty_data = (fill_level <= almost_empty_threshold); end else assign almost_empty_data = 0; endgenerate // -------------------------------------------------- // Avalon-MM Status & Control Connection Point // // Register map: // // | Addr | RW | 31 - 0 | // | 0 | R | Fill level | // // The registering of this connection point means // that there is a cycle of latency between // reads/writes and the updating of the fill level. // -------------------------------------------------- generate if (USE_STORE_FORWARD) begin : gen_blk19 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; cut_through_threshold <= 0; drop_on_error_en <= 0; csr_readdata <= 0; pkt_mode <= 1'b1; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 5) csr_readdata <= {31'b0, drop_on_error_en}; else if (csr_address == 4) csr_readdata <= {8'b0, cut_through_threshold}; else if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b101) drop_on_error_en <= csr_writedata[0]; else if(csr_address == 3'b100) begin cut_through_threshold <= csr_writedata[23:0]; pkt_mode <= (csr_writedata[23:0] == 0); end else if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1 assign max_fifo_size = FIFO_DEPTH - 1; always @(posedge clk or posedge reset) begin if (reset) begin almost_full_threshold <= max_fifo_size[23 : 0]; almost_empty_threshold <= 0; csr_readdata <= 0; end else begin if (csr_read) begin csr_readdata <= 32'b0; if (csr_address == 3) csr_readdata <= {8'b0, almost_empty_threshold}; else if (csr_address == 2) csr_readdata <= {8'b0, almost_full_threshold}; else if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end else if (csr_write) begin if(csr_address == 3'b011) almost_empty_threshold <= csr_writedata[23:0]; else if(csr_address == 3'b010) almost_full_threshold <= csr_writedata[23:0]; end end end end else begin : gen_blk19_else2 always @(posedge clk or posedge reset) begin if (reset) begin csr_readdata <= 0; end else if (csr_read) begin csr_readdata <= 0; if (csr_address == 0) csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level}; end end end endgenerate // -------------------------------------------------- // Store and forward logic // -------------------------------------------------- // if the fifo gets full before the entire packet or the // cut-threshold condition is met then start sending out // data in order to avoid dead-lock situation generate if (USE_STORE_FORWARD) begin : gen_blk20 assign wait_for_threshold = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ; assign wait_for_pkt = pkt_cnt_eq_zero | (pkt_cnt_eq_one & out_pkt_leave); assign ok_to_forward = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : ~wait_for_threshold) | fifo_too_small_r; assign in_pkt_eop_arrive = in_valid & in_ready & in_endofpacket; assign in_pkt_start = in_valid & in_ready & in_startofpacket; assign in_pkt_error = in_valid & in_ready & |in_error; assign out_pkt_sop_leave = out_valid & out_ready & out_startofpacket; assign out_pkt_leave = out_valid & out_ready & out_endofpacket; assign fifo_too_small = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready; // count packets coming and going into the fifo always @(posedge clk or posedge reset) begin if (reset) begin pkt_cnt <= 0; pkt_has_started <= 0; sop_has_left_fifo <= 0; fifo_too_small_r <= 0; pkt_cnt_eq_zero <= 1'b1; pkt_cnt_eq_one <= 1'b0; fifo_fill_level_lt_cut_through_threshold <= 1'b1; end else begin fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold; fifo_too_small_r <= fifo_too_small; if( in_pkt_eop_arrive ) sop_has_left_fifo <= 1'b0; else if (out_pkt_sop_leave & pkt_cnt_eq_zero ) sop_has_left_fifo <= 1'b1; if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin pkt_cnt <= pkt_cnt + 1'b1; pkt_cnt_eq_zero <= 0; if (pkt_cnt == 0) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin pkt_cnt <= pkt_cnt - 1'b1; if (pkt_cnt == 1) pkt_cnt_eq_zero <= 1'b1; else pkt_cnt_eq_zero <= 1'b0; if (pkt_cnt == 2) pkt_cnt_eq_one <= 1'b1; else pkt_cnt_eq_one <= 1'b0; end if (in_pkt_start) pkt_has_started <= 1'b1; else if (in_pkt_eop_arrive) pkt_has_started <= 1'b0; end end // drop on error logic always @(posedge clk or posedge reset) begin if (reset) begin sop_ptr <= 0; error_in_pkt <= 0; end else begin // save the location of the SOP if ( in_pkt_start ) sop_ptr <= wr_ptr; // remember if error in pkt // log error only if packet has already started if (in_pkt_eop_arrive) error_in_pkt <= 1'b0; else if ( in_pkt_error & (pkt_has_started | in_pkt_start)) error_in_pkt <= 1'b1; end end assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero); assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr; end else begin : gen_blk20_else assign ok_to_forward = 1'b1; assign drop_on_error = 1'b0; if (ADDR_WIDTH <= 1) assign curr_sop_ptr = 1'b0; else assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }}; end endgenerate // -------------------------------------------------- // Calculates the log2ceil of the input value // -------------------------------------------------- function integer log2ceil; input integer val; reg[31:0] i; begin i = 1; log2ceil = 0; while (i < val) begin log2ceil = log2ceil + 1; i = i[30:0] << 1; end end endfunction endmodule
module axi_protocol_converter_v2_1_r_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1 // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface input wire cmd_valid, input wire cmd_split, output wire cmd_ready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Throttling help signals. wire cmd_ready_i; wire pop_si_data; wire si_stalling; // Internal MI-side control signals. wire M_AXI_RREADY_I; // Internal signals for SI-side. wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID_I; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA_I; wire [2-1:0] S_AXI_RRESP_I; wire S_AXI_RLAST_I; wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER_I; wire S_AXI_RVALID_I; wire S_AXI_RREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // Forward data from MI-Side to SI-Side while a command is available. When // the transaction has completed the command is popped from the Command FIFO. // // ///////////////////////////////////////////////////////////////////////////// // Pop word from SI-side. assign M_AXI_RREADY_I = ~si_stalling & cmd_valid; assign M_AXI_RREADY = M_AXI_RREADY_I; // Indicate when there is data available @ SI-side. assign S_AXI_RVALID_I = M_AXI_RVALID & cmd_valid; // Get SI-side data. assign pop_si_data = S_AXI_RVALID_I & S_AXI_RREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_si_data & M_AXI_RLAST; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign si_stalling = S_AXI_RVALID_I & ~S_AXI_RREADY_I; ///////////////////////////////////////////////////////////////////////////// // Simple AXI signal forwarding: // // USER, ID, DATA and RRESP passes through untouched. // // LAST has to be filtered to remove any intermediate LAST (due to split // trasactions). LAST is only removed for the first parts of a split // transaction. When splitting is unsupported is the LAST filtering completely // completely removed. // ///////////////////////////////////////////////////////////////////////////// // Calculate last, i.e. mask from split transactions. assign S_AXI_RLAST_I = M_AXI_RLAST & ( ~cmd_split | ( C_SUPPORT_SPLITTING == 0 ) ); // Data is passed through. assign S_AXI_RID_I = M_AXI_RID; assign S_AXI_RUSER_I = M_AXI_RUSER; assign S_AXI_RDATA_I = M_AXI_RDATA; assign S_AXI_RRESP_I = M_AXI_RRESP; ///////////////////////////////////////////////////////////////////////////// // SI-side output handling // ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign S_AXI_RREADY_I = S_AXI_RREADY; assign S_AXI_RVALID = S_AXI_RVALID_I; assign S_AXI_RID = S_AXI_RID_I; assign S_AXI_RDATA = S_AXI_RDATA_I; assign S_AXI_RRESP = S_AXI_RRESP_I; assign S_AXI_RLAST = S_AXI_RLAST_I; assign S_AXI_RUSER = S_AXI_RUSER_I; endmodule
module axi_protocol_converter_v2_1_r_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1 // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface input wire cmd_valid, input wire cmd_split, output wire cmd_ready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Throttling help signals. wire cmd_ready_i; wire pop_si_data; wire si_stalling; // Internal MI-side control signals. wire M_AXI_RREADY_I; // Internal signals for SI-side. wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID_I; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA_I; wire [2-1:0] S_AXI_RRESP_I; wire S_AXI_RLAST_I; wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER_I; wire S_AXI_RVALID_I; wire S_AXI_RREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // Forward data from MI-Side to SI-Side while a command is available. When // the transaction has completed the command is popped from the Command FIFO. // // ///////////////////////////////////////////////////////////////////////////// // Pop word from SI-side. assign M_AXI_RREADY_I = ~si_stalling & cmd_valid; assign M_AXI_RREADY = M_AXI_RREADY_I; // Indicate when there is data available @ SI-side. assign S_AXI_RVALID_I = M_AXI_RVALID & cmd_valid; // Get SI-side data. assign pop_si_data = S_AXI_RVALID_I & S_AXI_RREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_si_data & M_AXI_RLAST; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign si_stalling = S_AXI_RVALID_I & ~S_AXI_RREADY_I; ///////////////////////////////////////////////////////////////////////////// // Simple AXI signal forwarding: // // USER, ID, DATA and RRESP passes through untouched. // // LAST has to be filtered to remove any intermediate LAST (due to split // trasactions). LAST is only removed for the first parts of a split // transaction. When splitting is unsupported is the LAST filtering completely // completely removed. // ///////////////////////////////////////////////////////////////////////////// // Calculate last, i.e. mask from split transactions. assign S_AXI_RLAST_I = M_AXI_RLAST & ( ~cmd_split | ( C_SUPPORT_SPLITTING == 0 ) ); // Data is passed through. assign S_AXI_RID_I = M_AXI_RID; assign S_AXI_RUSER_I = M_AXI_RUSER; assign S_AXI_RDATA_I = M_AXI_RDATA; assign S_AXI_RRESP_I = M_AXI_RRESP; ///////////////////////////////////////////////////////////////////////////// // SI-side output handling // ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign S_AXI_RREADY_I = S_AXI_RREADY; assign S_AXI_RVALID = S_AXI_RVALID_I; assign S_AXI_RID = S_AXI_RID_I; assign S_AXI_RDATA = S_AXI_RDATA_I; assign S_AXI_RRESP = S_AXI_RRESP_I; assign S_AXI_RLAST = S_AXI_RLAST_I; assign S_AXI_RUSER = S_AXI_RUSER_I; endmodule
module axi_protocol_converter_v2_1_r_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1 // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface input wire cmd_valid, input wire cmd_split, output wire cmd_ready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Throttling help signals. wire cmd_ready_i; wire pop_si_data; wire si_stalling; // Internal MI-side control signals. wire M_AXI_RREADY_I; // Internal signals for SI-side. wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID_I; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA_I; wire [2-1:0] S_AXI_RRESP_I; wire S_AXI_RLAST_I; wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER_I; wire S_AXI_RVALID_I; wire S_AXI_RREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // Forward data from MI-Side to SI-Side while a command is available. When // the transaction has completed the command is popped from the Command FIFO. // // ///////////////////////////////////////////////////////////////////////////// // Pop word from SI-side. assign M_AXI_RREADY_I = ~si_stalling & cmd_valid; assign M_AXI_RREADY = M_AXI_RREADY_I; // Indicate when there is data available @ SI-side. assign S_AXI_RVALID_I = M_AXI_RVALID & cmd_valid; // Get SI-side data. assign pop_si_data = S_AXI_RVALID_I & S_AXI_RREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_si_data & M_AXI_RLAST; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign si_stalling = S_AXI_RVALID_I & ~S_AXI_RREADY_I; ///////////////////////////////////////////////////////////////////////////// // Simple AXI signal forwarding: // // USER, ID, DATA and RRESP passes through untouched. // // LAST has to be filtered to remove any intermediate LAST (due to split // trasactions). LAST is only removed for the first parts of a split // transaction. When splitting is unsupported is the LAST filtering completely // completely removed. // ///////////////////////////////////////////////////////////////////////////// // Calculate last, i.e. mask from split transactions. assign S_AXI_RLAST_I = M_AXI_RLAST & ( ~cmd_split | ( C_SUPPORT_SPLITTING == 0 ) ); // Data is passed through. assign S_AXI_RID_I = M_AXI_RID; assign S_AXI_RUSER_I = M_AXI_RUSER; assign S_AXI_RDATA_I = M_AXI_RDATA; assign S_AXI_RRESP_I = M_AXI_RRESP; ///////////////////////////////////////////////////////////////////////////// // SI-side output handling // ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign S_AXI_RREADY_I = S_AXI_RREADY; assign S_AXI_RVALID = S_AXI_RVALID_I; assign S_AXI_RID = S_AXI_RID_I; assign S_AXI_RDATA = S_AXI_RDATA_I; assign S_AXI_RRESP = S_AXI_RRESP_I; assign S_AXI_RLAST = S_AXI_RLAST_I; assign S_AXI_RUSER = S_AXI_RUSER_I; endmodule
module axi_protocol_converter_v2_1_r_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1 // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface input wire cmd_valid, input wire cmd_split, output wire cmd_ready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Throttling help signals. wire cmd_ready_i; wire pop_si_data; wire si_stalling; // Internal MI-side control signals. wire M_AXI_RREADY_I; // Internal signals for SI-side. wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID_I; wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA_I; wire [2-1:0] S_AXI_RRESP_I; wire S_AXI_RLAST_I; wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER_I; wire S_AXI_RVALID_I; wire S_AXI_RREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // Forward data from MI-Side to SI-Side while a command is available. When // the transaction has completed the command is popped from the Command FIFO. // // ///////////////////////////////////////////////////////////////////////////// // Pop word from SI-side. assign M_AXI_RREADY_I = ~si_stalling & cmd_valid; assign M_AXI_RREADY = M_AXI_RREADY_I; // Indicate when there is data available @ SI-side. assign S_AXI_RVALID_I = M_AXI_RVALID & cmd_valid; // Get SI-side data. assign pop_si_data = S_AXI_RVALID_I & S_AXI_RREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_si_data & M_AXI_RLAST; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign si_stalling = S_AXI_RVALID_I & ~S_AXI_RREADY_I; ///////////////////////////////////////////////////////////////////////////// // Simple AXI signal forwarding: // // USER, ID, DATA and RRESP passes through untouched. // // LAST has to be filtered to remove any intermediate LAST (due to split // trasactions). LAST is only removed for the first parts of a split // transaction. When splitting is unsupported is the LAST filtering completely // completely removed. // ///////////////////////////////////////////////////////////////////////////// // Calculate last, i.e. mask from split transactions. assign S_AXI_RLAST_I = M_AXI_RLAST & ( ~cmd_split | ( C_SUPPORT_SPLITTING == 0 ) ); // Data is passed through. assign S_AXI_RID_I = M_AXI_RID; assign S_AXI_RUSER_I = M_AXI_RUSER; assign S_AXI_RDATA_I = M_AXI_RDATA; assign S_AXI_RRESP_I = M_AXI_RRESP; ///////////////////////////////////////////////////////////////////////////// // SI-side output handling // ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign S_AXI_RREADY_I = S_AXI_RREADY; assign S_AXI_RVALID = S_AXI_RVALID_I; assign S_AXI_RID = S_AXI_RID_I; assign S_AXI_RDATA = S_AXI_RDATA_I; assign S_AXI_RRESP = S_AXI_RRESP_I; assign S_AXI_RLAST = S_AXI_RLAST_I; assign S_AXI_RUSER = S_AXI_RUSER_I; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module axi_protocol_converter_v2_1_axi_protocol_converter #( parameter C_FAMILY = "virtex6", parameter integer C_M_AXI_PROTOCOL = 0, parameter integer C_S_AXI_PROTOCOL = 0, parameter integer C_IGNORE_ID = 0, // 0 = RID/BID are stored by axilite_conv. // 1 = RID/BID have already been stored in an upstream device, like SASD crossbar. parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, // 1 = Propagate all USER signals, 0 = Don’t propagate. parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_TRANSLATION_MODE = 1 // 0 (Unprotected) = Disable all error checking; master is well-behaved. // 1 (Protection) = Detect SI transaction violations, but perform no splitting. // AXI4 -> AXI3 must be <= 16 beats; AXI4/3 -> AXI4LITE must be single. // 2 (Conversion) = Include transaction splitting logic ) ( // Global Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); localparam P_AXI4 = 32'h0; localparam P_AXI3 = 32'h1; localparam P_AXILITE = 32'h2; localparam P_AXILITE_SIZE = (C_AXI_DATA_WIDTH == 32) ? 3'b010 : 3'b011; localparam P_INCR = 2'b01; localparam P_DECERR = 2'b11; localparam P_SLVERR = 2'b10; localparam integer P_PROTECTION = 1; localparam integer P_CONVERSION = 2; wire s_awvalid_i; wire s_arvalid_i; wire s_wvalid_i ; wire s_bready_i ; wire s_rready_i ; wire s_awready_i; wire s_wready_i; wire s_bvalid_i; wire [C_AXI_ID_WIDTH-1:0] s_bid_i; wire [1:0] s_bresp_i; wire [C_AXI_BUSER_WIDTH-1:0] s_buser_i; wire s_arready_i; wire s_rvalid_i; wire [C_AXI_ID_WIDTH-1:0] s_rid_i; wire [1:0] s_rresp_i; wire [C_AXI_RUSER_WIDTH-1:0] s_ruser_i; wire [C_AXI_DATA_WIDTH-1:0] s_rdata_i; wire s_rlast_i; generate if ((C_M_AXI_PROTOCOL == P_AXILITE) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite assign m_axi_awid = 0; assign m_axi_awlen = 0; assign m_axi_awsize = P_AXILITE_SIZE; assign m_axi_awburst = P_INCR; assign m_axi_awlock = 0; assign m_axi_awcache = 0; assign m_axi_awregion = 0; assign m_axi_awqos = 0; assign m_axi_awuser = 0; assign m_axi_wid = 0; assign m_axi_wlast = 1'b1; assign m_axi_wuser = 0; assign m_axi_arid = 0; assign m_axi_arlen = 0; assign m_axi_arsize = P_AXILITE_SIZE; assign m_axi_arburst = P_INCR; assign m_axi_arlock = 0; assign m_axi_arcache = 0; assign m_axi_arregion = 0; assign m_axi_arqos = 0; assign m_axi_aruser = 0; if (((C_IGNORE_ID == 1) && (C_TRANSLATION_MODE != P_CONVERSION)) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite_passthru assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awprot = s_axi_awprot; assign m_axi_awvalid = s_awvalid_i; assign s_awready_i = m_axi_awready; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wvalid = s_wvalid_i; assign s_wready_i = m_axi_wready; assign s_bid_i = 0; assign s_bresp_i = m_axi_bresp; assign s_buser_i = 0; assign s_bvalid_i = m_axi_bvalid; assign m_axi_bready = s_bready_i; assign m_axi_araddr = s_axi_araddr; assign m_axi_arprot = s_axi_arprot; assign m_axi_arvalid = s_arvalid_i; assign s_arready_i = m_axi_arready; assign s_rid_i = 0; assign s_rdata_i = m_axi_rdata; assign s_rresp_i = m_axi_rresp; assign s_rlast_i = 1'b1; assign s_ruser_i = 0; assign s_rvalid_i = m_axi_rvalid; assign m_axi_rready = s_rready_i; end else if (C_TRANSLATION_MODE == P_CONVERSION) begin : gen_b2s_conv assign s_buser_i = {C_AXI_BUSER_WIDTH{1'b0}}; assign s_ruser_i = {C_AXI_RUSER_WIDTH{1'b0}}; axi_protocol_converter_v2_1_b2s #( .C_S_AXI_PROTOCOL (C_S_AXI_PROTOCOL), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE), .C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ) ) axilite_b2s ( .aresetn (aresetn), .aclk (aclk), .s_axi_awid (s_axi_awid), .s_axi_awaddr (s_axi_awaddr), .s_axi_awlen (s_axi_awlen), .s_axi_awsize (s_axi_awsize), .s_axi_awburst (s_axi_awburst), .s_axi_awprot (s_axi_awprot), .s_axi_awvalid (s_awvalid_i), .s_axi_awready (s_awready_i), .s_axi_wdata (s_axi_wdata), .s_axi_wstrb (s_axi_wstrb), .s_axi_wlast (s_axi_wlast), .s_axi_wvalid (s_wvalid_i), .s_axi_wready (s_wready_i), .s_axi_bid (s_bid_i), .s_axi_bresp (s_bresp_i), .s_axi_bvalid (s_bvalid_i), .s_axi_bready (s_bready_i), .s_axi_arid (s_axi_arid), .s_axi_araddr (s_axi_araddr), .s_axi_arlen (s_axi_arlen), .s_axi_arsize (s_axi_arsize), .s_axi_arburst (s_axi_arburst), .s_axi_arprot (s_axi_arprot), .s_axi_arvalid (s_arvalid_i), .s_axi_arready (s_arready_i), .s_axi_rid (s_rid_i), .s_axi_rdata (s_rdata_i), .s_axi_rresp (s_rresp_i), .s_axi_rlast (s_rlast_i), .s_axi_rvalid (s_rvalid_i), .s_axi_rready (s_rready_i), .m_axi_awaddr (m_axi_awaddr), .m_axi_awprot (m_axi_awprot), .m_axi_awvalid (m_axi_awvalid), .m_axi_awready (m_axi_awready), .m_axi_wdata (m_axi_wdata), .m_axi_wstrb (m_axi_wstrb), .m_axi_wvalid (m_axi_wvalid), .m_axi_wready (m_axi_wready), .m_axi_bresp (m_axi_bresp), .m_axi_bvalid (m_axi_bvalid), .m_axi_bready (m_axi_bready), .m_axi_araddr (m_axi_araddr), .m_axi_arprot (m_axi_arprot), .m_axi_arvalid (m_axi_arvalid), .m_axi_arready (m_axi_arready), .m_axi_rdata (m_axi_rdata), .m_axi_rresp (m_axi_rresp), .m_axi_rvalid (m_axi_rvalid), .m_axi_rready (m_axi_rready) ); end else begin : gen_axilite_conv axi_protocol_converter_v2_1_axilite_conv #( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE), .C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH) ) axilite_conv_inst ( .ARESETN (aresetn), .ACLK (aclk), .S_AXI_AWID (s_axi_awid), .S_AXI_AWADDR (s_axi_awaddr), .S_AXI_AWPROT (s_axi_awprot), .S_AXI_AWVALID (s_awvalid_i), .S_AXI_AWREADY (s_awready_i), .S_AXI_WDATA (s_axi_wdata), .S_AXI_WSTRB (s_axi_wstrb), .S_AXI_WVALID (s_wvalid_i), .S_AXI_WREADY (s_wready_i), .S_AXI_BID (s_bid_i), .S_AXI_BRESP (s_bresp_i), .S_AXI_BUSER (s_buser_i), .S_AXI_BVALID (s_bvalid_i), .S_AXI_BREADY (s_bready_i), .S_AXI_ARID (s_axi_arid), .S_AXI_ARADDR (s_axi_araddr), .S_AXI_ARPROT (s_axi_arprot), .S_AXI_ARVALID (s_arvalid_i), .S_AXI_ARREADY (s_arready_i), .S_AXI_RID (s_rid_i), .S_AXI_RDATA (s_rdata_i), .S_AXI_RRESP (s_rresp_i), .S_AXI_RLAST (s_rlast_i), .S_AXI_RUSER (s_ruser_i), .S_AXI_RVALID (s_rvalid_i), .S_AXI_RREADY (s_rready_i), .M_AXI_AWADDR (m_axi_awaddr), .M_AXI_AWPROT (m_axi_awprot), .M_AXI_AWVALID (m_axi_awvalid), .M_AXI_AWREADY (m_axi_awready), .M_AXI_WDATA (m_axi_wdata), .M_AXI_WSTRB (m_axi_wstrb), .M_AXI_WVALID (m_axi_wvalid), .M_AXI_WREADY (m_axi_wready), .M_AXI_BRESP (m_axi_bresp), .M_AXI_BVALID (m_axi_bvalid), .M_AXI_BREADY (m_axi_bready), .M_AXI_ARADDR (m_axi_araddr), .M_AXI_ARPROT (m_axi_arprot), .M_AXI_ARVALID (m_axi_arvalid), .M_AXI_ARREADY (m_axi_arready), .M_AXI_RDATA (m_axi_rdata), .M_AXI_RRESP (m_axi_rresp), .M_AXI_RVALID (m_axi_rvalid), .M_AXI_RREADY (m_axi_rready) ); end end else if ((C_M_AXI_PROTOCOL == P_AXI3) && (C_S_AXI_PROTOCOL == P_AXI4)) begin : gen_axi4_axi3 axi_protocol_converter_v2_1_axi3_conv #( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH), .C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH), .C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH), .C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE), .C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ), .C_SUPPORT_SPLITTING ((C_TRANSLATION_MODE == P_CONVERSION) ? 1 : 0) ) axi3_conv_inst ( .ARESETN (aresetn), .ACLK (aclk), .S_AXI_AWID (s_axi_awid), .S_AXI_AWADDR (s_axi_awaddr), .S_AXI_AWLEN (s_axi_awlen), .S_AXI_AWSIZE (s_axi_awsize), .S_AXI_AWBURST (s_axi_awburst), .S_AXI_AWLOCK (s_axi_awlock), .S_AXI_AWCACHE (s_axi_awcache), .S_AXI_AWPROT (s_axi_awprot), .S_AXI_AWQOS (s_axi_awqos), .S_AXI_AWUSER (s_axi_awuser), .S_AXI_AWVALID (s_awvalid_i), .S_AXI_AWREADY (s_awready_i), .S_AXI_WDATA (s_axi_wdata), .S_AXI_WSTRB (s_axi_wstrb), .S_AXI_WLAST (s_axi_wlast), .S_AXI_WUSER (s_axi_wuser), .S_AXI_WVALID (s_wvalid_i), .S_AXI_WREADY (s_wready_i), .S_AXI_BID (s_bid_i), .S_AXI_BRESP (s_bresp_i), .S_AXI_BUSER (s_buser_i), .S_AXI_BVALID (s_bvalid_i), .S_AXI_BREADY (s_bready_i), .S_AXI_ARID (s_axi_arid), .S_AXI_ARADDR (s_axi_araddr), .S_AXI_ARLEN (s_axi_arlen), .S_AXI_ARSIZE (s_axi_arsize), .S_AXI_ARBURST (s_axi_arburst), .S_AXI_ARLOCK (s_axi_arlock), .S_AXI_ARCACHE (s_axi_arcache), .S_AXI_ARPROT (s_axi_arprot), .S_AXI_ARQOS (s_axi_arqos), .S_AXI_ARUSER (s_axi_aruser), .S_AXI_ARVALID (s_arvalid_i), .S_AXI_ARREADY (s_arready_i), .S_AXI_RID (s_rid_i), .S_AXI_RDATA (s_rdata_i), .S_AXI_RRESP (s_rresp_i), .S_AXI_RLAST (s_rlast_i), .S_AXI_RUSER (s_ruser_i), .S_AXI_RVALID (s_rvalid_i), .S_AXI_RREADY (s_rready_i), .M_AXI_AWID (m_axi_awid), .M_AXI_AWADDR (m_axi_awaddr), .M_AXI_AWLEN (m_axi_awlen), .M_AXI_AWSIZE (m_axi_awsize), .M_AXI_AWBURST (m_axi_awburst), .M_AXI_AWLOCK (m_axi_awlock), .M_AXI_AWCACHE (m_axi_awcache), .M_AXI_AWPROT (m_axi_awprot), .M_AXI_AWQOS (m_axi_awqos), .M_AXI_AWUSER (m_axi_awuser), .M_AXI_AWVALID (m_axi_awvalid), .M_AXI_AWREADY (m_axi_awready), .M_AXI_WID (m_axi_wid), .M_AXI_WDATA (m_axi_wdata), .M_AXI_WSTRB (m_axi_wstrb), .M_AXI_WLAST (m_axi_wlast), .M_AXI_WUSER (m_axi_wuser), .M_AXI_WVALID (m_axi_wvalid), .M_AXI_WREADY (m_axi_wready), .M_AXI_BID (m_axi_bid), .M_AXI_BRESP (m_axi_bresp), .M_AXI_BUSER (m_axi_buser), .M_AXI_BVALID (m_axi_bvalid), .M_AXI_BREADY (m_axi_bready), .M_AXI_ARID (m_axi_arid), .M_AXI_ARADDR (m_axi_araddr), .M_AXI_ARLEN (m_axi_arlen), .M_AXI_ARSIZE (m_axi_arsize), .M_AXI_ARBURST (m_axi_arburst), .M_AXI_ARLOCK (m_axi_arlock), .M_AXI_ARCACHE (m_axi_arcache), .M_AXI_ARPROT (m_axi_arprot), .M_AXI_ARQOS (m_axi_arqos), .M_AXI_ARUSER (m_axi_aruser), .M_AXI_ARVALID (m_axi_arvalid), .M_AXI_ARREADY (m_axi_arready), .M_AXI_RID (m_axi_rid), .M_AXI_RDATA (m_axi_rdata), .M_AXI_RRESP (m_axi_rresp), .M_AXI_RLAST (m_axi_rlast), .M_AXI_RUSER (m_axi_ruser), .M_AXI_RVALID (m_axi_rvalid), .M_AXI_RREADY (m_axi_rready) ); assign m_axi_awregion = 0; assign m_axi_arregion = 0; end else if ((C_S_AXI_PROTOCOL == P_AXI3) && (C_M_AXI_PROTOCOL == P_AXI4)) begin : gen_axi3_axi4 assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = {4'h0, s_axi_awlen[3:0]}; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock[0]; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = 4'h0; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_awvalid_i; assign s_awready_i = m_axi_awready; assign m_axi_wid = {C_AXI_ID_WIDTH{1'b0}} ; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_wvalid_i; assign s_wready_i = m_axi_wready; assign s_bid_i = m_axi_bid; assign s_bresp_i = m_axi_bresp; assign s_buser_i = m_axi_buser; assign s_bvalid_i = m_axi_bvalid; assign m_axi_bready = s_bready_i; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = {4'h0, s_axi_arlen[3:0]}; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock[0]; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = 4'h0; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_arvalid_i; assign s_arready_i = m_axi_arready; assign s_rid_i = m_axi_rid; assign s_rdata_i = m_axi_rdata; assign s_rresp_i = m_axi_rresp; assign s_rlast_i = m_axi_rlast; assign s_ruser_i = m_axi_ruser; assign s_rvalid_i = m_axi_rvalid; assign m_axi_rready = s_rready_i; end else begin :gen_no_conv assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = s_axi_awlen; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = s_axi_awregion; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_awvalid_i; assign s_awready_i = m_axi_awready; assign m_axi_wid = s_axi_wid; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_wvalid_i; assign s_wready_i = m_axi_wready; assign s_bid_i = m_axi_bid; assign s_bresp_i = m_axi_bresp; assign s_buser_i = m_axi_buser; assign s_bvalid_i = m_axi_bvalid; assign m_axi_bready = s_bready_i; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = s_axi_arlen; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = s_axi_arregion; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_arvalid_i; assign s_arready_i = m_axi_arready; assign s_rid_i = m_axi_rid; assign s_rdata_i = m_axi_rdata; assign s_rresp_i = m_axi_rresp; assign s_rlast_i = m_axi_rlast; assign s_ruser_i = m_axi_ruser; assign s_rvalid_i = m_axi_rvalid; assign m_axi_rready = s_rready_i; end if ((C_TRANSLATION_MODE == P_PROTECTION) && (((C_S_AXI_PROTOCOL != P_AXILITE) && (C_M_AXI_PROTOCOL == P_AXILITE)) || ((C_S_AXI_PROTOCOL == P_AXI4) && (C_M_AXI_PROTOCOL == P_AXI3)))) begin : gen_err_detect wire e_awvalid; reg e_awvalid_r; wire e_arvalid; reg e_arvalid_r; wire e_wvalid; wire e_bvalid; wire e_rvalid; reg e_awready; reg e_arready; wire e_wready; reg [C_AXI_ID_WIDTH-1:0] e_awid; reg [C_AXI_ID_WIDTH-1:0] e_arid; reg [8-1:0] e_arlen; wire [C_AXI_ID_WIDTH-1:0] e_bid; wire [C_AXI_ID_WIDTH-1:0] e_rid; wire e_rlast; wire w_err; wire r_err; wire busy_aw; wire busy_w; wire busy_ar; wire aw_push; wire aw_pop; wire w_pop; wire ar_push; wire ar_pop; reg s_awvalid_pending; reg s_awvalid_en; reg s_arvalid_en; reg s_awready_en; reg s_arready_en; reg [4:0] aw_cnt; reg [4:0] ar_cnt; reg [4:0] w_cnt; reg w_borrow; reg err_busy_w; reg err_busy_r; assign w_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_awlen != 0) : ((s_axi_awlen>>4) != 0); assign r_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_arlen != 0) : ((s_axi_arlen>>4) != 0); assign s_awvalid_i = s_axi_awvalid & s_awvalid_en & ~w_err; assign e_awvalid = e_awvalid_r & ~busy_aw & ~busy_w; assign s_arvalid_i = s_axi_arvalid & s_arvalid_en & ~r_err; assign e_arvalid = e_arvalid_r & ~busy_ar ; assign s_wvalid_i = s_axi_wvalid & (busy_w | (s_awvalid_pending & ~w_borrow)); assign e_wvalid = s_axi_wvalid & err_busy_w; assign s_bready_i = s_axi_bready & busy_aw; assign s_rready_i = s_axi_rready & busy_ar; assign s_axi_awready = (s_awready_i & s_awready_en) | e_awready; assign s_axi_wready = (s_wready_i & (busy_w | (s_awvalid_pending & ~w_borrow))) | e_wready; assign s_axi_bvalid = (s_bvalid_i & busy_aw) | e_bvalid; assign s_axi_bid = err_busy_w ? e_bid : s_bid_i; assign s_axi_bresp = err_busy_w ? P_SLVERR : s_bresp_i; assign s_axi_buser = err_busy_w ? {C_AXI_BUSER_WIDTH{1'b0}} : s_buser_i; assign s_axi_arready = (s_arready_i & s_arready_en) | e_arready; assign s_axi_rvalid = (s_rvalid_i & busy_ar) | e_rvalid; assign s_axi_rid = err_busy_r ? e_rid : s_rid_i; assign s_axi_rresp = err_busy_r ? P_SLVERR : s_rresp_i; assign s_axi_ruser = err_busy_r ? {C_AXI_RUSER_WIDTH{1'b0}} : s_ruser_i; assign s_axi_rdata = err_busy_r ? {C_AXI_DATA_WIDTH{1'b0}} : s_rdata_i; assign s_axi_rlast = err_busy_r ? e_rlast : s_rlast_i; assign busy_aw = (aw_cnt != 0); assign busy_w = (w_cnt != 0); assign busy_ar = (ar_cnt != 0); assign aw_push = s_awvalid_i & s_awready_i & s_awready_en; assign aw_pop = s_bvalid_i & s_bready_i; assign w_pop = s_wvalid_i & s_wready_i & s_axi_wlast; assign ar_push = s_arvalid_i & s_arready_i & s_arready_en; assign ar_pop = s_rvalid_i & s_rready_i & s_rlast_i; always @(posedge aclk) begin if (~aresetn) begin s_awvalid_en <= 1'b0; s_arvalid_en <= 1'b0; s_awready_en <= 1'b0; s_arready_en <= 1'b0; e_awvalid_r <= 1'b0; e_arvalid_r <= 1'b0; e_awready <= 1'b0; e_arready <= 1'b0; aw_cnt <= 0; w_cnt <= 0; ar_cnt <= 0; err_busy_w <= 1'b0; err_busy_r <= 1'b0; w_borrow <= 1'b0; s_awvalid_pending <= 1'b0; end else begin e_awready <= 1'b0; // One-cycle pulse if (e_bvalid & s_axi_bready) begin s_awvalid_en <= 1'b1; s_awready_en <= 1'b1; err_busy_w <= 1'b0; end else if (e_awvalid) begin e_awvalid_r <= 1'b0; err_busy_w <= 1'b1; end else if (s_axi_awvalid & w_err & ~e_awvalid_r & ~err_busy_w) begin e_awvalid_r <= 1'b1; e_awready <= ~(s_awready_i & s_awvalid_en); // 1-cycle pulse if awready not already asserted s_awvalid_en <= 1'b0; s_awready_en <= 1'b0; end else if ((&aw_cnt) | (&w_cnt) | aw_push) begin s_awvalid_en <= 1'b0; s_awready_en <= 1'b0; end else if (~err_busy_w & ~e_awvalid_r & ~(s_axi_awvalid & w_err)) begin s_awvalid_en <= 1'b1; s_awready_en <= 1'b1; end if (aw_push & ~aw_pop) begin aw_cnt <= aw_cnt + 1; end else if (~aw_push & aw_pop & (|aw_cnt)) begin aw_cnt <= aw_cnt - 1; end if (aw_push) begin if (~w_pop & ~w_borrow) begin w_cnt <= w_cnt + 1; end w_borrow <= 1'b0; end else if (~aw_push & w_pop) begin if (|w_cnt) begin w_cnt <= w_cnt - 1; end else begin w_borrow <= 1'b1; end end s_awvalid_pending <= s_awvalid_i & ~s_awready_i; e_arready <= 1'b0; // One-cycle pulse if (e_rvalid & s_axi_rready & e_rlast) begin s_arvalid_en <= 1'b1; s_arready_en <= 1'b1; err_busy_r <= 1'b0; end else if (e_arvalid) begin e_arvalid_r <= 1'b0; err_busy_r <= 1'b1; end else if (s_axi_arvalid & r_err & ~e_arvalid_r & ~err_busy_r) begin e_arvalid_r <= 1'b1; e_arready <= ~(s_arready_i & s_arvalid_en); // 1-cycle pulse if arready not already asserted s_arvalid_en <= 1'b0; s_arready_en <= 1'b0; end else if ((&ar_cnt) | ar_push) begin s_arvalid_en <= 1'b0; s_arready_en <= 1'b0; end else if (~err_busy_r & ~e_arvalid_r & ~(s_axi_arvalid & r_err)) begin s_arvalid_en <= 1'b1; s_arready_en <= 1'b1; end if (ar_push & ~ar_pop) begin ar_cnt <= ar_cnt + 1; end else if (~ar_push & ar_pop & (|ar_cnt)) begin ar_cnt <= ar_cnt - 1; end end end always @(posedge aclk) begin if (s_axi_awvalid & ~err_busy_w & ~e_awvalid_r ) begin e_awid <= s_axi_awid; end if (s_axi_arvalid & ~err_busy_r & ~e_arvalid_r ) begin e_arid <= s_axi_arid; e_arlen <= s_axi_arlen; end end axi_protocol_converter_v2_1_decerr_slave # ( .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH), .C_AXI_PROTOCOL (C_S_AXI_PROTOCOL), .C_RESP (P_SLVERR), .C_IGNORE_ID (C_IGNORE_ID) ) decerr_slave_inst ( .ACLK (aclk), .ARESETN (aresetn), .S_AXI_AWID (e_awid), .S_AXI_AWVALID (e_awvalid), .S_AXI_AWREADY (), .S_AXI_WLAST (s_axi_wlast), .S_AXI_WVALID (e_wvalid), .S_AXI_WREADY (e_wready), .S_AXI_BID (e_bid), .S_AXI_BRESP (), .S_AXI_BUSER (), .S_AXI_BVALID (e_bvalid), .S_AXI_BREADY (s_axi_bready), .S_AXI_ARID (e_arid), .S_AXI_ARLEN (e_arlen), .S_AXI_ARVALID (e_arvalid), .S_AXI_ARREADY (), .S_AXI_RID (e_rid), .S_AXI_RDATA (), .S_AXI_RRESP (), .S_AXI_RUSER (), .S_AXI_RLAST (e_rlast), .S_AXI_RVALID (e_rvalid), .S_AXI_RREADY (s_axi_rready) ); end else begin : gen_no_err_detect assign s_awvalid_i = s_axi_awvalid; assign s_arvalid_i = s_axi_arvalid; assign s_wvalid_i = s_axi_wvalid; assign s_bready_i = s_axi_bready; assign s_rready_i = s_axi_rready; assign s_axi_awready = s_awready_i; assign s_axi_wready = s_wready_i; assign s_axi_bvalid = s_bvalid_i; assign s_axi_bid = s_bid_i; assign s_axi_bresp = s_bresp_i; assign s_axi_buser = s_buser_i; assign s_axi_arready = s_arready_i; assign s_axi_rvalid = s_rvalid_i; assign s_axi_rid = s_rid_i; assign s_axi_rresp = s_rresp_i; assign s_axi_ruser = s_ruser_i; assign s_axi_rdata = s_rdata_i; assign s_axi_rlast = s_rlast_i; end // gen_err_detect endgenerate endmodule
module axi_protocol_converter_v2_1_axi_protocol_converter #( parameter C_FAMILY = "virtex6", parameter integer C_M_AXI_PROTOCOL = 0, parameter integer C_S_AXI_PROTOCOL = 0, parameter integer C_IGNORE_ID = 0, // 0 = RID/BID are stored by axilite_conv. // 1 = RID/BID have already been stored in an upstream device, like SASD crossbar. parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, // 1 = Propagate all USER signals, 0 = Don’t propagate. parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_TRANSLATION_MODE = 1 // 0 (Unprotected) = Disable all error checking; master is well-behaved. // 1 (Protection) = Detect SI transaction violations, but perform no splitting. // AXI4 -> AXI3 must be <= 16 beats; AXI4/3 -> AXI4LITE must be single. // 2 (Conversion) = Include transaction splitting logic ) ( // Global Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); localparam P_AXI4 = 32'h0; localparam P_AXI3 = 32'h1; localparam P_AXILITE = 32'h2; localparam P_AXILITE_SIZE = (C_AXI_DATA_WIDTH == 32) ? 3'b010 : 3'b011; localparam P_INCR = 2'b01; localparam P_DECERR = 2'b11; localparam P_SLVERR = 2'b10; localparam integer P_PROTECTION = 1; localparam integer P_CONVERSION = 2; wire s_awvalid_i; wire s_arvalid_i; wire s_wvalid_i ; wire s_bready_i ; wire s_rready_i ; wire s_awready_i; wire s_wready_i; wire s_bvalid_i; wire [C_AXI_ID_WIDTH-1:0] s_bid_i; wire [1:0] s_bresp_i; wire [C_AXI_BUSER_WIDTH-1:0] s_buser_i; wire s_arready_i; wire s_rvalid_i; wire [C_AXI_ID_WIDTH-1:0] s_rid_i; wire [1:0] s_rresp_i; wire [C_AXI_RUSER_WIDTH-1:0] s_ruser_i; wire [C_AXI_DATA_WIDTH-1:0] s_rdata_i; wire s_rlast_i; generate if ((C_M_AXI_PROTOCOL == P_AXILITE) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite assign m_axi_awid = 0; assign m_axi_awlen = 0; assign m_axi_awsize = P_AXILITE_SIZE; assign m_axi_awburst = P_INCR; assign m_axi_awlock = 0; assign m_axi_awcache = 0; assign m_axi_awregion = 0; assign m_axi_awqos = 0; assign m_axi_awuser = 0; assign m_axi_wid = 0; assign m_axi_wlast = 1'b1; assign m_axi_wuser = 0; assign m_axi_arid = 0; assign m_axi_arlen = 0; assign m_axi_arsize = P_AXILITE_SIZE; assign m_axi_arburst = P_INCR; assign m_axi_arlock = 0; assign m_axi_arcache = 0; assign m_axi_arregion = 0; assign m_axi_arqos = 0; assign m_axi_aruser = 0; if (((C_IGNORE_ID == 1) && (C_TRANSLATION_MODE != P_CONVERSION)) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite_passthru assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awprot = s_axi_awprot; assign m_axi_awvalid = s_awvalid_i; assign s_awready_i = m_axi_awready; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wvalid = s_wvalid_i; assign s_wready_i = m_axi_wready; assign s_bid_i = 0; assign s_bresp_i = m_axi_bresp; assign s_buser_i = 0; assign s_bvalid_i = m_axi_bvalid; assign m_axi_bready = s_bready_i; assign m_axi_araddr = s_axi_araddr; assign m_axi_arprot = s_axi_arprot; assign m_axi_arvalid = s_arvalid_i; assign s_arready_i = m_axi_arready; assign s_rid_i = 0; assign s_rdata_i = m_axi_rdata; assign s_rresp_i = m_axi_rresp; assign s_rlast_i = 1'b1; assign s_ruser_i = 0; assign s_rvalid_i = m_axi_rvalid; assign m_axi_rready = s_rready_i; end else if (C_TRANSLATION_MODE == P_CONVERSION) begin : gen_b2s_conv assign s_buser_i = {C_AXI_BUSER_WIDTH{1'b0}}; assign s_ruser_i = {C_AXI_RUSER_WIDTH{1'b0}}; axi_protocol_converter_v2_1_b2s #( .C_S_AXI_PROTOCOL (C_S_AXI_PROTOCOL), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE), .C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ) ) axilite_b2s ( .aresetn (aresetn), .aclk (aclk), .s_axi_awid (s_axi_awid), .s_axi_awaddr (s_axi_awaddr), .s_axi_awlen (s_axi_awlen), .s_axi_awsize (s_axi_awsize), .s_axi_awburst (s_axi_awburst), .s_axi_awprot (s_axi_awprot), .s_axi_awvalid (s_awvalid_i), .s_axi_awready (s_awready_i), .s_axi_wdata (s_axi_wdata), .s_axi_wstrb (s_axi_wstrb), .s_axi_wlast (s_axi_wlast), .s_axi_wvalid (s_wvalid_i), .s_axi_wready (s_wready_i), .s_axi_bid (s_bid_i), .s_axi_bresp (s_bresp_i), .s_axi_bvalid (s_bvalid_i), .s_axi_bready (s_bready_i), .s_axi_arid (s_axi_arid), .s_axi_araddr (s_axi_araddr), .s_axi_arlen (s_axi_arlen), .s_axi_arsize (s_axi_arsize), .s_axi_arburst (s_axi_arburst), .s_axi_arprot (s_axi_arprot), .s_axi_arvalid (s_arvalid_i), .s_axi_arready (s_arready_i), .s_axi_rid (s_rid_i), .s_axi_rdata (s_rdata_i), .s_axi_rresp (s_rresp_i), .s_axi_rlast (s_rlast_i), .s_axi_rvalid (s_rvalid_i), .s_axi_rready (s_rready_i), .m_axi_awaddr (m_axi_awaddr), .m_axi_awprot (m_axi_awprot), .m_axi_awvalid (m_axi_awvalid), .m_axi_awready (m_axi_awready), .m_axi_wdata (m_axi_wdata), .m_axi_wstrb (m_axi_wstrb), .m_axi_wvalid (m_axi_wvalid), .m_axi_wready (m_axi_wready), .m_axi_bresp (m_axi_bresp), .m_axi_bvalid (m_axi_bvalid), .m_axi_bready (m_axi_bready), .m_axi_araddr (m_axi_araddr), .m_axi_arprot (m_axi_arprot), .m_axi_arvalid (m_axi_arvalid), .m_axi_arready (m_axi_arready), .m_axi_rdata (m_axi_rdata), .m_axi_rresp (m_axi_rresp), .m_axi_rvalid (m_axi_rvalid), .m_axi_rready (m_axi_rready) ); end else begin : gen_axilite_conv axi_protocol_converter_v2_1_axilite_conv #( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE), .C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH) ) axilite_conv_inst ( .ARESETN (aresetn), .ACLK (aclk), .S_AXI_AWID (s_axi_awid), .S_AXI_AWADDR (s_axi_awaddr), .S_AXI_AWPROT (s_axi_awprot), .S_AXI_AWVALID (s_awvalid_i), .S_AXI_AWREADY (s_awready_i), .S_AXI_WDATA (s_axi_wdata), .S_AXI_WSTRB (s_axi_wstrb), .S_AXI_WVALID (s_wvalid_i), .S_AXI_WREADY (s_wready_i), .S_AXI_BID (s_bid_i), .S_AXI_BRESP (s_bresp_i), .S_AXI_BUSER (s_buser_i), .S_AXI_BVALID (s_bvalid_i), .S_AXI_BREADY (s_bready_i), .S_AXI_ARID (s_axi_arid), .S_AXI_ARADDR (s_axi_araddr), .S_AXI_ARPROT (s_axi_arprot), .S_AXI_ARVALID (s_arvalid_i), .S_AXI_ARREADY (s_arready_i), .S_AXI_RID (s_rid_i), .S_AXI_RDATA (s_rdata_i), .S_AXI_RRESP (s_rresp_i), .S_AXI_RLAST (s_rlast_i), .S_AXI_RUSER (s_ruser_i), .S_AXI_RVALID (s_rvalid_i), .S_AXI_RREADY (s_rready_i), .M_AXI_AWADDR (m_axi_awaddr), .M_AXI_AWPROT (m_axi_awprot), .M_AXI_AWVALID (m_axi_awvalid), .M_AXI_AWREADY (m_axi_awready), .M_AXI_WDATA (m_axi_wdata), .M_AXI_WSTRB (m_axi_wstrb), .M_AXI_WVALID (m_axi_wvalid), .M_AXI_WREADY (m_axi_wready), .M_AXI_BRESP (m_axi_bresp), .M_AXI_BVALID (m_axi_bvalid), .M_AXI_BREADY (m_axi_bready), .M_AXI_ARADDR (m_axi_araddr), .M_AXI_ARPROT (m_axi_arprot), .M_AXI_ARVALID (m_axi_arvalid), .M_AXI_ARREADY (m_axi_arready), .M_AXI_RDATA (m_axi_rdata), .M_AXI_RRESP (m_axi_rresp), .M_AXI_RVALID (m_axi_rvalid), .M_AXI_RREADY (m_axi_rready) ); end end else if ((C_M_AXI_PROTOCOL == P_AXI3) && (C_S_AXI_PROTOCOL == P_AXI4)) begin : gen_axi4_axi3 axi_protocol_converter_v2_1_axi3_conv #( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH), .C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH), .C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH), .C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE), .C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ), .C_SUPPORT_SPLITTING ((C_TRANSLATION_MODE == P_CONVERSION) ? 1 : 0) ) axi3_conv_inst ( .ARESETN (aresetn), .ACLK (aclk), .S_AXI_AWID (s_axi_awid), .S_AXI_AWADDR (s_axi_awaddr), .S_AXI_AWLEN (s_axi_awlen), .S_AXI_AWSIZE (s_axi_awsize), .S_AXI_AWBURST (s_axi_awburst), .S_AXI_AWLOCK (s_axi_awlock), .S_AXI_AWCACHE (s_axi_awcache), .S_AXI_AWPROT (s_axi_awprot), .S_AXI_AWQOS (s_axi_awqos), .S_AXI_AWUSER (s_axi_awuser), .S_AXI_AWVALID (s_awvalid_i), .S_AXI_AWREADY (s_awready_i), .S_AXI_WDATA (s_axi_wdata), .S_AXI_WSTRB (s_axi_wstrb), .S_AXI_WLAST (s_axi_wlast), .S_AXI_WUSER (s_axi_wuser), .S_AXI_WVALID (s_wvalid_i), .S_AXI_WREADY (s_wready_i), .S_AXI_BID (s_bid_i), .S_AXI_BRESP (s_bresp_i), .S_AXI_BUSER (s_buser_i), .S_AXI_BVALID (s_bvalid_i), .S_AXI_BREADY (s_bready_i), .S_AXI_ARID (s_axi_arid), .S_AXI_ARADDR (s_axi_araddr), .S_AXI_ARLEN (s_axi_arlen), .S_AXI_ARSIZE (s_axi_arsize), .S_AXI_ARBURST (s_axi_arburst), .S_AXI_ARLOCK (s_axi_arlock), .S_AXI_ARCACHE (s_axi_arcache), .S_AXI_ARPROT (s_axi_arprot), .S_AXI_ARQOS (s_axi_arqos), .S_AXI_ARUSER (s_axi_aruser), .S_AXI_ARVALID (s_arvalid_i), .S_AXI_ARREADY (s_arready_i), .S_AXI_RID (s_rid_i), .S_AXI_RDATA (s_rdata_i), .S_AXI_RRESP (s_rresp_i), .S_AXI_RLAST (s_rlast_i), .S_AXI_RUSER (s_ruser_i), .S_AXI_RVALID (s_rvalid_i), .S_AXI_RREADY (s_rready_i), .M_AXI_AWID (m_axi_awid), .M_AXI_AWADDR (m_axi_awaddr), .M_AXI_AWLEN (m_axi_awlen), .M_AXI_AWSIZE (m_axi_awsize), .M_AXI_AWBURST (m_axi_awburst), .M_AXI_AWLOCK (m_axi_awlock), .M_AXI_AWCACHE (m_axi_awcache), .M_AXI_AWPROT (m_axi_awprot), .M_AXI_AWQOS (m_axi_awqos), .M_AXI_AWUSER (m_axi_awuser), .M_AXI_AWVALID (m_axi_awvalid), .M_AXI_AWREADY (m_axi_awready), .M_AXI_WID (m_axi_wid), .M_AXI_WDATA (m_axi_wdata), .M_AXI_WSTRB (m_axi_wstrb), .M_AXI_WLAST (m_axi_wlast), .M_AXI_WUSER (m_axi_wuser), .M_AXI_WVALID (m_axi_wvalid), .M_AXI_WREADY (m_axi_wready), .M_AXI_BID (m_axi_bid), .M_AXI_BRESP (m_axi_bresp), .M_AXI_BUSER (m_axi_buser), .M_AXI_BVALID (m_axi_bvalid), .M_AXI_BREADY (m_axi_bready), .M_AXI_ARID (m_axi_arid), .M_AXI_ARADDR (m_axi_araddr), .M_AXI_ARLEN (m_axi_arlen), .M_AXI_ARSIZE (m_axi_arsize), .M_AXI_ARBURST (m_axi_arburst), .M_AXI_ARLOCK (m_axi_arlock), .M_AXI_ARCACHE (m_axi_arcache), .M_AXI_ARPROT (m_axi_arprot), .M_AXI_ARQOS (m_axi_arqos), .M_AXI_ARUSER (m_axi_aruser), .M_AXI_ARVALID (m_axi_arvalid), .M_AXI_ARREADY (m_axi_arready), .M_AXI_RID (m_axi_rid), .M_AXI_RDATA (m_axi_rdata), .M_AXI_RRESP (m_axi_rresp), .M_AXI_RLAST (m_axi_rlast), .M_AXI_RUSER (m_axi_ruser), .M_AXI_RVALID (m_axi_rvalid), .M_AXI_RREADY (m_axi_rready) ); assign m_axi_awregion = 0; assign m_axi_arregion = 0; end else if ((C_S_AXI_PROTOCOL == P_AXI3) && (C_M_AXI_PROTOCOL == P_AXI4)) begin : gen_axi3_axi4 assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = {4'h0, s_axi_awlen[3:0]}; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock[0]; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = 4'h0; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_awvalid_i; assign s_awready_i = m_axi_awready; assign m_axi_wid = {C_AXI_ID_WIDTH{1'b0}} ; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_wvalid_i; assign s_wready_i = m_axi_wready; assign s_bid_i = m_axi_bid; assign s_bresp_i = m_axi_bresp; assign s_buser_i = m_axi_buser; assign s_bvalid_i = m_axi_bvalid; assign m_axi_bready = s_bready_i; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = {4'h0, s_axi_arlen[3:0]}; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock[0]; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = 4'h0; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_arvalid_i; assign s_arready_i = m_axi_arready; assign s_rid_i = m_axi_rid; assign s_rdata_i = m_axi_rdata; assign s_rresp_i = m_axi_rresp; assign s_rlast_i = m_axi_rlast; assign s_ruser_i = m_axi_ruser; assign s_rvalid_i = m_axi_rvalid; assign m_axi_rready = s_rready_i; end else begin :gen_no_conv assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = s_axi_awlen; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = s_axi_awregion; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_awvalid_i; assign s_awready_i = m_axi_awready; assign m_axi_wid = s_axi_wid; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_wvalid_i; assign s_wready_i = m_axi_wready; assign s_bid_i = m_axi_bid; assign s_bresp_i = m_axi_bresp; assign s_buser_i = m_axi_buser; assign s_bvalid_i = m_axi_bvalid; assign m_axi_bready = s_bready_i; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = s_axi_arlen; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = s_axi_arregion; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_arvalid_i; assign s_arready_i = m_axi_arready; assign s_rid_i = m_axi_rid; assign s_rdata_i = m_axi_rdata; assign s_rresp_i = m_axi_rresp; assign s_rlast_i = m_axi_rlast; assign s_ruser_i = m_axi_ruser; assign s_rvalid_i = m_axi_rvalid; assign m_axi_rready = s_rready_i; end if ((C_TRANSLATION_MODE == P_PROTECTION) && (((C_S_AXI_PROTOCOL != P_AXILITE) && (C_M_AXI_PROTOCOL == P_AXILITE)) || ((C_S_AXI_PROTOCOL == P_AXI4) && (C_M_AXI_PROTOCOL == P_AXI3)))) begin : gen_err_detect wire e_awvalid; reg e_awvalid_r; wire e_arvalid; reg e_arvalid_r; wire e_wvalid; wire e_bvalid; wire e_rvalid; reg e_awready; reg e_arready; wire e_wready; reg [C_AXI_ID_WIDTH-1:0] e_awid; reg [C_AXI_ID_WIDTH-1:0] e_arid; reg [8-1:0] e_arlen; wire [C_AXI_ID_WIDTH-1:0] e_bid; wire [C_AXI_ID_WIDTH-1:0] e_rid; wire e_rlast; wire w_err; wire r_err; wire busy_aw; wire busy_w; wire busy_ar; wire aw_push; wire aw_pop; wire w_pop; wire ar_push; wire ar_pop; reg s_awvalid_pending; reg s_awvalid_en; reg s_arvalid_en; reg s_awready_en; reg s_arready_en; reg [4:0] aw_cnt; reg [4:0] ar_cnt; reg [4:0] w_cnt; reg w_borrow; reg err_busy_w; reg err_busy_r; assign w_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_awlen != 0) : ((s_axi_awlen>>4) != 0); assign r_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_arlen != 0) : ((s_axi_arlen>>4) != 0); assign s_awvalid_i = s_axi_awvalid & s_awvalid_en & ~w_err; assign e_awvalid = e_awvalid_r & ~busy_aw & ~busy_w; assign s_arvalid_i = s_axi_arvalid & s_arvalid_en & ~r_err; assign e_arvalid = e_arvalid_r & ~busy_ar ; assign s_wvalid_i = s_axi_wvalid & (busy_w | (s_awvalid_pending & ~w_borrow)); assign e_wvalid = s_axi_wvalid & err_busy_w; assign s_bready_i = s_axi_bready & busy_aw; assign s_rready_i = s_axi_rready & busy_ar; assign s_axi_awready = (s_awready_i & s_awready_en) | e_awready; assign s_axi_wready = (s_wready_i & (busy_w | (s_awvalid_pending & ~w_borrow))) | e_wready; assign s_axi_bvalid = (s_bvalid_i & busy_aw) | e_bvalid; assign s_axi_bid = err_busy_w ? e_bid : s_bid_i; assign s_axi_bresp = err_busy_w ? P_SLVERR : s_bresp_i; assign s_axi_buser = err_busy_w ? {C_AXI_BUSER_WIDTH{1'b0}} : s_buser_i; assign s_axi_arready = (s_arready_i & s_arready_en) | e_arready; assign s_axi_rvalid = (s_rvalid_i & busy_ar) | e_rvalid; assign s_axi_rid = err_busy_r ? e_rid : s_rid_i; assign s_axi_rresp = err_busy_r ? P_SLVERR : s_rresp_i; assign s_axi_ruser = err_busy_r ? {C_AXI_RUSER_WIDTH{1'b0}} : s_ruser_i; assign s_axi_rdata = err_busy_r ? {C_AXI_DATA_WIDTH{1'b0}} : s_rdata_i; assign s_axi_rlast = err_busy_r ? e_rlast : s_rlast_i; assign busy_aw = (aw_cnt != 0); assign busy_w = (w_cnt != 0); assign busy_ar = (ar_cnt != 0); assign aw_push = s_awvalid_i & s_awready_i & s_awready_en; assign aw_pop = s_bvalid_i & s_bready_i; assign w_pop = s_wvalid_i & s_wready_i & s_axi_wlast; assign ar_push = s_arvalid_i & s_arready_i & s_arready_en; assign ar_pop = s_rvalid_i & s_rready_i & s_rlast_i; always @(posedge aclk) begin if (~aresetn) begin s_awvalid_en <= 1'b0; s_arvalid_en <= 1'b0; s_awready_en <= 1'b0; s_arready_en <= 1'b0; e_awvalid_r <= 1'b0; e_arvalid_r <= 1'b0; e_awready <= 1'b0; e_arready <= 1'b0; aw_cnt <= 0; w_cnt <= 0; ar_cnt <= 0; err_busy_w <= 1'b0; err_busy_r <= 1'b0; w_borrow <= 1'b0; s_awvalid_pending <= 1'b0; end else begin e_awready <= 1'b0; // One-cycle pulse if (e_bvalid & s_axi_bready) begin s_awvalid_en <= 1'b1; s_awready_en <= 1'b1; err_busy_w <= 1'b0; end else if (e_awvalid) begin e_awvalid_r <= 1'b0; err_busy_w <= 1'b1; end else if (s_axi_awvalid & w_err & ~e_awvalid_r & ~err_busy_w) begin e_awvalid_r <= 1'b1; e_awready <= ~(s_awready_i & s_awvalid_en); // 1-cycle pulse if awready not already asserted s_awvalid_en <= 1'b0; s_awready_en <= 1'b0; end else if ((&aw_cnt) | (&w_cnt) | aw_push) begin s_awvalid_en <= 1'b0; s_awready_en <= 1'b0; end else if (~err_busy_w & ~e_awvalid_r & ~(s_axi_awvalid & w_err)) begin s_awvalid_en <= 1'b1; s_awready_en <= 1'b1; end if (aw_push & ~aw_pop) begin aw_cnt <= aw_cnt + 1; end else if (~aw_push & aw_pop & (|aw_cnt)) begin aw_cnt <= aw_cnt - 1; end if (aw_push) begin if (~w_pop & ~w_borrow) begin w_cnt <= w_cnt + 1; end w_borrow <= 1'b0; end else if (~aw_push & w_pop) begin if (|w_cnt) begin w_cnt <= w_cnt - 1; end else begin w_borrow <= 1'b1; end end s_awvalid_pending <= s_awvalid_i & ~s_awready_i; e_arready <= 1'b0; // One-cycle pulse if (e_rvalid & s_axi_rready & e_rlast) begin s_arvalid_en <= 1'b1; s_arready_en <= 1'b1; err_busy_r <= 1'b0; end else if (e_arvalid) begin e_arvalid_r <= 1'b0; err_busy_r <= 1'b1; end else if (s_axi_arvalid & r_err & ~e_arvalid_r & ~err_busy_r) begin e_arvalid_r <= 1'b1; e_arready <= ~(s_arready_i & s_arvalid_en); // 1-cycle pulse if arready not already asserted s_arvalid_en <= 1'b0; s_arready_en <= 1'b0; end else if ((&ar_cnt) | ar_push) begin s_arvalid_en <= 1'b0; s_arready_en <= 1'b0; end else if (~err_busy_r & ~e_arvalid_r & ~(s_axi_arvalid & r_err)) begin s_arvalid_en <= 1'b1; s_arready_en <= 1'b1; end if (ar_push & ~ar_pop) begin ar_cnt <= ar_cnt + 1; end else if (~ar_push & ar_pop & (|ar_cnt)) begin ar_cnt <= ar_cnt - 1; end end end always @(posedge aclk) begin if (s_axi_awvalid & ~err_busy_w & ~e_awvalid_r ) begin e_awid <= s_axi_awid; end if (s_axi_arvalid & ~err_busy_r & ~e_arvalid_r ) begin e_arid <= s_axi_arid; e_arlen <= s_axi_arlen; end end axi_protocol_converter_v2_1_decerr_slave # ( .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH), .C_AXI_PROTOCOL (C_S_AXI_PROTOCOL), .C_RESP (P_SLVERR), .C_IGNORE_ID (C_IGNORE_ID) ) decerr_slave_inst ( .ACLK (aclk), .ARESETN (aresetn), .S_AXI_AWID (e_awid), .S_AXI_AWVALID (e_awvalid), .S_AXI_AWREADY (), .S_AXI_WLAST (s_axi_wlast), .S_AXI_WVALID (e_wvalid), .S_AXI_WREADY (e_wready), .S_AXI_BID (e_bid), .S_AXI_BRESP (), .S_AXI_BUSER (), .S_AXI_BVALID (e_bvalid), .S_AXI_BREADY (s_axi_bready), .S_AXI_ARID (e_arid), .S_AXI_ARLEN (e_arlen), .S_AXI_ARVALID (e_arvalid), .S_AXI_ARREADY (), .S_AXI_RID (e_rid), .S_AXI_RDATA (), .S_AXI_RRESP (), .S_AXI_RUSER (), .S_AXI_RLAST (e_rlast), .S_AXI_RVALID (e_rvalid), .S_AXI_RREADY (s_axi_rready) ); end else begin : gen_no_err_detect assign s_awvalid_i = s_axi_awvalid; assign s_arvalid_i = s_axi_arvalid; assign s_wvalid_i = s_axi_wvalid; assign s_bready_i = s_axi_bready; assign s_rready_i = s_axi_rready; assign s_axi_awready = s_awready_i; assign s_axi_wready = s_wready_i; assign s_axi_bvalid = s_bvalid_i; assign s_axi_bid = s_bid_i; assign s_axi_bresp = s_bresp_i; assign s_axi_buser = s_buser_i; assign s_axi_arready = s_arready_i; assign s_axi_rvalid = s_rvalid_i; assign s_axi_rid = s_rid_i; assign s_axi_rresp = s_rresp_i; assign s_axi_ruser = s_ruser_i; assign s_axi_rdata = s_rdata_i; assign s_axi_rlast = s_rlast_i; end // gen_err_detect endgenerate endmodule
module input wire load_a_i, input wire load_b_i, input wire [EW-1:0] Data_A_i, input wire [EW-1:0] Data_B_i, input wire Add_Subt_i, ///////////////////////////////////////////////////////////////////77 output wire [EW-1:0] Data_Result_o, output wire Overflow_flag_o, output wire Underflow_flag_o ); //wire [EW-1:0] Data_B; wire [EW:0] Data_S; /////////////////////////////////////////7 //genvar j; //for (j=0; j<EW; j=j+1)begin // assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i; //end ///////////////////////////////////////// add_sub_carry_out #(.W(EW)) exp_add_subt( .op_mode (Add_Subt_i), .Data_A (Data_A_i), .Data_B (Data_B_i), .Data_S (Data_S) ); //assign Overflow_flag_o = 1'b0; //assign Underflow_flag_o = 1'b0; Comparators #(.W_Exp(EW+1)) array_comparators( .exp(Data_S), .overflow(Overflow_flag), .underflow(Underflow_flag) ); RegisterAdd #(.W(EW)) exp_result( .clk (clk), .rst (rst), .load (load_a_i), .D (Data_S[EW-1:0]), .Q (Data_Result_o) ); RegisterAdd #(.W(1)) Overflow ( .clk(clk), .rst(rst), .load(load_a_i), .D(Overflow_flag), .Q(Overflow_flag_o) ); RegisterAdd #(.W(1)) Underflow ( .clk(clk), .rst(rst), .load(load_b_i), .D(Underflow_flag), .Q(Underflow_flag_o) ); endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule