Copernicus-Bench / deprecated /cloud_s2 /senbench_clouds2_wrapper.py
wangyi111's picture
Rename cloud_s2/senbench_clouds2_wrapper.py to deprecated/cloud_s2/senbench_clouds2_wrapper.py
38d5687 verified
import kornia as K
import torch
from torchgeo.datasets.geo import NonGeoDataset
import os
from collections.abc import Callable, Sequence
from torch import Tensor
import numpy as np
import rasterio
import cv2
from pyproj import Transformer
from datetime import date
from typing import TypeAlias, ClassVar
import pathlib
from shapely import wkt
import pandas as pd
import tacoreader
import logging
import pdb
logging.getLogger("rasterio").setLevel(logging.ERROR)
Path: TypeAlias = str | os.PathLike[str]
class SenBenchCloudS2(NonGeoDataset):
url = None
#base_dir = 'all_imgs'
all_band_names = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12')
split_filenames = {
'train': 'cloudsen12-l1c-train.taco',
'val': 'cloudsen12-l1c-val.taco',
'test': 'cloudsen12-l1c-test.taco',
}
Cls_index_multi = {
'clear': 0,
'thick cloud': 1,
'thin cloud': 2,
'cloud shadow': 3,
}
def __init__(
self,
root: Path = 'data',
split: str = 'train',
bands: Sequence[str] = all_band_names,
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
download: bool = False,
) -> None:
self.root = root
self.transforms = transforms
self.download = download
#self.checksum = checksum
assert split in ['train', 'val', 'test']
self.bands = bands
self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]
taco_file = os.path.join(root,self.split_filenames[split])
self.dataset = tacoreader.load(taco_file)
self.cache = {}
# filter corrupted entries
count = 0
count_corrupted = 0
#pdb.set_trace()
for i in range(len(self.dataset)):
try:
sample = self.dataset.read(i)
s2l1c = sample.read(0) # str
target = sample.read(1) # str
coord = sample['stac:centroid'][0] # str
time_start = sample['stac:time_start'][0] # str
self.cache[count] = (s2l1c, target, coord, time_start)
count += 1
except Exception as e:
count_corrupted += 1
self.length = count
print(split,count,"valid samples.")
self.reference_date = date(1970, 1, 1)
self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m
def __len__(self):
return self.length
def __getitem__(self, index):
#pdb.set_trace()
# if index not in self.cache:
# sample = self.dataset.read(index)
# s2l1c = sample.read(0) # str
# target = sample.read(1) # str
# coord = sample['stac:centroid'][0] # str
# time_start = sample['stac:time_start'][0] # str
# self.cache[index] = (s2l1c, target, coord, time_start)
# else:
#pdb.set_trace()
s2l1c, target, coord, time_start = self.cache[index]
# Open the files and load data
with rasterio.open(s2l1c) as src, rasterio.open(target) as dst:
s2l1c_data = src.read().astype('float32')
target_data = dst.read(1)
image = torch.from_numpy(s2l1c_data)
label = torch.from_numpy(target_data).long()
coord = wkt.loads(coord).coords[0]
date_obj = pd.to_datetime(time_start, unit='s').date()
delta = (date_obj - self.reference_date).days
meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32)
meta_info = torch.from_numpy(meta_info)
sample = {'image': image, 'mask': label, 'meta': meta_info}
if self.transforms is not None:
sample = self.transforms(sample)
return sample
class SegDataAugmentation(torch.nn.Module):
def __init__(self, split, size, band_stats):
super().__init__()
if band_stats is not None:
mean = band_stats['mean']
std = band_stats['std']
else:
mean = [0.0]
std = [1.0]
mean = torch.Tensor(mean)
std = torch.Tensor(std)
self.norm = K.augmentation.Normalize(mean=mean, std=std)
if split == "train":
self.transform = K.augmentation.AugmentationSequential(
K.augmentation.Resize(size=size, align_corners=True),
K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
K.augmentation.RandomHorizontalFlip(p=0.5),
K.augmentation.RandomVerticalFlip(p=0.5),
data_keys=["input", "mask"],
)
else:
self.transform = K.augmentation.AugmentationSequential(
K.augmentation.Resize(size=size, align_corners=True),
data_keys=["input", "mask"],
)
@torch.no_grad()
def forward(self, batch: dict[str,]):
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
x,mask = batch["image"], batch["mask"]
x = self.norm(x)
x_out, mask_out = self.transform(x, mask)
return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"]
class SenBenchCloudS2Dataset:
def __init__(self, config):
self.dataset_config = config
self.img_size = (config.image_resolution, config.image_resolution)
self.root_dir = config.data_path
self.bands = config.band_names
self.band_stats = config.band_stats
def create_dataset(self):
train_transform = SegDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats)
eval_transform = SegDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats)
dataset_train = SenBenchCloudS2(
root=self.root_dir, split="train", bands=self.bands, transforms=train_transform
)
dataset_val = SenBenchCloudS2(
root=self.root_dir, split="val", bands=self.bands, transforms=eval_transform
)
dataset_test = SenBenchCloudS2(
root=self.root_dir, split="test", bands=self.bands, transforms=eval_transform
)
return dataset_train, dataset_val, dataset_test