id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
197e4fd60a2b-5
messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._client_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = convert_dict_to_message(res["message"]) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.get("finish_reason")), ) generations.append(gen) token_usage = response.get("usage", {})
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/konko.html
197e4fd60a2b-6
) generations.append(gen) token_usage = response.get("usage", {}) llm_output = {"token_usage": token_usage, "model_name": self.model} return ChatResult(generations=generations, llm_output=llm_output) @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model}, **self._default_params} @property def _client_params(self) -> Dict[str, Any]: """Get the parameters used for the konko client.""" return {**self._default_params} def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" return { "model": self.model, **super()._get_invocation_params(stop=stop), **self._default_params, **kwargs, } @property def _llm_type(self) -> str: """Return type of chat model.""" return "konko-chat"
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/konko.html
309bf2dbb34f-0
Source code for langchain.chat_models.baidu_qianfan_endpoint from __future__ import annotations import logging from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional, cast from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.pydantic_v1 import Field, root_validator from langchain.schema import ChatGeneration, ChatResult from langchain.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, SystemMessage, ) from langchain.schema.output import ChatGenerationChunk from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]def convert_message_to_dict(message: BaseMessage) -> dict: """Convert a message to a dictionary that can be passed to the API.""" message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} if "function_call" in message.additional_kwargs: message_dict["function_call"] = message.additional_kwargs["function_call"] # If function call only, content is None not empty string if message_dict["content"] == "": message_dict["content"] = None elif isinstance(message, FunctionMessage): message_dict = { "role": "function", "content": message.content,
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/baidu_qianfan_endpoint.html
309bf2dbb34f-1
"role": "function", "content": message.content, "name": message.name, } else: raise TypeError(f"Got unknown type {message}") return message_dict def _convert_dict_to_message(_dict: Mapping[str, Any]) -> AIMessage: content = _dict.get("result", "") or "" if _dict.get("function_call"): additional_kwargs = {"function_call": dict(_dict["function_call"])} if "thoughts" in additional_kwargs["function_call"]: # align to api sample, which affects the llm function_call output additional_kwargs["function_call"].pop("thoughts") else: additional_kwargs = {} return AIMessage( content=content, additional_kwargs={**_dict.get("body", {}), **additional_kwargs}, ) [docs]class QianfanChatEndpoint(BaseChatModel): """Baidu Qianfan chat models. To use, you should have the ``qianfan`` python package installed, and the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with your API key and Secret Key. ak, sk are required parameters which you could get from https://cloud.baidu.com/product/wenxinworkshop Example: .. code-block:: python from langchain.chat_models import QianfanChatEndpoint qianfan_chat = QianfanChatEndpoint(model="ERNIE-Bot", endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk") """ model_kwargs: Dict[str, Any] = Field(default_factory=dict) client: Any qianfan_ak: Optional[str] = None
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/baidu_qianfan_endpoint.html
309bf2dbb34f-2
client: Any qianfan_ak: Optional[str] = None qianfan_sk: Optional[str] = None streaming: Optional[bool] = False """Whether to stream the results or not.""" request_timeout: Optional[int] = 60 """request timeout for chat http requests""" top_p: Optional[float] = 0.8 temperature: Optional[float] = 0.95 penalty_score: Optional[float] = 1 """Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo. In the case of other model, passing these params will not affect the result. """ model: str = "ERNIE-Bot-turbo" """Model name. you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu preset models are mapping to an endpoint. `model` will be ignored if `endpoint` is set. Default is ERNIE-Bot-turbo. """ endpoint: Optional[str] = None """Endpoint of the Qianfan LLM, required if custom model used.""" @root_validator() def validate_enviroment(cls, values: Dict) -> Dict: values["qianfan_ak"] = get_from_dict_or_env( values, "qianfan_ak", "QIANFAN_AK", ) values["qianfan_sk"] = get_from_dict_or_env( values, "qianfan_sk", "QIANFAN_SK", ) params = { "ak": values["qianfan_ak"],
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/baidu_qianfan_endpoint.html
309bf2dbb34f-3
) params = { "ak": values["qianfan_ak"], "sk": values["qianfan_sk"], "model": values["model"], "stream": values["streaming"], } if values["endpoint"] is not None and values["endpoint"] != "": params["endpoint"] = values["endpoint"] try: import qianfan values["client"] = qianfan.ChatCompletion(**params) except ImportError: raise ValueError( "qianfan package not found, please install it with " "`pip install qianfan`" ) return values @property def _identifying_params(self) -> Dict[str, Any]: return { **{"endpoint": self.endpoint, "model": self.model}, **super()._identifying_params, } @property def _llm_type(self) -> str: """Return type of chat_model.""" return "baidu-qianfan-chat" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Qianfan API.""" normal_params = { "model": self.model, "endpoint": self.endpoint, "stream": self.streaming, "request_timeout": self.request_timeout, "top_p": self.top_p, "temperature": self.temperature, "penalty_score": self.penalty_score, } return {**normal_params, **self.model_kwargs} def _convert_prompt_msg_params( self, messages: List[BaseMessage], **kwargs: Any, ) -> Dict[str, Any]: """
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/baidu_qianfan_endpoint.html
309bf2dbb34f-4
**kwargs: Any, ) -> Dict[str, Any]: """ Converts a list of messages into a dictionary containing the message content and default parameters. Args: messages (List[BaseMessage]): The list of messages. **kwargs (Any): Optional arguments to add additional parameters to the resulting dictionary. Returns: Dict[str, Any]: A dictionary containing the message content and default parameters. """ messages_dict: Dict[str, Any] = { "messages": [ convert_message_to_dict(m) for m in messages if not isinstance(m, SystemMessage) ] } for i in [i for i, m in enumerate(messages) if isinstance(m, SystemMessage)]: if "system" not in messages_dict: messages_dict["system"] = "" messages_dict["system"] += cast(str, messages[i].content) + "\n" return { **messages_dict, **self._default_params, **kwargs, } def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Call out to an qianfan models endpoint for each generation with a prompt. Args: messages: The messages to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = qianfan_model("Tell me a joke.") """ if self.streaming:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/baidu_qianfan_endpoint.html
309bf2dbb34f-5
""" if self.streaming: completion = "" for chunk in self._stream(messages, stop, run_manager, **kwargs): completion += chunk.text lc_msg = AIMessage(content=completion, additional_kwargs={}) gen = ChatGeneration( message=lc_msg, generation_info=dict(finish_reason="stop"), ) return ChatResult( generations=[gen], llm_output={"token_usage": {}, "model_name": self.model}, ) params = self._convert_prompt_msg_params(messages, **kwargs) response_payload = self.client.do(**params) lc_msg = _convert_dict_to_message(response_payload) gen = ChatGeneration( message=lc_msg, generation_info={ "finish_reason": "stop", **response_payload.get("body", {}), }, ) token_usage = response_payload.get("usage", {}) llm_output = {"token_usage": token_usage, "model_name": self.model} return ChatResult(generations=[gen], llm_output=llm_output) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: completion = "" token_usage = {} async for chunk in self._astream(messages, stop, run_manager, **kwargs): completion += chunk.text lc_msg = AIMessage(content=completion, additional_kwargs={}) gen = ChatGeneration( message=lc_msg, generation_info=dict(finish_reason="stop"), )
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/baidu_qianfan_endpoint.html
309bf2dbb34f-6
generation_info=dict(finish_reason="stop"), ) return ChatResult( generations=[gen], llm_output={"token_usage": {}, "model_name": self.model}, ) params = self._convert_prompt_msg_params(messages, **kwargs) response_payload = await self.client.ado(**params) lc_msg = _convert_dict_to_message(response_payload) generations = [] gen = ChatGeneration( message=lc_msg, generation_info={ "finish_reason": "stop", **response_payload.get("body", {}), }, ) generations.append(gen) token_usage = response_payload.get("usage", {}) llm_output = {"token_usage": token_usage, "model_name": self.model} return ChatResult(generations=generations, llm_output=llm_output) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: params = self._convert_prompt_msg_params(messages, **kwargs) for res in self.client.do(**params): if res: msg = _convert_dict_to_message(res) chunk = ChatGenerationChunk( text=res["result"], message=AIMessageChunk( content=msg.content, role="assistant", additional_kwargs=msg.additional_kwargs, ), ) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) async def _astream( self, messages: List[BaseMessage],
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/baidu_qianfan_endpoint.html
309bf2dbb34f-7
self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: params = self._convert_prompt_msg_params(messages, **kwargs) async for res in await self.client.ado(**params): if res: msg = _convert_dict_to_message(res) chunk = ChatGenerationChunk( text=res["result"], message=AIMessageChunk( content=msg.content, role="assistant", additional_kwargs=msg.additional_kwargs, ), ) yield chunk if run_manager: await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/baidu_qianfan_endpoint.html
11fba190c80c-0
Source code for langchain.chat_models.javelin_ai_gateway import logging from typing import Any, Dict, List, Mapping, Optional, cast from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.pydantic_v1 import BaseModel, Extra, SecretStr from langchain.schema import ( ChatGeneration, ChatResult, ) from langchain.schema.messages import ( AIMessage, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, SystemMessage, ) logger = logging.getLogger(__name__) # Ignoring type because below is valid pydantic code # Unexpected keyword argument "extra" for "__init_subclass__" of "object" [call-arg] [docs]class ChatParams(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Parameters for the `Javelin AI Gateway` LLM.""" temperature: float = 0.0 stop: Optional[List[str]] = None max_tokens: Optional[int] = None [docs]class ChatJavelinAIGateway(BaseChatModel): """`Javelin AI Gateway` chat models API. To use, you should have the ``javelin_sdk`` python package installed. For more information, see https://docs.getjavelin.io Example: .. code-block:: python from langchain.chat_models import ChatJavelinAIGateway chat = ChatJavelinAIGateway( gateway_uri="<javelin-ai-gateway-uri>", route="<javelin-ai-gateway-chat-route>", params={
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/javelin_ai_gateway.html
11fba190c80c-1
route="<javelin-ai-gateway-chat-route>", params={ "temperature": 0.1 } ) """ route: str """The route to use for the Javelin AI Gateway API.""" gateway_uri: Optional[str] = None """The URI for the Javelin AI Gateway API.""" params: Optional[ChatParams] = None """Parameters for the Javelin AI Gateway LLM.""" client: Any """javelin client.""" javelin_api_key: Optional[SecretStr] = None """The API key for the Javelin AI Gateway.""" def __init__(self, **kwargs: Any): try: from javelin_sdk import ( JavelinClient, UnauthorizedError, ) except ImportError: raise ImportError( "Could not import javelin_sdk python package. " "Please install it with `pip install javelin_sdk`." ) super().__init__(**kwargs) if self.gateway_uri: try: self.client = JavelinClient( base_url=self.gateway_uri, api_key=cast(SecretStr, self.javelin_api_key).get_secret_value(), ) except UnauthorizedError as e: raise ValueError("Javelin: Incorrect API Key.") from e @property def _default_params(self) -> Dict[str, Any]: params: Dict[str, Any] = { "gateway_uri": self.gateway_uri, "javelin_api_key": cast(SecretStr, self.javelin_api_key).get_secret_value(), "route": self.route, **(self.params.dict() if self.params else {}),
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/javelin_ai_gateway.html
11fba190c80c-2
**(self.params.dict() if self.params else {}), } return params def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = [ ChatJavelinAIGateway._convert_message_to_dict(message) for message in messages ] data: Dict[str, Any] = { "messages": message_dicts, **(self.params.dict() if self.params else {}), } resp = self.client.query_route(self.route, query_body=data) return ChatJavelinAIGateway._create_chat_result(resp.dict()) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = [ ChatJavelinAIGateway._convert_message_to_dict(message) for message in messages ] data: Dict[str, Any] = { "messages": message_dicts, **(self.params.dict() if self.params else {}), } resp = await self.client.aquery_route(self.route, query_body=data) return ChatJavelinAIGateway._create_chat_result(resp.dict()) @property def _identifying_params(self) -> Dict[str, Any]: return self._default_params def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/javelin_ai_gateway.html
11fba190c80c-3
self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model FOR THE CALLBACKS.""" return { **self._default_params, **super()._get_invocation_params(stop=stop, **kwargs), } @property def _llm_type(self) -> str: """Return type of chat model.""" return "javelin-ai-gateway-chat" @staticmethod def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] content = _dict["content"] if role == "user": return HumanMessage(content=content) elif role == "assistant": return AIMessage(content=content) elif role == "system": return SystemMessage(content=content) else: return ChatMessage(content=content, role=role) @staticmethod def _raise_functions_not_supported() -> None: raise ValueError( "Function messages are not supported by the Javelin AI Gateway. Please" " create a feature request at https://docs.getjavelin.io" ) @staticmethod def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage):
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/javelin_ai_gateway.html
11fba190c80c-4
elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): raise ValueError( "Function messages are not supported by the Javelin AI Gateway. Please" " create a feature request at https://docs.getjavelin.io" ) else: raise ValueError(f"Got unknown message type: {message}") if "function_call" in message.additional_kwargs: ChatJavelinAIGateway._raise_functions_not_supported() if message.additional_kwargs: logger.warning( "Additional message arguments are unsupported by Javelin AI Gateway " " and will be ignored: %s", message.additional_kwargs, ) return message_dict @staticmethod def _create_chat_result(response: Mapping[str, Any]) -> ChatResult: generations = [] for candidate in response["llm_response"]["choices"]: message = ChatJavelinAIGateway._convert_dict_to_message( candidate["message"] ) message_metadata = candidate.get("metadata", {}) gen = ChatGeneration( message=message, generation_info=dict(message_metadata), ) generations.append(gen) response_metadata = response.get("metadata", {}) return ChatResult(generations=generations, llm_output=response_metadata)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/javelin_ai_gateway.html
7fafb2f8847f-0
Source code for langchain.chat_models.anyscale """Anyscale Endpoints chat wrapper. Relies heavily on ChatOpenAI.""" from __future__ import annotations import logging import os import sys from typing import TYPE_CHECKING, Dict, Optional, Set import requests from langchain.adapters.openai import convert_message_to_dict from langchain.chat_models.openai import ( ChatOpenAI, _import_tiktoken, ) from langchain.pydantic_v1 import Field, SecretStr, root_validator from langchain.schema.messages import BaseMessage from langchain.utils import convert_to_secret_str, get_from_dict_or_env from langchain.utils.openai import is_openai_v1 if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) DEFAULT_API_BASE = "https://api.endpoints.anyscale.com/v1" DEFAULT_MODEL = "meta-llama/Llama-2-7b-chat-hf" [docs]class ChatAnyscale(ChatOpenAI): """`Anyscale` Chat large language models. See https://www.anyscale.com/ for information about Anyscale. To use, you should have the ``openai`` python package installed, and the environment variable ``ANYSCALE_API_KEY`` set with your API key. Alternatively, you can use the anyscale_api_key keyword argument. Any parameters that are valid to be passed to the `openai.create` call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatAnyscale chat = ChatAnyscale(model_name="meta-llama/Llama-2-7b-chat-hf") """ @property def _llm_type(self) -> str:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/anyscale.html
7fafb2f8847f-1
""" @property def _llm_type(self) -> str: """Return type of chat model.""" return "anyscale-chat" @property def lc_secrets(self) -> Dict[str, str]: return {"anyscale_api_key": "ANYSCALE_API_KEY"} anyscale_api_key: SecretStr """AnyScale Endpoints API keys.""" model_name: str = Field(default=DEFAULT_MODEL, alias="model") """Model name to use.""" anyscale_api_base: str = Field(default=DEFAULT_API_BASE) """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" anyscale_proxy: Optional[str] = None """To support explicit proxy for Anyscale.""" available_models: Optional[Set[str]] = None """Available models from Anyscale API.""" [docs] @staticmethod def get_available_models( anyscale_api_key: Optional[str] = None, anyscale_api_base: str = DEFAULT_API_BASE, ) -> Set[str]: """Get available models from Anyscale API.""" try: anyscale_api_key = anyscale_api_key or os.environ["ANYSCALE_API_KEY"] except KeyError as e: raise ValueError( "Anyscale API key must be passed as keyword argument or " "set in environment variable ANYSCALE_API_KEY.", ) from e models_url = f"{anyscale_api_base}/models" models_response = requests.get( models_url, headers={ "Authorization": f"Bearer {anyscale_api_key}", }, ) if models_response.status_code != 200: raise ValueError(
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/anyscale.html
7fafb2f8847f-2
) if models_response.status_code != 200: raise ValueError( f"Error getting models from {models_url}: " f"{models_response.status_code}", ) return {model["id"] for model in models_response.json()["data"]} @root_validator(pre=True) def validate_environment_override(cls, values: dict) -> dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "anyscale_api_key", "ANYSCALE_API_KEY", ) values["anyscale_api_key"] = convert_to_secret_str( get_from_dict_or_env( values, "anyscale_api_key", "ANYSCALE_API_KEY", ) ) values["openai_api_base"] = get_from_dict_or_env( values, "anyscale_api_base", "ANYSCALE_API_BASE", default=DEFAULT_API_BASE, ) values["openai_proxy"] = get_from_dict_or_env( values, "anyscale_proxy", "ANYSCALE_PROXY", default="", ) try: import openai except ImportError as e: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`.", ) from e try: if is_openai_v1(): client_params = { "api_key": values["openai_api_key"], "base_url": values["openai_api_base"], # To do: future support # "organization": values["openai_organization"],
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/anyscale.html
7fafb2f8847f-3
# To do: future support # "organization": values["openai_organization"], # "timeout": values["request_timeout"], # "max_retries": values["max_retries"], # "default_headers": values["default_headers"], # "default_query": values["default_query"], # "http_client": values["http_client"], } values["client"] = openai.OpenAI(**client_params).chat.completions else: values["client"] = openai.ChatCompletion except AttributeError as exc: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`.", ) from exc if "model_name" not in values.keys(): values["model_name"] = DEFAULT_MODEL model_name = values["model_name"] available_models = cls.get_available_models( values["openai_api_key"], values["openai_api_base"], ) if model_name not in available_models: raise ValueError( f"Model name {model_name} not found in available models: " f"{available_models}.", ) values["available_models"] = available_models return values def _get_encoding_model(self) -> tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() if self.tiktoken_model_name is not None: model = self.tiktoken_model_name else: model = self.model_name # Returns the number of tokens used by a list of messages. try:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/anyscale.html
7fafb2f8847f-4
# Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model("gpt-3.5-turbo-0301") except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding [docs] def get_num_tokens_from_messages(self, messages: list[BaseMessage]) -> int: """Calculate num tokens with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() tokens_per_message = 3 tokens_per_name = 1 num_tokens = 0 messages_dict = [convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): # Cast str(value) in case the message value is not a string # This occurs with function messages num_tokens += len(encoding.encode(str(value))) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/anyscale.html
e621296ae8ed-0
Source code for langchain.chat_models.cohere from typing import Any, AsyncIterator, Dict, Iterator, List, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import ( BaseChatModel, _agenerate_from_stream, _generate_from_stream, ) from langchain.llms.cohere import BaseCohere from langchain.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, ChatMessage, HumanMessage, SystemMessage, ) from langchain.schema.output import ChatGeneration, ChatGenerationChunk, ChatResult [docs]def get_role(message: BaseMessage) -> str: """Get the role of the message. Args: message: The message. Returns: The role of the message. Raises: ValueError: If the message is of an unknown type. """ if isinstance(message, ChatMessage) or isinstance(message, HumanMessage): return "User" elif isinstance(message, AIMessage): return "Chatbot" elif isinstance(message, SystemMessage): return "System" else: raise ValueError(f"Got unknown type {message}") [docs]def get_cohere_chat_request( messages: List[BaseMessage], *, connectors: Optional[List[Dict[str, str]]] = None, **kwargs: Any, ) -> Dict[str, Any]: """Get the request for the Cohere chat API. Args: messages: The messages. connectors: The connectors. **kwargs: The keyword arguments. Returns:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/cohere.html
e621296ae8ed-1
connectors: The connectors. **kwargs: The keyword arguments. Returns: The request for the Cohere chat API. """ documents = ( None if "source_documents" not in kwargs else [ { "snippet": doc.page_content, "id": doc.metadata.get("id") or f"doc-{str(i)}", } for i, doc in enumerate(kwargs["source_documents"]) ] ) kwargs.pop("source_documents", None) maybe_connectors = connectors if documents is None else None # by enabling automatic prompt truncation, the probability of request failure is # reduced with minimal impact on response quality prompt_truncation = ( "AUTO" if documents is not None or connectors is not None else None ) return { "message": messages[-1].content, "chat_history": [ {"role": get_role(x), "message": x.content} for x in messages[:-1] ], "documents": documents, "connectors": maybe_connectors, "prompt_truncation": prompt_truncation, **kwargs, } [docs]class ChatCohere(BaseChatModel, BaseCohere): """`Cohere` chat large language models. To use, you should have the ``cohere`` python package installed, and the environment variable ``COHERE_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.chat_models import ChatCohere from langchain.schema import HumanMessage chat = ChatCohere(model="foo")
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/cohere.html
e621296ae8ed-2
chat = ChatCohere(model="foo") result = chat([HumanMessage(content="Hello")]) print(result.content) """ class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True arbitrary_types_allowed = True @property def _llm_type(self) -> str: """Return type of chat model.""" return "cohere-chat" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Cohere API.""" return { "temperature": self.temperature, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: request = get_cohere_chat_request(messages, **self._default_params, **kwargs) stream = self.client.chat(**request, stream=True) for data in stream: if data.event_type == "text-generation": delta = data.text yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) if run_manager: run_manager.on_llm_new_token(delta) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any,
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/cohere.html
e621296ae8ed-3
**kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: request = get_cohere_chat_request(messages, **self._default_params, **kwargs) stream = await self.async_client.chat(**request, stream=True) async for data in stream: if data.event_type == "text-generation": delta = data.text yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) if run_manager: await run_manager.on_llm_new_token(delta) def _get_generation_info(self, response: Any) -> Dict[str, Any]: """Get the generation info from cohere API response.""" return { "documents": response.documents, "citations": response.citations, "search_results": response.search_results, "search_queries": response.search_queries, "token_count": response.token_count, } def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) request = get_cohere_chat_request(messages, **self._default_params, **kwargs) response = self.client.chat(**request) message = AIMessage(content=response.text) generation_info = None if hasattr(response, "documents"): generation_info = self._get_generation_info(response) return ChatResult( generations=[ ChatGeneration(message=message, generation_info=generation_info) ]
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/cohere.html
e621296ae8ed-4
generations=[ ChatGeneration(message=message, generation_info=generation_info) ] ) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await _agenerate_from_stream(stream_iter) request = get_cohere_chat_request(messages, **self._default_params, **kwargs) response = self.client.chat(**request, stream=False) message = AIMessage(content=response.text) generation_info = None if hasattr(response, "documents"): generation_info = self._get_generation_info(response) return ChatResult( generations=[ ChatGeneration(message=message, generation_info=generation_info) ] ) [docs] def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" return len(self.client.tokenize(text).tokens)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/cohere.html
ea396b6363eb-0
Source code for langchain.chat_models.human """ChatModel wrapper which returns user input as the response..""" import asyncio from functools import partial from io import StringIO from typing import Any, Callable, Dict, List, Mapping, Optional import yaml from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Field from langchain.schema.messages import ( BaseMessage, HumanMessage, _message_from_dict, messages_to_dict, ) from langchain.schema.output import ChatGeneration, ChatResult def _display_messages(messages: List[BaseMessage]) -> None: dict_messages = messages_to_dict(messages) for message in dict_messages: yaml_string = yaml.dump( message, default_flow_style=False, sort_keys=False, allow_unicode=True, width=10000, line_break=None, ) print("\n", "======= start of message =======", "\n\n") print(yaml_string) print("======= end of message =======", "\n\n") def _collect_yaml_input( messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> BaseMessage: """Collects and returns user input as a single string.""" lines = [] while True: line = input() if not line.strip(): break if stop and any(seq in line for seq in stop): break lines.append(line) yaml_string = "\n".join(lines) # Try to parse the input string as YAML try:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/human.html
ea396b6363eb-1
# Try to parse the input string as YAML try: message = _message_from_dict(yaml.safe_load(StringIO(yaml_string))) if message is None: return HumanMessage(content="") if stop: if isinstance(message.content, str): message.content = enforce_stop_tokens(message.content, stop) else: raise ValueError("Cannot use when output is not a string.") return message except yaml.YAMLError: raise ValueError("Invalid YAML string entered.") except ValueError: raise ValueError("Invalid message entered.") [docs]class HumanInputChatModel(BaseChatModel): """ChatModel which returns user input as the response.""" input_func: Callable = Field(default_factory=lambda: _collect_yaml_input) message_func: Callable = Field(default_factory=lambda: _display_messages) separator: str = "\n" input_kwargs: Mapping[str, Any] = {} message_kwargs: Mapping[str, Any] = {} @property def _identifying_params(self) -> Dict[str, Any]: return { "input_func": self.input_func.__name__, "message_func": self.message_func.__name__, } @property def _llm_type(self) -> str: """Returns the type of LLM.""" return "human-input-chat-model" def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """ Displays the messages to the user and returns their input as a response. Args:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/human.html
ea396b6363eb-2
Displays the messages to the user and returns their input as a response. Args: messages (List[BaseMessage]): The messages to be displayed to the user. stop (Optional[List[str]]): A list of stop strings. run_manager (Optional[CallbackManagerForLLMRun]): Currently not used. Returns: ChatResult: The user's input as a response. """ self.message_func(messages, **self.message_kwargs) user_input = self.input_func(messages, stop=stop, **self.input_kwargs) return ChatResult(generations=[ChatGeneration(message=user_input)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: func = partial( self._generate, messages, stop=stop, run_manager=run_manager, **kwargs ) return await asyncio.get_event_loop().run_in_executor(None, func)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/human.html
f9b060e84a7f-0
Source code for langchain.chat_models.fireworks from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Type, Union, ) from langchain.adapters.openai import convert_message_to_dict from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.base import create_base_retry_decorator from langchain.pydantic_v1 import Field, SecretStr, root_validator from langchain.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, FunctionMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ) from langchain.schema.output import ChatGeneration, ChatGenerationChunk, ChatResult from langchain.utils import convert_to_secret_str from langchain.utils.env import get_from_dict_or_env def _convert_delta_to_message_chunk( _dict: Any, default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: """Convert a delta response to a message chunk.""" role = _dict.role content = _dict.content or "" additional_kwargs: Dict = {} if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/fireworks.html
f9b060e84a7f-1
return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict.name) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) [docs]def convert_dict_to_message(_dict: Any) -> BaseMessage: """Convert a dict response to a message.""" role = _dict.role content = _dict.content or "" if role == "user": return HumanMessage(content=content) elif role == "assistant": content = _dict.content additional_kwargs: Dict = {} return AIMessage(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=content) elif role == "function": return FunctionMessage(content=content, name=_dict.name) else: return ChatMessage(content=content, role=role) [docs]class ChatFireworks(BaseChatModel): """Fireworks Chat models.""" model: str = "accounts/fireworks/models/llama-v2-7b-chat" model_kwargs: dict = Field( default_factory=lambda: { "temperature": 0.7, "max_tokens": 512, "top_p": 1, }.copy() ) fireworks_api_key: Optional[SecretStr] = None max_retries: int = 20 use_retry: bool = True @property def lc_secrets(self) -> Dict[str, str]: return {"fireworks_api_key": "FIREWORKS_API_KEY"}
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/fireworks.html
f9b060e84a7f-2
return {"fireworks_api_key": "FIREWORKS_API_KEY"} [docs] @classmethod def is_lc_serializable(cls) -> bool: return True @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key in environment.""" try: import fireworks.client except ImportError as e: raise ImportError( "Could not import fireworks-ai python package. " "Please install it with `pip install fireworks-ai`." ) from e fireworks_api_key = convert_to_secret_str( get_from_dict_or_env(values, "fireworks_api_key", "FIREWORKS_API_KEY") ) fireworks.client.api_key = fireworks_api_key.get_secret_value() return values @property def _llm_type(self) -> str: """Return type of llm.""" return "fireworks-chat" def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = self._create_message_dicts(messages) params = { "model": self.model, "messages": message_dicts, **self.model_kwargs, } response = completion_with_retry( self, self.use_retry, run_manager=run_manager, stop=stop, **params, ) return self._create_chat_result(response) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None,
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/fireworks.html
f9b060e84a7f-3
messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = self._create_message_dicts(messages) params = { "model": self.model, "messages": message_dicts, **self.model_kwargs, } response = await acompletion_with_retry( self, self.use_retry, run_manager=run_manager, stop=stop, **params ) return self._create_chat_result(response) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: if llm_outputs[0] is None: return {} return llm_outputs[0] def _create_chat_result(self, response: Any) -> ChatResult: generations = [] for res in response.choices: message = convert_dict_to_message(res.message) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.finish_reason), ) generations.append(gen) llm_output = {"model": self.model} return ChatResult(generations=generations, llm_output=llm_output) def _create_message_dicts( self, messages: List[BaseMessage] ) -> List[Dict[str, Any]]: message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any,
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/fireworks.html
f9b060e84a7f-4
**kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts = self._create_message_dicts(messages) default_chunk_class = AIMessageChunk params = { "model": self.model, "messages": message_dicts, "stream": True, **self.model_kwargs, } for chunk in completion_with_retry( self, self.use_retry, run_manager=run_manager, stop=stop, **params ): choice = chunk.choices[0] chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class) finish_reason = choice.finish_reason generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: message_dicts = self._create_message_dicts(messages) default_chunk_class = AIMessageChunk params = { "model": self.model, "messages": message_dicts, "stream": True, **self.model_kwargs, } async for chunk in await acompletion_with_retry_streaming( self, self.use_retry, run_manager=run_manager, stop=stop, **params ): choice = chunk.choices[0]
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/fireworks.html
f9b060e84a7f-5
): choice = chunk.choices[0] chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class) finish_reason = choice.finish_reason generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) yield chunk if run_manager: await run_manager.on_llm_new_token(token=chunk.text, chunk=chunk) [docs]def conditional_decorator( condition: bool, decorator: Callable[[Any], Any] ) -> Callable[[Any], Any]: def actual_decorator(func: Callable[[Any], Any]) -> Callable[[Any], Any]: if condition: return decorator(func) return func return actual_decorator [docs]def completion_with_retry( llm: ChatFireworks, use_retry: bool, *, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) def _completion_with_retry(**kwargs: Any) -> Any: return fireworks.client.ChatCompletion.create( **kwargs, ) return _completion_with_retry(**kwargs) [docs]async def acompletion_with_retry( llm: ChatFireworks, use_retry: bool, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/fireworks.html
f9b060e84a7f-6
**kwargs: Any, ) -> Any: """Use tenacity to retry the async completion call.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) async def _completion_with_retry(**kwargs: Any) -> Any: return await fireworks.client.ChatCompletion.acreate( **kwargs, ) return await _completion_with_retry(**kwargs) [docs]async def acompletion_with_retry_streaming( llm: ChatFireworks, use_retry: bool, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call for streaming.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) async def _completion_with_retry(**kwargs: Any) -> Any: return fireworks.client.ChatCompletion.acreate( **kwargs, ) return await _completion_with_retry(**kwargs) def _create_retry_decorator( llm: ChatFireworks, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: """Define retry mechanism.""" import fireworks.client errors = [ fireworks.client.error.RateLimitError, fireworks.client.error.InternalServerError, fireworks.client.error.BadGatewayError, fireworks.client.error.ServiceUnavailableError, ] return create_base_retry_decorator(
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/fireworks.html
f9b060e84a7f-7
fireworks.client.error.ServiceUnavailableError, ] return create_base_retry_decorator( error_types=errors, max_retries=llm.max_retries, run_manager=run_manager )
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/fireworks.html
bc9525303fdf-0
Source code for langchain.chat_models.hunyuan import base64 import hashlib import hmac import json import logging import time from typing import Any, Dict, Iterator, List, Mapping, Optional, Type from urllib.parse import urlparse import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import BaseChatModel, _generate_from_stream from langchain.pydantic_v1 import Field, SecretStr, root_validator from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, ) from langchain.schema.messages import ( AIMessageChunk, BaseMessageChunk, ChatMessageChunk, HumanMessageChunk, ) from langchain.schema.output import ChatGenerationChunk from langchain.utils import ( convert_to_secret_str, get_from_dict_or_env, get_pydantic_field_names, ) logger = logging.getLogger(__name__) DEFAULT_API_BASE = "https://hunyuan.cloud.tencent.com" DEFAULT_PATH = "/hyllm/v1/chat/completions" def _convert_message_to_dict(message: BaseMessage) -> dict: message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} else: raise TypeError(f"Got unknown type {message}") return message_dict def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/hunyuan.html
bc9525303fdf-1
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": return AIMessage(content=_dict.get("content", "") or "") else: return ChatMessage(content=_dict["content"], role=role) def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: role = _dict.get("role") content = _dict.get("content") or "" if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) # signature generation # https://cloud.tencent.com/document/product/1729/97732#532252ce-e960-48a7-8821-940a9ce2ccf3 def _signature(secret_key: SecretStr, url: str, payload: Dict[str, Any]) -> str: sorted_keys = sorted(payload.keys()) url_info = urlparse(url) sign_str = url_info.netloc + url_info.path + "?" for key in sorted_keys: value = payload[key] if isinstance(value, list) or isinstance(value, dict): value = json.dumps(value, separators=(",", ":")) elif isinstance(value, float): value = "%g" % value
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/hunyuan.html
bc9525303fdf-2
elif isinstance(value, float): value = "%g" % value sign_str = sign_str + key + "=" + str(value) + "&" sign_str = sign_str[:-1] hmacstr = hmac.new( key=secret_key.get_secret_value().encode("utf-8"), msg=sign_str.encode("utf-8"), digestmod=hashlib.sha1, ).digest() return base64.b64encode(hmacstr).decode("utf-8") def _create_chat_result(response: Mapping[str, Any]) -> ChatResult: generations = [] for choice in response["choices"]: message = _convert_dict_to_message(choice["messages"]) generations.append(ChatGeneration(message=message)) token_usage = response["usage"] llm_output = {"token_usage": token_usage} return ChatResult(generations=generations, llm_output=llm_output) [docs]class ChatHunyuan(BaseChatModel): """Tencent Hunyuan chat models API by Tencent. For more information, see https://cloud.tencent.com/document/product/1729 """ @property def lc_secrets(self) -> Dict[str, str]: return { "hunyuan_app_id": "HUNYUAN_APP_ID", "hunyuan_secret_id": "HUNYUAN_SECRET_ID", "hunyuan_secret_key": "HUNYUAN_SECRET_KEY", } @property def lc_serializable(self) -> bool: return True hunyuan_api_base: str = Field(default=DEFAULT_API_BASE) """Hunyuan custom endpoints""" hunyuan_app_id: Optional[str] = None
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/hunyuan.html
bc9525303fdf-3
hunyuan_app_id: Optional[str] = None """Hunyuan App ID""" hunyuan_secret_id: Optional[str] = None """Hunyuan Secret ID""" hunyuan_secret_key: Optional[SecretStr] = None """Hunyuan Secret Key""" streaming: bool = False """Whether to stream the results or not.""" request_timeout: int = 60 """Timeout for requests to Hunyuan API. Default is 60 seconds.""" query_id: Optional[str] = None """Query id for troubleshooting""" temperature: float = 1.0 """What sampling temperature to use.""" top_p: float = 1.0 """What probability mass to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for API call not explicitly specified.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" )
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/hunyuan.html
bc9525303fdf-4
Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: values["hunyuan_api_base"] = get_from_dict_or_env( values, "hunyuan_api_base", "HUNYUAN_API_BASE", DEFAULT_API_BASE, ) values["hunyuan_app_id"] = get_from_dict_or_env( values, "hunyuan_app_id", "HUNYUAN_APP_ID", ) values["hunyuan_secret_id"] = get_from_dict_or_env( values, "hunyuan_secret_id", "HUNYUAN_SECRET_ID", ) values["hunyuan_secret_key"] = convert_to_secret_str( get_from_dict_or_env( values, "hunyuan_secret_key", "HUNYUAN_SECRET_KEY", ) ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Hunyuan API.""" normal_params = { "app_id": self.hunyuan_app_id, "secret_id": self.hunyuan_secret_id,
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/hunyuan.html
bc9525303fdf-5
"secret_id": self.hunyuan_secret_id, "temperature": self.temperature, "top_p": self.top_p, } if self.query_id is not None: normal_params["query_id"] = self.query_id return {**normal_params, **self.model_kwargs} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages=messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) res = self._chat(messages, **kwargs) response = res.json() if "error" in response: raise ValueError(f"Error from Hunyuan api response: {response}") return _create_chat_result(response) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: res = self._chat(messages, **kwargs) default_chunk_class = AIMessageChunk for chunk in res.iter_lines(): response = json.loads(chunk) if "error" in response: raise ValueError(f"Error from Hunyuan api response: {response}") for choice in response["choices"]: chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class )
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/hunyuan.html
bc9525303fdf-6
choice["delta"], default_chunk_class ) default_chunk_class = chunk.__class__ yield ChatGenerationChunk(message=chunk) if run_manager: run_manager.on_llm_new_token(chunk.content) def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response: if self.hunyuan_secret_key is None: raise ValueError("Hunyuan secret key is not set.") parameters = {**self._default_params, **kwargs} headers = parameters.pop("headers", {}) timestamp = parameters.pop("timestamp", int(time.time())) expired = parameters.pop("expired", timestamp + 24 * 60 * 60) payload = { "timestamp": timestamp, "expired": expired, "messages": [_convert_message_to_dict(m) for m in messages], **parameters, } if self.streaming: payload["stream"] = 1 url = self.hunyuan_api_base + DEFAULT_PATH res = requests.post( url=url, timeout=self.request_timeout, headers={ "Content-Type": "application/json", "Authorization": _signature( secret_key=self.hunyuan_secret_key, url=url, payload=payload ), **headers, }, json=payload, stream=self.streaming, ) return res @property def _llm_type(self) -> str: return "hunyuan-chat"
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/hunyuan.html
725d088e8c13-0
Source code for langchain.chat_models.ollama import json from typing import Any, Iterator, List, Optional from langchain.callbacks.manager import ( CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.ollama import _OllamaCommon from langchain.schema import ChatResult from langchain.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, ChatMessage, HumanMessage, SystemMessage, ) from langchain.schema.output import ChatGeneration, ChatGenerationChunk def _stream_response_to_chat_generation_chunk( stream_response: str, ) -> ChatGenerationChunk: """Convert a stream response to a generation chunk.""" parsed_response = json.loads(stream_response) generation_info = parsed_response if parsed_response.get("done") is True else None return ChatGenerationChunk( message=AIMessageChunk(content=parsed_response.get("response", "")), generation_info=generation_info, ) [docs]class ChatOllama(BaseChatModel, _OllamaCommon): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. Example: .. code-block:: python from langchain.chat_models import ChatOllama ollama = ChatOllama(model="llama2") """ @property def _llm_type(self) -> str: """Return type of chat model.""" return "ollama-chat" [docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/ollama.html
725d088e8c13-1
"""Return whether this model can be serialized by Langchain.""" return True def _format_message_as_text(self, message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {message.content}" elif isinstance(message, HumanMessage): message_text = f"[INST] {message.content} [/INST]" elif isinstance(message, AIMessage): message_text = f"{message.content}" elif isinstance(message, SystemMessage): message_text = f"<<SYS>> {message.content} <</SYS>>" else: raise ValueError(f"Got unknown type {message}") return message_text def _format_messages_as_text(self, messages: List[BaseMessage]) -> str: return "\n".join( [self._format_message_as_text(message) for message in messages] ) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Call out to Ollama's generate endpoint. Args: messages: The list of base messages to pass into the model. stop: Optional list of stop words to use when generating. Returns: Chat generations from the model Example: .. code-block:: python response = ollama([ HumanMessage(content="Tell me about the history of AI") ]) """ prompt = self._format_messages_as_text(messages) final_chunk = super()._stream_with_aggregation(
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/ollama.html
725d088e8c13-2
final_chunk = super()._stream_with_aggregation( prompt, stop=stop, run_manager=run_manager, verbose=self.verbose, **kwargs ) chat_generation = ChatGeneration( message=AIMessage(content=final_chunk.text), generation_info=final_chunk.generation_info, ) return ChatResult(generations=[chat_generation]) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: prompt = self._format_messages_as_text(messages) for stream_resp in self._create_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_chat_generation_chunk(stream_resp) yield chunk if run_manager: run_manager.on_llm_new_token( chunk.text, verbose=self.verbose, )
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/ollama.html
68a8ae8de3c5-0
Source code for langchain.chat_models.openai """OpenAI chat wrapper.""" from __future__ import annotations import logging import os import sys from typing import ( TYPE_CHECKING, Any, AsyncIterator, Callable, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple, Type, Union, ) from langchain.adapters.openai import convert_dict_to_message, convert_message_to_dict from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import ( BaseChatModel, _agenerate_from_stream, _generate_from_stream, ) from langchain.llms.base import create_base_retry_decorator from langchain.pydantic_v1 import BaseModel, Field, root_validator from langchain.schema import ChatGeneration, ChatResult from langchain.schema.language_model import LanguageModelInput from langchain.schema.messages import ( AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessageChunk, FunctionMessageChunk, HumanMessageChunk, SystemMessageChunk, ToolMessageChunk, ) from langchain.schema.output import ChatGenerationChunk from langchain.schema.runnable import Runnable from langchain.utils import ( get_from_dict_or_env, get_pydantic_field_names, ) from langchain.utils.openai import is_openai_v1 if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) def _import_tiktoken() -> Any: try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. "
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-1
raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install tiktoken`." ) return tiktoken def _create_retry_decorator( llm: ChatOpenAI, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: import openai errors = [ openai.error.Timeout, openai.error.APIError, openai.error.APIConnectionError, openai.error.RateLimitError, openai.error.ServiceUnavailableError, ] return create_base_retry_decorator( error_types=errors, max_retries=llm.max_retries, run_manager=run_manager ) [docs]async def acompletion_with_retry( llm: ChatOpenAI, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the async completion call.""" if is_openai_v1(): return await llm.async_client.create(**kwargs) retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-2
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: role = _dict.get("role") content = _dict.get("content") or "" additional_kwargs: Dict = {} if _dict.get("function_call"): function_call = dict(_dict["function_call"]) if "name" in function_call and function_call["name"] is None: function_call["name"] = "" additional_kwargs["function_call"] = function_call if _dict.get("tool_calls"): additional_kwargs["tool_calls"] = _dict["tool_calls"] if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict["name"]) elif role == "tool" or default_class == ToolMessageChunk: return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"]) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) [docs]class ChatOpenAI(BaseChatModel): """`OpenAI` Chat large language models API. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key.
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-3
environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") """ @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @property def lc_attributes(self) -> Dict[str, Any]: attributes: Dict[str, Any] = {} if self.openai_organization: attributes["openai_organization"] = self.openai_organization if self.openai_api_base: attributes["openai_api_base"] = self.openai_api_base if self.openai_proxy: attributes["openai_proxy"] = self.openai_proxy return attributes [docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="gpt-3.5-turbo", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" # When updating this to use a SecretStr
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-4
# When updating this to use a SecretStr # Check for classes that derive from this class (as some of them # may assume openai_api_key is a str) openai_api_key: Optional[str] = Field(default=None, alias="api_key") """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" openai_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_organization: Optional[str] = Field(default=None, alias="organization") """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None request_timeout: Union[float, Tuple[float, float], Any, None] = Field( default=None, alias="timeout" ) """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.""" max_retries: int = 2 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" tiktoken_model_name: Optional[str] = None """The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-5
be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.""" default_headers: Union[Mapping[str, str], None] = None default_query: Union[Mapping[str, object], None] = None # Configure a custom httpx client. See the # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. http_client: Union[Any, None] = None """Optional httpx.Client.""" class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-6
) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) # Check OPENAI_ORGANIZATION for backwards compatibility. values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1():
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-7
) if is_openai_v1(): client_params = { "api_key": values["openai_api_key"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } if not values.get("client"): values["client"] = openai.OpenAI(**client_params).chat.completions if not values.get("async_client"): values["async_client"] = openai.AsyncOpenAI( **client_params ).chat.completions elif not values.get("client"): values["client"] = openai.ChatCompletion else: pass return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" params = { "model": self.model_name, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } if self.max_tokens is not None: params["max_tokens"] = self.max_tokens if self.request_timeout is not None and not is_openai_v1(): params["request_timeout"] = self.request_timeout return params [docs] def completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call."""
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-8
) -> Any: """Use tenacity to retry the completion call.""" if is_openai_v1(): return self.client.create(**kwargs) retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} system_fingerprint = None for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v if system_fingerprint is None: system_fingerprint = output.get("system_fingerprint") combined = {"token_usage": overall_token_usage, "model_name": self.model_name} if system_fingerprint: combined["system_fingerprint"] = system_fingerprint return combined def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True} default_chunk_class = AIMessageChunk for chunk in self.completion_with_retry(
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-9
default_chunk_class = AIMessageChunk for chunk in self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ): if not isinstance(chunk, dict): chunk = chunk.dict() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) finish_reason = choice.get("finish_reason") generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) def _create_message_dicts(
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-10
return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._client_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: generations = [] if not isinstance(response, dict): response = response.dict() for res in response["choices"]: message = convert_dict_to_message(res["message"]) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.get("finish_reason")), ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = { "token_usage": token_usage, "model_name": self.model_name, "system_fingerprint": response.get("system_fingerprint", ""), } return ChatResult(generations=generations, llm_output=llm_output) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True}
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-11
params = {**params, **kwargs, "stream": True} default_chunk_class = AIMessageChunk async for chunk in await acompletion_with_retry( self, messages=message_dicts, run_manager=run_manager, **params ): if not isinstance(chunk, dict): chunk = chunk.dict() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) finish_reason = choice.get("finish_reason") generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) yield chunk if run_manager: await run_manager.on_llm_new_token(token=chunk.text, chunk=chunk) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await _agenerate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} response = await acompletion_with_retry(
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-12
response = await acompletion_with_retry( self, messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _client_params(self) -> Dict[str, Any]: """Get the parameters used for the openai client.""" openai_creds: Dict[str, Any] = { "model": self.model_name, } if not is_openai_v1(): openai_creds.update( { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, } ) if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**self._default_params, **openai_creds} def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" return { "model": self.model_name, **super()._get_invocation_params(stop=stop), **self._default_params, **kwargs, } @property def _llm_type(self) -> str: """Return type of chat model.""" return "openai-chat"
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-13
"""Return type of chat model.""" return "openai-chat" def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() if self.tiktoken_model_name is not None: model = self.tiktoken_model_name else: model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding [docs] def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_token_ids(text) _, encoding_model = self._get_encoding_model() return encoding_model.encode(text) [docs] def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-14
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() if model.startswith("gpt-3.5-turbo-0301"): # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model.startswith("gpt-3.5-turbo") or model.startswith("gpt-4"): tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): # Cast str(value) in case the message value is not a string # This occurs with function messages num_tokens += len(encoding.encode(str(value))) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-15
# every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens [docs] def bind_functions( self, functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]], function_call: Optional[str] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind functions (and other objects) to this chat model. Args: functions: A list of function definitions to bind to this chat model. Can be a dictionary, pydantic model, or callable. Pydantic models and callables will be automatically converted to their schema dictionary representation. function_call: Which function to require the model to call. Must be the name of the single provided function or "auto" to automatically determine which function to call (if any). kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ from langchain.chains.openai_functions.base import convert_to_openai_function formatted_functions = [convert_to_openai_function(fn) for fn in functions] if function_call is not None: if len(formatted_functions) != 1: raise ValueError( "When specifying `function_call`, you must provide exactly one " "function." ) if formatted_functions[0]["name"] != function_call: raise ValueError( f"Function call {function_call} was specified, but the only " f"provided function was {formatted_functions[0]['name']}." ) function_call_ = {"name": function_call}
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
68a8ae8de3c5-16
) function_call_ = {"name": function_call} kwargs = {**kwargs, "function_call": function_call_} return super().bind( functions=formatted_functions, **kwargs, )
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
064a9b403032-0
Source code for langchain.chat_loaders.gmail import base64 import re from typing import Any, Iterator from langchain.chat_loaders.base import BaseChatLoader from langchain.schema.chat import ChatSession from langchain.schema.messages import HumanMessage def _extract_email_content(msg: Any) -> HumanMessage: from_email = None for values in msg["payload"]["headers"]: name = values["name"] if name == "From": from_email = values["value"] if from_email is None: raise ValueError for part in msg["payload"]["parts"]: if part["mimeType"] == "text/plain": data = part["body"]["data"] data = base64.urlsafe_b64decode(data).decode("utf-8") # Regular expression to split the email body at the first # occurrence of a line that starts with "On ... wrote:" pattern = re.compile(r"\r\nOn .+(\r\n)*wrote:\r\n") # Split the email body and extract the first part newest_response = re.split(pattern, data)[0] message = HumanMessage( content=newest_response, additional_kwargs={"sender": from_email} ) return message raise ValueError def _get_message_data(service: Any, message: Any) -> ChatSession: msg = service.users().messages().get(userId="me", id=message["id"]).execute() message_content = _extract_email_content(msg) in_reply_to = None email_data = msg["payload"]["headers"] for values in email_data: name = values["name"] if name == "In-Reply-To": in_reply_to = values["value"] if in_reply_to is None: raise ValueError
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/gmail.html
064a9b403032-1
if in_reply_to is None: raise ValueError thread_id = msg["threadId"] thread = service.users().threads().get(userId="me", id=thread_id).execute() messages = thread["messages"] response_email = None for message in messages: email_data = message["payload"]["headers"] for values in email_data: if values["name"] == "Message-ID": message_id = values["value"] if message_id == in_reply_to: response_email = message if response_email is None: raise ValueError starter_content = _extract_email_content(response_email) return ChatSession(messages=[starter_content, message_content]) [docs]class GMailLoader(BaseChatLoader): """Load data from `GMail`. There are many ways you could want to load data from GMail. This loader is currently fairly opinionated in how to do so. The way it does it is it first looks for all messages that you have sent. It then looks for messages where you are responding to a previous email. It then fetches that previous email, and creates a training example of that email, followed by your email. Note that there are clear limitations here. For example, all examples created are only looking at the previous email for context. To use: - Set up a Google Developer Account: Go to the Google Developer Console, create a project, and enable the Gmail API for that project. This will give you a credentials.json file that you'll need later. """ [docs] def __init__(self, creds: Any, n: int = 100, raise_error: bool = False) -> None: super().__init__()
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/gmail.html
064a9b403032-2
super().__init__() self.creds = creds self.n = n self.raise_error = raise_error [docs] def lazy_load(self) -> Iterator[ChatSession]: from googleapiclient.discovery import build service = build("gmail", "v1", credentials=self.creds) results = ( service.users() .messages() .list(userId="me", labelIds=["SENT"], maxResults=self.n) .execute() ) messages = results.get("messages", []) for message in messages: try: yield _get_message_data(service, message) except Exception as e: # TODO: handle errors better if self.raise_error: raise e else: pass
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/gmail.html
7c54ae1edfd2-0
Source code for langchain.chat_loaders.base from abc import ABC, abstractmethod from typing import Iterator, List from langchain.schema.chat import ChatSession [docs]class BaseChatLoader(ABC): """Base class for chat loaders.""" [docs] @abstractmethod def lazy_load(self) -> Iterator[ChatSession]: """Lazy load the chat sessions.""" [docs] def load(self) -> List[ChatSession]: """Eagerly load the chat sessions into memory.""" return list(self.lazy_load())
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/base.html
c4382d75a139-0
Source code for langchain.chat_loaders.imessage from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Iterator, List, Optional, Union from langchain.chat_loaders.base import BaseChatLoader from langchain.schema import HumanMessage from langchain.schema.chat import ChatSession if TYPE_CHECKING: import sqlite3 [docs]class IMessageChatLoader(BaseChatLoader): """Load chat sessions from the `iMessage` chat.db SQLite file. It only works on macOS when you have iMessage enabled and have the chat.db file. The chat.db file is likely located at ~/Library/Messages/chat.db. However, your terminal may not have permission to access this file. To resolve this, you can copy the file to a different location, change the permissions of the file, or grant full disk access for your terminal emulator in System Settings > Security and Privacy > Full Disk Access. """ [docs] def __init__(self, path: Optional[Union[str, Path]] = None): """ Initialize the IMessageChatLoader. Args: path (str or Path, optional): Path to the chat.db SQLite file. Defaults to None, in which case the default path ~/Library/Messages/chat.db will be used. """ if path is None: path = Path.home() / "Library" / "Messages" / "chat.db" self.db_path = path if isinstance(path, Path) else Path(path) if not self.db_path.exists(): raise FileNotFoundError(f"File {self.db_path} not found") try: import sqlite3 # noqa: F401 except ImportError as e: raise ImportError(
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/imessage.html
c4382d75a139-1
except ImportError as e: raise ImportError( "The sqlite3 module is required to load iMessage chats.\n" "Please install it with `pip install pysqlite3`" ) from e def _load_single_chat_session( self, cursor: "sqlite3.Cursor", chat_id: int ) -> ChatSession: """ Load a single chat session from the iMessage chat.db. Args: cursor: SQLite cursor object. chat_id (int): ID of the chat session to load. Returns: ChatSession: Loaded chat session. """ results: List[HumanMessage] = [] query = """ SELECT message.date, handle.id, message.text FROM message JOIN chat_message_join ON message.ROWID = chat_message_join.message_id JOIN handle ON message.handle_id = handle.ROWID WHERE chat_message_join.chat_id = ? ORDER BY message.date ASC; """ cursor.execute(query, (chat_id,)) messages = cursor.fetchall() for date, sender, text in messages: if text: # Skip empty messages results.append( HumanMessage( role=sender, content=text, additional_kwargs={ "message_time": date, "sender": sender, }, ) ) return ChatSession(messages=results) [docs] def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the iMessage chat.db and yield them in the required format. Yields: ChatSession: Loaded chat session. """ import sqlite3 try: conn = sqlite3.connect(self.db_path)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/imessage.html
c4382d75a139-2
import sqlite3 try: conn = sqlite3.connect(self.db_path) except sqlite3.OperationalError as e: raise ValueError( f"Could not open iMessage DB file {self.db_path}.\n" "Make sure your terminal emulator has disk access to this file.\n" " You can either copy the DB file to an accessible location" " or grant full disk access for your terminal emulator." " You can grant full disk access for your terminal emulator" " in System Settings > Security and Privacy > Full Disk Access." ) from e cursor = conn.cursor() # Fetch the list of chat IDs sorted by time (most recent first) query = """SELECT chat_id FROM message JOIN chat_message_join ON message.ROWID = chat_message_join.message_id GROUP BY chat_id ORDER BY MAX(date) DESC;""" cursor.execute(query) chat_ids = [row[0] for row in cursor.fetchall()] for chat_id in chat_ids: yield self._load_single_chat_session(cursor, chat_id) conn.close()
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/imessage.html
ce783fcc1491-0
Source code for langchain.chat_loaders.utils """Utilities for chat loaders.""" from copy import deepcopy from typing import Iterable, Iterator, List from langchain.schema.chat import ChatSession from langchain.schema.messages import AIMessage, BaseMessage [docs]def merge_chat_runs_in_session( chat_session: ChatSession, delimiter: str = "\n\n" ) -> ChatSession: """Merge chat runs together in a chat session. A chat run is a sequence of messages from the same sender. Args: chat_session: A chat session. Returns: A chat session with merged chat runs. """ messages: List[BaseMessage] = [] for message in chat_session["messages"]: if not isinstance(message.content, str): raise ValueError( "Chat Loaders only support messages with content type string, " f"got {message.content}" ) if not messages: messages.append(deepcopy(message)) elif ( isinstance(message, type(messages[-1])) and messages[-1].additional_kwargs.get("sender") is not None and messages[-1].additional_kwargs["sender"] == message.additional_kwargs.get("sender") ): if not isinstance(messages[-1].content, str): raise ValueError( "Chat Loaders only support messages with content type string, " f"got {messages[-1].content}" ) messages[-1].content = ( messages[-1].content + delimiter + message.content ).strip() messages[-1].additional_kwargs.get("events", []).extend( message.additional_kwargs.get("events") or [] ) else: messages.append(deepcopy(message)) return ChatSession(messages=messages)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/utils.html
ce783fcc1491-1
messages.append(deepcopy(message)) return ChatSession(messages=messages) [docs]def merge_chat_runs(chat_sessions: Iterable[ChatSession]) -> Iterator[ChatSession]: """Merge chat runs together. A chat run is a sequence of messages from the same sender. Args: chat_sessions: A list of chat sessions. Returns: A list of chat sessions with merged chat runs. """ for chat_session in chat_sessions: yield merge_chat_runs_in_session(chat_session) [docs]def map_ai_messages_in_session(chat_sessions: ChatSession, sender: str) -> ChatSession: """Convert messages from the specified 'sender' to AI messages. This is useful for fine-tuning the AI to adapt to your voice. """ messages = [] num_converted = 0 for message in chat_sessions["messages"]: if message.additional_kwargs.get("sender") == sender: message = AIMessage( content=message.content, additional_kwargs=message.additional_kwargs.copy(), example=getattr(message, "example", None), ) num_converted += 1 messages.append(message) return ChatSession(messages=messages) [docs]def map_ai_messages( chat_sessions: Iterable[ChatSession], sender: str ) -> Iterator[ChatSession]: """Convert messages from the specified 'sender' to AI messages. This is useful for fine-tuning the AI to adapt to your voice. """ for chat_session in chat_sessions: yield map_ai_messages_in_session(chat_session, sender)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/utils.html
2c178cc73461-0
Source code for langchain.chat_loaders.whatsapp import logging import os import re import zipfile from typing import Iterator, List, Union from langchain.chat_loaders.base import BaseChatLoader from langchain.schema import AIMessage, HumanMessage from langchain.schema.chat import ChatSession logger = logging.getLogger(__name__) [docs]class WhatsAppChatLoader(BaseChatLoader): """Load `WhatsApp` conversations from a dump zip file or directory.""" [docs] def __init__(self, path: str): """Initialize the WhatsAppChatLoader. Args: path (str): Path to the exported WhatsApp chat zip directory, folder, or file. To generate the dump, open the chat, click the three dots in the top right corner, and select "More". Then select "Export chat" and choose "Without media". """ self.path = path ignore_lines = [ "This message was deleted", "<Media omitted>", "image omitted", "Messages and calls are end-to-end encrypted. No one outside of this chat," " not even WhatsApp, can read or listen to them.", ] self._ignore_lines = re.compile( r"(" + "|".join([r"\u200E*" + line for line in ignore_lines]) + r")", flags=re.IGNORECASE, ) self._message_line_regex = re.compile( r"\u200E*\[?(\d{1,2}/\d{1,2}/\d{2,4}, \d{1,2}:\d{2}:\d{2} (?:AM|PM))\]?[ \u200E]*([^:]+): (.+)", # noqa flags=re.IGNORECASE,
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/whatsapp.html
2c178cc73461-1
flags=re.IGNORECASE, ) def _load_single_chat_session(self, file_path: str) -> ChatSession: """Load a single chat session from a file. Args: file_path (str): Path to the chat file. Returns: ChatSession: The loaded chat session. """ with open(file_path, "r", encoding="utf-8") as file: txt = file.read() # Split messages by newlines, but keep multi-line messages grouped chat_lines: List[str] = [] current_message = "" for line in txt.split("\n"): if self._message_line_regex.match(line): if current_message: chat_lines.append(current_message) current_message = line else: current_message += " " + line.strip() if current_message: chat_lines.append(current_message) results: List[Union[HumanMessage, AIMessage]] = [] for line in chat_lines: result = self._message_line_regex.match(line.strip()) if result: timestamp, sender, text = result.groups() if not self._ignore_lines.match(text.strip()): results.append( HumanMessage( role=sender, content=text, additional_kwargs={ "sender": sender, "events": [{"message_time": timestamp}], }, ) ) else: logger.debug(f"Could not parse line: {line}") return ChatSession(messages=results) def _iterate_files(self, path: str) -> Iterator[str]: """Iterate over the files in a directory or zip file. Args: path (str): Path to the directory or zip file.
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/whatsapp.html
2c178cc73461-2
Args: path (str): Path to the directory or zip file. Yields: str: The path to each file. """ if os.path.isfile(path): yield path elif os.path.isdir(path): for root, _, files in os.walk(path): for file in files: if file.endswith(".txt"): yield os.path.join(root, file) elif zipfile.is_zipfile(path): with zipfile.ZipFile(path) as zip_file: for file in zip_file.namelist(): if file.endswith(".txt"): yield zip_file.extract(file) [docs] def lazy_load(self) -> Iterator[ChatSession]: """Lazy load the messages from the chat file and yield them as chat sessions. Yields: Iterator[ChatSession]: The loaded chat sessions. """ yield self._load_single_chat_session(self.path)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/whatsapp.html
b806c36ce6f7-0
Source code for langchain.chat_loaders.slack import json import logging import re import zipfile from pathlib import Path from typing import Dict, Iterator, List, Union from langchain.chat_loaders.base import BaseChatLoader from langchain.schema import AIMessage, HumanMessage from langchain.schema.chat import ChatSession logger = logging.getLogger(__name__) [docs]class SlackChatLoader(BaseChatLoader): """Load `Slack` conversations from a dump zip file.""" [docs] def __init__( self, path: Union[str, Path], ): """ Initialize the chat loader with the path to the exported Slack dump zip file. :param path: Path to the exported Slack dump zip file. """ self.zip_path = path if isinstance(path, Path) else Path(path) if not self.zip_path.exists(): raise FileNotFoundError(f"File {self.zip_path} not found") def _load_single_chat_session(self, messages: List[Dict]) -> ChatSession: results: List[Union[AIMessage, HumanMessage]] = [] previous_sender = None for message in messages: if not isinstance(message, dict): continue text = message.get("text", "") timestamp = message.get("ts", "") sender = message.get("user", "") if not sender: continue skip_pattern = re.compile( r"<@U\d+> has joined the channel", flags=re.IGNORECASE ) if skip_pattern.match(text): continue if sender == previous_sender: results[-1].content += "\n\n" + text results[-1].additional_kwargs["events"].append( {"message_time": timestamp} ) else:
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/slack.html
b806c36ce6f7-1
{"message_time": timestamp} ) else: results.append( HumanMessage( role=sender, content=text, additional_kwargs={ "sender": sender, "events": [{"message_time": timestamp}], }, ) ) previous_sender = sender return ChatSession(messages=results) def _read_json(self, zip_file: zipfile.ZipFile, file_path: str) -> List[dict]: """Read JSON data from a zip subfile.""" with zip_file.open(file_path, "r") as f: data = json.load(f) if not isinstance(data, list): raise ValueError(f"Expected list of dictionaries, got {type(data)}") return data [docs] def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the Slack dump file and yield them in the required format. :return: Iterator of chat sessions containing messages. """ with zipfile.ZipFile(str(self.zip_path), "r") as zip_file: for file_path in zip_file.namelist(): if file_path.endswith(".json"): messages = self._read_json(zip_file, file_path) yield self._load_single_chat_session(messages)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/slack.html
a3a353173816-0
Source code for langchain.chat_loaders.telegram import json import logging import os import tempfile import zipfile from pathlib import Path from typing import Iterator, List, Union from langchain.chat_loaders.base import BaseChatLoader from langchain.schema import AIMessage, BaseMessage, HumanMessage from langchain.schema.chat import ChatSession logger = logging.getLogger(__name__) [docs]class TelegramChatLoader(BaseChatLoader): """Load `telegram` conversations to LangChain chat messages. To export, use the Telegram Desktop app from https://desktop.telegram.org/, select a conversation, click the three dots in the top right corner, and select "Export chat history". Then select "Machine-readable JSON" (preferred) to export. Note: the 'lite' versions of the desktop app (like "Telegram for MacOS") do not support exporting chat history. """ [docs] def __init__( self, path: Union[str, Path], ): """Initialize the TelegramChatLoader. Args: path (Union[str, Path]): Path to the exported Telegram chat zip, directory, json, or HTML file. """ self.path = path if isinstance(path, str) else str(path) def _load_single_chat_session_html(self, file_path: str) -> ChatSession: """Load a single chat session from an HTML file. Args: file_path (str): Path to the HTML file. Returns: ChatSession: The loaded chat session. """ try: from bs4 import BeautifulSoup except ImportError: raise ImportError( "Please install the 'beautifulsoup4' package to load" " Telegram HTML files. You can do this by running"
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/telegram.html
a3a353173816-1
" Telegram HTML files. You can do this by running" "'pip install beautifulsoup4' in your terminal." ) with open(file_path, "r", encoding="utf-8") as file: soup = BeautifulSoup(file, "html.parser") results: List[Union[HumanMessage, AIMessage]] = [] previous_sender = None for message in soup.select(".message.default"): timestamp = message.select_one(".pull_right.date.details")["title"] from_name_element = message.select_one(".from_name") if from_name_element is None and previous_sender is None: logger.debug("from_name not found in message") continue elif from_name_element is None: from_name = previous_sender else: from_name = from_name_element.text.strip() text = message.select_one(".text").text.strip() results.append( HumanMessage( content=text, additional_kwargs={ "sender": from_name, "events": [{"message_time": timestamp}], }, ) ) previous_sender = from_name return ChatSession(messages=results) def _load_single_chat_session_json(self, file_path: str) -> ChatSession: """Load a single chat session from a JSON file. Args: file_path (str): Path to the JSON file. Returns: ChatSession: The loaded chat session. """ with open(file_path, "r", encoding="utf-8") as file: data = json.load(file) messages = data.get("messages", []) results: List[BaseMessage] = [] for message in messages: text = message.get("text", "")
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/telegram.html
a3a353173816-2
for message in messages: text = message.get("text", "") timestamp = message.get("date", "") from_name = message.get("from", "") results.append( HumanMessage( content=text, additional_kwargs={ "sender": from_name, "events": [{"message_time": timestamp}], }, ) ) return ChatSession(messages=results) def _iterate_files(self, path: str) -> Iterator[str]: """Iterate over files in a directory or zip file. Args: path (str): Path to the directory or zip file. Yields: str: Path to each file. """ if os.path.isfile(path) and path.endswith((".html", ".json")): yield path elif os.path.isdir(path): for root, _, files in os.walk(path): for file in files: if file.endswith((".html", ".json")): yield os.path.join(root, file) elif zipfile.is_zipfile(path): with zipfile.ZipFile(path) as zip_file: for file in zip_file.namelist(): if file.endswith((".html", ".json")): with tempfile.TemporaryDirectory() as temp_dir: yield zip_file.extract(file, path=temp_dir) [docs] def lazy_load(self) -> Iterator[ChatSession]: """Lazy load the messages from the chat file and yield them in as chat sessions. Yields: ChatSession: The loaded chat session. """ for file_path in self._iterate_files(self.path): if file_path.endswith(".html"): yield self._load_single_chat_session_html(file_path)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/telegram.html
a3a353173816-3
yield self._load_single_chat_session_html(file_path) elif file_path.endswith(".json"): yield self._load_single_chat_session_json(file_path)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/telegram.html
a852be63a738-0
Source code for langchain.chat_loaders.langsmith from __future__ import annotations import logging from typing import TYPE_CHECKING, Dict, Iterable, Iterator, List, Optional, Union, cast from langchain.chat_loaders.base import BaseChatLoader from langchain.load import load from langchain.schema.chat import ChatSession if TYPE_CHECKING: from langsmith.client import Client from langsmith.schemas import Run logger = logging.getLogger(__name__) [docs]class LangSmithRunChatLoader(BaseChatLoader): """ Load chat sessions from a list of LangSmith "llm" runs. Attributes: runs (Iterable[Union[str, Run]]): The list of LLM run IDs or run objects. client (Client): Instance of LangSmith client for fetching data. """ [docs] def __init__( self, runs: Iterable[Union[str, Run]], client: Optional["Client"] = None ): """ Initialize a new LangSmithRunChatLoader instance. :param runs: List of LLM run IDs or run objects. :param client: An instance of LangSmith client, if not provided, a new client instance will be created. """ from langsmith.client import Client self.runs = runs self.client = client or Client() def _load_single_chat_session(self, llm_run: "Run") -> ChatSession: """ Convert an individual LangSmith LLM run to a ChatSession. :param llm_run: The LLM run object. :return: A chat session representing the run's data. """ chat_session = LangSmithRunChatLoader._get_messages_from_llm_run(llm_run)
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/langsmith.html
a852be63a738-1
functions = LangSmithRunChatLoader._get_functions_from_llm_run(llm_run) if functions: chat_session["functions"] = functions return chat_session @staticmethod def _get_messages_from_llm_run(llm_run: "Run") -> ChatSession: """ Extract messages from a LangSmith LLM run. :param llm_run: The LLM run object. :return: ChatSession with the extracted messages. """ if llm_run.run_type != "llm": raise ValueError(f"Expected run of type llm. Got: {llm_run.run_type}") if "messages" not in llm_run.inputs: raise ValueError(f"Run has no 'messages' inputs. Got {llm_run.inputs}") if not llm_run.outputs: raise ValueError("Cannot convert pending run") messages = load(llm_run.inputs)["messages"] message_chunk = load(llm_run.outputs)["generations"][0]["message"] return ChatSession(messages=messages + [message_chunk]) @staticmethod def _get_functions_from_llm_run(llm_run: "Run") -> Optional[List[Dict]]: """ Extract functions from a LangSmith LLM run if they exist. :param llm_run: The LLM run object. :return: Functions from the run or None. """ if llm_run.run_type != "llm": raise ValueError(f"Expected run of type llm. Got: {llm_run.run_type}") return (llm_run.extra or {}).get("invocation_params", {}).get("functions") [docs] def lazy_load(self) -> Iterator[ChatSession]: """
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/langsmith.html
a852be63a738-2
[docs] def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the iterable of run IDs. This method fetches the runs and converts them to chat sessions on-the-fly, yielding one session at a time. :return: Iterator of chat sessions containing messages. """ from langsmith.schemas import Run for run_obj in self.runs: try: if hasattr(run_obj, "id"): run = run_obj else: run = self.client.read_run(run_obj) session = self._load_single_chat_session(cast(Run, run)) yield session except ValueError as e: logger.warning(f"Could not load run {run_obj}: {repr(e)}") continue [docs]class LangSmithDatasetChatLoader(BaseChatLoader): """ Load chat sessions from a LangSmith dataset with the "chat" data type. Attributes: dataset_name (str): The name of the LangSmith dataset. client (Client): Instance of LangSmith client for fetching data. """ [docs] def __init__(self, *, dataset_name: str, client: Optional["Client"] = None): """ Initialize a new LangSmithChatDatasetLoader instance. :param dataset_name: The name of the LangSmith dataset. :param client: An instance of LangSmith client; if not provided, a new client instance will be created. """ try: from langsmith.client import Client except ImportError as e: raise ImportError( "The LangSmith client is required to load LangSmith datasets.\n" "Please install it with `pip install langsmith`" ) from e
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/langsmith.html
a852be63a738-3
"Please install it with `pip install langsmith`" ) from e self.dataset_name = dataset_name self.client = client or Client() [docs] def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the specified LangSmith dataset. This method fetches the chat data from the dataset and converts each data point to chat sessions on-the-fly, yielding one session at a time. :return: Iterator of chat sessions containing messages. """ from langchain.adapters import openai as oai_adapter # noqa: E402 data = self.client.read_dataset_openai_finetuning( dataset_name=self.dataset_name ) for data_point in data: yield ChatSession( messages=[ oai_adapter.convert_dict_to_message(m) for m in data_point.get("messages", []) ], functions=data_point.get("functions"), )
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/langsmith.html
8c2b578ce10a-0
Source code for langchain.chat_loaders.facebook_messenger import json import logging from pathlib import Path from typing import Iterator, Union from langchain.chat_loaders.base import BaseChatLoader from langchain.schema.chat import ChatSession from langchain.schema.messages import HumanMessage logger = logging.getLogger(__file__) [docs]class SingleFileFacebookMessengerChatLoader(BaseChatLoader): """Load `Facebook Messenger` chat data from a single file. Args: path (Union[Path, str]): The path to the chat file. Attributes: path (Path): The path to the chat file. """ [docs] def __init__(self, path: Union[Path, str]) -> None: super().__init__() self.file_path = path if isinstance(path, Path) else Path(path) [docs] def lazy_load(self) -> Iterator[ChatSession]: """Lazy loads the chat data from the file. Yields: ChatSession: A chat session containing the loaded messages. """ with open(self.file_path) as f: data = json.load(f) sorted_data = sorted(data["messages"], key=lambda x: x["timestamp_ms"]) messages = [] for m in sorted_data: messages.append( HumanMessage( content=m["content"], additional_kwargs={"sender": m["sender_name"]} ) ) yield ChatSession(messages=messages) [docs]class FolderFacebookMessengerChatLoader(BaseChatLoader): """Load `Facebook Messenger` chat data from a folder. Args: path (Union[str, Path]): The path to the directory containing the chat files. Attributes: path (Path): The path to the directory containing the chat files.
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/facebook_messenger.html
8c2b578ce10a-1
Attributes: path (Path): The path to the directory containing the chat files. """ [docs] def __init__(self, path: Union[str, Path]) -> None: super().__init__() self.directory_path = Path(path) if isinstance(path, str) else path [docs] def lazy_load(self) -> Iterator[ChatSession]: """Lazy loads the chat data from the folder. Yields: ChatSession: A chat session containing the loaded messages. """ inbox_path = self.directory_path / "inbox" for _dir in inbox_path.iterdir(): if _dir.is_dir(): for _file in _dir.iterdir(): if _file.suffix.lower() == ".json": file_loader = SingleFileFacebookMessengerChatLoader(path=_file) for result in file_loader.lazy_load(): yield result
lang/api.python.langchain.com/en/latest/_modules/langchain/chat_loaders/facebook_messenger.html
62ef9e7e024b-0
Source code for langchain.schema.chat from typing import Sequence, TypedDict from langchain.schema import BaseMessage [docs]class ChatSession(TypedDict, total=False): """Chat Session represents a single conversation, channel, or other group of messages.""" messages: Sequence[BaseMessage] """The LangChain chat messages loaded from the source.""" functions: Sequence[dict] """The function calling specs for the messages."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/chat.html
0e2b255b4cc9-0
Source code for langchain.schema.agent from __future__ import annotations from typing import Any, Literal, Sequence, Union from langchain.load.serializable import Serializable from langchain.schema.messages import BaseMessage [docs]class AgentAction(Serializable): """A full description of an action for an ActionAgent to execute.""" tool: str """The name of the Tool to execute.""" tool_input: Union[str, dict] """The input to pass in to the Tool.""" log: str """Additional information to log about the action. This log can be used in a few ways. First, it can be used to audit what exactly the LLM predicted to lead to this (tool, tool_input). Second, it can be used in future iterations to show the LLMs prior thoughts. This is useful when (tool, tool_input) does not contain full information about the LLM prediction (for example, any `thought` before the tool/tool_input).""" type: Literal["AgentAction"] = "AgentAction" def __init__( self, tool: str, tool_input: Union[str, dict], log: str, **kwargs: Any ): """Override init to support instantiation by position for backward compat.""" super().__init__(tool=tool, tool_input=tool_input, log=log, **kwargs) [docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable.""" return True [docs]class AgentActionMessageLog(AgentAction): message_log: Sequence[BaseMessage] """Similar to log, this can be used to pass along extra information about what exact messages were predicted by the LLM
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/agent.html
0e2b255b4cc9-1
information about what exact messages were predicted by the LLM before parsing out the (tool, tool_input). This is again useful if (tool, tool_input) cannot be used to fully recreate the LLM prediction, and you need that LLM prediction (for future agent iteration). Compared to `log`, this is useful when the underlying LLM is a ChatModel (and therefore returns messages rather than a string).""" # Ignoring type because we're overriding the type from AgentAction. # And this is the correct thing to do in this case. # The type literal is used for serialization purposes. type: Literal["AgentActionMessageLog"] = "AgentActionMessageLog" # type: ignore [docs]class AgentFinish(Serializable): """The final return value of an ActionAgent.""" return_values: dict """Dictionary of return values.""" log: str """Additional information to log about the return value. This is used to pass along the full LLM prediction, not just the parsed out return value. For example, if the full LLM prediction was `Final Answer: 2` you may want to just return `2` as a return value, but pass along the full string as a `log` (for debugging or observability purposes). """ type: Literal["AgentFinish"] = "AgentFinish" def __init__(self, return_values: dict, log: str, **kwargs: Any): """Override init to support instantiation by position for backward compat.""" super().__init__(return_values=return_values, log=log, **kwargs) [docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/agent.html
0e2b255b4cc9-2
"""Return whether or not the class is serializable.""" return True
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/agent.html
4584d22dff93-0
Source code for langchain.schema.document from __future__ import annotations import asyncio from abc import ABC, abstractmethod from functools import partial from typing import Any, Literal, Sequence from langchain.load.serializable import Serializable from langchain.pydantic_v1 import Field [docs]class Document(Serializable): """Class for storing a piece of text and associated metadata.""" page_content: str """String text.""" metadata: dict = Field(default_factory=dict) """Arbitrary metadata about the page content (e.g., source, relationships to other documents, etc.). """ type: Literal["Document"] = "Document" [docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable.""" return True [docs]class BaseDocumentTransformer(ABC): """Abstract base class for document transformation systems. A document transformation system takes a sequence of Documents and returns a sequence of transformed Documents. Example: .. code-block:: python class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): embeddings: Embeddings similarity_fn: Callable = cosine_similarity similarity_threshold: float = 0.95 class Config: arbitrary_types_allowed = True def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_similar_embeddings( embedded_documents, self.similarity_fn, self.similarity_threshold ) return [stateful_documents[i] for i in sorted(included_idxs)]
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/document.html
4584d22dff93-1
) return [stateful_documents[i] for i in sorted(included_idxs)] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError """ # noqa: E501 [docs] @abstractmethod def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform a list of documents. Args: documents: A sequence of Documents to be transformed. Returns: A list of transformed Documents. """ [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a list of documents. Args: documents: A sequence of Documents to be transformed. Returns: A list of transformed Documents. """ return await asyncio.get_running_loop().run_in_executor( None, partial(self.transform_documents, **kwargs), documents )
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/document.html
4e647ed1cf51-0
Source code for langchain.schema.cache from __future__ import annotations from abc import ABC, abstractmethod from typing import Any, Optional, Sequence from langchain.schema.output import Generation RETURN_VAL_TYPE = Sequence[Generation] [docs]class BaseCache(ABC): """Base interface for cache.""" [docs] @abstractmethod def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" [docs] @abstractmethod def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string.""" [docs] @abstractmethod def clear(self, **kwargs: Any) -> None: """Clear cache that can take additional keyword arguments."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/cache.html
61ec9d2f588e-0
Source code for langchain.schema.prompt_template from __future__ import annotations import json from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Mapping, Optional, Type, Union import yaml from langchain.pydantic_v1 import BaseModel, Field, create_model, root_validator from langchain.schema.document import Document from langchain.schema.output_parser import BaseOutputParser from langchain.schema.prompt import PromptValue from langchain.schema.runnable import RunnableConfig, RunnableSerializable [docs]class BasePromptTemplate(RunnableSerializable[Dict, PromptValue], ABC): """Base class for all prompt templates, returning a prompt.""" input_variables: List[str] """A list of the names of the variables the prompt template expects.""" input_types: Dict[str, Any] = Field(default_factory=dict) """A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings.""" output_parser: Optional[BaseOutputParser] = None """How to parse the output of calling an LLM on this formatted prompt.""" partial_variables: Mapping[str, Union[str, Callable[[], str]]] = Field( default_factory=dict ) [docs] @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable.""" return True class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @property def OutputType(self) -> Any: from langchain.prompts.base import StringPromptValue from langchain.prompts.chat import ChatPromptValueConcrete return Union[StringPromptValue, ChatPromptValueConcrete] [docs] def get_input_schema(
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/prompt_template.html
61ec9d2f588e-1
[docs] def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: # This is correct, but pydantic typings/mypy don't think so. return create_model( # type: ignore[call-overload] "PromptInput", **{k: (self.input_types.get(k, str), None) for k in self.input_variables}, ) [docs] def invoke( self, input: Dict, config: Optional[RunnableConfig] = None ) -> PromptValue: return self._call_with_config( lambda inner_input: self.format_prompt( **{key: inner_input[key] for key in self.input_variables} ), input, config, run_type="prompt", ) [docs] @abstractmethod def format_prompt(self, **kwargs: Any) -> PromptValue: """Create Chat Messages.""" @root_validator() def validate_variable_names(cls, values: Dict) -> Dict: """Validate variable names do not include restricted names.""" if "stop" in values["input_variables"]: raise ValueError( "Cannot have an input variable named 'stop', as it is used internally," " please rename." ) if "stop" in values["partial_variables"]: raise ValueError( "Cannot have an partial variable named 'stop', as it is used " "internally, please rename." ) overall = set(values["input_variables"]).intersection( values["partial_variables"] ) if overall: raise ValueError( f"Found overlapping input and partial variables: {overall}" ) return values
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/prompt_template.html
61ec9d2f588e-2
) return values [docs] def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate: """Return a partial of the prompt template.""" prompt_dict = self.__dict__.copy() prompt_dict["input_variables"] = list( set(self.input_variables).difference(kwargs) ) prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs} return type(self)(**prompt_dict) def _merge_partial_and_user_variables(self, **kwargs: Any) -> Dict[str, Any]: # Get partial params: partial_kwargs = { k: v if isinstance(v, str) else v() for k, v in self.partial_variables.items() } return {**partial_kwargs, **kwargs} [docs] @abstractmethod def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ @property def _prompt_type(self) -> str: """Return the prompt type key.""" raise NotImplementedError [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of prompt.""" prompt_dict = super().dict(**kwargs) try: prompt_dict["_type"] = self._prompt_type except NotImplementedError: pass return prompt_dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the prompt. Args:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/prompt_template.html
61ec9d2f588e-3
"""Save the prompt. Args: file_path: Path to directory to save prompt to. Example: .. code-block:: python prompt.save(file_path="path/prompt.yaml") """ if self.partial_variables: raise ValueError("Cannot save prompt with partial variables.") # Fetch dictionary to save prompt_dict = self.dict() if "_type" not in prompt_dict: raise NotImplementedError(f"Prompt {self} does not support saving.") # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(prompt_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(prompt_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs]def format_document(doc: Document, prompt: BasePromptTemplate) -> str: """Format a document into a string based on a prompt template. First, this pulls information from the document from two sources: 1. `page_content`: This takes the information from the `document.page_content` and assigns it to a variable named `page_content`. 2. metadata: This takes information from `document.metadata` and assigns it to variables of the same name. Those variables are then passed into the `prompt` to produce a formatted string. Args:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/prompt_template.html
61ec9d2f588e-4
Args: doc: Document, the page_content and metadata will be used to create the final string. prompt: BasePromptTemplate, will be used to format the page_content and metadata into the final string. Returns: string of the document formatted. Example: .. code-block:: python from langchain.schema import Document from langchain.prompts import PromptTemplate doc = Document(page_content="This is a joke", metadata={"page": "1"}) prompt = PromptTemplate.from_template("Page {page}: {page_content}") format_document(doc, prompt) >>> "Page 1: This is a joke" """ base_info = {"page_content": doc.page_content, **doc.metadata} missing_metadata = set(prompt.input_variables).difference(base_info) if len(missing_metadata) > 0: required_metadata = [ iv for iv in prompt.input_variables if iv != "page_content" ] raise ValueError( f"Document prompt requires documents to have metadata variables: " f"{required_metadata}. Received document with missing metadata: " f"{list(missing_metadata)}." ) document_info = {k: base_info[k] for k in prompt.input_variables} return prompt.format(**document_info)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/prompt_template.html
7e5261611c0b-0
Source code for langchain.schema.exceptions [docs]class LangChainException(Exception): """General LangChain exception."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/exceptions.html