id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
8cf9574238da-38
tags=inheritable_callbacks.tags.copy(), inheritable_tags=inheritable_callbacks.inheritable_tags.copy(), metadata=inheritable_callbacks.metadata.copy(), inheritable_metadata=inheritable_callbacks.inheritable_metadata.copy(), ) local_handlers_ = ( local_callbacks if isinstance(local_callbacks, list) else (local_callbacks.handlers if local_callbacks else []) ) for handler in local_handlers_: callback_manager.add_handler(handler, False) if inheritable_tags or local_tags: callback_manager.add_tags(inheritable_tags or []) callback_manager.add_tags(local_tags or [], False) if inheritable_metadata or local_metadata: callback_manager.add_metadata(inheritable_metadata or {}) callback_manager.add_metadata(local_metadata or {}, False) tracer = tracing_callback_var.get() tracing_enabled_ = ( env_var_is_set("LANGCHAIN_TRACING") or tracer is not None or env_var_is_set("LANGCHAIN_HANDLER") ) tracer_v2 = tracing_v2_callback_var.get() tracing_v2_enabled_ = _tracing_v2_is_enabled() tracer_project = _get_tracer_project() debug = _get_debug() if verbose or debug or tracing_enabled_ or tracing_v2_enabled_: if verbose and not any( isinstance(handler, StdOutCallbackHandler) for handler in callback_manager.handlers ): if debug: pass else: callback_manager.add_handler(StdOutCallbackHandler(), False) if debug and not any( isinstance(handler, ConsoleCallbackHandler) for handler in callback_manager.handlers ): callback_manager.add_handler(ConsoleCallbackHandler(), True) if tracing_enabled_ and not any(
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/manager.html
8cf9574238da-39
if tracing_enabled_ and not any( isinstance(handler, LangChainTracerV1) for handler in callback_manager.handlers ): if tracer: callback_manager.add_handler(tracer, True) else: handler = LangChainTracerV1() handler.load_session(tracer_project) callback_manager.add_handler(handler, True) if tracing_v2_enabled_ and not any( isinstance(handler, LangChainTracer) for handler in callback_manager.handlers ): if tracer_v2: callback_manager.add_handler(tracer_v2, True) else: try: handler = LangChainTracer(project_name=tracer_project) callback_manager.add_handler(handler, True) except Exception as e: logger.warning( "Unable to load requested LangChainTracer." " To disable this warning," " unset the LANGCHAIN_TRACING_V2 environment variables.", e, ) for var, inheritable, handler_class, env_var in _configure_hooks: create_one = ( env_var is not None and env_var_is_set(env_var) and handler_class is not None ) if var.get() is not None or create_one: var_handler = var.get() or cast(Type[BaseCallbackHandler], handler_class)() if handler_class is None: if not any( handler is var_handler # direct pointer comparison for handler in callback_manager.handlers ): callback_manager.add_handler(var_handler, inheritable) else: if not any( isinstance(handler, handler_class) for handler in callback_manager.handlers ): callback_manager.add_handler(var_handler, inheritable) return callback_manager
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/manager.html
f40b4e1ca980-0
Source code for langchain.schema.callbacks.stdout """Callback Handler that prints to std out.""" from typing import Any, Dict, List, Optional from langchain.schema import AgentAction, AgentFinish, LLMResult from langchain.schema.callbacks.base import BaseCallbackHandler from langchain.utils.input import print_text [docs]class StdOutCallbackHandler(BaseCallbackHandler): """Callback Handler that prints to std out.""" [docs] def __init__(self, color: Optional[str] = None) -> None: """Initialize callback handler.""" self.color = color [docs] def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Print out the prompts.""" pass [docs] def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Do nothing.""" pass [docs] def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Do nothing.""" pass [docs] def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing.""" pass [docs] def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain.""" class_name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) print(f"\n\n\033[1m> Entering new {class_name} chain...\033[0m") [docs] def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/stdout.html
f40b4e1ca980-1
"""Print out that we finished a chain.""" print("\n\033[1m> Finished chain.\033[0m") [docs] def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing.""" pass [docs] def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: """Do nothing.""" pass [docs] def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action.""" print_text(action.log, color=color or self.color) [docs] def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation.""" if observation_prefix is not None: print_text(f"\n{observation_prefix}") print_text(output, color=color or self.color) if llm_prefix is not None: print_text(f"\n{llm_prefix}") [docs] def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing.""" pass [docs] def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any, ) -> None: """Run when agent ends."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/stdout.html
f40b4e1ca980-2
) -> None: """Run when agent ends.""" print_text(text, color=color or self.color, end=end) [docs] def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on agent end.""" print_text(finish.log, color=color or self.color, end="\n")
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/stdout.html
36fe02779302-0
Source code for langchain.schema.callbacks.base """Base callback handler that can be used to handle callbacks in langchain.""" from __future__ import annotations from typing import Any, Dict, List, Optional, Sequence, TypeVar, Union from uuid import UUID from tenacity import RetryCallState from langchain.schema.agent import AgentAction, AgentFinish from langchain.schema.document import Document from langchain.schema.messages import BaseMessage from langchain.schema.output import ChatGenerationChunk, GenerationChunk, LLMResult [docs]class RetrieverManagerMixin: """Mixin for Retriever callbacks.""" [docs] def on_retriever_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when Retriever errors.""" [docs] def on_retriever_end( self, documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when Retriever ends running.""" [docs]class LLMManagerMixin: """Mixin for LLM callbacks.""" [docs] def on_llm_new_token( self, token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on new LLM token. Only available when streaming is enabled. Args: token (str): The new token.
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-1
Args: token (str): The new token. chunk (GenerationChunk | ChatGenerationChunk): The new generated chunk, containing content and other information. """ [docs] def on_llm_end( self, response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when LLM ends running.""" [docs] def on_llm_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when LLM errors.""" [docs]class ChainManagerMixin: """Mixin for chain callbacks.""" [docs] def on_chain_end( self, outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when chain ends running.""" [docs] def on_chain_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when chain errors.""" [docs] def on_agent_action( self, action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on agent action."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-2
) -> Any: """Run on agent action.""" [docs] def on_agent_finish( self, finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on agent end.""" [docs]class ToolManagerMixin: """Mixin for tool callbacks.""" [docs] def on_tool_end( self, output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when tool ends running.""" [docs] def on_tool_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when tool errors.""" [docs]class CallbackManagerMixin: """Mixin for callback manager.""" [docs] def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when LLM starts running.""" [docs] def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-3
messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when a chat model starts running.""" raise NotImplementedError( f"{self.__class__.__name__} does not implement `on_chat_model_start`" ) [docs] def on_retriever_start( self, serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when Retriever starts running.""" [docs] def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when chain starts running.""" [docs] def on_tool_start( self, serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-4
metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when tool starts running.""" [docs]class RunManagerMixin: """Mixin for run manager.""" [docs] def on_text( self, text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on arbitrary text.""" [docs] def on_retry( self, retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on a retry event.""" [docs]class BaseCallbackHandler( LLMManagerMixin, ChainManagerMixin, ToolManagerMixin, RetrieverManagerMixin, CallbackManagerMixin, RunManagerMixin, ): """Base callback handler that handles callbacks from LangChain.""" raise_error: bool = False run_inline: bool = False @property def ignore_llm(self) -> bool: """Whether to ignore LLM callbacks.""" return False @property def ignore_retry(self) -> bool: """Whether to ignore retry callbacks.""" return False @property def ignore_chain(self) -> bool: """Whether to ignore chain callbacks.""" return False @property def ignore_agent(self) -> bool: """Whether to ignore agent callbacks.""" return False @property def ignore_retriever(self) -> bool: """Whether to ignore retriever callbacks."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-5
"""Whether to ignore retriever callbacks.""" return False @property def ignore_chat_model(self) -> bool: """Whether to ignore chat model callbacks.""" return False [docs]class AsyncCallbackHandler(BaseCallbackHandler): """Async callback handler that handles callbacks from LangChain.""" [docs] async def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when LLM starts running.""" [docs] async def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when a chat model starts running.""" raise NotImplementedError( f"{self.__class__.__name__} does not implement `on_chat_model_start`" ) [docs] async def on_llm_new_token( self, token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-6
**kwargs: Any, ) -> None: """Run on new LLM token. Only available when streaming is enabled.""" [docs] async def on_llm_end( self, response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when LLM ends running.""" [docs] async def on_llm_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when LLM errors.""" [docs] async def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when chain starts running.""" [docs] async def on_chain_end( self, outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when chain ends running.""" [docs] async def on_chain_error( self, error: BaseException, *,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-7
self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when chain errors.""" [docs] async def on_tool_start( self, serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when tool starts running.""" [docs] async def on_tool_end( self, output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when tool ends running.""" [docs] async def on_tool_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when tool errors.""" [docs] async def on_text( self, text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on arbitrary text."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-8
) -> None: """Run on arbitrary text.""" [docs] async def on_retry( self, retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on a retry event.""" [docs] async def on_agent_action( self, action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on agent action.""" [docs] async def on_agent_finish( self, finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on agent end.""" [docs] async def on_retriever_start( self, serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run on retriever start.""" [docs] async def on_retriever_end( self, documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-9
tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on retriever end.""" [docs] async def on_retriever_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on retriever error.""" T = TypeVar("T", bound="BaseCallbackManager") [docs]class BaseCallbackManager(CallbackManagerMixin): """Base callback manager that handles callbacks from LangChain.""" [docs] def __init__( self, handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, ) -> None: """Initialize callback manager.""" self.handlers: List[BaseCallbackHandler] = handlers self.inheritable_handlers: List[BaseCallbackHandler] = ( inheritable_handlers or [] ) self.parent_run_id: Optional[UUID] = parent_run_id self.tags = tags or [] self.inheritable_tags = inheritable_tags or [] self.metadata = metadata or {} self.inheritable_metadata = inheritable_metadata or {} [docs] def copy(self: T) -> T: """Copy the callback manager.""" return self.__class__(
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-10
"""Copy the callback manager.""" return self.__class__( handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) @property def is_async(self) -> bool: """Whether the callback manager is async.""" return False [docs] def add_handler(self, handler: BaseCallbackHandler, inherit: bool = True) -> None: """Add a handler to the callback manager.""" if handler not in self.handlers: self.handlers.append(handler) if inherit and handler not in self.inheritable_handlers: self.inheritable_handlers.append(handler) [docs] def remove_handler(self, handler: BaseCallbackHandler) -> None: """Remove a handler from the callback manager.""" self.handlers.remove(handler) self.inheritable_handlers.remove(handler) [docs] def set_handlers( self, handlers: List[BaseCallbackHandler], inherit: bool = True ) -> None: """Set handlers as the only handlers on the callback manager.""" self.handlers = [] self.inheritable_handlers = [] for handler in handlers: self.add_handler(handler, inherit=inherit) [docs] def set_handler(self, handler: BaseCallbackHandler, inherit: bool = True) -> None: """Set handler as the only handler on the callback manager.""" self.set_handlers([handler], inherit=inherit) [docs] def add_tags(self, tags: List[str], inherit: bool = True) -> None: for tag in tags: if tag in self.tags:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
36fe02779302-11
for tag in tags: if tag in self.tags: self.remove_tags([tag]) self.tags.extend(tags) if inherit: self.inheritable_tags.extend(tags) [docs] def remove_tags(self, tags: List[str]) -> None: for tag in tags: self.tags.remove(tag) self.inheritable_tags.remove(tag) [docs] def add_metadata(self, metadata: Dict[str, Any], inherit: bool = True) -> None: self.metadata.update(metadata) if inherit: self.inheritable_metadata.update(metadata) [docs] def remove_metadata(self, keys: List[str]) -> None: for key in keys: self.metadata.pop(key) self.inheritable_metadata.pop(key) Callbacks = Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/base.html
8f80e23d99e8-0
Source code for langchain.schema.callbacks.tracers.stdout import json from typing import Any, Callable, List from langchain.schema.callbacks.tracers.base import BaseTracer from langchain.schema.callbacks.tracers.schemas import Run from langchain.utils.input import get_bolded_text, get_colored_text [docs]def try_json_stringify(obj: Any, fallback: str) -> str: """ Try to stringify an object to JSON. Args: obj: Object to stringify. fallback: Fallback string to return if the object cannot be stringified. Returns: A JSON string if the object can be stringified, otherwise the fallback string. """ try: return json.dumps(obj, indent=2, ensure_ascii=False) except Exception: return fallback [docs]def elapsed(run: Any) -> str: """Get the elapsed time of a run. Args: run: any object with a start_time and end_time attribute. Returns: A string with the elapsed time in seconds or milliseconds if time is less than a second. """ elapsed_time = run.end_time - run.start_time milliseconds = elapsed_time.total_seconds() * 1000 if milliseconds < 1000: return f"{milliseconds:.0f}ms" return f"{(milliseconds / 1000):.2f}s" [docs]class FunctionCallbackHandler(BaseTracer): """Tracer that calls a function with a single str parameter.""" name: str = "function_callback_handler" [docs] def __init__(self, function: Callable[[str], None], **kwargs: Any) -> None: super().__init__(**kwargs) self.function_callback = function
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/stdout.html
8f80e23d99e8-1
super().__init__(**kwargs) self.function_callback = function def _persist_run(self, run: Run) -> None: pass [docs] def get_parents(self, run: Run) -> List[Run]: parents = [] current_run = run while current_run.parent_run_id: parent = self.run_map.get(str(current_run.parent_run_id)) if parent: parents.append(parent) current_run = parent else: break return parents [docs] def get_breadcrumbs(self, run: Run) -> str: parents = self.get_parents(run)[::-1] string = " > ".join( f"{parent.execution_order}:{parent.run_type}:{parent.name}" if i != len(parents) - 1 else f"{parent.execution_order}:{parent.run_type}:{parent.name}" for i, parent in enumerate(parents + [run]) ) return string # logging methods def _on_chain_start(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) run_type = run.run_type.capitalize() self.function_callback( f"{get_colored_text('[chain/start]', color='green')} " + get_bolded_text(f"[{crumbs}] Entering {run_type} run with input:\n") + f"{try_json_stringify(run.inputs, '[inputs]')}" ) def _on_chain_end(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) run_type = run.run_type.capitalize() self.function_callback( f"{get_colored_text('[chain/end]', color='blue')} " + get_bolded_text(
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/stdout.html
8f80e23d99e8-2
+ get_bolded_text( f"[{crumbs}] [{elapsed(run)}] Exiting {run_type} run with output:\n" ) + f"{try_json_stringify(run.outputs, '[outputs]')}" ) def _on_chain_error(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) run_type = run.run_type.capitalize() self.function_callback( f"{get_colored_text('[chain/error]', color='red')} " + get_bolded_text( f"[{crumbs}] [{elapsed(run)}] {run_type} run errored with error:\n" ) + f"{try_json_stringify(run.error, '[error]')}" ) def _on_llm_start(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) inputs = ( {"prompts": [p.strip() for p in run.inputs["prompts"]]} if "prompts" in run.inputs else run.inputs ) self.function_callback( f"{get_colored_text('[llm/start]', color='green')} " + get_bolded_text(f"[{crumbs}] Entering LLM run with input:\n") + f"{try_json_stringify(inputs, '[inputs]')}" ) def _on_llm_end(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) self.function_callback( f"{get_colored_text('[llm/end]', color='blue')} " + get_bolded_text( f"[{crumbs}] [{elapsed(run)}] Exiting LLM run with output:\n" )
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/stdout.html
8f80e23d99e8-3
) + f"{try_json_stringify(run.outputs, '[response]')}" ) def _on_llm_error(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) self.function_callback( f"{get_colored_text('[llm/error]', color='red')} " + get_bolded_text( f"[{crumbs}] [{elapsed(run)}] LLM run errored with error:\n" ) + f"{try_json_stringify(run.error, '[error]')}" ) def _on_tool_start(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) self.function_callback( f'{get_colored_text("[tool/start]", color="green")} ' + get_bolded_text(f"[{crumbs}] Entering Tool run with input:\n") + f'"{run.inputs["input"].strip()}"' ) def _on_tool_end(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) if run.outputs: self.function_callback( f'{get_colored_text("[tool/end]", color="blue")} ' + get_bolded_text( f"[{crumbs}] [{elapsed(run)}] Exiting Tool run with output:\n" ) + f'"{run.outputs["output"].strip()}"' ) def _on_tool_error(self, run: Run) -> None: crumbs = self.get_breadcrumbs(run) self.function_callback( f"{get_colored_text('[tool/error]', color='red')} " + get_bolded_text(f"[{crumbs}] [{elapsed(run)}] ")
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/stdout.html
8f80e23d99e8-4
+ get_bolded_text(f"[{crumbs}] [{elapsed(run)}] ") + f"Tool run errored with error:\n" f"{run.error}" ) [docs]class ConsoleCallbackHandler(FunctionCallbackHandler): """Tracer that prints to the console.""" name: str = "console_callback_handler" [docs] def __init__(self, **kwargs: Any) -> None: super().__init__(function=print, **kwargs)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/stdout.html
1ff71c24663c-0
Source code for langchain.schema.callbacks.tracers.root_listeners from typing import Callable, Optional, Union from uuid import UUID from langchain.schema.callbacks.tracers.base import BaseTracer from langchain.schema.callbacks.tracers.schemas import Run from langchain.schema.runnable.config import ( RunnableConfig, call_func_with_variable_args, ) Listener = Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]] [docs]class RootListenersTracer(BaseTracer): [docs] def __init__( self, *, config: RunnableConfig, on_start: Optional[Listener], on_end: Optional[Listener], on_error: Optional[Listener], ) -> None: super().__init__() self.config = config self._arg_on_start = on_start self._arg_on_end = on_end self._arg_on_error = on_error self.root_id: Optional[UUID] = None def _persist_run(self, run: Run) -> None: # This is a legacy method only called once for an entire run tree # therefore not useful here pass def _on_run_create(self, run: Run) -> None: if self.root_id is not None: return self.root_id = run.id if self._arg_on_start is not None: call_func_with_variable_args(self._arg_on_start, run, self.config) def _on_run_update(self, run: Run) -> None: if run.id != self.root_id: return if run.error is None: if self._arg_on_end is not None: call_func_with_variable_args(self._arg_on_end, run, self.config) else:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/root_listeners.html
1ff71c24663c-1
else: if self._arg_on_error is not None: call_func_with_variable_args(self._arg_on_error, run, self.config)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/root_listeners.html
2e9c3311c106-0
Source code for langchain.schema.callbacks.tracers.log_stream from __future__ import annotations import math import threading from collections import defaultdict from typing import ( Any, AsyncIterator, Dict, List, Optional, Sequence, TypedDict, Union, ) from uuid import UUID import jsonpatch from anyio import create_memory_object_stream from langchain.load.load import load from langchain.schema.callbacks.tracers.base import BaseTracer from langchain.schema.callbacks.tracers.schemas import Run from langchain.schema.output import ChatGenerationChunk, GenerationChunk [docs]class LogEntry(TypedDict): """A single entry in the run log.""" id: str """ID of the sub-run.""" name: str """Name of the object being run.""" type: str """Type of the object being run, eg. prompt, chain, llm, etc.""" tags: List[str] """List of tags for the run.""" metadata: Dict[str, Any] """Key-value pairs of metadata for the run.""" start_time: str """ISO-8601 timestamp of when the run started.""" streamed_output_str: List[str] """List of LLM tokens streamed by this run, if applicable.""" final_output: Optional[Any] """Final output of this run. Only available after the run has finished successfully.""" end_time: Optional[str] """ISO-8601 timestamp of when the run ended. Only available after the run has finished.""" [docs]class RunState(TypedDict): """State of the run.""" id: str """ID of the run.""" streamed_output: List[Any]
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/log_stream.html
2e9c3311c106-1
"""ID of the run.""" streamed_output: List[Any] """List of output chunks streamed by Runnable.stream()""" final_output: Optional[Any] """Final output of the run, usually the result of aggregating (`+`) streamed_output. Only available after the run has finished successfully.""" logs: Dict[str, LogEntry] """Map of run names to sub-runs. If filters were supplied, this list will contain only the runs that matched the filters.""" [docs]class RunLogPatch: """A patch to the run log.""" ops: List[Dict[str, Any]] """List of jsonpatch operations, which describe how to create the run state from an empty dict. This is the minimal representation of the log, designed to be serialized as JSON and sent over the wire to reconstruct the log on the other side. Reconstruction of the state can be done with any jsonpatch-compliant library, see https://jsonpatch.com for more information.""" [docs] def __init__(self, *ops: Dict[str, Any]) -> None: self.ops = list(ops) def __add__(self, other: Union[RunLogPatch, Any]) -> RunLog: if type(other) == RunLogPatch: ops = self.ops + other.ops state = jsonpatch.apply_patch(None, ops) return RunLog(*ops, state=state) raise TypeError( f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" ) def __repr__(self) -> str: from pprint import pformat # 1:-1 to get rid of the [] around the list
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/log_stream.html
2e9c3311c106-2
# 1:-1 to get rid of the [] around the list return f"RunLogPatch({pformat(self.ops)[1:-1]})" def __eq__(self, other: object) -> bool: return isinstance(other, RunLogPatch) and self.ops == other.ops [docs]class RunLog(RunLogPatch): """A run log.""" state: RunState """Current state of the log, obtained from applying all ops in sequence.""" [docs] def __init__(self, *ops: Dict[str, Any], state: RunState) -> None: super().__init__(*ops) self.state = state def __add__(self, other: Union[RunLogPatch, Any]) -> RunLog: if type(other) == RunLogPatch: ops = self.ops + other.ops state = jsonpatch.apply_patch(self.state, other.ops) return RunLog(*ops, state=state) raise TypeError( f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" ) def __repr__(self) -> str: from pprint import pformat return f"RunLog({pformat(self.state)})" [docs]class LogStreamCallbackHandler(BaseTracer): """A tracer that streams run logs to a stream.""" [docs] def __init__( self, *, auto_close: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/log_stream.html
2e9c3311c106-3
exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, ) -> None: super().__init__() self.auto_close = auto_close self.include_names = include_names self.include_types = include_types self.include_tags = include_tags self.exclude_names = exclude_names self.exclude_types = exclude_types self.exclude_tags = exclude_tags send_stream, receive_stream = create_memory_object_stream( math.inf, item_type=RunLogPatch ) self.lock = threading.Lock() self.send_stream = send_stream self.receive_stream = receive_stream self._key_map_by_run_id: Dict[UUID, str] = {} self._counter_map_by_name: Dict[str, int] = defaultdict(int) self.root_id: Optional[UUID] = None def __aiter__(self) -> AsyncIterator[RunLogPatch]: return self.receive_stream.__aiter__() [docs] def include_run(self, run: Run) -> bool: if run.id == self.root_id: return False run_tags = run.tags or [] if ( self.include_names is None and self.include_types is None and self.include_tags is None ): include = True else: include = False if self.include_names is not None: include = include or run.name in self.include_names if self.include_types is not None: include = include or run.run_type in self.include_types if self.include_tags is not None: include = include or any(tag in self.include_tags for tag in run_tags) if self.exclude_names is not None: include = include and run.name not in self.exclude_names
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/log_stream.html
2e9c3311c106-4
include = include and run.name not in self.exclude_names if self.exclude_types is not None: include = include and run.run_type not in self.exclude_types if self.exclude_tags is not None: include = include and all(tag not in self.exclude_tags for tag in run_tags) return include def _persist_run(self, run: Run) -> None: # This is a legacy method only called once for an entire run tree # therefore not useful here pass def _on_run_create(self, run: Run) -> None: """Start a run.""" if self.root_id is None: self.root_id = run.id self.send_stream.send_nowait( RunLogPatch( { "op": "replace", "path": "", "value": RunState( id=str(run.id), streamed_output=[], final_output=None, logs={}, ), } ) ) if not self.include_run(run): return # Determine previous index, increment by 1 with self.lock: self._counter_map_by_name[run.name] += 1 count = self._counter_map_by_name[run.name] self._key_map_by_run_id[run.id] = ( run.name if count == 1 else f"{run.name}:{count}" ) # Add the run to the stream self.send_stream.send_nowait( RunLogPatch( { "op": "add", "path": f"/logs/{self._key_map_by_run_id[run.id]}", "value": LogEntry( id=str(run.id), name=run.name,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/log_stream.html
2e9c3311c106-5
id=str(run.id), name=run.name, type=run.run_type, tags=run.tags or [], metadata=(run.extra or {}).get("metadata", {}), start_time=run.start_time.isoformat(timespec="milliseconds"), streamed_output_str=[], final_output=None, end_time=None, ), } ) ) def _on_run_update(self, run: Run) -> None: """Finish a run.""" try: index = self._key_map_by_run_id.get(run.id) if index is None: return self.send_stream.send_nowait( RunLogPatch( { "op": "add", "path": f"/logs/{index}/final_output", # to undo the dumpd done by some runnables / tracer / etc "value": load(run.outputs), }, { "op": "add", "path": f"/logs/{index}/end_time", "value": run.end_time.isoformat(timespec="milliseconds") if run.end_time is not None else None, }, ) ) finally: if run.id == self.root_id: self.send_stream.send_nowait( RunLogPatch( { "op": "replace", "path": "/final_output", "value": load(run.outputs), } ) ) if self.auto_close: self.send_stream.close() def _on_llm_new_token( self, run: Run, token: str, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]],
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/log_stream.html
2e9c3311c106-6
chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]], ) -> None: """Process new LLM token.""" index = self._key_map_by_run_id.get(run.id) if index is None: return self.send_stream.send_nowait( RunLogPatch( { "op": "add", "path": f"/logs/{index}/streamed_output_str/-", "value": token, } ) )
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/log_stream.html
112b8d993f7b-0
Source code for langchain.schema.callbacks.tracers.langchain """A Tracer implementation that records to LangChain endpoint.""" from __future__ import annotations import logging import weakref from concurrent.futures import Future, ThreadPoolExecutor, wait from datetime import datetime from typing import Any, Callable, Dict, List, Optional, Union from uuid import UUID from langsmith import Client from langsmith import utils as ls_utils from tenacity import ( Retrying, retry_if_exception_type, stop_after_attempt, wait_exponential_jitter, ) from langchain.env import get_runtime_environment from langchain.load.dump import dumpd from langchain.schema.callbacks.tracers.base import BaseTracer from langchain.schema.callbacks.tracers.schemas import Run from langchain.schema.messages import BaseMessage logger = logging.getLogger(__name__) _LOGGED = set() _TRACERS: weakref.WeakSet[LangChainTracer] = weakref.WeakSet() _CLIENT: Optional[Client] = None _EXECUTOR: Optional[ThreadPoolExecutor] = None [docs]def log_error_once(method: str, exception: Exception) -> None: """Log an error once.""" global _LOGGED if (method, type(exception)) in _LOGGED: return _LOGGED.add((method, type(exception))) logger.error(exception) [docs]def wait_for_all_tracers() -> None: """Wait for all tracers to finish.""" global _TRACERS for tracer in list(_TRACERS): if tracer is not None: tracer.wait_for_futures() [docs]def get_client() -> Client: """Get the client.""" global _CLIENT if _CLIENT is None: _CLIENT = Client()
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain.html
112b8d993f7b-1
global _CLIENT if _CLIENT is None: _CLIENT = Client() return _CLIENT def _get_executor() -> ThreadPoolExecutor: """Get the executor.""" global _EXECUTOR if _EXECUTOR is None: _EXECUTOR = ThreadPoolExecutor() return _EXECUTOR def _copy(run: Run) -> Run: """Copy a run.""" try: return run.copy(deep=True) except TypeError: # Fallback in case the object contains a lock or other # non-pickleable object return run.copy() [docs]class LangChainTracer(BaseTracer): """An implementation of the SharedTracer that POSTS to the langchain endpoint.""" [docs] def __init__( self, example_id: Optional[Union[UUID, str]] = None, project_name: Optional[str] = None, client: Optional[Client] = None, tags: Optional[List[str]] = None, use_threading: bool = True, **kwargs: Any, ) -> None: """Initialize the LangChain tracer.""" super().__init__(**kwargs) self.example_id = ( UUID(example_id) if isinstance(example_id, str) else example_id ) self.project_name = project_name or ls_utils.get_tracer_project() self.client = client or get_client() self._futures: weakref.WeakSet[Future] = weakref.WeakSet() self.tags = tags or [] self.executor = _get_executor() if use_threading else None self.latest_run: Optional[Run] = None global _TRACERS _TRACERS.add(self)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain.html
112b8d993f7b-2
global _TRACERS _TRACERS.add(self) [docs] def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> None: """Start a trace for an LLM run.""" parent_run_id_ = str(parent_run_id) if parent_run_id else None execution_order = self._get_execution_order(parent_run_id_) start_time = datetime.utcnow() if metadata: kwargs.update({"metadata": metadata}) chat_model_run = Run( id=run_id, parent_run_id=parent_run_id, serialized=serialized, inputs={"messages": [[dumpd(msg) for msg in batch] for batch in messages]}, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, execution_order=execution_order, child_execution_order=execution_order, run_type="llm", tags=tags, name=name, ) self._start_trace(chat_model_run) self._on_chat_model_start(chat_model_run) def _persist_run(self, run: Run) -> None: run_ = run.copy() run_.reference_example_id = self.example_id self.latest_run = run_ [docs] def get_run_url(self) -> str: """Get the LangSmith root run URL"""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain.html
112b8d993f7b-3
"""Get the LangSmith root run URL""" if not self.latest_run: raise ValueError("No traced run found.") # If this is the first run in a project, the project may not yet be created. # This method is only really useful for debugging flows, so we will assume # there is some tolerace for latency. for attempt in Retrying( stop=stop_after_attempt(5), wait=wait_exponential_jitter(), retry=retry_if_exception_type(ls_utils.LangSmithError), ): with attempt: return self.client.get_run_url( run=self.latest_run, project_name=self.project_name ) raise ValueError("Failed to get run URL.") def _get_tags(self, run: Run) -> List[str]: """Get combined tags for a run.""" tags = set(run.tags or []) tags.update(self.tags or []) return list(tags) def _persist_run_single(self, run: Run) -> None: """Persist a run.""" run_dict = run.dict(exclude={"child_runs"}) run_dict["tags"] = self._get_tags(run) extra = run_dict.get("extra", {}) extra["runtime"] = get_runtime_environment() run_dict["extra"] = extra try: self.client.create_run(**run_dict, project_name=self.project_name) except Exception as e: # Errors are swallowed by the thread executor so we need to log them here log_error_once("post", e) raise def _update_run_single(self, run: Run) -> None: """Update a run.""" try: run_dict = run.dict() run_dict["tags"] = self._get_tags(run)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain.html
112b8d993f7b-4
run_dict["tags"] = self._get_tags(run) self.client.update_run(run.id, **run_dict) except Exception as e: # Errors are swallowed by the thread executor so we need to log them here log_error_once("patch", e) raise def _submit(self, function: Callable[[Run], None], run: Run) -> None: """Submit a function to the executor.""" if self.executor is None: function(run) else: self._futures.add(self.executor.submit(function, run)) def _on_llm_start(self, run: Run) -> None: """Persist an LLM run.""" if run.parent_run_id is None: run.reference_example_id = self.example_id self._submit(self._persist_run_single, _copy(run)) def _on_chat_model_start(self, run: Run) -> None: """Persist an LLM run.""" if run.parent_run_id is None: run.reference_example_id = self.example_id self._submit(self._persist_run_single, _copy(run)) def _on_llm_end(self, run: Run) -> None: """Process the LLM Run.""" self._submit(self._update_run_single, _copy(run)) def _on_llm_error(self, run: Run) -> None: """Process the LLM Run upon error.""" self._submit(self._update_run_single, _copy(run)) def _on_chain_start(self, run: Run) -> None: """Process the Chain Run upon start.""" if run.parent_run_id is None: run.reference_example_id = self.example_id self._submit(self._persist_run_single, _copy(run))
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain.html
112b8d993f7b-5
self._submit(self._persist_run_single, _copy(run)) def _on_chain_end(self, run: Run) -> None: """Process the Chain Run.""" self._submit(self._update_run_single, _copy(run)) def _on_chain_error(self, run: Run) -> None: """Process the Chain Run upon error.""" self._submit(self._update_run_single, _copy(run)) def _on_tool_start(self, run: Run) -> None: """Process the Tool Run upon start.""" if run.parent_run_id is None: run.reference_example_id = self.example_id self._submit(self._persist_run_single, _copy(run)) def _on_tool_end(self, run: Run) -> None: """Process the Tool Run.""" self._submit(self._update_run_single, _copy(run)) def _on_tool_error(self, run: Run) -> None: """Process the Tool Run upon error.""" self._submit(self._update_run_single, _copy(run)) def _on_retriever_start(self, run: Run) -> None: """Process the Retriever Run upon start.""" if run.parent_run_id is None: run.reference_example_id = self.example_id self._submit(self._persist_run_single, _copy(run)) def _on_retriever_end(self, run: Run) -> None: """Process the Retriever Run.""" self._submit(self._update_run_single, _copy(run)) def _on_retriever_error(self, run: Run) -> None: """Process the Retriever Run upon error.""" self._submit(self._update_run_single, _copy(run))
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain.html
112b8d993f7b-6
self._submit(self._update_run_single, _copy(run)) [docs] def wait_for_futures(self) -> None: """Wait for the given futures to complete.""" wait(self._futures)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain.html
287a21143fb9-0
Source code for langchain.schema.callbacks.tracers.base """Base interfaces for tracing runs.""" from __future__ import annotations import logging from abc import ABC, abstractmethod from datetime import datetime from typing import Any, Dict, List, Optional, Sequence, Union, cast from uuid import UUID from tenacity import RetryCallState from langchain.load.dump import dumpd from langchain.schema.callbacks.base import BaseCallbackHandler from langchain.schema.callbacks.tracers.schemas import Run from langchain.schema.document import Document from langchain.schema.output import ( ChatGeneration, ChatGenerationChunk, GenerationChunk, LLMResult, ) logger = logging.getLogger(__name__) [docs]class TracerException(Exception): """Base class for exceptions in tracers module.""" [docs]class BaseTracer(BaseCallbackHandler, ABC): """Base interface for tracers.""" [docs] def __init__(self, **kwargs: Any) -> None: super().__init__(**kwargs) self.run_map: Dict[str, Run] = {} @staticmethod def _add_child_run( parent_run: Run, child_run: Run, ) -> None: """Add child run to a chain run or tool run.""" parent_run.child_runs.append(child_run) @abstractmethod def _persist_run(self, run: Run) -> None: """Persist a run.""" def _start_trace(self, run: Run) -> None: """Start a trace for a run.""" if run.parent_run_id: parent_run = self.run_map.get(str(run.parent_run_id)) if parent_run: self._add_child_run(parent_run, run) parent_run.child_execution_order = max(
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-1
parent_run.child_execution_order = max( parent_run.child_execution_order, run.child_execution_order ) else: logger.debug(f"Parent run with UUID {run.parent_run_id} not found.") self.run_map[str(run.id)] = run self._on_run_create(run) def _end_trace(self, run: Run) -> None: """End a trace for a run.""" if not run.parent_run_id: self._persist_run(run) else: parent_run = self.run_map.get(str(run.parent_run_id)) if parent_run is None: logger.debug(f"Parent run with UUID {run.parent_run_id} not found.") elif ( run.child_execution_order is not None and parent_run.child_execution_order is not None and run.child_execution_order > parent_run.child_execution_order ): parent_run.child_execution_order = run.child_execution_order self.run_map.pop(str(run.id)) self._on_run_update(run) def _get_execution_order(self, parent_run_id: Optional[str] = None) -> int: """Get the execution order for a run.""" if parent_run_id is None: return 1 parent_run = self.run_map.get(parent_run_id) if parent_run is None: logger.debug(f"Parent run with UUID {parent_run_id} not found.") return 1 if parent_run.child_execution_order is None: raise TracerException( f"Parent run with UUID {parent_run_id} has no child execution order." ) return parent_run.child_execution_order + 1 [docs] def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str],
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-2
self, serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: """Start a trace for an LLM run.""" parent_run_id_ = str(parent_run_id) if parent_run_id else None execution_order = self._get_execution_order(parent_run_id_) start_time = datetime.utcnow() if metadata: kwargs.update({"metadata": metadata}) llm_run = Run( id=run_id, parent_run_id=parent_run_id, serialized=serialized, inputs={"prompts": prompts}, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, execution_order=execution_order, child_execution_order=execution_order, run_type="llm", tags=tags or [], name=name, ) self._start_trace(llm_run) self._on_llm_start(llm_run) return llm_run [docs] def on_llm_new_token( self, token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Run: """Run on new LLM token. Only available when streaming is enabled.""" if not run_id:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-3
if not run_id: raise TracerException("No run_id provided for on_llm_new_token callback.") run_id_ = str(run_id) llm_run = self.run_map.get(run_id_) if llm_run is None or llm_run.run_type != "llm": raise TracerException(f"No LLM Run found to be traced for {run_id}") event_kwargs: Dict[str, Any] = {"token": token} if chunk: event_kwargs["chunk"] = chunk llm_run.events.append( { "name": "new_token", "time": datetime.utcnow(), "kwargs": event_kwargs, }, ) self._on_llm_new_token(llm_run, token, chunk) return llm_run [docs] def on_retry( self, retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any, ) -> Run: if not run_id: raise TracerException("No run_id provided for on_retry callback.") run_id_ = str(run_id) llm_run = self.run_map.get(run_id_) if llm_run is None: raise TracerException("No Run found to be traced for on_retry") retry_d: Dict[str, Any] = { "slept": retry_state.idle_for, "attempt": retry_state.attempt_number, } if retry_state.outcome is None: retry_d["outcome"] = "N/A" elif retry_state.outcome.failed: retry_d["outcome"] = "failed" exception = retry_state.outcome.exception()
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-4
exception = retry_state.outcome.exception() retry_d["exception"] = str(exception) retry_d["exception_type"] = exception.__class__.__name__ else: retry_d["outcome"] = "success" retry_d["result"] = str(retry_state.outcome.result()) llm_run.events.append( { "name": "retry", "time": datetime.utcnow(), "kwargs": retry_d, }, ) return llm_run [docs] def on_llm_end(self, response: LLMResult, *, run_id: UUID, **kwargs: Any) -> Run: """End a trace for an LLM run.""" if not run_id: raise TracerException("No run_id provided for on_llm_end callback.") run_id_ = str(run_id) llm_run = self.run_map.get(run_id_) if llm_run is None or llm_run.run_type != "llm": raise TracerException(f"No LLM Run found to be traced for {run_id}") llm_run.outputs = response.dict() for i, generations in enumerate(response.generations): for j, generation in enumerate(generations): output_generation = llm_run.outputs["generations"][i][j] if "message" in output_generation: output_generation["message"] = dumpd( cast(ChatGeneration, generation).message ) llm_run.end_time = datetime.utcnow() llm_run.events.append({"name": "end", "time": llm_run.end_time}) self._end_trace(llm_run) self._on_llm_end(llm_run) return llm_run
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-5
self._on_llm_end(llm_run) return llm_run [docs] def on_llm_error( self, error: BaseException, *, run_id: UUID, **kwargs: Any, ) -> Run: """Handle an error for an LLM run.""" if not run_id: raise TracerException("No run_id provided for on_llm_error callback.") run_id_ = str(run_id) llm_run = self.run_map.get(run_id_) if llm_run is None or llm_run.run_type != "llm": raise TracerException(f"No LLM Run found to be traced for {run_id}") llm_run.error = repr(error) llm_run.end_time = datetime.utcnow() llm_run.events.append({"name": "error", "time": llm_run.end_time}) self._end_trace(llm_run) self._on_chain_error(llm_run) return llm_run [docs] def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: """Start a trace for a chain run.""" parent_run_id_ = str(parent_run_id) if parent_run_id else None execution_order = self._get_execution_order(parent_run_id_) start_time = datetime.utcnow()
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-6
start_time = datetime.utcnow() if metadata: kwargs.update({"metadata": metadata}) chain_run = Run( id=run_id, parent_run_id=parent_run_id, serialized=serialized, inputs=inputs if isinstance(inputs, dict) else {"input": inputs}, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, execution_order=execution_order, child_execution_order=execution_order, child_runs=[], run_type=run_type or "chain", name=name, tags=tags or [], ) self._start_trace(chain_run) self._on_chain_start(chain_run) return chain_run [docs] def on_chain_end( self, outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Run: """End a trace for a chain run.""" if not run_id: raise TracerException("No run_id provided for on_chain_end callback.") chain_run = self.run_map.get(str(run_id)) if chain_run is None: raise TracerException(f"No chain Run found to be traced for {run_id}") chain_run.outputs = ( outputs if isinstance(outputs, dict) else {"output": outputs} ) chain_run.end_time = datetime.utcnow() chain_run.events.append({"name": "end", "time": chain_run.end_time}) if inputs is not None: chain_run.inputs = inputs if isinstance(inputs, dict) else {"input": inputs} self._end_trace(chain_run)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-7
self._end_trace(chain_run) self._on_chain_end(chain_run) return chain_run [docs] def on_chain_error( self, error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any, ) -> Run: """Handle an error for a chain run.""" if not run_id: raise TracerException("No run_id provided for on_chain_error callback.") chain_run = self.run_map.get(str(run_id)) if chain_run is None: raise TracerException(f"No chain Run found to be traced for {run_id}") chain_run.error = repr(error) chain_run.end_time = datetime.utcnow() chain_run.events.append({"name": "error", "time": chain_run.end_time}) if inputs is not None: chain_run.inputs = inputs if isinstance(inputs, dict) else {"input": inputs} self._end_trace(chain_run) self._on_chain_error(chain_run) return chain_run [docs] def on_tool_start( self, serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: """Start a trace for a tool run.""" parent_run_id_ = str(parent_run_id) if parent_run_id else None execution_order = self._get_execution_order(parent_run_id_) start_time = datetime.utcnow()
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-8
start_time = datetime.utcnow() if metadata: kwargs.update({"metadata": metadata}) tool_run = Run( id=run_id, parent_run_id=parent_run_id, serialized=serialized, inputs={"input": input_str}, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, execution_order=execution_order, child_execution_order=execution_order, child_runs=[], run_type="tool", tags=tags or [], name=name, ) self._start_trace(tool_run) self._on_tool_start(tool_run) return tool_run [docs] def on_tool_end(self, output: str, *, run_id: UUID, **kwargs: Any) -> Run: """End a trace for a tool run.""" if not run_id: raise TracerException("No run_id provided for on_tool_end callback.") tool_run = self.run_map.get(str(run_id)) if tool_run is None or tool_run.run_type != "tool": raise TracerException(f"No tool Run found to be traced for {run_id}") tool_run.outputs = {"output": output} tool_run.end_time = datetime.utcnow() tool_run.events.append({"name": "end", "time": tool_run.end_time}) self._end_trace(tool_run) self._on_tool_end(tool_run) return tool_run [docs] def on_tool_error( self, error: BaseException, *, run_id: UUID, **kwargs: Any, ) -> Run: """Handle an error for a tool run.""" if not run_id:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-9
"""Handle an error for a tool run.""" if not run_id: raise TracerException("No run_id provided for on_tool_error callback.") tool_run = self.run_map.get(str(run_id)) if tool_run is None or tool_run.run_type != "tool": raise TracerException(f"No tool Run found to be traced for {run_id}") tool_run.error = repr(error) tool_run.end_time = datetime.utcnow() tool_run.events.append({"name": "error", "time": tool_run.end_time}) self._end_trace(tool_run) self._on_tool_error(tool_run) return tool_run [docs] def on_retriever_start( self, serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: """Run when Retriever starts running.""" parent_run_id_ = str(parent_run_id) if parent_run_id else None execution_order = self._get_execution_order(parent_run_id_) start_time = datetime.utcnow() if metadata: kwargs.update({"metadata": metadata}) retrieval_run = Run( id=run_id, name=name or "Retriever", parent_run_id=parent_run_id, serialized=serialized, inputs={"query": query}, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, execution_order=execution_order,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-10
start_time=start_time, execution_order=execution_order, child_execution_order=execution_order, tags=tags, child_runs=[], run_type="retriever", ) self._start_trace(retrieval_run) self._on_retriever_start(retrieval_run) return retrieval_run [docs] def on_retriever_error( self, error: BaseException, *, run_id: UUID, **kwargs: Any, ) -> Run: """Run when Retriever errors.""" if not run_id: raise TracerException("No run_id provided for on_retriever_error callback.") retrieval_run = self.run_map.get(str(run_id)) if retrieval_run is None or retrieval_run.run_type != "retriever": raise TracerException(f"No retriever Run found to be traced for {run_id}") retrieval_run.error = repr(error) retrieval_run.end_time = datetime.utcnow() retrieval_run.events.append({"name": "error", "time": retrieval_run.end_time}) self._end_trace(retrieval_run) self._on_retriever_error(retrieval_run) return retrieval_run [docs] def on_retriever_end( self, documents: Sequence[Document], *, run_id: UUID, **kwargs: Any ) -> Run: """Run when Retriever ends running.""" if not run_id: raise TracerException("No run_id provided for on_retriever_end callback.") retrieval_run = self.run_map.get(str(run_id)) if retrieval_run is None or retrieval_run.run_type != "retriever":
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-11
if retrieval_run is None or retrieval_run.run_type != "retriever": raise TracerException(f"No retriever Run found to be traced for {run_id}") retrieval_run.outputs = {"documents": documents} retrieval_run.end_time = datetime.utcnow() retrieval_run.events.append({"name": "end", "time": retrieval_run.end_time}) self._end_trace(retrieval_run) self._on_retriever_end(retrieval_run) return retrieval_run def __deepcopy__(self, memo: dict) -> BaseTracer: """Deepcopy the tracer.""" return self def __copy__(self) -> BaseTracer: """Copy the tracer.""" return self def _on_run_create(self, run: Run) -> None: """Process a run upon creation.""" def _on_run_update(self, run: Run) -> None: """Process a run upon update.""" def _on_llm_start(self, run: Run) -> None: """Process the LLM Run upon start.""" def _on_llm_new_token( self, run: Run, token: str, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]], ) -> None: """Process new LLM token.""" def _on_llm_end(self, run: Run) -> None: """Process the LLM Run.""" def _on_llm_error(self, run: Run) -> None: """Process the LLM Run upon error.""" def _on_chain_start(self, run: Run) -> None: """Process the Chain Run upon start.""" def _on_chain_end(self, run: Run) -> None:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
287a21143fb9-12
def _on_chain_end(self, run: Run) -> None: """Process the Chain Run.""" def _on_chain_error(self, run: Run) -> None: """Process the Chain Run upon error.""" def _on_tool_start(self, run: Run) -> None: """Process the Tool Run upon start.""" def _on_tool_end(self, run: Run) -> None: """Process the Tool Run.""" def _on_tool_error(self, run: Run) -> None: """Process the Tool Run upon error.""" def _on_chat_model_start(self, run: Run) -> None: """Process the Chat Model Run upon start.""" def _on_retriever_start(self, run: Run) -> None: """Process the Retriever Run upon start.""" def _on_retriever_end(self, run: Run) -> None: """Process the Retriever Run.""" def _on_retriever_error(self, run: Run) -> None: """Process the Retriever Run upon error."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/base.html
947f1b04301c-0
Source code for langchain.schema.callbacks.tracers.schemas """Schemas for tracers.""" from __future__ import annotations import datetime import warnings from typing import Any, Dict, List, Optional, Type from uuid import UUID from langsmith.schemas import RunBase as BaseRunV2 from langsmith.schemas import RunTypeEnum as RunTypeEnumDep from langchain.pydantic_v1 import BaseModel, Field, root_validator from langchain.schema import LLMResult [docs]def RunTypeEnum() -> Type[RunTypeEnumDep]: """RunTypeEnum.""" warnings.warn( "RunTypeEnum is deprecated. Please directly use a string instead" " (e.g. 'llm', 'chain', 'tool').", DeprecationWarning, ) return RunTypeEnumDep [docs]class TracerSessionV1Base(BaseModel): """Base class for TracerSessionV1.""" start_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow) name: Optional[str] = None extra: Optional[Dict[str, Any]] = None [docs]class TracerSessionV1Create(TracerSessionV1Base): """Create class for TracerSessionV1.""" [docs]class TracerSessionV1(TracerSessionV1Base): """TracerSessionV1 schema.""" id: int [docs]class TracerSessionBase(TracerSessionV1Base): """Base class for TracerSession.""" tenant_id: UUID [docs]class TracerSession(TracerSessionBase): """TracerSessionV1 schema for the V2 API.""" id: UUID [docs]class BaseRun(BaseModel): """Base class for Run.""" uuid: str
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/schemas.html
947f1b04301c-1
"""Base class for Run.""" uuid: str parent_uuid: Optional[str] = None start_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow) end_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow) extra: Optional[Dict[str, Any]] = None execution_order: int child_execution_order: int serialized: Dict[str, Any] session_id: int error: Optional[str] = None [docs]class LLMRun(BaseRun): """Class for LLMRun.""" prompts: List[str] response: Optional[LLMResult] = None [docs]class ChainRun(BaseRun): """Class for ChainRun.""" inputs: Dict[str, Any] outputs: Optional[Dict[str, Any]] = None child_llm_runs: List[LLMRun] = Field(default_factory=list) child_chain_runs: List[ChainRun] = Field(default_factory=list) child_tool_runs: List[ToolRun] = Field(default_factory=list) [docs]class ToolRun(BaseRun): """Class for ToolRun.""" tool_input: str output: Optional[str] = None action: str child_llm_runs: List[LLMRun] = Field(default_factory=list) child_chain_runs: List[ChainRun] = Field(default_factory=list) child_tool_runs: List[ToolRun] = Field(default_factory=list) # Begin V2 API Schemas [docs]class Run(BaseRunV2): """Run schema for the V2 API in the Tracer.""" execution_order: int child_execution_order: int child_runs: List[Run] = Field(default_factory=list)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/schemas.html
947f1b04301c-2
child_runs: List[Run] = Field(default_factory=list) tags: Optional[List[str]] = Field(default_factory=list) events: List[Dict[str, Any]] = Field(default_factory=list) @root_validator(pre=True) def assign_name(cls, values: dict) -> dict: """Assign name to the run.""" if values.get("name") is None: if "name" in values["serialized"]: values["name"] = values["serialized"]["name"] elif "id" in values["serialized"]: values["name"] = values["serialized"]["id"][-1] if values.get("events") is None: values["events"] = [] return values ChainRun.update_forward_refs() ToolRun.update_forward_refs() Run.update_forward_refs() __all__ = [ "BaseRun", "ChainRun", "LLMRun", "Run", "RunTypeEnum", "ToolRun", "TracerSession", "TracerSessionBase", "TracerSessionV1", "TracerSessionV1Base", "TracerSessionV1Create", ]
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/schemas.html
f6a8d154d519-0
Source code for langchain.schema.callbacks.tracers.evaluation """A tracer that runs evaluators over completed runs.""" from __future__ import annotations import logging import threading import weakref from concurrent.futures import Future, ThreadPoolExecutor, wait from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast from uuid import UUID import langsmith from langsmith.evaluation.evaluator import EvaluationResult, EvaluationResults from langchain.schema.callbacks import manager from langchain.schema.callbacks.tracers import langchain as langchain_tracer from langchain.schema.callbacks.tracers.base import BaseTracer from langchain.schema.callbacks.tracers.langchain import _get_executor from langchain.schema.callbacks.tracers.schemas import Run logger = logging.getLogger(__name__) _TRACERS: weakref.WeakSet[EvaluatorCallbackHandler] = weakref.WeakSet() [docs]def wait_for_all_evaluators() -> None: """Wait for all tracers to finish.""" global _TRACERS for tracer in list(_TRACERS): if tracer is not None: tracer.wait_for_futures() [docs]class EvaluatorCallbackHandler(BaseTracer): """A tracer that runs a run evaluator whenever a run is persisted. Parameters ---------- evaluators : Sequence[RunEvaluator] The run evaluators to apply to all top level runs. client : LangSmith Client, optional The LangSmith client instance to use for evaluating the runs. If not specified, a new instance will be created. example_id : Union[UUID, str], optional The example ID to be associated with the runs. project_name : str, optional The LangSmith project name to be organize eval chain runs under. Attributes ----------
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/evaluation.html
f6a8d154d519-1
Attributes ---------- example_id : Union[UUID, None] The example ID associated with the runs. client : Client The LangSmith client instance used for evaluating the runs. evaluators : Sequence[RunEvaluator] The sequence of run evaluators to be executed. executor : ThreadPoolExecutor The thread pool executor used for running the evaluators. futures : Set[Future] The set of futures representing the running evaluators. skip_unfinished : bool Whether to skip runs that are not finished or raised an error. project_name : Optional[str] The LangSmith project name to be organize eval chain runs under. """ name = "evaluator_callback_handler" [docs] def __init__( self, evaluators: Sequence[langsmith.RunEvaluator], client: Optional[langsmith.Client] = None, example_id: Optional[Union[UUID, str]] = None, skip_unfinished: bool = True, project_name: Optional[str] = "evaluators", max_concurrency: Optional[int] = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.example_id = ( UUID(example_id) if isinstance(example_id, str) else example_id ) self.client = client or langchain_tracer.get_client() self.evaluators = evaluators if max_concurrency is None: self.executor: Optional[ThreadPoolExecutor] = _get_executor() elif max_concurrency > 0: self.executor = ThreadPoolExecutor(max_workers=max_concurrency) weakref.finalize( self,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/evaluation.html
f6a8d154d519-2
weakref.finalize( self, lambda: cast(ThreadPoolExecutor, self.executor).shutdown(wait=True), ) else: self.executor = None self.futures: weakref.WeakSet[Future] = weakref.WeakSet() self.skip_unfinished = skip_unfinished self.project_name = project_name self.logged_eval_results: Dict[Tuple[str, str], List[EvaluationResult]] = {} self.lock = threading.Lock() global _TRACERS _TRACERS.add(self) def _evaluate_in_project(self, run: Run, evaluator: langsmith.RunEvaluator) -> None: """Evaluate the run in the project. Parameters ---------- run : Run The run to be evaluated. evaluator : RunEvaluator The evaluator to use for evaluating the run. """ try: if self.project_name is None: eval_result = self.client.evaluate_run(run, evaluator) eval_results = [eval_result] with manager.tracing_v2_enabled( project_name=self.project_name, tags=["eval"], client=self.client ) as cb: reference_example = ( self.client.read_example(run.reference_example_id) if run.reference_example_id else None ) evaluation_result = evaluator.evaluate_run( run, example=reference_example, ) eval_results = self._log_evaluation_feedback( evaluation_result, run, source_run_id=cb.latest_run.id if cb.latest_run else None, ) except Exception as e: logger.error( f"Error evaluating run {run.id} with " f"{evaluator.__class__.__name__}: {repr(e)}",
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/evaluation.html
f6a8d154d519-3
f"{evaluator.__class__.__name__}: {repr(e)}", exc_info=True, ) raise e example_id = str(run.reference_example_id) with self.lock: for res in eval_results: run_id = ( str(getattr(res, "target_run_id")) if hasattr(res, "target_run_id") else str(run.id) ) self.logged_eval_results.setdefault((run_id, example_id), []).append( res ) def _select_eval_results( self, results: Union[EvaluationResult, EvaluationResults], ) -> List[EvaluationResult]: if isinstance(results, EvaluationResult): results_ = [results] elif isinstance(results, dict) and "results" in results: results_ = cast(List[EvaluationResult], results["results"]) else: raise TypeError( f"Invalid evaluation result type {type(results)}." " Expected EvaluationResult or EvaluationResults." ) return results_ def _log_evaluation_feedback( self, evaluator_response: Union[EvaluationResult, EvaluationResults], run: Run, source_run_id: Optional[UUID] = None, ) -> List[EvaluationResult]: results = self._select_eval_results(evaluator_response) for res in results: source_info_: Dict[str, Any] = {} if res.evaluator_info: source_info_ = {**res.evaluator_info, **source_info_} run_id_ = ( getattr(res, "target_run_id") if hasattr(res, "target_run_id") and res.target_run_id is not None else run.id ) self.client.create_feedback(
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/evaluation.html
f6a8d154d519-4
else run.id ) self.client.create_feedback( run_id_, res.key, score=res.score, value=res.value, comment=res.comment, correction=res.correction, source_info=source_info_, source_run_id=res.source_run_id or source_run_id, feedback_source_type=langsmith.schemas.FeedbackSourceType.MODEL, ) return results def _persist_run(self, run: Run) -> None: """Run the evaluator on the run. Parameters ---------- run : Run The run to be evaluated. """ if self.skip_unfinished and not run.outputs: logger.debug(f"Skipping unfinished run {run.id}") return run_ = run.copy() run_.reference_example_id = self.example_id for evaluator in self.evaluators: if self.executor is None: self._evaluate_in_project(run_, evaluator) else: self.futures.add( self.executor.submit(self._evaluate_in_project, run_, evaluator) ) [docs] def wait_for_futures(self) -> None: """Wait for all futures to complete.""" wait(self.futures)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/evaluation.html
1c9bcca8f7de-0
Source code for langchain.schema.callbacks.tracers.run_collector """A tracer that collects all nested runs in a list.""" from typing import Any, List, Optional, Union from uuid import UUID from langchain.schema.callbacks.tracers.base import BaseTracer from langchain.schema.callbacks.tracers.schemas import Run [docs]class RunCollectorCallbackHandler(BaseTracer): """ A tracer that collects all nested runs in a list. This tracer is useful for inspection and evaluation purposes. Parameters ---------- example_id : Optional[Union[UUID, str]], default=None The ID of the example being traced. It can be either a UUID or a string. """ name: str = "run-collector_callback_handler" [docs] def __init__( self, example_id: Optional[Union[UUID, str]] = None, **kwargs: Any ) -> None: """ Initialize the RunCollectorCallbackHandler. Parameters ---------- example_id : Optional[Union[UUID, str]], default=None The ID of the example being traced. It can be either a UUID or a string. """ super().__init__(**kwargs) self.example_id = ( UUID(example_id) if isinstance(example_id, str) else example_id ) self.traced_runs: List[Run] = [] def _persist_run(self, run: Run) -> None: """ Persist a run by adding it to the traced_runs list. Parameters ---------- run : Run The run to be persisted. """ run_ = run.copy() run_.reference_example_id = self.example_id self.traced_runs.append(run_)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/run_collector.html
270fb32cca4e-0
Source code for langchain.schema.callbacks.tracers.langchain_v1 from __future__ import annotations import logging import os from typing import Any, Dict, Optional, Union import requests from langchain.schema.callbacks.tracers.base import BaseTracer from langchain.schema.callbacks.tracers.schemas import ( ChainRun, LLMRun, Run, ToolRun, TracerSession, TracerSessionV1, TracerSessionV1Base, ) from langchain.schema.messages import get_buffer_string from langchain.utils import raise_for_status_with_text logger = logging.getLogger(__name__) [docs]def get_headers() -> Dict[str, Any]: """Get the headers for the LangChain API.""" headers: Dict[str, Any] = {"Content-Type": "application/json"} if os.getenv("LANGCHAIN_API_KEY"): headers["x-api-key"] = os.getenv("LANGCHAIN_API_KEY") return headers def _get_endpoint() -> str: return os.getenv("LANGCHAIN_ENDPOINT", "http://localhost:8000") [docs]class LangChainTracerV1(BaseTracer): """An implementation of the SharedTracer that POSTS to the langchain endpoint.""" [docs] def __init__(self, **kwargs: Any) -> None: """Initialize the LangChain tracer.""" super().__init__(**kwargs) self.session: Optional[TracerSessionV1] = None self._endpoint = _get_endpoint() self._headers = get_headers() def _convert_to_v1_run(self, run: Run) -> Union[LLMRun, ChainRun, ToolRun]: session = self.session or self.load_default_session() if not isinstance(session, TracerSessionV1):
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain_v1.html
270fb32cca4e-1
if not isinstance(session, TracerSessionV1): raise ValueError( "LangChainTracerV1 is not compatible with" f" session of type {type(session)}" ) if run.run_type == "llm": if "prompts" in run.inputs: prompts = run.inputs["prompts"] elif "messages" in run.inputs: prompts = [get_buffer_string(batch) for batch in run.inputs["messages"]] else: raise ValueError("No prompts found in LLM run inputs") return LLMRun( uuid=str(run.id) if run.id else None, parent_uuid=str(run.parent_run_id) if run.parent_run_id else None, start_time=run.start_time, end_time=run.end_time, extra=run.extra, execution_order=run.execution_order, child_execution_order=run.child_execution_order, serialized=run.serialized, session_id=session.id, error=run.error, prompts=prompts, response=run.outputs if run.outputs else None, ) if run.run_type == "chain": child_runs = [self._convert_to_v1_run(run) for run in run.child_runs] return ChainRun( uuid=str(run.id) if run.id else None, parent_uuid=str(run.parent_run_id) if run.parent_run_id else None, start_time=run.start_time, end_time=run.end_time, execution_order=run.execution_order, child_execution_order=run.child_execution_order, serialized=run.serialized, session_id=session.id, inputs=run.inputs, outputs=run.outputs, error=run.error,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain_v1.html
270fb32cca4e-2
outputs=run.outputs, error=run.error, extra=run.extra, child_llm_runs=[run for run in child_runs if isinstance(run, LLMRun)], child_chain_runs=[ run for run in child_runs if isinstance(run, ChainRun) ], child_tool_runs=[run for run in child_runs if isinstance(run, ToolRun)], ) if run.run_type == "tool": child_runs = [self._convert_to_v1_run(run) for run in run.child_runs] return ToolRun( uuid=str(run.id) if run.id else None, parent_uuid=str(run.parent_run_id) if run.parent_run_id else None, start_time=run.start_time, end_time=run.end_time, execution_order=run.execution_order, child_execution_order=run.child_execution_order, serialized=run.serialized, session_id=session.id, action=str(run.serialized), tool_input=run.inputs.get("input", ""), output=None if run.outputs is None else run.outputs.get("output"), error=run.error, extra=run.extra, child_chain_runs=[ run for run in child_runs if isinstance(run, ChainRun) ], child_tool_runs=[run for run in child_runs if isinstance(run, ToolRun)], child_llm_runs=[run for run in child_runs if isinstance(run, LLMRun)], ) raise ValueError(f"Unknown run type: {run.run_type}") def _persist_run(self, run: Union[Run, LLMRun, ChainRun, ToolRun]) -> None: """Persist a run.""" if isinstance(run, Run): v1_run = self._convert_to_v1_run(run)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain_v1.html
270fb32cca4e-3
v1_run = self._convert_to_v1_run(run) else: v1_run = run if isinstance(v1_run, LLMRun): endpoint = f"{self._endpoint}/llm-runs" elif isinstance(v1_run, ChainRun): endpoint = f"{self._endpoint}/chain-runs" else: endpoint = f"{self._endpoint}/tool-runs" try: response = requests.post( endpoint, data=v1_run.json(), headers=self._headers, ) raise_for_status_with_text(response) except Exception as e: logger.warning(f"Failed to persist run: {e}") def _persist_session( self, session_create: TracerSessionV1Base ) -> Union[TracerSessionV1, TracerSession]: """Persist a session.""" try: r = requests.post( f"{self._endpoint}/sessions", data=session_create.json(), headers=self._headers, ) session = TracerSessionV1(id=r.json()["id"], **session_create.dict()) except Exception as e: logger.warning(f"Failed to create session, using default session: {e}") session = TracerSessionV1(id=1, **session_create.dict()) return session def _load_session(self, session_name: Optional[str] = None) -> TracerSessionV1: """Load a session from the tracer.""" try: url = f"{self._endpoint}/sessions" if session_name: url += f"?name={session_name}" r = requests.get(url, headers=self._headers)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain_v1.html
270fb32cca4e-4
r = requests.get(url, headers=self._headers) tracer_session = TracerSessionV1(**r.json()[0]) except Exception as e: session_type = "default" if not session_name else session_name logger.warning( f"Failed to load {session_type} session, using empty session: {e}" ) tracer_session = TracerSessionV1(id=1) self.session = tracer_session return tracer_session [docs] def load_session(self, session_name: str) -> Union[TracerSessionV1, TracerSession]: """Load a session with the given name from the tracer.""" return self._load_session(session_name) [docs] def load_default_session(self) -> Union[TracerSessionV1, TracerSession]: """Load the default tracing session and set it as the Tracer's session.""" return self._load_session("default")
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/callbacks/tracers/langchain_v1.html
6ca47b79a450-0
Source code for langchain.schema.runnable.passthrough """Implementation of the RunnablePassthrough.""" from __future__ import annotations import asyncio import inspect import threading from typing import ( Any, AsyncIterator, Awaitable, Callable, Dict, Iterator, List, Mapping, Optional, Type, Union, cast, ) from langchain.pydantic_v1 import BaseModel, create_model from langchain.schema.runnable.base import ( Other, Runnable, RunnableParallel, RunnableSerializable, ) from langchain.schema.runnable.config import ( RunnableConfig, acall_func_with_variable_args, call_func_with_variable_args, get_executor_for_config, ) from langchain.schema.runnable.utils import AddableDict, ConfigurableFieldSpec from langchain.utils.aiter import atee, py_anext from langchain.utils.iter import safetee [docs]def identity(x: Other) -> Other: """An identity function""" return x [docs]async def aidentity(x: Other) -> Other: """An async identity function""" return x [docs]class RunnablePassthrough(RunnableSerializable[Other, Other]): """A runnable to passthrough inputs unchanged or with additional keys. This runnable behaves almost like the identity function, except that it can be configured to add additional keys to the output, if the input is a dict. The examples below demonstrate this runnable works using a few simple chains. The chains rely on simple lambdas to make the examples easy to execute and experiment with. Examples: .. code-block:: python
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-1
and experiment with. Examples: .. code-block:: python from langchain.schema.runnable import RunnablePassthrough, RunnableParallel runnable = RunnableParallel( origin=RunnablePassthrough(), modified=lambda x: x+1 ) runnable.invoke(1) # {'origin': 1, 'modified': 2} def fake_llm(prompt: str) -> str: # Fake LLM for the example return "completion" chain = RunnableLambda(fake_llm) | { 'original': RunnablePassthrough(), # Original LLM output 'parsed': lambda text: text[::-1] # Parsing logic } chain.invoke('hello') # {'original': 'completion', 'parsed': 'noitelpmoc'} In some cases, it may be useful to pass the input through while adding some keys to the output. In this case, you can use the `assign` method: .. code-block:: python from langchain.schema.runnable import RunnablePassthrough, RunnableParallel def fake_llm(prompt: str) -> str: # Fake LLM for the example return "completion" runnable = { 'llm1': fake_llm, 'llm2': fake_llm, } | RunnablePassthrough.assign( total_chars=lambda inputs: len(inputs['llm1'] + inputs['llm2']) ) runnable.invoke('hello') # {'llm1': 'completion', 'llm2': 'completion', 'total_chars': 20} """ input_type: Optional[Type[Other]] = None func: Optional[ Union[Callable[[Other], None], Callable[[Other, RunnableConfig], None]]
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-2
Union[Callable[[Other], None], Callable[[Other, RunnableConfig], None]] ] = None afunc: Optional[ Union[ Callable[[Other], Awaitable[None]], Callable[[Other, RunnableConfig], Awaitable[None]], ] ] = None def __init__( self, func: Optional[ Union[ Union[Callable[[Other], None], Callable[[Other, RunnableConfig], None]], Union[ Callable[[Other], Awaitable[None]], Callable[[Other, RunnableConfig], Awaitable[None]], ], ] ] = None, afunc: Optional[ Union[ Callable[[Other], Awaitable[None]], Callable[[Other, RunnableConfig], Awaitable[None]], ] ] = None, *, input_type: Optional[Type[Other]] = None, **kwargs: Any, ) -> None: if inspect.iscoroutinefunction(func): afunc = func func = None super().__init__(func=func, afunc=afunc, input_type=input_type, **kwargs) [docs] @classmethod def is_lc_serializable(cls) -> bool: return True [docs] @classmethod def get_lc_namespace(cls) -> List[str]: return cls.__module__.split(".")[:-1] @property def InputType(self) -> Any: return self.input_type or Any @property def OutputType(self) -> Any: return self.input_type or Any [docs] @classmethod def assign( cls, **kwargs: Union[ Runnable[Dict[str, Any], Any],
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-3
**kwargs: Union[ Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[ str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]], ], ], ) -> RunnableAssign: """Merge the Dict input with the output produced by the mapping argument. Args: mapping: A mapping from keys to runnables or callables. Returns: A runnable that merges the Dict input with the output produced by the mapping argument. """ return RunnableAssign(RunnableParallel(kwargs)) [docs] def invoke( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Other: if self.func is not None: call_func_with_variable_args(self.func, input, config or {}, **kwargs) return self._call_with_config(identity, input, config) [docs] async def ainvoke( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Other: if self.afunc is not None: await acall_func_with_variable_args( self.afunc, input, config or {}, **kwargs ) elif self.func is not None: call_func_with_variable_args(self.func, input, config or {}, **kwargs) return await self._acall_with_config(aidentity, input, config) [docs] def transform( self, input: Iterator[Other], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Iterator[Other]:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-4
**kwargs: Any, ) -> Iterator[Other]: if self.func is None: for chunk in self._transform_stream_with_config(input, identity, config): yield chunk else: final = None for chunk in self._transform_stream_with_config(input, identity, config): yield chunk if final is None: final = chunk else: final = final + chunk if final is not None: call_func_with_variable_args(self.func, final, config or {}, **kwargs) [docs] async def atransform( self, input: AsyncIterator[Other], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> AsyncIterator[Other]: if self.afunc is None and self.func is None: async for chunk in self._atransform_stream_with_config( input, identity, config ): yield chunk else: final = None async for chunk in self._atransform_stream_with_config( input, identity, config ): yield chunk if final is None: final = chunk else: final = final + chunk if final is not None: config = config or {} if self.afunc is not None: await acall_func_with_variable_args( self.afunc, final, config, **kwargs ) elif self.func is not None: call_func_with_variable_args(self.func, final, config, **kwargs) [docs] def stream( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Iterator[Other]:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-5
**kwargs: Any, ) -> Iterator[Other]: return self.transform(iter([input]), config, **kwargs) [docs] async def astream( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> AsyncIterator[Other]: async def input_aiter() -> AsyncIterator[Other]: yield input async for chunk in self.atransform(input_aiter(), config, **kwargs): yield chunk [docs]class RunnableAssign(RunnableSerializable[Dict[str, Any], Dict[str, Any]]): """ A runnable that assigns key-value pairs to Dict[str, Any] inputs. """ mapper: RunnableParallel[Dict[str, Any]] def __init__(self, mapper: RunnableParallel[Dict[str, Any]], **kwargs: Any) -> None: super().__init__(mapper=mapper, **kwargs) [docs] @classmethod def is_lc_serializable(cls) -> bool: return True [docs] @classmethod def get_lc_namespace(cls) -> List[str]: return cls.__module__.split(".")[:-1] [docs] def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: map_input_schema = self.mapper.get_input_schema(config) if not map_input_schema.__custom_root_type__: # ie. it's a dict return map_input_schema return super().get_input_schema(config) [docs] def get_output_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: map_input_schema = self.mapper.get_input_schema(config)
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-6
map_input_schema = self.mapper.get_input_schema(config) map_output_schema = self.mapper.get_output_schema(config) if ( not map_input_schema.__custom_root_type__ and not map_output_schema.__custom_root_type__ ): # ie. both are dicts return create_model( # type: ignore[call-overload] "RunnableAssignOutput", **{ k: (v.type_, v.default) for s in (map_input_schema, map_output_schema) for k, v in s.__fields__.items() }, ) elif not map_output_schema.__custom_root_type__: # ie. only map output is a dict # ie. input type is either unknown or inferred incorrectly return map_output_schema return super().get_output_schema(config) @property def config_specs(self) -> List[ConfigurableFieldSpec]: return self.mapper.config_specs [docs] def invoke( self, input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Dict[str, Any]: assert isinstance( input, dict ), "The input to RunnablePassthrough.assign() must be a dict." return { **input, **self.mapper.invoke(input, config, **kwargs), } [docs] async def ainvoke( self, input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Dict[str, Any]: assert isinstance( input, dict ), "The input to RunnablePassthrough.assign() must be a dict." return {
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-7
return { **input, **await self.mapper.ainvoke(input, config, **kwargs), } [docs] def transform( self, input: Iterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Iterator[Dict[str, Any]]: # collect mapper keys mapper_keys = set(self.mapper.steps.keys()) # create two streams, one for the map and one for the passthrough for_passthrough, for_map = safetee(input, 2, lock=threading.Lock()) # create map output stream map_output = self.mapper.transform(for_map, config, **kwargs) # get executor to start map output stream in background with get_executor_for_config(config or {}) as executor: # start map output stream first_map_chunk_future = executor.submit( next, map_output, # type: ignore None, ) # consume passthrough stream for chunk in for_passthrough: assert isinstance( chunk, dict ), "The input to RunnablePassthrough.assign() must be a dict." # remove mapper keys from passthrough chunk, to be overwritten by map filtered = AddableDict( {k: v for k, v in chunk.items() if k not in mapper_keys} ) if filtered: yield filtered # yield map output yield cast(Dict[str, Any], first_map_chunk_future.result()) for chunk in map_output: yield chunk [docs] async def atransform( self, input: AsyncIterator[Dict[str, Any]], config: Optional[RunnableConfig] = None,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-8
config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> AsyncIterator[Dict[str, Any]]: # collect mapper keys mapper_keys = set(self.mapper.steps.keys()) # create two streams, one for the map and one for the passthrough for_passthrough, for_map = atee(input, 2, lock=asyncio.Lock()) # create map output stream map_output = self.mapper.atransform(for_map, config, **kwargs) # start map output stream first_map_chunk_task: asyncio.Task = asyncio.create_task( py_anext(map_output, None), # type: ignore[arg-type] ) # consume passthrough stream async for chunk in for_passthrough: assert isinstance( chunk, dict ), "The input to RunnablePassthrough.assign() must be a dict." # remove mapper keys from passthrough chunk, to be overwritten by map output filtered = AddableDict( {k: v for k, v in chunk.items() if k not in mapper_keys} ) if filtered: yield filtered # yield map output yield await first_map_chunk_task async for chunk in map_output: yield chunk [docs] def stream( self, input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Iterator[Dict[str, Any]]: return self.transform(iter([input]), config, **kwargs) [docs] async def astream( self, input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
6ca47b79a450-9
config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> AsyncIterator[Dict[str, Any]]: async def input_aiter() -> AsyncIterator[Dict[str, Any]]: yield input async for chunk in self.atransform(input_aiter(), config, **kwargs): yield chunk
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/passthrough.html
c902d3a2c232-0
Source code for langchain.schema.runnable.retry from typing import ( TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, TypeVar, Union, cast, ) from tenacity import ( AsyncRetrying, RetryCallState, RetryError, Retrying, retry_if_exception_type, stop_after_attempt, wait_exponential_jitter, ) from langchain.schema.runnable.base import Input, Output, RunnableBindingBase from langchain.schema.runnable.config import RunnableConfig, patch_config if TYPE_CHECKING: from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) T = TypeVar("T", CallbackManagerForChainRun, AsyncCallbackManagerForChainRun) U = TypeVar("U") [docs]class RunnableRetry(RunnableBindingBase[Input, Output]): """Retry a Runnable if it fails. A RunnableRetry helps can be used to add retry logic to any object that subclasses the base Runnable. Such retries are especially useful for network calls that may fail due to transient errors. The RunnableRetry is implemented as a RunnableBinding. The easiest way to use it is through the `.with_retry()` method on all Runnables. Example: Here's an example that uses a RunnableLambda to raise an exception .. code-block:: python import time def foo(input) -> None: '''Fake function that raises an exception.''' raise ValueError("Invoking foo failed. At time {time.time()}") runnable = RunnableLambda(foo) runnable_with_retries = runnable.with_retry(
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/retry.html
c902d3a2c232-1
runnable = RunnableLambda(foo) runnable_with_retries = runnable.with_retry( retry_exception_types=(ValueError,), # Retry only on ValueError wait_exponential_jitter=True, # Add jitter to the exponential backoff max_attempt_number=2, # Try twice ) # The method invocation above is equivalent to the longer form below: runnable_with_retries = RunnableRetry( bound=runnable, retry_exception_types=(ValueError,), max_attempt_number=2, wait_exponential_jitter=True ) This logic can be used to retry any Runnable, including a chain of Runnables, but in general it's best practice to keep the scope of the retry as small as possible. For example, if you have a chain of Runnables, you should only retry the Runnable that is likely to fail, not the entire chain. Example: .. code-block:: python from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate template = PromptTemplate.from_template("tell me a joke about {topic}.") model = ChatOpenAI(temperature=0.5) # Good chain = template | model.with_retry() # Bad chain = template | model retryable_chain = chain.with_retry() """ retry_exception_types: Tuple[Type[BaseException], ...] = (Exception,) """The exception types to retry on. By default all exceptions are retried. In general you should only retry on exceptions that are likely to be transient, such as network errors. Good exceptions to retry are all server errors (5xx) and selected client errors (4xx) such as 429 Too Many Requests.
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/retry.html
c902d3a2c232-2
errors (4xx) such as 429 Too Many Requests. """ wait_exponential_jitter: bool = True """Whether to add jitter to the exponential backoff.""" max_attempt_number: int = 3 """The maximum number of attempts to retry the runnable.""" @property def _kwargs_retrying(self) -> Dict[str, Any]: kwargs: Dict[str, Any] = dict() if self.max_attempt_number: kwargs["stop"] = stop_after_attempt(self.max_attempt_number) if self.wait_exponential_jitter: kwargs["wait"] = wait_exponential_jitter() if self.retry_exception_types: kwargs["retry"] = retry_if_exception_type(self.retry_exception_types) return kwargs def _sync_retrying(self, **kwargs: Any) -> Retrying: return Retrying(**self._kwargs_retrying, **kwargs) def _async_retrying(self, **kwargs: Any) -> AsyncRetrying: return AsyncRetrying(**self._kwargs_retrying, **kwargs) def _patch_config( self, config: RunnableConfig, run_manager: "T", retry_state: RetryCallState, ) -> RunnableConfig: attempt = retry_state.attempt_number tag = "retry:attempt:{}".format(attempt) if attempt > 1 else None return patch_config(config, callbacks=run_manager.get_child(tag)) def _patch_config_list( self, config: List[RunnableConfig], run_manager: List["T"], retry_state: RetryCallState, ) -> List[RunnableConfig]: return [
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/retry.html
c902d3a2c232-3
) -> List[RunnableConfig]: return [ self._patch_config(c, rm, retry_state) for c, rm in zip(config, run_manager) ] def _invoke( self, input: Input, run_manager: "CallbackManagerForChainRun", config: RunnableConfig, **kwargs: Any, ) -> Output: for attempt in self._sync_retrying(reraise=True): with attempt: result = super().invoke( input, self._patch_config(config, run_manager, attempt.retry_state), **kwargs, ) if attempt.retry_state.outcome and not attempt.retry_state.outcome.failed: attempt.retry_state.set_result(result) return result [docs] def invoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return self._call_with_config(self._invoke, input, config, **kwargs) async def _ainvoke( self, input: Input, run_manager: "AsyncCallbackManagerForChainRun", config: RunnableConfig, **kwargs: Any, ) -> Output: async for attempt in self._async_retrying(reraise=True): with attempt: result = await super().ainvoke( input, self._patch_config(config, run_manager, attempt.retry_state), **kwargs, ) if attempt.retry_state.outcome and not attempt.retry_state.outcome.failed: attempt.retry_state.set_result(result) return result [docs] async def ainvoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/retry.html
c902d3a2c232-4
) -> Output: return await self._acall_with_config(self._ainvoke, input, config, **kwargs) def _batch( self, inputs: List[Input], run_manager: List["CallbackManagerForChainRun"], config: List[RunnableConfig], **kwargs: Any, ) -> List[Union[Output, Exception]]: results_map: Dict[int, Output] = {} def pending(iterable: List[U]) -> List[U]: return [item for idx, item in enumerate(iterable) if idx not in results_map] try: for attempt in self._sync_retrying(): with attempt: # Get the results of the inputs that have not succeeded yet. result = super().batch( pending(inputs), self._patch_config_list( pending(config), pending(run_manager), attempt.retry_state ), return_exceptions=True, **kwargs, ) # Register the results of the inputs that have succeeded. first_exception = None for i, r in enumerate(result): if isinstance(r, Exception): if not first_exception: first_exception = r continue results_map[i] = r # If any exception occurred, raise it, to retry the failed ones if first_exception: raise first_exception if ( attempt.retry_state.outcome and not attempt.retry_state.outcome.failed ): attempt.retry_state.set_result(result) except RetryError as e: try: result except UnboundLocalError: result = cast(List[Output], [e] * len(inputs)) outputs: List[Union[Output, Exception]] = []
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/retry.html
c902d3a2c232-5
outputs: List[Union[Output, Exception]] = [] for idx, _ in enumerate(inputs): if idx in results_map: outputs.append(results_map[idx]) else: outputs.append(result.pop(0)) return outputs [docs] def batch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, ) -> List[Output]: return self._batch_with_config( self._batch, inputs, config, return_exceptions=return_exceptions, **kwargs ) async def _abatch( self, inputs: List[Input], run_manager: List["AsyncCallbackManagerForChainRun"], config: List[RunnableConfig], **kwargs: Any, ) -> List[Union[Output, Exception]]: results_map: Dict[int, Output] = {} def pending(iterable: List[U]) -> List[U]: return [item for idx, item in enumerate(iterable) if idx not in results_map] try: async for attempt in self._async_retrying(): with attempt: # Get the results of the inputs that have not succeeded yet. result = await super().abatch( pending(inputs), self._patch_config_list( pending(config), pending(run_manager), attempt.retry_state ), return_exceptions=True, **kwargs, ) # Register the results of the inputs that have succeeded. first_exception = None for i, r in enumerate(result): if isinstance(r, Exception): if not first_exception:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/retry.html
c902d3a2c232-6
if isinstance(r, Exception): if not first_exception: first_exception = r continue results_map[i] = r # If any exception occurred, raise it, to retry the failed ones if first_exception: raise first_exception if ( attempt.retry_state.outcome and not attempt.retry_state.outcome.failed ): attempt.retry_state.set_result(result) except RetryError as e: try: result except UnboundLocalError: result = cast(List[Output], [e] * len(inputs)) outputs: List[Union[Output, Exception]] = [] for idx, _ in enumerate(inputs): if idx in results_map: outputs.append(results_map[idx]) else: outputs.append(result.pop(0)) return outputs [docs] async def abatch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, ) -> List[Output]: return await self._abatch_with_config( self._abatch, inputs, config, return_exceptions=return_exceptions, **kwargs ) # stream() and transform() are not retried because retrying a stream # is not very intuitive.
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/retry.html
053cd908fd61-0
Source code for langchain.schema.runnable.configurable from __future__ import annotations import enum import threading from abc import abstractmethod from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Sequence, Type, Union, cast, ) from weakref import WeakValueDictionary from langchain.pydantic_v1 import BaseModel from langchain.schema.runnable.base import Runnable, RunnableSerializable from langchain.schema.runnable.config import ( RunnableConfig, get_config_list, get_executor_for_config, ) from langchain.schema.runnable.utils import ( AnyConfigurableField, ConfigurableField, ConfigurableFieldMultiOption, ConfigurableFieldSingleOption, ConfigurableFieldSpec, Input, Output, gather_with_concurrency, get_unique_config_specs, ) [docs]class DynamicRunnable(RunnableSerializable[Input, Output]): """A Serializable Runnable that can be dynamically configured.""" default: RunnableSerializable[Input, Output] class Config: arbitrary_types_allowed = True [docs] @classmethod def is_lc_serializable(cls) -> bool: return True [docs] @classmethod def get_lc_namespace(cls) -> List[str]: return cls.__module__.split(".")[:-1] @property def InputType(self) -> Type[Input]: return self.default.InputType @property def OutputType(self) -> Type[Output]: return self.default.OutputType [docs] def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/configurable.html
053cd908fd61-1
) -> Type[BaseModel]: return self._prepare(config).get_input_schema(config) [docs] def get_output_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: return self._prepare(config).get_output_schema(config) @abstractmethod def _prepare( self, config: Optional[RunnableConfig] = None ) -> Runnable[Input, Output]: ... [docs] def invoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return self._prepare(config).invoke(input, config, **kwargs) [docs] async def ainvoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return await self._prepare(config).ainvoke(input, config, **kwargs) [docs] def batch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> List[Output]: configs = get_config_list(config, len(inputs)) prepared = [self._prepare(c) for c in configs] if all(p is self.default for p in prepared): return self.default.batch( inputs, config, return_exceptions=return_exceptions, **kwargs ) if not inputs: return [] configs = get_config_list(config, len(inputs)) def invoke( bound: Runnable[Input, Output], input: Input, config: RunnableConfig,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/configurable.html
053cd908fd61-2
input: Input, config: RunnableConfig, ) -> Union[Output, Exception]: if return_exceptions: try: return bound.invoke(input, config, **kwargs) except Exception as e: return e else: return bound.invoke(input, config, **kwargs) # If there's only one input, don't bother with the executor if len(inputs) == 1: return cast(List[Output], [invoke(prepared[0], inputs[0], configs[0])]) with get_executor_for_config(configs[0]) as executor: return cast( List[Output], list(executor.map(invoke, prepared, inputs, configs)) ) [docs] async def abatch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> List[Output]: configs = get_config_list(config, len(inputs)) prepared = [self._prepare(c) for c in configs] if all(p is self.default for p in prepared): return await self.default.abatch( inputs, config, return_exceptions=return_exceptions, **kwargs ) if not inputs: return [] configs = get_config_list(config, len(inputs)) async def ainvoke( bound: Runnable[Input, Output], input: Input, config: RunnableConfig, ) -> Union[Output, Exception]: if return_exceptions: try: return await bound.ainvoke(input, config, **kwargs) except Exception as e: return e
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/configurable.html
053cd908fd61-3
except Exception as e: return e else: return await bound.ainvoke(input, config, **kwargs) coros = map(ainvoke, prepared, inputs, configs) return await gather_with_concurrency(configs[0].get("max_concurrency"), *coros) [docs] def stream( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Iterator[Output]: return self._prepare(config).stream(input, config, **kwargs) [docs] async def astream( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> AsyncIterator[Output]: async for chunk in self._prepare(config).astream(input, config, **kwargs): yield chunk [docs] def transform( self, input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Iterator[Output]: return self._prepare(config).transform(input, config, **kwargs) [docs] async def atransform( self, input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> AsyncIterator[Output]: async for chunk in self._prepare(config).atransform(input, config, **kwargs): yield chunk [docs]class RunnableConfigurableFields(DynamicRunnable[Input, Output]): """A Runnable that can be dynamically configured.""" fields: Dict[str, AnyConfigurableField] @property
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/configurable.html
053cd908fd61-4
fields: Dict[str, AnyConfigurableField] @property def config_specs(self) -> List[ConfigurableFieldSpec]: return get_unique_config_specs( [ ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or self.default.__fields__[field_name].field_info.description, annotation=spec.annotation or self.default.__fields__[field_name].annotation, default=getattr(self.default, field_name), ) if isinstance(spec, ConfigurableField) else make_options_spec( spec, self.default.__fields__[field_name].field_info.description ) for field_name, spec in self.fields.items() ] + list(self.default.config_specs) ) [docs] def configurable_fields( self, **kwargs: AnyConfigurableField ) -> RunnableSerializable[Input, Output]: return self.default.configurable_fields(**{**self.fields, **kwargs}) def _prepare( self, config: Optional[RunnableConfig] = None ) -> Runnable[Input, Output]: config = config or {} specs_by_id = {spec.id: (key, spec) for key, spec in self.fields.items()} configurable_fields = { specs_by_id[k][0]: v for k, v in config.get("configurable", {}).items() if k in specs_by_id and isinstance(specs_by_id[k][1], ConfigurableField) } configurable_single_options = { k: v.options[(config.get("configurable", {}).get(v.id) or v.default)] for k, v in self.fields.items() if isinstance(v, ConfigurableFieldSingleOption) }
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/configurable.html
053cd908fd61-5
if isinstance(v, ConfigurableFieldSingleOption) } configurable_multi_options = { k: [ v.options[o] for o in config.get("configurable", {}).get(v.id, v.default) ] for k, v in self.fields.items() if isinstance(v, ConfigurableFieldMultiOption) } configurable = { **configurable_fields, **configurable_single_options, **configurable_multi_options, } if configurable: return self.default.__class__(**{**self.default.__dict__, **configurable}) else: return self.default # Before Python 3.11 native StrEnum is not available [docs]class StrEnum(str, enum.Enum): """A string enum.""" pass _enums_for_spec: WeakValueDictionary[ Union[ ConfigurableFieldSingleOption, ConfigurableFieldMultiOption, ConfigurableField ], Type[StrEnum], ] = WeakValueDictionary() _enums_for_spec_lock = threading.Lock() [docs]class RunnableConfigurableAlternatives(DynamicRunnable[Input, Output]): """A Runnable that can be dynamically configured.""" which: ConfigurableField alternatives: Dict[ str, Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]], ] default_key: str = "default" @property def config_specs(self) -> List[ConfigurableFieldSpec]: with _enums_for_spec_lock: if which_enum := _enums_for_spec.get(self.which): pass else: which_enum = StrEnum( # type: ignore[call-overload] self.which.name or self.which.id, (
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/configurable.html
053cd908fd61-6
self.which.name or self.which.id, ( (v, v) for v in list(self.alternatives.keys()) + [self.default_key] ), ) _enums_for_spec[self.which] = cast(Type[StrEnum], which_enum) return [ ConfigurableFieldSpec( id=self.which.id, name=self.which.name, description=self.which.description, annotation=which_enum, default=self.default_key, ), *self.default.config_specs, ] + [ s for alt in self.alternatives.values() if isinstance(alt, RunnableSerializable) for s in alt.config_specs ] [docs] def configurable_fields( self, **kwargs: AnyConfigurableField ) -> RunnableSerializable[Input, Output]: return self.__class__( which=self.which, default=self.default.configurable_fields(**kwargs), alternatives=self.alternatives, ) def _prepare( self, config: Optional[RunnableConfig] = None ) -> Runnable[Input, Output]: config = config or {} which = config.get("configurable", {}).get(self.which.id, self.default_key) if which == self.default_key: return self.default elif which in self.alternatives: alt = self.alternatives[which] if isinstance(alt, Runnable): return alt else: return alt() else: raise ValueError(f"Unknown alternative: {which}") [docs]def make_options_spec( spec: Union[ConfigurableFieldSingleOption, ConfigurableFieldMultiOption], description: Optional[str], ) -> ConfigurableFieldSpec:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/configurable.html
053cd908fd61-7
description: Optional[str], ) -> ConfigurableFieldSpec: """Make a ConfigurableFieldSpec for a ConfigurableFieldSingleOption or ConfigurableFieldMultiOption.""" with _enums_for_spec_lock: if enum := _enums_for_spec.get(spec): pass else: enum = StrEnum( # type: ignore[call-overload] spec.name or spec.id, ((v, v) for v in list(spec.options.keys())), ) _enums_for_spec[spec] = cast(Type[StrEnum], enum) if isinstance(spec, ConfigurableFieldSingleOption): return ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or description, annotation=enum, default=spec.default, ) else: return ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or description, annotation=Sequence[enum], # type: ignore[valid-type] default=spec.default, )
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/configurable.html
7cd2723fa80e-0
Source code for langchain.schema.runnable.base from __future__ import annotations import asyncio import inspect import threading from abc import ABC, abstractmethod from concurrent.futures import FIRST_COMPLETED, wait from functools import partial from itertools import tee from operator import itemgetter from typing import ( TYPE_CHECKING, Any, AsyncIterator, Awaitable, Callable, Dict, Generic, Iterator, List, Mapping, Optional, Sequence, Tuple, Type, TypeVar, Union, cast, overload, ) from typing_extensions import Literal, get_args if TYPE_CHECKING: from langchain.schema.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.schema.callbacks.tracers.log_stream import RunLog, RunLogPatch from langchain.schema.callbacks.tracers.root_listeners import Listener from langchain.schema.runnable.fallbacks import ( RunnableWithFallbacks as RunnableWithFallbacksT, ) from langchain.load.dump import dumpd from langchain.load.serializable import Serializable from langchain.pydantic_v1 import BaseModel, Field, create_model from langchain.schema.runnable.config import ( RunnableConfig, acall_func_with_variable_args, call_func_with_variable_args, ensure_config, get_async_callback_manager_for_config, get_callback_manager_for_config, get_config_list, get_executor_for_config, merge_configs, patch_config, ) from langchain.schema.runnable.utils import ( AddableDict, AnyConfigurableField, ConfigurableField, ConfigurableFieldSpec,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-1
AnyConfigurableField, ConfigurableField, ConfigurableFieldSpec, Input, Output, accepts_config, accepts_run_manager, gather_with_concurrency, get_function_first_arg_dict_keys, get_lambda_source, get_unique_config_specs, indent_lines_after_first, ) from langchain.utils.aiter import atee, py_anext from langchain.utils.iter import safetee Other = TypeVar("Other") [docs]class Runnable(Generic[Input, Output], ABC): """A unit of work that can be invoked, batched, streamed, transformed and composed. Key Methods =========== * invoke/ainvoke: Transforms a single input into an output. * batch/abatch: Efficiently transforms multiple inputs into outputs. * stream/astream: Streams output from a single input as it's produced. * astream_log: Streams output and selected intermediate results from an input. Built-in optimizations: * Batch: By default, batch runs invoke() in parallel using a thread pool executor. Override to optimize batching. * Async: Methods with "a" suffix are asynchronous. By default, they execute the sync counterpart using asyncio's thread pool. Override for native async. All methods accept an optional config argument, which can be used to configure execution, add tags and metadata for tracing and debugging etc. Runnables expose schematic information about their input, output and config via the input_schema property, the output_schema property and config_schema method. LCEL and Composition ==================== The LangChain Expression Language (LCEL) is a declarative way to compose Runnables
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-2
into chains. Any chain constructed this way will automatically have sync, async, batch, and streaming support. The main composition primitives are RunnableSequence and RunnableParallel. RunnableSequence invokes a series of runnables sequentially, with one runnable's output serving as the next's input. Construct using the `|` operator or by passing a list of runnables to RunnableSequence. RunnableParallel invokes runnables concurrently, providing the same input to each. Construct it using a dict literal within a sequence or by passing a dict to RunnableParallel. For example, .. code-block:: python from langchain.schema.runnable import RunnableLambda # A RunnableSequence constructed using the `|` operator sequence = RunnableLambda(lambda x: x + 1) | RunnableLambda(lambda x: x * 2) sequence.invoke(1) # 4 sequence.batch([1, 2, 3]) # [4, 6, 8] # A sequence that contains a RunnableParallel constructed using a dict literal sequence = RunnableLambda(lambda x: x + 1) | { 'mul_2': RunnableLambda(lambda x: x * 2), 'mul_5': RunnableLambda(lambda x: x * 5) } sequence.invoke(1) # {'mul_2': 4, 'mul_5': 10} Standard Methods ================ All Runnables expose additional methods that can be used to modify their behavior (e.g., add a retry policy, add lifecycle listeners, make them configurable, etc.). These methods will work on any Runnable, including Runnable chains constructed by composing other Runnables. See the individual methods for details. For example, .. code-block:: python
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-3
For example, .. code-block:: python from langchain.schema.runnable import RunnableLambda import random def add_one(x: int) -> int: return x + 1 def buggy_double(y: int) -> int: '''Buggy code that will fail 70% of the time''' if random.random() > 0.3: print('This code failed, and will probably be retried!') raise ValueError('Triggered buggy code') return y * 2 sequence = ( RunnableLambda(add_one) | RunnableLambda(buggy_double).with_retry( # Retry on failure stop_after_attempt=10, wait_exponential_jitter=False ) ) print(sequence.input_schema.schema()) # Show inferred input schema print(sequence.output_schema.schema()) # Show inferred output schema print(sequence.invoke(2)) # invoke the sequence (note the retry above!!) Debugging and tracing ===================== As the chains get longer, it can be useful to be able to see intermediate results to debug and trace the chain. You can set the global debug flag to True to enable debug output for all chains: .. code-block:: python from langchain.globals import set_debug set_debug(True) Alternatively, you can pass existing or custom callbacks to any given chain: ... code-block:: python from langchain.callbacks.tracers import ConsoleCallbackHandler chain.invoke( ..., config={'callbacks': [ConsoleCallbackHandler()]} ) For a UI (and much more) checkout LangSmith: https://docs.smith.langchain.com/ """ @property def InputType(self) -> Type[Input]:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-4
""" @property def InputType(self) -> Type[Input]: """The type of input this runnable accepts specified as a type annotation.""" for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined] type_args = get_args(cls) if type_args and len(type_args) == 2: return type_args[0] raise TypeError( f"Runnable {self.__class__.__name__} doesn't have an inferable InputType. " "Override the InputType property to specify the input type." ) @property def OutputType(self) -> Type[Output]: """The type of output this runnable produces specified as a type annotation.""" for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined] type_args = get_args(cls) if type_args and len(type_args) == 2: return type_args[1] raise TypeError( f"Runnable {self.__class__.__name__} doesn't have an inferable OutputType. " "Override the OutputType property to specify the output type." ) @property def input_schema(self) -> Type[BaseModel]: """The type of input this runnable accepts specified as a pydantic model.""" return self.get_input_schema() [docs] def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: """Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-5
configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Args: config: A config to use when generating the schema. Returns: A pydantic model that can be used to validate input. """ root_type = self.InputType if inspect.isclass(root_type) and issubclass(root_type, BaseModel): return root_type return create_model( self.__class__.__name__ + "Input", __root__=(root_type, None) ) @property def output_schema(self) -> Type[BaseModel]: """The type of output this runnable produces specified as a pydantic model.""" return self.get_output_schema() [docs] def get_output_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: """Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Args: config: A config to use when generating the schema. Returns: A pydantic model that can be used to validate output. """ root_type = self.OutputType if inspect.isclass(root_type) and issubclass(root_type, BaseModel): return root_type return create_model( self.__class__.__name__ + "Output", __root__=(root_type, None) ) @property def config_specs(self) -> List[ConfigurableFieldSpec]: """List configurable fields for this runnable."""
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-6
"""List configurable fields for this runnable.""" return [] [docs] def config_schema( self, *, include: Optional[Sequence[str]] = None ) -> Type[BaseModel]: """The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the `configurable_fields` and `configurable_alternatives` methods. Args: include: A list of fields to include in the config schema. Returns: A pydantic model that can be used to validate config. """ class _Config: arbitrary_types_allowed = True include = include or [] config_specs = self.config_specs configurable = ( create_model( # type: ignore[call-overload] "Configurable", **{ spec.id: ( spec.annotation, Field( spec.default, title=spec.name, description=spec.description ), ) for spec in config_specs }, ) if config_specs else None ) return create_model( # type: ignore[call-overload] self.__class__.__name__ + "Config", __config__=_Config, **({"configurable": (configurable, None)} if configurable else {}), **{ field_name: (field_type, None) for field_name, field_type in RunnableConfig.__annotations__.items() if field_name in [i for i in include if i != "configurable"] }, ) def __or__( self, other: Union[ Runnable[Any, Other], Callable[[Any], Other],
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-7
Runnable[Any, Other], Callable[[Any], Other], Callable[[Iterator[Any]], Iterator[Other]], Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]], ], ) -> RunnableSerializable[Input, Other]: """Compose this runnable with another object to create a RunnableSequence.""" return RunnableSequence(first=self, last=coerce_to_runnable(other)) def __ror__( self, other: Union[ Runnable[Other, Any], Callable[[Other], Any], Callable[[Iterator[Other]], Iterator[Any]], Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]], ], ) -> RunnableSerializable[Other, Output]: """Compose this runnable with another object to create a RunnableSequence.""" return RunnableSequence(first=coerce_to_runnable(other), last=self) """ --- Public API --- """ [docs] @abstractmethod def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: """Transform a single input into an output. Override to implement. Args: input: The input to the runnable. config: A config to use when invoking the runnable. The config supports standard keys like 'tags', 'metadata' for tracing purposes, 'max_concurrency' for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns: The output of the runnable. """ [docs] async def ainvoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output:
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-8
) -> Output: """Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. """ return await asyncio.get_running_loop().run_in_executor( None, partial(self.invoke, **kwargs), input, config ) [docs] def batch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> List[Output]: """Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. """ if not inputs: return [] configs = get_config_list(config, len(inputs)) def invoke(input: Input, config: RunnableConfig) -> Union[Output, Exception]: if return_exceptions: try: return self.invoke(input, config, **kwargs) except Exception as e: return e else: return self.invoke(input, config, **kwargs) # If there's only one input, don't bother with the executor if len(inputs) == 1: return cast(List[Output], [invoke(inputs[0], configs[0])]) with get_executor_for_config(configs[0]) as executor: return cast(List[Output], list(executor.map(invoke, inputs, configs)))
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html
7cd2723fa80e-9
return cast(List[Output], list(executor.map(invoke, inputs, configs))) [docs] async def abatch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> List[Output]: """Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. """ if not inputs: return [] configs = get_config_list(config, len(inputs)) async def ainvoke( input: Input, config: RunnableConfig ) -> Union[Output, Exception]: if return_exceptions: try: return await self.ainvoke(input, config, **kwargs) except Exception as e: return e else: return await self.ainvoke(input, config, **kwargs) coros = map(ainvoke, inputs, configs) return await gather_with_concurrency(configs[0].get("max_concurrency"), *coros) [docs] def stream( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Iterator[Output]: """ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. """ yield self.invoke(input, config, **kwargs) [docs] async def astream( self,
lang/api.python.langchain.com/en/latest/_modules/langchain/schema/runnable/base.html