id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
9a18d086743f-0
Source code for langchain.graphs.kuzu_graph from typing import Any, Dict, List [docs]class KuzuGraph: """Kùzu wrapper for graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__(self, db: Any, database: str = "kuzu") -> None: try: import kuzu except ImportError: raise ImportError( "Could not import Kùzu python package." "Please install Kùzu with `pip install kuzu`." ) self.db = db self.conn = kuzu.Connection(self.db) self.database = database self.refresh_schema() @property def get_schema(self) -> str: """Returns the schema of the Kùzu database""" return self.schema [docs] def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]: """Query Kùzu database""" params_list = [] for param_name in params: params_list.append([param_name, params[param_name]]) result = self.conn.execute(query, params_list) column_names = result.get_column_names() return_list = []
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/kuzu_graph.html
9a18d086743f-1
column_names = result.get_column_names() return_list = [] while result.has_next(): row = result.get_next() return_list.append(dict(zip(column_names, row))) return return_list [docs] def refresh_schema(self) -> None: """Refreshes the Kùzu graph schema information""" node_properties = [] node_table_names = self.conn._get_node_table_names() for table_name in node_table_names: current_table_schema = {"properties": [], "label": table_name} properties = self.conn._get_node_property_names(table_name) for property_name in properties: property_type = properties[property_name]["type"] list_type_flag = "" if properties[property_name]["dimension"] > 0: if "shape" in properties[property_name]: for s in properties[property_name]["shape"]: list_type_flag += "[%s]" % s else: for i in range(properties[property_name]["dimension"]): list_type_flag += "[]" property_type += list_type_flag current_table_schema["properties"].append( (property_name, property_type) ) node_properties.append(current_table_schema) relationships = [] rel_tables = self.conn._get_rel_table_names() for table in rel_tables: relationships.append( "(:%s)-[:%s]->(:%s)" % (table["src"], table["name"], table["dst"]) ) rel_properties = [] for table in rel_tables: current_table_schema = {"properties": [], "label": table["name"]} properties_text = self.conn._connection.get_rel_property_names( table["name"] ).split("\n")
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/kuzu_graph.html
9a18d086743f-2
table["name"] ).split("\n") for i, line in enumerate(properties_text): # The first 3 lines defines src, dst and name, so we skip them if i < 3: continue if not line: continue property_name, property_type = line.strip().split(" ") current_table_schema["properties"].append( (property_name, property_type) ) rel_properties.append(current_table_schema) self.schema = ( f"Node properties: {node_properties}\n" f"Relationships properties: {rel_properties}\n" f"Relationships: {relationships}\n" )
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/kuzu_graph.html
a830323f4010-0
Source code for langchain.graphs.neptune_graph from typing import Any, Dict, List, Optional, Tuple, Union [docs]class NeptuneQueryException(Exception): """A class to handle queries that fail to execute""" def __init__(self, exception: Union[str, Dict]): if isinstance(exception, dict): self.message = exception["message"] if "message" in exception else "unknown" self.details = exception["details"] if "details" in exception else "unknown" else: self.message = exception self.details = "unknown" def get_message(self) -> str: return self.message def get_details(self) -> Any: return self.details [docs]class NeptuneGraph: """Neptune wrapper for graph operations. Args: host: endpoint for the database instance port: port number for the database instance, default is 8182 use_https: whether to use secure connection, default is True client: optional boto3 Neptune client credentials_profile_name: optional AWS profile name region_name: optional AWS region, e.g., us-west-2 service: optional service name, default is neptunedata sign: optional, whether to sign the request payload, default is True Example: .. code-block:: python graph = NeptuneGraph( host='<my-cluster>', port=8182 ) *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database.
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neptune_graph.html
a830323f4010-1
data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__( self, host: str, port: int = 8182, use_https: bool = True, client: Any = None, credentials_profile_name: Optional[str] = None, region_name: Optional[str] = None, service: str = "neptunedata", sign: bool = True, ) -> None: """Create a new Neptune graph wrapper instance.""" try: if client is not None: self.client = client else: import boto3 if credentials_profile_name is not None: session = boto3.Session(profile_name=credentials_profile_name) else: # use default credentials session = boto3.Session() client_params = {} if region_name: client_params["region_name"] = region_name protocol = "https" if use_https else "http" client_params["endpoint_url"] = f"{protocol}://{host}:{port}" if sign: self.client = session.client(service, **client_params) else: from botocore import UNSIGNED from botocore.config import Config self.client = session.client( service, **client_params, config=Config(signature_version=UNSIGNED), ) except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." )
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neptune_graph.html
a830323f4010-2
"Please install it with `pip install boto3`." ) except Exception as e: if type(e).__name__ == "UnknownServiceError": raise ModuleNotFoundError( "NeptuneGraph requires a boto3 version 1.28.38 or greater." "Please install it with `pip install -U boto3`." ) from e else: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e try: self._refresh_schema() except Exception as e: raise NeptuneQueryException( { "message": "Could not get schema for Neptune database", "detail": str(e), } ) @property def get_schema(self) -> str: """Returns the schema of the Neptune database""" return self.schema [docs] def query(self, query: str, params: dict = {}) -> Dict[str, Any]: """Query Neptune database.""" try: return self.client.execute_open_cypher_query(openCypherQuery=query) except Exception as e: raise NeptuneQueryException( { "message": "An error occurred while executing the query.", "details": str(e), } ) def _get_summary(self) -> Dict: try: response = self.client.get_propertygraph_summary() except Exception as e: raise NeptuneQueryException( { "message": ( "Summary API is not available for this instance of Neptune," "ensure the engine version is >=1.2.1.0" ),
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neptune_graph.html
a830323f4010-3
"ensure the engine version is >=1.2.1.0" ), "details": str(e), } ) try: summary = response["payload"]["graphSummary"] except Exception: raise NeptuneQueryException( { "message": "Summary API did not return a valid response.", "details": response.content.decode(), } ) else: return summary def _get_labels(self) -> Tuple[List[str], List[str]]: """Get node and edge labels from the Neptune statistics summary""" summary = self._get_summary() n_labels = summary["nodeLabels"] e_labels = summary["edgeLabels"] return n_labels, e_labels def _get_triples(self, e_labels: List[str]) -> List[str]: triple_query = """ MATCH (a)-[e:`{e_label}`]->(b) WITH a,e,b LIMIT 3000 RETURN DISTINCT labels(a) AS from, type(e) AS edge, labels(b) AS to LIMIT 10 """ triple_template = "(:`{a}`)-[:`{e}`]->(:`{b}`)" triple_schema = [] for label in e_labels: q = triple_query.format(e_label=label) data = self.query(q) for d in data["results"]: triple = triple_template.format( a=d["from"][0], e=d["edge"], b=d["to"][0] ) triple_schema.append(triple) return triple_schema def _get_node_properties(self, n_labels: List[str], types: Dict) -> List: node_properties_query = """
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neptune_graph.html
a830323f4010-4
node_properties_query = """ MATCH (a:`{n_label}`) RETURN properties(a) AS props LIMIT 100 """ node_properties = [] for label in n_labels: q = node_properties_query.format(n_label=label) data = {"label": label, "properties": self.query(q)["results"]} s = set({}) for p in data["properties"]: for k, v in p["props"].items(): s.add((k, types[type(v).__name__])) np = { "properties": [{"property": k, "type": v} for k, v in s], "labels": label, } node_properties.append(np) return node_properties def _get_edge_properties(self, e_labels: List[str], types: Dict[str, Any]) -> List: edge_properties_query = """ MATCH ()-[e:`{e_label}`]->() RETURN properties(e) AS props LIMIT 100 """ edge_properties = [] for label in e_labels: q = edge_properties_query.format(e_label=label) data = {"label": label, "properties": self.query(q)["results"]} s = set({}) for p in data["properties"]: for k, v in p["props"].items(): s.add((k, types[type(v).__name__])) ep = { "type": label, "properties": [{"property": k, "type": v} for k, v in s], } edge_properties.append(ep) return edge_properties def _refresh_schema(self) -> None: """ Refreshes the Neptune graph schema information. """ types = {
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neptune_graph.html
a830323f4010-5
Refreshes the Neptune graph schema information. """ types = { "str": "STRING", "float": "DOUBLE", "int": "INTEGER", "list": "LIST", "dict": "MAP", "bool": "BOOLEAN", } n_labels, e_labels = self._get_labels() triple_schema = self._get_triples(e_labels) node_properties = self._get_node_properties(n_labels, types) edge_properties = self._get_edge_properties(e_labels, types) self.schema = f""" Node properties are the following: {node_properties} Relationship properties are the following: {edge_properties} The relationships are the following: {triple_schema} """
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neptune_graph.html
e8d39e6beec3-0
Source code for langchain.graphs.networkx_graph """Networkx wrapper for graph operations.""" from __future__ import annotations from typing import Any, List, NamedTuple, Optional, Tuple KG_TRIPLE_DELIMITER = "<|>" [docs]class KnowledgeTriple(NamedTuple): """A triple in the graph.""" subject: str predicate: str object_: str [docs] @classmethod def from_string(cls, triple_string: str) -> "KnowledgeTriple": """Create a KnowledgeTriple from a string.""" subject, predicate, object_ = triple_string.strip().split(", ") subject = subject[1:] object_ = object_[:-1] return cls(subject, predicate, object_) [docs]def parse_triples(knowledge_str: str) -> List[KnowledgeTriple]: """Parse knowledge triples from the knowledge string.""" knowledge_str = knowledge_str.strip() if not knowledge_str or knowledge_str == "NONE": return [] triple_strs = knowledge_str.split(KG_TRIPLE_DELIMITER) results = [] for triple_str in triple_strs: try: kg_triple = KnowledgeTriple.from_string(triple_str) except ValueError: continue results.append(kg_triple) return results [docs]def get_entities(entity_str: str) -> List[str]: """Extract entities from entity string.""" if entity_str.strip() == "NONE": return [] else: return [w.strip() for w in entity_str.split(",")] [docs]class NetworkxEntityGraph: """Networkx wrapper for entity graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions.
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/networkx_graph.html
e8d39e6beec3-1
that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__(self, graph: Optional[Any] = None) -> None: """Create a new graph.""" try: import networkx as nx except ImportError: raise ImportError( "Could not import networkx python package. " "Please install it with `pip install networkx`." ) if graph is not None: if not isinstance(graph, nx.DiGraph): raise ValueError("Passed in graph is not of correct shape") self._graph = graph else: self._graph = nx.DiGraph() [docs] @classmethod def from_gml(cls, gml_path: str) -> NetworkxEntityGraph: try: import networkx as nx except ImportError: raise ImportError( "Could not import networkx python package. " "Please install it with `pip install networkx`." ) graph = nx.read_gml(gml_path) return cls(graph) [docs] def add_triple(self, knowledge_triple: KnowledgeTriple) -> None: """Add a triple to the graph.""" # Creates nodes if they don't exist # Overwrites existing edges
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/networkx_graph.html
e8d39e6beec3-2
# Creates nodes if they don't exist # Overwrites existing edges if not self._graph.has_node(knowledge_triple.subject): self._graph.add_node(knowledge_triple.subject) if not self._graph.has_node(knowledge_triple.object_): self._graph.add_node(knowledge_triple.object_) self._graph.add_edge( knowledge_triple.subject, knowledge_triple.object_, relation=knowledge_triple.predicate, ) [docs] def delete_triple(self, knowledge_triple: KnowledgeTriple) -> None: """Delete a triple from the graph.""" if self._graph.has_edge(knowledge_triple.subject, knowledge_triple.object_): self._graph.remove_edge(knowledge_triple.subject, knowledge_triple.object_) [docs] def get_triples(self) -> List[Tuple[str, str, str]]: """Get all triples in the graph.""" return [(u, v, d["relation"]) for u, v, d in self._graph.edges(data=True)] [docs] def get_entity_knowledge(self, entity: str, depth: int = 1) -> List[str]: """Get information about an entity.""" import networkx as nx # TODO: Have more information-specific retrieval methods if not self._graph.has_node(entity): return [] results = [] for src, sink in nx.dfs_edges(self._graph, entity, depth_limit=depth): relation = self._graph[src][sink]["relation"] results.append(f"{src} {relation} {sink}") return results [docs] def write_to_gml(self, path: str) -> None: import networkx as nx nx.write_gml(self._graph, path)
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/networkx_graph.html
e8d39e6beec3-3
import networkx as nx nx.write_gml(self._graph, path) [docs] def clear(self) -> None: """Clear the graph.""" self._graph.clear() [docs] def get_topological_sort(self) -> List[str]: """Get a list of entity names in the graph sorted by causal dependence.""" import networkx as nx return list(nx.topological_sort(self._graph)) [docs] def draw_graphviz(self, **kwargs: Any) -> None: """ Provides better drawing Usage in a jupyter notebook: >>> from IPython.display import SVG >>> self.draw_graphviz_svg(layout="dot", filename="web.svg") >>> SVG('web.svg') """ from networkx.drawing.nx_agraph import to_agraph try: import pygraphviz # noqa: F401 except ImportError as e: if e.name == "_graphviz": """ >>> e.msg # pygraphviz throws this error ImportError: libcgraph.so.6: cannot open shared object file """ raise ImportError( "Could not import graphviz debian package. " "Please install it with:" "`sudo apt-get update`" "`sudo apt-get install graphviz graphviz-dev`" ) else: raise ImportError( "Could not import pygraphviz python package. " "Please install it with:" "`pip install pygraphviz`." ) graph = to_agraph(self._graph) # --> pygraphviz.agraph.AGraph # pygraphviz.github.io/documentation/stable/tutorial.html#layout-and-drawing graph.layout(prog=kwargs.get("prog", "dot"))
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/networkx_graph.html
e8d39e6beec3-4
graph.layout(prog=kwargs.get("prog", "dot")) graph.draw(kwargs.get("path", "graph.svg"))
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/networkx_graph.html
a7058a339ea3-0
Source code for langchain.graphs.neo4j_graph from typing import Any, Dict, List, Optional from langchain.graphs.graph_document import GraphDocument from langchain.graphs.graph_store import GraphStore from langchain.utils import get_from_env node_properties_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE NOT type = "RELATIONSHIP" AND elementType = "node" WITH label AS nodeLabels, collect({property:property, type:type}) AS properties RETURN {labels: nodeLabels, properties: properties} AS output """ rel_properties_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE NOT type = "RELATIONSHIP" AND elementType = "relationship" WITH label AS nodeLabels, collect({property:property, type:type}) AS properties RETURN {type: nodeLabels, properties: properties} AS output """ rel_query = """ CALL apoc.meta.data() YIELD label, other, elementType, type, property WHERE type = "RELATIONSHIP" AND elementType = "node" UNWIND other AS other_node RETURN {start: label, type: property, end: toString(other_node)} AS output """ [docs]class Neo4jGraph(GraphStore): """Neo4j wrapper for graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate)
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neo4j_graph.html
a7058a339ea3-1
The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__( self, url: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, database: str = "neo4j", ) -> None: """Create a new Neo4j graph wrapper instance.""" try: import neo4j except ImportError: raise ValueError( "Could not import neo4j python package. " "Please install it with `pip install neo4j`." ) url = get_from_env("url", "NEO4J_URI", url) username = get_from_env("username", "NEO4J_USERNAME", username) password = get_from_env("password", "NEO4J_PASSWORD", password) database = get_from_env("database", "NEO4J_DATABASE", database) self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password)) self._database = database self.schema: str = "" self.structured_schema: Dict[str, Any] = {} # Verify connection try: self._driver.verify_connectivity() except neo4j.exceptions.ServiceUnavailable: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the url is correct" ) except neo4j.exceptions.AuthError: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the username and password are correct"
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neo4j_graph.html
a7058a339ea3-2
"Please ensure that the username and password are correct" ) # Set schema try: self.refresh_schema() except neo4j.exceptions.ClientError: raise ValueError( "Could not use APOC procedures. " "Please ensure the APOC plugin is installed in Neo4j and that " "'apoc.meta.data()' is allowed in Neo4j configuration " ) @property def get_schema(self) -> str: """Returns the schema of the Graph""" return self.schema @property def get_structured_schema(self) -> Dict[str, Any]: """Returns the structured schema of the Graph""" return self.structured_schema [docs] def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]: """Query Neo4j database.""" from neo4j.exceptions import CypherSyntaxError with self._driver.session(database=self._database) as session: try: data = session.run(query, params) return [r.data() for r in data] except CypherSyntaxError as e: raise ValueError(f"Generated Cypher Statement is not valid\n{e}") [docs] def refresh_schema(self) -> None: """ Refreshes the Neo4j graph schema information. """ node_properties = [el["output"] for el in self.query(node_properties_query)] rel_properties = [el["output"] for el in self.query(rel_properties_query)] relationships = [el["output"] for el in self.query(rel_query)] self.structured_schema = { "node_props": {el["labels"]: el["properties"] for el in node_properties},
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neo4j_graph.html
a7058a339ea3-3
"rel_props": {el["type"]: el["properties"] for el in rel_properties}, "relationships": relationships, } self.schema = f""" Node properties are the following: {node_properties} Relationship properties are the following: {rel_properties} The relationships are the following: {[f"(:{el['start']})-[:{el['type']}]->(:{el['end']})" for el in relationships]} """ [docs] def add_graph_documents( self, graph_documents: List[GraphDocument], include_source: bool = False ) -> None: """ Take GraphDocument as input as uses it to construct a graph. """ for document in graph_documents: include_docs_query = ( "CREATE (d:Document) " "SET d.text = $document.page_content " "SET d += $document.metadata " "WITH d " ) # Import nodes self.query( ( f"{include_docs_query if include_source else ''}" "UNWIND $data AS row " "CALL apoc.merge.node([row.type], {id: row.id}, " "row.properties, {}) YIELD node " f"{'MERGE (d)-[:MENTIONS]->(node) ' if include_source else ''}" "RETURN distinct 'done' AS result" ), { "data": [el.__dict__ for el in document.nodes], "document": document.source.__dict__, }, ) # Import relationships self.query( "UNWIND $data AS row "
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neo4j_graph.html
a7058a339ea3-4
self.query( "UNWIND $data AS row " "CALL apoc.merge.node([row.source_label], {id: row.source}," "{}, {}) YIELD node as source " "CALL apoc.merge.node([row.target_label], {id: row.target}," "{}, {}) YIELD node as target " "CALL apoc.merge.relationship(source, row.type, " "{}, row.properties, target) YIELD rel " "RETURN distinct 'done'", { "data": [ { "source": el.source.id, "source_label": el.source.type, "target": el.target.id, "target_label": el.target.type, "type": el.type.replace(" ", "_").upper(), "properties": el.properties, } for el in document.relationships ] }, )
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/neo4j_graph.html
8835e4fc83b3-0
Source code for langchain.graphs.graph_document from __future__ import annotations from typing import List, Union from langchain.load.serializable import Serializable from langchain.pydantic_v1 import Field from langchain.schema import Document [docs]class Node(Serializable): """Represents a node in a graph with associated properties. Attributes: id (Union[str, int]): A unique identifier for the node. type (str): The type or label of the node, default is "Node". properties (dict): Additional properties and metadata associated with the node. """ id: Union[str, int] type: str = "Node" properties: dict = Field(default_factory=dict) [docs]class Relationship(Serializable): """Represents a directed relationship between two nodes in a graph. Attributes: source (Node): The source node of the relationship. target (Node): The target node of the relationship. type (str): The type of the relationship. properties (dict): Additional properties associated with the relationship. """ source: Node target: Node type: str properties: dict = Field(default_factory=dict) [docs]class GraphDocument(Serializable): """Represents a graph document consisting of nodes and relationships. Attributes: nodes (List[Node]): A list of nodes in the graph. relationships (List[Relationship]): A list of relationships in the graph. source (Document): The document from which the graph information is derived. """ nodes: List[Node] relationships: List[Relationship] source: Document
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/graph_document.html
b0c785826f45-0
Source code for langchain.graphs.hugegraph from typing import Any, Dict, List [docs]class HugeGraph: """HugeGraph wrapper for graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__( self, username: str = "default", password: str = "default", address: str = "127.0.0.1", port: int = 8081, graph: str = "hugegraph", ) -> None: """Create a new HugeGraph wrapper instance.""" try: from hugegraph.connection import PyHugeGraph except ImportError: raise ValueError( "Please install HugeGraph Python client first: " "`pip3 install hugegraph-python`" ) self.username = username self.password = password self.address = address self.port = port self.graph = graph self.client = PyHugeGraph( address, port, user=username, pwd=password, graph=graph ) self.schema = "" # Set schema try: self.refresh_schema() except Exception as e:
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/hugegraph.html
b0c785826f45-1
try: self.refresh_schema() except Exception as e: raise ValueError(f"Could not refresh schema. Error: {e}") @property def get_schema(self) -> str: """Returns the schema of the HugeGraph database""" return self.schema [docs] def refresh_schema(self) -> None: """ Refreshes the HugeGraph schema information. """ schema = self.client.schema() vertex_schema = schema.getVertexLabels() edge_schema = schema.getEdgeLabels() relationships = schema.getRelations() self.schema = ( f"Node properties: {vertex_schema}\n" f"Edge properties: {edge_schema}\n" f"Relationships: {relationships}\n" ) [docs] def query(self, query: str) -> List[Dict[str, Any]]: g = self.client.gremlin() res = g.exec(query) return res["data"]
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/hugegraph.html
ade25e025f6a-0
Source code for langchain.graphs.arangodb_graph import os from math import ceil from typing import Any, Dict, List, Optional [docs]class ArangoGraph: """ArangoDB wrapper for graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__(self, db: Any) -> None: """Create a new ArangoDB graph wrapper instance.""" self.set_db(db) self.set_schema() @property def db(self) -> Any: return self.__db @property def schema(self) -> Dict[str, Any]: return self.__schema [docs] def set_db(self, db: Any) -> None: from arango.database import Database if not isinstance(db, Database): msg = "**db** parameter must inherit from arango.database.Database" raise TypeError(msg) self.__db: Database = db self.set_schema() [docs] def set_schema(self, schema: Optional[Dict[str, Any]] = None) -> None: """ Set the schema of the ArangoDB Database. Auto-generates Schema if **schema** is None. """
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/arangodb_graph.html
ade25e025f6a-1
Auto-generates Schema if **schema** is None. """ self.__schema = self.generate_schema() if schema is None else schema [docs] def generate_schema( self, sample_ratio: float = 0 ) -> Dict[str, List[Dict[str, Any]]]: """ Generates the schema of the ArangoDB Database and returns it User can specify a **sample_ratio** (0 to 1) to determine the ratio of documents/edges used (in relation to the Collection size) to render each Collection Schema. """ if not 0 <= sample_ratio <= 1: raise ValueError("**sample_ratio** value must be in between 0 to 1") # Stores the Edge Relationships between each ArangoDB Document Collection graph_schema: List[Dict[str, Any]] = [ {"graph_name": g["name"], "edge_definitions": g["edge_definitions"]} for g in self.db.graphs() ] # Stores the schema of every ArangoDB Document/Edge collection collection_schema: List[Dict[str, Any]] = [] for collection in self.db.collections(): if collection["system"]: continue # Extract collection name, type, and size col_name: str = collection["name"] col_type: str = collection["type"] col_size: int = self.db.collection(col_name).count() # Skip collection if empty if col_size == 0: continue # Set number of ArangoDB documents/edges to retrieve limit_amount = ceil(sample_ratio * col_size) or 1 aql = f""" FOR doc in {col_name} LIMIT {limit_amount} RETURN doc """
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/arangodb_graph.html
ade25e025f6a-2
LIMIT {limit_amount} RETURN doc """ doc: Dict[str, Any] properties: List[Dict[str, str]] = [] for doc in self.__db.aql.execute(aql): for key, value in doc.items(): properties.append({"name": key, "type": type(value).__name__}) collection_schema.append( { "collection_name": col_name, "collection_type": col_type, f"{col_type}_properties": properties, f"example_{col_type}": doc, } ) return {"Graph Schema": graph_schema, "Collection Schema": collection_schema} [docs] def query( self, query: str, top_k: Optional[int] = None, **kwargs: Any ) -> List[Dict[str, Any]]: """Query the ArangoDB database.""" import itertools cursor = self.__db.aql.execute(query, **kwargs) return [doc for doc in itertools.islice(cursor, top_k)] [docs] @classmethod def from_db_credentials( cls, url: Optional[str] = None, dbname: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, ) -> Any: """Convenience constructor that builds Arango DB from credentials. Args: url: Arango DB url. Can be passed in as named arg or set as environment var ``ARANGODB_URL``. Defaults to "http://localhost:8529". dbname: Arango DB name. Can be passed in as named arg or set as environment var ``ARANGODB_DBNAME``. Defaults to "_system".
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/arangodb_graph.html
ade25e025f6a-3
environment var ``ARANGODB_DBNAME``. Defaults to "_system". username: Can be passed in as named arg or set as environment var ``ARANGODB_USERNAME``. Defaults to "root". password: Can be passed ni as named arg or set as environment var ``ARANGODB_PASSWORD``. Defaults to "". Returns: An arango.database.StandardDatabase. """ db = get_arangodb_client( url=url, dbname=dbname, username=username, password=password ) return cls(db) [docs]def get_arangodb_client( url: Optional[str] = None, dbname: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, ) -> Any: """Get the Arango DB client from credentials. Args: url: Arango DB url. Can be passed in as named arg or set as environment var ``ARANGODB_URL``. Defaults to "http://localhost:8529". dbname: Arango DB name. Can be passed in as named arg or set as environment var ``ARANGODB_DBNAME``. Defaults to "_system". username: Can be passed in as named arg or set as environment var ``ARANGODB_USERNAME``. Defaults to "root". password: Can be passed ni as named arg or set as environment var ``ARANGODB_PASSWORD``. Defaults to "". Returns: An arango.database.StandardDatabase. """ try: from arango import ArangoClient except ImportError as e: raise ImportError( "Unable to import arango, please install with `pip install python-arango`." ) from e
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/arangodb_graph.html
ade25e025f6a-4
) from e _url: str = url or os.environ.get("ARANGODB_URL", "http://localhost:8529") # type: ignore[assignment] # noqa: E501 _dbname: str = dbname or os.environ.get("ARANGODB_DBNAME", "_system") # type: ignore[assignment] # noqa: E501 _username: str = username or os.environ.get("ARANGODB_USERNAME", "root") # type: ignore[assignment] # noqa: E501 _password: str = password or os.environ.get("ARANGODB_PASSWORD", "") # type: ignore[assignment] # noqa: E501 return ArangoClient(_url).db(_dbname, _username, _password, verify=True)
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/arangodb_graph.html
b23bed57542e-0
Source code for langchain.graphs.nebula_graph import logging from string import Template from typing import Any, Dict, Optional logger = logging.getLogger(__name__) rel_query = Template( """ MATCH ()-[e:`$edge_type`]->() WITH e limit 1 MATCH (m)-[:`$edge_type`]->(n) WHERE id(m) == src(e) AND id(n) == dst(e) RETURN "(:" + tags(m)[0] + ")-[:$edge_type]->(:" + tags(n)[0] + ")" AS rels """ ) RETRY_TIMES = 3 [docs]class NebulaGraph: """NebulaGraph wrapper for graph operations. NebulaGraph inherits methods from Neo4jGraph to bring ease to the user space. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__( self, space: str, username: str = "root", password: str = "nebula", address: str = "127.0.0.1", port: int = 9669, session_pool_size: int = 30, ) -> None: """Create a new NebulaGraph wrapper instance."""
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/nebula_graph.html
b23bed57542e-1
) -> None: """Create a new NebulaGraph wrapper instance.""" try: import nebula3 # noqa: F401 import pandas # noqa: F401 except ImportError: raise ValueError( "Please install NebulaGraph Python client and pandas first: " "`pip install nebula3-python pandas`" ) self.username = username self.password = password self.address = address self.port = port self.space = space self.session_pool_size = session_pool_size self.session_pool = self._get_session_pool() self.schema = "" # Set schema try: self.refresh_schema() except Exception as e: raise ValueError(f"Could not refresh schema. Error: {e}") def _get_session_pool(self) -> Any: assert all( [self.username, self.password, self.address, self.port, self.space] ), ( "Please provide all of the following parameters: " "username, password, address, port, space" ) from nebula3.Config import SessionPoolConfig from nebula3.Exception import AuthFailedException, InValidHostname from nebula3.gclient.net.SessionPool import SessionPool config = SessionPoolConfig() config.max_size = self.session_pool_size try: session_pool = SessionPool( self.username, self.password, self.space, [(self.address, self.port)], ) except InValidHostname: raise ValueError( "Could not connect to NebulaGraph database. " "Please ensure that the address and port are correct" ) try: session_pool.init(config)
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/nebula_graph.html
b23bed57542e-2
) try: session_pool.init(config) except AuthFailedException: raise ValueError( "Could not connect to NebulaGraph database. " "Please ensure that the username and password are correct" ) except RuntimeError as e: raise ValueError(f"Error initializing session pool. Error: {e}") return session_pool def __del__(self) -> None: try: self.session_pool.close() except Exception as e: logger.warning(f"Could not close session pool. Error: {e}") @property def get_schema(self) -> str: """Returns the schema of the NebulaGraph database""" return self.schema [docs] def execute(self, query: str, params: Optional[dict] = None, retry: int = 0) -> Any: """Query NebulaGraph database.""" from nebula3.Exception import IOErrorException, NoValidSessionException from nebula3.fbthrift.transport.TTransport import TTransportException params = params or {} try: result = self.session_pool.execute_parameter(query, params) if not result.is_succeeded(): logger.warning( f"Error executing query to NebulaGraph. " f"Error: {result.error_msg()}\n" f"Query: {query} \n" ) return result except NoValidSessionException: logger.warning( f"No valid session found in session pool. " f"Please consider increasing the session pool size. " f"Current size: {self.session_pool_size}" ) raise ValueError( f"No valid session found in session pool. "
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/nebula_graph.html
b23bed57542e-3
) raise ValueError( f"No valid session found in session pool. " f"Please consider increasing the session pool size. " f"Current size: {self.session_pool_size}" ) except RuntimeError as e: if retry < RETRY_TIMES: retry += 1 logger.warning( f"Error executing query to NebulaGraph. " f"Retrying ({retry}/{RETRY_TIMES})...\n" f"query: {query} \n" f"Error: {e}" ) return self.execute(query, params, retry) else: raise ValueError(f"Error executing query to NebulaGraph. Error: {e}") except (TTransportException, IOErrorException): # connection issue, try to recreate session pool if retry < RETRY_TIMES: retry += 1 logger.warning( f"Connection issue with NebulaGraph. " f"Retrying ({retry}/{RETRY_TIMES})...\n to recreate session pool" ) self.session_pool = self._get_session_pool() return self.execute(query, params, retry) [docs] def refresh_schema(self) -> None: """ Refreshes the NebulaGraph schema information. """ tags_schema, edge_types_schema, relationships = [], [], [] for tag in self.execute("SHOW TAGS").column_values("Name"): tag_name = tag.cast() tag_schema = {"tag": tag_name, "properties": []} r = self.execute(f"DESCRIBE TAG `{tag_name}`") props, types = r.column_values("Field"), r.column_values("Type") for i in range(r.row_size()):
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/nebula_graph.html
b23bed57542e-4
for i in range(r.row_size()): tag_schema["properties"].append((props[i].cast(), types[i].cast())) tags_schema.append(tag_schema) for edge_type in self.execute("SHOW EDGES").column_values("Name"): edge_type_name = edge_type.cast() edge_schema = {"edge": edge_type_name, "properties": []} r = self.execute(f"DESCRIBE EDGE `{edge_type_name}`") props, types = r.column_values("Field"), r.column_values("Type") for i in range(r.row_size()): edge_schema["properties"].append((props[i].cast(), types[i].cast())) edge_types_schema.append(edge_schema) # build relationships types r = self.execute( rel_query.substitute(edge_type=edge_type_name) ).column_values("rels") if len(r) > 0: relationships.append(r[0].cast()) self.schema = ( f"Node properties: {tags_schema}\n" f"Edge properties: {edge_types_schema}\n" f"Relationships: {relationships}\n" ) [docs] def query(self, query: str, retry: int = 0) -> Dict[str, Any]: result = self.execute(query, retry=retry) columns = result.keys() d: Dict[str, list] = {} for col_num in range(result.col_size()): col_name = columns[col_num] col_list = result.column_values(col_name) d[col_name] = [x.cast() for x in col_list] return d
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/nebula_graph.html
702633c1c847-0
Source code for langchain.graphs.memgraph_graph from langchain.graphs.neo4j_graph import Neo4jGraph SCHEMA_QUERY = """ CALL llm_util.schema("prompt_ready") YIELD * RETURN * """ RAW_SCHEMA_QUERY = """ CALL llm_util.schema("raw") YIELD * RETURN * """ [docs]class MemgraphGraph(Neo4jGraph): """Memgraph wrapper for graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__( self, url: str, username: str, password: str, *, database: str = "memgraph" ) -> None: """Create a new Memgraph graph wrapper instance.""" super().__init__(url, username, password, database=database) [docs] def refresh_schema(self) -> None: """ Refreshes the Memgraph graph schema information. """ db_schema = self.query(SCHEMA_QUERY)[0].get("schema") assert db_schema is not None self.schema = db_schema db_structured_schema = self.query(RAW_SCHEMA_QUERY)[0].get("schema") assert db_structured_schema is not None self.structured_schema = db_structured_schema
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/memgraph_graph.html
447fc2513621-0
Source code for langchain.graphs.falkordb_graph from typing import Any, Dict, List, Optional from langchain.graphs.graph_document import GraphDocument from langchain.graphs.graph_store import GraphStore node_properties_query = """ MATCH (n) WITH keys(n) as keys, labels(n) AS labels WITH CASE WHEN keys = [] THEN [NULL] ELSE keys END AS keys, labels UNWIND labels AS label UNWIND keys AS key WITH label, collect(DISTINCT key) AS keys RETURN {label:label, keys:keys} AS output """ rel_properties_query = """ MATCH ()-[r]->() WITH keys(r) as keys, type(r) AS types WITH CASE WHEN keys = [] THEN [NULL] ELSE keys END AS keys, types UNWIND types AS type UNWIND keys AS key WITH type, collect(DISTINCT key) AS keys RETURN {types:type, keys:keys} AS output """ rel_query = """ MATCH (n)-[r]->(m) UNWIND labels(n) as src_label UNWIND labels(m) as dst_label UNWIND type(r) as rel_type RETURN DISTINCT {start: src_label, type: rel_type, end: dst_label} AS output """ [docs]class FalkorDBGraph(GraphStore): """FalkorDB wrapper for graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database.
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/falkordb_graph.html
447fc2513621-1
data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ [docs] def __init__( self, database: str, host: str = "localhost", port: int = 6379, username: Optional[str] = None, password: Optional[str] = None, ssl: bool = False, ) -> None: """Create a new FalkorDB graph wrapper instance.""" try: import redis from redis.commands.graph import Graph except ImportError: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) self._driver = redis.Redis( host=host, port=port, username=username, password=password, ssl=ssl ) self._graph = Graph(self._driver, database) self.schema: str = "" self.structured_schema: Dict[str, Any] = {} try: self.refresh_schema() except Exception as e: raise ValueError(f"Could not refresh schema. Error: {e}") @property def get_schema(self) -> str: """Returns the schema of the FalkorDB database""" return self.schema @property def get_structured_schema(self) -> Dict[str, Any]: """Returns the structured schema of the Graph""" return self.structured_schema [docs] def refresh_schema(self) -> None: """Refreshes the schema of the FalkorDB database"""
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/falkordb_graph.html
447fc2513621-2
"""Refreshes the schema of the FalkorDB database""" node_properties: List[Any] = self.query(node_properties_query) rel_properties: List[Any] = self.query(rel_properties_query) relationships: List[Any] = self.query(rel_query) self.structured_schema = { "node_props": {el[0]["label"]: el[0]["keys"] for el in node_properties}, "rel_props": {el[0]["types"]: el[0]["keys"] for el in rel_properties}, "relationships": [el[0] for el in relationships], } self.schema = ( f"Node properties: {node_properties}\n" f"Relationships properties: {rel_properties}\n" f"Relationships: {relationships}\n" ) [docs] def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]: """Query FalkorDB database.""" try: data = self._graph.query(query, params) return data.result_set except Exception as e: raise ValueError("Generated Cypher Statement is not valid\n" f"{e}") [docs] def add_graph_documents( self, graph_documents: List[GraphDocument], include_source: bool = False ) -> None: """ Take GraphDocument as input as uses it to construct a graph. """ for document in graph_documents: # Import nodes for node in document.nodes: self.query( ( f"MERGE (n:{node.type} {{id:'{node.id}'}}) " "SET n += $properties " "RETURN distinct 'done' AS result" ),
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/falkordb_graph.html
447fc2513621-3
"RETURN distinct 'done' AS result" ), {"properties": node.properties}, ) # Import relationships for rel in document.relationships: self.query( ( f"MATCH (a:{rel.source.type} {{id:'{rel.source.id}'}}), " f"(b:{rel.target.type} {{id:'{rel.target.id}'}}) " f"MERGE (a)-[r:{(rel.type.replace(' ', '_').upper())}]->(b) " "SET r += $properties " "RETURN distinct 'done' AS result" ), {"properties": rel.properties}, )
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/falkordb_graph.html
b76a57615593-0
Source code for langchain.graphs.graph_store from abc import abstractmethod from typing import Any, Dict, List from langchain.graphs.graph_document import GraphDocument [docs]class GraphStore: """An abstract class wrapper for graph operations.""" @property @abstractmethod def get_schema(self) -> str: """Returns the schema of the Graph database""" pass @property @abstractmethod def get_structured_schema(self) -> Dict[str, Any]: """Returns the schema of the Graph database""" pass [docs] @abstractmethod def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]: """Query the graph.""" pass [docs] @abstractmethod def refresh_schema(self) -> None: """Refreshes the graph schema information.""" pass [docs] @abstractmethod def add_graph_documents( self, graph_documents: List[GraphDocument], include_source: bool = False ) -> None: """Take GraphDocument as input as uses it to construct a graph.""" pass
lang/api.python.langchain.com/en/latest/_modules/langchain/graphs/graph_store.html
7107e9278fff-0
Source code for langchain.llms.cerebriumai import logging from typing import Any, Dict, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class CerebriumAI(LLM): """CerebriumAI large language models. To use, you should have the ``cerebrium`` python package installed, and the environment variable ``CEREBRIUMAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import CerebriumAI cerebrium = CerebriumAI(endpoint_url="") """ endpoint_url: str = "" """model endpoint to use""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" cerebriumai_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {})
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/cerebriumai.html
7107e9278fff-1
extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cerebriumai_api_key = get_from_dict_or_env( values, "cerebriumai_api_key", "CEREBRIUMAI_API_KEY" ) values["cerebriumai_api_key"] = cerebriumai_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "cerebriumai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to CerebriumAI endpoint.""" try: from cerebrium import model_api_request except ImportError: raise ValueError(
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/cerebriumai.html
7107e9278fff-2
from cerebrium import model_api_request except ImportError: raise ValueError( "Could not import cerebrium python package. " "Please install it with `pip install cerebrium`." ) params = self.model_kwargs or {} response = model_api_request( self.endpoint_url, {"prompt": prompt, **params, **kwargs}, self.cerebriumai_api_key, ) text = response["data"]["result"] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/cerebriumai.html
d4ba7116d9a9-0
Source code for langchain.llms.chatglm import logging from typing import Any, List, Mapping, Optional import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens logger = logging.getLogger(__name__) [docs]class ChatGLM(LLM): """ChatGLM LLM service. Example: .. code-block:: python from langchain.llms import ChatGLM endpoint_url = ( "http://127.0.0.1:8000" ) ChatGLM_llm = ChatGLM( endpoint_url=endpoint_url ) """ endpoint_url: str = "http://127.0.0.1:8000/" """Endpoint URL to use.""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" max_token: int = 20000 """Max token allowed to pass to the model.""" temperature: float = 0.1 """LLM model temperature from 0 to 10.""" history: List[List] = [] """History of the conversation""" top_p: float = 0.7 """Top P for nucleus sampling from 0 to 1""" with_history: bool = False """Whether to use history or not""" @property def _llm_type(self) -> str: return "chat_glm" @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_url": self.endpoint_url},
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/chatglm.html
d4ba7116d9a9-1
return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": _model_kwargs}, } def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to a ChatGLM LLM inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = chatglm_llm("Who are you?") """ _model_kwargs = self.model_kwargs or {} # HTTP headers for authorization headers = {"Content-Type": "application/json"} payload = { "prompt": prompt, "temperature": self.temperature, "history": self.history, "max_length": self.max_token, "top_p": self.top_p, } payload.update(_model_kwargs) payload.update(kwargs) logger.debug(f"ChatGLM payload: {payload}") # call api try: response = requests.post(self.endpoint_url, headers=headers, json=payload) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") logger.debug(f"ChatGLM response: {response}") if response.status_code != 200: raise ValueError(f"Failed with response: {response}") try: parsed_response = response.json() # Check if response content does exists if isinstance(parsed_response, dict):
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/chatglm.html
d4ba7116d9a9-2
# Check if response content does exists if isinstance(parsed_response, dict): content_keys = "response" if content_keys in parsed_response: text = parsed_response[content_keys] else: raise ValueError(f"No content in response : {parsed_response}") else: raise ValueError(f"Unexpected response type: {parsed_response}") except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised during decoding response from inference endpoint: {e}." f"\nResponse: {response.text}" ) if stop is not None: text = enforce_stop_tokens(text, stop) if self.with_history: self.history = self.history + [[None, parsed_response["response"]]] return text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/chatglm.html
08d6223e104d-0
Source code for langchain.llms.huggingface_hub from typing import Any, Dict, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra, root_validator from langchain.utils import get_from_dict_or_env DEFAULT_REPO_ID = "gpt2" VALID_TASKS = ("text2text-generation", "text-generation", "summarization") [docs]class HuggingFaceHub(LLM): """HuggingFaceHub models. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation`, `text2text-generation` and `summarization` for now. Example: .. code-block:: python from langchain.llms import HuggingFaceHub hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") """ client: Any #: :meta private: repo_id: str = DEFAULT_REPO_ID """Model name to use.""" task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text` or `summary_text`.""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator()
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_hub.html
08d6223e104d-1
extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.inference_api import InferenceApi repo_id = values["repo_id"] client = InferenceApi( repo_id=repo_id, token=huggingfacehub_api_token, task=values.get("task"), ) if client.task not in VALID_TASKS: raise ValueError( f"Got invalid task {client.task}, " f"currently only {VALID_TASKS} are supported" ) values["client"] = client except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"repo_id": self.repo_id, "task": self.task}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "huggingface_hub" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_hub.html
08d6223e104d-2
run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to HuggingFace Hub's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = hf("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} params = {**_model_kwargs, **kwargs} response = self.client(inputs=prompt, params=params) if "error" in response: raise ValueError(f"Error raised by inference API: {response['error']}") if self.client.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif self.client.task == "text2text-generation": text = response[0]["generated_text"] elif self.client.task == "summarization": text = response[0]["summary_text"] else: raise ValueError( f"Got invalid task {self.client.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_hub.html
39a0014d469a-0
Source code for langchain.llms.amazon_api_gateway from typing import Any, Dict, List, Mapping, Optional import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra [docs]class ContentHandlerAmazonAPIGateway: """Adapter to prepare the inputs from Langchain to a format that LLM model expects. It also provides helper function to extract the generated text from the model response.""" [docs] @classmethod def transform_input( cls, prompt: str, model_kwargs: Dict[str, Any] ) -> Dict[str, Any]: return {"inputs": prompt, "parameters": model_kwargs} [docs] @classmethod def transform_output(cls, response: Any) -> str: return response.json()[0]["generated_text"] [docs]class AmazonAPIGateway(LLM): """Amazon API Gateway to access LLM models hosted on AWS.""" api_url: str """API Gateway URL""" headers: Optional[Dict] = None """API Gateway HTTP Headers to send, e.g. for authentication""" model_kwargs: Optional[Dict] = None """Keyword arguments to pass to the model.""" content_handler: ContentHandlerAmazonAPIGateway = ContentHandlerAmazonAPIGateway() """The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters."""
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/amazon_api_gateway.html
39a0014d469a-1
"""Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"api_url": self.api_url, "headers": self.headers}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "amazon_api_gateway" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Amazon API Gateway model. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = se("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} payload = self.content_handler.transform_input(prompt, _model_kwargs) try: response = requests.post( self.api_url, headers=self.headers, json=payload, ) text = self.content_handler.transform_output(response) except Exception as error: raise ValueError(f"Error raised by the service: {error}") if stop is not None: text = enforce_stop_tokens(text, stop) return text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/amazon_api_gateway.html
81b97065f8fd-0
Source code for langchain.llms.azureml_endpoint import json import urllib.request import warnings from abc import abstractmethod from typing import Any, Dict, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import BaseModel, validator from langchain.utils import get_from_dict_or_env [docs]class AzureMLEndpointClient(object): """AzureML Managed Endpoint client.""" [docs] def __init__( self, endpoint_url: str, endpoint_api_key: str, deployment_name: str = "" ) -> None: """Initialize the class.""" if not endpoint_api_key or not endpoint_url: raise ValueError( """A key/token and REST endpoint should be provided to invoke the endpoint""" ) self.endpoint_url = endpoint_url self.endpoint_api_key = endpoint_api_key self.deployment_name = deployment_name [docs] def call(self, body: bytes, **kwargs: Any) -> bytes: """call.""" # The azureml-model-deployment header will force the request to go to a # specific deployment. Remove this header to have the request observe the # endpoint traffic rules. headers = { "Content-Type": "application/json", "Authorization": ("Bearer " + self.endpoint_api_key), } if self.deployment_name != "": headers["azureml-model-deployment"] = self.deployment_name req = urllib.request.Request(self.endpoint_url, body, headers) response = urllib.request.urlopen(req, timeout=kwargs.get("timeout", 50)) result = response.read() return result [docs]class ContentFormatterBase:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
81b97065f8fd-1
result = response.read() return result [docs]class ContentFormatterBase: """Transform request and response of AzureML endpoint to match with required schema. """ """ Example: .. code-block:: python class ContentFormatter(ContentFormatterBase): content_type = "application/json" accepts = "application/json" def format_request_payload( self, prompt: str, model_kwargs: Dict ) -> bytes: input_str = json.dumps( { "inputs": {"input_string": [prompt]}, "parameters": model_kwargs, } ) return str.encode(input_str) def format_response_payload(self, output: str) -> str: response_json = json.loads(output) return response_json[0]["0"] """ content_type: Optional[str] = "application/json" """The MIME type of the input data passed to the endpoint""" accepts: Optional[str] = "application/json" """The MIME type of the response data returned from the endpoint""" [docs] @staticmethod def escape_special_characters(prompt: str) -> str: """Escapes any special characters in `prompt`""" escape_map = { "\\": "\\\\", '"': '\\"', "\b": "\\b", "\f": "\\f", "\n": "\\n", "\r": "\\r", "\t": "\\t", } # Replace each occurrence of the specified characters with escaped versions for escape_sequence, escaped_sequence in escape_map.items(): prompt = prompt.replace(escape_sequence, escaped_sequence) return prompt
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
81b97065f8fd-2
prompt = prompt.replace(escape_sequence, escaped_sequence) return prompt [docs] @abstractmethod def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: """Formats the request body according to the input schema of the model. Returns bytes or seekable file like object in the format specified in the content_type request header. """ [docs] @abstractmethod def format_response_payload(self, output: bytes) -> str: """Formats the response body according to the output schema of the model. Returns the data type that is received from the response. """ [docs]class GPT2ContentFormatter(ContentFormatterBase): """Content handler for GPT2""" [docs] def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: prompt = ContentFormatterBase.escape_special_characters(prompt) request_payload = json.dumps( {"inputs": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs} ) return str.encode(request_payload) [docs] def format_response_payload(self, output: bytes) -> str: return json.loads(output)[0]["0"] [docs]class OSSContentFormatter(GPT2ContentFormatter): """Deprecated: Kept for backwards compatibility Content handler for LLMs from the OSS catalog.""" content_formatter: Any = None [docs] def __init__(self) -> None: super().__init__() warnings.warn( """`OSSContentFormatter` will be deprecated in the future. Please use `GPT2ContentFormatter` instead. """ ) [docs]class HFContentFormatter(ContentFormatterBase):
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
81b97065f8fd-3
""" ) [docs]class HFContentFormatter(ContentFormatterBase): """Content handler for LLMs from the HuggingFace catalog.""" [docs] def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: ContentFormatterBase.escape_special_characters(prompt) request_payload = json.dumps( {"inputs": [f'"{prompt}"'], "parameters": model_kwargs} ) return str.encode(request_payload) [docs] def format_response_payload(self, output: bytes) -> str: return json.loads(output)[0]["generated_text"] [docs]class DollyContentFormatter(ContentFormatterBase): """Content handler for the Dolly-v2-12b model""" [docs] def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: prompt = ContentFormatterBase.escape_special_characters(prompt) request_payload = json.dumps( { "input_data": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs, } ) return str.encode(request_payload) [docs] def format_response_payload(self, output: bytes) -> str: return json.loads(output)[0] [docs]class LlamaContentFormatter(ContentFormatterBase): """Content formatter for LLaMa""" [docs] def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: """Formats the request according to the chosen api""" prompt = ContentFormatterBase.escape_special_characters(prompt) request_payload = json.dumps( { "input_data": { "input_string": [f'"{prompt}"'], "parameters": model_kwargs, } } )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
81b97065f8fd-4
"parameters": model_kwargs, } } ) return str.encode(request_payload) [docs] def format_response_payload(self, output: bytes) -> str: """Formats response""" return json.loads(output)[0]["0"] [docs]class AzureMLOnlineEndpoint(LLM, BaseModel): """Azure ML Online Endpoint models. Example: .. code-block:: python azure_llm = AzureMLOnlineEndpoint( endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score", endpoint_api_key="my-api-key", content_formatter=content_formatter, ) """ # noqa: E501 endpoint_url: str = "" """URL of pre-existing Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_URL`.""" endpoint_api_key: str = "" """Authentication Key for Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_API_KEY`.""" deployment_name: str = "" """Deployment Name for Endpoint. NOT REQUIRED to call endpoint. Should be passed to constructor or specified as env var `AZUREML_DEPLOYMENT_NAME`.""" http_client: Any = None #: :meta private: content_formatter: Any = None """The content formatter that provides an input and output transform function to handle formats between the LLM and the endpoint""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" @validator("http_client", always=True, allow_reuse=True) @classmethod def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
81b97065f8fd-5
"""Validate that api key and python package exists in environment.""" endpoint_key = get_from_dict_or_env( values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY" ) endpoint_url = get_from_dict_or_env( values, "endpoint_url", "AZUREML_ENDPOINT_URL" ) deployment_name = get_from_dict_or_env( values, "deployment_name", "AZUREML_DEPLOYMENT_NAME", "" ) http_client = AzureMLEndpointClient(endpoint_url, endpoint_key, deployment_name) return http_client @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"deployment_name": self.deployment_name}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "azureml_endpoint" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to an AzureML Managed Online endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = azureml_model("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} request_payload = self.content_formatter.format_request_payload(
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
81b97065f8fd-6
request_payload = self.content_formatter.format_request_payload( prompt, _model_kwargs ) response_payload = self.http_client.call(request_payload, **kwargs) generated_text = self.content_formatter.format_response_payload( response_payload ) return generated_text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/azureml_endpoint.html
961c0eb8f5f8-0
Source code for langchain.llms.minimax """Wrapper around Minimax APIs.""" from __future__ import annotations import logging from typing import ( Any, Dict, List, Optional, ) import requests from langchain.callbacks.manager import ( CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import BaseModel, Field, root_validator from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) class _MinimaxEndpointClient(BaseModel): """An API client that talks to a Minimax llm endpoint.""" host: str group_id: str api_key: str api_url: str @root_validator(pre=True, allow_reuse=True) def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]: if "api_url" not in values: host = values["host"] group_id = values["group_id"] api_url = f"{host}/v1/text/chatcompletion?GroupId={group_id}" values["api_url"] = api_url return values def post(self, request: Any) -> Any: headers = {"Authorization": f"Bearer {self.api_key}"} response = requests.post(self.api_url, headers=headers, json=request) # TODO: error handling and automatic retries if not response.ok: raise ValueError(f"HTTP {response.status_code} error: {response.text}") if response.json()["base_resp"]["status_code"] > 0: raise ValueError( f"API {response.json()['base_resp']['status_code']}"
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/minimax.html
961c0eb8f5f8-1
f"API {response.json()['base_resp']['status_code']}" f" error: {response.json()['base_resp']['status_msg']}" ) return response.json()["reply"] [docs]class MinimaxCommon(BaseModel): """Common parameters for Minimax large language models.""" _client: Any = None model: str = "abab5.5-chat" """Model name to use.""" max_tokens: int = 256 """Denotes the number of tokens to predict per generation.""" temperature: float = 0.7 """A non-negative float that tunes the degree of randomness in generation.""" top_p: float = 0.95 """Total probability mass of tokens to consider at each step.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" minimax_api_host: Optional[str] = None minimax_group_id: Optional[str] = None minimax_api_key: Optional[str] = None @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["minimax_api_key"] = get_from_dict_or_env( values, "minimax_api_key", "MINIMAX_API_KEY" ) values["minimax_group_id"] = get_from_dict_or_env( values, "minimax_group_id", "MINIMAX_GROUP_ID" ) # Get custom api url from environment. values["minimax_api_host"] = get_from_dict_or_env( values, "minimax_api_host", "MINIMAX_API_HOST",
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/minimax.html
961c0eb8f5f8-2
"minimax_api_host", "MINIMAX_API_HOST", default="https://api.minimax.chat", ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model, "tokens_to_generate": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, **self.model_kwargs, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "minimax" def __init__(self, **data: Any): super().__init__(**data) self._client = _MinimaxEndpointClient( host=self.minimax_api_host, api_key=self.minimax_api_key, group_id=self.minimax_group_id, ) [docs]class Minimax(MinimaxCommon, LLM): """Wrapper around Minimax large language models. To use, you should have the environment variable ``MINIMAX_API_KEY`` and ``MINIMAX_GROUP_ID`` set with your API key, or pass them as a named parameter to the constructor. Example: . code-block:: python from langchain.llms.minimax import Minimax minimax = Minimax(model="<model_name>", minimax_api_key="my-api-key", minimax_group_id="my-group-id") """ def _call( self,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/minimax.html
961c0eb8f5f8-3
""" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""Call out to Minimax's completion endpoint to chat Args: prompt: The prompt to pass into the model. Returns: The string generated by the model. Example: .. code-block:: python response = minimax("Tell me a joke.") """ request = self._default_params request["messages"] = [{"sender_type": "USER", "text": prompt}] request.update(kwargs) text = self._client.post(request) if stop is not None: # This is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/minimax.html
8d42d338d2a0-0
Source code for langchain.llms.xinference from typing import TYPE_CHECKING, Any, Dict, Generator, List, Mapping, Optional, Union from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM if TYPE_CHECKING: from xinference.client import RESTfulChatModelHandle, RESTfulGenerateModelHandle from xinference.model.llm.core import LlamaCppGenerateConfig [docs]class Xinference(LLM): """Wrapper for accessing Xinference's large-scale model inference service. To use, you should have the xinference library installed: .. code-block:: bash pip install "xinference[all]" Check out: https://github.com/xorbitsai/inference To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers Example: To start a local instance of Xinference, run .. code-block:: bash $ xinference You can also deploy Xinference in a distributed cluster. Here are the steps: Starting the supervisor: .. code-block:: bash $ xinference-supervisor Starting the worker: .. code-block:: bash $ xinference-worker Then, launch a model using command line interface (CLI). Example: .. code-block:: bash $ xinference launch -n orca -s 3 -q q4_0 It will return a model UID. Then, you can use Xinference with LangChain. Example: .. code-block:: python from langchain.llms import Xinference llm = Xinference( server_url="http://0.0.0.0:9997",
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/xinference.html
8d42d338d2a0-1
server_url="http://0.0.0.0:9997", model_uid = {model_uid} # replace model_uid with the model UID return from launching the model ) llm( prompt="Q: where can we visit in the capital of France? A:", generate_config={"max_tokens": 1024, "stream": True}, ) To view all the supported builtin models, run: .. code-block:: bash $ xinference list --all """ # noqa: E501 client: Any server_url: Optional[str] """URL of the xinference server""" model_uid: Optional[str] """UID of the launched model""" model_kwargs: Dict[str, Any] """Keyword arguments to be passed to xinference.LLM""" def __init__( self, server_url: Optional[str] = None, model_uid: Optional[str] = None, **model_kwargs: Any, ): try: from xinference.client import RESTfulClient except ImportError as e: raise ImportError( "Could not import RESTfulClient from xinference. Please install it" " with `pip install xinference`." ) from e model_kwargs = model_kwargs or {} super().__init__( **{ "server_url": server_url, "model_uid": model_uid, "model_kwargs": model_kwargs, } ) if self.server_url is None: raise ValueError("Please provide server URL") if self.model_uid is None: raise ValueError("Please provide the model UID") self.client = RESTfulClient(server_url) @property
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/xinference.html
8d42d338d2a0-2
self.client = RESTfulClient(server_url) @property def _llm_type(self) -> str: """Return type of llm.""" return "xinference" @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"server_url": self.server_url}, **{"model_uid": self.model_uid}, **{"model_kwargs": self.model_kwargs}, } def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the xinference model and return the output. Args: prompt: The prompt to use for generation. stop: Optional list of stop words to use when generating. generate_config: Optional dictionary for the configuration used for generation. Returns: The generated string by the model. """ model = self.client.get_model(self.model_uid) generate_config: "LlamaCppGenerateConfig" = kwargs.get("generate_config", {}) generate_config = {**self.model_kwargs, **generate_config} if stop: generate_config["stop"] = stop if generate_config and generate_config.get("stream"): combined_text_output = "" for token in self._stream_generate( model=model, prompt=prompt, run_manager=run_manager, generate_config=generate_config, ): combined_text_output += token return combined_text_output else: completion = model.generate(prompt=prompt, generate_config=generate_config)
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/xinference.html
8d42d338d2a0-3
else: completion = model.generate(prompt=prompt, generate_config=generate_config) return completion["choices"][0]["text"] def _stream_generate( self, model: Union["RESTfulGenerateModelHandle", "RESTfulChatModelHandle"], prompt: str, run_manager: Optional[CallbackManagerForLLMRun] = None, generate_config: Optional["LlamaCppGenerateConfig"] = None, ) -> Generator[str, None, None]: """ Args: prompt: The prompt to use for generation. model: The model used for generation. stop: Optional list of stop words to use when generating. generate_config: Optional dictionary for the configuration used for generation. Yields: A string token. """ streaming_response = model.generate( prompt=prompt, generate_config=generate_config ) for chunk in streaming_response: if isinstance(chunk, dict): choices = chunk.get("choices", []) if choices: choice = choices[0] if isinstance(choice, dict): token = choice.get("text", "") log_probs = choice.get("logprobs") if run_manager: run_manager.on_llm_new_token( token=token, verbose=self.verbose, log_probs=log_probs ) yield token
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/xinference.html
b3a209a7cd08-0
Source code for langchain.llms.together """Wrapper around Together AI's Completion API.""" import logging from typing import Any, Dict, List, Optional from aiohttp import ClientSession from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, root_validator from langchain.utilities.requests import Requests from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class Together(LLM): """Wrapper around Together AI models. To use, you'll need an API key which you can find here: https://api.together.xyz/settings/api-keys. This can be passed in as init param ``together_api_key`` or set as environment variable ``TOGETHER_API_KEY``. Together AI API reference: https://docs.together.ai/reference/inference """ base_url: str = "https://api.together.xyz/inference" """Base inference API URL.""" together_api_key: str """Together AI API key. Get it here: https://api.together.xyz/settings/api-keys""" model: str """Model name. Available models listed here: https://docs.together.ai/docs/inference-models """ temperature: Optional[float] = None """Model temperature.""" top_p: Optional[float] = None """Used to dynamically adjust the number of choices for each predicted token based on the cumulative probabilities. A value of 1 will always yield the same output. A temperature less than 1 favors more correctness and is appropriate for question answering or summarization. A value greater than 1 introduces more
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/together.html
b3a209a7cd08-1
for question answering or summarization. A value greater than 1 introduces more randomness in the output. """ top_k: Optional[int] = None """Used to limit the number of choices for the next predicted word or token. It specifies the maximum number of tokens to consider at each step, based on their probability of occurrence. This technique helps to speed up the generation process and can improve the quality of the generated text by focusing on the most likely options. """ max_tokens: Optional[int] = None """The maximum number of tokens to generate.""" repetition_penalty: Optional[float] = None """A number that controls the diversity of generated text by reducing the likelihood of repeated sequences. Higher values decrease repetition. """ logprobs: Optional[int] = None """An integer that specifies how many top token log probabilities are included in the response for each token generation step. """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" values["together_api_key"] = get_from_dict_or_env( values, "together_api_key", "TOGETHER_API_KEY" ) return values @property def _llm_type(self) -> str: """Return type of model.""" return "together" def _format_output(self, output: dict) -> str: return output["output"]["choices"][0]["text"] [docs] @staticmethod def get_user_agent() -> str:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/together.html
b3a209a7cd08-2
[docs] @staticmethod def get_user_agent() -> str: from langchain import __version__ return f"langchain/{__version__}" @property def default_params(self) -> Dict[str, Any]: return { "model": self.model, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "max_tokens": self.max_tokens, "repetition_penalty": self.repetition_penalty, } def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Together's text generation endpoint. Args: prompt: The prompt to pass into the model. Returns: The string generated by the model.. """ headers = { "Authorization": f"Bearer {self.together_api_key}", "Content-Type": "application/json", } stop_to_use = stop[0] if stop and len(stop) == 1 else stop payload: Dict[str, Any] = { **self.default_params, "prompt": prompt, "stop": stop_to_use, **kwargs, } # filter None values to not pass them to the http payload payload = {k: v for k, v in payload.items() if v is not None} request = Requests(headers=headers) response = request.post(url=self.base_url, data=payload) if response.status_code >= 500:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/together.html
b3a209a7cd08-3
if response.status_code >= 500: raise Exception(f"Together Server: Error {response.status_code}") elif response.status_code >= 400: raise ValueError(f"Together received an invalid payload: {response.text}") elif response.status_code != 200: raise Exception( f"Together returned an unexpected response with status " f"{response.status_code}: {response.text}" ) data = response.json() if data.get("status") != "finished": err_msg = data.get("error", "Undefined Error") raise Exception(err_msg) output = self._format_output(data) return output async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call Together model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. Returns: The string generated by the model. """ headers = { "Authorization": f"Bearer {self.together_api_key}", "Content-Type": "application/json", } stop_to_use = stop[0] if stop and len(stop) == 1 else stop payload: Dict[str, Any] = { **self.default_params, "prompt": prompt, "stop": stop_to_use, **kwargs, } # filter None values to not pass them to the http payload payload = {k: v for k, v in payload.items() if v is not None} async with ClientSession() as session:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/together.html
b3a209a7cd08-4
async with ClientSession() as session: async with session.post( self.base_url, json=payload, headers=headers ) as response: if response.status >= 500: raise Exception(f"Together Server: Error {response.status}") elif response.status >= 400: raise ValueError( f"Together received an invalid payload: {response.text}" ) elif response.status != 200: raise Exception( f"Together returned an unexpected response with status " f"{response.status}: {response.text}" ) response_json = await response.json() if response_json.get("status") != "finished": err_msg = response_json.get("error", "Undefined Error") raise Exception(err_msg) output = self._format_output(response_json) return output
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/together.html
1e22e36802e2-0
Source code for langchain.llms.bittensor import http.client import json import ssl from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM [docs]class NIBittensorLLM(LLM): """NIBittensor LLMs NIBittensorLLM is created by Neural Internet (https://neuralinternet.ai/), powered by Bittensor, a decentralized network full of different AI models. To analyze API_KEYS and logs of your usage visit https://api.neuralinternet.ai/api-keys https://api.neuralinternet.ai/logs Example: .. code-block:: python from langchain.llms import NIBittensorLLM llm = NIBittensorLLM() """ system_prompt: Optional[str] """Provide system prompt that you want to supply it to model before every prompt""" top_responses: Optional[int] = 0 """Provide top_responses to get Top N miner responses on one request.May get delayed Don't use in Production""" @property def _llm_type(self) -> str: return "NIBittensorLLM" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """ Wrapper around the bittensor top miner models. Its built by Neural Internet. Call the Neural Internet's BTVEP Server and return the output. Parameters (optional): system_prompt(str): A system prompt defining how your model should respond.
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/bittensor.html
1e22e36802e2-1
system_prompt(str): A system prompt defining how your model should respond. top_responses(int): Total top miner responses to retrieve from Bittensor protocol. Return: The generated response(s). Example: .. code-block:: python from langchain.llms import NIBittensorLLM llm = NIBittensorLLM(system_prompt="Act like you are programmer with \ 5+ years of experience.") """ # Creating HTTPS connection with SSL context = ssl.create_default_context() context.check_hostname = True conn = http.client.HTTPSConnection("test.neuralinternet.ai", context=context) # Sanitizing User Input before passing to API. if isinstance(self.top_responses, int): top_n = min(100, self.top_responses) else: top_n = 0 default_prompt = "You are an assistant which is created by Neural Internet(NI) \ in decentralized network named as a Bittensor." if self.system_prompt is None: system_prompt = ( default_prompt + " Your task is to provide accurate response based on user prompt" ) else: system_prompt = default_prompt + str(self.system_prompt) # Retrieving API KEY to pass into header of each request conn.request("GET", "/admin/api-keys/") api_key_response = conn.getresponse() api_keys_data = ( api_key_response.read().decode("utf-8").replace("\n", "").replace("\t", "") ) api_keys_json = json.loads(api_keys_data) api_key = api_keys_json[0]["api_key"] # Creating Header and getting top benchmark miner uids headers = {
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/bittensor.html
1e22e36802e2-2
# Creating Header and getting top benchmark miner uids headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}", "Endpoint-Version": "2023-05-19", } conn.request("GET", "/top_miner_uids", headers=headers) miner_response = conn.getresponse() miner_data = ( miner_response.read().decode("utf-8").replace("\n", "").replace("\t", "") ) uids = json.loads(miner_data) # Condition for benchmark miner response if isinstance(uids, list) and uids and not top_n: for uid in uids: try: payload = json.dumps( { "uids": [uid], "messages": [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ], } ) conn.request("POST", "/chat", payload, headers) init_response = conn.getresponse() init_data = ( init_response.read() .decode("utf-8") .replace("\n", "") .replace("\t", "") ) init_json = json.loads(init_data) if "choices" not in init_json: continue reply = init_json["choices"][0]["message"]["content"] conn.close() return reply except Exception: continue # For top miner based on bittensor response try: payload = json.dumps( { "top_n": top_n, "messages": [ {"role": "system", "content": system_prompt},
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/bittensor.html
1e22e36802e2-3
"messages": [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ], } ) conn.request("POST", "/chat", payload, headers) response = conn.getresponse() utf_string = ( response.read().decode("utf-8").replace("\n", "").replace("\t", "") ) if top_n: conn.close() return utf_string json_resp = json.loads(utf_string) reply = json_resp["choices"][0]["message"]["content"] conn.close() return reply except Exception as e: conn.request("GET", f"/error_msg?e={e}&p={prompt}", headers=headers) return "Sorry I am unable to provide response now, Please try again later." @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "system_prompt": self.system_prompt, "top_responses": self.top_responses, }
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/bittensor.html
b919950053b7-0
Source code for langchain.llms.deepinfra import json from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional import aiohttp from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM, GenerationChunk from langchain.pydantic_v1 import Extra, root_validator from langchain.utilities.requests import Requests from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "google/flan-t5-xl" [docs]class DeepInfra(LLM): """DeepInfra models. To use, you should have the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation` and `text2text-generation` for now. Example: .. code-block:: python from langchain.llms import DeepInfra di = DeepInfra(model_id="google/flan-t5-xl", deepinfra_api_token="my-api-key") """ model_id: str = DEFAULT_MODEL_ID model_kwargs: Optional[Dict] = None deepinfra_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html
b919950053b7-1
return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "deepinfra" def _url(self) -> str: return f"https://api.deepinfra.com/v1/inference/{self.model_id}" def _headers(self) -> Dict: return { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } def _body(self, prompt: str, kwargs: Any) -> Dict: model_kwargs = self.model_kwargs or {} model_kwargs = {**model_kwargs, **kwargs} return { "input": prompt, **model_kwargs, } def _handle_status(self, code: int, text: Any) -> None: if code >= 500: raise Exception(f"DeepInfra Server: Error {code}") elif code >= 400: raise ValueError(f"DeepInfra received an invalid payload: {text}") elif code != 200: raise Exception( f"DeepInfra returned an unexpected response with status " f"{code}: {text}" ) def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html
b919950053b7-2
**kwargs: Any, ) -> str: """Call out to DeepInfra's inference API endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = di("Tell me a joke.") """ request = Requests(headers=self._headers()) response = request.post(url=self._url(), data=self._body(prompt, kwargs)) self._handle_status(response.status_code, response.text) data = response.json() return data["results"][0]["generated_text"] async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: request = Requests(headers=self._headers()) async with request.apost( url=self._url(), data=self._body(prompt, kwargs) ) as response: self._handle_status(response.status, response.text) data = await response.json() return data["results"][0]["generated_text"] def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: request = Requests(headers=self._headers()) response = request.post( url=self._url(), data=self._body(prompt, {**kwargs, "stream": True}) )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html
b919950053b7-3
) self._handle_status(response.status_code, response.text) for line in _parse_stream(response.iter_lines()): chunk = _handle_sse_line(line) if chunk: yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: request = Requests(headers=self._headers()) async with request.apost( url=self._url(), data=self._body(prompt, {**kwargs, "stream": True}) ) as response: self._handle_status(response.status, response.text) async for line in _parse_stream_async(response.content): chunk = _handle_sse_line(line) if chunk: yield chunk if run_manager: await run_manager.on_llm_new_token(chunk.text) def _parse_stream(rbody: Iterator[bytes]) -> Iterator[str]: for line in rbody: _line = _parse_stream_helper(line) if _line is not None: yield _line async def _parse_stream_async(rbody: aiohttp.StreamReader) -> AsyncIterator[str]: async for line in rbody: _line = _parse_stream_helper(line) if _line is not None: yield _line def _parse_stream_helper(line: bytes) -> Optional[str]: if line and line.startswith(b"data:"): if line.startswith(b"data: "): # SSE event may be valid when it contain whitespace
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html
b919950053b7-4
# SSE event may be valid when it contain whitespace line = line[len(b"data: ") :] else: line = line[len(b"data:") :] if line.strip() == b"[DONE]": # return here will cause GeneratorExit exception in urllib3 # and it will close http connection with TCP Reset return None else: return line.decode("utf-8") return None def _handle_sse_line(line: str) -> Optional[GenerationChunk]: try: obj = json.loads(line) return GenerationChunk( text=obj.get("token", {}).get("text"), ) except Exception: return None
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html
9924e9867f8f-0
Source code for langchain.llms.titan_takeoff_pro from typing import Any, Iterator, List, Mapping, Optional import requests from requests.exceptions import ConnectionError from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.schema.output import GenerationChunk [docs]class TitanTakeoffPro(LLM): base_url: Optional[str] = "http://localhost:3000" """Specifies the baseURL to use for the Titan Takeoff Pro API. Default = http://localhost:3000. """ max_new_tokens: Optional[int] = None """Maximum tokens generated.""" min_new_tokens: Optional[int] = None """Minimum tokens generated.""" sampling_topk: Optional[int] = None """Sample predictions from the top K most probable candidates.""" sampling_topp: Optional[float] = None """Sample from predictions whose cumulative probability exceeds this value. """ sampling_temperature: Optional[float] = None """Sample with randomness. Bigger temperatures are associated with more randomness and 'creativity'. """ repetition_penalty: Optional[float] = None """Penalise the generation of tokens that have been generated before. Set to > 1 to penalize. """ regex_string: Optional[str] = None """A regex string for constrained generation.""" no_repeat_ngram_size: Optional[int] = None """Prevent repetitions of ngrams of this size. Default = 0 (turned off).""" streaming: bool = False """Whether to stream the output. Default = False.""" @property def _default_params(self) -> Mapping[str, Any]:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff_pro.html
9924e9867f8f-1
@property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling Titan Takeoff Server (Pro).""" return { **( {"regex_string": self.regex_string} if self.regex_string is not None else {} ), **( {"sampling_temperature": self.sampling_temperature} if self.sampling_temperature is not None else {} ), **( {"sampling_topp": self.sampling_topp} if self.sampling_topp is not None else {} ), **( {"repetition_penalty": self.repetition_penalty} if self.repetition_penalty is not None else {} ), **( {"max_new_tokens": self.max_new_tokens} if self.max_new_tokens is not None else {} ), **( {"min_new_tokens": self.min_new_tokens} if self.min_new_tokens is not None else {} ), **( {"sampling_topk": self.sampling_topk} if self.sampling_topk is not None else {} ), **( {"no_repeat_ngram_size": self.no_repeat_ngram_size} if self.no_repeat_ngram_size is not None else {} ), } @property def _llm_type(self) -> str: """Return type of llm.""" return "titan_takeoff_pro" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff_pro.html
9924e9867f8f-2
**kwargs: Any, ) -> str: """Call out to Titan Takeoff (Pro) generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python prompt = "What is the capital of the United Kingdom?" response = model(prompt) """ try: if self.streaming: text_output = "" for chunk in self._stream( prompt=prompt, stop=stop, run_manager=run_manager, ): text_output += chunk.text return text_output url = f"{self.base_url}/generate" params = {"text": prompt, **self._default_params} response = requests.post(url, json=params) response.raise_for_status() response.encoding = "utf-8" text = "" if "text" in response.json(): text = response.json()["text"] text = text.replace("</s>", "") else: raise ValueError("Something went wrong.") if stop is not None: text = enforce_stop_tokens(text, stop) return text except ConnectionError: raise ConnectionError( "Could not connect to Titan Takeoff (Pro) server. \ Please make sure that the server is running." ) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff_pro.html
9924e9867f8f-3
**kwargs: Any, ) -> Iterator[GenerationChunk]: """Call out to Titan Takeoff (Pro) stream endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Yields: A dictionary like object containing a string token. Example: .. code-block:: python prompt = "What is the capital of the United Kingdom?" response = model(prompt) """ url = f"{self.base_url}/generate_stream" params = {"text": prompt, **self._default_params} response = requests.post(url, json=params, stream=True) response.encoding = "utf-8" buffer = "" for text in response.iter_content(chunk_size=1, decode_unicode=True): buffer += text if "data:" in buffer: # Remove the first instance of "data:" from the buffer. if buffer.startswith("data:"): buffer = "" if len(buffer.split("data:", 1)) == 2: content, _ = buffer.split("data:", 1) buffer = content.rstrip("\n") # Trim the buffer to only have content after the "data:" part. if buffer: # Ensure that there's content to process. chunk = GenerationChunk(text=buffer) buffer = "" # Reset buffer for the next set of data. yield chunk if run_manager: run_manager.on_llm_new_token(token=chunk.text) # Yield any remaining content in the buffer. if buffer: chunk = GenerationChunk(text=buffer.replace("</s>", "")) yield chunk
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff_pro.html
9924e9867f8f-4
chunk = GenerationChunk(text=buffer.replace("</s>", "")) yield chunk if run_manager: run_manager.on_llm_new_token(token=chunk.text) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"base_url": self.base_url, **{}, **self._default_params}
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff_pro.html
e6b77633a886-0
Source code for langchain.llms.yandex from typing import Any, Dict, List, Mapping, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.load.serializable import Serializable from langchain.pydantic_v1 import root_validator from langchain.utils import get_from_dict_or_env class _BaseYandexGPT(Serializable): iam_token: str = "" """Yandex Cloud IAM token for service account with the `ai.languageModels.user` role""" api_key: str = "" """Yandex Cloud Api Key for service account with the `ai.languageModels.user` role""" model_name: str = "general" """Model name to use.""" temperature: float = 0.6 """What sampling temperature to use. Should be a double number between 0 (inclusive) and 1 (inclusive).""" max_tokens: int = 7400 """Sets the maximum limit on the total number of tokens used for both the input prompt and the generated response. Must be greater than zero and not exceed 7400 tokens.""" stop: Optional[List[str]] = None """Sequences when completion generation will stop.""" url: str = "llm.api.cloud.yandex.net:443" """The url of the API.""" @property def _llm_type(self) -> str: return "yandex_gpt" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that iam token exists in environment."""
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/yandex.html
e6b77633a886-1
"""Validate that iam token exists in environment.""" iam_token = get_from_dict_or_env(values, "iam_token", "YC_IAM_TOKEN", "") values["iam_token"] = iam_token api_key = get_from_dict_or_env(values, "api_key", "YC_API_KEY", "") values["api_key"] = api_key if api_key == "" and iam_token == "": raise ValueError("Either 'YC_API_KEY' or 'YC_IAM_TOKEN' must be provided.") return values [docs]class YandexGPT(_BaseYandexGPT, LLM): """Yandex large language models. To use, you should have the ``yandexcloud`` python package installed. There are two authentication options for the service account with the ``ai.languageModels.user`` role: - You can specify the token in a constructor parameter `iam_token` or in an environment variable `YC_IAM_TOKEN`. - You can specify the key in a constructor parameter `api_key` or in an environment variable `YC_API_KEY`. Example: .. code-block:: python from langchain.llms import YandexGPT yandex_gpt = YandexGPT(iam_token="t1.9eu...") """ @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model_name, "temperature": self.temperature, "max_tokens": self.max_tokens, "stop": self.stop, } def _call( self, prompt: str, stop: Optional[List[str]] = None,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/yandex.html
e6b77633a886-2
prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the Yandex GPT model and return the output. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = YandexGPT("Tell me a joke.") """ try: import grpc from google.protobuf.wrappers_pb2 import DoubleValue, Int64Value from yandex.cloud.ai.llm.v1alpha.llm_pb2 import GenerationOptions from yandex.cloud.ai.llm.v1alpha.llm_service_pb2 import InstructRequest from yandex.cloud.ai.llm.v1alpha.llm_service_pb2_grpc import ( TextGenerationServiceStub, ) except ImportError as e: raise ImportError( "Please install YandexCloud SDK" " with `pip install yandexcloud`." ) from e channel_credentials = grpc.ssl_channel_credentials() channel = grpc.secure_channel(self.url, channel_credentials) request = InstructRequest( model=self.model_name, request_text=prompt, generation_options=GenerationOptions( temperature=DoubleValue(value=self.temperature), max_tokens=Int64Value(value=self.max_tokens), ), ) stub = TextGenerationServiceStub(channel) if self.iam_token: metadata = (("authorization", f"Bearer {self.iam_token}"),) else:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/yandex.html
e6b77633a886-3
else: metadata = (("authorization", f"Api-Key {self.api_key}"),) res = stub.Instruct(request, metadata=metadata) text = list(res)[0].alternatives[0].text if stop is not None: text = enforce_stop_tokens(text, stop) return text async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Async call the Yandex GPT model and return the output. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. """ try: import asyncio import grpc from google.protobuf.wrappers_pb2 import DoubleValue, Int64Value from yandex.cloud.ai.llm.v1alpha.llm_pb2 import GenerationOptions from yandex.cloud.ai.llm.v1alpha.llm_service_pb2 import ( InstructRequest, InstructResponse, ) from yandex.cloud.ai.llm.v1alpha.llm_service_pb2_grpc import ( TextGenerationAsyncServiceStub, ) from yandex.cloud.operation.operation_service_pb2 import GetOperationRequest from yandex.cloud.operation.operation_service_pb2_grpc import ( OperationServiceStub, ) except ImportError as e: raise ImportError( "Please install YandexCloud SDK" " with `pip install yandexcloud`." ) from e operation_api_url = "operation.api.cloud.yandex.net:443"
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/yandex.html
e6b77633a886-4
operation_api_url = "operation.api.cloud.yandex.net:443" channel_credentials = grpc.ssl_channel_credentials() async with grpc.aio.secure_channel(self.url, channel_credentials) as channel: request = InstructRequest( model=self.model_name, request_text=prompt, generation_options=GenerationOptions( temperature=DoubleValue(value=self.temperature), max_tokens=Int64Value(value=self.max_tokens), ), ) stub = TextGenerationAsyncServiceStub(channel) if self.iam_token: metadata = (("authorization", f"Bearer {self.iam_token}"),) else: metadata = (("authorization", f"Api-Key {self.api_key}"),) operation = await stub.Instruct(request, metadata=metadata) async with grpc.aio.secure_channel( operation_api_url, channel_credentials ) as operation_channel: operation_stub = OperationServiceStub(operation_channel) while not operation.done: await asyncio.sleep(1) operation_request = GetOperationRequest(operation_id=operation.id) operation = await operation_stub.Get( operation_request, metadata=metadata ) instruct_response = InstructResponse() operation.response.Unpack(instruct_response) text = instruct_response.alternatives[0].text if stop is not None: text = enforce_stop_tokens(text, stop) return text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/yandex.html
c642eaca5eef-0
Source code for langchain.llms.deepsparse # flake8: noqa from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union from langchain.pydantic_v1 import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.schema.output import GenerationChunk [docs]class DeepSparse(LLM): """Neural Magic DeepSparse LLM interface. To use, you should have the ``deepsparse`` or ``deepsparse-nightly`` python package installed. See https://github.com/neuralmagic/deepsparse This interface let's you deploy optimized LLMs straight from the [SparseZoo](https://sparsezoo.neuralmagic.com/?useCase=text_generation) Example: .. code-block:: python from langchain.llms import DeepSparse llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none") """ # noqa: E501 pipeline: Any #: :meta private: model: str """The path to a model file or directory or the name of a SparseZoo model stub.""" model_config: Optional[Dict[str, Any]] = None """Keyword arguments passed to the pipeline construction. Common parameters are sequence_length, prompt_sequence_length""" generation_config: Union[None, str, Dict] = None """GenerationConfig dictionary consisting of parameters used to control sequences generated for each prompt. Common parameters are: max_length, max_new_tokens, num_return_sequences, output_scores,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepsparse.html
c642eaca5eef-1
max_length, max_new_tokens, num_return_sequences, output_scores, top_p, top_k, repetition_penalty.""" streaming: bool = False """Whether to stream the results, token by token.""" @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "model_config": self.model_config, "generation_config": self.generation_config, "streaming": self.streaming, } @property def _llm_type(self) -> str: """Return type of llm.""" return "deepsparse" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that ``deepsparse`` package is installed.""" try: from deepsparse import Pipeline except ImportError: raise ImportError( "Could not import `deepsparse` package. " "Please install it with `pip install deepsparse`" ) model_config = values["model_config"] or {} values["pipeline"] = Pipeline.create( task="text_generation", model_path=values["model"], **model_config, ) return values def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Generate text from a prompt. Args: prompt: The prompt to generate text from. stop: A list of strings to stop generation when encountered. Returns: The generated text. Example:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepsparse.html
c642eaca5eef-2
Returns: The generated text. Example: .. code-block:: python from langchain.llms import DeepSparse llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none") llm("Tell me a joke.") """ if self.streaming: combined_output = "" for chunk in self._stream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): combined_output += chunk.text text = combined_output else: text = ( self.pipeline( sequences=prompt, generation_config=self.generation_config ) .generations[0] .text ) if stop is not None: text = enforce_stop_tokens(text, stop) return text async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Generate text from a prompt. Args: prompt: The prompt to generate text from. stop: A list of strings to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python from langchain.llms import DeepSparse llm = DeepSparse(model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none") llm("Tell me a joke.") """ if self.streaming: combined_output = ""
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepsparse.html
c642eaca5eef-3
""" if self.streaming: combined_output = "" async for chunk in self._astream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): combined_output += chunk.text text = combined_output else: text = ( self.pipeline( sequences=prompt, generation_config=self.generation_config ) .generations[0] .text ) if stop is not None: text = enforce_stop_tokens(text, stop) return text def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: """Yields results objects as they are generated in real time. It also calls the callback manager's on_llm_new_token event with similar parameters to the OpenAI LLM class method of the same name. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens being generated. Yields: A dictionary like object containing a string token. Example: .. code-block:: python from langchain.llms import DeepSparse llm = DeepSparse( model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none", streaming=True ) for chunk in llm.stream("Tell me a joke", stop=["'","\n"]): print(chunk, end='', flush=True)
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepsparse.html
c642eaca5eef-4
stop=["'","\n"]): print(chunk, end='', flush=True) """ inference = self.pipeline( sequences=prompt, generation_config=self.generation_config, streaming=True ) for token in inference: chunk = GenerationChunk(text=token.generations[0].text) yield chunk if run_manager: run_manager.on_llm_new_token(token=chunk.text) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: """Yields results objects as they are generated in real time. It also calls the callback manager's on_llm_new_token event with similar parameters to the OpenAI LLM class method of the same name. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens being generated. Yields: A dictionary like object containing a string token. Example: .. code-block:: python from langchain.llms import DeepSparse llm = DeepSparse( model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none", streaming=True ) for chunk in llm.stream("Tell me a joke", stop=["'","\n"]): print(chunk, end='', flush=True) """ inference = self.pipeline( sequences=prompt, generation_config=self.generation_config, streaming=True )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepsparse.html
c642eaca5eef-5
sequences=prompt, generation_config=self.generation_config, streaming=True ) for token in inference: chunk = GenerationChunk(text=token.generations[0].text) yield chunk if run_manager: await run_manager.on_llm_new_token(token=chunk.text)
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/deepsparse.html
319b845ed006-0
Source code for langchain.llms.baseten import logging from typing import Any, Dict, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import Field logger = logging.getLogger(__name__) [docs]class Baseten(LLM): """Baseten models. To use, you should have the ``baseten`` python package installed, and run ``baseten.login()`` with your Baseten API key. The required ``model`` param can be either a model id or model version id. Using a model version ID will result in slightly faster invocation. Any other model parameters can also be passed in with the format input={model_param: value, ...} The Baseten model must accept a dictionary of input with the key "prompt" and return a dictionary with a key "data" which maps to a list of response strings. Example: .. code-block:: python from langchain.llms import Baseten my_model = Baseten(model="MODEL_ID") output = my_model("prompt") """ model: str input: Dict[str, Any] = Field(default_factory=dict) model_kwargs: Dict[str, Any] = Field(default_factory=dict) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of model.""" return "baseten" def _call( self,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/baseten.html
319b845ed006-1
return "baseten" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to Baseten deployed model endpoint.""" try: import baseten except ImportError as exc: raise ImportError( "Could not import Baseten Python package. " "Please install it with `pip install baseten`." ) from exc # get the model and version try: model = baseten.deployed_model_version_id(self.model) response = model.predict({"prompt": prompt, **kwargs}) except baseten.common.core.ApiError: model = baseten.deployed_model_id(self.model) response = model.predict({"prompt": prompt, **kwargs}) return "".join(response)
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/baseten.html
463f176f76a2-0
Source code for langchain.llms.vertexai from __future__ import annotations from concurrent.futures import Executor, ThreadPoolExecutor from typing import ( TYPE_CHECKING, Any, Callable, ClassVar, Dict, Iterator, List, Optional, Union, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import BaseLLM, create_base_retry_decorator from langchain.pydantic_v1 import BaseModel, Field, root_validator from langchain.schema import ( Generation, LLMResult, ) from langchain.schema.output import GenerationChunk from langchain.utilities.vertexai import ( get_client_info, init_vertexai, raise_vertex_import_error, ) if TYPE_CHECKING: from google.cloud.aiplatform.gapic import ( PredictionServiceAsyncClient, PredictionServiceClient, ) from vertexai.language_models._language_models import ( TextGenerationResponse, _LanguageModel, ) def _response_to_generation( response: TextGenerationResponse, ) -> GenerationChunk: """Convert a stream response to a generation chunk.""" try: generation_info = { "is_blocked": response.is_blocked, "safety_attributes": response.safety_attributes, } except Exception: generation_info = None return GenerationChunk(text=response.text, generation_info=generation_info) [docs]def is_codey_model(model_name: str) -> bool: """Returns True if the model name is a Codey model. Args: model_name: The model name to check.
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html
463f176f76a2-1
Args: model_name: The model name to check. Returns: True if the model name is a Codey model. """ return "code" in model_name def _create_retry_decorator( llm: VertexAI, *, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: import google.api_core errors = [ google.api_core.exceptions.ResourceExhausted, google.api_core.exceptions.ServiceUnavailable, google.api_core.exceptions.Aborted, google.api_core.exceptions.DeadlineExceeded, ] decorator = create_base_retry_decorator( error_types=errors, max_retries=llm.max_retries, run_manager=run_manager ) return decorator [docs]def completion_with_retry( llm: VertexAI, *args: Any, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator def _completion_with_retry(*args: Any, **kwargs: Any) -> Any: return llm.client.predict(*args, **kwargs) return _completion_with_retry(*args, **kwargs) [docs]def stream_completion_with_retry( llm: VertexAI, *args: Any, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call."""
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html
463f176f76a2-2
) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator def _completion_with_retry(*args: Any, **kwargs: Any) -> Any: return llm.client.predict_streaming(*args, **kwargs) return _completion_with_retry(*args, **kwargs) [docs]async def acompletion_with_retry( llm: VertexAI, *args: Any, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator async def _acompletion_with_retry(*args: Any, **kwargs: Any) -> Any: return await llm.client.predict_async(*args, **kwargs) return await _acompletion_with_retry(*args, **kwargs) class _VertexAIBase(BaseModel): project: Optional[str] = None "The default GCP project to use when making Vertex API calls." location: str = "us-central1" "The default location to use when making API calls." request_parallelism: int = 5 "The amount of parallelism allowed for requests issued to VertexAI models. " "Default is 5." max_retries: int = 6 """The maximum number of retries to make when generating.""" task_executor: ClassVar[Optional[Executor]] = Field(default=None, exclude=True) stop: Optional[List[str]] = None "Optional list of stop words to use when generating."
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html
463f176f76a2-3
"Optional list of stop words to use when generating." model_name: Optional[str] = None "Underlying model name." @classmethod def _get_task_executor(cls, request_parallelism: int = 5) -> Executor: if cls.task_executor is None: cls.task_executor = ThreadPoolExecutor(max_workers=request_parallelism) return cls.task_executor class _VertexAICommon(_VertexAIBase): client: "_LanguageModel" = None #: :meta private: model_name: str "Underlying model name." temperature: float = 0.0 "Sampling temperature, it controls the degree of randomness in token selection." max_output_tokens: int = 128 "Token limit determines the maximum amount of text output from one prompt." top_p: float = 0.95 "Tokens are selected from most probable to least until the sum of their " "probabilities equals the top-p value. Top-p is ignored for Codey models." top_k: int = 40 "How the model selects tokens for output, the next token is selected from " "among the top-k most probable tokens. Top-k is ignored for Codey models." credentials: Any = Field(default=None, exclude=True) "The default custom credentials (google.auth.credentials.Credentials) to use " "when making API calls. If not provided, credentials will be ascertained from " "the environment." n: int = 1 """How many completions to generate for each prompt.""" streaming: bool = False """Whether to stream the results or not.""" @property def _llm_type(self) -> str: return "vertexai" @property
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html