id
stringlengths 14
16
| text
stringlengths 13
2.7k
| source
stringlengths 57
178
|
---|---|---|
463f176f76a2-4 | return "vertexai"
@property
def is_codey_model(self) -> bool:
return is_codey_model(self.model_name)
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _default_params(self) -> Dict[str, Any]:
if self.is_codey_model:
return {
"temperature": self.temperature,
"max_output_tokens": self.max_output_tokens,
}
else:
return {
"temperature": self.temperature,
"max_output_tokens": self.max_output_tokens,
"top_k": self.top_k,
"top_p": self.top_p,
"candidate_count": self.n,
}
@classmethod
def _try_init_vertexai(cls, values: Dict) -> None:
allowed_params = ["project", "location", "credentials"]
params = {k: v for k, v in values.items() if k in allowed_params}
init_vertexai(**params)
return None
def _prepare_params(
self,
stop: Optional[List[str]] = None,
stream: bool = False,
**kwargs: Any,
) -> dict:
stop_sequences = stop or self.stop
params_mapping = {"n": "candidate_count"}
params = {params_mapping.get(k, k): v for k, v in kwargs.items()}
params = {**self._default_params, "stop_sequences": stop_sequences, **params}
if stream or self.streaming:
params.pop("candidate_count")
return params | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
463f176f76a2-5 | if stream or self.streaming:
params.pop("candidate_count")
return params
[docs]class VertexAI(_VertexAICommon, BaseLLM):
"""Google Vertex AI large language models."""
model_name: str = "text-bison"
"The name of the Vertex AI large language model."
tuned_model_name: Optional[str] = None
"The name of a tuned model. If provided, model_name is ignored."
[docs] @classmethod
def is_lc_serializable(self) -> bool:
return True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
cls._try_init_vertexai(values)
tuned_model_name = values.get("tuned_model_name")
model_name = values["model_name"]
try:
if not is_codey_model(model_name):
from vertexai.preview.language_models import TextGenerationModel
if tuned_model_name:
values["client"] = TextGenerationModel.get_tuned_model(
tuned_model_name
)
else:
values["client"] = TextGenerationModel.from_pretrained(model_name)
else:
from vertexai.preview.language_models import CodeGenerationModel
if tuned_model_name:
values["client"] = CodeGenerationModel.get_tuned_model(
tuned_model_name
)
else:
values["client"] = CodeGenerationModel.from_pretrained(model_name)
except ImportError:
raise_vertex_import_error()
if values["streaming"] and values["n"] > 1:
raise ValueError("Only one candidate can be generated with streaming!")
return values
[docs] def get_num_tokens(self, text: str) -> int: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
463f176f76a2-6 | [docs] def get_num_tokens(self, text: str) -> int:
"""Get the number of tokens present in the text.
Useful for checking if an input will fit in a model's context window.
Args:
text: The string input to tokenize.
Returns:
The integer number of tokens in the text.
"""
try:
result = self.client.count_tokens(text)
except AttributeError:
raise NotImplementedError(
"Your google-cloud-aiplatform version didn't implement count_tokens."
"Please, install it with pip install google-cloud-aiplatform>=1.35.0"
)
return result.total_tokens
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
should_stream = stream if stream is not None else self.streaming
params = self._prepare_params(stop=stop, stream=should_stream, **kwargs)
generations = []
for prompt in prompts:
if should_stream:
generation = GenerationChunk(text="")
for chunk in self._stream(
prompt, stop=stop, run_manager=run_manager, **kwargs
):
generation += chunk
generations.append([generation])
else:
res = completion_with_retry(
self, prompt, run_manager=run_manager, **params
)
if self.is_codey_model:
generations.append([_response_to_generation(res)])
else:
generations.append(
[_response_to_generation(r) for r in res.candidates]
) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
463f176f76a2-7 | [_response_to_generation(r) for r in res.candidates]
)
return LLMResult(generations=generations)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
params = self._prepare_params(stop=stop, **kwargs)
generations = []
for prompt in prompts:
res = await acompletion_with_retry(
self, prompt, run_manager=run_manager, **params
)
generations.append([_response_to_generation(r) for r in res.candidates])
return LLMResult(generations=generations)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = self._prepare_params(stop=stop, stream=True, **kwargs)
for stream_resp in stream_completion_with_retry(
self, prompt, run_manager=run_manager, **params
):
chunk = _response_to_generation(stream_resp)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
[docs]class VertexAIModelGarden(_VertexAIBase, BaseLLM):
"""Large language models served from Vertex AI Model Garden."""
client: "PredictionServiceClient" = None #: :meta private: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
463f176f76a2-8 | client: "PredictionServiceClient" = None #: :meta private:
async_client: "PredictionServiceAsyncClient" = None #: :meta private:
endpoint_id: str
"A name of an endpoint where the model has been deployed."
allowed_model_args: Optional[List[str]] = None
"""Allowed optional args to be passed to the model."""
prompt_arg: str = "prompt"
result_arg: str = "generated_text"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
try:
from google.api_core.client_options import ClientOptions
from google.cloud.aiplatform.gapic import (
PredictionServiceAsyncClient,
PredictionServiceClient,
)
except ImportError:
raise_vertex_import_error()
if values["project"] is None:
raise ValueError(
"A GCP project should be provided to run inference on Model Garden!"
)
client_options = ClientOptions(
api_endpoint=f"{values['location']}-aiplatform.googleapis.com"
)
client_info = get_client_info(module="vertex-ai-model-garden")
values["client"] = PredictionServiceClient(
client_options=client_options, client_info=client_info
)
values["async_client"] = PredictionServiceAsyncClient(
client_options=client_options, client_info=client_info
)
return values
@property
def _llm_type(self) -> str:
return "vertexai_model_garden"
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
463f176f76a2-9 | run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
try:
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
except ImportError:
raise ImportError(
"protobuf package not found, please install it with"
" `pip install protobuf`"
)
instances = []
for prompt in prompts:
if self.allowed_model_args:
instance = {
k: v for k, v in kwargs.items() if k in self.allowed_model_args
}
else:
instance = {}
instance[self.prompt_arg] = prompt
instances.append(instance)
predict_instances = [
json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
]
endpoint = self.client.endpoint_path(
project=self.project, location=self.location, endpoint=self.endpoint_id
)
response = self.client.predict(endpoint=endpoint, instances=predict_instances)
generations: List[List[Generation]] = []
for result in response.predictions:
generations.append(
[Generation(text=prediction[self.result_arg]) for prediction in result]
)
return LLMResult(generations=generations)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
try:
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
463f176f76a2-10 | from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
except ImportError:
raise ImportError(
"protobuf package not found, please install it with"
" `pip install protobuf`"
)
instances = []
for prompt in prompts:
if self.allowed_model_args:
instance = {
k: v for k, v in kwargs.items() if k in self.allowed_model_args
}
else:
instance = {}
instance[self.prompt_arg] = prompt
instances.append(instance)
predict_instances = [
json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
]
endpoint = self.async_client.endpoint_path(
project=self.project, location=self.location, endpoint=self.endpoint_id
)
response = await self.async_client.predict(
endpoint=endpoint, instances=predict_instances
)
generations: List[List[Generation]] = []
for result in response.predictions:
generations.append(
[Generation(text=prediction[self.result_arg]) for prediction in result]
)
return LLMResult(generations=generations) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
c29bb7e5a646-0 | Source code for langchain.llms.google_palm
from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms import BaseLLM
from langchain.pydantic_v1 import BaseModel, root_validator
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
try:
import google.api_core.exceptions
except ImportError:
raise ImportError(
"Could not import google-api-core python package. "
"Please install it with `pip install google-api-core`."
)
multiplier = 2
min_seconds = 1
max_seconds = 60
max_retries = 10
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
[docs]def generate_with_retry(llm: GooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call.""" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/google_palm.html |
c29bb7e5a646-1 | """Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _generate_with_retry(**kwargs: Any) -> Any:
return llm.client.generate_text(**kwargs)
return _generate_with_retry(**kwargs)
def _strip_erroneous_leading_spaces(text: str) -> str:
"""Strip erroneous leading spaces from text.
The PaLM API will sometimes erroneously return a single leading space in all
lines > 1. This function strips that space.
"""
has_leading_space = all(not line or line[0] == " " for line in text.split("\n")[1:])
if has_leading_space:
return text.replace("\n ", "\n")
else:
return text
[docs]class GooglePalm(BaseLLM, BaseModel):
"""Google PaLM models."""
client: Any #: :meta private:
google_api_key: Optional[str]
model_name: str = "models/text-bison-001"
"""Model name to use."""
temperature: float = 0.7
"""Run inference with this temperature. Must by in the closed interval
[0.0, 1.0]."""
top_p: Optional[float] = None
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
top_k: Optional[int] = None
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive."""
max_output_tokens: Optional[int] = None
"""Maximum number of tokens to include in a candidate. Must be greater than zero. | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/google_palm.html |
c29bb7e5a646-2 | """Maximum number of tokens to include in a candidate. Must be greater than zero.
If unset, will default to 64."""
n: int = 1
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"google_api_key": "GOOGLE_API_KEY"}
[docs] @classmethod
def is_lc_serializable(self) -> bool:
return True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
genai.configure(api_key=google_api_key)
except ImportError:
raise ImportError(
"Could not import google-generativeai python package. "
"Please install it with `pip install google-generativeai`."
)
values["client"] = genai
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive") | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/google_palm.html |
c29bb7e5a646-3 | raise ValueError("top_k must be positive")
if values["max_output_tokens"] is not None and values["max_output_tokens"] <= 0:
raise ValueError("max_output_tokens must be greater than zero")
return values
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
for prompt in prompts:
completion = generate_with_retry(
self,
model=self.model_name,
prompt=prompt,
stop_sequences=stop,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
max_output_tokens=self.max_output_tokens,
candidate_count=self.n,
**kwargs,
)
prompt_generations = []
for candidate in completion.candidates:
raw_text = candidate["output"]
stripped_text = _strip_erroneous_leading_spaces(raw_text)
prompt_generations.append(Generation(text=stripped_text))
generations.append(prompt_generations)
return LLMResult(generations=generations)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "google_palm" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/google_palm.html |
9a65ddc07570-0 | Source code for langchain.llms.beam
import base64
import json
import logging
import subprocess
import textwrap
import time
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.pydantic_v1 import Extra, Field, root_validator
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
DEFAULT_NUM_TRIES = 10
DEFAULT_SLEEP_TIME = 4
[docs]class Beam(LLM):
"""Beam API for gpt2 large language model.
To use, you should have the ``beam-sdk`` python package installed,
and the environment variable ``BEAM_CLIENT_ID`` set with your client id
and ``BEAM_CLIENT_SECRET`` set with your client secret. Information on how
to get this is available here: https://docs.beam.cloud/account/api-keys.
The wrapper can then be called as follows, where the name, cpu, memory, gpu,
python version, and python packages can be updated accordingly. Once deployed,
the instance can be called.
Example:
.. code-block:: python
llm = Beam(model_name="gpt2",
name="langchain-gpt2",
cpu=8,
memory="32Gi",
gpu="A10G",
python_version="python3.8",
python_packages=[
"diffusers[torch]>=0.10",
"transformers",
"torch",
"pillow",
"accelerate",
"safetensors",
"xformers",],
max_length=50)
llm._deploy() | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html |
9a65ddc07570-1 | max_length=50)
llm._deploy()
call_result = llm._call(input)
"""
model_name: str = ""
name: str = ""
cpu: str = ""
memory: str = ""
gpu: str = ""
python_version: str = ""
python_packages: List[str] = []
max_length: str = ""
url: str = ""
"""model endpoint to use"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not
explicitly specified."""
beam_client_id: str = ""
beam_client_secret: str = ""
app_id: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html |
9a65ddc07570-2 | @root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
beam_client_id = get_from_dict_or_env(
values, "beam_client_id", "BEAM_CLIENT_ID"
)
beam_client_secret = get_from_dict_or_env(
values, "beam_client_secret", "BEAM_CLIENT_SECRET"
)
values["beam_client_id"] = beam_client_id
values["beam_client_secret"] = beam_client_secret
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_name": self.model_name,
"name": self.name,
"cpu": self.cpu,
"memory": self.memory,
"gpu": self.gpu,
"python_version": self.python_version,
"python_packages": self.python_packages,
"max_length": self.max_length,
"model_kwargs": self.model_kwargs,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "beam"
[docs] def app_creation(self) -> None:
"""Creates a Python file which will contain your Beam app definition."""
script = textwrap.dedent(
"""\
import beam
# The environment your code will run on
app = beam.App(
name="{name}",
cpu={cpu},
memory="{memory}",
gpu="{gpu}",
python_version="{python_version}",
python_packages={python_packages},
)
app.Trigger.RestAPI( | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html |
9a65ddc07570-3 | python_packages={python_packages},
)
app.Trigger.RestAPI(
inputs={{"prompt": beam.Types.String(), "max_length": beam.Types.String()}},
outputs={{"text": beam.Types.String()}},
handler="run.py:beam_langchain",
)
"""
)
script_name = "app.py"
with open(script_name, "w") as file:
file.write(
script.format(
name=self.name,
cpu=self.cpu,
memory=self.memory,
gpu=self.gpu,
python_version=self.python_version,
python_packages=self.python_packages,
)
)
[docs] def run_creation(self) -> None:
"""Creates a Python file which will be deployed on beam."""
script = textwrap.dedent(
"""
import os
import transformers
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model_name = "{model_name}"
def beam_langchain(**inputs):
prompt = inputs["prompt"]
length = inputs["max_length"]
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
encodedPrompt = tokenizer.encode(prompt, return_tensors='pt')
outputs = model.generate(encodedPrompt, max_length=int(length),
do_sample=True, pad_token_id=tokenizer.eos_token_id)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(output)
return {{"text": output}}
"""
)
script_name = "run.py"
with open(script_name, "w") as file:
file.write(script.format(model_name=self.model_name)) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html |
9a65ddc07570-4 | file.write(script.format(model_name=self.model_name))
def _deploy(self) -> str:
"""Call to Beam."""
try:
import beam # type: ignore
if beam.__path__ == "":
raise ImportError
except ImportError:
raise ImportError(
"Could not import beam python package. "
"Please install it with `curl "
"https://raw.githubusercontent.com/slai-labs"
"/get-beam/main/get-beam.sh -sSfL | sh`."
)
self.app_creation()
self.run_creation()
process = subprocess.run(
"beam deploy app.py", shell=True, capture_output=True, text=True
)
if process.returncode == 0:
output = process.stdout
logger.info(output)
lines = output.split("\n")
for line in lines:
if line.startswith(" i Send requests to: https://apps.beam.cloud/"):
self.app_id = line.split("/")[-1]
self.url = line.split(":")[1].strip()
return self.app_id
raise ValueError(
f"""Failed to retrieve the appID from the deployment output.
Deployment output: {output}"""
)
else:
raise ValueError(f"Deployment failed. Error: {process.stderr}")
@property
def authorization(self) -> str:
if self.beam_client_id:
credential_str = self.beam_client_id + ":" + self.beam_client_secret
else:
credential_str = self.beam_client_secret
return base64.b64encode(credential_str.encode()).decode()
def _call(
self,
prompt: str,
stop: Optional[list] = None, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html |
9a65ddc07570-5 | self,
prompt: str,
stop: Optional[list] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call to Beam."""
url = "https://apps.beam.cloud/" + self.app_id if self.app_id else self.url
payload = {"prompt": prompt, "max_length": self.max_length}
payload.update(kwargs)
headers = {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Authorization": "Basic " + self.authorization,
"Connection": "keep-alive",
"Content-Type": "application/json",
}
for _ in range(DEFAULT_NUM_TRIES):
request = requests.post(url, headers=headers, data=json.dumps(payload))
if request.status_code == 200:
return request.json()["text"]
time.sleep(DEFAULT_SLEEP_TIME)
logger.warning("Unable to successfully call model.")
return "" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/beam.html |
5c29157effa5-0 | Source code for langchain.llms.anthropic
import re
import warnings
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from langchain.pydantic_v1 import Field, SecretStr, root_validator
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.output import GenerationChunk
from langchain.schema.prompt import PromptValue
from langchain.utils import (
check_package_version,
get_from_dict_or_env,
get_pydantic_field_names,
)
from langchain.utils.utils import build_extra_kwargs, convert_to_secret_str
class _AnthropicCommon(BaseLanguageModel):
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: str = Field(default="claude-2", alias="model_name")
"""Model name to use."""
max_tokens_to_sample: int = Field(default=256, alias="max_tokens")
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: Optional[int] = None
"""Number of most likely tokens to consider at each step."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
default_request_timeout: Optional[float] = None | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html |
5c29157effa5-1 | """Whether to stream the results."""
default_request_timeout: Optional[float] = None
"""Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
anthropic_api_url: Optional[str] = None
anthropic_api_key: Optional[SecretStr] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
count_tokens: Optional[Callable[[str], int]] = None
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
@root_validator(pre=True)
def build_extra(cls, values: Dict) -> Dict:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["anthropic_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "anthropic_api_key", "ANTHROPIC_API_KEY")
)
# Get custom api url from environment.
values["anthropic_api_url"] = get_from_dict_or_env(
values,
"anthropic_api_url",
"ANTHROPIC_API_URL",
default="https://api.anthropic.com",
)
try:
import anthropic
check_package_version("anthropic", gte_version="0.3")
values["client"] = anthropic.Anthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(), | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html |
5c29157effa5-2 | api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["async_client"] = anthropic.AsyncAnthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
values["AI_PROMPT"] = anthropic.AI_PROMPT
values["count_tokens"] = values["client"].count_tokens
except ImportError:
raise ImportError(
"Could not import anthropic python package. "
"Please it install it with `pip install anthropic`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Anthropic API."""
d = {
"max_tokens_to_sample": self.max_tokens_to_sample,
"model": self.model,
}
if self.temperature is not None:
d["temperature"] = self.temperature
if self.top_k is not None:
d["top_k"] = self.top_k
if self.top_p is not None:
d["top_p"] = self.top_p
return {**d, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{}, **self._default_params}
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded") | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html |
5c29157effa5-3 | raise NameError("Please ensure the anthropic package is loaded")
if stop is None:
stop = []
# Never want model to invent new turns of Human / Assistant dialog.
stop.extend([self.HUMAN_PROMPT])
return stop
[docs]class Anthropic(LLM, _AnthropicCommon):
"""Anthropic large language models.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain.llms import Anthropic
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
# and AI_PROMPT.
response = model("What are the biggest risks facing humanity?")
# Or if you want to use the chat mode, build a few-shot-prompt, or
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
raw_prompt = "What are the biggest risks facing humanity?"
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
response = model(prompt)
"""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
arbitrary_types_allowed = True
@root_validator()
def raise_warning(cls, values: Dict) -> Dict:
"""Raise warning that this class is deprecated."""
warnings.warn(
"This Anthropic LLM is deprecated. " | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html |
5c29157effa5-4 | warnings.warn(
"This Anthropic LLM is deprecated. "
"Please use `from langchain.chat_models import ChatAnthropic` instead"
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "anthropic-llm"
def _wrap_prompt(self, prompt: str) -> str:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if prompt.startswith(self.HUMAN_PROMPT):
return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html |
5c29157effa5-5 | prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt)
"""
if self.streaming:
completion = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
[docs] def convert_prompt(self, prompt: PromptValue) -> str:
return self._wrap_prompt(prompt.to_string())
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
if self.streaming:
completion = ""
async for chunk in self._astream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html |
5c29157effa5-6 | prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
for token in self.client.completions.create(
prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic. | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html |
5c29157effa5-7 | Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
async for token in await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
[docs] def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
if not self.count_tokens:
raise NameError("Please ensure the anthropic package is loaded")
return self.count_tokens(text) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html |
8774c8ff6f9d-0 | Source code for langchain.llms.ctransformers
from functools import partial
from typing import Any, Dict, List, Optional, Sequence
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from langchain.pydantic_v1 import root_validator
[docs]class CTransformers(LLM):
"""C Transformers LLM models.
To use, you should have the ``ctransformers`` python package installed.
See https://github.com/marella/ctransformers
Example:
.. code-block:: python
from langchain.llms import CTransformers
llm = CTransformers(model="/path/to/ggml-gpt-2.bin", model_type="gpt2")
"""
client: Any #: :meta private:
model: str
"""The path to a model file or directory or the name of a Hugging Face Hub
model repo."""
model_type: Optional[str] = None
"""The model type."""
model_file: Optional[str] = None
"""The name of the model file in repo or directory."""
config: Optional[Dict[str, Any]] = None
"""The config parameters.
See https://github.com/marella/ctransformers#config"""
lib: Optional[str] = None
"""The path to a shared library or one of `avx2`, `avx`, `basic`."""
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
"model_type": self.model_type,
"model_file": self.model_file, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html |
8774c8ff6f9d-1 | "model_type": self.model_type,
"model_file": self.model_file,
"config": self.config,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "ctransformers"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that ``ctransformers`` package is installed."""
try:
from ctransformers import AutoModelForCausalLM
except ImportError:
raise ImportError(
"Could not import `ctransformers` package. "
"Please install it with `pip install ctransformers`"
)
config = values["config"] or {}
values["client"] = AutoModelForCausalLM.from_pretrained(
values["model"],
model_type=values["model_type"],
model_file=values["model_file"],
lib=values["lib"],
**config,
)
return values
def _call(
self,
prompt: str,
stop: Optional[Sequence[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
stop: A list of sequences to stop generation when encountered.
Returns:
The generated text.
Example:
.. code-block:: python
response = llm("Tell me a joke.")
"""
text = []
_run_manager = run_manager or CallbackManagerForLLMRun.get_noop_manager() | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html |
8774c8ff6f9d-2 | _run_manager = run_manager or CallbackManagerForLLMRun.get_noop_manager()
for chunk in self.client(prompt, stop=stop, stream=True):
text.append(chunk)
_run_manager.on_llm_new_token(chunk, verbose=self.verbose)
return "".join(text)
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Asynchronous Call out to CTransformers generate method.
Very helpful when streaming (like with websockets!)
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = llm("Once upon a time, ")
"""
text_callback = None
if run_manager:
text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose)
text = ""
for token in self.client(prompt, stop=stop, stream=True):
if text_callback:
await text_callback(token)
text += token
return text | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html |
c9ff28d924c7-0 | Source code for langchain.llms.petals
import logging
from typing import Any, Dict, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra, Field, root_validator
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class Petals(LLM):
"""Petals Bloom models.
To use, you should have the ``petals`` python package installed, and the
environment variable ``HUGGINGFACE_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import petals
petals = Petals()
"""
client: Any
"""The client to use for the API calls."""
tokenizer: Any
"""The tokenizer to use for the API calls."""
model_name: str = "bigscience/bloom-petals"
"""The model to use."""
temperature: float = 0.7
"""What sampling temperature to use"""
max_new_tokens: int = 256
"""The maximum number of new tokens to generate in the completion."""
top_p: float = 0.9
"""The cumulative probability for top-p sampling."""
top_k: Optional[int] = None
"""The number of highest probability vocabulary tokens
to keep for top-k-filtering."""
do_sample: bool = True
"""Whether or not to use sampling; use greedy decoding otherwise."""
max_length: Optional[int] = None | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/petals.html |
c9ff28d924c7-1 | max_length: Optional[int] = None
"""The maximum length of the sequence to be generated."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call
not explicitly specified."""
huggingface_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingface_api_key = get_from_dict_or_env(
values, "huggingface_api_key", "HUGGINGFACE_API_KEY"
)
try:
from petals import AutoDistributedModelForCausalLM
from transformers import AutoTokenizer
model_name = values["model_name"] | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/petals.html |
c9ff28d924c7-2 | from transformers import AutoTokenizer
model_name = values["model_name"]
values["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
values["client"] = AutoDistributedModelForCausalLM.from_pretrained(
model_name
)
values["huggingface_api_key"] = huggingface_api_key
except ImportError:
raise ImportError(
"Could not import transformers or petals python package."
"Please install with `pip install -U transformers petals`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Petals API."""
normal_params = {
"temperature": self.temperature,
"max_new_tokens": self.max_new_tokens,
"top_p": self.top_p,
"top_k": self.top_k,
"do_sample": self.do_sample,
"max_length": self.max_length,
}
return {**normal_params, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "petals"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call the Petals API."""
params = self._default_params
params = {**params, **kwargs} | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/petals.html |
c9ff28d924c7-3 | params = self._default_params
params = {**params, **kwargs}
inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"]
outputs = self.client.generate(inputs, **params)
text = self.tokenizer.decode(outputs[0])
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the model parameters
text = enforce_stop_tokens(text, stop)
return text | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/petals.html |
6dc18c4db5c3-0 | Source code for langchain.llms.tongyi
from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
from requests.exceptions import HTTPError
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.pydantic_v1 import Field, root_validator
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]:
min_seconds = 1
max_seconds = 4
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(HTTPError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
[docs]def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _generate_with_retry(**_kwargs: Any) -> Any:
resp = llm.client.call(**_kwargs)
if resp.status_code == 200:
return resp
elif resp.status_code in [400, 401]:
raise ValueError( | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/tongyi.html |
6dc18c4db5c3-1 | elif resp.status_code in [400, 401]:
raise ValueError(
f"status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}"
)
else:
raise HTTPError(
f"HTTP error occurred: status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}",
response=resp,
)
return _generate_with_retry(**kwargs)
[docs]def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _stream_generate_with_retry(**_kwargs: Any) -> Any:
stream_resps = []
resps = llm.client.call(**_kwargs)
for resp in resps:
if resp.status_code == 200:
stream_resps.append(resp)
elif resp.status_code in [400, 401]:
raise ValueError(
f"status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}"
)
else:
raise HTTPError(
f"HTTP error occurred: status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}",
response=resp,
)
return stream_resps
return _stream_generate_with_retry(**kwargs)
[docs]class Tongyi(LLM):
"""Tongyi Qwen large language models. | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/tongyi.html |
6dc18c4db5c3-2 | """Tongyi Qwen large language models.
To use, you should have the ``dashscope`` python package installed, and the
environment variable ``DASHSCOPE_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.llms import Tongyi
Tongyi = tongyi()
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
[docs] @classmethod
def is_lc_serializable(cls) -> bool:
return True
client: Any #: :meta private:
model_name: str = "qwen-plus-v1"
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
top_p: float = 0.8
"""Total probability mass of tokens to consider at each step."""
dashscope_api_key: Optional[str] = None
"""Dashscope api key provide by alicloud."""
n: int = 1
"""How many completions to generate for each prompt."""
streaming: bool = False
"""Whether to stream the results or not."""
max_retries: int = 10
"""Maximum number of retries to make when generating."""
prefix_messages: List = Field(default_factory=list)
"""Series of messages for Chat input."""
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "tongyi"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/tongyi.html |
6dc18c4db5c3-3 | @root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
try:
import dashscope
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope`."
)
try:
values["client"] = dashscope.Generation
except AttributeError:
raise ValueError(
"`dashscope` has no `Generation` attribute, this is likely "
"due to an old version of the dashscope package. Try upgrading it "
"with `pip install --upgrade dashscope`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
normal_params = {
"top_p": self.top_p,
}
return {**normal_params, **self.model_kwargs}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Tongyi's generate endpoint.
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = tongyi("Tell me a joke.")
"""
params: Dict[str, Any] = {
**{"model": self.model_name},
**self._default_params, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/tongyi.html |
6dc18c4db5c3-4 | **{"model": self.model_name},
**self._default_params,
**kwargs,
}
completion = generate_with_retry(
self,
prompt=prompt,
**params,
)
return completion["output"]["text"]
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
params: Dict[str, Any] = {
**{"model": self.model_name},
**self._default_params,
**kwargs,
}
if self.streaming:
if len(prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
params["stream"] = True
for stream_resp in stream_generate_with_retry(
self, prompt=prompts[0], **params
):
generations.append(
[
Generation(
text=stream_resp["output"]["text"],
generation_info=dict(
finish_reason=stream_resp["output"]["finish_reason"],
),
)
]
)
else:
for prompt in prompts:
completion = generate_with_retry(
self,
prompt=prompt,
**params,
)
generations.append(
[
Generation(
text=completion["output"]["text"],
generation_info=dict(
finish_reason=completion["output"]["finish_reason"],
),
)
]
)
return LLMResult(generations=generations) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/tongyi.html |
c71012282eac-0 | Source code for langchain.llms.fake
import asyncio
import time
from typing import Any, AsyncIterator, Iterator, List, Mapping, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from langchain.schema.language_model import LanguageModelInput
from langchain.schema.runnable import RunnableConfig
[docs]class FakeListLLM(LLM):
"""Fake LLM for testing purposes."""
responses: List[str]
sleep: Optional[float] = None
i: int = 0
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake-list"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Return next response"""
response = self.responses[self.i]
if self.i < len(self.responses) - 1:
self.i += 1
else:
self.i = 0
return response
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Return next response"""
response = self.responses[self.i]
if self.i < len(self.responses) - 1:
self.i += 1
else:
self.i = 0
return response
@property | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/fake.html |
c71012282eac-1 | else:
self.i = 0
return response
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"responses": self.responses}
[docs]class FakeStreamingListLLM(FakeListLLM):
"""Fake streaming list LLM for testing purposes."""
[docs] def stream(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
*,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[str]:
result = self.invoke(input, config)
for c in result:
if self.sleep is not None:
time.sleep(self.sleep)
yield c
[docs] async def astream(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
*,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> AsyncIterator[str]:
result = await self.ainvoke(input, config)
for c in result:
if self.sleep is not None:
await asyncio.sleep(self.sleep)
yield c | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/fake.html |
7dd2e86421b2-0 | Source code for langchain.llms.clarifai
import logging
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra, root_validator
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class Clarifai(LLM):
"""Clarifai large language models.
To use, you should have an account on the Clarifai platform,
the ``clarifai`` python package installed, and the
environment variable ``CLARIFAI_PAT`` set with your PAT key,
or pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.llms import Clarifai
clarifai_llm = Clarifai(pat=CLARIFAI_PAT, \
user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
"""
stub: Any #: :meta private:
userDataObject: Any
model_id: Optional[str] = None
"""Model id to use."""
model_version_id: Optional[str] = None
"""Model version id to use."""
app_id: Optional[str] = None
"""Clarifai application id to use."""
user_id: Optional[str] = None
"""Clarifai user id to use."""
pat: Optional[str] = None
api_base: str = "https://api.clarifai.com"
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html |
7dd2e86421b2-1 | """Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that we have all required info to access Clarifai
platform and python package exists in environment."""
values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT")
user_id = values.get("user_id")
app_id = values.get("app_id")
model_id = values.get("model_id")
if values["pat"] is None:
raise ValueError("Please provide a pat.")
if user_id is None:
raise ValueError("Please provide a user_id.")
if app_id is None:
raise ValueError("Please provide a app_id.")
if model_id is None:
raise ValueError("Please provide a model_id.")
try:
from clarifai.auth.helper import ClarifaiAuthHelper
from clarifai.client import create_stub
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
auth = ClarifaiAuthHelper(
user_id=user_id,
app_id=app_id,
pat=values["pat"],
base=values["api_base"],
)
values["userDataObject"] = auth.get_user_app_id_proto()
values["stub"] = create_stub(auth)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Clarifai API."""
return {}
@property
def _identifying_params(self) -> Dict[str, Any]: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html |
7dd2e86421b2-2 | @property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
**{
"user_id": self.user_id,
"app_id": self.app_id,
"model_id": self.model_id,
}
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "clarifai"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Clarfai's PostModelOutputs endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = clarifai_llm("Tell me a joke.")
"""
try:
from clarifai_grpc.grpc.api import (
resources_pb2,
service_pb2,
)
from clarifai_grpc.grpc.api.status import status_code_pb2
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
# The userDataObject is created in the overview and
# is required when using a PAT
# If version_id None, Defaults to the latest model version
post_model_outputs_request = service_pb2.PostModelOutputsRequest(
user_app_id=self.userDataObject, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html |
7dd2e86421b2-3 | user_app_id=self.userDataObject,
model_id=self.model_id,
version_id=self.model_version_id,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(text=resources_pb2.Text(raw=prompt))
)
],
)
post_model_outputs_response = self.stub.PostModelOutputs(
post_model_outputs_request
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
logger.error(post_model_outputs_response.status)
first_model_failure = (
post_model_outputs_response.outputs[0].status
if len(post_model_outputs_response.outputs)
else None
)
raise Exception(
f"Post model outputs failed, status: "
f"{post_model_outputs_response.status}, first output failure: "
f"{first_model_failure}"
)
text = post_model_outputs_response.outputs[0].data.text.raw
# In order to make this consistent with other endpoints, we strip them.
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
try:
from clarifai_grpc.grpc.api import (
resources_pb2,
service_pb2,
)
from clarifai_grpc.grpc.api.status import status_code_pb2
except ImportError:
raise ImportError(
"Could not import clarifai python package. " | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html |
7dd2e86421b2-4 | raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
# TODO: add caching here.
generations = []
batch_size = 32
for i in range(0, len(prompts), batch_size):
batch = prompts[i : i + batch_size]
post_model_outputs_request = service_pb2.PostModelOutputsRequest(
user_app_id=self.userDataObject,
model_id=self.model_id,
version_id=self.model_version_id,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(text=resources_pb2.Text(raw=prompt))
)
for prompt in batch
],
)
post_model_outputs_response = self.stub.PostModelOutputs(
post_model_outputs_request
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
logger.error(post_model_outputs_response.status)
first_model_failure = (
post_model_outputs_response.outputs[0].status
if len(post_model_outputs_response.outputs)
else None
)
raise Exception(
f"Post model outputs failed, status: "
f"{post_model_outputs_response.status}, first output failure: "
f"{first_model_failure}"
)
for output in post_model_outputs_response.outputs:
if stop is not None:
text = enforce_stop_tokens(output.data.text.raw, stop)
else:
text = output.data.text.raw
generations.append([Generation(text=text)])
return LLMResult(generations=generations) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/clarifai.html |
a8c3a00041c0-0 | Source code for langchain.llms.textgen
import json
import logging
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
import requests
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from langchain.pydantic_v1 import Field
from langchain.schema.output import GenerationChunk
logger = logging.getLogger(__name__)
[docs]class TextGen(LLM):
"""text-generation-webui models.
To use, you should have the text-generation-webui installed, a model loaded,
and --api added as a command-line option.
Suggested installation, use one-click installer for your OS:
https://github.com/oobabooga/text-generation-webui#one-click-installers
Parameters below taken from text-generation-webui api example:
https://github.com/oobabooga/text-generation-webui/blob/main/api-examples/api-example.py
Example:
.. code-block:: python
from langchain.llms import TextGen
llm = TextGen(model_url="http://localhost:8500")
"""
model_url: str
"""The full URL to the textgen webui including http[s]://host:port """
preset: Optional[str] = None
"""The preset to use in the textgen webui """
max_new_tokens: Optional[int] = 250
"""The maximum number of tokens to generate."""
do_sample: bool = Field(True, alias="do_sample")
"""Do sample"""
temperature: Optional[float] = 1.3
"""Primary factor to control randomness of outputs. 0 = deterministic
(only the most likely token is used). Higher value = more randomness.""" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
a8c3a00041c0-1 | (only the most likely token is used). Higher value = more randomness."""
top_p: Optional[float] = 0.1
"""If not set to 1, select tokens with probabilities adding up to less than this
number. Higher value = higher range of possible random results."""
typical_p: Optional[float] = 1
"""If not set to 1, select only tokens that are at least this much more likely to
appear than random tokens, given the prior text."""
epsilon_cutoff: Optional[float] = 0 # In units of 1e-4
"""Epsilon cutoff"""
eta_cutoff: Optional[float] = 0 # In units of 1e-4
"""ETA cutoff"""
repetition_penalty: Optional[float] = 1.18
"""Exponential penalty factor for repeating prior tokens. 1 means no penalty,
higher value = less repetition, lower value = more repetition."""
top_k: Optional[float] = 40
"""Similar to top_p, but select instead only the top_k most likely tokens.
Higher value = higher range of possible random results."""
min_length: Optional[int] = 0
"""Minimum generation length in tokens."""
no_repeat_ngram_size: Optional[int] = 0
"""If not set to 0, specifies the length of token sets that are completely blocked
from repeating at all. Higher values = blocks larger phrases,
lower values = blocks words or letters from repeating.
Only 0 or high values are a good idea in most cases."""
num_beams: Optional[int] = 1
"""Number of beams"""
penalty_alpha: Optional[float] = 0
"""Penalty Alpha"""
length_penalty: Optional[float] = 1 | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
a8c3a00041c0-2 | """Penalty Alpha"""
length_penalty: Optional[float] = 1
"""Length Penalty"""
early_stopping: bool = Field(False, alias="early_stopping")
"""Early stopping"""
seed: int = Field(-1, alias="seed")
"""Seed (-1 for random)"""
add_bos_token: bool = Field(True, alias="add_bos_token")
"""Add the bos_token to the beginning of prompts.
Disabling this can make the replies more creative."""
truncation_length: Optional[int] = 2048
"""Truncate the prompt up to this length. The leftmost tokens are removed if
the prompt exceeds this length. Most models require this to be at most 2048."""
ban_eos_token: bool = Field(False, alias="ban_eos_token")
"""Ban the eos_token. Forces the model to never end the generation prematurely."""
skip_special_tokens: bool = Field(True, alias="skip_special_tokens")
"""Skip special tokens. Some specific models need this unset."""
stopping_strings: Optional[List[str]] = []
"""A list of strings to stop generation when encountered."""
streaming: bool = False
"""Whether to stream the results, token by token."""
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling textgen."""
return {
"max_new_tokens": self.max_new_tokens,
"do_sample": self.do_sample,
"temperature": self.temperature,
"top_p": self.top_p,
"typical_p": self.typical_p,
"epsilon_cutoff": self.epsilon_cutoff,
"eta_cutoff": self.eta_cutoff,
"repetition_penalty": self.repetition_penalty, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
a8c3a00041c0-3 | "repetition_penalty": self.repetition_penalty,
"top_k": self.top_k,
"min_length": self.min_length,
"no_repeat_ngram_size": self.no_repeat_ngram_size,
"num_beams": self.num_beams,
"penalty_alpha": self.penalty_alpha,
"length_penalty": self.length_penalty,
"early_stopping": self.early_stopping,
"seed": self.seed,
"add_bos_token": self.add_bos_token,
"truncation_length": self.truncation_length,
"ban_eos_token": self.ban_eos_token,
"skip_special_tokens": self.skip_special_tokens,
"stopping_strings": self.stopping_strings,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_url": self.model_url}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "textgen"
def _get_parameters(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
"""
Performs sanity check, preparing parameters in format needed by textgen.
Args:
stop (Optional[List[str]]): List of stop sequences for textgen.
Returns:
Dictionary containing the combined parameters.
"""
# Raise error if stop sequences are in both input and default params
# if self.stop and stop is not None:
if self.stopping_strings and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
if self.preset is None: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
a8c3a00041c0-4 | if self.preset is None:
params = self._default_params
else:
params = {"preset": self.preset}
# then sets it as configured, or default to an empty list:
params["stopping_strings"] = self.stopping_strings or stop or []
return params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call the textgen web API and return the output.
Args:
prompt: The prompt to use for generation.
stop: A list of strings to stop generation when encountered.
Returns:
The generated text.
Example:
.. code-block:: python
from langchain.llms import TextGen
llm = TextGen(model_url="http://localhost:5000")
llm("Write a story about llamas.")
"""
if self.streaming:
combined_text_output = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
combined_text_output += chunk.text
result = combined_text_output
else:
url = f"{self.model_url}/api/v1/generate"
params = self._get_parameters(stop)
request = params.copy()
request["prompt"] = prompt
response = requests.post(url, json=request)
if response.status_code == 200:
result = response.json()["results"][0]["text"]
else:
print(f"ERROR: response: {response}")
result = ""
return result | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
a8c3a00041c0-5 | result = ""
return result
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call the textgen web API and return the output.
Args:
prompt: The prompt to use for generation.
stop: A list of strings to stop generation when encountered.
Returns:
The generated text.
Example:
.. code-block:: python
from langchain.llms import TextGen
llm = TextGen(model_url="http://localhost:5000")
llm("Write a story about llamas.")
"""
if self.streaming:
combined_text_output = ""
async for chunk in self._astream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
combined_text_output += chunk.text
result = combined_text_output
else:
url = f"{self.model_url}/api/v1/generate"
params = self._get_parameters(stop)
request = params.copy()
request["prompt"] = prompt
response = requests.post(url, json=request)
if response.status_code == 200:
result = response.json()["results"][0]["text"]
else:
print(f"ERROR: response: {response}")
result = ""
return result
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
a8c3a00041c0-6 | **kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Yields results objects as they are generated in real time.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens being generated.
Yields:
A dictionary like objects containing a string token and metadata.
See text-generation-webui docs and below for more.
Example:
.. code-block:: python
from langchain.llms import TextGen
llm = TextGen(
model_url = "ws://localhost:5005"
streaming=True
)
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
stop=["'","\n"]):
print(chunk, end='', flush=True)
"""
try:
import websocket
except ImportError:
raise ImportError(
"The `websocket-client` package is required for streaming."
)
params = {**self._get_parameters(stop), **kwargs}
url = f"{self.model_url}/api/v1/stream"
request = params.copy()
request["prompt"] = prompt
websocket_client = websocket.WebSocket()
websocket_client.connect(url)
websocket_client.send(json.dumps(request))
while True:
result = websocket_client.recv()
result = json.loads(result)
if result["event"] == "text_stream":
chunk = GenerationChunk(
text=result["text"],
generation_info=None,
)
yield chunk | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
a8c3a00041c0-7 | text=result["text"],
generation_info=None,
)
yield chunk
elif result["event"] == "stream_end":
websocket_client.close()
return
if run_manager:
run_manager.on_llm_new_token(token=chunk.text)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
"""Yields results objects as they are generated in real time.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens being generated.
Yields:
A dictionary like objects containing a string token and metadata.
See text-generation-webui docs and below for more.
Example:
.. code-block:: python
from langchain.llms import TextGen
llm = TextGen(
model_url = "ws://localhost:5005"
streaming=True
)
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
stop=["'","\n"]):
print(chunk, end='', flush=True)
"""
try:
import websocket
except ImportError:
raise ImportError(
"The `websocket-client` package is required for streaming."
)
params = {**self._get_parameters(stop), **kwargs} | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
a8c3a00041c0-8 | )
params = {**self._get_parameters(stop), **kwargs}
url = f"{self.model_url}/api/v1/stream"
request = params.copy()
request["prompt"] = prompt
websocket_client = websocket.WebSocket()
websocket_client.connect(url)
websocket_client.send(json.dumps(request))
while True:
result = websocket_client.recv()
result = json.loads(result)
if result["event"] == "text_stream":
chunk = GenerationChunk(
text=result["text"],
generation_info=None,
)
yield chunk
elif result["event"] == "stream_end":
websocket_client.close()
return
if run_manager:
await run_manager.on_llm_new_token(token=chunk.text) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/textgen.html |
1bb0135bde89-0 | Source code for langchain.llms.huggingface_pipeline
from __future__ import annotations
import importlib.util
import logging
from typing import Any, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import BaseLLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra
from langchain.schema import Generation, LLMResult
DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
DEFAULT_BATCH_SIZE = 4
logger = logging.getLogger(__name__)
[docs]class HuggingFacePipeline(BaseLLM):
"""HuggingFace Pipeline API.
To use, you should have the ``transformers`` python package installed.
Only supports `text-generation`, `text2text-generation` and `summarization` for now.
Example using from_model_id:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
pipeline_kwargs={"max_new_tokens": 10},
)
Example passing pipeline in directly:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html |
1bb0135bde89-1 | )
hf = HuggingFacePipeline(pipeline=pipe)
"""
pipeline: Any #: :meta private:
model_id: str = DEFAULT_MODEL_ID
"""Model name to use."""
model_kwargs: Optional[dict] = None
"""Keyword arguments passed to the model."""
pipeline_kwargs: Optional[dict] = None
"""Keyword arguments passed to the pipeline."""
batch_size: int = DEFAULT_BATCH_SIZE
"""Batch size to use when passing multiple documents to generate."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] @classmethod
def from_model_id(
cls,
model_id: str,
task: str,
device: Optional[int] = -1,
device_map: Optional[str] = None,
model_kwargs: Optional[dict] = None,
pipeline_kwargs: Optional[dict] = None,
batch_size: int = DEFAULT_BATCH_SIZE,
**kwargs: Any,
) -> HuggingFacePipeline:
"""Construct the pipeline object from model_id and task."""
try:
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
from transformers import pipeline as hf_pipeline
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
)
_model_kwargs = model_kwargs or {}
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
if task == "text-generation":
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html |
1bb0135bde89-2 | elif task in ("text2text-generation", "summarization"):
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
else:
raise ValueError(
f"Got invalid task {task}, "
f"currently only {VALID_TASKS} are supported"
)
except ImportError as e:
raise ValueError(
f"Could not load the {task} model due to missing dependencies."
) from e
if tokenizer.pad_token is None:
tokenizer.pad_token_id = model.config.eos_token_id
if (
getattr(model, "is_loaded_in_4bit", False)
or getattr(model, "is_loaded_in_8bit", False)
) and device is not None:
logger.warning(
f"Setting the `device` argument to None from {device} to avoid "
"the error caused by attempting to move the model that was already "
"loaded on the GPU using the Accelerate module to the same or "
"another device."
)
device = None
if device is not None and importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device_map is not None and device < 0:
device = None
if device is not None and device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. " | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html |
1bb0135bde89-3 | logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 (default) for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
_pipeline_kwargs = pipeline_kwargs or {}
pipeline = hf_pipeline(
task=task,
model=model,
tokenizer=tokenizer,
device=device,
device_map=device_map,
batch_size=batch_size,
model_kwargs=_model_kwargs,
**_pipeline_kwargs,
)
if pipeline.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
return cls(
pipeline=pipeline,
model_id=model_id,
model_kwargs=_model_kwargs,
pipeline_kwargs=_pipeline_kwargs,
batch_size=batch_size,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"model_kwargs": self.model_kwargs,
"pipeline_kwargs": self.pipeline_kwargs,
}
@property
def _llm_type(self) -> str:
return "huggingface_pipeline"
def _generate(
self,
prompts: List[str], | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html |
1bb0135bde89-4 | def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
# List to hold all results
text_generations: List[str] = []
for i in range(0, len(prompts), self.batch_size):
batch_prompts = prompts[i : i + self.batch_size]
# Process batch of prompts
responses = self.pipeline(batch_prompts)
# Process each response in the batch
for j, response in enumerate(responses):
if isinstance(response, list):
# if model returns multiple generations, pick the top one
response = response[0]
if self.pipeline.task == "text-generation":
try:
from transformers.pipelines.text_generation import ReturnType
remove_prompt = (
self.pipeline._postprocess_params.get("return_type")
!= ReturnType.NEW_TEXT
)
except Exception as e:
logger.warning(
f"Unable to extract pipeline return_type. "
f"Received error:\n\n{e}"
)
remove_prompt = True
if remove_prompt:
text = response["generated_text"][len(batch_prompts[j]) :]
else:
text = response["generated_text"]
elif self.pipeline.task == "text2text-generation":
text = response["generated_text"]
elif self.pipeline.task == "summarization":
text = response["summary_text"]
else:
raise ValueError(
f"Got invalid task {self.pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html |
1bb0135bde89-5 | )
if stop:
# Enforce stop tokens
text = enforce_stop_tokens(text, stop)
# Append the processed text to results
text_generations.append(text)
return LLMResult(
generations=[[Generation(text=text)] for text in text_generations]
) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/huggingface_pipeline.html |
9e987a642600-0 | Source code for langchain.llms.gigachat
from __future__ import annotations
import logging
from functools import cached_property
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import BaseLLM
from langchain.load.serializable import Serializable
from langchain.pydantic_v1 import root_validator
from langchain.schema.output import Generation, GenerationChunk, LLMResult
logger = logging.getLogger(__name__)
class _BaseGigaChat(Serializable):
base_url: Optional[str] = None
""" Base API URL """
auth_url: Optional[str] = None
""" Auth URL """
credentials: Optional[str] = None
""" Auth Token """
scope: Optional[str] = None
""" Permission scope for access token """
access_token: Optional[str] = None
""" Access token for GigaChat """
model: Optional[str] = None
"""Model name to use."""
user: Optional[str] = None
""" Username for authenticate """
password: Optional[str] = None
""" Password for authenticate """
timeout: Optional[float] = None
""" Timeout for request """
verify_ssl_certs: Optional[bool] = None
""" Check certificates for all requests """
ca_bundle_file: Optional[str] = None
cert_file: Optional[str] = None
key_file: Optional[str] = None
key_file_password: Optional[str] = None
# Support for connection to GigaChat through SSL certificates
profanity: bool = True
""" Check for profanity """
streaming: bool = False
""" Whether to stream the results or not. """ | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gigachat.html |
9e987a642600-1 | streaming: bool = False
""" Whether to stream the results or not. """
temperature: Optional[float] = None
"""What sampling temperature to use."""
max_tokens: Optional[int] = None
""" Maximum number of tokens to generate """
@property
def _llm_type(self) -> str:
return "giga-chat-model"
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"credentials": "GIGACHAT_CREDENTIALS",
"access_token": "GIGACHAT_ACCESS_TOKEN",
"password": "GIGACHAT_PASSWORD",
"key_file_password": "GIGACHAT_KEY_FILE_PASSWORD",
}
@property
def lc_serializable(self) -> bool:
return True
@cached_property
def _client(self) -> Any:
"""Returns GigaChat API client"""
import gigachat
return gigachat.GigaChat(
base_url=self.base_url,
auth_url=self.auth_url,
credentials=self.credentials,
scope=self.scope,
access_token=self.access_token,
model=self.model,
user=self.user,
password=self.password,
timeout=self.timeout,
verify_ssl_certs=self.verify_ssl_certs,
ca_bundle_file=self.ca_bundle_file,
cert_file=self.cert_file,
key_file=self.key_file,
key_file_password=self.key_file_password,
)
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate authenticate data in environment and python package is installed."""
try:
import gigachat # noqa: F401
except ImportError:
raise ImportError( | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gigachat.html |
9e987a642600-2 | except ImportError:
raise ImportError(
"Could not import gigachat python package. "
"Please install it with `pip install gigachat`."
)
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"temperature": self.temperature,
"model": self.model,
"profanity": self.profanity,
"streaming": self.streaming,
"max_tokens": self.max_tokens,
}
[docs]class GigaChat(_BaseGigaChat, BaseLLM):
"""`GigaChat` large language models API.
To use, you should pass login and password to access GigaChat API or use token.
Example:
.. code-block:: python
from langchain.llms import GigaChat
giga = GigaChat(credentials=..., verify_ssl_certs=False)
"""
def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
payload: Dict[str, Any] = {
"messages": [{"role": "user", "content": m} for m in messages],
"profanity_check": self.profanity,
}
if self.temperature is not None:
payload["temperature"] = self.temperature
if self.max_tokens is not None:
payload["max_tokens"] = self.max_tokens
if self.model:
payload["model"] = self.model
if self.verbose:
logger.info("Giga request: %s", payload)
return payload
def _create_llm_result(self, response: Any) -> LLMResult:
generations = []
for res in response.choices: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gigachat.html |
9e987a642600-3 | generations = []
for res in response.choices:
finish_reason = res.finish_reason
gen = Generation(
text=res.message.content,
generation_info={"finish_reason": finish_reason},
)
generations.append([gen])
if finish_reason != "stop":
logger.warning(
"Giga generation stopped with reason: %s",
finish_reason,
)
if self.verbose:
logger.info("Giga response: %s", res.message.content)
token_usage = response.usage
llm_output = {"token_usage": token_usage, "model_name": response.model}
return LLMResult(generations=generations, llm_output=llm_output)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
generation: Optional[GenerationChunk] = None
stream_iter = self._stream(
prompts[0], stop=stop, run_manager=run_manager, **kwargs
)
for chunk in stream_iter:
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
payload = self._build_payload(prompts)
response = self._client.chat(payload)
return self._create_llm_result(response)
async def _agenerate(
self,
prompts: List[str], | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gigachat.html |
9e987a642600-4 | async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
generation: Optional[GenerationChunk] = None
stream_iter = self._astream(
prompts[0], stop=stop, run_manager=run_manager, **kwargs
)
async for chunk in stream_iter:
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
payload = self._build_payload(prompts)
response = await self._client.achat(payload)
return self._create_llm_result(response)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
payload = self._build_payload([prompt])
for chunk in self._client.stream(payload):
if chunk.choices:
content = chunk.choices[0].delta.content
yield GenerationChunk(text=content)
if run_manager:
run_manager.on_llm_new_token(content)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gigachat.html |
9e987a642600-5 | **kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
payload = self._build_payload([prompt])
async for chunk in self._client.astream(payload):
if chunk.choices:
content = chunk.choices[0].delta.content
yield GenerationChunk(text=content)
if run_manager:
await run_manager.on_llm_new_token(content)
[docs] def get_num_tokens(self, text: str) -> int:
"""Count approximate number of tokens"""
return round(len(text) / 4.6) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gigachat.html |
d3adf7627ac8-0 | Source code for langchain.llms.titan_takeoff
from typing import Any, Iterator, List, Mapping, Optional
import requests
from requests.exceptions import ConnectionError
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.schema.output import GenerationChunk
[docs]class TitanTakeoff(LLM):
"""Wrapper around Titan Takeoff APIs."""
base_url: str = "http://localhost:8000"
"""Specifies the baseURL to use for the Titan Takeoff API.
Default = http://localhost:8000.
"""
generate_max_length: int = 128
"""Maximum generation length. Default = 128."""
sampling_topk: int = 1
"""Sample predictions from the top K most probable candidates. Default = 1."""
sampling_topp: float = 1.0
"""Sample from predictions whose cumulative probability exceeds this value.
Default = 1.0.
"""
sampling_temperature: float = 1.0
"""Sample with randomness. Bigger temperatures are associated with
more randomness and 'creativity'. Default = 1.0.
"""
repetition_penalty: float = 1.0
"""Penalise the generation of tokens that have been generated before.
Set to > 1 to penalize. Default = 1 (no penalty).
"""
no_repeat_ngram_size: int = 0
"""Prevent repetitions of ngrams of this size. Default = 0 (turned off)."""
streaming: bool = False
"""Whether to stream the output. Default = False."""
@property
def _default_params(self) -> Mapping[str, Any]: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff.html |
d3adf7627ac8-1 | @property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Titan Takeoff Server."""
params = {
"generate_max_length": self.generate_max_length,
"sampling_topk": self.sampling_topk,
"sampling_topp": self.sampling_topp,
"sampling_temperature": self.sampling_temperature,
"repetition_penalty": self.repetition_penalty,
"no_repeat_ngram_size": self.no_repeat_ngram_size,
}
return params
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "titan_takeoff"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Titan Takeoff generate endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What is the capital of the United Kingdom?"
response = model(prompt)
"""
try:
if self.streaming:
text_output = ""
for chunk in self._stream(
prompt=prompt,
stop=stop,
run_manager=run_manager,
):
text_output += chunk.text
return text_output
url = f"{self.base_url}/generate"
params = {"text": prompt, **self._default_params}
response = requests.post(url, json=params) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff.html |
d3adf7627ac8-2 | response = requests.post(url, json=params)
response.raise_for_status()
response.encoding = "utf-8"
text = ""
if "message" in response.json():
text = response.json()["message"]
else:
raise ValueError("Something went wrong.")
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
except ConnectionError:
raise ConnectionError(
"Could not connect to Titan Takeoff server. \
Please make sure that the server is running."
)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Call out to Titan Takeoff stream endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Yields:
A dictionary like object containing a string token.
Example:
.. code-block:: python
prompt = "What is the capital of the United Kingdom?"
response = model(prompt)
"""
url = f"{self.base_url}/generate_stream"
params = {"text": prompt, **self._default_params}
response = requests.post(url, json=params, stream=True)
response.encoding = "utf-8"
for text in response.iter_content(chunk_size=1, decode_unicode=True):
if text:
chunk = GenerationChunk(text=text)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token=chunk.text) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff.html |
d3adf7627ac8-3 | if run_manager:
run_manager.on_llm_new_token(token=chunk.text)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"base_url": self.base_url, **{}, **self._default_params} | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/titan_takeoff.html |
363e03dcb9c2-0 | Source code for langchain.llms.promptlayer_openai
import datetime
from typing import Any, List, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.openai import OpenAI, OpenAIChat
from langchain.schema import LLMResult
[docs]class PromptLayerOpenAI(OpenAI):
"""PromptLayer OpenAI large language models.
To use, you should have the ``openai`` and ``promptlayer`` python
package installed, and the environment variable ``OPENAI_API_KEY``
and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAI LLM can also
be passed here. The PromptLayerOpenAI LLM adds two optional
parameters:
``pl_tags``: List of strings to tag the request with.
``return_pl_id``: If True, the PromptLayer request ID will be
returned in the ``generation_info`` field of the
``Generation`` object.
Example:
.. code-block:: python
from langchain.llms import PromptLayerOpenAI
openai = PromptLayerOpenAI(model_name="text-davinci-003")
"""
pl_tags: Optional[List[str]]
return_pl_id: Optional[bool] = False
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call OpenAI generate and then call PromptLayer API to log the request.""" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html |
363e03dcb9c2-1 | """Call OpenAI generate and then call PromptLayer API to log the request."""
from promptlayer.utils import get_api_key, promptlayer_api_request
request_start_time = datetime.datetime.now().timestamp()
generated_responses = super()._generate(prompts, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
for i in range(len(prompts)):
prompt = prompts[i]
generation = generated_responses.generations[i][0]
resp = {
"text": generation.text,
"llm_output": generated_responses.llm_output,
}
params = {**self._identifying_params, **kwargs}
pl_request_id = promptlayer_api_request(
"langchain.PromptLayerOpenAI",
"langchain",
[prompt],
params,
self.pl_tags,
resp,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
from promptlayer.utils import get_api_key, promptlayer_api_request_async
request_start_time = datetime.datetime.now().timestamp()
generated_responses = await super()._agenerate(prompts, stop, run_manager) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html |
363e03dcb9c2-2 | generated_responses = await super()._agenerate(prompts, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
for i in range(len(prompts)):
prompt = prompts[i]
generation = generated_responses.generations[i][0]
resp = {
"text": generation.text,
"llm_output": generated_responses.llm_output,
}
params = {**self._identifying_params, **kwargs}
pl_request_id = await promptlayer_api_request_async(
"langchain.PromptLayerOpenAI.async",
"langchain",
[prompt],
params,
self.pl_tags,
resp,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
[docs]class PromptLayerOpenAIChat(OpenAIChat):
"""Wrapper around OpenAI large language models.
To use, you should have the ``openai`` and ``promptlayer`` python
package installed, and the environment variable ``OPENAI_API_KEY``
and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAIChat LLM can also
be passed here. The PromptLayerOpenAIChat adds two optional
parameters:
``pl_tags``: List of strings to tag the request with. | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html |
363e03dcb9c2-3 | parameters:
``pl_tags``: List of strings to tag the request with.
``return_pl_id``: If True, the PromptLayer request ID will be
returned in the ``generation_info`` field of the
``Generation`` object.
Example:
.. code-block:: python
from langchain.llms import PromptLayerOpenAIChat
openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo")
"""
pl_tags: Optional[List[str]]
return_pl_id: Optional[bool] = False
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call OpenAI generate and then call PromptLayer API to log the request."""
from promptlayer.utils import get_api_key, promptlayer_api_request
request_start_time = datetime.datetime.now().timestamp()
generated_responses = super()._generate(prompts, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
for i in range(len(prompts)):
prompt = prompts[i]
generation = generated_responses.generations[i][0]
resp = {
"text": generation.text,
"llm_output": generated_responses.llm_output,
}
params = {**self._identifying_params, **kwargs}
pl_request_id = promptlayer_api_request(
"langchain.PromptLayerOpenAIChat",
"langchain",
[prompt],
params,
self.pl_tags,
resp,
request_start_time,
request_end_time, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html |
363e03dcb9c2-4 | resp,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
from promptlayer.utils import get_api_key, promptlayer_api_request_async
request_start_time = datetime.datetime.now().timestamp()
generated_responses = await super()._agenerate(prompts, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
for i in range(len(prompts)):
prompt = prompts[i]
generation = generated_responses.generations[i][0]
resp = {
"text": generation.text,
"llm_output": generated_responses.llm_output,
}
params = {**self._identifying_params, **kwargs}
pl_request_id = await promptlayer_api_request_async(
"langchain.PromptLayerOpenAIChat.async",
"langchain",
[prompt],
params,
self.pl_tags,
resp,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html |
363e03dcb9c2-5 | generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/promptlayer_openai.html |
c860d32942c2-0 | Source code for langchain.llms.manifest
from typing import Any, Dict, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.pydantic_v1 import Extra, root_validator
[docs]class ManifestWrapper(LLM):
"""HazyResearch's Manifest library."""
client: Any #: :meta private:
llm_kwargs: Optional[Dict] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
from manifest import Manifest
if not isinstance(values["client"], Manifest):
raise ValueError
except ImportError:
raise ImportError(
"Could not import manifest python package. "
"Please install it with `pip install manifest-ml`."
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
kwargs = self.llm_kwargs or {}
return {
**self.client.client_pool.get_current_client().get_model_params(),
**kwargs,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "manifest"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to LLM through Manifest."""
if stop is not None and len(stop) != 1:
raise NotImplementedError( | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/manifest.html |
c860d32942c2-1 | if stop is not None and len(stop) != 1:
raise NotImplementedError(
f"Manifest currently only supports a single stop token, got {stop}"
)
params = self.llm_kwargs or {}
params = {**params, **kwargs}
if stop is not None:
params["stop_token"] = stop
return self.client.run(prompt, **params) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/manifest.html |
02030726671a-0 | Source code for langchain.llms.ai21
from typing import Any, Dict, List, Optional, cast
import requests
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
from langchain.utils import convert_to_secret_str, get_from_dict_or_env
[docs]class AI21PenaltyData(BaseModel):
"""Parameters for AI21 penalty data."""
scale: int = 0
applyToWhitespaces: bool = True
applyToPunctuations: bool = True
applyToNumbers: bool = True
applyToStopwords: bool = True
applyToEmojis: bool = True
[docs]class AI21(LLM):
"""AI21 large language models.
To use, you should have the environment variable ``AI21_API_KEY``
set with your API key or pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.llms import AI21
ai21 = AI21(ai21_api_key="my-api-key", model="j2-jumbo-instruct")
"""
model: str = "j2-jumbo-instruct"
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
maxTokens: int = 256
"""The maximum number of tokens to generate in the completion."""
minTokens: int = 0
"""The minimum number of tokens to generate in the completion."""
topP: float = 1.0
"""Total probability mass of tokens to consider at each step."""
presencePenalty: AI21PenaltyData = AI21PenaltyData() | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/ai21.html |
02030726671a-1 | presencePenalty: AI21PenaltyData = AI21PenaltyData()
"""Penalizes repeated tokens."""
countPenalty: AI21PenaltyData = AI21PenaltyData()
"""Penalizes repeated tokens according to count."""
frequencyPenalty: AI21PenaltyData = AI21PenaltyData()
"""Penalizes repeated tokens according to frequency."""
numResults: int = 1
"""How many completions to generate for each prompt."""
logitBias: Optional[Dict[str, float]] = None
"""Adjust the probability of specific tokens being generated."""
ai21_api_key: Optional[SecretStr] = None
stop: Optional[List[str]] = None
base_url: Optional[str] = None
"""Base url to use, if None decides based on model name."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
ai21_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "ai21_api_key", "AI21_API_KEY")
)
values["ai21_api_key"] = ai21_api_key
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling AI21 API."""
return {
"temperature": self.temperature,
"maxTokens": self.maxTokens,
"minTokens": self.minTokens,
"topP": self.topP,
"presencePenalty": self.presencePenalty.dict(),
"countPenalty": self.countPenalty.dict(), | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/ai21.html |
02030726671a-2 | "countPenalty": self.countPenalty.dict(),
"frequencyPenalty": self.frequencyPenalty.dict(),
"numResults": self.numResults,
"logitBias": self.logitBias,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "ai21"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to AI21's complete endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = ai21("Tell me a joke.")
"""
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
stop = self.stop
elif stop is None:
stop = []
if self.base_url is not None:
base_url = self.base_url
else:
if self.model in ("j1-grande-instruct",):
base_url = "https://api.ai21.com/studio/v1/experimental"
else:
base_url = "https://api.ai21.com/studio/v1" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/ai21.html |
02030726671a-3 | base_url = "https://api.ai21.com/studio/v1"
params = {**self._default_params, **kwargs}
self.ai21_api_key = cast(SecretStr, self.ai21_api_key)
response = requests.post(
url=f"{base_url}/{self.model}/complete",
headers={"Authorization": f"Bearer {self.ai21_api_key.get_secret_value()}"},
json={"prompt": prompt, "stopSequences": stop, **params},
)
if response.status_code != 200:
optional_detail = response.json().get("error")
raise ValueError(
f"AI21 /complete call failed with status code {response.status_code}."
f" Details: {optional_detail}"
)
response_json = response.json()
return response_json["completions"][0]["data"]["text"] | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/ai21.html |
0e61e5288e31-0 | Source code for langchain.llms.mlflow_ai_gateway
from __future__ import annotations
from typing import Any, Dict, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.pydantic_v1 import BaseModel, Extra
# Ignoring type because below is valid pydantic code
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
[docs]class Params(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
"""Parameters for the MLflow AI Gateway LLM."""
temperature: float = 0.0
candidate_count: int = 1
"""The number of candidates to return."""
stop: Optional[List[str]] = None
max_tokens: Optional[int] = None
[docs]class MlflowAIGateway(LLM):
"""
Wrapper around completions LLMs in the MLflow AI Gateway.
To use, you should have the ``mlflow[gateway]`` python package installed.
For more information, see https://mlflow.org/docs/latest/gateway/index.html.
Example:
.. code-block:: python
from langchain.llms import MlflowAIGateway
completions = MlflowAIGateway(
gateway_uri="<your-mlflow-ai-gateway-uri>",
route="<your-mlflow-ai-gateway-completions-route>",
params={
"temperature": 0.1
}
)
"""
route: str
gateway_uri: Optional[str] = None
params: Optional[Params] = None
def __init__(self, **kwargs: Any):
try:
import mlflow.gateway | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/mlflow_ai_gateway.html |
0e61e5288e31-1 | try:
import mlflow.gateway
except ImportError as e:
raise ImportError(
"Could not import `mlflow.gateway` module. "
"Please install it with `pip install mlflow[gateway]`."
) from e
super().__init__(**kwargs)
if self.gateway_uri:
mlflow.gateway.set_gateway_uri(self.gateway_uri)
@property
def _default_params(self) -> Dict[str, Any]:
params: Dict[str, Any] = {
"gateway_uri": self.gateway_uri,
"route": self.route,
**(self.params.dict() if self.params else {}),
}
return params
@property
def _identifying_params(self) -> Mapping[str, Any]:
return self._default_params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
try:
import mlflow.gateway
except ImportError as e:
raise ImportError(
"Could not import `mlflow.gateway` module. "
"Please install it with `pip install mlflow[gateway]`."
) from e
data: Dict[str, Any] = {
"prompt": prompt,
**(self.params.dict() if self.params else {}),
}
if s := (stop or (self.params.stop if self.params else None)):
data["stop"] = s
resp = mlflow.gateway.query(self.route, data=data)
return resp["candidates"][0]["text"]
@property
def _llm_type(self) -> str: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/mlflow_ai_gateway.html |
0e61e5288e31-2 | @property
def _llm_type(self) -> str:
return "mlflow-ai-gateway" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/mlflow_ai_gateway.html |
3f746b5cba90-0 | Source code for langchain.llms.mosaicml
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra, root_validator
from langchain.utils import get_from_dict_or_env
INSTRUCTION_KEY = "### Instruction:"
RESPONSE_KEY = "### Response:"
INTRO_BLURB = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
)
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{instruction}
{response_key}
""".format(
intro=INTRO_BLURB,
instruction_key=INSTRUCTION_KEY,
instruction="{instruction}",
response_key=RESPONSE_KEY,
)
[docs]class MosaicML(LLM):
"""MosaicML LLM service.
To use, you should have the
environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.llms import MosaicML
endpoint_url = (
"https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict"
)
mosaic_llm = MosaicML(
endpoint_url=endpoint_url,
mosaicml_api_token="my-api-key"
)
"""
endpoint_url: str = (
"https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict"
) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/mosaicml.html |
3f746b5cba90-1 | )
"""Endpoint URL to use."""
inject_instruction_format: bool = False
"""Whether to inject the instruction format into the prompt."""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
retry_sleep: float = 1.0
"""How long to try sleeping for if a rate limit is encountered"""
mosaicml_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
mosaicml_api_token = get_from_dict_or_env(
values, "mosaicml_api_token", "MOSAICML_API_TOKEN"
)
values["mosaicml_api_token"] = mosaicml_api_token
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint_url": self.endpoint_url},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "mosaic"
def _transform_prompt(self, prompt: str) -> str:
"""Transform prompt."""
if self.inject_instruction_format:
prompt = PROMPT_FOR_GENERATION_FORMAT.format(
instruction=prompt,
)
return prompt
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None, | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/mosaicml.html |
3f746b5cba90-2 | prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
is_retry: bool = False,
**kwargs: Any,
) -> str:
"""Call out to a MosaicML LLM inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = mosaic_llm("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
prompt = self._transform_prompt(prompt)
payload = {"inputs": [prompt]}
payload.update(_model_kwargs)
payload.update(kwargs)
# HTTP headers for authorization
headers = {
"Authorization": f"{self.mosaicml_api_token}",
"Content-Type": "application/json",
}
# send request
try:
response = requests.post(self.endpoint_url, headers=headers, json=payload)
except requests.exceptions.RequestException as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
try:
if response.status_code == 429:
if not is_retry:
import time
time.sleep(self.retry_sleep)
return self._call(prompt, stop, run_manager, is_retry=True)
raise ValueError(
f"Error raised by inference API: rate limit exceeded.\nResponse: "
f"{response.text}"
)
parsed_response = response.json()
# The inference API has changed a couple of times, so we add some handling
# to be robust to multiple response formats. | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/mosaicml.html |
3f746b5cba90-3 | # to be robust to multiple response formats.
if isinstance(parsed_response, dict):
output_keys = ["data", "output", "outputs"]
for key in output_keys:
if key in parsed_response:
output_item = parsed_response[key]
break
else:
raise ValueError(
f"No valid key ({', '.join(output_keys)}) in response:"
f" {parsed_response}"
)
if isinstance(output_item, list):
text = output_item[0]
else:
text = output_item
else:
raise ValueError(f"Unexpected response type: {parsed_response}")
# Older versions of the API include the input in the output response
if text.startswith(prompt):
text = text[len(prompt) :]
except requests.exceptions.JSONDecodeError as e:
raise ValueError(
f"Error raised by inference API: {e}.\nResponse: {response.text}"
)
# TODO: replace when MosaicML supports custom stop tokens natively
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/mosaicml.html |
4d2648316a32-0 | Source code for langchain.llms.gradient_ai
import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Dict, List, Mapping, Optional, Sequence, TypedDict
import aiohttp
import requests
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import BaseLLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import Extra, Field, root_validator
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
[docs]class TrainResult(TypedDict):
"""Train result."""
loss: float
[docs]class GradientLLM(BaseLLM):
"""Gradient.ai LLM Endpoints.
GradientLLM is a class to interact with LLMs on gradient.ai
To use, set the environment variable ``GRADIENT_ACCESS_TOKEN`` with your
API token and ``GRADIENT_WORKSPACE_ID`` for your gradient workspace,
or alternatively provide them as keywords to the constructor of this class.
Example:
.. code-block:: python
from langchain.llms import GradientLLM
GradientLLM(
model="99148c6d-c2a0-4fbe-a4a7-e7c05bdb8a09_base_ml_model",
model_kwargs={
"max_generated_token_count": 128,
"temperature": 0.75,
"top_p": 0.95,
"top_k": 20,
"stop": [],
},
gradient_workspace_id="12345614fc0_workspace",
gradient_access_token="gradientai-access_token",
)
""" | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
4d2648316a32-1 | gradient_access_token="gradientai-access_token",
)
"""
model_id: str = Field(alias="model", min_length=2)
"Underlying gradient.ai model id (base or fine-tuned)."
gradient_workspace_id: Optional[str] = None
"Underlying gradient.ai workspace_id."
gradient_access_token: Optional[str] = None
"""gradient.ai API Token, which can be generated by going to
https://auth.gradient.ai/select-workspace
and selecting "Access tokens" under the profile drop-down.
"""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
gradient_api_url: str = "https://api.gradient.ai/api"
"""Endpoint URL to use."""
aiosession: Optional[aiohttp.ClientSession] = None #: :meta private:
"""ClientSession, private, subject to change in upcoming releases."""
# LLM call kwargs
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
extra = Extra.forbid
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["gradient_access_token"] = get_from_dict_or_env(
values, "gradient_access_token", "GRADIENT_ACCESS_TOKEN"
)
values["gradient_workspace_id"] = get_from_dict_or_env(
values, "gradient_workspace_id", "GRADIENT_WORKSPACE_ID"
)
if (
values["gradient_access_token"] is None
or len(values["gradient_access_token"]) < 10
): | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
4d2648316a32-2 | or len(values["gradient_access_token"]) < 10
):
raise ValueError("env variable `GRADIENT_ACCESS_TOKEN` must be set")
if (
values["gradient_workspace_id"] is None
or len(values["gradient_access_token"]) < 3
):
raise ValueError("env variable `GRADIENT_WORKSPACE_ID` must be set")
if values["model_kwargs"]:
kw = values["model_kwargs"]
if not 0 <= kw.get("temperature", 0.5) <= 1:
raise ValueError("`temperature` must be in the range [0.0, 1.0]")
if not 0 <= kw.get("top_p", 0.5) <= 1:
raise ValueError("`top_p` must be in the range [0.0, 1.0]")
if 0 >= kw.get("top_k", 0.5):
raise ValueError("`top_k` must be positive")
if 0 >= kw.get("max_generated_token_count", 1):
raise ValueError("`max_generated_token_count` must be positive")
values["gradient_api_url"] = get_from_dict_or_env(
values, "gradient_api_url", "GRADIENT_API_URL"
)
try:
import gradientai # noqa
except ImportError:
logging.warning(
"DeprecationWarning: `GradientLLM` will use "
"`pip install gradientai` in future releases of langchain."
)
except Exception:
pass
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return { | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
4d2648316a32-3 | _model_kwargs = self.model_kwargs or {}
return {
**{"gradient_api_url": self.gradient_api_url},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "gradient"
def _kwargs_post_fine_tune_request(
self, inputs: Sequence[str], kwargs: Mapping[str, Any]
) -> Mapping[str, Any]:
"""Build the kwargs for the Post request, used by sync
Args:
prompt (str): prompt used in query
kwargs (dict): model kwargs in payload
Returns:
Dict[str, Union[str,dict]]: _description_
"""
_model_kwargs = self.model_kwargs or {}
_params = {**_model_kwargs, **kwargs}
multipliers = _params.get("multipliers", None)
return dict(
url=f"{self.gradient_api_url}/models/{self.model_id}/fine-tune",
headers={
"authorization": f"Bearer {self.gradient_access_token}",
"x-gradient-workspace-id": f"{self.gradient_workspace_id}",
"accept": "application/json",
"content-type": "application/json",
},
json=dict(
samples=tuple(
{
"inputs": input,
}
for input in inputs
)
if multipliers is None
else tuple(
{
"inputs": input,
"fineTuningParameters": {
"multiplier": multiplier,
},
}
for input, multiplier in zip(inputs, multipliers)
),
),
)
def _kwargs_post_request( | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
4d2648316a32-4 | ),
),
)
def _kwargs_post_request(
self, prompt: str, kwargs: Mapping[str, Any]
) -> Mapping[str, Any]:
"""Build the kwargs for the Post request, used by sync
Args:
prompt (str): prompt used in query
kwargs (dict): model kwargs in payload
Returns:
Dict[str, Union[str,dict]]: _description_
"""
_model_kwargs = self.model_kwargs or {}
_params = {**_model_kwargs, **kwargs}
return dict(
url=f"{self.gradient_api_url}/models/{self.model_id}/complete",
headers={
"authorization": f"Bearer {self.gradient_access_token}",
"x-gradient-workspace-id": f"{self.gradient_workspace_id}",
"accept": "application/json",
"content-type": "application/json",
},
json=dict(
query=prompt,
maxGeneratedTokenCount=_params.get("max_generated_token_count", None),
temperature=_params.get("temperature", None),
topK=_params.get("top_k", None),
topP=_params.get("top_p", None),
),
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call to Gradients API `model/{id}/complete`.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
"""
try: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
4d2648316a32-5 | Returns:
The string generated by the model.
"""
try:
response = requests.post(**self._kwargs_post_request(prompt, kwargs))
if response.status_code != 200:
raise Exception(
f"Gradient returned an unexpected response with status "
f"{response.status_code}: {response.text}"
)
except requests.exceptions.RequestException as e:
raise Exception(f"RequestException while calling Gradient Endpoint: {e}")
text = response.json()["generatedOutput"]
if stop is not None:
# Apply stop tokens when making calls to Gradient
text = enforce_stop_tokens(text, stop)
return text
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Async Call to Gradients API `model/{id}/complete`.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
"""
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.post(
**self._kwargs_post_request(prompt=prompt, kwargs=kwargs)
) as response:
if response.status != 200:
raise Exception(
f"Gradient returned an unexpected response with status "
f"{response.status}: {response.text}"
)
text = (await response.json())["generatedOutput"]
else:
async with self.aiosession.post( | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
4d2648316a32-6 | else:
async with self.aiosession.post(
**self._kwargs_post_request(prompt=prompt, kwargs=kwargs)
) as response:
if response.status != 200:
raise Exception(
f"Gradient returned an unexpected response with status "
f"{response.status}: {response.text}"
)
text = (await response.json())["generatedOutput"]
if stop is not None:
# Apply stop tokens when making calls to Gradient
text = enforce_stop_tokens(text, stop)
return text
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
# same thing with threading
def _inner_generate(prompt: str) -> List[Generation]:
return [
Generation(
text=self._call(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
)
)
]
if len(prompts) <= 1:
generations = list(map(_inner_generate, prompts))
else:
with ThreadPoolExecutor(min(8, len(prompts))) as p:
generations = list(p.map(_inner_generate, prompts))
return LLMResult(generations=generations)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult: | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
4d2648316a32-7 | **kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
generations = []
for generation in asyncio.gather(
[self._acall(prompt, stop=stop, run_manager=run_manager, **kwargs)]
for prompt in prompts
):
generations.append([Generation(text=generation)])
return LLMResult(generations=generations)
[docs] def train_unsupervised(
self,
inputs: Sequence[str],
**kwargs: Any,
) -> TrainResult:
try:
response = requests.post(
**self._kwargs_post_fine_tune_request(inputs, kwargs)
)
if response.status_code != 200:
raise Exception(
f"Gradient returned an unexpected response with status "
f"{response.status_code}: {response.text}"
)
except requests.exceptions.RequestException as e:
raise Exception(f"RequestException while calling Gradient Endpoint: {e}")
response_json = response.json()
loss = response_json["sumLoss"] / response_json["numberOfTrainableTokens"]
return TrainResult(loss=loss)
[docs] async def atrain_unsupervised(
self,
inputs: Sequence[str],
**kwargs: Any,
) -> TrainResult:
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.post(
**self._kwargs_post_fine_tune_request(inputs, kwargs)
) as response:
if response.status != 200:
raise Exception(
f"Gradient returned an unexpected response with status "
f"{response.status}: {response.text}"
) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
4d2648316a32-8 | f"{response.status}: {response.text}"
)
response_json = await response.json()
loss = (
response_json["sumLoss"]
/ response_json["numberOfTrainableTokens"]
)
else:
async with self.aiosession.post(
**self._kwargs_post_fine_tune_request(inputs, kwargs)
) as response:
if response.status != 200:
raise Exception(
f"Gradient returned an unexpected response with status "
f"{response.status}: {response.text}"
)
response_json = await response.json()
loss = (
response_json["sumLoss"] / response_json["numberOfTrainableTokens"]
)
return TrainResult(loss=loss) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gradient_ai.html |
bb51a9ee8dd6-0 | Source code for langchain.llms.bedrock
import json
import warnings
from abc import ABC
from typing import Any, Dict, Iterator, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.pydantic_v1 import BaseModel, Extra, root_validator
from langchain.schema.output import GenerationChunk
from langchain.utilities.anthropic import (
get_num_tokens_anthropic,
get_token_ids_anthropic,
)
from langchain.utils import get_from_dict_or_env
HUMAN_PROMPT = "\n\nHuman:"
ASSISTANT_PROMPT = "\n\nAssistant:"
ALTERNATION_ERROR = (
"Error: Prompt must alternate between '\n\nHuman:' and '\n\nAssistant:'."
)
def _add_newlines_before_ha(input_text: str) -> str:
new_text = input_text
for word in ["Human:", "Assistant:"]:
new_text = new_text.replace(word, "\n\n" + word)
for i in range(2):
new_text = new_text.replace("\n\n\n" + word, "\n\n" + word)
return new_text
def _human_assistant_format(input_text: str) -> str:
if input_text.count("Human:") == 0 or (
input_text.find("Human:") > input_text.find("Assistant:")
and "Assistant:" in input_text
):
input_text = HUMAN_PROMPT + " " + input_text # SILENT CORRECTION
if input_text.count("Assistant:") == 0:
input_text = input_text + ASSISTANT_PROMPT # SILENT CORRECTION | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html |
bb51a9ee8dd6-1 | if input_text[: len("Human:")] == "Human:":
input_text = "\n\n" + input_text
input_text = _add_newlines_before_ha(input_text)
count = 0
# track alternation
for i in range(len(input_text)):
if input_text[i : i + len(HUMAN_PROMPT)] == HUMAN_PROMPT:
if count % 2 == 0:
count += 1
else:
warnings.warn(ALTERNATION_ERROR + f" Received {input_text}")
if input_text[i : i + len(ASSISTANT_PROMPT)] == ASSISTANT_PROMPT:
if count % 2 == 1:
count += 1
else:
warnings.warn(ALTERNATION_ERROR + f" Received {input_text}")
if count % 2 == 1: # Only saw Human, no Assistant
input_text = input_text + ASSISTANT_PROMPT # SILENT CORRECTION
return input_text
[docs]class LLMInputOutputAdapter:
"""Adapter class to prepare the inputs from Langchain to a format
that LLM model expects.
It also provides helper function to extract
the generated text from the model response."""
provider_to_output_key_map = {
"anthropic": "completion",
"amazon": "outputText",
"cohere": "text",
}
[docs] @classmethod
def prepare_input(
cls, provider: str, prompt: str, model_kwargs: Dict[str, Any]
) -> Dict[str, Any]:
input_body = {**model_kwargs}
if provider == "anthropic":
input_body["prompt"] = _human_assistant_format(prompt) | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html |
bb51a9ee8dd6-2 | input_body["prompt"] = _human_assistant_format(prompt)
elif provider == "ai21" or provider == "cohere":
input_body["prompt"] = prompt
elif provider == "amazon":
input_body = dict()
input_body["inputText"] = prompt
input_body["textGenerationConfig"] = {**model_kwargs}
else:
input_body["inputText"] = prompt
if provider == "anthropic" and "max_tokens_to_sample" not in input_body:
input_body["max_tokens_to_sample"] = 256
return input_body
[docs] @classmethod
def prepare_output(cls, provider: str, response: Any) -> str:
if provider == "anthropic":
response_body = json.loads(response.get("body").read().decode())
return response_body.get("completion")
else:
response_body = json.loads(response.get("body").read())
if provider == "ai21":
return response_body.get("completions")[0].get("data").get("text")
elif provider == "cohere":
return response_body.get("generations")[0].get("text")
else:
return response_body.get("results")[0].get("outputText")
[docs] @classmethod
def prepare_output_stream(
cls, provider: str, response: Any, stop: Optional[List[str]] = None
) -> Iterator[GenerationChunk]:
stream = response.get("body")
if not stream:
return
if provider not in cls.provider_to_output_key_map:
raise ValueError(
f"Unknown streaming response output key for provider: {provider}"
)
for event in stream:
chunk = event.get("chunk") | lang/api.python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.