id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
0d6e7b01bb24-1
load_schema() Load the graph schema information. query(query) Query the graph. update(query) Update the graph. __init__(source_file: Optional[str] = None, serialization: Optional[str] = 'ttl', query_endpoint: Optional[str] = None, update_endpoint: Optional[str] = None, standard: Optional[str] = 'rdf', local_copy: Optional[str] = None) → None[source]¶ Set up the RDFlib graph Parameters source_file – either a path for a local file or a URL serialization – serialization of the input query_endpoint – SPARQL endpoint for queries, read access update_endpoint – SPARQL endpoint for UPDATE queries, write access standard – RDF, RDFS, or OWL local_copy – new local copy for storing changes load_schema() → None[source]¶ Load the graph schema information. query(query: str) → List[rdflib.query.ResultRow][source]¶ Query the graph. update(query: str) → None[source]¶ Update the graph. Examples using RdfGraph¶ GraphSparqlQAChain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.rdf_graph.RdfGraph.html
6eef03a5a44e-0
langchain.graphs.graph_document.GraphDocument¶ class langchain.graphs.graph_document.GraphDocument[source]¶ Bases: Serializable Represents a graph document consisting of nodes and relationships. nodes¶ A list of nodes in the graph. Type List[Node] relationships¶ A list of relationships in the graph. Type List[Relationship] source¶ The document from which the graph information is derived. Type Document Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param nodes: List[langchain.graphs.graph_document.Node] [Required]¶ param relationships: List[langchain.graphs.graph_document.Relationship] [Required]¶ param source: langchain.schema.document.Document [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.GraphDocument.html
6eef03a5a44e-1
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.GraphDocument.html
6eef03a5a44e-2
A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.GraphDocument.html
8513d83af50e-0
langchain.graphs.falkordb_graph.FalkorDBGraph¶ class langchain.graphs.falkordb_graph.FalkorDBGraph(database: str, host: str = 'localhost', port: int = 6379, username: Optional[str] = None, password: Optional[str] = None, ssl: bool = False)[source]¶ FalkorDB wrapper for graph operations. Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Create a new FalkorDB graph wrapper instance. Attributes get_schema Returns the schema of the FalkorDB database get_structured_schema Returns the structured schema of the Graph Methods __init__(database[, host, port, username, ...]) Create a new FalkorDB graph wrapper instance. add_graph_documents(graph_documents[, ...]) Take GraphDocument as input as uses it to construct a graph. query(query[, params]) Query FalkorDB database. refresh_schema() Refreshes the schema of the FalkorDB database __init__(database: str, host: str = 'localhost', port: int = 6379, username: Optional[str] = None, password: Optional[str] = None, ssl: bool = False) → None[source]¶ Create a new FalkorDB graph wrapper instance.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.falkordb_graph.FalkorDBGraph.html
8513d83af50e-1
Create a new FalkorDB graph wrapper instance. add_graph_documents(graph_documents: List[GraphDocument], include_source: bool = False) → None[source]¶ Take GraphDocument as input as uses it to construct a graph. query(query: str, params: dict = {}) → List[Dict[str, Any]][source]¶ Query FalkorDB database. refresh_schema() → None[source]¶ Refreshes the schema of the FalkorDB database Examples using FalkorDBGraph¶ FalkorDBQAChain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.falkordb_graph.FalkorDBGraph.html
f1caadfcdd6b-0
langchain.graphs.neo4j_graph.Neo4jGraph¶ class langchain.graphs.neo4j_graph.Neo4jGraph(url: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, database: str = 'neo4j')[source]¶ Neo4j wrapper for graph operations. Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Create a new Neo4j graph wrapper instance. Attributes get_schema Returns the schema of the Graph get_structured_schema Returns the structured schema of the Graph Methods __init__([url, username, password, database]) Create a new Neo4j graph wrapper instance. add_graph_documents(graph_documents[, ...]) Take GraphDocument as input as uses it to construct a graph. query(query[, params]) Query Neo4j database. refresh_schema() Refreshes the Neo4j graph schema information. __init__(url: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, database: str = 'neo4j') → None[source]¶ Create a new Neo4j graph wrapper instance. add_graph_documents(graph_documents: List[GraphDocument], include_source: bool = False) → None[source]¶ Take GraphDocument as input as uses it to construct a graph.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.neo4j_graph.Neo4jGraph.html
f1caadfcdd6b-1
Take GraphDocument as input as uses it to construct a graph. query(query: str, params: dict = {}) → List[Dict[str, Any]][source]¶ Query Neo4j database. refresh_schema() → None[source]¶ Refreshes the Neo4j graph schema information. Examples using Neo4jGraph¶ Neo4j Diffbot Graph Transformer Neo4j DB QA chain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.neo4j_graph.Neo4jGraph.html
cc77fedc2afc-0
langchain.graphs.networkx_graph.NetworkxEntityGraph¶ class langchain.graphs.networkx_graph.NetworkxEntityGraph(graph: Optional[Any] = None)[source]¶ Networkx wrapper for entity graph operations. Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Create a new graph. Methods __init__([graph]) Create a new graph. add_triple(knowledge_triple) Add a triple to the graph. clear() Clear the graph. delete_triple(knowledge_triple) Delete a triple from the graph. draw_graphviz(**kwargs) Provides better drawing from_gml(gml_path) get_entity_knowledge(entity[, depth]) Get information about an entity. get_topological_sort() Get a list of entity names in the graph sorted by causal dependence. get_triples() Get all triples in the graph. write_to_gml(path) __init__(graph: Optional[Any] = None) → None[source]¶ Create a new graph. add_triple(knowledge_triple: KnowledgeTriple) → None[source]¶ Add a triple to the graph. clear() → None[source]¶ Clear the graph. delete_triple(knowledge_triple: KnowledgeTriple) → None[source]¶ Delete a triple from the graph. draw_graphviz(**kwargs: Any) → None[source]¶
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.networkx_graph.NetworkxEntityGraph.html
cc77fedc2afc-1
draw_graphviz(**kwargs: Any) → None[source]¶ Provides better drawing Usage in a jupyter notebook: >>> from IPython.display import SVG >>> self.draw_graphviz_svg(layout="dot", filename="web.svg") >>> SVG('web.svg') classmethod from_gml(gml_path: str) → NetworkxEntityGraph[source]¶ get_entity_knowledge(entity: str, depth: int = 1) → List[str][source]¶ Get information about an entity. get_topological_sort() → List[str][source]¶ Get a list of entity names in the graph sorted by causal dependence. get_triples() → List[Tuple[str, str, str]][source]¶ Get all triples in the graph. write_to_gml(path: str) → None[source]¶ Examples using NetworkxEntityGraph¶ Graph QA
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.networkx_graph.NetworkxEntityGraph.html
77fe050102bc-0
langchain.graphs.memgraph_graph.MemgraphGraph¶ class langchain.graphs.memgraph_graph.MemgraphGraph(url: str, username: str, password: str, *, database: str = 'memgraph')[source]¶ Memgraph wrapper for graph operations. Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Create a new Memgraph graph wrapper instance. Attributes get_schema Returns the schema of the Graph get_structured_schema Returns the structured schema of the Graph Methods __init__(url, username, password, *[, database]) Create a new Memgraph graph wrapper instance. add_graph_documents(graph_documents[, ...]) Take GraphDocument as input as uses it to construct a graph. query(query[, params]) Query Neo4j database. refresh_schema() Refreshes the Memgraph graph schema information. __init__(url: str, username: str, password: str, *, database: str = 'memgraph') → None[source]¶ Create a new Memgraph graph wrapper instance. add_graph_documents(graph_documents: List[GraphDocument], include_source: bool = False) → None¶ Take GraphDocument as input as uses it to construct a graph. query(query: str, params: dict = {}) → List[Dict[str, Any]]¶ Query Neo4j database.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.memgraph_graph.MemgraphGraph.html
77fe050102bc-1
Query Neo4j database. refresh_schema() → None[source]¶ Refreshes the Memgraph graph schema information. Examples using MemgraphGraph¶ Memgraph QA chain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.memgraph_graph.MemgraphGraph.html
6767b6c855b8-0
langchain.graphs.graph_document.Relationship¶ class langchain.graphs.graph_document.Relationship[source]¶ Bases: Serializable Represents a directed relationship between two nodes in a graph. source¶ The source node of the relationship. Type Node target¶ The target node of the relationship. Type Node type¶ The type of the relationship. Type str properties¶ Additional properties associated with the relationship. Type dict Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param properties: dict [Optional]¶ param source: langchain.graphs.graph_document.Node [Required]¶ param target: langchain.graphs.graph_document.Node [Required]¶ param type: str [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.Relationship.html
6767b6c855b8-1
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.Relationship.html
6767b6c855b8-2
A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.Relationship.html
4db7acbbd147-0
langchain.graphs.neptune_graph.NeptuneQueryException¶ class langchain.graphs.neptune_graph.NeptuneQueryException(exception: Union[str, Dict])[source]¶ A class to handle queries that fail to execute
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.neptune_graph.NeptuneQueryException.html
25ef9fd27952-0
langchain.graphs.graph_store.GraphStore¶ class langchain.graphs.graph_store.GraphStore[source]¶ An abstract class wrapper for graph operations. Attributes get_schema Returns the schema of the Graph database get_structured_schema Returns the schema of the Graph database Methods __init__() add_graph_documents(graph_documents[, ...]) Take GraphDocument as input as uses it to construct a graph. query(query[, params]) Query the graph. refresh_schema() Refreshes the graph schema information. __init__()¶ abstract add_graph_documents(graph_documents: List[GraphDocument], include_source: bool = False) → None[source]¶ Take GraphDocument as input as uses it to construct a graph. abstract query(query: str, params: dict = {}) → List[Dict[str, Any]][source]¶ Query the graph. abstract refresh_schema() → None[source]¶ Refreshes the graph schema information.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_store.GraphStore.html
2220aa1b9347-0
langchain.graphs.graph_document.Node¶ class langchain.graphs.graph_document.Node[source]¶ Bases: Serializable Represents a node in a graph with associated properties. id¶ A unique identifier for the node. Type Union[str, int] type¶ The type or label of the node, default is “Node”. Type str properties¶ Additional properties and metadata associated with the node. Type dict Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param id: Union[str, int] [Required]¶ param properties: dict [Optional]¶ param type: str = 'Node'¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.Node.html
2220aa1b9347-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.Node.html
2220aa1b9347-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.graph_document.Node.html
964dfea21381-0
langchain.graphs.networkx_graph.get_entities¶ langchain.graphs.networkx_graph.get_entities(entity_str: str) → List[str][source]¶ Extract entities from entity string.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.networkx_graph.get_entities.html
be0ddd3d8afd-0
langchain.graphs.networkx_graph.parse_triples¶ langchain.graphs.networkx_graph.parse_triples(knowledge_str: str) → List[KnowledgeTriple][source]¶ Parse knowledge triples from the knowledge string.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.networkx_graph.parse_triples.html
0fa31c184a0f-0
langchain.graphs.arangodb_graph.get_arangodb_client¶ langchain.graphs.arangodb_graph.get_arangodb_client(url: Optional[str] = None, dbname: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None) → Any[source]¶ Get the Arango DB client from credentials. Parameters url – Arango DB url. Can be passed in as named arg or set as environment var ARANGODB_URL. Defaults to “http://localhost:8529”. dbname – Arango DB name. Can be passed in as named arg or set as environment var ARANGODB_DBNAME. Defaults to “_system”. username – Can be passed in as named arg or set as environment var ARANGODB_USERNAME. Defaults to “root”. password – Can be passed ni as named arg or set as environment var ARANGODB_PASSWORD. Defaults to “”. Returns An arango.database.StandardDatabase.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.arangodb_graph.get_arangodb_client.html
b7684ba0a1a4-0
langchain.graphs.nebula_graph.NebulaGraph¶ class langchain.graphs.nebula_graph.NebulaGraph(space: str, username: str = 'root', password: str = 'nebula', address: str = '127.0.0.1', port: int = 9669, session_pool_size: int = 30)[source]¶ NebulaGraph wrapper for graph operations. NebulaGraph inherits methods from Neo4jGraph to bring ease to the user space. Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Create a new NebulaGraph wrapper instance. Attributes get_schema Returns the schema of the NebulaGraph database Methods __init__(space[, username, password, ...]) Create a new NebulaGraph wrapper instance. execute(query[, params, retry]) Query NebulaGraph database. query(query[, retry]) refresh_schema() Refreshes the NebulaGraph schema information. __init__(space: str, username: str = 'root', password: str = 'nebula', address: str = '127.0.0.1', port: int = 9669, session_pool_size: int = 30) → None[source]¶ Create a new NebulaGraph wrapper instance.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.nebula_graph.NebulaGraph.html
b7684ba0a1a4-1
Create a new NebulaGraph wrapper instance. execute(query: str, params: Optional[dict] = None, retry: int = 0) → Any[source]¶ Query NebulaGraph database. query(query: str, retry: int = 0) → Dict[str, Any][source]¶ refresh_schema() → None[source]¶ Refreshes the NebulaGraph schema information. Examples using NebulaGraph¶ NebulaGraphQAChain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.nebula_graph.NebulaGraph.html
42a6bca9ef73-0
langchain.graphs.kuzu_graph.KuzuGraph¶ class langchain.graphs.kuzu_graph.KuzuGraph(db: Any, database: str = 'kuzu')[source]¶ Kùzu wrapper for graph operations. Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Attributes get_schema Returns the schema of the Kùzu database Methods __init__(db[, database]) query(query[, params]) Query Kùzu database refresh_schema() Refreshes the Kùzu graph schema information __init__(db: Any, database: str = 'kuzu') → None[source]¶ query(query: str, params: dict = {}) → List[Dict[str, Any]][source]¶ Query Kùzu database refresh_schema() → None[source]¶ Refreshes the Kùzu graph schema information Examples using KuzuGraph¶ KuzuQAChain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.kuzu_graph.KuzuGraph.html
ff765c3a274d-0
langchain.graphs.hugegraph.HugeGraph¶ class langchain.graphs.hugegraph.HugeGraph(username: str = 'default', password: str = 'default', address: str = '127.0.0.1', port: int = 8081, graph: str = 'hugegraph')[source]¶ HugeGraph wrapper for graph operations. Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Create a new HugeGraph wrapper instance. Attributes get_schema Returns the schema of the HugeGraph database Methods __init__([username, password, address, ...]) Create a new HugeGraph wrapper instance. query(query) refresh_schema() Refreshes the HugeGraph schema information. __init__(username: str = 'default', password: str = 'default', address: str = '127.0.0.1', port: int = 8081, graph: str = 'hugegraph') → None[source]¶ Create a new HugeGraph wrapper instance. query(query: str) → List[Dict[str, Any]][source]¶ refresh_schema() → None[source]¶ Refreshes the HugeGraph schema information. Examples using HugeGraph¶ HugeGraph QA Chain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.hugegraph.HugeGraph.html
60d9c90a9acb-0
langchain.graphs.arangodb_graph.ArangoGraph¶ class langchain.graphs.arangodb_graph.ArangoGraph(db: Any)[source]¶ ArangoDB wrapper for graph operations. Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Create a new ArangoDB graph wrapper instance. Attributes db schema Methods __init__(db) Create a new ArangoDB graph wrapper instance. from_db_credentials([url, dbname, username, ...]) Convenience constructor that builds Arango DB from credentials. generate_schema([sample_ratio]) Generates the schema of the ArangoDB Database and returns it User can specify a sample_ratio (0 to 1) to determine the ratio of documents/edges used (in relation to the Collection size) to render each Collection Schema. query(query[, top_k]) Query the ArangoDB database. set_db(db) set_schema([schema]) Set the schema of the ArangoDB Database. __init__(db: Any) → None[source]¶ Create a new ArangoDB graph wrapper instance. classmethod from_db_credentials(url: Optional[str] = None, dbname: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None) → Any[source]¶ Convenience constructor that builds Arango DB from credentials. Parameters
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.arangodb_graph.ArangoGraph.html
60d9c90a9acb-1
Convenience constructor that builds Arango DB from credentials. Parameters url – Arango DB url. Can be passed in as named arg or set as environment var ARANGODB_URL. Defaults to “http://localhost:8529”. dbname – Arango DB name. Can be passed in as named arg or set as environment var ARANGODB_DBNAME. Defaults to “_system”. username – Can be passed in as named arg or set as environment var ARANGODB_USERNAME. Defaults to “root”. password – Can be passed ni as named arg or set as environment var ARANGODB_PASSWORD. Defaults to “”. Returns An arango.database.StandardDatabase. generate_schema(sample_ratio: float = 0) → Dict[str, List[Dict[str, Any]]][source]¶ Generates the schema of the ArangoDB Database and returns it User can specify a sample_ratio (0 to 1) to determine the ratio of documents/edges used (in relation to the Collection size) to render each Collection Schema. query(query: str, top_k: Optional[int] = None, **kwargs: Any) → List[Dict[str, Any]][source]¶ Query the ArangoDB database. set_db(db: Any) → None[source]¶ set_schema(schema: Optional[Dict[str, Any]] = None) → None[source]¶ Set the schema of the ArangoDB Database. Auto-generates Schema if schema is None. Examples using ArangoGraph¶ ArangoDB QA chain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.arangodb_graph.ArangoGraph.html
1a9522a35e73-0
langchain.graphs.neptune_graph.NeptuneGraph¶ class langchain.graphs.neptune_graph.NeptuneGraph(host: str, port: int = 8182, use_https: bool = True, client: Any = None, credentials_profile_name: Optional[str] = None, region_name: Optional[str] = None, service: str = 'neptunedata', sign: bool = True)[source]¶ Neptune wrapper for graph operations. Parameters host – endpoint for the database instance port – port number for the database instance, default is 8182 use_https – whether to use secure connection, default is True client – optional boto3 Neptune client credentials_profile_name – optional AWS profile name region_name – optional AWS region, e.g., us-west-2 service – optional service name, default is neptunedata sign – optional, whether to sign the request payload, default is True Example graph = NeptuneGraph(host=’<my-cluster>’, port=8182 ) Security note: Make sure that the database connection uses credentialsthat are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Create a new Neptune graph wrapper instance. Attributes get_schema Returns the schema of the Neptune database Methods __init__(host[, port, use_https, client, ...]) Create a new Neptune graph wrapper instance. query(query[, params]) Query Neptune database.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.neptune_graph.NeptuneGraph.html
1a9522a35e73-1
query(query[, params]) Query Neptune database. __init__(host: str, port: int = 8182, use_https: bool = True, client: Any = None, credentials_profile_name: Optional[str] = None, region_name: Optional[str] = None, service: str = 'neptunedata', sign: bool = True) → None[source]¶ Create a new Neptune graph wrapper instance. query(query: str, params: dict = {}) → Dict[str, Any][source]¶ Query Neptune database. Examples using NeptuneGraph¶ Neptune Open Cypher QA Chain
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.neptune_graph.NeptuneGraph.html
84654b042bf6-0
langchain.graphs.networkx_graph.KnowledgeTriple¶ class langchain.graphs.networkx_graph.KnowledgeTriple(subject: str, predicate: str, object_: str)[source]¶ A triple in the graph. Create new instance of KnowledgeTriple(subject, predicate, object_) Attributes object_ Alias for field number 2 predicate Alias for field number 1 subject Alias for field number 0 Methods __init__() count(value, /) Return number of occurrences of value. from_string(triple_string) Create a KnowledgeTriple from a string. index(value[, start, stop]) Return first index of value. __init__()¶ count(value, /)¶ Return number of occurrences of value. classmethod from_string(triple_string: str) → KnowledgeTriple[source]¶ Create a KnowledgeTriple from a string. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
lang/api.python.langchain.com/en/latest/graphs/langchain.graphs.networkx_graph.KnowledgeTriple.html
c70b98bdb4cd-0
langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain¶ class langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain[source]¶ Bases: Chain Chain that interprets a prompt and executes python code to do symbolic math. Example from langchain.chains import LLMSymbolicMathChain from langchain.llms import OpenAI llm_symbolic_math = LLMSymbolicMathChain.from_llm(OpenAI()) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated, use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. param llm_chain: LLMChain [Required]¶ param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the chain. Defaults to None. This metadata will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks.
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-1
and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None. These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to the global verbose value, accessible via langchain.globals.get_verbose(). __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ Execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-2
tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ Asynchronously execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False.
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-3
chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Call the chain on all inputs in the list. async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-4
with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..." async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-5
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-6
e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-7
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Dictionary representation of chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters **kwargs – Keyword arguments passed to default pydantic.BaseModel.dict method. Returns A dictionary representation of the chain. Example chain.dict(exclude_unset=True) # -> {"_type": "foo", "verbose": False, ...}
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-8
# -> {"_type": "foo", "verbose": False, ...} classmethod from_llm(llm: BaseLanguageModel, prompt: BasePromptTemplate = PromptTemplate(input_variables=['question'], template='Translate a math problem into a expression that can be executed using Python\'s SymPy library. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```text\n${{single line sympy expression that solves the problem}}\n```\n...sympy.sympify(text, evaluate=True)...\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is the limit of sin(x) / x as x goes to 0\n```text\nlimit(sin(x)/x, x, 0)\n```\n...sympy.sympify("limit(sin(x)/x, x, 0)")...\n```output\n1\n```\nAnswer: 1\n\nQuestion: What is the integral of e^-x from 0 to infinity\n```text\nintegrate(exp(-x), (x, 0, oo))\n```\n...sympy.sympify("integrate(exp(-x), (x, 0, oo))")...\n```output\n1\n```\n\nQuestion: What are the solutions to this equation x**2 - x?\n```text\nsolveset(x**2 - x, x)\n```\n...sympy.sympify("solveset(x**2 - x, x)")...\n```output\n[0, 1]\n```\nQuestion: {question}\n'), **kwargs: Any) → LLMSymbolicMathChain[source]¶ classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-9
classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-10
purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-11
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Validate and prepare chain inputs, including adding inputs from memory. Parameters inputs – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs – Dictionary of chain inputs, including any inputs added by chain memory. outputs – Dictionary of initial chain outputs. return_only_outputs – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects.
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-12
these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..." save(file_path: Union[Path, str]) → None¶ Save the chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters file_path – Path to file to save the chain to. Example chain.save(file_path="path/chain.yaml") classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-13
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object.
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-14
on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor.
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
c70b98bdb4cd-15
These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using LLMSymbolicMathChain¶ LLM Symbolic Math
lang/api.python.langchain.com/en/latest/llm_symbolic_math/langchain_experimental.llm_symbolic_math.base.LLMSymbolicMathChain.html
ddd8366112fb-0
langchain.cache.FullLLMCache¶ class langchain.cache.FullLLMCache(**kwargs)[source]¶ SQLite table for full LLM Cache (all generations). A simple constructor that allows initialization from kwargs. Sets attributes on the constructed instance using the names and values in kwargs. Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships. Attributes idx llm metadata prompt registry response Methods __init__(**kwargs) A simple constructor that allows initialization from kwargs. __init__(**kwargs)¶ A simple constructor that allows initialization from kwargs. Sets attributes on the constructed instance using the names and values in kwargs. Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.FullLLMCache.html
41363e5a12be-0
langchain.cache.FullMd5LLMCache¶ class langchain.cache.FullMd5LLMCache(**kwargs)[source]¶ SQLite table for full LLM Cache (all generations). A simple constructor that allows initialization from kwargs. Sets attributes on the constructed instance using the names and values in kwargs. Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships. Attributes id idx llm metadata prompt prompt_md5 registry response Methods __init__(**kwargs) A simple constructor that allows initialization from kwargs. __init__(**kwargs)¶ A simple constructor that allows initialization from kwargs. Sets attributes on the constructed instance using the names and values in kwargs. Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.FullMd5LLMCache.html
454bc31da1b8-0
langchain.cache.RedisSemanticCache¶ class langchain.cache.RedisSemanticCache(redis_url: str, embedding: Embeddings, score_threshold: float = 0.2)[source]¶ Cache that uses Redis as a vector-store backend. Initialize by passing in the init GPTCache func Parameters redis_url (str) – URL to connect to Redis. embedding (Embedding) – Embedding provider for semantic encoding and search. score_threshold (float, 0.2) – Example: from langchain.globals import set_llm_cache from langchain.cache import RedisSemanticCache from langchain.embeddings import OpenAIEmbeddings set_llm_cache(RedisSemanticCache( redis_url="redis://localhost:6379", embedding=OpenAIEmbeddings() )) Attributes DEFAULT_SCHEMA Methods __init__(redis_url, embedding[, score_threshold]) Initialize by passing in the init GPTCache func clear(**kwargs) Clear semantic cache for a given llm_string. lookup(prompt, llm_string) Look up based on prompt and llm_string. update(prompt, llm_string, return_val) Update cache based on prompt and llm_string. __init__(redis_url: str, embedding: Embeddings, score_threshold: float = 0.2)[source]¶ Initialize by passing in the init GPTCache func Parameters redis_url (str) – URL to connect to Redis. embedding (Embedding) – Embedding provider for semantic encoding and search. score_threshold (float, 0.2) – Example: from langchain.globals import set_llm_cache from langchain.cache import RedisSemanticCache from langchain.embeddings import OpenAIEmbeddings set_llm_cache(RedisSemanticCache(
lang/api.python.langchain.com/en/latest/cache/langchain.cache.RedisSemanticCache.html
454bc31da1b8-1
set_llm_cache(RedisSemanticCache( redis_url="redis://localhost:6379", embedding=OpenAIEmbeddings() )) clear(**kwargs: Any) → None[source]¶ Clear semantic cache for a given llm_string. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up based on prompt and llm_string. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Update cache based on prompt and llm_string. Examples using RedisSemanticCache¶ Redis LLM Caching integrations
lang/api.python.langchain.com/en/latest/cache/langchain.cache.RedisSemanticCache.html
6b64fd0beea2-0
langchain.cache.CassandraCache¶ class langchain.cache.CassandraCache(session: Optional[CassandraSession] = None, keyspace: Optional[str] = None, table_name: str = 'langchain_llm_cache', ttl_seconds: Optional[int] = None, skip_provisioning: bool = False)[source]¶ Cache that uses Cassandra / Astra DB as a backend. It uses a single Cassandra table. The lookup keys (which get to form the primary key) are: prompt, a string llm_string, a deterministic str representation of the model parameters. (needed to prevent collisions same-prompt-different-model collisions) Initialize with a ready session and a keyspace name. :param session: an open Cassandra session :type session: cassandra.cluster.Session :param keyspace: the keyspace to use for storing the cache :type keyspace: str :param table_name: name of the Cassandra table to use as cache :type table_name: str :param ttl_seconds: time-to-live for cache entries (default: None, i.e. forever) Methods __init__([session, keyspace, table_name, ...]) Initialize with a ready session and a keyspace name. :param session: an open Cassandra session :type session: cassandra.cluster.Session :param keyspace: the keyspace to use for storing the cache :type keyspace: str :param table_name: name of the Cassandra table to use as cache :type table_name: str :param ttl_seconds: time-to-live for cache entries (default: None, i.e. forever) :type ttl_seconds: optional int. clear(**kwargs) Clear cache. delete(prompt, llm_string) Evict from cache if there's an entry. delete_through_llm(prompt, llm[, stop]) A wrapper around delete with the LLM being passed.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.CassandraCache.html
6b64fd0beea2-1
A wrapper around delete with the LLM being passed. lookup(prompt, llm_string) Look up based on prompt and llm_string. update(prompt, llm_string, return_val) Update cache based on prompt and llm_string. __init__(session: Optional[CassandraSession] = None, keyspace: Optional[str] = None, table_name: str = 'langchain_llm_cache', ttl_seconds: Optional[int] = None, skip_provisioning: bool = False)[source]¶ Initialize with a ready session and a keyspace name. :param session: an open Cassandra session :type session: cassandra.cluster.Session :param keyspace: the keyspace to use for storing the cache :type keyspace: str :param table_name: name of the Cassandra table to use as cache :type table_name: str :param ttl_seconds: time-to-live for cache entries (default: None, i.e. forever) clear(**kwargs: Any) → None[source]¶ Clear cache. This is for all LLMs at once. delete(prompt: str, llm_string: str) → None[source]¶ Evict from cache if there’s an entry. delete_through_llm(prompt: str, llm: LLM, stop: Optional[List[str]] = None) → None[source]¶ A wrapper around delete with the LLM being passed. In case the llm(prompt) calls have a stop param, you should pass it here lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up based on prompt and llm_string. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Update cache based on prompt and llm_string.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.CassandraCache.html
602ded01a747-0
langchain.cache.SQLAlchemyMd5Cache¶ class langchain.cache.SQLAlchemyMd5Cache(engine: ~sqlalchemy.engine.base.Engine, cache_schema: ~typing.Type[~langchain.cache.FullMd5LLMCache] = <class 'langchain.cache.FullMd5LLMCache'>)[source]¶ Cache that uses SQAlchemy as a backend. Initialize by creating all tables. Methods __init__(engine[, cache_schema]) Initialize by creating all tables. clear(**kwargs) Clear cache. get_md5(input_string) lookup(prompt, llm_string) Look up based on prompt and llm_string. update(prompt, llm_string, return_val) Update based on prompt and llm_string. __init__(engine: ~sqlalchemy.engine.base.Engine, cache_schema: ~typing.Type[~langchain.cache.FullMd5LLMCache] = <class 'langchain.cache.FullMd5LLMCache'>)[source]¶ Initialize by creating all tables. clear(**kwargs: Any) → None[source]¶ Clear cache. static get_md5(input_string: str) → str[source]¶ lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up based on prompt and llm_string. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Update based on prompt and llm_string.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.SQLAlchemyMd5Cache.html
25ae951a9068-0
langchain.cache.MomentoCache¶ class langchain.cache.MomentoCache(cache_client: momento.CacheClient, cache_name: str, *, ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True)[source]¶ Cache that uses Momento as a backend. See https://gomomento.com/ Instantiate a prompt cache using Momento as a backend. Note: to instantiate the cache client passed to MomentoCache, you must have a Momento account. See https://gomomento.com/. Parameters cache_client (CacheClient) – The Momento cache client. cache_name (str) – The name of the cache to use to store the data. ttl (Optional[timedelta], optional) – The time to live for the cache items. Defaults to None, ie use the client default TTL. ensure_cache_exists (bool, optional) – Create the cache if it doesn’t exist. Defaults to True. Raises ImportError – Momento python package is not installed. TypeError – cache_client is not of type momento.CacheClientObject ValueError – ttl is non-null and non-negative Methods __init__(cache_client, cache_name, *[, ttl, ...]) Instantiate a prompt cache using Momento as a backend. clear(**kwargs) Clear the cache. from_client_params(cache_name, ttl, *[, ...]) Construct cache from CacheClient parameters. lookup(prompt, llm_string) Lookup llm generations in cache by prompt and associated model and settings. update(prompt, llm_string, return_val) Store llm generations in cache. __init__(cache_client: momento.CacheClient, cache_name: str, *, ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True)[source]¶
lang/api.python.langchain.com/en/latest/cache/langchain.cache.MomentoCache.html
25ae951a9068-1
Instantiate a prompt cache using Momento as a backend. Note: to instantiate the cache client passed to MomentoCache, you must have a Momento account. See https://gomomento.com/. Parameters cache_client (CacheClient) – The Momento cache client. cache_name (str) – The name of the cache to use to store the data. ttl (Optional[timedelta], optional) – The time to live for the cache items. Defaults to None, ie use the client default TTL. ensure_cache_exists (bool, optional) – Create the cache if it doesn’t exist. Defaults to True. Raises ImportError – Momento python package is not installed. TypeError – cache_client is not of type momento.CacheClientObject ValueError – ttl is non-null and non-negative clear(**kwargs: Any) → None[source]¶ Clear the cache. Raises SdkException – Momento service or network error classmethod from_client_params(cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, api_key: Optional[str] = None, auth_token: Optional[str] = None, **kwargs: Any) → MomentoCache[source]¶ Construct cache from CacheClient parameters. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Lookup llm generations in cache by prompt and associated model and settings. Parameters prompt (str) – The prompt run through the language model. llm_string (str) – The language model version and settings. Raises SdkException – Momento service or network error Returns A list of language model generations. Return type Optional[RETURN_VAL_TYPE] update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Store llm generations in cache. Parameters
lang/api.python.langchain.com/en/latest/cache/langchain.cache.MomentoCache.html
25ae951a9068-2
Store llm generations in cache. Parameters prompt (str) – The prompt run through the language model. llm_string (str) – The language model string. return_val (RETURN_VAL_TYPE) – A list of language model generations. Raises SdkException – Momento service or network error Exception – Unexpected response Examples using MomentoCache¶ Momento LLM Caching integrations
lang/api.python.langchain.com/en/latest/cache/langchain.cache.MomentoCache.html
887cf4117a62-0
langchain.cache.GPTCache¶ class langchain.cache.GPTCache(init_func: Optional[Union[Callable[[Any, str], None], Callable[[Any], None]]] = None)[source]¶ Cache that uses GPTCache as a backend. Initialize by passing in init function (default: None). Parameters init_func (Optional[Callable[[Any], None]]) – init GPTCache function (default – None) Example: .. code-block:: python # Initialize GPTCache with a custom init function import gptcache from gptcache.processor.pre import get_prompt from gptcache.manager.factory import get_data_manager from langchain.globals import set_llm_cache # Avoid multiple caches using the same file, causing different llm model caches to affect each other def init_gptcache(cache_obj: gptcache.Cache, llm str): cache_obj.init(pre_embedding_func=get_prompt, data_manager=manager_factory( manager=”map”, data_dir=f”map_cache_{llm}” ), ) set_llm_cache(GPTCache(init_gptcache)) Methods __init__([init_func]) Initialize by passing in init function (default: None). clear(**kwargs) Clear cache. lookup(prompt, llm_string) Look up the cache data. update(prompt, llm_string, return_val) Update cache. __init__(init_func: Optional[Union[Callable[[Any, str], None], Callable[[Any], None]]] = None)[source]¶ Initialize by passing in init function (default: None). Parameters init_func (Optional[Callable[[Any], None]]) – init GPTCache function (default – None) Example: .. code-block:: python # Initialize GPTCache with a custom init function import gptcache
lang/api.python.langchain.com/en/latest/cache/langchain.cache.GPTCache.html
887cf4117a62-1
# Initialize GPTCache with a custom init function import gptcache from gptcache.processor.pre import get_prompt from gptcache.manager.factory import get_data_manager from langchain.globals import set_llm_cache # Avoid multiple caches using the same file, causing different llm model caches to affect each other def init_gptcache(cache_obj: gptcache.Cache, llm str): cache_obj.init(pre_embedding_func=get_prompt, data_manager=manager_factory( manager=”map”, data_dir=f”map_cache_{llm}” ), ) set_llm_cache(GPTCache(init_gptcache)) clear(**kwargs: Any) → None[source]¶ Clear cache. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up the cache data. First, retrieve the corresponding cache object using the llm_string parameter, and then retrieve the data from the cache based on the prompt. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Update cache. First, retrieve the corresponding cache object using the llm_string parameter, and then store the prompt and return_val in the cache object. Examples using GPTCache¶ LLM Caching integrations
lang/api.python.langchain.com/en/latest/cache/langchain.cache.GPTCache.html
f9be7f5666ca-0
langchain.cache.InMemoryCache¶ class langchain.cache.InMemoryCache[source]¶ Cache that stores things in memory. Initialize with empty cache. Methods __init__() Initialize with empty cache. clear(**kwargs) Clear cache. lookup(prompt, llm_string) Look up based on prompt and llm_string. update(prompt, llm_string, return_val) Update cache based on prompt and llm_string. __init__() → None[source]¶ Initialize with empty cache. clear(**kwargs: Any) → None[source]¶ Clear cache. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up based on prompt and llm_string. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Update cache based on prompt and llm_string. Examples using InMemoryCache¶ LLM Caching integrations
lang/api.python.langchain.com/en/latest/cache/langchain.cache.InMemoryCache.html
d303a8a6e5c3-0
langchain.cache.SQLiteCache¶ class langchain.cache.SQLiteCache(database_path: str = '.langchain.db')[source]¶ Cache that uses SQLite as a backend. Initialize by creating the engine and all tables. Methods __init__([database_path]) Initialize by creating the engine and all tables. clear(**kwargs) Clear cache. lookup(prompt, llm_string) Look up based on prompt and llm_string. update(prompt, llm_string, return_val) Update based on prompt and llm_string. __init__(database_path: str = '.langchain.db')[source]¶ Initialize by creating the engine and all tables. clear(**kwargs: Any) → None¶ Clear cache. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]]¶ Look up based on prompt and llm_string. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None¶ Update based on prompt and llm_string. Examples using SQLiteCache¶ LLM Caching integrations
lang/api.python.langchain.com/en/latest/cache/langchain.cache.SQLiteCache.html
0042dc44a83b-0
langchain.cache.RedisCache¶ class langchain.cache.RedisCache(redis_: Any, *, ttl: Optional[int] = None)[source]¶ Cache that uses Redis as a backend. Initialize an instance of RedisCache. This method initializes an object with Redis caching capabilities. It takes a redis_ parameter, which should be an instance of a Redis client class, allowing the object to interact with a Redis server for caching purposes. Parameters redis (Any) – An instance of a Redis client class (e.g., redis.Redis) used for caching. This allows the object to communicate with a Redis server for caching operations. ttl (int, optional) – Time-to-live (TTL) for cached items in seconds. If provided, it sets the time duration for how long cached items will remain valid. If not provided, cached items will not have an automatic expiration. Methods __init__(redis_, *[, ttl]) Initialize an instance of RedisCache. clear(**kwargs) Clear cache. lookup(prompt, llm_string) Look up based on prompt and llm_string. update(prompt, llm_string, return_val) Update cache based on prompt and llm_string. __init__(redis_: Any, *, ttl: Optional[int] = None)[source]¶ Initialize an instance of RedisCache. This method initializes an object with Redis caching capabilities. It takes a redis_ parameter, which should be an instance of a Redis client class, allowing the object to interact with a Redis server for caching purposes. Parameters redis (Any) – An instance of a Redis client class (e.g., redis.Redis) used for caching. This allows the object to communicate with a Redis server for caching operations. ttl (int, optional) – Time-to-live (TTL) for cached items in seconds.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.RedisCache.html
0042dc44a83b-1
If provided, it sets the time duration for how long cached items will remain valid. If not provided, cached items will not have an automatic expiration. clear(**kwargs: Any) → None[source]¶ Clear cache. If asynchronous is True, flush asynchronously. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up based on prompt and llm_string. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Update cache based on prompt and llm_string. Examples using RedisCache¶ Redis LLM Caching integrations
lang/api.python.langchain.com/en/latest/cache/langchain.cache.RedisCache.html
a84e5779f7af-0
langchain.cache.UpstashRedisCache¶ class langchain.cache.UpstashRedisCache(redis_: Any, *, ttl: Optional[int] = None)[source]¶ Cache that uses Upstash Redis as a backend. Initialize an instance of UpstashRedisCache. This method initializes an object with Upstash Redis caching capabilities. It takes a redis_ parameter, which should be an instance of an Upstash Redis client class, allowing the object to interact with Upstash Redis server for caching purposes. Parameters redis – An instance of Upstash Redis client class (e.g., Redis) used for caching. This allows the object to communicate with Redis server for caching operations on. ttl (int, optional) – Time-to-live (TTL) for cached items in seconds. If provided, it sets the time duration for how long cached items will remain valid. If not provided, cached items will not have an automatic expiration. Methods __init__(redis_, *[, ttl]) Initialize an instance of UpstashRedisCache. clear(**kwargs) Clear cache. lookup(prompt, llm_string) Look up based on prompt and llm_string. update(prompt, llm_string, return_val) Update cache based on prompt and llm_string. __init__(redis_: Any, *, ttl: Optional[int] = None)[source]¶ Initialize an instance of UpstashRedisCache. This method initializes an object with Upstash Redis caching capabilities. It takes a redis_ parameter, which should be an instance of an Upstash Redis client class, allowing the object to interact with Upstash Redis server for caching purposes. Parameters redis – An instance of Upstash Redis client class (e.g., Redis) used for caching. This allows the object to communicate with Redis server for caching operations on.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.UpstashRedisCache.html
a84e5779f7af-1
This allows the object to communicate with Redis server for caching operations on. ttl (int, optional) – Time-to-live (TTL) for cached items in seconds. If provided, it sets the time duration for how long cached items will remain valid. If not provided, cached items will not have an automatic expiration. clear(**kwargs: Any) → None[source]¶ Clear cache. If asynchronous is True, flush asynchronously. This flushes the whole db. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up based on prompt and llm_string. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Update cache based on prompt and llm_string.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.UpstashRedisCache.html
95b051bd9b2e-0
langchain.cache.SQLAlchemyCache¶ class langchain.cache.SQLAlchemyCache(engine: ~sqlalchemy.engine.base.Engine, cache_schema: ~typing.Type[~langchain.cache.FullLLMCache] = <class 'langchain.cache.FullLLMCache'>)[source]¶ Cache that uses SQAlchemy as a backend. Initialize by creating all tables. Methods __init__(engine[, cache_schema]) Initialize by creating all tables. clear(**kwargs) Clear cache. lookup(prompt, llm_string) Look up based on prompt and llm_string. update(prompt, llm_string, return_val) Update based on prompt and llm_string. __init__(engine: ~sqlalchemy.engine.base.Engine, cache_schema: ~typing.Type[~langchain.cache.FullLLMCache] = <class 'langchain.cache.FullLLMCache'>)[source]¶ Initialize by creating all tables. clear(**kwargs: Any) → None[source]¶ Clear cache. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up based on prompt and llm_string. update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ Update based on prompt and llm_string. Examples using SQLAlchemyCache¶ LLM Caching integrations
lang/api.python.langchain.com/en/latest/cache/langchain.cache.SQLAlchemyCache.html
86502af505b3-0
langchain.cache.CassandraSemanticCache¶ class langchain.cache.CassandraSemanticCache(session: Optional[CassandraSession], keyspace: Optional[str], embedding: Embeddings, table_name: str = 'langchain_llm_semantic_cache', distance_metric: str = 'dot', score_threshold: float = 0.85, ttl_seconds: Optional[int] = None, skip_provisioning: bool = False)[source]¶ Cache that uses Cassandra as a vector-store backend for semantic (i.e. similarity-based) lookup. It uses a single (vector) Cassandra table and stores, in principle, cached values from several LLMs, so the LLM’s llm_string is part of the rows’ primary keys. The similarity is based on one of several distance metrics (default: “dot”). If choosing another metric, the default threshold is to be re-tuned accordingly. Initialize the cache with all relevant parameters. :param session: an open Cassandra session :type session: cassandra.cluster.Session :param keyspace: the keyspace to use for storing the cache :type keyspace: str :param embedding: Embedding provider for semantic encoding and search. Parameters table_name (str) – name of the Cassandra (vector) table to use as cache distance_metric (str, 'dot') – which measure to adopt for similarity searches score_threshold (optional float) – numeric value to use as cutoff for the similarity searches ttl_seconds (optional int) – time-to-live for cache entries (default: None, i.e. forever) The default score threshold is tuned to the default metric. Tune it carefully yourself if switching to another distance metric. Methods __init__(session, keyspace, embedding[, ...])
lang/api.python.langchain.com/en/latest/cache/langchain.cache.CassandraSemanticCache.html
86502af505b3-1
Methods __init__(session, keyspace, embedding[, ...]) Initialize the cache with all relevant parameters. :param session: an open Cassandra session :type session: cassandra.cluster.Session :param keyspace: the keyspace to use for storing the cache :type keyspace: str :param embedding: Embedding provider for semantic encoding and search. :type embedding: Embedding :param table_name: name of the Cassandra (vector) table to use as cache :type table_name: str :param distance_metric: which measure to adopt for similarity searches :type distance_metric: str, 'dot' :param score_threshold: numeric value to use as cutoff for the similarity searches :type score_threshold: optional float :param ttl_seconds: time-to-live for cache entries (default: None, i.e. forever) :type ttl_seconds: optional int. clear(**kwargs) Clear the whole semantic cache. delete_by_document_id(document_id) Given this is a "similarity search" cache, an invalidation pattern that makes sense is first a lookup to get an ID, and then deleting with that ID. lookup(prompt, llm_string) Look up based on prompt and llm_string. lookup_with_id(prompt, llm_string) Look up based on prompt and llm_string. lookup_with_id_through_llm(prompt, llm[, stop]) update(prompt, llm_string, return_val) Update cache based on prompt and llm_string. __init__(session: Optional[CassandraSession], keyspace: Optional[str], embedding: Embeddings, table_name: str = 'langchain_llm_semantic_cache', distance_metric: str = 'dot', score_threshold: float = 0.85, ttl_seconds: Optional[int] = None, skip_provisioning: bool = False)[source]¶
lang/api.python.langchain.com/en/latest/cache/langchain.cache.CassandraSemanticCache.html
86502af505b3-2
Initialize the cache with all relevant parameters. :param session: an open Cassandra session :type session: cassandra.cluster.Session :param keyspace: the keyspace to use for storing the cache :type keyspace: str :param embedding: Embedding provider for semantic encoding and search. Parameters table_name (str) – name of the Cassandra (vector) table to use as cache distance_metric (str, 'dot') – which measure to adopt for similarity searches score_threshold (optional float) – numeric value to use as cutoff for the similarity searches ttl_seconds (optional int) – time-to-live for cache entries (default: None, i.e. forever) The default score threshold is tuned to the default metric. Tune it carefully yourself if switching to another distance metric. clear(**kwargs: Any) → None[source]¶ Clear the whole semantic cache. delete_by_document_id(document_id: str) → None[source]¶ Given this is a “similarity search” cache, an invalidation pattern that makes sense is first a lookup to get an ID, and then deleting with that ID. This is for the second step. lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶ Look up based on prompt and llm_string. lookup_with_id(prompt: str, llm_string: str) → Optional[Tuple[str, Sequence[Generation]]][source]¶ Look up based on prompt and llm_string. If there are hits, return (document_id, cached_entry) lookup_with_id_through_llm(prompt: str, llm: LLM, stop: Optional[List[str]] = None) → Optional[Tuple[str, Sequence[Generation]]][source]¶ update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
lang/api.python.langchain.com/en/latest/cache/langchain.cache.CassandraSemanticCache.html
86502af505b3-3
Update cache based on prompt and llm_string.
lang/api.python.langchain.com/en/latest/cache/langchain.cache.CassandraSemanticCache.html
ee177465870a-0
langchain.llms.base.get_prompts¶ langchain.llms.base.get_prompts(params: Dict[str, Any], prompts: List[str]) → Tuple[Dict[int, List], str, List[int], List[str]][source]¶ Get prompts that are already cached.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.base.get_prompts.html
1f2fea10ccf9-0
langchain.llms.beam.Beam¶ class langchain.llms.beam.Beam[source]¶ Bases: LLM Beam API for gpt2 large language model. To use, you should have the beam-sdk python package installed, and the environment variable BEAM_CLIENT_ID set with your client id and BEAM_CLIENT_SECRET set with your client secret. Information on how to get this is available here: https://docs.beam.cloud/account/api-keys. The wrapper can then be called as follows, where the name, cpu, memory, gpu, python version, and python packages can be updated accordingly. Once deployed, the instance can be called. Example llm = Beam(model_name="gpt2", name="langchain-gpt2", cpu=8, memory="32Gi", gpu="A10G", python_version="python3.8", python_packages=[ "diffusers[torch]>=0.10", "transformers", "torch", "pillow", "accelerate", "safetensors", "xformers",], max_length=50) llm._deploy() call_result = llm._call(input) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param app_id: Optional[str] = None¶ param beam_client_id: str = ''¶ param beam_client_secret: str = ''¶ param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param cpu: str = ''¶ param gpu: str = ''¶ param max_length: str = ''¶
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-1
param gpu: str = ''¶ param max_length: str = ''¶ param memory: str = ''¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = ''¶ param name: str = ''¶ param python_packages: List[str] = []¶ param python_version: str = ''¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param url: str = ''¶ model endpoint to use param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-2
e.g., if the underlying runnable uses an API which supports a batch mode. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-3
functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. app_creation() → None[source]¶ Creates a Python file which will contain your Beam app definition. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-4
Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-5
Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-6
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. classmethod from_orm(obj: Any) → Model¶ generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-7
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-8
This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-9
Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-10
to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-11
first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. run_creation() → None[source]¶ Creates a Python file which will be deployed on beam. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-12
classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
1f2fea10ccf9-13
Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property authorization: str¶ property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using Beam¶ Beam
lang/api.python.langchain.com/en/latest/llms/langchain.llms.beam.Beam.html
b0652f76899c-0
langchain.llms.cohere.completion_with_retry¶ langchain.llms.cohere.completion_with_retry(llm: Cohere, **kwargs: Any) → Any[source]¶ Use tenacity to retry the completion call.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.cohere.completion_with_retry.html
2087e80acaa0-0
langchain.llms.amazon_api_gateway.AmazonAPIGateway¶ class langchain.llms.amazon_api_gateway.AmazonAPIGateway[source]¶ Bases: LLM Amazon API Gateway to access LLM models hosted on AWS. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_url: str [Required]¶ API Gateway URL param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param content_handler: langchain.llms.amazon_api_gateway.ContentHandlerAmazonAPIGateway = <langchain.llms.amazon_api_gateway.ContentHandlerAmazonAPIGateway object>¶ The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. param headers: Optional[Dict] = None¶ API Gateway HTTP Headers to send, e.g. for authentication param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Optional[Dict] = None¶ Keyword arguments to pass to the model. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-1
Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value,
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-2
need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-3
**kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-4
This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-5
Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-6
classmethod from_orm(obj: Any) → Model¶ generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-7
functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-8
Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable?
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-9
classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-10
Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-11
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html
2087e80acaa0-12
fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
lang/api.python.langchain.com/en/latest/llms/langchain.llms.amazon_api_gateway.AmazonAPIGateway.html