id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
c2ce2a5d4738-3
information. (containing content and other) – on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.BaseCallbackHandler.html
c2ce2a5d4738-4
Run when tool ends running. on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Examples using BaseCallbackHandler¶ Ollama Custom callback handlers Multiple callback handlers Async callbacks Streaming final agent output
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.BaseCallbackHandler.html
0e58252a72f4-0
langchain.schema.runnable.utils.ConfigurableField¶ class langchain.schema.runnable.utils.ConfigurableField(id: str, name: Optional[str] = None, description: Optional[str] = None, annotation: Optional[Any] = None)[source]¶ A field that can be configured by the user. Create new instance of ConfigurableField(id, name, description, annotation) Attributes annotation Alias for field number 3 description Alias for field number 2 id Alias for field number 0 name Alias for field number 1 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.ConfigurableField.html
ff24b8906c64-0
langchain.schema.callbacks.tracers.root_listeners.RootListenersTracer¶ class langchain.schema.callbacks.tracers.root_listeners.RootListenersTracer(*, config: RunnableConfig, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]], on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]], on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]])[source]¶ Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(*, config, on_start, on_end, on_error) on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, inputs]) End a trace for a chain run. on_chain_error(error, *[, inputs]) Handle an error for a chain run. on_chain_start(serialized, inputs, *, run_id) Start a trace for a chain run. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id, **kwargs) End a trace for an LLM run. on_llm_error(error, *, run_id, **kwargs) Handle an error for an LLM run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.root_listeners.RootListenersTracer.html
ff24b8906c64-1
Handle an error for an LLM run. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Start a trace for an LLM run. on_retriever_end(documents, *, run_id, **kwargs) Run when Retriever ends running. on_retriever_error(error, *, run_id, **kwargs) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id, **kwargs) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id, **kwargs) End a trace for a tool run. on_tool_error(error, *, run_id, **kwargs) Handle an error for a tool run. on_tool_start(serialized, input_str, *, run_id) Start a trace for a tool run. __init__(*, config: RunnableConfig, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]], on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]], on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) → None[source]¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.root_listeners.RootListenersTracer.html
ff24b8906c64-2
Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶ End a trace for a chain run. on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a chain run. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a chain run. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶ End a trace for an LLM run. on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for an LLM run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.root_listeners.RootListenersTracer.html
ff24b8906c64-3
Handle an error for an LLM run. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶ Run on new LLM token. Only available when streaming is enabled. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for an LLM run. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.root_listeners.RootListenersTracer.html
ff24b8906c64-4
End a trace for a tool run. on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a tool run. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a tool run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.root_listeners.RootListenersTracer.html
a2692859ae3c-0
langchain.schema.runnable.base.RunnableBindingBase¶ class langchain.schema.runnable.base.RunnableBindingBase[source]¶ Bases: RunnableSerializable[Input, Output] A runnable that delegates calls to another runnable with a set of kwargs. Use only if creating a new RunnableBinding subclass with different __init__ args. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param bound: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶ param config: langchain.schema.runnable.config.RunnableConfig [Optional]¶ param config_factories: List[Callable[[langchain.schema.runnable.config.RunnableConfig], langchain.schema.runnable.config.RunnableConfig]] [Optional]¶ param custom_input_type: Optional[Any] = None¶ param custom_output_type: Optional[Any] = None¶ param kwargs: Mapping[str, Any] [Optional]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
a2692859ae3c-1
the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
a2692859ae3c-2
input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
a2692859ae3c-3
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
a2692859ae3c-4
Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Is this class serializable?
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
a2692859ae3c-5
classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
a2692859ae3c-6
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
a2692859ae3c-7
fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
a2692859ae3c-8
The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableBindingBase.html
32585d5b92fa-0
langchain.schema.callbacks.tracers.schemas.TracerSession¶ class langchain.schema.callbacks.tracers.schemas.TracerSession[source]¶ Bases: TracerSessionBase TracerSessionV1 schema for the V2 API. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param extra: Optional[Dict[str, Any]] = None¶ param id: uuid.UUID [Required]¶ param name: Optional[str] = None¶ param start_time: datetime.datetime [Optional]¶ param tenant_id: uuid.UUID [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSession.html
32585d5b92fa-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSession.html
32585d5b92fa-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSession.html
97b2dc44420f-0
langchain.schema.callbacks.manager.CallbackManagerForToolRun¶ class langchain.schema.callbacks.manager.CallbackManagerForToolRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager for tool run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForToolRun.html
97b2dc44420f-1
on_tool_error(error, **kwargs) Run when tool errors. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → CallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type CallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForToolRun.html
97b2dc44420f-2
Parameters text (str) – The received text. Returns The result of the callback. Return type Any on_tool_end(output: str, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters output (str) – The output of the tool. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters error (Exception or KeyboardInterrupt) – The error. Examples using CallbackManagerForToolRun¶ Defining Custom Tools
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForToolRun.html
f81b10bbaf77-0
langchain.schema.callbacks.tracers.stdout.elapsed¶ langchain.schema.callbacks.tracers.stdout.elapsed(run: Any) → str[source]¶ Get the elapsed time of a run. Parameters run – any object with a start_time and end_time attribute. Returns A string with the elapsed time in seconds ormilliseconds if time is less than a second.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.stdout.elapsed.html
30a27caa4509-0
langchain.schema.runnable.passthrough.aidentity¶ async langchain.schema.runnable.passthrough.aidentity(x: Other) → Other[source]¶ An async identity function
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.aidentity.html
b355b3d2debf-0
langchain.schema.callbacks.manager.register_configure_hook¶ langchain.schema.callbacks.manager.register_configure_hook(context_var: ContextVar[Optional[Any]], inheritable: bool, handle_class: Optional[Type[BaseCallbackHandler]] = None, env_var: Optional[str] = None) → None[source]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.register_configure_hook.html
898c686070f0-0
langchain.schema.callbacks.tracers.schemas.RunTypeEnum¶ langchain.schema.callbacks.tracers.schemas.RunTypeEnum() → Type[RunTypeEnum][source]¶ RunTypeEnum.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.RunTypeEnum.html
8309aefcf681-0
langchain.schema.messages.HumanMessageChunk¶ class langchain.schema.messages.HumanMessageChunk[source]¶ Bases: HumanMessage, BaseMessageChunk A Human Message chunk. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ Any additional information. param content: Union[str, List[Union[str, Dict]]] [Required]¶ The string contents of the message. param example: bool = False¶ Whether this Message is being passed in to the model as part of an example conversation. param type: Literal['HumanMessageChunk'] = 'HumanMessageChunk'¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.HumanMessageChunk.html
8309aefcf681-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.HumanMessageChunk.html
8309aefcf681-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.HumanMessageChunk.html
6aee00a28c67-0
langchain.schema.callbacks.base.ChainManagerMixin¶ class langchain.schema.callbacks.base.ChainManagerMixin[source]¶ Mixin for chain callbacks. Methods __init__() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. __init__()¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when chain ends running. on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when chain errors.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.ChainManagerMixin.html
fa8df3b787e1-0
langchain.schema.output.Generation¶ class langchain.schema.output.Generation[source]¶ Bases: Serializable A single text generation output. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generation_info: Optional[Dict[str, Any]] = None¶ Raw response from the provider. May include things like the reason for finishing or token log probabilities. param text: str [Required]¶ Generated text output. param type: Literal['Generation'] = 'Generation'¶ Type is used exclusively for serialization purposes. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.Generation.html
fa8df3b787e1-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool[source]¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.Generation.html
fa8df3b787e1-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.Generation.html
b28ec5a1711c-0
langchain.schema.agent.AgentFinish¶ class langchain.schema.agent.AgentFinish[source]¶ Bases: Serializable The final return value of an ActionAgent. Override init to support instantiation by position for backward compat. param log: str [Required]¶ Additional information to log about the return value. This is used to pass along the full LLM prediction, not just the parsed out return value. For example, if the full LLM prediction was Final Answer: 2 you may want to just return 2 as a return value, but pass along the full string as a log (for debugging or observability purposes). param return_values: dict [Required]¶ Dictionary of return values. param type: Literal['AgentFinish'] = 'AgentFinish'¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentFinish.html
b28ec5a1711c-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool[source]¶ Return whether or not the class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path
lang/api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentFinish.html
b28ec5a1711c-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using AgentFinish¶ Agents Plug-and-Plai Wikibase Agent SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base Custom Agent with PlugIn Retrieval Custom multi-action agent Running Agent as an Iterator Custom agent Custom agent with tool retrieval
lang/api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentFinish.html
cd8c9f253aea-0
langchain.schema.callbacks.tracers.schemas.ChainRun¶ class langchain.schema.callbacks.tracers.schemas.ChainRun[source]¶ Bases: BaseRun Class for ChainRun. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param child_chain_runs: List[langchain.schema.callbacks.tracers.schemas.ChainRun] [Optional]¶ param child_execution_order: int [Required]¶ param child_llm_runs: List[langchain.schema.callbacks.tracers.schemas.LLMRun] [Optional]¶ param child_tool_runs: List[langchain.schema.callbacks.tracers.schemas.ToolRun] [Optional]¶ param end_time: datetime.datetime [Optional]¶ param error: Optional[str] = None¶ param execution_order: int [Required]¶ param extra: Optional[Dict[str, Any]] = None¶ param inputs: Dict[str, Any] [Required]¶ param outputs: Optional[Dict[str, Any]] = None¶ param parent_uuid: Optional[str] = None¶ param serialized: Dict[str, Any] [Required]¶ param session_id: int [Required]¶ param start_time: datetime.datetime [Optional]¶ param uuid: str [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.ChainRun.html
cd8c9f253aea-1
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.ChainRun.html
cd8c9f253aea-2
classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.ChainRun.html
442fcab0706a-0
langchain.schema.callbacks.manager.CallbackManagerForChainGroup¶ class langchain.schema.callbacks.manager.CallbackManagerForChainGroup(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any)[source]¶ Callback manager for the chain group. Initialize callback manager. Attributes is_async Whether the callback manager is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the callback manager. copy() Copy the callback manager. on_chain_end(outputs, **kwargs) Run when traced chain group ends. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForChainGroup.html
442fcab0706a-1
Set handlers as the only handlers on the callback manager. __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any) → None[source]¶ Initialize callback manager. add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ add_tags(tags: List[str], inherit: bool = True) → None¶ classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager¶ Configure the callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForChainGroup.html
442fcab0706a-2
Defaults to None. Returns The configured callback manager. Return type CallbackManager copy() → CallbackManagerForChainGroup[source]¶ Copy the callback manager. on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶ Run when traced chain group ends. Parameters outputs (Union[Dict[str, Any], Any]) – The outputs of the chain. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (Exception or KeyboardInterrupt) – The error. on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The callback manager for the chain run. Return type CallbackManagerForChainRun on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[CallbackManagerForLLMRun]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns A callback manager for eachlist of messages as an LLM run. Return type List[CallbackManagerForLLMRun]
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForChainGroup.html
442fcab0706a-3
Return type List[CallbackManagerForLLMRun] on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[CallbackManagerForLLMRun]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns A callback manager for eachprompt as an LLM run. Return type List[CallbackManagerForLLMRun] on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun¶ Run when retriever starts running. on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForToolRun¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – The serialized tool. input_str (str) – The input to the tool. run_id (UUID, optional) – The ID of the run. Defaults to None. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. Returns The callback manager for the tool run. Return type CallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager. remove_metadata(keys: List[str]) → None¶ remove_tags(tags: List[str]) → None¶ set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForChainGroup.html
442fcab0706a-4
set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager. set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForChainGroup.html
75a9888927ba-0
langchain.schema.messages.HumanMessage¶ class langchain.schema.messages.HumanMessage[source]¶ Bases: BaseMessage A Message from a human. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ Any additional information. param content: Union[str, List[Union[str, Dict]]] [Required]¶ The string contents of the message. param example: bool = False¶ Whether this Message is being passed in to the model as part of an example conversation. param type: Literal['human'] = 'human'¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.HumanMessage.html
75a9888927ba-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.HumanMessage.html
75a9888927ba-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} Examples using HumanMessage¶ Zep Zep Memory SQL Chat Message History AzureML Chat Online Endpoint Anthropic 🚅 LiteLLM Konko OpenAI Google Cloud Platform Vertex AI PaLM Bedrock Chat JinaChat Ollama Azure Baidu Qianfan ERNIE-Bot Chat PromptLayer ChatOpenAI Anyscale
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.HumanMessage.html
75a9888927ba-3
ERNIE-Bot Chat PromptLayer ChatOpenAI Anyscale Anthropic Functions LLMonitor Context Label Studio PromptLayer Log10 MLflow AI Gateway Flyte Arthur Set env var OPENAI_API_KEY or load from a .env file: Structure answers with OpenAI functions CAMEL Role-Playing Autonomous Cooperative Agents Multi-Agent Simulated Environment: Petting Zoo Multi-agent decentralized speaker selection Multi-agent authoritarian speaker selection Two-Player Dungeons & Dragons Multi-Player Dungeons & Dragons Simulated Environment: Gymnasium Agent Debates with Tools Custom callback handlers Async callbacks Tools as OpenAI Functions Prompt pipelining Using OpenAI functions
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.HumanMessage.html
2bb59a6e1512-0
langchain.schema.exceptions.LangChainException¶ class langchain.schema.exceptions.LangChainException[source]¶ General LangChain exception.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.exceptions.LangChainException.html
2054847c72c7-0
langchain.schema.vectorstore.VectorStore¶ class langchain.schema.vectorstore.VectorStore[source]¶ Interface for vector store. Attributes embeddings Access the query embedding object if available. Methods __init__() aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. adelete([ids]) Delete by vector ID or other criteria. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) Return VectorStoreRetriever initialized from this VectorStore. asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1], asynchronously. asimilarity_search_with_score(*args, **kwargs) Run similarity search with distance asynchronously. delete([ids])
lang/api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStore.html
2054847c72c7-1
Run similarity search with distance asynchronously. delete([ids]) Delete by vector ID or other criteria. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(*args, **kwargs) Run similarity search with distance. __init__()¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Run more documents through the embeddings and add to the vectorstore. Parameters
lang/api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStore.html
2054847c72c7-2
Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] abstract add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async adelete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool][source]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST[source]¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST[source]¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStore.html
2054847c72c7-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever[source]¶ Return VectorStoreRetriever initialized from this VectorStore. Parameters search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”. search_kwargs (Optional[Dict]) – Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata Returns Retriever class for VectorStore. Return type VectorStoreRetriever Examples: # Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} )
lang/api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStore.html
2054847c72c7-4
search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} ) async asearch(query: str, search_type: str, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and relevance scores in the range [0, 1], asynchronously. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score)
lang/api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStore.html
2054847c72c7-5
Returns List of Tuples of (doc, similarity_score) async asimilarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Run similarity search with distance asynchronously. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool][source]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST[source]¶ Return VectorStore initialized from documents and embeddings. abstract classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST[source]¶ Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStore.html
2054847c72c7-6
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query using specified search type. abstract similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStore.html
2054847c72c7-7
Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Run similarity search with distance. Examples using VectorStore¶ BabyAGI User Guide BabyAGI with Tools
lang/api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStore.html
f1a8fd16af41-0
langchain.schema.callbacks.base.CallbackManagerMixin¶ class langchain.schema.callbacks.base.CallbackManagerMixin[source]¶ Mixin for callback manager. Methods __init__() on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__()¶ on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when chain starts running. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when a chat model starts running. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when LLM starts running.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.CallbackManagerMixin.html
f1a8fd16af41-1
Run when LLM starts running. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when Retriever starts running. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when tool starts running.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.CallbackManagerMixin.html
0eb2135728c3-0
langchain.schema.messages.messages_to_dict¶ langchain.schema.messages.messages_to_dict(messages: Sequence[BaseMessage]) → List[dict][source]¶ Convert a sequence of Messages to a list of dictionaries. Parameters messages – Sequence of messages (as BaseMessages) to convert. Returns List of messages as dicts.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.messages_to_dict.html
a99f075858b1-0
langchain.schema.output_parser.NoOpOutputParser¶ langchain.schema.output_parser.NoOpOutputParser¶ alias of StrOutputParser
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.NoOpOutputParser.html
7a551cfc5944-0
langchain.schema.callbacks.manager.atrace_as_chain_group¶ langchain.schema.callbacks.manager.atrace_as_chain_group(group_name: str, callback_manager: Optional[AsyncCallbackManager] = None, *, inputs: Optional[Dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, tags: Optional[List[str]] = None) → AsyncGenerator[AsyncCallbackManagerForChainGroup, None][source]¶ Get an async callback manager for a chain group in a context manager. Useful for grouping different async calls together as a single run even if they aren’t composed in a single chain. Parameters group_name (str) – The name of the chain group. callback_manager (AsyncCallbackManager, optional) – The async callback manager to use, which manages tracing and other callback behavior. project_name (str, optional) – The name of the project. Defaults to None. example_id (str or UUID, optional) – The ID of the example. Defaults to None. run_id (UUID, optional) – The ID of the run. tags (List[str], optional) – The inheritable tags to apply to all runs. Defaults to None. Returns The async callback manager for the chain group. Return type AsyncCallbackManager Note: must have LANGCHAIN_TRACING_V2 env var set to true to see the trace in LangSmith. Example llm_input = "Foo" async with atrace_as_chain_group("group_name", inputs={"input": llm_input}) as manager: # Use the async callback manager for the chain group res = await llm.apredict(llm_input, callbacks=manager) await manager.on_chain_end({"output": res})
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.atrace_as_chain_group.html
780ee3a3fdb2-0
langchain.schema.output.ChatResult¶ class langchain.schema.output.ChatResult[source]¶ Bases: BaseModel Class that contains all results for a single chat model call. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generations: List[langchain.schema.output.ChatGeneration] [Required]¶ List of the chat generations. This is a List because an input can have multiple candidate generations. param llm_output: Optional[dict] = None¶ For arbitrary LLM provider specific output. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatResult.html
780ee3a3fdb2-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatResult.html
780ee3a3fdb2-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatResult.html
8405d655de0b-0
langchain.schema.output_parser.BaseOutputParser¶ class langchain.schema.output_parser.BaseOutputParser[source]¶ Bases: BaseLLMOutputParser, RunnableSerializable[Union[str, BaseMessage], T] Base class to parse the output of an LLM call. Output parsers help structure language model responses. Example class BooleanOutputParser(BaseOutputParser[bool]): true_val: str = "YES" false_val: str = "NO" def parse(self, text: str) -> bool: cleaned_text = text.strip().upper() if cleaned_text not in (self.true_val.upper(), self.false_val.upper()): raise OutputParserException( f"BooleanOutputParser expected output value to either be " f"{self.true_val} or {self.false_val} (case-insensitive). " f"Received {cleaned_text}." ) return cleaned_text == self.true_val.upper() @property def _type(self) -> str: return "boolean_output_parser" async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: str | langchain.schema.messages.BaseMessage, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → T[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-1
The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async aparse(text: str) → T[source]¶ Parse a single string model output into some structure. Parameters text – String output of a language model. Returns Structured output. async aparse_result(result: List[Generation], *, partial: bool = False) → T[source]¶ Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation. Parameters result – A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Returns Structured output. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-2
Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-3
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict[source]¶ Return dictionary representation of output parser. classmethod from_orm(obj: Any) → Model¶ get_format_instructions() → str[source]¶ Instructions on how the LLM output should be formatted. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-4
methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None) → T[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable?
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-5
classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. abstract parse(text: str) → T[source]¶ Parse a single string model output into some structure. Parameters text – String output of a language model. Returns Structured output. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-6
parse_result(result: List[Generation], *, partial: bool = False) → T[source]¶ Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation. Parameters result – A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Returns Structured output. parse_with_prompt(completion: str, prompt: PromptValue) → Any[source]¶ Parse the output of an LLM call with the input prompt for context. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – String output of a language model. prompt – Input PromptValue. Returns Structured output classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-7
input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-8
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Any¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.output_parser.T]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
8405d655de0b-9
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.BaseOutputParser.html
bbd8aed39e98-0
langchain.schema.callbacks.tracers.schemas.LLMRun¶ class langchain.schema.callbacks.tracers.schemas.LLMRun[source]¶ Bases: BaseRun Class for LLMRun. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param child_execution_order: int [Required]¶ param end_time: datetime.datetime [Optional]¶ param error: Optional[str] = None¶ param execution_order: int [Required]¶ param extra: Optional[Dict[str, Any]] = None¶ param parent_uuid: Optional[str] = None¶ param prompts: List[str] [Required]¶ param response: Optional[langchain.schema.output.LLMResult] = None¶ param serialized: Dict[str, Any] [Required]¶ param session_id: int [Required]¶ param start_time: datetime.datetime [Optional]¶ param uuid: str [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.LLMRun.html
bbd8aed39e98-1
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.LLMRun.html
bbd8aed39e98-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.LLMRun.html
c6045c57fe7d-0
langchain.schema.output.RunInfo¶ class langchain.schema.output.RunInfo[source]¶ Bases: BaseModel Class that contains metadata for a single execution of a Chain or model. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param run_id: uuid.UUID [Required]¶ A unique identifier for the model or chain run. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.RunInfo.html
c6045c57fe7d-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.RunInfo.html
c6045c57fe7d-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.RunInfo.html
f9f9777e4b1c-0
langchain.schema.messages.merge_content¶ langchain.schema.messages.merge_content(first_content: Union[str, List[Union[str, Dict]]], second_content: Union[str, List[Union[str, Dict]]]) → Union[str, List[Union[str, Dict]]][source]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.merge_content.html
8395adadeacb-0
langchain.schema.runnable.utils.GetLambdaSource¶ class langchain.schema.runnable.utils.GetLambdaSource[source]¶ Get the source code of a lambda function. Initialize the visitor. Methods __init__() Initialize the visitor. generic_visit(node) Called if no explicit visitor function exists for a node. visit(node) Visit a node. visit_Constant(node) visit_Lambda(node) Visit a lambda function. __init__() → None[source]¶ Initialize the visitor. generic_visit(node)¶ Called if no explicit visitor function exists for a node. visit(node)¶ Visit a node. visit_Constant(node)¶ visit_Lambda(node: Lambda) → Any[source]¶ Visit a lambda function.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.GetLambdaSource.html
5e693f824335-0
langchain.schema.callbacks.manager.AsyncCallbackManager¶ class langchain.schema.callbacks.manager.AsyncCallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async callback manager that handles callbacks from LangChain. Initialize callback manager. Attributes is_async Return whether the handler is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the async callback manager. copy() Copy the callback manager. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.AsyncCallbackManager.html
5e693f824335-1
Set handlers as the only handlers on the callback manager. __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize callback manager. add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ add_tags(tags: List[str], inherit: bool = True) → None¶ classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → AsyncCallbackManager[source]¶ Configure the async callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.AsyncCallbackManager.html
5e693f824335-2
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns The configured async callback manager. Return type AsyncCallbackManager copy() → T¶ Copy the callback manager. async on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForChainRun[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The async callback managerfor the chain run. Return type AsyncCallbackManagerForChainRun async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The list ofasync callback managers, one for each LLM Run corresponding to each inner message list. Return type List[AsyncCallbackManagerForLLMRun] async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶ Run when LLM starts running. Parameters
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.AsyncCallbackManager.html
5e693f824335-3
Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. Returns The list of asynccallback managers, one for each LLM Run corresponding to each prompt. Return type List[AsyncCallbackManagerForLLMRun] async on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForRetrieverRun[source]¶ Run when retriever starts running. async on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForToolRun[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – The serialized tool. input_str (str) – The input to the tool. run_id (UUID, optional) – The ID of the run. Defaults to None. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. Returns The async callback managerfor the tool run. Return type AsyncCallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager. remove_metadata(keys: List[str]) → None¶ remove_tags(tags: List[str]) → None¶ set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.AsyncCallbackManager.html
5e693f824335-4
Set handler as the only handler on the callback manager. set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.AsyncCallbackManager.html
6f2a7a6feb14-0
langchain.schema.runnable.passthrough.RunnableAssign¶ class langchain.schema.runnable.passthrough.RunnableAssign[source]¶ Bases: RunnableSerializable[Dict[str, Any], Dict[str, Any]] A runnable that assigns key-value pairs to Dict[str, Any] inputs. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param mapper: langchain.schema.runnable.base.RunnableParallel[Dict[str, Any]] [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any][source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Dict[str, Any]][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
6f2a7a6feb14-1
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Dict[str, Any]][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
6f2a7a6feb14-2
e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
6f2a7a6feb14-3
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
6f2a7a6feb14-4
Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any][source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
6f2a7a6feb14-5
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Dict[str, Any]][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Dict[str, Any]][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
6f2a7a6feb14-6
input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
6f2a7a6feb14-7
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
6f2a7a6feb14-8
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.RunnableAssign.html
2f9898eef758-0
langchain.schema.runnable.base.RunnableGenerator¶ class langchain.schema.runnable.base.RunnableGenerator(transform: Union[Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]]], atransform: Optional[Callable[[AsyncIterator[Input]], AsyncIterator[Output]]] = None)[source]¶ A runnable that runs a generator function. Attributes InputType The type of input this runnable accepts specified as a type annotation. OutputType The type of output this runnable produces specified as a type annotation. config_specs List configurable fields for this runnable. input_schema The type of input this runnable accepts specified as a pydantic model. output_schema The type of output this runnable produces specified as a pydantic model. Methods __init__(transform[, atransform]) abatch(inputs[, config, return_exceptions]) Default implementation runs ainvoke in parallel using asyncio.gather. ainvoke(input[, config]) Default implementation of ainvoke, calls invoke from a thread. astream(input[, config]) Default implementation of astream, which calls ainvoke. astream_log(input[, config, diff, ...]) Stream all output from a runnable, as reported to the callback system. atransform(input[, config]) Default implementation of atransform, which buffers input and calls astream. batch(inputs[, config, return_exceptions]) Default implementation runs invoke in parallel using a thread pool executor. bind(**kwargs) Bind arguments to a Runnable, returning a new Runnable. config_schema(*[, include]) The type of config this runnable accepts specified as a pydantic model. get_input_schema([config]) Get a pydantic model that can be used to validate input to the runnable. get_output_schema([config])
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableGenerator.html
2f9898eef758-1
get_output_schema([config]) Get a pydantic model that can be used to validate output to the runnable. invoke(input[, config]) Transform a single input into an output. map() Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. stream(input[, config]) Default implementation of stream, which calls invoke. transform(input[, config]) Default implementation of transform, which buffers input and then calls stream. with_config([config]) Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks, *[, ...]) Add fallbacks to a runnable, returning a new Runnable. with_listeners(*[, on_start, on_end, on_error]) Bind lifecycle listeners to a Runnable, returning a new Runnable. with_retry(*[, retry_if_exception_type, ...]) Create a new Runnable that retries the original runnable on exceptions. with_types(*[, input_type, output_type]) Bind input and output types to a Runnable, returning a new Runnable. __init__(transform: Union[Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]]], atransform: Optional[Callable[[AsyncIterator[Input]], AsyncIterator[Output]]] = None) → None[source]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently;
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableGenerator.html