id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
1752d97e2e1e-0
langchain.schema.callbacks.tracers.schemas.TracerSessionV1Create¶ class langchain.schema.callbacks.tracers.schemas.TracerSessionV1Create[source]¶ Bases: TracerSessionV1Base Create class for TracerSessionV1. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param extra: Optional[Dict[str, Any]] = None¶ param name: Optional[str] = None¶ param start_time: datetime.datetime [Optional]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSessionV1Create.html
1752d97e2e1e-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSessionV1Create.html
1752d97e2e1e-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSessionV1Create.html
f0289bc8ffaa-0
langchain.schema.callbacks.manager.CallbackManagerForChainRun¶ class langchain.schema.callbacks.manager.CallbackManagerForChainRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager for chain run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_agent_action(action, **kwargs) Run when agent action is received. on_agent_finish(finish, **kwargs) Run when agent finish is received. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_retry(retry_state, **kwargs) Run on a retry event.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForChainRun.html
f0289bc8ffaa-1
on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → CallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type CallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run when agent action is received. Parameters action (AgentAction) – The agent action. Returns
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForChainRun.html
f0289bc8ffaa-2
Parameters action (AgentAction) – The agent action. Returns The result of the callback. Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → Any[source]¶ Run when agent finish is received. Parameters finish (AgentFinish) – The agent finish. Returns The result of the callback. Return type Any on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Union[Dict[str, Any], Any]) – The outputs of the chain. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (Exception or KeyboardInterrupt) – The error. on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any Examples using CallbackManagerForChainRun¶ Custom chain
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForChainRun.html
e45dc5e40fe8-0
langchain.schema.runnable.base.RunnableParallel¶ class langchain.schema.runnable.base.RunnableParallel[source]¶ Bases: RunnableSerializable[Input, Dict[str, Any]] A runnable that runs a mapping of runnables in parallel, and returns a mapping of their outputs. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param steps: Mapping[str, langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, Any]] [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Dict[str, Any][source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Dict[str, Any]][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
e45dc5e40fe8-1
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Dict[str, Any]][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
e45dc5e40fe8-2
e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
e45dc5e40fe8-3
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
e45dc5e40fe8-4
Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None) → Dict[str, Any][source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
e45dc5e40fe8-5
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Dict[str, Any]][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Dict[str, Any]][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
e45dc5e40fe8-6
input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
e45dc5e40fe8-7
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Any¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
e45dc5e40fe8-8
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableParallel.html
b359b53f948e-0
langchain.schema.runnable.utils.gather_with_concurrency¶ async langchain.schema.runnable.utils.gather_with_concurrency(n: Optional[int], *coros: Coroutine) → list[source]¶ Gather coroutines with a limit on the number of concurrent coroutines.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.gather_with_concurrency.html
6c54e8ef2417-0
langchain.schema.runnable.utils.ConfigurableFieldSpec¶ class langchain.schema.runnable.utils.ConfigurableFieldSpec(id: str, name: Optional[str], description: Optional[str], default: Any, annotation: Any)[source]¶ A field that can be configured by the user. It is a specification of a field. Create new instance of ConfigurableFieldSpec(id, name, description, default, annotation) Attributes annotation Alias for field number 4 default Alias for field number 3 description Alias for field number 2 id Alias for field number 0 name Alias for field number 1 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.ConfigurableFieldSpec.html
450205991b21-0
langchain.schema.runnable.fallbacks.RunnableWithFallbacks¶ class langchain.schema.runnable.fallbacks.RunnableWithFallbacks[source]¶ Bases: RunnableSerializable[Input, Output] A Runnable that can fallback to other Runnables if it fails. External APIs (e.g., APIs for a language model) may at times experience degraded performance or even downtime. In these cases, it can be useful to have a fallback runnable that can be used in place of the original runnable (e.g., fallback to another LLM provider). Fallbacks can be defined at the level of a single runnable, or at the level of a chain of runnables. Fallbacks are tried in order until one succeeds or all fail. While you can instantiate a RunnableWithFallbacks directly, it is usually more convenient to use the with_fallbacks method on a runnable. Example from langchain.chat_models.openai import ChatOpenAI from langchain.chat_models.anthropic import ChatAnthropic model = ChatAnthropic().with_fallbacks([ChatOpenAI()]) # Will usually use ChatAnthropic, but fallback to ChatOpenAI # if ChatAnthropic fails. model.invoke('hello') # And you can also use fallbacks at the level of a chain. # Here if both LLM providers fail, we'll fallback to a good hardcoded # response. from langchain.prompts import PromptTemplate from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnableLambda def when_all_is_lost(inputs): return ("Looks like our LLM providers are down. " "Here's a nice 🦜️ emoji for you instead.") chain_with_fallback = ( PromptTemplate.from_template('Tell me a joke about {topic}') | model
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-1
PromptTemplate.from_template('Tell me a joke about {topic}') | model | StrOutputParser() ).with_fallbacks([RunnableLambda(when_all_is_lost)]) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)¶ The exceptions on which fallbacks should be tried. Any exception that is not a subclass of these exceptions will be raised immediately. param fallbacks: Sequence[langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output]] [Required]¶ A sequence of fallbacks to try. param runnable: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶ The runnable to run first. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-2
Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-3
Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-4
Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”]
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-5
namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-6
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-7
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-8
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
450205991b21-9
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model. property runnables: Iterator[langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output]]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.fallbacks.RunnableWithFallbacks.html
b6cfd88bc0d3-0
langchain.schema.callbacks.tracers.log_stream.RunLog¶ class langchain.schema.callbacks.tracers.log_stream.RunLog(*ops: Dict[str, Any], state: RunState)[source]¶ A run log. Attributes state Current state of the log, obtained from applying all ops in sequence. Methods __init__(*ops, state) __init__(*ops: Dict[str, Any], state: RunState) → None[source]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.log_stream.RunLog.html
3dce2a10d570-0
langchain.schema.runnable.passthrough.identity¶ langchain.schema.runnable.passthrough.identity(x: Other) → Other[source]¶ An identity function
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.identity.html
90d0744029c6-0
langchain.schema.runnable.config.RunnableConfig¶ class langchain.schema.runnable.config.RunnableConfig[source]¶ Configuration for a Runnable. Attributes tags Tags for this call and any sub-calls (eg. metadata Metadata for this call and any sub-calls (eg. callbacks Callbacks for this call and any sub-calls (eg. run_name Name for the tracer run for this call. max_concurrency Maximum number of parallel calls to make. recursion_limit Maximum number of times a call can recurse. configurable Runtime values for attributes previously made configurable on this Runnable, or sub-Runnables, through .configurable_fields() or .configurable_alternatives(). Methods __init__(*args, **kwargs) clear() copy() fromkeys([value]) Create a new dictionary with keys from iterable and values set to value. get(key[, default]) Return the value for key if key is in the dictionary, else default. items() keys() pop(k[,d]) If the key is not found, return the default if given; otherwise, raise a KeyError. popitem() Remove and return a (key, value) pair as a 2-tuple. setdefault(key[, default]) Insert key with a value of default if key is not in the dictionary. update([E, ]**F) If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() __init__(*args, **kwargs)¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.RunnableConfig.html
90d0744029c6-1
values() __init__(*args, **kwargs)¶ clear() → None.  Remove all items from D.¶ copy() → a shallow copy of D¶ fromkeys(value=None, /)¶ Create a new dictionary with keys from iterable and values set to value. get(key, default=None, /)¶ Return the value for key if key is in the dictionary, else default. items() → a set-like object providing a view on D's items¶ keys() → a set-like object providing a view on D's keys¶ pop(k[, d]) → v, remove specified key and return the corresponding value.¶ If the key is not found, return the default if given; otherwise, raise a KeyError. popitem()¶ Remove and return a (key, value) pair as a 2-tuple. Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty. setdefault(key, default=None, /)¶ Insert key with a value of default if key is not in the dictionary. Return the value for key if key is in the dictionary, else default. update([E, ]**F) → None.  Update D from dict/iterable E and F.¶ If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() → an object providing a view on D's values¶ Examples using RunnableConfig¶ Run arbitrary functions
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.RunnableConfig.html
f9ef8ef73296-0
langchain.schema.callbacks.stdout.StdOutCallbackHandler¶ class langchain.schema.callbacks.stdout.StdOutCallbackHandler(color: Optional[str] = None)[source]¶ Callback Handler that prints to std out. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([color]) Initialize callback handler. on_agent_action(action[, color]) Run on agent action. on_agent_finish(finish[, color]) Run on agent end. on_chain_end(outputs, **kwargs) Print out that we finished a chain. on_chain_error(error, **kwargs) Do nothing. on_chain_start(serialized, inputs, **kwargs) Print out that we are entering a chain. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Do nothing. on_llm_error(error, **kwargs) Do nothing. on_llm_new_token(token, **kwargs) Do nothing. on_llm_start(serialized, prompts, **kwargs) Print out the prompts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.stdout.StdOutCallbackHandler.html
f9ef8ef73296-1
Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text[, color, end]) Run when agent ends. on_tool_end(output[, color, ...]) If not the final action, print out observation. on_tool_error(error, **kwargs) Do nothing. on_tool_start(serialized, input_str, **kwargs) Do nothing. __init__(color: Optional[str] = None) → None[source]¶ Initialize callback handler. on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶ Run on agent action. on_agent_finish(finish: AgentFinish, color: Optional[str] = None, **kwargs: Any) → None[source]¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we finished a chain. on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we are entering a chain. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Do nothing.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.stdout.StdOutCallbackHandler.html
f9ef8ef73296-2
Do nothing. on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing. on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Print out the prompts. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. on_text(text: str, color: Optional[str] = None, end: str = '', **kwargs: Any) → None[source]¶ Run when agent ends. on_tool_end(output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ If not the final action, print out observation.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.stdout.StdOutCallbackHandler.html
f9ef8ef73296-3
If not the final action, print out observation. on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing. Examples using StdOutCallbackHandler¶ Argilla Comet Aim Weights & Biases ClearML OpaquePrompts Vector SQL Retriever with MyScale Async API Custom chain
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.stdout.StdOutCallbackHandler.html
6c0024d2fe7f-0
langchain.schema.callbacks.tracers.schemas.TracerSessionBase¶ class langchain.schema.callbacks.tracers.schemas.TracerSessionBase[source]¶ Bases: TracerSessionV1Base Base class for TracerSession. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param extra: Optional[Dict[str, Any]] = None¶ param name: Optional[str] = None¶ param start_time: datetime.datetime [Optional]¶ param tenant_id: uuid.UUID [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSessionBase.html
6c0024d2fe7f-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSessionBase.html
6c0024d2fe7f-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.TracerSessionBase.html
da74605e0f31-0
langchain.schema.runnable.base.RunnableSequence¶ class langchain.schema.runnable.base.RunnableSequence[source]¶ Bases: RunnableSerializable[Input, Output] A sequence of runnables, where the output of each is the input of the next. RunnableSequence is the most important composition operator in LangChain as it is used in virtually every chain. A RunnableSequence can be instantiated directly or more commonly by using the | operator where either the left or right operands (or both) must be a Runnable. Any RunnableSequence automatically supports sync, async, batch. The default implementations of batch and abatch utilize threadpools and asyncio gather and will be faster than naive invocation of invoke or ainvoke for IO bound runnables. Batching is implemented by invoking the batch method on each component of the RunnableSequence in order. A RunnableSequence preserves the streaming properties of its components, so if all components of the sequence implement a transform method – which is the method that implements the logic to map a streaming input to a streaming output – then the sequence will be able to stream input to output! If any component of the sequence does not implement transform then the streaming will only begin after this component is run. If there are multiple blocking components, streaming begins after the last one. Please note: RunnableLambdas do not support transform by default! So ifyou need to use a RunnableLambdas be careful about where you place them in a RunnableSequence (if you need to use the .stream()/.astream() methods). If you need arbitrary logic and need streaming, you can subclass Runnable, and implement transform for whatever logic you need. Here is a simple example that uses simple functions to illustrate the use of RunnableSequence: from langchain.schema.runnable import RunnableLambda def add_one(x: int) -> int:
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-1
def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1 | runnable_2 # Or equivalently: # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await runnable.ainvoke(1) sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) Here’s an example that uses streams JSON output generated by an LLM: from langchain.output_parsers.json import SimpleJsonOutputParser from langchain.chat_models.openai import ChatOpenAI prompt = PromptTemplate.from_template( 'In JSON format, give me a list of {topic} and their ' 'corresponding names in French, Spanish and in a ' 'Cat Language.' ) model = ChatOpenAI() chain = prompt | model | SimpleJsonOutputParser() async for chunk in chain.astream({'topic': 'colors'}): print('-') print(chunk, sep='', flush=True) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param first: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, Any] [Required]¶ The first runnable in the sequence. param last: langchain.schema.runnable.base.Runnable[Any, langchain.schema.runnable.utils.Output] [Required]¶ The last runnable in the sequence. param middle: List[langchain.schema.runnable.base.Runnable[Any, Any]] [Optional]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-2
The middle runnables in the sequence. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-3
Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-4
Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-5
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-6
This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs,
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-7
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-8
Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
da74605e0f31-9
between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model. property steps: List[langchain.schema.runnable.base.Runnable[Any, Any]]¶ All the runnables that make up the sequence in order.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableSequence.html
4108ac0d5bbf-0
langchain.schema.runnable.base.coerce_to_runnable¶ langchain.schema.runnable.base.coerce_to_runnable(thing: Union[Runnable[Input, Output], Callable[[Input], Output], Callable[[Input], Awaitable[Output]], Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]], Mapping[str, Any]]) → Runnable[Input, Output][source]¶ Coerce a runnable-like object into a Runnable. Parameters thing – A runnable-like object. Returns A Runnable.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.coerce_to_runnable.html
1dea8168a532-0
langchain.schema.callbacks.tracers.langchain.wait_for_all_tracers¶ langchain.schema.callbacks.tracers.langchain.wait_for_all_tracers() → None[source]¶ Wait for all tracers to finish. Examples using wait_for_all_tracers¶ LangSmith Walkthrough
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.langchain.wait_for_all_tracers.html
9291e561746b-0
langchain.schema.messages.messages_from_dict¶ langchain.schema.messages.messages_from_dict(messages: List[dict]) → List[BaseMessage][source]¶ Convert a sequence of messages from dicts to Message objects. Parameters messages – Sequence of messages (as dicts) to convert. Returns List of messages (BaseMessages).
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.messages_from_dict.html
e0c81b2f553c-0
langchain.schema.runnable.config.EmptyDict¶ class langchain.schema.runnable.config.EmptyDict[source]¶ Empty dict type. Methods __init__(*args, **kwargs) clear() copy() fromkeys([value]) Create a new dictionary with keys from iterable and values set to value. get(key[, default]) Return the value for key if key is in the dictionary, else default. items() keys() pop(k[,d]) If the key is not found, return the default if given; otherwise, raise a KeyError. popitem() Remove and return a (key, value) pair as a 2-tuple. setdefault(key[, default]) Insert key with a value of default if key is not in the dictionary. update([E, ]**F) If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() __init__(*args, **kwargs)¶ clear() → None.  Remove all items from D.¶ copy() → a shallow copy of D¶ fromkeys(value=None, /)¶ Create a new dictionary with keys from iterable and values set to value. get(key, default=None, /)¶ Return the value for key if key is in the dictionary, else default. items() → a set-like object providing a view on D's items¶ keys() → a set-like object providing a view on D's keys¶ pop(k[, d]) → v, remove specified key and return the corresponding value.¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.EmptyDict.html
e0c81b2f553c-1
pop(k[, d]) → v, remove specified key and return the corresponding value.¶ If the key is not found, return the default if given; otherwise, raise a KeyError. popitem()¶ Remove and return a (key, value) pair as a 2-tuple. Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty. setdefault(key, default=None, /)¶ Insert key with a value of default if key is not in the dictionary. Return the value for key if key is in the dictionary, else default. update([E, ]**F) → None.  Update D from dict/iterable E and F.¶ If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() → an object providing a view on D's values¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.EmptyDict.html
31f4493a812a-0
langchain.schema.output.ChatGeneration¶ class langchain.schema.output.ChatGeneration[source]¶ Bases: Generation A single chat generation output. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generation_info: Optional[Dict[str, Any]] = None¶ Raw response from the provider. May include things like the reason for finishing or token log probabilities. param message: langchain.schema.messages.BaseMessage [Required]¶ The message output by the chat model. param text: str = ''¶ SHOULD NOT BE SET DIRECTLY The text contents of the output message. param type: Literal['ChatGeneration'] = 'ChatGeneration'¶ Type is used exclusively for serialization purposes. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatGeneration.html
31f4493a812a-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatGeneration.html
31f4493a812a-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatGeneration.html
8f2d1a70ec78-0
langchain.schema.callbacks.tracers.schemas.BaseRun¶ class langchain.schema.callbacks.tracers.schemas.BaseRun[source]¶ Bases: BaseModel Base class for Run. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param child_execution_order: int [Required]¶ param end_time: datetime.datetime [Optional]¶ param error: Optional[str] = None¶ param execution_order: int [Required]¶ param extra: Optional[Dict[str, Any]] = None¶ param parent_uuid: Optional[str] = None¶ param serialized: Dict[str, Any] [Required]¶ param session_id: int [Required]¶ param start_time: datetime.datetime [Optional]¶ param uuid: str [Required]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.BaseRun.html
8f2d1a70ec78-1
the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.BaseRun.html
8f2d1a70ec78-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.BaseRun.html
6452eacbb973-0
langchain.schema.runnable.utils.aadd¶ async langchain.schema.runnable.utils.aadd(addables: AsyncIterable[Addable]) → Optional[Addable][source]¶ Asynchronously add a sequence of addable objects together.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.aadd.html
73127e01efc3-0
langchain.schema.runnable.config.ensure_config¶ langchain.schema.runnable.config.ensure_config(config: Optional[RunnableConfig] = None) → RunnableConfig[source]¶ Ensure that a config is a dict with all keys present. Parameters config (Optional[RunnableConfig], optional) – The config to ensure. Defaults to None. Returns The ensured config. Return type RunnableConfig
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.ensure_config.html
6ca4b12e8ca8-0
langchain.schema.output.GenerationChunk¶ class langchain.schema.output.GenerationChunk[source]¶ Bases: Generation A Generation chunk, which can be concatenated with other Generation chunks. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param generation_info: Optional[Dict[str, Any]] = None¶ Raw response from the provider. May include things like the reason for finishing or token log probabilities. param text: str [Required]¶ Generated text output. param type: Literal['Generation'] = 'Generation'¶ Type is used exclusively for serialization purposes. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.GenerationChunk.html
6ca4b12e8ca8-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.GenerationChunk.html
6ca4b12e8ca8-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
lang/api.python.langchain.com/en/latest/schema/langchain.schema.output.GenerationChunk.html
b041dea9f01d-0
langchain.schema.messages.FunctionMessage¶ class langchain.schema.messages.FunctionMessage[source]¶ Bases: BaseMessage A Message for passing the result of executing a function back to a model. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ Any additional information. param content: Union[str, List[Union[str, Dict]]] [Required]¶ The string contents of the message. param name: str [Required]¶ The name of the function that was executed. param type: Literal['function'] = 'function'¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessage.html
b041dea9f01d-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessage.html
b041dea9f01d-2
The unique identifier is a list of strings that describes the path to the object. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessage.html
ecd3f7d27cf9-0
langchain.schema.runnable.retry.RunnableRetry¶ class langchain.schema.runnable.retry.RunnableRetry[source]¶ Bases: RunnableBindingBase[Input, Output] Retry a Runnable if it fails. A RunnableRetry helps can be used to add retry logic to any object that subclasses the base Runnable. Such retries are especially useful for network calls that may fail due to transient errors. The RunnableRetry is implemented as a RunnableBinding. The easiest way to use it is through the .with_retry() method on all Runnables. Example: Here’s an example that uses a RunnableLambda to raise an exception import time def foo(input) -> None: '''Fake function that raises an exception.''' raise ValueError("Invoking foo failed. At time {time.time()}") runnable = RunnableLambda(foo) runnable_with_retries = runnable.with_retry( retry_exception_types=(ValueError,), # Retry only on ValueError wait_exponential_jitter=True, # Add jitter to the exponential backoff max_attempt_number=2, # Try twice ) # The method invocation above is equivalent to the longer form below: runnable_with_retries = RunnableRetry( bound=runnable, retry_exception_types=(ValueError,), max_attempt_number=2, wait_exponential_jitter=True ) This logic can be used to retry any Runnable, including a chain of Runnables, but in general it’s best practice to keep the scope of the retry as small as possible. For example, if you have a chain of Runnables, you should only retry the Runnable that is likely to fail, not the entire chain. Example from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-1
from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate template = PromptTemplate.from_template("tell me a joke about {topic}.") model = ChatOpenAI(temperature=0.5) # Good chain = template | model.with_retry() # Bad chain = template | model retryable_chain = chain.with_retry() Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param bound: Runnable[Input, Output] [Required]¶ param config: RunnableConfig [Optional]¶ param config_factories: List[Callable[[RunnableConfig], RunnableConfig]] [Optional]¶ param custom_input_type: Optional[Any] = None¶ param custom_output_type: Optional[Any] = None¶ param kwargs: Mapping[str, Any] [Optional]¶ param max_attempt_number: int = 3¶ The maximum number of attempts to retry the runnable. param retry_exception_types: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)¶ The exception types to retry on. By default all exceptions are retried. In general you should only retry on exceptions that are likely to be transient, such as network errors. Good exceptions to retry are all server errors (5xx) and selected client errors (4xx) such as 429 Too Many Requests. param wait_exponential_jitter: bool = True¶ Whether to add jitter to the exponential backoff. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[Output][source]¶ Default implementation runs ainvoke in parallel using asyncio.gather.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-2
Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-3
The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[Output][source]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-4
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-5
Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-6
Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-7
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-8
fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
ecd3f7d27cf9-9
The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.retry.RunnableRetry.html
130068305dea-0
langchain.schema.chat.ChatSession¶ class langchain.schema.chat.ChatSession[source]¶ Chat Session represents a single conversation, channel, or other group of messages. messages: Sequence[langchain.schema.messages.BaseMessage]¶ The LangChain chat messages loaded from the source. functions: Sequence[dict]¶ The function calling specs for the messages. Examples using ChatSession¶ Slack WhatsApp iMessage Telegram Discord
lang/api.python.langchain.com/en/latest/schema/langchain.schema.chat.ChatSession.html
8b30b7e5e4ff-0
langchain.schema.language_model.BaseLanguageModel¶ class langchain.schema.language_model.BaseLanguageModel[source]¶ Bases: RunnableSerializable[Union[PromptValue, str, List[BaseMessage]], LanguageModelOutput], ABC Abstract base class for interfacing with language models. All language model wrappers inherit from BaseLanguageModel. Exposes three main methods: - generate_prompt: generate language model outputs for a sequence of prompt values. A prompt value is a model input that can be converted to any language model input format (string or messages). predict: pass in a single string to a language model and return a stringprediction. predict_messages: pass in a sequence of BaseMessages (corresponding to a singlemodel call) to a language model and return a BaseMessage prediction. Each of these has an equivalent asynchronous method. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. abstract async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Callbacks = None, **kwargs: Any) → LLMResult[source]¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to:
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-1
API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. abstract async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-2
**kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. abstract async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-3
Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-4
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-5
classmethod from_orm(obj: Any) → Model¶ abstract generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Callbacks = None, **kwargs: Any) → LLMResult[source]¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-6
Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_num_tokens(text: str) → int[source]¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int[source]¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_token_ids(text: str) → List[int][source]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-7
abstract invoke(input: Input, config: Optional[RunnableConfig] = None) → Output¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-8
by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ abstract predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. abstract predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-9
to the model provider API call. Returns Top model prediction as a message. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-10
exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: TypeAlias¶ Get the input type for this runnable.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
8b30b7e5e4ff-11
property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using BaseLanguageModel¶ Custom chain
lang/api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html
a343556478a7-0
langchain.schema.callbacks.manager.CallbackManagerForRetrieverRun¶ class langchain.schema.callbacks.manager.CallbackManagerForRetrieverRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Callback manager for retriever run. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_child([tag]) Get a child callback manager. get_noop_manager() Return a manager that doesn't perform any operations. on_retriever_end(documents, **kwargs) Run when retriever ends running. on_retriever_error(error, **kwargs) Run when retriever errors. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForRetrieverRun.html
a343556478a7-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. get_child(tag: Optional[str] = None) → CallbackManager¶ Get a child callback manager. Parameters tag (str, optional) – The tag for the child callback manager. Defaults to None. Returns The child callback manager. Return type CallbackManager classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager on_retriever_end(documents: Sequence[Document], **kwargs: Any) → None[source]¶ Run when retriever ends running. on_retriever_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when retriever errors.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForRetrieverRun.html
a343556478a7-2
Run when retriever errors. on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶ Run on a retry event. on_text(text: str, **kwargs: Any) → Any¶ Run when text is received. Parameters text (str) – The received text. Returns The result of the callback. Return type Any Examples using CallbackManagerForRetrieverRun¶ Retrieve as you generate with FLARE
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.CallbackManagerForRetrieverRun.html
29ac32343a6a-0
langchain.schema.callbacks.tracers.base.BaseTracer¶ class langchain.schema.callbacks.tracers.base.BaseTracer(**kwargs: Any)[source]¶ Base interface for tracers. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(**kwargs) on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, inputs]) End a trace for a chain run. on_chain_error(error, *[, inputs]) Handle an error for a chain run. on_chain_start(serialized, inputs, *, run_id) Start a trace for a chain run. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id, **kwargs) End a trace for an LLM run. on_llm_error(error, *, run_id, **kwargs) Handle an error for an LLM run. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Start a trace for an LLM run. on_retriever_end(documents, *, run_id, **kwargs) Run when Retriever ends running.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.base.BaseTracer.html
29ac32343a6a-1
Run when Retriever ends running. on_retriever_error(error, *, run_id, **kwargs) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id, **kwargs) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id, **kwargs) End a trace for a tool run. on_tool_error(error, *, run_id, **kwargs) Handle an error for a tool run. on_tool_start(serialized, input_str, *, run_id) Start a trace for a tool run. __init__(**kwargs: Any) → None[source]¶ on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run[source]¶ End a trace for a chain run. on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run[source]¶ Handle an error for a chain run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.base.BaseTracer.html
29ac32343a6a-2
Handle an error for a chain run. on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run[source]¶ Start a trace for a chain run. on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run[source]¶ End a trace for an LLM run. on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run[source]¶ Handle an error for an LLM run. on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run[source]¶ Run on new LLM token. Only available when streaming is enabled. on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run[source]¶
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.base.BaseTracer.html
29ac32343a6a-3
Start a trace for an LLM run. on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run[source]¶ Run when Retriever ends running. on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run[source]¶ Run when Retriever errors. on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run[source]¶ Run when Retriever starts running. on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run[source]¶ Run on a retry event. on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run[source]¶ End a trace for a tool run. on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run[source]¶ Handle an error for a tool run. on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run[source]¶ Start a trace for a tool run.
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.base.BaseTracer.html
c59ee4ccf988-0
langchain.schema.callbacks.manager.handle_event¶ langchain.schema.callbacks.manager.handle_event(handlers: List[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any) → None[source]¶ Generic event handler for CallbackManager. Note: This function is used by langserve to handle events. Parameters handlers – The list of handlers that will handle the event event_name – The name of the event (e.g., “on_llm_start”) ignore_condition_name – Name of the attribute defined on handler that if True will cause the handler to be skipped for the given event *args – The arguments to pass to the event handler **kwargs – The keyword arguments to pass to the event handler
lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.handle_event.html
1c42795eb5dd-0
langchain.schema.messages.get_buffer_string¶ langchain.schema.messages.get_buffer_string(messages: Sequence[BaseMessage], human_prefix: str = 'Human', ai_prefix: str = 'AI') → str[source]¶ Convert sequence of Messages to strings and concatenate them into one string. Args:messages: Messages to be converted to strings. human_prefix: The prefix to prepend to contents of HumanMessages. ai_prefix: THe prefix to prepend to contents of AIMessages. Returns:A single string concatenation of all input messages. Example:from langchain.schema import AIMessage, HumanMessage messages = [ HumanMessage(content="Hi, how are you?"), AIMessage(content="Good, how are you?"), ] get_buffer_string(messages) # -> "Human: Hi, how are you? AI: Good, how are you?”
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.get_buffer_string.html
2bf196a59c74-0
langchain.schema.messages.FunctionMessageChunk¶ class langchain.schema.messages.FunctionMessageChunk[source]¶ Bases: FunctionMessage, BaseMessageChunk A Function Message chunk. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param additional_kwargs: dict [Optional]¶ Any additional information. param content: Union[str, List[Union[str, Dict]]] [Required]¶ The string contents of the message. param name: str [Required]¶ The name of the function that was executed. param type: Literal['FunctionMessageChunk'] = 'FunctionMessageChunk'¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessageChunk.html