id
stringlengths 14
16
| text
stringlengths 13
2.7k
| source
stringlengths 57
178
|
---|---|---|
2bf196a59c74-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessageChunk.html |
2bf196a59c74-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”} | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessageChunk.html |
2f3197cef53f-0 | langchain.schema.callbacks.tracers.langchain_v1.get_headers¶
langchain.schema.callbacks.tracers.langchain_v1.get_headers() → Dict[str, Any][source]¶
Get the headers for the LangChain API. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.langchain_v1.get_headers.html |
a8e14fa9a6c5-0 | langchain.schema.runnable.config.get_callback_manager_for_config¶
langchain.schema.runnable.config.get_callback_manager_for_config(config: RunnableConfig) → CallbackManager[source]¶
Get a callback manager for a config.
Parameters
config (RunnableConfig) – The config.
Returns
The callback manager.
Return type
CallbackManager | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.get_callback_manager_for_config.html |
a2716685f162-0 | langchain.schema.callbacks.tracers.schemas.ToolRun¶
class langchain.schema.callbacks.tracers.schemas.ToolRun[source]¶
Bases: BaseRun
Class for ToolRun.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param action: str [Required]¶
param child_chain_runs: List[langchain.schema.callbacks.tracers.schemas.ChainRun] [Optional]¶
param child_execution_order: int [Required]¶
param child_llm_runs: List[langchain.schema.callbacks.tracers.schemas.LLMRun] [Optional]¶
param child_tool_runs: List[langchain.schema.callbacks.tracers.schemas.ToolRun] [Optional]¶
param end_time: datetime.datetime [Optional]¶
param error: Optional[str] = None¶
param execution_order: int [Required]¶
param extra: Optional[Dict[str, Any]] = None¶
param output: Optional[str] = None¶
param parent_uuid: Optional[str] = None¶
param serialized: Dict[str, Any] [Required]¶
param session_id: int [Required]¶
param start_time: datetime.datetime [Optional]¶
param tool_input: str [Required]¶
param uuid: str [Required]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.ToolRun.html |
a2716685f162-1 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.ToolRun.html |
a2716685f162-2 | classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.ToolRun.html |
306fb54c6095-0 | langchain.schema.callbacks.tracers.log_stream.RunLogPatch¶
class langchain.schema.callbacks.tracers.log_stream.RunLogPatch(*ops: Dict[str, Any])[source]¶
A patch to the run log.
Attributes
ops
List of jsonpatch operations, which describe how to create the run state from an empty dict.
Methods
__init__(*ops)
__init__(*ops: Dict[str, Any]) → None[source]¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.log_stream.RunLogPatch.html |
7e7197cb7d3e-0 | langchain.schema.runnable.config.patch_config¶
langchain.schema.runnable.config.patch_config(config: Optional[RunnableConfig], *, callbacks: Optional[BaseCallbackManager] = None, recursion_limit: Optional[int] = None, max_concurrency: Optional[int] = None, run_name: Optional[str] = None, configurable: Optional[Dict[str, Any]] = None) → RunnableConfig[source]¶
Patch a config with new values.
Parameters
config (Optional[RunnableConfig]) – The config to patch.
copy_locals (bool, optional) – Whether to copy locals. Defaults to False.
callbacks (Optional[BaseCallbackManager], optional) – The callbacks to set.
Defaults to None.
recursion_limit (Optional[int], optional) – The recursion limit to set.
Defaults to None.
max_concurrency (Optional[int], optional) – The max concurrency to set.
Defaults to None.
run_name (Optional[str], optional) – The run name to set. Defaults to None.
configurable (Optional[Dict[str, Any]], optional) – The configurable to set.
Defaults to None.
Returns
The patched config.
Return type
RunnableConfig | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.patch_config.html |
16449014e5d1-0 | langchain.schema.agent.AgentAction¶
class langchain.schema.agent.AgentAction[source]¶
Bases: Serializable
A full description of an action for an ActionAgent to execute.
Override init to support instantiation by position for backward compat.
param log: str [Required]¶
Additional information to log about the action.
This log can be used in a few ways. First, it can be used to audit
what exactly the LLM predicted to lead to this (tool, tool_input).
Second, it can be used in future iterations to show the LLMs prior
thoughts. This is useful when (tool, tool_input) does not contain
full information about the LLM prediction (for example, any thought
before the tool/tool_input).
param tool: str [Required]¶
The name of the Tool to execute.
param tool_input: Union[str, dict] [Required]¶
The input to pass in to the Tool.
param type: Literal['AgentAction'] = 'AgentAction'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include | lang/api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentAction.html |
16449014e5d1-1 | exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool[source]¶
Return whether or not the class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict(). | lang/api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentAction.html |
16449014e5d1-2 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
Examples using AgentAction¶
Custom Trajectory Evaluator
Agents
Plug-and-Plai
Wikibase Agent | lang/api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentAction.html |
16449014e5d1-3 | Custom Trajectory Evaluator
Agents
Plug-and-Plai
Wikibase Agent
SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base
Custom Agent with PlugIn Retrieval
Multiple callback handlers
Custom multi-action agent
Custom agent
Custom agent with tool retrieval | lang/api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentAction.html |
56eb57d54868-0 | langchain.schema.callbacks.base.AsyncCallbackHandler¶
class langchain.schema.callbacks.base.AsyncCallbackHandler[source]¶
Async callback handler that handles callbacks from LangChain.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, ...])
Run when chain ends running.
on_chain_error(error, *, run_id[, ...])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, ...])
Run when LLM ends running.
on_llm_error(error, *, run_id[, ...])
Run when LLM errors.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run on retriever end.
on_retriever_error(error, *, run_id[, ...])
Run on retriever error. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.AsyncCallbackHandler.html |
56eb57d54868-1 | Run on retriever error.
on_retriever_start(serialized, query, *, run_id)
Run on retriever start.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id, tags])
Run on arbitrary text.
on_tool_end(output, *, run_id[, ...])
Run when tool ends running.
on_tool_error(error, *, run_id[, ...])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__()¶
async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on agent action.
async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on agent end.
async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when chain ends running.
async on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when chain errors. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.AsyncCallbackHandler.html |
56eb57d54868-2 | Run when chain errors.
async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when chain starts running.
async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run when a chat model starts running.
async on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when LLM ends running.
async on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when LLM errors.
async on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.AsyncCallbackHandler.html |
56eb57d54868-3 | Run on new LLM token. Only available when streaming is enabled.
async on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when LLM starts running.
async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on retriever end.
async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on retriever error.
async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run on retriever start.
async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run on a retry event.
async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on arbitrary text. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.AsyncCallbackHandler.html |
56eb57d54868-4 | Run on arbitrary text.
async on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when tool ends running.
async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when tool errors.
async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when tool starts running.
Examples using AsyncCallbackHandler¶
Async callbacks | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.AsyncCallbackHandler.html |
d7c80d791d8d-0 | langchain.schema.runnable.config.acall_func_with_variable_args¶
async langchain.schema.runnable.config.acall_func_with_variable_args(func: Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]], input: Input, config: RunnableConfig, run_manager: Optional[AsyncCallbackManagerForChainRun] = None, **kwargs: Any) → Output[source]¶
Call function that may optionally accept a run_manager and/or config.
Parameters
(Union[Callable[[Input] (func) – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,
AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]):
The function to call.
Awaitable[Output]] – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,
AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]):
The function to call.
Callable[[Input – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,
AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]):
The function to call.
:paramAsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]):
The function to call.
Parameters
input (Input) – The input to the function.
run_manager (AsyncCallbackManagerForChainRun) – The run manager
to pass to the function.
config (RunnableConfig) – The config to pass to the function.
**kwargs (Any) – The keyword arguments to pass to the function.
Returns
The output of the function.
Return type
Output | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.acall_func_with_variable_args.html |
c6efaf936362-0 | langchain.schema.output_parser.OutputParserException¶
class langchain.schema.output_parser.OutputParserException(error: Any, observation: Optional[str] = None, llm_output: Optional[str] = None, send_to_llm: bool = False)[source]¶
Exception that output parsers should raise to signify a parsing error.
This exists to differentiate parsing errors from other code or execution errors
that also may arise inside the output parser. OutputParserExceptions will be
available to catch and handle in ways to fix the parsing error, while other
errors will be raised.
Parameters
error – The error that’s being re-raised or an error message.
observation – String explanation of error which can be passed to a
model to try and remediate the issue.
llm_output – String model output which is error-ing.
send_to_llm – Whether to send the observation and llm_output back to an Agent
after an OutputParserException has been raised. This gives the underlying
model driving the agent the context that the previous output was improperly
structured, in the hopes that it will update the output to the correct
format. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.OutputParserException.html |
5a8e3a679f7a-0 | langchain.schema.runnable.config.get_config_list¶
langchain.schema.runnable.config.get_config_list(config: Optional[Union[RunnableConfig, List[RunnableConfig]]], length: int) → List[RunnableConfig][source]¶
Get a list of configs from a single config or a list of configs.
It is useful for subclasses overriding batch() or abatch().
Parameters
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – The config or list of configs.
length (int) – The length of the list.
Returns
The list of configs.
Return type
List[RunnableConfig]
Raises
ValueError – If the length of the list is not equal to the length of the inputs. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.get_config_list.html |
08af5e063a05-0 | langchain.schema.storage.BaseStore¶
class langchain.schema.storage.BaseStore[source]¶
Abstract interface for a key-value store.
Methods
__init__()
mdelete(keys)
Delete the given keys and their associated values.
mget(keys)
Get the values associated with the given keys.
mset(key_value_pairs)
Set the values for the given keys.
yield_keys(*[, prefix])
Get an iterator over keys that match the given prefix.
__init__()¶
abstract mdelete(keys: Sequence[K]) → None[source]¶
Delete the given keys and their associated values.
Parameters
keys (Sequence[K]) – A sequence of keys to delete.
abstract mget(keys: Sequence[K]) → List[Optional[V]][source]¶
Get the values associated with the given keys.
Parameters
keys (Sequence[K]) – A sequence of keys.
Returns
A sequence of optional values associated with the keys.
If a key is not found, the corresponding value will be None.
abstract mset(key_value_pairs: Sequence[Tuple[K, V]]) → None[source]¶
Set the values for the given keys.
Parameters
key_value_pairs (Sequence[Tuple[K, V]]) – A sequence of key-value pairs.
abstract yield_keys(*, prefix: Optional[str] = None) → Union[Iterator[K], Iterator[str]][source]¶
Get an iterator over keys that match the given prefix.
Parameters
prefix (str) – The prefix to match.
Returns
An iterator over keys that match the given prefix.
This method is allowed to return an iterator over either K or str
depending on what makes more sense for the given store.
Return type
Iterator[K | str] | lang/api.python.langchain.com/en/latest/schema/langchain.schema.storage.BaseStore.html |
345b08b5d37b-0 | langchain.schema.callbacks.tracers.schemas.Run¶
class langchain.schema.callbacks.tracers.schemas.Run[source]¶
Bases: RunBase
Run schema for the V2 API in the Tracer.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param child_execution_order: int [Required]¶
param child_runs: List[langchain.schema.callbacks.tracers.schemas.Run] [Optional]¶
param end_time: Optional[<module 'datetime' from '/home/docs/.asdf/installs/python/3.11.6/lib/python3.11/datetime.py'>] = None¶
End time of the run, if applicable.
param error: Optional[str] = None¶
Error message, if the run encountered any issues.
param events: List[Dict[str, Any]] [Optional]¶
List of events associated with the run, like
start and end events.
param execution_order: int [Required]¶
param extra: Optional[dict] = None¶
Additional metadata or settings related to the run.
param id: uuid.UUID [Required]¶
Unique identifier for the run.
param inputs: dict [Required]¶
Inputs used for the run.
param name: str [Required]¶
Human-readable name for the run.
param outputs: Optional[dict] = None¶
Outputs generated by the run, if any.
param parent_run_id: Optional[uuid.UUID] = None¶
Identifier for a parent run, if this run is a sub-run.
param reference_example_id: Optional[uuid.UUID] = None¶
Reference to an example that this run may be based on.
param run_type: str [Required]¶
The type of run, such as tool, chain, llm, retriever, | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.Run.html |
345b08b5d37b-1 | The type of run, such as tool, chain, llm, retriever,
embedding, prompt, parser.
param serialized: Optional[dict] = None¶
Serialized object that executed the run for potential reuse.
param start_time: <module 'datetime' from '/home/docs/.asdf/installs/python/3.11.6/lib/python3.11/datetime.py'> [Required]¶
Start time of the run.
param tags: Optional[List[str]] [Optional]¶
Tags for categorizing or annotating the run.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.Run.html |
345b08b5d37b-2 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.Run.html |
345b08b5d37b-3 | classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.schemas.Run.html |
d407a2a79f4f-0 | langchain.schema.runnable.utils.SupportsAdd¶
class langchain.schema.runnable.utils.SupportsAdd(*args, **kwargs)[source]¶
Protocol for objects that support addition.
Methods
__init__(*args, **kwargs)
__init__(*args, **kwargs)¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.SupportsAdd.html |
077154bdb8a5-0 | langchain.schema.callbacks.tracers.stdout.ConsoleCallbackHandler¶
class langchain.schema.callbacks.tracers.stdout.ConsoleCallbackHandler(**kwargs: Any)[source]¶
Tracer that prints to the console.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
name
raise_error
run_inline
Methods
__init__(**kwargs)
get_breadcrumbs(run)
get_parents(run)
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, inputs])
End a trace for a chain run.
on_chain_error(error, *[, inputs])
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs) | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.stdout.ConsoleCallbackHandler.html |
077154bdb8a5-1 | on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id, **kwargs)
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
__init__(**kwargs: Any) → None[source]¶
get_breadcrumbs(run: Run) → str¶
get_parents(run: Run) → List[Run]¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶
End a trace for a chain run. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.stdout.ConsoleCallbackHandler.html |
077154bdb8a5-2 | End a trace for a chain run.
on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶
End a trace for an LLM run.
on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶
Run on new LLM token. Only available when streaming is enabled. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.stdout.ConsoleCallbackHandler.html |
077154bdb8a5-3 | Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run¶
End a trace for a tool run.
on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a tool run. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.stdout.ConsoleCallbackHandler.html |
077154bdb8a5-4 | Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a tool run. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.stdout.ConsoleCallbackHandler.html |
4788775d9d4a-0 | langchain.schema.callbacks.manager.AsyncCallbackManagerForToolRun¶
class langchain.schema.callbacks.manager.AsyncCallbackManagerForToolRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Async callback manager for tool run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_retry(retry_state, **kwargs)
Run on a retry event.
on_text(text, **kwargs)
Run when text is received.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.AsyncCallbackManagerForToolRun.html |
4788775d9d4a-1 | on_tool_error(error, **kwargs)
Run when tool errors.
__init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
get_child(tag: Optional[str] = None) → AsyncCallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
AsyncCallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶
Run on a retry event.
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.AsyncCallbackManagerForToolRun.html |
4788775d9d4a-2 | Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
async on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
Parameters
output (str) – The output of the tool.
async on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when tool errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
Examples using AsyncCallbackManagerForToolRun¶
Defining Custom Tools | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.AsyncCallbackManagerForToolRun.html |
1863bad0f0d1-0 | langchain.schema.runnable.configurable.RunnableConfigurableAlternatives¶
class langchain.schema.runnable.configurable.RunnableConfigurableAlternatives[source]¶
Bases: DynamicRunnable[Input, Output]
A Runnable that can be dynamically configured.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param alternatives: Dict[str, Union[langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output], Callable[[], langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output]]]] [Required]¶
param default: langchain.schema.runnable.base.RunnableSerializable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶
param default_key: str = 'default'¶
param which: langchain.schema.runnable.utils.ConfigurableField [Required]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
1863bad0f0d1-1 | Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
1863bad0f0d1-2 | Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output][source]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
1863bad0f0d1-3 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”] | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
1863bad0f0d1-4 | namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict(). | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
1863bad0f0d1-5 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
1863bad0f0d1-6 | Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
1863bad0f0d1-7 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
1863bad0f0d1-8 | property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
3305019b9fdd-0 | langchain.schema.callbacks.manager.env_var_is_set¶
langchain.schema.callbacks.manager.env_var_is_set(env_var: str) → bool[source]¶
Check if an environment variable is set.
Parameters
env_var (str) – The name of the environment variable.
Returns
True if the environment variable is set, False otherwise.
Return type
bool | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.env_var_is_set.html |
d65f69a1bb98-0 | langchain.schema.embeddings.Embeddings¶
class langchain.schema.embeddings.Embeddings[source]¶
Interface for embedding models.
Methods
__init__()
aembed_documents(texts)
Asynchronous Embed search docs.
aembed_query(text)
Asynchronous Embed query text.
embed_documents(texts)
Embed search docs.
embed_query(text)
Embed query text.
__init__()¶
async aembed_documents(texts: List[str]) → List[List[float]][source]¶
Asynchronous Embed search docs.
async aembed_query(text: str) → List[float][source]¶
Asynchronous Embed query text.
abstract embed_documents(texts: List[str]) → List[List[float]][source]¶
Embed search docs.
abstract embed_query(text: str) → List[float][source]¶
Embed query text. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.embeddings.Embeddings.html |
806a65b18166-0 | langchain.schema.callbacks.tracers.base.TracerException¶
class langchain.schema.callbacks.tracers.base.TracerException[source]¶
Base class for exceptions in tracers module. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.base.TracerException.html |
9fb51039a255-0 | langchain.schema.runnable.base.RunnableLambda¶
class langchain.schema.runnable.base.RunnableLambda(func: Union[Union[Callable[[Input], Output], Callable[[Input, RunnableConfig], Output], Callable[[Input, CallbackManagerForChainRun], Output], Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output]], Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]], afunc: Optional[Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]] = None)[source]¶
RunnableLambda converts a python callable into a Runnable.
Wrapping a callable in a RunnableLambda makes the callable usable
within either a sync or async context.
RunnableLambda can be composed as any other Runnable and provides
seamless integration with LangChain tracing.
Examples
# This is a RunnableLambda
from langchain.schema.runnable import RunnableLambda
def add_one(x: int) -> int:
return x + 1
runnable = RunnableLambda(add_one)
runnable.invoke(1) # returns 2
runnable.batch([1, 2, 3]) # returns [2, 3, 4]
# Async is supported by default by delegating to the sync implementation
await runnable.ainvoke(1) # returns 2
await runnable.abatch([1, 2, 3]) # returns [2, 3, 4]
# Alternatively, can provide both synd and sync implementations | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
9fb51039a255-1 | # Alternatively, can provide both synd and sync implementations
async def add_one_async(x: int) -> int:
return x + 1
runnable = RunnableLambda(add_one, afunc=add_one_async)
runnable.invoke(1) # Uses add_one
await runnable.ainvoke(1) # Uses add_one_async
Create a RunnableLambda from a callable, and async callable or both.
Accepts both sync and async variants to allow providing efficient
implementations for sync and async execution.
Parameters
func – Either sync or async callable
afunc – An async callable that takes an input and returns an output.
Attributes
InputType
The type of the input to this runnable.
OutputType
The type of the output of this runnable as a type annotation.
config_specs
List configurable fields for this runnable.
input_schema
The type of input this runnable accepts specified as a pydantic model.
output_schema
The type of output this runnable produces specified as a pydantic model.
Methods
__init__(func[, afunc])
Create a RunnableLambda from a callable, and async callable or both.
abatch(inputs[, config, return_exceptions])
Default implementation runs ainvoke in parallel using asyncio.gather.
ainvoke(input[, config])
Invoke this runnable asynchronously.
astream(input[, config])
Default implementation of astream, which calls ainvoke.
astream_log(input[, config, diff, ...])
Stream all output from a runnable, as reported to the callback system.
atransform(input[, config])
Default implementation of atransform, which buffers input and calls astream.
batch(inputs[, config, return_exceptions])
Default implementation runs invoke in parallel using a thread pool executor.
bind(**kwargs)
Bind arguments to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
9fb51039a255-2 | bind(**kwargs)
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*[, include])
The type of config this runnable accepts specified as a pydantic model.
get_input_schema([config])
The pydantic schema for the input to this runnable.
get_output_schema([config])
Get a pydantic model that can be used to validate output to the runnable.
invoke(input[, config])
Invoke this runnable synchronously.
map()
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
stream(input[, config])
Default implementation of stream, which calls invoke.
transform(input[, config])
Default implementation of transform, which buffers input and then calls stream.
with_config([config])
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks, *[, ...])
Add fallbacks to a runnable, returning a new Runnable.
with_listeners(*[, on_start, on_end, on_error])
Bind lifecycle listeners to a Runnable, returning a new Runnable.
with_retry(*[, retry_if_exception_type, ...])
Create a new Runnable that retries the original runnable on exceptions.
with_types(*[, input_type, output_type])
Bind input and output types to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
9fb51039a255-3 | Bind input and output types to a Runnable, returning a new Runnable.
__init__(func: Union[Union[Callable[[Input], Output], Callable[[Input, RunnableConfig], Output], Callable[[Input, CallbackManagerForChainRun], Output], Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output]], Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]], afunc: Optional[Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]] = None) → None[source]¶
Create a RunnableLambda from a callable, and async callable or both.
Accepts both sync and async variants to allow providing efficient
implementations for sync and async execution.
Parameters
func – Either sync or async callable
afunc – An async callable that takes an input and returns an output.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
Invoke this runnable asynchronously. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
9fb51039a255-4 | Invoke this runnable asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
9fb51039a255-5 | Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
The pydantic schema for the input to this runnable.
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
Invoke this runnable synchronously.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs, | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
9fb51039a255-6 | Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
9fb51039a255-7 | on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
Examples using RunnableLambda¶
sql_db.md
Run arbitrary functions | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
715ff46443bb-0 | langchain.schema.runnable.base.RunnableEach¶
class langchain.schema.runnable.base.RunnableEach[source]¶
Bases: RunnableEachBase[Input, Output]
A runnable that delegates calls to another runnable
with each element of the input sequence.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param bound: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Output]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
715ff46443bb-1 | Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
715ff46443bb-2 | e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → RunnableEach[Input, Output][source]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
715ff46443bb-3 | Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
715ff46443bb-4 | Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Output]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
715ff46443bb-5 | classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
715ff46443bb-6 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → RunnableEach[Input, Output][source]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → RunnableEach[Input, Output][source]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
715ff46443bb-7 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Any¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[List[langchain.schema.runnable.utils.Output]]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
715ff46443bb-8 | property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableEach.html |
a499d952c09c-0 | langchain.schema.callbacks.base.RetrieverManagerMixin¶
class langchain.schema.callbacks.base.RetrieverManagerMixin[source]¶
Mixin for Retriever callbacks.
Methods
__init__()
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
__init__()¶
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when Retriever errors. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.RetrieverManagerMixin.html |
e24e88c2b1b5-0 | langchain.schema.messages.ChatMessage¶
class langchain.schema.messages.ChatMessage[source]¶
Bases: BaseMessage
A Message that can be assigned an arbitrary speaker (i.e. role).
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_kwargs: dict [Optional]¶
Any additional information.
param content: Union[str, List[Union[str, Dict]]] [Required]¶
The string contents of the message.
param role: str [Required]¶
The speaker / role of the Message.
param type: Literal['chat'] = 'chat'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.ChatMessage.html |
e24e88c2b1b5-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.ChatMessage.html |
e24e88c2b1b5-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”} | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.ChatMessage.html |
49972fbaffdb-0 | langchain.schema.runnable.utils.ConfigurableFieldSingleOption¶
class langchain.schema.runnable.utils.ConfigurableFieldSingleOption(id: str, options: Mapping[str, Any], default: str, name: Optional[str] = None, description: Optional[str] = None)[source]¶
A field that can be configured by the user with a default value.
Create new instance of ConfigurableFieldSingleOption(id, options, default, name, description)
Attributes
default
Alias for field number 2
description
Alias for field number 4
id
Alias for field number 0
name
Alias for field number 3
options
Alias for field number 1
Methods
__init__()
count(value, /)
Return number of occurrences of value.
index(value[, start, stop])
Return first index of value.
__init__()¶
count(value, /)¶
Return number of occurrences of value.
index(value, start=0, stop=9223372036854775807, /)¶
Return first index of value.
Raises ValueError if the value is not present. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.ConfigurableFieldSingleOption.html |
030d98063c34-0 | langchain.schema.runnable.configurable.StrEnum¶
class langchain.schema.runnable.configurable.StrEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
A string enum. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.StrEnum.html |
90fac4f44fa8-0 | langchain.schema.callbacks.manager.tracing_enabled¶
langchain.schema.callbacks.manager.tracing_enabled(session_name: str = 'default') → Generator[TracerSessionV1, None, None][source]¶
Get the Deprecated LangChainTracer in a context manager.
Parameters
session_name (str, optional) – The name of the session.
Defaults to “default”.
Returns
The LangChainTracer session.
Return type
TracerSessionV1
Example
>>> with tracing_enabled() as session:
... # Use the LangChainTracer session
Examples using tracing_enabled¶
Multiple callback handlers | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.manager.tracing_enabled.html |
90cc1e30c50a-0 | langchain.schema.callbacks.tracers.evaluation.wait_for_all_evaluators¶
langchain.schema.callbacks.tracers.evaluation.wait_for_all_evaluators() → None[source]¶
Wait for all tracers to finish. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.tracers.evaluation.wait_for_all_evaluators.html |
68caf26aa64f-0 | langchain.schema.retriever.BaseRetriever¶
class langchain.schema.retriever.BaseRetriever[source]¶
Bases: RunnableSerializable[str, List[Document]], ABC
Abstract base class for a Document retrieval system.
A retrieval system is defined as something that can take string queries and returnthe most ‘relevant’ Documents from some source.
Example
class TFIDFRetriever(BaseRetriever, BaseModel):
vectorizer: Any
docs: List[Document]
tfidf_array: Any
k: int = 4
class Config:
arbitrary_types_allowed = True
def get_relevant_documents(self, query: str) -> List[Document]:
from sklearn.metrics.pairwise import cosine_similarity
# Ip -- (n_docs,x), Op -- (n_docs,n_Feats)
query_vec = self.vectorizer.transform([query])
# Op -- (n_docs,1) -- Cosine Sim with each doc
results = cosine_similarity(self.tfidf_array, query_vec).reshape((-1,))
return [self.docs[i] for i in results.argsort()[-self.k :][::-1]]
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever, | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-1 | These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document][source]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document][source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-2 | The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-3 | input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-4 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-5 | Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document][source]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-6 | and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document][source]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-7 | by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-8 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
68caf26aa64f-9 | between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using BaseRetriever¶
Retrieve as you generate with FLARE | lang/api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
530c49dec829-0 | langchain.schema.messages.AIMessageChunk¶
class langchain.schema.messages.AIMessageChunk[source]¶
Bases: AIMessage, BaseMessageChunk
A Message chunk from an AI.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_kwargs: dict [Optional]¶
Any additional information.
param content: Union[str, List[Union[str, Dict]]] [Required]¶
The string contents of the message.
param example: bool = False¶
Whether this Message is being passed in to the model as part of an example
conversation.
param type: Literal['AIMessageChunk'] = 'AIMessageChunk'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessageChunk.html |
530c49dec829-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessageChunk.html |
530c49dec829-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”} | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessageChunk.html |
eb030bbef4cd-0 | langchain.schema.messages.ToolMessageChunk¶
class langchain.schema.messages.ToolMessageChunk[source]¶
Bases: ToolMessage, BaseMessageChunk
A Tool Message chunk.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_kwargs: dict [Optional]¶
Any additional information.
param content: Union[str, List[Union[str, Dict]]] [Required]¶
The string contents of the message.
param tool_call_id: str [Required]¶
Tool call that this message is responding to.
param type: Literal['ToolMessageChunk'] = 'ToolMessageChunk'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.ToolMessageChunk.html |
eb030bbef4cd-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.ToolMessageChunk.html |
eb030bbef4cd-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”} | lang/api.python.langchain.com/en/latest/schema/langchain.schema.messages.ToolMessageChunk.html |
e4260059832e-0 | langchain.schema.runnable.configurable.DynamicRunnable¶
class langchain.schema.runnable.configurable.DynamicRunnable[source]¶
Bases: RunnableSerializable[Input, Output]
A Serializable Runnable that can be dynamically configured.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param default: langchain.schema.runnable.base.RunnableSerializable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
e4260059832e-1 | Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
e4260059832e-2 | e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
e4260059832e-3 | exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
e4260059832e-4 | Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool[source]¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
e4260059832e-5 | classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
e4260059832e-6 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
e4260059832e-7 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
e4260059832e-8 | property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.runnable.configurable.DynamicRunnable.html |
c2ce2a5d4738-0 | langchain.schema.callbacks.base.BaseCallbackHandler¶
class langchain.schema.callbacks.base.BaseCallbackHandler[source]¶
Base callback handler that handles callbacks from LangChain.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, parent_run_id])
Run when chain ends running.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, parent_run_id])
Run when LLM ends running.
on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...]) | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.BaseCallbackHandler.html |
c2ce2a5d4738-1 | on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id[, parent_run_id])
Run when tool ends running.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__()¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain ends running.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain errors. | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.BaseCallbackHandler.html |
c2ce2a5d4738-2 | Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM ends running.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM errors.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on new LLM token. Only available when streaming is enabled.
Parameters
token (str) – The new token.
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
information. (containing content and other) – | lang/api.python.langchain.com/en/latest/schema/langchain.schema.callbacks.base.BaseCallbackHandler.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.