id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
cb487ba8a490-0
langchain.document_loaders.spreedly.SpreedlyLoader¶ class langchain.document_loaders.spreedly.SpreedlyLoader(access_token: str, resource: str)[source]¶ Load from Spreedly API. Initialize with an access token and a resource. Parameters access_token – The access token. resource – The resource. Methods __init__(access_token, resource) Initialize with an access token and a resource. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(access_token: str, resource: str) → None[source]¶ Initialize with an access token and a resource. Parameters access_token – The access token. resource – The resource. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using SpreedlyLoader¶ Spreedly
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.spreedly.SpreedlyLoader.html
fe1c46fd6831-0
langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters¶ class langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters[source]¶ Parameters for the embaas document extraction API. Attributes mime_type The mime type of the document. file_extension The file extension of the document. file_name The file name of the document. should_chunk Whether to chunk the document into pages. chunk_size The maximum size of the text chunks. chunk_overlap The maximum overlap allowed between chunks. chunk_splitter The text splitter class name for creating chunks. separators The separators for chunks. should_embed Whether to create embeddings for the document in the response. model The model to pass to the Embaas document extraction API. instruction The instruction to pass to the Embaas document extraction API. Methods __init__(*args, **kwargs) clear() copy() fromkeys([value]) Create a new dictionary with keys from iterable and values set to value. get(key[, default]) Return the value for key if key is in the dictionary, else default. items() keys() pop(k[,d]) If the key is not found, return the default if given; otherwise, raise a KeyError. popitem() Remove and return a (key, value) pair as a 2-tuple. setdefault(key[, default]) Insert key with a value of default if key is not in the dictionary. update([E, ]**F)
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters.html
fe1c46fd6831-1
update([E, ]**F) If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() __init__(*args, **kwargs)¶ clear() → None.  Remove all items from D.¶ copy() → a shallow copy of D¶ fromkeys(value=None, /)¶ Create a new dictionary with keys from iterable and values set to value. get(key, default=None, /)¶ Return the value for key if key is in the dictionary, else default. items() → a set-like object providing a view on D's items¶ keys() → a set-like object providing a view on D's keys¶ pop(k[, d]) → v, remove specified key and return the corresponding value.¶ If the key is not found, return the default if given; otherwise, raise a KeyError. popitem()¶ Remove and return a (key, value) pair as a 2-tuple. Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty. setdefault(key, default=None, /)¶ Insert key with a value of default if key is not in the dictionary. Return the value for key if key is in the dictionary, else default. update([E, ]**F) → None.  Update D from dict/iterable E and F.¶ If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters.html
fe1c46fd6831-2
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() → an object providing a view on D's values¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters.html
8212f1616d9d-0
langchain.document_loaders.readthedocs.ReadTheDocsLoader¶ class langchain.document_loaders.readthedocs.ReadTheDocsLoader(path: Union[str, Path], encoding: Optional[str] = None, errors: Optional[str] = None, custom_html_tag: Optional[Tuple[str, dict]] = None, patterns: Sequence[str] = ('*.htm', '*.html'), exclude_links_ratio: float = 1.0, **kwargs: Optional[Any])[source]¶ Load ReadTheDocs documentation directory. Initialize ReadTheDocsLoader The loader loops over all files under path and extracts the actual content of the files by retrieving main html tags. Default main html tags include <main id=”main-content>, <div role=”main>, and <article role=”main”>. You can also define your own html tags by passing custom_html_tag, e.g. (“div”, “class=main”). The loader iterates html tags with the order of custom html tags (if exists) and default html tags. If any of the tags is not empty, the loop will break and retrieve the content out of that tag. Parameters path – The location of pulled readthedocs folder. encoding – The encoding with which to open the documents. errors – Specify how encoding and decoding errors are to be handled—this cannot be used in binary mode. custom_html_tag – Optional custom html tag to retrieve the content from files. patterns – The file patterns to load, passed to glob.rglob. exclude_links_ratio – The ratio of links:content to exclude pages from. This is to reduce the frequency at which index pages make their way into retrieved results. Recommended: 0.5 kwargs – named arguments passed to bs4.BeautifulSoup. Methods __init__(path[, encoding, errors, ...]) Initialize ReadTheDocsLoader lazy_load()
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html
8212f1616d9d-1
Initialize ReadTheDocsLoader lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(path: Union[str, Path], encoding: Optional[str] = None, errors: Optional[str] = None, custom_html_tag: Optional[Tuple[str, dict]] = None, patterns: Sequence[str] = ('*.htm', '*.html'), exclude_links_ratio: float = 1.0, **kwargs: Optional[Any])[source]¶ Initialize ReadTheDocsLoader The loader loops over all files under path and extracts the actual content of the files by retrieving main html tags. Default main html tags include <main id=”main-content>, <div role=”main>, and <article role=”main”>. You can also define your own html tags by passing custom_html_tag, e.g. (“div”, “class=main”). The loader iterates html tags with the order of custom html tags (if exists) and default html tags. If any of the tags is not empty, the loop will break and retrieve the content out of that tag. Parameters path – The location of pulled readthedocs folder. encoding – The encoding with which to open the documents. errors – Specify how encoding and decoding errors are to be handled—this cannot be used in binary mode. custom_html_tag – Optional custom html tag to retrieve the content from files. patterns – The file patterns to load, passed to glob.rglob. exclude_links_ratio – The ratio of links:content to exclude pages from. This is to reduce the frequency at which index pages make their way into retrieved results. Recommended: 0.5 kwargs – named arguments passed to bs4.BeautifulSoup. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html
8212f1616d9d-2
lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using ReadTheDocsLoader¶ ReadTheDocs Documentation
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html
314228b6f6d3-0
langchain.document_loaders.parsers.pdf.PyPDFium2Parser¶ class langchain.document_loaders.parsers.pdf.PyPDFium2Parser(extract_images: bool = False)[source]¶ Parse PDF with PyPDFium2. Initialize the parser. Methods __init__([extract_images]) Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. __init__(extract_images: bool = False) → None[source]¶ Initialize the parser. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyPDFium2Parser.html
0d0ab5fde645-0
langchain.document_loaders.python.PythonLoader¶ class langchain.document_loaders.python.PythonLoader(file_path: str)[source]¶ Load Python files, respecting any non-default encoding if specified. Initialize with a file path. Parameters file_path – The path to the file to load. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load from file path. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str)[source]¶ Initialize with a file path. Parameters file_path – The path to the file to load. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load from file path. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.python.PythonLoader.html
c7e027cec286-0
langchain.document_loaders.telegram.TelegramChatFileLoader¶ class langchain.document_loaders.telegram.TelegramChatFileLoader(path: str)[source]¶ Load from Telegram chat dump. Initialize with a path. Methods __init__(path) Initialize with a path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(path: str)[source]¶ Initialize with a path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using TelegramChatFileLoader¶ Telegram
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.telegram.TelegramChatFileLoader.html
655bbaf49e7a-0
langchain.document_loaders.telegram.TelegramChatApiLoader¶ class langchain.document_loaders.telegram.TelegramChatApiLoader(chat_entity: Optional[EntityLike] = None, api_id: Optional[int] = None, api_hash: Optional[str] = None, username: Optional[str] = None, file_path: str = 'telegram_data.json')[source]¶ Load Telegram chat json directory dump. Initialize with API parameters. Parameters chat_entity – The chat entity to fetch data from. api_id – The API ID. api_hash – The API hash. username – The username. file_path – The file path to save the data to. Defaults to “telegram_data.json”. Methods __init__([chat_entity, api_id, api_hash, ...]) Initialize with API parameters. fetch_data_from_telegram() Fetch data from Telegram API and save it as a JSON file. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(chat_entity: Optional[EntityLike] = None, api_id: Optional[int] = None, api_hash: Optional[str] = None, username: Optional[str] = None, file_path: str = 'telegram_data.json')[source]¶ Initialize with API parameters. Parameters chat_entity – The chat entity to fetch data from. api_id – The API ID. api_hash – The API hash. username – The username. file_path – The file path to save the data to. Defaults to “telegram_data.json”. async fetch_data_from_telegram() → None[source]¶ Fetch data from Telegram API and save it as a JSON file. lazy_load() → Iterator[Document]¶ A lazy loader for Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.telegram.TelegramChatApiLoader.html
655bbaf49e7a-1
lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using TelegramChatApiLoader¶ Telegram
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.telegram.TelegramChatApiLoader.html
ffd4a07effda-0
langchain.document_loaders.text.TextLoader¶ class langchain.document_loaders.text.TextLoader(file_path: str, encoding: Optional[str] = None, autodetect_encoding: bool = False)[source]¶ Load text file. Parameters file_path – Path to the file to load. encoding – File encoding to use. If None, the file will be loaded encoding. (with the default system) – autodetect_encoding – Whether to try to autodetect the file encoding if the specified encoding fails. Initialize with file path. Methods __init__(file_path[, encoding, ...]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load from file path. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str, encoding: Optional[str] = None, autodetect_encoding: bool = False)[source]¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load from file path. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using TextLoader¶ Cohere Reranker Confident Elasticsearch Chat Over Documents with Vectara Vectorstore LanceDB sqlite-vss Weaviate DashVector ScaNN Xata Vectara PGVector Rockset DingoDB Zilliz SingleStoreDB Annoy Typesense Atlas
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.text.TextLoader.html
ffd4a07effda-1
Zilliz SingleStoreDB Annoy Typesense Atlas Activeloop Deep Lake Neo4j Vector Index Tair Chroma Alibaba Cloud OpenSearch Baidu Cloud VectorSearch StarRocks scikit-learn Tencent Cloud VectorDB DocArray HnswSearch MyScale ClickHouse Qdrant Tigris AwaDB Supabase (Postgres) OpenSearch Pinecone BagelDB Azure Cognitive Search Cassandra USearch Milvus Marqo DocArray InMemorySearch Postgres Embedding Faiss Epsilla AnalyticDB Hologres your local model path MongoDB Atlas Meilisearch Conversational Retrieval Agent Analysis of Twitter the-algorithm source code with LangChain, GPT4 and Activeloop’s Deep Lake Use LangChain, GPT and Activeloop’s Deep Lake to work with code base Structure answers with OpenAI functions QA using Activeloop’s DeepLake Graph QA Caching MultiVector Retriever Parent Document Retriever Combine agents and vector stores Loading from LangChainHub
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.text.TextLoader.html
a5221828fdbc-0
langchain.document_loaders.airbyte.AirbyteStripeLoader¶ class langchain.document_loaders.airbyte.AirbyteStripeLoader(config: Mapping[str, Any], stream_name: str, record_handler: Optional[Callable[[Any, Optional[str]], Document]] = None, state: Optional[Any] = None)[source]¶ Load from Stripe using an Airbyte source connector. Initializes the loader. Parameters config – The config to pass to the source connector. stream_name – The name of the stream to load. record_handler – A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state – The state to pass to the source connector. Defaults to None. Attributes last_state Methods __init__(config, stream_name[, ...]) Initializes the loader. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(config: Mapping[str, Any], stream_name: str, record_handler: Optional[Callable[[Any, Optional[str]], Document]] = None, state: Optional[Any] = None) → None[source]¶ Initializes the loader. Parameters config – The config to pass to the source connector. stream_name – The name of the stream to load. record_handler – A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state – The state to pass to the source connector. Defaults to None. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load data into Document objects.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte.AirbyteStripeLoader.html
a5221828fdbc-1
load() → List[Document]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using AirbyteStripeLoader¶ Airbyte Question Answering Airbyte Stripe
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte.AirbyteStripeLoader.html
bf9b26600add-0
langchain.document_loaders.datadog_logs.DatadogLogsLoader¶ class langchain.document_loaders.datadog_logs.DatadogLogsLoader(query: str, api_key: str, app_key: str, from_time: Optional[int] = None, to_time: Optional[int] = None, limit: int = 100)[source]¶ Load Datadog logs. Logs are written into the page_content and into the metadata. Initialize Datadog document loader. Requirements: Must have datadog_api_client installed. Install with pip install datadog_api_client. Parameters query – The query to run in Datadog. api_key – The Datadog API key. app_key – The Datadog APP key. from_time – Optional. The start of the time range to query. Supports date math and regular timestamps (milliseconds) like ‘1688732708951’ Defaults to 20 minutes ago. to_time – Optional. The end of the time range to query. Supports date math and regular timestamps (milliseconds) like ‘1688732708951’ Defaults to now. limit – The maximum number of logs to return. Defaults to 100. Methods __init__(query, api_key, app_key[, ...]) Initialize Datadog document loader. lazy_load() A lazy loader for Documents. load() Get logs from Datadog. load_and_split([text_splitter]) Load Documents and split into chunks. parse_log(log) Create Document objects from Datadog log items. __init__(query: str, api_key: str, app_key: str, from_time: Optional[int] = None, to_time: Optional[int] = None, limit: int = 100) → None[source]¶ Initialize Datadog document loader.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.datadog_logs.DatadogLogsLoader.html
bf9b26600add-1
Initialize Datadog document loader. Requirements: Must have datadog_api_client installed. Install with pip install datadog_api_client. Parameters query – The query to run in Datadog. api_key – The Datadog API key. app_key – The Datadog APP key. from_time – Optional. The start of the time range to query. Supports date math and regular timestamps (milliseconds) like ‘1688732708951’ Defaults to 20 minutes ago. to_time – Optional. The end of the time range to query. Supports date math and regular timestamps (milliseconds) like ‘1688732708951’ Defaults to now. limit – The maximum number of logs to return. Defaults to 100. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Get logs from Datadog. Returns A list of Document objects. page_content metadata id service status tags timestamp load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. parse_log(log: dict) → Document[source]¶ Create Document objects from Datadog log items. Examples using DatadogLogsLoader¶ Datadog Logs
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.datadog_logs.DatadogLogsLoader.html
0126710426a6-0
langchain.document_loaders.epub.UnstructuredEPubLoader¶ class langchain.document_loaders.epub.UnstructuredEPubLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Load EPub files using Unstructured. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredEPubLoader loader = UnstructuredEPubLoader(“example.epub”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-epub Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.epub.UnstructuredEPubLoader.html
0126710426a6-1
Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredEPubLoader¶ EPub
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.epub.UnstructuredEPubLoader.html
ac4ce66f8e3f-0
langchain.document_loaders.html.UnstructuredHTMLLoader¶ class langchain.document_loaders.html.UnstructuredHTMLLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Load HTML files using Unstructured. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredHTMLLoader loader = UnstructuredHTMLLoader(“example.html”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-html Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.html.UnstructuredHTMLLoader.html
7820cdcdf6fb-0
langchain.document_loaders.rtf.UnstructuredRTFLoader¶ class langchain.document_loaders.rtf.UnstructuredRTFLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Load RTF files using Unstructured. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredRTFLoader loader = UnstructuredRTFLoader(“example.rtf”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-rtf Initialize with a file path. Parameters file_path – The path to the file to load. mode – The mode to use for partitioning. See unstructured for details. Defaults to “single”. **unstructured_kwargs – Additional keyword arguments to pass to unstructured. Methods __init__(file_path[, mode]) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Initialize with a file path. Parameters file_path – The path to the file to load. mode – The mode to use for partitioning. See unstructured for details. Defaults to “single”.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rtf.UnstructuredRTFLoader.html
7820cdcdf6fb-1
Defaults to “single”. **unstructured_kwargs – Additional keyword arguments to pass to unstructured. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rtf.UnstructuredRTFLoader.html
a7e5edfee4d8-0
langchain.document_loaders.airbyte.AirbyteTypeformLoader¶ class langchain.document_loaders.airbyte.AirbyteTypeformLoader(config: Mapping[str, Any], stream_name: str, record_handler: Optional[Callable[[Any, Optional[str]], Document]] = None, state: Optional[Any] = None)[source]¶ Load from Typeform using an Airbyte source connector. Initializes the loader. Parameters config – The config to pass to the source connector. stream_name – The name of the stream to load. record_handler – A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state – The state to pass to the source connector. Defaults to None. Attributes last_state Methods __init__(config, stream_name[, ...]) Initializes the loader. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(config: Mapping[str, Any], stream_name: str, record_handler: Optional[Callable[[Any, Optional[str]], Document]] = None, state: Optional[Any] = None) → None[source]¶ Initializes the loader. Parameters config – The config to pass to the source connector. stream_name – The name of the stream to load. record_handler – A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state – The state to pass to the source connector. Defaults to None. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load data into Document objects.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte.AirbyteTypeformLoader.html
a7e5edfee4d8-1
load() → List[Document]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using AirbyteTypeformLoader¶ Airbyte Typeform
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte.AirbyteTypeformLoader.html
1b46cf9ee7ad-0
langchain.document_loaders.bilibili.BiliBiliLoader¶ class langchain.document_loaders.bilibili.BiliBiliLoader(video_urls: List[str])[source]¶ Load BiliBili video transcripts. Initialize with bilibili url. Parameters video_urls – List of bilibili urls. Methods __init__(video_urls) Initialize with bilibili url. lazy_load() A lazy loader for Documents. load() Load Documents from bilibili url. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(video_urls: List[str])[source]¶ Initialize with bilibili url. Parameters video_urls – List of bilibili urls. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load Documents from bilibili url. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using BiliBiliLoader¶ BiliBili
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.bilibili.BiliBiliLoader.html
e6b729064fa9-0
langchain.document_loaders.pdf.MathpixPDFLoader¶ class langchain.document_loaders.pdf.MathpixPDFLoader(file_path: str, processed_file_format: str = 'md', max_wait_time_seconds: int = 500, should_clean_pdf: bool = False, **kwargs: Any)[source]¶ Load PDF files using Mathpix service. Initialize with a file path. Parameters file_path – a file for loading. processed_file_format – a format of the processed file. Default is “md”. max_wait_time_seconds – a maximum time to wait for the response from the server. Default is 500. should_clean_pdf – a flag to clean the PDF file. Default is False. **kwargs – additional keyword arguments. Attributes data source url Methods __init__(file_path[, processed_file_format, ...]) Initialize with a file path. clean_pdf(contents) Clean the PDF file. get_processed_pdf(pdf_id) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. send_pdf() wait_for_processing(pdf_id) Wait for processing to complete. __init__(file_path: str, processed_file_format: str = 'md', max_wait_time_seconds: int = 500, should_clean_pdf: bool = False, **kwargs: Any) → None[source]¶ Initialize with a file path. Parameters file_path – a file for loading. processed_file_format – a format of the processed file. Default is “md”. max_wait_time_seconds – a maximum time to wait for the response from the server. Default is 500. should_clean_pdf – a flag to clean the PDF file. Default is False. **kwargs – additional keyword arguments.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.MathpixPDFLoader.html
e6b729064fa9-1
**kwargs – additional keyword arguments. clean_pdf(contents: str) → str[source]¶ Clean the PDF file. Parameters contents – a PDF file contents. Returns: get_processed_pdf(pdf_id: str) → str[source]¶ lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. send_pdf() → str[source]¶ wait_for_processing(pdf_id: str) → None[source]¶ Wait for processing to complete. Parameters pdf_id – a PDF id. Returns: None
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.MathpixPDFLoader.html
ff80065efdf2-0
langchain.document_loaders.youtube.GoogleApiClient¶ class langchain.document_loaders.youtube.GoogleApiClient(credentials_path: Path = PosixPath('/home/docs/.credentials/credentials.json'), service_account_path: Path = PosixPath('/home/docs/.credentials/credentials.json'), token_path: Path = PosixPath('/home/docs/.credentials/token.json'))[source]¶ Generic Google API Client. To use, you should have the google_auth_oauthlib,youtube_transcript_api,google python package installed. As the google api expects credentials you need to set up a google account and register your Service. “https://developers.google.com/docs/api/quickstart/python” Example from langchain.document_loaders import GoogleApiClient google_api_client = GoogleApiClient( service_account_path=Path("path_to_your_sec_file.json") ) Attributes credentials_path service_account_path token_path Methods __init__([credentials_path, ...]) validate_channel_or_videoIds_is_set(values) Validate that either folder_id or document_ids is set, but not both. __init__(credentials_path: Path = PosixPath('/home/docs/.credentials/credentials.json'), service_account_path: Path = PosixPath('/home/docs/.credentials/credentials.json'), token_path: Path = PosixPath('/home/docs/.credentials/token.json')) → None¶ classmethod validate_channel_or_videoIds_is_set(values: Dict[str, Any]) → Dict[str, Any][source]¶ Validate that either folder_id or document_ids is set, but not both. Examples using GoogleApiClient¶ YouTube transcripts
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.youtube.GoogleApiClient.html
3908e70ec594-0
langchain.document_loaders.parsers.pdf.PyMuPDFParser¶ class langchain.document_loaders.parsers.pdf.PyMuPDFParser(text_kwargs: Optional[Mapping[str, Any]] = None, extract_images: bool = False)[source]¶ Parse PDF using PyMuPDF. Initialize the parser. Parameters text_kwargs – Keyword arguments to pass to fitz.Page.get_text(). Methods __init__([text_kwargs, extract_images]) Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. __init__(text_kwargs: Optional[Mapping[str, Any]] = None, extract_images: bool = False) → None[source]¶ Initialize the parser. Parameters text_kwargs – Keyword arguments to pass to fitz.Page.get_text(). lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyMuPDFParser.html
4d7d34bd3e4b-0
langchain.document_loaders.news.NewsURLLoader¶ class langchain.document_loaders.news.NewsURLLoader(urls: List[str], text_mode: bool = True, nlp: bool = False, continue_on_failure: bool = True, show_progress_bar: bool = False, **newspaper_kwargs: Any)[source]¶ Load news articles from URLs using Unstructured. Parameters urls – URLs to load. Each is loaded into its own document. text_mode – If True, extract text from URL and use that for page content. Otherwise, extract raw HTML. nlp – If True, perform NLP on the extracted contents, like providing a summary and extracting keywords. continue_on_failure – If True, continue loading documents even if loading fails for a particular URL. show_progress_bar – If True, use tqdm to show a loading progress bar. Requires tqdm to be installed, pip install tqdm. **newspaper_kwargs – Any additional named arguments to pass to newspaper.Article(). Example from langchain.document_loaders import NewsURLLoader loader = NewsURLLoader( urls=["<url-1>", "<url-2>"], ) docs = loader.load() Newspaper reference:https://newspaper.readthedocs.io/en/latest/ Initialize with file path. Methods __init__(urls[, text_mode, nlp, ...]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(urls: List[str], text_mode: bool = True, nlp: bool = False, continue_on_failure: bool = True, show_progress_bar: bool = False, **newspaper_kwargs: Any) → None[source]¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.news.NewsURLLoader.html
4d7d34bd3e4b-1
Initialize with file path. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using NewsURLLoader¶ News URL
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.news.NewsURLLoader.html
96ec8655892f-0
langchain.document_loaders.xml.UnstructuredXMLLoader¶ class langchain.document_loaders.xml.UnstructuredXMLLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Load XML file using Unstructured. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredXMLLoader loader = UnstructuredXMLLoader(“example.xml”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-xml Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredXMLLoader¶ XML
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.xml.UnstructuredXMLLoader.html
1836ab36e67e-0
langchain.document_loaders.whatsapp_chat.concatenate_rows¶ langchain.document_loaders.whatsapp_chat.concatenate_rows(date: str, sender: str, text: str) → str[source]¶ Combine message information in a readable format ready to be used.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.whatsapp_chat.concatenate_rows.html
5e038de32947-0
langchain.document_loaders.parsers.pdf.PDFPlumberParser¶ class langchain.document_loaders.parsers.pdf.PDFPlumberParser(text_kwargs: Optional[Mapping[str, Any]] = None, dedupe: bool = False, extract_images: bool = False)[source]¶ Parse PDF with PDFPlumber. Initialize the parser. Parameters text_kwargs – Keyword arguments to pass to pdfplumber.Page.extract_text() dedupe – Avoiding the error of duplicate characters if dedupe=True. Methods __init__([text_kwargs, dedupe, extract_images]) Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. __init__(text_kwargs: Optional[Mapping[str, Any]] = None, dedupe: bool = False, extract_images: bool = False) → None[source]¶ Initialize the parser. Parameters text_kwargs – Keyword arguments to pass to pdfplumber.Page.extract_text() dedupe – Avoiding the error of duplicate characters if dedupe=True. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PDFPlumberParser.html
203654ebefb3-0
langchain.document_loaders.weather.WeatherDataLoader¶ class langchain.document_loaders.weather.WeatherDataLoader(client: OpenWeatherMapAPIWrapper, places: Sequence[str])[source]¶ Load weather data with Open Weather Map API. Reads the forecast & current weather of any location using OpenWeatherMap’s free API. Checkout ‘https://openweathermap.org/appid’ for more on how to generate a free OpenWeatherMap API. Initialize with parameters. Methods __init__(client, places) Initialize with parameters. from_params(places, *[, openweathermap_api_key]) lazy_load() Lazily load weather data for the given locations. load() Load weather data for the given locations. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(client: OpenWeatherMapAPIWrapper, places: Sequence[str]) → None[source]¶ Initialize with parameters. classmethod from_params(places: Sequence[str], *, openweathermap_api_key: Optional[str] = None) → WeatherDataLoader[source]¶ lazy_load() → Iterator[Document][source]¶ Lazily load weather data for the given locations. load() → List[Document][source]¶ Load weather data for the given locations. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using WeatherDataLoader¶ Weather
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.weather.WeatherDataLoader.html
8759c4e0e27b-0
langchain.document_loaders.snowflake_loader.SnowflakeLoader¶ class langchain.document_loaders.snowflake_loader.SnowflakeLoader(query: str, user: str, password: str, account: str, warehouse: str, role: str, database: str, schema: str, parameters: Optional[Dict[str, Any]] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None)[source]¶ Load from Snowflake API. Each document represents one row of the result. The page_content_columns are written into the page_content of the document. The metadata_columns are written into the metadata of the document. By default, all columns are written into the page_content and none into the metadata. Initialize Snowflake document loader. Parameters query – The query to run in Snowflake. user – Snowflake user. password – Snowflake password. account – Snowflake account. warehouse – Snowflake warehouse. role – Snowflake role. database – Snowflake database schema – Snowflake schema parameters – Optional. Parameters to pass to the query. page_content_columns – Optional. Columns written to Document page_content. metadata_columns – Optional. Columns written to Document metadata. Methods __init__(query, user, password, account, ...) Initialize Snowflake document loader. lazy_load() A lazy loader for Documents. load() Load data into document objects. load_and_split([text_splitter]) Load Documents and split into chunks.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.snowflake_loader.SnowflakeLoader.html
8759c4e0e27b-1
load_and_split([text_splitter]) Load Documents and split into chunks. __init__(query: str, user: str, password: str, account: str, warehouse: str, role: str, database: str, schema: str, parameters: Optional[Dict[str, Any]] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None)[source]¶ Initialize Snowflake document loader. Parameters query – The query to run in Snowflake. user – Snowflake user. password – Snowflake password. account – Snowflake account. warehouse – Snowflake warehouse. role – Snowflake role. database – Snowflake database schema – Snowflake schema parameters – Optional. Parameters to pass to the query. page_content_columns – Optional. Columns written to Document page_content. metadata_columns – Optional. Columns written to Document metadata. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using SnowflakeLoader¶ Snowflake
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.snowflake_loader.SnowflakeLoader.html
1107835b4654-0
langchain.document_loaders.notiondb.NotionDBLoader¶ class langchain.document_loaders.notiondb.NotionDBLoader(integration_token: str, database_id: str, request_timeout_sec: Optional[int] = 10)[source]¶ Load from Notion DB. Reads content from pages within a Notion Database. :param integration_token: Notion integration token. :type integration_token: str :param database_id: Notion database id. :type database_id: str :param request_timeout_sec: Timeout for Notion requests in seconds. Defaults to 10. Initialize with parameters. Methods __init__(integration_token, database_id[, ...]) Initialize with parameters. lazy_load() A lazy loader for Documents. load() Load documents from the Notion database. load_and_split([text_splitter]) Load Documents and split into chunks. load_page(page_summary) Read a page. __init__(integration_token: str, database_id: str, request_timeout_sec: Optional[int] = 10) → None[source]¶ Initialize with parameters. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents from the Notion database. :returns: List of documents. :rtype: List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. load_page(page_summary: Dict[str, Any]) → Document[source]¶ Read a page. Parameters page_summary – Page summary from Notion API.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.notiondb.NotionDBLoader.html
1107835b4654-1
Read a page. Parameters page_summary – Page summary from Notion API. Examples using NotionDBLoader¶ Notion DB Notion DB 2/2
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.notiondb.NotionDBLoader.html
ddbf3a85a89d-0
langchain.document_loaders.sharepoint.SharePointLoader¶ class langchain.document_loaders.sharepoint.SharePointLoader[source]¶ Bases: O365BaseLoader Load from SharePoint. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param auth_with_token: bool = False¶ Whether to authenticate with a token or not. Defaults to False. param chunk_size: Union[int, str] = 5242880¶ Number of bytes to retrieve from each api call to the server. int or ‘auto’. param document_library_id: str [Required]¶ The ID of the SharePoint document library to load data from. param folder_path: Optional[str] = None¶ The path to the folder to load data from. param object_ids: Optional[List[str]] = None¶ The IDs of the objects to load data from. param settings: _O365Settings [Optional]¶ Settings for the Office365 API client. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sharepoint.SharePointLoader.html
ddbf3a85a89d-1
Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). lazy_load() → Iterator[Document][source]¶ Load documents lazily. Use this when working at a large scale. load() → List[Document][source]¶ Load all documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sharepoint.SharePointLoader.html
ddbf3a85a89d-2
load() → List[Document][source]¶ Load all documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ Examples using SharePointLoader¶ Microsoft SharePoint
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sharepoint.SharePointLoader.html
f67554232a0b-0
langchain.document_loaders.markdown.UnstructuredMarkdownLoader¶ class langchain.document_loaders.markdown.UnstructuredMarkdownLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Load Markdown files using Unstructured. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredMarkdownLoader loader = UnstructuredMarkdownLoader(“example.md”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-md Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.markdown.UnstructuredMarkdownLoader.html
f67554232a0b-1
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredMarkdownLoader¶ StarRocks
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.markdown.UnstructuredMarkdownLoader.html
0b06b498702e-0
langchain.document_loaders.parsers.audio.OpenAIWhisperParser¶ class langchain.document_loaders.parsers.audio.OpenAIWhisperParser(api_key: Optional[str] = None)[source]¶ Transcribe and parse audio files. Audio transcription is with OpenAI Whisper model. Methods __init__([api_key]) lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. __init__(api_key: Optional[str] = None)[source]¶ lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents Examples using OpenAIWhisperParser¶ Loading documents from a YouTube url
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.audio.OpenAIWhisperParser.html
b505d77cd250-0
langchain.document_loaders.notebook.remove_newlines¶ langchain.document_loaders.notebook.remove_newlines(x: Any) → Any[source]¶ Recursively remove newlines, no matter the data structure they are stored in.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.notebook.remove_newlines.html
0b011c86cb06-0
langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader¶ class langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader(conn_str: str, container: str, prefix: str = '')[source]¶ Load from Azure Blob Storage container. Initialize with connection string, container and blob prefix. Attributes conn_str Connection string for Azure Blob Storage. container Container name. prefix Prefix for blob names. Methods __init__(conn_str, container[, prefix]) Initialize with connection string, container and blob prefix. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(conn_str: str, container: str, prefix: str = '')[source]¶ Initialize with connection string, container and blob prefix. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using AzureBlobStorageContainerLoader¶ Azure Blob Storage Azure Blob Storage Container
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader.html
7e4a760dbb12-0
langchain.document_loaders.gitbook.GitbookLoader¶ class langchain.document_loaders.gitbook.GitbookLoader(web_page: str, load_all_paths: bool = False, base_url: Optional[str] = None, content_selector: str = 'main', continue_on_failure: bool = False)[source]¶ Load GitBook data. load from either a single page, or load all (relative) paths in the navbar. Initialize with web page and whether to load all paths. Parameters web_page – The web page to load or the starting point from where relative paths are discovered. load_all_paths – If set to True, all relative paths in the navbar are loaded instead of only web_page. base_url – If load_all_paths is True, the relative paths are appended to this base url. Defaults to web_page. content_selector – The CSS selector for the content to load. Defaults to “main”. continue_on_failure – whether to continue loading the sitemap if an error occurs loading a url, emitting a warning instead of raising an exception. Setting this to True makes the loader more robust, but also may result in missing data. Default: False Attributes web_path Methods __init__(web_page[, load_all_paths, ...]) Initialize with web page and whether to load all paths. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Fetch text from one single GitBook page. load_and_split([text_splitter]) Load Documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser])
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gitbook.GitbookLoader.html
7e4a760dbb12-1
scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. __init__(web_page: str, load_all_paths: bool = False, base_url: Optional[str] = None, content_selector: str = 'main', continue_on_failure: bool = False)[source]¶ Initialize with web page and whether to load all paths. Parameters web_page – The web page to load or the starting point from where relative paths are discovered. load_all_paths – If set to True, all relative paths in the navbar are loaded instead of only web_page. base_url – If load_all_paths is True, the relative paths are appended to this base url. Defaults to web_page. content_selector – The CSS selector for the content to load. Defaults to “main”. continue_on_failure – whether to continue loading the sitemap if an error occurs loading a url, emitting a warning instead of raising an exception. Setting this to True makes the loader more robust, but also may result in missing data. Default: False aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Fetch text from one single GitBook page. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. scrape(parser: Optional[str] = None) → Any¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gitbook.GitbookLoader.html
7e4a760dbb12-2
List of Documents. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. Examples using GitbookLoader¶ GitBook
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gitbook.GitbookLoader.html
095dcdf9e8fe-0
langchain.document_loaders.joplin.JoplinLoader¶ class langchain.document_loaders.joplin.JoplinLoader(access_token: Optional[str] = None, port: int = 41184, host: str = 'localhost')[source]¶ Load notes from Joplin. In order to use this loader, you need to have Joplin running with the Web Clipper enabled (look for “Web Clipper” in the app settings). To get the access token, you need to go to the Web Clipper options and under “Advanced Options” you will find the access token. You can find more information about the Web Clipper service here: https://joplinapp.org/clipper/ Parameters access_token – The access token to use. port – The port where the Web Clipper service is running. Default is 41184. host – The host where the Web Clipper service is running. Default is localhost. Methods __init__([access_token, port, host]) param access_token The access token to use. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(access_token: Optional[str] = None, port: int = 41184, host: str = 'localhost') → None[source]¶ Parameters access_token – The access token to use. port – The port where the Web Clipper service is running. Default is 41184. host – The host where the Web Clipper service is running. Default is localhost. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.joplin.JoplinLoader.html
095dcdf9e8fe-1
load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using JoplinLoader¶ Joplin
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.joplin.JoplinLoader.html
1eaa1db52fe0-0
langchain.document_loaders.pdf.PyMuPDFLoader¶ class langchain.document_loaders.pdf.PyMuPDFLoader(file_path: str, *, headers: Optional[Dict] = None, extract_images: bool = False, **kwargs: Any)[source]¶ Load PDF files using PyMuPDF. Initialize with a file path. Attributes source Methods __init__(file_path, *[, headers, extract_images]) Initialize with a file path. lazy_load() A lazy loader for Documents. load(**kwargs) Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str, *, headers: Optional[Dict] = None, extract_images: bool = False, **kwargs: Any) → None[source]¶ Initialize with a file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load(**kwargs: Any) → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PyMuPDFLoader.html
4de4580e645e-0
langchain.document_loaders.confluence.ConfluenceLoader¶ class langchain.document_loaders.confluence.ConfluenceLoader(url: str, api_key: Optional[str] = None, username: Optional[str] = None, session: Optional[Session] = None, oauth2: Optional[dict] = None, token: Optional[str] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None)[source]¶ Load Confluence pages. Port of https://llamahub.ai/l/confluence This currently supports username/api_key, Oauth2 login or personal access token authentication. Specify a list page_ids and/or space_key to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned. You can also specify a boolean include_attachments to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG, SVG, Word and Excel. Confluence API supports difference format of page content. The storage format is the raw XML representation for storage. The view format is the HTML representation for viewing with macros are rendered as though it is viewed by users. You can pass a enum content_format argument to load() to specify the content format, this is set to ContentFormat.STORAGE by default, the supported values are: ContentFormat.EDITOR, ContentFormat.EXPORT_VIEW, ContentFormat.ANONYMOUS_EXPORT_VIEW, ContentFormat.STORAGE, and ContentFormat.VIEW.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
4de4580e645e-1
and ContentFormat.VIEW. Hint: space_key and page_id can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id> Example from langchain.document_loaders import ConfluenceLoader loader = ConfluenceLoader( url="https://yoursite.atlassian.com/wiki", username="me", api_key="12345" ) documents = loader.load(space_key="SPACE",limit=50) # Server on perm loader = ConfluenceLoader( url="https://confluence.yoursite.com/", username="me", api_key="your_password", cloud=False ) documents = loader.load(space_key="SPACE",limit=50) Parameters url (str) – _description_ api_key (str, optional) – _description_, defaults to None username (str, optional) – _description_, defaults to None oauth2 (dict, optional) – _description_, defaults to {} token (str, optional) – _description_, defaults to None cloud (bool, optional) – _description_, defaults to True number_of_retries (Optional[int], optional) – How many times to retry, defaults to 3 min_retry_seconds (Optional[int], optional) – defaults to 2 max_retry_seconds (Optional[int], optional) – defaults to 10 confluence_kwargs (dict, optional) – additional kwargs to initialize confluence with Raises ValueError – Errors while validating input ImportError – Required dependencies not installed. Methods __init__(url[, api_key, username, session, ...]) is_public_page(page) Check if a page is publicly accessible. lazy_load() A lazy loader for Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
4de4580e645e-2
Check if a page is publicly accessible. lazy_load() A lazy loader for Documents. load([space_key, page_ids, label, cql, ...]) param space_key Space key retrieved from a confluence URL, defaults to None load_and_split([text_splitter]) Load Documents and split into chunks. paginate_request(retrieval_method, **kwargs) Paginate the various methods to retrieve groups of pages. process_attachment(page_id[, ocr_languages]) process_doc(link) process_image(link[, ocr_languages]) process_page(page, include_attachments, ...) process_pages(pages, ...[, ocr_languages, ...]) Process a list of pages into a list of documents. process_pdf(link[, ocr_languages]) process_svg(link[, ocr_languages]) process_xls(link) validate_init_args([url, api_key, username, ...]) Validates proper combinations of init arguments __init__(url: str, api_key: Optional[str] = None, username: Optional[str] = None, session: Optional[Session] = None, oauth2: Optional[dict] = None, token: Optional[str] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None)[source]¶ is_public_page(page: dict) → bool[source]¶ Check if a page is publicly accessible. lazy_load() → Iterator[Document]¶ A lazy loader for Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
4de4580e645e-3
lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load(space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, label: Optional[str] = None, cql: Optional[str] = None, include_restricted_content: bool = False, include_archived_content: bool = False, include_attachments: bool = False, include_comments: bool = False, content_format: ContentFormat = ContentFormat.STORAGE, limit: Optional[int] = 50, max_pages: Optional[int] = 1000, ocr_languages: Optional[str] = None, keep_markdown_format: bool = False, keep_newlines: bool = False) → List[Document][source]¶ Parameters space_key (Optional[str], optional) – Space key retrieved from a confluence URL, defaults to None page_ids (Optional[List[str]], optional) – List of specific page IDs to load, defaults to None label (Optional[str], optional) – Get all pages with this label, defaults to None cql (Optional[str], optional) – CQL Expression, defaults to None include_restricted_content (bool, optional) – defaults to False include_archived_content (bool, optional) – Whether to include archived content, defaults to False include_attachments (bool, optional) – defaults to False include_comments (bool, optional) – defaults to False content_format (ContentFormat) – Specify content format, defaults to ContentFormat.STORAGE, the supported values are: ContentFormat.EDITOR, ContentFormat.EXPORT_VIEW, ContentFormat.ANONYMOUS_EXPORT_VIEW, ContentFormat.STORAGE, and ContentFormat.VIEW. limit (int, optional) – Maximum number of pages to retrieve per request, defaults to 50 max_pages (int, optional) – Maximum number of pages to retrieve in total, defaults 1000
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
4de4580e645e-4
ocr_languages (str, optional) – The languages to use for the Tesseract agent. To use a language, you’ll first need to install the appropriate Tesseract language pack. keep_markdown_format (bool) – Whether to keep the markdown format, defaults to False keep_newlines (bool) – Whether to keep the newlines format, defaults to False Raises ValueError – _description_ ImportError – _description_ Returns _description_ Return type List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. paginate_request(retrieval_method: Callable, **kwargs: Any) → List[source]¶ Paginate the various methods to retrieve groups of pages. Unfortunately, due to page size, sometimes the Confluence API doesn’t match the limit value. If limit is >100 confluence seems to cap the response to 100. Also, due to the Atlassian Python package, we don’t get the “next” values from the “_links” key because they only return the value from the result key. So here, the pagination starts from 0 and goes until the max_pages, getting the limit number of pages with each request. We have to manually check if there are more docs based on the length of the returned list of pages, rather than just checking for the presence of a next key in the response like this page would have you do: https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/ Parameters retrieval_method (callable) – Function used to retrieve docs Returns
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
4de4580e645e-5
Parameters retrieval_method (callable) – Function used to retrieve docs Returns List of documents Return type List process_attachment(page_id: str, ocr_languages: Optional[str] = None) → List[str][source]¶ process_doc(link: str) → str[source]¶ process_image(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_page(page: dict, include_attachments: bool, include_comments: bool, content_format: ContentFormat, ocr_languages: Optional[str] = None, keep_markdown_format: Optional[bool] = False, keep_newlines: bool = False) → Document[source]¶ process_pages(pages: List[dict], include_restricted_content: bool, include_attachments: bool, include_comments: bool, content_format: ContentFormat, ocr_languages: Optional[str] = None, keep_markdown_format: Optional[bool] = False, keep_newlines: bool = False) → List[Document][source]¶ Process a list of pages into a list of documents. process_pdf(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_svg(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_xls(link: str) → str[source]¶ static validate_init_args(url: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, session: Optional[Session] = None, oauth2: Optional[dict] = None, token: Optional[str] = None) → Optional[List][source]¶ Validates proper combinations of init arguments Examples using ConfluenceLoader¶ Confluence
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
c578d916a44a-0
langchain.document_loaders.mongodb.MongodbLoader¶ class langchain.document_loaders.mongodb.MongodbLoader(connection_string: str, db_name: str, collection_name: str, *, filter_criteria: Optional[Dict] = None)[source]¶ Load MongoDB documents. Methods __init__(connection_string, db_name, ...[, ...]) aload() Load data into Document objects. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(connection_string: str, db_name: str, collection_name: str, *, filter_criteria: Optional[Dict] = None) → None[source]¶ async aload() → List[Document][source]¶ Load data into Document objects. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. Attention: This implementation starts an asyncio event loop which will only work if running in a sync env. In an async env, it should fail since there is already an event loop running. This code should be updated to kick off the event loop from a separate thread if running within an async context. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mongodb.MongodbLoader.html
b6d4f70eff57-0
langchain.document_loaders.quip.QuipLoader¶ class langchain.document_loaders.quip.QuipLoader(api_url: str, access_token: str, request_timeout: Optional[int] = 60)[source]¶ Load Quip pages. Port of https://github.com/quip/quip-api/tree/master/samples/baqup Parameters api_url – https://platform.quip.com access_token – token of access quip API. Please refer: https – //quip.com/dev/automation/documentation/current#section/Authentication/Get-Access-to-Quip’s-APIs request_timeout – timeout of request, default 60s. Methods __init__(api_url, access_token[, ...]) param api_url https://platform.quip.com get_thread_ids_by_folder_id(folder_id, ...) Get thread ids by folder id and update in thread_ids lazy_load() A lazy loader for Documents. load([folder_ids, thread_ids, max_docs, ...]) :param : param folder_ids: List of specific folder IDs to load, defaults to None :param : param thread_ids: List of specific thread IDs to load, defaults to None :param : param max_docs: Maximum number of docs to retrieve in total, defaults 1000 :param : param include_all_folders: Include all folders that your access_token can access, but doesn't include your private folder :param : param include_comments: Include comments, defaults to False :param : param include_images: Include images, defaults to False load_and_split([text_splitter]) Load Documents and split into chunks. process_thread(thread_id, include_images, ...) process_thread_images(tree) process_thread_messages(thread_id) process_threads(thread_ids, include_images, ...) Process a list of thread into a list of documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.quip.QuipLoader.html
b6d4f70eff57-1
Process a list of thread into a list of documents. __init__(api_url: str, access_token: str, request_timeout: Optional[int] = 60)[source]¶ Parameters api_url – https://platform.quip.com access_token – token of access quip API. Please refer: https – //quip.com/dev/automation/documentation/current#section/Authentication/Get-Access-to-Quip’s-APIs request_timeout – timeout of request, default 60s. get_thread_ids_by_folder_id(folder_id: str, depth: int, thread_ids: List[str]) → None[source]¶ Get thread ids by folder id and update in thread_ids lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load(folder_ids: Optional[List[str]] = None, thread_ids: Optional[List[str]] = None, max_docs: Optional[int] = 1000, include_all_folders: bool = False, include_comments: bool = False, include_images: bool = False) → List[Document][source]¶ :param : param folder_ids: List of specific folder IDs to load, defaults to None :param : param thread_ids: List of specific thread IDs to load, defaults to None :param : param max_docs: Maximum number of docs to retrieve in total, defaults 1000 :param : param include_all_folders: Include all folders that your access_token can access, but doesn’t include your private folder :param : param include_comments: Include comments, defaults to False :param : param include_images: Include images, defaults to False load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.quip.QuipLoader.html
b6d4f70eff57-2
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. process_thread(thread_id: str, include_images: bool, include_messages: bool) → Optional[Document][source]¶ process_thread_images(tree: ElementTree) → str[source]¶ process_thread_messages(thread_id: str) → str[source]¶ process_threads(thread_ids: Sequence[str], include_images: bool, include_messages: bool) → List[Document][source]¶ Process a list of thread into a list of documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.quip.QuipLoader.html
443d64fdbc76-0
langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader¶ class langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Load Microsoft PowerPoint files using Unstructured. Works with both .ppt and .pptx files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader(“example.pptx”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-pptx Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader.html
443d64fdbc76-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredPowerPointLoader¶ Microsoft PowerPoint
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader.html
06ab36eb9fc6-0
langchain.document_loaders.psychic.PsychicLoader¶ class langchain.document_loaders.psychic.PsychicLoader(api_key: str, account_id: str, connector_id: Optional[str] = None)[source]¶ Load from Psychic.dev. Initialize with API key, connector id, and account id. Parameters api_key – The Psychic API key. account_id – The Psychic account id. connector_id – The Psychic connector id. Methods __init__(api_key, account_id[, connector_id]) Initialize with API key, connector id, and account id. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(api_key: str, account_id: str, connector_id: Optional[str] = None)[source]¶ Initialize with API key, connector id, and account id. Parameters api_key – The Psychic API key. account_id – The Psychic account id. connector_id – The Psychic connector id. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using PsychicLoader¶ Psychic
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.psychic.PsychicLoader.html
125b4eb4d8fb-0
langchain.document_loaders.csv_loader.CSVLoader¶ class langchain.document_loaders.csv_loader.CSVLoader(file_path: str, source_column: Optional[str] = None, metadata_columns: Sequence[str] = (), csv_args: Optional[Dict] = None, encoding: Optional[str] = None, autodetect_encoding: bool = False)[source]¶ Load a CSV file into a list of Documents. Each document represents one row of the CSV file. Every row is converted into a key/value pair and outputted to a new line in the document’s page_content. The source for each document loaded from csv is set to the value of the file_path argument for all documents by default. You can override this by setting the source_column argument to the name of a column in the CSV file. The source of each document will then be set to the value of the column with the name specified in source_column. Output Example:column1: value1 column2: value2 column3: value3 Parameters file_path – The path to the CSV file. source_column – The name of the column in the CSV file to use as the source. Optional. Defaults to None. metadata_columns – A sequence of column names to use as metadata. Optional. csv_args – A dictionary of arguments to pass to the csv.DictReader. Optional. Defaults to None. encoding – The encoding of the CSV file. Optional. Defaults to None. autodetect_encoding – Whether to try to autodetect the file encoding. Methods __init__(file_path[, source_column, ...]) param file_path The path to the CSV file. lazy_load() A lazy loader for Documents. load() Load data into document objects. load_and_split([text_splitter]) Load Documents and split into chunks.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.csv_loader.CSVLoader.html
125b4eb4d8fb-1
load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str, source_column: Optional[str] = None, metadata_columns: Sequence[str] = (), csv_args: Optional[Dict] = None, encoding: Optional[str] = None, autodetect_encoding: bool = False)[source]¶ Parameters file_path – The path to the CSV file. source_column – The name of the column in the CSV file to use as the source. Optional. Defaults to None. metadata_columns – A sequence of column names to use as metadata. Optional. csv_args – A dictionary of arguments to pass to the csv.DictReader. Optional. Defaults to None. encoding – The encoding of the CSV file. Optional. Defaults to None. autodetect_encoding – Whether to try to autodetect the file encoding. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using CSVLoader¶ ChatGPT Plugin CSV
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.csv_loader.CSVLoader.html
a6ef57175b7f-0
langchain.document_loaders.base.BaseBlobParser¶ class langchain.document_loaders.base.BaseBlobParser[source]¶ Abstract interface for blob parsers. A blob parser provides a way to parse raw data stored in a blob into one or more documents. The parser can be composed with blob loaders, making it easy to reuse a parser independent of how the blob was originally loaded. Methods __init__() lazy_parse(blob) Lazy parsing interface. parse(blob) Eagerly parse the blob into a document or documents. __init__()¶ abstract lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazy parsing interface. Subclasses are required to implement this method. Parameters blob – Blob instance Returns Generator of documents parse(blob: Blob) → List[Document][source]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.base.BaseBlobParser.html
eccf581cc030-0
langchain.document_loaders.blob_loaders.schema.Blob¶ class langchain.document_loaders.blob_loaders.schema.Blob[source]¶ Bases: BaseModel Blob represents raw data by either reference or value. Provides an interface to materialize the blob in different representations, and help to decouple the development of data loaders from the downstream parsing of the raw data. Inspired by: https://developer.mozilla.org/en-US/docs/Web/API/Blob Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param data: Optional[Union[bytes, str]] = None¶ param encoding: str = 'utf-8'¶ param mimetype: Optional[str] = None¶ param path: Optional[Union[str, pathlib.PurePath]] = None¶ as_bytes() → bytes[source]¶ Read data as bytes. as_bytes_io() → Generator[Union[BytesIO, BufferedReader], None, None][source]¶ Read data as a byte stream. as_string() → str[source]¶ Read data as a string. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.Blob.html
eccf581cc030-1
Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_data(data: Union[str, bytes], *, encoding: str = 'utf-8', mime_type: Optional[str] = None, path: Optional[str] = None) → Blob[source]¶ Initialize the blob from in-memory data. Parameters data – the in-memory data associated with the blob encoding – Encoding to use if decoding the bytes into a string mime_type – if provided, will be set as the mime-type of the data path – if provided, will be set as the source from which the data came Returns Blob instance classmethod from_orm(obj: Any) → Model¶ classmethod from_path(path: Union[str, PurePath], *, encoding: str = 'utf-8', mime_type: Optional[str] = None, guess_type: bool = True) → Blob[source]¶ Load the blob from a path like object. Parameters path – path like object to file to be read
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.Blob.html
eccf581cc030-2
Parameters path – path like object to file to be read encoding – Encoding to use if decoding the bytes into a string mime_type – if provided, will be set as the mime-type of the data guess_type – If True, the mimetype will be guessed from the file extension, if a mime-type was not provided Returns Blob instance json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.Blob.html
eccf581cc030-3
classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ property source: Optional[str]¶ The source location of the blob as string if known otherwise none. Examples using Blob¶ docai.md Embaas
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.Blob.html
0d993cedb2e3-0
langchain.document_loaders.tsv.UnstructuredTSVLoader¶ class langchain.document_loaders.tsv.UnstructuredTSVLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Load TSV files using Unstructured. Like other Unstructured loaders, UnstructuredTSVLoader can be used in both “single” and “elements” mode. If you use the loader in “elements” mode, the TSV file will be a single Unstructured Table element. If you use the loader in “elements” mode, an HTML representation of the table will be available in the “text_as_html” key in the document metadata. Examples from langchain.document_loaders.tsv import UnstructuredTSVLoader loader = UnstructuredTSVLoader(“stanley-cups.tsv”, mode=”elements”) docs = loader.load() Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Initialize with file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredTSVLoader¶ TSV
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.tsv.UnstructuredTSVLoader.html
89706734a71e-0
langchain.document_loaders.url_playwright.UnstructuredHtmlEvaluator¶ class langchain.document_loaders.url_playwright.UnstructuredHtmlEvaluator(remove_selectors: Optional[List[str]] = None)[source]¶ Evaluates the page HTML content using the unstructured library. Initialize UnstructuredHtmlEvaluator. Methods __init__([remove_selectors]) Initialize UnstructuredHtmlEvaluator. evaluate(page, browser, response) Synchronously process the HTML content of the page. evaluate_async(page, browser, response) Asynchronously process the HTML content of the page. __init__(remove_selectors: Optional[List[str]] = None)[source]¶ Initialize UnstructuredHtmlEvaluator. evaluate(page: Page, browser: Browser, response: Response) → str[source]¶ Synchronously process the HTML content of the page. async evaluate_async(page: AsyncPage, browser: AsyncBrowser, response: AsyncResponse) → str[source]¶ Asynchronously process the HTML content of the page.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.url_playwright.UnstructuredHtmlEvaluator.html
b8988843deba-0
langchain.document_loaders.baiducloud_bos_file.BaiduBOSFileLoader¶ class langchain.document_loaders.baiducloud_bos_file.BaiduBOSFileLoader(conf: Any, bucket: str, key: str)[source]¶ Load from Baidu Cloud BOS file. Initialize with BOS config, bucket and key name. :param conf(BceClientConfiguration): BOS config. :param bucket(str): BOS bucket. :param key(str): BOS file key. Methods __init__(conf, bucket, key) Initialize with BOS config, bucket and key name. lazy_load() Load documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(conf: Any, bucket: str, key: str)[source]¶ Initialize with BOS config, bucket and key name. :param conf(BceClientConfiguration): BOS config. :param bucket(str): BOS bucket. :param key(str): BOS file key. lazy_load() → Iterator[Document][source]¶ Load documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.baiducloud_bos_file.BaiduBOSFileLoader.html
e3f2b098eec9-0
langchain.document_loaders.stripe.StripeLoader¶ class langchain.document_loaders.stripe.StripeLoader(resource: str, access_token: Optional[str] = None)[source]¶ Load from Stripe API. Initialize with a resource and an access token. Parameters resource – The resource. access_token – The access token. Methods __init__(resource[, access_token]) Initialize with a resource and an access token. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(resource: str, access_token: Optional[str] = None) → None[source]¶ Initialize with a resource and an access token. Parameters resource – The resource. access_token – The access token. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using StripeLoader¶ Stripe
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.stripe.StripeLoader.html
2d15289e50ef-0
langchain.document_loaders.imsdb.IMSDbLoader¶ class langchain.document_loaders.imsdb.IMSDbLoader(web_path: Union[str, Sequence[str]] = '', header_template: Optional[dict] = None, verify_ssl: bool = True, proxies: Optional[dict] = None, continue_on_failure: bool = False, autoset_encoding: bool = True, encoding: Optional[str] = None, web_paths: Sequence[str] = (), requests_per_second: int = 2, default_parser: str = 'html.parser', requests_kwargs: Optional[Dict[str, Any]] = None, raise_for_status: bool = False, bs_get_text_kwargs: Optional[Dict[str, Any]] = None, bs_kwargs: Optional[Dict[str, Any]] = None, session: Any = None)[source]¶ Load IMSDb webpages. Initialize loader. Parameters web_paths – Web paths to load from. requests_per_second – Max number of concurrent requests to make. default_parser – Default parser to use for BeautifulSoup. requests_kwargs – kwargs for requests raise_for_status – Raise an exception if http status code denotes an error. bs_get_text_kwargs – kwargs for beatifulsoup4 get_text bs_kwargs – kwargs for beatifulsoup4 web page parsing Attributes web_path Methods __init__([web_path, header_template, ...]) Initialize loader. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load webpage. load_and_split([text_splitter]) Load Documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser])
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.imsdb.IMSDbLoader.html
2d15289e50ef-1
scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. __init__(web_path: Union[str, Sequence[str]] = '', header_template: Optional[dict] = None, verify_ssl: bool = True, proxies: Optional[dict] = None, continue_on_failure: bool = False, autoset_encoding: bool = True, encoding: Optional[str] = None, web_paths: Sequence[str] = (), requests_per_second: int = 2, default_parser: str = 'html.parser', requests_kwargs: Optional[Dict[str, Any]] = None, raise_for_status: bool = False, bs_get_text_kwargs: Optional[Dict[str, Any]] = None, bs_kwargs: Optional[Dict[str, Any]] = None, session: Any = None) → None¶ Initialize loader. Parameters web_paths – Web paths to load from. requests_per_second – Max number of concurrent requests to make. default_parser – Default parser to use for BeautifulSoup. requests_kwargs – kwargs for requests raise_for_status – Raise an exception if http status code denotes an error. bs_get_text_kwargs – kwargs for beatifulsoup4 get_text bs_kwargs – kwargs for beatifulsoup4 web page parsing aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load webpage. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.imsdb.IMSDbLoader.html
2d15289e50ef-2
Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. Examples using IMSDbLoader¶ IMSDb
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.imsdb.IMSDbLoader.html
4fe84d4fb681-0
langchain.document_loaders.parsers.pdf.PyPDFParser¶ class langchain.document_loaders.parsers.pdf.PyPDFParser(password: Optional[Union[str, bytes]] = None, extract_images: bool = False)[source]¶ Load PDF using pypdf Methods __init__([password, extract_images]) lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. __init__(password: Optional[Union[str, bytes]] = None, extract_images: bool = False)[source]¶ lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyPDFParser.html
69ad40d378f5-0
langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader¶ class langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader(path: str)[source]¶ Load WhatsApp messages text file. Initialize with path. Methods __init__(path) Initialize with path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(path: str)[source]¶ Initialize with path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using WhatsAppChatLoader¶ WhatsApp WhatsApp Chat
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader.html
1dcfeab517eb-0
langchain.document_loaders.gutenberg.GutenbergLoader¶ class langchain.document_loaders.gutenberg.GutenbergLoader(file_path: str)[source]¶ Load from Gutenberg.org. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str)[source]¶ Initialize with a file path. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using GutenbergLoader¶ Gutenberg
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gutenberg.GutenbergLoader.html
cec534b0ac17-0
langchain.document_loaders.recursive_url_loader.RecursiveUrlLoader¶ class langchain.document_loaders.recursive_url_loader.RecursiveUrlLoader(url: str, max_depth: Optional[int] = 2, use_async: Optional[bool] = None, extractor: Optional[Callable[[str], str]] = None, metadata_extractor: Optional[Callable[[str, str], str]] = None, exclude_dirs: Optional[Sequence[str]] = (), timeout: Optional[int] = 10, prevent_outside: bool = True, link_regex: Optional[Union[str, Pattern]] = None, headers: Optional[dict] = None, check_response_status: bool = False)[source]¶ Load all child links from a URL page. Security Note: This loader is a crawler that will start crawlingat a given URL and then expand to crawl child links recursively. Web crawlers should generally NOT be deployed with network access to any internal servers. Control access to who can submit crawling requests and what network access the crawler has. While crawling, the crawler may encounter malicious URLs that would lead to a server-side request forgery (SSRF) attack. To mitigate risks, the crawler by default will only load URLs from the same domain as the start URL (controlled via prevent_outside named argument). This will mitigate the risk of SSRF attacks, but will not eliminate it. For example, if crawling a host which hosts several sites: https://some_host/alice_site/ https://some_host/bob_site/ A malicious URL on Alice’s site could cause the crawler to make a malicious GET request to an endpoint on Bob’s site. Both sites are hosted on the same host, so such a request would not be prevented by default. See https://python.langchain.com/docs/security Initialize with URL to crawl and any subdirectories to exclude. Parameters
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.recursive_url_loader.RecursiveUrlLoader.html
cec534b0ac17-1
Initialize with URL to crawl and any subdirectories to exclude. Parameters url – The URL to crawl. max_depth – The max depth of the recursive loading. use_async – Whether to use asynchronous loading. If True, this function will not be lazy, but it will still work in the expected way, just not lazy. extractor – A function to extract document contents from raw html. When extract function returns an empty string, the document is ignored. metadata_extractor – A function to extract metadata from raw html and the source url (args in that order). Default extractor will attempt to use BeautifulSoup4 to extract the title, description and language of the page. exclude_dirs – A list of subdirectories to exclude. timeout – The timeout for the requests, in the unit of seconds. If None then connection will not timeout. prevent_outside – If True, prevent loading from urls which are not children of the root url. link_regex – Regex for extracting sub-links from the raw html of a web page. check_response_status – If True, check HTTP response status and skip URLs with error responses (400-599). Methods __init__(url[, max_depth, use_async, ...]) Initialize with URL to crawl and any subdirectories to exclude. lazy_load() Lazy load web pages. load() Load web pages. load_and_split([text_splitter]) Load Documents and split into chunks.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.recursive_url_loader.RecursiveUrlLoader.html
cec534b0ac17-2
load_and_split([text_splitter]) Load Documents and split into chunks. __init__(url: str, max_depth: Optional[int] = 2, use_async: Optional[bool] = None, extractor: Optional[Callable[[str], str]] = None, metadata_extractor: Optional[Callable[[str, str], str]] = None, exclude_dirs: Optional[Sequence[str]] = (), timeout: Optional[int] = 10, prevent_outside: bool = True, link_regex: Optional[Union[str, Pattern]] = None, headers: Optional[dict] = None, check_response_status: bool = False) → None[source]¶ Initialize with URL to crawl and any subdirectories to exclude. Parameters url – The URL to crawl. max_depth – The max depth of the recursive loading. use_async – Whether to use asynchronous loading. If True, this function will not be lazy, but it will still work in the expected way, just not lazy. extractor – A function to extract document contents from raw html. When extract function returns an empty string, the document is ignored. metadata_extractor – A function to extract metadata from raw html and the source url (args in that order). Default extractor will attempt to use BeautifulSoup4 to extract the title, description and language of the page. exclude_dirs – A list of subdirectories to exclude. timeout – The timeout for the requests, in the unit of seconds. If None then connection will not timeout. prevent_outside – If True, prevent loading from urls which are not children of the root url. link_regex – Regex for extracting sub-links from the raw html of a web page. check_response_status – If True, check HTTP response status and skip URLs with error responses (400-599). lazy_load() → Iterator[Document][source]¶ Lazy load web pages.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.recursive_url_loader.RecursiveUrlLoader.html
cec534b0ac17-3
lazy_load() → Iterator[Document][source]¶ Lazy load web pages. When use_async is True, this function will not be lazy, but it will still work in the expected way, just not lazy. load() → List[Document][source]¶ Load web pages. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using RecursiveUrlLoader¶ Recursive URL Loader
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.recursive_url_loader.RecursiveUrlLoader.html
5d4802b1044c-0
langchain.document_loaders.airbyte.AirbyteZendeskSupportLoader¶ class langchain.document_loaders.airbyte.AirbyteZendeskSupportLoader(config: Mapping[str, Any], stream_name: str, record_handler: Optional[Callable[[Any, Optional[str]], Document]] = None, state: Optional[Any] = None)[source]¶ Load from Zendesk Support using an Airbyte source connector. Initializes the loader. Parameters config – The config to pass to the source connector. stream_name – The name of the stream to load. record_handler – A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state – The state to pass to the source connector. Defaults to None. Attributes last_state Methods __init__(config, stream_name[, ...]) Initializes the loader. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(config: Mapping[str, Any], stream_name: str, record_handler: Optional[Callable[[Any, Optional[str]], Document]] = None, state: Optional[Any] = None) → None[source]¶ Initializes the loader. Parameters config – The config to pass to the source connector. stream_name – The name of the stream to load. record_handler – A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state – The state to pass to the source connector. Defaults to None. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load data into Document objects.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte.AirbyteZendeskSupportLoader.html
5d4802b1044c-1
load() → List[Document]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using AirbyteZendeskSupportLoader¶ Airbyte Zendesk Support
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte.AirbyteZendeskSupportLoader.html
0233306da3e9-0
langchain.document_loaders.mhtml.MHTMLLoader¶ class langchain.document_loaders.mhtml.MHTMLLoader(file_path: str, open_encoding: Optional[str] = None, bs_kwargs: Optional[dict] = None, get_text_separator: str = '')[source]¶ Parse MHTML files with BeautifulSoup. Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. Parameters file_path – Path to file to load. open_encoding – The encoding to use when opening the file. bs_kwargs – Any kwargs to pass to the BeautifulSoup object. get_text_separator – The separator to use when getting the text from the soup. Methods __init__(file_path[, open_encoding, ...]) Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(file_path: str, open_encoding: Optional[str] = None, bs_kwargs: Optional[dict] = None, get_text_separator: str = '') → None[source]¶ Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. Parameters file_path – Path to file to load. open_encoding – The encoding to use when opening the file. bs_kwargs – Any kwargs to pass to the BeautifulSoup object. get_text_separator – The separator to use when getting the text from the soup. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mhtml.MHTMLLoader.html
0233306da3e9-1
load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using MHTMLLoader¶ mhtml
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mhtml.MHTMLLoader.html
cec4b30479b8-0
langchain.document_loaders.wikipedia.WikipediaLoader¶ class langchain.document_loaders.wikipedia.WikipediaLoader(query: str, lang: str = 'en', load_max_docs: Optional[int] = 100, load_all_available_meta: Optional[bool] = False, doc_content_chars_max: Optional[int] = 4000)[source]¶ Load from Wikipedia. The hard limit on the number of downloaded Documents is 300 for now. Each wiki page represents one Document. Initializes a new instance of the WikipediaLoader class. Parameters query (str) – The query string to search on Wikipedia. lang (str, optional) – The language code for the Wikipedia language edition. Defaults to “en”. load_max_docs (int, optional) – The maximum number of documents to load. Defaults to 100. load_all_available_meta (bool, optional) – Indicates whether to load all available metadata for each document. Defaults to False. doc_content_chars_max (int, optional) – The maximum number of characters for the document content. Defaults to 4000. Methods __init__(query[, lang, load_max_docs, ...]) Initializes a new instance of the WikipediaLoader class. lazy_load() A lazy loader for Documents. load() Loads the query result from Wikipedia into a list of Documents. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(query: str, lang: str = 'en', load_max_docs: Optional[int] = 100, load_all_available_meta: Optional[bool] = False, doc_content_chars_max: Optional[int] = 4000)[source]¶ Initializes a new instance of the WikipediaLoader class. Parameters query (str) – The query string to search on Wikipedia.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.wikipedia.WikipediaLoader.html
cec4b30479b8-1
Parameters query (str) – The query string to search on Wikipedia. lang (str, optional) – The language code for the Wikipedia language edition. Defaults to “en”. load_max_docs (int, optional) – The maximum number of documents to load. Defaults to 100. load_all_available_meta (bool, optional) – Indicates whether to load all available metadata for each document. Defaults to False. doc_content_chars_max (int, optional) – The maximum number of characters for the document content. Defaults to 4000. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Loads the query result from Wikipedia into a list of Documents. Returns A list of Document objects representing the loadedWikipedia pages. Return type List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using WikipediaLoader¶ Wikipedia Diffbot Graph Transformer
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.wikipedia.WikipediaLoader.html
2f29d672671f-0
langchain.document_loaders.tomarkdown.ToMarkdownLoader¶ class langchain.document_loaders.tomarkdown.ToMarkdownLoader(url: str, api_key: str)[source]¶ Load HTML using 2markdown API. Initialize with url and api key. Methods __init__(url, api_key) Initialize with url and api key. lazy_load() Lazily load the file. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(url: str, api_key: str)[source]¶ Initialize with url and api key. lazy_load() → Iterator[Document][source]¶ Lazily load the file. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using ToMarkdownLoader¶ 2Markdown
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.tomarkdown.ToMarkdownLoader.html
69939151e61e-0
langchain.document_loaders.url_playwright.PlaywrightEvaluator¶ class langchain.document_loaders.url_playwright.PlaywrightEvaluator[source]¶ Abstract base class for all evaluators. Each evaluator should take a page, a browser instance, and a response object, process the page as necessary, and return the resulting text. Methods __init__() evaluate(page, browser, response) Synchronously process the page and return the resulting text. evaluate_async(page, browser, response) Asynchronously process the page and return the resulting text. __init__()¶ abstract evaluate(page: Page, browser: Browser, response: Response) → str[source]¶ Synchronously process the page and return the resulting text. Parameters page – The page to process. browser – The browser instance. response – The response from page.goto(). Returns The text content of the page. Return type text abstract async evaluate_async(page: AsyncPage, browser: AsyncBrowser, response: AsyncResponse) → str[source]¶ Asynchronously process the page and return the resulting text. Parameters page – The page to process. browser – The browser instance. response – The response from page.goto(). Returns The text content of the page. Return type text
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.url_playwright.PlaywrightEvaluator.html
11125c1caaa1-0
langchain.document_loaders.parsers.audio.OpenAIWhisperParserLocal¶ class langchain.document_loaders.parsers.audio.OpenAIWhisperParserLocal(device: str = '0', lang_model: Optional[str] = None, forced_decoder_ids: Optional[Tuple[Dict]] = None)[source]¶ Transcribe and parse audio files with OpenAI Whisper model. Audio transcription with OpenAI Whisper model locally from transformers. Parameters: device - device to use NOTE: By default uses the gpu if available, if you want to use cpu, please set device = “cpu” lang_model - whisper model to use, for example “openai/whisper-medium” forced_decoder_ids - id states for decoder in multilanguage model, usage example: from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained(“openai/whisper-medium”) forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language=”french”, task=”transcribe”) forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language=”french”, task=”translate”) Initialize the parser. Parameters device – device to use. lang_model – whisper model to use, for example “openai/whisper-medium”. Defaults to None. forced_decoder_ids – id states for decoder in a multilanguage model. Defaults to None. Methods __init__([device, lang_model, ...]) Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. __init__(device: str = '0', lang_model: Optional[str] = None, forced_decoder_ids: Optional[Tuple[Dict]] = None)[source]¶ Initialize the parser. Parameters device – device to use.
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.audio.OpenAIWhisperParserLocal.html
11125c1caaa1-1
Initialize the parser. Parameters device – device to use. lang_model – whisper model to use, for example “openai/whisper-medium”. Defaults to None. forced_decoder_ids – id states for decoder in a multilanguage model. Defaults to None. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.audio.OpenAIWhisperParserLocal.html
bc6fb583710a-0
langchain.document_loaders.rss.RSSFeedLoader¶ class langchain.document_loaders.rss.RSSFeedLoader(urls: Optional[Sequence[str]] = None, opml: Optional[str] = None, continue_on_failure: bool = True, show_progress_bar: bool = False, **newsloader_kwargs: Any)[source]¶ Load news articles from RSS feeds using Unstructured. Parameters urls – URLs for RSS feeds to load. Each articles in the feed is loaded into its own document. opml – OPML file to load feed urls from. Only one of urls or opml should be provided. The value string (can be a URL) – string. (or OPML markup contents as byte or) – continue_on_failure – If True, continue loading documents even if loading fails for a particular URL. show_progress_bar – If True, use tqdm to show a loading progress bar. Requires tqdm to be installed, pip install tqdm. **newsloader_kwargs – Any additional named arguments to pass to NewsURLLoader. Example from langchain.document_loaders import RSSFeedLoader loader = RSSFeedLoader( urls=["<url-1>", "<url-2>"], ) docs = loader.load() The loader uses feedparser to parse RSS feeds. The feedparser library is not installed by default so you should install it if using this loader: https://pythonhosted.org/feedparser/ If you use OPML, you should also install listparser: https://pythonhosted.org/listparser/ Finally, newspaper is used to process each article: https://newspaper.readthedocs.io/en/latest/ Initialize with urls or OPML. Methods __init__([urls, opml, continue_on_failure, ...]) Initialize with urls or OPML. lazy_load()
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rss.RSSFeedLoader.html
bc6fb583710a-1
Initialize with urls or OPML. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. __init__(urls: Optional[Sequence[str]] = None, opml: Optional[str] = None, continue_on_failure: bool = True, show_progress_bar: bool = False, **newsloader_kwargs: Any) → None[source]¶ Initialize with urls or OPML. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using RSSFeedLoader¶ RSS Feeds
lang/api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rss.RSSFeedLoader.html