xixu-me's picture
Enhance README.md with Quick Start guide, updated dataset statistics, and citation information
4599473
|
raw
history blame
33.9 kB
metadata
license: mit
viewer: false
task_categories:
  - image-classification
task_ids:
  - multi-class-image-classification
tags:
  - computer-vision
  - product-classification
  - e-commerce
  - retail
  - few-shot-learning
  - meta-learning
  - benchmark
size_categories:
  - 100K<n<1M
language:
  - en
pretty_name: FSL Product Classification Dataset
configs:
  - config_name: default
    data_files: data.tzst
    default: true
dataset_info:
  features:
    - name: image
      dtype: image
    - name: label
      dtype: int64
    - name: class_name
      dtype: string
    - name: image_id
      dtype: string
  splits:
    - name: train
      num_bytes: 9945644054
      num_examples: 279747
  download_size: 9945644054
  dataset_size: 9945644054

Few-Shot Learning (FSL) Product Classification Dataset

Dataset Description

This dataset is designed for Few-Shot Learning (FSL) research in product classification tasks. It contains product images organized into 763 distinct classes, with an average of approximately 367 images per class (279,747 total images), making it ideal for training and evaluating few-shot learning algorithms in e-commerce and retail scenarios. Note that class numbers are not continuous.

Key Features

  • 763 product classes covering diverse product categories
  • 279,747 total images (average of ~367 images per class)
  • High-quality product images suitable for computer vision research
  • Variable class distribution with non-continuous class numbers
  • Efficient tzst compression for reduced storage and faster transfer

Dataset Statistics

  • Total Classes: 763
  • Total Images: 279,747
  • Images per Class: ~367 (average, variable distribution)
  • Class Numbers: Non-continuous (some class numbers may be missing)
  • Image Format: PNG
  • Typical Image Size: 50-100 KB per image
  • Compressed Archive Size: ~9.9 GB (data.tzst)

Dataset Structure

The dataset is stored in a compressed tzst archive (data.tzst) with the following structure:

data.tzst
β”œβ”€β”€ class_0/
β”‚   β”œβ”€β”€ class_0_0.png
β”‚   β”œβ”€β”€ class_0_1.png
β”‚   └── ...
β”œβ”€β”€ class_1/
β”‚   β”œβ”€β”€ class_1_0.png
β”‚   β”œβ”€β”€ class_1_1.png
β”‚   └── ...
└── ... (763 total classes with non-continuous numbers)

Note: Class numbers are not continuous. For example, you might have class_0, class_2, class_5, etc., but not class_1, class_3, class_4. The total number of classes is 763.

Quick Start

Get started with the FSL Product Classification dataset in just a few steps:

from datasets import Dataset
import os
from tzst import extract_archive

# 1. Extract the dataset
extract_archive("data.tzst", "extracted_data/")

# 2. Load a few samples
data_dir = "extracted_data"
samples = []
for class_dir in sorted(os.listdir(data_dir))[:3]:  # First 3 classes
    if class_dir.startswith("class_"):
        class_path = os.path.join(data_dir, class_dir)
        for img_file in os.listdir(class_path)[:5]:  # First 5 images
            if img_file.endswith('.png'):
                samples.append({
                    'image': os.path.join(class_path, img_file),
                    'label': int(class_dir.split("_")[1]),
                    'class_name': class_dir,
                    'image_id': img_file.replace('.png', '')
                })

print(f"Loaded {len(samples)} sample images from 3 classes")

For complete setup and advanced usage, see the sections below.

Usage

Installation and Setup

Quick Start Installation

# Create a new virtual environment (recommended)
python -m venv fsl-env

# Activate virtual environment
# On Windows:
fsl-env\Scripts\activate
# On macOS/Linux:
# source fsl-env/bin/activate

# Install core dependencies
pip install datasets tzst pillow

# Install additional dependencies for machine learning
pip install torch torchvision numpy scikit-learn matplotlib seaborn tqdm

# For Jupyter notebook users
pip install jupyter ipywidgets

Complete Requirements

Create a requirements.txt file with the following dependencies:

# Core dependencies
datasets>=2.14.0
tzst>=1.2.8
pillow>=9.0.0

# Machine learning
torch>=1.9.0
torchvision>=0.10.0
numpy>=1.21.0
scikit-learn>=1.0.0

# Data analysis and visualization
pandas>=1.3.0
matplotlib>=3.4.0
seaborn>=0.11.0

# Progress bars and utilities
tqdm>=4.62.0
pathlib>=1.0.1

# Optional: for advanced few-shot learning
learn2learn>=0.1.7
higher>=0.2.1

# Optional: for notebook usage
jupyter>=1.0.0
ipywidgets>=7.6.0

Install all requirements:

pip install -r requirements.txt

Docker Setup (Optional)

For a containerized environment:

FROM python:3.9-slim

WORKDIR /app

# Install system dependencies
RUN apt-get update && apt-get install -y \
    git \
    wget \
    && rm -rf /var/lib/apt/lists/*

# Copy requirements and install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application code
COPY . .

# Set environment variables
ENV PYTHONPATH=/app
ENV HF_DATASETS_CACHE=/app/cache

# Create cache directory
RUN mkdir -p /app/cache

CMD ["python", "-c", "print('FSL Product Classification environment ready!')"]

Build and run:

docker build -t fsl-product-classification .
docker run -it --rm -v $(pwd)/data:/app/data fsl-product-classification bash

Loading the Dataset

import os
from tzst import extract_archive
from datasets import Dataset, Features, Value, Image, ClassLabel
from PIL import Image as PILImage

# Extract the dataset archive
extract_archive("data.tzst", "extracted_data/")

# Create a custom dataset loader
def load_fsl_dataset(data_dir="extracted_data"):
    samples = []
    class_names = []
    
    # Scan for class directories
    for class_dir in sorted(os.listdir(data_dir)):
        if class_dir.startswith("class_"):
            class_path = os.path.join(data_dir, class_dir)
            if os.path.isdir(class_path):
                class_id = int(class_dir.split("_")[1])
                class_names.append(class_dir)
                
                # Load images from this class
                for img_file in os.listdir(class_path):
                    if img_file.endswith('.png'):
                        img_path = os.path.join(class_path, img_file)
                        image_id = img_file.replace('.png', '')
                        
                        samples.append({
                            'image': img_path,
                            'label': class_id,
                            'class_name': class_dir,
                            'image_id': image_id
                        })
    
    # Create features definition
    features = Features({
        'image': Image(),
        'label': Value('int64'),
        'class_name': Value('string'),
        'image_id': Value('string')
    })
    
    # Create dataset
    return Dataset.from_list(samples, features=features)

# Load the dataset
dataset = load_fsl_dataset()
print(f"Loaded {len(dataset)} samples from {len(set(dataset['class_name']))} classes")

Streaming mode for memory-efficient processing of large archive:

from tzst import extract_archive
import tempfile
import os

# Use streaming extraction for memory efficiency
with tempfile.TemporaryDirectory() as temp_dir:
    # Extract with streaming mode
    extract_archive("data.tzst", temp_dir, streaming=True)
    
    # Process extracted data
    dataset = load_fsl_dataset(temp_dir)
    # ... your processing code here

Data Exploration

from collections import Counter
import matplotlib.pyplot as plt

# Analyze class distribution
class_counts = Counter(dataset['class_name'])
print(f"Number of classes: {len(class_counts)}")
print(f"Average images per class: {len(dataset) / len(class_counts):.1f}")

# Plot class distribution (top 20 classes)
top_classes = class_counts.most_common(20)
classes, counts = zip(*top_classes)

plt.figure(figsize=(12, 6))
plt.bar(range(len(classes)), counts)
plt.xlabel('Class')
plt.ylabel('Number of Images')
plt.title('Top 20 Classes by Image Count')
plt.xticks(range(len(classes)), [c.replace('class_', '') for c in classes], rotation=45)
plt.tight_layout()
plt.show()

# Display sample images
import random

def show_samples(dataset, num_samples=8):
    """Display random samples from the dataset"""
    indices = random.sample(range(len(dataset)), num_samples)
    
    fig, axes = plt.subplots(2, 4, figsize=(15, 8))
    axes = axes.flatten()
    
    for i, idx in enumerate(indices):
        sample = dataset[idx]
        axes[i].imshow(sample['image'])
        axes[i].set_title(f"{sample['class_name']}\nID: {sample['image_id']}")
        axes[i].axis('off')
    
    plt.tight_layout()
    plt.show()

# Show sample images
show_samples(dataset)

Few-Shot Learning Setup

Basic Few-Shot Episode Creation

import random
from collections import defaultdict
import torch
from torch.utils.data import DataLoader

def create_few_shot_split(dataset, n_way=5, k_shot=5, n_query=15, seed=None):
    """
    Create a few-shot learning episode
    
    Args:
        dataset: Hugging Face Dataset instance or custom dataset
        n_way: Number of classes in the episode
        k_shot: Number of support samples per class
        n_query: Number of query samples per class
        seed: Random seed for reproducibility
    
    Returns:
        support_set, query_set: Lists of (image, label) tuples
    """
    if seed is not None:
        random.seed(seed)
    
    # Group samples by class
    class_samples = defaultdict(list)
    for i, sample in enumerate(dataset):
        class_samples[sample['label']].append(i)
    
    # Filter classes with enough samples
    valid_classes = [
        class_id for class_id, indices in class_samples.items() 
        if len(indices) >= k_shot + n_query
    ]
    
    if len(valid_classes) < n_way:
        raise ValueError(f"Not enough classes with {k_shot + n_query} samples. "
                        f"Found {len(valid_classes)}, need {n_way}")
    
    # Sample n_way classes
    episode_classes = random.sample(valid_classes, n_way)
    
    support_set = []
    query_set = []
    
    for new_label, original_class in enumerate(episode_classes):
        class_indices = random.sample(class_samples[original_class], k_shot + n_query)
        
        # Support samples
        for idx in class_indices[:k_shot]:
            sample = dataset[idx]
            support_set.append((sample['image'], new_label, sample['image_id']))
        
        # Query samples
        for idx in class_indices[k_shot:]:
            sample = dataset[idx]
            query_set.append((sample['image'], new_label, sample['image_id']))
    
    return support_set, query_set

# Create a 5-way 5-shot episode
support_set, query_set = create_few_shot_split(dataset, n_way=5, k_shot=5, n_query=15)

print(f"Support set: {len(support_set)} samples")
print(f"Query set: {len(query_set)} samples")

Advanced FSL Dataset Class

import torch
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import Image
import numpy as np

class FSLProductDataset(Dataset):
    """
    Few-Shot Learning Dataset wrapper for product classification
    """
    
    def __init__(self, hf_dataset, transform=None, target_transform=None):
        self.dataset = hf_dataset
        self.transform = transform or self.get_default_transform()
        self.target_transform = target_transform
        
        # Create label mapping for non-continuous labels
        unique_labels = sorted(set(hf_dataset['label']))
        self.label_to_idx = {label: idx for idx, label in enumerate(unique_labels)}
        self.idx_to_label = {idx: label for label, idx in self.label_to_idx.items()}
        
    def get_default_transform(self):
        """Default image transformations"""
        return transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                               std=[0.229, 0.224, 0.225])
        ])
    
    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        sample = self.dataset[idx]
        image = sample['image']
        
        # Convert to PIL Image if needed
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        # Apply transforms
        if self.transform:
            image = self.transform(image)
            
        # Map label to continuous indices
        label = self.label_to_idx[sample['label']]
        
        if self.target_transform:
            label = self.target_transform(label)
            
        return image, label, sample['image_id']
    
    def get_class_samples(self, class_label):
        """Get all samples for a specific class"""
        indices = [i for i, sample in enumerate(self.dataset) 
                  if sample['label'] == class_label]
        return [self[i] for i in indices]
    
    def create_episode_dataloader(self, n_way=5, k_shot=5, n_query=15, 
                                 batch_size=None, shuffle=True):
        """Create a DataLoader for a few-shot episode"""
        support_set, query_set = create_few_shot_split(
            self.dataset, n_way=n_way, k_shot=k_shot, n_query=n_query
        )
        
        # Convert to tensors
        support_images = []
        support_labels = []
        query_images = []
        query_labels = []
        
        for image, label, _ in support_set:
            if isinstance(image, Image.Image):
                image = self.transform(image) if self.transform else image
            support_images.append(image)
            support_labels.append(label)
            
        for image, label, _ in query_set:
            if isinstance(image, Image.Image):
                image = self.transform(image) if self.transform else image
            query_images.append(image)
            query_labels.append(label)
        
        support_data = (torch.stack(support_images), torch.tensor(support_labels))
        query_data = (torch.stack(query_images), torch.tensor(query_labels))
        
        return support_data, query_data

# Example usage with PyTorch
transform = transforms.Compose([
    transforms.Resize((84, 84)),  # Common size for few-shot learning
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                        std=[0.229, 0.224, 0.225])
])

# Load dataset
fsl_dataset = FSLProductDataset(dataset, transform=transform)

# Create episode data
support_data, query_data = fsl_dataset.create_episode_dataloader(
    n_way=5, k_shot=1, n_query=15
)

print(f"Support images shape: {support_data[0].shape}")
print(f"Support labels shape: {support_data[1].shape}")
print(f"Query images shape: {query_data[0].shape}")
print(f"Query labels shape: {query_data[1].shape}")

Meta-Learning Training Loop

import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm

def train_fsl_model(model, dataset, num_episodes=1000, n_way=5, k_shot=1, 
                   n_query=15, lr=0.001, device='cuda'):
    """
    Basic training loop for few-shot learning
    
    Args:
        model: Few-shot learning model (e.g., Prototypical Network)
        dataset: FSLProductDataset instance
        num_episodes: Number of training episodes
        n_way, k_shot, n_query: Episode configuration
        lr: Learning rate
        device: Training device
    """
    model.to(device)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    criterion = nn.CrossEntropyLoss()
    
    model.train()
    total_loss = 0
    total_acc = 0
    
    for episode in tqdm(range(num_episodes), desc="Training"):
        # Create episode
        support_data, query_data = dataset.create_episode_dataloader(
            n_way=n_way, k_shot=k_shot, n_query=n_query
        )
        
        support_images, support_labels = support_data
        query_images, query_labels = query_data
        
        # Move to device
        support_images = support_images.to(device)
        support_labels = support_labels.to(device)
        query_images = query_images.to(device)
        query_labels = query_labels.to(device)
        
        # Forward pass
        optimizer.zero_grad()
        logits = model(support_images, support_labels, query_images)
        loss = criterion(logits, query_labels)
        
        # Backward pass
        loss.backward()
        optimizer.step()
        
        # Calculate accuracy
        pred = logits.argmax(dim=1)
        acc = (pred == query_labels).float().mean()
        
        total_loss += loss.item()
        total_acc += acc.item()
        
        if (episode + 1) % 100 == 0:
            avg_loss = total_loss / 100
            avg_acc = total_acc / 100
            print(f"Episode {episode + 1}: Loss = {avg_loss:.4f}, Acc = {avg_acc:.4f}")
            total_loss = 0
            total_acc = 0

# Example: Simple Prototypical Network
class SimplePrototypicalNetwork(nn.Module):
    def __init__(self, backbone):
        super().__init__()
        self.backbone = backbone
        
    def forward(self, support_images, support_labels, query_images):
        # Encode images
        support_features = self.backbone(support_images)
        query_features = self.backbone(query_images)
        
        # Calculate prototypes
        n_way = len(torch.unique(support_labels))
        prototypes = []
        
        for class_idx in range(n_way):
            class_mask = support_labels == class_idx
            class_features = support_features[class_mask]
            prototype = class_features.mean(dim=0)
            prototypes.append(prototype)
        
        prototypes = torch.stack(prototypes)
        
        # Calculate distances and logits
        distances = torch.cdist(query_features, prototypes)
        logits = -distances  # Negative distance as logits
        
        return logits

Research Applications

This dataset is particularly well-suited for:

Few-Shot Learning

  • Meta-learning algorithms (MAML, Prototypical Networks, Relation Networks)
  • Metric learning approaches (Siamese Networks, Triplet Networks)
  • Gradient-based meta-learning methods

Transfer Learning

  • Pre-training on large-scale product data
  • Domain adaptation from general images to products
  • Fine-tuning strategies for product classification

Computer Vision Research

  • Product recognition and retrieval
  • E-commerce applications
  • Retail automation
  • Visual search systems

Benchmark Tasks

Standard Few-Shot Learning Evaluation

The following benchmarks are recommended for evaluating few-shot learning models on this dataset:

Standard Evaluation Protocol

import numpy as np
from sklearn.metrics import accuracy_score, classification_report
import json

def evaluate_fsl_model(model, dataset, num_episodes=600, n_way=5, k_shot=1, 
                       n_query=15, device='cuda'):
    """
    Evaluate few-shot learning model using standard protocol
    
    Returns:
        dict: Evaluation results with mean accuracy and confidence interval
    """
    model.eval()
    accuracies = []
    
    with torch.no_grad():
        for _ in tqdm(range(num_episodes), desc="Evaluating"):
            # Create episode
            support_data, query_data = dataset.create_episode_dataloader(
                n_way=n_way, k_shot=k_shot, n_query=n_query
            )
            
            support_images, support_labels = support_data
            query_images, query_labels = query_data
            
            # Move to device
            support_images = support_images.to(device)
            support_labels = support_labels.to(device)
            query_images = query_images.to(device)
            query_labels = query_labels.to(device)
            
            # Predict
            logits = model(support_images, support_labels, query_images)
            pred = logits.argmax(dim=1)
            
            # Calculate episode accuracy
            acc = (pred == query_labels).float().mean().item()
            accuracies.append(acc)
    
    # Calculate statistics
    mean_acc = np.mean(accuracies)
    std_acc = np.std(accuracies)
    ci_95 = 1.96 * std_acc / np.sqrt(len(accuracies))
    
    results = {
        'mean_accuracy': mean_acc,
        'std_accuracy': std_acc,
        'confidence_interval_95': ci_95,
        'num_episodes': num_episodes,
        'config': f"{n_way}-way {k_shot}-shot"
    }
    
    return results

# Benchmark configurations
benchmark_configs = [
    {'n_way': 5, 'k_shot': 1, 'n_query': 15},  # 5-way 1-shot
    {'n_way': 5, 'k_shot': 5, 'n_query': 15},  # 5-way 5-shot
    {'n_way': 10, 'k_shot': 1, 'n_query': 15}, # 10-way 1-shot
    {'n_way': 10, 'k_shot': 5, 'n_query': 15}, # 10-way 5-shot
]

# Run benchmarks
def run_benchmark_suite(model, dataset, num_episodes=600):
    """Run complete benchmark suite"""
    results = {}
    
    for config in benchmark_configs:
        config_name = f"{config['n_way']}-way_{config['k_shot']}-shot"
        print(f"\nEvaluating {config_name}...")
        
        result = evaluate_fsl_model(
            model, dataset, num_episodes=num_episodes, **config
        )
        results[config_name] = result
        
        print(f"Accuracy: {result['mean_accuracy']:.4f} Β± {result['confidence_interval_95']:.4f}")
    
    return results

# Example usage
# results = run_benchmark_suite(model, test_dataset)

Cross-Domain Evaluation

def create_cross_domain_split(dataset, train_ratio=0.6, val_ratio=0.2, test_ratio=0.2, seed=42):
    """
    Create train/validation/test splits at the class level for cross-domain evaluation
    
    Args:
        dataset: Hugging Face Dataset
        train_ratio: Proportion of classes for training
        val_ratio: Proportion of classes for validation  
        test_ratio: Proportion of classes for testing
        seed: Random seed
        
    Returns:
        dict: Splits with class indices for each set
    """
    np.random.seed(seed)
    
    # Get unique classes
    unique_classes = sorted(set(dataset['label']))
    n_classes = len(unique_classes)
    
    # Calculate split sizes
    n_train = int(n_classes * train_ratio)
    n_val = int(n_classes * val_ratio)
    n_test = n_classes - n_train - n_val
    
    # Shuffle and split classes
    shuffled_classes = np.random.permutation(unique_classes)
    train_classes = shuffled_classes[:n_train]
    val_classes = shuffled_classes[n_train:n_train + n_val]
    test_classes = shuffled_classes[n_train + n_val:]
    
    # Create sample indices for each split
    train_indices = [i for i, sample in enumerate(dataset) if sample['label'] in train_classes]
    val_indices = [i for i, sample in enumerate(dataset) if sample['label'] in val_classes]
    test_indices = [i for i, sample in enumerate(dataset) if sample['label'] in test_classes]
    
    return {
        'train': {'indices': train_indices, 'classes': train_classes.tolist()},
        'validation': {'indices': val_indices, 'classes': val_classes.tolist()}, 
        'test': {'indices': test_indices, 'classes': test_classes.tolist()}
    }

# Create cross-domain splits
splits = create_cross_domain_split(dataset)

print(f"Train classes: {len(splits['train']['classes'])}")
print(f"Validation classes: {len(splits['validation']['classes'])}")
print(f"Test classes: {len(splits['test']['classes'])}")

Performance Baselines

Expected performance ranges for different few-shot learning approaches:

Method 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Random Baseline 20.0% 20.0% 10.0% 10.0%
Nearest Neighbor 35-45% 55-65% 25-35% 45-55%
Prototypical Networks 45-55% 65-75% 35-45% 55-65%
MAML 48-58% 68-78% 38-48% 58-68%
Relation Networks 50-60% 70-80% 40-50% 60-70%

Utility Functions

import os
import json
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter

def dataset_statistics(dataset):
    """
    Generate comprehensive statistics about the dataset
    
    Args:
        dataset: Hugging Face Dataset or list of samples
        
    Returns:
        dict: Dataset statistics
    """
    if hasattr(dataset, '__getitem__') and hasattr(dataset, '__len__'):
        # Hugging Face Dataset
        labels = dataset['label']
        class_names = dataset['class_name']
        image_ids = dataset['image_id']
    else:
        # List of samples
        labels = [sample['label'] for sample in dataset]
        class_names = [sample['class_name'] for sample in dataset]
        image_ids = [sample['image_id'] for sample in dataset]
    
    # Basic statistics
    n_samples = len(labels)
    n_classes = len(set(labels))
    class_counts = Counter(labels)
    
    # Calculate distribution statistics
    counts = list(class_counts.values())
    stats = {
        'total_samples': n_samples,
        'total_classes': n_classes,
        'avg_samples_per_class': n_samples / n_classes,
        'min_samples_per_class': min(counts),
        'max_samples_per_class': max(counts),
        'std_samples_per_class': np.std(counts),
        'class_distribution': dict(class_counts)
    }
    
    return stats

def plot_class_distribution(dataset, top_k=50, figsize=(15, 8)):
    """
    Plot class distribution
    
    Args:
        dataset: Dataset object
        top_k: Number of top classes to show
        figsize: Figure size
    """
    # Get class counts
    if hasattr(dataset, '__getitem__'):
        class_counts = Counter(dataset['label'])
    else:
        class_counts = Counter([sample['label'] for sample in dataset])
    
    # Get top k classes
    top_classes = class_counts.most_common(top_k)
    labels, counts = zip(*top_classes)
    
    # Plot
    plt.figure(figsize=figsize)
    bars = plt.bar(range(len(labels)), counts)
    plt.xlabel('Class ID')
    plt.ylabel('Number of Samples')
    plt.title(f'Class Distribution (Top {top_k} Classes)')
    plt.xticks(range(0, len(labels), max(1, len(labels)//10)), 
               [str(l) for l in labels[::max(1, len(labels)//10)]], rotation=45)
    
    # Add statistics text
    total_samples = sum(counts)
    avg_samples = total_samples / len(counts)
    plt.text(0.02, 0.98, f'Total Classes: {len(class_counts)}\n'
                         f'Shown Classes: {len(labels)}\n'
                         f'Avg Samples/Class: {avg_samples:.1f}',
             transform=plt.gca().transAxes, verticalalignment='top',
             bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))
    
    plt.tight_layout()
    plt.show()
    
    return top_classes

def save_dataset_info(dataset, output_path="dataset_info.json"):
    """
    Save dataset information to JSON file
    
    Args:
        dataset: Dataset object
        output_path: Path to save the info file
    """
    stats = dataset_statistics(dataset)
    
    # Add additional metadata
    info = {
        'dataset_name': 'FSL Product Classification Dataset',
        'version': '1.0',
        'statistics': stats,
        'description': 'Few-shot learning dataset for product classification',
        'features': {
            'image': 'PIL Image object',
            'label': 'Class ID (int64)', 
            'class_name': 'Class name string',
            'image_id': 'Unique image identifier'
        }
    }
    
    # Save to file
    with open(output_path, 'w') as f:
        json.dump(info, f, indent=2)
    
    print(f"Dataset info saved to: {output_path}")
    return info

def verify_dataset_integrity(dataset_path="data.tzst"):
    """
    Verify dataset archive integrity
    
    Args:
        dataset_path: Path to the dataset archive
        
    Returns:
        bool: True if dataset is valid
    """
    from tzst import test_archive
    
    try:
        # Test archive integrity
        is_valid = test_archive(dataset_path)
        
        if is_valid:
            print(f"βœ… Dataset archive '{dataset_path}' is valid")
            
            # Get archive info
            from tzst import list_archive
            contents = list_archive(dataset_path, verbose=True)
            
            print(f"πŸ“ Archive contains {len(contents)} files")
            
            # Check for expected structure
            class_dirs = [item['name'] for item in contents 
                         if item['name'].startswith('class_') and item['name'].endswith('/')]
            print(f"🏷️  Found {len(class_dirs)} class directories")
            
            return True
        else:
            print(f"❌ Dataset archive '{dataset_path}' is corrupted")
            return False
            
    except Exception as e:
        print(f"❌ Error verifying dataset: {e}")
        return False

def create_data_splits(dataset, split_ratios={'train': 0.8, 'test': 0.2}, 
                      strategy='random', seed=42):
    """
    Create train/test splits from the dataset
    
    Args:
        dataset: Dataset object
        split_ratios: Dictionary with split names and ratios
        strategy: 'random' or 'stratified'
        seed: Random seed
        
    Returns:
        dict: Split datasets
    """
    from sklearn.model_selection import train_test_split
    
    np.random.seed(seed)
    
    if strategy == 'random':
        # Simple random split
        indices = list(range(len(dataset)))
        train_size = split_ratios.get('train', 0.8)
        
        train_indices, test_indices = train_test_split(
            indices, train_size=train_size, random_state=seed
        )
        
        splits = {
            'train': dataset.select(train_indices),
            'test': dataset.select(test_indices)
        }
        
    elif strategy == 'stratified':
        # Stratified split maintaining class distribution
        labels = dataset['label']
        indices = list(range(len(dataset)))
        train_size = split_ratios.get('train', 0.8)
        
        train_indices, test_indices = train_test_split(
            indices, train_size=train_size, stratify=labels, random_state=seed
        )
        
        splits = {
            'train': dataset.select(train_indices),
            'test': dataset.select(test_indices)
        }
    
    # Print split information
    for split_name, split_dataset in splits.items():
        n_samples = len(split_dataset)
        n_classes = len(set(split_dataset['label']))
        print(f"{split_name.capitalize()} split: {n_samples} samples, {n_classes} classes")
    
    return splits

Troubleshooting

Common Issues and Solutions

1. Archive Extraction Issues

Problem: Error extracting data.tzst file

TzstDecompressionError: Failed to decompress archive

Solution:

# Verify archive integrity first
from tzst import test_archive
if not test_archive("data.tzst"):
    print("Archive is corrupted. Please re-download.")

# Use streaming mode for large archives
from tzst import extract_archive
extract_archive("data.tzst", "output/", streaming=True)

2. Non-continuous Class Labels

Problem: Class labels are not continuous (0, 1, 2, ...)

Solution:

# Create label mapping
unique_labels = sorted(set(dataset['label']))
label_to_idx = {label: idx for idx, label in enumerate(unique_labels)}

# Apply mapping
def map_labels(example):
    example['mapped_label'] = label_to_idx[example['label']]
    return example

dataset = dataset.map(map_labels)

3. CUDA/GPU Issues

Problem: CUDA out of memory during training

Solution:

# Reduce batch size or use CPU
device = torch.device('cpu')  # Force CPU usage

# Or use gradient accumulation
accumulation_steps = 4
for i, (support_data, query_data) in enumerate(dataloader):
    loss = model(support_data, query_data) / accumulation_steps
    loss.backward()
    
    if (i + 1) % accumulation_steps == 0:
        optimizer.step()
        optimizer.zero_grad()

Performance Tips

  1. Use appropriate image sizes: For few-shot learning, 84x84 or 224x224 are common choices
  2. Enable streaming mode: For memory-efficient processing of large archives
  3. Use data augmentation: Improve few-shot performance with transforms
  4. Cache preprocessed data: Save processed episodes to disk for faster iteration

Citation

If you use this dataset in your research, please cite it as shown on the Hugging Face dataset page:

https://huggingface.co/datasets/xixu-me/fsl-product-classification?doi=true

License

This dataset is released under the MIT License. See the LICENSE file for details.

Data Ethics and Responsible Use

This dataset is intended for academic research and educational purposes in few-shot learning and computer vision. Users should:

  • Respect intellectual property: Images may be subject to copyright; use only for research purposes
  • Consider bias: Be aware that product categories may reflect certain demographic or geographic biases
  • Commercial use: While the license permits it, consider the ethical implications of commercial applications
  • Attribution: Please cite this dataset in any published work

Limitations

  • Image quality: Variable image quality and backgrounds may affect model performance
  • Class imbalance: Some classes may have significantly fewer images than others
  • Non-continuous labels: Class numbers are not sequential, which may require label mapping
  • Temporal bias: Product images reflect trends from the time of collection