hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
0ab4aa21cfd4871d1766355bdd0923074d0f5c05
32,515
py
Python
gpMgmt/bin/gpload_test/gpload2/TEST.py
Tylarb/gpdb
15e1341cfbac7f70d2086a9a1d46149a82765b5e
[ "PostgreSQL", "Apache-2.0" ]
1
2020-07-08T13:20:27.000Z
2020-07-08T13:20:27.000Z
gpMgmt/bin/gpload_test/gpload2/TEST.py
Tylarb/gpdb
15e1341cfbac7f70d2086a9a1d46149a82765b5e
[ "PostgreSQL", "Apache-2.0" ]
6
2020-06-24T18:56:06.000Z
2022-02-26T08:53:11.000Z
gpMgmt/bin/gpload_test/gpload2/TEST.py
Tylarb/gpdb
15e1341cfbac7f70d2086a9a1d46149a82765b5e
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import unittest import sys import os import string import time import socket import fileinput import platform import re try: import subprocess32 as subprocess except: import subprocess import pg """ Global Values """ MYD = os.path.abspath(os.path.dirname(__file__)) mkpath = lambda *x: os.path.join(MYD, *x) UPD = os.path.abspath(mkpath('..')) if UPD not in sys.path: sys.path.append(UPD) DBNAME = "postgres" USER = os.environ.get( "LOGNAME" ) HOST = socket.gethostname() GPHOME = os.getenv("GPHOME") PGPORT = get_port() PGUSER = os.environ.get("PGUSER") if PGUSER is None: PGUSER = USER PGHOST = os.environ.get("PGHOST") if PGHOST is None: PGHOST = HOST d = mkpath('config') if not os.path.exists(d): os.mkdir(d) def psql_run(ifile = None, ofile = None, cmd = None, flag = '-e',dbname = None, username = None, PGOPTIONS = None, host = None, port = None): ''' Run a command or file against psql. Return True if OK. @param dbname: database name @param ifile: input file @param cmd: command line @param flag: -e Run SQL with no comments (default) -a Run SQL with comments and psql notice @param username: psql user @param host : to connect to a different host @param port : port where gpdb is running @param PGOPTIONS: connects to postgres via utility mode ''' if dbname is None: dbname = DBNAME if username is None: username = PGUSER # Use the default login user if PGOPTIONS is None: PGOPTIONS = "" else: PGOPTIONS = "PGOPTIONS='%s'" % PGOPTIONS if host is None: host = "-h %s" % PGHOST else: host = "-h %s" % host if port is None: port = "" else: port = "-p %s" % port if cmd: arg = '-c "%s"' % cmd elif ifile: arg = ' < ' + ifile if not (flag == '-q'): # Don't echo commands sent to server arg = '-e < ' + ifile if flag == '-a': arg = '-f ' + ifile else: raise PSQLError('missing cmd and ifile') if ofile == '-': ofile = '2>&1' elif not ofile: ofile = '> /dev/null 2>&1' else: ofile = '> %s 2>&1' % ofile return run('%s psql -d %s %s %s -U %s %s %s %s' % (PGOPTIONS, dbname, host, port, username, flag, arg, ofile)) def run(cmd): """ Run a shell command. Return (True, [result]) if OK, or (False, []) otherwise. @params cmd: The command to run at the shell. oFile: an optional output file. mode: What to do if the output file already exists: 'a' = append; 'w' = write. Defaults to append (so that the function is backwards compatible). Yes, this is passed to the open() function, so you can theoretically pass any value that is valid for the second parameter of open(). """ p = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE) out = p.communicate()[0] ret = [] ret.append(out) rc = False if p.wait() else True return (rc,ret) def read_diff(ifile, outputPath): """ Opens the diff file that is assocated with the given input file and returns its contents as a string. """ dfile = diffFile(ifile, outputPath) with open(dfile, 'r') as diff: return diff.read() hostNameAddrs = get_ip(HOST) masterPort = getPortMasterOnly() if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(GPLoad_FormatOpts_TestCase) runner = unittest.TextTestRunner(verbosity=2) ret = not runner.run(suite).wasSuccessful() sys.exit(ret)
42.172503
421
0.611041
0ab4e78536a96c9504186fa7b02c118e2936a403
1,406
py
Python
code_week19_831_96/biao_shi_shu_zi.py
dylanlee101/leetcode
b059afdadb83d504e62afd1227107de0b59557af
[ "Apache-2.0" ]
null
null
null
code_week19_831_96/biao_shi_shu_zi.py
dylanlee101/leetcode
b059afdadb83d504e62afd1227107de0b59557af
[ "Apache-2.0" ]
null
null
null
code_week19_831_96/biao_shi_shu_zi.py
dylanlee101/leetcode
b059afdadb83d504e62afd1227107de0b59557af
[ "Apache-2.0" ]
null
null
null
''' "+100""5e2""-123""3.1416""-1E-16""0123""12e""1a3.14""1.2.3""+-5""12e+5.4" LeetCode https://leetcode-cn.com/problems/biao-shi-shu-zhi-de-zi-fu-chuan-lcof '''
45.354839
129
0.345661
0ab611b64794b954266ea15a077d39ba3447ef27
13,211
py
Python
teeth_overlord/tests/unit/networks/neutron.py
rackerlabs/teeth-overlord
d76f6a03853d964b556aa1aa0f7011b4d1a6f208
[ "Apache-2.0" ]
null
null
null
teeth_overlord/tests/unit/networks/neutron.py
rackerlabs/teeth-overlord
d76f6a03853d964b556aa1aa0f7011b4d1a6f208
[ "Apache-2.0" ]
null
null
null
teeth_overlord/tests/unit/networks/neutron.py
rackerlabs/teeth-overlord
d76f6a03853d964b556aa1aa0f7011b4d1a6f208
[ "Apache-2.0" ]
null
null
null
""" Copyright 2013 Rackspace, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import collections from teeth_overlord import config from teeth_overlord.networks import neutron from teeth_overlord import tests from keystoneclient.apiclient import exceptions as keystone_exceptions from keystoneclient.v2_0 import client as keystone_client from neutronclient.common import exceptions as neutron_exceptions from neutronclient.neutron import client as neutron_client NETWORK1_RESPONSE = { u'status': u'ACTIVE', u'subnets': [u'SUBNET1'], u'name': u'private', u'provider:physical_network': None, u'admin_state_up': True, u'tenant_id': u'TENANTID', u'provider:network_type': u'local', u'router:external': False, u'shared': False, u'id': u'NETWORK1', u'provider:segmentation_id': None } NETWORK2_RESPONSE = { u'status': u'ACTIVE', u'subnets': [u'SUBNET2'], u'name': u'public', u'provider:physical_network': None, u'admin_state_up': True, u'tenant_id': u'TENANTID', u'provider:network_type': u'local', u'router:external': True, u'shared': False, u'id': u'NETWORK2', u'provider:segmentation_id': None } PORT1_RESPONSE = { u'status': u'ACTIVE', u'binding:host_id': u'precise64', u'name': u'', u'allowed_address_pairs': [], u'admin_state_up': True, u'network_id': u'NETWORK1', u'tenant_id': u'TENANTID', u'extra_dhcp_opts': [], u'binding:vif_type': u'ovs', u'device_owner': u'network:dhcp', u'binding:capabilities': {u'port_filter': True}, u'mac_address': u'fa:16:3e:e0:d4:63', u'fixed_ips': [ { u'subnet_id': u'SUBNET1', u'ip_address': u'10.0.0.3' } ], u'id': u'PORT1', u'security_groups': [], u'device_id': u'' } PORT2_RESPONSE = { u'status': u'DOWN', u'binding:host_id': u'', u'name': u'', u'allowed_address_pairs': [], u'admin_state_up': True, u'network_id': u'NETWORK2', u'tenant_id': u'TENANTID', u'extra_dhcp_opts': [], u'binding:vif_type': u'unbound', u'device_owner': u'', u'binding:capabilities': {u'port_filter': False}, u'mac_address': u'00:09:7b:3e:18:ca', u'fixed_ips': [ { u'subnet_id': u'SUBNET2', u'ip_address': u'192.168.27.3' } ], u'id': u'PORT2', u'security_groups': [u'SECGRP'], u'device_id': u'' } SUBNET1_RESPONSE = { u'name': u'private-subnet', u'enable_dhcp': True, u'network_id': u'NETWORK1', u'tenant_id': u'TENANTID', u'dns_nameservers': [], u'allocation_pools': [ { u'start': u'10.0.0.2', u'end': u'10.0.0.254' } ], u'host_routes': [], u'ip_version': 4, u'gateway_ip': u'10.0.0.1', u'cidr': u'10.0.0.0/24', u'id': u'SUBNET1' } SUBNET2_RESPONSE = { u'name': u'public-subnet', u'enable_dhcp': False, u'network_id': u'NETWORK2', u'tenant_id': u'TENANTID', u'dns_nameservers': [], u'allocation_pools': [ { u'start': u'192.168.27.1', u'end': u'192.168.27.1' }, { u'start': u'192.168.27.3', u'end': u'192.168.27.254' } ], u'host_routes': [], u'ip_version': 4, u'gateway_ip': u'192.168.27.2', u'cidr': u'192.168.27.0/24', u'id': u'SUBNET2' } SERIALIZED_NETWORK1 = collections.OrderedDict([ ('id', u'NETWORK1'), ('name', u'private'), ('status', u'ACTIVE'), ('subnets', [ collections.OrderedDict([ ('id', u'SUBNET1'), ('name', u'private-subnet'), ('ip_version', 4), ('gateway_ip', u'10.0.0.1'), ('cidr', u'10.0.0.0/24'), ('enable_dhcp', True) ]) ]) ]) SERIALIZED_NETWORK2 = collections.OrderedDict([ ('id', u'NETWORK2'), ('name', u'public'), ('status', u'ACTIVE'), ('subnets', [ collections.OrderedDict([ ('id', u'SUBNET2'), ('name', u'public-subnet'), ('ip_version', 4), ('gateway_ip', u'192.168.27.2'), ('cidr', u'192.168.27.0/24'), ('enable_dhcp', False) ]) ]) ]) SERIALIZED_PORT1 = collections.OrderedDict([ ('id', u'PORT1'), ('name', u''), ('status', u'ACTIVE'), ('mac_address', u'fa:16:3e:e0:d4:63'), ('fixed_ips', [ { u'subnet_id': u'SUBNET1', u'ip_address': u'10.0.0.3' } ]), ('network', SERIALIZED_NETWORK1) ])
32.221951
78
0.626448
0ab7ab472dc6bde156894c22490a3de97781b2d7
4,508
py
Python
typeidea/blog/views.py
Phoenix-sy/typeidea
e913218872c7f4e9afc290eb42b4ca8c8e4523be
[ "MIT" ]
null
null
null
typeidea/blog/views.py
Phoenix-sy/typeidea
e913218872c7f4e9afc290eb42b4ca8c8e4523be
[ "MIT" ]
4
2020-06-06T01:37:34.000Z
2021-09-08T01:49:56.000Z
typeidea/blog/views.py
Phoenix-sy/typeidea
e913218872c7f4e9afc290eb42b4ca8c8e4523be
[ "MIT" ]
null
null
null
from datetime import date from django.core.cache import cache from django.db.models import Q, F from django.shortcuts import render from django.shortcuts import get_object_or_404 from django.views.generic import ListView, DetailView #from silk.profiling.profiler import silk_profile from config.models import SideBar from .models import Post, Tag, Category from comment.models import Comment ''' def post_list(request, category_id=None, tag_id=None): tag = None category = None if tag_id: post_list, tag = Post.get_by_tag(tag_id) elif category_id: post_list, category=Post.get_by_category(category_id) else: post_list = Post.latest_posts() context = { 'category': category, 'tag': tag, 'post_list': post_list, 'sidebars': SideBar.get_all(), } context.update(Category.get_navs()) return render(request, 'blog/list.html', context=context) def post_detail(request, post_id=None): try: post = Post.objects.get(id=post_id) except Post.DoesNotExist: raise Http404('Post does not exist!') context={ 'post': post, 'sidebars': SideBar.get_all(), } context.update(Category.get_navs()) return render(request, 'blog/detail.html', context=context) '''
24.367568
72
0.717613
0ab8196f812a9bd1c5cff6d84c43cd3a82467a55
618
py
Python
VMI/VMItest.py
thomasbarillot/DAQ
20126655f74194757d25380680af9429ff27784e
[ "MIT" ]
1
2017-04-25T10:56:01.000Z
2017-04-25T10:56:01.000Z
VMI/VMItest.py
thomasbarillot/DAQ
20126655f74194757d25380680af9429ff27784e
[ "MIT" ]
null
null
null
VMI/VMItest.py
thomasbarillot/DAQ
20126655f74194757d25380680af9429ff27784e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat May 7 11:38:18 2016 @author: thomasbarillot VMI control """ from ctypes import cdll #slib="VMIcrtl_ext.dll" #hlib=cdll('VMIcrtl.dll') import VMIcrtl_ext test=VMIcrtl_ext.VMIcrtl() #%% print test.GetFilename() #%% test.setFilename('20161115_1841.dat') print test.GetFilename() #%% test.StartAcquisitionPrev() #%% test.StopAcquisition() #%% img=test.RecallImagePrev() #%% import numpy as np print np.shape(img) a=np.array(img) print a #%% from matplotlib import pyplot as plt #%% b=np.reshape(a,[400,400]) print b plt.figure() plt.pcolor(np.reshape(a,[400,400]))
12.875
37
0.699029
0ab878278314d67f6d0be9f6568f133ce9e1ee76
8,119
py
Python
var/spack/repos/builtin/packages/openssl/package.py
vitodb/spack
b9ab1de4c5f7b21d9f9cb88b7251820a48e82d27
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/openssl/package.py
vitodb/spack
b9ab1de4c5f7b21d9f9cb88b7251820a48e82d27
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2021-01-11T09:16:43.000Z
2021-01-12T20:07:23.000Z
var/spack/repos/builtin/packages/openssl/package.py
vitodb/spack
b9ab1de4c5f7b21d9f9cb88b7251820a48e82d27
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2021-01-06T18:58:26.000Z
2021-01-06T18:58:26.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import llnl.util.tty as tty from spack import * import spack.architecture import os
51.713376
96
0.711787
0ab9be78769ca53a9456cd93a3fd3ab2a85a0c35
4,799
py
Python
vispy/util/profiler.py
izaid/vispy
402cf95bfef88d70c9c45bb27c532ed72944e14a
[ "BSD-3-Clause" ]
null
null
null
vispy/util/profiler.py
izaid/vispy
402cf95bfef88d70c9c45bb27c532ed72944e14a
[ "BSD-3-Clause" ]
null
null
null
vispy/util/profiler.py
izaid/vispy
402cf95bfef88d70c9c45bb27c532ed72944e14a
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2014, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. # Adapted from PyQtGraph import sys from . import ptime from .. import config
34.52518
79
0.583663
0aba3f90d5e6185589e45a9a8d8d372bccb752c2
764
py
Python
tests/test_processor.py
vijithv/djangosaml2idp
8a238063da55bf4823bdc2192168171767c4e056
[ "Apache-2.0" ]
1
2021-11-03T17:53:29.000Z
2021-11-03T17:53:29.000Z
tests/test_processor.py
vijithv/djangosaml2idp
8a238063da55bf4823bdc2192168171767c4e056
[ "Apache-2.0" ]
null
null
null
tests/test_processor.py
vijithv/djangosaml2idp
8a238063da55bf4823bdc2192168171767c4e056
[ "Apache-2.0" ]
1
2020-04-23T03:52:10.000Z
2020-04-23T03:52:10.000Z
from django.contrib.auth import get_user_model from djangosaml2idp.processors import BaseProcessor User = get_user_model()
29.384615
97
0.722513
0abaca3d1ed91ca49de4c9b160592c473142f544
1,840
py
Python
com/ds/SingleLinkedList.py
sasikrishna/python-programs
937002f37c86efc5c876b37c7b42634ca629fffc
[ "MIT" ]
null
null
null
com/ds/SingleLinkedList.py
sasikrishna/python-programs
937002f37c86efc5c876b37c7b42634ca629fffc
[ "MIT" ]
null
null
null
com/ds/SingleLinkedList.py
sasikrishna/python-programs
937002f37c86efc5c876b37c7b42634ca629fffc
[ "MIT" ]
null
null
null
if __name__ == '__main__': list = SingleLinkedList(); list.add(5) list.add(4) list.add(12) list.add(13) list.add(19) list.print_list(); print("List contains element 4", list.contains(4)) print("List contains element 6", list.contains(6)) print("Removing element 13", list.remove(13)) list.print_list(); print("List contains element 13", list.contains(13))
23.896104
56
0.563043
0abb04a5bd64547bc5fd647c86d2afb7977fd604
55
py
Python
src/data_setup/__init__.py
data-stories/chart-experiment
f4d7c86c32edca8bcb474cce5f6312138acf5cc9
[ "MIT" ]
null
null
null
src/data_setup/__init__.py
data-stories/chart-experiment
f4d7c86c32edca8bcb474cce5f6312138acf5cc9
[ "MIT" ]
1
2021-08-07T07:39:17.000Z
2021-08-07T07:39:17.000Z
src/data_setup/__init__.py
data-stories/chart-experiment
f4d7c86c32edca8bcb474cce5f6312138acf5cc9
[ "MIT" ]
1
2021-08-06T16:27:00.000Z
2021-08-06T16:27:00.000Z
__all__ = ["data_setup", "chart_params", "base_params"]
55
55
0.727273
0abb3c732259b19c9e708a20325a84c61a393244
1,851
py
Python
src/aiocomcrawl/models.py
rudaporto/aiocomcrawl
9f76097d9f82c5790f968d26a6f1c3908084569b
[ "Apache-2.0" ]
null
null
null
src/aiocomcrawl/models.py
rudaporto/aiocomcrawl
9f76097d9f82c5790f968d26a6f1c3908084569b
[ "Apache-2.0" ]
null
null
null
src/aiocomcrawl/models.py
rudaporto/aiocomcrawl
9f76097d9f82c5790f968d26a6f1c3908084569b
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from typing import Any, List, Optional, Union from pydantic import BaseModel, Field, HttpUrl, validator from pydantic.dataclasses import dataclass class Result(BaseModel): url_key: str = Field(alias="urlkey") timestamp: datetime url: str mime: str mime_detected: str = Field(alias="mime-detected") status: int digest: str length: int offset: int filename: str languages: Optional[str] encoding: Optional[str] index_id: Optional[str] body: Optional[ResultBody] meta: Optional[ResultMeta]
23.730769
81
0.678012
0abb4de3626dcbaf10f7a01c7d732b38a10d112a
3,453
py
Python
fs/error_tools.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
fs/error_tools.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
fs/error_tools.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
"""Tools for managing OS errors. """ from __future__ import print_function from __future__ import unicode_literals import errno from contextlib import contextmanager import sys import platform from . import errors from six import reraise _WINDOWS_PLATFORM = platform.system() == 'Windows' # Stops linter complaining about invalid class name convert_os_errors = _ConvertOSErrors
31.390909
78
0.650449
0abbc3e1d5afde9470d734d62bcb0511ac93cadd
5,390
py
Python
samples/samplenetconf/demos/vr_demo3.py
gaberger/pysdn
67442e1c259d8ca8620ada95b95977e3852463c5
[ "BSD-3-Clause" ]
1
2017-08-22T14:17:10.000Z
2017-08-22T14:17:10.000Z
samples/samplenetconf/demos/vr_demo3.py
gaberger/pysdn
67442e1c259d8ca8620ada95b95977e3852463c5
[ "BSD-3-Clause" ]
1
2021-03-26T00:47:22.000Z
2021-03-26T00:47:22.000Z
samples/samplenetconf/demos/vr_demo3.py
gaberger/pysdn
67442e1c259d8ca8620ada95b95977e3852463c5
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2015, BROCADE COMMUNICATIONS SYSTEMS, INC # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. """ @authors: Sergei Garbuzov @status: Development @version: 1.1.0 """ import time import json from pysdn.controller.controller import Controller from pysdn.netconfdev.vrouter.vrouter5600 import VRouter5600 from pysdn.common.status import STATUS from pysdn.common.utils import load_dict_from_file if __name__ == "__main__": vr_demo_3()
34.113924
78
0.62115
0abcb370c0d40bd870443ed0b022026c144555c8
3,829
py
Python
python/index.py
stijnvanhulle/EscapeGame
ae3e35334d64394a0f696149bfd56c1fd7a97681
[ "MIT" ]
1
2020-08-16T02:52:06.000Z
2020-08-16T02:52:06.000Z
python/index.py
stijnvanhulle/EscapeGame
ae3e35334d64394a0f696149bfd56c1fd7a97681
[ "MIT" ]
1
2021-10-18T18:39:08.000Z
2021-10-18T18:39:08.000Z
python/index.py
stijnvanhulle/EscapeGame
ae3e35334d64394a0f696149bfd56c1fd7a97681
[ "MIT" ]
null
null
null
# @Author: Stijn Van Hulle <stijnvanhulle> # @Date: 2016-11-28T13:51:38+01:00 # @Email: [email protected] # @Last modified by: stijnvanhulle # @Last modified time: 2016-12-20T12:51:07+01:00 # @License: stijnvanhulle.be #!/usr/bin/env python import time import datetime import math import sys import json import paho.mqtt.client as mqtt import paho.mqtt.publish as publish import lib.faceDetection as faceDetection import lib.levelCalculation as levelCalculation MQTT_BROKER="localhost" client = mqtt.Client() #classes if __name__ == '__main__': try: if len(sys.argv)>1: MQTT_BROKER=sys.argv[1] else: input_text = input("Ip of MQTT-broker: ") if input_text: MQTT_BROKER=input_text #executor = ProcessPoolExecutor(2) #loop = trollius.get_event_loop() #_main = trollius.async(loop.run_in_executor(executor, main)) main() except (TypeError) as ex: error="Error: " + str(ex) #print(error) except (KeyboardInterrupt): exit() print("\nIOT is afgesloten\n") sys.exit(0) except (SystemExit): print("\nIOT is geforceert afgelosten\n")
25.357616
105
0.71298
0abd370b6b3c7d06f851a685777b6e689527ccf7
8,184
py
Python
peps/converters.py
idjaw/pythondotorg
8e4babbc7ad15ed52b4f66fdd4ab43c2dd3bd649
[ "Apache-2.0" ]
null
null
null
peps/converters.py
idjaw/pythondotorg
8e4babbc7ad15ed52b4f66fdd4ab43c2dd3bd649
[ "Apache-2.0" ]
2
2022-01-13T03:57:42.000Z
2022-03-12T01:01:40.000Z
peps/converters.py
idjaw/pythondotorg
8e4babbc7ad15ed52b4f66fdd4ab43c2dd3bd649
[ "Apache-2.0" ]
null
null
null
import re import os from bs4 import BeautifulSoup from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.core.files import File from pages.models import Page, Image PEP_TEMPLATE = 'pages/pep-page.html' pep_url = lambda num: 'dev/peps/pep-{}/'.format(num) def check_paths(): """ Checks to ensure our PEP_REPO_PATH is setup correctly """ if not hasattr(settings, 'PEP_REPO_PATH'): raise ImproperlyConfigured("No PEP_REPO_PATH in settings") if not os.path.exists(settings.PEP_REPO_PATH): raise ImproperlyConfigured("PEP_REPO_PATH in settings does not exist") def convert_pep0(): """ Take existing generated pep-0000.html and convert to something suitable for a Python.org Page returns the core body HTML necessary only """ check_paths() pep0_path = os.path.join(settings.PEP_REPO_PATH, 'pep-0000.html') pep0_content = open(pep0_path).read() soup = BeautifulSoup(pep0_content) body_children = list(soup.body.children) # Grab header and PEP body header = body_children[3] pep_content = body_children[7] # Fix PEP links body_links = pep_content.find_all("a") pep_href_re = re.compile(r'pep-(\d+)\.html') for b in body_links: m = pep_href_re.search(b.attrs['href']) # Skip anything not matching 'pep-XXXX.html' if not m: continue b.attrs['href'] = '/dev/peps/pep-{}/'.format(m.group(1)) # Remove Version from header header_rows = header.find_all('th') for t in header_rows: if 'Version:' in t.text and 'N/A' in t.next_sibling.text: t.parent.extract() return ''.join([header.prettify(), pep_content.prettify()]) def get_pep0_page(commit=True): """ Using convert_pep0 above, create a CMS ready pep0 page and return it pep0 is used as the directory index, but it's also an actual pep, so we return both Page objects. """ pep0_content = convert_pep0() pep0_page, _ = Page.objects.get_or_create(path='dev/peps/') pep0000_page, _ = Page.objects.get_or_create(path='dev/peps/pep-0000/') for page in [pep0_page, pep0000_page]: page.content = pep0_content page.content_markup_type = 'html' page.title = "PEP 0 -- Index of Python Enhancement Proposals (PEPs)" page.template_name = PEP_TEMPLATE if commit: page.save() return pep0_page, pep0000_page def fix_headers(soup, data): """ Remove empty or unwanted headers and find our title """ header_rows = soup.find_all('th') for t in header_rows: if 'Version:' in t.text: if t.next_sibling.text == '$Revision$': t.parent.extract() if t.next_sibling.text == '': t.parent.extract() if 'Last-Modified:' in t.text: if '$Date$'in t.next_sibling.text: t.parent.extract() if t.next_sibling.text == '': t.parent.extract() if t.text == 'Title:': data['title'] = t.next_sibling.text if t.text == 'Content-Type:': t.parent.extract() if 'Version:' in t.text and 'N/A' in t.next_sibling.text: t.parent.extract() return soup, data def convert_pep_page(pep_number, content): """ Handle different formats that pep2html.py outputs """ check_paths() data = { 'title': None, } if '<html>' in content: soup = BeautifulSoup(content) data['title'] = soup.title.text if not re.search(r'PEP \d+', data['title']): data['title'] = 'PEP {} -- {}'.format( pep_number, soup.title.text, ) header = soup.body.find('div', class_="header") header, data = fix_headers(header, data) data['header'] = header.prettify() main_content = soup.body.find('div', class_="content") data['main_content'] = main_content.prettify() data['content'] = ''.join([ data['header'], data['main_content'] ]) else: soup = BeautifulSoup(content) soup, data = fix_headers(soup, data) if not data['title']: data['title'] = "PEP {} -- ".format(pep_number) else: if not re.search(r'PEP \d+', data['title']): data['title'] = "PEP {} -- {}".format( pep_number, data['title'], ) data['content'] = soup.prettify() # Fix PEP links pep_content = BeautifulSoup(data['content']) body_links = pep_content.find_all("a") pep_href_re = re.compile(r'pep-(\d+)\.html') for b in body_links: m = pep_href_re.search(b.attrs['href']) # Skip anything not matching 'pep-XXXX.html' if not m: continue b.attrs['href'] = '/dev/peps/pep-{}/'.format(m.group(1)) data['content'] = pep_content.prettify() hg_link = "https://hg.python.org/peps/file/tip/pep-{0}.txt".format(pep_number) data['content'] += """Source: <a href="{0}">{0}</a>""".format(hg_link) return data def get_pep_page(pep_number, commit=True): """ Given a pep_number retrieve original PEP source text, rst, or html. Get or create the associated Page and return it """ pep_path = os.path.join(settings.PEP_REPO_PATH, 'pep-{}.html'.format(pep_number)) if not os.path.exists(pep_path): print("PEP Path '{}' does not exist, skipping".format(pep_path)) pep_content = convert_pep_page(pep_number, open(pep_path).read()) pep_page, _ = Page.objects.get_or_create(path=pep_url(pep_number)) # Remove leading zeros from PEP number for display purposes pep_number_string = str(pep_number) pep_number_string = re.sub(r'^0+', '', pep_number_string) pep_page.title = pep_content['title'] pep_page.content = pep_content['content'] pep_page.content_markup_type = 'html' pep_page.template_name = PEP_TEMPLATE if commit: pep_page.save() return pep_page
29.228571
85
0.615225
0abda1cb427ed8f070a7f02e638f35191861013c
68
py
Python
venv/Lib/site-packages/toolz/sandbox/__init__.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
3,749
2015-01-01T06:53:12.000Z
2022-03-31T13:36:10.000Z
venv/Lib/site-packages/toolz/sandbox/__init__.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
276
2015-01-01T15:34:41.000Z
2022-03-17T02:16:35.000Z
venv/Lib/site-packages/toolz/sandbox/__init__.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
256
2015-01-18T04:29:48.000Z
2022-03-31T00:10:13.000Z
from .core import EqualityHashKey, unzip from .parallel import fold
22.666667
40
0.823529
0abdfc5e117d17fbbf96aa6e5e9c1b706bacee2c
95
py
Python
interface/app/__init__.py
caglorithm/accel
7fe5c13ea9559565c599633bdb3318c8fbc57088
[ "MIT" ]
31
2019-12-07T01:27:19.000Z
2021-12-19T08:12:18.000Z
interface/app/__init__.py
caglorithm/accel
7fe5c13ea9559565c599633bdb3318c8fbc57088
[ "MIT" ]
null
null
null
interface/app/__init__.py
caglorithm/accel
7fe5c13ea9559565c599633bdb3318c8fbc57088
[ "MIT" ]
null
null
null
from flask import Flask app = Flask(__name__, static_folder='static') from app import routes
15.833333
45
0.778947
0abe087af168de7f10f0e7fc51d33adc2b129507
2,421
py
Python
implementations/python3/tests/CAPDU.py
sebastien-riou/SATL
b95d0e784d2e8e1384381d4d5b8b448d3d1798cf
[ "Apache-2.0" ]
4
2020-05-13T10:13:55.000Z
2021-10-20T04:43:07.000Z
implementations/python3/tests/CAPDU.py
TiempoSecure/SATL
b95d0e784d2e8e1384381d4d5b8b448d3d1798cf
[ "Apache-2.0" ]
4
2020-07-22T16:06:31.000Z
2021-07-25T19:51:41.000Z
implementations/python3/tests/CAPDU.py
TiempoSecure/SATL
b95d0e784d2e8e1384381d4d5b8b448d3d1798cf
[ "Apache-2.0" ]
2
2019-05-12T21:15:00.000Z
2020-09-23T09:05:24.000Z
import os import pysatl from pysatl import CAPDU if __name__ == "__main__": #check __repr__ expected = "pysatl.CAPDU.from_hexstr('00112233015502')" capdu=None exec("capdu="+expected) assert(expected==repr(capdu)) #check well formed inputs check("00112233", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) check("00 11 22 33", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) check("0x00,0x11,0x22,0x33", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) #check we tolerate less well formed inputs check("00-11,22_33", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) check("""0x00 0x11 0x22 0x33""", CAPDU(CLA=0x00, INS=0x11, P1=0x22, P2=0x33)) check("1 2 304", CAPDU(CLA=0x01, INS=0x02, P1=0x03, P2=0x04)) LC_cases = [0,1,2,254,255,256,257,65534,65535] LE_cases = LC_cases + [65536] for LC in LC_cases: for LE in LE_cases: print(LC,LE) check(*gencase(LC=LC, LE=LE))
32.28
114
0.53449
0abf250849dcb075b82b1ca50e27cc3adefcc742
3,993
py
Python
src/mgls_bootstrapping.py
rosich/mgls
64c924f59adba2dddf44bb70a84868173f0b7120
[ "MIT" ]
null
null
null
src/mgls_bootstrapping.py
rosich/mgls
64c924f59adba2dddf44bb70a84868173f0b7120
[ "MIT" ]
null
null
null
src/mgls_bootstrapping.py
rosich/mgls
64c924f59adba2dddf44bb70a84868173f0b7120
[ "MIT" ]
null
null
null
#!/usr/bin/python from math import sin, cos, tan, atan, pi, acos, sqrt, exp, log10 import sys, os import copy import random import numpy as np import multiprocessing as mp import ConfigParser sys.path.append('./bin') import mGLS, mMGLS sys.path.append('./src') from EnvGlobals import Globals import mgls_io import mgls_mc from mgls_lib import * #definitions and constants to_radians = pi/180.0 to_deg = 1.0/to_radians #------------------------- def _gls_instance_Ndim_bootstrapping(n_runs): """executes n_runs instances of MGLS for with previous data shuffle """ cpu_periodogram = list() for iter in range(n_runs): """ #shuffle RV's and their errors. Repetition is not allowed comb_rv_err = zip(Globals.rv, Globals.rv_err) random.shuffle(comb_rv_err) Globals.rv[:], Globals.rv_err[:] = zip(*comb_rv_err) """ #allowing repetition rv = [0.0]*len(Globals.time) rv_err = [0.0]*len(Globals.time) for i in range(len(Globals.time)): index = int(random.uniform(0,len(Globals.time))) rv[i] = Globals.rv[index] rv_err[i] = Globals.rv_err[index] Globals.rv = rv Globals.rv_err = rv_err opt_state = mgls_mc.optimal(Globals.ndim, msgs = False, temp_steps=20, n_iter=1000) pwr_opt, fitting_coeffs, A = mgls(opt_state) cpu_periodogram.append(pwr_opt) #save the best period determination (highest power) return cpu_periodogram def fap(bootstrapping_stats, pwr): """returns FAP for a given pwr. i.e. how many realizations overcome a given power, over unit. """ return float(sum(i > pwr for i in bootstrapping_stats))/len(bootstrapping_stats) def fap_levels(bootstrapping_stats): """determines which power a FAP of 1, 0.1, 0.01 % is reached """ FAPs = [1.0, 0.1, 0.01, 0.001] #FAPS to compute in % n_bs = len(bootstrapping_stats) #sort bootstrapping_stats vector ascendently sorted_pwr = sorted(bootstrapping_stats) return [np.percentile(sorted_pwr,100-FAPs[i]) for i in range(len(FAPs))] def parallel_Mdim_bootstrapping(n_bootstrapping): """ """ n_runs = [n_bootstrapping/Globals.ncpus for i in range(Globals.ncpus)] pool = mp.Pool(Globals.ncpus) #ncpus available #run parallell execution try: out = pool.map_async(_gls_instance_Ndim_bootstrapping, n_runs).get(1./.0001) pool.terminate() except KeyboardInterrupt: pool.terminate() sys.exit() """ except ZeroDivisionError: print "Error: Zero division error. Restarted parallel bootstapping" """ #join the output bunches out_spectra = list() for cpu in range(len(n_runs)): out_spectra.extend(out[cpu]) bootstrapping_stats = list() for j in range(len(out_spectra)): bootstrapping_stats.append(out_spectra[j]) return bootstrapping_stats def parallel_bootstrapping(n_bootstrapping): """ """ n_runs = [n_bootstrapping/Globals.ncpus for i in range(Globals.ncpus)] pool = mp.Pool(Globals.ncpus) #ncpus available #run parallell execution try: out = pool.map_async(_gls_instance_bootstrapping, n_runs).get(1./.00001) pool.terminate() except KeyboardInterrupt: pool.terminate() sys.exit() #join the output bunches out_spectra = list() for cpu in range(len(n_runs)): out_spectra.extend(out[cpu]) bootstrapping_stats = list() for j in range(len(out_spectra)): bootstrapping_stats.append(out_spectra[j]) return bootstrapping_stats def Mdim_bootstrapping(max_pow): """ """ #n_bootstrapping = 500 #iterations bootstrapping_stats = parallel_Mdim_bootstrapping(Globals.n_bootstrapping) print "\n//BOOTSTRAPPING:// {1.0, 0.1, 0.01, 0.001}%" print "FAP Levels:", fap_levels(bootstrapping_stats) print "Total bootstapping samples: ", len(bootstrapping_stats) return bootstrapping_stats
31.690476
91
0.672176
0abf69ab54ec15326e13cf19d070cb3b005d83d2
495
py
Python
mgmt/src/constants.py
pcaruana/sombrio
3b669fc83e0227a69b673b5555d88e15b55c397c
[ "MIT" ]
null
null
null
mgmt/src/constants.py
pcaruana/sombrio
3b669fc83e0227a69b673b5555d88e15b55c397c
[ "MIT" ]
null
null
null
mgmt/src/constants.py
pcaruana/sombrio
3b669fc83e0227a69b673b5555d88e15b55c397c
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 """ constants.py - Contains all constants used by the device manager Author: - Pablo Caruana (pablo dot caruana at gmail dot com) Date: 12/3/2016 """ number_of_rows = 3 # total number rows of Index Servers number_of_links = 5 # number of links to be sent to Crawler number_of_chunks = 5 # number of chunks to be sent to Index Builder number_of_comps = 10 # number of components managed by each watchdog
38.076923
79
0.656566
0abfe16c350b956230d3407edf8eac65ac07365b
1,015
py
Python
XDoG/XDoG.py
STomoya/sketchify
93c068042f02172505457cc15cb0bef673666be3
[ "MIT" ]
null
null
null
XDoG/XDoG.py
STomoya/sketchify
93c068042f02172505457cc15cb0bef673666be3
[ "MIT" ]
null
null
null
XDoG/XDoG.py
STomoya/sketchify
93c068042f02172505457cc15cb0bef673666be3
[ "MIT" ]
null
null
null
import cv2 import numpy as np # This config is found by the author # modify if not the desired output XDoG_config = dict( size=0, sigma=0.6, eps=-15, phi=10e8, k=2.5, gamma=0.97 ) if __name__ == "__main__": gen_xdog_image('sample.jpg', 'dog.jpg')
26.025641
60
0.613793
0ac1668c9f200fa1e8cd7c054395a35fadf64190
8,070
py
Python
lm/validate.py
ericlin8545/grover
3ac6e506f2e1a859d98cc2c3fb57ba251be31484
[ "Apache-2.0" ]
864
2019-06-18T18:53:58.000Z
2022-03-04T22:36:52.000Z
lm/validate.py
ericlin8545/grover
3ac6e506f2e1a859d98cc2c3fb57ba251be31484
[ "Apache-2.0" ]
62
2019-06-20T19:37:39.000Z
2022-02-10T00:14:49.000Z
lm/validate.py
ericlin8545/grover
3ac6e506f2e1a859d98cc2c3fb57ba251be31484
[ "Apache-2.0" ]
224
2019-06-18T18:45:56.000Z
2022-03-29T17:46:30.000Z
# Original work Copyright 2018 The Google AI Language Team Authors. # Modified work Copyright 2019 Rowan Zellers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from lm.modeling import model_fn_builder, GroverConfig import tensorflow as tf from lm.dataloader import input_fn_builder import numpy as np import tempfile import h5py from google.cloud import storage flags = tf.flags FLAGS = flags.FLAGS ## Required parameters flags.DEFINE_string( "config_file", 'configs/base.json', "The config json file corresponding to the pre-trained news model. " "This specifies the model architecture.") flags.DEFINE_string( "input_file", None, "Input TF example files (can be a glob or comma separated).") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") flags.DEFINE_string( "validation_name", 'preds.h5', "Name to use") ## Other parameters flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained model).") flags.DEFINE_integer( "max_seq_length", 1024, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded. Must match data generation.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_integer("batch_size", 32, "Batch size used for eval") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") # This is a handy little utility so that we can save the perplexities to TPU def ind_where(array: np.ndarray, target, return_first_match=True, default_value=-1): """ :param array: Single dimension array :param target: target to search for :param return_first_match: If true, return the first index that matches, otherwise, return the last one :param default_value: Index to return if there was no match :return: index of the first match, or -1 if nothing """ assert array.ndim == 1 matching_inds = np.where(array == target)[0] if len(matching_inds) > 0: if return_first_match: return int(matching_inds[0]) else: return int(matching_inds[-1]) return default_value if __name__ == "__main__": flags.mark_flag_as_required("input_file") flags.mark_flag_as_required("output_dir") tf.app.run()
37.534884
108
0.688352
0ac16994f053988d4add08873e022a2c2ce12964
5,055
py
Python
robo/fmin/entropy_search.py
fuhuifang/RoBo
036bbaa0e59032577e2611d8ba304384b397c7f6
[ "BSD-3-Clause" ]
null
null
null
robo/fmin/entropy_search.py
fuhuifang/RoBo
036bbaa0e59032577e2611d8ba304384b397c7f6
[ "BSD-3-Clause" ]
null
null
null
robo/fmin/entropy_search.py
fuhuifang/RoBo
036bbaa0e59032577e2611d8ba304384b397c7f6
[ "BSD-3-Clause" ]
null
null
null
import logging import george import numpy as np from robo.priors.default_priors import DefaultPrior from robo.models.gaussian_process import GaussianProcess from robo.models.gaussian_process_mcmc import GaussianProcessMCMC from robo.maximizers.random_sampling import RandomSampling from robo.maximizers.scipy_optimizer import SciPyOptimizer from robo.maximizers.differential_evolution import DifferentialEvolution from robo.solver.bayesian_optimization import BayesianOptimization from robo.acquisition_functions.information_gain import InformationGain from robo.acquisition_functions.ei import EI from robo.acquisition_functions.marginalization import MarginalizationGPMCMC from robo.initial_design import init_latin_hypercube_sampling logger = logging.getLogger(__name__) def entropy_search(objective_function, lower, upper, num_iterations=30, maximizer="random", model="gp_mcmc", n_init=3, output_path=None, rng=None): """ Entropy search for global black box optimization problems. This is a reimplemenation of the entropy search algorithm by Henning and Schuler[1]. [1] Entropy search for information-efficient global optimization. P. Hennig and C. Schuler. JMLR, (1), 2012. Parameters ---------- objective_function: function The objective function that is minimized. This function gets a numpy array (D,) as input and returns the function value (scalar) lower: np.ndarray (D,) The lower bound of the search space upper: np.ndarray (D,) The upper bound of the search space num_iterations: int The number of iterations (initial design + BO) maximizer: {"random", "scipy", "differential_evolution"} Defines how the acquisition function is maximized. model: {"gp", "gp_mcmc"} The model for the objective function. n_init: int Number of points for the initial design. Make sure that it is <= num_iterations. output_path: string Specifies the path where the intermediate output after each iteration will be saved. If None no output will be saved to disk. rng: numpy.random.RandomState Random number generator Returns ------- dict with all results """ assert upper.shape[0] == lower.shape[0], "Dimension miss match" assert np.all(lower < upper), "Lower bound >= upper bound" assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations" if rng is None: rng = np.random.RandomState(np.random.randint(0, 10000)) cov_amp = 2 n_dims = lower.shape[0] initial_ls = np.ones([n_dims]) exp_kernel = george.kernels.Matern52Kernel(initial_ls, ndim=n_dims) kernel = cov_amp * exp_kernel prior = DefaultPrior(len(kernel) + 1) n_hypers = 3 * len(kernel) if n_hypers % 2 == 1: n_hypers += 1 if model == "gp": gp = GaussianProcess(kernel, prior=prior, rng=rng, normalize_output=False, normalize_input=True, lower=lower, upper=upper) elif model == "gp_mcmc": gp = GaussianProcessMCMC(kernel, prior=prior, n_hypers=n_hypers, chain_length=200, burnin_steps=100, normalize_input=True, normalize_output=False, rng=rng, lower=lower, upper=upper) else: print("ERROR: %s is not a valid model!" % model) return a = InformationGain(gp, lower=lower, upper=upper, sampling_acquisition=EI) if model == "gp": acquisition_func = a elif model == "gp_mcmc": acquisition_func = MarginalizationGPMCMC(a) if maximizer == "random": max_func = RandomSampling(acquisition_func, lower, upper, rng=rng) elif maximizer == "scipy": max_func = SciPyOptimizer(acquisition_func, lower, upper, rng=rng) elif maximizer == "differential_evolution": max_func = DifferentialEvolution(acquisition_func, lower, upper, rng=rng) else: print("ERROR: %s is not a valid function to maximize the acquisition function!" % maximizer) return bo = BayesianOptimization(objective_function, lower, upper, acquisition_func, gp, max_func, initial_design=init_latin_hypercube_sampling, initial_points=n_init, rng=rng, output_path=output_path) x_best, f_min = bo.run(num_iterations) results = dict() results["x_opt"] = x_best results["f_opt"] = f_min results["incumbents"] = [inc for inc in bo.incumbents] results["incumbent_values"] = [val for val in bo.incumbents_values] results["runtime"] = bo.runtime results["overhead"] = bo.time_overhead results["X"] = [x.tolist() for x in bo.X] results["y"] = [y for y in bo.y] return results
39.492188
112
0.656775
0ac18453ebf1417fb6591ada4674116fa981b20f
402
py
Python
biserici_inlemnite/app/migrations/0096_bisericapage_datare_an.py
ck-tm/biserici-inlemnite
c9d12127b92f25d3ab2fcc7b4c386419fe308a4e
[ "MIT" ]
null
null
null
biserici_inlemnite/app/migrations/0096_bisericapage_datare_an.py
ck-tm/biserici-inlemnite
c9d12127b92f25d3ab2fcc7b4c386419fe308a4e
[ "MIT" ]
null
null
null
biserici_inlemnite/app/migrations/0096_bisericapage_datare_an.py
ck-tm/biserici-inlemnite
c9d12127b92f25d3ab2fcc7b4c386419fe308a4e
[ "MIT" ]
null
null
null
# Generated by Django 3.1.13 on 2021-10-29 11:07 from django.db import migrations, models
21.157895
61
0.606965
0ac20eefa93e74fa6f679df0410321e3088f3827
664
py
Python
services/core-api/app/api/mms_now_submissions/models/surface_bulk_sample_activity.py
bcgov/mds
6c427a66a5edb4196222607291adef8fd6677038
[ "Apache-2.0" ]
25
2018-07-09T19:04:37.000Z
2022-03-15T17:27:10.000Z
services/core-api/app/api/mms_now_submissions/models/surface_bulk_sample_activity.py
areyeslo/mds
e8c38e593e09b78e2a57009c0d003d6c4bfa32e6
[ "Apache-2.0" ]
983
2018-04-25T20:08:07.000Z
2022-03-31T21:45:20.000Z
services/core-api/app/api/mms_now_submissions/models/surface_bulk_sample_activity.py
areyeslo/mds
e8c38e593e09b78e2a57009c0d003d6c4bfa32e6
[ "Apache-2.0" ]
58
2018-05-15T22:35:50.000Z
2021-11-29T19:40:52.000Z
from app.api.utils.models_mixins import Base from app.extensions import db
36.888889
97
0.724398
0ac2127dd527328224d7a0dde62602b62da1bdb4
678
py
Python
lgtv_rs232/commands/remote_control/remote_control_lock.py
davo22/lgtv_rs232
40562cddf7acdf6fa95124029595e3838dd9e7b0
[ "MIT" ]
null
null
null
lgtv_rs232/commands/remote_control/remote_control_lock.py
davo22/lgtv_rs232
40562cddf7acdf6fa95124029595e3838dd9e7b0
[ "MIT" ]
null
null
null
lgtv_rs232/commands/remote_control/remote_control_lock.py
davo22/lgtv_rs232
40562cddf7acdf6fa95124029595e3838dd9e7b0
[ "MIT" ]
null
null
null
from enum import Enum
22.6
81
0.70649
0ac365363d4be305aa9c1fbf0e6475792a5ae142
253
py
Python
com/bridgelabz/programs/powerof2.py
aashishogale/FunctionalPrograms-Python-
d297bdb78112ef03274a10a58efc90da27f51b14
[ "MIT" ]
null
null
null
com/bridgelabz/programs/powerof2.py
aashishogale/FunctionalPrograms-Python-
d297bdb78112ef03274a10a58efc90da27f51b14
[ "MIT" ]
null
null
null
com/bridgelabz/programs/powerof2.py
aashishogale/FunctionalPrograms-Python-
d297bdb78112ef03274a10a58efc90da27f51b14
[ "MIT" ]
null
null
null
import sys from com.bridgelabz.utility.Utility import Utility PowerOf2().start()
23
50
0.624506
0ac3dcb6f4a277998e57f0001095aaf45bef6fae
2,256
py
Python
app/main.py
MichaelLeeman/Job_Web_Scraper
29205d84f1190830a77174ce8272f4f79bb3468b
[ "MIT" ]
null
null
null
app/main.py
MichaelLeeman/Job_Web_Scraper
29205d84f1190830a77174ce8272f4f79bb3468b
[ "MIT" ]
4
2020-05-25T19:54:58.000Z
2020-05-25T19:55:03.000Z
app/main.py
MichaelLeeman/Job_Web_Scraper
29205d84f1190830a77174ce8272f4f79bb3468b
[ "MIT" ]
1
2020-07-02T13:06:52.000Z
2020-07-02T13:06:52.000Z
# This program scraps data from job postings on the website workinstartups.com and appends it to an excel worksheet. import os from datetime import datetime, timedelta from selenium import webdriver from app import web_scraper from app import excel job_list, last_date = [], None file_path = os.path.abspath("main.py").rstrip('/app/main.py') + '//Workbooks' + "//Job_Openings.xlsx" print("-" * 75, "-" * 75, "\n\t\t\t\t\t\t\t JOB WEB SCRAPER", "-" * 75, "-" * 75, sep="\n") print("\n") # If the Job_Openings workbook already exists then append the jobs not already in the worksheet # by checking the date of the first job in excel, since the last time the site was scraped. if os.path.isfile(file_path): print("Job_Opening excel file already exists. Loading workbook.", "-" * 75, sep="\n") workbook, worksheet = excel.load_xlsx(file_path) last_scrape_date = excel.get_first_job_date(worksheet) last_scrape_date = datetime.strptime(last_scrape_date, "%d-%b-%Y") # If not, create a new workbook and append all of the jobs posted within the month else: print("Creating new Excel workbook.", "-" * 75, sep="\n") current_date = datetime.today() date_month_ago = current_date - timedelta(weeks=4.348) # Average amount of weeks in a month last_scrape_date = date_month_ago.replace(hour=0, minute=0, second=0, microsecond=0) # default to midnight workbook, worksheet = excel.init_xlsx(worksheet_title="Job Openings") # Open webdriver to workinstartups.com and create soup print("Creating soup and opening Chrome webdriver", "-"*75, sep="\n") URL = "https://workinstartups.com/job-board/jobs-in/london" soup = web_scraper.soup_creator(URL, max_retry=1, sleep_time=0) driver = webdriver.Chrome('./chromedriver') driver.get(URL) driver.find_element_by_link_text('Close').click() # Scrap the jobs from workinstartups.com and update the worksheet with the found jobs print("Scraping jobs from workinstartups.com. Please wait.", "-" * 75, sep="\n") job_list = web_scraper.search_for_jobs(soup, last_scrape_date, driver) print("Scraping finished. Updating and saving Excel workbook.", "-" * 75, sep="\n") driver.close() excel.update_xlsx(worksheet, job_list) excel.save_xlsx(workbook, file_path) print("Finished!", sep="\n")
47
116
0.735816
0ac3e100821a287c22e2857e9d532f5d8e059c8b
2,723
py
Python
src/trusted/validator_arm/dgen_output.py
kapkic/native_client
51c8bc8c249d55606232ae011bdfc8b4cab3d794
[ "BSD-3-Clause" ]
1
2021-12-23T00:36:43.000Z
2021-12-23T00:36:43.000Z
src/trusted/validator_arm/dgen_output.py
kapkic/native_client
51c8bc8c249d55606232ae011bdfc8b4cab3d794
[ "BSD-3-Clause" ]
null
null
null
src/trusted/validator_arm/dgen_output.py
kapkic/native_client
51c8bc8c249d55606232ae011bdfc8b4cab3d794
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python2 # # Copyright (c) 2012 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # """ Some common boilerplates and helper functions for source code generation in files dgen_test_output.py and dgen_decode_output.py. """ HEADER_BOILERPLATE ="""/* * Copyright 2013 The Native Client Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can * be found in the LICENSE file. */ // DO NOT EDIT: GENERATED CODE """ NOT_TCB_BOILERPLATE="""#ifndef NACL_TRUSTED_BUT_NOT_TCB #error This file is not meant for use in the TCB #endif """ NEWLINE_STR=""" """ COMMENTED_NEWLINE_STR=""" //""" """Adds comment '// ' string after newlines.""" def ifdef_name(filename): """ Generates the ifdef name to use for the given filename""" return filename.replace("/", "_").replace(".", "_").upper() + "_" def GetNumberCodeBlocks(separators): """Gets the number of code blocks to break classes into.""" num_blocks = len(separators) + 1 assert num_blocks >= 2 return num_blocks def FindBlockIndex(filename, format, num_blocks): """Returns true if the filename matches the format with an index in the range [1, num_blocks].""" for block in range(1, num_blocks+1): suffix = format % block if filename.endswith(suffix): return block raise Exception("Can't find block index: %s" % filename) def GetDecodersBlock(n, separators, decoders, name_fcn): """Returns the (sorted) list of decoders to include in block n, assuming decoders are split using the list of separators.""" num_blocks = GetNumberCodeBlocks(separators) assert n > 0 and n <= num_blocks return [decoder for decoder in decoders if ((n == 1 or IsPrefixLeDecoder(separators[n-2], decoder, name_fcn)) and (n == num_blocks or not IsPrefixLeDecoder(separators[n-1], decoder, name_fcn)))] def IsPrefixLeDecoder(prefix, decoder, name_fcn): """Returns true if the prefix is less than or equal to the corresponding prefix length of the decoder name.""" decoder_name = name_fcn(decoder) prefix_len = len(prefix) decoder_len = len(decoder_name) decoder_prefix = (decoder_name[0:prefix_len] if prefix_len < decoder_len else decoder_name) return prefix <= decoder_prefix
31.298851
76
0.693353
0ac3e6f75c6ad2e83d2f026142ba224b4bab8c20
2,507
py
Python
src/data_loader/input_data_loader.py
ChristopherBrix/Debona
f000f3d483b2cc592233d0ba2a1a0327210562c8
[ "BSD-2-Clause" ]
2
2020-07-26T09:48:22.000Z
2021-09-30T01:51:13.000Z
src/data_loader/input_data_loader.py
ChristopherBrix/Debona
f000f3d483b2cc592233d0ba2a1a0327210562c8
[ "BSD-2-Clause" ]
2
2022-01-13T03:56:13.000Z
2022-03-12T01:03:29.000Z
src/data_loader/input_data_loader.py
ChristopherBrix/Debona
f000f3d483b2cc592233d0ba2a1a0327210562c8
[ "BSD-2-Clause" ]
null
null
null
""" Functions for loading input data. Author: Patrick Henriksen <[email protected]> """ import os import numpy as np def load_img(path: str, img_nums: list, shape: tuple) -> np.array: """ Loads a image in the human-readable format. Args: path: The path to the to the folder with mnist images. img_nums: A list with the numbers of the images we want to load. shape: The shape of a single image. Returns: The images as a MxCx28x28 numpy array. """ images = np.zeros((len(img_nums), *shape), dtype=float) for idx, i in enumerate(img_nums): file = os.path.join(path, "image" + str(i)) with open(file, "r") as f: data = [float(pixel) for pixel in f.readlines()[0].split(",")[:-1]] images[idx, :, :] = np.array(data).reshape(*shape) return images def load_mnist_human_readable(path: str, img_nums: list) -> np.array: """ Loads a mnist image from the neurify dataset. Args: path: The path to the to the folder with mnist images. img_nums: A list with the numbers of the images we want to load. Returns: The images as a Mx28x28 numpy array. """ return load_img(path, img_nums, (28, 28)) def load_cifar10_human_readable(path: str, img_nums: list) -> np.array: """ Loads the Cifar10 images in human readable format. Args: path: The path to the to the folder with mnist images. img_nums: A list with the numbers of the images we want to load. Returns: The images as a Mx3x32x32 numpy array. """ return load_img(path, img_nums, (3, 32, 32)) def load_images_eran(img_csv: str = "../../resources/images/cifar10_test.csv", num_images: int = 100, image_shape: tuple = (3, 32, 32)) -> tuple: """ Loads the images from the eran csv. Args: The csv path Returns: images, targets """ num_images = 100 images_array = np.zeros((num_images, np.prod(image_shape)), dtype=np.float32) targets_array = np.zeros(num_images, dtype=int) with open(img_csv, "r") as file: for j in range(num_images): line_arr = file.readline().split(",") targets_array[j] = int(line_arr[0]) images_array[j] = [float(pixel) for pixel in line_arr[1:]] return images_array.reshape((num_images, *image_shape)), targets_array
25.845361
101
0.603111
0ac42e49c824529d0aa71dbe888c2a691322545e
2,527
py
Python
ui_splash_screen.py
hirokiyaginuma/scriptspinner-software
87185f237f76feeee33a2b74a4d05be088bde011
[ "Unlicense" ]
null
null
null
ui_splash_screen.py
hirokiyaginuma/scriptspinner-software
87185f237f76feeee33a2b74a4d05be088bde011
[ "Unlicense" ]
null
null
null
ui_splash_screen.py
hirokiyaginuma/scriptspinner-software
87185f237f76feeee33a2b74a4d05be088bde011
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- ################################################################################ ## Form generated from reading UI file 'splash_screen.ui' ## ## Created by: Qt User Interface Compiler version 5.15.1 ## ## WARNING! All changes made in this file will be lost when recompiling UI file! ################################################################################ from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import *
37.716418
140
0.646617
0ac44ba5690cb44ecf9e208ad61f69b8762610fd
634
py
Python
tools/leetcode.112.Path Sum/leetcode.112.Path Sum.submission10.py
tedye/leetcode
975d7e3b8cb9b6be9e80e07febf4bcf6414acd46
[ "MIT" ]
4
2015-10-10T00:30:55.000Z
2020-07-27T19:45:54.000Z
tools/leetcode.112.Path Sum/leetcode.112.Path Sum.submission10.py
tedye/leetcode
975d7e3b8cb9b6be9e80e07febf4bcf6414acd46
[ "MIT" ]
null
null
null
tools/leetcode.112.Path Sum/leetcode.112.Path Sum.submission10.py
tedye/leetcode
975d7e3b8cb9b6be9e80e07febf4bcf6414acd46
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param {TreeNode} root # @param {integer} sum # @return {boolean} def hasPathSum(self, root, sum): if not root: return False if not root.right and not root.left: return sum == root.val r = False l = False if root.right: r = self.hasPathSum(root.right,sum-root.val) if root.left: l = self.hasPathSum(root.left,sum-root.val) return r or l
634
634
0.545741
0ac4b5f3fcc2b83c0b6c655a23b542fa299d00d2
41,041
py
Python
pandas/io/sql.py
danbirken/pandas
fa8a5ca1dd27c4169727070ddbdcb248002fddb4
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
pandas/io/sql.py
danbirken/pandas
fa8a5ca1dd27c4169727070ddbdcb248002fddb4
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
pandas/io/sql.py
danbirken/pandas
fa8a5ca1dd27c4169727070ddbdcb248002fddb4
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
""" Collection of query wrappers / abstractions to both facilitate data retrieval and to reduce dependency on DB-specific API. """ from __future__ import print_function, division from datetime import datetime, date, timedelta import warnings import traceback import itertools import re import numpy as np import pandas.core.common as com from pandas.compat import lzip, map, zip, raise_with_traceback, string_types from pandas.core.api import DataFrame, Series from pandas.core.base import PandasObject from pandas.tseries.tools import to_datetime #------------------------------------------------------------------------------ # Helper functions def _convert_params(sql, params): """convert sql and params args to DBAPI2.0 compliant format""" args = [sql] if params is not None: if hasattr(params, 'keys'): # test if params is a mapping args += [params] else: args += [list(params)] return args def _handle_date_column(col, format=None): if isinstance(format, dict): return to_datetime(col, **format) else: if format in ['D', 's', 'ms', 'us', 'ns']: return to_datetime(col, coerce=True, unit=format) elif issubclass(col.dtype.type, np.floating) or issubclass(col.dtype.type, np.integer): # parse dates as timestamp format = 's' if format is None else format return to_datetime(col, coerce=True, unit=format) else: return to_datetime(col, coerce=True, format=format) def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for col_name in parse_dates: df_col = data_frame[col_name] try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(df_col, format=fmt) return data_frame def execute(sql, con, cur=None, params=None): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string Query to be executed con : SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. cur : depreciated, cursor is obtained from connection params : list or tuple, optional List of parameters to pass to execute method. Returns ------- Results Iterable """ if cur is None: pandas_sql = pandasSQL_builder(con) else: pandas_sql = pandasSQL_builder(cur, is_cursor=True) args = _convert_params(sql, params) return pandas_sql.execute(*args) #------------------------------------------------------------------------------ #--- Deprecated tquery and uquery def tquery(sql, con=None, cur=None, retry=True): """ DEPRECATED. Returns list of tuples corresponding to each row in given sql query. If only one column selected, then plain list is returned. To obtain the same result in the future, you can use the following: >>> execute(sql, con, params).fetchall() Parameters ---------- sql: string SQL query to be executed con: DBAPI2 connection cur: depreciated, cursor is obtained from connection Returns ------- Results Iterable """ warnings.warn( "tquery is depreciated, and will be removed in future versions. " "You can use ``execute(...).fetchall()`` instead.", FutureWarning) cur = execute(sql, con, cur=cur) result = _safe_fetch(cur) if con is not None: try: cur.close() con.commit() except Exception as e: excName = e.__class__.__name__ if excName == 'OperationalError': # pragma: no cover print('Failed to commit, may need to restart interpreter') else: raise traceback.print_exc() if retry: return tquery(sql, con=con, retry=False) if result and len(result[0]) == 1: # python 3 compat result = list(lzip(*result)[0]) elif result is None: # pragma: no cover result = [] return result def uquery(sql, con=None, cur=None, retry=True, params=None): """ DEPRECATED. Does the same thing as tquery, but instead of returning results, it returns the number of rows affected. Good for update queries. To obtain the same result in the future, you can use the following: >>> execute(sql, con).rowcount Parameters ---------- sql: string SQL query to be executed con: DBAPI2 connection cur: depreciated, cursor is obtained from connection params: list or tuple, optional List of parameters to pass to execute method. Returns ------- Number of affected rows """ warnings.warn( "uquery is depreciated, and will be removed in future versions. " "You can use ``execute(...).rowcount`` instead.", FutureWarning) cur = execute(sql, con, cur=cur, params=params) result = cur.rowcount try: con.commit() except Exception as e: excName = e.__class__.__name__ if excName != 'OperationalError': raise traceback.print_exc() if retry: print('Looks like your connection failed, reconnecting...') return uquery(sql, con, retry=False) return result #------------------------------------------------------------------------------ #--- Read and write to DataFrames def read_sql_table(table_name, con, index_col=None, coerce_float=True, parse_dates=None, columns=None): """Read SQL database table into a DataFrame. Given a table name and an SQLAlchemy engine, returns a DataFrame. This function does not support DBAPI connections. Parameters ---------- table_name : string Name of SQL table in database con : SQLAlchemy engine Sqlite DBAPI conncection mode not supported index_col : string, optional Column to set as index coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table Returns ------- DataFrame See also -------- read_sql_query : Read SQL query into a DataFrame. read_sql """ pandas_sql = PandasSQLAlchemy(con) table = pandas_sql.read_table( table_name, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns) if table is not None: return table else: raise ValueError("Table %s not found" % table_name, con) def read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None): """Read SQL query into a DataFrame. Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : string SQL query to be executed con : SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string, optional Column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional List of parameters to pass to execute method. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite Returns ------- DataFrame See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql """ pandas_sql = pandasSQL_builder(con) return pandas_sql.read_sql( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates) def read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None): """ Read SQL query or database table into a DataFrame. Parameters ---------- sql : string SQL query to be executed or database table name. con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string, optional column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional List of parameters to pass to execute method. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table (only used when reading a table). Returns ------- DataFrame Notes ----- This function is a convenience wrapper around ``read_sql_table`` and ``read_sql_query`` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query). See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql_query : Read SQL query into a DataFrame """ pandas_sql = pandasSQL_builder(con) if isinstance(pandas_sql, PandasSQLLegacy): return pandas_sql.read_sql( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates) if pandas_sql.has_table(sql): return pandas_sql.read_table( sql, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns) else: return pandas_sql.read_sql( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates) def to_sql(frame, name, con, flavor='sqlite', if_exists='fail', index=True, index_label=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table con : SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. """ if if_exists not in ('fail', 'replace', 'append'): raise ValueError("'{0}' is not valid for if_exists".format(if_exists)) pandas_sql = pandasSQL_builder(con, flavor=flavor) if isinstance(frame, Series): frame = frame.to_frame() elif not isinstance(frame, DataFrame): raise NotImplementedError pandas_sql.to_sql(frame, name, if_exists=if_exists, index=index, index_label=index_label) def has_table(table_name, con, flavor='sqlite'): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table con: SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor: {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. Returns ------- boolean """ pandas_sql = pandasSQL_builder(con, flavor=flavor) return pandas_sql.has_table(table_name) table_exists = has_table _MYSQL_WARNING = ("The 'mysql' flavor with DBAPI connection is deprecated " "and will be removed in future versions. " "MySQL will be further supported with SQLAlchemy engines.") def pandasSQL_builder(con, flavor=None, meta=None, is_cursor=False): """ Convenience function to return the correct PandasSQL subclass based on the provided parameters """ # When support for DBAPI connections is removed, # is_cursor should not be necessary. try: import sqlalchemy if isinstance(con, sqlalchemy.engine.Engine): return PandasSQLAlchemy(con, meta=meta) else: if flavor == 'mysql': warnings.warn(_MYSQL_WARNING, FutureWarning) return PandasSQLLegacy(con, flavor, is_cursor=is_cursor) except ImportError: if flavor == 'mysql': warnings.warn(_MYSQL_WARNING, FutureWarning) return PandasSQLLegacy(con, flavor, is_cursor=is_cursor) # ---- SQL without SQLAlchemy --- # Flavour specific sql strings and handler class for access to DBs without # SQLAlchemy installed # SQL type convertions for each DB _SQL_TYPES = { 'text': { 'mysql': 'VARCHAR (63)', 'sqlite': 'TEXT', }, 'float': { 'mysql': 'FLOAT', 'sqlite': 'REAL', }, 'int': { 'mysql': 'BIGINT', 'sqlite': 'INTEGER', }, 'datetime': { 'mysql': 'DATETIME', 'sqlite': 'TIMESTAMP', }, 'date': { 'mysql': 'DATE', 'sqlite': 'TIMESTAMP', }, 'bool': { 'mysql': 'BOOLEAN', 'sqlite': 'INTEGER', } } # SQL enquote and wildcard symbols _SQL_SYMB = { 'mysql': { 'br_l': '`', 'br_r': '`', 'wld': '%s' }, 'sqlite': { 'br_l': '[', 'br_r': ']', 'wld': '?' } } _SAFE_NAMES_WARNING = ("The spaces in these column names will not be changed. " "In pandas versions < 0.14, spaces were converted to " "underscores.") def get_schema(frame, name, flavor='sqlite', keys=None, con=None): """ Get the SQL db table schema for the given frame. Parameters ---------- frame : DataFrame name : string name of SQL table flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. keys : string or sequence columns to use a primary key con: an open SQL database connection object or an SQLAlchemy engine Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. """ if con is None: if flavor == 'mysql': warnings.warn(_MYSQL_WARNING, FutureWarning) return _get_schema_legacy(frame, name, flavor, keys) pandas_sql = pandasSQL_builder(con=con, flavor=flavor) return pandas_sql._create_sql_schema(frame, name) def _get_schema_legacy(frame, name, flavor, keys=None): """Old function from 0.13.1. To keep backwards compatibility. When mysql legacy support is dropped, it should be possible to remove this code """ lookup_type = lambda dtype: get_sqltype(dtype, flavor) column_types = lzip(frame.dtypes.index, map(lookup_type, frame.dtypes)) if flavor == 'sqlite': columns = ',\n '.join('[%s] %s' % x for x in column_types) else: columns = ',\n '.join('`%s` %s' % x for x in column_types) keystr = '' if keys is not None: if isinstance(keys, string_types): keys = (keys,) keystr = ', PRIMARY KEY (%s)' % ','.join(keys) template = """CREATE TABLE %(name)s ( %(columns)s %(keystr)s );""" create_statement = template % {'name': name, 'columns': columns, 'keystr': keystr} return create_statement # legacy names, with depreciation warnings and copied docs def read_frame(*args, **kwargs): """DEPRECIATED - use read_sql """ warnings.warn("read_frame is depreciated, use read_sql", FutureWarning) return read_sql(*args, **kwargs) def frame_query(*args, **kwargs): """DEPRECIATED - use read_sql """ warnings.warn("frame_query is depreciated, use read_sql", FutureWarning) return read_sql(*args, **kwargs) def write_frame(frame, name, con, flavor='sqlite', if_exists='fail', **kwargs): """DEPRECIATED - use to_sql Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string con : DBAPI2 connection flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default False Write DataFrame index as a column Notes ----- This function is deprecated in favor of ``to_sql``. There are however two differences: - With ``to_sql`` the index is written to the sql database by default. To keep the behaviour this function you need to specify ``index=False``. - The new ``to_sql`` function supports sqlalchemy engines to work with different sql flavors. See also -------- pandas.DataFrame.to_sql """ warnings.warn("write_frame is depreciated, use to_sql", FutureWarning) # for backwards compatibility, set index=False when not specified index = kwargs.pop('index', False) return to_sql(frame, name, con, flavor=flavor, if_exists=if_exists, index=index, **kwargs) # Append wrapped function docstrings read_frame.__doc__ += read_sql.__doc__ frame_query.__doc__ += read_sql.__doc__
33.806425
103
0.608002
0ac61484010824f5bc86d5e3f43da1576d3d9bbb
4,411
py
Python
Systerm/meta.py
ZytroCode/Systerm
688b1a9eab51ec2d2fcc8e921d57ae4ae585a1b7
[ "MIT" ]
1
2022-03-01T02:36:29.000Z
2022-03-01T02:36:29.000Z
Systerm/meta.py
ZytroCode/Systerm
688b1a9eab51ec2d2fcc8e921d57ae4ae585a1b7
[ "MIT" ]
1
2022-03-04T03:20:50.000Z
2022-03-04T03:20:50.000Z
Systerm/meta.py
ZytroCode/Systerm
688b1a9eab51ec2d2fcc8e921d57ae4ae585a1b7
[ "MIT" ]
null
null
null
"""Meta is a module contains objects that will customize the behavior of python.""" from abc import ABC from abc import ABCMeta from abc import abstractmethod from typing import Any from typing import Callable import Systerm # Metaclass # Object class # List class # Dictionary class # Recreating ABC ABC = Metaclass(ABC.__name__, ABC.__bases__, {name: getattr(ABC, name) for name in dir(ABC)}) def get_namespaces(object: Object) -> Dictionary: """Gets the namespaces of an object.""" return object.__namespaces__ def get_magics(object: Object) -> Dictionary: """Gets the magic methods of an object.""" return object.__magics__ def get_attributes(object: Object) -> Dictionary: """Gets the attributes of an object.""" return object.__attributes__ def get_publics(object: Object) -> Dictionary: """Gets the public namespaces of an object.""" return object.__publics__ def get_privates(object: Object) -> Dictionary: """Gets the private namespaces of an object.""" return object.__privates__ def get_protecteds(object: Object) -> Dictionary: """Gets the protected namespaces of an object.""" return object.__protecteds__ # Initializing Systerm.module from Systerm._setup import init_module module = init_module() # MetaMod class module.modules[__name__].__class__ = MetaMod
30.42069
102
0.608025
0ac6cf77a3b421f63bd83476f536c84c12d3066c
11,859
py
Python
samples/apps/txregulator/tests/txregulatorclient.py
iqsarv/CCF
5cc33a1f0e06eb2a25dc1ebd0e2153881962b889
[ "Apache-2.0" ]
1
2020-02-03T21:57:22.000Z
2020-02-03T21:57:22.000Z
samples/apps/txregulator/tests/txregulatorclient.py
kuychaco/CCF
e11acde3be6a7d2213fe5b406b959bb5bb64361d
[ "Apache-2.0" ]
null
null
null
samples/apps/txregulator/tests/txregulatorclient.py
kuychaco/CCF
e11acde3be6a7d2213fe5b406b959bb5bb64361d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the Apache 2.0 License. import infra.e2e_args import infra.ccf import infra.jsonrpc import logging from time import gmtime, strftime import csv import random from loguru import logger as LOG if __name__ == "__main__": args = infra.e2e_args.cli_args(add) args.package = args.app_script and "libluageneric" or "liblogging" run(args)
39.795302
117
0.474239
0ac72633419a62f181f2995c29a463e6cede8eca
4,925
py
Python
src/finmag/sim/hysteresis.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
10
2018-03-24T07:43:17.000Z
2022-03-26T10:42:27.000Z
src/finmag/sim/hysteresis.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
21
2018-03-26T15:08:53.000Z
2021-07-10T16:11:14.000Z
src/finmag/sim/hysteresis.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
7
2018-04-09T11:50:48.000Z
2021-06-10T09:23:25.000Z
import os import re import glob import logging import textwrap import fileinput import numpy as np from finmag.energies import Zeeman from finmag.util.helpers import norm log = logging.getLogger(name="finmag") def hysteresis(sim, H_ext_list, fun=None, **kwargs): """ Set the applied field to the first value in `H_ext_list` (which should be a list of external field vectors) and then call the relax() method. When convergence is reached, the field is changed to the next one in H_ext_list, and so on until all values in H_ext_list are exhausted. Note: The fields in H_ext_list are applied *in addition to* any Zeeman interactions that are already present in the simulation. In particular, if only one external field should be present then do not add any Zeeman interactions before calling this method. If you would like to perform a certain action (e.g. save a VTK snapshot of the magnetisation) at the end of each relaxation stage, use the sim.schedule() command with the directive 'at_end=True' as in the following example: sim.schedule('save_vtk', at_end=True, ...) sim.hysteresis(...) *Arguments* H_ext_list: list of 3-vectors List of external fields, where each field can have any of the forms accepted by Zeeman.__init__() (see its docstring for more details). fun: callable The user can pass a function here (which should accept the Simulation object as its only argument); this function is called after each relaxation and determines the return value (see below). For example, if fun = (lambda sim: sim.m_average[0]) then the return value is a list of values representing the average x-component of the magnetisation at the end of each relaxation. All other keyword arguments are passed on to the relax() method. See its documentation for details. *Return value* If `fun` is not None then the return value is a list containing an accumulation of all the return values of `fun` after each stage. Otherwise the return value is None. """ if H_ext_list == []: return # Add a new Zeeman interaction, initialised to zero. H = Zeeman((0, 0, 0)) sim.add(H) # We keep track of the current stage of the hysteresis loop. cur_stage = 0 num_stages = len(H_ext_list) res = [] try: while True: H_cur = H_ext_list[cur_stage] log.info( "Entering hysteresis stage #{} ({} out of {}). Current field: " "{}".format(cur_stage, cur_stage + 1, num_stages, H_cur)) H.set_value(H_cur) sim.relax(**kwargs) cur_stage += 1 if fun is not None: retval = fun(sim) res.append(retval) log.debug("hysteresis callback function '{}' returned " "value: {}".format(fun.__name__, retval)) except IndexError: log.info("Hysteresis is finished.") log.info("Removing the applied field used for hysteresis.") sim.remove_interaction(H.name) return res or None def hysteresis_loop(sim, H_max, direction, N, **kwargs): """ Compute a hysteresis loop. This is a specialised convenience version of the more general `hysteresis` method. It computes a hysteresis loop where the external field is applied along a single axis and changes magnitude from +H_max to -H_max and back (using N steps in each direction). The return value is a pair (H_vals, m_vals), where H_vals is the list of field strengths at which a relaxation is performed and m_vals is a list of scalar values containing, for each field value, the averaged value of the magnetisation along the axis `direction` (after relaxation has been reached). Thus the command plot(H_vals, m_vals) could be used to plot the hysteresis loop. direction -- a vector indicating the direction of the external field (will be normalised automatically) H_max -- maximum field strength N -- number of data points to compute in each direction (thus the total number of data points for the entire loop will be 2*N-1) kwargs -- any keyword argument accepted by the hysteresis() method """ d = np.array(direction) H_dir = d / norm(d) H_norms = list(np.linspace(H_max, -H_max, N)) + \ list(np.linspace(-H_max, H_max, N)) H_vals = [h * H_dir for h in H_norms] m_avg = hysteresis(sim, H_vals, fun=lambda sim: sim.m_average, **kwargs) # projected lengths of the averaged magnetisation values along the axis # `H_dir` m_vals = [np.dot(m, H_dir) for m in m_avg] return (H_norms, m_vals)
34.929078
79
0.650355
0ac87693a78b8ba6514e5ac5aa8d9530546bb44b
39,691
py
Python
uiSetup.py
smokedpirate/Encryption-hash-generator
47bf3f1f6b6b24ca3e9078fefe46b1e6409d59e5
[ "Apache-2.0" ]
4
2020-09-24T16:34:03.000Z
2020-10-23T09:52:59.000Z
uiSetup.py
Atharv-Khatri/Password-Encryption-Generator-Timathon-Submission-
3a3db2fa9dc27c8f604d0eb0917e8ffa717f4786
[ "Apache-2.0" ]
1
2020-08-02T08:46:06.000Z
2020-08-02T08:46:06.000Z
uiSetup.py
Atharv-Khatri/Password-Encryption-Generator-Timathon-Submission-
3a3db2fa9dc27c8f604d0eb0917e8ffa717f4786
[ "Apache-2.0" ]
1
2020-08-02T08:33:46.000Z
2020-08-02T08:33:46.000Z
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5 import QtGui, QtCore if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
54.222678
105
0.659192
0ac88c66372990e2da39877dd262a4baa72b4bfd
791
py
Python
yxtx/myApp/migrations/0017_chat.py
wjh112233/yxtx
f118c2b9983ca48b099f2c328487e23f5430303f
[ "Apache-2.0" ]
null
null
null
yxtx/myApp/migrations/0017_chat.py
wjh112233/yxtx
f118c2b9983ca48b099f2c328487e23f5430303f
[ "Apache-2.0" ]
null
null
null
yxtx/myApp/migrations/0017_chat.py
wjh112233/yxtx
f118c2b9983ca48b099f2c328487e23f5430303f
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.0.2 on 2020-03-17 08:44 from django.db import migrations, models
30.423077
91
0.556258
0ac8bc92bddd721b23be9da9373cb90b73f83f01
1,200
py
Python
core/controllers/services.py
willingc/oh-missions-oppia-beta
3d97903a5155ec67f135b1aa2c02f3bb39eb02e7
[ "Apache-2.0" ]
null
null
null
core/controllers/services.py
willingc/oh-missions-oppia-beta
3d97903a5155ec67f135b1aa2c02f3bb39eb02e7
[ "Apache-2.0" ]
2
2021-06-10T23:58:39.000Z
2021-12-13T20:51:34.000Z
core/controllers/services.py
willingc/oh-missions-oppia-beta
3d97903a5155ec67f135b1aa2c02f3bb39eb02e7
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Controllers for miscellaneous services.""" __author__ = 'Tarashish Mishra' import base64 import json from core.controllers import base
31.578947
77
0.726667
0ac98e5cdb6676a542021f48c116aa5fa733e705
16,208
py
Python
convoy/crypto.py
hebinhuang/batch-shipyard
f87d94850380bee273eb51c5c35381952a5722b8
[ "MIT" ]
null
null
null
convoy/crypto.py
hebinhuang/batch-shipyard
f87d94850380bee273eb51c5c35381952a5722b8
[ "MIT" ]
null
null
null
convoy/crypto.py
hebinhuang/batch-shipyard
f87d94850380bee273eb51c5c35381952a5722b8
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation # # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # compat imports from __future__ import ( absolute_import, division, print_function, unicode_literals ) from builtins import ( # noqa bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) # stdlib imports import base64 import collections import getpass import logging import os try: import pathlib2 as pathlib except ImportError: import pathlib import tempfile import stat import subprocess # local imports from . import settings from . import util # create logger logger = logging.getLogger(__name__) util.setup_logger(logger) # global defines _SSH_KEY_PREFIX = 'id_rsa_shipyard' _REMOTEFS_SSH_KEY_PREFIX = '{}_remotefs'.format(_SSH_KEY_PREFIX) # named tuples PfxSettings = collections.namedtuple( 'PfxSettings', ['filename', 'passphrase', 'sha1']) def get_ssh_key_prefix(): # type: (None) -> str """Get SSH key prefix :rtype: str :return: ssh key prefix """ return _SSH_KEY_PREFIX def get_remotefs_ssh_key_prefix(): # type: (None) -> str """Get remote fs SSH key prefix :rtype: str :return: ssh key prefix for remote fs """ return _REMOTEFS_SSH_KEY_PREFIX def generate_rdp_password(): # type: (None) -> str """Generate an RDP password :rtype: str :return: rdp password """ return base64.b64encode(os.urandom(8)) def generate_ssh_keypair(export_path, prefix=None): # type: (str, str) -> tuple """Generate an ssh keypair for use with user logins :param str export_path: keypair export path :param str prefix: key prefix :rtype: tuple :return: (private key filename, public key filename) """ if util.is_none_or_empty(prefix): prefix = _SSH_KEY_PREFIX privkey = pathlib.Path(export_path, prefix) pubkey = pathlib.Path(export_path, prefix + '.pub') if privkey.exists(): old = pathlib.Path(export_path, prefix + '.old') if old.exists(): old.unlink() privkey.rename(old) if pubkey.exists(): old = pathlib.Path(export_path, prefix + '.pub.old') if old.exists(): old.unlink() pubkey.rename(old) logger.info('generating ssh key pair to path: {}'.format(export_path)) subprocess.check_call( ['ssh-keygen', '-f', str(privkey), '-t', 'rsa', '-N', '''''']) return (privkey, pubkey) def check_ssh_private_key_filemode(ssh_private_key): # type: (pathlib.Path) -> bool """Check SSH private key filemode :param pathlib.Path ssh_private_key: SSH private key :rtype: bool :return: private key filemode is ok """ if util.on_windows(): return True fstat = ssh_private_key.stat().st_mode modes = frozenset((stat.S_IRWXG, stat.S_IRWXO)) return not any([_mode_check(fstat, x) for x in modes]) def connect_or_exec_ssh_command( remote_ip, remote_port, ssh_private_key, username, sync=True, shell=False, tty=False, ssh_args=None, command=None): # type: (str, int, pathlib.Path, str, bool, bool, tuple, tuple) -> bool """Connect to node via SSH or execute SSH command :param str remote_ip: remote ip address :param int remote_port: remote port :param pathlib.Path ssh_private_key: SSH private key :param str username: username :param bool sync: synchronous execution :param bool shell: execute with shell :param bool tty: allocate pseudo-tty :param tuple ssh_args: ssh args :param tuple command: command :rtype: int or subprocess.Process :return: return code or subprocess handle """ if not ssh_private_key.exists(): raise RuntimeError('SSH private key file not found at: {}'.format( ssh_private_key)) # ensure file mode is set properly for the private key if not check_ssh_private_key_filemode(ssh_private_key): logger.warning( 'SSH private key filemode is too permissive: {}'.format( ssh_private_key)) # execute SSH command ssh_cmd = [ 'ssh', '-o', 'StrictHostKeyChecking=no', '-o', 'UserKnownHostsFile={}'.format(os.devnull), '-i', str(ssh_private_key), '-p', str(remote_port), ] if tty: ssh_cmd.append('-t') if util.is_not_empty(ssh_args): ssh_cmd.extend(ssh_args) ssh_cmd.append('{}@{}'.format(username, remote_ip)) if util.is_not_empty(command): ssh_cmd.extend(command) logger.info('{} node {}:{} with key {}'.format( 'connecting to' if util.is_none_or_empty(command) else 'executing command on', remote_ip, remote_port, ssh_private_key)) if sync: return util.subprocess_with_output(ssh_cmd, shell=shell) else: return util.subprocess_nowait_pipe_stdout( ssh_cmd, shell=shell, pipe_stderr=True) def derive_private_key_pem_from_pfx(pfxfile, passphrase=None, pemfile=None): # type: (str, str, str) -> str """Derive a private key pem file from a pfx :param str pfxfile: pfx file :param str passphrase: passphrase for pfx :param str pemfile: path of pem file to write to :rtype: str :return: path of pem file """ if pfxfile is None: raise ValueError('pfx file is invalid') if passphrase is None: passphrase = getpass.getpass('Enter password for PFX: ') # convert pfx to pem if pemfile is None: f = tempfile.NamedTemporaryFile(mode='wb', delete=False) f.close() pemfile = f.name try: # create pem from pfx subprocess.check_call( ['openssl', 'pkcs12', '-nodes', '-in', pfxfile, '-out', pemfile, '-password', 'pass:' + passphrase] ) except Exception: fp = pathlib.Path(pemfile) if fp.exists(): fp.unlink() pemfile = None return pemfile def derive_public_key_pem_from_pfx(pfxfile, passphrase=None, pemfile=None): # type: (str, str, str) -> str """Derive a public key pem file from a pfx :param str pfxfile: pfx file :param str passphrase: passphrase for pfx :param str pemfile: path of pem file to write to :rtype: str :return: path of pem file """ if pfxfile is None: raise ValueError('pfx file is invalid') if passphrase is None: passphrase = getpass.getpass('Enter password for PFX: ') # convert pfx to pem if pemfile is None: f = tempfile.NamedTemporaryFile(mode='wb', delete=False) f.close() pemfile = f.name try: # create pem from pfx subprocess.check_call( ['openssl', 'pkcs12', '-nodes', '-in', pfxfile, '-out', pemfile, '-password', 'pass:' + passphrase] ) # extract public key from private key subprocess.check_call( ['openssl', 'rsa', '-in', pemfile, '-pubout', '-outform', 'PEM', '-out', pemfile] ) except Exception: fp = pathlib.Path(pemfile) if fp.exists(): fp.unlink() pemfile = None return pemfile def _parse_sha1_thumbprint_openssl(output): # type: (str) -> str """Get SHA1 thumbprint from buffer :param str buffer: buffer to parse :rtype: str :return: sha1 thumbprint of buffer """ # return just thumbprint (without colons) from the above openssl command # in lowercase. Expected openssl output is in the form: # SHA1 Fingerprint=<thumbprint> return ''.join(util.decode_string( output).strip().split('=')[1].split(':')).lower() def get_sha1_thumbprint_pfx(pfxfile, passphrase): # type: (str, str) -> str """Get SHA1 thumbprint of PFX :param str pfxfile: name of the pfx file to export :param str passphrase: passphrase for pfx :rtype: str :return: sha1 thumbprint of pfx """ if pfxfile is None: raise ValueError('pfxfile is invalid') if passphrase is None: passphrase = getpass.getpass('Enter password for PFX: ') # compute sha1 thumbprint of pfx pfxdump = subprocess.check_output( ['openssl', 'pkcs12', '-in', pfxfile, '-nodes', '-passin', 'pass:' + passphrase] ) proc = subprocess.Popen( ['openssl', 'x509', '-noout', '-fingerprint'], stdin=subprocess.PIPE, stdout=subprocess.PIPE ) return _parse_sha1_thumbprint_openssl(proc.communicate(input=pfxdump)[0]) def get_sha1_thumbprint_pem(pemfile): # type: (str) -> str """Get SHA1 thumbprint of PEM :param str pfxfile: name of the pfx file to export :rtype: str :return: sha1 thumbprint of pem """ proc = subprocess.Popen( ['openssl', 'x509', '-noout', '-fingerprint', '-in', pemfile], stdout=subprocess.PIPE ) return _parse_sha1_thumbprint_openssl(proc.communicate()[0]) def generate_pem_pfx_certificates(config): # type: (dict) -> str """Generate a pem and a derived pfx file :param dict config: configuration dict :rtype: str :return: sha1 thumbprint of pfx """ # gather input pemfile = settings.batch_shipyard_encryption_public_key_pem(config) pfxfile = settings.batch_shipyard_encryption_pfx_filename(config) passphrase = settings.batch_shipyard_encryption_pfx_passphrase(config) if pemfile is None: pemfile = util.get_input('Enter public key PEM filename to create: ') if pfxfile is None: pfxfile = util.get_input('Enter PFX filename to create: ') if passphrase is None: while util.is_none_or_empty(passphrase): passphrase = getpass.getpass('Enter password for PFX: ') if len(passphrase) == 0: print('passphrase cannot be empty') privatekey = pemfile + '.key' # generate pem file with private key and no password f = tempfile.NamedTemporaryFile(mode='wb', delete=False) f.close() try: subprocess.check_call( ['openssl', 'req', '-new', '-nodes', '-x509', '-newkey', 'rsa:2048', '-keyout', privatekey, '-out', f.name, '-days', '730', '-subj', '/C=US/ST=None/L=None/O=None/CN=BatchShipyard'] ) # extract public key from private key subprocess.check_call( ['openssl', 'rsa', '-in', privatekey, '-pubout', '-outform', 'PEM', '-out', pemfile] ) logger.debug('created public key PEM file: {}'.format(pemfile)) # convert pem to pfx for Azure Batch service subprocess.check_call( ['openssl', 'pkcs12', '-export', '-out', pfxfile, '-inkey', privatekey, '-in', f.name, '-certfile', f.name, '-passin', 'pass:', '-passout', 'pass:' + passphrase] ) logger.debug('created PFX file: {}'.format(pfxfile)) finally: # remove rsa private key file fp = pathlib.Path(privatekey) if fp.exists(): fp.unlink() # remove temp cert pem fp = pathlib.Path(f.name) if fp.exists(): fp.unlink() # get sha1 thumbprint of pfx return get_sha1_thumbprint_pfx(pfxfile, passphrase) def get_encryption_pfx_settings(config): # type: (dict) -> tuple """Get PFX encryption settings from configuration :param dict config: configuration settings :rtype: tuple :return: pfxfile, passphrase, sha1 tp """ pfxfile = settings.batch_shipyard_encryption_pfx_filename(config) pfx_passphrase = settings.batch_shipyard_encryption_pfx_passphrase(config) sha1_cert_tp = settings.batch_shipyard_encryption_pfx_sha1_thumbprint( config) # manually get thumbprint of pfx if not exists in config if util.is_none_or_empty(sha1_cert_tp): if pfx_passphrase is None: pfx_passphrase = getpass.getpass('Enter password for PFX: ') sha1_cert_tp = get_sha1_thumbprint_pfx(pfxfile, pfx_passphrase) settings.set_batch_shipyard_encryption_pfx_sha1_thumbprint( config, sha1_cert_tp) return PfxSettings( filename=pfxfile, passphrase=pfx_passphrase, sha1=sha1_cert_tp) def _rsa_encrypt_string(data, config): # type: (str, dict) -> str """RSA encrypt a string :param str data: clear text data to encrypt :param dict config: configuration dict :rtype: str :return: base64-encoded cipher text """ if util.is_none_or_empty(data): raise ValueError('invalid data to encrypt') inkey = settings.batch_shipyard_encryption_public_key_pem(config) derived = False if inkey is None: # derive pem from pfx derived = True pfxfile = settings.batch_shipyard_encryption_pfx_filename(config) pfx_passphrase = settings.batch_shipyard_encryption_pfx_passphrase( config) inkey = derive_public_key_pem_from_pfx(pfxfile, pfx_passphrase, None) try: if inkey is None: raise RuntimeError('public encryption key is invalid') proc = subprocess.Popen( ['openssl', 'rsautl', '-encrypt', '-pubin', '-inkey', inkey], stdin=subprocess.PIPE, stdout=subprocess.PIPE) ciphertext = util.base64_encode_string( proc.communicate(input=util.encode_string(data))[0]) if proc.returncode != 0: raise RuntimeError( 'openssl encryption failed with returncode: {}'.format( proc.returncode)) return ciphertext finally: if derived: fp = pathlib.Path(inkey) if fp.exists(): fp.unlink() def _rsa_decrypt_string_with_pfx(ciphertext, config): # type: (str, dict) -> str """RSA decrypt a string :param str ciphertext: cipher text in base64 :param dict config: configuration dict :rtype: str :return: decrypted cipher text """ if util.is_none_or_empty(ciphertext): raise ValueError('invalid ciphertext to decrypt') pfxfile = settings.batch_shipyard_encryption_pfx_filename(config) pfx_passphrase = settings.batch_shipyard_encryption_pfx_passphrase(config) pemfile = derive_private_key_pem_from_pfx(pfxfile, pfx_passphrase, None) if pemfile is None: raise RuntimeError('cannot decrypt without valid private key') cleartext = None try: data = util.base64_decode_string(ciphertext) proc = subprocess.Popen( ['openssl', 'rsautl', '-decrypt', '-inkey', pemfile], stdin=subprocess.PIPE, stdout=subprocess.PIPE) cleartext = proc.communicate(input=data)[0] finally: fp = pathlib.Path(pemfile) if fp.exists(): fp.unlink() return cleartext def encrypt_string(enabled, string, config): # type: (bool, str, dict) -> str """Encrypt a string :param bool enabled: if encryption is enabled :param str string: string to encrypt :param dict config: configuration dict :rtype: str :return: encrypted string if enabled """ if enabled: return _rsa_encrypt_string(string, config) else: return string
35.311547
79
0.653258
0ac9b8651f0cd02d3cb27eefe5c6577d55fc334a
4,080
py
Python
libs/configs/COCO/cfgs_res50_1x_coco_v3.py
lj-ecjtu/Cascade_FPN_Tensorflow-master
40fcd2c10f057b3f015ca1380d7db102e967391f
[ "MIT" ]
43
2019-04-25T08:07:49.000Z
2021-08-24T08:33:37.000Z
libs/configs/COCO/cfgs_res50_1x_coco_v3.py
lj-ecjtu/Cascade_FPN_Tensorflow-master
40fcd2c10f057b3f015ca1380d7db102e967391f
[ "MIT" ]
16
2019-05-11T03:51:19.000Z
2021-10-09T08:26:18.000Z
libs/configs/COCO/cfgs_res50_1x_coco_v3.py
lj-ecjtu/Cascade_FPN_Tensorflow-master
40fcd2c10f057b3f015ca1380d7db102e967391f
[ "MIT" ]
15
2019-04-29T03:26:35.000Z
2020-05-26T05:35:39.000Z
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import os import tensorflow as tf ''' gluoncv backbone + multi_gpu ''' # ------------------------------------------------ VERSION = 'Cascade_FPN_Res50_COCO_1x_20190421_v3' NET_NAME = 'resnet50_v1d' ADD_BOX_IN_TENSORBOARD = True # ---------------------------------------- System_config ROOT_PATH = os.path.abspath('../') print(20*"++--") print(ROOT_PATH) GPU_GROUP = "0,1,2,3,4,5,6,7" NUM_GPU = len(GPU_GROUP.strip().split(',')) SHOW_TRAIN_INFO_INTE = 20 SMRY_ITER = 200 SAVE_WEIGHTS_INTE = 80000 SUMMARY_PATH = ROOT_PATH + '/output/summary' TEST_SAVE_PATH = ROOT_PATH + '/tools/test_result' INFERENCE_IMAGE_PATH = ROOT_PATH + '/tools/inference_image' INFERENCE_SAVE_PATH = ROOT_PATH + '/tools/inference_results' if NET_NAME.startswith("resnet"): weights_name = NET_NAME elif NET_NAME.startswith("MobilenetV2"): weights_name = "mobilenet/mobilenet_v2_1.0_224" else: raise NotImplementedError PRETRAINED_CKPT = ROOT_PATH + '/data/pretrained_weights/' + weights_name + '.ckpt' TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights') EVALUATE_DIR = ROOT_PATH + '/output/evaluate_result_pickle/' # ------------------------------------------ Train config RESTORE_FROM_RPN = False IS_FILTER_OUTSIDE_BOXES = False FIXED_BLOCKS = 0 # allow 0~3 FREEZE_BLOCKS = [True, False, False, False, False] # for gluoncv backbone USE_07_METRIC = True CUDA9 = True EVAL_THRESHOLD = 0.5 RPN_LOCATION_LOSS_WEIGHT = 1. RPN_CLASSIFICATION_LOSS_WEIGHT = 1.0 FAST_RCNN_LOCATION_LOSS_WEIGHT = 1.0 FAST_RCNN_CLASSIFICATION_LOSS_WEIGHT = 1.0 RPN_SIGMA = 3.0 FASTRCNN_SIGMA = 1.0 MUTILPY_BIAS_GRADIENT = None # 2.0 # if None, will not multipy GRADIENT_CLIPPING_BY_NORM = None # 10.0 if None, will not clip EPSILON = 1e-5 MOMENTUM = 0.9 BATCH_SIZE = 1 WARM_SETP = int(0.25 * SAVE_WEIGHTS_INTE) LR = 5e-4 * 2 * 1.25 * NUM_GPU * BATCH_SIZE DECAY_STEP = [11*SAVE_WEIGHTS_INTE, 16*SAVE_WEIGHTS_INTE, 20*SAVE_WEIGHTS_INTE] # 50000, 70000 MAX_ITERATION = 20*SAVE_WEIGHTS_INTE # -------------------------------------------- Data_preprocess_config DATASET_NAME = 'coco' # 'pascal', 'coco' PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In tf, channel is RGB. In openCV, channel is BGR PIXEL_MEAN_ = [0.485, 0.456, 0.406] PIXEL_STD = [0.229, 0.224, 0.225] # R, G, B. In tf, channel is RGB. In openCV, channel is BGR IMG_SHORT_SIDE_LEN = 800 IMG_MAX_LENGTH = 1333 CLASS_NUM = 80 # --------------------------------------------- Network_config INITIALIZER = tf.random_normal_initializer(mean=0.0, stddev=0.01) BBOX_INITIALIZER = tf.random_normal_initializer(mean=0.0, stddev=0.001) WEIGHT_DECAY = 0.00004 if NET_NAME.startswith('Mobilenet') else 0.0001 IS_ASSIGN = True # ---------------------------------------------Anchor config USE_CENTER_OFFSET = True LEVLES = ['P2', 'P3', 'P4', 'P5', 'P6'] BASE_ANCHOR_SIZE_LIST = [32, 64, 128, 256, 512] ANCHOR_STRIDE_LIST = [4, 8, 16, 32, 64] ANCHOR_SCALES = [1.0] ANCHOR_RATIOS = [0.5, 1., 2.0] ROI_SCALE_FACTORS = [[10., 10., 5.0, 5.0], [20., 20., 10.0, 10.0], [40., 40., 20.0, 20.0]] ANCHOR_SCALE_FACTORS = [10., 10., 5.0, 5.0] # --------------------------------------------FPN config SHARE_HEADS = True KERNEL_SIZE = 3 RPN_IOU_POSITIVE_THRESHOLD = 0.7 RPN_IOU_NEGATIVE_THRESHOLD = 0.3 TRAIN_RPN_CLOOBER_POSITIVES = False RPN_MINIBATCH_SIZE = 256 RPN_POSITIVE_RATE = 0.5 RPN_NMS_IOU_THRESHOLD = 0.7 RPN_TOP_K_NMS_TRAIN = 12000 RPN_MAXIMUM_PROPOSAL_TARIN = 2000 RPN_TOP_K_NMS_TEST = 6000 RPN_MAXIMUM_PROPOSAL_TEST = 1000 # -------------------------------------------Fast-RCNN config ROI_SIZE = 14 ROI_POOL_KERNEL_SIZE = 2 USE_DROPOUT = False KEEP_PROB = 1.0 SHOW_SCORE_THRSHOLD = 0.6 # only show in tensorboard FAST_RCNN_NMS_IOU_THRESHOLD = 0.5 # 0.6 FAST_RCNN_NMS_MAX_BOXES_PER_CLASS = 100 FAST_RCNN_IOU_POSITIVE_THRESHOLD = 0.5 FAST_RCNN_IOU_NEGATIVE_THRESHOLD = 0.0 # 0.1 < IOU < 0.5 is negative FAST_RCNN_MINIBATCH_SIZE = 512 # if is -1, that is train with OHEM FAST_RCNN_POSITIVE_RATE = 0.25 ADD_GTBOXES_TO_TRAIN = False
31.384615
100
0.684069
0acab913205c6b28e2e38031c30bbb139185f389
3,055
py
Python
python/delta/tests/test_exceptions.py
vibhaska/delta
0e16356ff46520404e2376d048f002ca74f6dc0c
[ "Apache-2.0" ]
1
2022-01-18T10:52:49.000Z
2022-01-18T10:52:49.000Z
python/delta/tests/test_exceptions.py
vibhaska/delta
0e16356ff46520404e2376d048f002ca74f6dc0c
[ "Apache-2.0" ]
null
null
null
python/delta/tests/test_exceptions.py
vibhaska/delta
0e16356ff46520404e2376d048f002ca74f6dc0c
[ "Apache-2.0" ]
1
2022-03-06T09:29:55.000Z
2022-03-06T09:29:55.000Z
# # Copyright (2020) The Delta Lake Project Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import delta.exceptions as exceptions from delta.testing.utils import DeltaTestCase if __name__ == "__main__": try: import xmlrunner testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=4) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=4)
41.849315
87
0.734206
0acabac25e7f182a0cc9d197e74fb9a54f708fdd
629
py
Python
day10/samematrix.py
nikhilsamninan/python-files
15198459081097058a939b40b5e8ef754e578fe0
[ "Apache-2.0" ]
null
null
null
day10/samematrix.py
nikhilsamninan/python-files
15198459081097058a939b40b5e8ef754e578fe0
[ "Apache-2.0" ]
null
null
null
day10/samematrix.py
nikhilsamninan/python-files
15198459081097058a939b40b5e8ef754e578fe0
[ "Apache-2.0" ]
null
null
null
print("Enter the 1st matrix") first_matrix = matrix_form() print(first_matrix) print("Enter the 2nd matrix") sec_matrix = matrix_form() print(sec_matrix) check_matrix(first_matrix,sec_matrix)
22.464286
45
0.63434
0acb3e8369864a2998734321cae251dc26fd05fa
2,884
py
Python
extractFeatures.py
PatrickJReed/Longboard
f6ca4a6e51c91296894aee2e02b86f83b38c080a
[ "MIT" ]
1
2020-04-27T19:55:29.000Z
2020-04-27T19:55:29.000Z
extractFeatures.py
PatrickJReed/Longboard2
f6ca4a6e51c91296894aee2e02b86f83b38c080a
[ "MIT" ]
1
2020-02-26T18:06:09.000Z
2020-02-26T18:06:09.000Z
extractFeatures.py
PatrickJReed/Longboard
f6ca4a6e51c91296894aee2e02b86f83b38c080a
[ "MIT" ]
null
null
null
#!/home/ubuntu/miniconda2/bin/python from __future__ import division import sys import glob, os, gc import uuid import os.path import csv import numpy as np from time import time from subprocess import (call, Popen, PIPE) from itertools import product import shutil import re import pickle from boto3.session import Session import boto3 import h5py import umap import hdbscan from keras.models import load_model from keras.models import Model from keras import backend as K from keras.utils import multi_gpu_model ##Path to Data basepath = "/home/ubuntu/" subject = sys.argv[1] with open("config.txt") as f: config = [line.rstrip() for line in f] print config[0] print config[1] session = Session(aws_access_key_id=config[0],aws_secret_access_key=config[1]) s3 = session.resource('s3') s3 = boto3.client ('s3') s3.download_file('for-ndar',os.path.join("metadata/", subject + ".txt"),os.path.join(basepath,subject + ".txt")) with open(subject + ".txt") as f: Cells = [line.rstrip() for line in f] session = Session(aws_access_key_id=config[0],aws_secret_access_key=config[1]) s3 = session.resource('s3') s3.meta.client.download_file('bsmn-data',os.path.join('Inception_Transfer_Model.h5'),os.path.join(basepath,'Inception_Transfer_Model.h5')) feat_extractor = load_model(os.path.join(basepath,'Inception_Transfer_Model.h5')) parallel_model = multi_gpu_model(feat_extractor, gpus=2) count = 0 for cell in Cells: print(cell) cell_size=0 cell_ids = [] s3.meta.client.download_file('bsmn-data',os.path.join(subject, cell+'_IDs.h5'),os.path.join(basepath,cell+'_IDs.h5')) f = h5py.File(os.path.join(basepath,cell+'_IDs.h5'), 'r') cell_ids = f['ID'] for cid in cell_ids: cid = cid.decode('utf-8') s3.meta.client.download_file('bsmn-data',os.path.join(subject, cell+'_'+cid+'.h5'),os.path.join(basepath,cell+'_'+cid+'.h5')) xyz = h5py.File(os.path.join(basepath,cell+'_'+cid+'.h5'), 'r') os.remove(os.path.join(basepath,cell+'_'+cid+'.h5')) if count == 0: X = xyz['X'] Y = xyz['Y'] Z = parallel_model.predict(X, batch_size = 128) count+=1 length = len(Y) U = [cid] * length else: X = xyz['X'] Y = np.append(Y,xyz['Y'], axis=0) z = feat_extractor.predict(X, batch_size = 128) Z = np.append(Z,z, axis=0) length = len(xyz['Y']) U = U + ([cid] * length) print(Z.shape) hf = h5py.File(subject+'_ef.h5', 'w') hf.create_dataset('Y', data=Y) hf.create_dataset('Z', data=Z) hf.close() session = Session(aws_access_key_id=config[0],aws_secret_access_key=config[1]) s3 = session.resource('s3') s3.meta.client.upload_file(os.path.join(subject+'_ef.h5'),'bsmn-data',os.path.join(subject, subject+'_ef.h5')) call(['sudo', 'shutdown', '-h', 'now'])
31.692308
138
0.662968
0accac5244ae00b90c3dcaa313e0ad6674cf5f7f
5,284
py
Python
kepler.py
mdbernard/astrodynamics
cf98df6cd17086e3675c1f7c2fce342d5322ee51
[ "MIT" ]
null
null
null
kepler.py
mdbernard/astrodynamics
cf98df6cd17086e3675c1f7c2fce342d5322ee51
[ "MIT" ]
14
2020-11-10T02:37:15.000Z
2022-02-07T01:11:29.000Z
kepler.py
mdbernard/astrodynamics
cf98df6cd17086e3675c1f7c2fce342d5322ee51
[ "MIT" ]
null
null
null
import numpy as np from stumpff import C, S from CelestialBody import BODIES from numerical import newton, laguerre from lagrange import calc_f, calc_fd, calc_g, calc_gd def kepler_chi(chi, alpha, r0, vr0, mu, dt): ''' Kepler's Equation of the universal anomaly, modified for use in numerical solvers. ''' z = alpha*chi**2 return (r0*vr0/np.sqrt(mu))*chi**2*C(z) + \ (1 - alpha*r0)*chi**3*S(z) + \ r0*chi - np.sqrt(mu)*dt def dkepler_dchi(chi, alpha, r0, vr0, mu, dt): ''' Derivative of Kepler's Equation of the universal anomaly, modified for use in numerical solvers. ''' z = alpha*chi**2 return (r0*vr0/np.sqrt(mu))*chi*(1 - alpha*chi**2*S(z)) + \ (1 - alpha*r0)*chi**2*C(z) + r0 def d2kepler_dchi2(chi, alpha, r0, vr0, mu, dt): ''' Second derivative of Kepler's Equation of the universal anomaly, modified for use in numerical solvers. ''' z = alpha*chi**2 S_ = S(z) return (r0*vr0/np.sqrt(mu))*(1 - 3*z*S_ + z*(C(z) - 3*S_)) + \ chi*(1 - z*S_)*(1 - alpha*r0) def solve_kepler_chi(r_0, v_0, dt, body=BODIES['Earth'], method='laguerre', tol=1e-7, max_iters=100): ''' Solve Kepler's Equation of the universal anomaly chi using the specified numerical method. Applies Algorithm 3.4 from Orbital Mechanics for Engineering Students, 4 ed, Curtis. :param r_0: `iterable` (km) initial position 3-vector :param v_0: `iterable` (km/s) initial velocity 3-vector :param dt: `float` (s) time after initial state to solve for r, v as 3-vectors :param body: `CelestialBody` (--) the celestial body to use for orbital parameters :param method: `str` (--) which numerical method to use to solve Kepler's Equation :param tol: `float` (--) decimal tolerance for numerical method (default 1e-7 is IEEE 745 single precision) :param max_iters: `int` (--) maximum number of iterations in numerical method before breaking :return: (km) final position 3-vector, (km/s) final velocity 3-vector ''' VALID_METHODS = ('laguerre', 'newton') mu = body.mu # (km**3/s**2) gravitational parameter of the specified primary body r0 = np.linalg.norm(r_0) # (km) initial position magnitude v0 = np.linalg.norm(v_0) # (km/s) initial velocity magnitude vr0 = np.dot(v_0, r_0)/r0 # (km/s) initial radial velocity magnitude alpha = 2/r0 - v0**2/mu # (1/km) inverse of semi-major axis chi0 = np.sqrt(mu)*np.abs(alpha)*dt if method not in VALID_METHODS: print(f'Method \'{method}\' is not valid, must be one of {VALID_METHODS}.\nDefaulting to laguerre method.') chi, _, _ = laguerre(chi0, kepler_chi, dkepler_dchi, d2kepler_dchi2, alpha, r0, vr0, mu, dt) elif method == 'newton': chi, _, _ = newton(chi0, kepler_chi, dkepler_dchi, alpha, r0, vr0, mu, dt) else: # method == 'laguerre' chi, _, _ = laguerre(chi0, kepler_chi, dkepler_dchi, d2kepler_dchi2, alpha, r0, vr0, mu, dt) f = calc_f(chi, r0, alpha) g = calc_g(dt, mu, chi, alpha) r_1 = f*r_0 + g*v_0 r1 = np.linalg.norm(r_1) fd = calc_fd(mu, r1, r0, alpha, chi) gd = calc_gd(chi, r1, alpha) v_1 = fd*r_0 + gd*v_0 return r_1, v_1 def solve_kepler_E(e, Me, tol=1e-7, max_iters=100): ''' Solve Kepler's Equation in the form containing Eccentric Anomaly (E), eccentricity (e), and Mean Anomaly of Ellipse (Me). Uses Algorithm 3.1 from Orbital Mechanics for Engineering Students, 4 ed, Curtis. ''' # TODO: have this function make use of one of the numerical methods in numerical.py E = Me + e/2 if Me < np.pi else Me - e/2 ratio = f(E, e, Me)/fp(E, e) iters = 0 while abs(ratio) > tol and iters < max_iters: E -= ratio ratio = f(E, e, Me)/fp(E, e) iters += 1 E -= ratio converged = np.abs(ratio) <= tol return E, iters, converged def test(): ''' Test the functionality of solve_kepler_chi and solve_kepler_laguerre using Problem 3.20 from Orbital Mechanics for Engineering Students, 4 ed, Curtis. ''' # given starting information Earth = BODIES['Earth'] # `CelestialBody` (--) Earth and all the Earth things r_0 = np.array([20000, -105000, -19000]) # (km) initial position vector v_0 = np.array([0.9, -3.4, -1.5]) # (km/s) initial velocity vector dt = 2*60*60 # (s) time of interest after initial time # given correct answer from textbook correct_r_1 = np.array([26338, -128750, -29656]) # (km) final position vector correct_v_1 = np.array([0.86280, -3.2116, -1.4613]) # (km/s) final velocity vector # solve using above methods r_n, v_n = solve_kepler_chi(r_0, v_0, dt, Earth, method='newton') r_l, v_l = solve_kepler_chi(r_0, v_0, dt, Earth, method='laguerre') # check correctness # tolerance based on significant figures of given answers newton_valid = np.allclose(r_n, correct_r_1, atol=1) and np.allclose(v_n, correct_v_1, atol=1e-4) laguerre_valid = np.allclose(r_l, correct_r_1, atol=1) and np.allclose(v_l, correct_v_1, atol=1e-4) return all([newton_valid, laguerre_valid]) if __name__ == '__main__': print(test())
39.140741
115
0.645912
0acd26a6aeb9fbb21484a68cd667f26b74d856f7
952
py
Python
nicos_demo/vpgaa/setups/pgai.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
12
2019-11-06T15:40:36.000Z
2022-01-01T16:23:00.000Z
nicos_demo/vpgaa/setups/pgai.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
91
2020-08-18T09:20:26.000Z
2022-02-01T11:07:14.000Z
nicos_demo/vpgaa/setups/pgai.py
jkrueger1/nicos
5f4ce66c312dedd78995f9d91e8a6e3c891b262b
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
6
2020-01-11T10:52:30.000Z
2022-02-25T12:35:23.000Z
description = 'PGAA setup with XYZOmega sample table' group = 'basic' sysconfig = dict( datasinks = ['mcasink', 'chnsink', 'csvsink', 'livesink'] ) includes = [ 'system', 'reactor', 'nl4b', 'pressure', 'sampletable', 'pilz', 'detector', 'collimation', ] devices = dict( mcasink = device('nicos_mlz.pgaa.devices.MCASink', settypes = {'point'}, detectors = ['_60p', 'LEGe'], ), chnsink = device('nicos_mlz.pgaa.devices.CHNSink', settypes = {'point'}, detectors = ['_60p', 'LEGe'], ), csvsink = device('nicos_mlz.pgaa.devices.CSVDataSink', settypes = {'point'}, ), ) startupcode = """ SetDetectors('_60p', 'LEGe') SetEnvironment(chamber_pressure) printinfo("============================================================") printinfo("Welcome to the NICOS PGAI demo setup.") printinfo("============================================================") """
23.219512
73
0.522059
0acd83639363e1e8109b480a9d0f9a0898831b8f
54,720
py
Python
tests/python/relay/test_op_level2.py
ravikumarvc/incubator-tvm
9826947ffce0ed40e9d47a0db2abb033e394279e
[ "Apache-2.0" ]
3
2021-02-23T22:06:01.000Z
2021-09-30T09:59:17.000Z
tests/python/relay/test_op_level2.py
ravikumarvc/incubator-tvm
9826947ffce0ed40e9d47a0db2abb033e394279e
[ "Apache-2.0" ]
4
2021-03-30T11:59:59.000Z
2022-03-12T00:40:23.000Z
tests/python/relay/test_op_level2.py
ravikumarvc/incubator-tvm
9826947ffce0ed40e9d47a0db2abb033e394279e
[ "Apache-2.0" ]
3
2021-07-20T07:40:15.000Z
2021-08-03T08:39:17.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Support level2 operator test cases. """ import numpy as np import tvm from tvm import autotvm from tvm import relay from tvm.relay import transform from tvm.relay.testing import ctx_list, run_infer_type from tvm.contrib import util import topi.testing if __name__ == "__main__": test_pool1d() test_pool2d() test_pool3d() test_avg_pool2d_no_count_pad() test_lrn() test_l2_normalize() test_conv1d_infer_type() test_conv2d_infer_type() test_conv3d_infer_type() test_bitpack_infer_type() test_upsampling_infer_type() test_upsampling3d_infer_type() test_flatten_infer_type() test_pad_infer_type() test_pad_run() test_conv2d_transpose_infer_type() test_conv2d_transpose_nchw_run() test_conv2d_transpose_nhwc_run() test_conv1d_transpose_ncw_run() test_conv1d_run() test_conv2d_run() test_conv2d_winograd() test_conv3d_run() test_conv3d_ndhwc_run() test_bitserial_conv2d_infer_type() test_batch_flatten() test_upsampling() test_upsampling3d() test_conv2d_int8_intrinsics() test_depthwise_conv2d_int8()
43.052714
101
0.564126
0ace54f568ea92472966bb73d6fa4f6d624bebbf
6,859
py
Python
official/nlp/transformer/utils/tokenizer_test.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
1
2021-05-22T12:50:50.000Z
2021-05-22T12:50:50.000Z
official/nlp/transformer/utils/tokenizer_test.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
official/nlp/transformer/utils/tokenizer_test.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Subtokenizer and string helper methods.""" import collections import tempfile import tensorflow as tf from official.nlp.transformer.utils import tokenizer if __name__ == "__main__": tf.test.main()
33.458537
81
0.626185
0ace832c1c225820e768849e83537e4e6af2dc78
76
py
Python
api/api/form7_searching_utils/__init__.py
bcgov/court-of-appeal
ef773b1baa80d3aff1ac807ed01f59266d885955
[ "Apache-2.0" ]
null
null
null
api/api/form7_searching_utils/__init__.py
bcgov/court-of-appeal
ef773b1baa80d3aff1ac807ed01f59266d885955
[ "Apache-2.0" ]
35
2021-02-02T19:30:11.000Z
2022-03-29T12:40:42.000Z
api/api/form7_searching_utils/__init__.py
marzmehr/court-of-appeal
ef773b1baa80d3aff1ac807ed01f59266d885955
[ "Apache-2.0" ]
2
2021-02-03T17:26:23.000Z
2021-02-05T13:35:26.000Z
from .form7_search import Form7Search from .parse_form7 import Form7Parsing
25.333333
37
0.868421
0acf1290742f590cb6015abc57d74458d907cabb
1,164
py
Python
soil/build/lib/soil/openstack/snapshot.py
JackDan9/soil
ae612a4634634aace834491fbdefbc69e6167674
[ "MIT" ]
1
2020-08-06T11:58:35.000Z
2020-08-06T11:58:35.000Z
soil/build/lib/soil/openstack/snapshot.py
JackDan9/soil
ae612a4634634aace834491fbdefbc69e6167674
[ "MIT" ]
4
2019-12-13T11:27:28.000Z
2022-02-27T11:58:38.000Z
soil/build/lib/soil/openstack/snapshot.py
JackDan9/soil
ae612a4634634aace834491fbdefbc69e6167674
[ "MIT" ]
null
null
null
# Copyright 2020 Soil, Inc. from soil.openstack.base import DataBase from soil.openstack.base import SourceBase
25.304348
63
0.636598
0acf3366802d8714bb15485c54ab7f3de9aac778
2,776
py
Python
Z - Tool Box/LaZagne/Windows/lazagne/softwares/windows/ppypykatz.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
1,290
2020-05-28T21:24:43.000Z
2022-03-31T16:38:43.000Z
Z - Tool Box/LaZagne/Windows/lazagne/softwares/windows/ppypykatz.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
1
2020-07-03T21:14:52.000Z
2020-07-03T21:14:52.000Z
Z - Tool Box/LaZagne/Windows/lazagne/softwares/windows/ppypykatz.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
280
2020-05-29T17:28:38.000Z
2022-03-31T13:54:15.000Z
# -*- coding: utf-8 -*- # Thanks to @skelsec for his awesome tool Pypykatz # Checks his project here: https://github.com/skelsec/pypykatz import codecs import traceback from lazagne.config.module_info import ModuleInfo from lazagne.config.constant import constant from pypykatz.pypykatz import pypykatz
36.526316
106
0.501801
0acf54e8a20fd816eda3589c3b616626bb4f33fb
14,981
py
Python
test/test_discogs.py
mglukhovsky/beets
889e30c056a609cf71c8c8200259520230545222
[ "MIT" ]
null
null
null
test/test_discogs.py
mglukhovsky/beets
889e30c056a609cf71c8c8200259520230545222
[ "MIT" ]
null
null
null
test/test_discogs.py
mglukhovsky/beets
889e30c056a609cf71c8c8200259520230545222
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # This file is part of beets. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Tests for discogs plugin. """ from __future__ import division, absolute_import, print_function import unittest from test import _common from test._common import Bag from test.helper import capture_log from beetsplug.discogs import DiscogsPlugin if __name__ == '__main__': unittest.main(defaultTest='suite')
41.269972
79
0.59235
0acf5c8efa495629dab15411d7c1138e6f73ca8f
1,417
py
Python
data_structures/queue/queue_on_pseudo_stack.py
hank-chou/python
a9f729fa263bce599d2774f3f6afb5a18bcc9862
[ "MIT" ]
13
2021-03-11T00:25:22.000Z
2022-03-19T00:19:23.000Z
data_structures/queue/queue_on_pseudo_stack.py
hank-chou/python
a9f729fa263bce599d2774f3f6afb5a18bcc9862
[ "MIT" ]
162
2021-03-09T01:52:11.000Z
2022-03-12T01:09:07.000Z
data_structures/queue/queue_on_pseudo_stack.py
hank-chou/python
a9f729fa263bce599d2774f3f6afb5a18bcc9862
[ "MIT" ]
18
2020-02-09T13:00:11.000Z
2021-03-11T08:47:36.000Z
"""Queue represented by a pseudo stack (represented by a list with pop and append)"""
24.431034
85
0.562456
0ad02fbe661ef723ec6b1d7108a2d41a85831a5b
17,018
py
Python
darknet2ncnn.py
nihui/gen-ncnn-models
18523f1920d9afc44ce3058087c07e09f28aa151
[ "BSD-2-Clause" ]
4
2019-12-24T15:16:18.000Z
2021-05-14T08:12:17.000Z
darknet2ncnn.py
nihui/gen-ncnn-models
18523f1920d9afc44ce3058087c07e09f28aa151
[ "BSD-2-Clause" ]
null
null
null
darknet2ncnn.py
nihui/gen-ncnn-models
18523f1920d9afc44ce3058087c07e09f28aa151
[ "BSD-2-Clause" ]
null
null
null
#! /usr/bin/env python # coding: utf-8 import configparser import numpy as np import re,sys,os from graph import MyGraph from collections import OrderedDict def unique_config_sections(config_file): """Convert all config sections to have unique names. Adds unique suffixes to config sections for compability with configparser. """ from collections import defaultdict import io section_counters = defaultdict(int) output_stream = io.StringIO() with open(config_file) as fin: for line in fin: if line.startswith('['): section = line.strip().strip('[]') _section = section + '_' + str(section_counters[section]) section_counters[section] += 1 line = line.replace(section, _section) output_stream.write(line) output_stream.seek(0) return output_stream if __name__ == '__main__': config_path = sys.argv[1] weights_path = sys.argv[2] mygraph = buildGraph(config_path, weights_path) # outputNodes = ['region_0', 'softmax_0'] stopNodes = [] inputNodes = ['darknet_0'] mygraph.extractSubGraph(inputNodes, outputNodes, stopNodes) mygraph.generateDot('YoloV2.dot') # mygraph.generateSource('YoloV2', os.path.split(config_path)[1]+'.ncnn', os.path.split(weights_path)[1] + '.ncnn')
36.915401
117
0.534317
0ad05115e0ac22a4083ac999a331c7da804f1e24
1,058
py
Python
music/models.py
anirudha-bs/Django_music_app
1b80bd4299a35fb707c32307dd115074a8ecba9f
[ "Apache-2.0" ]
null
null
null
music/models.py
anirudha-bs/Django_music_app
1b80bd4299a35fb707c32307dd115074a8ecba9f
[ "Apache-2.0" ]
null
null
null
music/models.py
anirudha-bs/Django_music_app
1b80bd4299a35fb707c32307dd115074a8ecba9f
[ "Apache-2.0" ]
null
null
null
from django.contrib.auth.models import Permission, User from django.db import models
37.785714
74
0.73535
0ad16ca68b13c3255bfd62c00d84e6b8aa940002
3,021
py
Python
finex_history.py
yihming/gdax-data
7e562f314e9ef12eb6be2df3b97190af632c4530
[ "MIT" ]
null
null
null
finex_history.py
yihming/gdax-data
7e562f314e9ef12eb6be2df3b97190af632c4530
[ "MIT" ]
null
null
null
finex_history.py
yihming/gdax-data
7e562f314e9ef12eb6be2df3b97190af632c4530
[ "MIT" ]
null
null
null
import datetime import calendar import requests import pandas as pd import json import os.path import time import MySQLdb as M from gdax_history import timestamp_to_utcstr if __name__ == "__main__": main()
30.21
207
0.581595
0ad19b186920402498e9734534abe48d50e505b7
2,154
py
Python
src/producers/connector.py
cvelas31/public_transportation_streaming
903a1a147645e1b0783555db4bfc02098f7941ae
[ "MIT" ]
null
null
null
src/producers/connector.py
cvelas31/public_transportation_streaming
903a1a147645e1b0783555db4bfc02098f7941ae
[ "MIT" ]
null
null
null
src/producers/connector.py
cvelas31/public_transportation_streaming
903a1a147645e1b0783555db4bfc02098f7941ae
[ "MIT" ]
null
null
null
"""Configures a Kafka Connector for Postgres Station data""" import json import logging import requests from settings import Settings logger = logging.getLogger(__name__) KAFKA_CONNECT_URL = f"{Settings.URLs.KAFKA_CONNECT_URL}/connectors" CONNECTOR_NAME = "stations" def configure_connector(): """Starts and configures the Kafka Connect connector""" logging.debug("Creating or updating kafka connect connector...") resp = requests.get(f"{KAFKA_CONNECT_URL}/{CONNECTOR_NAME}") if resp.status_code == 200: logging.debug("Connector already created skipping recreation") return config = { "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector", "key.converter": "org.apache.kafka.connect.json.JsonConverter", "key.converter.schemas.enable": "false", "value.converter": "org.apache.kafka.connect.json.JsonConverter", "value.converter.schemas.enable": "false", "topic.prefix": "com.connect.transportation.", "connection.url": "jdbc:postgresql://postgres:5432/cta", "connection.user": "cta_admin", "connection.password": "chicago", "batch.max.rows": "500", "table.whitelist": "stations", "poll.interval.ms": "5000", # Poll every 5 seconds "mode": "incrementing", "incrementing.column.name": "stop_id", } # TODO: Complete the Kafka Connect Config below. # Directions: Use the JDBC Source Connector to connect to Postgres. Load the `stations` table # using incrementing mode, with `stop_id` as the incrementing column name. # Make sure to think about what an appropriate topic prefix would be, and how frequently Kafka # Connect should run this connector (hint: not very often!) data = json.dumps({"name": CONNECTOR_NAME, "config": config}) resp = requests.post( KAFKA_CONNECT_URL, headers={"Content-Type": "application/json"}, data=data, ) # Ensure a healthy response was given resp.raise_for_status() logging.info("-------Connector created successfully-------") if __name__ == "__main__": configure_connector()
35.311475
98
0.679201
0ad20a796d3e2e784e9676daf81a22cf86a1d3cb
8,474
py
Python
liuetal2019/utils.py
wasiahmad/GATE
1e48504a3641f00265a271a19eb6b6449fdc33bd
[ "MIT" ]
24
2020-12-07T10:22:40.000Z
2022-03-31T09:24:13.000Z
liuetal2019/utils.py
wasiahmad/GATE
1e48504a3641f00265a271a19eb6b6449fdc33bd
[ "MIT" ]
15
2021-03-22T04:52:57.000Z
2022-01-01T18:32:31.000Z
liuetal2019/utils.py
wasiahmad/GATE
1e48504a3641f00265a271a19eb6b6449fdc33bd
[ "MIT" ]
8
2021-03-04T05:09:42.000Z
2022-01-25T12:59:19.000Z
import io import logging import json import numpy import torch import numpy as np from tqdm import tqdm from clie.inputters import constant from clie.objects import Sentence from torch.utils.data import Dataset from torch.utils.data.sampler import Sampler logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------ # Data loading # ------------------------------------------------------------------------------ def vectorize(ex, model, iseval): """Torchify a single example.""" words = ['!{}_{}'.format(ex.language, w) for w in ex.words] words = [model.word_dict[w] for w in words] knn_word = None if ex.knn_words: knn_word = [[model.word_dict[w] for w in knn] for knn in ex.knn_words] knn_word = torch.LongTensor(knn_word) word = torch.LongTensor(words) pos = torch.LongTensor([model.pos_dict[p] for p in ex.pos]) ner = torch.LongTensor([model.ner_dict[n] for n in ex.ner]) deprel = torch.LongTensor([model.deprel_dict[d] for d in ex.deprel]) assert any([x == 0 for x in ex.head]) head = torch.LongTensor(ex.head) subj_position = torch.LongTensor(ex.subj_position) obj_position = torch.LongTensor(ex.obj_position) type = [0] * len(ex.words) ttype = model.type_dict[ex.subj_type] start, end = ex.subject type[start: end + 1] = [ttype] * (end - start + 1) atype = model.type_dict[ex.obj_type] start, end = ex.object type[start: end + 1] = [atype] * (end - start + 1) type = torch.LongTensor(type) return { 'id': ex.id, 'language': ex.language, 'word': word, 'pos': pos, 'ner': ner, 'deprel': deprel, 'type': type, 'head': head, 'subject': ex.subj_text, 'object': ex.obj_text, 'subject_pos': subj_position, 'object_pos': obj_position, 'relation': model.label_dict[ex.relation], 'knn_word': knn_word } def batchify(batch): """Gather a batch of individual examples into one batch.""" # batch is a list of vectorized examples batch_size = len(batch) ids = [ex['id'] for ex in batch] language = [ex['language'] for ex in batch] use_knn = batch[0]['knn_word'] is not None # NOTE. batch[0]['knn_word'] is a 2d list knn_size = len(batch[0]['knn_word'][0]) if use_knn else 0 # --------- Prepare Code tensors --------- max_len = max([ex['word'].size(0) for ex in batch]) # Batch Code Representations len_rep = torch.LongTensor(batch_size).fill_(constant.PAD) word_rep = torch.LongTensor(batch_size, max_len).fill_(constant.PAD) head_rep = torch.LongTensor(batch_size, max_len).fill_(constant.PAD) subject_pos_rep = torch.LongTensor(batch_size, max_len).fill_(constant.PAD) object_pos_rep = torch.LongTensor(batch_size, max_len).fill_(constant.PAD) pos_rep = torch.LongTensor(batch_size, max_len).fill_(constant.PAD) ner_rep = torch.LongTensor(batch_size, max_len).fill_(constant.PAD) deprel_rep = torch.LongTensor(batch_size, max_len).fill_(constant.PAD) type_rep = torch.LongTensor(batch_size, max_len).fill_(constant.PAD) labels = torch.LongTensor(batch_size) subject = [] object = [] knn_rep = None if use_knn: knn_rep = torch.LongTensor(batch_size, max_len, knn_size).fill_(constant.PAD) for i, ex in enumerate(batch): len_rep[i] = ex['word'].size(0) labels[i] = ex['relation'] word_rep[i, :len_rep[i]] = ex['word'] head_rep[i, :len_rep[i]] = ex['head'] subject_pos_rep[i, :len_rep[i]] = ex['subject_pos'] object_pos_rep[i, :len_rep[i]] = ex['object_pos'] pos_rep[i, :len_rep[i]] = ex['pos'] ner_rep[i, :len_rep[i]] = ex['ner'] deprel_rep[i, :len_rep[i]] = ex['deprel'] type_rep[i, :len_rep[i]] = ex['type'] subject.append(ex['subject']) object.append(ex['object']) if use_knn: knn_rep[i, :len_rep[i]] = ex['knn_word'] return { 'ids': ids, 'language': language, 'batch_size': batch_size, 'len_rep': len_rep, 'word_rep': word_rep, 'knn_rep': knn_rep, 'head_rep': head_rep, 'subject': subject, 'object': object, 'subject_pos_rep': subject_pos_rep, 'object_pos_rep': object_pos_rep, 'labels': labels, 'pos_rep': pos_rep, 'ner_rep': ner_rep, 'deprel_rep': deprel_rep, 'type_rep': type_rep }
34.587755
85
0.576941
0ad2503d07ac5b15fee30f7480f83b4ea51f1515
914
py
Python
build.py
dnanexus/IndexTools
0392b3be92ff50b401290b59e9ca6c7767fa5a96
[ "MIT" ]
15
2019-07-17T11:41:36.000Z
2021-03-02T09:36:34.000Z
build.py
dnanexus/IndexTools
0392b3be92ff50b401290b59e9ca6c7767fa5a96
[ "MIT" ]
22
2019-05-15T20:08:12.000Z
2019-10-11T13:33:42.000Z
build.py
dnanexus/IndexTools
0392b3be92ff50b401290b59e9ca6c7767fa5a96
[ "MIT" ]
3
2019-06-01T15:58:06.000Z
2022-01-21T21:10:01.000Z
from distutils.extension import Extension cmdclass = {} try: # with Cython from Cython.Build import build_ext cmdclass["build_ext"] = build_ext module_src = "cgranges/python/cgranges.pyx" except ImportError: # without Cython module_src = "cgranges/python/cgranges.c" def build(setup_kwargs): """ This function is mandatory in order to build the extensions. """ setup_kwargs.update( { "ext_modules": [ Extension( "cgranges", sources=[module_src, "cgranges/cgranges.c"], depends=[ "cgranges/cgranges.h", "cgranges/khash.h", "cgranges/python/cgranges.pyx" ], include_dirs=["cgranges"] ) ], "cmdclass": cmdclass } )
25.388889
64
0.504376
0ad2792c4efbba79b47edb4a13bc47fda219fd40
48
py
Python
icarus/models/service/__init__.py
oascigil/icarus_edge_comp
b7bb9f9b8d0f27b4b01469dcba9cfc0c4949d64b
[ "MIT" ]
5
2021-03-20T09:22:55.000Z
2021-12-20T17:01:33.000Z
icarus/models/service/__init__.py
oascigil/icarus_edge_comp
b7bb9f9b8d0f27b4b01469dcba9cfc0c4949d64b
[ "MIT" ]
1
2021-12-13T07:40:46.000Z
2021-12-20T16:59:08.000Z
icarus/models/service/__init__.py
oascigil/icarus_edge_comp
b7bb9f9b8d0f27b4b01469dcba9cfc0c4949d64b
[ "MIT" ]
1
2021-11-25T05:42:20.000Z
2021-11-25T05:42:20.000Z
# -*- coding: utf-8 -*- from .compSpot import *
16
23
0.583333
0ad2916f049d06f5df6ddbf5e08b57510f7c1b78
17,212
py
Python
gluoncv/data/kinetics400/classification.py
YvetteGuo/gluon-cv
123af8cf9f15a879c16a5c7d12f01ce1471d85b6
[ "Apache-2.0" ]
1
2019-04-02T02:08:04.000Z
2019-04-02T02:08:04.000Z
gluoncv/data/kinetics400/classification.py
YvetteGuo/gluon-cv
123af8cf9f15a879c16a5c7d12f01ce1471d85b6
[ "Apache-2.0" ]
1
2019-06-06T08:39:12.000Z
2019-06-06T08:39:12.000Z
gluoncv/data/kinetics400/classification.py
YvetteGuo/gluon-cv
123af8cf9f15a879c16a5c7d12f01ce1471d85b6
[ "Apache-2.0" ]
1
2019-08-26T09:26:42.000Z
2019-08-26T09:26:42.000Z
# pylint: disable=line-too-long,too-many-lines,missing-docstring """Kinetics400 action classification dataset.""" import os import random import numpy as np from mxnet import nd from mxnet.gluon.data import dataset __all__ = ['Kinetics400']
65.444867
152
0.625552
0ad33111935325f80d27dfada02fe97074254f24
2,206
py
Python
qf_lib/containers/futures/future_contract.py
webclinic017/qf-lib
96463876719bba8a76c8269cef76addf3a2d836d
[ "Apache-2.0" ]
198
2019-08-16T15:09:23.000Z
2022-03-30T12:44:00.000Z
qf_lib/containers/futures/future_contract.py
webclinic017/qf-lib
96463876719bba8a76c8269cef76addf3a2d836d
[ "Apache-2.0" ]
13
2021-01-07T10:15:19.000Z
2022-03-29T13:01:47.000Z
qf_lib/containers/futures/future_contract.py
webclinic017/qf-lib
96463876719bba8a76c8269cef76addf3a2d836d
[ "Apache-2.0" ]
29
2019-08-16T15:21:28.000Z
2022-02-23T09:53:49.000Z
# Copyright 2016-present CERN European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime from qf_lib.common.tickers.tickers import Ticker from qf_lib.containers.dataframe.prices_dataframe import PricesDataFrame
38.701754
118
0.704442
0ad331ec8ece0975704ec9214918b2580008a6a0
23,842
py
Python
watcher/api/controllers/v1/action_plan.py
ajaytikoo/watcher
6dbac1f6ae7f3e10dfdcef5721fa4af7af54e159
[ "Apache-2.0" ]
64
2015-10-18T02:57:24.000Z
2022-01-13T11:27:51.000Z
watcher/api/controllers/v1/action_plan.py
ajaytikoo/watcher
6dbac1f6ae7f3e10dfdcef5721fa4af7af54e159
[ "Apache-2.0" ]
null
null
null
watcher/api/controllers/v1/action_plan.py
ajaytikoo/watcher
6dbac1f6ae7f3e10dfdcef5721fa4af7af54e159
[ "Apache-2.0" ]
35
2015-12-25T13:53:21.000Z
2021-07-19T15:50:16.000Z
# -*- encoding: utf-8 -*- # Copyright 2013 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ An :ref:`Action Plan <action_plan_definition>` specifies a flow of :ref:`Actions <action_definition>` that should be executed in order to satisfy a given :ref:`Goal <goal_definition>`. It also contains an estimated :ref:`global efficacy <efficacy_definition>` alongside a set of :ref:`efficacy indicators <efficacy_indicator_definition>`. An :ref:`Action Plan <action_plan_definition>` is generated by Watcher when an :ref:`Audit <audit_definition>` is successful which implies that the :ref:`Strategy <strategy_definition>` which was used has found a :ref:`Solution <solution_definition>` to achieve the :ref:`Goal <goal_definition>` of this :ref:`Audit <audit_definition>`. In the default implementation of Watcher, an action plan is composed of a list of successive :ref:`Actions <action_definition>` (i.e., a Workflow of :ref:`Actions <action_definition>` belonging to a unique branch). However, Watcher provides abstract interfaces for many of its components, allowing other implementations to generate and handle more complex :ref:`Action Plan(s) <action_plan_definition>` composed of two types of Action Item(s): - simple :ref:`Actions <action_definition>`: atomic tasks, which means it can not be split into smaller tasks or commands from an OpenStack point of view. - composite Actions: which are composed of several simple :ref:`Actions <action_definition>` ordered in sequential and/or parallel flows. An :ref:`Action Plan <action_plan_definition>` may be described using standard workflow model description formats such as `Business Process Model and Notation 2.0 (BPMN 2.0) <http://www.omg.org/spec/BPMN/2.0/>`_ or `Unified Modeling Language (UML) <http://www.uml.org/>`_. To see the life-cycle and description of :ref:`Action Plan <action_plan_definition>` states, visit :ref:`the Action Plan state machine <action_plan_state_machine>`. """ import datetime from http import HTTPStatus from oslo_log import log import pecan from pecan import rest import wsme from wsme import types as wtypes import wsmeext.pecan as wsme_pecan from watcher._i18n import _ from watcher.api.controllers import base from watcher.api.controllers import link from watcher.api.controllers.v1 import collection from watcher.api.controllers.v1 import efficacy_indicator as efficacyindicator from watcher.api.controllers.v1 import types from watcher.api.controllers.v1 import utils as api_utils from watcher.applier import rpcapi from watcher.common import exception from watcher.common import policy from watcher.common import utils from watcher import objects from watcher.objects import action_plan as ap_objects LOG = log.getLogger(__name__) def hide_fields_in_newer_versions(obj): """This method hides fields that were added in newer API versions. Certain node fields were introduced at certain API versions. These fields are only made available when the request's API version matches or exceeds the versions when these fields were introduced. """ pass
39.149425
79
0.637279
0ad4a301cbaa49708e90318cda5d0db992bcc1f1
354
py
Python
controllers/albums.py
jeonginlee/groove_scheduler
84e61834e940e2ff138ffeeea61fd301f3c2a244
[ "MIT" ]
null
null
null
controllers/albums.py
jeonginlee/groove_scheduler
84e61834e940e2ff138ffeeea61fd301f3c2a244
[ "MIT" ]
null
null
null
controllers/albums.py
jeonginlee/groove_scheduler
84e61834e940e2ff138ffeeea61fd301f3c2a244
[ "MIT" ]
null
null
null
from flask import * albums = Blueprint('albums', __name__, template_folder='templates')
19.666667
67
0.700565
0ad4ca562029351bba499bd795e4d3faca8ffc96
3,113
py
Python
Incident-Response/Tools/dfirtrack/dfirtrack_main/views/division_views.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
1
2021-07-24T17:22:50.000Z
2021-07-24T17:22:50.000Z
Incident-Response/Tools/dfirtrack/dfirtrack_main/views/division_views.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-28T03:40:31.000Z
2022-02-28T03:40:52.000Z
Incident-Response/Tools/dfirtrack/dfirtrack_main/views/division_views.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-25T08:34:51.000Z
2022-03-16T17:29:44.000Z
from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.shortcuts import redirect, render from django.urls import reverse from django.views.generic import DetailView, ListView from django.views.generic.edit import CreateView, UpdateView from dfirtrack_main.forms import DivisionForm from dfirtrack_main.logger.default_logger import debug_logger from dfirtrack_main.models import Division
40.428571
85
0.697719
0ad57f93e09c3cfa475ee8a3a4f941a9c684524d
1,613
py
Python
run.py
shark803/Torch_serve_example_NLP
7f7984a1668f21aced3a7a1e8ddac3c8e0ff0105
[ "MIT" ]
1
2021-11-19T07:59:58.000Z
2021-11-19T07:59:58.000Z
run.py
shark803/Torch_serve_example_NLP
7f7984a1668f21aced3a7a1e8ddac3c8e0ff0105
[ "MIT" ]
null
null
null
run.py
shark803/Torch_serve_example_NLP
7f7984a1668f21aced3a7a1e8ddac3c8e0ff0105
[ "MIT" ]
null
null
null
# coding: UTF-8 import time import torch import numpy as np from train_eval import train, init_network from importlib import import_module import argparse parser = argparse.ArgumentParser(description='Chinese Text Classification') parser.add_argument('--model', type=str, required=True, help='choose a model: TextCNN') parser.add_argument('--embedding', default='pre_trained', type=str, help='random or pre_trained') parser.add_argument('--word', default=False, type=bool, help='True for word, False for char') args = parser.parse_args() if __name__ == '__main__': dataset = 'THUCNews' # # :embedding_SougouNews.npz, :embedding_Tencent.npz, :random # embedding = 'random' model_name = args.model # TextCNN from utils import build_dataset, build_iterator, get_time_dif x = import_module('models.' + model_name) from config import Config config = Config(dataset) np.random.seed(1) torch.manual_seed(1) torch.cuda.manual_seed_all(1) torch.backends.cudnn.deterministic = True # start_time = time.time() print("Loading data...") vocab, train_data, dev_data, test_data = build_dataset(config, args.word) train_iter = build_iterator(train_data, config) dev_iter = build_iterator(dev_data, config) test_iter = build_iterator(test_data, config) time_dif = get_time_dif(start_time) print("Time usage:", time_dif) # train config.n_vocab = len(vocab) model = x.Model().to(config.device) init_network(model) print(model.parameters) train(config, model, train_iter, dev_iter, test_iter)
32.918367
97
0.726596
0ad5ae1fbe9b6f2bb0a59a7bd762d3ef2ea1b7ed
22,315
py
Python
src/tests/cfp/views/test_cfp_user.py
xhub/pretalx
33bd07ec98ddeb5b7ff35fe7e30c4d38bef57d7e
[ "Apache-2.0" ]
null
null
null
src/tests/cfp/views/test_cfp_user.py
xhub/pretalx
33bd07ec98ddeb5b7ff35fe7e30c4d38bef57d7e
[ "Apache-2.0" ]
null
null
null
src/tests/cfp/views/test_cfp_user.py
xhub/pretalx
33bd07ec98ddeb5b7ff35fe7e30c4d38bef57d7e
[ "Apache-2.0" ]
null
null
null
import pytest from django.conf import settings from django.core import mail as djmail from django.core.files.uploadedfile import SimpleUploadedFile from django.urls import reverse from django_scopes import scope from rest_framework.authtoken.models import Token from pretalx.submission.models import SubmissionStates
36.945364
92
0.6946
0ad630d29820371f228b1287947197de5ede3fb0
5,954
py
Python
tests/mb_util.py
vasilydenisenko/modbus_rtu_slave
8a531b776ab82c60b5d335f0565468f19a7801f5
[ "MIT" ]
null
null
null
tests/mb_util.py
vasilydenisenko/modbus_rtu_slave
8a531b776ab82c60b5d335f0565468f19a7801f5
[ "MIT" ]
null
null
null
tests/mb_util.py
vasilydenisenko/modbus_rtu_slave
8a531b776ab82c60b5d335f0565468f19a7801f5
[ "MIT" ]
null
null
null
# MIT License # Copyright (c) 2021 Vasily Denisenko, Sergey Kuznetsov # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import mb_bsp PDU_SIZE_REG = 0 CONFIG_REG = 1 SLAVE_ADDR_REG = 2 CS_REG = 3 MB_MAX_WRITE_REGNUM = 123 MB_MAX_READ_REGNUM = 125 MB_MAX_REG_ADDR = 65535 MB_MAX_REG_VAL = 65535 MB_MAX_SLAVE_ADDR = 247 MB_MIN_SLAVE_ADDR = 1 MB_MAX_PDU_SIZE = 253 MB_MIN_PDU_SIZE = 1 FCODE_0x3 = 0x3 FCODE_0x6 = 0x6 FCODE_0x10 = 0x10 setattr(incr_err_count, 'count', 0)
25.553648
81
0.673161
0ad6db55250893c680ef209759e33e069cabdd9a
4,292
py
Python
modules/stackoverflow/models.py
tjsavage/polymer-dashboard
19bc467f1206613f8eec646b6f2bc43cc319ef75
[ "CNRI-Python", "Linux-OpenIB" ]
1
2017-04-26T18:51:43.000Z
2017-04-26T18:51:43.000Z
modules/stackoverflow/models.py
tjsavage/polymer-dashboard
19bc467f1206613f8eec646b6f2bc43cc319ef75
[ "CNRI-Python", "Linux-OpenIB" ]
null
null
null
modules/stackoverflow/models.py
tjsavage/polymer-dashboard
19bc467f1206613f8eec646b6f2bc43cc319ef75
[ "CNRI-Python", "Linux-OpenIB" ]
null
null
null
import fix_path import json import datetime from google.appengine.ext import ndb # Taken from http://stackoverflow.com/questions/455580/json-datetime-between-python-and-javascript dthandler = lambda obj: ( obj.isoformat() if isinstance(obj, datetime.datetime) or isinstance(obj, datetime.date) else None )
40.490566
98
0.682199
0ad7c645c6d3067f3c0c435d4f3782feef6cf400
218
py
Python
src/main/java/com/bailei/study/beautyOfCoding/cpu50.py
sonymoon/algorithm
cc2a9e0125fc64bdbf6549034bad6482d2027ea2
[ "Apache-2.0" ]
null
null
null
src/main/java/com/bailei/study/beautyOfCoding/cpu50.py
sonymoon/algorithm
cc2a9e0125fc64bdbf6549034bad6482d2027ea2
[ "Apache-2.0" ]
null
null
null
src/main/java/com/bailei/study/beautyOfCoding/cpu50.py
sonymoon/algorithm
cc2a9e0125fc64bdbf6549034bad6482d2027ea2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 # -*- coding: UTF-8 -*- import time busyTime = 10 idleTime = busyTime while True: start = time.clock() while time.clock() - start < busyTime: pass time.sleep(busyTime / 1000)
14.533333
42
0.614679
0ad85408ba998c356a370a0f1582159d01f77a69
8,390
py
Python
carto/maps.py
danicarrion/carto-python
631b018f065960baa35473e2087ce598560b9e17
[ "BSD-3-Clause" ]
85
2016-08-07T16:46:58.000Z
2022-03-23T01:44:02.000Z
carto/maps.py
danicarrion/carto-python
631b018f065960baa35473e2087ce598560b9e17
[ "BSD-3-Clause" ]
109
2016-08-02T18:40:04.000Z
2021-08-23T08:08:02.000Z
carto/maps.py
danicarrion/carto-python
631b018f065960baa35473e2087ce598560b9e17
[ "BSD-3-Clause" ]
29
2016-11-29T03:42:47.000Z
2022-01-23T17:37:11.000Z
""" Module for working with named and anonymous maps .. module:: carto.maps :platform: Unix, Windows :synopsis: Module for working with named and anonymous maps .. moduleauthor:: Daniel Carrion <[email protected]> .. moduleauthor:: Alberto Romeu <[email protected]> """ try: from urllib.parse import urljoin except ImportError: from urlparse import urljoin from pyrestcli.resources import Manager, Resource from .exceptions import CartoException, CartoRateLimitException API_VERSION = "v1" NAMED_API_ENDPOINT = "api/{api_version}/map/named/" ANONYMOUS_API_ENDPOINT = "api/{api_version}/map/"
33.293651
86
0.555662
0ad87d7268affd7dfe13527d4d842a2d43c681ac
157
py
Python
client_driver.py
tlagore/kv_store
e3f139eabaa14d0e001193e21baf7e5c96e0358d
[ "MIT" ]
null
null
null
client_driver.py
tlagore/kv_store
e3f139eabaa14d0e001193e21baf7e5c96e0358d
[ "MIT" ]
null
null
null
client_driver.py
tlagore/kv_store
e3f139eabaa14d0e001193e21baf7e5c96e0358d
[ "MIT" ]
null
null
null
from kv_client.kv_client import KVClient if __name__ == "__main__": main()
19.625
44
0.656051
0ad8ce46348b78515a8db8b2c9bc54898f1ab6f9
1,208
py
Python
pytorch-frontend/benchmarks/operator_benchmark/pt/embeddingbag_test.py
AndreasKaratzas/stonne
2915fcc46cc94196303d81abbd1d79a56d6dd4a9
[ "MIT" ]
206
2020-11-28T22:56:38.000Z
2022-03-27T02:33:04.000Z
pytorch-frontend/benchmarks/operator_benchmark/pt/embeddingbag_test.py
AndreasKaratzas/stonne
2915fcc46cc94196303d81abbd1d79a56d6dd4a9
[ "MIT" ]
19
2020-12-09T23:13:14.000Z
2022-01-24T23:24:08.000Z
pytorch-frontend/benchmarks/operator_benchmark/pt/embeddingbag_test.py
AndreasKaratzas/stonne
2915fcc46cc94196303d81abbd1d79a56d6dd4a9
[ "MIT" ]
28
2020-11-29T15:25:12.000Z
2022-01-20T02:16:27.000Z
import operator_benchmark as op_bench import torch import numpy from . import configs """EmbeddingBag Operator Benchmark""" op_bench.generate_pt_test(configs.embeddingbag_short_configs, EmbeddingBagBenchmark) op_bench.generate_pt_gradient_test(configs.embeddingbag_short_configs, EmbeddingBagBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main()
38.967742
107
0.724338
0ad9fee81c50ef01672c1f7b553d66bc07bc9155
3,972
py
Python
python/dgl/geometry/capi.py
lfchener/dgl
77f4287a4118db64c46f4f413a426e1419a09d53
[ "Apache-2.0" ]
9,516
2018-12-08T22:11:31.000Z
2022-03-31T13:04:33.000Z
python/dgl/geometry/capi.py
lfchener/dgl
77f4287a4118db64c46f4f413a426e1419a09d53
[ "Apache-2.0" ]
2,494
2018-12-08T22:43:00.000Z
2022-03-31T21:16:27.000Z
python/dgl/geometry/capi.py
lfchener/dgl
77f4287a4118db64c46f4f413a426e1419a09d53
[ "Apache-2.0" ]
2,529
2018-12-08T22:56:14.000Z
2022-03-31T13:07:41.000Z
"""Python interfaces to DGL farthest point sampler.""" from dgl._ffi.base import DGLError import numpy as np from .._ffi.function import _init_api from .. import backend as F from .. import ndarray as nd def _farthest_point_sampler(data, batch_size, sample_points, dist, start_idx, result): r"""Farthest Point Sampler Parameters ---------- data : tensor A tensor of shape (N, d) where N is the number of points and d is the dimension. batch_size : int The number of batches in the ``data``. N should be divisible by batch_size. sample_points : int The number of points to sample in each batch. dist : tensor Pre-allocated tensor of shape (N, ) for to-sample distance. start_idx : tensor of int Pre-allocated tensor of shape (batch_size, ) for the starting sample in each batch. result : tensor of int Pre-allocated tensor of shape (sample_points * batch_size, ) for the sampled index. Returns ------- No return value. The input variable ``result`` will be overwriten with sampled indices. """ assert F.shape(data)[0] >= sample_points * batch_size assert F.shape(data)[0] % batch_size == 0 _CAPI_FarthestPointSampler(F.zerocopy_to_dgl_ndarray(data), batch_size, sample_points, F.zerocopy_to_dgl_ndarray(dist), F.zerocopy_to_dgl_ndarray(start_idx), F.zerocopy_to_dgl_ndarray(result)) def _neighbor_matching(graph_idx, num_nodes, edge_weights=None, relabel_idx=True): """ Description ----------- The neighbor matching procedure of edge coarsening used in `Metis <http://cacs.usc.edu/education/cs653/Karypis-METIS-SIAMJSC98.pdf>`__ and `Graclus <https://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf>`__ for homogeneous graph coarsening. This procedure keeps picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight) until no match can be done. If no edge weight is given, this procedure will randomly pick neighbor for each vertex. The GPU implementation is based on `A GPU Algorithm for Greedy Graph Matching <http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf>`__ NOTE: The input graph must be bi-directed (undirected) graph. Call :obj:`dgl.to_bidirected` if you are not sure your graph is bi-directed. Parameters ---------- graph : HeteroGraphIndex The input homogeneous graph. num_nodes : int The number of nodes in this homogeneous graph. edge_weight : tensor, optional The edge weight tensor holding non-negative scalar weight for each edge. default: :obj:`None` relabel_idx : bool, optional If true, relabel resulting node labels to have consecutive node ids. default: :obj:`True` Returns ------- a 1-D tensor A vector with each element that indicates the cluster ID of a vertex. """ edge_weight_capi = nd.NULL["int64"] if edge_weights is not None: edge_weight_capi = F.zerocopy_to_dgl_ndarray(edge_weights) node_label = F.full_1d( num_nodes, -1, getattr(F, graph_idx.dtype), F.to_backend_ctx(graph_idx.ctx)) node_label_capi = F.zerocopy_to_dgl_ndarray_for_write(node_label) _CAPI_NeighborMatching(graph_idx, edge_weight_capi, node_label_capi) if F.reduce_sum(node_label < 0).item() != 0: raise DGLError("Find unmatched node") # reorder node id # TODO: actually we can add `return_inverse` option for `unique` # function in backend for efficiency. if relabel_idx: node_label_np = F.zerocopy_to_numpy(node_label) _, node_label_np = np.unique(node_label_np, return_inverse=True) return F.tensor(node_label_np) else: return node_label _init_api('dgl.geometry', __name__)
38.563107
95
0.680514
0adab04d82e555974b5ee3aecff08feca7c75415
6,478
py
Python
scidb/core/data.py
oxdc/sci.db
0a751a0e05e7ad4c83c350e32e32ea9ce5831cbb
[ "MIT" ]
null
null
null
scidb/core/data.py
oxdc/sci.db
0a751a0e05e7ad4c83c350e32e32ea9ce5831cbb
[ "MIT" ]
null
null
null
scidb/core/data.py
oxdc/sci.db
0a751a0e05e7ad4c83c350e32e32ea9ce5831cbb
[ "MIT" ]
null
null
null
import shutil import hashlib from pathlib import Path from typing import TextIO, BinaryIO, IO, Union from datetime import datetime from os.path import getmtime from .low import ObservableDict def rename(self, new_name: str): shutil.move(str(self.path), str(self.__parent__.path / new_name)) self.__data_name__ = new_name def reader(self, binary: bool = False, **kwargs) -> [IO, BinaryIO, TextIO, None]: mode = 'r' mode += 'b' if binary else '' return open(str(self.path), mode=mode, **kwargs) def creator(self, binary: bool = False, confirm: bool = False, feedback: bool = False, **kwargs) -> [IO, BinaryIO, TextIO, None]: if confirm and not feedback: return None mode = 'x' mode += 'b' if binary else '' return open(str(self.path), mode=mode, **kwargs) def writer(self, binary: bool = False, append: bool = True, allow_overwrite: bool = False, confirm: bool = True, feedback: bool = False, **kwargs) -> [IO, BinaryIO, TextIO, None]: if not allow_overwrite and not append: raise PermissionError('Trying to overwrite existed data.') if confirm and not feedback: return mode = 'a' if append else 'w' mode += 'b' if binary else '' return open(str(self.path), mode=mode, **kwargs) def __repr__(self): return f"Data('{self.__data_name__}')" def import_file(self, src_path: [str, Path], allow_overwrite=False, confirm=True, feedback=False): if self.path.exists() and not allow_overwrite: return if confirm and not feedback: return shutil.copyfile(str(src_path), str(self.path)) def export_file(self, dst_path: [str, Path], allow_overwrite=False): if Path(dst_path).exists() and not allow_overwrite: return shutil.copyfile(str(self.path), str(dst_path)) def __calc_hash__(self, h, buffer_size: int = 131072): if not self.path.exists(): return None with open(str(self.path), 'rb') as file_reader: while True: data = file_reader.read(buffer_size) if not data: break h.update(data) return h.hexdigest() def md5(self, buffer_size: int = 131072, require_update: bool = False) -> [str, None]: if not self.path.exists(): return None last_modified_time = getmtime(str(self.path)) if require_update \ or 'md5' not in self.metadata \ or 'md5-timestamp' not in self.metadata \ or self.metadata['md5-timestamp'] < last_modified_time: result = self.__calc_hash__(hashlib.md5(), buffer_size) self.metadata['md5'] = result self.metadata['md5-timestamp'] = datetime.now().timestamp() return result else: return self.metadata['md5'] def sha1(self, buffer_size: int = 131072, require_update: bool = False) -> [str, None]: if not self.path.exists(): return None last_modified_time = getmtime(str(self.path)) if require_update \ or 'sha1' not in self.metadata \ or 'sha1-timestamp' not in self.metadata \ or self.metadata['sha1-timestamp'] < last_modified_time: result = self.__calc_hash__(hashlib.sha1(), buffer_size) self.metadata['sha1'] = result self.metadata['sha1-timestamp'] = datetime.now().timestamp() return result else: return self.metadata['sha1'] def sha256(self, buffer_size: int = 131072, require_update: bool = False) -> [str, None]: if not self.path.exists(): return None last_modified_time = getmtime(str(self.path)) if require_update \ or 'sha256' not in self.metadata \ or 'sha256-timestamp' not in self.metadata \ or self.metadata['sha256-timestamp'] < last_modified_time: result = self.__calc_hash__(hashlib.sha256(), buffer_size) self.metadata['sha256'] = result self.metadata['sha256-timestamp'] = datetime.now().timestamp() return result else: return self.metadata['sha256']
35.988889
102
0.599105
0adacd25859bed18399a4d523ba68cd8adb2bc90
39,932
py
Python
tensorflow/python/keras/optimizer_v2/optimizer_v2.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
9
2019-12-29T01:47:37.000Z
2021-12-21T13:47:41.000Z
tensorflow/python/keras/optimizer_v2/optimizer_v2.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/optimizer_v2/optimizer_v2.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
1
2020-05-28T11:22:49.000Z
2020-05-28T11:22:49.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Version 2 of class Optimizer.""" # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import functools import six from tensorflow.python.distribute import distribution_strategy_context as distribute_ctx from tensorflow.python.distribute import reduce_util as ds_reduce_util from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.keras import backend from tensorflow.python.keras import initializers from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables as tf_variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import revived_types from tensorflow.python.training.tracking import base as trackable from tensorflow.python.util import nest from tensorflow.python.util.tf_export import keras_export def _deduplicate_indexed_slices(values, indices): """Sums `values` associated with any non-unique `indices`. Args: values: A `Tensor` with rank >= 1. indices: A one-dimensional integer `Tensor`, indexing into the first dimension of `values` (as in an IndexedSlices object). Returns: A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a de-duplicated version of `indices` and `summed_values` contains the sum of `values` slices associated with each unique index. """ unique_indices, new_index_positions = array_ops.unique(indices) summed_values = math_ops.unsorted_segment_sum( values, new_index_positions, array_ops.shape(unique_indices)[0]) return (summed_values, unique_indices) def _filter_grads(grads_and_vars): """Filter out iterable with grad equal to None.""" grads_and_vars = tuple(grads_and_vars) if not grads_and_vars: return grads_and_vars filtered = [] vars_with_empty_grads = [] for grad, var in grads_and_vars: if grad is None: vars_with_empty_grads.append(var) else: filtered.append((grad, var)) filtered = tuple(filtered) if not filtered: raise ValueError("No gradients provided for any variable: %s." % ([v.name for _, v in grads_and_vars],)) if vars_with_empty_grads: logging.warning( ("Gradients does not exist for variables %s when minimizing the loss."), ([v.name for v in vars_with_empty_grads])) return filtered def _var_key(var): """Key for representing a primary variable, for looking up slots. In graph mode the name is derived from the var shared name. In eager mode the name is derived from the var unique id. If distribution strategy exists, get the primary variable first. Args: var: the variable. Returns: the unique name of the variable. """ # pylint: disable=protected-access # Get the distributed variable if it exists. if getattr(var, "_distributed_container", None) is not None: var = var._distributed_container() if var._in_graph_mode: return var._shared_name return var._unique_id def _get_slot_key_from_var(var, slot_name): """Get the slot key for the variable: var_name/slot_name.""" name = _var_key(var) return name + "/" + slot_name revived_types.register_revived_type( "optimizer", lambda obj: isinstance(obj, OptimizerV2), versions=[revived_types.VersionedTypeRegistration( object_factory=lambda proto: _RestoredOptimizer(), version=1, min_producer_version=1, min_consumer_version=1, setter=_RestoredOptimizer._set_hyper # pylint: disable=protected-access )])
38.806608
101
0.698162
0adb9e87674ba38043bf368fb738d4c5e8ba7c5c
362
py
Python
escola/teste_get.py
danielrosendos/djangoRestFramework
946bb95b8dd9976d1920302ce724572ffd9f98cf
[ "MIT" ]
2
2020-07-26T15:17:23.000Z
2020-07-26T16:50:18.000Z
escola/teste_get.py
sport129/djangoRestFramework
946bb95b8dd9976d1920302ce724572ffd9f98cf
[ "MIT" ]
3
2021-03-30T14:12:18.000Z
2021-06-04T23:44:47.000Z
escola/teste_get.py
sport129/djangoRestFramework
946bb95b8dd9976d1920302ce724572ffd9f98cf
[ "MIT" ]
null
null
null
import requests headers = { 'content-type': 'application/json', 'Authorization': 'Token 80ca9f249b80e7226cdc7fcaada8d7297352f0f9' } url_base_cursos = 'http://127.0.0.1:8000/api/v2/cursos' url_base_avaliacoes = 'http://127.0.0.1:8000/api/v2/avaliacoes' resultado = requests.get(url=url_base_cursos, headers=headers) assert resultado.status_code == 200
27.846154
69
0.756906
0adc55ed2f06787ab63a1224266a2dd707ce1b10
6,455
py
Python
python/avi/sdk/utils/waf_policy/vdi_waf_policy.py
aaronjwood/alb-sdk
ae4c47b2228651d3f5095e7c14f081aa4adbb732
[ "Apache-2.0" ]
null
null
null
python/avi/sdk/utils/waf_policy/vdi_waf_policy.py
aaronjwood/alb-sdk
ae4c47b2228651d3f5095e7c14f081aa4adbb732
[ "Apache-2.0" ]
null
null
null
python/avi/sdk/utils/waf_policy/vdi_waf_policy.py
aaronjwood/alb-sdk
ae4c47b2228651d3f5095e7c14f081aa4adbb732
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 VMware, Inc. import argparse import json import re import logging import os import sys from avi.sdk.avi_api import ApiSession API_VERSION = "18.2.13" SYSTEM_WAF_POLICY_VDI='System-WAF-Policy-VDI' logger = logging.getLogger(__name__) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-u', '--user', action="store", help='controller user', default='admin') parser.add_argument('-p', '--password', action="store", help='controller user password', default='admin') parser.add_argument('-t', '--tenant', action="store", help='tenant name', default='admin') parser.add_argument('-a', '--authtoken', help='Authentication token') parser.add_argument('-c', '--controller_ip', action="store", help='controller ip') args = parser.parse_args() if args.password: api = ApiSession.get_session(args.controller_ip, args.user, args.password, tenant=args.tenant, api_version=API_VERSION) elif args.authtoken: api = ApiSession.get_session(args.controller_ip, args.user, tenant=args.tenant, token=args.authtoken, api_version=API_VERSION) else: logging.error("Either password or authtokentoken must be provided.") sys.exit(1) waf_policy_obj = api.get_object_by_name('wafpolicy', SYSTEM_WAF_POLICY_VDI) if not waf_policy_obj: create_vdi_waf_policy(api, args) else: update_waf_policy(api, args, waf_policy_obj)
38.652695
219
0.632223
0adcde8b96a5cb82b17bdf29ba072f1b54339883
4,101
py
Python
src/api/bkuser_core/tests/bkiam/test_constants.py
Chace-wang/bk-user
057f270d66a1834312306c9fba1f4e95521f10b1
[ "MIT" ]
null
null
null
src/api/bkuser_core/tests/bkiam/test_constants.py
Chace-wang/bk-user
057f270d66a1834312306c9fba1f4e95521f10b1
[ "MIT" ]
null
null
null
src/api/bkuser_core/tests/bkiam/test_constants.py
Chace-wang/bk-user
057f270d66a1834312306c9fba1f4e95521f10b1
[ "MIT" ]
1
2021-12-31T06:48:41.000Z
2021-12-31T06:48:41.000Z
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making -(Bk-User) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pytest from bkuser_core.bkiam.constants import ResourceType from bkuser_core.categories.models import Department, ProfileCategory from bkuser_core.tests.utils import make_simple_department pytestmark = pytest.mark.django_db def test_get_resource_nodes_other(self): pc = ProfileCategory.objects.get_default() nodes = ResourceType.get_instance_resource_nodes(pc) assert [(x["type"], x["name"]) for x in nodes] == [("category", "")]
39.432692
115
0.613997
0add3254851b32ab4bc7e1c39aca7cbe53d6398b
190
py
Python
votesim/benchmarks/__init__.py
johnh865/election_sim
b73b7e65f1bb22abb82cbe8442fcf02b0c20894e
[ "MIT" ]
8
2019-10-21T23:24:51.000Z
2021-09-14T03:04:59.000Z
votesim/benchmarks/__init__.py
johnh865/election_sim
b73b7e65f1bb22abb82cbe8442fcf02b0c20894e
[ "MIT" ]
2
2021-02-09T23:52:47.000Z
2021-02-10T04:08:35.000Z
votesim/benchmarks/__init__.py
johnh865/election_sim
b73b7e65f1bb22abb82cbe8442fcf02b0c20894e
[ "MIT" ]
1
2019-10-21T23:32:18.000Z
2019-10-21T23:32:18.000Z
# from votesim.benchmarks.benchrunner import ( # run_benchmark, # get_benchmarks, # post_benchmark, # plot_benchmark, # ) from votesim.benchmarks import runtools, simple
23.75
47
0.705263
0add5b092c6c665d2b618a20a05d4cd299d00402
1,948
py
Python
src/handler.py
MrIgumnov96/ETL-CloudDeployment
666b85a9350460fba49f82ec90f5cddc0bdd0235
[ "Unlicense" ]
null
null
null
src/handler.py
MrIgumnov96/ETL-CloudDeployment
666b85a9350460fba49f82ec90f5cddc0bdd0235
[ "Unlicense" ]
null
null
null
src/handler.py
MrIgumnov96/ETL-CloudDeployment
666b85a9350460fba49f82ec90f5cddc0bdd0235
[ "Unlicense" ]
null
null
null
import boto3 import src.app as app import csv import psycopg2 as ps import os from dotenv import load_dotenv load_dotenv() dbname = os.environ["db"] host = os.environ["host"] port = os.environ["port"] user = os.environ["user"] password = os.environ["pass"] connection = ps.connect(dbname=dbname, host=host, port=port, user=user, password=password)
31.419355
185
0.587269
0adf4b5bea842a306db59cff9711a1e6a19b7ae0
3,753
py
Python
improver_tests/precipitation_type/test_utilities.py
cpelley/improver
ebf77fe2adc85ed7aec74c26671872a2e4388ded
[ "BSD-3-Clause" ]
77
2017-04-26T07:47:40.000Z
2022-03-31T09:40:49.000Z
improver_tests/precipitation_type/test_utilities.py
cpelley/improver
ebf77fe2adc85ed7aec74c26671872a2e4388ded
[ "BSD-3-Clause" ]
1,440
2017-03-29T10:04:15.000Z
2022-03-28T10:11:29.000Z
improver_tests/precipitation_type/test_utilities.py
MoseleyS/improver
ca028e3a1c842e3ff00b188c8ea6eaedd0a07149
[ "BSD-3-Clause" ]
72
2017-03-17T16:53:45.000Z
2022-02-16T09:41:37.000Z
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Tests of precipitation_type utilities""" import numpy as np import pytest from iris.exceptions import CoordinateNotFoundError from improver.metadata.constants import FLOAT_DTYPE from improver.precipitation_type.utilities import make_shower_condition_cube from improver.synthetic_data.set_up_test_cubes import set_up_probability_cube def set_up_test_cube(n_thresholds=1): """Set up a cube testing shower condition conversion""" thresholds = np.arange(n_thresholds) shape = [2, 2] shape = [n_thresholds, *shape] if n_thresholds > 0 else shape data = np.ones(shape, dtype=FLOAT_DTYPE) cube = set_up_probability_cube( data, thresholds, variable_name="texture_of_cloud_area_fraction", threshold_units=1, spatial_grid="equalarea", ) return cube def test_basic(): """Test that with a valid input the cube is transformed into a shower condition cube.""" cube = set_up_test_cube() result = make_shower_condition_cube(cube) threshold_coord = result.coord(var_name="threshold") assert result.name() == "probability_of_shower_condition_above_threshold" assert result.dtype == FLOAT_DTYPE assert (result.data == cube.data).all() assert threshold_coord.name() == "shower_condition" assert threshold_coord.units == 1 def test_no_threshold_coord(): """Test an exception is raised if the proxy diagnostic cube does not have a threshold coordinate.""" cube = set_up_test_cube() cube.remove_coord("texture_of_cloud_area_fraction") expected = "Input has no threshold coordinate and cannot be used" with pytest.raises(CoordinateNotFoundError, match=expected): make_shower_condition_cube(cube) def test_multi_valued_threshold_coord(): """Test an exception is raised if the proxy diagnostic cube has a multi valued threshold coordinate.""" cube = set_up_test_cube(n_thresholds=2) expected = "Expected a single valued threshold coordinate.*" with pytest.raises(ValueError, match=expected): make_shower_condition_cube(cube)
39.925532
79
0.742073
0ae04a483b4283bc6fdc84bd651d77ab70b6120c
5,149
py
Python
app/api/v1/models/items.py
bryan-munene/Store-Manager-DB
40b24039189aea6854d7fcf33ccb648bb6642231
[ "MIT" ]
null
null
null
app/api/v1/models/items.py
bryan-munene/Store-Manager-DB
40b24039189aea6854d7fcf33ccb648bb6642231
[ "MIT" ]
4
2018-10-25T00:57:18.000Z
2018-10-25T21:29:09.000Z
app/api/v1/models/items.py
bryan-munene/Store-Manager-DB
40b24039189aea6854d7fcf33ccb648bb6642231
[ "MIT" ]
null
null
null
from .db_conn import ModelSetup
31.206061
112
0.543212
0ae122f08d00736fbd1d09356f366ff9dcd6baf8
4,215
py
Python
site/src/sphinx/_extensions/api.py
linxGnu/armeria
7f4b10e66acc377dd16929157aeb417b729ce55a
[ "Apache-2.0" ]
null
null
null
site/src/sphinx/_extensions/api.py
linxGnu/armeria
7f4b10e66acc377dd16929157aeb417b729ce55a
[ "Apache-2.0" ]
null
null
null
site/src/sphinx/_extensions/api.py
linxGnu/armeria
7f4b10e66acc377dd16929157aeb417b729ce55a
[ "Apache-2.0" ]
null
null
null
from docutils.parsers.rst.roles import register_canonical_role, set_classes from docutils.parsers.rst import directives from docutils import nodes from sphinx.writers.html import HTMLTranslator from sphinx.errors import ExtensionError import os import re
37.633929
103
0.629656
0ae19706ac78f27bbbf84e3668bc38423a4a2fcd
739
py
Python
feaas/runners/__init__.py
tsuru/varnishapi
d63a8c8c5f9c837855509fc5af59d8213c1c91d6
[ "BSD-3-Clause" ]
3
2015-05-04T03:20:09.000Z
2016-02-19T10:35:35.000Z
feaas/runners/__init__.py
tsuru/varnishapi
d63a8c8c5f9c837855509fc5af59d8213c1c91d6
[ "BSD-3-Clause" ]
3
2015-01-02T13:18:56.000Z
2021-02-08T20:17:14.000Z
feaas/runners/__init__.py
tsuru/varnishapi
d63a8c8c5f9c837855509fc5af59d8213c1c91d6
[ "BSD-3-Clause" ]
5
2015-01-02T13:11:45.000Z
2016-08-26T06:14:35.000Z
# Copyright 2014 varnishapi authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. import time from feaas import storage
24.633333
57
0.649526
0ae22c03054218a911ddc84125341497677c75ac
2,045
py
Python
ros_buildfarm/debian_repo.py
j-rivero/ros_buildfarm
840d2dc1dd5db00d5407da4644cd2bcbc5e0ac88
[ "Apache-2.0" ]
null
null
null
ros_buildfarm/debian_repo.py
j-rivero/ros_buildfarm
840d2dc1dd5db00d5407da4644cd2bcbc5e0ac88
[ "Apache-2.0" ]
1
2019-12-12T21:08:01.000Z
2019-12-12T21:08:01.000Z
ros_buildfarm/debian_repo.py
j-rivero/ros_buildfarm
840d2dc1dd5db00d5407da4644cd2bcbc5e0ac88
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from .common import PlatformPackageDescriptor from .http_cache import fetch_and_cache_gzip
36.517857
91
0.695355
0ae277577c0d9cf0180a37747d11d8dcd292baa5
57
py
Python
player.py
Drayux/Battlematus
1709a15b58d9274b99ec36eff1a181014d155037
[ "MIT" ]
null
null
null
player.py
Drayux/Battlematus
1709a15b58d9274b99ec36eff1a181014d155037
[ "MIT" ]
null
null
null
player.py
Drayux/Battlematus
1709a15b58d9274b99ec36eff1a181014d155037
[ "MIT" ]
null
null
null
# PLAYER
9.5
23
0.561404
0ae2b8b9a2e89b056cf58f74862944546c4ef4a9
48,440
py
Python
Framwork-Backpropagation/utils/utils_v2.py
ConvolutedDog/Implicit-Im2col-for-Backpropagation
529a62f52903326b9289091b7d0abb45e6c7bb31
[ "Apache-2.0" ]
null
null
null
Framwork-Backpropagation/utils/utils_v2.py
ConvolutedDog/Implicit-Im2col-for-Backpropagation
529a62f52903326b9289091b7d0abb45e6c7bb31
[ "Apache-2.0" ]
null
null
null
Framwork-Backpropagation/utils/utils_v2.py
ConvolutedDog/Implicit-Im2col-for-Backpropagation
529a62f52903326b9289091b7d0abb45e6c7bb31
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 ConvolutedDog (https://github.com/ConvolutedDog/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/python3 import torch import torch.nn as nn import torch.nn.functional as F from graphviz import Digraph, render from torch.autograd import Variable def add_backward(dLoss_dnextz): print('# next_dz.shape: ', list(dLoss_dnextz.shape)) dLoss_dz = dLoss_dnextz print('# dz.shape: ', list(dLoss_dz.shape)) return dLoss_dz def generate_g(model, x): delete_allpths(pth_dir=None) print('\n=========================== Store network model Results Start =========================') y = model(x) print('=========================== Store network model Results End ===========================\n') if 'GoogLeNet' in str(model).split('\n')[0]: g = make_dot(y[0]) return g else: g = make_dot(y) return g def gradient_backward_v2(model, img, label, num_class=1000, g_view=False): x = Variable(img) g = generate_g(model, x) if g_view: g.view() delete_allpths(pth_dir=None) print('\n=========================== Generate Tensors Start ====================================') result = model(img) print('=========================== Generate Tensors End ======================================\n') Loss = nn.CrossEntropyLoss() if 'GoogLeNet' in str(model).split('\n')[0]: loss_torch = Loss(result[0], label) else: loss_torch = Loss(result, label) _, connections = generate_connections(g) last_connections = merge_connections(connections) return_layers = get_layers(last_connections, model) return_tensors = get_tensors(last_connections) parameters, fc_conv_weights = get_structure_parameters(return_layers) ''' print('================') for i in range(len(last_connections)): print(i, last_connections[i]) print('================') print('================') for i in range(len(return_layers)): print(i, return_layers[i]) print('================') print('================') for i in range(len(parameters)): print(i, parameters[i]) print('================') print('================') for i in range(len(return_tensors)): if not isinstance(return_tensors[i], list) and not isinstance(return_tensors[i], str): print('=========', i, return_tensors[i].shape) print('================') ''' import copy return_dz = copy.deepcopy(last_connections) featuremap = return_tensors featuremap.append(img) y_true = F.one_hot(label, num_classes=num_class).float() loss, dLoss_dz = cross_entropy_loss(featuremap[0], y_true) featuremap.pop(0) return_dz.append(dLoss_dz) #####################tensors ''' for i in range(len(last_connections)): print(last_connections[i]) for i in range(len(featuremap)): if not isinstance(featuremap[i], list): print('=========', i, featuremap[i].shape) else: for j in range(len(featuremap[i])): for k in range(len(featuremap[i][j])): print(' =========', i, j, k, featuremap[i][j][k].shape) ''' ##################### # n for i in range(len(parameters)): layer = parameters[i] if not isinstance(layer, list): print('\n======================== {0:3} Layer: '.format(str(len(parameters)-1-i))+'{0:11}'.format(layer['layer_name'])+' Backward Start ========================') if layer['layer_name'] == 'Conv2d': z = featuremap[i] weight_z = fc_conv_weights[i] try: padding = layer['padding'] except: padding = (0, 0) stride = layer['stride'] dLoss_dz, dLoss_dW, dLoss_dB = conv_backward(dLoss_dz, weight_z, z, padding, stride) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'ReLU': z = featuremap[i] dLoss_dz = relu_backward(dLoss_dz, z) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'MaxPool2d': z = featuremap[i] pooling = layer['kernel_size'] stride = layer['stride'] padding = layer['padding'] dLoss_dz = max_pooling_backward(dLoss_dz, z, pooling, stride, padding) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'AvgPool2d': z = featuremap[i] pooling = layer['kernel_size'] stride = layer['stride'] padding = layer['padding'] dLoss_dz = average_pooling_backward(dLoss_dz, z, pooling, stride, padding) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'Linear': weight_z = fc_conv_weights[i] z = featuremap[i] dLoss_dz, dLoss_dW, dLoss_dB = fc_backward(dLoss_dz, z, weight_z) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'View': last_z = featuremap[i+1] if 'Pool' in parameters[i+1]['layer_name']: params = (parameters[i+1]['kernel_size'], parameters[i+1]['stride'], parameters[i+1]['padding']) else: params = None dLoss_dz = view_backward(dLoss_dz, last_z, params) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'Add': dLoss_dz = add_backward(dLoss_dz) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'Dropout': if parameters[i-1]['layer_name'] == 'Dropout': return_dz[i] = dLoss_dz print('# Skip this layer because the layer has been calcualted!') print('======================== {0:3} Layer: '.format(str(len(parameters)-1-i))+'{0:11}'.\ format(layer['layer_name'])+' Backward End ==========================') continue p = layer['p'] mask = featuremap[i] dLoss_dz = dropback_backward(dLoss_dz, mask, p) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'BatchNorm2d': eps = layer['eps'] z = featuremap[i] gamma = fc_conv_weights[i] dLoss_dz = batchnorm2d_backward(dLoss_dz, z, eps, gamma) return_dz[i] = dLoss_dz print('======================== {0:3} Layer: '.format(str(len(parameters)-1-i))+'{0:11}'.format(layer['layer_name'])+' Backward End ==========================') elif isinstance(layer, list): import copy tmp_dLoss_dz = [] for j in range(len(layer)): tmp_dLoss_dz.append(copy.deepcopy(dLoss_dz)) for k in range(len(layer[j])): tmp_layer = layer[j][k] print('\n=========================== {0:3} Branch: '.format(str(len(parameters)-1-i))+'{0:11}'.format(tmp_layer['layer_name'])+' Backward Start ====================') if tmp_layer['layer_name'] == 'Conv2d': if k+1 >= len(featuremap[i-1][j]): z = featuremap[i] else: z = featuremap[i-1][j][k+1] weight_z = fc_conv_weights[i][j][k] try: padding = tmp_layer['padding'] except: padding = (0, 0) stride = tmp_layer['stride'] tmp_dLoss_dz[-1], dLoss_dW, dLoss_dB = conv_backward(tmp_dLoss_dz[-1], weight_z, z, padding, stride) return_dz[i][j][k] = tmp_dLoss_dz[-1] elif tmp_layer['layer_name'] == 'ReLU': z = featuremap[i-1][j][k+1] tmp_dLoss_dz[-1] = relu_backward(tmp_dLoss_dz[-1], z) return_dz[i][j][k] = tmp_dLoss_dz[-1] elif tmp_layer['layer_name'] == 'BatchNorm2d': eps = tmp_layer['eps'] z = featuremap[i-1][j][k+1] gamma = fc_conv_weights[i][j][k] tmp_dLoss_dz[-1] = batchnorm2d_backward(tmp_dLoss_dz[-1], z, eps, gamma) return_dz[i][j][k] = tmp_dLoss_dz[-1] print('=========================== {0:3} Branch: '.format(str(len(parameters)-1-i))+'{0:11}'.format(tmp_layer['layer_name'])+' Backward End ======================') print(tmp_dLoss_dz[0].shape, tmp_dLoss_dz[1].shape) dLoss_dz = tmp_dLoss_dz[0] + tmp_dLoss_dz[1] else: print('Not completed in gradient_backward!') print('# Torch calculated loss: ', loss_torch.detach().numpy()) loss_torch.backward() if 'VGG' in str(model) or 'AlexNet' in str(model): print(judge_tensors_equal(dLoss_dW, model.features[0].weight.grad)) elif 'ResNet' in str(model): print(judge_tensors_equal(dLoss_dW, model.conv1.weight.grad)) delete_allpths(pth_dir=None) return return_dz, dLoss_dW, dLoss_dB
34.624732
172
0.63429
0ae2d03accd91cc3db5f01917f5d31fdecbb74e5
4,372
py
Python
ark_nlp/factory/utils/attack.py
yubuyuabc/ark-nlp
165d35cfacd7476791c0aeba19bf43f4f8079553
[ "Apache-2.0" ]
1
2022-03-23T05:10:55.000Z
2022-03-23T05:10:55.000Z
ark_nlp/factory/utils/attack.py
yubuyuabc/ark-nlp
165d35cfacd7476791c0aeba19bf43f4f8079553
[ "Apache-2.0" ]
null
null
null
ark_nlp/factory/utils/attack.py
yubuyuabc/ark-nlp
165d35cfacd7476791c0aeba19bf43f4f8079553
[ "Apache-2.0" ]
null
null
null
import torch
31.681159
101
0.52699
0ae341f931ab8799a80b73c9036820e58b4d7de6
5,790
py
Python
core.py
sreejithr/deepfake
c7115ce90ea281e2eb95d75f436efa102c8f2e3c
[ "MIT" ]
null
null
null
core.py
sreejithr/deepfake
c7115ce90ea281e2eb95d75f436efa102c8f2e3c
[ "MIT" ]
3
2021-09-08T02:24:48.000Z
2022-03-12T00:44:53.000Z
core.py
sreejithr/deepfake
c7115ce90ea281e2eb95d75f436efa102c8f2e3c
[ "MIT" ]
null
null
null
import cv2 import torch import yaml import imageio import throttle import numpy as np import matplotlib.pyplot as plt from argparse import ArgumentParser from skimage.transform import resize from scipy.spatial import ConvexHull from modules.generator import OcclusionAwareGenerator from modules.keypoint_detector import KPDetector from sync_batchnorm import DataParallelWithCallback #from animate import normalize_kp # command = [ffmpeg, # '-y', # '-f', 'rawvideo', # '-vcodec','rawvideo', # '-pix_fmt', 'bgr24', # '-s', dimension, # '-i', '-', # '-c:v', 'libx264', # '-pix_fmt', 'yuv420p', # '-preset', 'ultrafast', # '-f', 'flv', # 'rtmp://10.10.10.80/live/mystream'] if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--config", required=True, help="path to config") parser.add_argument("--source_image", required=True, help="path to source image") parser.add_argument("--checkpoint", default="vox-cpk.pth.tar", help="path to checkpoint") parser.add_argument("--relative", dest="relative", action="store_true", help="use relative or absolute keypoint coordinates") parser.add_argument("--adapt_scale", dest="adapt_scale", action="store_true", help="adapt movement scale based on convex hull of keypoints") parser.add_argument("--cpu", dest="cpu", action="store_true", help="CPU mode") parser.set_defaults(relative=False) parser.set_defaults(adapt_scale=False) opt = parser.parse_args() generator, kp_detector = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint, cpu=opt.cpu) source_image = imageio.imread(opt.source_image) source_image = resize(source_image, (256, 256))[..., :3] source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) if not opt.cpu: source = source.cuda() kp_source = kp_detector(source) #out = cv2.VideoWriter('outpy.avi', cv2.VideoWriter_fourcc('M','J','P','G'), 30, (256, 256)) kp_driving_initial = None camera = cv2.VideoCapture(0) ret, frame = camera.read() while True: ret, frame = camera.read() resized = resize(frame, (256, 256))[..., :3] if not opt.cpu: resized = resized.cuda() # y = torch.tensor(np.array(resized)) # x = y.cpu().numpy() # image = cv2.cvtColor(x, cv2.COLOR_BGR2RGB) # # x = y.permute(1, 2, 0) # plt.imshow(np.array(image)) # plt.show() driving_resized = torch.tensor(np.array(resized)[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) if not kp_driving_initial: kp_driving_initial = kp_detector(driving_resized) fake_frame = forward( source, driving_resized, kp_source, kp_driving_initial, generator, kp_detector, relative=opt.relative, adapt_scale=opt.adapt_scale, cpu=opt.cpu ) cv2.imshow("frame", fake_frame) #x = np.squeeze(driving_resized, axis=(0,)) #x = driving_resized[0].permute(1, 2, 0) # plt_driving = driving_resized #permute(2, 3, 1) #print(plt_driving.shape) #plt.imshow(x) #plt.show() if cv2.waitKey(1) & 0xFF == ord('q'): break camera.release() cv2.destroyAllWindows()
34.260355
142
0.68342
0ae3d125da916faaaf9490284cbbfda3ebc0f150
1,735
py
Python
soupy/approximations/taylor/backup/__init__.py
cpempire/soupy
9f65e3329fa126619c893daa4cd80478d83f840c
[ "MIT" ]
1
2021-12-07T15:22:23.000Z
2021-12-07T15:22:23.000Z
soupy/approximations/taylor/backup/__init__.py
cpempire/soupy
9f65e3329fa126619c893daa4cd80478d83f840c
[ "MIT" ]
null
null
null
soupy/approximations/taylor/backup/__init__.py
cpempire/soupy
9f65e3329fa126619c893daa4cd80478d83f840c
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function from .controlPDEProblem import ControlPDEProblem from .controlPDEProblemMultiPDE import ControlPDEProblemMultiPDE from .costFunctionalConstant import CostFunctionalConstant from .costFunctionalConstantMultiPDE import CostFunctionalConstantMultiPDE from .costFunctionalLinear import CostFunctionalLinear from .costFunctionalLinearMultiPDE import CostFunctionalLinearMultiPDE from .costFunctionalQuadratic import CostFunctionalQuadratic from .costFunctionalQuadraticMultiPDE import CostFunctionalQuadraticMultiPDE # from .chanceConstraintQuadratic import ChanceConstraintQuadratic # from .chanceConstraintLinear import ChanceConstraintLinear # from .chanceConstraintConstant import ChanceConstraintConstant # to do list # 0. implement zero, Hessian term # 1. implement linear # 2. implement quadratic # 3. impelement SAA # to do list # 1. SAA does not run well in ccgo1, multiprocessor does not work, ### not clear bug, simplifing adjoint solver works # 2. quadratic approximation does not converge well, even without variance, does not converge ### record eigenvector after m_tr[i].zero() # 3. check gradient for quadratic + correction # what to show tomorrow # 1. variance reduction by mean square error # 2. trace estimation by MC and randomized SVD # 3. scaling with repsect to mesh (design + uncertainty), trace, variance reduction, #bfgs # 4. show the design and state, for both disk and submarine # 5. random sample and state at different design # April 9, 2018, work on reporting results # 1. random samples and states at different design # 2. table for variance reduction # 3. plot trace estimation # 4. plot #bfgs iterations # obtain all results as planned
42.317073
93
0.821326
0ae6683abfd956b5c3952439b03a59e007c9300a
2,402
py
Python
models/1-Tom/train/kaggle-hubmap-main/src/02_train/transforms.py
navekshasood/HuBMAP---Hacking-the-Kidney
018100fe4bfa5e8764b9df5a9d188e2c670ac061
[ "MIT" ]
null
null
null
models/1-Tom/train/kaggle-hubmap-main/src/02_train/transforms.py
navekshasood/HuBMAP---Hacking-the-Kidney
018100fe4bfa5e8764b9df5a9d188e2c670ac061
[ "MIT" ]
null
null
null
models/1-Tom/train/kaggle-hubmap-main/src/02_train/transforms.py
navekshasood/HuBMAP---Hacking-the-Kidney
018100fe4bfa5e8764b9df5a9d188e2c670ac061
[ "MIT" ]
null
null
null
import numpy as np from albumentations import (Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur,CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp) from albumentations.pytorch import ToTensorV2 as ToTensor from get_config import get_config config = get_config() MEAN = np.array([0.485, 0.456, 0.406]) STD = np.array([0.229, 0.224, 0.225])
40.711864
113
0.572856
0ae709052ebf9505470ee0404f1013ba86cb8e0e
13,017
py
Python
cubspack/geometry.py
Majikat/cubspack
16aa6df0603d48d757d74837d3457a1934601d89
[ "Apache-2.0" ]
11
2018-06-18T12:05:34.000Z
2021-02-24T19:00:24.000Z
cubspack/geometry.py
Majikat/cubspack
16aa6df0603d48d757d74837d3457a1934601d89
[ "Apache-2.0" ]
null
null
null
cubspack/geometry.py
Majikat/cubspack
16aa6df0603d48d757d74837d3457a1934601d89
[ "Apache-2.0" ]
2
2018-04-08T17:30:00.000Z
2018-09-27T08:38:42.000Z
# -*- coding: utf-8 -*- from math import sqrt def __eq__(self, other): """Equal cuboids have same properties.""" if not isinstance(other, self.__class__): return False return (self.width == other.width and self.height == other.height and self.depth == other.depth and self.x == other.x and self.y == other.y and self.z == other.z) def __hash__(self): return hash( (self.x, self.y, self.z, self.width, self.height, self.depth)) def __iter__(self): """Iterate through cuboid corners""" yield self.corner_top_l yield self.corner_top_r yield self.corner_bot_r yield self.corner_bot_l yield self.corner_top_l_out yield self.corner_top_r_out yield self.corner_bot_r_out yield self.corner_bot_l_out def __repr__(self): return "R({}, {}, {}, {}, {}, {})".format( self.x, self.y, self.z, self.width, self.height, self.depth) def volume(self): """Cuboid volume""" return self.width * self.height * self.depth def move(self, x, y, z): """Move Cuboid to x,y,z coordinates Arguments: x (int, float): X coordinate y (int, float): Y coordinate z (int, float): Z coordinate """ self.x = x self.y = y self.z = z def contains(self, cub): """Tests if another cuboid is contained by this one Arguments: cub (Cuboid): The other cuboiud Returns: bool: True if it is inside this one, False otherwise """ return (cub.y >= self.y and cub.x >= self.x and cub.z >= self.z and cub.y + cub.height <= self.y + self.height and cub.x + cub.width <= self.x + self.width and cub.z + cub.depth <= self.z + self.depth) def intersects(self, cub, edges=False): """Detect intersections between this cuboid and cub. Args: cub (Cuboid): Cuboid to test for intersections. edges (bool): Accept edge touching cuboids as intersects or not Returns: bool: True if the cuboids intersect, False otherwise """ # Not even touching if (self.bottom > cub.top or self.top < cub.bottom or self.left > cub.right or self.right < cub.left or self.outeye > cub.ineye or self.ineye < cub.outeye): return False # Discard edge intersects if not edges: if (self.bottom == cub.top or self.top == cub.bottom or self.left == cub.right or self.right == cub.left or self.outeye == cub.ineye or self.ineye == cub.outeye): return False # Discard corner intersects if (self.left == cub.right and self.bottom == cub.top and self.outeye == cub.ineye or self.left == cub.right and cub.bottom == self.top and self.outeye == cub.ineye or self.left == cub.right and self.bottom == cub.top and cub.outeye == self.ineye or self.left == cub.right and cub.bottom == self.top and cub.outeye == self.ineye or cub.left == self.right and self.bottom == cub.top and self.outeye == cub.ineye or cub.left == self.right and cub.bottom == self.top and self.outeye == cub.ineye or cub.left == self.right and self.bottom == cub.top and cub.outeye == self.ineye or cub.left == self.right and cub.bottom == self.top and cub.outeye == self.ineye): return False return True def intersection(self, cub, edges=False): """Returns the cuboid resulting of the intersection of this and cub If the cuboids are only touching by their edges, and the argument 'edges' is True the cuboid returned will have a volume of 0. Returns None if there is no intersection. Arguments: cub (Cuboid): The other cuboid. edges (bool): If true, touching edges are considered an intersection, and a cuboid of 0 height or width or depth will be returned Returns: Cuboid: Intersection. None: There was no intersection. """ if not self.intersects(cub, edges=edges): return None bottom = max(self.bottom, cub.bottom) left = max(self.left, cub.left) top = min(self.top, cub.top) right = min(self.right, cub.right) outeye = max(self.outeye, cub.outeye) ineye = min(self.ineye, cub.ineye) return Cuboid( left, bottom, outeye, right - left, top - bottom, ineye - outeye) def join(self, other): """Try to join a cuboid to this one. If the result is also a cuboid and the operation is successful then this cuboid is modified to the union. Arguments: other (Cuboid): Cuboid to join Returns: bool: True when successfully joined, False otherwise """ if self.contains(other): return True if other.contains(self): self.x = other.x self.y = other.y self.z = other.z self.width = other.width self.height = other.height self.depth = other.depth return True if not self.intersects(other, edges=True): return False # Other cuboid is Up/Down from this if self.left == other.left and self.width == other.width and \ self.outeye == other.outeye and self.depth == self.depth: y_min = min(self.bottom, other.bottom) y_max = max(self.top, other.top) self.y = y_min self.height = y_max - y_min return True # Other cuboid is Right/Left from this if self.bottom == other.bottom and self.height == other.height and \ self.outeye == other.outeye and self.depth == self.depth: x_min = min(self.left, other.left) x_max = max(self.right, other.right) self.x = x_min self.width = x_max - x_min return True # Other cuboid is Right/Left from this if self.bottom == other.bottom and self.height == other.height and \ self.left == other.left and self.width == other.width: z_min = min(self.outeye, other.outeye) z_max = max(self.ineye, other.ineye) self.z = z_min self.depth = z_max - z_min return True return False
29.517007
85
0.556657
0ae84e0cfa142229ba7d5efbff2238d28b93f418
16,661
py
Python
app/recipe/tests/test_recipe_api.py
tahmadvand/recipe_app_api
40b4cc6960d7dc4858373b5f6ccca980ed0eeac8
[ "MIT" ]
null
null
null
app/recipe/tests/test_recipe_api.py
tahmadvand/recipe_app_api
40b4cc6960d7dc4858373b5f6ccca980ed0eeac8
[ "MIT" ]
null
null
null
app/recipe/tests/test_recipe_api.py
tahmadvand/recipe_app_api
40b4cc6960d7dc4858373b5f6ccca980ed0eeac8
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient # use that for making our API requests from core.models import Recipe, Tag, Ingredient from ..serializers import RecipeSerializer, RecipeDetailSerializer import tempfile # allows you to call a function which will then create a temp file # somewhere in the system and then you can remove that file after # you've used it import os # this allows us to perform things like # creating path names and also checking if files exist on the system from PIL import Image # pillow, this will import our image class which will let us then # create test images which we can then upload to our API RECIPES_URL = reverse('recipe:recipe-list') # since we're going to need to access the URL in more # or less all the tests let's assign that as a variable # at top of the class in all capitals. # app : identifier of the URL in the app # /api/recipe/recipes # /api/recipe/recipes/1/ (id) --> detail url def image_upload_url(recipe_id): """Return URL for recipe image upload""" return reverse('recipe:recipe-upload-image', args=[recipe_id]) # generate our upload image url # you're going to need the existing recipe ID in order to upload an image def detail_url(recipe_id): """Return recipe detail URL""" return reverse('recipe:recipe-detail', args=[recipe_id]) # name of the end point that the default router will create # for our viewset because we're going to have a detail action # this is how you specify arguments with the reverse function # you just pass in args and then you pass in a list of the # arguments you want to add # here we have single item def sample_tag(user, name='Main course'): """Create and return a sample tag""" return Tag.objects.create(user=user, name=name) def sample_ingredient(user, name='Cinnamon'): """Create and return a sample ingredient""" return Ingredient.objects.create(user=user, name=name) def sample_recipe(user, **params): """Create and return a sample recipe""" defaults = { 'title': 'Sample recipe', 'time_minutes': 10, 'price': 5.00, } defaults.update(params) return Recipe.objects.create(user=user, **defaults) # convert the dictionary into the argument # when you use the two asterisks when calling a # function it has the reverse effect.
40.43932
78
0.667547
0ae880533e14de2255d5554b8a0bb6b7cbc5e1bb
1,089
py
Python
Assignment 1 n 2 Day 8.py
paju3125/LetsUpgrade-Python-B7
c5767361f60f1ec405ab235af85035e2bb9a71e3
[ "Apache-2.0" ]
null
null
null
Assignment 1 n 2 Day 8.py
paju3125/LetsUpgrade-Python-B7
c5767361f60f1ec405ab235af85035e2bb9a71e3
[ "Apache-2.0" ]
null
null
null
Assignment 1 n 2 Day 8.py
paju3125/LetsUpgrade-Python-B7
c5767361f60f1ec405ab235af85035e2bb9a71e3
[ "Apache-2.0" ]
null
null
null
# Assignment 1 Day 8 # write a decorator function for taking input for you # any kind of function you want to build addition() subtraction() multiplication() division() # Assignment 2 day 8 # you need to develop a python program to open a file in read only mode and # try writing something to it and handlethe subsequent errorusing Exception Handling try: f=open("abc.txt","r"); f.write("Heyy, i am prajval"); f.close(); except: print("File is in read only mode...")
22.22449
85
0.651974
0ae8c65cafc822a3267fba35c6ed220e7f320711
11,646
py
Python
gwcs/coordinate_frames.py
migueldvb/gwcs
4eb2abdb1d9d49ee10c1edbcae0d1cec4c758c39
[ "BSD-3-Clause" ]
null
null
null
gwcs/coordinate_frames.py
migueldvb/gwcs
4eb2abdb1d9d49ee10c1edbcae0d1cec4c758c39
[ "BSD-3-Clause" ]
null
null
null
gwcs/coordinate_frames.py
migueldvb/gwcs
4eb2abdb1d9d49ee10c1edbcae0d1cec4c758c39
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Defines coordinate frames and ties them to data axes. """ from __future__ import absolute_import, division, unicode_literals, print_function import numpy as np from astropy import units as u from astropy import utils as astutil from astropy import coordinates as coord from astropy.extern import six from . import utils as gwutils __all__ = ['Frame2D', 'CelestialFrame', 'SpectralFrame', 'CompositeFrame', 'CoordinateFrame'] STANDARD_REFERENCE_FRAMES = [frame.upper() for frame in coord.builtin_frames.__all__] STANDARD_REFERENCE_POSITION = ["GEOCENTER", "BARYCENTER", "HELIOCENTER", "TOPOCENTER", "LSR", "LSRK", "LSRD", "GALACTIC_CENTER", "LOCAL_GROUP_CENTER"] def coordinates(self, *args): """ Create world coordinates object""" raise NotImplementedError("Subclasses may implement this") class CelestialFrame(CoordinateFrame): """ Celestial Frame Representation Parameters ---------- axes_order : tuple of int A dimension in the input data that corresponds to this axis. reference_frame : astropy.coordinates.builtin_frames A reference frame. reference_position : str Reference position. unit : str or units.Unit instance or iterable of those Units on axes. axes_names : list Names of the axes in this frame. name : str Name of this frame. """ def coordinates(self, *args): """ Create a SkyCoord object. Parameters ---------- args : float inputs to wcs.input_frame """ # Reorder axes if necesary. try: return coord.SkyCoord(*args, unit=self.unit, frame=self._reference_frame) except: raise class SpectralFrame(CoordinateFrame): """ Represents Spectral Frame Parameters ---------- axes_order : tuple or int A dimension in the input data that corresponds to this axis. reference_frame : astropy.coordinates.builtin_frames Reference frame (usually used with output_frame to convert to world coordinate objects). unit : str or units.Unit instance Spectral unit. axes_names : str Spectral axis name. name : str Name for this frame. """ class CompositeFrame(CoordinateFrame): """ Represents one or more frames. Parameters ---------- frames : list List of frames (TimeFrame, CelestialFrame, SpectralFrame, CoordinateFrame). name : str Name for this frame. """ class Frame2D(CoordinateFrame): """ A 2D coordinate frame. Parameters ---------- axes_order : tuple of int A dimension in the input data that corresponds to this axis. unit : list of astropy.units.Unit Unit for each axis. axes_names : list Names of the axes in this frame. name : str Name of this frame. """
32.713483
99
0.574618
0aea8c17200ee38f7b989cd3fe4ee1c7be72a125
4,286
py
Python
modox/chan_modifier.py
lukpazera/modox
4ee5a6033e405f9f7f3a7c80a1cb3c558c90fb01
[ "MIT" ]
11
2021-02-19T17:11:04.000Z
2021-12-03T17:14:58.000Z
modox/chan_modifier.py
lukpazera/modox
4ee5a6033e405f9f7f3a7c80a1cb3c558c90fb01
[ "MIT" ]
null
null
null
modox/chan_modifier.py
lukpazera/modox
4ee5a6033e405f9f7f3a7c80a1cb3c558c90fb01
[ "MIT" ]
null
null
null
import lx import modo import select import item from run import run
28.573333
110
0.614326
0aeade2b44478bdc750fc6e4297d377345ef5136
500
py
Python
brownie_fund_me/scripts/fund_and_withdraw.py
WangCHEN9/solidity_demos
cf28111a1e972ab9dde70f6d3fac22c897d8b660
[ "MIT" ]
null
null
null
brownie_fund_me/scripts/fund_and_withdraw.py
WangCHEN9/solidity_demos
cf28111a1e972ab9dde70f6d3fac22c897d8b660
[ "MIT" ]
null
null
null
brownie_fund_me/scripts/fund_and_withdraw.py
WangCHEN9/solidity_demos
cf28111a1e972ab9dde70f6d3fac22c897d8b660
[ "MIT" ]
null
null
null
from brownie import FundMe from scripts.helpful_scripts import get_account if __name__ == "__main__": main()
18.518519
58
0.654
0aeb5c0e9a64382d41d3447557ec9fb64a32a973
409
py
Python
ex019.py
jefernathan/Python
2f840a625e8d46d41ab36df07ef50ae15a03c5ab
[ "MIT" ]
null
null
null
ex019.py
jefernathan/Python
2f840a625e8d46d41ab36df07ef50ae15a03c5ab
[ "MIT" ]
null
null
null
ex019.py
jefernathan/Python
2f840a625e8d46d41ab36df07ef50ae15a03c5ab
[ "MIT" ]
null
null
null
# Um professor quer sortear um dos seus quatro alunos para apagar o quadro. Faa um programa que ajude ele, lendo o nome dos alunos e escrevendo na tela o nome do escolhido. from random import choice nome1 = input('Digite um nome: ') nome2 = input('Digite outro nome: ') nome3 = input('Digite mais um nome: ') nome4 = input('Digite o ltimo nome: ') nome = [nome1, nome2, nome3, nome4] print(choice(nome))
34.083333
173
0.728606
0aeb7979679122962a3fff866f48391b6b9c9278
489
py
Python
contacts/admin.py
liviamendes/agenda-django-project
d602bb5e762ea477c3c97b5a475ad79036c0c93d
[ "MIT" ]
null
null
null
contacts/admin.py
liviamendes/agenda-django-project
d602bb5e762ea477c3c97b5a475ad79036c0c93d
[ "MIT" ]
null
null
null
contacts/admin.py
liviamendes/agenda-django-project
d602bb5e762ea477c3c97b5a475ad79036c0c93d
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Categoria, Contact admin.site.register(Categoria) admin.site.register(Contact, ContactAdmin)
30.5625
102
0.691207